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Preface

The first edition of this book was published in 2003. Inevitably, certain parts of the
book became outdated quickly. At the same time new developments have contin-
ued apace, including new concrete protocols, new understanding of protocol security
properties, and new cryptographic primitives and techniques which can be used in
protocol design. Work on a new edition began as early as 2010, but even as it was
being written its scope expanded. We are aware that some important protocols have
been omitted, and that there are emerging areas which will see considerable activity
in the near future (post-quantum secure protocols being one obvious example). How-
ever, we still hope that we have been able to capture most of the main developments
that have occurred since the first edition.

This second edition has broadly the same purpose and scope as the first edition.
We hope to provide a helpful reference for the expert while still being accessible
to those newer to the topic, including those trying to obtain a broad overview of
the field. In comparison with the first edition, there are three new chapters and all
the other chapters (one renamed) have been extensively revised. The new book is
around 50% larger with around 225 concrete protocols described and a bibliography
with almost twice as many references. Some older material, which we deemed less
relevant today, has been removed.

Chapter 1 replaces the first two chapters from the first edition. The chapter is in-
tended to provide the necessary background on cryptography, attack scenarios
and protocol goals with an expanded coverage. The initial tutorial introduction
has been moved to an appendix, while some parts of Chapter 2 from the first edi-
tion were removed as they seemed no longer relevant. An updated, but somewhat
shortened, introduction to protocol verification is also included.

Chapter 2 is the first completely new chapter, describing computational models for
key exchange and authentication. The purpose of this chapter is not to provide
a tutorial on how to read, let alone write, computational proofs, but rather to
try to help readers understand what a computational proof provides and how to
compare the many different computational models in use. In later chapters we
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have freely made reference to the major computational models when discussing
specific protocols and their security.

Chapter 3 is an updated chapter covering protocols using shared key cryptography.
This includes major updates on the status of the protocols in the ISO 9798-2 and
11770-2 standards.

Chapter 4 is an updated chapter on protocols using public key cryptography. Again,
this includes new developments of the ISO standard protocols, this time for the
9798-3 and 11770-3 protocols. Coverage of TLS is moved to the new Chap. 6
which is devoted to TLS.

Chapter 5 on key agreement is, as in the first edition, the longest chapter. There is
an amazing diversity of ideas in design of key agreement protocols, even in the
simplest case covered in this chapter, which is limited to two-party protocols in
the public key setting. Even though several older protocols from the first edi-
tion have been omitted, the revised chapter is now more than ten pages longer,
illustrating that there are still many new developments occurring.

Chapter 6 is a completely new chapter on the TLS protocol. As the most prominent
key establishment protocol in use today, we believe it is more than justifiable to
devote a chapter to TLS. The development of the protocol in the past 10 years,
culminating in the new TLS 1.3 protocol, provides many lessons for those re-
searching and implementing key establishment protocols.

Chapter 7 is the third new chapter and is dedicated to ID-based protocols. While
it gathers in some early ID-based protocols already included in the first edition,
the coverage of pairing-based protocols forms the bulk of the chapter and is
completely new.

Chapter 8 is an updated chapter on password-based protocols. This is another topic
where there has been a great deal of research activity since the first edition lead-
ing to a significant expansion in the chapter.

Chapter 9 is an updated (and renamed) chapter on group key establishment. Al-
though group protocols have a long history there has been much recent work to
modernise the topic with stronger security properties and formal proofs.

Appendix A covers standards for key establishment and authentication protocols
from various standards bodies, updated and expanded from the first edition.

Appendix B consists of a tutorial introduction to protocols for authentication and
key establishment. This is unchanged from the corresponding section in the first
edition, apart from some small notational revisions.
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1

Introduction to Authentication and Key Establishment

1.1 Introduction

Authentication and key establishment are fundamental steps in setting up secure
communications. Authentication is concerned with knowing that the correct par-
ties are communicating; key establishment is concerned with obtaining good cryp-
tographic keys to protect the communications, particularly to provide confidentiality
and integrity of the data communicated. Because the modern world increasingly re-
lies on digital networks, the security of communications is a critical element in the
functioning of society today, and will become only more important in the future.

Protocols for authentication and key establishment (AKE) have acquired a rep-
utation for being difficult to analyse and to design correctly. This may be because
of a lack of intuition behind what such protocols are intended to achieve, in contrast
to concepts like encryption and data integrity which are more easily compared with
familiar real-world situations. Protocols for AKE come in many types according to
various criteria. One of the aims of this book is to classify protocols so that they are
easier to compare. In this chapter we aim to introduce the main properties that may
be used to classify AKE protocols. For the complete newcomer to the subject we
include more basic material in tutorial fashion in Appendix B.

We first present in Sect. 1.2 a loose classification of the different architectural
settings that are commonly encountered in AKE protocols, in terms of the partic-
ipants, their roles and their initial key material. Section 1.3 outlines cryptographic
mechanisms including methods to ensure freshness. Cryptographic primitives are
fundamental tools required in almost all practical protocols so we highlight how
these are applied in different AKE protocol types. This is followed by a survey of
the well-known types of attacks on AKE protocols; understanding protocol failures
is essential in understanding how to design and assess protocols. Having understood
what may be considered valid attacks, we turn the focus around and define what are
the typical goals of AKE protocols in Sect. 1.5. Some of these are common to most
protocols; others are optional depending on the specific application requirements.
Finally, in Sect. 1.6 we discuss some prominent tools for analysis of AKE protocols.
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2 1 Introduction to Authentication and Key Establishment

1.2 Protocol Architectures

Authentication and key establishment typically occur at the start of a communica-
tions session, which we often call simply a session. Authentication allows those par-
ties active in the session to learn the identity of other parties in the session. Key
establishment is used to set up a session key, used to subsequently protect the data
communicated during the session with the help of whatever cryptographic mecha-
nisms are chosen.

There are three features that we regard as architectural criteria to classify differ-
ent protocols: which keys are already established, how new keys are generated, and
how many users a protocol is designed to serve. Note that the second criterion is
applicable only to protocols concerned with key establishment in contrast to authen-
tication.

1.2.1 Cryptographic Keys

As a matter of general principle it is not possible to establish an authenticated session
key without existing secure channels already being available. In fact this principle
can be stated formally and proven to be correct [129]. Therefore, except for the pos-
sibility of secure physical establishment of keys, it is essential either that keys are
already shared between different principals or that authentic public keys are avail-
able. Therefore a key establishment protocol always features two types of keys:

session keys, which are established during the protocol;
long-term keys, which exist before the protocol is run.

Session keys are almost always keys for use with symmetric-key cryptography
and are shared between the protocol parties after completion of the protocol. In the
protocols we examine throughout this book we almost always assume that there is
only one session key defined from a single run of the protocol. In practice, it is
common to derive a number of further keys from the session key, for example to
obtain different keys for each direction of a bidirectional secure channel. Long-term
keys often come in different types; we take particular note of the following options.

Shared keys. Keys for symmetric-key cryptography may be shared by the protocol
parties beforehand (and are often called pre-shared keys). These may be shared
on a pairwise basis between parties, which may include trusted servers as well
as ordinary users of the protocol. The protocols in Chap. 3 apply this type of
long-term key.

Public–private key pairs. Protocol parties may have long-term public keys for
which they hold the corresponding private key. Typically this means that a public
key infrastructure (PKI) must be in place so that parties can validate public keys
via certificates. It is common to omit the details of certificate communication
and verification in AKE protocol descriptions, although there have been some
attempts to analyse protocols together with PKI concerns [136]. The protocols
in Chaps. 4, 5 and 6 apply this type of long-term key.
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Identity-based keys. An alternative to normal public key cryptography is identity-
based cryptography in which public keys can be replaced by identity strings and
shared public parameters. A key generation server is required in order to dis-
tribute corresponding private keys to protocol parties. The protocols in Chap. 7
apply this type of long-term key.

Passwords. Strictly speaking we can regard passwords as a special type of shared
key, often shared between a user and a server. There are, however, cases where
the server does not keep the plaintext password, but only a one-way image of it.
In any case, password-based AKE protocols require special treatment since they
cannot resist all attacks that protocols using high-entropy full-length keys can.
The protocols in Chap. 8 apply this type of long-term key.

1.2.2 Method of Session Key Generation

There are various ways to generate session keys in an AKE protocol. In the following,
we use the term user to mean an entity who will use the session key for subsequent
communication. We also use the term principal or party to mean an entity who will
engage in the protocol. For example, in a protocol which uses a key server (often
called an authentication server) there are users who will obtain the session key while
the server is a principal but not a user.

Definition 1. A key transport protocol is an AKE protocol in which one of the prin-
cipals generates the session key and this key is then transferred to all protocol users
in that session.

Definition 2. A key agreement protocol is an AKE protocol in which the session key
is a function of inputs from all protocol users in that session.

Definition 3. A hybrid protocol is an AKE protocol in which the session key is a
function of inputs from more than one principal in the session, but not by all users.
This means that the protocol is a key agreement protocol from the viewpoint of some
users, and a key transport protocol from the viewpoint of others.

The type of protocols described in Definition 3 are not common in the literature
but are easily instantiated. An example is given in Protocol 1.1 below. Protocols using
an online key server often use key transport, whereas protocols where users have
public keys (often certified by an offline server) often use key agreement. However,
this is not always the case, and there are examples of key agreement protocols in
which an online key server provides an input to the session key, and key transport
protocols using public long-term keys.

We focus on key transport protocols in Chaps. 3 and 4 although they do occur in
other chapters too. We focus on key agreement protocols in Chap. 5 but they are also
prominent in Chaps. 6, 7, 8 and 9.
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1.2.3 Number of Parties

A final component of the protocol architecture is the number of parties, or principals,
that are intended to take part in a session of the protocol. The majority of AKE pro-
tocols have concentrated on the case where two users wish to establish a session key
for point-to-point communications and this case is the focus of most of the chapters
in the book. Extending to the case of group key establishment, where more than two
users wish to establish a joint session key, can complicate matters a great deal. Group
protocols are examined in Chap. 9. In most cases group key establishment protocols
apply key agreement, but there are also key transport examples; it is quite possible
for a group protocol to look like a key transport protocol to some principals (who
receive the session key on a cryptographic channel) and a key agreement protocol to
other principals (who have an input to the session key).

1.2.4 Example

The three criteria mentioned above may be used to classify key establishment proto-
cols in different ways. We have used all three as criteria for splitting the material in
this book into chapters. Nevertheless, it is not always easy to decide where a protocol
should lie. We give in Protocol 1.1 an example with unusual properties. This proto-
col uses an online server, applies hybrid key generation and has two users. As far
as we are aware, this simple protocol does not correspond to any protocol published
elsewhere.

At the start A and B share long-term keys, KAS and KBS respectively, with S. The
session key is calculated as KAB = f (NB,NS) for a suitable function f , where NB and
NS are random values generated by B and S respectively. We use IDA to denote the
identity of party A and IDB to denote the identity of party B. The notation {. . .}K
indicates encryption with a shared key K.

Goal: Hybrid key establishment of shared key KAB = f (NB,NS)

1. A→ B : IDA,NA

2. B→ S : {NB, IDA, IDB}KBS ,NA

3. S→ A : {KAB, IDA, IDB,NA}KAS ,NS

4. A→ B : NS,{IDA, IDB}KAB

5. B→ A : {IDB, IDA}KAB

Protocol 1.1: A protocol in an unusual class

Upon receiving message 2, S must check that the value obtained by decrypting
the field IDB is the same as the identity of the principal whose key is used to decrypt
the message. On receipt of message 4, B uses NB to compute KAB = f (NB,NS). From
B’s viewpoint Protocol 1.1 is like a key agreement protocol because B has input to



1.3 Cryptographic Tools 5

the key. From A’s viewpoint it looks like a key transport protocol. This is why we
call it a hybrid protocol according to Definition 3.

1.3 Cryptographic Tools

In this section we highlight the importance of distinguishing the possible different
properties that may be provided by cryptographic algorithms. Much of the material
in this section is summarised from the classic book of Menezes, van Oorschot and
Vanstone [550]. More modern treatments can be found in other textbooks [412, 678].

A good understanding of the algorithms and methods of cryptography is highly
beneficial in assessing cryptographic protocols, but it is not the purpose of this sec-
tion to develop such an understanding, only to give a brief overview. We can identify
four fundamental objectives that may be achieved by cryptographic algorithms.

Confidentiality ensures that data is available only to those authorised to obtain it.
This is usually achieved through encryption of the data so that only those with the
correct decryption key can recover it. In AKE protocols, it is essential that the
long-term keys (and possibly some internal values) remain confidential, while
the goal is to establish a session key that is itself confidential.

Data integrity ensures that data has not been altered by unauthorised entities. This
can be achieved through use of hash functions in combination with encryption,
or by use of a message authentication code to create a separate check field. Data
integrity is required in many AKE protocols to protect elements such as identity
fields and nonces.

Data origin authentication guarantees the origin of data. It is a fundamental step
in achieving entity authentication in protocols as well as in establishing keys.
Since altering the data must alter its origin, we may say that data origin authen-
tication implies data integrity. Although it is in principle possible to achieve data
integrity without origin authentication, they are normally achieved by the same
cryptographic mechanisms.

Non-repudiation ensures that entities cannot deny sending data that they have com-
mitted to. This is typically provided using a digital signature mechanism. Non-
repudiation is rarely a requirement in protocols for authentication and key es-
tablishment, but it automatically provides the important data integrity and data
origin authentication services.

Some cryptographic transformations can provide more than one of these proper-
ties. It is often noted that if the message source has sufficient redundancy, for example
a natural language source like English, then encryption for confidentiality automati-
cally provides some degree of data integrity. However, it is a serious error to believe
that just because a decrypted message makes sense it must be the same message that
was sent. Before looking at the properties of cryptographic algorithms meeting the
different objectives, let us consider an example illustrating the importance of identi-
fying which properties are provided.
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The one-time pad is one of the simplest cryptosystems and it is also provably
secure in a very strong sense. If we assume that the message is a string of n bits
b1,b2, . . . ,bn then the key is a random string of bits k1,k2, . . . ,kn. Encryption takes
place one bit at a time and the ciphertext string c1,c2, . . . ,cn is found by adding,
modulo 2, each message bit to the corresponding key bit:

ci = bi⊕ ki for 1≤ i≤ n.

Decryption is the same process as encryption, since adding modulo 2 is a self-inverse
operation. Now, suppose that an adversary knows that the one-time pad is used to se-
cure the amount sent in a funds transfer. The adversary may alter any of the bits of
the ciphertext and change the amount sent even without finding what the original
amount was. If the amounts are usually small then the adversary could alter the most
significant bit and expect to increase substantially the amount sent. This simple ex-
ample shows that the one-time pad on its own provides no data integrity even though
it provides perfect secrecy.

We now consider definitions for the cryptographic mechanisms that are typically
used to provide the main cryptographic services. Table 1.1 summarises the notation
which we will use for these mechanisms throughout this book.

Table 1.1: Summary of notation for cryptographic algorithms

EncA(M) Public key encryption of message M with public key of party A.

{M}K Symmetric encryption of message M with shared key K.

EncapA(·) Public key encapsulation of a shared secret with public key of party A.

MACK(M) Message authentication code of M using shared key K.

SigA(M) Digital signature of message M generated by party A.

The definitions we will give are informal, but rely on an intuitive understanding
of what it means for a computation to be easy or difficult. In complexity theory a
computation is said to be easy (or feasible) if the time it takes to complete increases
as a polynomial (which could be a constant) of the input length. If the time required
increases faster than any polynomial then we may say that the computation is hard (or
infeasible). Sometimes it is more meaningful to have a specific number of operations
in mind. Nowadays it is accepted that performing up to around 260 fundamental
computational operations is ‘easy’ while performing 2160 such operations is ‘hard’,
with something of a grey area in between.

1.3.1 Confidentiality

Definition 4. An encryption scheme defines four sets: a set of encryption keys KE ,
a set of decryption keys KD, a message set M, and a ciphertext set C, together with
three algorithms.
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1. A key generation algorithm, which outputs a valid encryption key k ∈ KE and a
valid decryption key k−1 ∈ KD.

2. An encryption algorithm, which takes an element m ∈M and an encryption key
k ∈ K and outputs an element c ∈ C. The encryption algorithm may be ran-
domised so that a different c will result given the same m.

3. A decryption function, which takes an element c ∈C and a decryption key k−1 ∈
K and outputs an element m∈M (or possibly a special error symbol). We require
that if c is a valid encryption of m, then the decryption of c yields m.

An encryption scheme is a symmetric key algorithm if KE = KD and k = k−1. In
contrast, in an asymmetric or public key encryption algorithm k and k−1 are different
and it is computationally hard to obtain the private key k−1 from the public key k. As
shown in Table 1.1 we use different notation to distinguish between symmetric and
asymmetric encryption.

Although all encryption algorithms are intended to hide information from the
adversary, different algorithms can provide different properties. The following def-
inition tries to capture the idea that the ciphertext should not be any help to the
adversary in learning anything new, including the plaintext.

Definition 5. An encryption scheme provides semantic security if anything that can
be efficiently computed given the ciphertext can also be efficiently computed without
the ciphertext.

A useful equivalent characterisation of semantic security is indistinguishability.
This means that, given the ciphertext corresponding to one out of two chosen mes-
sages, the adversary cannot guess with probability greater than 1/2 which message is
actually the plaintext. In this challenge the adversary is able to obtain the encryption
of any chosen messages; in other words the adversary is allowed a chosen plaintext
attack.

Definition 6. An encryption scheme provides non-malleability if it is infeasible to
take a ciphertext of one message and transform it into the ciphertext of a different
related message, without knowledge of the original message.

The property of non-malleability is strictly stronger than semantic security. In-
deed the definition is known to be equivalent to the indistinguishability property men-
tioned above when the adversary is additionally given the decryption of any chosen
ciphertexts; an algorithm with non-malleability is secure against a chosen ciphertext
attack.

Since non-malleability is a stronger property than semantic security it is not sur-
prising that algorithms providing non-malleability in general have greater compu-
tational requirements and message expansion than those providing only semantic
security. The extent of the overhead varies from algorithm to algorithm, but where
computation and bandwidth are at a premium it is important to know whether an
algorithm used in a protocol must provide non-malleability. There are many AKE
protocols in which non-malleability is required, although some protocol designers
have only implicitly recognised this.
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In addition to defining what an adversarial goal is, we often specify elements
that an adversary may have access to, in addition to the ciphertext of interest. We
have already mentioned the two following types of attack which give such help to
the adversary.

Definition 7. In a chosen plaintext attack (CPA) the adversary can obtain cipher-
texts of any chosen messages. In a chosen ciphertext attack (CCA) the adversary can
obtain the decrypted plaintext of any chosen ciphertexts, except for the one under
attack.

The abbreviation IND-CPA is often for an encryption algorithm which provides
indistinguishability against chosen plaintext attacks. Similarly, the abbreviation IND-
CCA is often used to describe an encryption algorithm which provides indistin-
guishability against chosen ciphertext attacks.

CCA attacks are sometimes divided into CCA1, where the adversary has access
to the decryption function only until it fixes its target ciphertext for attack, and CCA2
where the adversary always has access to the decryption function but cannot use it
on the target ciphertext.

An encryption scheme is designed to provide confidentiality to any message, even
a single bit. Such a general mechanism is not needed when the goal is to so trans-
mit a random value confidentially. An alternative mechanism is a key encapsulation
mechanism (KEM), which is designed to generate a new random-looking value, to-
gether with an encapsulated version of that value which can only be recovered by
the chosen recipient. We can regard a KEM as a kind of encryption scheme which
can only be used to encrypt new random values. Since KEMs are often more effi-
cient than general encryption schemes, it is not surprising that they have been used
in preference to encryption in some AKE protocol designs. We will see examples of
key agreement protocols designed using KEMs in Sect. 5.8.

Definition 8. A key encapsulation mechanism consists of four sets: a public key set
KE , a private key set KD, a randomness set R, and a ciphertext set C together with
three algorithms.

1. A key generation algorithm, which outputs a valid public key K ∈KE and a valid
private key K−1 ∈ KD.

2. An encapsulation algorithm, which takes a public encapsulation key k ∈ K and
outputs a new symmetric key k and an element c ∈ C. The encapsulation algo-
rithm is usually randomised so that a different (c,k) pair is output each time it
is called. We normally write (c,k) = EncapK(·), ignoring the randomness.

3. A decapsulation function, which takes an element c ∈ C and a private key
K−1 ∈ KD and outputs a symmetric key k. We require that if (c,k) is output by
EncapK(·), then k is output by DecapK−1(c).

1.3.2 Data Origin Authentication and Data Integrity

Data authentication and integrity are essential in most protocols for authentication
and key establishment. These two cryptographic services are strongly connected and
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are typically both provided together using the same mechanism. This is because the
origin of a message can only be guaranteed if the message has not changed since it
was formed.

The most common mechanism for providing data origin authentication and data
integrity is to append a tag to a message constructed using a message authentication
code (MAC). The message may be transmitted either in plaintext or encrypted. On
receipt of the MAC tag, a recipient with the correct key is able to recompute the tag
from the message and verify that it is the same as the tag received.

Definition 9. A message authentication code (MAC) is a family of functions param-
etrised by a key k such that MACk(m) takes a message m of arbitrary length and
outputs a fixed-length value, and satisfies the following properties.

1. It is computationally easy to calculate MACk(m) given k and m.
2. Given MAC values for any number of messages under the given key k (even

messages chosen adaptively by an adversary), it is computationally hard to find
any valid MAC value for any new message.

1.3.3 Authenticated Encryption

It is very natural that data may have to be secured in terms of both confidentiality
and data integrity at the same time. For example, data sent over a secure channel
is routinely protected in both these ways. An authenticated encryption algorithm
provides both properties together.

Although it is quite possible to build authenticated encryption by combining sep-
arate algorithms, such as encryption and MACs, there are potential benefits of using
an integrated algorithm; such benefits may be efficiency and less chance to combine
the algorithms in a bad way. In Chapter 6 we describe attacks which are possible due
to an unfortunate mix of MAC and encryption. Today there are standardised algo-
rithms for authenticated encryption, such as the GCM mode of operation for block
ciphers [575].

1.3.4 Non-repudiation

Non-repudiation is usually provided through a digital signature mechanism. Al-
though non-repudiation is not a property that is typically required for authentica-
tion or key establishment protocols, nevertheless digital signatures are a common
element in their construction. This is because digital signatures also provide authen-
tication and data integrity services; their implementation through public keys makes
them useful for providing these essential services.

Definition 10. A digital signature algorithm consists of four sets: a set of signing keys
KS, a set of verification keys KV , a message set M, and a signature set S, together
with three algorithms.

1. A key generation algorithm, which outputs a valid signature key k ∈ KS and a
valid verification key k−1 ∈ KV .
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2. A signature generation algorithm, which takes an element m∈M and a signature
key k ∈ KS and outputs an element s ∈ S. We will write s = SigA(m) where K is
the signature generation key of party A. The signature generation algorithm may
be randomised so that a different output will result given the same m.

3. A verification function, which takes a signature s ∈ S, a message m ∈M, and a
verification key k−1 ∈ KV and outputs an element v ∈ {0,1}. If v = 1 then we say
the signature is valid or if v = 0 we say that the signature is invalid.

A digital signature algorithm is regarded as secure if it is computationally hard
for the adversary to find a valid signature of any message that has not been previ-
ously signed, even given many previously signed messages (chosen adaptively). A
signature with this property is often said to be unforgeable.

In the above definition we have stated that it is necessary to possess both the
signature s and the message m in order to verify the signature. This is sometimes
called a signature with appendix. In contrast, a signature that can be verified with-
out separate knowledge of the message is called a signature with message recovery.
Throughout the book we will use the notation SigA(m) to denote a signature with ap-
pendix of message m from party A. Notice that even though we assume that m must
be available in order to verify SigA(m), it does not follow that an adversary cannot
obtain information about m from SigA(m).

1.3.5 Examples of Cryptographic Algorithms

Table 1.2 lists some of the best known cryptographic algorithms which provide the
different types of cryptographic properties discussed earlier in this section. Some of
these algorithms have been proven secure in the sense that there is a proven reduction
to some well-known difficult problem. However, the reader should be aware that
these reductions have varying complexities and the underlying problems have no
proof regarding their absolute difficulty. The IEEE P1363 standard [372] covers a few
public key algorithms and how to implement them. Several books [412, 520, 678]
provide detailed descriptions of such algorithms and explain their security proofs.

The Advanced Encryption Standard (AES) is given as an example of a block ci-
pher. The security properties of any block cipher depend critically on the mode of
operation of the cipher, and so we have just given the generic term ‘confidential-
ity’ as its provided security service. One particular mode is GCM (Galois counter
mode) which is included in the table as an example of an algorithm for authenticated
encryption.

Modern complexity-theoretic definitions are nowadays in frequent use in the lit-
erature of cryptography. The definitions given above are informal versions of these.
Study of the formal definitions is helpful in gaining a deeper understanding of
what algorithms are appropriate to use in a particular protocol, but is outside the
scope of this book. Relationships exist between the different formal definitions of
confidentiality [73]. Similarly formal definitions of security for digital signatures
are available. Certain algorithms have been proven to possess the different crypto-
graphic properties defined above, given certain reasonable assumptions on the under-
lying mathematical problems, and sometimes about the existence of functions with
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Table 1.2: Some well-known cryptographic algorithms and their properties

Algorithm Type Cryptographic service

AES [237, 574] Block cipher Confidentiality

ElGamal encryption [267] Public key cipher Semantic security

Cramer–Shoup [224] Public key cipher Non-malleability

RSA-OAEP [77] Public key cipher Non-malleability

RSA signature [372, 630] Digital signature Non-repudiation

DSS [577] Digital signature Non-repudiation

SHA-2 [579] Hash function One-way function

HMAC [71] MAC Data integrity

GCM [575] Block cipher mode Confidentiality and integrity

random-like properties. In many protocols the cryptographic algorithms used are not
specified. However, it is helpful to know that appropriate algorithms do actually ex-
ist.

1.3.6 Secret Sharing

Secret sharing is a mechanism that allows the owner of a secret to distribute shares
amongst a group. The owner of the secret is often called the dealer. Individual shares
are of no help in recovering the secret, but if all shares in some predefined access sets
are available then the secret can be collectively found. A (t,n) threshold scheme is
a secret sharing scheme for which n shares are distributed, such that any set of t (or
more) shares is sufficient to obtain the secret, while any set of t−1 (or fewer) shares
is of no help in recovering the secret.

There are some similarities between secret sharing and key establishment for
groups since, for both, a group of users cooperates to derive a secret value. How-
ever, a secret sharing scheme on its own lacks the means to provide fresh keys, to
distribute keys to principals, and to provide key authentication. We look at some
specific schemes based on secret sharing in Chap. 9.

The most well-known threshold scheme is due to Shamir [664] and is based on
the use of polynomial interpolation. This allows any polynomial of degree d to be
completely recovered once any d + 1 points on it are known. Polynomial interpola-
tion works over any field, but in cryptographic applications the field is typically Zp,
the field of integers modulo p, for some prime p.

In order to share a secret s ∈ Zp in Shamir’s (t,n) threshold scheme, the dealer
generates a polynomial of degree t−1,

f (z) = a0 +a1z+ . . .+at−1zt−1,
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with coefficients randomly chosen in Zp except for a0 = s. The shares are values
f (x) with 1≤ x≤ n. If any t shares are known then s can be recovered. For example,
if f (1), f (2), . . . , f (t) are known then:

s =
t

∑
i=1

f (i) ∏
1≤ j≤t, j 6=i

j
j− i

.

Given any t − 1 points on the polynomial (excluding the value at 0), all possible
values for f (0) can be obtained given one extra point. Consequently, absolutely no
information about the secret can be obtained if t−1 or fewer shares are known.

1.3.7 Freshness Mechanisms

One of the basic requirements for protocols used to establish a session key is that
each user of the key should be able to verify that it is new and not replayed from an
old session. This property extends to a variety of other protocol types. For example,
protocols designed to achieve authentication in real time also need to ensure that
messages sent are not replays. Thus we see that the need to ensure that message ele-
ments are new, or fresh, is a very common protocol requirement. It is thus worthwhile
to look at the typical ways that freshness is achieved in existing protocols.

We can consider two different ways that freshness of a value may be guaranteed
to a particular user. The first is that the user has a part in choosing the value (which
will often be a new session key), while the second is that the user has to rely on
something received with the value that is known to be fresh itself. A typical instance
of the first case is in a key agreement protocol. Here two users A and B both choose
an input, NA and NB respectively, to a new session key KAB. The session key is formed
by choosing some function of the inputs:

KAB = f (NA,NB).

A desirable property of the function f is that it should not be possible for A or
B to force an old value of KAB even if the other’s input is known. This means that
each user has independent assurance that KAB is fresh. This property is achieved
for A if, once NA is chosen, B is unable to choose NB in such a way that KAB is
an old value. If we define the function g(.) = f (NA, .) then this means that g must
be a one-way function. In practice it may be necessary to add other conditions to
disallow exceptional values. A symmetrical condition must also hold to provide the
same property for B. One very common example of such a function is the basic
Diffie–Hellman protocol which we examine in detail in Chap. 5.

Let us turn now to the second case, where freshness depends on something re-
ceived with the message. Suppose that a principal A wishes to verify the freshness
of a session key KAB that has been generated by some principal S (which may be a
server or perhaps the principal B that shares KAB). Principal A must trust S to freshly
generate KAB but needs to be sure that the message received is not an old message
that has been replayed by the adversary. Assume that A receives the message field
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F(KAB,N) which is a function of KAB and a freshness value N. What are the prop-
erties required of F to allow the recipient to be sure that the composite message is
fresh? F must provide data origin authentication and data integrity so that the recipi-
ent can deduce that F(KAB,N) was generated by S and has not been altered. If A can
be sure that N is fresh then she can also be sure that F(KAB,N) is fresh. Since S is
trusted to generate and authenticate only fresh keys, A can therefore deduce that KAB
is fresh. We next consider the different forms that the freshness value N can take.

A freshness value must have the property that it can be guaranteed not to have
been used before. (In some protocols, values used for freshness are also required to
have other properties, but this is because they are used for other purposes as well as
to ensure freshness.) There are three common types of freshness value used: time-
stamps, nonces and counters. Gong [317] classified the various ways that these types
may be used in a protocol.

Timestamps. The sender of the message adds the current time to the message when
it is sent. This is checked by the recipient when the message is received by com-
paring with the local time. If the received timestamp is within an acceptable
window of the current time then the message is regarded as fresh. The difficulty
of using timestamps is that synchronised time clocks are required and must be
maintained securely. Gong [314] pointed out that if a principal’s clock is ad-
vanced beyond the time in the rest of the system, a vulnerability can exist even
after the clock has been corrected. This is because an adversary could have cap-
tured, and suppressed, a message that will become fresh in the future. Gong calls
this a suppress relay attack.

Nonces (random challenges). The recipient A of the message generates a nonce
(‘number used only once’) NA, and passes it to the sender of the message B.
The nonce NA is then returned with the message after processing with some
cryptographic function f as shown in Protocol 1.2. A checks the nonce on receipt
and deduces that the message is fresh because the message cannot have been
formed before the nonce was generated. A disadvantage of using a challenge
is that it requires an interactive protocol which may add to both the number of
messages and the number of message exchanges required. Attention must also
be paid to the quality of random numbers produced, since if the nonce to be
used is predictable a valid reply can be obtained in advance and later replayed (a
preplay attack).

1. A→ B : NA

2. B→ A : f (NA, . . .)

Protocol 1.2: Use of a nonce (random challenge)

Counters. The sender and recipient maintain a synchronised counter whose value is
sent with the message and then incremented. A disadvantage of counters is that
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state information must be maintained for each potential communication partner.
Management of counters can also cause problems in the presence of channel
errors. Gong [317] pointed out that if a counter is not synchronised with the
receiver then preplay attacks are possible.

Mitchell [556] suggested a hybrid between counters and timestamps. His idea is
to use a counter based on real time. For example, the counter may be the time in
seconds from some starting point: this allows a 32-bit counter to be used for over
136 years before repeating. The motivation for such a suggestion is that a server
authenticating multiple clients can easily recover from loss of the counter states by
checking its real-time clock. Mitchell discusses an application in mobile telephony
in which the mobile handset may not have a reliable clock but is still required to
verify freshness of session keys generated by a server.

A different way of obtaining freshness, which is less common, is if an element is
transformed with a cryptographic key that is known to be fresh. For this method to
work the cryptographic transformation must provide data integrity. Then the recipient
can be sure that the fresh key has been used to form the message, and so the message
must have been formed after the key was formed.

1.4 Adversary Capabilities

The purpose of this section is to summarise common ways that an adversary may
attack a protocol. We can consider these as techniques or strategies that an adversary
may use. Before looking at these we sound a couple of notes of caution.

Firstly, the list will not be complete. The ways in which the adversary may inter-
act with one or more protocol runs are infinite. There are almost certainly attack pos-
sibilities that we have omitted. Indeed, it could be argued that it is not tremendously
helpful to know that a protocol is not vulnerable to a certain list of threats; what is
really required is confidence that it meets its security objectives given a known list
of assumptions. We consider ways in which we may be able to achieve such guar-
antees in Sect. 1.6 and Chap. 2. On the other hand, we should not underestimate the
usefulness of a list of typical weaknesses to check against.

Secondly, different protocols have different objectives. Some protocols are con-
cerned with key establishment, others solely with entity authentication. There may be
additional goals, such as confirmation that the session key was correctly received by
the protocol users. We consider different goals for AKE protocols in Sect. 1.5. Nat-
urally, whether or not a protocol achieves particular goals depends on what attacks
are deemed possible.

Bearing in mind these caveats, we now consider the most commonly encountered
threats to cryptographic protocols. Table 1.3 lists and defines the attacks and they are
considered in turn in more detail below. There are certainly other ways to classify
attacks; an alternative list, with examples, was given by Carlsen [182].
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Table 1.3: Types of protocol attack

Eavesdropping The adversary captures the information sent in the protocol.

Modification The adversary alters the information sent in the protocol.

Replay The adversary records information seen in the protocol and
then sends it to the same or a different principal, possibly
during a later protocol run.

Preplay The adversary engages in a run of the protocol prior to a run
by the legitimate principals.

Reflection The adversary sends protocol messages back to the principal
who sent them.

Denial of service The adversary prevents or hinders legitimate principals from
completing the protocol.

Typing attacks The adversary replaces a (possibly encrypted) protocol mes-
sage field of one type with a (possibly encrypted) message
field of another type.

Cryptanalysis The adversary gains some useful leverage from the protocol
to help in cryptanalysis.

Certificate manipulation The adversary chooses or modifies certificate information to
attack one or more protocol runs.

Protocol interaction The adversary chooses a new protocol to interact with a
known protocol.

1.4.1 Eavesdropping

Eavesdropping is perhaps the most basic attack on a protocol. Nearly all protocols ad-
dress eavesdropping by using encryption. It is obvious that encryption must be used
to protect confidential information such as session keys. In certain protocols there
may be other information that also needs to be protected. An interesting example is
that protocols for key establishment in mobile communications usually demand that
the identity of the mobile station remain confidential. Eavesdropping is sometimes
distinguished as being a passive attack since it does not require the adversary to dis-
turb the communications of legitimate principals. The other attacks we consider all
require the adversary to be active. It should be remembered that many sophisticated
attacks include eavesdropping of protocol runs as an essential part.

1.4.2 Modification

If any protocol message field is not redundant then modification of it is a potential
attack. Use of cryptographic integrity mechanisms is therefore pervasive in protocols
for authentication and key establishment.

Whole messages, as well as individual message fields, are vulnerable to mod-
ification. Many attacks do not alter any known message field at all, but split and
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reassemble fields from different messages. This means the integrity measures must
cover all parts of the message that must be kept together; encryption of these fields is
not enough. Examples of attacks on protocols in which encryption does not provide
the required integrity properties were given by Stubblebine and Gligor [699] and by
Mao and Boyd [521].

1.4.3 Replay

Replay attacks include any situation where the adversary interferes with a protocol
run by insertion of a message, or part of a message, that has been sent previously
in any protocol run. Replay is another fundamental type of attack which is often
used in combination with other attack elements. Just as almost all protocols address
eavesdropping and modification attacks by using cryptography, almost all protocols
include elements to address possible replay attacks. Various means to combat replay
were discussed in Sect. 1.3.7.

It is possible for the replayed message in an attack to have been originally part of
a protocol run that happened in the past. Alternatively the replayed material may be
from a protocol run that takes place at the same time as the attacking run. Syverson
[703] produced a taxonomy of replay attacks based upon this distinction.

1.4.4 Preplay

Preplay might be regarded as a natural extension of replay, although it is not clear
that this is really an attack that can be useful on its own. The distinction is that, in
a preplay attack, the adversary is active in the earlier protocol run, with the aim of
setting up the correct conditions for an attack on the later run. An interesting example
of an attack that employs preplay is the so-called triangle attack of Burmester [167]
which will be presented in Sect. 5.3.5.

1.4.5 Reflection

Reflection is really an important special case of replay. In a typical scenario a prin-
cipal engages in a shared key protocol and the adversary simply returns a challenge
to the originating party. This attack may only be possible if parallel runs of the same
protocol are allowed but this is often a realistic assumption. For example, if one prin-
cipal is an Internet host, it may accept sessions from multiple principals while using
the same identity and set of cryptographic keys. The possibility of instigating sev-
eral protocol runs simultaneously is another common and realistic strategy for the
adversary.

Consider Protocol 1.3, which gives a very basic example. Suppose A and B al-
ready share a secret key K and choose respective nonces NA and NB for use in the
protocol. The protocol is intended to mutually authenticate both parties by demon-
strating knowledge of K.

On receipt of message 2, A deduces that it must have been sent by B since only
B has K. However, if A is willing to engage in parallel protocol runs then there is
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1. A→ B : {NA}K

2. B→ A : {NB}K ,NA

3. A→ B : NB

Protocol 1.3: A protocol vulnerable to reflection attack

another possibility, namely that message 2 was originally formed by A. An adversary
C can successfully complete two runs of the protocol, as shown in Attack 1.1.

1. A→C : {NA}K

1′. C→ A : {NA}K

2′. A→C : {N′A}K ,NA

2. C→ A : {N′A}K ,NA

3. A→C : N′A
3′. C→ A : N′A

Attack 1.1: Reflection attack on Protocol 1.3

Immediately after receiving the first message, C starts another run of the protocol
with A, and reflects back the message received from A. The reply allows C to respond
to the first message and then both runs of the protocol can be completed. In fact all
cryptographic processing has been performed by A, while A believes two protocol
runs have been completed with B.

These sorts of attacks are sometimes called oracle attacks since A acts as an or-
acle to C by presenting the required decryption. An extensive treatment of reflection
attacks was given by Bird et al. [103].

1.4.6 Denial of Service

In a denial of service attack (often contracted to DoS attack) the adversary prevents
legitimate users from completing the protocol. Denial of service attacks in practice
take place against servers which are required to interact with many clients. Attacks
can be divided into those that aim to use up the computational resources of the server
(resource depletion attacks) and those that aim to exhaust the number of allowed
connections to the server (connection depletion attacks).

As a matter of principle it seems that it is impossible to prevent denial of service
attacks completely. Any attempt to establish a connection must either result in allo-
cation of a connection or use some computational work to establish that the attempt
is invalid. Nevertheless there are certain measures that may be taken to reduce the
impact of denial of service attacks and some protocols are much more vulnerable to
this sort of attack than others, so it is important not to ignore this issue.
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• Aura and Nikander [45] suggested using stateless connections to protect against
connection depletion attacks. Their idea is to make the client store all the state
information required by the server and return it to the server as necessary with
each message sent. In this way the server need not store any state information.
Of course it is necessary that the state information returned to the server can be
verified by the server to be authentic and it may also need to be confidential.
Therefore there is an overhead in both communication and computation incurred
by transforming protocols to provide stateless connections.
A practical mechanism for delaying the need for state at the server is the use
of cookies, which first seems to have been suggested by Karn and Simpson for
their Photuris protocols (most recent version 1999 [411] but originally published
in 1995). When a client attempts to make a connection the server sends back a
cookie. This procedure is similar to the familiar use of cookies by web servers,
but here the cookies take a special form: they are a function of a secret known
only to the server and other information unique to the particular connection. At
this stage the server stores no state for this request. The client needs to return
the cookie in the next message and its validity can be checked by the server
from the information sent and its secret. The idea is to ensure, before investing
significant resources, that the client is making a unique request for connection.
This technique prevents denial of service attacks in which the adversary sends
random connection requests. By changing the server secret on a regular basis
(perhaps every 60 seconds) even the same client can be prevented from making
unlimited connection requests.

• Meadows [537] suggested that in order to protect against connection depletion
each message in a protocol must be authenticated. However, to minimise possibly
wasted computation the authentication can be weak at the start of the protocol and
increase in strength with subsequent messages. Cookies formed by the server,
and which must be returned by the client, may form the weak authentication.
Meadows developed a formal framework based on the idea of fail–stop protocols
introduced by Gong and Syverson [320] which abort as soon as a bogus message
is discovered.

• Juels and Brainard [404] proposed a mechanism that they called client puzzles
to form stronger authentication than that provided by cookies. Their idea is that
when the load on a server becomes high (possibly as a result of a denial of service
attack) the server will send a ‘puzzle’ of moderate computational difficulty to
each client which must be solved before a new connection is made. Genuine
clients will be only mildly inconvenienced by this demand but an adversary trying
to make multiple connections will have to solve many puzzles. Formal models
exist to measure the effectiveness of client puzzles for denial of service resistance
in AKE protocols [334, 686].

1.4.7 Typing Attacks

When a protocol is written on the page its elements are clearly distinct. But in prac-
tice a principal receiving a message, whether encrypted or not, simply sees a string
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of bits which have to be interpreted. Typing attacks exploit this by making a recipi-
ent misinterpret a message, accepting one protocol element as another one (that is, a
message element of a different type). For example, an element which was intended
as a principal identifier could be accepted as a key. Such an attack typically works
with replay of a previous message.

An example can be seen in the well-known protocol of Otway and Rees [597]
shown in Protocol 1.4 (see also Sect. 3.4.2). Principals A and B, with identities IDA
and IDB, share long-term keys, KAS and KBS respectively, with the server S. S gen-
erates a new session key KAB and passes it to both A and B. M and NA are nonces
chosen by A and NB is a nonce chosen by B.

Goal: Key transport of KAB from S to A and B

1. A→ B : M, IDA, IDB,{NA,M, IDA, IDB}KAS

2. B→ S : M, IDA, IDB,{NA,M, IDA, IDB}KAS ,{NB,M, IDA, IDB}KBS

3. S→ B : M,{NA,KAB}KAS ,{NB,KAB}KBS

4. B→ A : M,{NA,KAB}KAS

Protocol 1.4: Otway–Rees protocol

The typing attack works because of the similarity in the encrypted parts of the
first and last messages – they start with the same message field and are encrypted
with the same key. As usual for this kind of attack we need to make some extra
assumptions if the attack is to succeed. The attack depends on the length of the
composite field M, IDA, IDB being the same as that expected for the key KAB. This
may be a quite reasonable assumption; for example, M may be 64 bits, and IDA and
IDB could be 32 bits, so that KAB would have to be of length 128 bits, which is a
popular choice of symmetric key size. With these assumptions, an adversary C is
able to execute Attack 1.2. Here we introduce the notation CB to indicate that the
adversary C is masquerading as principal B.

1. A→CB : M, IDA, IDB,{NA,M, IDA, IDB}KAS

4. CB→ A : {NA,M, IDA, IDB}KAS

Attack 1.2: Typing attack on Otway–Rees protocol

C masquerades as B and intercepts the message from A. C then returns the en-
crypted part of this message to A, which is interpreted by A as message 4 of the
protocol. With the assumptions mentioned above, A will accept the composite field
M, IDA, IDB as the shared key KAB. Of course C knows the values of M, IDA and IDB
from message 1, and so is able to continue masquerading as B for the duration of the
session.
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Typing attacks can be countered by various measures. Ad hoc precautions include
changing the order of message elements each time they are used, and ensuring that
each encryption key is used only once. More systematic methods are to include an
authenticated message number in each message or an authenticated type field with
each field. Naturally these come at a cost in computation and bandwidth. Aura [44]
has considered systematic methods to avoid typing-based replay attacks.

Chen and Mitchell [197] defined parsing ambiguity attacks, a related notion to
typing attacks in the sense that both attack types depend on principals misinterpret-
ing message fields. However, rather than re-using protocol messages in ‘the wrong
place’, parsing ambiguity attacks simply expect two or more concatenated fields to
be parsed wrongly. Chen and Mitchell illustrated such attacks with several examples
from international standard protocols. As with typing attacks, these attacks can be
prevented by using appropriate coding methods to avoid any possibility of misinter-
preting message types and their encoding.

1.4.8 Cryptanalysis

Cryptographic algorithms used in AKE protocols are often treated abstractly and
considered immune to cryptanalysis. However, there are some exceptions that should
be mentioned. The most important exception is when it is known that a key is weak
and is (relatively) easy to guess once sufficient evidence in available. This ‘evidence’
will normally be a pair of values, one of which is a function of the key; examples are
a plaintext value and the corresponding ciphertext, or a plaintext value and its MAC.

The most common example of use of a weak key is when the key is formed from a
password that needs to be remembered by a human. In this situation the effective key
length can be estimated from the set of values that are practically used as passwords,
and is certainly much smaller than would be acceptable as the key length of any
modern cryptosystem. A number of protocols have been designed specifically to
hide the evidence needed to guess at weak keys. These are examined in some detail
in Chap. 8.

1.4.9 Certificate Manipulation

In public key protocols the certificate of a principal acts as an offline assurance from
a trusted authority that the principal’s public key really does belong to that principal.
Other principals which make use of a certificate are trusting that the authority has
correctly identified the owner of the public key at the time that the certificate was
issued. However, it is not necessarily expected that the authority is provided with
evidence that the corresponding private key is actually held by the principal claiming
ownership of the key pair. This leads to potential attacks in which the adversary gains
a certificate asserting that a particular public key is its own, even though the adversary
does not know the corresponding private key. If this public key is a function of an
existing public key some undesirable consequences may arise.

An example of a certificate manipulation attack was given by Menezes et al.
[551] on a key agreement protocol of Matsumoto et al. [526]. (This protocol, and
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related ones, will be examined in some detail in Sect. 5.3.) Principals A and B possess
public keys yA = gxA and yB = gxB respectively, and corresponding private keys xA
and xB. Here g generates a suitable group in which the discrete logarithm problem
is hard. Each public key is certified and so A and B possess certificates Cert(A) and
Cert(B) respectively which contain copies of their public keys gxA and gxB . A normal
protocol run proceeds as shown in Protocol 1.5, where rA and rB are random values
chosen by A and B respectively.

Goal: Key agreement

1. A→ B : grA ,Cert(A)
2. B→ A : grB ,Cert(B)

Protocol 1.5: A protocol vulnerable to certificate manipulation (MTI protocol)

The shared key is KAB = gxArB+xBrA , calculated by A as (grB)xA yrA
B and by B as

(grA)xB yrB
A . The adversary C engineers an attack by choosing a random value xC,

claiming that gxAxC is its public key, and obtaining a certificate for this public key.
(Notice that C cannot obtain the corresponding private key xAxC.) C then masquer-
ades as B in Protocol 1.5, and completes two runs of the protocol, one with A and
one with B, as shown in Attack 1.3.

1. A→CB : grA ,Cert(A)
1′. C→ B : grA ,Cert(C)

2′. B→C : grB ,Cert(B)
2. CB→ A : grBxC ,Cert(B)

Attack 1.3: Certificate manipulation attack on MTI protocol

After the attacking run is complete, A will calculate the key

KAB = (grBxC)xA(yB)
rA = gxAxCrB+xBrA

and B will calculate the key

KCB = (gxAxC)rB(grA)xB = gxAxCrB+xBrA .

Thus A and B have found the same key, but A believes this key is known only to A and
B while B believes it is known only to C and B. This is an example of an unknown
key-share attack, which will be discussed in more detail in Section 5.1.3.

Attacks of this sort can be avoided by demanding that every principal demon-
strates knowledge of the private key before a certificate is issued for any public key.
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Such a demonstration is ideally achieved using zero knowledge techniques so that
the trusted authority gains nothing useful about the private key. A more convenient
method may be to have the private key owner sign a specific message or a challenge.
More generally this process is part of public key validation which provides assurance
that the public and corresponding private key have been properly generated as speci-
fied in the protocol. It is possible to give a formal treatment of security incorporating
certificate manipulation attacks [136].

1.4.10 Protocol Interaction

Most long-term keys are intended to be used for a single protocol. However, it could
be the case that keys are used in multiple protocols. This could be due to careless
design, but may be deliberate in cases where devices with small storage capability
are used for multiple applications (smart cards are the obvious example), or where a
single certificate is used in multiple protocols, in multiple versions of a protocol, or
in multiple ways within the same version of a protocol.

It is easy to see that protocols designed independently may interact badly. For
example, a protocol that uses decryption to prove possession of an authenticating key
may be used by an adversary to decrypt messages from another protocol if the same
key is used. Kelsey et al. [423] gave several examples of how things can go wrong,
and discussed the chosen protocol attack, in which a new protocol is designed by
the adversary to attack an existing protocol. In Sect 6.10.2 we look at cross-protocol
attacks on TLS where long-term keys are shared across different protocol versions.

Apart from limiting keys to be used in unique protocols, one method to prevent
such attacks is to include the protocol details (such as a unique identifier and the
version number) in an authenticated part of the protocol messages. Protocols with a
security proof in the universal composability framework [181] are immune to such
attacks.

1.5 Goals for Authentication and Key Establishment

Any attack on a protocol is only valid if it violates some property that the protocol
was intended to achieve. In other words, all attacks must be considered relative to
the protocol goals. Experience has proven that many protocol problems result when
designers are unclear about the protocol goals they are trying to achieve. This in
turn leads to disputes about whether protocol attacks are valid, since designers may
regard the goals differently from analysers. Gollmann [311] recognised that it is a
difficult matter to decide exactly what is meant by commonly used words such as
‘authentication’; even if everyone has a general idea of the meaning of such a word,
the interpretation may vary with the protocol. It turns out that although most authors
can agree on general definitions, their ideas diverge when precision is required.

Clarity in describing protocol goals is desirable for all parties concerned. De-
signers have to make use of the protocol goals to justify each message field and all
cryptographic processing. Experience shows that protocols with well-defined goals
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are streamlined and transparent to analyse. Analysers make use of protocol goals to
direct their attempts to find attacks or prove they do not exist.

Many authors have considered the question of what are the appropriate goals
for cryptographic protocols, mainly in the context of protocol analysis. Definitions
of various goals also appear in a number of standards for cryptographic protocols.
However, there is a lack of agreement as to what are the desirable goals for authen-
tication and key establishment, as well as precise definitions for these goals.

Let us consider an initial example to illustrate the divergent paths that may be
taken in assessing protocol goals and attacks. In Protocol 1.6 principals A and B
wish to authenticate each other, using an initially shared key KAB. We will discuss
below some possible meanings of authenticate, but for now we will assume that both
users wish to know that their communicating peer is in possession of KAB.

1. A→ B : NA

2. B→ A : MACKAB(IDB, IDA,NA),NB

3. A→ B : MACKAB(IDA, IDB,NB)

Protocol 1.6: Example protocol

Both A and B choose nonces, NA and NB respectively, and generate a tag from
a message authentication code using the shared key. Protocols similar to this one
have been published in the literature (although we do not believe this exact one has
been suggested before). An attack on Protocol 1.6 is possible which is very similar
to some previously published attacks [103, 253]. In Attack 1.4, principal A is used as
an ‘oracle’ by the adversary C.

1. CA→ B : NC

2. B→CA : MACKAB(IDB, IDA,NC),NB

1′. CB→ A : NB

2′. A→CB : MACKAB(IDA, IDB,NB),NA

3. CA→ B : MACKAB(IDA, IDB,NB)

Attack 1.4: Attack on Protocol 1.6

From the view of B the protocol has completed normally. However, the protocol
has not run correctly and it is certainly not the case that A is the communication peer
of B. On the other hand, if the protocol goal for B was to establish that A is ready and
willing to communicate with him then the protocol has not failed. Indeed we may
note that A was sent a challenge by someone purporting to be B and replied with a
message to the effect that she was prepared to communicate with B. This example
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illustrates how careful we must be to evaluate attacks against definitions of protocol
goals.

In the next few sections we will consider various possible definitions for the
fundamental goals of authentication and key establishment protocols and explain
the reasons for our choice of definitions that we will use in subsequent chapters.
This will lead to further goals which are desirable in many AKE protocols. This
chapter concentrates on goals for protocols where the session key is shared between
two principals; additional goals which may be useful in multi-party protocols are
discussed further in Chap. 9.

1.5.1 Models of Security

As well as deciding what are the required goals of a protocol, we need to agree on the
attack model that will be used to decide whether a goal is achieved. This concerns
what actions we allow to the adversary. Generally models allow at least two general
capabilities to the adversary.

• The adversary controls the communications between all principals, which means
that the adversary can observe all messages sent, alter messages, insert new mes-
sages, delay messages or delete messages. This may be more than is achiev-
able by an adversary in practice, but by assuming a more powerful adversary we
achieve a stronger form of security.

• The adversary can obtain any session keys used in different runs of the protocol.
This reflects the typical requirement that session keys should be independent of
each other.

In addition to allowing the adversary to obtain session keys unrelated to the ses-
sion key in current use, some models also allow the adversary to obtain long-term
keys. This is often called corruption of principals since it allows the adversary to par-
ticipate in protocol runs as a normal participant. Of course an adversary in possession
of the long-term key of Alice can authenticate as Alice, so we need to restrict what
is a successful attack in such circumstances. Often we need to prevent corruption of
any of the principals involved in the protocol run which is the target of the attack.
However, this restriction is not necessary as we will see when we consider forward
secrecy and key compromise impersonation a little later.

Later, in Sect. 1.6 and Chap. 2, we will look in more detail at formal models
of security for AKE protocols. In this section we continue with an informal look at
protocol goals.

1.5.2 Key Establishment or Authentication?

In the early literature on cryptographic protocols it was common to refer to all proto-
cols concerned with setting up session keys as ‘authentication protocols’. This is not
entirely satisfactory because some protocols that set up session keys provide no au-
thentication of one party to the other, while other protocols designed to provide entity
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authentication involve no session key. Therefore it has become usual to distinguish
between two types of protocols. We will use the term entity authentication protocols
for protocols that provide only authentication while using the term key establishment
protocol (also often called a key exchange protocol) for protocols that involve setting
up a new key, typically for a communications session.

Gollmann [311] put forward a number of different options for what could be
meant by authentication. The first one is as follows.

Gol1. The protocol establishes a fresh session key, known only to the participants in
the session and possibly some trusted third parties.

This goal may be achieved even though each party knows nothing about even the
existence of the other party, let alone whether the other party is willing to engage in a
session. Thus this is a goal about key establishment rather than entity authentication.

The second goal suggested by Gollmann is as follows, in which A and B are the
protocol principals.

Gol2. A cryptographic key associated with B was used in a message received by A
during the protocol run. The protocol run is defined by A’s challenge or a current
timestamp.

This is a goal concerning entity authentication. It says nothing about a new session
key and can be satisfied by a protocol that is not concerned with key establishment.

There appears to be more dissent in the literature regarding the nature of entity
authentication than there is with regard to key establishment. One reason for this
may be that it is difficult to be clear about the purpose of entity authentication in
the absence of key establishment. Diffie et al. [253] say that it is ‘accepted that
these topics should be considered jointly rather than separately’, while Bellare and
Rogaway [78] go further in stating:

. . . entity authentication is rarely useful in the absence of an associated key
distribution, while key distribution, all by itself, is not only useful, but it is
not appreciably more so when an entity authentication occurs along side.
Most of the time entity authentication is irrelevant: it doesn’t matter if you
have been speaking to a given communication partner, in that by the time
you become aware of [an authenticated entity] there will be no particular
reason to believe that the partner is still ‘out there’ anyway.

In our view there are situations when entity authentication by itself may be useful,
such as when using a physically secured communication channel. But it is important
to appreciate exactly what it provides.

Syverson and van Oorschot [705] identified what they termed six ‘generic formal
goals’. These are expressed in English in Table 1.4; for formal statements readers
should refer to their paper. There are clearly dependencies between various of these
goals. For example, SVO2 is a stronger property than SVO1. Furthermore, it is not
clear why these particular goals are important; for example, it might be questioned
whether secure key establishment is useful without key freshness. To be fair to these
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Table 1.4: Syverson and van Oorschot’s generic formal goals for protocols

SVO1 Far-end operative A believes B recently ‘said’ something.

SVO2 Entity authentication A believes B recently replied to a specific challenge.

SVO3 Secure key establishment A has a certain key K that A believes is good for
communication with B.

SVO4 Key confirmation In addition to SVO3, A has received evidence confirming
that B knows K.

SVO5 Key freshness A believes a certain key K is fresh.

SVO6 Mutual understanding of shared key A believes that B has recently confirmed
that B has a certain key K that B believes is good for communication with A.

authors, they state that it is not intended as a ‘definitive list of the goals that a key
agreement or key distribution protocol should meet’.

The least of these goals, SVO1, simply says that B has recently done something,
independent of any other entities or keys. We will refer to this goal a few times later,
and sometimes use descriptions such as B is alive to describe the assurance that A
achieves, or simply say that a protocol which reaches this goal provides liveness.

So far we hope to have convinced the reader that there is no unanimity, either on
what the goals of authentication and key establishment protocols should be or on how
to define those goals. We will now look in more detail at different classes of goals
which can be considered in three categories: those concerning entity authentication;
those concerning key establishment and those which are optional additions to key
establishment.

1.5.3 Entity Authentication

The ISO Security Architecture [375] defines entity authentication as ‘the corrobora-
tion that an entity is the one claimed’. This is not as precise a definition as one might
like since it does not explain which entity is the subject. Menezes et al. [550] gave a
more comprehensive definition as follows.

Definition 11. Entity authentication is the process whereby one party is assured
(through acquisition of corroborative evidence) of the identity of a second party in-
volved in a protocol, and that the second has actually participated (i.e. is active at,
or immediately prior to, the time the evidence is acquired).

Protocol 1.7 is an example that seems to provide entity authentication of B to A
satisfying this definition. A sends her nonce to B, who replies by signing it. It seems
clear that A knows that B must have engaged in this protocol and that the signature
is fresh.

Definition 11 is a clear explanation, but does not go as far as is possible or perhaps
even desirable. Imagine user A having received some messages in an entity authen-
tication protocol. What is it that she can hope to have learnt from those messages?
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1. A→ B : NA

2. B→ A : SigB(NA)

Protocol 1.7: A simple authentication protocol

One aspect is that user B is really out there now, somewhere on the network. This
is the far-end operative property (SVO1) that we have already seen. The only other
assurance that seems relevant is to know that B is ready to engage in communication
with A.

Attack 1.5 on Protocol 1.7 shows why this extra assurance may be desirable.
In this protocol run A can verify that the signature received was formed by B, yet
B has not indicated that he is aware of A. In some sense we may even accept that
the adversary C has provided assurance that he is B. On the other hand C does not
appear to be doing anything other than faithfully replaying messages between A and
B. The next definition tries to capture the notion of one principal being prepared to
communicate with another principal.

1. A→CB : NA

1′. C→ B : NA

2′. B→C : SigB(NA)

2. CB→ A : SigB(NA)

Attack 1.5: An attack on Protocol 1.7

Definition 12. A principal A is said to have knowledge of B as her peer entity if A is
aware of B as her claimed peer entity in the protocol.

Considering again the fundamental elements used in authentication protocols this
seems to be all that can be achieved. Messages can convey either freshness, or prin-
cipals with which communication is desired. Combining these leads to a strong defi-
nition of entity authentication. (There are several alternative ways of expressing this
property which all indicate that A is authenticated to B only if A is prepared to engage
in communications with B.)

Definition 13. Strong entity authentication of A to B is provided if B has a fresh
assurance that A has knowledge of B as her peer entity.

An enhanced version of Protocol 1.7 can provide this stronger assurance. Pro-
tocol 1.8 provides strong entity authentication of B to A. It may be checked that an
adversary C cannot use Attack 1.5 to convince A that B is aware of A as his peer
entity.

According to Definition 13, there are two subgoals of entity authentication:
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1. A→ B : IDA,NA

2. B→ A : SigB(IDA,NA)

Protocol 1.8: Another simple authentication protocol

• A (once) has had knowledge of B as her peer entity;
• A is operative.

The latter of these is the far-end operative property discussed before in goal SVO1
of Table 1.4. Notice that it is straightforward to extend Definition 13 to a multi-party
goal of entity authentication of a group of users U to A: the principal A is freshly
aware of the principals in U as her peer entities.

Entity authentication is a service that is provided by one entity to one or more
other entities. Most often we are concerned with the interaction between two entities
and then it is common to differentiate between two situations.

Definition 14. Mutual authentication occurs if both entities are authenticated to each
other in the same protocol. Unilateral authentication (sometimes called one-way au-
thentication) occurs if only one entity is authenticated to the other.

When multiple entities are involved there are many possibilities for different
combinations of entity authentication; in principle a protocol can authenticate any
subset of the entities to any other subset. In practice there seem to be few situations
where a complex rule for who should be authenticated to whom is useful.

1.5.4 Key Establishment

Menezes et al. [550] gave the following definition for key establishment.

Key establishment is a process or protocol whereby a shared secret becomes
available to two or more parties, for subsequent cryptographic use.

This definition can be extended and made more specific. One way to understand
the possible goals for key establishment is to consider what may be achieved with
typical message components. There are three types of message components that are
conventionally used in cryptographic protocols for key establishment and entity au-
thentication. These are:

1. keys, which may be long-term keys or session keys;
2. identifiers for protocol principals;
3. nonces, which may be random values, timestamps or counters.

These components are combined and processed with cryptographic mechanisms to
provide confidentiality and/or authentication. For key establishment a new session
key may be associated with a nonce, or with identifiers of protocol principals. In
practice a session key is not of any use unless it is known to be fresh and it is known
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which other entities may possess it. Most authors agree that secure key establishment
should require the two goals that the key is known to be fresh and is known only to
the other protocol participant(s), possibly including trusted third parties. This is often
referred to as establishing a good key.

Definition 15. A shared session key is a good key for A to use with B only if A has
assurance that:

• the key is fresh (key freshness);
• the key is known to at most A and B and any mutually trusted parties (key au-

thentication).

The second of these properties is often also called implicit key authentication. (As
pointed out by Gollmann [312], this property may equally be regarded as being about
confidentiality of the key.) It can be argued that key authentication must imply key
freshness, since a key that is not fresh cannot be guaranteed to be kept confidential.
From this viewpoint a separate requirement for key freshness is not required.

Although not a common requirement, public session keys are certainly possible.
The above definition is easily extended to this case.

Definition 16. A public session key is a good key for A to use with B only if:

• the key is fresh (key freshness);
• the corresponding private key is known only to B (key authentication).

An interesting additional goal has been considered by some authors, including
Janson and Tsudik [394].

Definition 17. Key integrity is the property that the key has not been modified by the
adversary, or equivalently only has inputs from legitimate principals.

• For a key transport protocol, key integrity means that if the key is accepted by
any principal it must be the same key as that chosen by the key originator.

• For a key agreement protocol, key integrity means that if a key is accepted by any
principal it must be a known function of only the inputs of the protocol principals.

Note that there is no contradiction if a key establishment protocol provides the
good key property but fails to provide key integrity. It is quite conceivable that an
adversary may be able to disturb a protocol, whether it is a key transport or a key
agreement protocol, in such a way that the key has been changed from its ‘correct’
value but is still fresh and unknown to the adversary. Protocol 3.15 is an example
which provides key integrity.

1.5.5 Key Confirmation

Definition 18. Key confirmation of B to A is provided if A has assurance that key K
is a good key to communicate with B, and that principal B has possession of K.
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Key confirmation provides evidence that the partner has the same key but leaves
open the possibility that the key is intended by the partner for a different commu-
nication session (with the assumption that the partner may be engaged in several
conversations). Key confirmation provides evidence that the partner wishes to com-
municate with some entity, and so implies the far-end operative property, but may not
imply entity authentication. Key confirmation is typically achieved by having both
parties send each other some fresh data using a cryptographic function depending on
the key; this is often referred to as a handshake.

Shoup [674] has put forward the idea that key confirmation is not a valuable
security property. His point is that it is not really useful for a principal to know
that the partner has, or can obtain, possession of the session key, but rather that the
partner has accepted the session key. It is never possible to guarantee this for both
parties, since one party must always finish, and therefore accept, without the other
party knowing. Nevertheless, the property as stated may or may not be achieved,
perhaps even mutually. As with entity authentication, we prefer not to judge whether
this property is a useful one.

It can be seen that Definition 18 requires that the identified other party has re-
ceived the session key. Not all authors use this definition of key confirmation. For
example, the following definition is given in the Handbook of Applied Cryptography
[550]:

Key confirmation is the property whereby one party is assured that a second
(possibly unidentified) party actually has possession of a particular secret
key.

This contrasts with the definition in the ISO/IEC 11770-2 key management standard
[376].

Key confirmation: the assurance for one entity that another identified entity
is in possession of the correct key.

The following definition is also taken from the Handbook of Applied Cryptography.

Definition 19. Explicit key authentication is the property obtained when both (im-
plicit) key authentication and key confirmation hold.

Notice that it does not matter for this definition whether or not key confirmation
includes identification of the other party in possession of the key. This is because
implicit key authentication assures B that only A may have the key, so any party that
shows possession of the key must be entity A.

Mutual belief in the key, following SVO6 in Table 1.4, adds to key confirmation
that the key is known by the partner to be good. (Actually, SVO6 does not require the
good key property, but seems of little value if it does not also hold.) It provides both
key confirmation and entity authentication since if the partner has acknowledged that
the key is good for the communication this can be taken as a confirmation that the
partner is willing to communicate.
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Definition 20. Mutual belief in the key K is provided for B only if K is a good key
for use with A, and A wishes to communicate with B using key K which A believes is
good for that purpose.

1.5.6 Example: STS Protocol

We turn to an example to focus discussion on the subtleties of assessing protocol
attacks against published goals. The station-to-station (STS) protocol [253] uses a
digital signature in the exchanged messages to add authentication to the well-known
Diffie–Hellman protocol [252]. This uses arithmetic in a multiplicative group with
generator g. Exponents x and y are chosen randomly by A and B respectively and
are used to form the session key KAB = gxy. Protocol 1.9 shows the messages in a
successful protocol run.

1. A→ B : gx

2. B→ A : gy,{SigB(gy,gx)}KAB

3. A→ B : {SigA(gx,gy)}KAB

Protocol 1.9: STS protocol

Here SigX (.) represents the signature by the principal X on the string in the brack-
ets, while {M}K denotes symmetric encryption of message M using key K. The par-
ticular signature algorithm chosen does not matter for the protocol. Consider how
the good key goal is achieved for A.

1. The signature in message 2 can only be formed by B.
2. It is not a replay from an old protocol run since A knows that gx was fresh.
3. The signature alone does not imply that B knows KAB. Therefore the encryption

with KAB is necessary to provide assurance that B really knows KAB.

Thus it appears that A gains key confirmation, as well as a good key with B, from
message 2. With regard to authentication goals, it seems clear that both users achieve
liveness of the other, since each receives a signed message containing a value they
know to be fresh. Strong entity authentication, in the sense of Definition 13, is more
problematic since there is no explicit inclusion of identifiers in the signed messages
which could be used to deduce the identity of the desired communications partner.

Lowe [502] has proposed an attack on the STS protocol. To be quite precise, the
protocol analysed by Lowe is slightly different in that principal identifiers are added
to each message to give the modified version shown in Protocol 1.10. The addition of
the identifiers appears to make no material difference to the protocol since they are
attached as plaintext and so are vulnerable to both eavesdropping and modification.
However, their addition is critical to the interpretation of the attack. Lowe [502] states
that the identifiers were ‘included to make the subsequent explanations clearer’.
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1. A→ B : IDA, IDB,gx

2. B→ A : IDB, IDA,gy,{SigB(gy,gx)}KAB

3. A→ B : IDA, IDB,{SigA(gx,gy)}KAB

Protocol 1.10: STS protocol modified to include identifiers

Lowe’s attack does not affect the key establishment properties but is addressed at
whether entity authentication is achieved. Suppose that C is an adversary who wishes
to attack the protocol. C intercepts a protocol run started by A and masquerades as B.
In parallel, C starts a protocol run with B. Attack 1.6 shows an attacking run, where
CB denotes C masquerading as principal B.

1. A→CB : IDA, IDB,gx

1′. C→ B : IDC, IDB,gx

2′. B→C : IDB, IDC,gy,{SigB(gy,gx)}KAB

2. CB→ A : IDB, IDA,gy,{SigB(gy,gx)}KAB

3. A→CB : IDA, IDB,{SigA(gx,gy)}KAB

Attack 1.6: Lowe’s attack on Protocol 1.10

The attack is very simple: C is doing little more than relaying each message that
passes between A and B. What is the result? In the attacking run B has no indication
that A has engaged in the protocol and yet A has completed a successful run and
accepted that her partner is B. Is this a successful attack on the STS protocol? If we
apply the same attack to the original STS protocol (Protocol 1.9) without identifiers,
we see that C does nothing more than relay messages between A and B, so how can
this constitute an attack?

Diffie et al. [253] defined security based on matching conversations. In other
words, for a secure protocol the accepting parties should agree on the messages ex-
changed in the protocol run. (Section 2.2 provides a detailed discussion of matching
conversations.) When applying Attack 1.6 to their original protocol the conversation
of A does indeed match that of B and so the attack does not violate their definition of
security. A reasonable conclusion may be that the attack is invalid on the STS proto-
col as specified by its authors and in accordance with their definition of security. But
what about the modified protocol? Is it really different from the original and is the
attack valid in that case? The answer must depend on the intended goals.

• After the attacking run it is clear that the good key goal has not been broken.
• Key confirmation has indeed been achieved: A can be sure that B knows the

shared key.
• A does not know that B knows the key is good for use with A. In other words the

mutual belief in key goal (Definition 20) is not achieved for A.
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• The attack shows that A would be wrong to conclude, after a successful run,
that B wishes to communicate with her. Thus strong entity authentication (using
Definition 13) is not achieved.

We conclude that the attack would be valid if either mutual belief in the key or
strong entity authentication were protocol goals. However, it is clear from the paper
of Diffie et al. that they did not regard these as goals of their protocol. The insight
gained from the attack is therefore that the protocol does not meet extended goals
that could be desired by some users.

Lowe [502] proposed that the identity of the other party be included in the signa-
tures in order to prevent the attack. This also allows an informal argument that strong
entity authentication is achieved, if the included identifier is interpreted as the name
of the entity with which communication is desired.

1.5.7 Forward Secrecy

The idea of forward secrecy is that when a long-term key is compromised, session
keys that were previously established using that long-term key should not be com-
promised too. Key agreement protocols in which the long-term key is used only to
authenticate the exchange provide typical examples of protocols with forward se-
crecy. Key transport protocols in which the long-term key is used to encrypt the
session key cannot provide forward secrecy.

Definition 21. A key establishment protocol provides forward secrecy if compromise
of the long-term keys of a set of principals does not compromise the session keys
established in previous protocol runs involving those principals.

Definition 22. A protocol provides partial forward secrecy if compromise of the long-
term keys of one or more specific principals does not compromise the session keys
established in previous protocol runs involving those principals.

If a protocol does not provide (full) forward secrecy then partial forward secrecy
may still be useful if there is an asymmetry in the roles of the principals involved. For
example, in a client–server protocol it may be deemed more likely that a client long-
term key will be compromised than that the server key will be. In this situation partial
forward secrecy, in which compromise of client long-term keys does not compromise
old session keys, is a useful property.

The term ‘forward secrecy’ seems to have been coined by Günther [336]. In fact
he used the term perfect forward secrecy but, in common with other authors, we have
dropped the word ‘perfect’; this is not only for the sake of brevity, but also because
it gives connotations with the term ‘perfect secrecy’ which refers to unconditional
(information-theoretic) security which is not relevant here.

The critical concept in providing forward secrecy is an ephemeral public key; this
is a public key that is used only for the duration of the key establishment protocol and
is then destroyed along with the corresponding private key. If the long-term public
key is used only for authenticating the session key then the session key cannot be
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recovered without the ephemeral private key. The most commonly used ephemeral
keys are of the type needed in the Diffie–Hellman protocol which is examined in de-
tail in Chap. 5. This is not the only type of ephemeral public key however; ephemeral
keys can be used for any public key cryptosystem. Furthermore, it is a common mis-
conception that forward secrecy can be achieved only with key agreement.

As an example consider Protocol 1.11 which provides key transport between A
and B. Here KT is an ephemeral public key chosen by A uniquely for this session.
This key is sent to B and signed by A together with a nonce NA chosen by A. B then
uses this ephemeral key to transport the session key KAB confidentially back to A.
Here EncT (.) denotes encryption with KT and h is a one-way hash function.

1. A→ B : KT ,NA,SigA(KT , IDB)

2. B→ A : EncT (KAB),SigB(h(KAB), IDA,NA)

Protocol 1.11: Key transport protocol providing forward secrecy

The private key corresponding to the ephemeral public key should be destroyed
by A immediately after the session key is recovered. It can be seen that compromise
of the long-term signature keys will not help an adversary in obtaining the session
key.

The long-term keys used in a protocol providing forward secrecy may be either
shared or public. Consider Protocol 1.12, in which A and B share long-term keys
KAS and KBS with server S. Random values rA, rB and KS are chosen by A, B and
S respectively. The protocol includes Diffie–Hellman-like key agreement, using the
generator g of some multiplicative group, together with encryption using the long-
term keys.

1. A→ S : IDA, IDB

2. A→ B : IDA,grA

3. S→ B : {IDA, IDB,KS}KBS

4. S→ A : {IDA, IDB,KS}KAS

5. B→ A : IDB,grB

Protocol 1.12: Server-based protocol providing forward secrecy

The session key KAB is calculated by A as KAB = (grB)rAKS and by B as KAB =
(grA)rBKS . Once the ephemeral values rA and rB are destroyed the session key is
protected against compromise of the long-term keys shared with S.
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1.5.8 Weak Forward Secrecy

Protocols which provide forward secrecy are often more expensive, either computa-
tionally or with regard to communications complexity, than those without it. There-
fore there is value in considering a weakened security property which may be less
costly. Bellare et al. [74] and later Krawczyk [453] defined weak forward secrecy to
be similar to normal forward secrecy but where the adversary is forbidden to take an
active part in the protocol run which is being targeted.

Definition 23. A protocol provides weak forward secrecy if compromise of the long-
term keys of one or more specific principals does not compromise the session keys
established in previous protocol runs involving those principals when the adversary
did not take an active part in the session under attack.

This means that in a protocol providing weak forward secrecy the victim prin-
cipal executes the session under attack with a legitimate party whose messages are
transmitted correctly to the victim. The adversary is not allowed to interfere in the
session. Such a restriction could make sense in a scenario where the adversary is
eavesdropping on a large number of sessions and has not yet decided which ones to
attack.

In order to differentiate from weak forward secrecy we will sometimes use the
term strong forward secrecy to denote the normal version of forward secrecy where
the adversary is allowed to be active in the target session. Krawczyk [453] and Boyd
and González Nieto [142] provided generic attacks which show that strong forward
secrecy is not possible if either of the following applies:

• the protocol messages are independent of the long-term key of the sender;
• the adversary is allowed to reveal ephemeral secrets of the partner party to the

test session.

An example of a protocol with only weak forward secrecy is a key agreement
protocol of Matsumoto et al. [526]. (This protocol will be examined in Sect. 5.3.)
Principals A and B possess public keys yA = gxA and yB = gxB respectively, and cor-
responding private keys xA and xB. Here g generates a suitable group in which the
discrete logarithm problem is hard. A normal protocol run proceeds as shown in
Protocol 1.13, where rA and rB are random values chosen by A and B respectively.

Goal: Key agreement. Shared key KAB is (derived from) shared secret grArB .

1. A→ B : yrA
B

2. B→ A : yrB
A

Protocol 1.13: A protocol with weak forward secrecy (MTI protocol)

The shared key is KAB = grArB , calculated by A as (yrB
A )x−1

A rA and by B as
(yrA

B )x−1
B rB . The active adversary C engineers an attack by choosing a random value
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rC, and replying to the message of A with the response yrC
A . Then A completes the

protocol normally and computes the shared secret as KAB = grArB . Once A has sent
some data, encrypted with KAB, to what A assumes is B, C can close the connection.
If this protocol provided strong forward secrecy then C would be allowed to obtain
the long-term key of B, xB. Then C can compute the shared key as (yrA

B )x−1
B rC and thus

recover the secrets of A. Note that this attack no longer applies if C is forbidden from
being active in the session under attack since it needs to choose its rC value during
the protocol run.

Many well-known two-message protocols provide only weak forward secrecy.
There has been some misunderstanding in the literature regarding whether two-
message protocols can achieve strong forward secrecy at all. In fact two-message
protocols proven to have strong forward secrecy have been known since at least
2004 [397] (see Protocol 5.39). Indeed, there is even a known way to achieve for-
ward secrecy in one-message protocols [337], although this requires a long-term key
which is updated over time.

One generic way to ensure that a secure protocol with weak forward secrecy
actually provides strong forward secrecy is to add key confirmation. This is because
key confirmation requires an active adversary to know the session key before being
allowed to obtain the long-term keys, so if the protocol can be broken then it is
broken even without giving the long-term keys to the adversary.

Another way to ensure strong forward secrecy is to add explicit authentication to
the messages exchanged. Boyd and Gonzalez Nieto [142] provided a generic method
to add strong forward secrecy to any protocol by adding a MAC tag to the messages.
A similar method using digital signatures was provided by Cremers and Feltz [235]
while a protocol using a specific signature was designed by Huang [366].

1.5.9 Key Compromise Impersonation

When an adversary learns the long-term key of Alice the adversary can impersonate
Alice to other principals until the compromise is detected and the long-term key is
revoked.1 Key compromise impersonation refers to an attack in which the adversary
uses Alice’s compromised long-term key to masquerade to Alice as another user.

Definition 24. A protocol provides resistance to key compromise impersonation if
compromise of a long-term key of a principal A does not allow the adversary to
masquerade to A as a different principal.

The typical situation in which key compromise impersonation is possible is when
the protocol gives assurance only that each entity has any one of a pair of long-
term keys. This situation is commonly found in key agreement protocols where the
security is often based on the property that a particular value can be calculated with
knowledge of the long-term key of either of the two principals.

1 However, there are measures that can be taken to protect compromised signature keys
against abuse, as discussed by Just and van Oorschot [406].
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A simple example is the static Diffie–Hellman value gxAxB which can be com-
puted by either of A, with public key yA = gxA , or B, with public key yB = gxB . A
protocol which we will look at later (Protocol 5.12) combines this static value with
an ephemeral Diffie–Hellman value to obtain the session key. Since these values can
be computed with the long-term private key of either A or B it is vulnerable to key
compromise impersonation.

Protection against key compromise impersonation seems to require use of asym-
metric cryptography. If each party can verify that the correct private key was used
then the other party must be present. For example, if each party receives a digital
signature from the other, the adversary cannot forge the signature from B if it only
has A’s private key. Several examples of protocols secure against key compromise
impersonation are presented in Chap. 5.

1.5.10 Deniability

Deniability is a privacy property of security mechanisms that is desirable in certain
circumstances. The idea is that it should be possible for a user employing such a
mechanism to later deny taking part in the communication. Of course it is possible to
conduct the communication without any cryptographic mechanisms at all, and then
the communication can always be denied. However, it may be desirable to provide
authentication to the receiver and to set up a secure channel to protect the confi-
dentiality and integrity of the information being sent. A typical scenario for such
communication is an ‘off-the-record’ disclosure from an insider, I, in some organi-
sation to a news reporter, R. The reporter may want to verify the source of the data
and the disclosing insider may want to use a secure channel for the communication.
Yet I would like to ensure that if R later tries to implicate I in the communication,
then I can deny having taken part.

Definitions for deniability in key establishment were preceded in the literature by
definitions of deniable encryption [176] and deniable authentication [43]. Deniability
of communications can be achieved if a key establishment protocol is used with the
deniability property. Once I is able to convincingly deny having taken part in estab-
lishing the key, I can also deny having used the key to form a secure communications
channel with R. Both of these properties can be achieved by first establishing a ses-
sion key in a deniable key establishment protocol and then using standard encryption
and authentication schemes keyed by the session key.

Informally, deniability should prevent anybody from convincing an impartial
judge that a particular protocol principal took part in the protocol. We will call the
adversary attempting to prove participation the accuser. The accuser may be an out-
sider, not taking part in the protocol run, or an insider who is running the protocol
with I. In the former case it is much easier to achieve deniability; in particular, any
protocol using protocol messages which depend only on public information is de-
niable against outsiders. This is because the transcript of the protocol could always
have been produced by the accuser alone and so the judge will not be convinced. An
example is Protocol 1.13 above, since the protocol messages are simply random val-
ues in a group. Many existing protocols achieve this property of outsider deniability.
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When the accuser is allowed to run the protocol with I, deniability is much harder
to achieve – in this case the accuser has the opportunity to try to construct messages
in such a way that the key could only have been constructed by the victim. If the
accuser can link the session key to the protocol session and show that only the victim
could have formed the key then the judge can be convinced.

In most solutions for deniability it is assumed that there is no special communi-
cation between the accuser and the judge prior to the protocol run; there is only a
generic set-up process. We can envisage stronger adversaries who can communicate
with the judge prior to the protocol run, or even during the protocol itself. It is not
clear that these stronger adversaries are realistic. A judge who is also a protocol par-
ticipant will always be convinced and this is basically the situation when the judge
can communicate directly with the accuser during the protocol run.

Mao and Paterson [522] seem to have been the first to discuss deniability for key
establishment and considered a variety of informal definitions. The first is similar to
what we called outsider deniability above, while the second and third are a form of
insider deniability.

• For weak deniability there should be no values, such as digital signatures, which
can be used to identify the protocol principals.

• For strong deniability the accuser is a peer of the victim willing to divulge
ephemeral secrets used in the protocol run.

• For complete deniability the accuser is willing to divulge long-term secrets used
in the protocol run.

Mao and Paterson provided variants of the Internet Key Exchange (IKE) protocols
which intuitively satisfy these definitions using identity-based keys.

Di Raimondo et al. [248] provided the first formal definitions for deniable key
establishment. Their definitions are based on the idea of simulatability, similar to
the notion of zero knowledge. The intuition is that if any one party, who may be an
insider, could alone have produced a protocol transcript that is indistinguishable from
a normal protocol run, then the judge should never be convinced that the victim was
active in the protocol run. There are some subtleties regarding the precise restrictions
on the simulator which are important, at least in theoretical terms [602].

A simple and efficient deniable key exchange protocol was proposed by Jiang and
Safavi-Naini [400] shown in Protocol 1.14. The protocol uses a trapdoor permuta-
tion, such as RSA, to send a random value from each party to the other together with
a hashed value to prove knowledge of the value. We denote the trapdoor permuta-
tion simply as public key encryption in Protocol 1.14, although simpler instantiations
may be possible. The session key, KAB, is then a hash of the random values from each
party and the party identifiers. Although the protocol is very efficient it does not pro-
vide forward secrecy because the session key is computed from a hash of the random
values chosen by each party.

Yao and Zhao [753] designed a protocol suitable for use with Internet Key Ex-
change. This protocol uses MACs instead of signatures where the MAC keys can be
fully simulated by either party. Their security proof uses the random oracle model
and depends on the so-called fresh-challenge knowledge of exponent assumption.
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Shared information: security parameter k; random oracle H.

A B
s ∈R {0,1}k

EncB(s),H(s, IDA, IDB)−−−−−−−−−−−−−−−−→ r ∈R {0,1}k

EncA(r),H(r,s, IDA, IDB,0)←−−−−−−−−−−−−−−−−

KAB = H(s,r, IDA, IDB,2)
H(s,r, IDA, IDB,1)−−−−−−−−−−−−−−−−→ KAB = H(s,r, IDA, IDB,2)

Protocol 1.14: Protocol of Jiang and Safavi-Naini [400]

They also proved both forward secrecy and key compromise impersonation (KCI)
resistance.

Cremers and Feltz [227] proposed a one-round protocol which provides full for-
ward secrecy as well as deniability. Since their protocol includes signatures of both
parties, strong deniability is not possible. However, they achieve instead a property
which they call peer-and-time deniability; similar to the peer independence property
of Di Raimondo et al. [248], this property allows users to deny communication with
a particular party, in addition to denying the time when communication may have
taken place. This latter property prevents an accuser from showing that a particular
party was active after a certain time.

Bohli and Steinwandt [120] defined deniability for group key exchange and pro-
vided a four-round protocol which satisfies their definition. Following this other au-
thors have proposed other constructions but with varying formal definitions of deni-
ability. Zhang et al. [773] propose a three-round deniable group key exchange pro-
tocol. Neupane et al. [583] defined a compiler to convert any unauthenticated group
key exchange protocol into one providing deniability as well as standard security
properties, at the cost of one additional round.

Deniability has not been a property of prime interest to AKE protocol designers.
Perhaps this is because it is not concerned at all with keeping the identity of the
protocol participants hidden, only that they can plausibly claim that they were not
participating. When privacy is of high concern to protocol principals they may be
more interested in hiding their identities altogether. We look at this goal next.

1.5.11 Anonymity

It may appear to be a contradiction to consider anonymity when our focus is on
protocols to provide authentication or authenticated key exchange. However, there
are situations where both can make sense together. One is where the goal is to remain
anonymous only to outsiders, while the legitimate parties authenticate only between
themselves. Another is where two parties communicate with one party, remaining
anonymous while the other authenticates. Following the terminology of Goldberg et
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al. [308] we call these external and internal anonymity and will consider these two
situations separately below. First we note a couple of different flavours of anonymity.

• It is possible that all protocol principals remain anonymous to each other. For
example, it is simple to use plain Diffie–Hellman without any authentication.
However, it is not clear what security can be provided in such a situation.

• A way to provide limited anonymity is for users to authenticate as being a mem-
ber of some well-defined group. Special digital signatures, such as group signa-
tures [190] and ring signatures [631], have been designed for this purpose. They
could be used to authenticate key exchange messages, for example to sign Diffie–
Hellman key exchange. There are also anonymous password-based key exchange
protocols [723] which allow users to authenticate as being a member of a group
by using a low-entropy password.

External Anonymity

A protocol achieves external anonymity if an adversary observing the protocol is
unable to determine the identity of at least one of the protocol principals. This form
of anonymity is not difficult to achieve in two-party protocols if it is desired to hide
the identity of only one of the principals. In many applications, an AKE protocol is
run between a client and a server; there may be no need to hide the identity of the
server but the client identity may be more sensitive. For example, if the client is a
mobile device it is often desired to hide its identity to prevent tracking of its physical
location.

An example of a protocol designed to provide external anonymity is the Oakley
protocol, examined later in this book (see Protocols 5.28 and 5.29). The client is
assumed to have the public key of the server and can use it to encrypt its identity in
addition to a secret input to the session key computation. Once the server has received
the client identity, it can obtain the public key of the client (that too could have been
sent encrypted by the client) and use that to hide its own input to the session key.
Thus both client and server ultimately authenticate each other, but the client identity
is never sent in clear text. Note that for this idea to work properly the encryption
scheme used should provide key privacy [69].

It seems intuitively that external anonymity cannot be obtained for both princi-
pals in a two-party protocol, since one party must reveal its identity first. However,
this is not always the case as shown by the idea of secret handshake protocols [51]
where principals only authenticate each other if they both possess matching creden-
tials. This, however, seems to require a special set-up phase before the protocol starts
to set up mutually trusted groups.

Internal Anonymity

A protocol achieves internal anonymity if an adversary actively participating in the
protocol is unable to determine the identity of at least one of the protocol principals.
Protocols of this type are required as part of anonymous communications services
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such as the Tor anonymity network [255]. Each client needs to set up a secure session
key with multiple communications servers; the servers have known public keys, but
the client wishes to remain anonymous. Note that in this scenario the server may be
the adversary attempting to learn the identity of the client.

Since the client need not even have a long-term key in this scenario it may seem
as first that any protocol will work. However, there are some important security prop-
erties that must hold. Firstly, the protocol must still provide confidentiality, so the
session key must be shared only with the correct server. Secondly, it must not be
possible for the adversary to distinguish between protocol runs given any two differ-
ent clients.

Goldberg et al. [308] designed a protocol called ntor, shown as Protocol 1.15,
which provides internal anonymity. Only principal B, the server, has a public key.
The principals exchange ephemeral Diffie-Hellman values, but compute two shared
elements which are combined as a shared secret, Z, which is used as to derive the
session key.

Shared information: public key of B, yB.
Information known to B: private key of xB, with yB = gxB .

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = trA
B ,yrA

B
tB←−−−−−−− Z = trB

A , txB
A

Protocol 1.15: Protocol ntor of Goldberg, Stebila and Ustaoglu [308]

Goldberg et al. [308] provided a formal analysis of Protocol 1.15 and showed
that it provides anonymity as well as a session key secure against outsiders. They
gave a formal definition of one-way anonymity which, roughly speaking, says that an
adversary cannot distinguish which of any two chosen clients took part in a protocol
run. The ntor protocol is now deployed in the Tor software.

A number of variants to the ntor protocol have been proposed. Backes et al.
[47] proposed a protocol called Ace which is slightly more efficient than Proto-
col 1.15. Ghosh and Kate [303] proposed a one-way anonymous protocol based on
the learning with errors (LWE) problem and designed to be secure against adversaries
equipped wth quantum computing.

1.5.12 Protocol Efficiency

It is usually desirable to make protocols as efficient as possible. At the same time,
it is not unusual that stronger security goes along with lower efficiency. Since all
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protocols involve multiple parties, we may need to consider the overall efficiency
as well as the efficiency with regard to individual parties. There are usually two
main concerns with regard to efficiency: computational efficiency and communica-
tions efficiency. We should also not forget storage efficiency: how big are the required
long-term keys and the working memory required during a protocol run? This can be
relevant for devices with limited storage capacity.

Computational efficiency is concerned with the computations that the protocol
principals need to engage in to complete the protocol. The amount of computation
required in cryptographic protocols will depend on the algorithms used to provide the
cryptographic services, such as encryption and decryption functions, generation and
verification of digital signatures and message authentication codes, and calculation
of hash functions. These can vary considerably between specific algorithms and, in
particular, computations required for public key algorithms are usually much greater
than those for symmetric algorithms. Furthermore, there has been, and continues to
be, considerable research into improvements of implementations of different funda-
mental cryptographic operations, such as multiplication in finite fields. Advances in
implementations can make a significant difference to the relative merits of different
cryptographic algorithms. It is not always easy to compare the computational effi-
ciency of protocols when they use different cryptographic settings, but often proto-
cols have the same or a similar setting and a simple count of the number of arithmetic
operations can be useful.

Communications efficiency is concerned with the number and length of messages
that need to be sent and received during the protocol. We will sometimes use the term
flow to describe a single set of message components which can all be sent together.
As well as minimising the size and number of message flows, it can be important
to have as few rounds as possible in the protocol. Gong [316] gives the following
definition.

Definition 25. One protocol round includes all messages that can be sent in parallel
from any point in the protocol.

Many protocols can be run in a smaller or larger number of rounds by group-
ing messages together in different ways. Minimising the number of protocol rounds
is not necessarily the most efficient choice. In Chap. 5 we will describe many key
agreement protocols with two message flows which can be run together in one round.
As explained in Sect. 5.4.13, such protocols can be extended to provide key confir-
mation by adding two message components to be sent in each direction. This natu-
rally results in protocols which can be run in two rounds with two message flows in
each round. However, the same protocols can also be run in three rounds (one more
round), each of one message flow, so three flows in total (one less flow). This works
by piggybacking the first key confirmation message onto the second protocol flow
(see Protocol 5.22). Which way to run the protocol depends on whether it is better to
minimise the number of rounds or the number of flows. Chapter 9 discusses group
key establishment where the number of rounds can be large (for example, propor-
tional to the size of the group). For such protocols, reducing the number of rounds
can significantly improve the delay in completing a protocol run.
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1.6 Tools for Verification of Protocols

The sheer complexity of behaviour that security protocols can exhibit makes their
verification no small task. It has long been recognised that informal arguments about
protocol correctness are not reliable. Therefore, much research has been devoted to
ways of gaining assurance that the security goals are satisfied using formal math-
ematical methods. It is beyond the scope of this book to cover such techniques in
detail, but we believe it is worthwhile to give a flavour of how they work. We aim to
make practitioners aware of what it means to conduct an analysis or obtain a proof
with these approaches. In this section we focus on the tools available for protocol
analysis, including a brief overview of some of the methods.

Formal methods for analysing security protocols are often divided into two major
categories.

Symbolic methods treat the cryptographic primitives in a protocol as symbols
which can be manipulated deterministically using specified rules. For example,
a ciphertext could be modelled as a symbol which can be used as an input to a
decryption algorithm. If the correct decryption key is used then the correspond-
ing plaintext symbol is returned, but otherwise nothing can be gained from the
ciphertext. An adversary can only use the defined interfaces to compute with
symbols. One way to differentiate different symbolic methods is by the crypto-
graphic primitives which they support. For example, many tools today support
Diffie–Hellman operations by symbolically defining the relevant computations.

Computational models allows the adversary to compute whatever can be effi-
ciently computed with the known inputs. For example, a ciphertext could be
a bit string output by a probabilistic algorithm which can be used to help an ad-
versary to compute something about the plaintext. Whether the computations of
the adversary are useful depends on what the defined security goals are.

Chapter 2 is devoted to examining computational models for authentication and
key exchange, which have been extensively developed in the cryptographic research
community since 1993. We will therefore not describe them further in this section.
We focus more on symbolic models here. For these there exist some automatic tools
which can be applied without a deep knowledge of the theory behind them.

Symbolic methods are often said to use the Dolev–Yao model. This is in recogni-
tion of a pioneering paper by Dolev and Yao [256] which has a simple model in which
the adversary mainly uses the principals as oracles to try to decrypt things which it
could not do otherwise. Only public key encryption is involved in the original model.
Although there is no limit on the number of times a public key can be applied, and
therefore infinitely many cases to consider, Dolev and Yao provide theorems which
allow certain designs to be proven secure. No tools or automatic checking was in-
volved in their work. Later, symbolic methods are often said to use the Dolev–Yao
model even though they may typically include many cryptographic primitives other
than public key encryption and consider much more complex security properties than
secrecy of specific values.
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The general idea behind tools using symbolic models is to show that bad states,
representing successful attacks, cannot be reached. Usually we do not wish to ex-
plicitly bound the scope of an adversary in terms of how many runs of the protocol
it can observe since that could exclude certain attacks. Indeed, Millen [554] showed
that there exist protocols which require an unbounded number of parallel sessions in
order to find a certain attack. However, since no tool can use infinite resources all
tools have some limitations on what they can achieve. For example, some tools do
not guarantee to terminate, while others always terminate but perhaps only with a
partial result that no attacks exist up to a certain horizon.

In the following subsections we highlight the applicability and main features of
a range of tools supporting security analysis. We focus on tools which are currently
available at the time of writing. This means that we do not cover historically im-
portant tools such as Murφ [561] and AVISPA [38]. Some useful sources of further
information are the surveys of Basin et al. [60] and Meadows [540].

1.6.1 FDR

Lowe [501] developed a method for verifying security protocols using FDR, a model
checker for the process algebra CSP [636]. This method was used to find a previously
unknown attack on the Needham–Schroeder public key protocol (see Sect. 4.3.3). A
comprehensive introduction to the method, including background on CSP, is con-
tained in the book of Ryan and Schneider [638]. Although it has been around for
quite a long time, FDR has been regularly updated and continues to be used for
security protocol analysis.

Each principal taking part in the protocol is modelled as a CSP process represent-
ing the protocol steps performed by the principal. In CSP, communication is mod-
elled by the notion of channels. In Lowe’s formulation of the Needham–Schroeder
public key protocol the following channels are defined:

• comm, which carries messages sent by honest principals;
• fake, which carries messages introduced by the intruder;
• intercept, which carries messages that are killed by the intruder.

In CSP, a communication is an event of the form c.v where c is the name of the
channel on which the communication takes place and v is the value of the message
that passes along the channel. Message components are put together using a dot. For
example, message 1 of the Needham–Schroeder public key protocol is expressed by
the event comm.Msg1.a.b.Encrypt.kb.na.a. Here the letters a and b stand for vari-
ables denoting principal identities; na stands for a variable denoting a nonce; and kb
stands for a variable denoting a public key. The simplest way of constructing pro-
cesses in CSP is by prefixing. A process that performs an action x and then behaves
like process P is denoted x→ P (pronounced ‘x then P’). The → operator is right
associative, so x→ y→ P = x→ (y→ P). The initiator in the Needham–Schroeder
public key protocol is defined by the CSP process INITIATOR(a,na) below.
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INITIATOR(a,na) =

user.a?b→ I running.a.b→
comm!Msg1.a.b.Encrypt.kb.na.a→
comm.Msg2.b.a.Encrypt.ka?na′.nb→
if na = na′

then comm!Msg3.a.b.Encrypt.kb.nb→
I commit.a.b→ session.a.b→ Skip

elseSTOP

The question marks model inputting of data. The initiator waits for the value for b
from the channel user and then sends message 1. The event I running.a.b indicates
that a is taking part in a protocol run with b. The initiator then waits for a correspond-
ing message 2, decrypts this message and checks that the value for na′ matches the
same value sent in message 1 (the initiator will accept any value for nb). If the nonce
matches, then the initiator sends message 3 and commits to the session. The event
I commit.a.b represents the fact that the initiator is committing to a session with b;
the event session.a.b represents the fact that a carries out a session with b; and Skip
represents a process that completes its task. If the nonce does not match then the
initiator halts; this is represented by the CSP process STOP.

A CSP process RESPONDER(b,nb) that captures the steps performed by the
responder is defined similarly.

The intruder is modelled using the CSP choice operator �. The choice operator
can be applied to any number of processes. The resulting process can choose to act
like any one of the processes. For the Needham–Schroeder public key protocol the
intruder is modelled with the choice operator applied to 12 processes: three for over-
hearing the messages sent by the honest principals, three for intercepting messages
by the honest principals, three for replaying overheard messages, and three for gen-
erating messages using the known nonces and injecting them. The intruder is defined
by the process INTRUDER(m1s,m2s,m3s,ns), where the sets m1s, m2s, m3s collect
the undecrypted messages 1, 2 and 3 the intruder has overheard so far and ns is the set
of nonces the intruder has learnt. The part of the intruder process involving message
1 only is as follows; the parts involving messages 2 and 3 are similar.

INTRUDER(m1s,m2s,m3s,ns) =

comm.Msg1?a.b.Encrypt.k.n.a′→
if k = Ki then I(m1s,m2s,m3s,ns∪{n})
else I(m1s∪{Encrypt.k.n.a′},m2s,m3s,ns)

� intercept.Msg1?a.b.Encrypt.k.n.a′→
if k = Ki then I(m1s,m2s,m3s,ns∪{n})
� fake.Msg1?a.b?m : m1s→ I(m1s,m2s,m3s,ns)

� fake.Msg1?a.b!Encrypt?k?n : ns?a′→ I(m1s,m2s,m3s,ns)
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To analyse the protocol, we need to restrict the CSP specification of the protocol
and intruder so that the resulting system is finite. For example, Lowe’s CSP model
of the Needham–Schroeder public key protocol is limited to a single initiator A, a
single responder B, and a single intruder. Despite this restriction, Lowe found an
attack on this protocol. This finite CSP model of the protocol, represented by the
process SYSTEM, is compared against other CSP processes that capture the desired
security properties. Lowe formalised two authentication properties as the following
CSP processes:

AI = I running.A.B→ R commit.A.B→ AI

AR = R running.A.B→ I commit.A.B→ AR

The first process, AI, has the behaviour that the responder B commits to a session
with initiator A only if A took part in the protocol run. The second process, AR, has
the behaviour that the initiator A commits to a session with responder B only if B
took part in the protocol run.

To check whether a given property holds for a protocol, one tests for refinement
between the CSP processes representing the protocol and the property in question.
In CSP, a process P refines process Q if every trace of P is also a trace of Q. In-
tuitively, a trace is a sequence of events. The first authentication property amounts
to checking that SYSTEM refines AI; the second property amounts to checking that
SYSTEM refines AR. The FDR tool is used for testing these refinements. It turns out
that the refinement check involving AR succeeds, while the one involving AI does
not. FDR produces a trace in the latter case, which shows that B commits to a session
with A, although A never attempted to interact with B. This trace is the famous attack
published by Lowe.

Lowe proposed a correction to the protocol to prevent the attack found on the
original protocol. No attack on the corrected protocol was found using the model
checking technique. However, since the model checking is carried out on a small
system running the protocol, the question remains whether there is an attack on an
arbitrary system (with an arbitrary number of initiators and responders). To answer
this question, Lowe offered a proof that any attack on the general protocol implies an
attack on the smaller protocol. The proof is by hand and runs to several pages. Since
no attack is found on the smaller system, he concludes that there can be no attack on
an arbitrarily sized system.

Lowe [503] wrote a program called CASPER to make his model checking tech-
nique accessible to protocol designers and implementers lacking specialist skills in
CSP. CASPER automatically produces a CSP model of a protocol as well as the in-
truder using a more abstract description of the protocol, similar to the conventional
description. The CASPER input language is machine-readable and provides special
syntax to make explicit certain aspects of protocols. For example, the first message
of the Needham–Schroeder public key protocol is represented as:

<pkb := PK(B)>
1. A -> B: {na, A}{pkb}
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The first line represents that principal A uses a function PK to look up B’s public key.
As well as the definition of the sequence of messages passed between the principals,
CASPER requires the definition of the actual system to be checked. To define the
actual system, one has to instantiate the parameters appearing in the protocol defi-
nition to actual values. Consider a system with a single initiator, Alice, and a single
responder, Bob, each of whom has a public key, a secret key and a nonce. This is
defined by writing the following lines within the ] system heading in the CASPER
input file.

INITIATOR(Alice, Na, SKa)
RESPONDER(Bob, Nb, SKb)

The size of the system to be model-checked can be changed very easily.
CASPER provides a concise notation for specifying a range of security proper-

ties, including a number of authentication properties described in another paper by
Lowe [504].

1.6.2 NRL Analyzer and Maude-NPA

As part of a long-term project on cryptographic protocol analysis, the US Naval
Research Laboratory (NRL) developed a special-purpose software tool known as
the Analyzer [535]. It was one of the first tools developed for this purpose and was
improved over many years to provide increased automatic support for the user. The
original tool is a Prolog program with several thousand lines of code.

The Analyzer is a hybrid that possesses features of both a model checker and
a theorem prover. Searching begins from an insecure state, looking backwards to
see if that state can be reached from the initial state. If so then an explicit attack
has been found. Lemmas may be proven to show that infinite classes of states are
unreachable. These may lead to a proof that all paths to the insecure state start in
unreachable states.

The specification of a protocol consists of several elements such as the following.

System state, which includes the values known by the adversary and the protocol
principals, as well as event sequences that have occurred.

Protocol rules, which state how honest principals behave and what is learnt by the
adversary after each protocol step. The adversary may encrypt or decrypt with
known keys and concatenate known values. It is assumed that the adversary is
able to recognise which key was used to encrypt any ciphertext.

Rewrite rules, which define the cryptographic properties, such as that encryption
and decryption are inverse operations.

Protocol goals are defined by the insecure states. As well as the values known to
the adversary (such as keys) the state can include a notion of local variables (such as
a value that some principal believes is the key) or conditions on sequences of events.
In common with other tools, cryptographic properties are defined implicitly by what
values may be found by the adversary using known keys. However, some extensions
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take into account the specific properties of certain algorithms, in particular cipher-
block chaining for block ciphers [700].

The Analyzer was used to analyse a large number of protocols and to reproduce
many known faults and find new ones. Initially the subjects were restricted to rel-
atively simple key establishment protocols, but the tool was also used to analyse
complex protocols such as the (IKE) protocol [536] (see Chap. 5 for a description of
IKE).

A successor to the original Analyzer, rewritten in the logic Maude, was developed
and released as Maude-NPA in 2007 [271]. (NPA stands for NRL Protocol Analyzer.)
Version 3 of Maude-NPA became available in 2017. Maude-NPA puts the tool on
a more formal foundation; in particular, if the analysis terminates without finding
an attack then this constitutes a proof that no attack exists in the model. The new
tool retains many of the features of the Analyzer, including the backward searching
technique. Maude-NPA has been used to analyse a variety of cryptographic protocols
incorporating broader concepts such as homomorphic encryption [270] and security
API protocols [321, 322].

1.6.3 ProVerif

ProVerif is an open source tool, first developed around 2003 by a team led by Bruno
Blanchet. A detailed description, a comparison with other tools and a survey of app-
lications were given by Blanchet [115].

Inputs to ProVerif consist of protocol specfications using an adaptation of the pi
calculus together with a choice of the security property to be analysed. The output
can be one of three possibilities: confirmation of the property, an attack showing that
the property is false, or a ‘false attack’ which means that the tool has given up. It is
also possible that ProVerif will not terminate at all, because in general the problem
of determining security with an unbounded number of sessions is undecidable [115].
ProVerif is designed to be an automatic tool so that it will run without further inter-
vention from the user.

The tool is extensible by users through definition of equations for additional cryp-
tographic properties. For example, this allows coverage of properties such as Diffie–
Hellman [464] and bilinear pairings [599].

Proverif has been applied to a wide range of protocols, both by the tool designers
and by others. These include protocols in different application areas such as elec-
tronic voting, RFID, and trusted platform modules. Example analyses related to au-
thentication and key establishment have been provided for JFK [3], Kerberos [116]
and Diffie–Hellman-based protocols such as draft TLS 1.3 [93].

1.6.4 Scyther and Tamarin

Scyther, scyther-proof and Tamarin are three open source tools developed by re-
searchers at ETH and Oxford.2 Although Scyther is an older tool than Tamarin, sup-
port for use of Scyther is still widely available at the time of writing. In particular,

2 https://people.cispa.io/cas.cremers/tools/index.html.

https://people.cispa.io/cas.cremers/tools/index.html
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tutorial materials are available for Scyther, making it a good choice for learning about
protocol security. Scyther also features a graphical interface to help users understand
how a protocol works and to illustrate attacks.

Scyther was first made available around 2008 and advertised as a ‘push-button
tool’ [231] for analysis and verification of security protocols. Scyther has been ap-
plied to analysis of many of the protocols which are presented later in this book
including HMQV, KEA+, NAXOS and JKL. In an extended study, Scyther was used
to analyse all of the protocols in the ISO/IEC 11770 standard [228, 229] and those in
the first four parts of the ISO/IEC 9798 standard [61, 64] (see Sections 3.2.3, 3.3.4,
3.4.4 and 5.6 for details of these protocols). Scyther identified a number of problems
with both standards and was also used to demonstrate the absence of problems in
revised versions.

The original Scyther tool is suited to finding typical attacks in symbolic mod-
els. While it provides an unbounded search, the absence of an attack does not for-
mally constitute a proof of security. Later a version of Scyther known as Scyther-
proof [541] was developed which can output a proof in a logic known as Is-
abelle/HOL. Scyther-proof was used to provide proofs to repaired versions of proto-
cols in the ISO/IEC 9798 standard [61, 64].

In 2010, Basin and Cremers [62, 63] designed extensions to Scyther to model
compromise of parties by the adversary. This compromising adveraries version of
Scyther allows attacks such as weak forward secrecy and key compromise imperson-
ation to be captured, which at the time was not possible with other symbolic tools.
Although this extension does not allow protocols to be proven secure in computa-
tional models, it does allow separation of computational models by finding symbolic
attacks on some protocols which shows that they cannot be secure in the correspond-
ing computational model. Basin and Cremers used their analysis to provide hierar-
chies of protocols such that certain protocols can be shown to be better than others
(in a partial order) at avoiding attacks from certain types of adversaries.

The Tamarin prover [542] is a successor to Scyther. Tamarin allows for more
faithful representation of cryptographic models and has built-in support for Diffie–
Hellman and bilinear pairings. It provides a security proof in the symbolic model as
long as the analysis terminates without an attack. Although it is not guaranteed to
terminate, experience shows that on well-known protocol examples it typically does
so within a few seconds [656]. Unlike Scyther, Tamarin allows user extensions which
gives much more flexibility to the user. Like Scyther, Tamarin has been applied to
many well-known protocols such as KEA+, NAXOS, UM, JKL, STS-MAC [656]
and draft TLS 1.3 [230].

Dreier et al. [259] reported on extensions to the scope of Tamarin which pre-
viously had been unable to deal with some cryptographic primitives such as blind
signatures. By overcoming these limitations they were able to provide Tamarin anal-
yses for protocols in applications such as digital cash and e-voting.
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1.6.5 Tools for Computational Models

This section has so far looked at tools using symbolic methods based on the model
of Dolev and Yao. In the cryptographic research community the modern standard
for proofs of protocols (and primitives) is a reductionist computational proof which
shows a protocol to be secure as long as some computational assumption holds. We
look in some detail at computational security models for key establishment proto-
cols in Chap. 2. In some restricted cases proof in the Dolev–Yao model can imply a
computational proof [48], but in general this is not the case.

Reductionist proofs have, up to today, normally been performed by hand, without
the help of tools, in the same way as traditional proofs in mathematics. When the
model and proof are simple this has been a satisfactory situation, but increasingly
problems have arisen due to complexity when more advanced security properties are
considered or where complex protocols are involved. One particular problem is that
real world protocols tend to be much more complex than those traditionally studied
in the research literature. Therefore there has significant interest to provide machine
support for computational proofs [56].

As far back as 2005, Halevi [340] proposed a way to develop a tool to remove
much of the routine checking that is typically necessary in reductionist proofs and
based on the well-established technique of game-hopping [675]. Today there are
tools available which aim to achieve exactly this task, although in our (limited) ex-
perience current tools are not easy to use for the non-expert. They usually require
interaction with the user and their output can be difficult to interpret. We mention
here two prominent examples.

EasyCrypt [58] was developed by researchers in Spain (at IMDEA) and France (at
INRIA) and originates from 2009. At the time of writing the tool is still under
development. EasyCrypt has been applied to provide proofs for several cryp-
tographic primitives and protocols. In particular it was used to verify one part
of a proof of the TLS handshake protocol [99] in an implementation known as
miTLS. EasyCrypt has also been used [57] to provide verified proofs of some
well-known key agreement protocols such as NAXOS (Protocol 5.15). Interest-
ingly, the proof for NAXOS [57] allowed reduction to a more standard compu-
tational problem than that used in the original handwritten proof.

Cryptoverif [113, 114] was developed by Blanchet, originally around 2005, but
at the time of writing is still under development. The tool is specifically based
on the technique of using a sequence of games. It has been used to provide
computational proofs for many protocols which we examine later in this book,
including the Needham–Schroeder shared key protocol [113], Kerberos [116],
SSH [173] and draft TLS 1.3 [93].

It seems likely that in the future tools to support computational proofs will be
developed much further and may even replace the handwritten proofs in common
use today. This would certainly help to make such proofs more reliable and perhaps
more widely used.
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1.6.6 Comparison of Tools

In this section we have briefly introduced some of the most prominent tools available
for formal analysis of authentication and key establishment protocols. Although there
are a number of related ideas, each of these tools has both strengths and weaknesses.
Our brief survey has certainly not been exhaustive and research in this area continues
to be active. Table 1.5 summarises some of the properties of several of the analysis
tools.

Table 1.5: Summary of some tools used for protocol analysis

Properties→ Type Usage

↓ Tool

FDR Symbolic Automatic

Maude-NPA Symbolic User-guided

ProVerif Symbolic Automatic

Scyther Symbolic Automatic

Tamarin Symbolic Automatic/user-guided

EasyCrypt Computational User-guided

CryptoVerif Computational User-guided

All of the tools in Table 1.5 have been mentioned in previous subsections. The
properties in Table 1.5 do not include any measure of how useful each tool is in pro-
viding assurance about protocol security. This is very difficult to compare, especially
when tools use different techniques. However, roughly we can divide the tools into
those that are automatic and those which require user intervention. It seems reason-
able to suggest that an automatic tool should be used in the early protocol design
stage to filter out any simple errors while the more complex tools, which generally
provide proofs of some sort, should be used at a later stage.

Cremers et al. [236] performed a comparison of four tools: AVISPA, ProVerif,
Scyther and FDR. They examined two main features.

1. How much of the state space was explored in each tool. They noted that different
tools often explore quite different states.

2. How efficiently each tool performed its analysis. They concluded that ProVerif
was the fastest of the four, with Scyther coming a close second.

Cremers et al. noted that there have been very few studies comparing different tools,
a situation which does not seem to have changed much recently. This does not make
selection of the right tool easy for the non-expert.

In 2003, Meadows [538] discussed various promising research directions which
the formal methods community could follow to extend existing approaches to pro-
tocol security analysis. Twelve years later [540] she followed up on this with a new
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paper where she examined how far these directions had developed, concluding that
the area is still vibrant with many exciting new directions.

1.7 Conclusion

This chapter has introduced important background concepts needed to understand
the many protocols examined later in the book. Seeing the large variety of protocol
goals, the many different cryptographic primitives that can be used, and the different
kinds of adversaries, may help to explain why there exist so many different protocols
for authentication and key establishment. Later in the book we will often refer to the
concepts we have introduced here.

The focus of this chapter has been on providing informal, intuitive understanding
of the concepts. However, to obtain high assurance of security a formal approach
is needed. The final main section of this chapter looked briefly at different tools
available for protocol analysis. This remains an active research area and we cannot
say that there is a universal method to ensure that any chosen protocol has no flaws,
particularly if we demand an automatic tool. The next chapter looks in more detail at
formal models designed by cryptographers for use with computational proofs.



2

Computational Security Models

2.1 Introduction

During the early years of open academic research in cryptography it was common-
place to see research papers following a sequence of break, fix, break, fix . . . : a
scheme would be proposed and then others would analyse it, often finding an attack.
The scheme was then patched up and subjected to further scrutiny, and so the cycle
would continue. Although this pattern applied to many different kinds of crypto-
graphic schemes, it was nowhere more true than for protocols for authentication and
key exchange.

Starting in the 1980s research began into providing more formal approaches to
protocol specification and analysis. While a formal security definition allows the
possibility of a mathematical proof of security, no less important is the ability to give
a specific and unambiguous definition of what it means to be secure. Even without
a proof, a formal definition allows designers to specify what a protocol is intended
to achieve so that claimed attacks can be judged by whether or not they violate what
the protocol is actually intended to achieve.

Initial models came from outside the cryptographic research community and
treated any cryptographic primitives as a black box [538]. Such approaches have
been summarised in Sect. 1.6. This chapter is about the computational approach
favoured in the cryptography research community, often called provable security or
reductionist security.

The provable security approach is used in the cryptographic research community
to prove security of a variety of cryptographic schemes. Such proofs are complexity-
theoretic reductions; the security of the subject algorithm or protocol S is related to
the security of another better understood problem P in the sense that if there is an
efficient algorithm that can break S then there is an efficient algorithm to solve P.
Note that we usually have no guarantee that P really is hard to solve; for example, P
might be the integer factorisation problem, whose absolute difficulty is not known.

C. Boyd et al., Protocols for Authentication and Key Establishment, Information  
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2.1.1 The Significance of a Computational Proof of Security

It is important to understand the limitations of a formal computational model and of
any proof within such a model. A security proof is always relative to the model used.
Any model may or may not capture what was intended and models often simplify
real-world complexities. A security proof says nothing about attacks which are not
captured within the model used.

We examined many different potential security goals for key establishment and
authentication in Sect. 1.5. Different computational security models aim to capture
different subsets of these goals. Indeed, with the exception of protocol efficiency, all
of the protocol goals discussed in Sect. 1.5 have been defined in some computational
models. Since there often are different interpretations of the informal meaning of
such goals, it is perhaps not surprising that there are also varying formal definitions.
Thus even with a formal definition it remains impossible to say unequivocally that a
protocol achieves a particular goal, but it is at least possible to say whether a goal is
reached as defined in the chosen model.

The notion of provable security has received some criticism, notably by Koblitz
and Menezes [438]. Some potential limitations are the following.

• Current provable security techniques do not help in protocol design. A small
change in the protocol will require a new proof to be constructed.

• Choosing the right model, and obtaining a correct proof within the model, is often
difficult. Suboptimal solutions can be adopted because proofs for better solutions
cannot be found.

• Security proofs tend to be difficult to understand for the average practitioner.
They typically run to several pages of mathematical reasoning and there are few
people who check such proofs in any detail. Sometimes proofs have turned out
to be wrong [211], whether or not the protocol is secure in the model.

Even if you agree with these points, they do not imply that a proof of secu-
rity is not worthwhile. On the contrary, our view is that a security proof is a very
valuable attribute of any cryptographic protocol. Formal security models allow us
to unambiguously decide whether or not a protocol meets its security design goals.
A proof within such a model undoubtedly increases confidence that security errors
in the design have been avoided. At the same time, a security proof is a theoretical
object which, in the case of real-world systems, should be supplemented by informal
scrutiny, machine analysis, and any other approaches available to gain assurance.

Many complexity-theoretic proofs for protocols rely on the so-called random
oracle model [76]. The random oracle model assumes that a hash function works
in an idealised manner: it returns truly random values each time it is used, except
that it always returns the same output when the input is the same. No such function
exists in reality, but a random oracle seems to be representative of the way that we
want hash functions to work. The research community has differing views on the
reasonableness of the random oracle model, but everyone agrees that it is better if a
proof does not rely on it.
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2.1.2 Elements of Computational Models

The driving force behind any computational security model is the adversary. While
the adversary represents our concept of an attacker with a will to break the protocol,
formally it is simply an algorithm. The adversary’s abilities are constrained only
by its computational power: typically we require that the adversary is reasonably
efficient but otherwise the strategy it uses is unconstrained.

The adversary is given access to a number of oracles (or queries) which allow it
to control all the messages sent to protocol principals and often give the adversary
access to various secret information. For example, insider attacks are modelled by
allowing the adversary to corrupt principals and obtain their stored values. Also the
adversary is usually given access to session keys from sessions other than the one it is
targeting. Cryptographic algorithms may be modelled either with generic properties
(for example, an encryption algorithm secure against chosen plaintext attacks) or
as specific transformations (for example, a Diffie–Hellman operation in a particular
group).

Security of protocols is usually defined in terms of a security game played by
the adversary in combination with its environment. In Fig. 2.1 the environment is
denoted as a challenger with the job of presenting to the adversary A any elements
required by the model. This may include public keys and parameters at the start of
the game and may require the challenger to compute random values. The adversary’s
queries must be consistently answered as they would be if the adversary were run-
ning against a real implementation of the protocol. The challenger is responsible for
answering the queries from the adversary and is often said to simulate the environ-
ment.

Challenger for
scheme S

public values

query
response

output

Adversary A
against S

decide whether
adversary wins/loses

Fig. 2.1: Security game for scheme S

The game ends when the adversary halts its computations and gives its output.
There must be a formally specified condition, applied at the end of the game, to
decide whether or not the adversary has won the security game. Security is then
defined based on limiting the success of the adversary in winning the game. For
some given scheme S, we would like to ensure that no efficient adversary A is able
to win the security game with a probability which is non-negligible in the length of
the long-term keys. Often we need to settle for a bit less than this.
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Once a security model is in place, it is possible to try to achieve a proof of security
by a reduction to an existing scheme T as shown in Fig. 2.2. To achieve this, the
proof constructs a new adversary against T which uses the adversary A rather like
a sub-routine in a program. If A is successful, the proof tries to use this success to
solve the given instance of T. Here scheme T could be a simple problem (like the
computational Diffie–Hellman problem or factoring) or it could be a full security
property of another scheme such as one of those defined in Sect. 1.3. We may, for
example, achieve a proof that a protocol (scheme S) is secure if an encryption scheme
(scheme T) which it uses is secure.

Challenger for
scheme T

public values

query
response

output

Adversary
for

scheme T

Challenger
for

scheme S

public values

query
response

output

Adversary A
against S

Fig. 2.2: Reduction from scheme S to scheme T

We can summarise the main elements in a provable security analysis as follows:

• the security definition, including the specification of the adversary’s capabilities
and a winning condition;

• the specification of the protocol to be analysed; and
• a theorem and its proof bounding the probability that an adversary can win the

security game against the protocol.

The security goals captured in a particular protocol security model vary, and can
include entity authentication, session key confidentiality, or both. Models vary ac-
cording to what queries are allowed to the adversary as well as the winning condition
of the security game. Moreover, terminology and notation can vary greatly between
models, even when the basic ideas are the same. Table 2.1 summarizes some com-
mon concepts present in most computational models.

Table 2.1: Common terminology in computational models for key exchange

Party A protocol principal possessing a long-term key and which usually takes part in
multiple runs of the protocol

Instance The actions of a specific protocol run at some party

Partnering Rules to specify when the model regards two instances as being linked

Freshness Rules to specify whether a session is a valid target for the adversary

Key derivation Application of a key derivation function (KDF) to obtain a session key from a
shared secret



2.1 Introduction 57

One important concept in all of the models is that of an instance, often called
a session. In informal descriptions, a session is commonly regarded as a protocol
run executed between two parties, but in computational models a session is almost
always located at a single party. Instead of thinking about parties sharing a session
we rather think of parties who may have matching sessions which share the same
session key. Usually an instance shares state (specifically a long-term key) with other
instances at the same party. Instances also have a local state which is updated as the
protocol is run. Different models can have very different notation for sessions, even
when the concept is the same, which can be a source of confusion. We return to this
issue in Sect. 2.5.

Another tricky notion is that of a partner of an instance. The idea is to identify
which instances can be expected to share the same session key (or state related to the
session key). Models usually do not allow the adversary to win against a chosen in-
stance if the session key from a partner of that instance has been obtained. Therefore
it is very important to precisely define which instances can be partners. Different
models use different ways to define partners. We will mention two common ways
later in this chapter: matching conversations between instances and session identi-
fiers.

In the remainder of this chapter we take a mainly historical perspective on the
development of security models. Generally speaking, older models are simpler than
more modern models so this can help ease the exposition. In addition, there is no
model which encompasses all other models and it is not uncommon to see older ap-
proaches used in recent papers. The next three sections cover three major families
of models: the Bellare–Rogaway (BR) family, the Canetti–Krawczyk (CK) family,
and the extended CK (eCK) family. Section 2.5 compares some of the main features
of different models and discusses which models are stronger than others. Most of
the chapter deals with models for two-party protocols with a single long-term key
per party, but Sect. 2.7 looks at models which go beyond this boundary. Finally in
Sect. 2.8 we look at models for defining secure channels established using key ex-
change protocols, which use a weaker security definition than most of the models.

Conceptually, the goal of secure key exchange is for the principals to complete
the protocol in possession of a session key which is random from the viewpoint of
the adversary. Consequently, most models for key exchange follow the key indistin-
guishability approach in which the goal of the adversary is to distinguish the agreed
session key from a random string. This is by far the most common approach in the
literature. An alternative is the simulation-based approach in which the goal of the
adversary is to distinguish between interactions with a real system and interactions
with an ideal system, with the latter being secure by definition. The most prominent
of the simulation-based approaches is the universal composability (UC) framework
[181]. An earlier related approach is Shoup’s model discussed in Sect. 2.6. Mod-
els for secure channels, explored in Sect. 2.8, cannot achieve indistinguishability of
session keys because they allow the adversary to observe key usage on the channel.
Therefore they use models related to authenticated encryption where the adversary’s
goal is to distinguish ciphertexts or to forge valid messages.
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2.2 Bellare–Rogaway Model

Bellare and Rogaway pioneered the study of authentication and key establishment
protocols using computational cryptographic models. Their paper on entity authen-
tication and key distribution from 1993 [75] is one of the earliest papers in the area
of practice-oriented provable security which they established; it was presented even
before their famous paper on the random oracle model. Many of the elements which
they introduced are present in most of the models which have been proposed subse-
quently. In addition there are many refinements and extensions to their original ideas
which were developed by themselves and others.

In this section we start by describing the 1993 model and then follow its devel-
opments during the 1990s through Bellare and Rogaway’s own work in 1995, the
extensions to public-key based protocols by Blake-Wilson and Menezes, and then
the password-based model of Bellare, Pointcheval and Rogaway of 2000.

2.2.1 BR93: The First Computational Model

By 1993 there were already formal methods tools to analyse security with the Dolev–
Yao approach and the BAN logic had recently become popular. Within the cryptog-
raphy research community efforts had started to understand how to design robust
protocols and classify attack types. Bellare and Rogaway specifically acknowledge
the papers of Diffie et al. [253] and Bird et al. [103] as logical precursors to their
work.

Communication Model

Consider a set of identifiers which represent protocol principals. Each principal has
a long-term secret key and an internal state which updates as the protocol runs.

A protocol is a function Π which represents the specification of the protocol by
stating what the output of a specific principal will be if it is given a specific input
message in a specific protocol state. More precisely, Π is a sequence of transitions,
each with five inputs and three outputs as shown in Table 2.2.

Table 2.2: Protocol inputs and outputs in the BR93 model

Inputs
i the identity of the sender of the current message;
j the identity of the intended recipient of the current message;
a the long-term secret of the sender;
κ the transcript of the current protocol run for the current session.

Outputs
m the output message from the current transition (which can be empty);
δ the output decision which can have values in {accept, reject, none};
α the updated local state of the sender of the message.
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While the abstract definition of the protocol allows for multiple principals to
be engaged in multiple runs of the protocol, we can also consider a single run, or
a session at a particular party. We call this an instance of the party and denote an
instance by Π s

i, j, where i is the party at which the session takes place, j is the intended
partner of i, and s is an index that is unique for a particular pair (i, j). We say that an
instance accepts if and when its output decision becomes “accept”.

Matching Conversations

In all the computational models, a critical issue is how to identify partners of protocol
instances. To achieve authentication instances should only accept when the protocol
is run with their intended partners. For key establishment the adversary should also
be prevented from getting (too much) information about the session key of an in-
stance also from its partner. For example, although the adversary is allowed to obtain
session keys from independent sessions, this should not include the partner session.

BR93 uses the notion of matching conversations to define partners. The idea is
that the communicating entities should agree on the messages that have been sent and
received in the protocol run they are involved in. Of course the entity sending the last
message in the protocol cannot know if that message was ever received (during the
protocol in question) and so we need to relax the requirement for the party sending
the last message.

To capture what this means we have to specify what a conversation is. Atomic
events in the BR93 model are transitions at one instance where a message is received,
the state is updated, and a message is sent. From the external view all that can be seen
is a message sent and received at a certain time as shown in Fig. 2.3. A conversation
is therefore a finite sequence of events at one instance Π s

i, j where each event is of the
form (τ,r,m) for a time τ , an incoming message r and an outgoing message m.

r Π s
i, j m

Fig. 2.3: Atomic event (τ,r,m) in the BR93 model

In the BR93 model, and in all other similar models we look at in this chapter,
the adversary is free to choose the incoming message r in any way. Indeed the only
way that instances communicate in the model is through the adversary. The adver-
sary is free to simply relay messages between instances so that the conversations
proceed exactly as they would in a real run of the protocol without the adversary
being present. Such an adversary is known as a benign adversary. But equally the
adversary can choose to fabricate messages, using any efficient algorithm, to change,
delay or reorder messages, or simply to delete them.

Another matter which we have to take care of is that the first message in a proto-
col occurs with no received message to cause it. We use the BR93 notation by writing
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(τ,λ ,m) for the event at an instance which initiates the protocol run – here λ denotes
the empty string, τ is the time of the event and m is the first protocol message. We
call the instance where this event occurs the initiator. Similarly, when the final pro-
tocol message is received it causes no output message in response. Again we use the
BR93 notation (τ,r,λ ) for the event at an instance which ends the protocol run by
receiving message r at time τ with an empty output. We call the instance where this
event occurs the terminator.

Consider any two conversations at instances Π s
i, j and Π t

j,i, so that one instance
is at party i intending to communicate with party j, while the other is at party j
intending to communicate with party i. Depending on the protocol specification, the
instance which is the initiator (sends the first message) may, or may not, also be the
terminator (receives the last message). Suppose that protocol Π has R messages in
total. If R is odd, say R = 2ρ − 1, then the initiator is not the terminator; moreover
the initiator sends ρ messages and receives ρ − 1 messages while the terminator
sends ρ − 1 messages and receives ρ messages. If R = 2ρ is even then the initiator
is the terminator; moreover both the initiator and the terminator send and receive ρ

messages.

Case 1: R Odd

To be concrete we look first at the case where R = 2ρ−1 is odd. Since exactly one
instance can be the initiator we shall assume that Π s

i, j is the initiator which means
that Π t

j,i is the terminator. Then we will denote the conversation of Π s
i, j as a sequence

of atomic events,

(t0,r0 = λ ,m0),(t1,r1,m1), . . . ,(tρ−1,rρ−1,mρ−1)

and the conversation of Π t
j,i as another sequence of atomic events,

(u0,s0,n0),(u1,s1,n1), . . . ,(uρ−1,sρ−1,nρ−1 = λ ).

In order for these two conversations to be matching we will require that m0 = s0,
n0 = r1 and so on. However, at the end of the matched messages we have a slight
difference depending on which party we are looking at: only when matching to the
terminating party do we include the last message in the conversation. This is because
in the protocol we must allow the non-terminating party to accept once it has sent
its last message even though the adversary can trivially delete this last message. This
leads to the following definition.

Definition 26. For the case of an odd number of protocol messages, we say that the
conversation at Π s

i, j matches the conversation at Π t
j,i when:

1. t0 < u0 < t1 < u1 < .. . < uρ

2. m0 = s0,n0 = r1, . . . ,mρ−1 = sρ−1.

Similarly the conversation at Π t
j,i matches the conversation at Π s

i, j when:

1. t0 < u0 < t1 < u1 < .. . < uρ

2. m0 = s0,n0 = r1, . . . ,nρ−2 = rρ−1.
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Case 2: R Even

We now look at the case R = 2ρ is even. Again we shall assume that Π s
i, j is the

initiator so that the first event at Π s
i, j has r0 = λ . Since R is even this means that Π s

i, j
is also the terminator so that the last event at Π s

i, j has mρ = λ .
Then Π s

i, j has conversation,

(t0,r0 = λ ,m0),(t1,r1,m1), . . . ,(tρ ,rρ ,mρ = λ )

and Π t
j,i has conversation,

(u0,s0,n0),(u1,s1,n1), . . . ,(uρ−1,sρ−1,nρ−1).

Now we can adjust the definition of matching based on the different conversation
formats. Again, only when matching to the terminating party do we include the last
message in the conversation.

Definition 27. For the case of an even number of protocol messages, we say that the
conversation at Π s

i, j matches the conversation at Π t
j,i when:

1. t0 < u0 < t1 < u1 < .. . < uρ−1 < tρ
2. m0 = s0,n0 = r1, . . . ,mρ−1 = sρ−1.

Similarly the conversation at Π t
j,i matches the conversation at Π s

i, j when:

1. t0 < u0 < t1 < u1 < .. . < uρ−1 < tρ
2. m0 = s0,n0 = r1, . . . ,nρ−1 = rρ .

Mutual Authentication

We are now ready to discuss the first of the two security properties analysed in the
BR93 paper. This is mutual authentication, which informally means that both parties
should gain assurance that they are in conversation with each other. Many protocols
for key establishment do not require, and do not provide, this property but in the
BR93 model it is a requirement for secure key establishment.

In the security game for mutual authentication the adversary interacts with the
instances by sending a message r of its choosing at time τ , and receiving a response
m, as depicted in Fig. 2.3. Since this is the only interaction that the adversary is
allowed to perform, there may not seem any need to give it a specific name. In later
models this interaction became known as a send query to distinguish it from other
adversarial queries. In addition to the message r chosen by the adversary, the inputs
to such a query must include (i, j,s) values to identify the specific instance to receive
the query. The output of the query is the output message m specified by the protocol
definition.

There are two requirements in the security definition for mutual authentication.
The first is that instances will accept when they have engaged in matching conversa-
tions. This is a correctness notion since is it how we expect the protocol to work in the
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absence of a malicious adversary. Remember that in the BR93 model the adversary
actually transports messages even if only in a benign way. The second requirement
says that if an instance accepts then there must have been another instance with a
matching conversation.

Definition 28. A protocol Π is a secure mutual authentication protocol in the BR
model if, for any efficient adversary A, both of the following hold.

1. If the conversations at Π s
i, j and Π t

j,i match each other then both instances will
end in the accept state.

2. The probability that there exists any instance Π s
i, j in the accept state but without

an instance Π t
j,i which has a matching conversation is negligible.

Bellare and Rogaway went on to provide examples of protocols satisfying Defi-
nition 28.

Key Establishment

The second security property defined in the BR93 model is key establishment, or
authenticated key exchange. In the BR93 model secure key establishment is only
defined for protocols which provide mutual authentication. This results in a signifi-
cant limitation in the set of protocols which can be proven secure in the strict BR93
model. Subsequent developments from the BR93 model, which we explore later in
this chapter, do not have such a restriction.

In a successful run of a key establishment protocol, instances will eventually have
a session key as part of their local states (α as defined in Table 2.2). Since one of
the main reasons to have session keys is to keep sessions independent, the adversary
should be allowed to obtain session keys for some sessions while the protocol still
remains secure for the remaining sessions. In order to capture this property, in the
BR93 model the adversary is allowed to obtain the session keys from any instances
that it chooses. To this end, an adversary query called reveal is introduced with inputs
(i, j,s) to identify the specific instance to receive the query, and output equal to the
session key. The adversary is allowed to ask reveal queries only to instances which
have output an accept decision. (In the BR93 formalism this is ensured by assuming
that the private state of each instance is empty until the instance has accepted.)

We do not require the adversary to output the session key of its targeted session
in order to win its security game – we require only the much weaker condition that
the adversary can reliably distinguish the session key from a random string of the
same length. This is in line with the principle that we should make the security game
as easy for the adversary as we can without allowing the adversary to win trivially.
Note that an adversary which can reliably predict, say, the least significant bit of
the session key can reliably win the security game. The requirement is formalised
through the test query.

At some point the adversary must decide to issue a test query whose inputs
(i, j,s) specify the instance to receive the query. This instance is often known as
the target session. Only one test query is allowed during the whole game. To answer
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the test query we imagine a challenger who flips a fair coin to define a bit b; if b = 0
then the response is the session key at that instance, but if b = 1 then the response
is a completely random string of the same length as a session key. The adversary’s
final output is a bit b′ which is its own guess at the value of b. Then we say that the
adversary wins the security game if and only if b′ = b.

There is one important restriction which we have ignored so far. We allowed the
adversary to obtain any session key by asking reveal queries but this will trivially
allow the adversary to win by revealing the session key of the target session or its
partner. Therefore we must restrict the adversary access to the reveal queries by
introducing the notion of freshness. The adversary will only be allowed to ask the
test query to a fresh session. In particular, this prevents the adversary from asking a
reveal query to the target session and any matching session.

Definition 29. We say that an instance Π s
i, j in the BR93 model is fresh if:

1. Π s
i, j has accepted;

2. Π s
i, j has not been asked a reveal query;

3. if Π t
j,i has a matching conversation with Π s

i, j then Π t
j,i has not been asked a

reveal query.

We summarise the whole BR93 security game in Table 2.3. As outlined in
Sect. 2.1.2 we can regard this game as being played with a challenger which is re-
sponsible for choosing the long-term keys of the parties and choosing the random bit
b (Step 1). Since the game is a guessing game, the adversary can always win with
probability 1/2 by simply outputting a random guess for b. Therefore we are only
interested in how much better the adversary can do than guessing so we define the
adversary’s advantage as Pr(b′ = b)− 1

2 . We are now able to give the BR93 security
definition for authenticated key exchange.

Table 2.3: Key exchange security game in the BR93 model

1. Long-term keys are generated for all parties. In the BR93 paper only symmetric keys are
used and each party starts with a symmetric key shared with every other party. A random
secret bit b is chosen by the challenger (this can happen at any time before step 3).

2. The adversary can interleave in any chosen way the following actions:
• send messages to any instance (including starting new instances by sending the empty

string) and receive the correct response;
• ask reveal queries to any instance to obtain the session key.

3. The adversary asks a test query to any fresh instance as defined in Definition 29.
4. The adversary can continue to send messages and ask reveal queries as long as the tested

session remains fresh.
5. Eventually the adversary outputs its guess bit b′.
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Definition 30. A protocol Π is a secure authenticated key exchange protocol in the
BR93 model if it is a secure mutual authentication protocol and both of the following
hold.

1. For any benign adversary A who relays conversations between Π s
i, j and Π t

j,i,
both instances will end in the accept state with the same session key.

2. The advantage of any efficient adversary A in the security game is negligible.

Timing of test Query

In contrast to what is shown in Table 2.3, the original BR93 model required the test
query to be the adversary’s final query in the game. (This also applies to the original
BR95 model discussed in Sect. 2.2.2.) Although this may seem a natural and correct
assumption, it is not necessary and there is no reason to prevent the adversary from
continuing with other queries as long as they do not trivially allow the adversary
to win the game. At the least, allowing the adversary to make extra queries cannot
make the adversary any weaker and this is always desirable if we can still obtain a
security proof. Moreover, we can think of protocols, albeit somewhat contrived, that
would be secure if the adversary is restricted to make test its final query, but insecure
otherwise.

Consider a protocol, otherwise secure, in which instances will accept further
queries after accepting the key, and if that query includes the accepted session key
the instance will return a special flag. Such a protocol, in other words, allows the
adversary to test guesses of the session key within the protocol. Such a protocol is
insecure when we allow the adversary to continue querying after the test session
since the adversary can simply test whether the key it received in response to the
test query receives the special flag. As later reported by Bellare and Rogaway [74]
they were alerted to this issue in a private communication by Petrank in 1995 and
thereafter the adversary’s power was increased to allow further queries after the test
session. Canetti and Krawczyk [178, Appendix A] also discussed this issue.

Limitations of the BR93 Model

The BR93 paper was a pioneering publication and the basic ideas are still in wide
use today. With hindsight we can see a few limitations of the original model which
later models have sought to overcome. We summarise these here before going on to
look at other models.

• The cryptographic setting in BR93 is very simple. Each party already shares a
long-lived key with every other party. This is not realistic in many distributed
communication settings. Furthermore, public keys play a crucial role in modern
cryptography and they are not considered at all.

• There is a strong coupling between authentication and key exchange. While many
protocols do provide both services, many others do not and these cannot be prop-
erly analysed in the BR93 setting. Even if both are desired, it can be useful to be
able to analyse key exchange independently of authentication.
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• There are limited adversarial capabilities. The adversary in BR93 is not allowed
to obtain long-term keys of principals and therefore the model does not capture
malicious insiders which are common in practice.

Such issues may not be important within the limited cryptographic setting of BR93,
but we will see later that they can be important when we want to capture security
properties of more diverse protocols.

2.2.2 BR95: Server-Based Protocols

Two years after their first model was published, Bellare and Rogaway [78] presented
a new model which we will refer to as the BR95 model. It is aimed at a different
situation: key establishment using an online server. Bellare and Rogaway called this
the three-party case. We look at protocols in this category in Chap. 3. The basic ideas
of the model they used for this purpose are the same as in the BR93 model, but there
were also some changes. Perhaps the most prominent change is the de-coupling of
key establishment and entity authentication. It is no longer necessary for a secure key
exchange protocol to be one which also provides mutual authentication. Indeed, the
protocol which they prove secure in their paper does not provide entity authentication
– no party gets any assurance that its intended partner has taken part in the protocol
at all when the protocol is completed.

Without entity authentication there is a need for a different mechanism to define
partnering in the BR95 model. Some way of defining partners is always required
since the partner of the test query cannot be subject to a reveal query otherwise the
adversary can always win the security game. The BR95 model introduced the idea
of a partner function which takes as inputs (i, j,s) specifying the instance, Π s

i, j, to
receive the query and a transcript of the protocol run so far. The output of the partner
function is a value t which specifies the partner instance Π t

j,i. No specific partner
function is defined for any protocol, but protocol security is defined by requiring
the existence of a partner function which ensures that the adversary’s advantage in
winning the security game is negligible. The effect of this is to change the definition
of freshness in the BR95 model; in comparison with Definition 29 for the BR93
model, the third condition must now require that the partner of Π s

i, j, as defined by
the partner function, has not been asked a reveal query.

An explicit send query is defined in the BR95 model to allow the adversary to
interact with honest parties running the protocol. (To be precise, there are two such
queries in the BR95 paper, one for messages to clients and one for messages to the
server. Here we conflate the two as is done in later models.) The send query has an
instance and a protocol message (possible empty) as input and provides the adversary
with the output which would be computed by the honest party running the protocol
(see also Table 2.4 later). The adversary can freely choose the input message and
instance.

In addition to the reveal query available in the BR93 model, the BR95 model
has a corrupt query which allows the adversary to obtain the long-term key of any
party. Long-term keys are shared with the server, but the server itself cannot be cor-
rupted. All instances at parties which have been corrupted through this query are no
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longer fresh, so they cannot be used as the target of the test query by the adversary.
The corrupt query also has an input which allows the adversary to specify a new
long-term private key for the corrupted party. This does not seem an unreasonable
expectation for a real-life adversary who corrupts a party.

Later Shoup and Rubin [676] adapted the BR95 model in order to model server-
based key exchange with the aid of smart cards for the user machines. The idea
is that the long-term key will never leave the smart card and can only be accessed
through a defined interface. The difference in the model is that the adversary is able
to additionally obtain any of the state information in a non-target session except what
is stored in the smart card. In addition the adversary is able to query the smart card
interface at any time. Finally smart cards themselves can also be corrupted to obtain
the long-term key, but then sessions using that card can no longer be fresh. Shoup
and Rubin designed an efficient protocol secure in this extended model.

Limitations of the BR95 Model

Some of the innovations of the BR95 model have stood the test of time; most models
today include some kind of corrupt query as well as explicit queries for send and
reveal. However, the introduction of the partner function has proved to be problem-
atic. Choo et al. [209] demonstrated that the partner function used in the BR95 paper
is incorrect – with the function specified, the adversary is easily able to win the game
because instances which might be expected to be partners are not according to the
definition. However, they found an alternative partner function which does not have
the same problem. This illustrates a potential problem with the partner function idea
– different partner functions are possible for the same protocol and the right function
to use is not necessarily obvious from the protocol. Later Rogaway [634] discussed
the limitations of the partner function definition as an example of the difficulty of get-
ting security definitions correct. Free choice of the partner function is not normally
allowed in more recent models, but the model rather defines the partner function, for
example through matching conversations.

2.2.3 The Public Key Setting: The BWM and BWJM Models

In a natural progression, Blake-Wilson and Menezes [108] in 1997 extended the
BR93 model to the public key setting. We refer to this as the BWM model. Instead of
each pair of users initially sharing long-term symmetric keys as in BR93, the BWM
model assumes that each user has a public–private key pair for signing messages and
a public–private key pair for encryption. The main ideas of the model are largely
the same as in the BR93 model. In particular mutual authentication is a requirement
for secure key exchange. As in BR95, a corrupt query is available to the adversary
allowing recovery and replacement of long-term private keys, in addition to a reveal
query to obtain accepted session keys.

The BWM model uses matching conversations to define mutual authentication
as in BR93. However, Blake-Wilson and Menezes noticed that the standard security
definition for digital signatures causes a slight problem. The adversary may be able
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to alter each signature output by an instance to form new valid signatures, something
not ruled out by the standard security definition for signatures. This means that the
peer instance will accept using the altered signature even though matching conversa-
tions have not occured, violating the second requirement of Definition 28. Therefore
a slightly altered version of the matching conversations definition is provided which
allows malleable tags to be added to the messages which match. Blake-Wilson and
Menezes point out an alternative solution to this problem, which is to strengthen
the security definition of signatures to prevent malleability. Signatures secure in this
definition later became known as strongly unforgeable signatures [32].

In the same year, Blake-Wilson, Johnson and Menezes [107] extended the BWM
model to consider key agreement. We call this the BWJM model. They differentiate
between authenticated key agreement (which they abbreviate as AK) and authenti-
cated key agreement with key confirmation (which they abbreviate as AKC). The
AKC definition follows closely the BR93 model by requiring a secure AKC pro-
tocol to already provide mutual authentication as in Definition 28. This means that
a secure AKC protocol must have at least three flows. Two examples, with proofs,
are provided by Blake-Wilson et al. using Diffie–Hellman constructions and secure
message authentication codes.

Blake-Wilson et al. [107] also considered how to decouple key establishment
from mutual authentication to provide AK, still using the notion of matching conver-
sations to define partnering. However, the only protocol considered uses a weakened
model in which reveal queries are forbidden to the adversary. Although these authors
suggest that ‘no key agreed in an AK protocol should be used without key confirma-
tion’, later results by Jeong, Katz and Lee [397] and by Kudla and Paterson [459]
show that one-round protocols without any key confirmation (or mutual authentica-
tion) can provide security in models allowing reveal queries.

2.2.4 BPR00: Forward Secrecy and Passwords

In 2000, Bellare and Rogaway, this time together with Pointcheval, proposed the
latest refinement of their key exchange model [74] which we refer to as the BPR00
model. The model incorporates a number of enhancements, notably allowing capture
of the forward secrecy property. However, the main motivation of the BPR00 model
was to include analysis of password-based protocols (see Chap. 8).

Recall that the security game for key establishment, originally defined in the
BR93 model, requires the adversary to distinguish the session key from a random
string with non-negligible probability. Security in such a game is essentially un-
achievable for a password-based protocol where users have low-entropy passwords.
This is because the adversary will have a non-negligible probability of correctly
guessing a user’s password which will always allow the adversary to win the se-
curity game. Therefore the security definition in the password-based setting has to
be relaxed by requiring a successful adversary to win with an advantage that is signif-
icantly better than the probability of simply guessing the password correctly. More-
over, the adversary can always use a send query to test the correctness of a password
guess and therefore it is necessary to limit the number of active attack messages
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while at the same time allowing a large number of passive eavesdropping events. In
order to accommodate this, a new execute query was made available to the adver-
sary. In a good password-based protocol, the adversary’s advantage can be kept small
by severely limiting the number of send queries; this corresponds to the real-world
technique of locking out a user after a small number of password failures.

Partnering in the BPR00 model is captured in a new way, different from the
use of matching conversations in BR93 and partner functions in BR95. The BPR00
model introduces the notion of session identifiers (SIDs), which have been used in
many later models. The exact form of session identifiers is not specified but should
uniquely define a session between two parties – it is suggested that the concatenation
of protocol messages can be used to define the SID. BPR00 also uses the notion
of partner identifiers (PIDs) at each instance to specify the identity of the principal
which that instance intends to communicate with. When an instance accepts a session
key it must have also decided on a SID and PID. In the BPR00 model partners must
have the same SID and session key, and record each other’s principal as the PID.

Another innovation in the BPR00 model is the consideration of forward secrecy.
This is captured by modifying the definition of freshness. If forward secrecy is re-
quired then corrupt queries only affect the freshness of an instance if it occurs before
the test query is issued. The corrupt query in the BPR00 model has two variants: one
which returns the state of the party it is sent to, including any randomness but not the
session key, and one which only returns the long-term key. The first kind of corrupt
query was used in the BR95 model. The second kind allows BPR00 to formally cap-
ture the property of weak forward secrecy which forbids the adversary from being
active in the test session.

Table 2.4 summarises the adversarial queries available in the BPR00 model. This
table applies also to the BR93 and BR95 models for the subset of queries that are
defined in those models.

Table 2.4: Queries in the BPR00 model

Query Inputs Outputs Purpose
send Instance + input message Output message Active attacks

execute Instance pair Protocol transcript Passive attacks
reveal Instance Accepted session key Compromise of session keys
corrupt Principal Long-term key Compromise of long-term keys
test Fresh instance Session key Adversary challenge

or random string on indistinguishability

Limitations of the BPR00 Model

One curious feature of the BPR00 model is that the definition of session freshness
does not differentiate between which parties have been corrupted. Thus, when mod-
elling a protocol which does not provide forward secrecy, all sessions are no longer
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fresh if any party is corrupted and consequently the adversary cannot ask the test
query to any valid party. This means that corruption is disallowed completely which
seems a quite unnecessary restriction. Choo et al. [208] showed that this limits the
ability of the BPR00 model from capturing certain realistic attacks. However, this
does not seem to be a fundamental limitation of the model, and can be fixed by mak-
ing the freshness definition more precise by only limiting corruption with regard to
the target session and its partner.

2.2.5 Summarising the BR Model Variants

Table 2.5 summarises the development of the Bellare–Rogaway models from 1993 to
2000. Here we can see how the models evolved to capture different kinds of protocols
and security properties. For the earlier models with only symmetric key cryptography
the forward secrecy property is not applicable (marked N/A’ in the table).

Table 2.5: Comparison of the main Bellare–Rogaway model versions

Model Setting Partnering Forward
mechanism secrecy

BR93 Two-party shared key Mutual authentication N/A
BR95 Server-based Partner function N/A
BWM Public key Mutual authentication No
BWJM Key agreement Matching conversations No
BPR00 Password-based Session identifiers Yes

2.3 Canetti–Krawczyk Model

In 1998 a different direction in formal modelling of key exchange was started by Bel-
lare, Canetti and Krawczyk [72]. Initially the idea was to take a very general approach
incorporating not just key exchange but also authentication of exchanged data. An-
other feature of the new approach was an attractive ability to design protocols in a
modular way. In 2001, Canetti and Krawczyk [178] made fundamental changes to
the model, avoiding some shortcomings of the 1998 security definition, but retaining
the modular features. This model is ofter referred to as the CK01 model. In 2005,
Krawczyk made the model much more specific and concrete in order to analyze the
HMQV protocol [453]. While these three stages have significant differences, and the
HMQV model is finally quite close to the BR model, there is a logical development
between them which we follow in this section.

2.3.1 BCK98 Model

A central concept introduced in the BCK98 model is the authenticated links model,
abbreviated as AM. In the AM the adversary A has restricted capabilities compared
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with the usual key exchange models. In particular A is not able to fabricate mes-
sages but can only activate instances using messages output by legitimate parties. To
differentiate the usual kind of stronger model, the latter model is called the unau-
thenticated links model, and abbreviated as UM.

The main purpose of introducing the AM is that secure protocols can generally
be much simpler while at the same time there is a general method to promote a
protocol which is secure in the AM to one that is secure in the UM. This is achieved
by applying a transformation, or compiler, whose input is a protocol π secure in the
AM and whose output is a new protocol π ′ secure in the UM. Such a transformation
is called an authenticator. Secure protocols in the AM can be defined independently
of authenticators but then combined with any authenticator to obtain secure protocols
in the UM.

The BCK98 model follows an approach to defining security of key exchange
which is quite different from the BR indistinguishability approach – their definition
is instead simulation-based. This means that they consider an ideal secure key ex-
change protocol and compare this with the real protocol π . Roughly speaking, if π

is secure then for any efficient adversary running π there is an efficient adversary
against the ideal protocol such that the output of the real and ideal systems are indis-
tinguishable.

Problems in the BCK98 Model

It turns out that the simulation-based security definition in BCK98 is too strong.
The result is that the basic protocols which were originally claimed to be secure in
the model do not in fact satisfy the definition. (This is acknowledged in the CK01
paper [178].) The main issue, as discussed by Shoup [674], is that the corruption
allowed in BCK98 is too strong. The BCK98 model only considers corruption in
which the adversary obtains session keys as well as long-term keys and can choose
which parties to corrupt at any time: Shoup calls this strong adaptive corruption.
It turns out that in this situation some basic protocols, such as Diffie–Hellman key
exchange, are not secure in the AM. This is unsatisfactory since Diffie–Hellman is a
basic building block against which we have no realistic attacks in the AM.

To fix these problems it is natural to make a weaker security definition. Shoup
[674] also used a simulation-based approach but allows for weaker version of cor-
ruption so that security can still be obtained for protocols which we believe should
be secure. Later Canetti and Krawczyk considered definitions in the universal com-
posability (UC) model [181] which can be considered to be a generalisation of the
security definition of BCK98. However, the CK01 model takes a pragmatic approach
by using an indistinguishability definition, like that of the BR models, while retaining
the AM and UM and the authenticators to map between them.

2.3.2 CK01 Model

The CK01 model [178] contains more than just a model for defining security of key
exchange protocols. There are two other significant contributions, which together
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were highlighted by Canetti and Krawczyk as the main motivation for their work. The
first of these is an extension of the modular approach to design of secure protocols
already started in the BCK98 model as mentioned above. The second is a model for
secure channels and an analysis of how these can be achieved from a secure key
exchange model. In this section we focus on the model and its differences from the
BR models but we will also say something about the modular approach. We defer a
discussion of secure channels in the CK01 model until Sect. 2.8.

Adversary Capabilities in CK01

The adversary in the CK01 model works in the same basic manner as in the BR
models. Specifically it controls the communications between all parties. The nota-
tion used in CK01 is rather different from that in the BR models and in particular
there is no separate notation for instances. Instead sessions can be identified as in-
stances and are named using session identifiers which are distinct at any party. More
specifically, a session can be identified by a tuple (Pi,Pj,s) for a principal Pi intend-
ing to communicate with a principal Pj using a session identifier s. Note that the
session identifier s has a completely different role from the instance number s in the
BR notation. This is discussed further in Sect. 2.5 and in Table 2.8.

As well as scheduling message interactions with parties (sessions) and observing
the response, the adversary has available some specific queries which go beyond
what is in the BR models.

Party corruption. The corrupt query allows the adversary to obtain the long-term
key of a party exactly as in the BR95 and BPR00 models. The query returns the
long-term key of the party and also all the memory which may include ephemeral
keys or session keys.

Session key reveal. Just as in the BR models, the adversary can obtain the session
key of any completed session by asking a reveal query.

Session state reveal. Except in corrupt queries, the BR model does not allow the
adversary to obtain information which may be stored during (or after) the session
key computation. The CK01 sessionstate query can be asked of an incomplete
session and receives the internal state in return. The model allows the protocol
to specify what is included in the session state; a typical example would be an
ephemeral Diffie–Hellman exponent.

Session expire. CK01 models forward secrecy by allowing the adversary to expire
sessions. The effect of this query is to delete the session key from the session
specified as input to the query. This means that party corruption at the target
session can occur after the session has expired without trivially giving away the
session key.

Security in the CK01 Model

The definition of security in the CK01 model follows very closely the BR defini-
tions we have seen in previous sections, but with appropriate adjustments to the new
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queries. In particular the definition is based on the absence of an efficient adversary
who can distinguish the session key in a fresh session from a random string in the
session key space. In order to highlight the similarity we continue to use the same
terminology as in the BR model to describe the security game, instead of changing
to the terminology used in the CK01 paper. Thus Table 2.6 describing the security
game and the security definition in Definition 32 can be observed to be similar to
Table 2.3 and Definition 30.

Table 2.6: Security game in the CK01 model

1. Long-term keys are generated for all parties using a protocol-dependent function called
initialization which is run before the protocol starts.

2. The adversary can interleave in any chosen way the following actions.
a) The adversary invokes a new protocol instance with a specified partner principal,

a session identifier s and a role. There must be no other session between the same
parties with the same value of s.

b) The adversary sends a message to any session from a specified principal and observes
the response. The response can include an indication that the session is complete in
which case all memory is erased except for the session key.

c) The adversary can ask reveal queries to any instance to obtain the session key.
d) The adversary can ask sessionstate queries to any incomplete instance to obtain the

session state.
e) The adversary can ask corrupt queries to any instance to obtain the state of the

principal.
f) The adversary can ask expire-session queries to any completed instance which

erases the session key from the session state.
3. At some point the adversary asks a test query to a fresh instance. The adversary can

continue to send messages and ask other queries in step 2, as long as the tested session
remains fresh.

4. Eventually the adversary outputs its guess bit b′.

Partnering in the CK01 model is defined through session identifiers. More specif-
ically, any party Pi starts a protocol run when it receives an input of the form
(Pi,Pj,s, role) for a session identifier s and role ∈ {initiator, responder}.

Definition 31. Two sessions (Pi,Pj,s, role) and (Pj,Pi,s′, role′) in the CK01 model
are said to be matching if s = s′ and role′ 6= role. A session (Pi,Pj,s, role) is fresh as
long as:

• it has not been asked a sessionstate query;
• it has not been asked a reveal query;
• if Pi was asked a corrupt query then the session was first asked an expire-session

query;
• the above three conditions also hold for any matching session (Pj,Pi,s, role′).
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The third condition captures forward secrecy by allowing the adversary to ask a
corrupt query to the owner of the test session, or the owner of a matching session,
as long as the session has been expired. A variant of the definition without forward
secrecy prevents any corrupt query to the test session or its partner.

Definition 32. A protocol Π is a secure authenticated key exchange protocol in the
CK01 model if both of the following hold:

1. if two uncorrupted parties complete matching sessions then both instances will
end in the accept state with the same session key;

2. the advantage of any efficient adversary A in guessing the correct bit in the
security game is negligible.

It is interesting to compare this definition with the earlier BR model definition
(specifically Definition 30). The second part of both definitions deals with indistin-
guishability of the target session key from random and is essentially the same in both
cases. However, the first parts are a little different. The BR93 definition says that par-
ties running the protocol with a benign adversary will always accept with the same
session key. This is only a functional requirement which does not seem to have any
security implications. However, the first part in the CK definition is rather different
and does have security implications. Indeed we will see later that some natural ways
of designing protocols can end up with matching sessions which do not have the
same session key.

Modular Design

The CK01 model inherited the idea of an ideal AM world and a real UM world as
defined in the BCK98 model outlined in Sect. 2.3.1. Indeed, Definition 32 speci-
fies security in the UM and a similar definition applies in the AM where the only
difference is that the adversary is restricted from fabricating any messages.

A key result of the CK01 paper is that a protocol π which is secure in the AM
can be transformed into a protocol C (π) which is secure in the UM by applying a
valid authenticator C . Furthermore, a method of building valid authenticators from
basic authenticators is defined that can be applied to single messages. This allows
protocols to be designed which automatically inherit a security proof by combining
a basic protocol secure in the AM with a secure authenticator.

The CK01 paper defined a few building blocks which can be used with the mod-
ular method. Two basic protocols secure in the UM are basic Diffie–Hellman key
exchange and simple key transport using encryption. These can be combined with
two valid authenticators from the BCK98 paper, one using signatures and one using
CCA-secure encryption. These authenticators transform each protocol message into
an interactive pair of messages. As an example, Canetti and Krawczyk showed that
signed Diffie–Hellman (Protocol 5.25) can be derived as a combination of the basic
Diffie–Hellman protocol and the signature-based authenticator. However, in order to
obtain an efficient three-message protocol they had to apply optimisations without
formal justification.
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Later, Hitchcock et al. [359] showed that the kind of optimisations used in the
CK01 paper can be formally justified and also showed that it is permissible to ‘mix-
and-match’ authenticators for extra flexibility. They also pointed to a few additional
building blocks providing the beginnings of a library for designing secure protocols
with a variety of properties. For example, with the four AM-secure protocols and the
five valid authenticators they obtained 60 distinct UM-secure protocols.

Despite the attractiveness of this approach it has not seen any significant further
development. One reason for this may be that the most efficient protocols known
today cannot be split in any obvious way into an authenticator and a more basic pro-
tocol. In fact it is impossible to achieve any secure two-message protocol using the
known authenticators, since authenticators always add extra messages when applied
to a protocol in the AM. Thus any secure UM protocol with only one message per
party results in a protocol in the UM with at least three messages. For similar rea-
sons, one-pass protocols (with limited security properties) can also not be reached
using authenticators.

Post-specified Peers

Canetti and Krawczyk designed a variant of the CK01 model the following year [179]
in which the instances in a protocol run may not be aware of the identity of the
peer party in the run until the session is completed. This turns out to be a relatively
common situation in practice; an example is where it may be desirable for a mobile
device to reveal its identity only to a trusted server once it is confident that the party
it is communicating with is indeed the correct server. The model was used by Canetti
and Krawczyk to analyse the IKE protocol (see Sect. 5.5.5).

The implications of this change mainly relate to the definition of matching in-
stances in the model. In Definition 31 above it was required that each instance knows
the identity of its matching partner and that the partners must agree on the pairing.
One way to avoid the problem is to delay partnering by saying that a session can only
have a matching session if both have completed. However, this allows the adversary
to ask a sessionstate query to incomplete sessions, allowing the adversary to win the
security game against protocols which seem naturally secure. Therefore Canetti and
Krawczyk revised the definition of matching to allow a completed session to have a
matching partner which has not completed. In the post-specified peer model a ses-
sion is identified by a pair (Pi,s) and the intended partner Pj can be considered as an
output of a completed session. Then a session (Pj,s) is the partner of a completed
session (Pi,s) as long Pj is the intended partner of (Pi,s) and either

• (Pj,s) is not complete, or
• (Pj,s) is complete with intended partner Pi.

Canetti and Krawczyk pointed out that the post-specified model gives a relaxed
definition of security so that a protocol proven secure in the usual (pre-specified)
model may not be secure in the post-specified model. Later, Menezes and Us-
taoglu [546] applied this observation to show that the HMQV protocol (Proto-
col 5.14) is not secure in the post-specified setting. They also described a combined
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model so that protocols secure in the post-specified setting can be run in either variant
and still be secure.

Problems in the CK01 Model

The CK01 model has received some significant criticism. A lot of this can be simply
addressed by using techniques that are widely used in more recent models. However,
we summarise some of the issues here.

Session identifiers. The usage of session identifiers has turned out to be one of the
most controversial aspects of the CK01 model because there is no concrete def-
inition of how they are obtained. Instead, the CK01 paper states that session
identifiers are:

. . . chosen by a ‘higher layer’ protocol that ‘calls’ the protocol. We re-
quire the calling protocol to make sure that the session id’s of no two
[protocol] sessions in which the party participates are identical. Fur-
thermore, we leave it to the calling protocol to make sure that the two
parties that wish to exchange a key will activate matching sessions [178,
Section 2.1].

Using examples later in their paper, Canetti and Krawczyk suggest concrete
ways that session identifiers may be established, for example by prior agreement
or by deriving them from signed messages exchanged during the protocol. How-
ever, this still leaves open exactly what is allowed and falls short of a practical
generic method. This issue was addressed in the HMQV model.

Session state query. Some authors have criticised the lack of a concrete definition
of what constitutes session state. The question of exactly what values should
be available to the adversary continues to be an area where new models are
developing.

Restrictions on queries. In the CK01 definition of freshness, no session which has
had a sessionstate query can be fresh. This rules out some attacks which are
captured in other models since the test session cannot have its ephemeral keys
revealed. Moreover, since the corrupt query gives away all session state, it cannot
be used to model only corruption of the long-term key.

2.3.3 HMQV Model

Analysis of the HMQV protocol (Protocol 5.14) was performed by Krawczyk [453]
in an updated version of the CK01 model. This model uses the same basic format as
CK01 but addresses many of its criticisms. To differentiate it from the CK01 model
we will call it the HMQV model. The model is tailored to protocols which exchange
Diffie–Hellman protocols in two message passes and combine these with the long-
term keys. Many other modern protocols fit this pattern.

As in the CK01 model, partnering is defined using session identifiers, but ses-
sion identifiers in the HMQV model are defined concretely as 4-tuples. A session
at principal A with intended partner B has a session identifier (IDA, IDB,Out, In)
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where In and Out are the messages received and sent by the session. Matching is
then defined the same way as in the original CK01 model so that completed sessions
are matched if and only if their identifiers are of the form (IDA, IDB,Out, In) and
(IDB, IDA, In,Out).

As well as capturing (weak) forward secrecy, the HMQV model is also adapted to
capture key compromise impersonation (KCI) attacks. This is achieved by allowing
the adversary to obtain the private key of the owner of the test session. In other
words, the definition of what it means to be fresh is adapted so that a session is still
fresh if the long term key of the owner is compromised.

Krawczyk also made a concrete assumption about what is available to the adver-
sary using the sessionstate query. To be precise he looks at two different situations.
At first he assumes that the session state is empty except for the session key which
can be obtained with a normal reveal query. Later he looks at an alternative where
the sessionstate query gives away the ephemeral secret key chosen for that session.
The reason for allowing both variants is that the security proof for the HMQV proto-
col requires a stronger computational assumption for the case where the sessionstate
query gives away the ephemeral secret. This ability to define the contents of the
sessionstate query can be regarded as a flexible feature of the CK model.

2.4 eCK Model

By 2005 it was widely accepted that the CK and BR models had adequately captured
the main security issues for key exchange. There were some options available for
exactly how freshness and adversary queries were defined but these could be seen as
nuances which could be matched to specific protocols and computational assump-
tions. Therefore it was a surprise to many that a new model with a rather different
idea was proposed in 2007 by LaMacchia, Lauter and Mityagin [470]. They called
their model an extended Canetti–Krawczyk model and it is now widely referred to
as the eCK model.

The eCK model tackles directly some of the perceived weaknesses in the CK and
BR models. Specific advantages are:

• the adversary can obtain ephemeral secrets which belong to the test session;
• the adversary can obtain the long-term key of the test session and of its partner

even before the session is completed.

Due to the above observations it was widely believed that the eCK model was strictly
stronger than the CK01 (or HMQV) model, but this is not true since there are other
features which the eCK model does not capture.

The general idea behind the eCK model is simple and appealing. Each party in a
protocol run has two secrets – a long-term secret and an ephemeral secret, the latter
chosen for this particular protocol run. If the two principals are A and B, let us denote
their long-term secrets by xA and xB, and their ephemeral secrets by rA and rB. An
adversary who can obtain both of xA and rA can compute the session key in the same
way as the principal A. Similarly an adversary who obtains xB and rB can obtain the
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session key. However, a priori there is no reason why an adversary who obtains any of
the other pairs of secrets should be able to obtain the session key (or even distinguish
it from a random string); the adversary should be able to obtain the long-term keys
or the ephemeral keys of both parties, even for the test session. There is one more
restriction which must always apply to the adversary – if the adversary is active in the
test session then it can choose the ephemeral secret and therefore must be prevented
from obtaining the long-term key of the partner of the test session. This leads us to
the definition of freshness in the eCK model. First we define some notation for the
adversary queries as shown in Table 2.7.

Table 2.7: Queries in the eCK model

Query Inputs Outputs Purpose
send Parties and message Protocol message Control message flow
reveal Session identifier Accepted session key Compromise session keys

ephemeral Session identifier Ephemeral key Leak short-term keys
longterm Principal Long-term key Compromise long-term keys

test Fresh instance Session key or random Adversary challenge

As in the HMQV model, partnering is defined through session identifiers defined
from the transcript of the messages exchanged. However, there is a subtle difference
which can become important as discussed in Sect. 2.5: sessions are only partners
if they agree on which one of them takes the initiator and which takes the respon-
der role. Thus (for one-round protocols) sessions are matched if and only if their
identifiers are of the form (role, IDA, IDB,Out, In) and (role′, IDB, IDA, In,Out) with
role′ 6= role.

A session with identifier sid at party Pi with intended partner Pj is fresh as long
as:

• the session was not asked a reveal query;
• if a matching session exists with session identifier sid′ then:

– not both of ephemeral(sid) and longterm(Pi) queries were asked;
– not both of ephemeral(sid′) and longterm(Pj) queries were asked;

• if no partner exists then:
– not both of ephemeral(sid) and longterm(Pi) queries were asked;
– longterm(Pj) was not asked.

LaMacchia et al. [470] designed a protocol called NAXOS (Protocol 5.15) which
can be proven secure in the eCK model. Their idea is to use Diffie–Hellman where the
ephemeral exponent r is combined with the long-term secret x using a hash function
H. Thus a principal with long-term key x will choose random r for a new session,
but sends gH(x,r) instead of sending gr as we normally expect. The point of this is
that an ephemeral(sid) query then only returns r which does not allow the adversary
to learn the Diffie–Hellman exponent actually used. Since the adversary is never
allowed to ask for both r and x in a fresh session we can hope that H(x,r) will never
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be available to the adversary. This so-called NAXOS trick has been used in several
subsequent protocols to achieve security in the eCK model.

2.4.1 MU08 Model

Menezes and Ustaoglu [547] adapted the eCK model in order to analyse the Uni-
fied Model protocol (Protocol 5.12) in a formal way. They mentioned that their
model, which we will refer to as the MU08 model, was ‘a weakening of the ex-
tended Canetti–Krawczyk (eCK) definition’ because it does not capture KCI attacks.
This was a deliberate choice, necessary because the UM protocol is insecure against
KCI attacks. Therefore in order to obtain a proof it is necessary to weaken the secu-
rity model. This process of matching the model with the expected security properties
of the protocol is a common device, and one reason for the proliferation of security
models.

The weakening of security in the MU08 is achieved by preventing the adversary
from asking the longterm query to the owner of the target session. However, while
the MU08 model is weaker than eCK in this sense, it can also be seen as stronger in
another sense. This is because it allows both longterm and ephemeral queries to be
made to the target session or its partner (when it exists), but only when the longterm
query occurs after the session at that party expires.

2.4.2 eCK-PFS Model

Motivated by the need to better understand when full forward secrecy (as opposed
to weak forward secrecy) can be obtained, Cremers and Feltz [234, 235] defined
two variants of the eCK model which both give the adversary greater powers. This
difference can be defined in terms of which sessions remain fresh (and so available
for the adversary to choose as the test session). In order to describe these models they
introduced the notion of an origin session.

Definition 33. A session with identifier sid′ is an origin session for a completed ses-
sion with identifier sid if the output messages (one or more) from session sid′ equal
the input messages (one or more) for session sid.

Note that if a session sid has a partner session sid′, then sid′ is an origin session
for sid and also sid is an origin session for sid′; this is because partner sessions agree
on the messages sent and received. The first extension of Cremers and Feltz for the
eCK model, which they called eCKw, allows the adversary to replay the message
from an origin session sid′ as well as obtain the long-term key of the partner to the
test session, as long as ephemeral(sid′) has not been asked. So here the adversary has
a partial ability to be active by replaying messages from other sessions, but does not
have the ability to choose new messages (and thereby know the ephemeral secret).

The second extension of Cremers and Feltz is called eCK-PFS and differs from
eCKw only in that the adversary is now allowed to obtain the long-term key of the
peer to the test session after the test session is complete, even if there is no origin
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session. This is similar to the MU08 model, in that the adversary can be fully active
in the test session and obtain the long-term key of the peer to the test session later.
A little more formally, a session in the eCK-PFS model with identifier sid at party Pi
with intended partner Pj is fresh as long as:

• the session was not asked a reveal query;
• if an origin session exists with session identifier sid′ then:

– not both of ephemeral(sid) and longterm(Pi) queries were asked;
– not both of ephemeral(sid′) and longterm(Pj) queries were asked;

• if no origin session exists then:
– not both of ephemeral(sid) and longterm(Pi) queries were asked;
– longterm(Pj) was not asked until after session sid was complete.

2.4.3 seCK Model

Saar et al. [653] proposed the seCK model as a strengthened version of the eCK
model. The seCK model allows the adversary to obtain intermediate results, in par-
ticular the exponent of the Diffie–Hellman messages sent. For example, in the case of
the NAXOS protocol this would allow the adversary to obtain the exponent H(x,r)
where the first message sent is the value gH(x,r). The motivation for this is that some
implementations could compute such values in secure memory (such as on a smart
card) and export them to main memory from where they may become exposed. Al-
though Saar et al. also proposed a protocol which they claimed secure in the seCK
model, Yoneyama and Zhao [767] later showed that this protocol is not actually se-
cure in either the seCK or the eCK model. Yoneyama and Zhao also provide evidence
that it is difficult to find any protocol which is secure in the seCK model.

2.5 Comparing Computational Models for Key Exchange

As we have seen in this chapter so far, there are many different computational models
for key exchange. While they all can be seen as developments from the BR93, there
have been a few different directions. It is a natural question to ask whether there
is a best model to be used in some sense, for example which model most closely
captures reality or which model is strongest. While there has been some significant
work in examining such questions, in the current situation we cannot give very strong
answers. There are a number of factors which we can use to compare individual
models.

What the adversary is allowed to obtain. As models have developed, the adver-
sary has generally been made stronger by giving it more access to secrets. From
the initial BR93 model which gave the adversary session keys and long-term
keys from non-target session, this has grown to include session state and/or
ephemeral keys in target and non-target sessions. Since BR93 it has always been
assumed that the adversary obtains transcripts.
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What the adversary is allowed to change or choose. Models normally assume an
active adversary, but this is not always the case depending on what else the
adversary is expected to know. Some early models allow the adversary to ac-
tively choose long-term keys. An aspect that has not been widely considered is
whether an adversary can actively choose randomness or ephemeral keys. Mod-
els in which the adversary is passive (a pervasive wire-tapper) when the protocol
is run may still be interesting to explore.

When the adversary is allowed to obtain things. With the introduction of forward
secrecy, models had to take into account whether compromise of long-term keys
happens before or after the target session is completed. There may be interesting
cases where the adversary obtains ephemeral data only at a later time.

How partnering is defined/what freshness means. Partnering can be very subtle.
We discuss this more below.

What it means for the adversary to win. Since BR93 most models have demanded
indistinguishability of the session key from a random string. Many real-world
protocols cannot achieve this (see Sect. 2.8 below) and weaker security notions
may be sufficient in many cases.

2.5.1 Comparing the BR and CK Models

Choo et al. [208] made a comparison of the three BR model variants (BR93, BR95
and BPR00) and the CK01 model, being four of the main indistinguishability models
known at the time of their paper.1 They compared each of the six pairs of models to
see if one was stronger than the other. Here model X is said to be stronger than model
Y if a protocol that is secure in model X is always secure in model Y. There are some
difficulties in making a direct comparison between these different models.

• The BR93 and BPR00 models consider the goal of mutual authentication while
BR95 and CK01 consider only key exchange (with implicit authentication).

• Partnering is defined differently in each of the four models. Particularly, in the
BR93 model instances can only be partners if they have matching conversations.
This is arguably stronger than necessary and a protocol that is secure in BR93 can
be transformed into one that is technically insecure in CK01 simply by adding
random fields which are ignored by protocol participants. Since CK01 does not
restrict how session IDs are defined the random fields may not affect partner-
ing, but matching conversations are easily violated by an adversary who changes
the random fields. Choo et al. [208, Section 3.5] use such a trick to show that
protocols secure in the CK01 model need not be secure in the BR93 model.

In order to avoid these difficulties, Choo et al. apply two conditions in making
most of their comparisons.

1. Only the key exchange goal is considered; entity authentication is ignored.

1 Although the original BR93 model omits the corrupt query and is applied only to shared-
key protocols, Choo et al. assumed later versions of the model, such as the BWM (see
Sect. 2.2.3).
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2. The CK01 model uses the concatenation of protocol messages as the session
identifier.

Given these two conditions, Choo et al. found that the CK01 model is strictly
stronger than all three BR model variants. They also showed that BR93 is strictly
stronger than both BR95 and BPR00. For the other pairs they found that BR93 and
CK01 are incomparable (neither one is stronger than the other). These relationships
are summarised visually in Fig. 2.4.

CK01
↓

BR93
↙ ↘

BR95 BPR00

Fig. 2.4: Hierarchy of models according to Choo et al. [208] assuming CK01 uses
protocol transcripts for session IDs

The main reason that the CK01 model is typically stronger is the addition of the
sessionstate query which is absent in all the BR variants. As mentioned in Sect. 2.2.4,
BPR00 has a coarse interpretation of the corrupt query, which leads to its potential
weakness even though it can capture forward secrecy.

2.5.2 Comparing eCK and Other Models

Cremers [226] performed a careful comparison of the CK01, HMQV and eCK mod-
els. He pointed out that they are all strictly incomparable – protocols secure in one
of the models can be insecure in the other two.

Specifically, Cremers pointed out that any role-symmetric protocol which in-
cludes the identities of the parties in the key derviation function cannot be secure
in the CK or HMQV models. The reason for this is that in these models sessions
can match even if they disagree on the roles of the parties. (For CK01 there is no
requirement for the session identifier to depend on the party identities. In HMQV
the roles are explicitly excluded from the session identifier.) When identities are in-
cluded in the KDF this means that matching session can both accept with different
session keys thus violating the first requirement of Definition 32. Arguably this is not
a serious security issue since the adversary does not again any advantage in knowing
the test session key this way. Cremers also pointed out that protocols which do not
include the session identifiers (or some other way of differentiating the roles) cannot
be secure in the eCK model. Such protocols cannot be matching in the eCK model
since partners are required to agree on their respective roles.

By the above method Cremers showed that these three models are incomparable.
However, this comparison relies only on the way that matching is defined. This seems
not to capture the fundamental differences between the models since matching could
have been specified equally in all three models without changing things too much.
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(A similar remark could be made regarding the comparisons of Choo et al. [208],
discussed above, between the CK and BR models.)

Other differences were also discussed by Cremers [226]. Since the CK01 model
does not allow sessionstate queries on the test session it cannot be stronger then
either eCK or HMQV. Also, neither CK nor HMQV allow the long-term key of the
test session and the ephemeral key of its partner to be revealed, as eCK does, so
they cannot be stronger than eCK. In the other direction, eCK does not allow full
forward secrecy to be modelled since it does not restrict long-term key corruption
based on expiration of the test session, so eCK cannot be stronger than CK. In an
earlier paper [232], Cremers showed an elegant attack on the NAXOS protocol with a
suitable definition of session state. This attack can also be described in HMQV. Since
NAXOS has a security proof in the eCK model this is another way to show that eCK
cannot be stronger than CK or HMQV. Ustaoglu [719] showed that a similar attack
is also possible on the HMQV protocol. This seems a paradox since HMQV protocol
has a proof in the HMQV model. However, the HMQV analysis places restrictions
on what can be obtained from the sessionstate queries [453, Sections 5.1 and 7 in full
version]. Therefore it may be more accurate to say that the attack illustrates that the
HMQV model can be stronger than the eCK model based on the precise definition
of the sessionstate query.

Another way to illustrate the separation between the eCK and HMQV models is
consideration of forward secrecy. In the eCK model there is no notion of whether
compromise of long-term keys takes place before or after a session is complete. The
adversary is free to reveal long-term or ephermal keys at any time as long as the
combination of revealed keys is within the allowed set. This means that it is impos-
sible to model forward secrecy in the eCK model since an adversary who knows the
long-term key of a party and then is active in that session has as much information as
a legitimate party. Therefore the most that can be acheved in the eCK model is weak
forward secrecy. Since the CK and HMQV models can capture behaviour where a
session is expired and only then is the long-term key revealed, they do not share this
restriction. The eCK-PFS model [234, 235], mentioned in Sect. 2.4, extends the eCK
model to include consideration of the timing of the long-term key compromise and
therefore captures forward secrecy.

2.5.3 Sessions and Session Identifiers

The notion of sessions, or instances, is an important concept in all the computational
models for key exchange. Unfortunately the notation and terminology used have been
highly inconsistent, even when the intent has been identical. In this chapter we have
chosen to keep the notation as used in the original papers in the hope that this will
make reference back to those papers more meaningful. Here we discuss how those
notations are related.

Some models use the terms instance and session interchangeably, some use just
one of these terms, and some separate the notation of instance and session (for ex-
ample an instance may contain a session identifier as one of its state variables).
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There are two main approaches to denoting sessions. The first is to use an identi-
fier which names an instance at a party. This was the original BR approach with their
Π s

i, j notation discussed in Sect. 2.2. The instance is then modelled to include various
state variables which may include a session identifier. The second approach is to use
explicit session identifiers with the expectation that these will (perhaps eventually)
identify unique instances at a particular party. Some models allow session identifiers
to evolve over time while for others they are not defined until they are fixed.

There are too many different notations and conventions in use to list them ex-
haustively. Instead, in Table 2.8 we present prominent examples of such notations.
For some of these it is possible to separate the instance identifier (usually a party
and an instance number) and the session identifier (typically a partial transcript). For
others such a separation is harder.

Table 2.8: Comparing various instance and session styles

Model Instance Session Notes
identifier identifier

BR93/95 Π s
i, j –

BPR00 Π i
U s Session identifier s defined by the pro-

tocol. Partner identity is part of state.
Matching sessions have the same s.

CK01 (Pi,Pj,s, role) s No explicit s defined. Matching ses-
sions have same s.

HMQV – (IDA, IDB,Out, In) Explicit matching rule is defined.
eCK – (role, ID,τ) τ is the transcript. Explicit matching

rule is defined.
eCK-PFS (P, i) – Explicit matching rule defined.
MU08 – (IDA, IDB,∗) ∗ is evolving transcript. One session can

have multiple matching sessions.

2.5.4 Incorporating Public Key Infrastructure

In early models, specifically BR93 and CK01, the long-term keys of principals were
generated with some known algorithm at the start of a run of the adversary. The
adversary consequently could have no chance to influence the public keys in use and
certain attacks which rely on adversarially chosen keys could not be captured. Later
models therefore allowed the adversary to choose the long-term key for corrupted
parties. This was first allowed in the BR95 model by allowing the adversary to input
a new key to the corrupt query. Later models allow the adversary to update the long-
term (public) keys of corrupted parties at any time, either implicitly [453, 470] or
through an additional query [718, 188, 308] typically called establishparty.
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More recently Boyd et al. [135] provided a more comprehensive treatment of cer-
tificates including the ability of adversaries to register invalid keys at the certification
authority. They claimed for the first time to consider the following three features:

• registration of multiple public keys per user;
• flexible checking by certification authorities via a verification procedure;
• adversarial choice of public keys per session.

2.6 Shoup’s Simulation Model

Shoup [674] developed a security model which remains unpublished, even though it
has been used by several different authors to analyse various protocols. We call this
Shoup’s simulation model. There are many similarities with the Bellare–Rogaway
model, in particular the adversary runs the network to set up all connections, and has
various attacking options. We may regard Shoup’s model as being more abstract than
Bellare and Rogaway’s, and indeed it is formally shown to be a generalisation. The
major novelty is that Shoup defines two systems, an ideal system and a real system.

In the ideal system the adversary can run the protocol by initialising users, start-
ing and aborting sessions, and interacting with applications. The adversary thus de-
cides which sessions are connected but the session keys are chosen perfectly ran-
domly and independently of other parameters. These can be obtained by the adver-
sary by choosing to compromise sessions, but otherwise remain secret. A significant
difference from the Bellare–Rogaway model is that Shoup’s model includes the pos-
sibility of using the agreed key in an application. Use of the session key is ruled out
in the Bellare–Rogaway model since it allows the adversary to distinguish between
the session key and a random value.

In the real system the adversary still controls the network but is not given the keys
and random values chosen by the principals. The adversary can initialise principals
and can invoke instances of principals to respond to messages as in the Bellare–
Rogaway model. In addition, a trusted third party, TTP, is defined, and principals
can interact with TTP to obtain long-term keys. This allows explicit inclusion of
certificate information for public keys in the model, another distinction from that of
Bellare and Rogaway. Security is defined in a simple manner.

1. Each principal must terminate after a small (polynomial) number of message
interactions.

2. If the adversary simply relays messages faithfully between principals then both
accept and share the same session key.

3. For any efficient adversary in the real world there must exist an efficient adver-
sary in the ideal world such that it is computationally infeasible to differentiate
between the behaviour of the two adversaries and the information gained by
them.

The motivation behind the notion of simulatability is that whatever the adversary
could gain by interacting with the real system could have been gained in the ideal
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system. But by construction the ideal system gains nothing for the adversary. An
attractive feature of this security definition is that it is independent of the protocol
goals. Shoup defined three shades of security by allowing the adversary different
powers to corrupt principals.

Static corruptions cover the case in which the adversary does not use interactions
with the principals to decide which principals to corrupt. In this case corruption
is not explicitly modelled but any real system adversary is able to register prin-
cipals for which the secrets and random values are known. Shoup proved that
security with static corruptions in his simulation model is equivalent to security
in the Bellare–Rogaway model. This seems paradoxical since Bellare and Rog-
away explicitly allow the adversary to corrupt principals at any time. However,
Shoup pointed out that there is an efficient reduction from the Bellare–Rogaway
model to the same model in which only static corruptions are allowed.

Adaptive corruptions are those in which the adversary can choose which princi-
pals to corrupt at any time. Protocols that are secure against an adversary who
can adaptively corrupt must provide forward secrecy. The reason is that if old
session keys could be found from a corrupted long-term key then it must be pos-
sible to simulate this in the ideal world where no such compromise is available.
Shoup showed that security against adaptive corruptions in the simulation model
is equivalent to security with forward secrecy in the Bellare–Rogaway model.

Strong adaptive corruptions are adaptive corruptions in which the adversary ob-
tains not only the long-term key of corrupted principals, but also any short-term
secrets that have not been explicitly erased. Shoup explained how to maintain a
secure session that is compatible with security of such a protocol.

2.7 Models for Enhanced Scenarios

Most models in the literature have focused on the case of two-party key establishment
where the parties already have a long-term secret, either shared with a trusted third
party or (more commonly in recent years) with a corresponding certified public key.
There are various common scenarios which do not fit this case and models have been
adapted or enhanced to take care of the differences.

• One example is password-based protocols (see Chap. 8) where the long-term se-
crets may be easily guessable by the adversary. We discussed in Sect. 2.2.4 how
the winning condition of the adversary is typically relaxed in order to take this
into account. Boyko et al. [145] distinguished between verifier- and non-verifier-
based protocols and provided the first security definition for the former. Later,
Abdalla et al. [16, 17] provided a stronger model, called real-or-random secu-
rity, which allows the adversary unlimited access to the test query which always
answers with the same choice of either the real session key or a random one.
Abdalla et al. showed that this model is strictly stronger than the more usual
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indistinguishability model. There are also simulation-based definitions for secu-
rity of password-based protocols as well as ideal functionalities in the universal
composability model. Pointcheval [616] provided a nice overview of recent de-
velopments.

• Another example is the identity-based scenario (see Chap. 7) where the long-term
public key of any principal can be computed from the identity of the principal and
public parameters. As in other identity-based settings, it is normal for identity-
based key exchange models to provide the adversary with an extract oracle
which reveals long-term private keys, subject to usual restrictions. The adversary
may also be allowed to access the long-term master key in order to capture for-
ward secrecy against the key generation centre. Formal models for identity-based
key exchange were first discussed by Chen and Kudla [194]. Generalisations of
identity-based key exchange to the attribute-based and predicate-based settings
also required corresponding extensions to the models [104, 327, 694, 765].

In the rest of this section we will consider two scenarios which generalise the
basic key exchange models. The first is the case of group key exchange where the
number of principals involved is more than two. The second is the case of multi-
factor key exchange where the number (and type) of long-term secrets per principal
is more than one.

2.7.1 Models for Group Key Exchange

Group key exchange (see Chap. 9) has similar goals to two-party key exchange –
to securely establish a session key and, optionally, to provide mutual authentication.
As may be expected, to a large extent the models which have evolved for group key
exchange have broad similarities to those for the two-party case. There are, however,
a few issues that do not arise in the two-party case which have to be considered when
making the generalisation.

• In the two-party case both principals are involved in either sending or receiving
every message of the protocol. In the group case there can be, and often are,
messages sent only between a subset of the principals. This makes partnering
more tricky.

• Group key exchange protocols often include extensions to add or remove princi-
pals to an already accepted session.

• In the group case a subset of principals can collude in order to try to deceive other
principals – these are usually called insider attacks.

Bresson et al. [148, 149, 154] were the first to generalise the BR models from
the two-party to the multi-party case. In the first version of their model [154] the
basic adversary queries are the same as we saw in the BR model, but an im-
portant distinction is the way that partnering is defined. The session identifier set
(SIDS), SIDS(Π s

i ), at an instance Π s
i , is a set whose elements consists of tran-

scripts of messages between Π s
i and every other potential instance Π t

j . Then two
instances Π s

i and Π t
j are directly partnered if they are both in the accepted state and
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SIDS(Π s
i )∩SIDS(Π s

i ) 6= /0. Finally, two instances Π s
i and Π t

j are partnered if there is
a path of directly partnered instances between Π s

i and Π t
j . Bresson et al. [157] later

noted that this definition of partnering fails to capture the intuitive understanding
of mutual authentication. They gave examples where m uncorrupted principals ac-
cept each other but have different session keys. Later definitions [156, 330] typically
demand that partners all share the same session identifier.

In their first paper, Bresson et al. [154] only considered static groups defined at
the start of the protocol, but they extended this to the dynamic case in their second
paper [148]. In the third paper [149] they extended the model once more, in particular
including adversary queries to model the addition and removal of principals after
sessions have accepted. In order to prove their protocol secure they also made use of
a model of a smart card interface as previously used by Shoup and Rubin [676] (see
Sect. 2.2.2.)

Insider attacks were first formally modelled by Katz and Shin [415]. Their def-
inition of insider security formalises the intuition that an honest party U should not
be deceived about the participation of another honest party U ′ even if there are dis-
honest parties in the set of partners expected by U and U ′. Note that in a two-party
protocol such a situation can never occur since there can be no additional corrupted
party to disturb the protocol, so in this sense insider attacks are not relevant for two-
party protocols. Katz and Shin ignored the case of KCI attacks in their formal model
since they cannot be captured in the universally composable formalism which they
used. Gorantla et al. [330] later provided a formal definition for insider attacks in a
game-based definition.

Later work has expanded on the model to include additional adversary queries,
in particular including state reveal and ephemeral key reveal queries similar to those
in the CK and eCK models [774, 285].

2.7.2 Models for Multi-factor Key Exchange

Pointcheval and Zimmer [618] extended the basic AKE models to take into account
the situation where a client may have three different authentication factors, each of
which has different security properties. One is a full-strength cryptographic key, such
as may be stored in a cryptographic token, the second is a password which may be
memorised by a human client, and the third is a biometric such as a fingerprint. The
model allows the adversary to obtain two of the three factors. Password security is
defined with a real-or-random security criterion so that the adversary is still allowed
to make unlimited (polynomially) guesses through send queries. However, there is
a liveness assumption with regard to the biometric factor. Instead of making an un-
realistic assumption that the biometric is secret, it is assumed that when a client’s
biometric has not been corrupted, the adversary can only use messages in the send
query which have been output by an auxiliary compute query. The compute query
takes as input an instance, a full-length secret and a password, while the biometric
is chosen randomly from a distribution different from the correct one. The compute
query models the adversary’s ability to be active in the protocol using its own bio-
metric which will usually be distinct from the correct one. The liveness assumption is
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a reflection of the assumption that when a biometric is used for authentication there
will be physical mechanisms in place to ensure that the owner of the biometric is
present when it is used.

Stebila et al. [687] proposed a similar multi-factor model but, instead of mod-
elling three factors of different type, they allowed any number of factors. These fac-
tors are all passwords, but each may be one of three types: a password shared with a
server; a password for which a server stores only an image, or a one-time password.
Fleischhacker et al. [279] proposed a generalised framework allowing a mixture of
multiple types of factors and showed how to design secure protocols in their model
in a generic manner.

2.8 Secure Channels

In the key exchange models we have looked at so far in this chapter, security has
been defined to be essentially as strong as possible. The indistinguishability-based
definitions used in our three main model classes (BR, CK and eCK) capture the
notion that, in a computational sense, the adversary learns nothing useful about the
session key. The intuition is that if the session key accepted by the parties is random
from the adversary’s viewpoint then it should be good for any application requiring
a shared key.

It is worth giving greater consideration to the combination of authenticated key
exchange with applications for at least two reasons.

1. When we use the session key in a particular application we should be aware that
the key exchange protocol and the application in practice run in parallel so we
should worry about analysing the security of the combination of key exchange
and applications. Just because they are individually secure does not necessarily
imply that they are secure when combined. We may need to restrict how the
session key is used to ensure that security is maintained.

2. In some applications we may be unable to achieve the strong indistinguishabil-
ity definition for key exchange. Indeed this turns out to be the case in several
prominent real world secure channel protocols whose wide deployment makes
them difficult to change. This does not necessarily imply that the key exchange
in combination with the application is insecure, depending on what is required
for security of the application. Therefore we may need to weaken the security
model so that an achievable level of security can be defined.

One of the primary uses of the session key generated by an AKE protocol is for
encryption and authentication of application data. The term secure channel is often
used to describe the process of establishing a session key and then using it to secure
application data in this way. In this section we will compare various definitions of
secure channels. There has been significantly less work on secure channels than on
AKE protocols, though a resurgence of interest in secure channels has come about
due to increasing scrutiny of real-world secure channel protocols such as TLS.
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2.8.1 CK01 Secure Channels

Section 2.3.2 described the Canetti–Krawczyk model for authenticated key ex-
change. In the same 2001 paper [178], Canetti and Krawczyk also defined a se-
cure network channels protocol and showed how to construct such a channel from
a CK01-secure AKE protocol, a secure symmetric encryption scheme, and a secure
message authentication code.

The definition of secure network channels created by Canetti and Krawczyk, as
well as the intermediate notions we will discuss below, are given in the same sim-
ulation paradigm as used by Bellare et al. [72] and discussed in Sect. 2.3.1. Recall
that, in this simulation paradigm, we first define what we consider to be an ‘ideally’
secure protocol, and then compare this with the real protocol π . Roughly speaking, if
π is secure then for any efficient adversary running π there is an efficient adversary
against the ideal protocol such that the outputs of the two systems are indistinguish-
able.

The main definition of secure channels of Canetti and Krawczyk is as follows: a
secure network channels protocol is a network channels protocol that provides secure
network authentication and secure network encryption. We now define each of these
concepts in turn.

Network Channels Protocol

A network channels protocol is defined as a combination of a key exchange protocol
π and a pair of functions (snd, rcv), which will provide encryption and authentica-
tion of application data. The adversary can interact with a collection of parties imple-
menting the network channels protocol in a way similar to the CK01 AKE model of
Sect. 2.3.2. In particular, a session is identified by a tuple (Pi,Pj,s) for a principal Pi
intending to communicate with principal Pj using session identifier s. The adversary
can make the following queries of parties.

Establish session. The query establish-session allows the adversary to direct party
Pi to run the key exchange protocol π and establish a session key k with party Pj
and session identifier s.

Send message. The party is given a message m, to which it applies the keyed send-
ing function sndk(m) and returns the result m′.

Receive message. The party is given an input m′, which in normal operation would
be the output of a send query; the party applies the keyed receiving function
rcvk(m′); if the result is not an error, then it records the output.

Expire session. The effect of the expire-session query is to delete the session key
from the session specified as input to the query.

In the simulation paradigm, the security experiment maintains a transcript of all
query events, such as ‘Pi established session s with Pj’, or ‘Pi send message m to Pj
in session s’, and so on.
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Secure Network Authentication Protocol

A network channels protocol is said to be a secure network authentication protocol
if it emulates an ‘ideal’ network authentication protocol. The ideal network authenti-
cation protocol has the same adversary interface as described for a network channels
protocol, but the operations performed for each query are ideal:

Establish session. The party does not run the key exchange protocol, instead it
records in an ideal transcript simply that session s has been established with
party Pj.

Send message. The party does not actually apply sndk or return a value to the ad-
versary. Instead the party simply records that message m is sent to the recipient
Pj.

Receive message. The party does not actually receive any value from the adversary
or apply rcvk. Instead the party simply records that the message from Pi is re-
ceived.

Expire session. The party has no session key to delete, and simply records the ses-
sion as expired.

Clearly, an ideal network authentication protocol really does provide authenti-
cated transmission of messages, since they are sent and received over an ideally
authenticated channel, rather than passing back through the adversary’s hands.

A secure network authentication protocol can be constructed by using a secure
(existentially unforgeable under chosen message attack) message authentication code
and appending the MAC tag to the message.

Secure Network Encryption Protocol

A network channels protocol is said to be a secure network encryption protocol if it
provides confidentiality of communications, roughly in the sense of indistinguisha-
bility of messages under chosen plaintext attack. In particular, the standard network
channels protocol experiment is extended with the following adversary query:

Test session. The adversary can, once, indicate a single test session (Pi,Pj,s), as
well as two equal-length messages m0 and m1. A secret bit b is chosen (but not
given to the adversary), and Pi is activated with send(Pi,Pj,s,mb). The output is
returned to the adversary.

The adversary outputs a bit b′, its guess for b, and wins if it guesses correctly.
The adversary is also allowed to corrupt parties and reveal session keys and states,
provided it does not expose values that would allow it to trivially win the game.
A network encryption protocol is said to be secure if the adversary’s advantage in
guessing b is negligible in the security parameter.



2.8 Secure Channels 91

Secure Network Channels Protocol

A network channels protocol is said to be a secure channels protocol if it is both a
secure network authentication protocol and a secure network encryption protocol.

Canetti and Krawczyk showed how to construct a secure channels protocol from
a CK01-secure key exchange protocol π , a pseudorandom function family f , an IND-
CPA secure symmetric encryption scheme (Enc,Dec), and an unforgeable message
authentication code MAC in the natural way, using an encrypt-then-MAC construc-
tion. In particular, the parties first execute the key exchange protocol π to derive a ses-
sion key k. Then both parties compute the encryption key k0 = f (k,0) and the MAC
key k1 = f (k,1). To send a message m, the sender constructs c‖t, where c=Enck0(m)
and t =MACk1(c). The receiver verifies and then decrypts analogously.

2.8.2 CK02 Secure Channels

In 2002, Canetti and Krawczyk [181] updated their aforementioned 2001 paper [178]
to create universally composable notions of key exchange and secure channels.

The UC framework is, like the BCK98 definitions, simulation-based, but is meant
to be stronger, and it aims to ensure security when the protocol is composed with any
other secure protocol.

• In the original BCK98 simulation framework, no adversary can distinguish be-
tween interacting with the real system and with an ideal system. In other words,
for every adversary interacting with the real system, there exists a simulator in-
teracting with the ideal system such that the two worlds have indistinguishable
distributions.

• In the UC framework, in addition to the main adversary there is another adver-
sarial entity, the environment, which prepares all inputs to the protocol(s). No
environment should be able to distinguish between interacting with the adver-
sary and the real protocol(s), or with the simulator and the ideal protocol.

Security in the UC framework is defined in terms of emulation of an ideal func-
tionality. In the secure network channels ideal functionality, the parties are directed
to establish a secure channel between them; then, when one party is directed to send
a message to another party, the message is delivered over an ideal private connection,
while the adversary is told the length of the message.

2.8.3 Authenticated and Confidential Channel Establishment (ACCE)
Protocols

Several prominent real-world protocols, including the Transport Layer Security
(TLS) protocol and the Secure Shell (SSH) protocol, aim to provide a secure chan-
nel. They do so by first establishing a session key using a key exchange protocol,
and then using that key to perform authenticated encryption for application data. At
a high level, this matches the approach of CK01. While the approach of Canetti and
Krawczyk to defining and constructing secure channels is attractive – the definitions
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are relatively simple, and the construction is elegant and modular – it is not always
appropriate for analysing protocols that arise in practice.

Jager, Kohlar, Schäge, and Schwenk [392] proposed the authenticated and con-
fidential channel establishment (ACCE) protocols model in 2012 for the purposes
of modelling the security of signed-Diffie–Hellman ciphersuites in TLS. There were
three main motivations for introducing a new model. First, the CK01 secure channels
definition is in the simulation framework, rather than the more widely used game-
based approach. Second, the security properties provided by TLS are more granu-
lar than properties captured by CK01 secure channels. And third, the construction
of TLS does make use of a key exchange protocol and an authenticated encryption
scheme. Instead there is an overlap between these two components, where key confir-
mation messages from the key exchange protocol are sent over the encrypted channel
using the same key used for application data. This makes it impossible to prove the
real session key in TLS is indistinguishable from a random key.

The ACCE model is a Bellare–Rogaway style model, with some changes. There
are two security goals in the ACCE model: entity authentication and channel confi-
dentiality and integrity. Entity authentication is defined in terms of matching conver-
sations like in the BR93 model for authenticated key exchange, and the adversarial
interaction in the entity authentication is similar as well.

The most significant change from AKE security models is of course that the
ACCE model includes secure transmission of application messages as an explicit
goal. Thus, the execution is divided into two phases:

• In the pre-accept phase, parties typically execute an authenticated key exchange
protocol, performing mutual authentication and establishing a session key. (In
TLS, this corresponds to the handshake protocol.) Upon successful authentica-
tion, a party enter the accept state. During the pre-accept phase, a session key is
established.

• In the post-accept phase, parties can transmit application data over the encrypted
and authenticated channel. (In TLS, this corresponds to the record layer proto-
col.)

The adversary can interact with each party’s execution πs
i using the following

queries.

Send pre-accept phase protocol message. This send query directs the party to pro-
cess a protocol message in the pre-accept phase. It has no effect once the party
has entered the accept state.

Session key reveal and Long-term key reveal. These queries allow the adversary
to obtain the session key of any accepted session or obtain the long-term secret
key of a party.

The above queries are similar to those typically found in the key exchange secu-
rity models seen earlier in this chapter. However, the ACCE model does not include
a test query for session key indistinguishability. Instead, the security experiment ex-
plicitly models the security of the channel. The main idea is that, in the post-accept
phase of each session, the adversary plays a stateful authenticated encryption game,
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meaning the adversary attempts either to distinguish which of two messages was en-
crypted by the sender (an IND-CPA-like game) or to cause a receiver to accept a
ciphertext that was not sent by the corresponding sender.

Specifically, in each session πs
i , each party has a secret random bit bs

i , and the
adversary’s goal is to guess the bit in any uncompromised session. (Here ‘uncom-
promised’ means, as usual, that the adversary has not revealed the session key of
the session (or its partner) or compromised the long-term key of the partner prior
to acceptance.) The session’s secret bit bs

i is used for two purposes simultaneously.
Firstly, bs

i is used to choose which of two adversary-supplied messages is encrypted
(as in an IND-CPA security experiment for encryption). Secondly, bs

i is implicitly
leaked to the adversary if the adversary successfully injects a forged ciphertext.

An adversary in the ACCE model is deemed successful if one of two events hap-
pens: either the adversary causes some uncompromised session to accept maliciously
(i.e. without a matching session), or the adversary guesses the hidden bit bs

i of any
uncompromised session πs

i with probability significantly better than 1/2.

Variants

Several variants of ACCE have been developed since it was first proposed. The orig-
inal ACCE definition of Jager et al. aimed to capture stateful length-hiding authen-
ticated encryption with auxiliary data as the notion most appropriate to TLS. Addi-
tionally, ACCE has been extended to cover:

• other types of authentication, specifically server-only authentication [442, 456],
authentication using pre-shared symmetric keys [489], and passwords [517];

• other security properties of real-world protocols, such as renegotiation [304] and
multi-ciphersuite security [89]; see Chap. 6 for more information on these con-
cepts.

2.9 Conclusion

In this chapter we have attempted to identify the major developments in computa-
tional models for key exchange without getting drawn too deeply into the technical
details. A general trend has been that models have become more complex since the
original computational model of Bellare and Rogaway was proposed in 1993. While
the vast array of available models provides a rich arsenal from which the protocol an-
alyst can choose a suitable weapon, it is usually difficult to compare results proven in
different models. As we saw in Sect. 2.5, it is often the case that between two models
neither one is stronger, and currently there is no common agreement on the “right”
model for key exchange.

From the observed trends it is hard not to predict that new, probably even more
complex, models will be proposed. One consequence of this is that proofs by hu-
mans becomes ever more difficult and error-prone. In the past few years there has



94 2 Computational Security Models

been a new emphasis on tools for helping to deal with proof complexity in com-
putational security models [58, 117] and such tools have been successfully applied
to key exchange models [57]. Progress towards unifying existing models would be
very beneficial. At the same time, new directions in key exchange models, such as
the ideas of George and Rackoff [301], may be overdue.



3

Protocols Using Shared Key Cryptography

3.1 Introduction

The majority of protocols for key establishment and entity authentication that have
been proposed in the literature concentrate on the case where there are exactly two
users who wish to communicate or establish a session key. This is commonly referred
to as the two-party case. In this chapter we discuss two-party key establishment and
authentication protocols based on symmetric algorithms. The next chapter discusses
two-party protocols using public key algorithms, while the multi-party case is cov-
ered in Chap. 6.

We can classify two-party key establishment protocols using the following two
criteria discussed in Chap. 1.

1. The cryptographic keys available a priori.
2. The method of session key generation.

If only shared keys are available to establish a new session key, there are essentially
two cases to consider with respect to criterion 1.

(a) The two principals already share a secret key.
(b) Each principal shares a key with a trusted server.

Criterion 2 is concerned with the method of session key generation, for which there
are three different possibilities in general: key transport, key agreement and hybrid. If
a protocol has only two principals and is server-less, as in case (a) above, one cannot
distinguish between key transport and hybrid key generation. The criteria mentioned
above lead to the classification of 1× 2+ 1× 3 = 5 different classes of protocols.
The recognition of the criteria allows two-party shared key protocols found in the
literature to be classified into one of the above five classes. However, in this chapter
we mainly emphasise the division between server-less and server-based protocols.

In the remainder of this section, we explain the notation used to describe pro-
tocols in this chapter. Section 3.2 discusses protocols aimed at providing entity au-
thentication without key establishment. Section 3.3 discusses protocols aimed at pro-
viding key establishment without a server, including key transport protocols and key
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agreement protocols. Section 3.4 discusses protocols aimed at providing key estab-
lishment using a server, including key transport protocols, key agreement protocols
and hybrid protocols. For each class of protocols, we provide published protocols
from the literature.

Notation

A widely used notation for denoting a message part as a ciphertext is {M}K where
M is the input data to a symmetric encryption algorithm that is parametrised by the
secret key K. There are other familiar notations for indicating the use of encryption
when specifying protocols but the above notation remains a popular one. Frequently,
protocol designers have used the above-mentioned notation to imply that encryption
provides both confidentiality and integrity properties. Recall from Chap. 1 that there
are many variants of encryption providing security against different threats. Ignor-
ing such differences leads to problems for implementers and also prevents proper
security analysis.

If the protocol designer requires encryption for achieving both confidentiality
and integrity, in other words if the protocol requires authenticated encryption, then
we will use the above notation for encryption when presenting the protocol. Some
designers use one notation for cryptographic transformations that provide message
integrity and another notation for cryptographic transformations that provide con-
fidentiality. In such cases, we use the notation [[·]]K to denote a ciphertext obtained
from an encryption algorithm that provides the confidentiality property alone and the
notation [·]K to denote a ciphertext obtained from a one-way cryptographic transfor-
mation such as a MAC which provides the integrity property alone.

The notation used in this chapter is summarised in Table 3.1.

Table 3.1: Notation used throughout Chap. 3

A and B The two users who wish to share a new session key

S A trusted server

IDA, IDB, IDS The identities of A, B and S

{M}K Authenticated encryption of message M with key K

[[M]]K Encryption of message M with key K to provide confidentiality

[M]K One-way transformation of message M with key K to provide integrity

3.2 Entity Authentication Protocols

Protocols that aim at providing entity authentication without key establishment are
relatively scarce in the literature. Perhaps this is because the variety of approaches is
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quite limited, or maybe because the usefulness of such protocols is questionable as
discussed in Chap. 2. In this section we examine the prominent examples and discuss
whether they achieve the definitions of entity authentication introduced in Chap. 2,
or the simpler liveness property.

3.2.1 Bird–Gopal–Herzberg–Janson–Kutten–Molva–Yung Protocols

A paper by IBM researchers Bird et al. [103] in 1993 was one of the first to demon-
strate a wide class of attacks on several authentication protocols, including a draft
protocol proposed by ISO. Based on the attacks on these protocols, they developed
a set of security criteria to avoid such attacks and proposed protocols that meet their
criteria. They started with a basic protocol which they did not regard as secure, and
improved it in a series of steps through consideration of various attacks and other
design requirements. Eventually, a good protocol was achieved.

Protocol 3.1 is the basic protocol of Bird et al. Here u and v are two functions
such that KAB is needed to calculate them, and they do not give away KAB.

1. A→ B : NA

2. B→ A : NB,u(KAB,NA, . . .)

3. A→ B : v(KAB,NB, . . .)

Protocol 3.1: Bird et al. canonical protocol 1

Initially we will assume that the functions u and v are the same. Under this as-
sumption the protocol does not achieve the matching conversation goal, which Bird
et al. regarded as important for the security of any authentication protocol. In At-
tack 3.1, A is used as an oracle against B. Suppose I is an adversary who wishes to
attack the protocol.

• I starts a protocol run with B while masquerading as A.
• In parallel, I starts a protocol run with A while masquerading as B.

1. IA→ B : NI

2. B→ IA : NB,u(KAB,NI , . . .)

1′. IB→ A : NB

2′. A→ IB : NA,u(KAB,NB, . . .)

3. IA→ B : u(KAB,NB, . . .)

Attack 3.1: An oracle attack on Protocol 3.1
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In Attack 3.1, B accepts even though the conversations do not match. In light of
this attack, Bird et al. concluded that the functions u and v must be different from
one another so that A’s reply in the parallel session cannot be used by the adversary
to complete the first run. While the condition that u and v be different is adequate to
prevent the attack, it is not necessary to achieve the protocol goals. As long as the
identities of the sender and the intended partner are included inside the functions u
and v, the authentication goal can be achieved even if the functions u and v are the
same. Of course, a similar attack on such a protocol is still possible, but it would not
violate the protocol goal.

3.2.2 Bellare–Rogaway MAP1 Protocol

The MAP1 mutual authentication protocol was proposed in a landmark paper of Bel-
lare and Rogaway [75]. They provided a formal definition of matching conversations
and showed that MAP1 is provably secure. The messages are shown in Protocol 3.2.

1. A→ B : NA

2. B→ A : NB, [IDB, IDA,NA,NB]KAB

3. A→ B : [IDA,NB]KAB

Protocol 3.2: Bellare–Rogaway MAP1 protocol

In the Bellare–Rogaway model of security (see Sect. 2.2), an adversary may only
interact with sessions of the same protocol. An attack of Alves-Foss [30] shows why
this assumption is important in practice. He designed Protocol 3.3, known as EVE1,
which can also be shown to be provably secure.

1. A→ B : NA

2. B→ A : NB, [IDA, IDB,NA,NB]KAB

3. A→ B : [IDA,NB]KAB

Protocol 3.3: Protocol for attacking MAP1 protocol

The only difference between MAP1 and EVE1 is that the identities of A and B
are swapped in message 2. A chosen protocol attack on the MAP1 protocol is now
possible. Suppose I is an adversary who wishes to attack the protocol. In Attack 3.2
A is used as an oracle against herself.

• I masquerades as B in a run of the MAP1 protocol started by A.
• In parallel, I starts a run of the EVE1 protocol with A while masquerading as B.
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1. A→ IB : NA

1′. IB→ A : NA

2′. A→ IB : N′A, [IDB, IDA,NA,N′A]KAB

2. IB→ A : N′A, [IDB, IDA,NA,N′A]KAB

3. A→ IB : [IDA,N′A]KAB

Attack 3.2: Chosen protocol attack on MAP1

Is Attack 3.2 on the MAP1 protocol valid? A reasonable conclusion may be that
the attack is invalid since it violates an assumption of the model used in proving the
protocol secure. On the other hand, the attack is a reminder that provable security
does not guarantee security against chosen protocol attacks.

3.2.3 ISO/IEC 9798-2 Protocols

The international standard ISO/IEC 9798 Part 2 [380] specifies six protocols using
symmetric encryption algorithms. Four of these protocols are intended to provide
entity authentication alone, while two are intended to provide key establishment as
well as entity authentication. These last two are essentially identical to two protocols
in the ISO/IEC 11770-2 standard, which are described in Sect. 3.4.4. Two of the
four protocols aimed solely at entity authentication are concerned with unilateral
authentication, while the other two are concerned with mutual authentication. Below
we examine these protocols with some optional text fields omitted.

The first protocol, shown as Protocol 3.4, consists of a single message from a
claimant A to a verifier B. It provides unilateral entity authentication of A to B. The
timestamp TA allows B to deduce that A is live, while inclusion of the identity B
ensures that A has knowledge of B as her peer entity.

A→ B : {TA, IDB}KAB

Protocol 3.4: ISO/IEC 9798-2 one-pass unilateral authentication protocol

The second protocol (Protocol 3.5) is similar to the first, but uses a nonce instead
of a timestamp. It provides the same properties as Protocol 3.4.

1. B→ A : NB

2. A→ B : {NB, IDB}KAB

Protocol 3.5: ISO/IEC 9798-2 two-pass unilateral authentication protocol
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The third protocol (Protocol 3.6) is constructed from two instances of Proto-
col 3.4. It provides mutual entity authentication between A and B.

1. A→ B : {TA, IDB}KAB

2. B→ A : {TB, IDA}KAB

Protocol 3.6: ISO/IEC 9798-2 two-pass mutual authentication protocol

Attack 3.3 on Protocol 3.6 was found by Basin, Cremers and Meier [61] using
the tool Scyther. The result is that A rejects the first run and instead accepts the other
run in which adversary I masquerades as B. Both parties accept and could correctly
infer that the other has indicated a recent willingness to communicate. However,
Attack 3.3 shows that A and B do not agree on their roles: both accept as responders
(while A rejects as initiator in the first run). This shows that the protocol does not
guarantee the property known as injective agreement.

1. A→ B : {TA, IDB}KAB

2. B→ IA : {TB, IDA}KAB

1′. IB→ A : {TB, IDA}KAB

2′. A→ IB : {T ′A, IDB}KAB

Attack 3.3: Attack on Protocol 3.6

In order to avoid Attack 3.3, Basin et al. [61] proposed that messages in this
protocol (and indeed for all protocols in the standard) should include elements to
prevent messages being interchanged with messages in other protocols or with dif-
ferent messages within the same protocol. This can be done by including a protocol
and message identifier in each message. This proposal was made mandatory in a
2013 corrigendum to the 9798-2 standard.1

The fourth protocol (Protocol 3.7), like Protocol 3.6, is aimed at providing mu-
tual authentication but uses nonces instead of timestamps. Notice that Protocol 3.7
is not simply a combination of two instances of the nonce-based unilateral authen-
tication protocol (Protocol 3.5) in which the number of messages has been reduced
from four to three. Instead, the second message includes both nonces which binds
them together. This design may be chosen because the standard implicitly regards
the matching conversation goal as important for security.

In all of the above four protocols, the inclusion of the identity of B in the en-
crypted message from A is optional. Furthermore, in Protocol 3.6, the inclusion of

1 Technical Corrigendum 3 to ISO/IEC 9798-2:2008, February 2013.
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1. B→ A : NB

2. A→ B : {NA,NB, IDB}KAB

3. B→ A : {NB,NA}KAB

Protocol 3.7: ISO/IEC 9798-2 three-pass mutual authentication protocol

the identity of A in the encrypted message from B is also optional. The standard com-
ments that these fields are included to prevent reflection attacks. Their inclusion is
made optional so that the protocols can be ‘optimised’ for networking environments
where such attacks are precluded by other means.

3.2.4 ISO/IEC 9798-4 Protocols

The international standard ISO/IEC 9798 Part 4 [378] specifies four protocols using
a cryptographic check function or, in other words, a message authentication code. All
of these protocols are intended to provide entity authentication alone, and they cor-
respond very closely to the first four protocols in the ISO/IEC 9798 Part 2 standard
examined in Sect. 3.2.3. Thus two of the four protocols are concerned with unilat-
eral authentication, while the other two are concerned with mutual authentication.
As before we examine these protocols with some optional text fields omitted.

The first protocol, shown as Protocol 3.8, consists of a single message from a
claimant A to a verifier B. It provides unilateral entity authentication of A to B. The
timestamp TA allows B to deduce that A is live, while inclusion of the identity B
ensures that A has knowledge of B as her peer entity.

A→ B : TA,MACKAB(TA, IDB)

Protocol 3.8: ISO/IEC 9798-4 one-pass unilateral authentication protocol

The second protocol (Protocol 3.9) is similar to the first, but uses a nonce instead
of a timestamp. It provides the same properties as Protocol 3.8.

1. B→ A : NB

2. A→ B : MACKAB(NB, IDB)

Protocol 3.9: ISO/IEC 9798-4 two-pass unilateral authentication protocol

The third protocol (Protocol 3.10) is constructed from two instances of Proto-
col 3.8. It provides mutual entity authentication between A and B. An attack, essen-
tially the same as Attack 3.3 on Protocol 3.10, was found by Basin et al. [61] which
shows that A and B do not necessarily agree on their roles.
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1. A→ B : TA,MACKAB(TA, IDB)

2. B→ A : TB,MACKAB(TB, IDA)

Protocol 3.10: ISO/IEC 9798-4 two-pass mutual authentication protocol

As before, to avoid the attack messages in the protocol should include elements
to prevent messages being interchanged with messages in other protocols or with
different messages within the same protocol. This proposal was made mandatory in
a 2012 corrigendum to the 9798-4 standard.2

The fourth protocol (Protocol 3.11), like Protocol 3.10, is aimed at providing
mutual authentication but uses nonces instead of timestamps.

1. B→ A : NB

2. A→ B : NA,MACKAB(NA,NB, IDB)

3. B→ A : MACKAB(NB,NA)

Protocol 3.11: ISO/IEC 9798-4 three-pass mutual authentication protocol

Similar to the protocol in ISO/IEC 9798-2 examined in Sect. 3.2.3, in all of the
ISO/IEC 9798-4 protocols, the inclusion of the identity of B in the encrypted message
from A is optional. Furthermore, in Protocol 3.10, the inclusion of the identity of A
in the encrypted message from B is also optional.

3.2.5 Woo–Lam Authentication Protocol

All the entity authentication protocols we have looked at so far assume that a shared
key already exists between the two principals involved. Woo and Lam [736] devised
several protocols for authentication. One of these was a unilateral authentication pro-
tocol using a trusted server as a key translation centre with the job of converting mes-
sages encrypted with one key that it knows into messages encrypted with a different
key. Protocol 3.12 shows the message flows.

The idea is that B chooses his nonce NB and challenges A to encrypt it with KAS.
On receipt of the purported encryption, B asks S to translate it into an encryption with
KBS, which B can decrypt and check. There are several attacks known on Protocol
3.12, the first of which was found by Abadi (as attributed by Woo and Lam [737]).

As shown in Attack 3.4, the adversary I starts two runs with B, in one of which
I claims to be A. The two protocol runs continue in parallel but I simply sends a
random value R when asked to respond to the challenge intended for A. Furthermore,
I uses the challenge intended for A in the encryption for the legitimate run. The server
S can only successfully translate the properly encrypted ciphertext but the returned

2 Technical Corrigendum 2 to ISO/IEC 9798-4:1999, July 2012.
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1. A→ B : IDA

2. B→ A : NB

3. A→ B : {NB}KAS

4. B→ S : {IDA,{NB}KAS}KBS

5. S→ B : {NB}KBS

Protocol 3.12: Woo–Lam unilateral authentication protocol

value is correct only for the run where I masquerades as A. The result is that B accepts
the run in which I is masquerading as A and rejects the other run.

1. IA→ B : IDA

1′. I→ B : IDI

2. B→ IA : NB

2′. B→ I : N′B
3. IA→ B : R
3′. I→ B : {NB}KIS

4. B→ S : {IDA,R}KBS

4′. B→ S : {IDI ,{NB}KIS}KBS

5. S→ B : {NB}KBS

Attack 3.4: Abadi’s attack on Protocol 3.12

Woo and Lam [737] considered a number of variants of Protocol 3.12 in an effort
to identify the precise source of the problem. Clark and Jacob [217] showed that most
of these were still vulnerable to typing attacks. However, such attacks are prevented
if principals can detect replay of messages they have created, which is an assumption
of Woo and Lam.

3.2.6 Comparison of Entity Authentication Protocols

Table 3.2 summarises the major properties of the seven entity authentication proto-
cols described earlier. For the goals, an entry (*) indicates that the goal is claimed for
the protocol but fails due to attack. In the second column, we indicate whether the
definition of entity authentication given in Definition 13 is achieved. From the table,
we see that all the protocols meet this definition.

In many protocols, knowledge of the peer entity is conveyed implicitly in the
authentication message. For example, in the Bellare–Rogaway MAP1 protocol even
though the identity of B is not included in the authentication field of message 3, it is
possible to infer it through the use of KAB. In the final column, we indicate whether
specific attacks have been proposed in the literature. As discussed in Sect. 3.2.1, the



104 3 Protocols Using Shared Key Cryptography

Table 3.2: Summary of major properties of specific entity authentication protocols

Properties→ Liveness Entity Attack

↓ Protocol authentication

Bird et al. canonical 1 (3.1) A+B A+B Yes

Bellare–Rogaway MAP1 (3.2) A+B A+B Yes

9798-2 one-pass unilateral (3.4) B B No

9798-2 two-pass unilateral (3.5) B B No

9798-2 two-pass mutual (3.6) A+B A+B No

9798-2 three-pass mutual (3.7) A+B A+B No

Woo–Lam (3.12) B (*) B (*) Yes

attack on the Bird et al. canonical protocol fails to violate the authentication goal.
The chosen protocol attack on the Bellare–Rogaway MAP1 protocol does violate
the authentication goal, but that attack was aimed at showing a limitation of security
proofs in practice rather than showing a weakness of the protocol. The attacks on the
ISO/IEC 9798-2 protocols discussed in Sect. 3.2.3 are avoided by using the latest
version of the standard including corrigenda.

3.3 Server-Less Key Establishment

This section discusses protocols that allow keys to be established directly between
two users without the use of a server. The protocols considered require that the two
users already share a long-term secret key and may require either that one user gen-
erates the established key (key transport) or that both users contribute part of the
established key (key agreement).

Table 3.3 gives additional notation used in this section. In the remainder of this
section, we examine server-less key transport protocols followed by server-less key
agreement protocols.

Table 3.3: Additional notation used for server-less protocols

KAB The long-term key initially shared by A and B

K′AB The value of the new session key

3.3.1 Andrew Secure RPC Protocol

Although dating from 1989, the Andrew secure RPC protocol [654], shown in Proto-
col 3.13, is still a widely used example in the literature. The protocol has two rather
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independent components. In the first three messages, A and B perform a handshake
using a key they already share, KAB. In the final message, B sends a new session key
K′AB to A. Nonce NA is chosen by A and nonces NB,N′B are chosen by B.

1. A→ B : {NA}KAB

2. B→ A : {NA +1,NB}KAB

3. A→ B : {NB +1}KAB

4. B→ A : {K′AB,N
′
B}KAB

Protocol 3.13: Andrew secure RPC protocol

Burrows et al. [171] pointed out a major problem with Protocol 3.13: A has no
assurance that K′AB is fresh. An intruder could substitute a previously recorded mes-
sage 4 (from B to A) and force A to accept an old, possibly compromised, session key.
Another problem was pointed out by Clark and Jacob [216]. They proposed Attack
3.5, a typing attack in which an intruder records message 2 and substitutes it in place
of message 4.

1. A→ B : {NA}KAB

2. B→ A : {NA +1,NB}KAB

3. A→ B : {NB +1}KAB

4. IB→ A : {NA +1,NB}KAB

Attack 3.5: Clark–Jacob attack on Andrew protocol

The result of the attack is that A accepts the value NA + 1 as a session key with
B. Clark and Jacob pointed out that the potential damage of Attack 3.5 depends on
what property the nonce NA is assumed to have. If NA is a predictable nonce such
as a counter value, then an attacker could force A into accepting a bogus quantity
as a session key, whose value could be known to the attacker. If NA were random,
however, then the potential damage of the attack is not so immediate since there is
no release of the session key.

It is interesting to consider a revised version of the protocol suggested by Bur-
rows et al. shown as Protocol 3.14. Their idea was to change the treatment of the
nonces used in the protocol. The nonce NA need not be secret; when sent by A in
plaintext it still forms a typical usage of the challenge–response mechanism. The
nonce NB could be omitted altogether. Instead of sending NB, B could send a key
K′AB along with A’s nonce in message 2. Further differences can be found in the last
two messages of Protocol 3.14. In the second last message, the encryption with K′AB
is intended to assure B that A knows the key. In the last message, B sends N′B in
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plaintext since its purpose is not connected with protocol, but with the subsequent
communications session.

1. A→ B : IDA,NA

2. B→ A : {NA,K′AB}KAB

3. A→ B : {NA}K′AB

4. B→ A : N′B

Protocol 3.14: Revised Andrew protocol of Burrows et al.

Lowe [502] published Attack 3.6 on Protocol 3.14. An intruder I engages in two
protocol runs with A while masquerading as B. In one of these runs I is the initiator
of the protocol, while in the other A is induced to act as initiator.

1. A→ IB : IDA,NA

1′. IB→ A : IDB,NA

2′. A→ IB : {NA,K′AB}KAB

2. IB→ A : {NA,K′AB}KAB

3. A→ IB : {NA}K′AB

3′. IB→ A : {NA}K′AB

4. IB→ A : NI

4′. A→ IB : N′A

Attack 3.6: Lowe’s attack on revised Andrew protocol

The result of the attack is that A has completed two successful runs of the pro-
tocol, apparently with B, although B has not engaged in the protocol. More impor-
tantly, the attack defeats goals concerning entity authentication rather than key estab-
lishment. The attack is valid if either entity authentication or key confirmation was a
protocol goal. Lowe proposed to fix the protocol by adding B’s identity to message 2.
A similar attack was found by Liu et al. [499] on an alternative revised version of the
protocol suggested by Burrows et al. in which the final encrypted message received
by A includes A’s nonce.

3.3.2 Janson–Tsudik 2PKDP Protocol

Janson and Tsudik [394] proposed Protocol 3.15 which extends a two-party authen-
tication protocol of Bird et al.[103] to provide key establishment. One distinctive
aspect of 2PKDP is that it employs two separate cryptographic algorithms: one al-
gorithm that provides confidentiality and another that provides authentication. The
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algorithm used for confidentiality purposes is bitwise exclusive-or, while that for au-
thentication is a MAC algorithm. The protocol design allows an encryption-based
(CBC-MAC) or hash-based MAC algorithm to be used. In the first message, A sends
her nonce NA to B. In the second message, B generates a new session key K′AB and
computes two values, AUTH and MASK, using KAB.

1. A→ B : IDA,NA

2. B→ A : AUTH,MASK⊕K′AB
3. A→ B : [NA,K′AB,A]KAB

Protocol 3.15: Janson–Tsudik 2PKDP protocol

The quantities AUTH and MASK are defined as follows:

AUTH = [NA,K′AB,B]KAB

MASK = [[AUTH]]KAB .

The second part of message 2 can be viewed as analogous to an encryption of K′AB
using a one-time pad. Upon receiving message 2, A computes a MAC under KAB of
the received AUT H value to allow decryption of the session key from the second part
of message 2, then verifies that the first part of message 2 agrees with the MAC under
KAB of the nonce sent earlier, the received session key, and B’s identity. Verification
of the first part of message 2 implies key freshness as well as key integrity. Upon
receiving message 3, B verifies that the received value is correct, which implies key
confirmation of A to B.

3.3.3 Boyd Two-Pass Protocol

Protocol 3.16 by Boyd [130] allows both A and B to contribute part of the established
key. The messages sent are simply the random numbers chosen by A and B. The new

1. A→ B : NA

2. B→ A : NB

Protocol 3.16: Boyd two-pass protocol

key is K′AB = f (NA,NB,KAB), where f is a combining function such that it must be
infeasible to find f (., .,KAB) without knowledge of KAB, even after repeated use.
This property is necessary to ensure key authentication (that is, the secrecy of K′AB).
Another property required of f is that it is one-way in the first two inputs. This
property is necessary to ensure key freshness. For a concrete example, any practical
secure MAC algorithm may be chosen for f .
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3.3.4 ISO/IEC 11770-2 Server-Less Protocols

The international standard ISO/IEC 11770 Part 2 [381] specifies 13 protocols us-
ing symmetric encryption algorithms. Six of these protocols are server-less, while
the other seven rely on a trusted server. The server-based protocols are described in
Sect. 3.4.4. Some of the protocols make use of a key derivation function f (·) in form-
ing the new session key from two or more inputs. Two examples of f are given in the
appendix of the standard: one is bitwise XOR of the inputs and the other is applica-
tion of a hash function to the concatenation of the inputs. Cremers and Horvat [229]
performed an analysis of the protocols in ISO/IEC 11770-2 using the Scyther tool.
For the six protocols discussed in this section they did not find any violations of the
security properties claimed in the standard.

The first two of the six server-less protocols each use only one message pass
and provide only implicit key authentication. Mechanism 1, shown as Protocol 3.17,
consists only of the encrypted timestamp of A. The new session key is derived as
K′AB = f (KAB,TA) where f is the key derivation function. The single message in
mechanism 2, shown as Protocol 3.18, consists only of the new encrypted session
key. This means that B gains no assurance about its freshness.

A→ B : {TA}KAB

Protocol 3.17: ISO/IEC 11770-2 Key Establishment Mechanism 1

A→ B : {K′AB}KAB

Protocol 3.18: ISO/IEC 11770-2 Key Establishment Mechanism 2

The other four server-less protocols are derived from each of the four two-party
entity authentication protocols that were described in Sect. 3.2.3 by adding a key (or
more generally keying material) to each encrypted message. The next four protocols,
Protocols 3.19 to 3.22, may be compared with the four entity authentication proto-
cols, Protocols 3.4 to 3.7. The entity authentication properties of each corresponding
pair are the same.

Mechanism 3, shown as Protocol 3.19, consists of a single message from a
claimant A to a verifier B. The new session key, K′AB, is chosen by A and encrypted for
B. Both A and B achieve the good key property, but only B achieves key confirmation.

A→ B : {TA, IDB,K′AB}KAB

Protocol 3.19: ISO/IEC 11770-2 Key Establishment Mechanism 3
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Mechanism 4, shown as Protocol 3.20, uses a nonce instead of a timestamp. The
properties achieved are the same as for Mechanism 3.

1. B→ A : NB

2. A→ B : {NB, IDB,K′AB}KAB

Protocol 3.20: ISO/IEC 11770-2 Key Establishment Mechanism 4

Mechanism 5, shown as Protocol 3.21, is constructed from two instances of Pro-
tocol 3.19. Now both A and B choose keying material, FAB and FBA respectively.
(Optionally either one of these may be omitted.) The session key is derived as
K′AB = f (FAB,FBA) where f is the key derivation function. Both A and B obtain the
good key property of Definition 15, but if FBA is included in the session key deriva-
tion only A will achieve key confirmation.

1. A→ B : {TA, IDB,FAB}KAB

2. B→ A : {TB, IDA,FBA}KAB

Protocol 3.21: ISO/IEC 11770-2 Key Establishment Mechanism 5

Mechanism 6, shown as Protocol 3.22, is similar to Protocol 3.21. Keying mate-
rial is provided from both parties and the session key is calculated in the same way. A
major difference is that it uses nonces instead of timestamps. The key establishment
properties achieved are the same as for Mechanism 5. However, like Protocol 3.7,
inclusion of both nonces in messages 2 and 3 binds the protocol messages together.
In contrast, an adversary could interleave two runs of Protocol 3.21 so that A and B
do not see matching conversations.

1. B→ A : NB

2. A→ B : {NA,NB, IDB,FAB}KAB

3. B→ A : {NB,NA,FBA}KAB

Protocol 3.22: ISO/IEC 11770-2 Key Establishment Mechanism 6

As with the authentication protocols in Sect. 3.2.3, in all of the above four proto-
cols, the inclusion of the identity of B in the encrypted message from A is optional.
Furthermore, in Protocol 3.21, the inclusion of the identity of A in the encrypted
message from B is also optional.
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3.3.5 Comparison of Server-Less Protocols

Table 3.4 summarises the major properties of the 10 server-less protocols described
earlier. The last five columns summarise the goals that these protocols meet. For these
goals, an entry (*) indicates that the goal is claimed for the protocol but fails due to
an attack. From the table, we see that all the protocols except the Andrew secure
RPC protocol and ISO/IEC 11770-2 Mechanism 2 meet the good key goal. Further,
the revised version of the Andrew protocol suggested by Burrows et al. achieves the
good key goal but fails to meet the key confirmation goal.

Table 3.4: Summary of major properties of specific server-less protocols

Properties→ No. of Key Key Key Key Attack

↓ Protocol passes control freshness auth. conf.

Andrew (3.13) 4 B No (*) Yes No Yes

BAN–Andrew (3.14) 4 B Yes Yes No (*) Yes

Janson–Tsudik (3.15) 3 B Yes Yes Yes No

Boyd (3.16) 2 A/B Yes Yes No No

11770-2 Mech. 1 (3.17) 1 A Yes Yes B No

11770-2 Mech. 2 (3.18) 1 A No Yes No No

11770-2 Mech. 3 (3.19) 1 A Yes Yes B No

11770-2 Mech. 4 (3.20) 2 B Yes Yes B No

11770-2 Mech. 5 (3.21) 2 A/B Yes Yes A No

11770-2 Mech. 6 (3.22) 3 A/B Yes Yes A No

Table 3.4 indicates that key confirmation may be obtained by one principal in
most of the ISO mechanisms. This is because when a key is received from the part-
ner, the recipient knows that the sender is in possession of the key. It is interesting
to note that the ISO/IEC 11770-2 standard [381] indicates that none of these pro-
tocols provides key confirmation. This may be because mutual key confirmation is
expected. The standard indicates that key confirmation may be achieved by send-
ing a time-varying parameter encrypted with the session key. Note that Mechanism
1 allows B to know that A sent the timestamp (assuming that reflection attacks are
prevented) and so B has assurance that A has the ability to calculate the session key.

3.4 Server-Based Key Establishment

There exist numerous examples of server-based protocols in the literature. Most of
these are key transport or key agreement protocols in which the server, or one or both
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users, has the responsibility for key generation. Hybrid protocols in which all three
of them share the responsibility for key generation are less common and not as well
known as the other two classes of protocols.

An important consideration in the design of server-based key transport protocols
is who generates the session key. Many protocol designers implicitly assume that
the users are not capable of generating good-quality session keys, leaving this task
for the server. However, this dependence is not always necessary, as may be seen in
published protocols where users, not the server, choose a session key.

Table 3.5 gives additional notation used in this section.

Table 3.5: Additional notation used for server-based protocols

A and B Two users wishing to establish a session key

S The server

KAS,KBS Long-term keys initially shared by A and S, and by B and S

KAB Session key to be shared by A and B

3.4.1 Needham–Schroeder Shared Key Protocol

The famous protocol proposed by Needham and Schroeder [581] in 1978 is shown as
Protocol 3.23. As discussed in Chap. 1, this protocol achieves the good key property
with respect to A but not B. The second message encrypted with A’s shared key KAS
includes both A’s nonce and B’s identity, assuring A of session key freshness and key
authentication, respectively.

1. A→ S : IDA, IDB,NA

2. S→ A : {NA, IDB,KAB,{KAB, IDA}KBS}KAS

3. A→ B : {KAB, IDA}KBS

4. B→ A : {NB}KAB

5. A→ B : {NB−1}KAB

Protocol 3.23: Needham–Schroeder shared key protocol

For B the situation is slightly different: he decrypts the encrypted message re-
layed by A to learn the session key value and then carries out a nonce handshake
with A to be sure that the message is not a replay. However, the handshake can be
easily subverted since an adversary can be expected to know the value of an old ses-
sion key. This weakness of the protocol was originally pointed out by Denning and
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Sacco [240]. In their attack an intruder uses a compromised session key to masquer-
ade as A to B. To overcome the attack, Denning and Sacco suggested Protocol 3.24
as a solution, using timestamps to allow verification of key freshness.

1. A→ S : IDA, IDB

2. S→ A : {IDB,KAB,TS,{IDA,KAB,TS}KBS}KAS

3. A→ B : {IDA,KAB,TS}KBS

Protocol 3.24: Denning–Sacco protocol

An attack of Chevalier and Vigneron [202] shows that it is essential that all fields
within encrypted messages are checked. In Attack 3.7, an adversary I starts a run
of the protocol as B, and intercepts the reply sent by S. Now, suppose that the im-
plementation is such that B does not distinguish between the timestamp TS and the
concatenated field TS,{IDB,KAB,TS}KAS . Then I can simply reuse the message sent
by S to masquerade as A in a new run with responder B. The result is that B does not
achieve liveness of A. Note the attack does not affect key establishment properties.

1. IB→ S : IDB, IDA

2. S→ IB : {IDA,KAB,TS,{IDB,KAB,TS}KAS}KBS

3′. IA→ B : {IDA,KAB,TS,{IDB,KAB,TS}KAS}KBS

Attack 3.7: Chevalier–Vigneron attack on Denning–Sacco protocol

Bauer et al. [65] discussed the vulnerability of the Needham–Schroeder protocol
to the compromise of A’s long-term key: an intruder who learns the long-term key
of A can impersonate A (as in the Denning–Sacco attack) even after the compromise
is detected and the long-term key replaced. They suggested a solution without using
timestamps shown as Protocol 3.25. The protocol they proposed is essentially sym-
metric with respect to A and B: each of them sends a nonce to S in plaintext, and S
returns the nonces in separate messages for A and B.

1. A→ B : IDA,NA

2. B→ S : IDA,NA, IDB,NB

3. S→ B : {KAB, IDA,NB}KBS ,{KAB, IDB,NA}KAS

4. B→ A : {KAB, IDB,NA}KAS

Protocol 3.25: Bauer–Berson–Feiertag protocol
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Buchholtz [166] proposed an attack on Protocol 3.25, shown as Attack 3.8. The
outcome of the attack is that B has completed a protocol run using nonce NB with
initiator A. Similarly, A has completed a protocol run using nonce N′A with initiator B.
However, there is a single run of server S with the nonces N′A and NB. Although the
attack violates protocol goals regarding agreement on roles and exchanged values, it
does not affect the key establishment properties.

1. A→ B : IDA,NA

2. B→ IS : IDA,NA, IDB,NB

1′′. B→ A : IDB,N′B
2′′. A→ IS : IDB,N′B, IDA,N′A
2′. IB→ S : IDA,N′A, IDB,NB

3. S→ IB : {KAB, IDA,NB}KBS ,{KAB, IDB,N′A}KAS

3′. IS→ B : {KAB, IDA,NB}KBS ,anything
3′′. IS→ A : {KAB, IDB,N′A}KAS ,anything

Attack 3.8: Buchholtz’s attack on Bauer–Berson–Feiertag protocol

3.4.2 Otway–Rees Protocol

The Otway–Rees protocol [597], like Protocol 3.25, provides symmetric assurances
of freshness. The message flows are shown as Protocol 3.26, where M is a second
nonce generated by A. This protocol is susceptible to a typing attack, as described in
Sect. 1.4.7. The attack described there is due to Boyd [128], subsequently rediscov-
ered by Clark and Jacob [216].

1. A→ B : M, IDA, IDB,{NA,M, IDA, IDB}KAS

2. B→ S : M, IDA, IDB,{NA,M, IDA, IDB}KAS ,{NB,M, IDA, IDB}KBS

3. S→ B : M,{NA,KAB}KAS ,{NB,KAB}KBS

4. B→ A : M,{NA,KAB}KAS

Protocol 3.26: Otway–Rees protocol

Consider exactly what actions are required of S upon receiving message 2 in the
protocol. There are essentially two possibilities:

A1. S checks that the values obtained by decrypting the fields M, IDA and IDB in the
two encrypted parts match.

A2. S checks that the plaintext versions of (M, IDA, IDB) match the values obtained
by decrypting the fields M, IDA and IDB in the two encrypted parts.
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An attack of Boyd and Mao [138] shows that it is essential that the plaintext
versions of M, A and B are checked. Without this, the session key can turn out to be
shared between A and an intruder, allowing the intruder to masquerade as B as shown
in Attack 3.9. Suppose A starts a protocol run with B. An intruder C who wishes to
impersonate B chooses a nonce NC and substitutes the message shown in Attack 3.9
in place of the original one.

2′. CB→ S : M, IDA, IDC,{NA,M, IDA, IDB}KAS ,{NC,M, IDA, IDB}KCS

Attack 3.9: Attack on Otway–Rees protocol without plaintext checking

If we assume that S does only the checking specified in A1, the message will be
found correct by S and so S will encrypt KAB with the key KCS in message 3′. It is
clear that this attack violates the goal of implicit key authentication: A believes the
key is shared with B, whereas in fact it is shared with C. Note that the attack is easily
prevented if S does the checking specified in A2. Whether this is a valid attack on
the protocol depends on the action taken by S, something (unfortunately) not clearly
specified in the protocol description.

In Protocol 3.26 the encrypted message received by a user from the server does
not include a concrete field for the identity of the other user to whom S intends to
make the key known. What indication, then, does a user have about who else the
session key is shared with? The answer to this question can be found by examining
a simplified version of the protocol due to Burrows et al. shown as Protocol 3.27. In
the simplified version of the protocol, the nonce NB is sent unencrypted in message
2.

1. A→ B : M, IDA, IDB,{NA,M, IDA, IDB}KAS

2. B→ S : M, IDA, IDB,{NA,M, IDA, IDB}KAS ,NB,{M, IDA, IDB}KBS

3. S→ B : M,{NA,KAB}KAS ,{NB,KAB}KBS

4. B→ A : M,{NA,KAB}KAS

Protocol 3.27: Otway–Rees protocol modified by Burrows et al.

Protocol 3.27 was shown to be flawed by Boyd and Mao. Consider an attacker C
who has obtained the encrypted message {M, IDC, IDB}KBS by engaging in a previ-
ous legitimate run of the protocol with B. To attack the protocol, C starts a run with
B and masquerades as A by capturing message 2 and modifying it, replacing cleart-
ext identifier A by C and {M, IDA, IDB}KBS by {M, IDC, IDB}KBS . The attacking run
proceeds as shown in Attack 3.10.

The result of the attack is that B believes that the session key is shared with A,
whereas in fact it is shared with C. Notice that the above attack is not applicable to
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1. CA→ B : M, IDA, IDB,{NC,M, IDC, IDB}KCS

2. B→CS : M, IDA, IDB,{NC,M, IDC, IDB}KCS ,NB,{M, IDA, IDB}KBS

2′. CB→ S : M, IDC, IDB,{NC,M, IDC, IDB}KCS ,NB,{M, IDC, IDB}KBS

3. S→ B : M,{NC,KCB}KCS ,{NB,KCB}KBS

4. B→CA : M,{NC,KCB}KCS

Attack 3.10: Attack on Otway–Rees protocol modified by Burrows et al.

the original Otway–Rees protocol where the nonce NB is cryptographically bound
to the identity A by encryption in message 2. As a result of this binding, B can rely
on the nonce NB in message 3 to infer that the key is shared with A. The attack on
the simplified protocol is possible because it removes the binding. The treatment
of nonces in the Otway–Rees protocol was discussed by van Oorschot [593] and
subsequently by Abadi and Needham [6]. The latter authors suggested an alternative
protocol where the nonce NB (as well as the nonce NA) is sent unencrypted in message
2 and yet the above attack is prevented. The main idea is that in Protocol 3.28 the
encrypted message received by each user includes the identity of the other user to
whom S makes the session key known.

1. A→ B : IDA, IDB,NA

2. B→ S : IDA, IDB,NA,NB

3. S→ B : {NA, IDA, IDB,KAB}KAS ,{NB, IDA, IDB,KAB}KBS

4. B→ A : {NA, IDA, IDB,KAB}KAS

Protocol 3.28: Otway–Rees protocol modified by Abadi and Needham

This idea was first discussed in a preliminary draft of Boyd and Mao’s pa-
per [137] and subsequently by van Oorschot [593]. With this modification, it is easy
to check that the previous attack no longer works. Note that Protocol 3.28 is similar
in structure and goal to the protocol of Bauer et al. (Protocol 3.25). Like the original
Otway–Rees protocol it provides key authentication and key freshness assurances,
although it differs with respect to goals for entity authentication. In Protocol 3.26,
A has assurance that B is alive: when A receives message 4, she knows that B must
have sent message 2 recently. In Protocol 3.28, A does not achieve liveness of B.

3.4.3 Kerberos Protocol

The Kerberos software system was developed at MIT to protect the network services
provided as part of project Athena. It is one of the de facto standards for authentica-
tion on computer networks. Kerberos uses as its building block a key establishment
protocol based on the Needham–Schroeder protocol but with timestamps instead of
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challenge–response, following Denning and Sacco’s suggestion. A good overview of
the current version of the Kerberos protocol, known as Version 5, can be found in a
paper by Neuman and Ts’o [582]. The Version 5 protocol has evolved from the Ver-
sion 4 protocol; it addresses several shortcomings of the Version 4 protocol including
some potential security weaknesses.

Differences between Kerberos Versions 4 and 5 are described by Kohl et al.
[441]. One weakness of the Version 4 protocol is that the encryption method used
does not provide adequate integrity protection for encrypted messages, even though
the protocol was specifically designed with this requirement in mind. Version 4
makes use of a non-standard mode of DES known as plaintext cipher-block chain-
ing (PCBC) mode with the property that errors in the decrypted ciphertext propagate
to all successive blocks of plaintext. However, as pointed out by Kohl [440], PCBC
encryption is susceptible to a block-swapping attack which allows a partially gar-
bled message to be accepted by the receiver. Kerberos Version 5 uses standard CBC
encryption and embeds a checksum in the message before encryption to provide suf-
ficient integrity protection.

The basic Kerberos protocol involves three parties: a client which desires to use
some service, an application server which provides a service, and an authentication
server (AS) which is contacted by the client before attempting to access the appli-
cation server. We will use the notations A, B and S below to denote the Kerberos
terms client, application server and AS, respectively. The client and the server do not
initially share a key between themselves, but they do share a key with S. For the sake
of clarity, Protocol 3.29 shows only those message fields that are critical to security;
details of other message fields can be found in RFC 1510 [439].

1. A→ S : IDA, IDB,NA

2. S→ A : {KAB, IDB,L,NA, . . .}KAS ,{KAB, IDA,L, . . .}KBS

3. A→ B : {IDA,TA}KAB ,{KAB, IDA,L, . . .}KBS

Protocol 3.29: Basic Kerberos protocol

In the Kerberos papers, the protocol message fields that are encrypted with KBS
and KAB are referred to as the ticket and the authenticator, respectively. Among other
data, the ticket contains the session key generated by S that will be used by the client
and server, the client’s identity, and an expiration time L after which the session key
is no longer valid. The authenticator contains the client’s identity and a timestamp
from the client’s clock. If the timestamp is successfully verified by the application
server, then the server obtains assurance that the client possesses the session key
contained in the ticket.

The basic Kerberos protocol allows an optional fourth message shown in Protocol
3.30, in which the server returns the client’s timestamp along with other optional
information, all encrypted using the session key.
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4. B→ A : {TA, . . .}KAB

Protocol 3.30: Optional Kerberos message to complete mutual authentication

The Kerberos protocol has key establishment as well as entity authentication
as its goal. From A’s viewpoint the protocol provides the good key property since
A can be confident that the key is fresh and known only to herself and B. From
B’s viewpoint the protocol provides only key authentication since the ticket does
not contain any information from which B can be confident that the key is fresh.
However, the freshness of the key is judged by a different measure. To ensure key
freshness from B’s viewpoint, the protocol relies on the expiration time contained in
the ticket, rather than sending with the key a quantity known to be new. As long as
the ticket has not expired, B can still be confident that the session key is safe, even
if it was used in a previous session with A. The use of a ticket without an absolute
freshness indicator has a useful aspect. It makes it possible for a client to cache the
ticket from the server so that a session key may be re-established directly with B
without the intervention of S. (Protocols that use tickets to re-establish session keys
are often known as repeated authentication protocols in the literature.)

As for the authentication properties achieved by the protocol, the combination of
authenticator and ticket in the third message provides strong entity authentication of
A to B. The fourth message, if present, provides entity authentication of B to A.

3.4.4 ISO/IEC 11770-2 Server-Based Protocols

The server-less protocols in the international standard ISO/IEC 11770 Part 2 [381]
were described in Sect. 3.3.4. Here we discuss the seven server-based protocols in
that standard. In four of these the server chooses the session key and acts as a key
distribution centre. In the other three the session key is chosen by either A or B and
the server acts as a key translation centre to make that key available to the other party.

The first version of the ISO/IEC 11770-2 standard was published in 1998. From
2004 a number of attacks were found on several of the server-based protocols. A
second edition of the standard was published in 2008. There were further attacks
found on some of the protocols in the second edition, although currently all known
attacks can be avoided by taking appropriate precautions as we explain below. We
first mention the two protocols for which no attack was found.

Key Establishment Mechanism 7. The server simply encrypts and sends KAB to
both parties including the identity of the peer entity. This is similar to the Bauer–
Berson–Feiertag protocol (Protocol 3.25) but the lack of nonces means that nei-
ther A nor B gains key freshness.

Key Establishment Mechanism 10. As shown in Protocol 3.31, principal A first
sends an encrypted request message to S which checks its authenticity (including
checking the freshness of the timestamp or sequence number). This provides the
rather unusual feature that only authentic parties are able to request new keys. S
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replies by sending the key to both principals after encrypting it together with the
identity of the peer entity and a timestamp or counter.

1. A→ S : {TA, IDB}KAS

2. S→ A : {TS,KAB, IDB}KAS

3. S→ B : {T ′S,KAB, IDA}KBS

Protocol 3.31: ISO/IEC 11770-2 Key Establishment Mechanism 10

In Key Establishment Mechanism 8, shown in Protocol 3.32, principal A sends
a nonce to S and the key is returned encrypted for A together with A’s nonce and
the identity of B. In addition the key is encrypted for B together with a timestamp or
counter and the identity of principal A.

1. A→ S : NA, IDB

2. S→ A : {NA,KAB, IDB}KAS ,{TS,KAB, IDA}KBS

3. A→ B : {TS,KAB, IDA}KBS

Protocol 3.32: ISO/IEC 11770-2 Key Establishment Mechanism 8

Chen and Mitchell [197] found a typing attack on Protocol 3.32 using a parsing
ambiguity. Suppose that a malicious principal’s identity C is equal to the concatena-
tion of bit 0 with A’s identity, that is, C = (0,A). The attack proceeds as shown in
Attack 3.11. The result of the attack is that B believes the value (KCB,0) is a key to

1. C→ S : NC, IDB

2. S→C : {NC,KCB, IDB}KCS ,{TS,KCB, IDC}KBS

3′. CA→ B : {TS,(KCB,0), IDA}KBS

Attack 3.11: Chen–Mitchell attack on ISO/IEC 11770-2 Key Establishment Mech-
anism 8

be shared with A, although it is known to C. One way to prevent Attack 3.11 is to
ensure that parsing of message components is unambiguous and this was required in
a corrigendum to the standard in 2009.

Key Establishment Mechanism 8 was one of several protocols from ISO/IEC
11770-2 attacked by Cremers and Horvat [229] in their analysis using the Scyther
tool. Their attack assumes an adversarial principal taking roles both as a server S, and
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as a user A or B. Similar attacks also apply against Key Establishment Mechanisms
9, 12 and 13. The attacks are not prevented by precautions against type checking but
a defence is to prevent principals from using the same key when acting in different
roles: a principal which can both be a server and have a role as initiator should have
two independent keys to use in each role. This precaution was already mandated for
related protocols in the ISO/IEC 9798-2 protocols (see Technical Corrigendum 3 to
ISO/IEC 9798-2, February 2013).

In Key Establishment Mechanism 9 both principals send their nonces to S and
they are returned with the encrypted key and the identity of the peer entity. This
protocol is identical to Protocol 3.25 except that it also provides key confirmation
through an additional exchange using the session key. An essentially identical proto-
col is also included in ISO/IEC 9798 Part 2 [380] where it is called five-pass authen-
tication.

The first of the protocols that uses S as a key translation centre, called Key Estab-
lishment Mechanism 11, does not provide key freshness. Nevertheless, the standard
claims that it provides key authentication which Cremers and Horvat [229] showed
is not correct if the principals can be tricked into accepting a principal identity as
a key value. Again, this kind of attack can be prevented by labelling protocol fields
with their type.

In comparison with Key Establishment Mechanism 11, Mechanism 12 is similar
but now adds a nonce for A to check that the key was received by S and a timestamp
for B to check freshness. The session key, KAB, is chosen by A. Protocol 3.33 shows
the version of the protocol from the first (1998) edition of the 11770-2 standard.

1. A→ S : {NA, IDB,KAB}KAS

2. S→ A : {NA, IDB}KAS ,{TS,KAB, IDA}KBS

3. A→ B : {TS,KAB, IDA}KBS

Protocol 3.33: ISO/IEC 11770-2 (1998) Key Establishment Mechanism 12

An optional handshake for entity authentication and key confirmation is also
specified. It is interesting to compare this protocol with the wide-mouthed-frog pro-
tocol (Protocol 3.36) below. Although there are distinct similarities, the asymmetry
in Protocol 3.33 prevents the reflection attack described on Protocol 3.36.

Unfortunately, Protocol 3.33 was shown to be flawed by Cheng and Comley [200]
who pointed out two attacks. In Attack 3.12, the adversary I masquerades as A by
replaying the first message from a previous run of the protocol, containing an old key
K′AB used by A and B. I intercepts the reply sent by S to A and forwards the encrypted
part intended for B unchanged, thereby forcing B to use the old key K′AB. Attack 3.12
works because the nonce NA cannot be checked for freshness by S. In fact the 1998
standard allowed any time-varying parameter to be used in place of NA, and one way
to avoid the attack is to replace NA by a timestamp so that the replay can be detected
by S.
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1. IA→ S : {NA, IDB,K′AB}KAS

2. S→ IA : {NA, IDB}KAS ,{TS,K′AB, IDA}KBS

3. IA→ B : {TS,K′AB, IDA}KBS

Attack 3.12: Replay attack on Protocol 3.33

Attack 3.13, also found by Cheng and Comley [200], is an example of a typing
attack which allows a malicious principal C to masquerade as principal B to A. To
perpetrate the attack, C sends an encrypted request to S as if it intends to send prin-
cipal A a session key equal to B’s identity. C replays the second encrypted part of the
message sent out by S back to S to start another run of the protocol while masquerad-
ing as B. C then completes the rest of the protocol as if it were B. The result of the
attack is that A accepts the identity of C as a session key with B.

1. C→ S : {NC, IDB, IDA}KCS

2. S→C : {NA, IDB}KCS ,{TS, IDA, IDC}KBS

3. Omitted.
1′. CB→ S : {TS, IDA, IDC}KBS

2′. S→CB : {TS, IDA}KBS ,{T ′S, IDC, IDB}KAS

3′. CB→ A : {T ′S, IDC, IDB}KAS

Attack 3.13: Typing attack on Protocol 3.33

Cheng and Comley proposed a modified protocol, shown as Protocol 3.34, which
avoids these attacks. Unfortunately, Protocol 3.34 was itself found to be vulnerable

1. A→ S : {NA, IDB,KAB}KAS

2. S→ A : {NA, IDB,{TS,KAB, IDA}KBS}KAS

3. A→ B : {TS,KAB, IDA}KBS

Protocol 3.34: Key Establishment Mechanism 12 modified by Cheng and Comley

to a typing attack by Mathuria and Sriram [525], as shown in Attack 3.14. This attack
assumes that A cannot differentiate a random session key from the encrypted value
{TS,KAB,A}KBS .

The revised version of ISO/IEC 11770-2 from 2008 (including Technical Cor-
rigendum 1) makes the following changes to Key Establishment Mechanism 12 in
comparison with Protocol 3.33.
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1. A→ IS : {NA, IDB,KAB}KAS

2. IS→ A : {NA, IDB,KAB}KAS

3. A→ IB : KAB

Attack 3.14: Attack on Cheng and Comley’s Protocol 3.34

1. The time-variant parameter, shown as NA in Protocol 3.33, must be either a time-
stamp or a counter. This prevents Attack 3.12.

2. Each message includes a message identifying number. This prevents messages
being replayed in the ‘wrong position’ such as in Attack 3.13.

3. Contatenation must be implemented in such a way as to ensure that there is a
unique parsing of messages. This prevents parsing ambiguity attacks [197].

Even with all these precautions an attack was still found by Cremers and Hor-
vat [229] as mentioned above. In this role mixup attack [61] the attacking principal
plays the roles of the server and a normal user. This can be prevented by ensuring
that different keys are used in different roles.

The final protocol in ISO/IEC 11770-2, Key Establishment Mechanism 13, is
shown as Protocol 3.35. This time both parties send their nonces to S, while KAB is
chosen by B. Mathuria and Sriram [525] found a typing attack on Protocol 3.35 too,
but Technical Corrigendum 1 to ISO/IEC 11770-2, September 2009, demands that
there is no ambiguity in parsing concatenated messages, thus ruling out such attacks.

1. A→ B : NA

2. B→ S : {NB,NA, IDA,KAB}KBS

3. S→ B : {NB, IDA}KBS ,{NA,KAB, IDB}KAS

4. B→ A : {NA,KAB, IDB}KAS

Protocol 3.35: ISO/IEC 11770-2 Key Establishment Mechanism 13

In this section we have seen that the server-based protocols in the ISO/IEC
11770-2 standard have been the subject of several attacks. Nevertheless, these at-
tacks all have fixes and the protocols can still be considered secure if implemented
carefully. As a result of their analysis of the related protocols in ISO/IEC 9798-2,
Basin et al. [61] propose two principles for security protocol designs, which they
suggested can complement earlier principles [6].

Position tagging. Messages should include information about the protocol they are
for and their position in that protocol.

Inclusion of principals and their roles. Messages should include the identity of all
relevant principals and their roles.
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3.4.5 Wide-Mouthed-Frog Protocol

Numerous server-based key transport protocols assume that users trust only a server
to choose the key for a session. The wide-mouthed-frog protocol, due to Burrows et
al. [171], is intended for environments where one user trusts the other to choose the
key. The server simply makes the key chosen by one user available to the other. The
message flows are shown in Protocol 3.36, where TA and TS denote timestamps from
the local clocks of A and S, respectively.

1. A→ S : A,{TA, IDB,KAB}KAS

2. S→ B : {TS, IDA,KAB}KBS

Protocol 3.36: Wide-mouthed-frog protocol

The intention is that the timestamps in messages 1 and 2 provide freshness as-
surances to S and B, respectively. However, this may not provide adequate protection
as shown by Attack 3.15. Suppose I is an intruder who has recorded one run of the
protocol. I replays the message sent out by S in the first run back to S to start a
second run of the protocol while masquerading as B. This would cause S to send
{T ′S , IDB,KAB}KAS , where T ′S is a new timestamp. Again I replays this message to S
to start a third run of the protocol, this time masquerading as A. The intruder con-
tinues to execute new runs of the protocol, long after the session key is discarded.
Therefore I can force B to re-accept the key again simply by allowing him to receive
a sufficiently up-to-date message from S containing the key.

1′. IB→ S : IDB,{TS, IDA,KAB}KBS

2′. S→ IA : {T ′S, IDB,KAB}KAS

1′′. IA→ S : A,{T ′S, IDB,KAB}KAS

2′′. S→ B : {T ′′S , IDA,KAB}KBS

Attack 3.15: Attack on wide-mouthed-frog protocol

Attack 3.15 was discussed by Anderson and Needham [34] and by Clark and
Jacob [216]. However, it should be mentioned that in the BAN logic paper [171],
where Protocol 3.36 first appeared, it is assumed that each principal will recognise
and reject their own messages. This prevents these attacks.

3.4.6 Yahalom Protocol

The Yahalom protocol first appeared in the BAN logic paper [171]. It is frequently
used as a benchmark protocol by researchers using formal methods for protocol ver-
ification (for example, see Paulson [607]). One reason for this may be that it has a
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rather unusual structure. More importantly, it is subject to some subtle attacks, which
make it a challenging subject for testing a new technique.

1. A→ B : IDA,NA

2. B→ S : IDB,{IDA,NA,NB}KBS

3. S→ A : {IDB,KAB,NA,NB}KAS ,{IDA,KAB}KBS

4. A→ B : {IDA,KAB}KBS ,{NB}KAB

Protocol 3.37: Yahalom protocol

Protocol 3.37 provides key authentication to both A and B. Key freshness is more
problematic because the positions of A and B differ. Note that A gains key freshness
from the first part of message 3. A knows that this part is not a replay from an old
protocol run since she knows the message was sent recently. The same cannot be
said of the message received by B. In message 4, B has no direct indication of the
freshness of the key from the server but infers that the key KAB was used recently by
A. Since the server makes NB available only to the party requested by B, B can be
assured that the encryption with KAB must have been formed by A recently. If A acts
properly in relaying the message that was encrypted for B by S as part of the current
run, then B can be assured of session key freshness. If A misbehaves by relaying a
similar encrypted message she has from an old run, then B cannot determine if the
key is fresh. It seems clear that both users gain liveness of the other. A knows that
B is active as verification of the first part of message 3 implies B sent message 2
recently. Because of the encryption of NB with KAB in message 4, B is assured that
A really knows KAB. Thus it appears that B gains key confirmation and liveness from
message 4.

Burrows et al. suggested a modified form of the Yahalom protocol, shown in
Protocol 3.38. The nonce NB is sent unencrypted by B in message 2 and is returned
by S in the message part encrypted with KBS. The modified form constitutes a typical
usage of the challenge–response mechanism.

1. A→ B : IDA,NA

2. B→ S : IDB,NB,{IDA,NA}KBS

3. S→ A : NB,{IDB,KAB,NA}KAS ,{IDA,KAB,NB}KBS

4. A→ B : {IDA,KAB,NB}KBS ,{NB}KAB

Protocol 3.38: Yahalom protocol modified by Burrows et al.

Paulson [607] suggested a protocol closely related to Protocol 3.38. The only
difference is that the message encrypted with KBS includes B’s identity.
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Protocol 3.38 was shown to be flawed by Syverson [703] who pointed out two
attacks. Suppose I is an intruder who wishes to attack the protocol. In Attack 3.16
the intruder I starts a protocol run with B while masquerading as A. After receiving
the second message, I starts another run with B by sending an arbitrary value NI
concatenated with NB from the first run. The intruder I is then able to play the role
of S in message 4 of the first run by replaying the encrypted component sent out by
B in the second run back to B.

1. IA→ B : IDA,NI

2. B→ IS : IDB,NB,{IDA,NI}KBS

1′. IA→ B : IDA,(NI ,NB)

2′. B→ IS : IDB,N′B,{IDA,NI ,NB}KBS

3. Omitted.
4. IS→ B : {IDA,NI ,NB}KBS ,{NB}NI

Attack 3.16: Syverson’s attack on modified Yahalom protocol

Attack 3.16 is an example of a typing attack. The result of the attack is that B will
interpret the value NI as a session key with A. The attack relies on the assumption
that nonces can be of arbitrary length (this is termed substituting ‘doubled’ nonces
for nonces by Syverson).

Attack 3.17 shows Syverson’s second attack on Protocol 3.38. It begins with the
intruder I intercepting an initial message from A to B. On receiving this message, I
initiates a new protocol run with A using NA as challenge, while masquerading as
B. The second protocol run proceeds as follows. I modifies the message from A to
S, replacing the new nonce N′A with the old nonce NA. I also intercepts the message
from S to B and simply replays the encrypted components of this message back as
encrypted components of message 3 in the first run but with the order of components
switched.

1. A→ IB : IDA,NA

1′. IB→ A : IDB,NA

2′. A→ IS : IDA,N′A,{IDB,NA}KAS

2′′. IA→ S : IDA,NA,{IDB,NA}KAS

3′. S→ IA : NA,{IDA,KAB,NA}KBS ,{IDB,KAB,NA}KAS

2. Omitted.
3. IS→ A : NI ,{IDB,KAB,NA}KAS ,{IDA,KAB,NA}KBS

Attack 3.17: Syverson’s alternative attack on modified Yahalom protocol
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Attack 3.17 shows that A would be wrong to conclude, after a successful run, that
B is active. Note that these two attacks are different not only in structure but also in
aim. The first attack violates key establishment properties whereas the second attack
violates entity authentication properties.

3.4.7 Janson–Tsudik 3PKDP Protocol

The 3PKDP protocol proposed by Janson and Tsudik [394] is a server-based pro-
tocol that uses 2PKDP (discussed in Sect. 3.3.2) as a building block. This protocol
has two executions of 2PKDP: firstly between A and S (messages 1 to 3), and then
between B and S (messages 4 to 6). The final three messages are intended for en-
tity authentication. In Protocol 3.39 the quantities AUTH and MASK are defined as
follows.

AUTHA = [NA,KAB, IDB]KAS

MASKA = [[AUTHA]]KAS

AUTHB = [NB,KAB,A]KBS

MASKB = [[AUTHB]]KBS .

1. A→ S : IDA, IDB,NA

2. S→ A : AUTHA,MASKA⊕KAB

3. A→ S : [NA,KAB, IDA]KAS

4. B→ S : IDB, IDA,NB

5. S→ B : AUTHB,MASKB⊕KAB

6. B→ S : [NB,KAB, IDB]KBS

7. A→ B : IDA,N′A
8. B→ A : [N′A,N

′
B, IDB]KAB ,N

′
B

9. A→ B : [N′A,N
′
B, IDA]KAB

Protocol 3.39: Janson–Tsudik 3PKDP protocol

Protocol 3.39 achieves goals concerning both key establishment and entity au-
thentication. It achieves the good key goal and the mutual authentication goal. Con-
sidering that the entity authentication goal implies the far-end operative property, it
is easily seen that the protocol also provides the enhanced goals of mutual belief in
the key and key confirmation. One oddity of this protocol is that messages 3 and 6
do not seem to have any useful purpose. All S can hope to learn from these messages
is that A and B are really out there, a property that is not crucial to the service pro-
vided by the protocol. Protocol 3.40 is a modified version proposed by Janson and
Tsudik which omits the above-mentioned messages and routes all communication
with S via B. It achieves the same goals as 3PKDP using five messages rather than
nine messages.
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1. A→ B : IDA,NA,N′A
2. B→ S : IDA, IDB,NA,NB

3. S→ B : AUTHA,MASKA⊕KAB,AUTHB,MASKB⊕KAB

4. B→ A : AUTHA,MASKA⊕KAB, [N′A,N
′
B, IDB]KAB ,N

′
B

5. A→ B : [N′A,N
′
B, IDA]KAB

Protocol 3.40: Janson–Tsudik optimised 3PKDP protocol

3.4.8 Bellare–Rogaway 3PKD Protocol

Protocol 3.41 was proposed by Bellare and Rogaway [78]. It has key establishment
as its goal and is provably secure in the Bellare–Rogaway model. The 3PKD protocol
uses two distinct cryptographic transformations: a symmetric encryption algorithm
and a MAC. As one possibility, the encryption function can be constructed from a
keyed pseudorandom function fK . Specifically, the encryption of message m using f
under a shared key K is computed as the quantity (r,m⊕ fK(r)), where r is a random
number.

1. A→ B : NA

2. B→ S : NA,NB

3. S→ A : [[KAB]]KAS , [IDA, IDB,NA, [[KAB]]KAS ]KAS

4. S→ B : [[KAB]]KBS , [IDA, IDB,NB, [[KAB]]KBS ]KBS

Protocol 3.41: Bellare–Rogaway 3PKD protocol

Protocol 3.41 provides both A and B with assurances of key authentication and
key freshness. It is not designed to provide entity authentication or key confirmation.
The provably secure style definition has the property that if the session key itself is
used to cryptographically protect messages within the protocol, the resulting protocol
cannot be considered secure. Thus standard techniques for key confirmation, such as
encrypting something using the session key, are not compatible with the security
proof of the 3PKD protocol.

3.4.9 Woo–Lam Key Transport Protocol

Woo and Lam [737] proposed a protocol intended to achieve mutual entity authen-
tication as well as key establishment. As shown in Protocol 3.42, principals A and
B exchange nonces before contacting the server. This allows them to include both
nonces in the encrypted messages sent to S.

Clark and Jacob [217] found an attack on Protocol 3.42 in which a malicious
principal B can force A to accept two copies of the same session key as new keys.
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1. A→ B : NA

2. B→ A : NB

3. A→ B : {IDA, IDB,NA,NB}KAS

4. B→ S : {IDA, IDB,NA,NB}KAS ,{IDA, IDB,NA,NB}KBS

5. S→ B : {IDB,NA,NB,KAB}KAS ,{IDA,NA,NB,KAB}KBS

6. B→ A : {IDB,NA,NB,KAB}KAS ,{NA,NB}KAB

7. A→ B : {NB}KAB

Protocol 3.42: Woo–Lam key transport protocol

Lowe [502] also found a typing attack which allows the adversary to masquerade as
A and obtain the session key accepted by B. Even without these attacks, it is difficult
to recommend Protocol 3.42 as a practical protocol in view of the large number of
message flows and encryptions required in comparison with the alternatives.

3.4.10 Gong Key Agreement Protocols

Gong [316] designed several protocols to illustrate lower bounds he derived on the
numbers of messages and rounds in server-based protocols for key establishment.
Because he was not concerned with minimising message lengths, he took a con-
servative approach to message formats. In the protocols in this section, messages
encrypted with key K are of the format

{Sender,Recipient,Client1,Key,Client2,Freshness ID}K

where Client1 and Client2 will share Key, and Freshness ID may be a nonce or a
timestamp. Since some of these fields may be identical, there is some redundancy in
many of the messages.

Protocol 3.43 is a key agreement protocol since the session key is derived from
the information contributed by both A and B. The server makes each party’s con-
tribution available to the other but does not itself contribute any information to the
session key. The encrypted portions of the protocol messages include timestamps to
provide freshness guarantees.

1. A→ S : IDA, IDB,{IDA, IDS, IDA,K1, IDB,TA}KAS

2. S→ B : {IDS, IDB, IDA,K1, IDB,TS}KBS

3. B→ S : {IDB, IDS, IDB,K2, IDA,TB}KBS

4. S→ A : {IDS, IDA, IDB,K2, IDA,TS}KAS

Protocol 3.43: Gong’s timestamp-based protocol

The values K1 and K2 are random numbers serving as contributions of A and B
respectively to the session key. Both A and B compute the session key as f (K1,K2)
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where f is a one-way function. This protocol provides to both A and B implicit
key authentication and key freshness. The timestamps may be replaced by random
nonces to provide freshness guarantees. The resulting protocol has one more message
as shown in Protocol 3.44.

1. A→ B : IDA, IDB,NA

2. B→ S : IDA, IDB,NB,{IDB, IDS, IDB,K2, IDA,NA}KBS

3. S→ A : {IDS, IDA, IDB,K2, IDA,NA}KAS ,NB

4. A→ S : {IDA, IDS, IDA,K1, IDB,NB}KAS

5. S→ B : {IDS, IDB, IDA,K1, IDB,NB}KBS

Protocol 3.44: Gong’s nonce-based protocol

Protocols 3.43 and 3.44 may be extended to provide key confirmation; the cost
is an extra message. In the first protocol, B could make use of KAB as an encryption
key in message 3 to assure A that he really knows KAB. A new fifth message could
provide B with similar assurance. In the second protocol, A could make use of KAB
as an encryption key in message 4 to assure B that she really knows KAB. A new sixth
message could provide A with similar assurance.

In Protocols 3.43 and 3.44 both A and B check the freshness of an element re-
ceived with the keying material. While this is the usual method for ensuring session
key freshness in key transport protocols, it is generally redundant in key agreement
protocols. Each user can ensure that the key is fresh by simply ensuring that its key-
ing material is fresh; there is no need for a user to be able to verify that the input
received from the other user is fresh. Thus, the timestamps in Protocol 3.43 and the
nonces in Protocol 3.44 could be eliminated. Protocol 3.45, due to Gong, makes use
of this optimisation. It provides key authentication, key freshness and key confir-
mation in only five messages. As before, both A and B compute the session key as
f (K1,K2).

1. A→ S : IDA, IDB,{IDA, IDS, IDA,K1, IDB}KAS ,NA

2. S→ B : IDA, IDB,{IDS, IDB, IDA,K1, IDB}KBS ,NA

3. B→ S : {IDB, IDS, IDB,K2, IDA}KBS ,{IDB, IDA,NA}KAB ,NB

4. S→ A : {IDS, IDA, IDB,K2, IDA}KAS ,{IDB, IDA,NA}KAB ,NB

5. A→ B : {IDA, IDB,NB}KAB

Protocol 3.45: Gong’s alternative protocol
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3.4.11 Boyd Key Agreement Protocol

Protocol 3.46, proposed by Boyd [131], provides key authentication, key freshness
and key confirmation in only four messages. It is a server-based protocol in which
both users as well as the server contribute to the key value. The values NA and NB
are generated by A and B respectively as input to the MAC function determining the
session key. Additionally, S generates a value KS which serves as the MAC key. Both
A and B compute the session key as KAB =MACKS(NA,NB).

1. A→ S : IDA, IDB,NA

2. S→ B : {IDA, IDB,KS}KAS ,{IDA, IDB,KS}KBS ,NA

3. B→ A : {IDA, IDB,KS}KAS , [NA]KAB ,NB

4. A→ B : [NB]KAB

Protocol 3.46: Boyd key agreement protocol

3.4.12 Gong Hybrid Protocol

Protocol 3.47, due to Gong [313], is an example of a hybrid protocol in which only A
and S have an input to the key derivation function. It employs two one-way functions:
a function f used for key derivation and a function g used for authentication. These
functions need not be distinct. The output of the key derivation function f is divided
into three components:

f (NS,NA, IDB,KBS) = (KAB,HA,HB).

The first component is the session key value itself. The second component is sent
from A to B to assure the latter that A has the key. The third component provides
A with reciprocal assurance. In this protocol B derives freshness by checking an
element received with the key, while A derives freshness by generating a fresh input
to the session key generation process.

1. A→ B : IDA, IDB,NA

2. B→ S : IDA, IDB,NA,NB

3. S→ B : NS, f (NS,NB, IDA,KBS)⊕ (KAB,HA,HB),g(KAB,HA,HB,KBS)

4. B→ A : NS,HB

5. A→ B : HA

Protocol 3.47: Gong’s hybrid protocol
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Boyd and Mathuria [140] demonstrated an unusual feature of Protocol 3.47. Sup-
pose A has executed a normal run of the protocol with B, with the derived session
key being K′AB and the other two quantities being H ′A and H ′B. Furthermore, suppose
that A has also recorded the reply from the server to B and thus is in possession of the
value g(K′AB,H

′
A,H

′
B,KBS). Now, A is able to complete the protocol with B as shown

in Attack 3.18.

3. S→ AB : NS, f (NS,NB, IDA,KBS)⊕ (KAB,HA,HB),

g(KAB,HA,HB,KBS)

3′. AS→ B : NS, f (NS,NB, IDA,KBS)⊕ (K′AB,H
′
A,H

′
B),

g(K′AB,H
′
A,H

′
B,KBS)

4. B→ A : NS,H ′B
5. A→ B : H ′A

Attack 3.18: Insider attack on Protocol 3.47

The insight gained from this attack is that a malicious principal A can force B into
accepting an old session key as new. It highlights an assumption that was probably
not obvious when the protocol was designed.

Saha and RoyChowdury [644] proposed Protocol 3.48 as an improvement to Pro-
tocol 3.47. The general design is similar but it adds B’s nonce to the input of the
function used for authentication of the key. This allows the weakness of Gong’s pro-
tocol to be avoided. The session key KAB is chosen by S and the reply sent from S
to A is symmetrical to S’s reply to B. Another protocol with the same design goals,
but allowing A to choose the key, was proposed by the same authors. Both protocols
enjoy a formal proof of security in the Bellare–Rogaway model.

1. A→ B : IDA, IDB,NA

2. B→ S : IDA, IDB,NA,NB

3. S→ B : NS, f (NS,NB, IDA,KBS)⊕ (KAB,HA,HB),g(KAB,HA,HB,NB,KBS),

f (NS,NA, IDB,KAS)⊕ (KAB,HA,HB),g(KAB,HA,HB,NA,KAS)

4. B→ A : NS,HB, f (NS,NA, IDB,KAS)⊕ (KAB,HA,HB),g(KAB,HA,HB,NA,KAS)

5. A→ B : HA

Protocol 3.48: Saha–RoyChowdhury protocol

3.4.13 Comparison of Server-Based Protocols

Table 3.6 summarises the major properties of the 22 server-based protocols described
earlier. For the goals an entry (*) indicates that the goal is claimed but fails due to at-
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tack. From the table, we see that all of the protocols except the Needham–Schroeder
protocol and the wide-mouthed-frog protocol achieve the key freshness goal. Further,
all of the protocols except the BAN Otway–Rees protocol and the BAN Yahalom
protocol achieve the key authentication goal.

Table 3.6: Summary of major properties of specific server-based protocols

Properties→ No. of Key Fresh Key Key Attack

↓ Protocol passes control key auth. conf.

Needham–Schroeder (3.23) 5 S A (*) A+B A Yes

Denning–Sacco (3.24) 3 S A+B A+B No No

Bauer–Berson–Feiertag (3.25) 4 S A+B A+B No No

Otway–Rees (3.26) 4 S A+B A+B No No

Otway–Rees modified (3.27) 4 S A+B A (*) No Yes

Otway–Rees modified (3.28) 4 S A+B A+B No No

Kerberos (3.29) 3 S A+B A+B B No

11770-2 Mechanism 10 (3.31) 3 S A+B A+B No No

11770-2 Mechanism 12 (3.33) 3 A A+B A+B No No

11770-2 Mechanism 13 (3.35) 4 B A+B A+B No No

Wide-mouthed-frog (3.36) 2 A No (*) Yes No Yes

Yahalom (3.37) 4 S A+B A+B B No

BAN Yahalom (3.38) 4 S A+B A (*) No (*) Yes

3PKDP (3.39) 9 S A+B A+B A+B No

Optimised 3PKDP (3.40) 5 S A+B A+B A+B No

Bellare–Rogaway (3.41) 4 S A+B A+B No No

Woo–Lam (3.42) 7 S No (*) B (*) A+B Yes

Gong timestamp (3.43) 4 A/B A+B A+B No No

Gong nonce-based (3.44) 5 A/B A+B A+B No No

Gong alternative (3.45) 5 A/B A+B A+B A+B No

Boyd four-pass (3.46) 4 S/A/B A+B A+B A+B No

Gong hybrid (3.47) 5 S/A A+B A+B A+B No
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3.5 Key Establishment Using Multiple Servers

Each of the server-based protocols we have examined so far in this chapter has in-
volved three principals: one server and two users. One natural way to generalise this
situation is to allow more than two users. Key establishment with multiple users is
the subject of Chap. 9. A different generalisation is to use more than one server.
There are at least two potential benefits of such an architecture.

• If one or more servers become unavailable, it may still be possible for the users
to establish a session key.

• If one or more servers are untrustworthy, users may still be able to establish a
good key.

There have been a few concrete proposals for protocols using multiple servers. We
examine two of these in this section.

3.5.1 Gong’s Multiple Server Protocol

Gong [315] proposed a number of variant protocols all with the same basic structure.
A feature of all these protocols is that the users, A and B, choose the keying material
while the n servers, S1,S2, . . . ,Sn, act as key translation centres to allow keying ma-
terial from one user to be made available to the other. Initially A shares a long-term
key KA,i with each server Si, and similarly B shares KB,i with Si.

In order to ensure that the correct key can be recovered even if some servers
become unavailable, A and B both split up their secrets using a threshold scheme
(see Sect. 1.3.6). Specifically, A chooses a secret x and splits it into shares x1, x2,
. . . , xn so that x can be recovered from any t shares. Similarly B chooses a secret y
and divides it into shares y1, y2, . . . , yn. Protocol 3.49 shows a simplified version of
Gong’s main protocol. Messages 2 and 3 are repeated for each of the n servers so
there are 2n+3 messages sent in total. On receipt of the translated shares from each
server, A is able to recover the secret y of B, and similarly B recovers x. The session
key is defined as KAB = h(x,y).

1. A→ B : IDA, IDB,NA,{IDA, IDB,xi,cc(x)}KA,i

2. B→ Si : IDA, IDB,NA,NB,{IDA, IDB,xi,cc(x)}KA,i ,{IDB, IDA,yi,cc(y)}KB,i

3. Si→ B : {IDB,NA,yi,cci(y)}KA,i ,{IDA,NB,xi,cci(x)}KB,i

4. B→ A : {IDB,NA,y1,cc1(y)}KA,1 , . . . ,{IDB,NA,yn,ccn(y)}KA,n ,{NA}KAB ,NB

5. A→ B : {NB}KAB

Protocol 3.49: Gong’s simplified multi-server protocol

In order to prevent malicious rogue servers from disrupting the protocol, A and
B form a cross-checksum for all the shares. The cross-checksum for x is cc(x) =
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(h(x1),h(x2), . . . ,h(xn)) where h is a one-way function. The cross-checksum cci(x)
received from server Si may or may not be equal to the correct value cc(x). When B
receives a checksum cci(x) from server Si he calculates h(x j) for every x j received
from any other server S j, and compares the result with that in cci(x). If they are
the same then S j is allocated one credit point. When all the checks are complete B
retains those shares from the servers with the most credit points. The users require t
shares in order to recover the secret. The process will ensure that the correct secret
is recovered as long as half of the responding servers are honest and t of them are
available.

In Protocol 3.49 an adversary could replay the messages of A or B (or even both)
since the server cannot detect replayed requests. However, this does not seem to
be a major problem since both parties have assurance that KAB is fresh, from the
freshness of their own input. Gong’s main protocol [315] differs from Protocol 3.49
by including an initial exchange between A and each server, in which each server
delivers a nonce that is returned with the encrypted messages intended for translation.
A consequence of this is that servers can detect replayed requests and ignore them,
but the cost of this is that the number of messages is increased to 4n+3.

3.5.2 Chen–Gollmann–Mitchell Protocol

Chen et al. [193] designed two protocols using multiple servers. A significant differ-
ence from Protocol 3.49 is that in both of their protocols the servers, instead of the
users, choose the keying material. Furthermore, instead of sharing one secret, each
server chooses an independent secret value. Both users employ a cross-checksum to
decide which servers have given valid inputs and all of these are used in the defi-
nition of the session key. The parallel protocol of Chen et al. is shown as Protocol
3.50. Messages 2 and 3 are repeated n times between B and each server Si so there
are 2n+4 messages in total.

1. A→ B : IDA, IDB,NA

2. B→ Si : IDA, IDB,NA,NB

3. Si→ B : {IDB,NA,Ki}KA,i ,{IDA,NB,Ki}KB,i

4. B→ A : {IDB,NA,K1}KA,1 , . . . ,{IDB,NA,Kn}KA,n ,ccB(1), . . . ,ccB(n)
5. A→ B : ccA(1), . . . ,ccA(n),{IDB,NB,N′A}
6. B→ A : {IDA,N′A,NB}

Protocol 3.50: Chen–Gollmann–Mitchell multi-server protocol

The cross-checksum used in Protocol 3.50 is quite different from that used in
Protocol 3.49. If B has apparently received all n keys, then

ccB(i) = {h(K1),h(K2), . . . ,h(Kn)}Ki ,
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for all i with 1≤ i≤ n, where h is a one-way function. However, if B has not received
any message from server S j then ccB( j) is simply an error message, and also h(K j) is
replaced by an error message in the calculation of the other ccB(i) values. On receipt
of the checksums ccB(1), . . . ,ccB(n) from B, A first decrypts the values and compares
them. Some of these may be different if A and B have received some different Ki
values, but as long the majority of the servers are honest and operational, the majority
of the decrypted values will be the same. The Ki secrets are retained for this majority
of i values and the others discarded. The cross-checksums ccA(i) are then defined in
a symmetrical way, except that error messages are inserted either if A did not receive
a Ki value, or if B has indicated that he did not receive it.

Once the good keys have been identified, the session key KAB is defined to be the
hash of all the good Ki values concatenated. Chen et al. showed that as long as at
least half of the servers are honest and operational, then an honest A and B pair will
accept the same Ki values and hence the same KAB.

Chen et al. also proposed a variant of Protocol 3.50, which they called a ‘cascade
protocol’. The difference is that instead of B making a request to each server by
repeating message 2, the request is passed on from server S1 to server S2 and so on.
The response from each server is also sent on to the next server. Finally server Sn
returns all the server responses to B, and the last three messages are the same as in
Protocol 3.50. The advantage of the cascade protocol is that the number of messages
sent is reduced to n+ 5 since all but one of the responses in message 3 of Protocol
3.50 are no longer required. However, the protocol will only work if all the servers
are operational; if only one server fails to cooperate, either maliciously or due to an
error, then the protocol will fail.

3.6 Conclusion

To a large extent the problem of key establishment between two parties using sym-
metric cryptography seems to have been solved. There have been no significant new
protocols in recent years. Efficient solutions have evolved which have resisted at-
tacks or even have security proofs. Tables 3.2, 3.4 and 3.6 show that there exist a
variety of protocols which should be suitable for most applications requiring these
sorts of protocols.
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Authentication and Key Transport Using Public Key
Cryptography

4.1 Introduction

It is generally regarded that there are two main potential advantages of public key
techniques over symmetric cryptography. The first is that public key systems allow
the straightforward definition of digital signatures, thereby enabling the service of
non-repudiation which is so useful in commercial applications. The second is the
simplification of key management, because there is no requirement for the online
third party that is part of typical protocols based on symmetric cryptography. The
first of these advantages is not really our concern in this book since non-repudiation
is of limited value in authentication and key establishment. However, the second
advantage has led to a great variety of new key establishment protocols since the
invention of public key cryptography. In the modern distributed communications en-
vironments exemplified by the Internet, public-key-based protocols have become far
more important than protocols based on symmetric cryptography.

There are two costs that must be paid in exchange for these benefits. The first one
is the high computational cost that comes with all known public key cryptosystems.
Despite the advances made in public key cryptosystems and the advantages of elliptic
curve cryptology [105], public key algorithms require two or three orders of magni-
tude more computation than symmetric algorithms. Although computing power on
a typical desktop or mobile device is such that a handful of public key operations
will not cause a delay of more than a fraction of a second, the overhead for servers
of multiple clients and for low-power computing devices is still significant. At the
same time increased computing power means that longer key sizes are required so
that the cost of public key operations increases. It is therefore essential that designers
of public-key-based protocols should minimise the number of public key operations
wherever possible. Another issue to be considered is whether the protocol requires
more private key operations (signature generations and decryptions) or more public
key operations (signature verifications and encryptions). RSA and related algorithms
are much more efficient for public key operations than for private key operations,
while for most algorithms based on discrete logarithms the opposite is true. Fur-
thermore, although algorithms based on discrete logarithms (including elliptic curve
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algorithms) are more efficient than RSA overall, a protocol that requires mainly pub-
lic key operations may be much more efficiently implemented using RSA with a
small public exponent. Generally it is not a simple task to compare the efficiency of
different protocols when implemented using different algorithms.

The second cost of public key cryptography is that public keys still need to be
managed. The best solution for a public key infrastructure is still the subject of con-
siderable research. Although public keys need not (indeed usually should not) be kept
confidential their integrity must be maintained, normally through use of certificates
signed by reputable third parties. The question of how to deal with compromised
private keys is a tricky one, but the most established solution is to use certificate
revocation lists to check whether a public key is still valid, much as a blacklist is
checked before accepting a credit card. In the descriptions of protocols given in this
chapter we shall ignore the certificates, or any other means, used to ensure that a
public key is valid, and simply assume that public keys are available to the parties
that need them and are guaranteed to be correct. What correct means here is that the
claimed owner of the public key is the only entity who is able to use the correspond-
ing private key. Designers and users of public key protocols need to be aware that
this is an important simplification that must be addressed in any implementation.

In this chapter we shall not cover the important class of public-key-based key
agreement protocols which are the subject of Chap. 5. In the remainder of this sec-
tion we explain our notation in this chapter and discuss general design principles for
public key protocols. Section 4.2 examines public key protocols for entity authenti-
cation and Sect. 4.3 covers public key protocols providing key transport.

4.1.1 Notation

The notation used in this chapter is summarised in Table 4.1. In all our protocol
descriptions generic algorithms for public key encryption and digital signatures are
shown, although in some cases we will note that certain protocols were designed
with specific algorithms in mind. We assume that all encryption algorithms provide
semantic security and sometimes comment if non-malleability is also required.

Table 4.1: Notation used throughout Chap. 4

EncX (M) Encryption of message M using the public key of principal X

SigX (M) Signature with appendix of message M by principal X

NX Random nonce value chosen by principal X

TX Timestamp chosen by principal X

{M}K Symmetric encryption of message M with key K
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4.1.2 Design Principles for Public Key Protocols

Anderson and Needham [35] proposed a set of what they called robustness principles
for public-key-based protocols. These can be considered as more specific instances of
the general principles for protocol design proposed earlier by Abadi and Needham
and which are discussed in Sect. B.4. They form a checklist that can be used by
protocol designers to avoid the most common errors. A summary of these principles
is shown in Table 4.2. Anderson and Needham gave several examples of potential
attacks that can result from ignoring these principles.

Table 4.2: Anderson and Needham’s robustness principles for public key protocols

1. Sign before encrypting. If a signature is affixed to encrypted data then one cannot
assume that the signer has any knowledge of the data.

2. Be careful how entities are distinguished. If possible avoid using the same key for two
different purposes (such as signing and decryption) and be sure to distinguish different
runs of the same protocol from each other.

3. Be careful when signing or decrypting data that you never let yourself be used as an
oracle by your opponent.

4. Account for all the bits – how many provide equivocation, redundancy, computational
complexity, and so on.

5. Do not assume the secrecy of anybody else’s ‘secrets’ (except possibly those of a
certification authority).

6. Do not assume that a message you receive has a particular form (such as gr for known
r) unless you can check this.

7. Be explicit about the security parameters of cryptographic primitives.

Later Syverson [704] questioned the applicability of some of the principles pro-
posed by Anderson and Needham by showing examples when they are not appropri-
ate. Nevertheless, Syverson concluded that the principles are still useful but should
be used intelligently and critically by the protocol designer. In this chapter we will
see that several protocols ignore the first Anderson–Needham principle, including
protocols that are proven secure. Indeed, with suitable precautions, it is known that
signing either before or after encrypting can provide suitable security [32]. This is
discussed further in Sects. 4.3.1 and 4.3.2.

4.2 Entity Authentication Protocols

Before looking at protocols for key establishment we examine some protocols that
achieve only authentication. In this section we examine some prominent examples, in
particular those in the international standard ISO/IEC 9798 Part 3 [377]. We discuss
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whether they achieve the definition of entity authentication introduced in Defini-
tion 13 or the simpler liveness property.

4.2.1 Protocols in ISO/IEC 9798-3

Five protocols in ISO/IEC 9798-3 are designed for authentication between a pair of
principals. (Two further server-based protocols are also included whose purpose is
to verify the public keys of principals – we do not cover these here.) Two of these
protocols are for unilateral authentication of one party to another, and three are for
mutual authentication of both parties to each other. Two of the protocols (Protocols
4.2 and 4.5) are also included in the former US standard FIPS 196 [573] which
includes some further guidance on the use of optional fields.

Each protocol includes options for various ‘text’ fields to be included in each
message for application-dependent data. According to the standard, a text field may
be included in a signature for various reasons including:

• to authenticate any information;
• to add extra redundancy to the signature;
• to provide additional time variant parameters such as timestamps;
• to provide validity information for the protocol in use.

Unsigned text fields may be used for the claimed identity of the message sender
which is not otherwise explicitly stated in the protocols. Since they are not part of the
basic protocols we shall ignore the optional text fields in the following descriptions.

The first protocol in the standard, shown as Protocol 4.1, consists of a single
message from a claimant A to a verifier B. The timestamp TA is used to provide
freshness, or alternatively it may be replaced by a counter. The protocol assures B
that A is alive, as well as providing assurance that A is aware of B as her peer entity.

1. A→ B : TA, IDB,SigA(TA, IDB)

Protocol 4.1: ISO/IEC 9798-3 one-pass unilateral authentication

The second protocol (Protocol 4.2) uses a nonce instead of a timestamp, which is
the most obvious difference from Protocol 4.1. The other difference is the inclusion
of the random value NA chosen by A. This field has nothing to do with authentication
but is included to ensure that A is not signing a message that has been chosen by B;
this could cause problems for A if the signature scheme and signing key used in the
protocol are also used in other applications. This protocol provides entity authenti-
cation of A to B.

It is interesting that the standard allows the field containing the identity B in mes-
sage 2 to be omitted, stating that its inclusion ‘depends on the environment in which
this authentication mechanism is used’. With a weaker definition of entity authenti-
cation, having no requirement for knowledge of the peer entity, the omission of this
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1. B→ A : NB

2. A→ B : NA,NB, IDB,SigA(NA,NB, IDB)

Protocol 4.2: ISO/IEC 9798-3 two-pass unilateral authentication

field is acceptable. However, if knowledge of the peer entity is required then this field
must be included in the signature of message 2. The standard specifically forbids ex-
clusion of the corresponding field in the one-pass Protocol 4.1. We can speculate that
the reasoning behind this is that when a timestamp is used B has nothing to connect
him to the protocol instance, whereas when B’s challenge is returned he can reason
that he is ‘connected’ with A even if A has not indicated this. We refer the reader to
Sect. 1.5.3 for more discussion on the possible shades of entity authentication.

The third protocol (Protocol 4.3) is simply the combination of two instances of
Protocol 4.1 for one-pass unilateral authentication and as in that protocol the time-
stamps TA and TB may be replaced by counters. This protocol provides mutual entity
authentication. Because the messages sent are independent of each other, this proto-
col can be executed in one round.

1. A→ B : TA, IDB,SigA(TA, IDB)

2. B→ A : TB, IDA,SigB(TB, IDA)

Protocol 4.3: ISO/IEC 9798-3 two-pass mutual authentication

Chen and Mitchell [197] showed that a typing attack applies if the optional text
fields are included in each message, shown as Protocol 4.4.

1. A→ B : TA, IDB, text1,SigA(TA, IDB, text1)
2. B→ A : TB, IDB, text2,SigB(TB, IDA, text2)

Protocol 4.4: ISO/IEC 9798-3 two-pass mutual authentication with text fields in-
cluded

Suppose that a malicious principal’s identity C is equal to the concatenation of
B’s identity with some bit-string x, that is, IDC = (IDB,x). The attack proceeds as
shown in Attack 4.1.

In addition to the Chen and Mitchell attack, Basin et al. [61] found two other
attacks: a role mixup attack in which the principals play different roles from the ones
they intend to play; and a reflection attack in which two instances of the same party
are intended to communicate but only one actually participates. Basin et al. [61]
designed new protocol versions using their two principles of (i) tagging messages
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1. C→ A : TC,A, text1,SigC(TC, IDA, text1)
2. A→C : TA, IDC, text2,SigA(TA, IDC, text2)
1′. CA→ B : TA, IDA, text3,SigA(TA, IDB, text3)
2′. B→CA : TB, IDA, text4,SigB(TB, IDA, text4)

Attack 4.1: Chen–Mitchell attack on Protocol 4.4

to include their protocol and position, and (ii) including in messages the identity
of the relevant principals and their roles. (See Sect. 3.4.4 for further discussion on
these principles.) Such measures were made mandatory in a 2012 corrigendum to the
9798-3 standard.1

The fourth protocol (Protocol 4.5) is an extension of Protocol 4.2, allowing both
A and B to use respective nonces, NA and NB. The standard again allows the field B in
message 2 and the field A in message 3 to be omitted; but the field must be included
at least in message 2 if it is desired for B to gain assurance that A is aware of B as her
peer entity. The standard specifically forbids exclusion of the corresponding fields in
Protocol 4.3 for two-pass mutual authentication.

1. B→ A : NB

2. A→ B : NA,NB, IDB,SigA(NA,NB, IDB)

3. B→ A : NB,NA, IDA,SigB(NB,NA, IDA)

Protocol 4.5: ISO/IEC 9798-3 three-pass mutual authentication

Blake-Wilson and Menezes [108] proved the security of Protocol 4.5 using the
Bellare–Rogaway model described in Chap. 2. This means that the protocol satisfies
the matching conversations property. By providing signatures of the other party’s
identity in messages 2 and 3, the protocol also provides knowledge of the peer entity.

Protocol 4.6 shows an earlier version of Protocol 4.5 that was proposed during
the standardisation process. The only difference from Protocol 4.5 is that B chooses
and signs a nonce N′B in the final message, which is different from the nonce NB used
in the first two messages. A probable reason for this choice is that it ensures that B
does not have to sign a message that is predictable by A.

Protocol 4.6 is subject to Attack 4.2, which has become known as the ‘Canadian
attack’ because it was publicised by the Canadian team taking part in the standards
process. In the attack the adversary C sets up two protocol runs, masquerading as
B to A and as A to B. The response from A in the second run can be used by C to
complete the first run with B.

The result of the attack is that A completes the protocol apparently with B,
whereas in fact the protocol was run with C. In terms of matching conversations

1 Technical Corrigendum 2 to ISO/IEC 9798-3:2008, March 2012.



4.2 Entity Authentication Protocols 141

1. B→ A : NB

2. A→ B : NA,NB, IDB,SigA(NA,NB, IDB)

3. B→ A : N′B,NA, IDA,SigB(N′B,NA, IDA)

Protocol 4.6: Early version of ISO/IEC 9798-3 three-pass mutual authentication

1. CB→ A : NC

2. A→CB : NA,NC, IDB,SigA(NA,NC, IDB)

1′. CA→ B : NA

2′. B→CA : NB,NA, IDA,SigB(NB,NA, IDA)

3. CB→ A : NB,NA, IDA,SigB(NB,NA, IDA)

Attack 4.2: Canadian attack on Protocol 4.6

this is a valid attack, since A and B disagree on the second message. However, A
is correct to conclude that B is alive and has indicated awareness of A as his peer
entity. Therefore the extensional protocol goals do not seem to be violated. This at-
tack is closely related to Attack 1.4 discussed in Chap. 1. Mitchell and Thomas [558]
discuss Attack 4.2. They also considered methods to prevent signatures obtained dur-
ing similar protocols being abused by an adversary. These methods include use of a
protocol identifier in every signed message.

Protocol 4.7 is the final two-party protocol in the standard; it allows authentica-
tion to be conducted in parallel between A and B. Thus messages 1 and 1′ can be sent
together, as can 2 and 2′. As with Protocol 4.5 the standard allows the identity fields
B and A, in messages 2 and 2′ respectively, to be omitted. Once again, omission of
these fields means that knowledge of the peer entity cannot be provided, this time in
either direction.

1. A→ B : NA

1′. B→ A : NB

2. A→ B : NA,NB, IDB,SigA(NA,NB, IDB)

2′. B→ A : NB,NA, IDA,SigB(NB,NA, IDA)

Protocol 4.7: ISO/IEC 9798-3 two-pass parallel authentication

We note that Protocols 4.5 and 4.7 both link together previous protocol messages
in their signed messages; this means that they provide the matching conversations
property described in Chap. 1. In this sense it can be argued that they provide more
than Protocol 4.3 even though all three protocols provide mutual entity authentica-
tion.
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4.2.2 Protocols in ISO/IEC 9798-5

The international standard ISO/IEC 9798-5 [382] is devoted to entity authentication
mechanisms using zero knowledge techniques. Six classes of protocols are specified,
depending mainly on the algebraic setting. The standard specifies protocols based on:

• discrete logarithms in the integers modulo a prime;
• discrete logarithms in the integers modulo a composite;
• discrete logarithms in elliptic curve groups;
• the identity-based setting;
• public key encryption;
• integer factorisation.

The protocols apply zero-knowledge proofs from the literature due to Fiat–
Shamir [275], Guillou–Quisquater [335], Schnorr [657], Brandt et al. [147] and Gi-
rault et al. [307]. With one exception, only unilateral authentication is specified for
each protocol type. The exception, the integer factorisation setting, has protocols for
both unilateral and mutual authentication. These protocols are strongly dependent on
specific cryptographic mechanisms and are designed to prove knowledge of private
keys corresponding to known public keys.

4.2.3 SPLICE/AS

The protocol known as SPLICE/AS was proposed in 1990 by Yamaguchi et al. [749]
to provide mutual authentication between a client A and a server B. A number of
different papers have progressively found attacks and proposed improvements. The
full protocol includes retrieval of certified public keys from an authentication server.
Hwang and Chen [370] showed that the original certificate format was flawed, al-
lowing an adversary to alter the apparent public key of either client or server. The
authentication part is shown in Protocol 4.8, where L is a lifetime of the message,
purported to be used to prevent replay.

1. A→ B : IDA, IDB,TA,L,EncB(NA),SigA(IDA,TA,L,EncB(NA))

2. B→ A : IDB, IDA,EncA(IDB,NA +1)

Protocol 4.8: SPLICE/AS protocol

The protocol is intended to provide mutual entity authentication. The server B
checks the signature and timestamp on receipt of the first message in order to au-
thenticate A. When A receives the returned message she checks her nonce in order to
authenticate B. However, Protocol 4.8 was attacked by Clark and Jacob [215] who
noted that an adversary C is able to intercept the message from A to B and replace
the signature of A with C’s own signature. Consequently A believes the protocol has
been run with B while B believes it has been run with C.
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1. A→CB : IDA, IDB,TA,L,EncB(NA),SigA(IDA,TA,L,EncB(NA))

1′. C→ B : IDC, IDB,TA,L,EncB(NA),SigC(IDC,TA,L,EncB(NA))

2′. B→C : IDB, IDC,EncC(IDB,NA +1)
2. CB→ A : IDB, IDA,EncA(IDB,NA +1)

Attack 4.3: Attack of Clark and Jacob on SPLICE/AS protocol

Attack 4.3 shows that neither party can be aware of their peer entity and that
matching conversations cannot be guaranteed. However, the responder B can be sure
that the signer of the first message is live, while A also gets this assurance, since only
B is able to decrypt NA. Clark and Jacob proposed Protocol 4.9 as an alternative to
prevent their attack.

1. A→ B : IDA, IDB,TA,L,EncB(IDA,NA),SigA(IDA,TA,L,EncB(IDA,NA))

2. B→ A : IDB, IDA,EncA(IDB,NA +1)

Protocol 4.9: Clark–Jacob variant of SPLICE/AS

This protocol is again intended to provide mutual entity authentication. A look
at the message sent from A to B shows that A has given no indication that she wishes
to communicate with B so that this protocol does not provide knowledge of the peer
entity. The only difference from Protocol 4.8 is that the identity of A is included
in the encrypted field of message 1 which, it is assumed, cannot be altered by C.
This assumption is only reasonable if the public key encryption algorithm used is
non-malleable. Gray [333] pointed out that Attack 4.3 still works if the encrypted
identity of A can be changed to another identity. He therefore proposed the simplified
Protocol 4.10 which does provide knowledge of the peer entity. This can be seen as
a hybrid of Protocols 4.3 and 4.5 since B relies on a timestamp to ensure liveness
while A uses a nonce.

1. A→ B : IDA, IDB,TA,L,NA,SigA(IDB,TA,L,NA)

2. B→ A : IDB, IDA,NA,SigB(IDA,NA)

Protocol 4.10: Gray variant of SPLICE/AS

4.2.4 Comparison of Entity Authentication Protocols

Table 4.3 compares some of the main features of the various entity authentication
protocols explored in this section. While there were attacks on the older protocols,
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the analysis of the standardised protocols in the ISO/IEC 9798-3 standard by Basin
et al. [61] has led to a better understanding. The versions referred to in Table 4.3
are those with the corrections specified by Basin et al. which have been formally
analysed.

Table 4.3: Summary of properties of public key entity authentication protocols

Properties→ Liveness Entity Security Attack

↓ Protocol authentication proof

9798-3 one-pass unilateral (4.1) B B Yes No

9798-3 two-pass unilateral (4.2) B B Yes No

9798-3 two-pass mutual (4.3) A+B A+B Yes No

9798-3 three-pass mutual (4.5) A+B A+B Yes No

9798-3 two-pass parallel (4.7) A+B A+B Yes No

SPLICE/AS (4.8) A+B No No Yes

Clark–Jacob SPLICE (4.9) A+B No No Yes

Gray SPLICE (4.10) A+B A+B No No

4.3 Key Transport Protocols

As discussed in Chap. 1, key transport refers to protocols in which one principal
chooses a session key and securely transports it to the other principal, or principals.
Sometimes it can be difficult to classify protocols as key transport or key agreement.
Some protocol specifications allow each of two principals to choose and transport
their own key but leave open whether these two will be combined to form an agreed
key, or used separately. We have included in this chapter those protocols that can
potentially be used for key transport, but may be implemented to provide key agree-
ment. An important practical example of key transport is found in various versions
of the TLS handshake protocol; this is discussed in detail in Chap. 6.

4.3.1 Protocols in ISO/IEC 11770-3

In this section we shall examine protocols specified in the international standard
ISO/IEC 11770 Part 3 [383]. The standard specifies six key transport protocols in a
generic fashion and with some optional items. We shall see that many of these stan-
dardised protocols are related to other previously published protocols, particularly
those in ISO/IEC 9798-3.

Protocols in the standard are presented using generic encryption and signature
functions, but specific examples are included in an annex (which is not a formal part
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of the standard). As with the protocols in ISO/IEC 9798-3 discussed in Sect. 4.2.1,
there are various optional text fields included in all the standardised protocols which
are mostly ignored in our descriptions here. The standard does not distinguish be-
tween signatures with message recovery and signatures with appendix by assuming
that if a signature with appendix is used then the message signed is sent together with
the signature. We show all protocols using signatures with appendix.

Protocol 4.11 shows Mechanism 1, the simplest in the standard. The session key
KAB is chosen by A and sent to B encrypted with B’s public key. Also encrypted are
the identity of A and the timestamp TA (or alternatively a counter). In this protocol, as
with all the key transport protocols in this standard, it is essential that the public key
encryption used provides non-malleability as well as semantic security. If this were
not the case then the adversary may be able to change the value of the fields A and
TA included with the encrypted session key. Notice that these fields are not generally
required to be confidential, so it may be inferred that the designers intended to use
the non-malleability to bind them to the session key. However, the properties of the
encryption algorithm used are not explicitly stated in the standard.

1. A→ B : EncB(IDA,KAB,TA)

Protocol 4.11: ISO/IEC 11770-3 Key Transport Mechanism 1

From A’s viewpoint Protocol 4.11 provides a good key since A can choose the
key to be fresh and the encryption provides confidence that it is known only to herself
and to B. However, A achieves no assurance with regard to key confirmation, or even
that B is operative. Since there is no authentication at all of the origin of the key this
protocol gives no assurance to B as to who this key is shared with. As long as B can
rely on the freshness of TA, he knows that the message received is fresh; but this does
not seem useful since without authentication of the sending party B cannot deduce
that KAB itself is fresh. Indeed the standard states that the inclusion of TA is optional.

Protocol 4.12 shows Mechanism 2, which extends Mechanism 1 by adding a
signature of the whole message by A. The timestamp TA may again be replaced by
a counter. As before, the protocol provides a good key for A but provides no key
confirmation from B. However, in contrast to Protocol 4.11, the signature of A allows
B to achieve key confirmation. As long as B trusts A to generate the key faithfully, B
also achieves the good key property. Protocol 4.12 is similar to Protocol 4.1 for entity
authentication given in Sect. 4.2. Indeed, through use of the optional text fields in that
protocol, Protocol 4.12 conforms to the 9798-3 standard as well as to 11770-3.

1. A→ B : IDB,TA,EncB(IDA,KAB),SigA(IDB,TA,EncB(IDA,KAB))

Protocol 4.12: ISO/IEC 11770-3 Key Transport Mechanism 2
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It is interesting to note that this protocol violates the first principle of Anderson
and Needham (see Table 4.2). The motivation behind this principle is that the signa-
ture does not provide assurance that the signer knows the plaintext in the encrypted
message. For example, in Protocol 4.12 an adversary C could remove the signature of
A and replace it with C’s own signature. This illustrates that it is essential that B trusts
the signer of the message only to sign keys that it has generated and encrypted. How-
ever, as long as the encryption used is non-malleable an adversary cannot change the
identity of A in the encrypted part of the message and so this does not result in a valid
attack.

Anderson and Needham gave details of an attack on both RSA and discrete log-
arithm encryption algorithms which allows a malicious principal B to gain a signa-
ture on an encrypted message of his choice by registering a new public encryption
key matched to the signed encrypted message. However, these attacks do not apply
if non-malleable versions of encryption are used; also Syverson [704] discussed a
number of practical difficulties with the attack. Nevertheless it is prudent for users of
this protocol to consider such possibilities.

Mechanism 3, shown in Protocol 4.13, swaps around the order in which the sig-
nature and encryption are applied in Mechanism 2. The intention of each of the fields
is the same so that the protocol achieves the same goals as Mechanism 2 as long as
B trusts A to generate a good key. The inclusion of the timestamp TA (or a counter)
is again optional in the standard but without it B cannot gain key freshness or key
confirmation.

1. A→ B : EncB(IDB,KAB,TA,SigA(IDB,KAB,TA))

Protocol 4.13: ISO/IEC 11770-3 Key Transport Mechanism 3

Protocol 4.14 is a closely related protocol proposed by Denning and Sacco [240].
Two preliminary messages, which allow principal A to obtain public key certificates
for both A and B, are omitted here. The only difference from Protocol 4.13 is the
omission of the identity of B.

1. A→ B : EncB(KAB,TA,SigA(KAB,TA))

Protocol 4.14: Denning–Sacco public key protocol

This omission allows an attack, discussed by Abadi and Needham [6], in which a
malicious B can engage in a protocol run with A as initiator, and then send message 1
to C re-encrypted with C’s public key. As a result C believes the key to be shared with
A but it is also known to B. Abadi and Needham suggested including the identities of
both A and B in the signature of message 1 to prevent this attack, but including only
B’s identity, as in Protocol 4.13, seems sufficient.
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Mechanism 4, shown in Protocol 4.15, is a two-pass protocol very similar to
Mechanism 2 (with roles reversed), the main difference being that A now uses a
nonce NA to achieve key freshness and entity authentication of B. As long as B is
trusted to generate the key, A achieves the good key and key confirmation properties.
B achieves the good key property but no authentication of A.

1. A→ B : NA

2. B→ A : IDA,NA,NB,EncA(IDB,KAB),SigB(IDA,NA,NB,EncA(IDB,KAB))

Protocol 4.15: ISO/IEC 11770-3 Key Transport Mechanism 4

The random number NB is optional in the standard, and is apparently used only
to maintain consistency with Protocol 4.2 which is the corresponding entity authen-
tication protocol in the 9798-3 standard. Protocol 4.15, with NB omitted, was proven
secure by Shoup in his simulation model [674] under the assumption of only static
corruptions by the adversary (recall that this is equivalent to a proof of security in
the Bellare–Rogaway model as discussed in Chap. 2).

Protocol 4.16 shows Mechanism 5, which is a mutual version of Mechanism 4
for which two session keys KAB and KBA are chosen by A and B respectively. The
standard suggests that the two session keys may be combined using a one-way hash
function, in which case this protocol is strictly a key agreement protocol rather than a
key transport protocol. It also suggests that either EncB(IDA,KAB) could be omitted
from message 3 so that KBA becomes the session key, or EncA(IDB,KBA) could be
omitted from message 2 so that KAB is the session key. If KAB is used to define the
session key, then only B obtains key confirmation. Mechanism 5 conforms to the
9798-3 standard by adding optional text fields to Protocol 4.5, the corresponding
entity authentication protocol.

1. A→ B : NA

2. B→ A : NB,NA, IDA,EncA(IDB,KBA),SigB(NB,NA, IDA,EncA(IDB,KBA))

3. A→ B : NA,NB, IDB,EncB(IDA,KAB),SigA(NA,NB, IDB,EncB(IDA,KAB))

Protocol 4.16: ISO/IEC 11770-3 Key Transport Mechanism 5

The final key transport protocol in the ISO/IEC 11770-3 standard is Mechanism
6, shown in Protocol 4.17. In contrast to all the other protocols in the standard it
uses only encryption and no signatures. Perhaps it is most clear here that the en-
cryption algorithm requires non-malleability since otherwise all the fields used for
authentication could be potentially altered by the adversary.

The standard states that KAB and KBA may be combined using a one-way function
to form a single session key. It is also stated that KAB may be used by A to encipher
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1. A→ B : EncB(IDA,KAB,NA)

2. B→ A : EncA(IDB,KBA,NA,NB)

3. A→ B : NB

Protocol 4.17: ISO/IEC 11770-3 Key Transport Mechanism 6

messages for B and to authenticate messages from B, and KBA may be used in an
analogous way by B. The protocol achieves mutual entity authentication and mutual
key confirmation.

An earlier draft version of the ISO/IEC 11770-3 standard included Protocol 4.18
instead of Protocol 4.17; the former has become known as the Helsinki protocol due
to the location of a particular meeting of the relevant standards committee. The only
difference from the final standardised Protocol 4.17 is that in message 2 the identity
field of B is missing.

1. A→ B : EncB(IDA,KAB,NA)

2. B→ A : EncA(KBA,NA,NB)

3. A→ B : NB

Protocol 4.18: Helsinki protocol

Attack 4.4 on the Helsinki protocol was published by Horng and Hsu [364] in
1998. There is a strong similarity between this attack and Lowe’s earlier attack on
the Needham–Schroeder public key protocol discussed in Sect. 4.3.3 below. The
adversary, C, induces A to commence the protocol with C, and then starts a protocol
run with B while masquerading as A.

1. A→C : EncC(IDA,KAB,NA)

1′. CA→ B : EncB(IDA,K′AB,NA)

2′. B→CA : EncA(KBA,NA,NB)

2. C→ A : EncA(KBA,NA,NB)

3. A→C : NB

3′. CA→ B : NB

Attack 4.4: Attack on Helsinki protocol

Both A and B have the view of a successful protocol run. However, if the session
key is f (KAB,KBA) for some one-way function f , then A ‘believes’ she shares this
key with C, while B ‘believes’ he shares f (K′AB,KBA) with A. Notice that the goal of



4.3 Key Transport Protocols 149

implicit key authentication has not been violated in this attack, because C does not
know KBA and therefore cannot compute either of the session keys accepted by A and
B. However, entity authentication is not achieved in that B has incorrect knowledge
of his peer entity. Mitchell and Yeun [560] proposed to fix the protocol by adding B’s
identity to message 2 which, as we have seen, was the solution adopted in the final
ISO/IEC 11770 standard.

Earlier versions of the ISO/IEC 11770-3 standard claimed that key confirmation
is achieved for both A and B in Protocol 4.17. Although this intuitively seems to
be true, Cremers and Horvat [229] showed that a complex attack is possible which
violates key confirmation in the case where an optional text field (not shown in Pro-
tocol 4.17) is used. The additional text field in the first message allows a principal
in the role of B to interpret an instance of message 2 as an instance of message 1,
and that principal will hence generate a new message 2. Although this attack requires
several, possibly unrealistic, assumptions it shows that the claimed key confirmation
property does not always hold. This claim of key confirmation is removed in the
2015 version of the ISO/IEC 11770-3 standard.

4.3.2 Blake-Wilson and Menezes Key Transport Protocol

Blake-Wilson and Menezes [108] have proven the security of Protocol 4.19, which
is a simplified version of Protocol 4.16 (indeed it is an optional variant conforming
to the standard). Here the session key KAB is chosen by B. The protocol was strongly
related to Protocol 4.5 for entity authentication, and like that was proven secure in
the Bellare–Rogaway model. The proof incorporates the assumption that the encryp-
tion algorithm provides non-malleability by assuming that the adversary is able to
conduct a chosen ciphertext attack.

1. A→ B : IDA,NA

2. B→ A : IDB, IDA,NB,NA,EncA(IDB,KAB),SigB(IDB, IDA,NB,NA,EncA(IDB,KAB))

3. A→ B : IDA, IDB,NB,SigA(IDA, IDB,NB)

Protocol 4.19: Blake-Wilson–Menezes key transport protocol

We note that again this protocol ignores the first principle of Anderson and Need-
ham (see Table 4.2) not to sign encrypted data. In this case the order of encryption
and signature is not chosen by chance; it has to be this way around in order for the
proof to work. The reason for this is that it is necessary in the proof to be able to
simulate how the principals in the protocol behave when the plaintext is not known.
If the plaintext is included in a signature then it is not possible to determine if a
received message has been properly signed without knowing if the plaintext in the
signature is the same as in the ciphertext. Anderson and Needham [35] commented
that protocol logics, such as the BAN logic, on the contrary cannot be used when
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encrypted messages are signed. This illustrates an interesting dichotomy between
different methods of protocol validation.

4.3.3 Needham–Schroeder Public Key Protocol

The Needham–Schroeder public key protocol [581] was one of the earliest published
key establishment protocols along with its well-known companion using symmetric
encryption (see Sect. 3.4.1). Protocol 4.20 shows the messages exchanged. There
is a strong similarity with the Helsinki protocol (Protocol 4.18). The protocol was
designed to provide mutual entity authentication but with the option of using the
exchanged nonces, NA and NB, as shared secrets for key establishment.

1. A→ B : EncB(NA, IDA)

2. B→ A : EncA(NA,NB)

3. A→ B : EncB(NB)

Protocol 4.20: Needham–Schroeder public key protocol

Although this protocol was designed as long ago as 1978, it aroused quite some
interest much later. Lowe in 1996 [501] discovered Attack 4.5 which shows that B
cannot be sure that the final message came from A. Notice that A has never explic-
itly declared her intention to converse with B so this protocol cannot provide any
assurance to B that A has knowledge of B as the peer entity.

1. A→C : EncC(NA, IDA)

1′. CA→ B : EncB(NA, IDA)

2′. B→CA : EncA(NA,NB)

2. C→ A : EncA(NA,NB)

3. A→C : EncC(NB)

3′. CA→ B : EncB(NB)

Attack 4.5: Lowe’s attack on Needham–Schroeder public key protocol

Attack 4.5 is similar to Attack 4.4 on the Helsinki protocol. In order to fix the
protocol against his attack, Lowe proposed the variant Protocol 4.21 which simply
includes the identifier of B in the second message.

Lowe was able to prove secure a finite model of Protocol 4.21 using the model
checker FDR (see Sect. 1.6.1) and extended the proof to the infinite version using
several pages of mathematical reasoning. It is again important to notice that this
revised protocol is only secure as long as the encryption algorithm used provides
non-malleability. Otherwise it cannot be guaranteed that an adversary will not be



4.3 Key Transport Protocols 151

1. A→ B : EncB(NA, IDA)

2. B→ A : EncA(NA,NB, IDB)

3. A→ B : EncB(NB)

Protocol 4.21: Lowe’s variant of Needham–Schroeder public key protocol

able to alter the value of the identifier B in message 2 even without knowing the
values of NA and NB. Protocol 4.21 has a lot in common with Protocol 4.17 and the
properties it achieves are the same. Instead of encrypting an explicit session key, the
nonces of A and B can act as a shared secret; this is the reason why the third message
needs to be encrypted.

Attack of Bana, Adão and Sakurada

Bana, Adão and Sakurada [52] proposed a typing attack on Protocol 4.21. In the
attack shown as Attack 4.6, an adversary I masquerades as B and intercepts the third
message from A. I then replays this message to B to initiate a new run with B. This
attack requires the assumption that the encryption of a single nonce sent in the third
message of one run will be interpreted as the encryption of a nonce and a principal
identity when replayed as the first message of another run.

3. A→ IB : EncB(NB)

1′. I→ B : EncB(NI , IDI)

2′. B→ I : EncI(NI ,N′B, IDB)

3. IA→ B : EncB(N′B)

Attack 4.6: Bana–Adão–Sakurada attack on Needham–Schroeder–Lowe protocol

Key Compromise Impersonation Attack of Basin, Cremers and Horvat

Basin, Cremers and Horvat [59] later showed that a key compromise impersonation
attack is possible on Protocol 4.21. Attack 4.7 shows an attacking run, where an
intruder I induces A to start a protocol run with B. The intruder then intercepts mes-
sage 2 from B and decrypts this message, using knowledge of the private key of A,
to obtain NA. Finally, I masquerades as B to A, by sending an encrypted message
which consists of a concatenation of NA and a nonce value chosen by I, which will
be accepted by A. This means that A will accept NI as shared with B, whereas it is
actually shared with I. The result of the attack is that it is no longer safe to use the
nonces of A and B as a shared secret. Note that the attack requires more assumptions
than usual, namely that the party to be impersonated is online.
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1. A→ B : EncB(NA, IDA)

2. B→ IA : EncA(NA,NB, IDB)

2′. IB→ A : EncA(NA,NI , IDB)

3. A→ IB : EncB(NI)

Attack 4.7: Key compromise impersonation attack on Needham–Schroeder–Lowe
protocol

To overcome the attack, Basin et al. suggested Protocol 4.22 as a solution, using
hashing to make the nonces of A and B secret from an adversary who has obtained
either A or B’s private key but not both.

1. A→ B : EncB(NA, IDA)

2. B→ A : EncA(h(NA,NB),NB, IDB)

3. A→ B : EncB(h(NB))

Protocol 4.22: Needham–Schroeder–Lowe protocol modified by Basin et al.

4.3.4 Needham–Schroeder Protocol Using Key Server

The original Needham–Schroeder public key protocol allows A and B to obtain each
other’s public keys from a trusted server. This requires additional message flows
that are omitted from the simplified version attacked by Lowe. The full version of
the protocol with a key server present (sometimes called NSPK-KS) is shown as
Protocol 4.23.

1. A→ S : IDB

2. S→ A : Cert(B)
3. A→ B : EncB(NA, IDA)

4. B→ S : IDA

5. S→ B : Cert(A)
6. B→ A : EncA(NA,NB)

7. A→ B : EncB(NB)

Protocol 4.23: Needham–Schroeder public key protocol using key server

Meadows [534] found an attack on Protocol 4.23 using the NRL Protocol Ana-
lyzer. The attack depends on the assumption that a random nonce can be used as a
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principal name. The attacker I masquerades as A to initiate a protocol run with B. I
intercepts B’s reply and sends it to A as the first message of a new protocol run. Upon
receipt of this message, A believes it is a run initiated by a principal having identity
NB. Now A will send NB in cleartext to S. Using knowledge of NB, I can masquerade
as A to B in the first run, as shown in Attack 4.8.

3. IA→ B : EncB(NI , IDA)

4. B→ S : IDA

5. S→ B : Cert(A)
6. B→ IA : EncA(NI ,NB)

1′. I→ A : EncA(NI ,NB)

2′. A→ IS : NB

7. IA→ B : EncB(NB)

Attack 4.8: Meadows’ attack on NSPK-KS

4.3.5 Protocols in the X.509 Standard

The X.500 series of recommendations was standardised by the ITU (formerly CCITT)
in parallel with ISO to provide directory services for communications. One purpose
of the directory is to store certificates for public keys and Part 8 of the standard [387]
uses such public keys as the basis for the Authentication Framework. This framework
specification includes a number of protocols for authentication and key establishment
which can be used for access control to the directory or for other purposes. The pro-
tocols are classified as either simple or strong. Simple authentication uses passwords
sent either in cleartext or as input to a one-way function; we shall consider only the
strong authentication protocols that use public key cryptographic methods.

There are three protocols specified, with one, two and three message flows re-
spectively. Each protocol extends the previous one by adding an extra message. The
goal of each protocol is transport of a session key from A to B and, for the two- and
three-flow protocols, transport of a session key from B to A.

In the simplest protocol there is only one message which is sent from A to B. The
certificates (or more generally a chain of certificates) are omitted in the following
descriptions, as well as optional signed data. The standard allows for simplified ver-
sions in which the session key is omitted, intended to provide entity authentication
only. Protocol 4.24 shows the one-pass version with the encrypted data forming the
session key KAB; this is suggested as only one possibility by the standard.

There is a strong similarity between Protocol 4.24 and Protocol 4.12. The main
difference is that here the identity of A is missing from the encrypted data, which
makes any potential attacks on Protocol 4.12 easier to mount. In particular, an adver-
sary may remove the signature on the message and replace it with a new signature on
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1. A→ B : TA,NA, IDB,EncB(KAB),SigA(TA,NA, IDB,EncB(KAB))

Protocol 4.24: X.509 one-pass authentication

the identical message which leads to B believing that the key was sent by the adver-
sary. This problem has been pointed out by Burrows et al. [171] while I’Anson and
Mitchell [371] also discussed the consequences of such an attack when the encrypted
portion of the message acts as a confidential request for information. Both sets of au-
thors suggested that to fix this problem the signature should include the unencrypted
key (hashed to protect its confidentiality) with the encrypted key sent separately. An
alternative is to use Protocol 4.12 instead.

Basin et al. [59] have pointed out that a compromise of B’s long-term private
key allows a key impersonation attack against B, a key compromise impersonation
attack. As an improvement, they proposed a variant of the one-pass protocol, adding
a second pass as shown in Protocol 4.25.

1. B→ A : EncA(NB)

2. A→ B : TA,NA, IDB,EncB({KAB}NB),SigA(TA,NA, IDB,EncB({KAB}NB))

Protocol 4.25: Basin–Cremers–Horvat variant of X.509 one-pass authentication

Protocol 4.25 employs a symmetric key chosen by B uniquely for this session,
NB. Notice that an adversary who knows B’s long-term private key can remove the
asymmetric encryption to obtain the ciphertext {KAB}NB . However, this will not help
the adversary in obtaining the session key KAB as long as NB remains confidential.

Protocol 4.26 is the two-pass X.509 protocol; the same first message is sent from
A to B as in Protocol 4.24 and a reply is sent from B to A, which is symmetrical
except that both nonces are included in the signed part of this message.

1. A→ B : TA,NA, IDB,EncB(KAB),SigA(TA,NA, IDB,EncB(KAB))

2. B→ A : TB,NB, IDA,NA,EncA(KBA),SigB(TB,NB, IDA,NA,EncA(KBA))

Protocol 4.26: X.509 two-pass authentication

Similar remarks to those concerning Protocol 4.24 apply. The protocol may be
fixed in different ways such as by adding the sender’s name to the encrypted blocks
to form a mutual version of Protocol 4.12. The encrypted data sent from B to A is
shown as a session key KBA; although the standard suggests this data may be used as
a session key there is no recommendation on whether this should be used separately
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or combined with KAB. Protocol 4.27 is the final X.509 protocol and includes a third
message intended to provide acknowledgement of message 2 by A.

1. A→ B : TA,NA, IDB,EncB(KAB),SigA(TA,NA, IDB,EncB(KAB))

2. B→ A : TB,NB, IDA,NA,EncA(KBA),SigB(TB,NB, IDA,NA,EncA(KBA))

3. A→ B : NB, IDB,SigA(NB, IDB)

Protocol 4.27: X.509 three-pass authentication

There is no need in either this protocol or the two-pass protocol for both TB
and NA to be included since either of them is enough for A to acquire freshness of
KBA. Indeed the standard states that TB may be set to zero which, as pointed out by
Burrows et al. [171], makes TB completely redundant. The standard also states that
TA need not be checked in message 1 either.

In the first (1988) version of the X.509 standard, the field B was absent from the
third message of Protocol 4.27. A consequence of this was that if TA was not used
for freshness then the protocol could be attacked, since B is not able to check that
message 3 is part of the same protocol run. Specifically C can replay an old first
message from A to B and, in order to complete the protocol, need only obtain A’s
signature on the challenge received in message 2. C can now obtain such a signature
by engaging in a protocol run with A as the initiator. This attack was detailed by both
Burrows et al. [171] and I’Anson and Mitchell [371].

4.3.6 Public Key Kerberos

Protocol 4.28 involves two parties: a client A and an authentication server S. The first
message includes an authenticator SigA(TA,NA) containing a timestamp and a nonce
NA signed by A, the name of the ticket granting server B for whom A wants a session
key, and another nonce N′A. If the timestamp is sufficiently recent, S generates a fresh
symmetric key k and replies with a message containing credentials for A. The first
part of this message contains S’s signature over k and the nonce NA sent in the first
message. Because the signature is encrypted using A’s public key, only A can learn k.
Using k, A learns the session key KAB from the last part of the second message. The
field TGT is of the form {KAB, IDA,TS}KBS , where KBS is a long-term key shared by
B and S. Note that A cannot read the data that is encrypted with KBS.

1. A→ S : Cert(A),SigA(TA,NA), IDA, IDB,N′A
2. S→ A : EncA(Cert(S),SigS(k,NA)), IDA,TGT,{KAB,N′A,TS, IDB}k

Protocol 4.28: Ticket granting protocol of public key Kerberos
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Protocol 4.28 was attacked by Cervesato et al. [185] who noted that an adversary
I is able to intercept the message from A to S and replace the signature of A with I’s
own signature. Consequently, A accepts a session key for use with B, even though it
is known to I. Attack 4.9 is similar to Attack 4.3 on the SPLICE/AS protocol.

1. A→ IS : Cert(A),SigA(TA,NA), IDA, IDB,N′A
1′. I→ S : Cert(I),SigI(TA,NA), IDI , IDB,N′A
2′. S→ I : EncI(Cert(S),SigS(k,NA)), IDI ,TGT,{KIB,N′A,TS, IDB}k

2. IS→ A : EncA(Cert(S),SigS(k,NA)), IDA,TGT,{KIB,N′A,TS, IDB}k

Attack 4.9: Attack of Cervesato et al. on public-key Kerberos

In order to fix the protocol against this attack, Cervesato et al. proposed a variant
protocol which simply includes the identifier of A in the signature of S.

4.3.7 Beller–Chang–Yacobi Protocols

Beller, Chang and Yacobi [80, 81, 82], and Beller and Yacobi [83] proposed hy-
brid protocols using a combination of asymmetric and symmetric cryptographic al-
gorithms. These protocols were designed to satisfy the requirements of the mobile
communications environment. They were intended to provide security between a mo-
bile station and a base station of the fixed network, rather than to provide end-to-end
security between mobile users.

There are at least two requirements in addition to those usually needed for au-
thentication and key establishment protocols.

• The computational load on the mobile station must be minimised, even at the
expense of increased load on the base station.

• The identity of the mobile station must remain hidden from the adversary.

The protocols of Beller et al. were critically examined by Carlsen [183], who
identified some possible attacks and suggested protocol modifications to avoid them.
He also pointed out an inherent shortcoming of their protocols. Although these pro-
tocols hide the identity of an initiating mobile station, the dual requirement of hiding
the identity of the responding station remained unsolved.

The protocols of Beller et al. rely on a public key cryptosystem for which en-
cryption is particularly efficient, at least in comparison to other public key cryp-
tosystems. The specific public key cryptosystem employed is due to Rabin [622], in
which encryption and decryption are tantamount, respectively, to modulo squaring
and extracting a modulo square root (MSR). Instead of showing the mathematical
details of the MSR algorithms, we shall continue to use our more general notation in
describing the protocols of Beller et al. (hereafter referred to as the MSR protocols).
The MSR protocols consist of three variants with different complexity and security
features.



4.3 Key Transport Protocols 157

MSR Protocol

In the following, the notation SCB is a structure known as the secret certificate of the
mobile station, B, which is issued by a trusted central authority. This certificate can
be checked by anyone using the public key of the central authority in order to verify
the mobile station’s identity. Unlike a usual public key certificate, this certificate must
be kept secret from all other mobile users and eavesdroppers, because it is all that is
required to masquerade as B. Protocol 4.29 shows the basic MSR protocol [82].

1. A→ B : IDA,KA

2. B→ A : EncA(KAB),{IDB,SCB}KAB

Protocol 4.29: Basic MSR protocol of Beller, Chang and Yacobi

Upon receiving the base station A’s public key KA, the mobile station uses it
to encrypt the session key KAB, and sends the encrypted message to A. The mobile
station also sends its identity and secret certificate encrypted under KAB to authen-
ticate KAB to the base station. The symmetric encryption with KAB in message 2
is of negligible computational effort compared to the public key encryption in the
same message; therefore the computational effort at the mobile station is effectively
limited to that of modulo squaring of the session key. Carlsen [183] identified two
security weaknesses in Protocol 4.29. The first of these weaknesses appears to have
been recognised as early as 1993 by Beller et al. [82] themselves.

• The public key of A is uncertified, thereby allowing anyone to masquerade as A.
• It is not possible for A to differentiate between a new run of the protocol and

one where messages from an old run are replayed by a malicious adversary. At
the least this may allow the adversary to transfer connection charges to B. In
addition replay of an old compromised session key then allows the adversary to
masquerade as B.

Improved MSR (IMSR) Protocol

The improved MSR protocol of Beller et al. [82], IMSR, overcomes a major weak-
ness of MSR by using a public key certificate of the base station. This results in
a twofold increase in the computational complexity as compared to Protocol 4.29
since the mobile station now calculates an additional modulo square to verify the
base station’s certificate on receiving message 1.

Apart from this feature it is identical to the basic MSR protocol, and therefore
does not address the problem of replay. Carlsen [183] recognised this and suggested
an ‘improved IMSR’ protocol which includes a challenge–response mechanism to
allow B to detect a session key replay as shown in Protocol 4.30. (He also adds an
expiration time to the public key certificate of A, to allow for checks on the certifi-
cate’s validity, while at the same time deleting A’s identity from the certificate for
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purposes of anonymity. The effect of this latter change is that base station ‘imper-
sonation attacks’ become possible, as pointed out by Mu and Varadharajan [569]. As
usual, this public key certificate is omitted from our description.)

1. A→ B : IDA,NA

2. B→ A : EncA(KAB),{NA, IDB,SCB}KAB

Protocol 4.30: Improved IMSR protocol of Carlsen

Upon receiving the final message, A decrypts it using the session key KAB, and
checks that the value NA is the same as the nonce sent in message 1. Curiously, al-
though Carlsen clearly identified the problem of replay, his suggested improvement
does not really overcome it. In the above protocol, if KAB is compromised an adver-
sary can obtain SCB, and thus freely masquerade as B.

Beller et al. [81] mentioned the security threat posed to the IMSR protocol by
an adversary who obtains the session key; however, they do not treat the problem of
replay as such. They suggested two methods to protect the certificate of B against
a compromised session key. One of these, called the split-certificate method, is to
have the mobile station send at least half of its certificate encrypted together with
KAB under the base station’s public key. The other, called the split-key method, is to
divide KAB into two subkeys, one of which is used to encrypt the protocol message
that authenticates B to A, and the other is used as the session key proper. Both these
methods can also be used to overcome the weakness of Protocol 4.30.

Beller–Yacobi Protocol

In a separate publication, Beller and Yacobi [83] suggested a further variation on
the IMSR protocol. Like the MSR+DH protocol discussed below, the Beller–Yacobi
protocol employs a public key for the mobile as well as the base station. The mo-
bile station’s private key is used to implement digital signatures using the ElGamal
algorithm [267]. The main reason for choosing this algorithm is that most of the
computations required for signature generation can be executed prior to choosing
the message to be signed. This means that it is easy for the mobile processor to do
most of its work offline, during idle time between calls. The basic structure of Proto-
col 4.31 is similar to Protocol 4.29. The main difference is in the last two messages
which implement a challenge–response mechanism based on digital signatures.

In the third message, A sends a nonce NA encrypted using KAB. B then returns
NA signed using his private key together with his identity, public key and certificate
Cert(B), all encrypted under KAB. Finally, A decrypts this message and verifies the
signature on NA.

We now present a potential attack on Protocol 4.31 [141]. Although this attack
makes quite strong assumptions, it may be taken seriously because it indicates a flaw
in the protocol design. We understand that the same attack was found independently
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1. A→ B : IDA,KA

2. B→ A : EncA(KAB)

3. A→ B : {NA}KAB

4. B→ A : {IDB,KB,Cert(B),SigB(NA)}KAB

Protocol 4.31: Beller–Yacobi protocol

by the original authors subsequent to the protocol’s publication. The adversary, C,
must be a legitimate user known to A. Further, C needs to be able to set up simul-
taneous sessions with both A and B. (C could be a rogue mobile and base station in
collusion.) In Attack 4.10, C is able to convince B that C is A.

1. A→CB : IDA,KA

2. CB→ A : EncA(KAB)

3. A→CB : {NA}KAB

1′. C→ B : IDC,KC

2′. B→C : EncC(K′AB)

3′. C→ B : {NA}K′AB

4′. B→C : {IDB,KB,Cert(B),SigB(NA)}K′AB

4. CB→ A : {IDB,KB,Cert(B),SigB(NA)}KAB

Attack 4.10: Attack on Beller–Yacobi protocol

The essence of the attack is that C starts a parallel session with B in order to
obtain B’s signature on A’s challenge NA. At the end of the attack, A accepts KAB
as a session key with B, whereas in fact it is shared with C. The session started
between C and B can be dropped after the receipt of message 4′. Note that message
3 must precede message 3′, and message 4′ must precede message 4; the remaining
messages may overlap each other.

There is a simple way to alter the protocol so as to avoid the attack [141]. Essen-
tially the change is to have B sign the new session key KAB when it is first sent to
A, in message 2, together with the challenge NA, which guarantees its freshness. The
key must have its confidentiality protected by a suitable one-way hash function h, but
the use of such a function is a standard practice in most digital signature schemes.
Since KAB is now authenticated in message 2, message 4 is redundant and message
3 is used simply for B to verify that A has received the key. Protocol 4.32 shows the
revised version.

Comparison with Protocol 4.31 shows that Protocol 4.32 is no more costly in
either computational or communications requirements than the original. Therefore
it appears to be just as suitable as the original for the situation where B has limited
computing power.
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1. A→ B : IDA,NA

2. B→ A : EncA(KAB),{IDB,KB,Cert(B)}KAB ,SigB(h(IDA, IDB,NA,KAB))

3. A→ B : {NA}KAB

Protocol 4.32: Improved Beller–Yacobi protocol

Beller–Yacobi MSR+DH Protocol

Beller and Yacobi also proposed an extended version of the IMSR protocol which
incorporates Diffie–Hellman key exchange [252]. (Diffie–Hellman key exchange and
many related protocols are discussed in detail in Chap. 5.) A major improvement is
that now the mobile terminal has a public key which means that it no longer needs to
reveal its permanent secret to the base.

In this protocol the base station A has two public keys: the Diffie–Hellman key
and a public key used for encryption in the modular square root system. The mo-
bile station B has one public key. Carlsen [183] has also suggested an ‘improved
MSR+DH’ protocol by making similar modifications to those carried out in the im-
proved MSR protocol. Protocol 4.33 shows the improved MSR+DH protocol [183].

1. A→ B : IDA,NA

2. B→ A : EncA(x),{NA, IDB}x

Protocol 4.33: Carlsen’s improved Beller–Chang–Yacobi MSR+DH protocol

The static Diffie–Hellman key SAB (see Sect. 5.2) is used to derive the session
key as KAB = {x}SAB . Although the security of the MSR+DH protocol appears far
improved over the other MSR variants, it carries a computational price. Now both
parties need to calculate a full modular exponentiation at session set-up leading, as
per the calculations of Beller et al., to a 100 times increase in the required computing
power.

4.3.8 TMN Protocol

One of the earliest key establishment protocols designed for use in a mobile envi-
ronment was that of Tatebayashi, Matsuzaki and Newman [708], which has widely
become known as the TMN protocol. A favourite with protocol analysts due to its
many vulnerabilities, we include it for its historical importance. The principals are
two mobile stations A and B who wish to exchange a session key to provide end-
to-end security, and a server S with whom they share distinct long-term secrets. The
design takes account of the limitations in mobile station computational ability by re-
quiring the mobile stations only to encrypt with short RSA [630] public exponents.
A number of attacks have been published on the TMN protocol, some of which rely
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on the specific cryptographic algorithms used, and others which exploit problems in
the message structures [424].

The TMN paper [708] includes two protocols. The first protocol (called KDP1)
contains no authentication information and was found by the designers to be vul-
nerable to certain attacks. As an improvement, Protocol 4.34 (called KDP2) was
proposed. The field sA is a shared secret value between S and A while TA is a time-
stamp generated by A. The fields sB and TB are defined analogously. The session key
KAB is generated by B, while A generates a one-time key-encrypting key KEK. The
second protocol message is simply a request from S for B to respond.

1. A→ S : EncS(TA,sA,KEK)

2. S→ B : RSVP
3. B→ S : EncS(TB,sB,KAB)

4. S→ A : {KAB}KEK

Protocol 4.34: Simplified TMN protocol (KDP2)

The encryption in message 4 is carried out using a symmetric cryptosystem. The
identities of A and B are relevant to the intended meaning of messages 3 and 4,
respectively, although they are not included within the encrypted fields of these mes-
sages. As a result, neither A nor B has any assurance of who else has the session key
KAB. Since S has a shared secret with both A and B, it is questionable whether the use
of public key cryptography in the TMN protocol is justified.

A different attack, based on the algebraic properties of the encryption algorithms,
was found by Park et al. [600]. These authors proposed a variant protocol with dif-
ferent algorithms, but its general structure is identical to Protocol 4.34. Consequently
it suffers from the same weaknesses.

4.3.9 AKA Protocol

The Texas A&M University Anarchistic Key Authorization (AKA) protocol was pro-
posed by Safford et al. [643]. The name of the protocol reflects the use of informally
certified public keys in the style of PGP [783] although that does not seem to in-
fluence the design in any particular way. AKA employs an unusual mechanism to
provide forward secrecy; instead of Diffie–Hellman key agreement, short-term RSA
keys are used.

A number of variations on the basic idea were given by Safford et al. providing
greater efficiency and flexibility. Protocol 4.35 is one simple version in which only B
chooses a short-term public key; in other variants both parties choose and exchange
a short-term public key. The public keys KA and KB are long-term public keys of A
and B while K′B is a short-term public key chosen by B for this session; encryption of
M using K′B is denoted by Enc′B(M).
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1. A→ B : KA

2. B→ A : KB,K′B
3. A→ B : Enc′B(NA, IDA)

4. B→ A : EncA(NB)

5. B→ A : EncA(SigB(NA))

6. A→ B : Enc′B(H(NB))

Protocol 4.35: AKA protocol

The session key is defined as a function of the shared secret NA⊕NB. The point of
using the temporary public key can be seen if we consider the result of a compromise
of either A’s or B’s long-term private key. Since the private key corresponding to K′B
is not compromised then NA cannot be recovered and so forward secrecy is provided.

Abadi [1] has shown that this protocol is vulnerable to an attack due to the lack
of sufficient authenticating information inside the signature of B in message 5. This
means that an adversary C can interleave a run of the protocol with B with another
run with A in which C masquerades as B. Attack 4.11 shows a specific attacking run:
C replaces B’s short-term public key with a new short-term key K′C. C can use the
signature of message 5 to convince A that C is in fact B. C simply aborts the run with
B after capturing message 6 from A.

1. A→CB : KA

1′. CA→ B : KA

2′. B→CA : KB,K′B
2. CB→ A : KB,K′C
3. A→CB : Enc′C(NA, IDA)

3′. CA→ B : Enc′B(NA, IDA)

4′. B→CA : EncA(NB)

4. CB→ A : EncA(NC)

5′. B→CA : EncA(SigB(NA))

5. CB→ A : EncA(SigB(NA))

6. A→CB : Enc′C(H(NC))

Attack 4.11: Abadi’s attack on AKA protocol

The result of the attack is that A and C share the secret NA⊕NC but A believes
that this secret is shared with B. Abadi pointed out that this attack can be prevented
by including more fields in the signature in message 5; specifically the nonce NB and
the identities of A and B should be included.

A similar attack applies to the other AKA variants. In the versions where both A
and B choose a short-term key, the adversary can replace them both with new short-
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term keys and obtain all encrypted information before sending it on re-encrypted
with the expected key.

4.3.10 Comparison of Key Transport Protocols

Table 4.4 summarises the main features of the main key transport protocols exam-
ined in this chapter. Some additional variants of the protocols listed in the table are
included earlier in this chapter. We record the properties of key control, key fresh-
ness, key authentication and key confirmation in each case, even though in many
cases these properties are not formally proven.

Table 4.4: Summary of major properties of key transport protocols using public key
cryptography

Properties→ Key Key Key Key Attack Security

↓ Protocol control freshness auth. conf. proof

11770-3 Mechanism 1 (4.11) A A A No No No

11770-3 Mechanism 2 (4.12) A A+B A+B B No No

11770-3 Mechanism 3 (4.13) A A+B A+B B No No

11770-3 Mechanism 4 (4.15) B A+B A+B A No Yes

11770-3 Mechanism 5 (4.16) A+B A+B A+B A No No

11770-3 Mechanism 6 (4.17) A+B A+B A+B No No No

Blake-Wilson–Menezes (4.19) B A+B A+B A No Yes

Needham–Schroeder (4.20) A+B A+B A+B A+B Yes Yes

Needham–Schroeder key server (4.23) A+B A+B A+B A+B Yes No

X.509 one-pass (4.24) A A A No Yes No

X.509 two-pass (4.26) A A A No Yes No

X.509 three-pass (4.27) A+B A+B No No No No

Public key Kerberos (4.28) S A+B B A+B Yes No

(I)MSR (4.30) B B A+B A Yes No

Improved Beller–Yacobi (4.32) A A + B A + B A+B No No

TMN (4.34) B B No No Yes No

AKA (4.35) A+B A+B No No Yes No

Because key transport protocols cannot in general provide it, we do not include
forward secrecy in the table. The same applies to resistance to key compromise im-
personation. If we restrict to basic key transport protocols, where all keying material
is chosen by one party and sent encrypted with the other party’s public key, then nei-
ther forward secrecy nor KCI resistance can be provided. This is because knowledge
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of just one party’s private key is then sufficient to obtain the session key. Note that
some of the protocols which we examined in this chapter, such as Protocols 4.22 and
4.25, do not fall into this category. The session key may be based on private inputs
of both parties, as in Protocol 4.22; such a protocol is really key agreement, not key
transport. Also the session key may be only indirectly encrypted with the receiver’s
long-term key, as in Protocol 4.25.

The protocols in the ISO/IEC 11770-3 standard have benefited from the formal
analysis by Cremers and Horvat [229] and have been updated to avoid the problems
they identified. For many applications they are perhaps the best choice of protocol if
key transport is needed.

As remarked at the end of Sect. 4.3.1, the intuitive key confirmation property
of 11770-3 Mechanism 6 has been shown not to hold in general, if optional text
fields are implemented. We also recall that Chen and Mitchell [197] have pointed out
that all protocols in the ISO/IEC 11770 and 9798 series of standards are potentially
vulnerable to parsing ambiguity attacks unless appropriate precautions are taken (see
Sect. 1.4.7).

4.4 Conclusion

The ISO/IEC 11770-3 standard specifies a variety of key transport protocols using
asymmetric cryptography. Blake-Wilson and Menezes provided a proof for a simpli-
fied version of one of these which provides extra confidence in their security. Later,
Cremers and Horvat [229] provided a formal analysis of all the ISO/IEC 11770-3
protocols and found some weaknesses. They proposed changes to avoid the prob-
lems by adding message tags preventing interchanging of messages, and by prevent-
ing arbitrary usage of optional text fields. It would be useful to have security proofs
for each of the protocols. The TLS protocol, discussed in detail in Chap. 6, has been
widely scrutinised and provides an alternative to some of the ISO/IEC protocols.

The other key transport protocols examined in this chapter all seem to have some
problems, and they cannot be recommended over the ISO standard solutions. We
think that the study of these protocols can nevertheless be instructive in understand-
ing typical mistakes in protocol design. Basin, Cremers and Horvat [59] have pro-
posed improvements to several existing protocols to avoid the problem of key com-
promise impersonation.

Recent attention in the research community has focused on key agreement rather
than key transport. One reason for this is that key transport protocols do not usually
provide forward secrecy, which is often possible with key agreement. Key agreement
is the topic of the following chapter.
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Key Agreement Protocols

5.1 Introduction

Key agreement, as the name implies, is a process in which principals cooperate in
order to establish a session key. Amongst the class of public key protocols for key es-
tablishment without a server, key agreement has become much more popular than key
transport in recent years. There is an intuitive feeling that key agreement is ‘fairer’
than key transport and can result in higher-quality random keys than key transport
can. In addition, by basing key agreement on the Diffie–Hellman protocol, forward
secrecy can often be achieved. We will consider these points further below. Notice
that key agreement does not have to use public key cryptography, but most examples
do so. In this chapter we look only at key agreement based on public key cryptogra-
phy; some examples of key agreement using symmetric cryptography were discussed
in Chap. 3.

The definition of key agreement given by Menezes et al. [550] is as follows:

A key agreement protocol or mechanism is a key establishment technique
in which a shared secret is derived by two (or more) parties as a function of
information contributed by, or associated with, each of these (ideally) such
that no party can predetermine the resulting value.

A similar definition is given in the international standard ISO/IEC 11770-3 [383], al-
though it insists that neither party can predetermine the shared secret. In this chapter
we are concerned with key agreement between any two principals A and B. The gen-
eral format of such protocols requires each principal to select an independent input
to the key. For our two principals, these will be denoted rA and rB, respectively. The
principals will then send each other messages depending on rA and rB, and possibly
depending on other values too.

The plan for the rest of the chapter is as follows. Before looking at specific key
agreement protocols, we consider some of the special properties and attacks that
can apply to them. Of course, all the general attacks on key establishment protocols
discussed in Chap. 1 are relevant too.

C. Boyd et al., Protocols for Authentication and Key Establishment, Information  

Security and Cryptography, https://doi.org/10.1007/978-3-662-58146-9_5

165© Springer-Verlag GmbH Germany, part of Springer Nature 2020

https://doi.org/10.1007/978-3-662-58146-9_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58146-9_5&domain=pdf


166 5 Key Agreement Protocols

Section 5.2 looks at the basic Diffie–Hellman protocol and emphasises its prop-
erties and limitations. Then, in Sect. 5.3, we examine in detail a set of protocols
based on Diffie–Hellman which are known as the MTI protocols. This set of pro-
tocols was designed relatively early and serves to illustrate many of the properties
of and potential attacks on key agreement protocols. Section 5.4 includes a num-
ber of more recent protocols whose exchanged messages are identical to those of
Diffie–Hellman. Extra information, particularly public and private keys, is used in
the calculation of the shared secret. Section 5.5 is devoted to protocols that add extra
authentication information to the exchanged messages rather than (or in addition to)
the definition of the shared secret. International standard ISO/IEC 11770-3 specifies
key agreement protocols in an abstract format. These are summarised in Sect. 5.6.
Up to this point all the detailed protocols have been described in the setting of the
multiplicative group of integers modulo a prime p. In Sect. 5.7 we list some alter-
native groups that have been proposed for the Diffie–Hellman protocol. Finally, we
look at some key agreement protocols that do not use the Diffie–Hellman technique
in Sect. 5.8.

5.1.1 Key Derivation Functions

There are usually two stages to forming the session key.

1. The random inputs rA and rB, and possibly the long-term public/private keys, are
combined to form a shared secret, Z.

2. The session key K is formed from Z, and possibly other inputs, using a key
derivation function.

In different protocols, the key derivation function and its inputs will generally be
different. A typical key derivation function is a one-way hash function of the shared
secret and other data such as an algorithm identifier for the session key, a counter
and public information about A and B. A generic key derivation function, known as
KDF1, is specified in the IEEE P1363-2000 standard [372]; although KDF1 does
specify the hash function to be used, the inputs to the function are left open.

Earlier protocols tended to focus only on the shared secret and leave the key
derivation function unspecified. However, since security proofs started to be a ma-
jor focus, it has become normal to be more specific regarding the properties of both
the function and its inputs. Krawczyk [454] proposed a formal definition for se-
cure key derivation functions and proposed a concrete construction. The ISO/IEC
11770-6 standard [384] specifies two-step key derivation functions applying a key
extraction function followed by a key expansion function, the latter of which can be
repeated to obtain further keys. The standard specifies one specific extraction func-
tion which can be combined with any one of four expansion functions. The functions
all make use of a suitable MAC algorithm and follow the general pattern specified
by Krawczyk [454].

Many protocol designers have simply used a hash function for key derivation,
often modelled as a random oracle in the proofs. In our descriptions in this chapter,
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we have usually included the inputs to the key derivation function when they are
specified by the designers. However, we often focus on the shared secret Z, since
this is often the simplest way to highlight the differences between many protocols.

5.1.2 Key Control

One potential benefit of key agreement is that each principal does not have to rely on
any other party to generate appropriate keys. As long as neither party is malicious, it
can often be guaranteed that the session key is sufficiently random if at least one of
the principals is able to generate sufficiently random inputs. A related benefit is that
principals can often be sure that the session key is fresh by ensuring that their own
input is fresh. For this to be true, neither of the principals must be able to force the
key to be any chosen value, otherwise one party could force use of an old key.

Key control is a term used to describe the extent to which principals have the
ability to choose or influence the value of the shared key (or session key). As ex-
pressed in the definitions of key agreement given above, it is usually desired that
neither principal can control the shared secret value.

In most practical situations one party will receive the random input of the other
party before it has had to reveal anything about its own random input. This gives
that party an ‘advantage’ in that it can effectively choose a number of bits of the
session key. Mitchell et al. [559] have pointed out that, by choosing about 2s random
values, the party with the advantage can effectively choose any s bits of the key by
generating new keys until the desired bits occur. Although s will typically be much
less than the total key length, it is important to be aware of this possibility in assessing
the properties of a key agreement protocol.

Mitchell et al. pointed out that such an attempt to control the key can be prevented
by ensuring that both parties fix their random input before information about the
other party’s input is known. Ways to achieve this include strict use of timeouts
and use of a third party, but the most reasonable seems to be to have the first party
send a hash of its random input as a commitment, which will be opened in a later
message after the second party’s random element is received. A major drawback of
this approach is that an extra message is required in the protocol.

A lack of strict key control applies to most published key agreement protocols.
At present, designers do not seem to be concerned enough about it to propose coun-
termeasures.

5.1.3 Unknown Key-Share Attacks

Unknown key-share attacks are applicable in a security model that allows malicious
insiders. The aim of the adversary C is to make one principal, say A, believe that the
session key is shared with C when it is in fact shared with a different principal, B.
The adversary need not, and usually does not, obtain the session key. Nevertheless,
such an attack is profitable to the adversary in an application where B will deliver
some information of value (such as electronic cash) to principal A. Since A believes



168 5 Key Agreement Protocols

the session key is shared with C, credit for this deposit will rest with C. (This means
that this key is not good to establish credit in the sense of Abadi [2].)

Unknown key-share attacks seem to have first been described by Diffie et al.
[253]. Their importance is somewhat controversial, since there are some general
methods that can be used to avoid them. Furthermore, the assumptions made in many
of the proposed attacks are rather unusual. A common scenario is for the adversary to
obtain a public key certificate that has the same public key value as another principal.
(The adversary will not know the corresponding secret key.) There are a number of
methods that can help to defeat the attack.

• Certifiers of public keys can ensure that each entity is in possession of the cor-
responding private key before a certificate is issued. Some authors assume that
this precaution is always taken and do not regard an unknown key-share attack as
valid if the adversary does not know the private key corresponding to the certified
public key.

• Key confirmation can often defeat the attack. The confirmation messages should
include the identities of both principals so that the key is confirmed to be held by
specific claimed entities, rather than known only to some unidentified party.

• A general method to ensure that unknown key-share attacks do not apply is to
include both principal identities within the key derivation function. As long as
the function used is collision-resistant then A, if she believes the key is shared
with C, will not derive the same session key as B, who believes the session key
is shared with A. Somewhat surprisingly, Blake-Wilson and Menezes [110] dep-
recated this method of avoiding unknown key-share attacks on the grounds that
the requirements of key derivation functions have not been widely studied.

5.1.4 Classes of Key Agreement

The most well-known technique used in key agreement protocols is Diffie–Hellman
key exchange [252]; indeed, sometimes key agreement is even used synonymously
with the Diffie–Hellman technique. There are some special advantages of basing key
agreement on Diffie–Hellman.

• Most of the protocols can be generalised to work in any Abelian (commutative)
group. This allows a flexible choice of groups, including some that are particu-
larly efficient in terms of computational and storage requirements.

• Many protocols based on Diffie–Hellman have the forward secrecy property,
which is costly to achieve any other way. (However, several examples in this
chapter show that basing a protocol on Diffie–Hellman does not guarantee that
forward secrecy is achieved.)

It should be remembered that there are other ways of designing key agreement
protocols apart from using the Diffie–Hellman primitive. A widely used alternative
is to use a one-way function of user inputs to derive the session key. There can be
advantages in this approach too.
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• There can be computational savings over Diffie–Hellman by reducing (or elimi-
nating) the number of expensive exponentiations.

• Keys can be guaranteed to be random even if one input becomes known – a
property lacking in Diffie–Hellman-based protocols.

In Sect. 5.8, we will examine protocols using encryption and key encapsulation in
place of Diffie–Hellman.

5.1.5 Protocol Compilers for Key Agreement

Our focus in most of this chapter is on concrete key agreement protocols proposed
in standards and the academic literature. There are also generic methods available
to construct protocols from other primitives or from protocols with weaker security
properties. These are often called protocol compilers. Here we mention some com-
pilers designed for two-party key agreement. In Chap. 9, we will also describe a
compiler due to Katz and Yung designed for group key agreement, which, of course,
includes two-party key agreement as a special case.

Jager et al. [391] designed compilers to combine key agreement protocols secure
against passive adversaries with dedicated authentication protocols in such a way as
to achieve protocols secure against active adversaries. They used a BR-style model
but did not deal with forward secrecy. Their first compiler requires only standard
model arguments, while their second is more efficient but uses a random oracle in
the proof.

Li et al. [488] presented two compilers which take in a protocol Π , secure against
passive adversaries, and add either (deterministic) signatures or CCA-secure encryp-
tion of the transcript of Π . They provided a formal analysis in a BR-style model
including state reveals and forward secrecy (it was required that Π did not use long-
term keys). One potentially useful aspect of these compilers is that they do not require
any modification to the input protocol Π , allowing them to be applied to existing im-
plementations of Π without modification.

Generally, such compilers do not achieve the same efficiency as the dedicated
protocols which we examine in this chapter. However, they allow flexible combi-
nation of protocols and the ability to plug in new protocols whenever they become
available. We emphasise also that the above compilers are not limited to application
to Diffie–Hellman-based protocols, but apply to any key agreement protocol.

5.2 Diffie–Hellman Key Agreement

Diffie–Hellman key agreement was published in 1976 [252].1 This elegant and sim-
ple construction has been the basis for a vast range of protocols, but on its own
lacks any authentication. Later in this chapter we examine different ways to add au-
thentication to produce more effective key agreement protocols. In this section we

1 It seems that the idea was invented previously in 1974 but was not made public at that time
[734].
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introduce Diffie–Hellman and mention some protocols in which one or both of the
Diffie–Hellman inputs are fixed, and which therefore lack some of the usual benefits
of the technique.

In the basic Diffie–Hellman protocol, two principals A and B agree publicly on an
element g that generates a multiplicative group G. They then select random values rA
and rB, respectively, in the range between 1 and the order of G. A calculates tA = grA

and B calculates tB = grB , and they exchange these values as shown in Protocol 5.1.
The shared secret is Z = grArB . This value can be calculated by both A and B owing
to the commutative property of exponentiation: Z = trB

A = trA
B .

Shared information: Generator g of G.

A B

rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = trA
B

tB←−−−−−−− Z = trB
A

Protocol 5.1: Diffie–Hellman key agreement

Diffie–Hellman key agreement was originally described in the multiplicative
group Z∗p of non-zero integers modulo a large prime p. It has become more usual
to define the group G in which the protocol takes place to be a subgroup of Z∗p of
prime order q. (Note that the order of Z∗p is p−1, which cannot be prime.) There are
two potential advantages of this. Firstly, several attacks (to be described shortly) can
be avoided. Secondly, the size of the group G can usually be made much smaller than
Z∗p, which results in computational savings. Typical sizes in use today are 2048 bits
for the length of p and 256 bits for the length of q. Several other algebraic groups
have been proposed as the setting for Diffie–Hellman key exchange. Examples are
given in Sect. 5.7. In particular, elliptic curve groups are popular today. To enable a
uniform presentation, all the Diffie–Hellman-based protocols in this chapter are de-
scribed with G as a subgroup of Z∗p, even in cases when the protocol designers have
prescribed other groups.

Diffie–Hellman is secure against passive eavesdroppers on the widely accepted
assumption that it is infeasible to recover grArB from the values of grA and grB . This is
often referred to as the computational Diffie–Hellman (CDH) assumption. Breaking
the Diffie–Hellman problem is clearly no harder than solving the discrete logarithm
problem, since by finding the discrete logarithm of either of the exchanged values the
Diffie–Hellman key can be found. It is a long-standing open question as to whether
the Diffie–Hellman problem is really as hard as the discrete logarithm problem, de-
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spite considerable research on the topic [403, 527]. In formal analysis of Diffie–
Hellman-based protocols, it is often possible only to obtain a proof based on the
generally stronger decisional Diffie–Hellman (DDH) assumption. This states that it
is a hard problem to distinguish between a genuine Diffie–Hellman triple (gx,gy,gxy)
and a triple (gx,gy,gz) for random exponents x, y and z.

The fundamental limitation of the basic Diffie–Hellman protocol is that there is
no authentication of the messages sent. This is illustrated by the well-known ‘man-in-
the-middle’ attack in which the adversary C masquerades as B to A and masquerades
as A to B. Attack 5.1 shows how both A and B complete a normal run, but both share
keys with C, namely grArC and grCrB , respectively.

A C B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rC ∈R Zq

tC = grC
tC−−−−−−−→ rB ∈R Zq

tC←−−−−−−− ZAC = trC
A

tB←−−−−−−− tB = grB

Z = trA
C ZCB = trC

B Z = trB
C

Attack 5.1: Man-in-the-middle attack on basic Diffie–Hellman

The shared secret grArB derived in basic Diffie–Hellman is called an ephemeral
Diffie–Hellman key, since it depends only on randomly chosen values and lasts only
until the session key is derived. In contrast, if A and B exchange their respective long-
term public keys yA = gxA and yB = gxB then both can calculate the value SAB = gxAxB .
This is often called a static Diffie–Hellman key, since it does not depend on any
random input. As we will see in Sect. 5.4, it is a common method to design protocols
based on Diffie–Hellman by mixing the ephemeral and static values in such a way as
to obtain the desired properties.

Static Diffie–Hellman is one example, indeed the most widely seen example in
practice, of non-interactive key exchange (NIKE). A NIKE protocol enables princi-
pals to derive a shared secret without any protocol messages being exchanged. (Of
course, the principals still need to obtain the static keys by some means, but for NIKE
there are no direct protocol messages between principals.) Another example of NIKE
is the SOK identity-based protocol (see Sect. 7.1.3). Freirre et al. [284] proposed sev-
eral different formal security definitions, based on different assumptions regarding
what long-term keys may be registered by the adversary. Their definition requires the
specification of exactly how the session key should be derived from the shared se-
cret. Use of static Diffie–Hellman, or NIKE in general, on its own to derive session
keys falls outside the main focus of this chapter, since any such protocol does not
allow generation of new session keys. However, NIKE can still be a useful building
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block in the generation of key agreement protocols. We mention one example of this
in Sect. 5.5.1.

The static Diffie–Hellman key can be used in a very simple protocol by incor-
porating it together with a fresh value in a one-way function. Suppose that k is a
fixed key derived from SAB. Rueppel and van Oorschot [637] noted that k could be
used to transport a random session key K by sending {K}k or, alternatively, the ses-
sion key could be defined as K =MACK(r), where r is a sequence number or nonce
sent in cleartext. Such protocols could provide implicit key authentication, but fail
to provide some of the typical advantages of key agreement. In particular, there is
no joint key control and neither forward secrecy nor resistance to key compromise
impersonation is provided.

The notation used in this section is included in Table 5.1 and will be used
throughout this chapter for describing Diffie–Hellman-based protocols. We will also
continue to use notation introduced in Table 4.1.

Table 5.1: Notation used throughout Chap. 5

p A large prime (typically between 1024 and 3072 bits).

q A prime (typically between 160 and 256 bits) with q|p−1.

G A group whose order divides p−1. G is often a group of order q, and may be
a subgroup of Z∗p or an elliptic curve group.

g A generator of G.

rA, rB Random integers, typically of the same size as the order of G, chosen by A
and B, respectively. Sometimes we will call these ephemeral private keys.

tA, tB Ephemeral public keys, tA = grA and tB = grB . All computations take place in
Zp.

xA, xB The private long-term keys of A and B, respectively.

yA, yB Long-term public keys of A and B, yA = gxA and yB = gxB . These public keys
will have to be certified in some standard way that we usually ignore.

Z The shared secret calculated by the principals. This may be computed by the
principals in different ways.

K The derived session key.

SAB The static Diffie–Hellman key of A and B, SAB = gxAxB .

NA, NB Nonces chosen by A and B, respectively.

H(.) A one-way hash function. Certain protocols may require specific properties
and may specify particular functions.

x ∈R X The element x is chosen uniformly at random from the set X .

F ?
= G Verify that F and G evaluate to the same value.
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5.2.1 Small Subgroup Attacks

Small subgroup attacks seem to have been first recognised by Vanstone (attributed
in later descriptions [478, 594]). The idea of small subgroup attacks is to exploit
the structure of the group G in which Diffie–Hellman key agreement takes place.
If the order of G is composite then G will have subgroups; furthermore, if grA lies
in some subgroup then so does grArB . The idea of the small subgroup attack is to
force the shared secret to lie in a small set. Then there will be relatively few possible
values available for the session key, which will help the adversary and possibly allow
exhaustive search.

One way to avoid small subgroup attacks is to make G of prime order. This is
frequently done by choosing g to have prime order q, where q|p−1. In this case the
only proper subgroup of G consists of the single identity element. In order to avoid
attacks, it may still be necessary to check that received elements do lie in the correct
group (and are not equal to the identity). See Sect. 5.3.1 for a specific example of a
small subgroup attack.

A related type of attack, first proposed by Lim and Lee [492], exploits small sub-
groups that are outside the subgroup generated by G. In these attacks the adversary,
who is an insider, sends the recipient a value that should be in the group G, but is
mixed with a value outside G. This allows the adversary to gain information about
the value of the victim’s private key. This type of attack can still work when G is a
prime-order subgroup of Z∗p. It can be prevented if the principals ensure that all re-
ceived elements are inside G. Further details, including a specific example, are given
in Sect. 5.3.3.

Zuccherato [784] has summarised the situations in which small subgroup attacks
are a threat, and proposed different ways in which they can be avoided.

5.2.2 ElGamal Encryption and One-Pass Key Establishment

Before considering protocols in which both principals contribute a random value, we
first look at the situation where only one principal does so. These protocols can be
considered as halfway between using static Diffie–Hellman keys and the inclusion of
ephemeral keys. These protocols are useful when it is possible only to have commu-
nications in one direction; a typical application scenario would be secure electronic
mail.

ElGamal encryption [267] was not conceived as a key establishment protocol, yet
we can view it in this manner. The sender A forms a shared secret using her random
input rA in combination with B’s long-term yB by calculating Z = yrA

B . On receipt of
an encrypted message and the ephemeral public key tA = grA , principal B is able to
reconstruct the same secret Z = txB

A and so decrypt the message. Evidently B receives
no authentication regarding the session key and cannot even check the freshness of
Z; however, A does obtain implicit key authentication.

Protocol 5.2 shows one-pass key establishment as proposed by Agnew et al. [22].
The static Diffie–Hellman key is used together with a nonce kA to form the shared
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Shared information: Static Diffie–Hellman key, SAB.

A B

rA,kA ∈R Zq

tA = grA ,sA = yrA
B · kA

tA,sA−−−−−−−→ kA = sA/txB
A

Z = SkA
AB Z = SkA

AB

Protocol 5.2: Agnew–Mullin–Vanstone protocol

secret. The nonce kA is sent encrypted from A to B using B’s public key yB: the
ElGamal encryption algorithm is used for this purpose.

The shared secret is Z = SkA
AB. Implicit key authentication is provided for both

parties, since knowledge of either xA or xB is required to form Z. However, B has no
way of knowing that the shared secret is fresh. Entity authentication is not achieved
for either party, and neither is forward secrecy nor protection against key compromise
impersonation. The encryption of kA prevents the adversary from using a known Z
value to obtain SAB and mounting a future active attack.

Nyberg and Rueppel [585, 587] investigated ways of incorporating message re-
covery into signatures based on the discrete logarithm. As an application of this
technique, they suggested the use of ElGamal encryption of a signed session key as
a one-pass key establishment protocol. Protocol 5.3 is their initial protocol [585]. If
the protocol runs correctly then both A and B calculate the shared secret Z = grAxB .

A B

rA,k ∈R Zq

Z = yrA
B

r = grA−k,s = k− xAr mod q
r,s−−−−−−−→ Z = (gsyr

Ar)xB

Protocol 5.3: Original Nyberg–Rueppel protocol

Later, Nyberg [584] pointed out that it is possible for an adversary who finds an
old Z value to replay the old r value and, by replacing the corresponding s with s+u,
to establish a new key K′ = K ·yu

B. She therefore designed the enhanced Protocol 5.4.
This employs a time-varying parameter, which could be a counter. Neither of these
protocols provides forward secrecy, since knowledge of xB allows the adversary to
compute Z in the same way as B.
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Shared information: Time-varying parameter t.

A B

rA ∈R Zq

Z = yrA
B

r = grA ,r′ = H(Z, t)

s = rA− xAr′ mod q
r,s−−−−−−−→ Z = rxB

r′ = H(Z, t)

r ?
= gsyr′

A

Protocol 5.4: Revised Nyberg–Rueppel protocol

Other schemes for authenticated message exchange that are suitable for one-pass
key establishment have been proposed by Horster et al. [365]. (A revised version of
this paper, not formally published, includes an attack on some of the schemes, which
was found by C. H. Lim.) Schemes for combined encryption and signature, known
as signcryption, due originally to Zheng [779], can also be used for this purpose.
Gorantla et al. [324] formally analysed this connection and showed that, with suitable
conditions, secure signcryption schemes can be converted to secure one-pass key
establishment protocols and vice versa.

In Sect. 5.4, we will examine several two-pass key agreement protocols. Most of
these can be converted into one-pass key establishment protocols by replacing the
random input of the receiving party with that principal’s long-term secret. Blake-
Wilson and Menezes [109] discussed this procedure and illustrated its application.

Chalkias et al. [187] proposed a dedicated one-pass protocol and claimed stronger
properties than, for example, one-pass HMQV (see Sect. 5.4.6) particularly with re-
spect to KCI resistance. This interpretation depends on the definition of what con-
stitutes a KCI attack. As Chalkias et al. discussed [187], an adversary who has the
long-term key of recipient B can always replay any one-pass protocol run with B
and obtain the session key. In this sense, no one-pass protocol can achieve KCI re-
sistance. The protocol of Chalkias et al. aims to limit this attack by preventing the
replay from being used to allow the adversary to masquerade as different entities
from the one that originally sent the replayed message. Their protocol is relatively
computationally expensive, requiring three exponentiations on the sender side and an
elliptic curve pairing on the receiver side. It also uses a timestamp indextimestamp
which many designers prefer to avoid.

5.2.3 Lim–Lee Protocol Using Static Diffie–Hellman

We have already seen a one-pass protocol that uses the static Diffie–Hellman key
in Protocol 5.2 above. Lim and Lee [491] proposed a three-pass protocol using the
static Diffie–Hellman key together with random inputs from both principals. This
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allows both parties to be sure that the key is fresh. In Protocol 5.5, the symmetric key
K is a static key derived in some (unspecified) way from the static Diffie–Hellman
key SAB.

Shared information: Shared key K derived from SAB.

A B

NA ∈R Zq
{NA}K−−−−−−−→

{IDA,NB}K⊕NA←−−−−−−−−−−−−−−−− NB ∈R Zq

Z = NA⊕NB
{NA}K⊕NA−−−−−−−−−−−−−−−−→ Z = NA⊕NB

Protocol 5.5: Lim–Lee protocol using static Diffie–Hellman

Lim and Lee suggested that the session key may be defined either as K=NA⊕NB
or as K = K⊕NA⊕NB. As long as A and B both use random inputs, this ensures the
freshness of the key. However, with either of these choices for K it is possible for B to
completely control the session key value. As is usual with protocols using only static
keys, Protocol 5.5 does not provide even partial forward secrecy, since knowledge of
one of the long-term keys is sufficient to find SAB. Key compromise impersonation is
possible too.

5.3 MTI Protocols

Matsumoto, Takashima and Imai (MTI) [526] showed in 1986 how to define three
classes of authenticated key agreement protocols. These incorporate authentication
into the Diffie–Hellman exchange in a very elegant manner by combining the long-
term and ephemeral inputs into a single equation. Although many protocols have
been designed using the same ideas as in the MTI protocols, in their original form the
protocols have various shortcomings. Nevertheless, we look at them in some detail
in this section for two reasons. Firstly, a detailed knowledge of these protocols will
be very helpful in understanding the many protocols based on them. Secondly, they
form a useful vehicle to explain many types of attack on key agreement protocols.

The MTI protocols are divided into three families: A, B and C. Protocol 5.6
shows the basic protocol of type A, denoted A(0). In the original specifications the
subgroup G in which Diffie–Hellman exchange takes place is equal to the whole of
Z∗p; as we will see below, a better choice is to make G a subgroup of prime order q.
When both principals follow the protocol, the shared secret is Z = gxArB+xBrA .

If we accept that knowledge of either xA or xB is required in order to compute
Z, then implicit key authentication follows. Below we will mention a number of
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A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = txA
B yrA

B
tB←−−−−−−− Z = txB

A yrB
A

Protocol 5.6: MTI A(0) protocol

potential attacks on the scheme that show that this assumption is not always valid.
As with any two-pass key agreement protocol, key confirmation is not achieved in
the basic protocol.

Matsumoto et al. [526] showed that there is an infinite sequence of protocols
with a related format. Protocol 5.7 shows the A(k) class of protocols, defined for
any integer k. When both principals follow the protocol, the shared secret is Z =

gxArBxk
B+xBrAxk

A .

A B

rA ∈R Zq

zA = gxk
ArA

zA−−−−−−−→ rB ∈R Zq

zB = gxk
BrB

Z = zxA
B yxk

ArA
B

zB←−−−−−−− Z = zxB
A yxk

BrB
A

Protocol 5.7: MTI A(k) protocol

This sequence of protocols constitutes one of the three classes of MTI protocols.
These classes are all of the same basic format: they involve only two messages and
achieve implicit key authentication but no key confirmation. Table 5.2 summarises
the base (k = 0) protocols for each of the classes A, B and C; in this table, zA and zB
are the messages sent from A to B and from B to A, respectively. The computational
effort needed by each principal in protocols A(0) and B(0) is the same and consists of
one exponentiation before message exchange and one multi-exponentiation to obtain
the key. Protocol C(0) is slightly less complex, since an ordinary exponentiation only
is required to obtain the key.

For each sequence, to obtain the k’th protocol from the base protocol the ex-
ponent in zA must be multiplied by xk

A and that in zB by xk
B. The equation used to

compute Z by A must use rAxk
A in place of rA, and the equation for B to compute Z

must use rBxk
B in place of rB. The exponents needed to calculate the shared secret for
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Table 5.2: Base protocols for each class of MTI key exchange

Type zA zB Z Computed by A Computed by B

A(0) grA grB gxArB+xBrA zxA
B yrA

B zxB
A yrB

A

B(0) yrA
B yrB

A grA+rB zx−1
A

B grA zx−1
B

A grB

C(0) yrA
B yrB

A grArB zx−1
A rA

B zx−1
B rB

A

each protocol are shown in Table 5.3. Note that the protocols for negative k values
are only well defined in the case that xB is chosen to be invertible in G (for example,
xB must be prime to p− 1 in the case that G = Z∗p). The extra computational effort
required by the variants with parameter k is one exponentiation with an exponent of
size |k|.

Table 5.3: Exponent of shared secret for each MTI protocol

k A(k) B(k) C(k)

−1 xAx−1
B rB + xBx−1

A rA x−1
A rA + x−1

B rB x−1
A rAx−1

B rB

0 xArB + xBrA rA + rB rArB

1 xAxBrB + xBxArA xArA + xBrB xArAxBrB

2 xAx2
BrB + xBx2

ArA x2
ArA + x2

BrB x2
ArAx2

BrB
...

...
...

...

k xAxk
BrB + xBxk

ArA xk
ArA + xk

BrB xk
ArAxk

BrB

The MTI protocols provide an elegant and flexible approach to authenticated key
agreement and have been the subject of considerable scrutiny in the research com-
munity. A number of attacks have been proposed which we examine now. It is worth
noting that all known attacks can be prevented by use of suitable countermeasures.

5.3.1 Small Subgroup Attack

A small subgroup attack (see Sect. 5.2.1) applies to the MTI protocol sequence C(k)
in the situation that the group G is the whole of Z∗p, as originally proposed. We
suppose that the factorisation of p− 1, which is the order of G, is known to the
adversary. The attack is easiest in the case that p− 1 has a very small factor r; let
us write w = (p−1)/r. The attack works by raising the exchanged messages to the
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power w, which moves these elements into the small subgroup of G of order r. Attack
5.2 shows a small subgroup attack on MTI protocol C(1). The adversary C plays in
the middle between A and B.

Shared information: Generator g of Z∗p. Small factor r of p−1. w = (p−1)/r.

A C B

rA ∈R Zq

zA = yrAxA
B

zA−−−−−−−→
zw

A−−−−−−−→ rB ∈R Zq
zB←−−−−−−− zB = yrBxB

A

Z = (zw
B)

rA
zw

B←−−−−−−− Z = (zw
A)

rB

Attack 5.2: Small subgroup attack on MTI C(1)

The shared secret calculated by A and B is

Z = gxArBxBrAw.

Since this is an element in the small subgroup, C can easily find the shared secret by
exhaustive search and verify it from subsequent use in communications between A
and B. Notice that in the extreme case when r = 1 it follows that w = p−1, and so
the element received by both A and B is 1.

This small subgroup attack can be prevented by making G a subgroup of prime
order q. In addition, it is necessary to check that the received elements really are in
the group G and are not equal to the identity.

5.3.2 Unknown Key-Share Attacks

Menezes et al. [551] discovered unknown key-share attacks on all the classes of MTI
protocols. All the attacks require the adversary C to obtain a certificate for a long-
term key yC which is related to the public key of A by the equation yC = yxC

A = gxAxC .
This means that C cannot know the private key xAxC corresponding to the public key
yC. Attack 5.3 shows an unknown key-share attack on the MTI protocol B(0).

The shared secret calculated by A is (y
rBx−1

C
C )x−1

A grA = grB+rA , while B calculates
(yrA

B )x−1
B grB = grA+rB to get the same value. Although A and B both have the same

session key, A believes it to be shared with B, while B believes it to be shared with
C. There are several ways to avoid the attack, including:
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Shared information: Public key of C is yC = yxC
A .

A C B

rA ∈R Zq

zA = yrA
B

zA−−−−−−−→
zA−−−−−−−→ rB ∈R Zq
zB←−−−−−−− zB = yrB

C
zC←−−−−−−− zC = zx−1

C
B

ZAB = zx−1
A

C grA ZBC = zx−1
B

A grB

Attack 5.3: Unknown key-share attack on MTI B(0)

• having certification authorities check that principals know the corresponding pri-
vate key before issuing a public key certificate;

• including the principal identities in the key derivation function.

Menezes et al. [551] suggested adding to the message returned by B a hash of
the key generated and B’s randomised reply. A must check this on receipt of message
2 and abort the protocol if the check fails. Protocol 5.8 shows MTI B(0) modified
in this way. Just and Vaudenay [407] pointed out that the protocol is still insecure if
degenerate values such as 0 or 1 are accepted by A. For example, in Protocol 5.8 the
adversary C can masquerade as B if A will accept the response (uB,h) = (0,H(0,0));
the shared secret is calculated by A as 0 and is known to C.

Shared information: Hash function H.

A B

rA ∈R Zq

zA = yrA
B

zA−−−−−−−→ rB ∈R Zq

zB = yrB
A ,Z = zx−1

B
A grB

Z = zx−1
A

B grA
zB,h←−−−−−−− h = H(zB,Z)

H(zB,Z)
?
= h

Protocol 5.8: Modified MTI B(0) protocol
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5.3.3 Lim–Lee Attack

Lim and Lee [492] devised ingenious attacks on interactive protocols that work in
prime-order subgroups. Their attack is applicable to MTI variants in which G is a
prime-order subgroup. As already mentioned, this is desirable in order to avoid small
subgroup attacks on C(k) protocols and is also very beneficial in terms of the savings
in computational requirements due to smaller exponent sizes.

The idea of the attack is that the adversary C will engage in a run of the protocol
with the victim B. For B the run will seem normal, but in the first message C sends
a value that is not in the group G; consequently, the key calculated by B will give
away information about B’s long-term secret key xB. In an interesting echo of the
prime-order subgroup attack discussed in Sect. 5.3.1, this requires that (p− 1)/q,
rather than q itself, contains many small factors. Attack 5.4 illustrates the procedure
on MTI protocol A(0).

Information known to C: β of small order r with r|(p−1)/q.

C B

rC ∈R Zq

tC = grC
β tC−−−−−−−→ rB ∈R Zq

tB = grB

ZCB = txC
B yrC

B = ZBC/β xB
tB←−−−−−−− ZBC = (β tC)xB yrB

C
Test each value of xB mod r

Attack 5.4: Lim–Lee attack on MTI A(0)

Suppose that β is an element whose order r is a small factor of (p− 1)/q. The
shared secret is calculated by B as ZBC = (β tC)xB yrB

C . Now, since txB
C = yrC

B and yrB
C =

txC
B , C can calculate ZBC/β xB and, since there are only r possible values for β xB ,

C can try out each of these in turn. There are a number of ways that C can verify
whether the correct value has been found. One is if a check function is returned by B
as in the modified MTI protocol of Menezes et al. described in Protocol 5.8 above.
Another possibility is if A waits for an authenticated message sent by B following
the protocol. Whatever the method used, having identified the value of ZBC, C can
obtain β xB , which reveals the value of xB mod r. To complete the attack, C repeats
this procedure with new factors of (p− 1)/q in place of r until the value of xB is
obtained. A very similar attack applies to all the A(k) and B(k) MTI protocols.

Lim and Lee suggested two ways to avoid this attack. The first is that each re-
cipient of a protocol message must check that the received value lies in G. The cost
of this is an exponentiation, which is a significant extra computational burden. The
second method, which they favour, is to choose the prime p so that (p−1)/q has no
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small factors apart from 2. In this case the attack will give away one bit of informa-
tion about the principal’s secret: the adversary chooses β =−1, with order r = 2, to
obtain xA mod 2.

5.3.4 Impersonation Attack of Just and Vaudenay

Just and Vaudenay [407] found an impersonation attack on the MTI A(0) protocol on
the assumption that the adversary can claim to have the same identity as the attacked
principal A. This may be possible, for example, in an implementation where several
devices share the same identity. Attack 5.5 shows how C can impersonate A, to A
herself, by choosing tC based on both the message received from A and a random
input. At the end of the attack, both principals calculate the shared secret as yrC

A .

A CA

rA ∈R Zq

tA = grA
tA−−−−−−−→ rC ∈R Zq

tC = t−1
A grC

ZAA = txA
C yrA

A
tC←−−−−−−− ZAC = yrC

A

Attack 5.5: Just–Vaudenay impersonation attack on MTI A(0)

The attack also extends to the whole of the MTI A(k) class of protocols. The
adversary simply returns zC = z−1

A grC , and A will calculate the shared secret as ZAA =
yrC

A . A similar attack is also applicable to the MTI B(0) protocol, although it does not
seem to be quite so strong in this case. If C masquerades as A to A and returns
zC = z−1

A · grC then A will calculate ZAA = gx−1
A rC . Although C cannot calculate this

value directly, C could replay it to get the same key any number of times. Also, if
rC = 0 is chosen, the shared secret becomes ZAA = 1. The obvious way to avoid all
these attacks is for both A and B to ensure that the other has a different identity.

5.3.5 Triangle Attacks

Burmester [167] has shown that a ‘triangle’ attack can be mounted on MTI A(0),
given certain assumptions about the release of session keys. The attack also applies
to the MTI B(0) protocol, as well as to several protocols related to MTI A(0) which
will be mentioned later. The format of the attack is as follows.

1. The adversary C eavesdrops on a session between A and B.
2. C starts separate sessions with A and B in which C uses information gained

during step 1. (C does not obtain the session key used in these sessions as a
result.)
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3. C now induces A and B to reveal the keys used in the sessions between them.
Because A and B believe that the session key should be known to C, this may be
a reasonable assumption in certain application scenarios.

4. With this information, C can recover the key used in step 1.

It can be seen that this attack requires more assumptions than usual. It illustrates
how difficult it is to consider all possible attacks on cryptographic protocols. A spe-
cific example of the triangle attack on the MTI protocol A(0) is as follows.

1. C records the values tA and tB used by A and B to form Z = grBxA+rAxB .
2. C uses tA as its input in a run with B. The agreed key calculated by B is Z′ =

gr̃BxC+rAxB where t̃B = gr̃B is the value sent by B in this run. Similarly, C uses tB
in a session with A, which A uses together with its new value t̃A = gr̃A to generate
a key Z′′ = gr̃AxC+rBxA .

3. C somehow obtains Z′ and Z′′.
4. C can now calculate Z = Z′ · t̃−xC

A ·Z′′ · t̃−xC
B .

Burmester discussed ways to prevent the attack. Perhaps the simplest is the sen-
sible precaution never to reveal previous session keys; good practice is to destroy
session keys immediately after use. Another way is to insist on key confirmation be-
fore using a session key. A generic method to incorporate key confirmation into key
agreement protocols is explained in Sect. 5.4.13.

5.3.6 Yacobi’s Protocol

Yacobi [748] proposed a protocol identical to the MTI protocol A(0) except that a
composite modulus is used. He supplied a proof of security of this protocol based on
the idea that the exchanged messages are independent of the private keys and hence
protocol runs may be perfectly simulated by anyone; therefore a passive attacker
should gain nothing from observing a previous protocol run. Yacobi also claimed
that this argument extends to the case of an active attacker who is able to obtain old
session keys.

Subsequently, Desmedt and Burmester [241] pointed out that it cannot be as-
sumed that a malicious protocol partner will act according to the protocol. They
showed that the protocol must leak information unless the Diffie–Hellman assump-
tion is false. This theoretical result shows that the proof is flawed, but does not result
in any practical attack on the Yacobi or MTI protocols. Desmedt and Burmester
proved that a modified protocol is indeed secure in this model. The messages ex-
changed are identical, but after sending tA = grA and tB = grB both principals engage
in a zero knowledge protocol to show that they know rA and rB, respectively. Now
the protocol will only complete if the principals act ‘correctly’, and so it can always
be simulated.

As well as the drawback of the extra interaction required, the proof of security
of Burmester and Desmedt’s variant does not encompass all the possible actions
of an adversary, and also partial information about the secret is not accounted for.
Therefore it is difficult to say how useful the proof of security is. Indeed, a generic
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unknown key-share attack applies (Attack 5.7), as does Burmester’s triangle attack
(see Sect. 5.3.5).

5.3.7 Forward Secrecy and Key Compromise Impersonation

Since Diffie–Hellman key exchange is known to have the attractive property of for-
ward secrecy, it is natural to expect that the MTI protocols will have this property.
However, this turns out not to be always the case.

The shared secret in MTI protocol A(0) is gxArB+xBrA , which can be found from
knowledge of the long-term keys xA and xB and the exchanged messages. The same
is true for all protocols in the sequence A(k). Again, for the protocols in the sequence
B(k) it is not necessary to know either rA or rB to find the shared secret when both
xA and xB are known; therefore these protocols do not provide forward secrecy ei-
ther. (Both of the sequences A(k) and B(k) do provide partial forward secrecy, since
compromise of only one of xA and xB does not reveal past session keys.)

The shared secret in the MTI protocol C(0) is grArB , the ephemeral Diffie–
Hellman key. The Diffie–Hellman assumption asserts that this secret is hard to com-
pute without knowledge of either rA or rB. Noting that neither rA nor rB can be found
from the exchanged messages, we conclude that C(0) does provide weak forward se-
crecy. A similar argument applies to all the protocols in the protocol sequence C(k).

We now turn our attention to key compromise impersonation. Consider again the
MTI protocol A(0) and suppose that an adversary C has obtained the long-term se-
cret xA of A. In order to masquerade as B to A, C must send some value X in message
2 in such a way that C can find the value XxAyrA

B calculated by A as the session key. If
we assume that A will reject degenerate values such as 0 or 1 then the value cannot
be found without knowledge of either xB or rA, neither of which is available to C.
Therefore we deduce that protocol A(0) is not vulnerable to key compromise imper-
sonation.2 Similarly, in order to attack any protocol in the sequence A(k) the adver-

sary must find an X such that XxAy
rAxk

A
B can be found. Again, this requires knowledge

of either rA or xB and so key compromise impersonation seems impossible.
A similar property holds for the protocol sequence B(k), the difference being that

now the adversary cannot find grA without knowledge of either xB or rA. Therefore
we conclude that the MTI B(k) family is also not vulnerable to key compromise
impersonation.

However, the situation with C(0) is different. Here C needs to find an X such
that Xx−1

A rA may be calculated. With knowledge of xA, C can construct an appropriate
value for X . This observation leads to Attack 5.6. After receiving C’s reply, A calcu-
lates the shared secret as yrArC

B , which can also be calculated by C as zrC
A . Therefore

protocol C(0) is vulnerable to key compromise impersonation. A similar attack also
applies to any protocol in the sequence C(k).

In summary, we find that the sequences A(k) and B(k) provide protection against
key compromise impersonation but do not provide even weak forward secrecy, while

2 Although Just and Vaudenay [407] stated that A(0) is vulnerable to key compromise im-
personation, this statement was later retracted.
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Information known to C: Private key of A, xA.

A C

rA ∈R Zq

zA = yrA
B

zA−−−−−−−→ rC ∈R Zq

zB = yxArC
B

Z = zx−1
A rA

B
zB←−−−−−−− Z = zrC

A

Attack 5.6: Key compromise impersonation attack on MTI C(0)

the situation for the sequence C(k) is exactly the opposite. A natural question that
arises is whether it is possible to achieve both properties at the same time. In
Sect. 5.4, we will examine several protocols which achieve this.

5.4 Diffie–Hellman-Based Protocols with Basic Message Format

In this section, a number of protocols are examined for which the messages ex-
changed are the same as in the basic Diffie–Hellman protocol. Only two message
passes are involved: A sends tA = grA and B sends tB = grB . In contrast to the basic
Diffie–Hellman protocol, the calculation of the shared key involves other compo-
nents in order to achieve authentication of the key. This other information typically
includes the public and private keys of the parties involved, so there is some function
F such that A calculates the shared secret as Z = F(rA, tB,xA,yB) while B calculates
in the symmetrical fashion Z = F(rB, tA,xB,yA). The MTI A(0) protocol discussed
above fits into this class but has a number of potential weaknesses.

We remark that sometimes our presentation of protocols is not identical to that
given in the original sources. In particular, we sometimes drop some fields such as
plaintext identities and returned outgoing messages. Such fields may be useful and
important in practical implementations but do not usually affect the security. Our aim
is to help the reader to see similarities and differences between protocols by making
the presentation as consistent as possible.

One general property is that all protocols in this class are vulnerable to the basic
unknown key-share attack unless extra precautions are taken. Suppose that the adver-
sary C can obtain a certificate for the public key used by B. Then C may sit between
A and B and masquerade as B to A as shown in Attack 5.7.

Principal A calculates the shared secret as ZAB = F(rA, tB,xA,yB), while B cal-
culates ZBC = F(rB, tA,xB,yC) = F(rB, tA,xB,yB) = Z since yC = yB. This attack is
prevented if certificates are issued only to users who have shown that they know the
private key corresponding to their public key. However, even this is not sufficient
to prevent unknown key-share attacks in all cases. Other countermeasures which
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Shared information: yC = yB.

A C B

rA ∈R Zq

tA = grA
tA−−−−−−−→ tA−−−−−−−→ rB ∈R Zq
tB←−−−−−−− tB←−−−−−−− tB = grB

ZAB = F(rA, tB,xA,yB) ZBC = F(rB, tA,xB,yC)

Attack 5.7: Unknown key-share attack on generic protocol

can defeat such attacks were mentioned in Sect. 5.1.3, in particular using key con-
firmation (see Sect. 5.4.13) or including the principal identities in a key derivation
function.

5.4.1 KEA Protocol

Goss [332] was awarded a US patent covering a protocol that is extremely simi-
lar to the MTI protocol A(0). The difference is that the shared secret is defined as
Z = gxArB ⊕gxBrA instead of Z = gxArB ·gxBrA as in MTI A(0). The similarity carries
over into many of the protocol properties: forward secrecy is not provided, but key
compromise impersonation seems impossible. It is also vulnerable to Burmester’s
triangle attack (see Sect. 5.3.5).

The Key Exchange Algorithm (KEA) protocol was designed by the US National
Security Agency for use with the SKIPJACK algorithm in key escrow implemen-
tations [572]. Originally classified, the protocol was released in June 1998 [580].
The KEA protocol is, like the Goss protocol, a variant of the MTI protocol A(0),
as shown in Protocol 5.9. The differences are that the shared secret is defined as
Z = gxArB + gxBrA mod p and that there are extra checks in place. As with the Goss
protocol, KEA inherits resistance to key compromise impersonation, but does not
provide forward secrecy.

The KEA protocol specification includes exact parameter sizes: p is a 1024-bit
prime and G is a subgroup of order q for a 160-bit prime q with q|p− 1. There is
also a particular key derivation function specified, which makes use of the SKIP-
JACK algorithm itself to form the 80-bit session key. As usual, we have omitted the
processing of the certificates which is an essential part of the protocol.

Before calculating the shared secret, several checks should be made. A checks
that the following are true.

1. tB and yB are integers greater than 1 and less than p.
2. tq

B mod p = 1 and yq
B mod p = 1, which ensures that tB and yB are both in G.

B makes the analogous checks. If any check fails then the checking party halts. These
checks prevent most of the attacks described for the MTI protocols. The specification



5.4 Diffie–Hellman-Based Protocols with Basic Message Format 187

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
Z = txA

B + yrA
B mod p Z = txB

A + yrB
A mod p

Protocol 5.9: KEA protocol

also requires each party to check that Z does not equal 0 before accepting the key.
However, Blake-Wilson and Menezes [109] have pointed out that this check seems
unnecessary. If tB and yB are in the prime-order subgroup G then txA

B = −yrA
B would

imply that −1 is an element of order 2 in G. The checks already made before calcu-
lating Z ensure that tB is in G, and as long as yB is a genuine public key it must also
be in G.

Lauter and Mityagin [477] analysed Protocol 5.9 and pointed out that it is vul-
nerable to Attack 5.7 because the principal identities are missing from the specific
KEA key derivation function. They therefore revised the protocol with a key deriva-
tion function H and defined the session key as K = H(gxArB ,gxBrA , IDA, IDB). With
this change, they renamed the protocol KEA+ and were able to provide a security
proof in a Canetti–Krawczyk style model including weak forward secrecy and KCI
resistance, assuming that H is a random oracle and that the gap Diffie–Hellman prob-
lem is hard. They also suggested a variant with key confirmation using MACs in the
manner shown in Sect. 5.4.13.

The Open Protocol for Access Control Identification and Ticketing with privacY,
or OPACITY, is a suite of security protocols designed for use with smart cards [645].
The OPACITY key agreement protocol has similarities with KEA, as well as other
protocols such as the Unified Model protocol (see Sect. 5.4.4), in that the shared
secret has inputs txA

B and txB
A . Some authors [754] have commented on this similar-

ity. However, the similarity applies more at a conceptual level than in the details.
It should also be noted that the OPACITY specification describes much more than
key agreement, including renegotiation of keys, channel security employing session
keys, and privacy enhancements. We do not include details here, since it is hard to
isolate the key establishment aspects from the other aspects. Dagdelen et al. [238]
performed a detailed analysis of OPACITY and showed that it is secure in a Bellare–
Rogaway-style model assuming the difficulty of the Gap Diffie–Hellman problem.

5.4.2 Ateniese–Steiner–Tsudik Protocol

Ateniese et al. [41, 42] examined key agreement for groups. Their general protocol
will be examined in Chap. 6, but here we consider their two-party key agreement pro-
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tocol which was used as a building block. Protocol 5.10 gives a slightly rearranged,
but equivalent, description.

Shared information: Static Diffie–Hellman key SAB.

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

K = H(SAB)
tB←−−−−−−− K = H(SAB)

Z = trA·K
B Z = trB·K

A

Protocol 5.10: Ateniese–Steiner–Tsudik key agreement

The shared secret is Z = grArBK , where K = H(SAB). In the initial paper [41], the
function H is specified as either a hash function with range in Z∗q or simply reduction
modulo q. However, the later version of the paper [42] specifies that H should be a
bijection from G to Zq in the case that p = 2q+1. This latter choice ensures that all
possible chosen secrets will be equally likely.

There are many similarities with the Unified Model protocol (Protocol 5.12) and
the security properties are similar. Specifically, forward secrecy is provided and un-
known key-share attacks are avoided if the principals are guaranteed to know the pri-
vate keys corresponding to their public keys. Key compromise impersonation attacks
are possible, since knowledge of either of the long-term private keys is sufficient to
complete the protocol as either initiator or responder.

5.4.3 Just–Vaudenay–Song–Kim Protocol

Recognising that the MTI A(k) protocols do not provide forward secrecy, Just and
Vaudenay [407] proposed a variant of MTI A(0) with this property. Their protocol
also includes a key confirmation handshake. Later, Song and Kim [685] proposed a
very similar protocol designed for use on elliptic curves and with optimised com-
putation, but the shared key is the same in both protocols. The protocol has some
enhanced properties over MTI A(0) but unfortunately a security weakness is also
introduced, as explained below.

Protocol 5.11 shows a combined version of the two protocols that we call the
Just–Vaudenay–Song–Kim (JVSK) protocol. In keeping with our custom in this sec-
tion we omit the handshake for key confirmation included in the Just–Vaudenay pro-
tocol (Song and Kim also provide variants with key confirmation). Just and Vaudenay
also proposed a variant of the MTI C(0) protocol.
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A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = yrA
B · t

xA+rA
B

tB←−−−−−−− Z = yrB
A · t

xB+rB
A

Protocol 5.11: Just–Vaudenay–Song–Kim protocol

The shared secret is Z = gxArB+xBrA+rArB . Note that Z is the key of the MTI A(0)
protocol multiplied by the ephemeral Diffie–Hellman key. This change allows the
protocol to provide forward secrecy. However, contrary to a claim of Song and Kim
[685], the protocol becomes vulnerable to key compromise impersonation. Attack
5.8 shows how this can be implemented with the adversary C masquerading as B,
using knowledge of xA. The attack still applies if key confirmation messages are
included, as in the Just–Vaudenay version of the protocol.

Information known to C: Private key of A, xA.

A CB

rA ∈R Zq

tA = grA
tA−−−−−−−→ rC ∈R Zq

tC = grC y−1
B

ZAB = yrA
B · t

xA+rA
C

tC←−−−−−−− ZCA = trC
A · t

xA
C

Attack 5.8: Key compromise impersonation attack on Just–Vaudenay–Song–Kim
protocol

There is another flaw in Protocol 5.11, in which an active adversary can replace tA
with y−1

A and tB with y−1
B . In this case B will calculate Z= yrB

A ·y
−xB−rB
A = y−xB

A = S−1
AB .

Similarly, A calculates Z = yrA
B · t

xA+rA
B = S−1

AB and so both principals have agreed the
same key, which is the inverse of their static Diffie–Hellman key. If, as we usually
assume, the agreed key becomes known to the adversary then the attack can be run
again to compromise new sessions. The attack can be avoided if B checks that tA 6=
y−1

A and A does similarly, which adds to the required computation. However, there is
no guarantee that other attacks are not possible even if these checks are included. This
attack will not work in the version of the protocol that includes key confirmation,
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as long at the values of tA and tB are included in the confirmation messages. Such
messages were included in the Just–Vaudenay version of the protocol.

5.4.4 Unified Model Protocol

The Unified Model is a protocol in the NIST SP-800 56A standard [576] which ap-
parently originates in a standards committee document due to Ankney, Johnson and
Matyas in 1995 (cited by Blake-Wilson and Menezes [109]). It has a very simple de-
sign and attractive security properties. As shown in Protocol 5.12, the shared secret is
the concatenation of the static and ephemeral Diffie–Hellman keys: Z = grArB ,gxAxB .

Shared information: Static Diffie–Hellman key SAB.

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = trA
B ,SAB

tB←−−−−−−− Z = trB
A ,SAB

Protocol 5.12: Unified Model key agreement protocol

Before accepting the shared key, A must make the following checks. B makes the
analogous checks.

1. 1 < tB < p. In particular, degenerate values such as 0 and p should not be al-
lowed.

2. tq
B mod p = 1. This ensures that both components of Z are in G as long as A has

chosen tA correctly.

The Unified Model protocol provides forward secrecy, since it is necessary to
know one of the ephemeral private keys to find Z. The direct inclusion of the static
Diffie–Hellman key prevents unknown key-share attacks if the principals have shown
knowledge of the private keys corresponding to their public keys. This is because
derivation of the shared secret requires knowledge of one of the long-term private
keys. However, the protocol does not prevent key compromise impersonation, since
knowledge of either of the long-term keys is sufficient to calculate Z.

Security proofs for the Unified Model protocol were first provided by Blake-
Wilson et al. [107] in the Bellare–Rogaway model. The basic version shown in Pro-
tocol 5.12 was proven secure as long as the Diffie–Hellman assumption holds, but
only with a weakened adversary unable to reveal keys from other sessions. Indeed,
Blake-Wilson et al. [107] pointed out an explicit attack in which the adversary starts
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two sessions with the same party and then reflects the first message from each ses-
sion back to the other session. The two sessions will then accept the same session
key, and knowledge of one session key trivially reveals the other.

Jeong et al. [397] provided a security proof of Protocol 5.12 in the Bellare–
Rogaway model for the case that the session key derivation includes the exchanged
messages, so that K = H(tA, tB,Z) for a key derivation function H modelled as a
random oracle. Note that this variation requires that the initiator and responder are
differentiated, which breaks the symmetry and prevents the attack mentioned above.

The three-round version with key confirmation added (see Sect. 5.4.13) was
proven secure by Blake-Wilson et al. [107] against an adversary able to obtain ses-
sion keys from other sessions. Certainly, in this model key confirmation provides a
useful security function, rather than simply being a convenient hint to the partner
that the key is ready to use. Menezes and Ustaoglu [547] also provided a security
proof in a stronger (eCK-style) model (but still not as strong as eCK) for the three-
round version of the protocol including key confirmation but now relying on the gap
Diffie–Hellman assumption.

5.4.5 MQV Protocol

The MQV protocol was originally due to Menezes et al. [551]. It was later improved
by these authors plus Law and Solinas [478] and standardised in the IEEE P1363-
2000 standard [372].

A special operation is defined on any element t of Zp, which results in the output
t = t mod 2w + 2w. The outputs of the operation are of fixed size w, which must be
large enough to prevent exhaustive search of 2w elements. Typically, w would be
80. Protocol 5.13 shows the message exchange in our usual discrete log setting; the
protocol is often described in an elliptic curve setting, where by convention the group
is written additively.

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

SA = rA + tAxA mod q
tB←−−−−−−− SB = rB + tBxB mod q

Z = (tBytB
B )SA Z = (tAytA

A )SB

Protocol 5.13: MQV protocol

The shared key is Z= g(rA+tAxA)(rB+tBxB). Before accepting the shared key, A must
make the following checks. B makes the analogous checks.
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1. 1 < tB < p. In particular, degenerate values such as 0 and p should not be al-
lowed.

2. tq
B mod p = 1. This ensures that Z ∈G as long as A has chosen tA correctly.

3. Z 6= 1. Together with the previous check, this ensures that Z has order q, pre-
venting any small subgroup attacks.

MQV is designed to provide forward secrecy and also protects against key com-
promise impersonation. The special operation on the exponents destroys the alge-
braic structure; this may have benefits for practical security but at the same time it
obstructs a security proof in terms of any established hard problems. It was shown by
Kaliski [409] that MQV is vulnerable to unknown key-share attacks even in the case
that users have shown possession of their private keys. Attack 5.9 shows Kaliski’s
attack, in which the adversary C intercepts and modifies the message sent by A to B.

A C B

rA ∈R Zq

tA = grA

tA−−−−−−−→ u ∈R Zq

tC = tAytA
A g−u

xC = (tC)
−1u mod q

yC = gxC
tC−−−−−−−→ rB ∈R Zq

tB←−−−−−−− tB←−−−−−−− tB = grB

SA = rA + tAxA mod q SB = rB + tBxB mod q
ZAB = (tBytB

B )SA ZCB = (tCytC
C )SB

Attack 5.9: Kaliski’s unknown key-share attack on MQV protocol

Although C is able to find the private key xC corresponding to yC, it can only be
calculated once the first message tA from A has been seen. An implementation of the
attack would therefore require C to get yC certified before sending on the message tC
to B, a scenario that sounds slightly far-fetched but should not be ruled out without
justification. Kaliski suggested that the attack provides a lesson that an active certi-
fication authority should be considered in any protocol description. Indeed, modern
certificate authorities (CAs) such as Let’s Encrypt using the ACME protocol are def-
initely active online CAs. As usual, the unknown key-share attack may be prevented
by including the identities in the key derivation function. It may also be prevented in
MQV by addition of key confirmation.

The point of using the reduced-size exponents tA and tB is that the total calcu-
lations required by each principal are reduced, by half of one exponentiation, when
compared with most other protocols of this type, such as the Unified Model. On the
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other hand, it may be possible to perform some of the computation offline by choos-
ing random values in advance and assuming the partner’s public key is available. In
such a case two of the required exponentiations may be performed offline for the
Unified Model but only one for MQV, so that MQV requires half of one exponen-
tiation more online computation. A detailed comparison of the Unified Model and
MQV was presented by Blake-Wilson and Menezes [109].

Although there has not been any generic security proof for MQV, Kunz-Jacques
and Pointcheval [462] did provide a security proof for a version of MQV with key
confirmation and in a specific group. Their proof is in a Bellare–Rogaway-style
model and relies on a ‘custom’ variant of the Diffie–Hellman problem tied to the
special definition of t, known as the f -randomized computational Diffie–Hellman
problem. The same authors [463] also formally analysed an MQV variant protocol
designed to be secure in a model differentiating secure storage from less secure com-
putation.

5.4.6 HMQV Protocol

The general MQV protocol has never benefited from a security proof. However, in
2005 Krawczyk [453] proposed a variant protocol, named HMQV, and provided an
extensive security analysis with proofs of various properties.

The essential difference between HMQV and the original MQV (Protocol 5.13)
lies in the way that the values SA and SB are calculated. Specifically, the special op-
eration t = t mod 2w+2w used in MQV is replaced by application of a hash function
H modelled as a random oracle, and with output size |q|/2. The shared secret thus
becomes Z = g(rA+dxA)(rB+exB) where d = H(tA, IDB) and e = H(tB, IDA). In the de-
scription in Protocol 5.14, notice that the session key K is directly specified as the
output of the hash function H ′ with any chosen output length.

Information computed during protocol: d = H(tA, IDB) , e = H(tB, IDA).
A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
SA = rA +dxA mod q SB = rB + exB mod q

Z = (tBye
B)

SA Z = (tAyd
A)

SB

K = H ′(Z)

Protocol 5.14: HMQV protocol
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Publication of the HMQV protocol was followed by significant controversy con-
cerning the security properties of the protocol and their proofs, particularly in com-
parison with the original MQV protocol [543, 545]. One of the main issues relates to
the circumstances in which the public keys, both static keys and received ephemeral
keys, need to be checked to lie within the group G. Sometimes these checks are
needed in order to avoid small subgroup attacks. We refer to such tests as group
membership tests.

Group membership for long-term keys (yA and yB) could be checked by a cer-
tification authority and therefore implicitly provided in the key’s certificate. This is
more efficient than asking the protocol principals to check, since certificates remain
valid for a long period. However, practice shows that certification authorities may
not be diligent in carrying out such checkss so it is not universally accepted that this
is a good solution.

Group membership tests can be costly, but the cost depends to a large extent on
the structure of the group G. HMQV is defined to run in any G with prime order q.
Typical choices for G would be subgroups of Z∗p and elliptic curve groups. In the
former case the group membership check is relatively expensive, close to the cost of
an additional exponentiation, while in the latter case the check is usually cheap or
even free.

HMQV Security

Krawczyk [453] provided several different security proofs for HMQV, depending
on what security properties were considered and which version of the protocol was
analysed. Table 5.4 summarises the different properties for four main situations. For
the two-pass version, as shown in Protocol 5.14, security in the CK model is achieved
under the computational Diffie–Hellman assumption. In order to achieve security
against ephemeral-key disclosure, the assumptions are strengthened to the gap Diffie-
Hellman (GDH) assumption and the knowledge-of-exponents (KEA) assumption.
In addition, as observed by Menezes [543], the protocol must include checks that
the received ephemeral keys lie in G. (The requirements for group membership are
mentioned in the revised HMQV paper, but only in the preface.) All proofs require
that the hash function H has the properties of a random oracle.

Sarr and Elbaz-Vincent [651] found a KCI attack on HMQV in the case that
group membership tests are not applied. The attack is similar to the Lim–Lee attacks
in Sect. 5.3.3, in which the attacker chooses an ephemeral key outside the subgroup
in which the protocol operates. Some special properties of the chosen parameters
need to be satisfied which do not hold in general, but that attack shows at the least
that the security results claimed cannot hold generically. The attack will be detected
and prevented if group membership tests are used. Including both tA and tB in the
computation of d and e also prevents the attack.

Menezes and Ustaoglu [546, 548] observed that HMQV may not be secure in the
post-specified peer model. They described an attack in which A starts the protocol,
sending tA without selecting its peer entity. An adversary finds an identity M so that
d = H(tA, IDB) = H(tA, IDM) for some honest party B. The adversary then registers
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Table 5.4: Security of HMQV protocols

Protocol Security Computational Group membership
version property assumption tests needed

two-pass HMQV CK-secure with CDH No
weak forward secrecy

two-pass HMQV Leakage of GDH and KEA Yes
ephemeral secrets

three-pass HMQV-C CK-secure plus CDH No
full forward secrecy
and key confirmation

one-pass HMQV CK-secure without CDH Yes
replay protection

M as a legitimate party. This allows the adversary to complete an unknown key-share
attack in which A and B compute the same session key, but A believes that the key
is shared with M while B believes it is shared with A. Since this requires finding
a collision in H it is not necessarily practical, but it exploits the birthday paradox
to achieve the attack in less than the expected time. Krawczyk [453, Remark 7.2]
suggested that in cases where the output size of the hash H was small a random
nonce could be chosen and included in the e and d hashes at the time they were first
computed, which would prevent the Menezes and Ustaoglu attack. Another defence
is to include the party identities in the key derivation function used to compute K.

Hao [344] proposed an attack in which the adversary chooses an invalid pub-
lic key within a small subgroup and can complete the protocol without possessing
any private key. While this is a surprising property, it does not violate any claimed
security property so it is debatable whether it constitutes a valid attack.

One-Pass and Three-Pass HMQV

Table 5.4 mentions the three-pass and one-pass variants of HMQV. The three-pass
variant, called HMQV-C, where the C denotes confirmation, adds MACs in the man-
ner of Sect. 5.4.13 and provides full forward secrecy as well as key confirmation.
Note that group membership may be required to avoid the Sarr and Elbaz-Vincent
attack [651], unless other measures are taken as in the FHMQV variant mentioned
below.

The one-pass variant of HMQV consists of a single message tA sent from A to B.
The session key is computed as in Protocol 5.14 with the adjustments tB = e = 1,
SB = xB and d = H(tA, IDA, IDB). Thus A computes Z = yB

SA and B computes
Z = (tAyd

A)
xB . (A later version of the one-pass protocol [343] also adds the identi-

ties of the parties and the protocol message to the key derivation function as recom-
mended by Menezes [543].) The protocol provides the same security as the two-pass
protocol except that B has no way of checking whether or not the received message
is replayed. Such protection can never be provided in a one-pass protocol without
extra mechanisms such as timestamps or counters.
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HMQV variants

Ustaoglu [719] described a protocol called the Unified Protocol, or UP. The shared
secret has two parts, Z1 and Z2, where Z1 = g(rA+xA)(rB+exB) and Z2 = g(rA+dxA)(rB+xB)

with d = H(tA) and e = H(tB). At the cost of one additional exponentiation, UP al-
lows a security proof in the eCK model in a relatively straightforward manner and
with a tighter reduction than in the HMQV proof. Indeed, the security proof of Us-
taoglu [719] is in the model of Menezes and Ustaoglu [548], called eCK+ by Us-
taoglu [719], which is a stronger model than eCK. The eCK+ model incorporates
security in both pre- and post-specified models.

Sarr et al. [652] explored attacks on HMQV in which the adversary is allowed
to obtain (perhaps partial) information about the internal computed values of the
targeted principal, specifically the secret exponents SA and SB and the shared secret
input to the key derivation function H ′. They showed that if such information is avail-
able then there are attacks on HMQV and they therefore proposed a variant protocol,
which they called FHMQV. The changes in FHMQV compared with Protocol 5.14
consist of increasing the set of inputs to the two hash computations. Specifically the
new values of d and e become d = H(tA, tB, IDA, IDB) and e = H(tB, tA, IDA, IDB),
while the computation of the session key becomes K = H ′(Z, tA, tB, IBA, IDB). In ad-
dition, group membership tests are required for the received ephemeral keys. Later,
Liu et al. [498] criticised the analysis of FHMQV, observing that the model used was
incomparable with that used by Krawczyk, and also claiming gaps in the proof for
FHMQV. This latter claim was later addressed by Sarr and Elbaz-Vincent [651], who
provided new proofs.

Zhao and Zhang [775] proposed a protocol which they called sHMQV, with
strong similarities to FHMQV. Again the differences from HMQV are the inputs
to the hash functions, which are identical to those used in FHMQV except that IDA
is dropped from d and IDB is dropped from e. The main difference comes in how
sHMQV is analysed. Zhao and Zhang [775] used a model involving a trusted hard-
ware module, which was used to hide the ephemeral secrets rA and rB from the
adversary while allowing access to the exponents SA and SB.

Pan and Wang [598] described a variant of HMQV using the twin Diffie–Hellman
technique of Cash et al. [184]. They called the resulting protocol TMQV. The ad-
vantage of this idea is that it removes the GDH assumption in favour of the CDH
assumption. However, it does double the size of the public key and, as pointed out
by Pan and Wang, gives a non-tight security reduction.

5.4.7 NAXOS Protocol

As discussed in Chap. 2, LaMacchia et al. [470] introduced the eCK security model
in 2007 and accompanied it with a protocol design known as NAXOS.3 Protocol 5.15
shows the protocol messages and the computation of the shared secret.

3 The protocol name is not an acronym, but a Greek island different from Kea.
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A B

r′A ∈R Zq

rA = H(r′A,xA)

tA = grA
tA−−−−−−−→ r′B ∈R Zq

rB = H(r′B,xB)

tB = grB

tB←−−−−−−−
Z = txA

B ,yrA
B , trA

B Z = yrB
A , txB

A , trB
A

K = H ′(Z, IDA, IDB)

Protocol 5.15: NAXOS protocol

The shared secret consists of three components: gxArB ,grAxB ,grArB . The specifi-
cation requires that these are combined with the principal identities to form the ses-
sion key using a key derivation function. There is some similarity between NAXOS
and earlier protocols such as those of Just and Vaudenay and of Song and Kim (see
Sect. 5.4.3). In particular, the components are almost the same as those used in Pro-
tocol 5.11, but there are two significant differences.

• The exponents are not added together, but rather simply concatenated in a specific
order. This means that the protocol principals must be aware of some ordering of
who should take the role of A and who should take the role of B.

• Instead of using the random values r′A and r′B directly as ephemeral Diffie–
Hellman values, they are first hashed together with the long-term keys xA and
xB respectively. The reason for this is that an adversary who obtains the random
values r′A and r′B does not obtain the shared secret, and this allows the NAXOS
protocol to be secure in the eCK model.

Intuitively, it can be seen that any adversary who lacks one of the pairs (xA,r′A) or
(xB,r′B) out of the set {xA,r′A,xB,r′B} is unable to compute the shared secret. LaMac-
chia et al. [470] provided a security proof of Protocol 5.15 in the eCK model assum-
ing that the gap Diffie–Hellman problem is hard.

A variant protocol known as NAXOS+ was proposed by Lee and Park [480],
which adds the static Diffie–Hellman value into the computation of the shared secret.
Lee and Park showed that this change, which adds one exponentiation per principal,
allows the protocol to be proven secure in the eCK model under the computational
Diffie–Hellman assumption. A different protocol due to Huang and Cao [367] has
similar properties to NAXOS+ but requires a pair of long-term keys for each party.
Barthe et al. [57] showed, with the help of machine support, that security of the
original NAXOS can be proven assuming only the computational Diffie–Hellman
assumption if long-term keys are always generated honestly (i.e. not by the adver-
sary).
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The NAXOS Trick

The technique of hashing together the random value and the long-term key has be-
come known as the NAXOS trick and has been repeated in several later protocols. As
mentioned above, the technique allows protocols such as Protocol 5.15 to be proven
secure in the eCK model, where the adversary can obtain r′A and r′B but is still unable
to find useful information about the shared secret.

In some ways, the NAXOS trick seems artificial. It is justified by an assumption
that an attacker may have access to the random values generated by protocol prin-
cipals but not to other values computed using those random values. Note that it is
possible, and often specified for particular protocols, that the values rA and rB are
recomputed just before they are needed in the computation of tA and tB and, later, in
the computation of Z. This means that the rA and rB values are never stored. But does
this necessarily mean that they are more secure? That must depend on the physical
implementation and what parts of the system may be controlled or accessed by the
adversary. It has been pointed out by Ustaoglu [719] that side-channel attacks may
be an effective way to obtain rA and rB values, especially when pre-computation is
used. This has been used as an argument to avoid the NAXOS trick, but eCK-secure
protocols avoiding such tricks seem to be less efficient. Examples are the HMQV
variant Unified Protocol [719] (see Sect. 5.4.6) and a variant of Protocol 5.21 [566].

The NAXOS trick uses a hash function modelled as a random oracle for the
security proof. A related idea, sometimes called the twisted PRF trick, avoids using
a hash function to allow the trick to work within a standard-model proof. In the
twisted PRF trick, the long-term and ephemeral keys are used alternately as the key
and the input to independent pseudo-random functions (PRFs). Later we will see the
twisted PRF trick applied in Protocols 5.21 and 5.44.

We note that, strictly speaking, protocols using the NAXOS trick do not fit into
this section, since they do not use the basic Diffie–Hellman messages. However,
since they use no explicit authenticating information, we feel that it makes sense to
set them beside other protocols whose messages do have the basic Diffie–Hellman
format.

5.4.8 CMQV Protocol

In comparison with the HMQV protocol, Ustaoglu [718] identified two disadvan-
tages of NAXOS. First, the protocol is less efficient, requiring in total four expo-
nentiations per party as compared with the 2.5 needed in HMQV. Second, there is
no natural way to derive a one-pass version of NAXOS; for example, if tB = 1 is
chosen, then the shared secret essentially reduces to gr′AxB , allowing an attacker to
freely choose r′A and to masquerade as A. At the same time, Ustaoglu recognised
the additional security properties of NAXOS as well as the simplicity of the proof
in comparison with HMQV. This motivated the protocol CMQV [718] (combined
MQV), which aims to achieve the efficiency and flexibility of HMQV with the secu-
rity and ease of proof of NAXOS. Protocol 5.16 show the message flows and secret
key computation for CMQV.
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Information computed during protocol: d = H(tA, IDA, IDB) , e = H(tB, IDA, IDB).

A B

r′A ∈R Zq

rA = H(r′A,xA)

tA = gr′A
tA−−−−−−−→ r′B ∈R Zq

rB = H(r′B,xB)

tB = grB

tB←−−−−−−−
SA = rA +dxA mod q SB = rB + exB mod q

Z = (tBye
B)

SA Z = (tAyd
A)

SB

K = H ′(Z, tA, tB, IDA, IDB)

Protocol 5.16: CMQV protocol

We can say that Protocol 5.16 essentially uses the shared-secret derivation from
HMQV together with the NAXOS trick. Thus the shared secret for CMQV is Z =
g(r
′
A+dxA)(r′B+exB), but note that now d and e depend on both identities, a difference

from HMQV. Ustaoglu presented a proof of security for CMQV in the eCK model
under the gap Diffie–Hellman assumption. In comparison with that for HMQV, the
proof is quite short. However, like that for HMQV, the proof requires application of
the forking lemma, which impacts the tightness of the reduction. It is required that
the message recipients check membership of the group G. Despite the similarity with
HMQV, the hash function H used in CMQV is assumed to map to the whole of G,
rather than mapping to bit strings of half the length of the size of G as in HMQV. This
means that CMQV does not always achieve the same efficiency as HMQV, although
it is always more efficient than NAXOS.

5.4.9 NETS and SMEN

Lee and Park [479] continued on from the CMQV design, looking for efficient proto-
cols which can satisfy eCK security with a simple security proof. In particular, they
addressed the undesirable use of the forking lemma in the security proof of CMQV,
which results in a less tight security reduction. They defined a new protocol, NETS,
shown as Protocol 5.17.

Protocol 5.17 makes use of the NAXOS trick to compute the ephemeral expo-
nents, and the shared secret consists of two components: Z = g(xA+rA)(xB+rB),grArB .
Lee and Park proved security of NETS in the eCK model assuming the difficulty of
gap Diffie–Hellman but without relying on the forking lemma. Subsequently, Barthe
et al. [57] showed, with the help of machine support, that security can also be proven
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A B

r′A ∈R Zq

rA = H(r′A,xA)

tA = grA
tA−−−−−−−→ r′B ∈R Zq

rB = H(r′B,xB)

tB = grB

tB←−−−−−−−
Z = (tByB)

xA+rA , tBrA Z = (tAyA)
xB+rB , tArB

K = H ′(Z, tA, tB, IDA, IDB)

Protocol 5.17: NETS protocol

only under the computational Diffie–Hellman assumption if long-term keys are gen-
erated honestly.

The efficiency of Protocol 5.17 is an improvement upon NAXOS and matches
CMQV when one simply counts the number of exponentiations. However, as ac-
knowledged by Lee and Park [479], CMQV (and also (H)MQV) can use techniques
for multi-exponentiation which are not available for NETS. At the same time, the
tighter security reduction should mean that smaller keys are possible for NETS than
for CMQV, so it is not easy to compare precisely the efficiency for the same security
level.

A later protocol with, at least superficially, similarities with Protocol 5.11 is due
to Wu and Ustaoglu [738]. Known as SMEN (Secure MQV or Efficient NAXOS),
Protocol 5.18 uses the NAXOS trick and incorporates two independent Diffie–
Hellman ephemeral values. The main theoretical advance of SMEN compared with
NETS is that SMEN can exploit multi-exponentation to obtain efficiency improve-
ments. Apart from that, it has similar properties to NETS, particularly those of having
a compact proof without the forking lemma and using the NAXOS trick.

The shared secret is Z = gxArB+xBrA+r̃A r̃B , which looks similar to that of Protocol
5.11, but note the differences due to both the NAXOS trick and the use of two dif-
ferent ephemeral secrets. Wu and Ustaoglu proved that SMEN is secure in the eCK
model based on the gap Diffie–Hellman assumption. Later, Lu et al. [505] demon-
strated a KCI attack on SMEN, but the attack applies only in a different security
model in which the session state from non-target sessions is allowed to be revealed
to the adversary. Wu and Ustaoglu [738] also define a protocol called SMEN−which
avoids using the NAXOS trick at the cost of a small reduction in efficiency.
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A B

r′A, r̃
′
A ∈R Zq

rA = H(r′A,xA)

r̃A = H(r̃′A,xA)

tA = grA , t̃A = gr̃A

tA, t̃A−−−−−−−→ r′B, r̃
′
B ∈R Zq

rB = H(r′B,xB)

r̃B = H(r̃′B,xB)

tB = grB , t̃B = gr̃B

Z = yrA
B · t

xA
B · t̃

r̃A
B

tB, t̃B←−−−−−−− Z = yrB
A · t

xB
A · t̃

r̃B
A

K = H ′(Z, IDA, IDB, tA, t̃A, tB, t̃B)

Protocol 5.18: SMEN protocol

5.4.10 Protocol of Kim, Fujioka, and Ustaoglu

Kim et al. [429] proposed Protocol 5.19 in order to achieve a protocol which avoids
using the NAXOS trick while at the same time maintaining a compact proof in the
eCK model.

Shared information: Public keys: yA, ỹA of A and yB, ỹB of B
Information of A: Private keys: xA, x̃A with yA = gxA , ỹA = gx̃A

Information of B: Private keys: xB, x̃B with yB = gxB , ỹB = gx̃B

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
Z = (tByB)

xA+rA ,(tBỹB)
x̃A+rA Z = (tAyA)

xB+rB ,(tAỹA)
x̃B+rB

K = H ′(Z, tA, tB, IDA, IDB)

Protocol 5.19: Protocol of Kim, Fujioka, and Ustaoglu (KFU)

The shared secret consists of two components:

Z = g(xA+rA)(xB+rB),g(x̃A+rA)(x̃B+rB).
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The format of the shared secret has a similarity with NETS (Protocol 5.17) but the
protocol avoids using the NAXOS trick to derive the exponents for tA and tB. Proto-
col 5.19 requires each principal to have two long-term public/private key pairs. The
computation of Z consists of the same basic operation run twice, once with the first
long-term key pair of both parties, and once with the second.

Kim et al. [429] proved that Protocol 5.19 is secure in the eCK model based
on the gap Diffie–Hellman assumption. They also defined a second protocol which
uses the same pair of long-term keys for each principal but computes Z with four
components:

Z = g(xA+rA)(xB+rB),g(xA+rA)(x̃B+rB),g(x̃A+rA)(xB+rB),g(x̃A+rA)(x̃B+rB).

They proved security of this variant assuming the difficulty of the computational
Diffie–Hellman problem. Although it adds to the computational cost, this variant
still uses only a single basic Diffie–Hellman message exchange. Pan and Wang [598]
pointed out attacks on the KFU protocols in other security models, particularly the
seCK model (see page 79).

5.4.11 OAKE Protocol

The OAKE (Optimally-balanced Authenticated Key Exchange4) protocol was de-
signed by Yao and Zhao [754] as a compromise between the HMQV and KEA pro-
tocols, aiming to benefit from the best aspects of each. Based on the observation that
HMQV has the best known performance in total, while KEA has the best known
performance online (see Sect. 5.4.14), OAKE combines the methods of forming the
shared secret Z in HMQV and in KEA as shown in Protocol 5.20 (compare Proto-
cols 5.14 and 5.9). OAKE even marginally improves on the overall performance of
HMQV by removing one of the hash computations.

The shared secret in Protocol 5.20 is Z = grAxB+rBxA+erArB . Yao and Zhao [754]
proved the security of OAKE in the Canetti–Krawczyk computational model based
on either the gap Diffie–Hellman problem or a combination of the gap discrete loga-
rithm problem and the knowledge-of-exponent assumption.

In addition to computational concerns, Yao and Zhao [754] also considered pri-
vacy issues. They pointed out that KEA, and related protocols whose secret inputs
are of the form yrA

B , can easily be simulated by either party. This means that they pro-
vide a form of deniability. In contrast, (H)MQV, like many other protocols, is much
harder to simulate because the static Diffie–Hellman value gxAxB seems to be required
in order to compute a valid transcript and key. OAKE is easy to simulate, like KEA.
In case deniability was seen as undesirable, Yao and Zhao also defined a variant
protocol called T-OAKE (traceable OAKE) with similar computational properties to
OAKE but which now includes gxAxB in the shared secret component.

4 The authors of the OAKE protocol actually specified a much longer version of the proto-
col name: ‘(toward) Optimally-balanced (implicitly) Authenticated (Diffie–Hellman) Key-
Exchange (in the integrity of protocol efficiency, security, privacy, and easy deployment)’.
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Information computed during protocol: e = H(IDA,yA,IDB,yB, tA, tB).

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
SA = xA + erA mod q SB = xB + erB mod q

Z = yrA
B · t

SA
B Z = yrB

A · t
SB
A

K = H ′(Z)

Protocol 5.20: OAKE protocol

5.4.12 Moriyama–Okamoto Protocols

Okamoto [591] designed Protocol 5.21 with the aim of achieving security in the
eCK model but without using random oracles, so that it can be proven secure in the
standard model. This was the first protocol to use the twisted PRF trick in place of
the NAXOS trick in order to avoid the random-oracle assumption. The long-term
and ephemeral keys are combined using pseudo-random function families F̂ and F̃ .
The hash functions HA and HB, used to compute c and d, are chosen from a family
of target collision-resistant functions.

The shared secret can be shown to be computed equally by A and B as follows:

Z = t
xA,1+cxA,3
B,1 · txA,2+cxA,4

B,2 · t r̃A
B,3 · y

rA
B · ỹ

drA
B

= g
rB(xA,1+cxA,3)
1 ·grB(xA,2+cxA,4)

2 ·gr̃B r̃A
1 ·gxB,1rA

1 ·gxB,2rA
2 ·gxB,3drA

1 ·gxB,4drA
2

= (g
xA,1
1 gxA.2

2 )rB · (gxA,3
1 g

xA,4
2 )crB ·gr̃B r̃A

1 ·grA(xB,1+dxB,3)
1 ·grA(xB,2+dxB,4)

2

= yrB
A · ỹ

crB
A · t

r̃B
A,3 · t

(xB,1+dxB,3)
A,1 · t(xB,2+dxB,4)

A,2 .

From Z, the session key is computed using a special type of function called a
πPRF, or pseudo-random function with pairwise-independent random sources. The
existence of such a function is an assumption of the security proof. In comparison
with other protocols in this section, Protocol 5.21 is quite complex, using five pri-
vate key elements and two public keys elements, exchanging three elements, and
requiring eight basic exponentiations per principal.

Later, Moriyama and Okamoto [566] designed a new version of Protocol 5.21
which avoids the twisted PRF (and NAXOS) trick but requires an even longer public
and private key pair. They also developed a related protocol secure against side-
channel attacks in the so-called leakage resilience model [567].
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Pre-shared information: Two generators g1 and g2 for G. Public keys: yA, ỹA of A and yB, ỹB
of B

Information of A: Private keys: xA,0,xA,1,xA,2,xA,3,xA,4 with yA = gxA,1
1 gxA,2

2 , ỹA = gxA,3
1 gxA,4

2
Information of B: Private keys: xB,0,xB,1,xB,2,xB,3,xB,4 with yB = gxB,1

1 gxB,2
2 , ỹB = gxB,3

1 gxB,4
2

Values computed during protocol: c = HB(IDB, tB,1, tB,2, , tB,3), d = HA(IDA, tA,1, tA,2, tA,3)

A B

r′A, r̃
′
A ∈R Zq

xA = ∑
4
i=0 xA,i

(rA, r̃A) = F̂rA
′(1k)+ F̃xA(r̃

′
A)

tA,1 = grA
1 , tA,2 = grA

2 , tA,3 = gr̃A
1

tA,1, tA,2, tA,3−−−−−−−→ r′B, r̃
′
B ∈R Zq

xB = ∑
4
i=0 xB,i

(rB, r̃B) = F̂rB
′(1k)+ F̃xB(r̃

′
B)

tB,1 = grB
1 , tB,2 = grB

2 , tB,3 = gr̃B
1

Z = txB,1+dxB,3
A,1 · txB,2+dxB,4

A,2 · t r̃B
A,3 · y

rB
A · ỹ

crB
A

tB,1, tB,2, tB,3←−−−−−−−
Z = txA,1+cxA,3

B,1 · txA,2+cxA,4
B,2 · t r̃A

B,3 · y
rA
B · ỹ

drA
B

Protocol 5.21: Okamoto protocol

5.4.13 Adding Key Confirmation

In this section, we have so far considered only key agreement protocols with two
message flows without any key confirmation. All the protocols we have described
can be extended to provide key confirmation in a generic way, and indeed this tech-
nique was explicitly used by many of the protocol authors. Most of the protocols we
have described in this section provide weak forward secrecy. This technique not only
provides key confirmation but also changes a protocol with weak forward secrecy
into one with forward secrecy.

Protocol 5.22 shows the general procedure. In the first two messages A and B ex-
change their ephemeral Diffie–Hellman keys as usual, while in the second and third
they exchange MACs using the derived key K′. To ensure that the protocol does not
give away material to help the adversary, two different hash functions are used, H1
and H2, which are assumed to be independent. The key K′ is calculated using hash
function H1, while H2 is used to derive the shared session key K = H2(Z). This en-
sures that there is no obstacle to a Bellare–Rogaway-style proof of security as a result
of this procedure. Exactly this procedure was used by Blake-Wilson et al. [107, 109]
to provide key confirmation to the Unified Model and prove its security. Yang [752]
provided a formal proof that this process provides explicit entity authentication for
any two-message protocol that is secure in the eCK model.
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Shared information: Two independent hash functions, H1 and H2.

A B

rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

Calculate Z

Calculate Z
tB,MACK′(2, IDB, IDA, tB, tA)←−−−−−−−−−−−−−−−− K′ = H1(Z)

K′ = H1(Z)

Verify MAC
MACK′(3, IDA, IDB, tA, tB)−−−−−−−−−−−−−−−−→ Verify MAC

Protocol 5.22: Generic addition of key confirmation to basic Diffie–Hellman proto-
cols

Although the MACs exchanged contain essentially the same fields, the ordering
is different. This ensures that no MAC may be replayed to the opposite role, either
to the initiator or to the responder of the protocol; in particular, it prevents a simple
reflection of the MAC value in the third message. The inclusion of the message flow
numbers also ensures this.

5.4.14 Comparison of Basic Diffie–Hellman Protocols

Table 5.5 summarises and compares the main features of some of the protocols we
have examined in this section. The table includes only two-pass protocols, although
many protocols also have one-pass and three-pass versions. Due to this restriction we
expect that in most cases only weak forward secrecy will be achieved. As pointed out
in Sect. 5.4.13, such protocols can be converted to ones with strong forward secrecy
by adding key confirmation.

In comparing the computed shared secrets in each protocol, note that those proto-
cols which use the NAXOS trick use values of rA and rB which have been combined
with the respective long-term secrets. SMEN uses two ephemeral keys and KFU uses
two long-term keys; the additional keys are denoted by adding a tilde.

Security properties are arguably the most important issues to compare in Table
5.5. Older protocols often lack some of the basic security properties and usually do
not have a proof of security. They are still interesting, at the least to understand what
can go wrong and why more modern protocols are designed the way they are.

All modern protocols have a proof of security, but the models used are not al-
ways the same. The most common is the eCK model, but some analysts use the CK
model with enhancements to capture KCI resistance and ephemeral-key leakage, de-
noted CK+ in the table. Because the UM protocol does not provide resistance to
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KCI attacks, it cannot be secure in the full eCK model and its proof is in a weakened
version, denoted eCK−. The proof for MQV is in a version of the BR model which
is weaker than the eCK or CK+ models and only applies when key confirmation is
added. More details can be found in the descriptions of the individual protocols. Most
of the security proofs require a random oracle but there are some exceptions, such
as for Protocol 5.21. Many protocols use the NAXOS trick with a random oracle to
hash the ephemeral and long-term secrets, while Protocol 5.21 uses the alternative
twisted PRF trick instead (denoted TPRF in Table 5.5).

The computational requirements are indicated in Table 5.5 by simply count-
ing the number of exponentiations computed by each principal in a protocol run;
this number is divided into those that must be online (after the protocol starts) and
those that may be offline, assuming that the partner’s public key is available and
the ephemeral Diffie–Hellman private key is chosen in advance. It is important to
note that we have counted only those computations required to calculate the shared
secret. For all protocols, it is typically necessary to perform an extra online exponen-
tiation to prevent small subgroup attacks in the case that G is a subgroup of much
smaller size than Z∗p (see Sect. 5.3.1). For MQV and HMQV, the value of one of the
exponents used is half the size of the other exponents, which accounts for the half
exponentiation shown in the table.

Different implementation optimisations are possible in many of the protocols.
Two important ones are multi-exponentiation [550, Algorithm 14.88] and fixed-
based exponentiation [550, Sect. 14.6.3], possibly including pre-computation. These
optimisations can significantly alter the relative efficiency but may require extra stor-
age. Some researchers [429, 719] have estimated the efficiency for many of the pro-
tocols in Table 5.5 taking into account such techniques. However, this is not easy
because different levels of tightness in security proofs can influence what security
parameters can safely be used [719].

Overall, there seems to be no clear winner amongst this class of protocols. Today,
many key exchange protocols are proven to be secure in strong security models. With
the emerging threat of quantum computers which could efficiently find discrete log-
arithms, it may be that none of these protocols will remain secure within a relatively
short time.

5.5 Diffie–Hellman Protocols with Explicit Authentication

In this section we look at protocols that add information to authenticate the Diffie–
Hellman messages exchanged between the parties. In many cases the additional al-
gorithms used for authentication are made deliberately independent of the Diffie–
Hellman exchange, which reduces the chance of ‘unfortunate’ interaction between
different protocol fields. Two features are common in the protocols in this section, in
contrast to those in Sect. 5.4.

• The shared secret is usually the ephemeral Diffie–Hellman key. In this case the
protocol will usually possess forward secrecy as long as the shared secret and
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the long-term keys of the principals are completely independent. There are ex-
ceptions in which protocol designers have reused the ephemeral Diffie–Hellman
inputs in the authentication information.

• The ephemeral public keys are often signed by the principal generating them. In
this case key compromise impersonation is always avoided, since knowing A’s
private key does not help the adversary to forge B’s signature. A similar effect
occurs if the ephemeral public keys are encrypted with the partner’s public key.

From the range of protocols we have identified in the literature, there are three
typical methods of adding authentication to Diffie–Hellman key exchange.

1. The protocols messages, including the ephemeral Diffie–Hellman keys, are
signed with a digital signature.

2. A message authentication code (MAC) is computed and added to the messages,
including the ephemeral Diffie–Hellman keys. The key used for this MAC is
typically derived from long-term keying material of the parties, such as a static
Diffie–Hellman key.

3. A proof of knowledge is added to the messages, proving that the message is
well-formed. This does not provide explicit authentication, but links the sender
to an entity who generated the ephemeral secret key.

It is not immediately obvious why using explicit authentication should be useful
in comparison with the protocols in Sect. 5.4. Adding such fields increases message
lengths and usually will increase computational requirements. Nevertheless, the type
of protocols we examine in this section are more common in the real world than
those in Sect. 5.4. Some possible reasons are:

• entity authentication and key confirmation can be provided, even in one round;
• full forward secrecy can be provided in one round;
• generic solutions are available using standard primitives for signatures and

MACs, which can be replaced when new algorithms become available.

5.5.1 Generic Constructions for Authenticated Diffie–Hellman

In later subsections we will see several concrete constructions for protocols which
add explicit authentication to Diffie–Hellman key exchange in order to provide var-
ious properties. Here we mention a few generic constructions which have typically
been designed to achieve strong security goals, perhaps with less than optimal effi-
ciency.

Boyd and González-Nieto [142] and, later, Cremers and Feltz [234, 235] pro-
vided compilers to convert a one-round protocol into one which provides full for-
ward secrecy, still in only one round. The former compiler works by adding a MAC
to the exchanged messages using a shared key derived from a static Diffie–Hellman
key. The latter compiler uses signatures instead for the same purpose. Although both
provide full forward secrecy according to the usual definitions, the Cremers and Feltz
compiler based on signatures provides security in a slightly stronger model. Gener-
ally, these compilers do not result in very efficient protocols, since they have to be
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applied to protocols which are already secure in models, such as the eCK model, that
provide weak forward secrecy.

Bergsma et al. [90] constructed a generic one-round key agreement protocol rely-
ing on any non-interactive key exchange (NIKE) and secure signature scheme. Their
protocol is not particularly efficient but it does have the benefit that it has a security
proof without relying on random oracles, and in a strong model providing eCK secu-
rity and full forward secrecy in one round. Protocol 5.23 shows the generic protocol
of Bergsma et al. instantiated using Diffie–Hellman for the generic NIKE scheme.

Shared information: Pseudo-random function family F .

A B

rA ∈R Zq

tA = grA
tA,SigA(tA)−−−−−−−→ rB ∈R Zq

tB = grB

tB,SigB(tB)←−−−−−−−
Z1 = yxA

B ,Z2 = txA
B ,Z3 = yrA

B ,Z4 = trA
B Z1 = yxB

A ,Z2 = txB
A ,Z3 = yrB

A ,Z4 = trB
A

T = tA, tB T = tA, tB

K = FZ1(T )⊕FZ2(T )⊕FZ3(T )⊕FZ4(T )

Protocol 5.23: Bergsma–Jager–Schwenk protocol instantiated with Diffie–Hellman

Bergsma et al. [90] proved security of Protocol 5.23 (with any suitable NIKE) in
the eCK-PFS model of Cremers and Feltz [235]. The signature scheme applied was
required to be deterministic in order to avoid problems where leakage of randomness
leads to leakage of long-term signing keys.

5.5.2 STS Protocol

The Station-to-Station (STS) protocol, due to Diffie et al. [253], adds a digital sig-
nature to the exchanged messages to provide authentication for the Diffie–Hellman
protocol. In addition, the shared secret is used to provide further assurances. Protocol
5.24 shows the main version of the STS protocol; a variant in which the encryption
is replaced by the use of a MAC is shown in Protocol 5.26. The shared secret is
Z = grArB and the session key K is derived from Z in some unspecified way.

Because the shared secret is the ephemeral Diffie–Hellman key, forward secrecy
is provided by the STS protocol. Also, the signatures provide protection against key
compromise impersonation, since if a long-term key is lost this does not help an
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A B

rA ∈R Zq

tA = grA
tA−−−−−−−−−−−−−−−−→ rB ∈R Zq

tB = grB

Z = trA
B

tB,{SigB(tB, tA)}K←−−−−−−−−−−−−−−−− Z = trB
A

Decrypt/verify signature
{SigA(tA, tB)}K−−−−−−−−−−−−−−−−→ Decrypt/verify signature

Protocol 5.24: STS protocol of Diffie, van Oorschot and Wiener

adversary to forge a signature of a different entity. Lowe’s attack [502] on the STS
protocol was discussed in Sect. 1.5.6. This shows that the protocol does not provide
mutual belief in the key, or strong entity authentication.

Diffie et al. [253] explained that the symmetric encryption in Protocol 5.24 is
essential in order to prevent unknown key-share attacks. Specifically, without the
encryption, the adversary C could remove the signature of A in the final message and
replace it with C’s own. The result is that A and B both complete the protocol but B
believes that the key is shared with C, while A believes that it is shared with B. An
unknown key-share attack remains possible if the adversary can obtain a certificate
for a public key that is identical to that of the victim (who can be either A or B). In a
similar way to Attack 5.7, the adversary simply relays messages between A and B.

Unknown key-share attacks can be prevented by including the identity of the
partner entity in the signatures exchanged. Moreover, this change provides an ex-
plicit indication of the peer entity so that a stronger form of entity authentication
is achieved (in particular, Lowe’s attack no longer applies). In addition, there no
longer seems to be a need for the symmetric encryption in the protocol. This leads to
the STS variant shown in Protocol 5.25. An essentially identical protocol has been
proven secure using the model of Bellare et al. [72, 178] (see also the description by
Blake-Wilson and Menezes [109]).

The role of the encryption mechanism in the STS protocol can be taken by a
MAC, since its purpose is to ensure that the signing party has possession of the
session key and not to provide confidentiality. This leads to the STS variant [253]
shown in Protocol 5.26. A potential disadvantage in comparison with Protocol 5.24
is the increased length of the second and third messages.

Blake-Wilson and Menezes [110] proposed an unknown key-share attack on Pro-
tocol 5.26. As in the description above, the adversary must register a new pub-
lic key, but since the adversary can choose the correct private key the certifica-
tion process cannot be used to prevent the attack. Given a signature SigA(tA, tB)
used in the protocol run, the adversary C must find a new public key such that
SigC(tA, tB) = SigA(tA, tB). There are two problems that the adversary faces in en-
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A B

rA ∈R Zq

tA = grA
tA−−−−−−−−−−−−−−−−→ rB ∈R Zq

tB = grB

Verify signature
tB,SigB(tB, tA, IDA)←−−−−−−−−−−−−−−−− Z = trB

A

Z = trA
B

SigA(tA, tB, IDB)−−−−−−−−−−−−−−−−→ Verify signature

Protocol 5.25: Modified STS protocol

A B

rA ∈R Zq

tA = grA
tA−−−−−−−−−−−−−−−−→ rB ∈R Zq

tB = grB

Z = trA
B

tB,SigB(tB, tA),MACK(tB, tA)←−−−−−−−−−−−−−−−− Z = trB
A

Verify signature
SigA(tA, tB),MACK(tA, tB)−−−−−−−−−−−−−−−−→ Verify signature

and MAC and MAC

Protocol 5.26: STS protocol using MACs

gineering this situation. The first is to find such a key that satisfies this duplicate
signature property, and the second is to have the new key certified in real time.

Blake-Wilson and Menezes showed that the first problem can be solved for many
popular signature schemes. The second problem has features in common with Attack
5.9 on the MQV protocol. Once this substitution is achieved, the attack proceeds
again, with the adversary simply relaying messages between the parties. However,
this attack can work only against the version of STS using MACs (Protocol 5.26),
and not against Protocol 5.24, because the adversary needs to see the signature in
order to calculate the new public key.

Since the adversary knows the private key of the new public key in this second
attack, asking certifiers to check this knowledge is not sufficient to prevent the attack.
Instead, Blake-Wilson and Menezes suggested a number of preventative measures.
The generic solution of including the principal identities in the key derivation func-
tion still works. Blake-Wilson and Menezes suggested including the identities within
the signature as a preventative measure. However, Baek and Kim [49] showed that
this is still not sufficient, and instead recommended including identities explicitly
within the MAC as well as in the signature.
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5.5.3 Oakley Protocol

In this section, and the following five, we consider protocols designed for practical
use on the Internet. In contrast to the separate key establishment protocols that we
mainly focus on in this book, these sets of protocols can be customised by negotiation
of various protocol features during the protocol run itself. This flexibility can result
in new security threats. More examples of such threats are discussed in Chap. 6 with
respect to TLS.

Oakley is defined in the IETF’s RFC 2412 [596] from 1998. The basic design
is similar to the STS protocol but the specification emphasises the following differ-
ences.

• As part of the protocol, principals A and B choose cookies CKA and CKB, respec-
tively, which are used to mitigate denial-of-service attacks. The correct cookie
must be returned in subsequent messages. The exact format of the cookies is not
specified and it is optional whether or not cookies are exchanged before the key
exchange begins.

• The protocol includes negotiation of cryptographic algorithms that are used to
support the protocol, including the encryption algorithm, key derivation function
and authentication method. The group used for Diffie–Hellman itself can also be
negotiated.

• There need be no use of encryption (or a MAC) for authentication of the session
key. In some versions this allows the session key to be derived after completion
of the protocol if desired.

Several specific protocols are given in the Oakley documentation. We examine
simplified versions of three of these, ignoring some plaintext fields such as a string
indicating the name of the protocol itself. A further option does not use Diffie–
Hellman, and therefore fails to provide forward secrecy.

Protocol 5.27 is named ‘aggressive’ because it anticipates that certain possible
problems will not arise. In particular:

• it only works when B can use the same group as initially proposed and used by A
in the first message;

• it does not force either principal to respond with a cookie before the other prin-
cipal stores state information regarding the connection.

In the first message of Protocol 5.27, principal A offers a list of possible algo-
rithms, list, for encryption, hashing and authentication, which A is prepared to use
for this session. B responds with a particular algorithm set, algo, in message 2. The
nonces NA and NB are chosen by A and B, respectively, and are of unspecified size.
Protocol 5.27 has a similar basic structure to Protocol 5.25, but here A needs to cal-
culate two signatures instead of one.

As well as checking all received signatures, both parties must ensure that the
received ephemeral values are not the degenerate values 1 or p− 1. A specific key
derivation function is used to calculate the session key from the shared secret Z =
grArB as follows:
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A B

rA ∈R Zq

tA = grA CKA, tA,list, IDA, IDB,NA,

SigA(IDA, IDB,NA, tA,list)−−−−−−−−−−−−−−−−→ Verify signature
rB ∈R Zq

tB = grB

CKB,CKA, tB,algo, IDB, IDA,NB,NA,

SigB(IDB, IDA,NB,NA, tA, tB,algo)←−−−−−−−−−−−−−−−− Z = trB
A

Verify signature
Z = trA

B CKA,CKB, tA,algo, IDA, IDB,NA,NB,

SigA(IDA, IDB,NA,NB, tA, tB,algo)−−−−−−−−−−−−−−−−→ Verify signature

K =MACNA,NB(Z,CKA,CKB)

Protocol 5.27: Oakley aggressive-mode protocol

K =MACNA,NB(Z,CKA,CKB). (5.1)

Oakley was specifically designed to provide forward secrecy, which follows from
the use of the ephemeral Diffie–Hellman key as the shared secret. In addition, the
signatures of both parties prevent key compromise impersonation. Unknown key-
share attacks are prevented by inclusion of the principal identities in the signatures,
similarly to Protocol 5.25.

Protocol 5.28 is an Oakley variant designed to prevent disclosure of user identi-
ties, and for this reason the user identities are encrypted instead of being signed. The
identity B′ can be thought of as a domain name for B and may be a generic identity
at the location of B; for example, if B is an entity in a corporate environment, B′ may
be the public key of the corporation, with a known public key. The reason for using
the generic name is so that the recipient node is able to decrypt without receiving the
identity of the recipient in plaintext. An interim key K = H(NA,NB) is used with the
hash function H in order to authenticate the exchange.

In this variant the shared secret is again Z = grArB , and the session key is defined
using Eqn (5.1). Forward secrecy and protection against unknown key-share attacks
are both provided as in Protocol 5.27. Unknown key-share attacks are prevented
because of the encryption of the NA and NB values used in the MAC calculation.

Protocol 5.29 is a ‘conservative’ Oakley variant which exchanges cookies before
the key exchange itself commences. This is the way that cookies were originally de-
signed to work, so that some assurance about the origin of the request is obtained
before the computationally expensive part of the protocol begins, and without re-
quiring the responder to store any state. The first message is simply an indication to
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A B

rA ∈R Zq

tA = grA CKA, tA,list,B′,
EncB′(IDA, IDB,EncB(NA))−−−−−−−−−−−−−−−−→ rB ∈R Zq

K = H(NA,NB)

tB = grB

CKB,CKA, tB,algo,
EncA(IDB, IDA,NB),

K = H(NA,NB)
MACK(IDB, IDA, tB, tA,algo)←−−−−−−−−−−−−−−−− Z = trB

A
Verify MAC

CKA,CKB,

Z = trA
B

MACK(IDA, IDB, tA, tB,algo)−−−−−−−−−−−−−−−−→ Verify MAC

Protocol 5.28: Alternative Oakley protocol

B that the protocol should commence. The consequence of the use of cookies in this
manner is the increased number of messages and rounds required in the protocol.

As in Protocol 5.28, the principal identities are protected in Protocol 5.29 but here
a temporary key K′, derived from the shared secret, is used for this purpose. The first
four messages exchanged are therefore anonymous. Once again, the session key is
defined using Eqn (5.1). Forward secrecy and protection against key compromise
impersonation and unknown key-share attacks appear to be provided as in Protocol
5.28. However, there is an important difference in this protocol which could cause
problems, as we now explain.

The return of the encrypted nonce sent from B to A in Protocol 5.29 opens up
the possibility of an interesting attack in which the adversary masquerades as A, and
subsequently uses the real A as a decryption oracle. The attack depends on an as-
sumption that the message field EncA(NB,NC) sent by B will be interpreted by A as
the encryption of a single nonce when replayed by C in a second protocol run. This
need not be unreasonable, since the length of nonces is variable in the Oakley speci-
fication. In a correct implementation, each nonce should have its length specified and
therefore A should detect the problem and abort the protocol. On the other hand, the
attack would still work if A were to ignore the second nonce and simply decrypt NB,
discarding the second nonce. Therefore we believe that a careless implementation
could be vulnerable to the attack. In more detail, the attack proceeds as follows.

1. C masquerades as A and sends tC = grC to B so that B accepts the temporary key
K′ = H(ZCB) as shared with A.

2. C sends {IDA, IDB,EncB(NC)}K′ to B in the fifth message flow. B will choose a
nonce NB and calculate K = H(NC,NB).
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A B

OK−−−−−−−→

rA ∈R Zq
CKB←−−−−−−−

tA = grA
CKA,CKB, tA,list−−−−−−−−−−−−−−−−→ rB ∈R Zq
CKB,CKA, tB,algo←−−−−−−−−−−−−−−−− tB = grB

Z = trA
B

K′ = H(Z) CKA,CKB, tA,
{IDA, IDB,EncB(NA)}K′−−−−−−−−−−−−−−−−→ K = H(NA,NB)

Z = trB
A

CKB,CKA, K′ = H(Z)
{EncA(NB,NA), IDB, IDA,MACK(IDB, IDA, tB, tA,algo)}K′←−−−−−−−−−−−−−−−−

K = H(NA,NB)

Verify MAC
CKA,CKB,{MACK(IDA, IDB, tA, tB,algo)}K′−−−−−−−−−−−−−−−−→

Verify MAC

Protocol 5.29: Oakley conservative protocol

3. B sends {EncA(NB,NC), . . .}K′ to C as part of the sixth message flow. The adver-
sary can remove the symmetric encryption to obtain EncA(NB,NC).

4. C starts a second protocol run with A. This proceeds normally until the fifth mes-
sage flow, when C sends {IDC, IDA,EncA(NB,NC)}K′′ , where K′′ is a temporary
key shared between C and A.

5. As long as A interprets the pair (NB,NC) as a single nonce from C, she will reply
with {EncC(NA,NB,NC)}K′′ . C can extract NB and so complete the first protocol
run with B.

5.5.4 SKEME Protocol

SKEME is due to Krawczyk [450]. Like Oakley, it is a set of protocols suitable for
negotiation of services in a general networked environment. In addition to it provid-
ing establishment of a good key, Krawczyk [450] stated additional requirements for
SKEME as follows.

Periodic key refreshment: It should be possible to update the session key used at
low computational cost. A special mode of the protocol is included for this pur-
pose.
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Forward secrecy: This property should be available as an option. In some cases it
may be sacrificed for efficiency gains.

Key separation: This is a principle governing how the shared secret is used to ob-
tain session keys. Different cryptographic functions are provided with indepen-
dent keys.

Privacy and anonymity: As well as providing confidentiality of user data, it may
be desirable to hide the identities of the communicating parties. For this reason
the SKEME protocol avoids digital signatures, which can always be used at least
to confirm the identity of the signer.

Denial-of-service protection: SKEME was designed to employ cookies in the same
way as Oakley. This requires an additional initial message exchange that is omit-
ted from the descriptions below (as well as in those of Krawczyk [450]).

Efficiency and simplicity: The design tries to reduce the options and use compact
and uniform message formats. In addition, efficient algorithms such as hash
functions are preferred over the use of digital signatures.

Support for multiple models and algorithms: Certificate and shared key models
are supported. Cryptographic algorithms are specified in a generic sense so as to
avoid dependence on particular primitives.

There are a number of possible protocols.

1. The basic mode, shown as Protocol 5.30, which uses the public keys of both
parties to provide forward secrecy and anonymity of the principals.

2. A version using public keys but without forward secrecy, which is described as
Protocol 5.42 later.

3. A version using an existing shared secret and providing forward secrecy. This is
similar to Protocol 5.30, but the encrypted field in messages 1 and 2 is omitted
and instead the previously shared key is used as the key K0 for the MAC.

4. A rekeying mechanism.

In Protocol 5.30, the nonces NA and NB are shown as being chosen in [0,2L] for
some security parameter; the size of L was not specified by Krawczyk, who said
only that they should be ‘chosen as (pseudo-)random values’. The shared secret is
Z = grArB , with session key K = H(Z).

Krawczyk presented arguments that the simple modes of SKEME, in which K0 is
previously shared, can be proven secure in the Bellare–Rogaway model. Moreover,
Bellare et al. [72] showed that Protocol 5.30 can be derived as an output of their
modular design method, and therefore the protocol inherits a formal proof of security
in their model.

5.5.5 Internet Key Exchange

As part of an initiative to secure the foundations of the Internet, the Internet Engi-
neering Task Force developed an IP security protocol, known simply as IPSec [425],
to provide security services to any application running over the Internet Protocol (IP).
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Shared information: Security parameter L.

A B

NA ∈R [0,2L]

rA ∈R Zq

tA = grA
EncB(IDA,NA), tA−−−−−−−−−−−−−−−−→ NB ∈R [0,2L]

rB ∈R Zq

tB = grB

EncA(NB), tB,

Verify MAC
MACK0(tA, tB, IDB, IDA)←−−−−−−−−−−−−−−−− K0 = H(NA,NB)

K0 = H(NA,NB)
MACK0(tB, tA, IDA, IDB)−−−−−−−−−−−−−−−−→ Verify MAC

Z = trA
B Z = trB

A

Protocol 5.30: SKEME protocol, basic mode

The concerns of IPSec go considerably beyond key establishment, so here we exam-
ine only a very small part of the development. The reader interested in understanding
the complexity of designing an overall system to secure Internet communications is
encouraged to consult the considerable literature on IPSec. We refer to a number of
useful sources in this section.

During the 1990s a number of different key establishment protocols were pro-
posed for inclusion within the IPSec solution. These included Oakley (see Sect. 5.5.3),
SKEME (see Sect. 5.5.4) and Photuris [677]. Through a long and complex evolution
a single proposed Internet standard emerged in 1998, known as Internet Key Ex-
change, or IKE [351]. Owing to many criticisms of the protocols [274, 610, 780,
781], a new version of IKE, IKEv2, was eventually proposed and standardised; we
examine IKEv2 in Sect. 5.5.6.

The IKE protocol is strongly related to the Oakley and SKEME protocols. It has
two phases. The first phase is concerned with establishing a secure channel by key
exchange. The second phase is concerned with using the secure channel to set up
sessions known as security associations, which can be used to protect the confiden-
tiality and/or integrity of exchanged data. However, the need for this split has been
questioned [610] and the indications are that the revised version of IKE will not have
two phases. We will not consider the second phase further here.

The IKE protocols employ cookies similar to those of the Oakley protocol. How-
ever, the protocol specification requires some state to be recorded even in the first
message exchange in order to check a returned cookie. Therefore, although there is
some mitigation of denial-of-service attacks, the result is not as effective as when
stateless cookies are used. In addition it is optional whether cookies are exchanged
at all before the key exchange begins. This weakening of the cookie mechanism has
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received considerable criticism [610]. The protocol also includes negotiation of cryp-
tographic algorithms that are used to support the protocol, including the encryption
algorithm, key derivation function, and authentication method. The group used for
Diffie–Hellman itself can also be negotiated.

Because IKE emerged as a compromise solution, it is not surprising to learn that
it contains a lot of different options. It contains no fewer than eight key establishment
protocols, which can be divided into two sets of four according to whether main mode
or aggressive mode is used. The protocols in main mode use six messages, which can
be divided into three pairs with the following aims.

Stage 1. Exchange cookies and agree on the algorithms to be used.
Stage 2. Exchange ephemeral Diffie–Hellman keys and nonces.
Stage 3. Perform entity authentication and key confirmation.

This division presents an attractive framework, but the large number of exchanges
is another point of significant criticism. The aggressive mode collapses most of the
functionality into only three message exchanges in a more conventional manner. In
general the protocols in aggressive mode suffer from two limitations in comparison
with the main mode.

• Use of cookies is of limited value, since the responder needs to start the compu-
tationally expensive part of the protocol before the cookie exchange is complete.

• Because the Diffie–Hellman exchange begins in the first message, the respond-
ing party can only complete the protocol if the group used is supported by the
responding party. (This can be negotiated in the main mode.)

Protocol 5.31 shows one of the four main versions of the IKE protocol; this one
uses digital signatures for authentication. In Stage 1, principal A offers a list of ac-
ceptable algorithms, list, that A is prepared to use, and B responds with a particular
algorithm set, algo. Once the ephemeral Diffie–Hellman keys have been exchanged
in the second pair of messages, both parties can derive the shared secret and form the
temporary key KM =MACNA,NB(Z), which is used to form the MAC of the protocol
parameters in the final message exchange. We have used the suggestion of Ferguson
and Schneier [274] in replacing the more general keyed hash function used in the
IKE specification with a MAC, since it seems that a MAC is what is required here.
Indeed, HMAC [71] is the only explicit suggestion in the standard for this function.
In addition to KM, several other keys are derived from Z. One of these is used to en-
crypt the final message exchange and is denoted by K′ in Protocol 5.31. We have not
specified the function used to derive K′, but the IKE specification does so in terms of
a generic keyed hash function. Although examples of possible functions are given,
Ferguson and Schneier [274] criticised the lack of any description in the specification
of the properties that such a function should have.

Since the principal identities are hidden in all messages, the protocol provides
anonymity against a passive eavesdropper. However, Perlman and Kaufman [610]
pointed out that an active adversary can discover the identity of A by masquerad-
ing as B during the first two phases, and thereby obtain the correct value of K′. Of
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Shared information: Symmetric key derivation function SKDF . Security parameter L with
64≤ |L| ≤ 2048.

A B
Stage 1

CKA,list−−−−−−−→
CKB,algo←−−−−−−−

Stage 2

CK =CKA,CKB

NA ∈R [0,L],rA ∈R Zq

tA = grA
CK, tA,NA−−−−−−−−−−−−−−−−→ NB ∈R [0,L],rB ∈R Zq

Z = trA
B

CK, tB,NB←−−−−−−−−−−−−−−−− tB = grB

Z = trB
A

Stage 3

KM =MACNA,NB(Z)
K′ = SKDF(KM)

MAB =MACKM(tA, tB,CKA,CKB,list, IDA)

MBA =MACKM(tB, tA,CKB,CKA,list, IDB)

CK,{IDA,SigA(MAB)}K′−−−−−−−−−−−−−−−−→
Decrypt and verify
MAC and signature

CK,{IDB,SigB(MBA)}K′←−−−−−−−−−−−−−−−−
Decrypt and verify
MAC and signature

Protocol 5.31: IKE main protocol using digital signatures
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course, the adversary cannot forge B’s signature and so is unable to complete the
final message of the protocol. But if A were a mobile station who wished to protect
her location then the attack could be deemed successful. Perlman and Kaufman sug-
gested that, to protect A’s identity, the contents of the final message should be moved
back to the fourth message. Although this means that a similar active attack is now
possible against B’s identity, they argued that the initiator is more vulnerable to such
an attack in a typical application involving a mobile client connecting to a server.
Moreover, this suggestion reduces the number of messages by one.

Ferguson and Schneier [274] pointed out that a reflection attack is possible on
Protocol 5.31. The adversary masquerades as B and simply copies and returns the
values CKA and tA in place of CKB and tB in the first two stages. Then A will also
accept her own signature reflected back in the final message. Of course, the attack is
only meaningful if A will accept her own identity as the identity of her peer principal.
Since IKE may be configured only to authenticate IP (machine) addresses, this may
not be an unreasonable assumption. This is an attack against the key confirmation
and entity authentication properties; the adversary does not obtain the shared secret.
The attack also applies to the main mode of IKE, when authentication is based on a
previously shared secret.

The signatures in the final two messages are intended to provide authentication
and integrity of the parameters that have been agreed earlier in the protocol. However,
it is an oversight that the list of algorithms that was offered by A is included in the
MAC, while the set, algos, accepted by B is not part of the calculation. Potential
problems with this omission were described by both Zhou [780] and Ferguson and
Schneier [274]. The adversary can cause A and B to believe that different sets of
algorithms were accepted, or make A accept a weak set and attack the algorithms in
a subsequent session.

Meadows [536] performed a formal analysis of IKE using the NRL Analyzer.
She identified a number of ambiguities in the specification which could lead to in-
secure implementations. Indeed, the incompleteness of the specification has been a
recurring theme in the several analyses of IKE that have been published. Meadows
also pointed out that several of the IKE protocols do not provide strong entity authen-
tication in the sense discussed in Chap. 2. (Meadows refers instead to ‘penultimate
authentication’ as the property that, when an entity accepts a key, the peer entity
should have taken part in the earlier part of the protocol. Here we reinterpret this
to mean that B does not achieve assurance that A has knowledge of B as the peer
entity.) In Protocol 5.31, the adversary C can sit between A and B masquerading as A
to B while A believes the protocol is being executed with C. The protocol messages
are relayed unchanged by C, but the final message from B is simply deleted. Con-
sequently, A will not accept but B completes the protocol properly. The effect is the
same as in Lowe’s attack on STS discussed in Chap. 2 and cannot be accepted as an
attack unless strong entity authentication is a protocol goal. Nevertheless, this extra
property could easily be achieved by including the peer identity in the signatures of
the last two messages of the protocol.
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5.5.6 SIGMA and Internet Key Exchange v2 (IKEv2)

In response to the serious deficiencies in the original IKE protocols, highlighted in
the previous section, a new version of IKE (IKEv2) was introduced. Originally pro-
posed in 2005, the protocol has been updated since and is currently a proposed stan-
dard in RFC 7296 [420]. According to the standard, the main differences between
IKEv2 and the original IKE are simplification, increased efficiency, increased ro-
bustness against denial-of-service, and repair of cryptographic weaknesses.

There are numerous variants and extensions of the IKEv2 protocol. All versions
employ Diffie–Hellman key exchange and later authenticate this initial exchange us-
ing one of several options. We look only at the version which uses signatures to
authenticate the Diffie–Hellman values. The signatures are encrypted with a key de-
rived from the initial ephemeral Diffie–Hellman exchange in order to hide the identi-
ties of the principals. A passive adversary cannot obtain either of the signatures, but
an active adversary can masquerade during the initial unauthenticated messages, ob-
tain the encryption key and reveal the signature (and so the identity) of the first party
to sign. In IKEv2, the initiator sends the first signed message, so it is the responder
that has stronger assurance against disclosure of identity.

The signature version of IKEv2 is based on a design principle for protocols called
the ‘Sign-and-MAC’ approach, or SIGMA, due to Krawczyk and Canetti [180, 452].
Protocol 5.32 shows one specific instance of the SIGMA approach, designed to pro-
tect the identity of the initiator, and hence it is called SIGMA-I.

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

tB,{IDB,SigB(tA, tB),MACKM (IDB)}KE←−−−−−−−−−−−−−−−−
Decrypt then verify
signature and MAC

Z = trA
B Z = trB

A
{IDA,SigA(tB, tA),MACKM (IDA)}KE−−−−−−−−−−−−−−−−→

Decrypt then verify
signature and MAC

Protocol 5.32: SIGMA-I protocol

Protocol 5.32 can be seen to have strong similarities with Protocol 5.26, the MAC
variant of STS, but there are also some important differences. First, note that there
are three symmetric keys derived from the shared secret Z = grArB :
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• K, the session key for use after the protocol is complete;
• KM , the key used for the MAC within the protocol;
• KE , the key used to encrypt the final two messages.

Each of these keys must be independently derived from Z so that revealing one does
not compromise any other. The encryption algorithm, denoted {·}KE is used to hide
the identities of the participants, and must provide authenticated encryption in order
to hide the initiator identity against active adversaries.

Krawczyk [452] explained the design principles behind the SIGMA protocols.
One requirement is that each principal should be able to authenticate even without
knowing the identity of its peer. This allowed Canetti and Krawczyk [180] to provide
security proofs in the post-specified peer model. It may seem strange that the SIGMA
protocol uses both signatures and MACs together. The idea [452] is that the signature
is used only to authenticate the ephemeral Diffie–Hellman values, while the MAC is
used to bind the identities to the key.

Protocol 5.33 shows the (simplified) initial exchanges in the IKEv2 proto-
col [420] when signatures are used for authentication. The full protocol is much more
complex than shown and proceeds with subsequent exchanges used to derive child
security associations. In contrast to Protocol 5.31, cookies for denial-of-service miti-
gation are not shown in Protocol 5.33. Although cookies are allowed in the standard,
they are not used in the basic protocol, since they would add an extra round of com-
munication; in IKEv2, cookies are added only on demand when a denial-of-service
attack is suspected.

As in the SIGMA protocols, the keys KE and KM are independently derived from
the shared secret and nonces. Also similarly, encryption with KE should provide
authenticated encryption independently from the MAC keyed by KM .

There are a number of different possible concrete groups specified in RFC
7296 [420] (and related RFC documents cited within it) in which the Diffie–Hellman
key exchange can be run with a range of parameter sizes. The proposed groups are
included in the set list sent in the first message and chosen by the recipient. Note
that A has to send tA before the Diffie–Hellman group is fixed so A must make an
assumption that her preferred group will be chosen by B. If this does not happen, the
first two messages need to be run again.

Reuse of ephemeral Diffie–Hellman keys is allowed in RFC 7296 [420]; this de-
stroys forward secrecy for the window in which the keys are reused but saves com-
putation. Menezes and Ustaoglu [549] described how small subgroup attacks may be
possible in some scenarios with ephemeral-key reuse. They remarked, however, that
their attacks do not apply to IKEv2 as long as checks are in place to validate group
membership, or groups without small subgroups are used.

In addition to the computational analysis of the core SIGMA protocol of Canetti
and Krawczyk [180], Cremers [233] carried out a symbolic analysis of IKEv2 (and
also IKEv1) using the Scyther tool. The analysis covered many variations of IKEv2,
although this did not include analysis of the identity protection property. Cremers
reported a number of previously unknown weaknesses, including a reflection attack
on subsequent protocol messages following the initial authentication.
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A B
Stage 1: IKE INIT

NA ∈R [0,L],rA ∈R Zq

tA = grA
list, tA,NA−−−−−−−−−−−−−−−−→ NB ∈R [0,L],rB ∈R Zq

Z = trA
B

algo, tB,NB←−−−−−−−−−−−−−−−− tB = grB

Z = trB
A

Stage 2: IKE AUTH

Derive keys KM ,KE from Z,NA,NB

{IDA,SigA(list, tA,NA,NB,MACKM (IDA))}KE−−−−−−−−−−−−−−−−→
Decrypt then verify
MAC and signature

{IDB,SigB(algo, tB,NB,MACKM (IDB))}KE

Decrypt then verify
MAC and signature

Protocol 5.33: IKEv2 protocol, initial exchanges

5.5.7 Just Fast Keying

A protocol strongly related to IKEv2, called Just Fast Keying (JFK), was proposed by
Aiello et al. [23]. Like the SIGMA protocols examined in Sect. 5.5.6, JFK comes in
two versions, called JFKi and JFKr, each designed for identity protection against one
of the two parties involved. The protocols have in-built mechanisms to protect against
denial of service. Protocol 5.34 shows a simplified version of the JFKi protocol,
designed to protect the identity of the initiator A, who may be a client interacting with
a server B. In our description we have omitted the security association information
which includes details of the cryptographic services to be provided in the subsequent
connection.

There is some different notation used in this description. In the first message,
IDB′ is sent by A. This is treated as ‘an indication’ of the identity which A wishes
to connect to. This can be the same as or different from the identity IDB sent back
in the second message. The IP address, IPA, is used in the additional MAC sent in
message 2 and returned in message 3. This is part of the denial-of-service-resistance
mechanisms discussed further below. The field list contains all Diffie–Hellman
groups supported by B, and the algorithms to be used for authenticated encryption
and key derivation during the protocol. If A has already chosen a group disallowed
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Information known to B: MAC key KB

A B

NA ∈R [0,L],rA ∈R Zq

N′A = H(NA)

tA = grA
N′A, tA, IDB′−−−−−−−→ NB ∈R [0,L],rB ∈R Zq

tB = grB

MB =MACKB(tB,NB,N′A, IPA)

list,N′A,NB, tB, IDB,SigB(tB,list),MB←−−−−−−−−−−−−−−−−
Z = trA

B Z = trB
A

Derive key KE from Z,NA,NB

NA,NB, tA, tB,MB,{IDA,SigA(N′A,NB, tA, tB)}KE−−−−−−−−−−−−−−−−→
Verify MAC MB

Decrypt then
verify signature

{SigB(N′A,NB, tA, tB, IDA)}KE←−−−−−−−−−−−−−−−−
Decrypt then

verify signature

Protocol 5.34: JFKi protocol

by B for its choice of tA in the first message, then B will implicitly reject and A will
need to restart using an acceptable group.

As is typical of other protocols in Sect. 5.5, JFK is based on the idea of signing
an ephemeral Diffie–Hellman exchange. Note that although JFKi makes use of a
MAC, independent of the authenticated encryption as in IKEv2, the MAC key KB is
a private one known only to B, in contrast to the shared MAC key used in the IKEv2
and SIGMA protocols. Indeed, this MAC serves a rather different purpose, namely
to allow B to avoid saving per-session state, since B can verify the authenticity of the
parameters returned by A in the third message.

In the first message, the initiator A does not initially send its clear nonce NA
but instead sends a hash of this, N′A. This is part of the denial-of-service mitigation
measures of JFK. The idea is that B will return N′A to the specified IP address IPA and
only the genuine source of N′A will be able to provide the correct inverse value NA,
which is checked by B before engaging in the computationally expensive parts of the
protocol.

Although we have not indicated it in Protocol 5.34, it is worth mentioning that
a design goal of the JFK protocols is to provide flexibility in terms of forward se-
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crecy. It is expected that principals, especially servers in a client–server scenario,
will sometimes reuse ephemeral Diffie–Hellman keys. Aiello [23] and Abadi et al.
[4] discussed a forward secrecy interval, namely the window between generation
of new ephemeral keys. During the interval the ephemeral keys will be stored like
long-term keys, and their compromise would lead to compromise of all keys agreed
during the interval, but not those agreed in earlier intervals.

Abadi et al. [4] applied the pi calculus to analyse the security of JFK. They
reported generally positive results with some minor exceptions regarding identity
protection. Smith et al. [682] analysed the denial-of-service-resistance properties of
JFK using a framework proposed by Meadows [539] and also proposed additional
denial-of-service resistance mechanisms using client puzzles.

5.5.8 Arazi’s Protocol

Arazi’s protocol [37] was designed to integrate Diffie–Hellman with the Digital Sig-
nature Standard (DSS) [577] in such a way that computation is saved. This is done
by overloading the random value chosen by each party to serve two roles: one as the
ephemeral Diffie–Hellman private key and one as part of the signature. The proto-
col has an elegant design and is efficient, but pays for these advantages with some
security weaknesses.

Shared information: Hash function H for DSS signature.

A B

rA ∈R Zq, tA = grA

sA = r−1
A (H(tA)+ xAtA) mod q

tA,sA−−−−−−−→ Verify signature (tA mod q,sA)

rB ∈R Zq, tB = grB

sB = r−1
B (H(tB)+ xBtB) mod q

Verify signature (tB mod q,sB)
tB,sB←−−−−−−−

Z = trA
B Z = trB

A

Protocol 5.35: Arazi’s key agreement protocol

In Protocol 5.35, the value tA is the ephemeral Diffie–Hellman public value, while
sA is calculated so as to make the pair (tA mod q,sA) the DSS signature of tA. The
values tB and sB are calculated in a symmetrical fashion. Both A and B are able to
check the DSS signatures from the received messages and, if they are correct, they
calculate the shared secret as Z = grArB .

Forward security is not provided, since if xB, say, becomes known then rB may be
found from sB and tB using the same equation used by B to calculate sB. Furthermore,
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Nyberg and Rueppel [586] showed that knowledge of one shared secret allows all
subsequent shared secrets to be found by a passive eavesdropper. This may be seen
from the following equality:

ZsAsB = gH(tA)H(tB)+xAxBtAtByH(tA)tB
B yH(tB)tA

A .

If Z is known then gxAxB (which is the static Diffie–Hellman key) may be found, since
all other values are known. When a new instance of the protocol is run between A
and B, the equation can be used again to find the new Z value. Nyberg and Rueppel
suggested that the overloading of the random values rA and rB was the root of the
problem.

Later, Brown and Menezes [159] showed that a key recovery attack is also pos-
sible on Protocol 5.35. This attack follows the same basic idea as the attacks of Lim
and Lee discussed in Sect. 5.3.3, but in addition uses recent lattice-based attacks on
digital signatures to recover the key when only the lower significant bits of rB are
known in several runs.

Several follow-up papers have attempted to improve upon the original design
of Protocol 5.35 by adding extra components or computing in different algebraic
groups [361, 398, 612]. The drawback of most of these variants is that they lose
the original attractive properties of the Arazi protocol, particularly with respect to
efficiency. Even though they may offer improvements in some sense compared with
the original protocol, it is questionable whether there is any advantage compared
with more modern protocols such as those examined in Sect. 5.4.

5.5.9 Lim–Lee Protocols

Lim and Lee [491] proposed five key agreement protocols based on Diffie–Hellman
key exchange. One of these that uses only static Diffie–Hellman was described above
as in Protocol 5.5. A second is essentially the MTI A(0) key agreement protocol with
a special key confirmation mechanism. The remaining three protocols are similar to
Arazi’s protocol [37] in that they include a signature by each party that reuses the
Diffie–Hellman parameters.

Protocol 5.36 uses the signature scheme of Schnorr [657] to authenticate the
messages. The shared secret is the ephemeral Diffie–Hellman key but in this case
forward secrecy is not provided. This is because if xB becomes known then rB can be
recovered from the public values sB and E and then Z = trB

A can be calculated.
Lim and Lee [491] showed that if an adversary obtains one Z value then all

subsequent values may be found in a similar way to the attack of Nyberg and Rueppel
described in Sect. 5.5.8. They pointed out that this attack may be avoided if a one-
way key derivation function is used, and the adversary is assumed to be able to obtain
only K rather than Z.

A variant of Protocol 5.36 redefines the value E as E = ((Z⊕ tA) mod q) mod 2t

for a security parameter t and adjusts the checks made by A and B accordingly. This
has the advantage that there is no extra exponentiation required to find the shared
secret, and so computation is saved.
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A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

tB = grB

E = H(tA, tB)

tB = gsB yE
B

sB,E←−−−−−−− sB = rB− xBE mod q

E ?
= H(tA, tB) Z = trB

A
sA = rA− xAE mod q

Z = trA
B

sA−−−−−−−→ gsA yE
A mod p ?

= tA

Protocol 5.36: Lim–Lee Schnorr-based protocol

A B

rA ∈R Zq

tA = grA
tA−−−−−−−→ rB ∈R Zq

Z = (yAtA)xBrB

E = ((Z⊕ rB) mod q) mod 2t

Z = y(xA+rA)rB
B

rB,E←−−−−−−−
E ?
= ((Z⊕ rB) mod q) mod 2t

sA = rA− xAE mod q
sA−−−−−−−→ gsA yE

A
?
= tA

Protocol 5.37: Lim–Lee Schnorr-based variant

Protocol 5.37 is the final Lim–Lee variant. The shared secret is Z = g(rA+xA)xBrB ,
which is unusual in that it is asymmetric with respect to A and B. Notice that q and t
are both much smaller than p, so knowledge of E and rB does not give a simple way
to recover Z. Unfortunately this protocol also fails to provide forward secrecy since
knowledge of either xA or xB alone allows the calculation of Z. If xA becomes known
then rA can be found from sA and E and then Z = y(xA+rA)rB

B can be recalculated. If xB

becomes known then Z = (yAtA)xBrB can be recalculated. Since Z = SrB(E+1)
AB · yrBsA

B
this protocol shares with Protocol 5.35 the property that knowledge of one Z value
is sufficient to find all subsequent values.
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5.5.10 Hirose–Yoshida Protocol

The protocol of Hirose and Yoshida [357] uses a novel signature scheme designed to
include elements from the ephemeral keys of both entities. Although the signatures
seem similar to those used in the protocols in Sect. 5.5.9, they use an extra random
parameter and this allows the weaknesses of the former protocols to be avoided. The
description in Protocol 5.38 includes some changes of sign in order to maintain our
standard notation for public keys.

A B

rA ∈R Zq

tA = grA
tA, IDA−−−−−−−→ rB,sB ∈R Zq

tB = grB

eB = H(gsB , tB, tA)
wB = sB− eBrB− e2

BxB mod q

eB
?
= H(gwB(tByeB

B )eB , tB, tA)
tB,eB,wB, IDB←−−−−−−−

sA ∈R Zq

eA = H(gsA , tA, tB)

wA = sA− eArA− e2
AxA mod q

eA,wA−−−−−−−→ eA
?
= H(gwA(tAyeA

A )eA , tA, tB)
Z = trA

B Z = trB
A

Protocol 5.38: Hirose–Yoshida key agreement protocol

The signature parameters formed by B are defined as eB =H(gsB , tB, tA) and wB =
sB− eBrB− e2

BxB mod q, where sB is randomly chosen for this signature. The values
eA and wA are formed by A in an analogous fashion. On receipt of message 2, A
must verify the signature. A will respond with message 3 only if this signature is
correct. On receipt of message 3, B must verify the signature from A. If the protocol
completes successfully then both A and B calculate the shared secret as the ephemeral
Diffie–Hellman key Z = grArB . The extra random values sA and sB prevent rA and rB
becoming known even if xA and xB are known, and therefore forward secrecy is
provided. As long as the signatures cannot be forged, resistance to key compromise
impersonation is provided too.

Unknown key-share attacks are possible on Protocol 5.38 if an adversary can
arrange a certified public key equal to that of a victim. The adversary can then simply
change either of the identifiers in the first two messages and make the other party
believe that the secret is shared with the adversary. Baek and Kim [49] have shown
that the more sophisticated unknown key-share attacks constructed by Blake-Wilson
and Menezes [110] apply to this protocol too, by showing that duplicate signatures
can be found for the signatures used.
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5.5.11 Jeong–Katz–Lee TS3 Protocol

Jeong et al. [397] proposed three one-round protocols making use of the static Diffie–
Hellman value in different ways. The first two protocols are roughly equivalent to
having a shared secret equal to the static Diffie–Hellman protocol, and to the Unified
Model protocol (Protocol 5.12). Protocol 5.39 shows their third protocol, TS3, which
makes use of a MAC to authenticate the ephemeral Diffie–Hellman key. The MAC
key, KM , is derived from the static Diffie–Hellman value – although the details of
how to derive KM are left open, one suggestion is to simply hash the static key gxAxB

using a cryptographically strong hash function.

Shared information: MAC key KM derived from static Diffie–Hellman value, gxAxB .

A B

rA ∈R Zq

tA = grA
tA,MACKM (IDA, IDB, tA)−−−−−−−−−−−−−−−−→ Verify MAC

rB ∈R Zq

tB = grB

Verify MAC
tB,MACKM (IDB, IDA, tB)←−−−−−−−−−−−−−−−−

Z = trA
B Z = trB

A

Protocol 5.39: Jeong–Katz–Lee protocol TS3

Jeong et al. [397] provided a security proof for Protocol 5.39 in a Bellare–
Rogaway-style model, including forward secrecy and assuming the difficulty of the
decision Diffie–Hellman problem. The protocol does not protect against key com-
promise impersonation, since an adversary who obtains either one of the long-term
keys xA and xB can masquerade as either A or B.

A protocol very similar to Protocol 5.39 was derived by Boyd et al. [139] by a
rather different route (and published, by coincidence, at the same conference). They
proposed a generic authenticator based on applying a MAC derived from the static
Diffie–Hellman value. When applied to the basic (ephemeral) Diffie–Hellman pro-
tocol this yields the same structure as that of Protocol 5.39, but over three rounds
instead of one and providing explicit entity authentication.

5.5.12 YAK Protocol

Hao [344, 345] highlighted the general principle of checking the format of received
protocol messages and applied this principle to design a protocol known as YAK.
As shown in Protocol 5.40, the key computation in YAK is quite similar to that in
Protocol 5.11. The shared secret computed by A and B is Z = gxArB+xBrA+rArB+xAxB ,
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so that it now includes the static Diffie–Hellman key as one component. There is also
a similarity with HMQV; indeed, YAK can be seen as a special variant of HMQV
(Protocol 5.14) in which a degenerate hash function is used so that the values d and
e in HMQV are both equal to 1.

A B

rA ∈R Zq

tA = grA
tA,KP(rA)−−−−−−−−−−−−−−−−→ Verify knowledge proof

rB ∈R Zq

tB = grB

Verify knowledge proof
tB,KP(rB)←−−−−−−−−−−−−−−−−

Z = (yB · tB)xA+rA Z = (yA · tA)xB+rB

Protocol 5.40: YAK protocol

A significant difference from Protocols 5.11 and 5.14 is that YAK includes a so-
called knowledge proof in the exchanged messages. This component should allow the
recipient to check that the sender has knowledge of the ephemeral secret key chosen.
In Protocol 5.40, the notation KP(r) denotes a knowledge proof of the value r. While
the implementation of KP(r) is left flexible in the protocol specification, a concrete
suggestion in the paper is to use a Schnorr signature on a message which contains
the sender identity and other protocol details. Since Schnorr signatures are designed
as non-interactive proofs of knowledge of a discrete logarithm this intuitively pro-
vides the requires proof of knowledge of r. This knowledge proof is essential to the
security of the YAK protocol. For example, if it were omitted then a key compromise
impersonation, very similar to Attack 5.8, would be possible.

While Hao provided a detailed security analysis of the YAK protocol [345],
this did not use any of the common computational models or provide a reduction-
ist proof. Because an impostor can generate a valid protocol message while choosing
the ephemeral secret key, YAK can only achieve weak forward secrecy.

Toorani [713] pointed out that a malicious principal can force the agreed key to
take on a fixed value. Specifically, A could choose tA = y−1

A and then B computes
the shared secret to the value 1. This is a severe failure of the key control property.
Toorani also described various attacks on the YAK protocol and explained how to
prevent them. Specific measures proposed by Toorani were to include the identities
of the principals and the exchanged messages in the key derivation function (omitted
in Protocol 5.40) and to check that the static and ephemeral Diffie–Hellman values
are of order q.
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5.5.13 DIKE Protocol

As its name implies, the Deniable Internet Key Exchange (DIKE) protocol of Yao
and Zhao [755] focuses on privacy aspects, particularly strong deniability. Instead of
using signatures for authentication, the protocol makes use of proofs of knowledge
of the private ephemeral and long-term keys rather like Protocol 5.40. Protocol 5.41
shows the protocol messages.

A B

rA ∈R Zq

tA = grA
sid, tA−−−−−−−−−−−−−−−−→ rB ∈R Zq

tB = grB

KP(rB) =

H(sid, IDB, tB, tA, tArB)

Verify knowledge proof
sid, IDB, tB,KP(rB)←−−−−−−−−−−−−−−−−

KP(xA,rA) =

H(sid, IDA, tA, tB, tBxA , tBrA)

sid, IDA,KP(xA,rA)−−−−−−−−−−−−−−−−→ Verify knowledge proof
KP(xB,rB) =

H(sid, IDB, tB, tA, tAxB , tArB)

Verify knowledge proof
sid,KP(xB,rB)←−−−−−−−−−−−−−−−−

Z = trA
B Z = trB

A
K = H ′(Z, tA, tB)

Protocol 5.41: DIKE protocol

Yao and Zhao provided a security proof in the post-specified peer model of
Canetti and Krawczyk [180]. This includes forward secrecy but not KCI resistance;
indeed, it is easily checked that knowledge of the long-term key of A is sufficient for
an adversary to masquerade as any other party to A. The protocol specification makes
use of a session identifier, sid, which must be unique for each session. as required in
the CK model. The concrete specification of sid is left open but one suggestion of the
designers is to use the concatenation of nonces exchanged prior to the protocol run.

The use of proofs of knowledge is reminiscent of the YAK protocol (Proto-
col 5.40), but here the proofs are simply hashes of relevant fields, with the hash
function H treated as a random oracle. The fields to be hashed are chosen in such a
way that either of the two parties is able to construct the proofs in order to aid denia-
bility. Neither party uses its long-term key before knowledge of the peer’s ephemeral
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key has been checked, guaranteeing that the peer can indeed compute the proofs for
either side.

Yao and Zhao [755] also specified an ID-based version of Protocol 5.41. It has
a similar structure but uses pairings to compute the static key, replacing the static
Diffie–Hellman value used in the knowledge proofs in Protocol 5.41.

5.5.14 Comparison of Authenticated Diffie–Hellman Protocols

Table 5.6 compares some of the major properties of the protocols of this section.
Many of these protocols are aimed at practical application on the Internet and pro-
vide extended properties such as identity protection and denial-of-service resistance.
This makes comparison of the protocols difficult, but explains why these may be of
significant interest even if they are less efficient than many of the protocols examined
in Sect. 5.4.

Table 5.6: Summary of major properties of key agreement protocols using explicit
authentication

Properties→ No. of Denial-of-service Resists Forward Security

↓ Protocol passes mitigation KCI secrecy proof

STS (5.24, 5.26) 3 No No Yes No

Oakley aggressive (5.27) 3 No Yes Yes No

Oakley conservative (5.29) 7 Yes Yes Yes No

SKEME (5.30) 3 No Yes Yes Yes

IKE main (5.31) 6 Yes Yes Yes Yes

SIGMA (5.32) 3 Yes Yes Yes CK

IKEv2 (5.33) 4 Yes Yes Yes CK

JFK (5.34) 4 Yes Yes Yes CK

Lim–Lee (5.36, 5.37) 3 No Yes No No

Hirose–Yoshida (5.38) 3 No No Yes No

JKL TS3 (5.39) 2 No No Yes CK

YAK (5.40) 2 No No Weak Custom

DIKE (5.41) 4 No No Yes CK

A feature of many of these protocols is that either a signature is required from
each principal, or each principal is required to decrypt some protocol parameters with
their private key. For this subclass of protocols, key compromise impersonation will
always be resisted. Protocols which use a MAC, which can be computed by either
party, or a knowledge proof typically do not achieve KCI resistance.
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We have included mitigation of denial-of-service attacks in Table 5.6 since this
is a common feature sought for protocols used on the Internet, several of which are
listed. However, it should be noted that the mechanisms employed for denial-of-
service resistance, such as cookies for reachability and puzzles for proofs-of-work,
are typically independent of the other protocol messages and can be added generi-
cally, even if they may require additional messages.

Most of the protocols in Table 5.6 achieve full forward secrecy, either by the
use of signatures or by providing key confirmation using more than one round. An
exception is YAK, which is a one-round protocol without explicit authentication.
Several protocols fail to achieve resistance to KCI, in particular when authentication
is achieved using a MAC keyed from the static Diffie–Hellman shared secret. This
can be viewed as a trade-off between security and efficiency.

As is typical today, the more recent protocols come with a security proof in some
computational security model. It is striking that most of the protocols in this category
do not provide protection against leakage of ephemeral secrets, which prevents them
being secure in eCK-type models. This also applies to the most popular Internet
protocol, TLS.

5.6 Protocols in ISO/IEC 11770-3

The international standard ISO/IEC 11770-3 [383] is devoted to key management
techniques using public key (asymmetric) techniques. The key transport protocols in
this standard were discussed in Chap. 4. There are 12 key agreement mechanisms in
the standard; these may be regarded as frameworks for detailed protocols into which
fall many of the protocols we have examined. All the key agreement protocols in
the standard, except for Mechanisms 11 and 12, are based on the Diffie–Hellman
exchange.

Cremers and Horvat [229] analysed all of the key agreement protocols in the pre-
vious, 2008, version of the ISO/IEC 11770-3 standard, using the Scyther tool. Both
versions of the standard contain very similar protocols, except that Key Agreement
Mechanism 12 is not included in the earlier version. Cremers and Horvat confirmed
the properties claimed in the standards for all the protocols with the exception of Key
Agreement Mechanism 11, which we discuss below.

Key Agreement Mechanisms 1, 8 and 12: These are non-interactive key exchange
protocols. A typical concrete example of Mechanism 1 is the static Diffie–
Hellman protocol, although other NIKE protocols also fit the standard. Mech-
anism 8 is differentiated by requiring protocol messages to be elliptic curve
points. Mechanism 12 is an abstract version of the Joux protocol (see Sect. 9.2.7).

Key Agreement Mechanisms 2 and 3: These have one message exchange. Mech-
anism 2 involves a random input from A to form an ElGamal encryption key.
Mechanism 3 adds authentication information from A. The Nyberg–Rueppel
protocol (Protocol 5.4) fits into this category.
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Key Agreement Mechanisms 4 and 5: These are two message exchanges, in which
both principals send an ephemeral public key. Mechanism 4 is simply ephemeral
Diffie–Hellman. Mechanism 5 uses the long-term and ephemeral keys in the cal-
culation of the shared secret. The MTI protocols (see Sect. 5.3) and KEA (Pro-
tocol 5.9) fit into Mechanism 5.

Key Agreement Mechanism 6: This unusual mechanism is related to Protocol 4.13
examined in Chap. 4, but instead of transporting a generated key, the signature
used to respond to a challenge is used as the session key. Without any special
properties of the signature, this is a questionable approach. The protocol cannot
provide forward secrecy. The standard claims that an example of this mecha-
nism is the Beller–Yacobi protocol [83], but it is difficult to recognise any close
similarity.

Key Agreement Mechanism 7: This three-message protocol is the same as Proto-
col 5.25, with the exception that a MAC is added to the last two messages to
provide explicit key confirmation in the manner described in Sect. 5.4.13.

Key Agreement Mechanisms 9 and 10: Mechanism 9, with two messages, is an
abstract version of the MQV protocol (Protocol 5.13) or its many variants, in-
cluding HMQV. The standard requires this to take place in elliptic curve groups
and includes cofactor multiplication. Mechanism 10 is a three-pass version of
the same protocol, adding MACs to the second and third messages.

Key Agreement Mechanism 11: This four-message protocol is an abstract version
of the TLS handshake protocol described in detail in Chap. 6. However, the
standard fits only with the RSA version of the handshake protocol, not the Diffie–
Hellman version, since it uses encryption. Cremers and Horvat [229] pointed out
that the protocol provides only unilateral authentication; indeed a long-term key
for authentication is specified only for the party corresponding to the server in
TLS. They also pointed out that the protocol does not provide forward secrecy.

Cremers and Horvat were analysing the second edition of the ISO/IEC 11770-
3 standard in which it was claimed that mutual authentication is provided as well
as forward secrecy. The claim regarding mutual authentication has been removed in
the third edition of the standard, but, curiously, the claim that the protocol provides
forward secrecy remains. This is well known not to be the case, and is perhaps the
main reason that this encryption-based protocol is no longer widely used in TLS and
has been removed in TLS version 1.3.

5.7 Diffie–Hellman Key Agreement in Other Groups

Diffie–Hellman key agreement was originally proposed in the algebraic setting of the
multiplicative group Z∗p and we have used this setting in all our descriptions so far. It
has long been known that the basic structure can be generalised to any commutative
group. In this section we mention some of the most prominent alternative groups that
have been proposed.



5.8 Protocols Based on Encryption or Encapsulation 235

Elliptic curve groups have significant potential advantages over using Z∗p, because
of their greater efficiency and compact representation. Many recent protocols
have been specially designed with elliptic curve implementation in mind rather
than using prime fields. Examples include the MQV (Protocol 5.13) and Oakley
(Protocol 5.27) protocols. The Oakley specification includes a number of candi-
date elliptic curves and also provides for negotiation of new curves during the
protocol. It is sometimes possible to avoid certain attacks because of the struc-
ture of the curve used. For example, elliptic curve groups can be chosen to have
prime order so that there is no need to check whether elements are in a particular
subgroup. There are now a variety of standardised elliptic curve groups available
to protocol designers.

Hyperelliptic curves are generalisations of elliptic curves. The Jacobian group of
a hyperelliptic curve is another setting that has been suggested for the Diffie–
Hellman technique [437]. It seems that there are many open questions with re-
spect to the security and best implementations in this setting. Smart and Siksek
[681] have proposed the use of a different structure on hyperelliptic curves.

Extension fields have been used by several authors. For example, Scheidler et al.
[655] gave details of Diffie–Hellman in real quadratic fields. Brouwer et al.
[158] designed a Diffie–Hellman version using a subgroup of the extension field
GF(p6) which has attractive performance properties. This is related to Lenstra
and Verheul’s XTR group [481] which can also be used for Diffie–Hellman.

Z∗n. McCurley [532] designed a special version of Diffie–Hellman key agreement in
Z∗n when n is the product of two primes, i.e. n = pq. He showed that breaking
this version is equivalent to both factorising n and breaking Diffie–Hellman in
the two subgroups Z∗p and Z∗q. Scott [659] extended Protocol 5.21 to this setting
to obtain an identity-based key agreement protocol for which it was proven that
obtaining the shared secret from the messages exchanged (and any other public
information) is equivalent to factorising the modulus.

Isogenies between elliptic curves can be used to provide Diffie–Hellman analogues
[395, 698]. One promising aspect of this idea is that such variants may be im-
mune to attacks from quantum computers.

5.8 Protocols Based on Encryption or Encapsulation

Many key agreement protocols exist which do not use Diffie–Hellman but instead
rely on encryption. One reason for this can be to achieve a computational advantage,
but simple protocols in this class lack forward secrecy. More recently, key encapsula-
tion mechanisms (KEMs) (see Definition 8) have been applied in place of encryption,
with the specific aim of achieving security proofs without requiring an assumption
of random oracles. Note that protocols in this section still provide key agreement
since both parties have an input to the session key. This differs from the protocols in
Chap. 4, where the session key is generally chosen directly by one party. There are,
however, some cases which are not so clear; for example, Protocol 4.17 can also be
regarded as a key agreement protocol.
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5.8.1 SKEME without Forward Secrecy

The SKEME protocol [450] described in Sect. 5.5.4 has versions with and without
forward secrecy. Protocol 5.42 shows the mode without forward secrecy; it replaces
the Diffie–Hellman exchange in Protocol 5.30 with a simple exchange of nonces
chosen by A and B.

Shared information: Security parameter L.

A B

NA ∈R [0,2L]

rA ∈R Zq
EncB(IDA,NA),rA−−−−−−−−−−−−−−−−→ NB ∈R [0,2L]

rB ∈R Zq

EncA(NB),rB,

Verify MAC
MACK0(rA,rB, IDB, IDA)←−−−−−−−−−−−−−−−− K0 = H(NA,NB)

K0 = H(NA,NB)
MACK0(rB,rA, IDA, IDB)−−−−−−−−−−−−−−−−→ Verify MAC

K =MACK0(MACK0(rB,rA, IDA, IDB))

Protocol 5.42: SKEME protocol without forward secrecy

The temporary shared secret K0 is calculated as K0 =H(NA,NB). The session key
is calculated by applying the MAC function to the final message:

K =MACK0(MACK0(rB,rA, IDA, IDB)).

Evidently NA and NB, and consequently K, are revealed if the long-term decryption
keys of A and B become known, so forward secrecy is not obtained. However, the
use of public key encryption prevents key compromise impersonation.

A protocol very similar to Protocol 5.42 was standardised by NIST as KAS2-
bilateral-confirmation [578], where RSA is used as the encryption algorithm. The
difference is that the NIST protocol uses the ciphertext values as nonces in the MAC,
instead of using separate rA and rB values. Chatterjee et al. [189] provided a formal
security proof for KAS2-bilateral-confirmation in an eCK-style model, excluding
forward secrecy. Their analysis applies to a more generic version of the protocol
with any trapdoor one-way function in place of RSA.

The SKEME rekeying protocol [450] is identical to Protocol 5.42 with the en-
crypted values in messages 1 and 2 omitted. Instead, the previous K0 value is reused
to find a new K value based on the newly chosen nonces. There is also a version of
the Oakley protocol [596] without Diffie–Hellman, whose structure is very similar
to Protocol 5.42.
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5.8.2 Boyd–Cliff–González-Nieto–Paterson Protocol

The application of encryption instead of Diffie–Hellman was, as in SKEME, used
in a later protocol of Boyd et al. [134] with a number of optimisations. In order to
achieve a more efficient protocol, key encapsulation was used instead of encryption,
since the former inherently generates a random value suitable as an input to session
key derivation (see Definition 8). In Protocol 5.43, we use the notation EncapU (·) to
denote encapsulation of a key for a principal U using the public key of U . Encap-
sulation is a randomised algorithm, but we do not explicitly show the random input.
Similarly, DecapU (C) denotes decapsulation by principal U of the key encapsulated
in C.

A B

(CA,KA) = EncapB(·)
CA−−−−−−−→ KA =DecapB(CA)

(CB,KB) = EncapA(·)

KA =DecapA(CB)
CB←−−−−−−−

Z = KA,KB

Protocol 5.43: Protocol of Boyd, Cliff, Gonzaláz-Nieto and Paterson

A stated goal of the protocol design was to achieve a one-round protocol and
to be secure without relying on random oracles. In order to achieve a proof in the
standard model, Boyd et al. [134] employed a randomness extractor [455] rather
than applying a hash function to the shared secret Z. They proved security of the
protocol in the Canetti–Krawczyk model (without forward secrecy) as long as the
key encapsulation mechanism used provided CCA security and that the randomness
extractor satisfied a standard pseudo-randomness condition.

Protocol 5.43 is a very simple protocol which achieves basic security goals in-
cluding resistance to KCI attacks. Essentially the same protocol was standardised by
NIST as their KAS2-basic scheme [578] but with the generic encapsulation scheme
replaced by RSA encryption of randomly chosen values. In order to include weak
forward secrecy, Boyd et al. [134] also analysed the same protocol with an indepen-
dent Diffie–Hellman exchange added in parallel to the protocol messages.

While we have shown Protocol 5.43 in a public key setting (both A and B are
assumed to have public keys used in the encapsulation process), Boyd et al. [134]
included the identity-based setting in their definitions. They also provided detailed
efficiency estimates in the identity-based case.
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5.8.3 Fujioka–Suzuki–Xagawa–Yoneyama Protocol

Fujioka et al. [286] (FSXY) refined and generalised the construction of Proto-
col 5.43. Their aim was to achieve generic protocols which were secure in strong
security models without relying on random oracles. Furthermore, by relying only on
KEMs, even to achieve forward secrecy, they were able to instantiate their generic
construction with concrete KEMs based on a variety of computational problems.

Protocol 5.44 shows the generic FSXY protocol which makes use of two KEMs
and also splits the long-term key of each party into two parts. The first KEM takes
the same role as in Protocol 5.43 while the second KEM, which we denote eKEM, is
used to achieve (weak) forward secrecy and uses an ephemeral public key generated
as part of the protocol. We denote the temporary, or ephemeral, public key for eKEM
by eKT and encapsulation using this public key by eEncapT (·), with an unspecified
random input. The shared secret consists of three parts, KA, KB, and KT , which are
combined in a specific key derivation process not shown in Protocol 5.44.

Information known to A: Long-term private key (xA,x′A)
Information known to B: Long-term private key (xB,x′B)
Shared information: PRF families F , F ′, two KEMs (Encap,Decap) and (eEncap,eDecap)

A B

Generate random rA,r′A
(CA,KA) =

EncapB(FxA(rA)⊕F ′r′A
(x′A))

Generate temporary key eKT for eKEM
CA,eKT−−−−−−−→ KA =DecapB(CA)

Generate random rB,r′B
(CB,KB) =

EncapA(FxB(rB)⊕F ′r′B(x
′
B))

(CT ,KT ) = eEncapT (·)

KA =DecapA(CB)
CB,CT←−−−−−−−

KT = eDecapT (CT )

Z = KA,KB,KT

Protocol 5.44: Protocol of Fujioka, Suzuki, Xagawa and Yoneyama

Fujioka et al. [286] proved security of Protocol 5.44 in the HMQV model (see
Sect. 2.3.3), which they called the CK+ model. This captures attacks very similar to
the eCK model but deals also with leakage of session state; what consitutes session
state needs to be defined in the protocol specification. The proofs require that the
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KEM is CCA secure and eKEM is CPA secure. The randomness for the KEM is
constructed using the twisted PRF trick so that the ephemeral and long-term key
components appear both as keys and as inputs to the PRFs F and F ′. The PRF output
is used as the random input to the KEM, and it looks random to an adversary who
does not obtain both the long-term and the ephemeral secret keys of the party. This
idea is a replacement in the standard model for the NAXOS trick used in the random
oracle model (see Sect. 5.4.7).

As mentioned above, weak forward secrecy is achieved through online genera-
tion of an ephemeral key pair, and the public key eKT is sent by A in the first mes-
sage. In the second message B returns the encapsulation of KT and this part of the
shared secret cannot be recovered once the ephemeral keys have been deleted. This
technique can be seen as a generalisation of Diffie–Hellman key exchange, since an
ephemeral Diffie–Hellman key can be interpreted as both a public encapsulation key
and an encapsulation of the shared Diffie–Hellman key.

Concrete instantiations of Protocol 5.44 can be achieved by choosing any suitable
KEMs. The two KEMs could even be the same, although eKEM requires only CPA
security. Fujioka et al. [286] suggested instantiations based on KEMs relying on
integer factorisation, code-based problems and lattice-based problems. A specific
advantage of the latter two options is that they can remain secure in the face of
quantum computation. However, the need to transmit a new public key during the
protocol reduces the practical attractiveness of these instantiations when large public
keys are required. Fujioka et al. [286] also described a generic ID-based protocol.

A disadvantage of Protocol 5.44 compared with Protocol 5.43 is that the former
is not actually a one-round protocol, because it is necessary for B to obtain the newly
generated ephemeral key from the first message before completing the returned mes-
sage. Therefore the two messages cannot be sent simultaneously. Yoneyama [766]
proposed a modification of the FSXY protocol which overcomes this limitation, but
it relies on the existence of a so-called KEM with public-key-independent ciphertext
for which efficient constructions are unknown.

Yang [751] designed a one-round protocol related to Protocol 5.44 which avoids
the twisted PRF trick. It derives four subkeys. Two of them are from the encapsula-
tion process, like KA and KB in Protocol 5.44. The other two come from a passive-
secure key exchange (such as basic ephemeral Diffie–Hellman) and from a non-
intereractive key exchange. The four keys are combined into the session key. The
protocol is secure in the eCK model and the standard model.

5.8.4 Alawatugoda Protocol

Alawatugoda [26] proposed Protocol 5.45 in order to achieve a simple protocol with-
out using the random oracle model. The protocol combines the ephemeral and the
static Diffie–Hellman values, just as in the Unified Model (Protocol 5.12). However,
Protocol 5.45 also applies encryption to the exchanged ephemeral Diffie–Hellman
values.

Alawatugoda showed that Protocol 5.45 is secure in the eCK model for any en-
cryption function which achieves CCA security. Of course, the protocol is not very
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Shared information: Static Diffie–Hellman key SAB = gxAxB . PRF family FK(·).

A B

rA ∈R Zq

tA = grA
EB(tA)−−−−−−−→ rB ∈R Zq

tB = grB

Z = trA
B ,SAB

EA(tB)←−−−−−−− Z = trB
A ,SAB

Z1 = grArB ;Z2 = SAB;T = IDA,EB(tA), IDB,EA(tB)
K = FZ1(T )⊕FZ2(T )

Protocol 5.45: Alawatugoda key agreement protocol

efficient, since it adds one encryption and one decryption to the three exponentia-
tions required from each principal. Moreover, only weak forward secrecy is achieved,
since an active adversary can choose an ephemeral input, send the correct message,
and later recover the session key once the long-term decryption keys become known.
However, the proof is in the standard model and avoids the NAXOS trick.

5.9 Conclusion

The large number of key agreement protocols that we have examined in this chap-
ter gives some indication of their importance, both in the research literature and in
practical applications. Protocols based on Diffie–Hellman key exchange remain the
most common, but come in various different types. In particular, we distinguished be-
tween those in which the exchanged information consists only of the Diffie–Hellman
messages, and those which exchange additional authenticating information. In the
first category, the publication of the HMQV protocol generated a lot of research and
related constructions. The second category has also seen significant development,
with a focus on Internet applications (see also Chap. 6 for key agreement in TLS).
Alternative constructions based on KEMs have received increased attention.

One of the major changes in the past 10 years has been the emphasis on stronger
security models, particularly eCK-type models incorporating security against leak-
age of ephemeral keys. This can even be taken a step further by considering partial
leakage of keys [27]. In the near future we can expect to see an increasing interest in
key agreement protocols designed to remain secure against quantum computers.



6

Transport Layer Security Protocol

6.1 Internet Security Protocols

Authenticated key exchange protocols are at the core of Internet security protocols:
they authenticate one or more of the parties communicating, and provide the estab-
lishment of a session key that is then used to encrypt application data. There are
several protocols in widespread use to secure various applications. The most promi-
nent are the following:

Transport Layer Security (TLS). Formerly known as the Secure Sockets Layer
(SSL) protocol. The TLS standards are developed and maintained by the In-
ternet Engineering Task Force (IETF) TLS working group. TLS operates over
the TCP/IP protocol stack and is used to protect web traffic (using HTTPS),
file transfers, email transport, and many other applications. To date there have
been two versions of SSL (SSL v2 and SSL v3) and three versions of TLS (TLS
1.0, TLS 1.1, and TLS 1.2); the next version, TLS 1.3, was submitted for stan-
dardisation in March 2018. A variant called Datagram TLS (DTLS) is used for
protection of datagrams transmitted over UDP. See Table 6.1 for a list of versions
of TLS and related protocols.

Secure Shell (SSH). SSH operates over the TCP/IP protocol stack and is primarily
for used for securing remote command-line logins, replacing the insecure Telnet
protocol. SSH can also be used for file transfer (secure copy (scp)), as well as a
rudimentary virtual private network. The current version, SSH v2, is incompati-
ble with the prior SSH v1.

Internet Protocol Security (IPsec). The IPsec protocol suite operates at the IP
layer of the IETF protocol stack, and is automatically applied to all applica-
tion data above it. It can be used in two modes: transport mode authenticates
and encrypts the contents of an IP packet, but leaves the headers unchanged;
and tunnel mode authenticates and encrypts an entire IP packet, including the
headers, and then encapsulates that as the payload of a new IP packet. IPsec is
typically run in one of three architectures: host-to-host (directly securing a con-
nection between two computers), host-to-gateway (for example, a remote user
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Table 6.1: Versions of SSL/TLS and Datagram TLS (DTLS)

SSL v2 1995 [355]
SSL v3 1996 [283]
TLS 1.0 1999 [249]
TLS 1.1 2006 [250]
TLS 1.2 2008 [251]

DTLS 1.0 2006 [627]
DTLS 1.2 2012 [628]

connecting to a corporate network via a virtual private network), and gateway-
to-gateway (for example, a gateway connecting all computers in a branch office
to the head office).

There are several other special-purpose Internet protocols that make use of au-
thenticated key exchange, including the Tor anonymity network and secure instant
messaging protocols such as Off-the-Record (OTR) messaging, and the Axolotl
ratchet/Signal protocol. Appendix A summarizes many of these.

In this chapter, we examine the Transport Layer Security protocol in detail. TLS
is interesting owing to its widespread use, the complexities in its design compared
with academic key exchange protocols, and the many weaknesses and flaws found in
the protocol and its implementations. TLS also differs from academic key exchange
protocols in the sense that it directly combines key exchange and authenticated en-
cryption to establish a secure channel.

6.2 Background on TLS

The Secure Sockets Layer protocol was developed by Netscape in the mid-1990s.
The first publicly released protocol was SSL v2 in February 1995 [355]. A redesign,
aiming to fix several security flaws, was published in November 1996 (and published
as a historical RFC in August 2011 [283]). In January 1999, the Internet Engineer-
ing Task Force published the TLS 1.0 protocol [249], which made minor changes to
SSL v3. In April 2006, the IETF published TLS 1.1 [250], primarily making changes
in how the CBC block cipher encryption mode worked. TLS 1.2 was published in
August 2008 [251], incorporating changes to the PRF, support for authenticated en-
cryption with additional data, and more precise negotiation of algorithms. There are
more than 45 additional RFCs that describe additional behaviour or functionality;
notable ones include the specification of elliptic curve cryptography [106] and pre-
shared keys [269], the addition of new ciphers such as AES [213], extensions to the
protocol specification [112], and deprecation of old algorithms [55, 619].

TLS is used to protect many applications. It is most familiar to many when
it is used to protect web traffic transmitted over the Hypertext Transport Protocol
(HTTP). In this context, called HTTPS, an SSL/TLS connection is established (typ-
ically on TCP port 443, different from port 80 for the unsecured website), and then
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HTTP data is transmitted across the secured connection. TLS can also be used to
protect email transport protocols (IMAP and POP, for clients to download messages
from mail servers, and SMTP, for delivery of outgoing messages), as well as file
transfer (FTP). In these contexts, the unsecured connection is ‘upgraded’ to a secure
connection: first, the normal unsecured connection is established, and then a special
command (such as ‘STARTTLS’) is used to activate TLS, at which point a TLS con-
nection will be established, and all subsequent data will be transmitted over the TLS
connection.

6.3 Protocol Structure

The TLS protocol consists of several subprotocols; for cryptographic purposes, the
two most important subprotocols are the handshake protocol and the record layer
protocol. In the handshake protocol, the client and server agree on a set of crypto-
graphic parameters, called a ciphersuite, exchange authentication credentials, estab-
lish a shared secret, perform explicit authentication, and derive keys for bulk encryp-
tion and message authentication. The record layer protocol provides delivery of all
messages in TLS, including handshake protocol messages and application data, but
in particular the record layer protocol optionally protects messages using authenti-
cation and encryption. There is an additional alert protocol, which is used to notify
peers about errors or to close the connection. The stacking of these layers is shown
in Fig. 6.1. The exact cryptographic algorithms used in both the handshake and the
record layer protocol depend on which ciphersuite the parties have negotiated.

TLS handshake protocol TLS alert protocol . . . Application-layer data
TLS record layer protocol

TCP
IP

Fig. 6.1: Layering of TLS subprotocols and the TCP/IP stack

TLS can provide entity authentication using long-term public keys using the
X.509 public key infrastructure [223]. Authentication can be either mutual or only
server-to-client. Parties generate long-term secret key/public key pairs, then sub-
mit their public key and a proof of possession (usually a signature using the key)
via a certificate-signing request to certification authority (CA). The CA verifies the
certificate-signing request and the identity of the requesting party, then issues a cer-
tificate containing the party’s identity (in the case of servers, this is the server’s fully
qualified domain name), and public key, as well as additional fields such as the pe-
riod of validity and the purposes for which the certificate can be used; the certificate
is signed by the CA using its long-term key. Web browsers typically have 150 or
more certificates for 80 or more commercial and governmental root CAs installed by
default; however, many root CAs allow independent subordinate CAs to also issue
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certificates, so the exact number of certificate issuers that are trusted by default by
browsers is unknown even to browser vendors. Taking into account these subordinate
issuers, over 650 certificate issuers trusted by default by major browsers have been
observed in Internet-wide surveys of TLS server certificates [266].

6.3.1 Handshake Protocol

To first establish a TLS connection, a client and a server run the full TLS handshake
protocol. As shown in Protocol 6.1, the TLS handshake protocol proceeds as follows.

1. The client initiates the connection by sending a ClientHello message, which
contains a nonce as well as the client’s list of preferred ciphersuites.

2. The server responds with several packets together:
• ServerHello message, containing a nonce and the chosen ciphersuite;
• Certificate message, if server authentication is being used;
• ServerKeyExchange message containing the server’s ephemeral Diffie–

Hellman value, if the ciphersuite calls for it;
• CertificateRequest message, if the server is asking for client authenti-

cation.
3. The client verifies the server’s certificate, then responds with:
• Certificate message, if client authentication is being used;
• ClientKeyExchange message, which the parties use to compute the session

key;
• CertificateVerify message, if client authentication is being used.
At this point, the client computes a premaster secret, which is the raw shared
secret. Using the premaster secret and the client and server nonces, the client
then computes the master secret, from which it derives four record-layer session
keys: two keys for bulk encryption (client-to-server and server-to-client), and
two keys for message authentication (client-to-server and server-to-client).

4. The client sends a ChangeCipherSpec message, which indicates that all further
messages will be sent encrypted using the record layer protocol. Finally, the
client sends (encrypted by the record layer) a Finished message, containing a
key confirmation value.

5. The server computes the premaster secret and master secret, then derives the ses-
sion keys. It verifies the client authentication, if any, then verifies the Finished
message it has received from the client.

6. The server sends a ChangeCipherSpec message, which similarly indicates that
all further messages will be sent encrypted using the record layer protocol. Fi-
nally, the server sends (encrypted by the record layer) its own Finished mes-
sage for key confirmation.

This concludes the handshake protocol, and application data can now be sent using
the record layer protocol.

If the client and server have previously established a session, they can perform
an abbreviated handshake for session resumption. In this case, the message flow is as
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Client Server

ClientHello

ServerHello

Certificate∗

DH: generate ephemeral keyServerKeyExchange∗

CertificateRequest∗

ServerHelloDone

Certificate∗

DH: generate ephemeral key
RSA: random premaster secret

ClientKeyExchange

CertificateVerify∗

DH: generate shared secret
RSA: decrypt pms

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application data
Secure session

∗ denotes messages that may not be present in all ciphersuites.
[. . . ] denotes messages that are sent over the TLS alert protocol.

Single arrows denote plaintext flows; double arrows denote encrypted flows.

Protocol 6.1: TLS ≤ 1.2 handshake protocol – full handshake

shown in Protocol 6.2. The abbreviated handshake allows re-establishment of a TLS
record layer in a single round trip, rather than two round trips as in the full handshake
protocol; it also avoids some expensive public key operations.

We now examine each message of the handshake protocol in detail.

ClientHello. With this message, the client initiates the connection. The primary
purpose of the message is to convey the client’s parameter preferences. The mes-
sage includes:
• a protocol version field, indicating the maximum supported version of SSL

or TLS;
• the client random value, a 32-byte nonce;
• the session id of a previous session, if session resumption is being used;
• a list of the client’s supported cryptographic parameters in order of prefer-

ence;
• a list of the client’s supported compression methods in order of preference;

and
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Client Server

ClientHello
includes session ID/ticket

ServerHello

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application data
Secure session

Protocol 6.2: TLS ≤ 1.2 handshake protocol – abbreviated handshake

• any optional extensions, indicating additional information.
TLS 1.0 and TLS 1.1 were updated to support extensions. Frequently used ex-
tensions include the server name indication extension, which helps a TLS server
hosting multiple domains to pick the appropriate certificate to send to the client;
the elliptic curves extension, indicating which elliptic curves the client supports;
and the renegotiation indication extension, which help protects against the rene-
gotiation attack (see Sect. 6.11.2).

ServerHello. With this message, the server indicates which parameters have been
chosen. The message includes:
• a protocol version field, indicating which protocol version will be used for

this connection;
• the server random value, a 32-byte nonce;
• the session id of this session, for the purposes of future session resump-

tion;
• the chosen ciphersuite;
• the chosen compression method; and
• any optional extensions.
The client random and server random nonces serve to provide freshness or
liveness guarantees and prevent replay attacks.

Certificate (server). For all server-authenticated ciphersuites which involve cer-
tificates, the server also sends a message containing its certificate. This message
is structured as a chain of X.509 certificates: the first certificate is the server’s
certificate, and each subsequent certificate in the chain is the certificate of the
certification authority that signed the preceding certificate. The last (root) cer-
tificate may be omitted, as the client must have that certificate installed already
in order to trust it. Upon receiving this message, the client validates the certifi-
cate chain by (a) checking that the subject of the server’s certificate matches the
domain name of the server with which it is communicating, (b) verifying the sig-
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nature of each certificate under the public key of the next certificate in the chain,
and (c) checking the validity period of the certificate. Optionally, the client may
check the revocation status of the certificate using either certificate revocation
lists (CRLs) or the online certificate status protocol (OCSP). Servers can include
a recent OCSP response in the handshake in a process known as OCSP stapling.

ServerKeyExchange. This message is sent if the chosen ciphersuite calls for the
server to send an ephemeral public key, which is the case for ephemeral Diffie–
Hellman ciphersuites, but not for static Diffie–Hellman or RSA key transport
ciphersuites. For signed-Diffie–Hellman ciphersuites, the structure of this mes-
sage is:
• the server Diffie–Hellman parameters and ephemeral public key:

– for finite-field Diffie–Hellman, this contains the prime modulus p, the
generator g, and the server’s ephemeral public key Y ≡ gy mod p;

– for elliptic curve Diffie–Hellman, this contains the chosen elliptic curve,
either as a named curve or as the explicit parameters (field, curve, gen-
erator, order, cofactor), and the server’s ephemeral public key Y = yP;
and

• the server’s signature over the client random, server random, and Diffie–
Hellman parameters.

In SSL v3, the ServerKeyExchange message would be sent for RSA key trans-
port ciphersuites if the server’s long-term key was solely a signature key. In TLS
1.0, this was removed, except for export ciphersuites where the server’s long-
term key was not sufficiently long, and as of TLS 1.1 was removed entirely.

CertificateRequest. The server sends this message if it requires the client to
authenticate itself using a certificate. The message includes:
• a list of supported client certificate types;
• a list of supported signature types supported for certificate verification; and
• a list of acceptable certificate authorities.

Certificate (client). If the server has sent a CertificateRequest message,
then the client responds with its certificate; this message has the same struc-
ture as the server’s Certificate message. Upon receipt of this message, the
server verifies the validity of the client’s certificate as above.

ClientKeyExchange. In the full handshake, this message is always sent by the
client to establish a premaster secret. The structure of the message depends on
the ciphersuite chosen.
• For RSA-key-transport-based ciphersuites, this message contains the en-

crypted premaster secret. In particular, the client chooses a random 46-byte
value, and, together with the two bytes of client version, these 48 bytes
comprise the premaster secret. The client encrypts the premaster secret under
the server’s RSA public key (from the server’s certificate) using PKCS#1v1.5
encryption. These ciphersuites do not provide forward secrecy.

• For finite-field or elliptic curve ephemeral Diffie–Hellman ciphersuites, this
message contains the client’s ephemeral public key. In this case the premas-
ter secret is the Diffie–Hellman shared secret. These ciphersuites provide
forward secrecy.
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• For static Diffie–Hellman ciphersuites, this message is empty.
Upon receipt of this message, the server derives the premaster secret. In the case
of RSA key transport, the server must carefully implement the PKCS#1v1.5
decryption process to avoid a side-channel leak (see Sect. 6.9.1). Both parties
derive the master secret from the premaster secret as specified in the subsequent
subsection. Finally, encryption and authentication keys are derived from the mas-
ter secret.

CertificateVerify. This message is sent if the client has sent a certificate. The
message is computed as the client’s RSA, DSA, or ECDSA signature on all
handshake messages it has sent and received up to, but not including, this mes-
sage. Upon receipt of this message, the server verifies the signature.

ChangeCipherSpec (client). The client sends this single-byte message to the server,
indicating that all future messages it sends will be encrypted and authenticated.
Note that, for networking reasons, this message is technically not part of the
handshake protocol but a separate subprotocol.

Finished (client). This message is sent by the client to verify that the key exchange
and entity authentication were successful. Since it includes authentication of the
handshake messages, from a cryptographic perspective the Finished message
allows the other party to verify that its peer had the same view of the handshake
and that no downgrade attacks occurred. The message contains

PRF (ms, label‖H(handshake)) ,

where label = “client finished” and handshake is the transcript of all handshake
messages sent and received by the party; H is the hash function specified by
the ciphersuite. Upon receipt of this message, the server compares the received
value with its own computed value. If the values match, the server accepts.

ChangeCipherSpec (server). The server sends this single-byte message to the client
indicating that all future messages it sends will be encrypted and authenticated.

Finished (server). The server sends a Finished message similar to the client’s
one above, but computed with label = “server finished”. Upon receipt of this
message, the client compares the received value with its own computed value. If
the values match, the client accepts.

Cryptographic Computations in the Handshake Protocol

PRF. In TLS 1.0 and 1.1, the pseudo-random function PRF is computed as

PRF(secret, label,seed) = PMD5(S1, label‖seed)⊕PSHA-1(S2, label‖seed),

where S1 and S2 are the first and last |secret|/2 bytes of secret (possibly with a
shared middle byte), and

PH(secret,seed) = HMACH(secret,A(1)‖seed)

‖ HMACH(secret,A(2)‖seed) ‖ . . .
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for A(0) = seed, A(i) = HMACH(secret,A(i−1)). In TLS 1.2, the PRF is com-
puted as

PRF(secret, label,seed) = PH(secret, label‖seed)

where H is a hash function defined by the ciphersuite; for most ciphersuites
defined by TLS 1.2, H is SHA-256.

Master secret. In SSL v3, the 48-byte master secret ms is computed from the pre-
master secret pms as

ms← f (“A”)‖ f (“BB”)‖ f (“CCC”),

where

f (`)←MD5(pms‖SHA-1(`‖pms‖client random‖server random)).

In TLS 1.0 and onward, the 48-byte master secret ms is computed from the
premaster secret pms as

ms← PRF(pms,“master secret”,client random‖server random),

where PRF is defined as above.
Encryption and authentication keys. In TLS 1.0 and higher, the parties derive en-

cryption and authentication keys from the master secret as follows. First, they
compute a sufficiently long value

k← PRF(ms,“key expansion”‖server random‖client random)

and then partition k into the client-to-server MAC write key, the server-to-client
MAC write key, the client-to-server encryption key, the server-to-client encryp-
tion key, and, if required, the client-to-server and server-to-client encryption ini-
tialisation vectors (IVs). Note that keys are derived slightly different in SSL v3,
and also for weakened export ciphersuites.

6.3.2 Record Layer Protocol

A plaintext packet in the record layer protocol consists of:

• a content type, which specifies what type of data the payload contains; this may
be a handshake message, a ChangeCipherSpec message, an alert (error) mes-
sage, or application data;

• the version of TLS used;
• the length of the payload, not more than 214;
• the payload data.

Once the plaintext packet is assembled, its payload is compressed using whichever
compression algorithm was negotiated during the handshake. Supported compres-
sion algorithms include the null algorithm (i.e. no compression) and the DEFLATE

algorithm.
The compressed payload is finally encrypted and authenticated based on the ci-

phersuite in use. There are three different approaches.
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Stream-cipher-based ciphersuites. First, an authentication tag is computed using
a message authentication code as

MAC(msg write key,sn‖content type‖version‖len‖m),

where msg write key is the client-to-server or server-to-client MAC write key
as appropriate, sn is the sequence number of the packet, m is the (optionally
compressed) payload, and len is the length of the payload. The payload is con-
catenated with the MAC tag and then that plaintext is encrypted using the stream
cipher in question. RC4 was the most widely used stream cipher in TLS; since it
does not use an initialisation vector, the internal RC4 state persists across pack-
ets.

Block-cipher-based ciphersuites. TLS specifies the use of the cipher-block chain-
ing (CBC) mode of operation for block ciphers. First, an initialisation vector
(IV) is chosen for the packet. The computation of the IV depends on the TLS
version: for SSL v3 and TLS 1.0, the IV of the first packet is the IV derived
in the handshake protocol, while the IV of each subsequent packet is the last
ciphertext block of the previous packet. For TLS 1.1 and higher, the IV is cho-
sen at random. Next, a MAC is computed as described in the stream-cipher item
above. The (optionally compressed) payload and MAC are concatenated, then
padded with sufficient bytes to bring the length up to a multiple of the block
length; all padding bytes should be the same and should be the padding length
value (for example, if 12 bytes of padding are needed, then every byte of padding
contains the value 0x0C= 12). This data is then encrypted using the block cipher
in question in CBC mode. This sequence of operations is sometimes referred to
as ‘MAC-then-encode-then-encrypt’ (MEE). The most widely supported block
cipher is AES; the use of DES is deprecated, and the use of Triple-DES is no
longer recommended.

Authenticated-encryption-based ciphersuites. TLS 1.2 added support for authen-
ticated encryption with associated data (AEAD). In these modes, a single algo-
rithm is used for encryption and authentication of packets. The ‘additional data’
field is used to convey unencrypted data unauthentically; in the case of TLS, the
additional data is the same as the non-message data in the MAC computation in
stream-cipher-based ciphersuites: the sequence number, content type, version,
and plaintext length. There are two supported block cipher modes of operation
that provide AEAD: counter mode with CBC-MAC (CCM) and Galois/counter
mode (GCM), both generally implemented using AES. Since these modes pro-
vide encryption and authentication using a single algorithm, only the encryption
keys, not the MAC keys, are required.

6.4 Additional Functionality

In addition to the core cryptography task of mutual entity authentication and estab-
lishment of a secure channel, the TLS protocol performs several other operations,
which are described in this section.
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6.4.1 Compression

The TLS record layer protocol allows application data to be compressed. In the
ClientHello and ServerHello messages, the parties negotiate whether or not to
enable the DEFLATE compression algorithm [246, 362] (a combination of the LZ77
algorithm and Huffman coding, widely used in the ZIP and gzip formats).

The record layer protocol splits application data up into fragments of at most 214

bytes. If compression is enabled, then each plaintext fragment is independently com-
pressed using the DEFLATE algorithm before being encrypted. The receiver reverses
the process, decrypting and then decompressing.

Because the amount of compression on a plaintext yields information about the
amount of redundancy in the plaintext, TLS compression acts as a side channel, leak-
ing some information about the plaintext content. This leads to a successful adaptive
chosen plaintext attack against TLS that allows an attacker to recover a secret value
(such as an HTTP cookie) by exploiting differences in the amount of compression.
Details of the CRIME attack and related attacks appear in Sect. 6.11.3.

6.4.2 Session Resumption

Session resumption allows a client and server to use an abbreviated handshake to
resume a previously established session. This saves both communication—using 1.5
round trips instead of 2.5—and computation, as generally no expensive public key
operations are needed in session resumption.

There are two distinct mechanisms for session resumption.

• Session IDs [251, Sect. F.1.4]. When the initial session is established, the server
includes in its ServerHello message a session identifier. The server stores the
session’s parameters and master secret in its cache. To resume a session, the client
replays that session identifier in its ClientHello message. The server looks up
the session in its cache. If the session is found, the server immediately sends the
Finished message calculated using the stored master secret.

• Session tickets [649]. When the initial session is established, the server in-
cludes an additional handshake message just prior to ChangeCipherSpec: the
NewSessionTicket message contains the server’s state (including its mas-
ter secret), encrypted and authenticated under a symmetric key known only
to the server. To resume a sesion, the client replays that session ticket in its
ClientHello message. The server decrypts the encrypted state and verifies its
integrity; if it passes, the server immediately sends the Finished message, cal-
culated using the master secret from the session ticket.

The main difference between session IDs and session tickets is about who stores
state: with session IDs, the server stores state for each connection; with session tick-
ets, the client stores the server’s state for it. Session tickets reduce storage require-
ments for the server; as well, a collection of load-balancing servers can easily resume
each others’ sessions simply by sharing session ticket encryption keys, rather than
needing to pool session ID states.



252 6 Transport Layer Security Protocol

In 2014, Bhargavan et al. [96] discovered the triple handshake attack, in which an
attacker performs a man-in-the-middle attack over three successive handshakes (with
various combinations of session resumption and renegotiation), eventually leading to
a successful client impersonation attack. Among the causes of the attack is the fact
that TLS session resumption does not cryptographically bind the previous session’s
handshake to the new session’s handshake. Details of the attack and countermeasures
appear in Sect. 6.11.5.

6.4.3 Renegotiation

Renegotiation allows two parties who are using an existing TLS session to run a new
handshake; upon completion of the new handshake, the session uses the newly estab-
lished encryption and authentication keys for communication. Renegotiation allows
parties to either (a) obtain a fresh session key, (b) change cryptographic parameters
(such as to negotiate a new ciphersuite), or (c) change authentication credentials. The
renegotiated handshake is run inside the existing encrypted record layer.

A principal use case of TLS renegotiation is client identity privacy. In the hand-
shake protocol, the client sends its certificate in plaintext. If the client does not wish
to reveal its identity over a public channel, it can instead run the first handshake
anonymously, then renegotiate using its long-term credential; since the handshake
messages for the renegotiation are transmitted within the existing record layer, the
transmission of the client certificate is encrypted and the client has privacy of its
identity.

Either the client or the server can initiate renegotiation at any time after a
session is established. The client triggers renegotiation simply by sending a new
ClientHello message. The server triggers renegotiation by sending a Hello-
Request message which asks the client to send a new ClientHello message. Rene-
gotiation is supported in SSL v3 and higher.

In 2009, Ray and Dispensa [623] described an attack against some applications
supporting TLS renegotiation. As a consequence of the attack, two countermeasures
were standardised. Details of the attack and countermeasures appear in Sect. 6.11.2.

6.5 Variants

Versions. There are currently six distinct versions of SSL/TLS. The Secure Sockets
Layer (SSL) protocol version 2 was published by Hickman at Netscape in Febru-
ary 1995 (version 1.0 was never released publicly). Owing to security flaws in
SSL v2, the protocol was completely reworked, and Netscape released SSL v3
in 1996 [283]. The Internet Engineering Task Force (IETF) made minor changes
to SSL v3 and standardised it as the Transport Layer Security (TLS) protocol
1.0 in 1999. This protocol was revised in 2006 to TLS 1.1, particularly with
changes in the use of initialisation vectors and padding in CBC mode encryp-
tion to protect against attacks identified by Möller [564] and Bard [53]. TLS 1.2
was published in 2008, and replaced the ad hoc MD-5 + SHA-1 pseudo-random
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function with a ciphersuite-negotiated hash function, usually SHA-256, added
new encryption modes for AES, namely Galois/counter mode (GCM) and CBC
in counter mode (CCM), and incorporated functionality from various additional
RFCs into the core standard. From 2014-2018, the next version of TLS was un-
der development by the IETF, and was standardised at TLS 1.3 in August 2018.
TLS 1.3 constitutes a major revision of the TLS protocol; see Sect. 6.14 for more
information.

Ciphersuites. The IETF has standardised more than 320 ciphersuites,1 each of
which specifies a valid combination of the following cryptographic algorithms.
Note that up to and including TLS 1.2, cryptographic algorithms cannot be ne-
gotiated independently, so not all combinations of the following algorithms are
possible. (TLS 1.3 provides à la carte negotiation of each component individu-
ally.)
• Key exchange:

– RSA key transport;
– ephemeral finite-field or elliptic curve Diffie–Hellman;
– none (null).

• Entity authentication:
– RSA key transport;
– RSA digital signatures;
– finite-field (DSA) or elliptic curve (ECDSA) digital signatures;
– static finite-field or elliptic curve Diffie–Hellman key exchange;
– pre-shared keys;
– password authentication using Secure Remote Password (SRP) protocol;
– none (null).

• Bulk encryption:
– RC4 or ChaCha20;
– RC2, DES, Triple-DES, IDEA, or SEED in CBC mode;
– AES-128 or AES-256 in CBC, CCM, or GCM mode;
– ARIA or CAMELLIA in CBC or GCM mode;
– none (null).

• Message authentication:
– HMAC-MD5, HMAC-SHA1, HMAC-SHA256, or HMAC-SHA384;
– AES-128, AES-256, ARIA, or CAMELLIA in GCM mode;
– Poly1305;
– none (null).

SSL v2 and v3, and TLS 1.0 also contained export ciphersuites: US export regu-
lations in the 1990s restricted the export of cryptographic software or hardware
with keys larger than 40 bits (for symmetric cryptography) or 512 bits (for RSA
and finite-field Diffie–Hellman). As a result, ‘export’ ciphersuites were stan-
dardised in which the final encryption keys were derived from subkeys that were

1 https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
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only 40 (or 512) bits long. Regulations were relaxed starting in 1996, simpli-
fying the export of commercial and open-source cryptography software. Export
ciphersuites were removed from TLS in version 1.1, although some software still
supports operations involving export-sized keys either directly or indirectly; see
Sect. 6.9.5 for resulting attacks.

Datagram TLS. SSL/TLS are designed to work over a stream-oriented network
protocol, namely the Transmission Control Protocol (TCP) which provides reli-
able, in-order delivery of packets. Datagram TLS (DTLS) is designed to work
over datagram protcools, such as the User Datagram Protocol (UDP) and oth-
ers which do not guarantee delivery or ordering of packets, and are used in a
variety of applications, including simple query–response protocols such as do-
main name lookups (DNS) and media-streaming protocols such as the Real-time
Transport Protocol (RTP). DTLS provides confidentiality and protection against
message tampering and forgery for such applications. One notable distinction
between TLS and DTLS is that DTLS generally does not terminate the session
upon an error. There are currently two versions of DTLS: DTLS 1.0 [627] (based
on TLS 1.1) and DTLS 1.2 [628] (based on TLS 1.2), as well as several standards
which specify how to use DTLS to protect various higher-level protocols.

Extensions. After the publication of TLS 1.0 in 1999, the TLS extension mechanism
was published [111, 264] which allows the client and server to send extensions
on the ClientHello and ServerHello messages for various purposes. Exten-
sions were incorporated into the main specification in TLS 1.2. Some of the
functionality provided by extensions includes the client telling the server which
of several domains it is trying to connect to, using the server name indication
(SNI) extension; negotiation of elliptic curves and point formats; a list of certifi-
cate authorities trusted by the client; and a heartbeat extension which provides
a keep-alive functionality.

Keying-material exporters. RFC 5705 [624] provides a mechanism to obtain key-
ing material derived from the master secret that can be used for any purpose by
an application. (Here the term ‘exporters’ is not related to ‘export’-grade cipher-
suites.) This mechanism uses the TLS PRF with distinct labels to derive export
keys that are computationally independent from the TLS record-layer encryp-
tion and MAC keys. Among other purposes, this formalises how the Extensible
Authentication Protocol (EAP) obtains keying material from TLS.

Implementation-specific behaviour. Various implementations have bugs that are
exhibited in certain configurations. As a result, many TLS implementations have
optional code that tries to work around bugs in other implementations.

6.6 Implementations

There are several important SSL/TLS implementations.

OpenSSL (http://www.openssl.org) is a leading open source implemen-
tation, licensed under a BSD-like licence. OpenSSL is split into two libraries:

http://www.openssl.org
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libcrypto, which contains the core cryptographic algorithms, and libssl,
which contains an implementation of SSL versions 2 and 3, TLS versions
1.0 to 1.3, and DTLS 1.0 and 1.2. OpenSSL is generally included as a stan-
dard library on most Unix-based operating systems. It is used by the Apache
(via the mod ssl module) and nginx web servers, and many command-line
Unix tools, such as curl and wget. In 2014, several forks of OpenSSL ap-
peared in response to software vulnerabilities in OpenSSL; prominent forks in-
cluded LibReSSL (http://www.libressl.org) and Google’s BoringSSL
(https://boringssl.googlesource.com/).

GnuTLS (http://www.gnutls.org) is an open source implementation of
SSL and TLS, licensed under the GNU Lesser General Public License v2.1.
GnuTLS depends on the Nettle library (http://www.lysator.liu.se/
˜nisse/nettle) for its cryptographic algorithms. GnuTLS is used by a va-
riety of GNU-licensed software.

Network Security Services (NSS) (https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/NSS) is an open source implementa-
tion of SSL/TLS, licensed under the Mozilla Public License. Originally part of
the Netscape Navigator web browser, NSS is used in the Mozilla Firefox browser
and other Mozilla software, Google’s Chrome browser, the Opera browser, and
commercial software from RedHat, Oracle, and AOL, among others. NSS can
be used with Apache via the mod nss module.

Bouncy Castle (http://www.bouncycastle.org) and Java Secure Socket
Extension (JSSE) are prominent open source Java implementations of SSL/TLS.

Microsoft and Apple each have their own implementation of SSL/TLS, named
SChannel and SecureTransport, respectively, which ship with their desktop and mo-
bile operating systems, and are, in particular, used by their web browsers Internet
Explorer/Edge and Safari, respectively.

6.7 Security Analyses

The earliest work on the security of SSL, by Wagner and Schneier [724], examined
various characteristics of SSL v3 and identified certain weaknesses. Since then, a
systematic study of the security of TLS has been carried out in two lines of work:
using provable security and using formal methods.

6.7.1 Provable Security

Historically, the TLS handshake and record layer protocols have been analysed sep-
arately in the provable-security setting.

As demonstrated throughout this book, there is a vast literature on authenticated
key exchange protocols and their security. Chapter 2 details security models for
AKE protocols, starting with the Bellare–Rogaway model and continuing with the
Canetti–Krawczyk and eCK models. Central to all of those models is that a session

http://www.libressl.org
https://boringssl.googlesource.com/
http://www.gnutls.org
http://www.lysator.liu.se/~nisse/nettle
http://www.lysator.liu.se/~nisse/nettle
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/ en-US/docs/Mozilla/Projects/NSS
http://www.bouncycastle.org
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key should be indistinguishable from random: in the security definitions, the task of
the adversary is to determine whether it has been given the real session key from
a target session, or a random string of the same length. Unfortunately, a technical-
ity of TLS prevents it from being proven secure in standard AKE models: the final
messages of the TLS handshake protocol (the Finished messages) are sent over the
encrypted record layer; an adversary who is given a challenge real-or-random ses-
sion key can try to decrypt the ciphertexts to see if they decrypt correctly, thereby
distinguishing real session keys from random ones.

Initial work on the provable security of the TLS handshake protocol looked at
a truncated handshake protocol in which the Finished messages were either omit-
ted or transmitted unencrypted. Jonsson and Kaliski [401] showed that a truncated
version of the TLS handshake using RSA key transport is secure under an RSA-
based assumption. Subsequently, Morrissey, Smart, and Warinschi [568] showed that
a truncated version of the TLS handshake using either RSA key-transport or signed
Diffie–Hellman is secure in the random oracle model; their approach was modular,
in the sense that they first showed that the premaster secret agreement is secure in
a weaker, one-way sense, then that this implied that the master secret is secure in
the traditional AKE sense. Gajek et al. [288] showed that TLS is a secure, unau-
thenticated channels protocol in the universal composability setting, but this analysis
provided only confidentiality of messages, not authentication of endpoints.

The record layer protocol was also investigated. Krawczyk [451] analysed a vari-
ant of the MAC-then-encode-then-encrypt approach using CBC mode encryption
in the TLS record layer and showed that it achieved ciphertext indistinguishabil-
ity (IND-CPA) as well as a certain form of ciphertext unforgeability, weaker than
ciphertext integrity. Paterson, Ristenpart, and Shrimpton [605] identified a distin-
guishing attack against TLS when variable-length padding and short MACs were
used, defined a stronger security notion, called length-hiding authenticated encryp-
tion (LHAE), and showed that the record layer protocol for TLS 1.1 and TLS 1.2, in
CBC mode, satisfies this property.

In 2012, the first provable security analysis of a full, unaltered TLS ciphersuite
was presented by Jager, Kohlar, Schäge, and Schwenk [392]. They defined a new se-
curity model for authenticated and confidential channel establishment (ACCE) pro-
tocols. Instead of simply establishing a key, an ACCE protocol establishes a secure
channel which can then be used for communication. Formally, the model effectively
combines the Bellare–Rogaway model for authenticated key exchange with the Pa-
terson et al. model for length-hiding authenticated encryption; this overcomes the
aforementioned problem involving the encrypted Finished messages that prevented
TLS from being proven a secure authenticated key exchange protocol. Originally the
model only addressed mutual authentication, but it has subsequently been extended
to include the server-only authentication mode that is more widely used in practice.

The original ACCE paper of Jager et al. [392] showed that signed finite-field
Diffie–Hellman TLS ciphersuites are secure ACCE protocols, assuming that the
signature scheme is existentially unforgeable under chosen message attack, cer-
tain Diffie–Hellman problems are hard, and the bulk encryption scheme is a secure
stateful length-hiding authenticated encryption scheme. Subsequently, several works
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have analysed a variety of other ciphersuites, including RSA key transport and static
Diffie–Hellman [442, 456], and pre-shared keys [489].

The ACCE model has also been extended to consider additional functional-
ity. Giesen, Kohlar, and Stebila [304] extended the ACCE model to formalise the
notion of renegotiation security in light of the renegotiation attack (described in
Sect. 6.11.2). Bergsma et al. [89] considered multi-ciphersuite ACCE security as
a result of the cross-protocol attack (described in Sect. 6.10.2).

There are also several alternative approaches to the ACCE model for proving
security of TLS. Brzuska et al. [164] used a modular approach in which the key
exchange is composed with the authenticated encryption scheme, under an additional
constraint where the key from the key exchange has been shown to be ‘suitable for’
this type of composition.

Bhargavan et al. [98] implemented several TLS ciphersuites using a program-
ming language that allows for formal verification that the code of the implementation
meets provable security properties, and were thus able to derive security results for
ciphersuites based on RSA key transport, signed Diffie–Hellman, and static Diffie–
Hellman. Related work by several of the same authors [99] examined the TLS hand-
shake in detail, deriving provable security results (supported by formal verification
using the F# functional programming language and the EasyCrypt proof verification
tool) for handshakes involving RSA key transport, signed Diffie–Hellman, and static
Diffie–Hellman using a compositional approach that provides for security even with
limited agility of long-term signing keys, i.e. when the same long-term keys are used
in several ciphersuites.

A modular analysis of TLS using the recent constructive cryptography formalism
[528] (related to abstract cryptography) has also been given [443].

6.7.2 Formal Methods

SSL and TLS have also been evaluated using formal methods, which use a variety of
approaches in logic and theoretical computer science to give precise specifications of
desirable protocol behaviour, and either demonstrate that the protocol achieves these
goals or demonstrate a flaw. This approach often, but not always, involves automated
tools. Three main classes of automated tools are model checkers (a.k.a. finite state
analysis), which enumerate all reachable states in an execution to see if an undesir-
able state is reached; verifiers, which check some human-specified argument (e.g. a
proof) against a formal specification; and theorem provers, which construct and ver-
ify a proof of a certain property, or alternatively sometimes find a counterexample.

Model Checking. Mitchell et al. [562] performed finite state analysis (model check-
ing) using the Murϕ tool. They applied the tool to a sequence of protocols, start-
ing from an approximation of the SSL v2 handshake, and culminating in an
approximation of the SSL v3 handshake; they simplified, among other things,
the derivation of keys from the premaster secret. The tool successfully identified
the main weaknesses in SSL v2 that motivated SSL v3. For (the approximation
to) SSL v3, the tool found two downgrade attacks and a weakness in resumption,
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but no other flaws. The model checking was run with some constraints, namely
that it involved two clients, one server, no more than two simultaneous open
sessions per server, and no more than one resumption per session.

Theorem Provers. Paulson [606] gave machine-checked proofs of TLS handshake
authentication and session key security in both full and abbreviated handshakes
using the Isabelle theorem prover, assuming idealised cryptographic functions;
this ‘inductive’ approach reasons about an inductively defined set of protocol
traces built from the protocol specification and adversary actions. Ogata and Fu-
tatsugi [588] gave an analysis of the TLS handshake using the OTS/CafeOBJ
tool for equation reasoning, showing in the Dolev–Yao model (which assumes
perfect cryptography and abstracts away the details of cryptographic operations)
that the premaster secret is secure and that TLS handshake messages are authen-
ticated.

Logic-Based Proofs. In 2005, He et al. [353] gave an analysis of the IEEE 802.11i
protocol (including an analysis of TLS as a subprotocol) using a protocol com-
position logic (PCL). For TLS, their arguments showed that the TLS handshake
messages are authenticated and that the premaster secret is secure in the face of
a symbolic adversary. Kamil and Lowe [410] analysed the TLS handshake and
record layer protocols in the strand spaces model, which uses the Dolev–Yao
model. Their results included findings that the premaster secret key is secure, the
handshake is authenticated, the record layer provides two authenticated streams,
and those streams also have confidentiality.

Formal Methods Applied to Concrete Implementations. Formal verification tools
have also been applied to concrete implementations of SSL/TLS. Jürjens [405]
verified a Java implementation of SSL using an automated theorem prover for
first-order logic, showing authentication of the handshake and secrecy of the ses-
sion key in the Dolev–Yao model; the analysis works on the control-flow graph
of the protocol execution. Chaki and Datta [186] applied the Aspier framework
to perform a symbolic evaluation of the handshake authentication and session
key secrecy of the TLS handshake as implemented in the OpenSSL library, in
configurations of up to three clients and servers. Bhargavan et al. [97] gave an
implementation of a simple yet compatible subset of TLS in the F# programming
language, and used the CryptoVerif tool to provide symbolic and computational
cryptographic security results. This was the first in a series of results by this
set of authors; their later results implement additional levels of complexity and
move from symbolic to computational results, and are noted in the section on
provable security of TLS above. These results are part of the miTLS project
(http://www.mitls.org/).

6.8 Attacks: Overview

Because of its importance, TLS has been subject to much study and analysis, and
many attacks have been found on the protocol and on TLS implementations. A few

http://www.mitls.org/
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attacks date from the early days of SSL/TLS in the late 1990s (such as Bleichen-
bacher’s attack and version downgrade attacks). In the early 2000s, some theoretical
weaknesses were identified, but no realised attacks were publicised. Starting in 2009,
many major attacks on various aspects of TLS were revealed, necessitating revisions
to standards and coordinated release of patches. Many of these recent practical at-
tacks are actually realisations of ideas from Wagner and Schneier’s seminal analysis
of SSL v3 [724], or other theoretical work from the same era.

Table 6.2 lists attacks against various aspects of SSL/TLS since its inception. The
table is organised into several sections, depending on what aspect of SSL/TLS the
attack is against. These include weaknesses in core cryptographic algorithms, attacks
arising from how cryptographic components are used in TLS ciphersuites, attacks
on non-cryptographic functionality in TLS, attacks on libraries implementing TLS,
attacks on HTTP-based applications using TLS, and attacks on protocols using TLS.

RFC 7457 [666] summarises some of these attacks, as do Wikipedia’s page
on TLS and surveys by Meyer and Schwenk [552] and Clark and van Oorschot
[218]. The Trustworthy Internet Movement’s monthly SSL Pulse survey [621] re-
ports statistics on the TLS configuration of popular websites, such as ciphersuite
usage and vulnerability to known attacks.

The remainder of this chapter describes many of these attacks in more detail.

6.9 Attacks: Core Cryptography

The first class of attacks that we look at exploit properties of the cryptographic al-
gorithms used in TLS. This includes both public-key primitives used in the TLS
handshake and symmetric-key primitives used in the record layer.

6.9.1 Bleichenbacher’s Attack on PKCS#1v1.5 RSA Key Transport

TLS ciphersuites using RSA key transport do not use ‘schoolbook’ RSA encryption;
instead, they rely on the PKCS#1v1.5 standard for RSA encryption [408]. Bleichen-
bacher [118] discovered an attack in which access to a certain type of error informa-
tion in PKCS#1 decryption can enable recovery of the secret key. It should be noted
that Bleichenbacher’s attack applies only to PKCS#1v1.5, not later versions of the
PKCS#1 standard. However, RSA key transport in SSL/TLS from SSL v3 to TLS
1.2 uses PKCS#1v1.5.

For RSA encryption, the receiver generates a public key/secret key pair by pick-
ing two large, distinct secret primes p and q, computing the RSA modulus n← pq,
and picking values e,d such that ed ≡ 1 mod φ(n), where φ(n) = (p− 1)(q− 1);
the receiver’s public key is (n,e) and the private key is d.

In ‘schoolbook’ RSA encryption, the sender represents a message M as an in-
teger m mod n, then computes the ciphertext as c← me mod n. The receiver can
decrypt this by computing m← cd mod n and converting the integer m back into
the message M. While this does indeed provide confidentiality, it does not protect
against malleability. For example, c2 mod n is the ciphertext corresponding to the
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Table 6.2: Known attacks on SSL/TLS. ∗ denotes a theoretical basis for a later prac-
tical attack

Target Attack name Year References

Core cryptography
RSA PKCS#1v1.5 decryption Side channel – Bleichen-

bacher
1998∗, 2014 [118]∗, [553]

DES Weakness – brute force 1998 [265]
MD5 Weakness – collisions 2005 [482]
RC4 Weakness – biases 2000*, 2013 [280, 515]∗,

[28]
RSA export keys FREAK 2015 [92]
Diffie–Hellman export keys Logjam 2015 [21]
RSA-MD5 signatures SLOTH 2016 [101]
Triple-DES Sweet32 2011*, 2016 [635]∗, [100]

Crypto usage in ciphersuites
CBC mode encryption BEAST 2002∗, 2011 [564]∗, [260]
Diffie–Hellman parameters Cross-protocol attack 1996∗, 2012 [724]∗, [529]
MAC–encode–encrypt padding Lucky 13 2013 [29]
CBC mode encryption +
padding

POODLE 2014 [565]

TLS protocol functionality
Support for old versions Jager et al., DROWN 2015, 2016 [46, 393]
Negotiation Downgrade to weak crypto 1996, 2015 [21, 92, 724]
Termination Truncation attack 2007, 2013 [88, 684]
Renegotiation Renegotiation attack 2009 [623]
Compression CRIME, BREACH, HEIST 2002∗, 2012,16 [422]∗,

[620, 632, 720]
Session resumption Triple-handshake attack 2014 [96]

Implementation – libraries
OpenSSL – RSA Side channel 2005, 2007 [20, 608]
Debian OpenSSL Weak RNG 2008 [710]
OpenSSL – elliptic curve Side channel 2011–14 [161, 162, 756]
Apple – certificate validation goto fail; 2014 [476]
OpenSSL – Heartbeat exten-
sion

Heartbleed 2014 [220]

Multiple – certificate validation Frankencerts 2014 [160]
NSS – RSA PKCS#1v1.5 sig-
natures

BERserk (Bleichenbacher) 2006∗, 2014 [276]∗, [473]

Multiple – state machine CCS injection, SMACK 2014, 2015 [92, 483]

Implementation – HTTP-based applications
Netscape Weak RNG 1996 [309]
Multiple – certificate validation ‘The most dangerous

code. . . ’
2012 [302]

Application-level protocols
HTTP SSL stripping 2009 [524]
HTTP server virtual hosts Virtual host confusion 2014 [239]
IMAP/POP/FTP STARTTLS command in-

jection
2011 [722]
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message m2. One mechanism for preventing ciphertext malleability is to impose for-
matting and padding requirements on the message; the homomorphic property of
RSA encryption would not a priori preserve that formatting requirement.

PKCS#1v1.5 encryption pads the message M as follows. Let k be the length in
bytes of the RSA modulus n. The padded format of M is

m = 00‖02‖PS‖00‖M,

where 00 and 02 are single bytes, and PS is a padding string composed of k− 3−
|M| ≥ 8 non-zero bytes. Once M is converted into m as above, the ciphertext is me

mod n. During decryption of a ciphertext c, the receiver again computes m← cd

mod n, then checks to see if m is PKCS-conforming, meaning that (a) the first byte
m1 = 00, (b) the second byte m2 = 02, (c) bytes m3 to m10 are all non-zero, and (d)
at least one of the bytes from m11 to mk is 00. If m is PKCS-conforming, then M is
extracted. A ciphertext is said to be PKCS-conforming if its decryption is.

In Bleichenbacher’s attack [118], we assume that an attacker has access to an ora-
cle which indicates whether a given ciphertext is PKCS-conforming. An attacker can
use such an oracle to decrypt a target ciphertext in a relatively small number of oracle
queries; for a 1024-bit RSA modulus, around 220 queries to the oracle suffice. The
attack proceeds as follows. Let c0 be the challenge ciphertext, which corresponds to
PKCS#1v1.5 plaintext m0 (and message M0). The attacker chooses a small value s
and computes c′← c0se mod n, then submits c′ to the PKCS-conformance-checking
oracle. If the ciphertext is PKCS-conforming, then the attacker knows that the first
two bytes of m0s mod n are 00 and 02. Mathematically, this means that 2B ≤ m0s
mod n < 3B, where B = 28(k−2). The attacker repeats this many times with different s
values, recording each s such that m0s mod n is in the required range. The adversary
can then use this information to narrow the range of values for m0. For a detailed de-
scription of the range-narrowing process and an evaluation of the success probability,
see [118], and improvements by Bardou et al. [54].

Straightforward implementations of SSL v3 enabled the attacker to obtain a
PKCS-conformance-checking oracle using a timing attack. In particular, the pseu-
docode of early implementations was as follows.

1. Compute m← cd mod n.
2. If m is not PKCS-conforming, then reject.
3. Otherwise, do additional cryptographic processing based on m (e.g. strong au-

thentication).
4. If authentication fails, then reject; otherwise accept.

Since the strong-authentication operations in step 3 above require some non-trivial
amount of time to perform, there is a timing mismatch between a reject in step 2
and a reject in step 4, allowing an adversary to learn whether the ciphertext was
PKCS-conforming or not.

SSL v3 actually imposes some additional padding constraints of its own, with
the effect that the 46-byte premaster secret PMS is padded to

m = 00‖02‖PS‖00‖03‖00‖PMS,
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and hence the padding string PS is always of the same length (for the same RSA
key size k). Imposing this additional ‘SSL-conformance’ check that the bytes 03‖00
always appear in the correct place increases the number of oracle queries to around
240, making the attack harder but still feasible. Klı́ma et al. [434] proposed a variant
of the attack and tested the attack in the wild, finding that nearly two-thirds of tested
web servers were vulnerable at the time.

TLS versions 1.0–1.2 still use PKCS#1v1.5 encryption for RSA key transport,
but impose additional requirements on implementations [251, Sect. 7.4.7.1]. In par-
ticular, before RSA decryption, implementations generate a random 48-byte string.
If the decryption does not conform to the PKCS and SSL formatting and version
requirements, processing continues, but using the randomly generated 48-byte string
as the premaster secret rather than the decrypted value. In other words, the hand-
shake protocol continues regardless of whether the ciphertext was PKCS- and SSL-
conforming or not. Rejection only happens when authentication fails in the process-
ing of the Finished message; since the attacker has forged a ciphertext, it expects
that authentication will fail, and thus learns nothing about the PKCS conformance of
the forged ciphertext.

Bleichenbacher’s attack continues to plague TLS (and other) implementations.
Specifically related to TLS implementations, Meyer et al. [553] successfully applied
Bleichenbacher’s attack against timing side channels in OpenSSL, JSSE, and Cav-
ium, as well as an error message side channel in JSSE. Jager et al. [393] showed that
even though TLS 1.3 (draft 10) does not include RSA key transport, and thus does
not rely on PKCS#1v1.5 encryption, Bleichenbacher’s attack on older versions of
TLS at servers which use the same RSA certificate for TLS 1.3 can potentially lead
to impersonation attacks on TLS 1.3 servers.

In 2016, Aviram et al. [46] presented the DROWN (Decrypting RSA using Ob-
solete and Weakened eNcryption) attack, which works against servers that use the
same RSA key with SSL 2 and modern versions of TLS, up to TLS 1.2. They identi-
fied a Bleichenbacher RSA padding oracle in the SSL 2 protocol, which can then be
used to decrypt TLS 1.2 ciphertexts. To decrypt at 2048-bit RSA TLS 1.2 ciphertext,
their attack requires an attacker to observe 1,000 TLS handshakes, initiate 40,000
SSL 2 connections, and do 250 offline work. They found that some 33% of publicly
accessible HTTPS servers were vulnerable to this attack.

6.9.2 Bleichenbacher’s Attack on PKCS#1v1.5 RSA Signature Verification

In 2006, Bleichenbacher [276] identified another vulnerability involving PKCS#
v1.5, this time in how implementations parse data during signature verification. Ble-
ichenbacher observed that the OpenPGP implementation of signature verification did
not correctly parse the padding of the hash value after exponentiation with the public
exponent. Bleichenbacher’s 2006 attack required that the RSA public exponent be 3
and that the RSA modulus be quite large (e.g. 3072 bits); a subsequent improvement
by Kühn et al. [460] allowed for smaller moduli and demonstrated how to use the
attack against CA, intermediate, or server certificates used by TLS web browsers,
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including a specific attack against the NSS library. This technique was again appli-
cable in a 2014 attack, called the ‘BERserk’ attack, on the ASN.1 parsing of padding
in PKCS#1v1.5 RSA signature verification in the NSS library, independently discov-
ered by Delignat-Lavaud and Intel Security [473].

6.9.3 Weaknesses in DES, Triple-DES, MD5, and SHA-1

DES. The Data Encryption Standard (DES) was supported for encryption in CBC
mode in SSL v2, SSL v3, TLS 1.0, and TLS 1.1. DES has an effective key size
of 56 bits, far below the level needed for security against attackers today. Indeed,
in 1998, the Electronic Frontier Foundation (EFF) built a DES cracker for under
US$250,000 that could perform an exhaustive key search in less than 3 days
[265], and in 2006 Kumar et al. [461] built an FPGA-based machine for under
US$10,000 that performs an exhaustive key search in less than 9 days. DES
ciphersuites were not included in TLS 1.2, and their use in earlier versions was
recommended to be discontinued [268].

Triple-DES. TLS versions up to 1.2 still support Triple-DES (three-key encrypt–
decrypt–encrypt) in CBC mode, which has an effective security of 112 bits. No
significant weaknesses are known in the core Triple-DES function, and, in guid-
ance dated January 2012, NIST continued to allow the use of Triple-DES for
encryption of ‘sensitive unclassified’ data. However, CBC mode is known to
suffer from collision attacks [635] which require a number of ciphertext blocks
up to the birthday bound on the block size, so block ciphers with small block
sizes are at risk. Triple-DES has the same block size as DES: 64 bits. Bharga-
van and Leurent [100] observed that the amount of ciphertext required to carry
out such an attack against Triple-DES is only 32 GB, and showed how to use
the attack to recover secret session cookies from HTTPS traffic encrypted using
Triple-DES; this was called the ‘Sweet32’ attack. The guidance following the
attack was to disable Triple-DES ciphersuites.

MD5. The MD5 hash function is used in several places in various versions of TLS.
In TLS 1.0 and TLS 1.1, the following apply.
1. Ciphersuites using RSA signatures sign the concatenation of the MD5 and

SHA-1 hashes of the ServerKeyExchange message.
2. The TLS PRF combines outputs from HMAC-MD5 and HMAC-SHA-1.
3. The message authentication code can be HMAC-MD5 or HMAC-SHA-1.
4. X.509 certificates can be signed using RSA with MD5 hashes or SHA-1

hashes.
In TLS 1.2, the following apply.
1. The MAC can be HMAC-MD5 or HMAC-SHA-1.
2. X.509 certificates can be signed using RSA with MD5 hashes or SHA-1

hashes.
The collision resistance of MD5 is completely broken. Following Wang et al.’s
initial discovery of a collision in MD5 [730], Lenstra and de Weger [482] con-
structed two different X.509 certificates containing identical signatures using a
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‘meaningful’ MD5 collision; Stevens, Lenstra, and de Weger [696] later con-
structed colliding X.509 certificates, one of which was a normal certificate (that
they got signed by a commercial CA) and one of which included flags for acting
as a certificate authority, thus giving them the ability to issue fraudulent certifi-
cates that would be browser-trusted. This means that use of 4 in the list above in
TLS 1.0 and TLS 1.1 and use of 2 for TLS 1.2 are insecure.
Conventional wisdom would be that the other uses of MD5 in TLS mentioned
above do not immediately become insecure owing to the failure of collision re-
sistance: signatures involving the concatenation of the MD5 and SHA-1 hashes
remain secure if SHA-1 is collision resistant (theoretical attacks are known, but
no collision has been published to date); and HMAC can remain secure both for
message authentication and as a PRF under weaker conditions than collision re-
sistance [68]. Despite this, these particular uses of MD5 in TLS are still problem-
atic. In 2016, Bhargavan and Leurent [101] identified a class of “transcript colli-
sion” attacks (which they called the SLOTH attack). Their immediately practical
attacks (48 core hours of parallelisable computation) included impersonation of
clients or servers using RSA-MD5 certificates for authentication, and the break-
ing of tls-unique channel binding (which relies on HMAC-MD5 truncated
to 96 bits); they also projected the complexity of finding a collision in the con-
catenated MD5 and SHA-1 hashes of the handshake transcript. At the time of
the SLOTH disclosure, many software packages, and 32% of TLS servers, ac-
cepted RSA-MD5 signatures, although commercial CAs have not been issuing
for RSA-MD5 certificates for many years.

SHA-1. The SHA-1 hash algorithm is also used in various places in TLS. The pro-
jected complexity of finding a SHA-1 hash collision is between 260.3 and 265.3

operations [695], no collisions were publicly known as of October 2015. Ma-
jor browser vendors (including Google, Microsoft, and Mozilla) and CAs are
transitioning to SHA-256; CAs have been required to not issue SHA-1 certifi-
cates since January 2016, and browsers have been treating SHA-1 certificates as
insecure since January 2017.

6.9.4 RC4 Biases

In many TLS ciphersuites, the RC4 stream cipher is used for bulk encryption. RC4
was for many years viewed as preferred compared with DES (RC4 having larger
keys), Triple-DES (RC4 being faster and easier to implement) and initial implemen-
tations of AES (RC4 again being faster than early software-only implementations of
AES). In December 2018, Qualys SSL Labs’ SSL Pulse [621] reported that 15.6%
of popular web servers had RC4 support enabled, and 1.6% would negotiate an RC4-
based ciphersuite even with modern browsers.

It has long been known that the RC4 stream cipher is less than ideal in a variety
of ways. Sen Gupta et al. [662] provided an excellent survey of the history of RC4
cryptanalysis over the years, including the existence of weak keys, the partial recov-
ery of the initial key from the internal state and from the keystream, and observed
biases in the keystream.
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In 2013, AlFardan et al. [28] demonstrated two nearly practical plaintext recov-
ery attacks on RC4 as used in TLS based on prior known biases and some novel im-
provements. In their attack scenario, a fixed plaintext is encrypted using RC4 many
times in succession, using the same or independent RC4 keystreams.

Their first attack, based on single-byte bias, is against the initial 256 bytes of the
RC4 keystream: if the same plaintext is encrypted many times under distinct RC4
keys, then plaintext bytes can be recovered. In TLS, the keystream is used to encrypt
the last handshake message (the 36-byte Finished message) which changes each
session, but the next 220 bytes are application plaintext: a careful attacker may be
able to cause a client to send the same request many times. In HTTP, cookies may
appear in the first 220 bytes (though browsers often send more HTTP headers before
the cookies); in the IMAP protocol for email collection, the user’s password typically
appears in the first 220 bytes. The attack works based on statistically averaging many
ciphertexts, considering known biases in the first 256 bytes of RC4 keystreams. In
AlFardan et al.’s experiments, the first 40 bytes of TLS application data were each
recovered with a success rate of over 50% per byte using 226 sessions, and all 220
bytes of application data with a success rate of over 96% per byte using 232 sessions.

These attacks on RC4 have subsequently been improved. In March 2015, Gar-
man et al. [292] demonstrated proof-of-concept password recovery attacks on certain
application-layer protocols (BasicAuth and IMAP) when using RC4 ciphersuites in
TLS. Their attacks achieved a significant success rate using 226 ciphertexts. The main
advantage comes from assuming the secret password is not distributed uniformly,
instead using knowledge of typical password distributions, for example based on
leaked corpuses of passwords [126].

It has been previously suggested [555] that the first few hundred bytes of the RC4
keystream should be dropped owing to known biases; however, the TLS standards
do not provide a mechanism for doing so. AlFardan et al. gave a second attack,
based on double-byte biases, that allows recovery of plaintext bytes anywhere in
the ciphertext, not just the first 256 bytes. It is based on biases in pairs of bytes in
the RC4 keystream. In their experiments, 16 consecutive bytes could be recovered
with a 100% success rate using statistical analysis of 13× 230 ciphertexts. Vanhoef
and Piessens [721] identified new biases and exploited them to be able to recover a
16-byte cookie with a 94% success rate using a novel statistical analysis of 9× 227

ciphertexts.
After the BEAST attack [260] against CBC mode in TLS in 2011, it was rec-

ommended that RC4 be adopted as the preferred ciphersuite. After the attacks by
AlFardan et al., it was recommended that RC4 be avoided, and that CBC mode with
a certain countermeasure be used or, preferably, that the Galois/counter mode of au-
thenticated encryption in TLS 1.2 be used where supported. In February 2015, the
IETF TLS working group approved an RFC to prohibit the use of RC4 in all versions
of TLS [619].
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6.9.5 Weak RSA and Diffie–Hellman: FREAK and Logjam Attacks

As noted above, early versions of SSL included support for export ciphersuites which
used shorter keys, as required by US export regulations. For RSA encryption and
finite-field Diffie–Hellman key exchange, this meant the use of 512-bit (or shorter)
keys. This key size would not be considered secure by modern standards, as RSA
keys of this size could be factored in 1999. With the lapsing of these particular ex-
port regulations, modern TLS clients do not offer export ciphersuites. Nonetheless,
many TLS implementations still include code supporting either export ciphersuites
directly, or smaller keys indirectly. This old code led to the discovery of two major
vulnerabilities in 2015.

Beurdouche et al. [92] discovered the so-called FREAK (“Factoring RSA Export
Keys”) attack, which exploits a state machine vulnerability in OpenSSL, Microsoft’s
SChannel library, and Apple’s Secure Transport library, to trick a client and server
into using an export-grade RSA key as long as the server supports RSA export ci-
phersuites, even if the client does not.

The FREAK attack works as follows. It requires a vulnerable client and a server
that supports export-grade RSA key transport ciphersuites. First, the client sends a
ClientHello message with a (non-export) RSA ciphersuite supported. The man-in-
the-middle (MITM) replaces the supported ciphersuites with an export RSA cipher-
suite and forwards it to the server. When the server responds with a ServerHello

message for the RSA export ciphersuite, the MITM replaces it with a standard RSA
ciphersuite and forwards it to the client. The server will also send its RSA certificate
(which may be, for example, 2048 bits) as well as a ServerKeyExchange message
containing an export-grade (e.g. 512-bit) ephemeral RSA public key. The MITM for-
wards these along to the client. The client should reject at this point, since no honest
server running a non-export RSA ciphersuite would send a ServerKeyExchange

message, but, owing to state machine bugs, several client implementations did not
reject, and instead proceeded to use the ephemeral RSA public key for key trans-
port. In particular, these clients would respond with a ClientKeyExchange mes-
sage which contained the random premaster secret encrypted under the export-grade
ephemeral RSA public key. The MITM needs to factor the RSA public key, derive all
secrets, and then use these secrets to forge Finished message MAC tags to trick the
client and server into accepting the altered transcripts. While factoring a 512-bit RSA
key is possible, it would still take weeks with 2015 technology; however, many im-
plementations will cache ephemeral RSA public keys, since RSA key generation is
costly, so it may be possible to carry out the attack using sufficient pre-computation.
Affected implementations were patched prior to the release of the paper.

Later in 2015, Adrian et al. [21] discovered the Logjam attack, which similarly
allows a MITM attacker to downgrade the cryptography used in TLS, this time
downgrading ciphersuites using finite-field Diffie–Hellman for forward secrecy to
export-grade (or lower!) keys. The attack applied against all major browsers (Inter-
net Explorer, Chrome, Firefox, Opera, and Safari). (Interestingly, Safari accepted
finite-field Diffie–Hellman groups as small as 16 bits.) Using Internet-wide scan-
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ning tools, the researchers identified that 8.4% of the Alexa Top 1 Million HTTPS
domains allowed export-grade ephemeral Diffie–Hellman key exchange.

The Logjam attack works as follows. It requires a vulnerable client and a server
which supports export-grade finite-field ephemeral Diffie–Hellman (‘DHE EXPORT’)
ciphersuites. First, the client sends a ClientHello message with a (non-export)
finite-field Diffie–Hellman ciphersuite supported. The MITM replaces the supported
ciphersuites with an export-grade finite-field Diffie–Hellman ciphersuite and for-
wards it to the server. When the server responds with a ServerHellomessage for the
export DH ciphersuite, the MITM replaces it with a standard Diffie–Hellman cipher-
suite and forwards it to the client. The server also sends its export-grade ephemeral
Diffie–Hellman key in a ServerKeyExchange message, which the MITM forwards
to the client. A vulnerable client implementation will accept the server’s export-
grade ephemeral Diffie–Hellman public key even though the client and server did
not explicitly negotiate an export ciphersuite, and respond with its ephemeral Diffie–
Hellman public key. The MITM needs to compute the shared Diffie–Hellman secret,
derive all secrets, and then use these secrets to forge Finished message MAC tags
to trick the client and server into accepting the altered transcripts.

Two implementation details make it feasible for the attacker to complete the
attack. First, 92% of web servers supporting DHE EXPORT ciphersuites use one of
two standardised 512-bit finite-field groups. While each server will use a distinct
ephemeral public key from this group, the number field sieve discrete logarithm algo-
rithm can be structured to make use of pre-computation for the group that is indepen-
dent of the specific discrete logarithm being computed. Second, many web servers,
including Apache, nginx, and Microsoft’s SChannel, reuse server ephemeral Diffie–
Hellman keys. On Adrian et al.’s computing cluster, with 1 week of pre-computation
for each group, computing individual 512-bit discrete logarithms took on average 70
seconds. The paper includes a discussion about the potential of state-level attack-
ers using greater computing power for 768-bit and even 1024-bit finite-field Diffie–
Hellman key exchange, and suggests that, based on the Snowden documents, the Na-
tional Security Agency may be employing this technique to decrypt some TLS con-
nections as well as virtual private networking connections established using IPsec’s
Internet Key Exchange (IKE) protocol with a specific 1024-bit finite-field Diffie–
Hellman group.

One notable characteristic of both the FREAK and the Logjam attacks is that
they exploit the fact that in SSL and TLS up to version 1.2, authentication of the
transcript is done using a MAC rather than a signature, and the MAC is com-
puted using (a key derived from) the master secret, the security of which is it-
self negotiated inside the protocol. (Note that the server’s signature is only over
the nonces and the raw ephemeral public key, and excludes the negotiation in the
ClientHello/ServerHello messages.) In other words, the key used to authenti-
cate the transcript and show that a downgrade attack has not occurred (i.e. that the
parties agree on the ClientHello/ServerHello messages) is being downgraded
prior to authentication. TLS 1.3 aims to avoid this type of attack by using the long-
term public key to sign the entire transcript.
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6.10 Attacks: Crypto Usage in Ciphersuites

We next examine attacks in which the cryptographic algorithms in the TLS cipher-
suite interact in an unfortunate way with the other protocol components.

6.10.1 BEAST Adaptive Chosen Plaintext Attack and POODLE

The use of block ciphers (DES, Triple-DES, AES) in cipher block chaining (CBC)
mode in SSL v3 and TLS 1.0 is vulnerable to an adaptive chosen plaintext at-
tack owing to the manner in which initialisation vectors for different requests in
the same SSL/TLS connection are set. This vulnerability was observed by Möller
in 2002 [564] and Bard in 2004 [53], but neither was able to demonstrate an ac-
tual attack. In 2011, Rizzo and Duong demonstrated a working attack, which they
called the BEAST attack (a ‘backronym’ for ‘Browser Exploit Against SSL/TLS’)
that allowed them to recover short secret strings in known locations in HTTP plain-
texts [260, 625, 650].

CBC mode is one of several block cipher modes that allow an arbitrary-length
message m to be split into blocks m1‖m2‖m3‖ . . .‖mn and encrypted by a fixed-length
cipher. In CBC mode, the first block of plaintext, m1, is XORed with an initialisation
vector iv, then encrypted using the key k:

c1←{m1⊕ iv}k.

Subsequent plaintext blocks are encrypted in a similar way, except that the initialisa-
tion vector is replaced with the previous ciphertext block:

ci←{mi⊕ ci−1}k.

In SSL and TLS, the initialisation vector is derived from the master secret using
the PRF. In many applications, including HTTPS, the same SSL/TLS connection is
used for multiple requests. For example, in a web browser, the SSL/TLS connection
will be established for the first request to a server, and then subsequent requests (in-
cluding page resources such as images, JavaScript, applets, and later HTML pages)
may all be sent over the same connection. SSL v3 and TLS 1.0 do not choose a new
initialisation vector for each subsequent request within the same TLS connection:
instead, they simply continue cipher-block chaining, using the last ciphertext block
of the previous request as the initialisation vector for the next request.

The attack allows an adversary to test whether a particular guess at a plaintext
block has a particular value. Suppose the adversary has observed the transmission of
ciphertext c1‖c2‖ . . .‖cn and wishes to determine whether plaintext block m j equals
some guessed plaintext m∗. Now, the adversary knows that the next plaintext block
sent will be encrypted with initialisation vector cn. The adversary directs the user
to send the next plaintext, block mn+1 = c j−1⊕ cn⊕m∗; the user will compute the
ciphertext

cn+1 = {mn+1⊕ cn}k = {c j−1⊕ cn⊕m∗⊕ cn}k = {c j−1⊕m∗}k.



6.10 Attacks: Crypto Usage in Ciphersuites 269

If m j = m∗, then cn+1 = c j, allowing the adversary to verify whether or not its guess
of m∗ for plaintext block j was correct.

The above attack allows the adversary to verify guesses of a single block one at
a time. In AES, for example, a single block is 128 bits long; an adversary trying to
guess a whole secret block could require up to 2128 operations, as much work as a
brute force key recovery attack. However, Rizzo and Duong showed how an attacker
who can inject plaintext near the beginning of a request can adjust how the plaintext
is broken across block boundaries, isolating just a single unknown byte at a time.
For example, suppose the attacker can cause the victim to make an HTTP request
to a given URL, and that the cookie (which contains the secret value the attacker is
targeting) comes immediately after, in a request like this:

GET /←↩Cookie: s=︸ ︷︷ ︸
16

1234567890123456︸ ︷︷ ︸
16

If the plaintext is encrypted in blocks of 16 bytes (128 bits), notice that the first block
of 16 bytes is entirely known to the adversary, but the second block of 16 bytes is
entirely unknown. If the adversary can change the URL that the victim requests, it
can control where the block boundary falls. For example, if the adversary causes the
victim to request a 15-character URL such as abcdeabcdeabcde, then the block
boundaries fall like this:

GET /abcdeabcdea︸ ︷︷ ︸
16

bcde←↩Cookie: s=1︸ ︷︷ ︸
16

234567890123456︸ ︷︷ ︸
15

The second block (bcde←↩Cookie: s=1) now contains only a single unknown
byte, and thus can be found by carrying out the above attack using only 256 plaintext
guesses. Once that byte is found, the adversary can shift the boundary again for the
next unknown byte:

GET /abcdeabcdea︸ ︷︷ ︸
16

bcd←↩Cookie: s=12︸ ︷︷ ︸
16

34567890123456︸ ︷︷ ︸
14

and so on, allowing it to recover a k-byte secret with just 256k guesses.
To carry out this attack, the adversary needs to be able to observe ciphertexts,

know the format of requests from the victim and be able to cause the victim to
make multiple requests with the same secret, while being able to inject plaintext
to control where the block boundary falls and to test guesses. Modern web browsers
have a variety of communication technologies that have the potential to allow the
adversary such powers, such as asynchronous Javascript requests and HTML5 Web-
Sockets, as well as APIs in plugin technologies such as Java’s URLConnection API
and Silverlight’s WebClient API. In most cases, the browser enforces a same-origin
policy—preventing scripts from one domain sending data to another domain—that
make it difficult to carry out the attack. Rizzo and Duong made use of a zero-day
exploit in Java that bypassed the same-origin policy restrictions; this exploit has sub-
sequently been patched, and to date no other means of carrying out the BEAST attack
has been exhibited.
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One of the major changes introduced in TLS 1.1 was the use of explicit IVs in
CBC mode ciphers to prevent this attack. This suffices as a countermeasure to the
BEAST attack. However, deployment of web browsers and servers supporting TLS
1.1 was slow; in early 2012, just after the BEAST attack, less than 1% of SSL-
enabled websites surveyed by SSL Pulse supported TLS 1.1 or TLS 1.2. As a result,
the immediate recommendation at the time of the BEAST attack was to switch to
ciphersuites using the RC4 stream cipher; this recommendation has since been re-
scinded owing to subsequent attacks on RC4 described below. Browsers have since
been updated to do so-called 1/n− 1 record splitting: the first block in each new
message contains only a single byte of plaintext, the second block contains the next
n−1 bytes (here n is the block size in bytes), and then the remaining blocks are full
size. This has the effect of randomizing the IV in a (relatively) backward-compatible
way [475].

In 2014, Möller, Duong, and Kotowicz [565] described a more powerful form
of the BEAST attack against CBC-mode encryption SSL v3 in an attack which they
called the POODLE (Padding Oracle On Downgraded Legacy Encryption) attack. In
CBC-mode encryption in SSL v3, plaintext is concatenated with the MAC over the
plaintext, then padding is applied to pad it out to a multiple of the block length L.
The padding must be between 1 and L bytes, and the last byte of the last block is the
length of the padding. There are no requirements on the content of the padding, and
it is not covered by the MAC, so the integrity of the padding is not verified when
decrypting.

The POODLE attack allows an attacker to decrypt a secret value inside the plain-
text as follows. The attack is simpler if we assume the full last block is padding,
which can be achieved easily by an attacker who has partial control over the plain-
text. The attacker takes the ciphertext block it is trying to decrypt and uses it as the
final ciphertext block. The decryption algorithm then XORs this with the previous
block of ciphertext, which is known to the adversary. If the last byte of the result is
the same as the expected padding length, then the block will decrypt successfully,
otherwise an error will occur. Thus, with a 1-in-256 chance, the attacker can learn
the last byte of one block of plaintext. Once one byte of the plaintext has been learnt,
an attacker with partial chosen plaintext abilities can request ciphertexts with an ad-
ditional byte, shifting the next byte of the target secret into the last byte of a block,
and repeat.

While the POODLE attack can be defeated with a clever record-splitting tech-
nique similar to the 1/n− 1 record-splitting technique as described for the BEAST
attack above, the preferred technique is to simply avoid use of SSL v3. Since some
servers still support only SSL v3, some clients continue to offer SSL v3 support, to
which an attacker could try to cause clients to downgrade. A recent new feature of
TLS, the TLS FALLBACK SCSV signalling-ciphersuite value, can prevent downgrade
attacks and thus protect clients from the POODLE attack [474].
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6.10.2 Cross-Protocol Attack on Diffie–Hellman Parameters

As previously identified, TLS supports many different ciphersuites, and most deploy-
ments also support several ciphersuites. For example, a standard server might sup-
port ciphersuites using RSA key transport, RSA-signed finite-field ephemeral Diffie–
Hellman, and RSA-signed elliptic curve ephemeral Diffie–Hellman, using AES en-
cryption in CBC or Galois/counter mode, and with either SHA-1 or SHA-256 hash
functions. However, in almost all installations, each server has only a single RSA
long-term key, which is reused across all supported ciphersuites. In fact, popular
web servers such as Apache only allow the server administrator to install a single
key for each long-term key algorithm. Reuse of keying material—also known as key
agility—can sometimes result in a vulnerability, either because secrets used in one
algorithm may leak information when used in another algorithm, or because data
encrypted/authenticated by one protocol may be unintentionally useful in another
protocol.

Recall from Sect. 6.3.1 that, in ciphersuites where authentication is based on
digital signatures, the server signs the ServerKeyExchange message. The contents
of the ServerKeyExchange message depend on the type of key exchange method
and are shown in Fig. 6.2. For ephemeral Diffie–Hellman key exchange (either finite-
field or elliptic curve), the ServerKeyExchange message includes the description
of the group as well as the server’s ephemeral public key. In RSA key transport
ciphersuites in SSL v3 and the export ciphersuites of TLS 1.0, the server may also
send an RSA public key for encryption.

Wagner and Schneier [724] identified potential cross-protocol attacks in SSL v3
in 1996. They observed that the data structure to be signed—either ServerRSA-
Params or ServerDHParams—does not explicitly indicate what the type of the data
structure is; instead, the data type is inferred by each party based on the negotiated
ciphersuite. Wagner and Schneier hypothesised that it may be possible for an attacker
to convince a client to misinterpret one type of data structure as another.

In 2012, Mavrogiannopoulos et al. [529] noted that, while the exact attack of
Wagner and Schneier would not work owing to a subtlety in how TLS packets
were processed, a similar attack could be executed. In 2006, support for elliptic
curve Diffie–Hellman key exchange had been added to TLS [106]; in the relevant
ciphersuites, the ServerKeyExchange message contains the description of the el-
liptic curve parameters and the server’s ephemeral public key point. The specifica-
tion allows curves to be specified either as one of several predefined named curves
using a single index value, or as an explicit curve by specifying the prime or irre-
ducible polynomial, curve equation coefficients, base point, and group order. When
explicit curves are used, Mavrogiannopoulos et al. observed that it is possible to
construct a ServerECDHParams data structure that is also a valid ServerDHParams

data structure. Moreover, with careful choices of the curve parameters, a non-trival
proportion (around 1 in 240) of elliptic curve ephemeral public keys will, when the
ServerECDHParams data structure is interpreted as a ServerDHParams structure,
result in a modulus that is sufficiently smooth to allow efficient factoring, enabling
the attacker to compute the premaster secret and impersonate the server in the con-
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struct {
select (KeyExchangeAlgorithm):

case rsa:
ServerRSAParams params;
Signature signed_params;

case dhe_dss, dhe_rsa:
ServerDHParams params;
Signature signed_params;

case ec_diffie_hellman:
ServerECDHParams params;
Signature signed_params;

} ServerKeyExchange

Note that case rsa only applies in some scenarios of
SSL v3 and TLS 1.0.

struct {
opaque rsa_modulus;
opaque rsa_exponent;

} ServerRSAParams;

struct {
opaque dh_p<1..2ˆ16-1>;
opaque dh_g<1..2ˆ16-1>;
opaque dh_Ys<1..2ˆ16-1>;

} ServerDHParams;

struct {
ECCurveType curve_type = 1;
opaque prime_p <1..2ˆ8-1>;
ECCurve curve;
ECPoint base;
opaque order <1..2ˆ8-1>;
opaque cofactor <1..2ˆ8-1>;
opaque point <1..2ˆ8-1>;

} ServerECDHParams;

Fig. 6.2: ServerKeyExchange data structures for signed ciphersuites in TLS

nection. Fortunately, as of this writing no major TLS server implementations sup-
port explicit elliptic curve parameters, so the attack remains theoretical. Motivated
by this attack, Bergsma et al. [89] extended the ACCE security notion to consider
multi-ciphersuite security and characterised the security of certain subsets of TLS
ciphersuites with long-term key reuse across ciphersuites.

6.10.3 Lucky 13 Attack on MAC-Then-Encode-Then-Encrypt

The use of CBC mode for block ciphers in the TLS record layer follows a MAC-
then-encode-then-encrypt pattern: a MAC is computed over the plaintext, then the
plaintext and MAC tag are padded to a multiple of the block length, then the plain-
text+MAC+padding is encrypted. The padding must have a specified format. In order
to prevent one type of timing attack, the TLS standards require that a MAC check
still be performed even if the padding is invalid. However, it becomes unclear as to
which data the MAC should be computed over, so the RFC recommends processing
as if there was a zero-length pad. In contrast, no processing of a validly padded and
encrypted message would ever be performed with a zero-length pad. This difference
opens up the possibility of a small timing side channel in the form of a padding oracle
attack. The RFCs indicated it was “not believed to be large enough to be exploitable,
due to the large block size of existing MACs and the small size of the timing signal”
[251, Sect. 6.2.3.2].

AlFardan and Paterson [29] demonstrated how to exploit this small timing side
channel, including practical attacks on open source implementations. The name
‘Lucky 13’ comes from what they describe as a “fortuitous alignment of various
factors such as the size of MAC tags, the block cipher’s block size, and the number
of header bytes”. Ciphertexts with invalid padding will result in an error message
appearing at a slightly different time than for ciphertexts with valid padding but an
invalid MAC tag.
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In their most general attack on TLS in OpenSSL, an attacker on the same LAN
segment is able to recover a full plaintext block using roughly 223 sessions, provided
that the same plaintext is sent in multiple sessions. More specific variants are more
effective. It is possible to use the attack technique to distinguish the encryptions of
two chosen messages in just a few sessions. Partial plaintext recovery attacks against
TLS and DTLS are possible using fewer sessions. Attacks against DTLS are more
effective: since DTLS is non-reliable, errors in DTLS are not fatal to the session, so
it is much more practical to carry out repeated queries against the session. All major
open source TLS implementations were vulnerable to attack.

One countermeasure proposed was to remove the timing side channel using a
careful implementation, although the authors of the attack cautioned that it would be
difficult to remove all related timing side channels, especially in DTLS implemen-
tations. Adding random timing delays was noted to be relatively ineffective, adding
only a small increase in statistical uncertainty that could be averaged out with ad-
ditional samples. The alternatives proposed were to switch away from CBC mode,
either to RC4 or to authenticated encryption modes. The recommendation to switch
to RC4 was with the caveat that RC4 was known to have some statistical weaknesses,
and the same authors (plus a few new co-authors) subsequently demonstrated prac-
tical attacks against RC4-based ciphersuites, invalidating that recommendation (see
Sect. 6.9). Authenticated encryption modes are only supported in TLS 1.2, leav-
ing lower versions stuck with a difficult choice. An option to switch to pad-then-
encrypt-then-MAC was standardised in 2014 [339] but does not seem to be widely
implemented as of the time of writing.

6.11 Attacks: Protocol Functionality

This section examines attacks which arise owing to the extensive range of function-
ality provided in TLS. Unfortunately, flexibility which can be useful to applications
can sometimes also open up opportunities for attackers.

6.11.1 Downgrade Attacks

All existing versions of SSL and TLS have compatible packet formats and in most
applications run over the same network ports, but have different security properties,
so there is the risk that devices which support multiple versions of SSL/TLS may be
subject to a downgrade attack in which they are tricked into using a lower version
than they both support.

Let us briefly recall the version negotiation mechanism. In the ClientHello

message, the client sends the highest version it supports. In the ServerHello mes-
sage, the server responds with the highest version it supports that the client also
supports.

The risk of downgrade attacks in SSL/TLS was identified as early as Wagner
and Schneier’s 1996 paper [724]. SSL v2 was vulnerable to a ciphersuite rollback
attack: since the ciphersuite negotiation was not authenticated in SSL v2, an active
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attacker could replace one party’s list of supported ciphersuites with the weakest
mutually supported ciphersuite (for example, an export ciphersuite or one with a
weak algorithm).

SSL v3 introduced a countermeasure to this attack: the complete handshake tran-
script was authenticated using a MAC with (a key derived from) the shared session
key. This was designed to protect both version negotiation and ciphersuite negotia-
tion. While this provides immediate protection against the naive downgrade attack
on SSL v2 noted above, it is still flawed: the security of the version and ciphersuite
negotiation mechanism comes from mutual authentication of the transcript, the tran-
script is authenticated using the shared session key, and the algorithm for computing
this is determined by the ciphersuite and version being authenticated. This cyclic de-
pendency places negotiation security at risk: a man-in-the-middle attacker who can
compute the shared session key in real time can potentially disrupt negotiation un-
detectably. The FREAK and Logjam attacks, discussed in detail in Sect. 6.9.5, are
examples of downgrade attacks that depend on this cyclic dependency of authentica-
tion negotiation using a key derived from the negotiated ciphersuite.

If strong ciphersuites are used, defeating attacks like FREAK and Logjam, then
authentication of the transcript (which includes the version negotiation) theoretically
ensures the parties are not subject to a version downgrade attack. Unfortunately, this
is not the case in practice. Many implementations implement a further version ne-
gotiation mechanism called fallback, sometimes called the downgrade dance. Since
some flawed TLS server implementations respond with a failure message when con-
fronted with a ClientHello containing versions higher than they support, TLS
clients will retry the handshake with the next lower version, sidestepping the in-
protocol version negotiation mechanism. Unfortunately, this downgrade is easy for
an attacker to trigger: the failure message is not authenticated, so a man-in-the-
middle attacker can spoof the failure message and trigger a downgrade. Originally,
there was no link between the original request and the fallback request. In particular,
there was no mechanism for the client to indicate to the server that it was attempt-
ing a downgraded handshake owing to a failure message, and thus the client and
server would not detect the downgrade attack. In April 2015, the IETF standardised
the TLS Fallback Signalling Ciphersuite Value (SCSV) [563]: when trying a lower
version during a fallback, the client can send a flag indicating it is doing so (for en-
gineering reasons, this flag is implemented as a special ‘dummy’ ciphersuite in the
list of supported ciphersuites, hence the term ‘signalling ciphersuite value’). A server
that also supports SCSV can thus detect when a downgrade attack is occurring.

Cryptographic modelling of negotiation and downgrade resistance has been pre-
sented by Dowling and Stebila [258] and Bhargavan et al. [94].

6.11.2 Renegotiation Attack

Recall from Sect. 6.4.3 that renegotiation allows two parties who are using an ex-
isting TLS session to run a new handshake; upon completion of the new handshake,
the session switches to the newly established encryption and authentication keys for
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Attack 6.1: Ray and Dispensa’s attack on TLS renegotiation

communication. In November 2009, Ray and Dispensa [623] described a man-in-
the-middle attack that exploits how certain TLS-reliant applications—such as HTTP
over TLS—process data across renegotiations. The attack is as shown in Attack 6.1.

The attacker Eve observes Alice attempting to establish a TLS session with Bob.
Eve delays Alice’s initial ClientHello and instead establishes her own TLS session
with Bob, then transmits a message m0 over that record layer. Then Eve passes Al-
ice’s initial ClientHello to Bob over the Eve–Bob record layer. Bob views this as
a valid renegotiation and responds accordingly; Eve relays the handshake messages
between Alice and Bob, which serve to establish a new record layer between Alice
and Bob to which Eve has no access. Alice then transmits a message m1 over the
Alice–Bob record layer.

This is not, strictly speaking, an attack on TLS but on how some applications
process TLS-protected data. It results from some applications, including many im-
plementations of HTTPS [623] and SMTPS, concatenating m0 and m1 and treating
them as coming from the same party in the same context. For example, if Eve sends
the HTTP request

m0 = “GET /orderPizza?deliverTo=123-Fake-St←↩ X-Ignore-This: ”

and Alice sends the HTTP request

m1 = “GET /orderPizza?deliverTo=456-Real-St←↩ Cookie: Account=111A2B”

(where←↩ denotes a new-line character), then the concatenated request (across mul-
tiple lines for readability) is

m0‖m1 = “GET /orderPizza?deliverTo=123-Fake-St←↩
X-Ignore-This: GET /orderPizza?deliverTo=456-Real-St←↩
Cookie: Account=111A2B”
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The ‘X-Ignore-This:’ prefix is an invalid HTTP header. Since this header, without
a new-line character, is concatenated with the first line of Alice’s request, Bob’s
application receives a full HTTP header with an unknown header name, so this line
is ignored. However, the following line, Alice’s account cookie, is still processed.
Eve is able to have the pizza delivered to herself but paid for by Alice’s account.

It should be noted that Ray and Dispensa’s attack works for both the server-
only authentication and the mutual authentication modes of TLS: the use of client
certificates does not in general prevent the attack.

The immediate recommendation due to this attack was to disable renegotiation
except in cases where it was essential. The IETF TLS working group developed RFC
5746 [629] to provide countermeasures to this attack, with the goal of applicability
to all versions of TLS and SSL v3. Two countermeasures were standardised:

Renegotiation Information Extension (RIE). This countermeasure essentially pro-
vides handshake recognition, confirming that both parties have the same view
of the previous handshake when renegotiating. With this countermeasure, each
client or server always includes a renegotiation information extension in its re-
spective ClientHello or ServerHello message. This extension contains one
of three values. If the party is not renegotiating, then it includes a fixed ‘empty’
string, which denotes that the party supports and understands the renegotiation
extension, but that party is in fact not renegotiating. If the party is renegotiat-
ing, then it includes the handshake/key confirmation value from the previous
handshake: the client sends the previous client verification data value while the
server sends the concatenation of the previous client verification data and server
verification data values. Intuitively, by including the verification data from the
previous handshake, the parties can be assured that they have the same view of
the previous handshake, and thus the attack in Fig. 6.1 is avoided.

Signalling Ciphersuite Value (SCSV). This countermeasure was designed to avoid
interoperability problems with TLS 1.0 and SSL v3 implementations that did not
gracefully ignore extension data at the end of ClientHello and ServerHello

messages. Here, the client puts an additional value in its initial handshake—an
extra, fixed, distinguished ciphersuite value (byte codes 0x00,0xFF) included in
its ciphersuite list—to indicate that it knows how to securely renegotiate. Old
servers will ignore this extra value; new servers will recognise that the client
supports secure renegotiation, and the server will use the RIE in the remainder
of the session. In other words, the only difference between SCSV and RIE is in
the ClientHello message of the initial handshake: with RIE, the client sends
an empty extension, whereas with SCSV the client sends a distinguished value
in the list of supported ciphersuites.

These countermeasures were quickly implemented in most TLS libraries, web
browsers, and web servers. Giesen et al. [304] extended the ACCE model presented
in Sect. 2.8.3 to formalise the notion of renegotiation security, and proved that these
countermeasures provided renegotiation security for TLS.
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6.11.3 Compression-Related Attacks: CRIME, BREACH

As described in Sect. 6.4.1, the TLS record layer can optionally perform compression
of all application data. The Compression Ratio Info-leak Made Easy (CRIME) attack,
presented by Rizzo and Duong in 2012 [632] makes use of a side channel based on
the length of the compressed plaintext, first identified by Kelsey in 2002 [422], to
extract secret values such as HTTP cookies from encrypted application data.

In 2002, Kelsey [422] described at a general level the various side channels that
exist when plaintext is compressed prior to encryption; in particular, the length of
the compressed plaintext compared with the original plaintext acts as a side channel,
leaking some information about the amount of redundancy in the plaintext. One of
the most powerful attacks described by Kelsey was an adaptive chosen input attack.
Suppose the adversary is given access to an oracle that behaves as follows. When the
adversary inputs a message x, the oracle outputs

Oa,b,S(x) = Enc(Comp(a‖x‖b‖S)),

where Enc denotes encryption, Comp denotes compression, a and b are fixed public
strings, and S is the secret the adversary is trying to recover. The basic idea of the
attack is that, when the attacker’s input x overlaps with S, the compressed string
will be slightly shorter than when x does not overlap with S. The attacker works
adaptively character by character.

Rizzo and Duong [632] showed how to use Kelsey’s attack against TLS com-
pression in the context of HTTP. On the web, we have a web browser making HTTP
GET requests to an HTTPS website. In addition to the URL, the browser will send
a header containing the authentication cookie; all of this is encrypted using TLS.
For example, to visit https://server.com/index.html, the browser might
send

Enc(Comp(“GET /index.html←↩Cookie: secret=31415926”)).

If the attacker can cause the user to visit arbitrary URLs on the target website
server.com, then the browser acts as an oracle in Kelsey’s adaptive chosen in-
put attack above. In particular, if the attacker can cause the browser to visit the URL
https://server.com/url, then the browser will send

Enc(Comp(“GET /url←↩Cookie: secret=31415926”)).

The attacker now iterates through different values of url (secret=1, secret=2,
. . . ):

Enc(Comp(“GET /secret=1←↩Cookie: secret=31415926”)),
Enc(Comp(“GET /secret=2←↩Cookie: secret=31415926”)),
Enc(Comp(“GET /secret=3←↩Cookie: secret=31415926”)).

The third value will compress slightly more than the others, because of the greater
overlap between secret=3 and the cookie secret=31415926. The attacker
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now knows that the first character of the secret is 3. The attacker now adaptively
queries for the next character:

Enc(Comp(“GET /secret=31←↩Cookie: secret=31415926”))
Enc(Comp(“GET /secret=32←↩Cookie: secret=31415926”))

and so on. The attacker can rapidly recover the secret. In particular, assuming no
noise in the repeated requests, for a secret of n characters chosen from a c-character
alphabet, the attacker can recover the secret with at most nc adaptive queries. Since
the compressed plaintext is encrypted, some care is required when block encryp-
tion schemes are used to ensure that different-length compressed plaintexts lead to
different-length ciphertexts, but this is possible using padding like in the BEAST
attack.

The CRIME attack was quite effective: it worked regardless of the cipher used
(AES or RC4) and only required the victim to visit once a URL controlled by the
attacker, although it required the attacker be able to observe the size of the responses
transmitted over the network. Both the Chrome and the Firefox browsers were vul-
nerable (since they supported TLS compression), but Internet Explorer was not (since
it did not support compression). The attack was also effective against the SPDY pro-
tocol [86, 323], a modification of the HTTP protocol to improve performance. The
only effective countermeasure against CRIME is to disable TLS compression. The
TIME attack [67] extends the CRIME attack by using a timing side channel via
JavaScript, relieving the attacker from the need to observe the responses as they are
transmitted over the network. The HEIST attack [720] is another variant that removes
the need for a man-in-the-middle network observer.

In 2013, Prado et al. [620] announced the BREACH (Browser Reconnaissance
and Exfiltration via Aadaptive Compression of Hypertext) attack, which used a sim-
ilar adaptive chosen input attack, this time against HTTP compression, allowing an
attacker to recover secrets in the HTTP body (such as anti-cross-site-request-forgery
tokens). The BREACH attack works independently of TLS compression. Despite the
attack, HTTP compression remains widespread.

6.11.4 Termination Attack

TLS includes an alert protocol which allows a party to signal a communication error
to its peer, or to signal that it is terminating the connection. Each party is required
to send a close notify alert immediately before closing the write side of its con-
nection, and the receiving party should respond with a close notify alert and then
terminate the connection. This functionality was introduced in SSL v3. Originally,
a connection that had been terminated using close notify could not be resumed
using session resumption, but this behaviour was permitted starting in TLS 1.1.

The purpose of the close notify alert is to ensure that each party’s application
agrees on the data sent and received, and in particular to avoid truncation attacks, in
which an attacker drops some data as well as the close notify alert. Unfortunately,
several attacks have been identified involving how data is passed from SSL/TLS
implementations to relying applications in the context of termination/truncation.
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Berbecaru and Lioy [88] showed how various SSL v3 and TLS 1.0 implementa-
tions deal inconsistently with truncated data. For example, consider a web server that
is transmitting an image using HTTPS to a web browser (Mozilla Firefox v1.5.0.7
in their tests), and a man-in-the-middle who cancels various parts of the transmis-
sion. They observed that if the MITM cancelled part of the data record encrypting
the image, but allowed subsequent records including the close notify to be trans-
mitted, the browser would report it could not display the image because of errors,
the expected behaviour. However, if the MITM cancelled part of the data record en-
crypting the image and all subsequent records, including the close notify alert,
the web browser would display the truncated image to the user. The SSL library did
not transmit a warning to the application data that the received data was incomplete,
and correspondingly the web browser did not abort in error, despite receiving an
HTTP response that was shorter than indicated in the HTTP Content-Length
header.

Smyth and Pironti [684] showed how to exploit this type of flaw in more complex
modern web applications. For example, a user browsing a variety of Google prop-
erties (Gmail, Search, etc.) has sessions established with each service, even though
a single sign-on is used. When the user clicks ‘Log out’, the user’s session must
be logged out with each service. Smyth and Pironti observed that this is sometimes
achieved using parallel logout requests to each service, followed by display of a
success page. In their study, Smyth and Pironti showed how an attacker who can
truncate/drop selected TLS packets can cause some sessions to remain active even
after the user has clicked log out and received the success page.

6.11.5 Triple Handshake Attack

As noted in Sect. 6.4, TLS allows parties to create new sessions from existing ones.
Session resumption uses an abbreviated handshake to start a new session from a prior
session. Renegotiation performs a new, full handshake inside an existing session,
allowing parties to change ciphersuites or authentication credentials, or obtain fresh
keying material.

Bhargavan et al. [96] discovered a triple handshake attack, which allows an at-
tacker to confuse a client into thinking it is connected to a different server; the attack
takes advantage of flaws in session resumption and renegotiation. The attack pro-
ceeds in three steps. In the first step of the attack, the client establishes a TLS session
using RSA key transport with the attacker; the attacker establishes a session with
the target server using the same nonces and premaster secret. In the second step, the
client uses session resumption with the attacker to resume its session; the attacker
relays the session resumption handshake messages to the target server. Since the
relevant cryptographic values are the same (specifically, the premaster secret), the
session resumption succeeds, and the client now has a (resumed) session, but with
the target server. The attacker injects a message to the target server, which it can
do because it still knows the session key of the resumed session. In the final step, a
renegotiation takes place between the client and the server, the result of which is a
renegotiated session between the client and the target server which the adversary is
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not able to access. However, some applications concatenate the data sent by the at-
tacker before the final step and the data sent by the client after the final step as coming
from the same party (this is similar to the renegotiation attack in Sect. 6.11.2).

The primary reason that the triple handshake attack is successful is that session
resumption depends only on the previous session’s master secret, rather than the
whole handshake. The principal proposed countermeasure is to bind the master se-
cret to the full handshake, rather than just the nonces and premaster secret, and was
standardised in RFC 7627 [102].

6.12 Attacks: Implementations

Software libraries implementing TLS, like other pieces of software, unfortunately
contain bugs which often result in vulnerabilities. While we do not aim to provide an
extensive overview of software-related TLS vulnerabilities, we will briefly mention
a few notable ones. These subsections examine attacks resulting from bad random
number generators and bad certificate validation code in software libraries.

Software vulnerabilities, by their nature, usually affect only a particular imple-
mentation. OpenSSL, being a widely used open source TLS implementation, is a fre-
quent target of vulnerability research, but all TLS implementations have had flaws.

6.12.1 Side Channel Attacks

Several flaws in OpenSSL have been identified related to side channels in processor
microarchitectures. Percival [608] successfully recovered an RSA private key from
OpenSSL owing to a cache-timing side channel in its implementation of the Chinese
Remainder Theorem. Acıiçmez et al. [20] identified a further vulnerability in RSA
private key operations in OpenSSL due to a simple branch prediction analysis attack.
Yarom and Benger [756] subsequently identified a cache-timing side channel that
also allowed for recovery of signing keys when ECDSA over binary fields was used.

Brumley and Tuveri [162] discovered a timing side channel in OpenSSL’s im-
plementation of elliptic curve arithmetic over binary fields. The exploit allows an
attacker to recover the ECDSA private key from a TLS server; the authors demon-
strated the exploit over a loopback network interface.

Brumley et al. [161] discovered how to exploit a fault/error side-channel in
OpenSSL’s implementation of elliptic curve point multiplication for prime fields.
Using an adaptive attack against repeated use of a NIST-P256 prime field elliptic
curve private key, the attack recovers the private key in just 663 queries. The attack
requires reuse of the private key, which is the case with static ECDH TLS ciphersuites
and with ephemeral ECDH TLS ciphersuites where the server re-uses the ephemeral
key as an optimisation technique. While reuse of ephemeral keys is optional, it is
apparently the default behaviour of OpenSSL.

Most of the above attacks led to updated versions of OpenSSL and reports in
the Common Vulnerabilities and Exposures (CVE) database. Although supported by
OpenSSL, few applications actually make use of elliptic curves over binary fields,
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and, in particular, no commercial certificate authority to date has issued X.509 cer-
tificates for ECDSA public keys over binary fields, so the practical impact of the
binary ECDSA vulnerabilities was minimal.

6.12.2 TLS-Specific Implementation Flaws

Researchers at Google and Codenomicon [220] independently identified a buffer
over-read vulnerability in OpenSSL’s implementation of the TLS heartbeat exten-
sion [661], allowing an attacker to read up to 64 KB of additional memory from the
server, memory which could potentially contain private keys, passwords, or other
sensitive information. The bug was given the moniker ‘Heartbleed’ and even got
its own website and logo (http://heartbleed.com). Unlike the other attacks
above, this bug requires no cryptographic expertise to discover or exploit. Turnkey
exploits were readily developed and deployed, and researchers were successfully
able to remotely recover signing private keys from test servers. Using the Zmap
tool [262], researchers identified that approximately 17% (around half a million)
of TLS-enabled websites were vulnerable at the time of discovery; 2 months later,
1.5% of the 800,000 most popular TLS-enabled websites remained vulnerable [484].
The Heartbleed vulnerability attracted widespread public attention.

Another specific class of implementation errors is related to processing messages
in the correct order. Kikuchi [483] discovered a flaw in OpenSSL where it would
accept ChangeCipherSpec messages at any point in time, rather than only immedi-
ately prior to the transmission of the Finishedmessages. If the ChangeCipherSpec
message is accepted earlier, the server will use an empty master secret to compute
the session keys. It is unclear how to exploit this weakness to defeat cryptographic
protections, but it is still an implementation flaw. In the same vein, Beurdouche et al.
[92] identified several more state machine attacks (which they named ‘SMACK’).
They discovered that many TLS implementations do not correctly implement the
TLS state machine: the various TLS versions, extensions, authentication modes, and
key exchange methods may lead to different sequences of messages and processing,
and failure to use the correct sequence in every context can lead to vulnerabilities.

6.12.3 Certificate Validation

A notable class of implementation errors is related to certificate validation, either in
TLS implementations directly or in applications or higher-level libraries that make
use of TLS implementations.

OpenSSL releases prior to 0.9.8j failed to correctly validate some types of mal-
formed signatures in a certificate chain, allowing an attacker to bypass validation
[595]. Apple’s implementation of SSL/TLS in its Secure Transport library for Mac
OS X and iOS had a bug in which certificate validation always succeeded owing to a
spurious goto fail statement in the code, giving the bug its name [476].

Georgiev et al. [302] reported SSL certificate validation errors in a variety
of non-browser applications and libraries, typically related to incorrect parameters
used in libraries. For example, Amazon provided third-party PHP developers with

http://heartbleed.com


282 6 Transport Layer Security Protocol

a Flexible Payments Service library allowing them to receive payments. The li-
brary made use of the command-line program cURL for HTTPS connections. The
library attempted to enable hostname verification in cURL by setting an option
CURLOPT SSL VERIFYHOST = true. However, the correct value should have been
2 rather than true, and the effect was that certificate validation was disabled, al-
lowing an attacker to carry out an impersonation attack. Similar mistakes involving
hostname verification, certificate revocation, and certificate chain validation were
observed by these authors in a variety of libraries using a variety of programming
languages and applications.

In 2014, Brubaker et al. [160] reported on the results of testing the certificate val-
idation logic of a variety of client and server TLS implementation using frankencerts,
described as “synthetic certificates that randomly mutated from parts of real certifi-
cates and thus include unusual combinations of extensions and constraints”. When
one implementation accepted a frankencert while another did not, this identified
a discrepancy in certificate validation logic meriting further investigation. Overall,
Brubaker et al. found 208 discrepancies between popular implementations, many of
which led to significant vulnerabilities, such as the ability to act as a rogue CA, to
create certificates not signed by a trusted CA, to accept certificates not intended for
authentication, or to trigger user interface indicators that provide inaccurate warn-
ings.

6.12.4 Bad Random Number Generators

The security of any TLS implementation depends crucially on the quality of the
random number generator and seed used for the picking of long-term private keys
and per-session private keys. Several prominent SSL/TLS implementations have had
flaws in how their random number generators are seeded, leading to exploitable at-
tacks.

In 1996, Goldberg and Wagner [309] determined, by reverse engineering, that
the pseudo-random number generator (PRNG) in one of the earliest web browsers,
Netscape Navigator v1, was poorly seeded. They found that the seed to the PRNG in
Netscape was constructed from the process ID (pid), parent process ID (ppid), and
the time in seconds and microseconds. The pid and ppid can be easily determined
by another user running on the same system; for a remote attacker, there are at most
227 possible pid/ppid value pairs, and often the pid and ppid values are considerably
smaller. A local or network attacker can determine the time in seconds based on
network observations, leaving at most 1,000,000 (approximately 220) values to test
for the microseconds. Thus, for an attacker, there are at most 47 bits of entropy in
the seed of the PRNG and hence at most 47 bits of randomness in the secret keys.
Netscape Navigator version 1.22 and higher improved the seeding of the PRNG to
avoid this problem, but the flaw still serves as a significant real-world example of the
challenges of random number generation.

In 2008, Bello [710] discovered a flaw in the random number generator used by
the OpenSSL library package distributed on the Debian operating system. The flaw
was introduced in 2006 when Debian maintainers commented out a couple of lines
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of code in OpenSSL when updating the package for Debian; the flaw was not present
in the original OpenSSL source code. The effect of the code change was to remove
almost all of the entropy added to the PRNG seed, leaving the sole randomness as the
process ID. Taking into account the effects of different processor architectures, there
are just 294,912 keys that can possibly be generated by the vulnerable versions of
Debian OpenSSL [761]. Because the OpenSSL library is used in many applications,
this flaw affected not only TLS, but also SSH and OpenVPN (for virtual private
networking). In a survey of 50,000 SSL servers [761] on the day of vulnerability
disclosure in 2009, approximately 700 (1.4%) were using a weak key; 6 months
later, 30% of those Debian weak keys were still in use. In a later, large-scale survey
of 12.8 million TLS servers and 10.2 million SSH servers published in 2012 [354],
Heninger et al. found a very small percentage (0.03%) of TLS servers using Debian
weak keys, though a non-trivial percentage (0.52%) of SSH servers were still using
Debian weak keys.

6.13 Attacks: Other

Finally, there are a few other attacks which do not fit into the categories explored
above.

6.13.1 Application-Level Protocols

The most common use of TLS is in combination with the Hypertext Transport Pro-
tocol (HTTP). Because much web traffic still runs over HTTP, rather than HTTPS,
security vulnerabilities can arise owing to how HTTP and HTTPS interact.

One common flow on the web is for users to initially browse a website using
plaintext (HTTP) communication. At some point, such as when they click ‘login’
or try to purchase something, they are redirected to a secure site, using an HTTPS
address specified in the web page’s source code. In 2009, Marlinspike [524] demon-
strated an HTTPS ‘stripping’ attack using a new tool called ‘sslstrip’. A man-in-the-
middle attacker observing an unencrypted HTTP connection alters the source code
of responses from the server to replace HTTPS URLs with HTTP URLs: thus, when
the user clicks the ‘login’ button and enters her password, the password is transmitted
unencrypted.

To prevent SSL stripping, the HTTP Strict Transport Security (HSTS) mecha-
nism was created [360]. HSTS allows a web server to tell a client to automatically
use HTTPS for all pages on a certain domain for a certain period of time, even if the
URL is given as HTTP. This is a trust-on-first-use mechanism, so it requires that the
client make at least one non-adversary-controlled connection to the server. Despite
HSTS, HTTPS stripping can still be achieved by an attacker who rewrites links in
plaintext pages to alternative domain names that are not covered by an HSTS pol-
icy [523].

HTTP servers that serve multiple sites—such as content distribution networks—
have also been vulnerable to ‘virtual host confusion’ attacks [239]. These attacks
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depend on a complex interaction between TLS and application characteristics, so
we omit the details; the root cause of the attacks is that servers have many different
‘identities’ at different levels of the network stack (IP, TCP, TLS, HTTP), and they
do not always match the identity that is cryptographically authenticated by TLS.

Other application-level protocols also use TLS, but in a different way from
HTTPS. Whereas HTTPS runs on a separate TCP port from HTTP and immedi-
ately begins with a TLS handshake, other applications, such as IMAP, POP3, XMPP,
NNTP, IRC, and FTP, run the secure and plaintext versions on the same port: the
parties start with a plaintext communication, then use a protocol-specific command,
often called ‘STARTTLS’, to initiate a TLS handshake for secure communication.
Venema and Orlando [722] discovered vulnerabilities in many applications’ use of
STARTTLS that allowed an attacker to inject commands in the plaintext portion of
the protocol that would be executed during the encrypted portion of the protocol.

6.13.2 Certificate Authority Breaches and Related Flaws

Since authentication in TLS uses certificates, users’ security can be undermined by
mistakes or by attacks on certificate authorities. In some applications, TLS clients
may be configured to accept certificates from a single CA or a very small number of
CAs (see Sect. 6.12.3 for cases when this should—but does not—happen).

In many settings, however, TLS clients are configured to accept certificates from
many CAs. On the public web, mainstream web browsers ship with 150–200 root
CA certificates that are trusted by default, issued by some 80+ organizations. Some
of these root CAs issue web server certificates directly or via an intermediate CA
run by the same company, but many root CAs also issue certificates for subordinate
CAs run by other organizations, who then also issue web server certificates directly
or via intermediate CAs. For example, at the time of writing, an HTTPS connection
to eprint.iacr.org returned a certificate issued by ‘RapidSSL SHA256 CA -
G3’, whose certificate was issued by ‘GeoTrust Global CA’. The subordinate CA,
RapidSSL, is a separate organization from the root CA, GeoTrust.

An Internet-wide scan by the Electronic Frontier Foundation’s SSL Observatory
project in 2010 found more than 650 organizations that were trusted by default by
major browsers as CAs [266]. In general, any one of these organizations has the
ability to issue a browser-trusted certificate for any domain name, without geographic
or other restrictions. As a result, there are many potential points of failure in the CA
ecosystem. The CA/Browser Forum is a consortium of CAs and browser vendors
who work together to agree on guidelines for the operation of CAs and the criteria
for root CA inclusion in browsers and operating systems.

There have been several incidents involving CAs mistakenly issuing certificates.
Among the most dramatic was the DigiNotar breach of 2011 [282]. DigiNotar was
a Dutch CA that issued certificates under two main CAs, one for public websites
(‘DigiNotar Root CA’) and one for the Dutch government. The certificate for ‘Dig-
iNotar Root CA’ was built in to all major browsers. In July 2011, DigiNotar mistak-
enly issued a wildcard certificate for *.google.com. This certificate was used in
Iran in August 2011 to conduct man-in-the-middle attacks against users of Google
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services. Subsequently, it was discovered that DigiNotar had issued more than 500
other fraudulent certificates, including ones for Yahoo!, Mozilla, WordPress, and
the Tor project. All major browser vendors issued updates that removed ‘DigiNotar
Root CA’ from their browser’s list of trusted CAs. DigiNotar declared bankruptcy in
September 2011.

The DigiNotar breach was detected owing to Google Chrome’s use of certificate
pinning. At the time, Google Chrome had hard-coded the fact that Google services
would use only certificates from certain CAs, so Chrome users were in fact protected
against the man-in-the-middle attack on Google services, while other users would
not have been. This ad hoc approach has been standardised as HTTP Public Key
Pinning [272], which allows web servers to specify that future connections to that
same domain will be secured using a certain certificate or CA. This limits the ability
of an attacker to make use of a fraudulently issued certificate in the event of a CA
breach, though HTTP Public Key Pinning is a trust-on-first-use mechanism, meaning
it only provides security if the initial connection between the client and the server
does not involve a fraudulently issued certificate.

System administrators and local software can also modify the browser or oper-
ating system’s list of trusted root CAs. This can be done for legitimate reasons, to
support a company’s internal PKI or to enable an HTTPS proxy to inspect down-
loads for viruses, but can also be done maliciously. Some malware is known to do
this to enable further attacks. In 2015, it was discovered that Lenovo computers were
shipping with a piece of advertising software called Superfish which added a root
CA certificate to computers so that it could act as an HTTP/HTTPS proxy and in-
ject advertising into web pages. Unfortunately, the software used the same root CA
certificate on all computers, and, moreover, the corresponding private key was also
included in the software, so anyone who could reverse engineer the software could
recover the root CA key and impersonate any web server to any user with the Su-
perfish software installed [40]. Interestingly, public key pinning would not protect
against this attack, as browsers are configured to allow locally installed certificates
to override pins.

6.14 TLS Version 1.3

In 2014, the Internet Engineering Task Force began a multi-year process to develop
the next version of TLS, now called TLS version 1.3. In August 2018, TLS 1.3 was
standardised in RFC 8446 [626]. There were several motivations for the development
of TLS 1.3:

1. to deprecate old cryptographic algorithms and switch to modern algorithms and
modes of operation;

2. to encrypt parts of the handshake to enhance privacy, in part as a response to
concerns about mass surveillance;

3. to reduce the latency of connection establishment by providing modes with fewer
round trips;
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4. and to make general changes to cryptographic and other operations of the proto-
col, including simplifying protocol logic.

To achieve the first goal, many cryptographic algorithms that had been in use in
TLS 1.2 and earlier versions were removed from TLS 1.3. The symmetric encryption
and integrity algorithms in the record layer protocol had been the cause of several
vulnerabilities; TLS 1.3 removed the MAC-then-encode-then-encrypt mode of oper-
ation, and focused on provably secure authenticated encryption schemes, mandating
AES in Galois/counter mode, and optionally ChaCha20 with Poly1305. In terms of
public key cryptography, static Diffie–Hellman ciphersuites were removed, as was
key exchange based on RSA key transport; RSA-based digital signatures within TLS
must use the PSS algorithm, rather than PKCS #1 v1.5 (although certificates may
still be signed using PKCS #1 v1.5). All asymmetric key exchange algorithms in
TLS 1.3 are based on ephemeral Diffie–Hellman to provide forward secrecy. New
elliptic curve algorithms are available, including the use of Curve25519 in key ex-
change (X25519) and signatures (Ed25519), and some finite-field and elliptic curve
groups have been removed.

To achieve the second goal of enhancing privacy, the flow of messages in
the handshake algorithm was substantially altered. Most notably, unauthenticated
ephemeral key exchange happens in the first two flows of the protocol, after which
the parties establish a temporary ‘handshake traffic key’ which is used to encrypt the
remainder of the handshake, including the transmission of certificates, before finally
switching to the ‘application traffic key’ which is used to encrypt application data in
the record layer protocol. Protocol 6.3 shows the handshake protocol for a full hand-
shake in TLS 1.3. The client sends one or more ephemeral keys in the key share

extension of the ClientHello message. Since the parties have at this point not yet
negotiated algorithms, the client is simply guessing which ephemeral key exchange
algorithms might be acceptable to the server; if the server does not support any of the
algorithms offered by the client, the server can send a HelloRetryRequest message
with a list of algorithms to ask the client to retry.

To reduce latency of connection establishment, a new zero-round-trip (0-RTT)
mode of operation is available when pre-shared keys are being used for session es-
tablishment (which includes session resumption). This allows the client to send ap-
plication data immediately on its first flow to the server, rather than having to wait
until receiving a response from the server. In 0-RTT mode, the client derives an early
application traffic key from the pre-shared key, and uses this to encrypt its first appli-
cation flow, which it sends along with the ClientHello. The client and server can
still optionally negotiate a forward secure ephemeral shared secret in this mode, but
that ephemeral secret will only apply to subsequent application data flows, not the
first one from the client to the server. Protocol 6.4 shows the 0-RTT handshake mode.
One concern regarding 0-RTT mode is that the first client-to-server flow can be re-
played; the TLS 1.3 document discusses some potential mitigations for servers to
prevent replay attacks, such as keeping state and using application-level protections.
TLS 1.3 has no explicit session resumption mode; instead, a ‘resumption master se-
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Client Server

ClientHello
key share, pre shared key, . . .

Generate handshake traffic keyServerHello
key share, pre shared key, . . .
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EncryptedExtensions

CertificateRequest∗

Certificate∗

CertificateVerify∗

Finished

Generate application traffic key Generate application traffic key
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application data

∗ denotes messages that may not be present in all ciphersuites.
Single lines denote plaintext flows; double lines denote encrypted flows using the handshake

traffic key; triple lines denote encrypted flows using the application traffic key.

Protocol 6.3: TLS 1.3 handshake protocol – full handshake

cret’ can be exported from any session, and this value can be used as a pre-shared
key in a subsequent PSK or 0-RTT handshake.

Finally, many other changes have been made throughout the protocol, some cryp-
tographic, some not. The key derivation function is now HKDF [454], and there is
a new key derivation schedule that incorporates each new piece of keying material
and generates all necessary traffic keys. The handshake state machine has been re-
organized, and the ChangeCipherSpec messages have been removed. Digital sig-
natures in the CertificateVerify message now cover the entire handshake tran-
script. Ciphersuite negotiation has been made modular: each cryptographic compo-
nent (authenticated encryption algorithm, digital signature algorithm, key exchange
algorithm) is negotiated separately.

All major browser and library vendors have committed to support TLS 1.3, and
as of December 2018, support is available in the Chrome and Firefox browsers, and
the OpenSSL and NSS libraries.

One notable aspect of the development of TLS 1.3 has been the early and ongoing
involvement of the academic community. The core cryptographic design of TLS 1.3
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Protocol 6.4: TLS 1.3 handshake protocol – pre-shared key handshake with early
application data (‘zero-round-trip’)

was heavily influenced by the OPTLS protocol of Krawczyk and Wee [457]. There
were a variety of academic papers published analyzing and commenting on various
aspects of drafts of TLS 1.3, including results using provable security [257, 457,
487], constructive cryptography [444], and formal methods [230], and the miTLS
team’s efforts of using formal methods combined with a verified implementation [92,
95]. A workshop called ‘TLS 1.3: Ready or Not? (TRON)’ was held in February 2016
that brought together academic researchers, industry professionals, and members of
the IETF TLS working group to exchange knowledge. In late 2016, Paterson and van
der Merwe [604] published an account of the TLS 1.3 standardization effort.
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Identity-Based Key Agreement

7.1 Introduction

Identity-based public key cryptography was first proposed by Shamir in 1984 [665].
The idea is to avoid the need for public key certificates by making the public key pub-
licly computable from the identification information of the owner. The identification
information can include any desired fields such as real name, physical description
or identification numbers. Identity-based cryptography avoids the difficulty of hav-
ing to distribute public keys and thus avoids the need for a public key infrastructure,
although parties still need to obtain and manage private keys.

In 1984 Shamir proposed an algorithm for identity-based signatures but was un-
able to obtain an identity-based encryption algorithm. In 1987 Okamoto [589, 590]
published the first identity-based key agreement protocol, using the same format of
key pairs as in Shamir’s original identity-based signatures. For over a decade there
was limited activity in the area of identity-based cryptography, until in 2000 the
first practical identity-based encryption schemes were proposed [123, 647]. These
schemes exploit the bilinearity property of elliptic curve pairings. Following this dis-
covery, there was an explosion of interest in identity-based cryptography based on
pairings. This included a variety of different cryptographic primitives and protocols,
including scores of key agreement protocols.

There are many similarities between identity-based key agreement and key agree-
ment using standard public key cryptography. Indeed, many key exchange protocols
use generic building blocks, such as encryption or signatures, and can be instanti-
ated with either identity-based or conventional public key versions of these building
blocks. Essentially, the aim in designing a good identity-based key agreement proto-
col is to achieve all the properties of the best conventional key agreement protocols
but without the need for certified public keys, and at the same time trying to max-
imise efficiency.

We continue to use the notation IDI to denote the identifying string of entity I. In
many identity-based protocols it is not acceptable for an arbitrary string, which may
be chosen by the adversary, to be used directly as input to the private key generation
process. This can allow construction of new private keys corresponding to algebraic
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combinations of other identities. Therefore IDI is typically the output of a one-way
hash function applied to the identifying data.

7.1.1 Security Model for Identity-Based Cryptosystems

In an identity-based cryptosystem, the public key of any entity is determined by that
entity’s identity string and any public parameters of the system. This is a very at-
tractive way of obtaining keying material, but unfortunately there is a significant
drawback. No principal can be allowed to generate its own private key. If this were
possible then any entity could do the same; this would mean that any entity could
masquerade as any other. Therefore, in all identity-based schemes the private key of
each principal must be generated by a trusted third party. Such a degree of trust may
not always be reasonable, although it is probably acceptable in a corporate environ-
ment. This trusted party is usually known as the key generation centre (KGC).

In order to generate private keys, the KGC must have some secret information
that depends on the public parameters of the system. (All parties must obtain authen-
tic copies of the public parameters.) This secret information is known as the master
secret of the identity-based cryptosystem. We usually assume that the public system
parameters and the master secret are generated by the KGC when the system is ini-
tialised. The private keys for an entity I can be generated as needed by the KGC
as a function of the identity information IDI and the master secret. An interesting
property of identity-based cryptosystems is that the public key can be used before
the private key has even been generated. In identity-based key agreement this can
lead to the situation where one party A possesses a key that is implicitly shared with
a partner B who is unable to compute that shared key until B contacts the KGC to
obtain its private key.

Generation of private keys is often known as key extraction in the literature. In
formal security models, we normally expect the adversary to have the ability to ex-
tract private keys for any parties which are not the target of its attack. This may seem
a strong assumption but it reflects the reality that the adversary may be able to obtain
private keys for many different entities.

Desirable security properties of identity-based key agreement include all those
discussed earlier for key agreement based on certified public keys. An additional
property that is desirable is an extended version of forward secrecy with respect
to the KGC. Although knowledge of the master secret will allow the adversary to
masquerade as any entity, there is no reason that it should also allow previously
used session keys to become compromised. Since the KGC private key can be used
to obtain any user private key, this is arguably even more important than forward
secrecy for conventional key agreement.

Definition 34. An identity-based key agreement protocol provides KGC forward se-
crecy if compromise of the KGC’s master secret does not compromise the session
keys established in previous protocol runs.

The necessity of a KGC to generate user keys is a limitation of identity-based
cryptography. It is often referred to as the escrow problem, since the KGC can at
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any time generate a spare user private key. Ways to mitigate the escrow problem
have been suggested in the literature. These generally involve a compromise between
truly identity-based schemes and ordinary public key schemes using certificates. In
Sect. 7.5.2, we will look at Girault’s classification and scheme for dealing with the
problem. Another possibility, discussed in Sect. 7.5.3, is to use certificateless cryp-
tography, for which the KGC generates only a part of the user private key.

7.1.2 Elliptic Curve Pairings

Pairings are functions which take as input two elliptic curve points and pair them to
form an output in a subgroup of a finite field. Different pairing functions have been
used for pairing-based cryptography, but they all have the critical feature of being
bilinear, that is they are linear in both of the input components.

The first cryptographic application of elliptic curve pairings was in cryptanal-
ysis of elliptic curve cryptosystems. Menezes, Okamoto and Vanstone [544] used
the Weil pairing to map elliptic curve discrete logarithms into a finite field, which,
for certain curve types, results in a much easier way of solving the problem. This
is often called the MOV attack on elliptic curve cryptosystems. It was only later
that it was realised that pairings can be used constructively to design cryptosystems
with properties previously unavailable. The Weil pairing was modified by Boneh and
Franklin [123] as a concrete construction for their identity-based encryption scheme.
Later, other pairings have been proposed for cryptographic purposes, particularly the
Tate pairing and variants thereof.

A full explanation of the construction of elliptic curve pairings is beyond the
scope of this book and the reader is referred elsewhere for the mathematical details
[221]. In general, the two points that are paired come from different elliptic curve
groups, which we denote G1 and G2. The output of the pairing is a finite-field point
from a subgroup which we denote GT , sometimes called the target group. There is
potential for confusion about the notation because the early literature on identity-
based cryptography used additive notation in groups G1 and G2 as is traditional for
elliptic curve groups. However, more recently it has become normal to use multi-
plicative notation for all three groups so we adopt this convention in this chapter.

Using the multiplicative notation, we let G1 be a group of prime order q and
G2 be a group of the same order q. We assume the existence of the pairing map ê
from G1×G2 to GT . The mapping ê must be efficiently computable and have the
following properties.

Bilinear: for w,x ∈G1 and y,z ∈G2, both

ê(w,yz) = ê(w,y) · ê(w,z) and ê(wx,z) = ê(w,z) · ê(x,z).

Non-degenerate: for some elements g ∈G1 and h ∈G2, we have ê(g,h) 6= 1.

When a ∈ Zq and w ∈G1, we write wa for exponentiation in G2 (traditionally called
elliptic curve scalar multiplication). Owing to bilinearity, for any w∈G1, y∈G2 and
a,b ∈ Zq we have
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ê(wa,yb) = ê(w,y)ab = ê(wab,y) = ê(w,yab).

For some types of elliptic curves (specifically, supersingular curves), it is possible
to assume that the two groups G1 and G2 are the same. Such pairings are often called
symmetric pairings. However, such a choice restricts the efficiency of the resulting
protocols, so in general it is preferable to avoid this assumption. The details of the
properties of different pairings are complex for the non-specialist to appreciate, and
so Galbraith et al. [289] summarised the important properties and classified pairing
groups into three types. The relevant issues include:

• the availability of an efficient homomorphism from G2 to G1;
• the possibility to hash efficiently into G2;
• the efficiency of exponentiation in each group;
• the size of element representation in each group.

Chen et al. [192] have considered in detail the effect of different pairing types on
the efficiency of a wide variety of identity-based key agreement schemes. They also
introduced a fourth pairing type in addition to the three considered by Galbraith et
al. [289]. Table 7.1 summarises the defining properties of the different pairing types.
Note that although Type 1 looks the most favourable in this table, its efficiency is
limited, especially at higher security levels.

Table 7.1: Pairing types of Galbraith et al. [289] and Chen et al. [192]

Symmetric Homomorphism G2→G1 Hash to G2
Type 1 3 3 3

Type 2 8 3 8

Type 3 8 8 3

Type 4 8 3 3

A pairing-based key agreement scheme usually combines long-term identity-
based keys with ephemeral keys (both private and public). When setting up such
a scheme, a decision has to be made regarding which group each key will lie in. Ex-
traction of private keys from identities normally entails hashing, so this may not be
possible for certain pairing types if long-term keys are to lie in G2. However, pairings
require one input to be from G1 and the other from G2 so that, depending on the way
that the values are combined, it may be necessary to make use of a homomorphism
to take keys from G2 into corresponding values in G1. Again, this does not exist for
all pairing types.

Making a precise comparison between protocols turns out to be very difficult,
since it depends ultimately on the cost of operations on elliptic curves and finite
fields, whose optimisation may depend on the details of the specific computing plat-
form. Therefore, in this chapter we will limit ourselves to general observations about
the relative efficiency of protocols. We will also explain most protocols using sym-
metric pairings for ease of exposition, but will also remark on the possibility of using
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other pairing types. An exception is our treatment of the SOK protocol below, which
we use to illustrate the effect of using asymmetric pairings.

For security of key agreement protocols in finite fields we typically need to as-
sume that the Diffie–Hellman problem (and hence also the discrete logarithm prob-
lem) is hard in both G1 and G2. In pairing-based key exchange a natural problem to
base security upon is the bilinear version of the Diffie–Hellman problem.

Definition 35 (Bilinear Diffie–Hellman (BDH) problem). Given G1, G2 and ê as
above, the BDH problem is to compute ê(g1,g2)

xyz ∈GT given 〈g1,g2,gx
1,g

y
2,g

z
1,g

z
2〉

with g1 ∈G1, g2 ∈G2 and x,y,z ∈ Zq.

This computational assumption is just one of many which have been used in se-
curity proofs for different identity-based cryptographic primitives [144]. Sometimes
it is possible to relate such assumptions to each other or to existing accepted as-
sumptions. For example, the BDH problem is no harder to solve than solving the
Diffie–Hellman problem either in G1 or in G2. However, as usual, we do not have
any absolute guarantee of the difficulty of any of these problems.

7.1.3 Sakai–Ohgishi–Kasahara Protocol

The Sakai–Ohgishi–Kasahara (SOK) protocol [647] is a fundamental building block
in many identity-based key agreement protocols. It is a non-interactive protocol and
can be regarded as an identity-based analogue of static Diffie–Hellman using tradi-
tional public key certificates. In an identity-based infrastructure, it allows any two
parties to establish a shared secret without exchange of any messages. The security
of SOK relies on the difficulty of the BDH problem.

The SOK protocol makes use of a pairing ê : G1×G2→GT . The master secret
is a value s ∈ Zq chosen randomly by the KGC. In order to extract private keys we
need to hash identity strings onto points in G1 or G2, so we define two functions H1 :
{0,1}∗→ G1 and H2 : {0,1}∗→ G2. Note that defining such an H2 is not possible
for all pairing types so we need to be careful about how to make the protocol work.
We consider three variants.

• First, suppose that we are going to use a Type 1 pairing. This means that we can
assume G1 = G2, and we only need to have one hash function, H1. We denote
the public keys of A and B as qA = H1(IDA) and qB = H1(IDB). The private keys
of parties A and B will then be the values dA = qs

A and dB = qs
B, each of which

can only be computed by the KGC, which is in possession of the master secret s.
With the above parameters, any two principals A and B with identities IDA, IDB
can efficiently calculate a shared secret as:

FAB = ê(qA,qB)
s = ê(dA,qB) = ê(qA,dB).

This variant of the SOK protocol only works with a Type 1 symmetric pairing,
since any principal’s public/private key pair needs to be defined in both G1 and
G2.
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• Assume now that G1 6=G2. In order to allow pairing between the keys of any pair
of users, we can define the keys of all users to lie in G2 and use the homomor-
phism ψ : G2→G1 to move one key into G1 when the protocol is run. Now we
denote the public keys of A and B as q′A =H2(IDA)∈G2 and q′B =H2(IDB)∈G2.
The corresponding private keys are the values d′A = (q′A)

s ∈G2 and d′B = (q′B)
s ∈

G2. We also need some way of deciding whether party A or party B’s key should
be moved into G1. One easy way of doing this is to use any natural ordering on
the strings q′A and q′B and say that A’s key will be moved into G1 if and only if
q′A < q′B. With the above parameters, any two principals A and B with identities
IDA, IDB can efficiently calculate a shared key as

FAB = ê(ψ(q′A),q
′
B)

s = ê(ψ(d′A),q
′
B) = ê(ψ(q′A),d

′
B).

This SOK variant requires pairings where the homomorphism ψ :G2→G1 exists
as well as the hash function H2. Therefore it can be seen from Table 7.1 that only
pairings of Type 1 and 4 are possible here.

• We can broaden the usable pairing types by making each party’s identity-based
key consist of two values. We now denote the public key of A as (qA,q′A) =
(H1(IDA),H2(IDA)) and similarly for party B. The private key of party A with
identity string IDA will then be the pair (dA,d′A) = (qs

A,q
′
A

s). With the above
parameters, any two principals A and B with identities IDA, IDB can efficiently
calculate the shared key as

FAB = ê(qA,q′B)
s · ê(qB,q′A)

s = ê(dA,q′B) · ê(qB,d′A) = ê(qA,d′B) · ê(dB,q′A).

This variant can be used with pairings of Type 1, 3, and 4, but Type 2 is still
ruled out owing to the need for hashing to G2. Dupont and Enge [261] analysed
the security of this variant.

These variants illustrate the typical problems that arise when one tries to apply
different pairing types to key agreement protocols. For Types 1 and 4, we can usu-
ally make any protocol work. Some protocols can use all pairing types by avoiding
pairing between user long-term keys. Chen et al. [192] illustrated how this works for
a number of protocols. In order to simplify the presentation, we will normally show
symmetric pairings in the rest of this chapter.

7.2 Identity-Based Protocols without Pairings

In recent years almost all research in identity-based key establishment has made use
of bilinear pairings. However, older protocols are worth studying too, and not just
because of their historical interest. For one thing, the older protocols are based on
better-established computational assumptions.

Several of the older protocols work in groups with a composite modulus. It is
worth emphasising that this does not mean that the parameter sizes for such proto-
cols need to be larger than those used in elliptic curve pairings. Although the discrete
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logarithm problem in elliptic curve groups can remain hard with much smaller pa-
rameter sizes than those used in Z∗p, this does not apply to pairing groups. This is
because the possibility of the well-known MOV attack [544] requires that the tar-
get group GT in the pairing is large enough to resist finite-field discrete logarithm
attacks.

7.2.1 Okamoto’s Scheme

Okamoto’s scheme [589, 590] was the first published identity-based key agreement
protocol. It uses a composite modulus n = pq whose factorisation is known only
to the KGC. The KGC chooses values e and d as in the RSA algorithm, so that
ed mod φ(n) = 1, and an element g that is a primitive root in both the integers mod
p and the integers mod q. The values g and e are made public.

Before engaging in the key agreement protocol, each user must register with the
authority to obtain a private key. User I’s identification string, IDI , is treated as an
integer modulo n. The authority calculates the value sI = ID−d

I mod n and distributes
sI securely to user I.

Protocol 7.1 shows the key agreement message flows. The shared secret is defined
as Z = gerArB . On the assumption that it is necessary to know either sA or sB in order
to find Z, the scheme provides implicit key authentication.

Shared information: Public modulus n and exponent e. Element g of high order in Z∗n.
Information known to A: sA such that se

A = ID−1
A mod n.

Information known to B: sB such that se
B = ID−1

B mod n.

A B

rA ∈R Zn

tA = grA

sAtA−−−−−−−→ rB ∈R Zn

tB = grB

sBtB←−−−−−−−
Z = ((sBtB)eIDB)

rA Z = ((sAtA)eIDA)
rB

Protocol 7.1: Okamoto’s identity-based protocol

Mambo and Shizuya [514] conducted a computational proof of security of Proto-
col 7.1 against a passive eavesdropper. They showed that any efficient algorithm that
can find the shared secret can also break the Diffie–Hellman problem in Z∗n. Later,
this analysis was extended by Kim et al. [430] to show a security proof against active
attacks. These authors provided a reduction of attacks on the protocol to the Diffie–
Hellman problem or to the RSA problem. However, success of the adversary requires
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that the complete key is returned, rather than being defined in terms of any partial
information about the key being recovered. Later, Gennaro et al. [294, 295] provided
a security proof assuming only the difficulty of the RSA problem and in a model
that requires the adversary only to distinguish the session key from a random value.
In this model, ephemeral keys cannot be obtained by the adversary. Gennaro et al.
did, however, make two small modifications to the original Okamoto protocol. One
was that the identities needed to be hashed with a function which they modeled as a
random oracle. The other modification was that the computation of the key included
an additional squaring operation so that the shared key became Z = g2erArB . Gennaro
et al. further included a proof that Protocol 7.1 provides full forward secrecy (not
just weak forward secrecy) but only by making a stronger computational assumption
(the modified knowledge-of-exponent assumption).

In addition to full forward secrecy, Protocol 7.1 can also be shown to provide
KCI resistance (Gennaro et al. [294] stated that this can be formally proven).1 How-
ever, a significant weakness of the protocol is that it is very sensitive to compromise
of ephemeral keys. If a single ephemeral value, say rA, becomes available to the ad-
versary then A’s long-term secret is also known to the adversary. Thus, although the
protocol provides full forward secrecy, it is insecure when any ephemeral key of the
victim party is revealed. This means that the protocol is not secure in some models,
such as eCK.

Protocol 7.2 is a variant of Protocol 7.1, proposed by Okamoto and Tanaka [590],
which includes a hashed value to allow explicit authentication. Timestamps TA and
TB, are included inside the hashes cA and cB, respectively, to ensure freshness. The
shared secret is again Z = gerArB , but this value is calculated in a different way in this
variant.

There does not seem to have been any formal analysis carried out on Protocol 7.2.
It seems reasonable to assume that the properties of Protocol 7.1 would carry over to
Protocol 7.2 once the modifications of Gennaro et al. [294, 295] discussed above are
incorporated. In addition, mutual explicit authentication is claimed to be achieved as
long as synchronised timestamps are available. Using timestamps instead of nonces
allows mutual authentication to be completed with only two messages.

A similar variant was later published by Shieh et al. [667] with claimed compu-
tational advantages, but Yen [757] showed that explicit authentication fails. A further
variation is to provide one-pass key establishment (see also Sect. 7.5.5) suitable for
applications such as electronic mail. A scheme originally proposed by Okamoto and
Tanaka [590] was shown by Tsai and Hwang [714] to be vulnerable to attacks by in-
siders, and Tsai and Hwang proposed new schemes of their own. Later, Tanaka and
Okamoto [707] designed another scheme to prevent the KGC from obtaining session
keys (although the KGC can always masquerade as any user).

1 In the first edition of this book we erroneously stated that Protocol 7.1 is vulnerable to a
KCI attack.
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Shared information: Public modulus n and exponent e. Element g of high order in Z∗n.
Information known to A: sA such that se

A = ID−1
A mod n.

Information known to B: sB such that se
B = ID−1

B mod n.

A B

rA ∈R Zn,uA = gerA

cA = H(uA, IDA, IDB,TA)

vA = sAgcArA
uA,vA−−−−−−−→ cA = H(uA, IDA, IDB,TA)

IDA
?
= ucA

A /ve
A

rB ∈R Zn,uB = gerB

cB = H(uB, IDB, IDA,TB)
uB,vB←−−−−−−− vB = sAgcBrB

cB = H(uB, IDB, IDA,TB)

IDB
?
= ucB

B /ve
B

Z = urA
B Z = urB

A

Protocol 7.2: Okamoto–Tanaka identity-based protocol

7.2.2 Günther’s Scheme

Günther [336] proposed an identity-based scheme in the familiar setting of Z∗p. The
KGC has private and public key pair xS and yS = gxS . In the registration phase, user I
obtains an ElGamal signature (ui,vi) generated by the KGC by choosing ki randomly
in Z∗p (but coprime to p−1) and setting ui = gki , vi = (IDI−xSui)/ki mod p−1. The
signature pair (ui,vi) is given to I. The verification equation of the ElGamal signature
scheme can be written as

uvi
i = gIDI y−ui

S .

Although any party can verify this equation, the idea is not to reveal vi, but rather
to reveal that I is the only party who is in possession of the discrete logarithm of
gIDI y−ui

S to the base ui. Protocol 7.3 shows a successful protocol run. The shared se-
cret is Z = urBvA

A uvBrA
B . In the description of Protocol 7.3 (and also for Protocol 7.4),

we have omitted the calculation of the value IDA by B and the value IDB by A from
the basic identifying information, which was explicitly included in the original de-
scription.

It can be seen that compromise of the long-term secrets vA and vB enables the
adversary to find old session keys, so that forward secrecy is not provided. There-
fore Günther also proposed Protocol 7.4 as an extension of the basic protocol that
provides forward secrecy at the cost of an extra exponentiation on each side. A and
B choose additional random values r′A and r′B, respectively. This time the shared se-
cret is the same as in the basic protocol but multiplied by the ephemeral Diffie–
Hellman key: Z = urBvA

A uvBrA
B gr′Ar′B . This idea of incorporating an unauthenticated
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Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: ElGamal signature of KGC on IDA, (uA,vA), so that gIDA = yuA

S uvA
A .

Information known to B: ElGamal signature of KGC on IDB, (uB,vB), so that gIDB = yuB
S uvB

B .

A B

IDA,uA−−−−−−−→
IDB,uB←−−−−−−− XB = gIDA y−uA

S
XA = gIDB y−uB

S
rA ∈R Zq

wA = urA
B

wA−−−−−−−→ rB ∈R Zq
wB←−−−−−−− wB = urB

A
Z = wvA

B X rA
A Z = wvB

A X rB
B

Protocol 7.3: Günther’s key agreement protocol

Diffie–Hellman value into the shared secret may seem strange at first but has often
been used in other protocol designs.

Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: ElGamal signature of KGC on IDA, (uA,vA), so that gIDA = yuA

S uvA
A .

Information known to B: ElGamal signature of KGC on IDB, (uB,vB), so that gIDB = yuB
S uvB

B .

A B

IDA,uA−−−−−−−→
IDB,uB←−−−−−−− XB = gIDA y−uA

S
XA = gIDB y−uB

S
rA,r′A ∈R Zq

wA = urA
B

tA = gr′A
wA, tA−−−−−−−→ rB,r′B ∈R Zq

wB = urB
A

wB, tB←−−−−−−− tB = gr′B

Z = wvA
B X rA

A tr′A
B Z = wvB

A X rB
B tr′B

A

Protocol 7.4: Günther’s extended key agreement protocol
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There is no security proof, or even formal security property claimed, for the orig-
inal protocol of Günther, but later Fiore and Gennaro [277] did provide a proof for
the extended version (Protocol 7.4), with a slight modification to the signature algo-
rithm and where a key derivation function is applied. Informally, we may observe
a similarity with the MTI protocol A(0) and, consequently, it seems reasonable to
assume that one of vA or rB, and one of vB or rA, are required to find Z. With this
assumption, it follows that resistance to key compromise impersonation is provided.
Indeed, resistance to key compromise impersonation and weak forward secrecy were
later proven by Fiore and Gennaro [277] for their adapted version of Protocol 7.4.

Fiore and Gennaro [277] discovered a reflection attack, applicable to both Pro-
tocol 7.4 and Protocol 7.3, which allows an adversary to impersonate A to herself
and obtain the correct session key. The protocols should therefore not be used in a
scenario where A and B may be the same entity (such as where A shares the same key
across different devices). As with Okamoto’s protocol, if users cannot choose their
own identities then the unknown key-share attacks on the MTI protocols do not carry
over. Burmester [167] showed that his triangle attack is applicable to both versions
of the protocol.

A potential disadvantage of Protocols 7.4 and 7.3 is that four messages are re-
quired, although it is worth noting that messages 2 and 4 can be combined in both
protocol versions. Saeednia [640] proposed Protocol 7.5 as a variant of Günther’s
scheme that reduces the number of messages to only two. The idea is to replace the
equation for the user’s secret vi with vi = IDIki + xSui mod (p−1) while, as before,
the public key is ui = gki . Consequently, A can generate her random value tA = grA

for the protocol without waiting to receive B’s public value uB. The shared secret
becomes Z = gvArB+vBrA . The change effectively replaces the ElGamal signature in
Günther’s protocol with a variant signature (in fact, it is variant 3 in Table 11.5 in
the Handbook of Applied Cryptography [550]). Saeednia also showed how to add
forward secrecy to Protocol 7.5 without further message exchanges.

Fiore and Gennaro [277] provided a security proof for Protocol 7.5 after making
modifications to the signature algorithm and a modification where a key derivation
function is applied, similarly to how they obtained a proof for Protocol 7.4. Their
security analysis includes a proof of weak forward secrecy, and they also argued for
security against key compromise impersonation. Unlike Protocol 7.4, Protocol 7.5 is
also secure against reflections attacks, according to the analysis of Fiore and Gen-
naro.

7.2.3 Fiore–Gennaro Scheme

Fiore and Gennaro [277, 278] proposed a protocol which can be viewed as an im-
provement of Protocol 7.5. The major difference is that a Schnorr signature is used
to form the private keys of users. This allows for a more efficient protocol. Moreover,
Fiore and Gennaro provided a proof of security in the Canetti–Krawczyk model. The
proof covers (weak) forward secrecy and KCI resistance in addition to basic protocol
security. The messages exchanged are shown in Protocol 7.6.
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Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: Signature of KGC on IDA, (uA,vA), so that gvA = yuA

S uIDA
A .

Information known to B: Signature of KGC on IDB, (uB,vB), so that gvB = yuB
S uIDB

B .

A B

rA ∈R Zq

tA = grA

IDA,uA, tA−−−−−−−→ rB ∈R Zq

tB = grB

IDB,uB, tB←−−−−−−−
XA = uIDB

B yuB
S XB = gIDA yuA

S
Z = tvA

B X rA
A Z = tvB

A X rB
B

Protocol 7.5: Saeednia’s variant of Günther’s key agreement protocol

Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: Signature of KGC on IDA, (uA,vA), so that gvA = uAyH1(IDA,uA)

S .

Information known to B: Signature of KGC on IDB, (uB,vB), so that gvB = uByH1(IDB,uB)
S .

A B

rA ∈R Zq

tA = grA

IDA,uA, tA−−−−−−−→ rB ∈R Zq

tB = grB

IDB,uB, tB←−−−−−−−
z1 = (tBuByH1(IDB,uB)

S )(rA+vA) z1 = (tAuAyH1(IDA,uA)
S )(rB+vB)

z2 = trA
B z2 = trB

A
Z = H2(z1,z2) Z = H2(z1,z2)

Protocol 7.6: Fiore–Gennaro key agreement protocol
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The security proof for Protocol 7.6 relies on a computational assumption known
as the strong Diffie–Hellman assumption. It also models the hash functions H1 and H2
as random oracles. Cheng and Ma [198] pointed out that Protocol 7.6 is not secure
if ephemeral keys may be leaked, as assumed in the eCK model, but this was not
allowed in the model used by Fiore and Gennaro.

7.2.4 Comparison

Table 7.2 summarises the protocols we have examined in this section, comparing
their efficiency and security properties. Most of these protocols were originally pub-
lished a long while back when security properties and modelling of protocols had
not been extensively developed. It is therefore not surprising that originally many of
these protocols did not carry security proofs. Recent work has ‘modernised’ some
of these protocols, for example with the proof of Okamoto’s protocol by Gennaro et
al. [294, 295] and the Fiore–Gennaro version of Saeednia’s protocol. An asterisk in
the table indicates that a property may not hold for the original protocol; consult the
section about that protocol for details.

Table 7.2: Summary of ID-based protocols without pairings. FS: forward secrecy;
KCIR: key compromise impersonation resistance; ROM: random oracle model

Protocol Message Modulus FS KCIR Proof Exponentiations
passes type on/offline

Okamoto (7.1) 2 Composite Full* Yes* ROM* 1/1
OT (7.2) 2 Composite Yes Yes No 2/2

Günther (7.3) 4 Prime No Yes No 3/0
Günther (7.4) 4 Prime Weak Yes ROM* 4/0
Saeednia (7.5) 2 Prime Weak Yes ROM* 2/1

Fiore–Gennaro (7.6) 2 Prime Weak Yes ROM 2/1

Most of the protocols in this section provide some form of forward secrecy, but
usually this is only weak forward secrecy. An important feature of the Okamoto
protocol in its refinement by Gennaro et al. [294, 295] is that it provides full forward
secrecy. As noted in Sect. 7.2.1 this comes at the cost of fragile security in the face
of compromise of ephemeral keys.

Although their origins are from quite some time ago, the protocols in this section
are still competitive with the more modern pairing-based protocols examined in the
next section. The computational requirements shown in Table 7.2 are divided into
two parts, online and offline. The offline computations are those that can be com-
puted before the protocol run starts. We have counted as offline those computations
that require knowledge of the identity of the peer. Multi-exponentiations are counted
the same as a single exponentiation in Table 7.2, while simpler computations are ig-
nored altogether. Overall, the computational comparison should only be regarded as
indicative.
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7.3 Pairing-Based Key Agreement with Basic Message Format

We now turn to the popular case of identity-based key agreement using elliptic curve
pairings. It is reasonable to ask what advantage there is in identity-based key agree-
ment based on pairings in comparison with the older identity-based protocols con-
sidered in Section 7.2 above. Generally, the answer might be expected to be the same
advantages as that of using elliptic curves over older public key technology, namely
a saving in computation and key size. This may be true with regard to savings in
bandwidth since message exchanges can be considerably shorter. However, it is not
necessarily the case in terms of computation, because the pairing operation can be
quite costly. Research still continues into deciding how to implement pairings most
efficiently. In Sect. 7.3.9 we compare the efficiency of many pairing-based key agree-
ment protocols. Another possible reason for choosing pairing-based key agreement
is to exploit the infrastructure for identity-based cryptography, with its many other
benefits.

In this section we survey a number of protocols, focusing on those which have
two message passes, one in each direction between principals A and B, and which
do not provide explicit authentication. (Protocols which include explicit authentica-
tion are discussed in Sect. 7.4.) There are three ingredients defining most of these
protocols: the format of the key pair, the format of the exchanged messages, and the
construction of the session key. We consider each of these in turn.

Key pair. Most protocols use the key construction from the first protocol of Sakai et
al. [647], which was discussed in Sect. 7.1.3. We call this type of key the SOK
type. There also a few examples of protocols using an alternative key type first
suggested by Sakai and Kasahara [646], which we call the SK type.
• SOK-type keys make use of a hash function, H1, which outputs members of

the elliptic curve group G1. Boneh and Franklin [123] suggested an explicit
H1 function for a particular elliptic curve which costs one exponentiation
in the underlying field. Then the SOK-type public key for entity A is qA =
H1(IDA) ∈G1 and the private key is dA = qs

A.
• In contrast, SK-type private keys use a hash function Ĥ1 whose output is a

scalar in Zq. In this case any regular hash function can be used for Ĥ1; the
output bit string can be mapped to a number in Zq in the natural way. The
public key for entity A is then q′A = gs+Ĥ1(IDA), which can be calculated as
gs · gqA . so that it depends on the master public key, gs, as well as on IDA.
The SK-type private key is d′A = g1/(s+Ĥ1(IDA)). Note that this construction
implies that ê(d′A,q

′
A) = ê(g,g).

Message structure. In order to obtain the best efficiency, it is desirable to minimise
the length of messages. Many protocols send only one message element typically
consisting of an elliptic curve point, which can be viewed as an ephemeral key.
This section is limited to protocols with only two messages. In Sect. 7.4 we
look at protocols which include an authentication value, which is checked by the
recipient before the session key is accepted.
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Session key construction. There are many different ways in which the exchanged
messages can be combined in order to derive the session key. Each party uses
the received message together with its private long-term key and its short-term
random input.

In the following protocol descriptions, we will assume that all users have access
to the public parameters for the identity-based system. A random value s ∈ Zq plays
the role of the master secret of the KGC. The published values include descriptions
of the groups G1, G2 and GT and the pairing ê, a point g that generates G1, and
a master public key h = gs. The KGC distributes to each party Pi with identity IDi
a long-term key pair of either SOK or SK type. We will usually assume that the
pairing is a symmetric (Type 1) pairing so that G1 =G2. As with the key agreement
protocols examined in Chap. 5 using public key certificates, we assume here that
parties agree on a shared secret Z from which the session key will be derived using an
appropriate key derivation function. Usually we do not mention the KDF explicitly
but sometimes protocol designers have had a specific KDF in mind, which may have
an effect on the security properties. For example, including the protocol messages in
the KDF can prevent some kinds of attack. Table 7.3 summarises the notation.

Table 7.3: Notation and terminology for pairing-based schemes

IDI Identity string for entity I
KGC Key generation centre

s KGC master secret
h KGC master public key: h = gs.
ê Elliptic curve pairing: ê : G1×G2→GT
g Generator of group G1

qA Public key of user A for SOK type: qA = H1(IDA)

q′A Public key of user A for SK type: q′A = gs+Ĥ1(IDA)

dA Private key of user A for SOK type: dA = qs
A

d′A Private key of user A for SK type: d′A = g1/(s+Ĥ1(IDA))

Z Shared secret

7.3.1 Smart’s Protocol

Smart [679] seems to have been the first to propose, in 2002, an identity-based au-
thenticated key agreement protocol based on pairings. The exchanged messages are
no different from ordinary ephemeral Diffie–Hellman keys on elliptic curves. The
pairing is used to combine identity-specific information about the parties so that only
the participants should be able to obtain the shared secret Z. Smart’s protocol and its
variants all use SOK-type keys, so dA = qs

A.
The messages and key computation are shown in Protocol 7.7. When both prin-

cipals follow the protocol without interference, the shared secret is
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Shared information: Master public key h = gs for KGC private key s. qA = H1(IDA) and
qB = H1(IDB).

Information known to A: Private key dA = qs
A.

Information known to B: Private key dB = qs
B.

A B

rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
Z = ê(qrA

B ,h) · ê(dA, tB) Z = ê(qrB
A ,h) · ê(dB, tA)

Protocol 7.7: Smart’s identity-based key agreement protocol

Z = ê(qrA
B ,h) · ê(qrB

A ,h) = ê(qrA
B qrB

A ,h).

Smart’s protocol comes with no proof of security but it has been the basis of a number
of later protocols which have been proven secure, and this can give confidence in the
basic security properties of the protocol. However, the protocol does not provide
forward secrecy. An adversary who obtains the two long-term private keys dA and dB
can compute the shared key of an observed protocol run as Z = ê(dB, tA) · ê(dA, tB).
Since the KGC can generate dA and dB from knowledge of s, this also means that
KGC forward secrecy is not provided either.

In order to provide a high level of security, it is essential that A and B check that
the received values tB and tA lie in the group generated by g. The cost of this check is
relatively cheap in the case that the protocol is implemented using a Type 1 pairing
or, in general, that g lies in G1 when G1 and G2 are different. Chen et al. [192]
pointed out a simple certificational attack in which the adversary simply multiplies
one of the exchanged messages by a low-order value outside the group. Since this
low-order element will disappear during the exponentiation with a reasonably high
probability, A and B will not have matching conversations, so the protocol is broken
in a strong security model.

In the original paper [679], Smart’s protocol was defined only for Type 1 sym-
metric pairings. As pointed out by Chen et al. [192], it can be run using any pairing
type as long as the long-term private keys are generated in G1.

7.3.2 Variants of Smart’s Protocol

Noticing the lack of forward secrecy in Smart’s protocol, Chen and Kudla [194] pro-
posed a simple change in 2003. In addition to computing the original shared secret,
they proposed to compute a straightforward ephemeral Diffie–Hellman key using the
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exchanged values tA and tB. The messages in Smart’s protocol remain unchanged, but
the Diffie–Hellman key grArB is included in the shared secret value. The secret value
therefore becomes

Z = ê(qrA
B qrB

A ,h),grArB .

Subsequently, Chen et al. [192] provided a security proof for this extended proto-
col using a key derivation function which combines Z, the protocol messages, and
the identities of the participants. This proof shows that the protocol provides KGC
forward secrecy as well as resistance to key compromise impersonation, on the as-
sumption that the BDH problem is hard.

Later, Choie et al. [207] in 2005 proposed another variant of Smart’s protocol
which has the same basic idea of incorporating the ephemeral Diffie–Hellman value
using the exchanged values. The difference in their protocol is that a hash value
f = H(grArB) is computed by both parties, where H : G1 → Zq is a hash function.
The value f is then included as an exponent and the shared secret becomes

Z = ê(qrA
B qrB

A ,h) f ,

which is computed by A as Z = ê(q f rA
B ,h) · ê(dA, t

f
B) and by B in a symmetrical fash-

ion. Choie et al. [207] provided no security proof but claimed that the protocol pro-
vides KGC forward secrecy as well as key compromise impersonation resistance.
Boyd and Choo [133] pointed out an attack on the protocol in which an adversary
can obtain the session key by querying a non-matching session. However, this attack
is not due to the basic structure of the protocol but due to the lack of session-specific
information in the key derivation function. The attack can be avoided by including a
session identifier consisting of the concatenation of the protocol messages inside the
key derivation function.

7.3.3 Ryu–Yoon–Yoo Protocol

The protocol due to Ryu, Yoon and Yoo [639] has a simple and elegant structure.
Again this protocol uses SOK-type keys, so dA = qs

A. Protocol 7.8 describes the pro-
tocol.

At the end of the protocol execution, both A and B will compute the shared se-
cret Z = grBrA , ê(qA,qB)

s. This is simply the concatenation of the ephemeral Diffie–
Hellman key using the exchanged values and the SOK non-interactive key examined
in Sect. 7.1.3. Since the SOK protocol can be regarded as analogous to static Diffie–
Hellman, we can say that there is an analogy between Protocol 7.8 and the Unified
Model protocol (Protocol 5.12). It is therefore not surprising that the properties of
these two protocols are similar.

Ryu et al. [639] claimed that the protocol provides KCI resistance, but this is not
the case [133, 727]. It is easy to see that computing the key for the SOK protocol re-
quires knowledge of only one of dA and dB. Therefore, in a KCI attack, an adversary
who knows dA can compute the SOK key for any party claiming to share a key with
A. Boyd and Choo [133] also described a ‘key replicating attack’ on Protocol 7.8.
However, like the similar attack on the protocol of Choie et al. [207] mentioned in
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Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
Z = trA

B , ê(dA,qB) Z = trB
A , ê(dB,qA)

Protocol 7.8: Ryu–Yoon–Yoo protocol

Sect. 7.3.2, this can be avoided by including a suitably defined session identifier in
the key derivation function.

Wang et al. [728] provided a security proof for Protocol 7.8 when used together
with a specific key derivation function. Specifically, the session key K is defined as

K = H(IDA, IDB,Z, tA, tB),

where H is a hash function modelled as a random oracle. The computational assump-
tion is that the BDH problem is hard. A proof was also provided for KGC forward
secrecy. Because the identity-based keys are used on both sides of the pairing, Pro-
tocol 7.8 can only be implemented on Type 1 and Type 4 pairings.

7.3.4 Shim’s Protocol

Another early proposal for identity-based key agreement was Shim’s protocol, pub-
lished in 2003 [668]. This protocol uses SOK-type keys, so dA = qs

A. The original
version had some serious problems, but it has later formed the basis of other proto-
cols which have been proven secure.

The messages and key computation are shown in Protocol 7.9. When both prin-
cipals follow the protocol without interference, the shared secret is

Z = ê(tAdA, tBqB)
s = ê(g,g)srArB · ê(qA,g)srB · ê(g,qB)

srA · ê(qA,qB)
s.

Since Z contains the SOK key ê(qA,qB)
s as well as the bilinear Diffie–Hellman

key ê(g,g)srArB , it might intuitively be expected to be secure. However, Sun and
Hsieh [701] found that the protocol is completely insecure, as shown in Attack 7.1.

The adversary plays in the middle between A and B and alters the messages sent
between them. Once A and B complete the protocol, they have agreed on keys which
can be computed by the adversary C. Note that because C chooses both u and v, C
can compute Z = ê(tAqA,hv) and Z′ = ê(tBqB,hu).
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Shared information: Master public key h = gs for KGC private key s. qA = H1(IDA) and
qB = H1(IDB).

Information known to A: Private key dA = qs
A.

Information known to B: Private key dB = qs
B.

A B
rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = ê(hrA dA, tBqB)
tB←−−−−−−− Z = ê(hrB dB, tAqA)

Protocol 7.9: Shim’s protocol

A C B

rA ∈R Zq

tA = grA

tA−−−−−−−→ u ∈R Zq

t ′A = gu/qA
t ′A−−−−−−−→ rB ∈R Zq

v ∈R Zq
tB←−−−−−−− tB = grB

t ′B = gv/qB

t ′B←−−−−−−−
Z = ê(hrA dA, t ′BqB) Z′ = ê(hrB dB, t ′AqA)

= ê(hrA dA,gv) = ê(hrB dB,gu)

= ê(grA qA,hv) = ê(grB qB,hu)

Attack 7.1: Sun and Hsieh’s attack on Shim’s protocol

Later, in 2005, Yuan and Li [769] proposed a simple variation of Shim’s protocol
in order to avoid Attack 7.1. As in the Chen and Kudla variant of Smart’s protocol,
the change is simply to add the ephemeral Diffie–Hellman value to the definition of
the shared secret, which therefore becomes

Z = ê(tAdA, tBdB),grArB .

Yuan and Li did not provide any formal security analysis, but Chen et al. [192] later
provided a proof of security under the BDH assumption. The proof shows that this



308 7 Identity-Based Key Agreement

protocol provides all the desirable properties, including KGC forward secrecy and
KCI resistance.

Huang and Cao [368] proposed another variant, which is very similar to the Yuan
and Li protocol. They make use of the twin Diffie–Hellman construction of Cash et
al. [184]. The only difference from Yuan and Li’s protocol is that twin public keys
are constructed and used in a duplicate way in the protocol. The consequence of this
is to make the proof of security simpler and more complete.

Because the identity-based keys are used on both sides of the pairing, Proto-
col 7.9 can only be implemented on Type 1 and Type 4 pairings.

7.3.5 Scott’s Protocol

Scott [660] published an early pairing-based protocol in which the user’s private key
is stored as a combination of a user password and a secret stored on a physical device.
In the following description, we ignore the implementation details and use the same
assumptions as usual with regard to the ways that keys are constructed.

In contrast to the previous protocols in this section, Scott’s protocol uses mes-
sages which are dependent on the identity of the recipient. This results in the pairing
operation being used before the message is sent, but it is not needed to compute the
final shared secret. Protocol 7.10 describes the message exchange.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

pA = ê(dA,qB)
rA

pA−−−−−−−→ rB ∈R Zq

pB = ê(dB,qA)
rB

Z = prA
B

pB←−−−−−−− Z = prB
A

Protocol 7.10: Scott’s protocol

At the end of the protocol execution, both A and B will compute the shared secret
Z = ê(qA,qB)

srArB which is equal to the SOK key raised to the power rArB. The
message exchange can be regarded as analogous to the MTI C(0) protocol and the
key computation and protocol properties are rather similar.

Scott [660] presented an argument that the security of Protocol 7.10 can be re-
duced to the BDH problem, but he did not consider a full formal model. He also
argued that the protocol provides forward secrecy, and this also appears to extend
to KGC forward secrecy. However, the protocol does not provide resistance to KCI
attacks since either of the long-term private keys is sufficient to compute the SOK
key that forms part of the basis of the protocol.
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Because the identity-based keys are used on both sides of the pairing, Proto-
col 7.10 can only be implemented on Type 1 and Type 4 pairings.

7.3.6 Chen–Kudla Protocol

Chen and Kudla [194] designed a number of protocols aimed at improving the effi-
ciency and security of Smart’s protocol. One of these has already been discussed in
Sect. 7.3.2. The protocol described below reduces the number of pairing computa-
tions for each party from two to one in comparison with Protocol 7.7. Notice that the
messages exchanged are also different. This protocol uses SOK-type public keys.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→ rB ∈R Zq
wB←−−−−−−− wB = qrB

B
Z = ê(dA,wBqrA

B ) Z = ê(dB,wAqrB
A )

Protocol 7.11: Chen–Kudla protocol

The messages and key computation are shown in Protocol 7.11. When both prin-
cipals follow the protocol without interference, the shared secret is

Z = ê(qs
A,q

rB+rA
B ) = ê(qs

B,q
rA+rB
A ) = ê(qA,qB)

s(rA+rB).

In the original published paper [194], Chen and Kudla claimed a complete secu-
rity proof for this protocol. However, subsequently [195] they pointed out a flaw in
their argument (finding this flaw is attributed to Zhaohui Cheng) and only claimed
security when the adversary is prevented from obtaining old session keys via reveal
queries.

Protocol 7.11 does not provide forward secrecy, except for partial forward se-
crecy when only one of the private keys is revealed. It does, however, provide KCI
resistance as proven by Chen and Kudla under the BDH assumption [194, Theorem
2], but again only when the adversary is prevented from obtaining old session keys.
Chen and Kudla proposed a modification of Protocol 7.11 which adds in a separate
unauthenticated Diffie–Hellman exchange, in the same manner as in their modifica-
tion of Protocol 7.7. Because the identity-based keys are used on both sides of the
pairing, Protocol 7.11 can only be implemented on Type 1 and Type 4 pairings.
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7.3.7 Wang’s Protocol (IDAK)

Wang [731, 732] designed a protocol with the same message exchange as inProto-
col 7.11 but with a more complex computation of the shared secret. In compensation
for this extra work a higher level of security is achieved – specifically, there is a
security proof which allows reveal queries and proves forward secrecy. Wang called
this protocol IDAK, to indicate identity-based and authenticated key agreement. This
protocol uses SOK-type public keys.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→ rB ∈R Zq

wB = qrB
B

sA = H2(wA,wB)
wB←−−−−−−− sA = H2(wA,wB)

sB = H2(wB,wA) sB = H2(wB,wA)

Z = ê(drA+sA
A ,wBqsB

B ) Z = ê(drB+sB
B ,wAqsA

A )

Protocol 7.12: Wang’s protocol

The messages and key computation are shown in Protocol 7.12. The protocol
makes use of an additional hash function H2 : G1×G1→ Z∗q. When both principals
follow the protocol without interference, the shared secret is

Z = ê(qrA+sA
A ,qrB+sB

B )s = ê(qA,qB)
s(rA+sA)(rB+sB).

Wang [731, 732] proved the security of Protocol 7.12 based on the decisional
BDH problem. The proof is in the random oracle model, assuming that both H1 and
H2 act as random oracles. The security proof includes forward secrecy and key com-
promise impersonation resilience, but the protocol does not provide KGC forward
secrecy. KGC forward secrecy can be achieved by adding a separate unauthenticated
Diffie–Hellman exchange.

Wang made some concrete suggestions for how to implement the function H2
efficiently. One is to use a hash function with range Z∗q/2. Although this invalidates
the full proof, Wang claimed that there was formal evidence that the protocol was
still secure. This choice of H2 allows the protocol to save half an exponentiation,
since the size of sA and sB will be half the size of q.

Because the identity-based keys are used on both sides of the pairing, Proto-
col 7.11 can only be implemented on Type 1 and Type 4 pairings.
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Protocol 7.13 is a refinement of Protocol 7.12 due to Chow and Choo [212]. The
values sA and sB in Protocol 7.12 are replaced by values hA and hB in Protocol 7.13.
The main effect of this change seems to be that it reduces the amount of online com-
putation required by each party: A can compute hA and drA+hA

A before the protocol
run starts.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→ rB ∈R Zq

wB = qrB
B

hA = H2(wB, IDA)
wB←−−−−−−− hA = H2(wB, IDA)

hB = H2(wA, IDB) hB = H2(wA, IDB)

Z = ê(drA+hA
A ,wBqhB

B ) Z = ê(drB+hB
B ,wAqhA

A )

Protocol 7.13: Chow and Choo’s protocol

Chow and Choo provided a proof of security for Protocol 7.13 in the Canetti–
Krawczyk model. They also formally defined a protocol variant which includes a
separate Diffie–Hellman exchange, and showed that this variant provides weak KGC
forward secrecy. In addition to considering the usual protocol properties, Chow and
Choo also defined a protocol extension designed to provide anonymous key agree-
ment. This extension uses a ring signature so that the peer of a party involved in the
protocol can only know that the party is one out of a set (ring) of parties.

7.3.8 McCullagh–Barreto Protocol

McCullagh and Barreto [531] were the first to propose usage of SK-type keys for
identity-based key agreement. One advantage of this type of key is that the hash
function used, Ĥ1, does not have to map to an elliptic curve point as in SOK-type
keys. Recall that the SK-type public key is q′A = hgĤ1(IDA) = gs+Ĥ1(IDA), with corre-
sponding private key d′A = g1/(s+Ĥ1(IDA)).

The messages and key computation are shown in Protocol 7.14. When both prin-
cipals follow the protocol without interference, the shared secret is

Z = ê(g,g)rArB .

McCullagh and Barreto pointed out that Protocol 7.14 does not provide KGC

forward secrecy. To see this note that the KGC can compute z(s+Ĥ1(IDB))
−1

A = grA
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Shared information: q′A = gs+Ĥ1(IDA) and q′B = gs+Ĥ1(IDB).
Information known to A: Private key d′A = g1/(s+Ĥ1(IDA)).
Information known to B: Private key d′B = g1/(s+Ĥ1(IDB)).

A B
rA ∈R Zq

zA = (q′B)
rA

zA−−−−−−−→ rB ∈R Zq

zB = (q′A)
rB

Z = ê(zB,d′A)
rA

zB←−−−−−−− Z = ê(zA,d′B)
rB

Protocol 7.14: McCullagh–Barreto protocol

and z(s+Ĥ1(IDA))
−1

B = grB from its knowledge of s and the exchanged messages, and
then obtain Z = ê(grA ,grB). They therefore also proposed a second protocol aimed
at providing KGC forward secrecy using an asymmetric pairing ê : G1×G2→ GT
where G1 and G2 are different and are generated by unrelated elements g1 and g2.
Private keys of users are generated in G2; for example, A’s private key becomes
d′A = g1/(s+Ĥ1(IDA))

2 but public keys remain in G1 as before. The protocol messages
and key computation can then be identical to Protocol 7.14. Note that user keys are
applied only on the right-hand side of the pairing, which means that there is no need
for a homomorphism between the pairing groups. Also, the SOK-type private key
does not require hashing to the pairing group. Therefore any pairing type can be
used to implement Protocol 7.14.

Protocol 7.14 was found to be subject to some weaknesses. Firstly, Xie [744]
pointed out that the protocol is not resistant to KCI attacks. As a result of this
attack, McCullagh and Barreto proposed a protocol variant (included only in the
extended version of their paper [531] on the IACR ePrint Archive). This variant
avoids the KCI attack but no longer provides forward secrecy, as subsequently
pointed out by Xie [744].2 Xie [745] also proposed a new version of the protocol
with the same exchanged messages but a different key computation and shared key
Z = ê(g,g)rArB+rA+rB . Xie claimed that this change ensured forward secrecy and re-
sistance to KCI attacks, but this variant was itself broken by Shim [670] and by Li
et al. [486]. The latter also provided their own variant of Protocol 7.14, designed to
avoid the known attacks but without any formal analysis provided.

Meanwhile, Choo [210] had shown another attack on the original version of Pro-
tocol 7.14. This attack enables an adversary to recover the session key, given the
usual adversary capabilities assumed in the Bellare–Rogaway model. In order to pre-
vent this attack, it is necessary to forbid the adversary from obtaining session keys

2 Note that there are multiple versions of both the paper of McCullagh and Barreto [531] and
the paper of Xie [744], which were updated as understanding developed. These different
versions can all be obtained from the IACR ePrint Archive.
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from other sessions between the same participants. In the specification of Proto-
col 7.14, the session key is defined to be a hash of the secret value Z. The final IACR
ePrint Archive version of the McCullagh and Barreto paper [531] claims security
only when the adversary is restricted from making any reveal queries.

Later, Cheng and Chen [199] showed that all of the existing proofs of Proto-
col 7.14 and its variants could not be correct, owing to a technical problem. They
also provided their own proof of a modified protocol which consists of McCullagh
and Barreto’s own variant but with an explicit key derivation function, as shown in
Protocol 7.15.

Shared information: q′A = gs+Ĥ1(IDA) and q′B = gs+Ĥ1(IDB).
Information known to A: Private key d′A = g1/(s+Ĥ1(IDA)).
Information known to B: Private key d′B = g1/(s+Ĥ1(IDB)).

A B
rA ∈R Zq

zA = (q′B)
rA

zA−−−−−−−→ rB ∈R Zq

zB = (q′A)
rB

Z = ê(zB,d′A)ê(g,g)
rA

zB←−−−−−−− Z = ê(zA,d′B)ê(g,g)
rB

K = H2(IDA, IDB,zA,zB,Z)

Protocol 7.15: Modified McCullagh–Barreto protocol of Cheng and Chen

Protocol 7.15 shows the modified protocol. The messages exchanged are the
same as in Protocol 7.14 but the shared secret is computed differently, to obtain
Z = ê(g,g)rA+rB . Cheng and Chen provided a proof of security for Protocol 7.15
based on a rather complex computational assumption. However, this protocol still
does not provide forward secrecy.

7.3.9 Comparison

Table 7.4 summarises the properties of the protocols which have been described
in this section. Earlier surveys by Chen, Cheng and Smart [192] and by Boyd and
Choo [133] have their own tables of comparison. The present table includes only the
protocols which we have explicitly listed – many other protocols are known, some of
which have been mentioned in the text. Recall that the protocols in this section use
unauthenticated messages, and private keys are not used in their construction. The
asterisks next to the properties for the Shim protocol indicate that these properties
refer to the modified version discussed in Sect. 7.3.4.

As discussed in the text, many protocols have evolved over time and sometimes
variants have been proposed by others. In the table an asterisk indicates that a prop-
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Table 7.4: Summary of implicitly authenticated two-message ID-based protocols.
FS: forward secrecy; KCIR: key compromise impersonation resistance; ROM: ran-
dom oracle model

Protocol Private Message FS KCIR Proof Computation Pairing
key type on/offline types

Smart [679] (7.7) SOK grA No Yes No 1P/2E +1P All
RYY [639] (7.8) SOK grA No No ROM [728] 1E/1E +1P 1,4
Shim [668] (7.9) SOK grA Yes* Yes* ROM [192] 1P/2E 1,4

Scott (7.10) SOK ê(dA,qB)
rA KGC No No 1E/1E +1P 1,4

CK [194] (7.11) SOK qrA
A No Yes Restricted 1P/2E 1,4

Wang [731] (7.12) SOK qrA
A Yes Yes ROM 2E +1P/1E 1,4

CC [212] (7.13) SOK qrA
A KGC Yes ROM 1E +1P/2E 1,4

MB [531] (7.14) SK (q′B)
rA Yes No Restricted 1E +1P/1E All

MBCC [199] (7.15) SK (q′B)
rA No Yes ROM 1E +1P/1E All

erty may not hold for the original protocol – consult the section about that protocol
for details.

There are some interesting comparisons possible between the protocols seen in
Table 7.4 and various protocols using conventional Diffie–Hellman in finite fields.
For example, the RYY protocol has strong similarities to the Unified Model protocol.
Also, the CK protocol is closely related to the MTI A(0) protocol. Table 7.4 notes
whether each protocol provides forward secrecy and key compromise impersonation
resistance and has a security proof. In all cases which have forward secrecy, only
weak forward secrecy is provided for these two-message protocols.

Table 7.4 also summarises the computation done by each party. We only record
pairings (P) from group G1 to G2, and exponentiations (E) in either G1 or G2. For
simplicity, we do not differentiate between exponentiations in G1 and exponentia-
tions in G2. Computational requirements are divided into two parts, online and of-
fline. The offline computations are those that can be done before the protocol run
starts. We have counted as offline those computations that require knowledge of the
identity of the peer. This may not always be realistic. Some computations are also
independent of the peer’s identity.

The amount of communication required by each protocol can be estimated by
looking at the message type sent, as listed in Table 7.4. (Only the message sent from
A to B is shown, but all protocols in Table 7.4 are symmetrical in their messages.)
Well-known techniques for elliptic curve point compression allow points to be ex-
pressed as an element in the underlying field plus a single bit. The message length
used is considerably less than for an RSA-based protocol such as Protocol 7.1 if
only one point is sent. Protocols that require online pairing computation may be
rather inefficient, since a pairing requires several times the computation of an elliptic
curve multiplication. However, the exact computation required varies considerably
depending on the choice of curve and various implementation details.

Most protocol descriptions ignore the cofactor check that may be required to
ensure that the point sent is a member of the prime-order subgroup. Such a check
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may be important for security reasons (to avoid small subgroup attacks such as those
by Lim and Lee [492]). However, when the received point is used in a pairing, the
effort required to check that the point is in G1 is only a small part of the overall
computation required.

7.4 Pairing-Based Key Agreement with Explicit Authentication

All of the protocols which we have considered in Sect. 7.3 could be extended to
include explicit authentication. This is typically achieved by using a key, generated
from the shared secret independently from the session key, to form an explicit au-
thentication tag in each direction. This would usually extend the number of message
flows from two to three. In this section we consider some protocols which include
explicit authentication.

7.4.1 Boyd–Mao–Paterson Protocol

Boyd, Mao and Paterson [139] proposed a protocol which uses pairings only to
authenticate a Diffie–Hellman exchange. The protocol uses the SOK protocol, de-
scribed in Sect. 7.1.3, to derive a static shared secret, which is then used to authen-
ticate the exchanged messages. Protocol 7.16 shows the message exchange and the
computation of the shared secret.

Shared information: Static key FAB, derived from SOK key: FAB = H1(ê(qA,qB)
s).

A B
rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

Verify hash
tB,H(FAB, IDB, tA, tB)←−−−−−−−

H(FAB, IDA, tB, tA)−−−−−−−→ Verify hash
Z = H2(t

rA
B ) Z = H2(t

rB
A )

Protocol 7.16: Boyd–Mao–Paterson protocol

The authenticator used to define the protocol was proven by Boyd et al. to sat-
isfy the definition of a secure authenticator in the sense of Canetti and Krawczyk
[178] using the random oracle model and assuming that the bilinear Diffie–Hellman
problem is hard. Therefore the protocol inherits a proof of security in the Canetti–
Krawczyk model, including the forward secrecy property. However, as noted by the
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original authors, the protocol does not provide resistance to key compromise imper-
sonation, since the long-term key of either party is sufficient to compute the static
secret FAB.

7.4.2 Asymmetric Protocol of Choi et al.

Choi et al. [206] designed a protocol for use between a low-power client A and a
server B. A distinctive feature of their protocol is that A performs no pairings, even
though it is a pairing-based protocol. Despite many recent advances, pairing compu-
tations are still more expensive than exponentiations, so it is desirable to reduce the
number of pairings; by eliminating pairing computation altogether on the client side,
there is a corresponding saving in implementation cost too. Protocol 7.17 shows the
structure; three hash functions are used, Ĥ1 is the usual function for SK keys from
identity strings to Zq, and H2 and H3 output bit strings.

Shared information: q′A = gs+Ĥ1(IDA) and q′B = gs+Ĥ1(IDB).
Information known to A: Private key d′A = g1/(s+Ĥ1(IDA)).
Information known to B: Private key d′B = g1/(s+Ĥ1(IDB)).

A B
rA ∈R Zq

tA = ê(g,g)rA

zA,1 = (q′B)
rA

zA,2 = (d′A)
rA+Ĥ1(tA)

IDA,zA,1,zA,2−−−−−−−→ tA = ê(zA,1,d′B)

ê(zA,2,q′A)
?
= tA · ê(g,g)Ĥ1(tA)

rB ∈R Zq

zB = H2(tA,rB,zA,1,zA,2, IDA, IDB)
zB,rB←−−−−−−−

zB
?
= H2(tA,rB,zA,1,zA,2, IDA, IDB)

K = H3(tA,rB,zB,zA,1,zA,2, IDA, IDB)

Protocol 7.17: Protocol of Choi, Hwang, Lee and Seo

Part of Protocol 7.17 is similar to Protocols 7.14 and 7.15 in that the value zA,1
can be used by B to recompute the value tA = ê(g,g)rA . However, the other part of
the message from A, zA,2, is intended as a kind of signature to allow B to authenticate
the message. We note, however, that B has no way to check if the message from A
has been replayed, so it does not provide explicit entity authentication. The server
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sends its input rB in cleartext and both parties can then compute the session key as
a hash of ê(g,g)rA , rB and other public values. B also includes a value zB, which can
be recomputed by A to authenticate the message and to explicitly authenticate B.

Protocol 7.17 provides only partial forward secrecy; compromise of the long-
term key of the client, A, does not reveal expired session keys, but compromise of the
long-term key of B does. Owing to the authentication of each message, the protocol
appears to achieve key compromise impersonation resistance, although this has not
been proven. Choi et al. [206] provided a proof of security of Protocol 7.17 on the
assumption that the hash functions are random oracles and using two computational
assumptions known as the ‘k-value modified bilinear inverse Diffie–Hellman’ and
the ‘k-value collusion attack algorithm’ assumptions.

Later, Wu and Tseng [743] proposed a protocol related to Protocol 7.17, intended
for the same application scenario. The Wu and Tseng protocol uses SOK-type private
keys instead of the SK-type keys used in Protocol 7.17. Both protocols avoid the use
of pairings on the client side and have the same online computational requirements
for the client A. A comparison of the two given by Wu and Tseng [743] indicates that
they can save one exponentiation overall for the server compared with Protocol 7.17.

7.4.3 Identity-Based Key Agreement without Random Oracles

In all of the ID-based protocols which we have looked at so far, it has been neces-
sary for the identity string to be hashed before being used in the protocol. In order
for the security proof to work, this hash function is usually modelled as a random
oracle. Such a requirement is typical of the ID-based encryption algorithms which
were developed in the first decade of the explosion in research on pairings which
started around the year 2000. Later, it was seen as an important research goal to re-
move random oracle assumptions wherever possible and some different solutions to
that problem were found. It seems a natural goal to do the same for ID-based key
exchange, but there has not been a lot of focus on this goal.

One protocol which achieves this goal is due to Tian et al. [711]. It is based
on the ID-based encryption scheme of Gentry [297] and uses the same parameters
and private keys. In Gentry’s scheme, the public parameters consist of three values
(g,g1,h) for randomly chosen g,h ∈ G and g1 = gα , where α is the master secret
key. The private key of entity A is a pair (eA,hA), with hA = (hg−eA)1/(α−IDA). The
protocol also makes use of a secure MAC. The protocol message exchange is shown
in Protocol 7.18.

Through the first two messages of Protocol 7.18, A and B exchange what are ci-
phertexts of empty messages with Gentry’s scheme. This allows them to obtain two
shared secrets: KA = ê(g,h)rA , generated implicitly by A, and KB = ê(g,h)rB , gen-
erated implicitly by B. These keys are used firstly as keys for MACs which provide
explicit authentication, and secondly to form the shared secret Z = ê(g,h)rArB . The
protocol is relatively expensive, requiring two pairings and five exponentiations on
each side.

Tian et al. [711] provided a security proof in a Bellare–Rogaway-style model.
Like Gentry’s scheme, their security proof relies on a rather complex computa-
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Shared information: Public parameters (g,g1,h) with g,h ∈R G and g1 = gα where α is the
master secret key

Information known to A: Private key (eA,hA) with hA = (hg−eA)1/(α−IDA).
Information known to B: Private key (eB,hB) with hB = (hg−eB)1/(α−IDB).

A B
rA ∈R Zq

zA,1 = (g1g−IDB)rA

zA,2 = ê(g,g)rA

IDA,zA,1,zA,2−−−−−−−−−−−−−−−−→ rB ∈R Zq

KA = ê(g,h)rA zB,1 = (g1g−IDA)rB

zB,2 = ê(g,g)rB

KA = ê(zA,1,hB)z
eB
A,2

IDB,zB,1,zB,2,MACKA(IDA,zA,1,zA,2, IDB,zB,1,zB,2)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Verify MAC
KB = ê(zB,1,hA)z

eA
B,2

MACKB(IDB,zB,1,zB,2, IDA,zA,1,zA,2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = ê(g,h)rB

Z = KrA
B Verify MAC

Z = KrB
A

Protocol 7.18: Protocol of Tian, Susilo, Ming and Wang

tional assumption known as the truncated decisional ABDHE assumption. They also
claimed, without formal proof, that their protocol also achieves KCI resilience and
forward secrecy.

We can divide Gentry’s encryption scheme [297] into a key encapsulation method
component and a data encapsulation method. This construction is therefore strongly
related to the generic KEM-based construction examined in Sect. 5.8. Indeed, by
using any identity-based KEM that is secure in the standard model, the construction
in Sect. 5.8 can be used to construct alternative ID-based key agreement protocols
without random oracles.

7.4.4 Comparison

Table 7.5 summarises the properties of the protocols which have been described in
this section. Recall that the protocols in Table 7.5 include direct authentication infor-
mation as a signature of some sort.

The protocols in this section have differing structures, so we have not tried to
compare their message format except for noting the private key type. Each of them
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Table 7.5: Summary of two-party ID-based protocols with explicit authentication.
FS: forward secrecy; KCIR: key compromise impersonation resistance; ROM: ran-
dom oracle model; Std: standard model

Protocol Private FS KCIR Proof Computation
key on/offline

BMP [139] (7.16) SOK KGC No ROM 1E/1P+1E
CHLS [206] (7.17) SK No Yes ROM −/3E (client), 3P+1E/− (server)
TSMW [711] (7.18) Gentry Yes Yes Std 2P+3E/2E

has a proof of security, with the TSMW protocol being the only explicit protocol we
have listed which has a proof in the standard model.

As in Table 7.4, we have also summarised the computation of each party in Ta-
ble 7.5. Again, we only record pairings (P) and exponentiations (E), and compu-
tational requirements are again divided into two parts, online and offline. For the
CHLM protocol, the computation is different for the client (all can be done offline)
and for the server (all online).

As mentioned at the start of this section, any of the protocols in Sect. 7.3 could be
converted into a protocol with explicit authentication. This would make little differ-
ence to the computation on each side shown in Table 7.4, and in many cases would
allow full strong forward secrecy to be achieved.

7.5 Identity-Based Protocols with Additional Properties

All of the protocols which we have examined in this chapter so far have the same
basic infrastructure, namely a KGC which issues private keys to principals based on
their identity information. There are a number of ways that this infrastructure can be
extended, both for reasons of practicality and in order to provide new properties. In
this section we consider a few of these ways, namely how to accommodate domains
with different KGCs, how to incorporate user-generated keys, and how to allow more
flexible ways to define which principals can participate. Finally, in this section we
include a discussion of one-pass key establishment, which has a special significance
for the identity-based case.

7.5.1 Using Multiple KGCs

In our descriptions of ID-based protocols we have assumed that all users rely on the
same KGC to generate their private keys. In a large-scale system this is not practi-
cal. This issue has been noticed for ID-based cryptography in general since it was
first described. There have been proposals for a hierarchical structure of KGCs to
operate with identity-based encryption. Such structures spread the load on KGCs by
allowing entities high in the hierarchy to issue keys for entities that act as KGCs for
lower layers. There appears to have been little work on investigating the inclusion of
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hierarchies for ID-based key exchange in a generic fashion. However, some schemes
have extensions allowing for multiple KGCs.

Chen and Kudla [194] presented a variant of Protocol 7.7 designed to accommo-
date the situation where two KGCs operate using the same public parameters (i.e.
the same groups and generators) but different KGC master secrets. McCullagh and
Baretto [531, Section 5] claimed a more efficient protocol. However, as pointed out
before (see Sects. 7.3.1 and 7.3.8), both of these papers have limitations in their se-
curity proofs. Fujioka et al. [287] proposed a specific ID-based protocol using the
key hierarchy of Gentry and Silverberg [300]. Guo and Zhang [338] considered a
different but related setting in which ID-based and traditional PKI-based settings are
combined.

One notable example of usage of multiple KGCs is the protocol of Schridde et
al. [658], designed as a variant of Protocol 7.1 which allows users with different
KGCs to agree on a secret. Although extra computation is required, it is not neces-
sary for the two KGCs to communicate to set up their separate system parameters.
Protocol 7.19 shows the protocol messages. The users need to employ the Chinese
Remainder Theorem to compute new secret values s′A and s′B so that the session key
derivation equation still works. The shared secret is a value in the integers modulo
n1n2, where n1 is the modulus used by A’s KGC and n2 is the modulus used by B’s
KGC.

To see that both A and B compute the same value Z = (g1g2)
e1e2rArB mod n1n2 in

Protocol 7.19, note that the value computed by A is

Z = ((s′Bt ′B)
e1e2 ID′B)

rA mod n1n2

= ((s′B)
e1e2 ID′B)

rA · ((t ′B)e1e2)rA mod n1n2

= ((s′B)
e1e2 ID′B)

rA · ((grB)e1e2)rA mod n1n2

= ((s′B)
e1e2 ID′B)

rA mod n1n2 ·Z.

However,

(s′B)
e1e2 ID′B mod n2 = se1e2

B IDe1
B mod n2

= (ID−1
B )e1(IDB)

e1 mod n2

= 1.

Similarly, (s′B)
e1e2 ID′B mod n1 = 1, so that (s′B)

e1e2 ID′B)
rA mod n1n2 = 1.

Gennaro et al. [294] presented a security proof for Protocol 7.19. They made
a few adjustments to the protocol to ensure that the security proof holds. As for
Protocol 7.1, it is necessary that the ID values are hashed and that the session
key is obtained using a key derivation function which includes the exchanged mes-
sages as a session identifier. Moreover, Gennaro et al. noted that where the expo-
nent e1e2 is used in the derivation of Z in Protocol 7.19, it can be replaced by
E = lcm(e1,e2) – this gives the same result and can be significantly more efficient.
Another change is that the value of Z must be squared so that the shared secret be-
comes Z = g2ErArB mod n1n2. Finally, they defined g using the Chinese Remainder
theorem so that g≡ g1 (mod n1) and g≡ g2 (mod n2).
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Shared information: Public moduli n1,n2 and exponents e1,e2. Elements g1,g2 of high order
in Z∗n1

and Z∗n2
. Let g = g1g2.

Using the Chinese Remainder Theorem, both parties compute ID′A and ID′B such that

ID′A ≡ IDe2
A mod n1,

ID′A ≡ 1 mod n2,

ID′B ≡ IDe1
B mod n2,

ID′B ≡ 1 mod n1.

Information known to A: sA such that se1
A = ID−1

A mod n1. Using the Chinese Remainder The-
orem, A computes s′A such that

s′A ≡ sA mod n1,

s′A ≡ 1 mod n2.

Information known to B: sB such that se2
B = ID−1

B mod n2. Using the Chinese Remainder The-
orem, B computes s′B such that

s′B ≡ sB mod n2,

s′B ≡ 1 mod n1.

A B

rA ∈R Zn1n2

t ′A = grA mod n1n2
s′At ′A−−−−−−−→ rB ∈R Zn1n2

s′Bt ′B←−−−−−−− t ′B = grB mod n1n2

Z =
((s′Bt ′B)

e1e2 ID′B)
rA mod n1n2

Z =
((s′At ′A)

e1e2 ID′A)
rB mod n1n2

Both parties compute the secret
Z = (g1g2)

e1e2rArB mod n1n2

Protocol 7.19: Schridde et al. cross-domain identity-based protocol

7.5.2 Girault’s Three Levels

Girault [305] introduced a three-level categorisation of key agreement based on a
generalisation of identity-based schemes. In the schemes at level 1, the public key
of the entity is the identity string IDI , so these are exactly the normal identity-based
schemes. At the higher levels, a value obtained from the KGC is used in combination
with the partner’s identity to derive a key that can only be calculated by a principal
with the correct private key. We call such a value an implicit certificate. This allows
the private keys to be kept secret from the KGC and can be regarded as a compromise
between the basic identity-based scheme and conventional PKI-based schemes. The
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difference between levels 2 and 3 in Girault’s classification depends on whether or
not the owner of the public key can alone compute a valid public key (see Table 7.6).

Table 7.6: Girault’s levels of extended identity-based schemes

Level Properties Example

1 KGC chooses, or can compute, private key. Okamoto [589, 590], Protocol 7.1

2 KGC cannot find private key. Principal can
generate contradictory public key.

Girault and Paillès [306]

3 Only KGC can generate valid public key. Girault [305], Protocol 7.20

In order to understand the motivation behind the level 3 schemes, recall that a
certificate of a public key is a signature by a third party on certain information that
includes the value of the public key. A principal who receives such a certificate, in-
cluding the owner of the private key, cannot use it to form another contradictory cer-
tificate (for example, one that shows a different public key). This is simply because
only the third party can form new signatures. A malicious certification authority can
generate its own private key and produce a certificate that shows that this private key
belongs to any victim principal. This would allow the authority to masquerade as the
principal. However, this certificate will contradict the real certificate of the princi-
pal. Because only the authority is able to produce a certificate, the two contradictory
certificates can be used to show that the authority has cheated. In Girault’s level 2
schemes, principals can choose their own private key and also use their private infor-
mation to form new implicit certificates. Since both the authority and the principal
can form contradictory certificates, it is impossible to tell which of them has cheated
when two certificates appear. This situation is arguably little better than when the
authority has access to the private key, since it is able to masquerade as any principal
without being caught.

Girault and Paillès’ protocol [306] was classified by Girault as level 2. There is a
strong connection with Okamoto’s Protocol 7.1. In Girault and Paillès’ protocol the
public key, yA, of A satisfies ye

AIDA = g−exA mod n, where gxA is given to the server
but xA is kept secret by A. But if we rearrange this we find that yAgxA = ID−d

A , so
that A could calculate yA herself when given the same private key from Okamoto’s
scheme. In the Girault and Paillès protocol A sends the message yAgxA−rA to B. But
when we rearrange this message it becomes ID−d

A g−rA , which is the same as the
corresponding message sent in Protocol 7.1 except for a change of sign. Similarly, the
shared secrets are identical in the two protocols. We conclude that there is essentially
no benefit in A choosing the extra secret xA, even though the Okamoto scheme is at
level 1 while the Girault and Paillès protocol is at level 2.

In 1991 Girault, [305] introduced self-certified public keys in order to avoid the
limitations of level 2 schemes. These are keys that have an implicit certificate that can
only be generated by the KGC, and consequently can be used in protocols to reach
level 3 of Girault’s classification. Girault’s level 3 key agreement scheme [305] using
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self-certified keys has the same algebraic setting as that used for Okamoto’s protocol
(Protocol 7.1). An RSA modulus n and key pair e,d are chosen by the server, together
with an element g of high order in Z∗n. When A registers to use the scheme, she
chooses her private key xA and provides gxA to the KGC, which calculates the self-
certified public key yA = (gxA− IDA)

d mod n. (We have changed the sign of xA from
Girault’s original in order to maintain our usual notation.) In order for the scheme
to achieve level 3, it is essential that the KGC is unable to find xA. Saeednia [641]
has pointed out that a malicious server that chooses n may be able to find discrete
logarithms relatively easily, and for this reason the size of n should preferably be
2048 bits. In addition the KGC should provide a proof that n is the product of two
safe primes; Camenisch and Michels [175] provided a method to achieve such a
proof.

In Girault’s original paper [305], he only suggested using the self-certified keys
to produce an authenticated static shared key. If the public keys are already available,
this can be achieved with no message exchanges: A calculates (ye

B + IDB)
xA in order

to produce Z= gxAxB and B calculates the analogous value. However, since the public
key is simply a way to find an implicitly certified key for each party, any of the MTI
protocols (see Sect. 5.3) can be modified to provide a dynamic protocol. For example,
Protocol 7.20 shows a version modified from MTI A(0), as suggested by Rueppel and
van Oorschot [637]. The shared key is Z = grAxB+rBxA . The usual extra checks should
be made in order to avoid potential attacks, as discussed in Sect. 5.3. Analogues of
the other MTI protocols can be made similarly, replacing yA in the MTI original with
ye

A + IDA in the Girault version, and similarly for yB.

Shared information: Public modulus n and exponent e. Element g of high order in Z∗n.
Information known to A: xA with ye

A + IDA = gxA mod n, yB.
Information known to B: xB with ye

B + IDB = gxB mod n, yA.

A B

rA ∈R Zn

tA = grA

tA−−−−−−−→ rB ∈R Zn
tB←−−−−−−− tB = grB

Z = txA
B (ye

B + IDB)
rA Z = txB

A (ye
A + IDA)

rB

Protocol 7.20: Girault’s identity-based protocol, adapted by Rueppel and van
Oorschot

Just like the MTI A(0) protocol, Protocol 7.20 does not provide forward secrecy:
knowledge of xA and xB allows an adversary to compute Z. However, KCI resistance
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does seem to be provided, but there is currently no proof of that, nor indeed that the
protocol is secure at all.

Nyberg and Rueppel [585] suggested using their signature with message recov-
ery, previously discussed in Sect. 5.2.2, as the basis of identity-based key agreement.
The idea is to make the public key of each principal A equal to the signature of
gxA ID−1

A . After recovery of the message from the signature, the implicitly certified
public key can be recovered by multiplying by IDA. With this basis, any of the MTI-
style protocols can be applied, in the same manner as in Protocol 7.20. Sakazaki et
al. [648] explored use of elliptic curves and other variations in order to make the
basic idea more efficient.

7.5.3 Certificateless Key Agreement

Despite the efficiency advantages of identity-based key exchange, it has the signif-
icant drawback that it has the so-called ‘escrow’ property: the KGC can obtain the
private key of any party. If the protocol has KGC forward secrecy, this may not be
as serious a problem as it would otherwise be, because the KGC will be unable to
recover session keys from sessions in which it was not active. But the KGC can still
masquerade freely as any user. Furthermore, if a malicious KGC is able to obtain
ephemeral keys used in the session then it will be able to obtain the agreed session
key (since it will know all the secrets).

For the above reasons there is value in considering the certificateless setting. Cer-
tificateless cryptography was introduced by Al-Riyami and Paterson [24] to provide
some of the benefits of identity-based cryptography without allowing the KGC to
know the secrets of users. To achieve this, users have two parts to their private key:
one is issued by the KGC and the other chosen by the user. A user’s public key must
be known to communication partners but is not certified. This can be seen as a similar
idea to Girault’s level 3 scheme discussed in Sect. 7.5.2.

Since the idea of Al-Riyami and Paterson [24] was introduced in 2003, many cer-
tificateless cryptographic primitives have been designed, including encryption and
signatures. There have also been several certificateless key agreement protocols; in-
deed, the first was in the original Al-Riyami–Paterson paper. However, it was not
until 2009 that a formal model for security was defined [497, 702]. In such a model,
we expect the adversary to obtain the KGC private key as well as the ephemeral pri-
vate keys of the parties and still be unable to obtain the session key. This shows that
the model is stronger than what can be achieved in the identity-based setting.

Swanson and Jao [702] showed that all of the protocols published before 2009
are insecure in a strong model of security. Lippold et al. [497] seem to have been
the first to propose a certificateless key agreement protocol that is secure in a strong
security model. Their protocol remains secure even if any two of the three keys (the
identity-based private key, the user-selected private key, and the ephemeral private
key) become compromised. The security proof is in the random oracle model and re-
lies on the computational Diffie–Hellman assumption. However, the protocol is rel-
atively expensive, requiring 10 elliptic curve pairings for each party. Slightly later,
Lippold et al. [496] proposed another certificateless key exchange protocol which
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is secure in the standard model and is more efficient than their previous proposal.
It is essentially the same as Protocol 5.43, where the key encapsulation mechanism
used is a certificateless one. Yang and Tan [750] have proposed an even more effi-
cient protocol without relying on pairings; it relies instead on the gap Diffie–Hellman
problem.

7.5.4 Protocols with Generalised Policies

In the past few years, identity-based cryptography has been generalised in a few
different ways to allow more flexible and expressive properties to be specified. For
example, identity-based encryption can be generalised so that ciphertexts can be de-
crypted by any user who possesses certain properties, such as being a member of
a group or being above a certain age. Identity-based encryption is then a special
case of this, where the specific property required for decryption is having an iden-
tity equal to a specific value. Various flavours of generalisation have been defined,
including attribute-based cryptography, predicate cryptography, and, more generally,
functional cryptography [124]. At the time of writing, this is still a developing re-
search area where many new results can be expected in the coming years. Here we
just mention some early contributions to applying these generalisation to key ex-
change protocols.

At the same conference in 2010, papers were published on predicate-based
key exchange by Birkett and Stebila [104] and on attribute-based key exchange by
Gorantla et al. [327]. These two papers are related in that their intent is to gener-
alise the access policy to the shared secret, but they also have significant differences.
The first is concerned with two-party key exchange, and one main requirement is to
hide the properties (attributes) held by the participants. The second presents a group
key exchange protocol in which any user can participate by holding the necessary
properties, while keeping the user identity secret. Either of these approaches may
be useful, depending on the application scenario. Other papers have built on these
ideas [694, 765]. A related notion is credential-based key exchange, introduced by
Camenisch et al. [174].

7.5.5 One-Pass Identity-Based Protocols

One of the major benefits of identity-based cryptography is that users do not need to
access keying material for communication partners before applying cryptographic
processing based on the partner’s identity. When using conventional (certificate-
based) public keys, a user who wishes to encrypt information for a chosen recipient
must know the correct public key of the recipient. In contrast, identity-based encryp-
tion requires only the recipient’s identity (and the public parameters) to be known. In
this sense, identity-based encryption is more useful than identity-based signatures. A
signer can append a certificate to a conventional public signature to make it identity-
based in the sense that only the public parameters (which can include the certifier’s
public key) and the identity are required to verify the signature.
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We can develop this argument in the context of key exchange protocols to arrive
at the conclusion that many key exchange protocols with two (or more) messages
can be made identity-based simply by adding certificates to each of the (first two)
messages. This will always work as long as the first message from the initiator does
not depend on the public key of the responder. Of course, this does not mean that
such protocols will be efficient or have other desirable properties. Also, it may be
desirable to share public keys and parameters from an identity-based infrastructure
used for encryption and reuse them for key exchange. Thus we certainly do not claim
that the two- and three-message protocols explored in this chapter are not interesting.
However, we can say that the relationship of one-pass key exchange to two-pass key
exchange is similar to the relationship of identity-based encryption to identity-based
signatures. The latter can always be obtained from conventional primitives, while the
former cannot.

It is reasonable to expect that protocols with only one message will not achieve as
high a level of security as those with more messages. Noticing that an adversary who
obtains the recipient’s private key has the same information as the recipient during
the protocol, we can see that one-pass protocols cannot achieve full forward secrecy.
The best that can be achieved is sender forward secrecy so that compromise of the
sender’s private key will not compromise the session key. Similarly, an adversary
who can obtain the recipient’s private key can impersonate the sender unless the
single message is explicitly authenticated (and the adversary can always replay a
message), so that key compromise impersonation to the recipient cannot generally
be prevented.

Okamoto et al. [592] described two protocols and argued that their protocols
provide sender forward secrecy and security against key compromise impersonation
to the sender. Around the same time, Wang’s protocol [731, 732], which we saw in
Sect. 7.3.7, was published. Wang pointed out that Protocol 7.12 can be adapted to a
one-pass protocol by setting rB = 1 and wB = qB so that the message wB sent from
B to A can be removed. However, none of these earlier protocols carries any proof
of security. Gorantla et al. [325] seem to have been the first to provide a design for
one-pass identity-based key exchange with a security proof. Their protocol is shown
as Protocol 7.21.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→
s = H2(wA, IDA, IDB) s = H2(wA, IDA, IDB)

Z = ê(drA+s
A ,qB) Z = ê(sB,wAqs

A)

Protocol 7.21: Protocol of Gorantla, Boyd, and González-Nieto
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There is a strong similarity between Protocol 7.21 and Protocol 7.12 by Wang.
Indeed, Protocol 7.21 is a simplified version of Wang’s one-pass version of Proto-
col 7.12 mentioned above. Gorantla et al. [325] provided a security proof of Proto-
col 7.21 in the random oracle model, assuming hardness of the BDH problem.

It is a reasonable question to ask whether there is any real difference between
a one-pass key exchange protocol and a hybrid encryption scheme. In both cases, a
key is set up which is then used to protect other exchanged data, and this key can
depend on both the sender’s and the recipient’s long-term keys. This question was
investigated by Gorantla et al. [324] who concluded that there is a duality between
one-pass key exchange and a primitive known as a signcryption KEM. With suitable
assumptions, it is possible to transform a one-pass key exchange protocol into a
signcryption KEM and vice versa.

7.6 Conclusion

There has been a huge amount of research on identity-based cryptography, mostly
since the year 2000. Identity-based key exchange has been a significant part of this
and it may be fair to say that the area is reasonably mature, at least with regard to
pairing-based solutions. We have a number of well-understood protocols which are
practically efficient and with security proofs based on widely accepted computational
assumptions.

One direction where we may see future developments is in lattice-based solu-
tions. Lattices appear to be a more promising long-term foundation for identity-
based cryptography. One reason for this is the likelihood that lattice-based algo-
rithms will be able to withstand attacks from quantum computers, which threaten to
undermine many current cryptographic technologies, including pairings. The other
direction where we anticipate new results is in protocols whose principals are defined
by something more flexible than identity. These can be expected to emerge from re-
search into generalised forms of cryptographic primitives, particularly in the area of
functional cryptography.
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Password-Based Protocols

8.1 Introduction

Cryptographic authentication relies on possession of a key by the party to be au-
thenticated. Such a key is usually chosen randomly within its domain and can be of
length from around 100 bits up to many thousands of bits, depending on the algo-
rithm used and security level desired. Experience has shown [273, 741] that humans
find it difficult to remember secrets in the form of passwords of even seven or eight
characters. But if all upper- and lower-case letters are used together with the digits
0 to 9 then a random eight-character password represents less than 48 bits of ran-
domness. Therefore we can conclude that even short random keys for cryptographic
algorithms cannot be reliably remembered by humans. Another way to express this
is that it can be assumed that a computer is able to search through all possible pass-
words in a short time.

Cryptographic keys are often stored in secure memory in computers or using spe-
cial devices such as tamper-resistant cryptographic servers or in smart cards. How-
ever, there are situations where this is inconvenient or expensive. Not all devices are
tamper resistant, and the memory required for public keys can be scarce. There have
been proposals to strengthen passwords through interaction with a server [5, 281]
but these either require an additional trusted entity or give away some information
about the password. It is desirable to be able to set up secure communications rely-
ing only on a short secret that can be remembered by humans. This chapter examines
a number of key establishment protocols that have been designed to be secure in
the situation that the principals share only a password of small entropy. In accor-
dance with common terminology, we will often refer to such protocols as password-
authenticated key exchange protocols and employ the acronym PAKE.

At first thought, it might seem impossible to achieve key establishment using only
a short secret in such a way that brute force searching to find the secret is not possible.
This intuition may account for why it was not until 1989 that the first password-based
protocols appeared in the literature. These first protocols, due to Lomas et al. [500],
used the additional assumption that the client (in a client–server application) has
knowledge of the server’s public key, in addition to sharing the password with the
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server. In 1992, Bellovin and Merritt [84] introduced a class of protocols that does
not require this assumption.

The idea of Bellovin and Merritt’s Encrypted Key Exchange (EKE) protocols is
that the protocol initiator will choose an ephemeral public key and use the shared
password to encrypt this key. The responder can decrypt the public key and use it to
send the session key securely back to the initiator. On the assumption (not always
reasonable) that public keys are random strings, an adversary who tries a brute force
search of passwords will not be able to distinguish which ephemeral public key was
used; furthermore, even when the correct public key has been found it cannot be used
to discover the session key, since it is not possible to obtain the private key from the
public key. It is interesting to compare password-based protocols with protocols pro-
viding forward secrecy. Both seem to be possible only through the use of ephemeral
public keys1 and, for both, a typical approach is to use long-term keys (which may be
passwords) only for authentication of the message exchanges. Many password-based
protocols do provide forward secrecy.

We may summarise the special properties of and requirements for password-
based key establishment protocols as follows. Additional properties, such as forward
secrecy, are often seen as desirable.

• Users only possess a secret of small entropy. Specifically, it is possible for the
adversary to search through all possible secrets in a short time.

• Offline dictionary attacks should not be feasible. This means that a passive eaves-
dropper who records the transcript of one or more sessions cannot eliminate a
significant number of possible passwords.

• Online dictionary attacks should not be feasible. This means that an active ad-
versary cannot abuse the protocol so as to eliminate a significant number of pos-
sible passwords. An active adversary can always eliminate at least one password
per protocol run by attempting to masquerade using that password. Ideally, this
should be all that the adversary can gain.

An early idea to limit the leakage of passwords against online dictionary attacks
was to use a collisionful keyed hash function. In contrast to the usual requirement for
hash functions, this is a function for which it is easy to find many collisions for any
input. Anderson and Lomas [33] proposed to use a password as the key for a colli-
sionful hash function to authenticate Diffie–Hellman key exchange. Then password
guessing can only eliminate a proportion of passwords. While an ingenious idea, it
does not provide the level of security which we expect in more modern protocols.

Today, we can identify two different main approaches to the design of PAKE
protocols. The first is based around the idea from the EKE protocol in which an
ephemeral public key is somehow masked by the shared password. The second ap-
proach is to make use of smooth projective hash functions which allow only owners
of the password to obtain the shared secret (see Sect. 8.3.8). Abdalla [8] provided a
good overview of the two approaches.

1 Halevi and Krawczyk [342] provided formal arguments in support of this view.
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The security model used to analyse PAKE protocols is usually that of Bellare,
Pointcheval and Rogaway, or some variant of it. One main idea of that model is to
carefully manage the adversary’s ability to perform active attacks but allow a large
number of passive attacks. More details of such models were presented in Chap. 2.

There are several different architectural arrangements in which PAKE protocols
can be set, and which we will use later in this chapter to categorise protocols. The
following are the main features.

The number of parties. By far the majority of known protocols apply to the case
of a user and a server who share a password and want to set up a session key
between them; we call this two-party PAKE. Another fairly common arrange-
ment is where two different users share a password with a server, which helps
the users to authenticate each other and share a session key between them. We
call this three-party PAKE. Three-party PAKE can be generalised to the situa-
tion where the two users share a password with different servers; this is usually
known as the cross-realm scenario but could also be called four-party PAKE. Fi-
nally there are protocols where a group of any number of users share a password
and wish to set up a shared session key; we call this group PAKE.

Server storage of passwords. Many protocols have variants in which the server
stores only an image of the client password, rather than the password itself. This
means that compromise of the server does not automatically compromise the
password; however, it will allow a brute force searching attack, so this is not
always a significant advantage. Such variants are often called augmented PAKE
protocols.

Use of server public keys. The situation in which the clients have access to a valid
public key of the server seems natural in some scenarios. There are a number of
protocols which use this feature in combination with various of the alternatives
mentioned above.

The majority of the proposed protocols use Diffie–Hellman-based key agree-
ment, with the shared password used for authentication purposes. We therefore re-
quire notation similar to that used in Chap. 5. The notation used in this chapter is
shown in Table 8.1. As in Chap. 5, we describe all the protocols in this chapter in the
context of subgroups of Z∗p, but many of them can be generalised to elliptic curve
groups. Many of the protocols examined in this chapter are client–server protocols
for which the actions of the client are different from those of the server. In order to
avoid confusion, we always assume that principal A is the client and principal B is
the server.

In the next section we examine in some detail the version of EKE based on
Diffie–Hellman key exchange. This includes (Sect. 8.2.2) the EKE variant in which
the server stores only an image of the password: the augmented version of EKE. Sec-
tions 8.3 and 8.4 examine a variety of two-party PAKE protocols, first in the scenario
where the server stores the plain password and then in the augmented scenario. In
Sect. 8.5, some of the few PAKE protocols based on RSA are described. Then, in
Sect. 8.6, we look at three-party PAKE protocols, and Sect. 8.7 covers group PAKE
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Table 8.1: Notation for password-based protocols

π A key of short length, such as a password, owned by A.

p A large prime (usually at least 2048 bits).

q A prime with q|p−1.

G A subgroup of Z∗p. G is often a subgroup of order q, but sometimes is equal to
Z∗p.

g A generator of G.

rA, rB Random integers, typically of the same size as the order of G, chosen by A
and B, respectively.

tA, tB grA and grB , respectively. All computations take place in Zp.

xA, xB The private long-term keys of A and B respectively.

yA, yB The public keys of A and B, gxA and gxB , respectively. These public keys will
have to be certified in some standard way, which we do not consider here.

Z The shared secret calculated by the principals.

K The derived session key.

SAB The static Diffie–Hellman key of A and B.

Hi(.) One-way hash functions. The functions H1,H2, . . . are often assumed to be in-
dependent random functions. Certain protocols may require specific properties
and may specify particular functions.

protocols Throughout the chapter we make a comparison of the properties achieved
and resources used in a selection of the protocols.

8.2 Encrypted Key Exchange Using Diffie–Hellman

In this section we examine the Encrypted Key Exchange (EKE) protocol of Bellovin
and Merritt [84] as applied to Diffie–Hellman key exchange. Although the original
protocol has potential weaknesses and lacks a proof of security, it is instructive to
understand what may go wrong with such protocols: completely different attacks
are possible from those applicable to protocols with strong keys. We later examine
the many variants and extensions that have subsequently been developed from the
original idea. Steiner et al. [690] gave a specification of how to integrate EKE into the
TLS protocol, including details of how to use the symmetric encryption algorithm.

8.2.1 Bellovin and Merritt’s Original EKE

The general idea of EKE is to transport ephemeral public keys encrypted using the
password as a shared key. Only parties that know the password should be able to
complete the protocol. This idea can be applied to ephemeral keys from different
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public key schemes. Here we consider only Diffie–Hellman key exchange in which
both principals choose an ephemeral public key; the password is used to encrypt the
ephemeral keys as shown in Protocol 8.1.

Shared information: Shared password π . Security parameter L.

A B

rA ∈R Zp

tA = grA
IDA,{tA}π−−−−−−−−−−−−−−−−→ rB ∈R Zp

Z = trB
A

tB = grB

nB ∈R {1, . . . ,2L}

Z = trA
B

{tB}π ,{nB}K←−−−−−−−−−−−−−−−−
nA ∈R {1, . . . ,2L}

{nA,nB}K−−−−−−−−−−−−−−−−→ Verify nB

Verify nA
{nA}K←−−−−−−−−−−−−−−−−

Protocol 8.1: Diffie–Hellman-based EKE protocol

As in basic Diffie–Hellman key agreement, the shared secret is Z = grArB , al-
though the key derivation function to obtain the session key K from Z is not speci-
fied. Protocol 8.1 requires two exponentiations by each party, which is the same as
in ordinary Diffie–Hellman key exchange. We will see below that there are versions
with fewer message passes.

Symmetric Encryption Algorithm

The choice of the symmetric encryption algorithm using π was left flexible by
Bellovin and Merritt. They suggested that many choices were acceptable, even ones
that were ‘quite weak’. However, it now seems clear that the use of encryption func-
tions without special properties prevents security proofs being obtained and allows
attacks in certain cases.

Bellovin and Merritt introduced the notion of partition attacks against EKE.
The idea is that an adversary guessing the password can attempt to decrypt {tA}π

and {tB}π and examine whether the resulting plaintext is a valid Diffie–Hellman
ephemeral value. If not, then the guessed password is incorrect and can be discarded.
Given several runs of the protocol, successive ‘partitions’ of the passwords into valid
and invalid sets may be obtained. The success of partition attacks can depend on two
factors: the symmetric encryption used, and the parameters defining the group G in
which the protocol works.
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Consider an example in which the symmetric encryption algorithm is a conven-
tional block cipher (the key can be derived from the password using a suitable hash
function). If G = Z∗p then the decryption of {tA}π using a candidate password can
be assumed to be a random string of the appropriate block length. This string must
be interpreted as an element of Z∗p. During encryption, any padding that must be in-
cluded owing to the algorithm block length can be chosen randomly (as suggested
by Bellovin and Merritt). Even so, there will be some bitstrings that cannot occur
as plaintexts and these allow some passwords to be discarded. This is because if de-
cryption with a candidate password results in a string whose value is greater than p
then that candidate is invalid.

In order to make partition attacks harder, Bellovin and Merritt suggested choos-
ing p to be slightly less than a power of 2. In this way very few candidate passwords
will be invalid. Jaspan [396] conducted an analysis which concluded that it is ade-
quate in practice to ensure that 1− (p/2n)< 10−4, where 2n is the smallest power of
2 greater than p. However, it seems preferable to choose the symmetric encryption
algorithm to be matched to the group so as to completely eliminate such attacks; we
will explain below how this may be done.

Omitting Symmetric Encryption

Bellovin and Merritt suggested that either of the two encryptions using π in Protocol
8.1 could be omitted. Subsequent authors have shown that this can result in weak-
nesses, depending on the precise format of the messages used for authentication.

First, suppose that the encryption using π is omitted from the first message so
that this message becomes A, tA. This change does not appear to help a passive ad-
versary and still prevents K from being found without knowledge of π . However,
Patel [603] showed how an active adversary masquerading as A may be able to ex-
ploit this change. The adversary can send the first message by choosing rC and setting
tA = grC . Now, if the authenticator {nB}K returned in the second message contains
redundancy, then the adversary can use it to eliminate any potential password π̃ by
decrypting {tB}π with π̃ to obtain t̃B, finding the corresponding value of the session
key K̃ from Z̃= (t̃B)rC , and checking for the redundancy after decrypting {nB}K with
K̃. Jablon [388] noted that small subgroup attacks (see Sect. 5.2.1) may also become
possible in this situation; the adversary can move tA into any small subgroup and use
the authenticator in the third message to identify the correct K in a brute force attack.
Standard precautions against small subgroup attacks can prevent this.

If encryption using π is omitted from the second message then the adversary can
attempt to masquerade as B. Steiner et al. [691] showed that this allows an attack
if the authenticators do not contain redundancy. The adversary chooses a random X
and rC, sets tB = grC , and sends tB,X as the second message, which will be accepted
by A. Now the adversary can decrypt {tA}π with a candidate password π̃ to obtain
t̃A and the corresponding session key K̃ = (t̃A)rC . The adversary can then decrypt the
third message using K̃ and check whether the second field equals the decryption of X
using K̃, in order to confirm whether π̃ is the correct password. Patel [603] also noted
an attack here when there is limited redundancy in the authenticator, but this time it
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is necessary for the adversary to wait to see if a random authenticator is accepted
by A: the adversary sends tB,X as the second message for a random value X . If this
message is accepted then the adversary knows that the redundancy is present, but if
it is not then all passwords that result in the desired redundancy can be eliminated.

It may seem reasonable to conclude that it is safest not to omit either of the
symmetric encryptions using π . However, a better solution is to be more careful in
the use of authenticators. We now examine variants in which this is done; not only is
the result a protocol with fewer rounds, but also a proof of security becomes feasible.

Security Proofs Using Generic Encryption

Bellare et al. [70] have provided proofs that the exchange of the password-encrypted
Diffie–Hellman messages at the core of EKE is a secure protocol using the Bellare–
Pointcheval–Rogaway (BPR00) model discussed in Chap. 2. Although they specify
the key derivation function to compute the session key, the symmetric encryption
algorithm used in the protocol is not concretely defined; it is assumed to be an ideal
cipher that can be regarded as a random function (analogous to the functions used
in the random oracle model). Furthermore, the decryption function must take strings
of a fixed size and map them to elements of G. This may leave the implementer
with some difficulty in choosing an appropriate concrete algorithm. Zhao et al. [777]
showed that certain concrete instantiations of the ideal cipher can lead to concrete
attacks.

Bellare and Rogaway [79] also defined authenticated versions of their abstract
protocol, collectively called AuthA, but without a separate security proof. Later,
Bresson et al. [152] provided new proofs for AuthA in which the encryption is simply
multiplication by the password. They assumed a random oracle for the authentication
and key derivation functions, and otherwise assumed only the difficulty of the CDH
problem.

8.2.2 Augmented EKE

For many years it has been standard practice for passwords to be stored on servers
as the image of a one-way function H, so that H(π) is stored rather than π itself.
In this way, compromise of the password file will not compromise the passwords
directly, and when a claimed password π ′ is submitted to the server it can be checked
whether H(π ′) = H(π). However, compromise of the password file will nevertheless
allow an offline dictionary attack to be mounted, since the adversary can calculate
H(π ′) for any password guess π ′ and compare it with the stored value. Therefore
the benefits of this approach will depend on the application. Many designers have
provided password-based key establishment protocols that require the server to store
only an image of each password.

A number of protocols explicitly include the use of salt in the calculation of
the password image. Salt is another commonly used mechanism for protecting pass-
words on a server. For each password πi, a random salt value si is chosen and the
pair (si,H(πi,si)) can be stored on the server. The purpose of salt is to frustrate bulk
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guessing attacks if the password file stored on the server becomes compromised.
Even though the salt becomes known to the adversary, any password guess can only
be verified against one password image at a time.

The original EKE protocol requires that the server stores the plaintext password
in order to be able to decrypt the protocol exchanges. Subsequently, Bellovin and
Merritt [85] designed an ‘augmented’ version, shown in Protocol 8.2, which requires
the server to store only an image of the password.

Information held by A: Password π .
Information held by B: Two images of password, H1(π) and H2(π). H2(π) is suitable for

signature verification.
Shared information: Security parameter L.

A B

rA ∈R Zp

tA = grA
IDA,{tA}H1(π)−−−−−−−−−−−−−−−−→ rB ∈R Zp

Z = trB
A

tB = grB

nB ∈R {1, . . . ,2L}

Z = trB
B

{tB}H1(π),{nB}K
←−−−−−−−−−−−−−−−−

nA ∈R {1, . . . ,2L}
{nA,nB}K−−−−−−−−−−−−−−−−→ Verify nB

Verify nA
{nA}K←−−−−−−−−−−−−−−−−

{Sigπ (K)}K−−−−−−−−−−−−−−−−→ Verify signature
using H2(π)

Protocol 8.2: Augmented Diffie–Hellman-based EKE protocol

The first four messages of this protocol are the same as in Protocol 8.1 with
the plain password π replaced by the hashed password H1(π). These messages are
insufficient on their own, since the user would require only H1(π) in order to com-
plete the protocol and there would be no effective difference from the original EKE.
Therefore a fifth message is added, which consists of a signature of the shared secret
constructed using π as the secret key and so that B can hold the corresponding public
key. Bellovin and Merritt did not make an explicit choice for the signature, but an
example could be an ElGamal signature [267] with private key π and public verifi-
cation key H2(π) = gπ . (It is possible to allow H1 = H2 but if, as in this example,
H2 requires an exponentiation, computation is reduced for A if H1 is a simple hash
function.)
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Steiner et al. [691] have pointed out that an adversary who is able to obtain an
old K can decrypt the final message flow of Protocol 8.2 and attempt to verify the
signature using a guessed π ′ value and therefore mount a dictionary attack. This
protocol is therefore arguably weaker than the original in the usual scenario where
old session keys may be compromised. However, this problem could be avoided by
using a different key derived from Z to protect the protocol messages, instead of
using the session key K for this purpose.

8.3 Two-Party PAKE Protocols

After the Encrypted Key Exchange protocol was developed by Bellovin and Merritt,
many new PAKE protocols were designed, aiming to find potential improvements
over EKE. This section looks at the prominent examples of two-party PAKE proto-
cols. Consideration of augmented PAKE protocols is deferred to Sect. 8.4, but it is
worth noting that many protocols in this section have a corresponding augmented
version. The protocols in this section do not provide protection against server com-
promise.

8.3.1 PAK

Boyko et al. [145] specified a variant of Diffie–Hellman-based EKE called PAK
(Password Authenticated Key exchange). Protocol 8.3 shows the basic version of
PAK.

A key feature of Protocol 8.3 is that the element P in the group G is derived from
the password π using a special hash function: P = H1(IDA, IDB,π). In typical appli-
cations the computing device of A will not have the value π available beforehand,
and so this calculation is part of the computational requirements for A. (In contrast,
we assume that B is a server which can store the derived value of P.)

The original version of PAK [145] uses a prime p of the form p = rq+1, with r
and q relatively prime. The Diffie–Hellman key exchange takes place in the subgroup
G of order q. Computation of H1 then involves an exponentiation with exponent r in
order to move a bitstring into the subgroup G. Since the typical lengths of q and r
could be 256 bits and 1792 bits, respectively, this calculation is more expensive than
the subsequent Diffie–Hellman exchange. (The computational requirements may be
optimised for different applications by choosing a larger size for q so that the size of
r becomes smaller.)

The original PAK protocol uses three other hash functions. It is important that
these functions are different, and the formal proof assumes they are independent ran-
dom functions. In practice, we may define the different hash functions by prepending
a different fixed string to the input and then using a standard hash function. For exam-
ple, we may define Hi(x) = H(ASCII(i),x), where H is SHA-2 [579] and ASCII(i)
is the ASCII representation of i.

The PAK protocol was proven by Boyko et al. [145] to be secure in Shoup’s
simulation model assuming the hash functions act as random oracles. Originally this
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Shared information: Generator g of G of order q. Hash functions H1,H2,H3,H4.
Information held by A: Password π .
Information held by B: Derived password image P = H1(IDA, IDB,π) ∈ G.

A B

P = H1(IDA, IDB,π)

rA ∈R Zq

tA = grA

m = tAP m−−−−−−−→ Check m 6= 0 ∈ G
tA = m/P
rB ∈R Zq

tB = grB

Z = trB
A

Z = trA
B

tB,k←−−−−−−− k = H2(IDA, IDB,m, tB,Z,P)

k ?
= H2(IDA, IDB,m, tB,Z,P)

k′ = H3(IDA, IDB,m, tB,Z,P)
k′−−−−−−−→ k′ ?

= H3(IDA, IDB,m, tB,Z,P)
K = H4(IDA, IDB,m, tB,Z,P) K = H4(IDA, IDB,m, tB,Z,P)

Protocol 8.3: PAK protocol

result relied on the decision Diffie–Hellman assumption, but later MacKenzie [509]
provided proofs in the Bellare–Pointcheval–Rogaway (BPR00) model and showed
that the ordinary (computational) Diffie–Hellman assumption is sufficient.

We may regard the PAK protocol as a variant of the original Diffie–Hellman-
based EKE protocol with the following instantiations and modifications:

• the key derivation function is specified;
• symmetric encryption is defined as multiplication in G by the image P of π;
• symmetric encryption of the ephemeral Diffie–Hellman key in the second mes-

sage is omitted;
• a simplified authentication mechanism is used which allows a more efficient pro-

tocol.

It is interesting to consider how these changes ensure that the potential weak-
nesses in Diffie–Hellman EKE are avoided. The choice of symmetric encryption is
very simple and matched to the group G. (Although a modular multiplication may
be computationally more expensive than encryption with a block cipher, in practice
the additional effort over the required exponentiations is very small.) In the parti-
tion attack described in Sect. 8.2.1, the adversary attempts decryption with candidate
passwords π ′. With this natural choice of encryption, every π ′ maps to an image
P′ ∈ G and attempted decryption of tAP results in tAP/P′ which will always lie in
G. Therefore the partition attack cannot even discount a single candidate π ′. If the
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adversary tries to exploit the omission of the symmetric encryption with π in the sec-
ond message by sending tB,X for a random X then, with overwhelming probability,
A will reject the message. Instead, the adversary can calculate a correct value k for
any candidate password, and this would allow checking of that one password.

The PAK protocol has appeared in various standards, including IEEE P1363
[373]. There are also versions in ITU [386] and IETF [163] standards, but although
these versions are essentially identical to each other, there are small differences from
Protocol 8.3 as specified in the academic paper [145]. In particular, in the ITU [386]
and IETF [163] versions both A and B multiply their Diffie–Hellman value by a
hashed version of the password. Although both standards claim that their version
has been proven secure, the published proof [145] does not, strictly speaking, ap-
ply to this variant. A Russian standard known as Security Evaluated Standardized
Password-Authenticated Key Exchange, or SESPAKE, is a PAK variant and is de-
scribed in RFC 8133 [683].

Boyko et al. [145] also specified a variant of PAK without explicit authentication.
The result is shown as Protocol 8.4 and is known as PPK (Password Protected Key
exchange). Apart from omitting the authenticators, another difference is that both
messages, instead of just the first, must now use the symmetric encryption with π . A
consequence of using two encryptions is that A requires an extra exponentiation, in
comparison with Protocol 8.3, to derive the extra password image P2.

Shared information: Generator g of G of order q. Hash functions H1,H2,H3.
Information held by A: Password π .
Information held by B: P1 = H1(IDA, IDB,π) and P2 = H2(IDA, IDB,π) both in G.

A B

P1 = H1(IDA, IDB,π)

rA ∈R Zq

tA = grA

m = tAP1
m−−−−−−−→ Check m 6= 0 ∈ G

tA = m/P1

rB ∈R Zq

tB = grB

Check m′ 6= 0 ∈ G m′←−−−−−−− m′ = tBP2

P2 = H2(IDA, IDB,π)

tB = m′/P2

Z = trA
B Z = trB

A

K = H3(IDA, IDB,m,m′,Z,P1)

Protocol 8.4: PPK protocol
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If the first message alone was protected by the password, as in Protocol 8.3, then
an adversary could masquerade as B and use knowledge of the derived session key
to mount a brute force searching attack. For example, the adversary could choose
random rC ∈ Zq and send grC to A as the second message. Then the shared secret
accepted by A is Z = grCrA . The adversary can check any potential password π̃ by
calculating P̃1 =H1(IDA, IDB, π̃), t̃A =m/P̃1 and the corresponding secret Z̃= (t̃A)rC .
If π̃ is the correct password then Z̃ = Z, which can be checked against subsequent
messages from A protected with K.

MacKenzie [507, 509] designed several other enhancements and variations of
the PAK protocol and proved their security. These include allowing different groups
instead of Z∗p, such as elliptic curve groups and the XTR group [481], and removing
identifiers from the inputs to H1 (and H2 for PPK) to simplify the protocol. MacKen-
zie and Patel [511] showed that short Diffie–Hellman exponents can be chosen to im-
prove efficiency even when the group G is large. For example, by choosing G= Z∗p
so that q = p−1, a simple H1 can be used but the Diffie–Hellman exponents can be
much shorter than |p|.

8.3.2 SPEKE

The SPEKE (Secure Password Exponential Key Exchange) protocol was designed
by Jablon [388]. Although SPEKE, like EKE, is based on Diffie–Hellman, it has a
distinctive feature that the password is used to define the base to be used for the
Diffie–Hellman exchange. Jablon presented both basic and ‘fully constrained’ ver-
sions, the latter designed to prevent a variety of different attacks.

Protocol 8.5 describes the fully constrained SPEKE protocol, but we have in-
cluded the verifiers VA and VB, as defined in the version analysed by MacKen-
zie [508]. Jablon’s original verifiers included only Z in the hash, which allows a
potential attack [772] in which the adversary masquerades as A and makes a guess π̃

of the password π . The received verifier VB then allows the adversary to check if π̃

is any value in the set {π,π2,π3, . . .}. The seriousness of such an attack can be de-
bated, since there may be few potential passwords in this sequence, but MacKenzie’s
verifiers rule it out altogether.

The prime p and subgroup G are chosen so that q=(p−1)/2 is prime and G is of
order q. The password π is regarded as a number in Z∗p, and then P= π2 is guaranteed
to lie in G and have order q (assuming that π is not equal to 1, −1, or 0). The value
P is used as the generator of G for protocol runs involving π . Apart from this special
way of defining the group generator, the protocol is exactly the basic Diffie–Hellman
key exchange with key confirmation. The shared secret is therefore Z = P2rArB and
forward secrecy is provided. The check that Z is not in the set {−1,0,1} ensures that
small subgroup attacks are avoided. In comparison with Protocol 8.3, calculation of
P from π is much simpler, so that we can almost ignore it in assessing A’s computa-
tional requirements. The cost of the Diffie–Hellman exchange calculations depends
on the size of the exponents rA and rB. Typical lengths might be 256 bits.

The original version of SPEKE does not have a proof of security, but later
MacKenzie [508] did provide a proof of a slight variant using Shoup’s simulation
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Shared information: Subgroup G of Z∗p of prime order q = (p− 1)/2. Shared derived pass-
word image P = π2 where π is interpreted as an element of Z∗p. Security parameter L.
Hash functions H1,H2,H3.

A B

rA ∈R {1, . . . ,2L}

tA = PrA
tA−−−−−−−→ rB ∈R {1, . . . ,2L}

Z = t2rB
A

Check Z /∈ {−1,0,1}
tB = PrB

Z = t2rA
B

tB,VB←−−−−−−− VB = H1(tA, tB,Z,π)
Check Z /∈ {−1,0,1}

Verify VB

VA = H2(tA, tB,Z,π)
VA−−−−−−−→ Verify VA

K = H3(Z)

Protocol 8.5: SPEKE protocol

model. This proof relies on the difficulty of a non-standard decision problem called
the inverted-additive Diffie–Hellman problem. It shows that at most two passwords
can be tested per login attempt, whereas it is proven that only one password test
is possible for the PAK protocol. The differences between the protocol used by
MacKenzie and Protocol 8.5 are:

• P is defined to include the identities of A and B: P = (H(IDA, IDB,π))
2;

• the hashes used to form the session key include the identities of A and B, the
exchanged messages tA and tB, the password π , and Z;

• the exponents are chosen randomly in Zq.

An important practical consequence of the last difference is that exponents are the
same size as q. Since q = (p−1)/2, this would typically make the exponents around
2048 bits, a significant overhead compared with the exponents of size 160 bits orig-
inally suggested by Jablon. Versions of SPEKE suitable for use on elliptic curves,
which are potentially much more efficient, are specified in the IEEE P1363.2 stan-
dard [373] and the ISO 11770-4 standard [385].

Hao and Shahandashti [347] described two attacks which apply to certain ver-
sions of SPEKE, including a version in an older version of the ISO 11770-4 stan-
dard [379]. The first attack is an impersonation attack in which the adversary replays
a (randomised) message back to the victim. In the second attack the adversary is
able to randomise the agreed key without obtaining it, disturbing the conversations
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seen by the principals so that they no longer match. Both attacks can be prevented
by including sufficient details of the parties and protocol components in the protocol
messages. The SPEKE version shown in Protocol 8.5 is not vulnerable to these at-
tacks, owing to the inclusion of the tA and tB values in the verifiers VA and VB. The
version in the later ISO 11770-4 standard [385] includes the tA and tB values and
the principal identities in the session key derivation function in order to prevent the
attack.

SPEKE Variants

Pointcheval and Wang [617] analysed a variant of SPEKE called two-basis password
exponential key exchange (TBPEKE), in which the basis used for the Diffie–Hellman
exchange is U ·V π for two random group elements U and V . Their security proof
relies on assumptions which they believe can be satisfied by elliptic curves, thus
allowing instantiations more efficient than those satisfying the proof assumptions of
MacKenzie [508].

A flawed variant of SPEKE appeared in the original paper of Jablon [388]. In
this variant the derived password is P = gπ , which, as in Protocol 8.5, is used as
the generator of the group G in a Diffie–Hellman exchange. The shared secret is
again Z = PrArB . A password-guessing attack was found by Jablon and others and
resulted in the deletion of this option from later papers on SPEKE [389]. An essen-
tially identical protocol also appears in the paper of Bakhtiari et al. [50]. A protocol
designed by Seo and Sweeney [663], known as SAKA (Simple Authenticated Key
Agreement), was an unfortunate rediscovery of almost the same protocol. The main
difference is that the shared secret is Z = grArB , but this seems to have little influence.
Mitchell [557] showed that a password-guessing attack is still possible. A number of
other authors [458, 495, 715] have also found various attacks concerned with the
explicit authentication exchange phase of SAKA.

A protocol by Kaufman and Perlman [421] is connected with SPEKE in that
the password is used to generate the parameters for the Diffie–Hellman exchange.
However, the difference is that in this case the password is used as a seed to generate
the prime modulus p, and this is done in such a way that 2 is a generator (at least
with high probability) of Z∗p. The protocol is known as PDM (for Password Derived
Moduli). Like SPEKE, it is essentially basic Diffie–Hellman with key confirmation.
One computational overhead is the time taken to reconstruct p at both ends, which
entails testing for primality (indeed, testing for a strong prime), starting from the
seed value. In addition, no formal security proof was provided.

8.3.3 Dragonfly Protocol

A protocol, originally known as Simultaneous Authentication of Equals (SAE) and
later known as Dragonfly, was designed by Harkins for use in sensor networks [350].
Like SPEKE (Protocol 8.5), Dragonfly uses the shared password to define the base
used for a Diffie–Hellman key exchange.
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Shared information: Subgroup G of Z∗p of prime order q = (p−1)/2. Hash functions H1,H2.
Shared derived password image P = H1(IDA, IDB,π), where H1 maps into G.

A B

rA,mA ∈R Zq

sA = rA−mA

tA = PmA
tA,sA−−−−−−−→ Check that tA ∈G,sA ∈ Z∗q

rB,mB ∈R Zq

sB = rB−mB
tB,sB←−−−−−−− tB = PmB

Check that tB ∈G,sB ∈ Z∗q
Z = (PsB tB)rA Z = (PsA tA)rB

VA = H2(Z, tA,sA, tB,sB)
VA−−−−−−−→ Verify VA

Verify VB
VB←−−−−−−− VB = H2(Z, tB,sB, tA,sA)

K = H2(Z, tA · tB,sA + sB mod q)

Protocol 8.6: Dragonfly protocol

In order to emphasise the similarity with SPEKE, in Protocol 8.6 we have ad-
justed the details slightly by changing the signs of mA and mB in the computation
of sA and sB and by splitting the computation of VA, VB and K into three separate
operations. It is also possible to convert the protocol into a three-message protocol
by allowing B to compute verifier VB earlier and sending it with the second message.
The shared secret is Z = P(sB+mB)(sA+mA).

The requirement to check that the elements tA, tB,sA,sB are in their correct groups
was missing originally [350] but was added later [352] because of a small subgroup
attack identified by Clarke and Hao [219] when these checks were missing. Clarke
and Hao also provided a detailed efficiency comparison with SPEKE (Protocol 8.5),
which indicates that even after adding these checks Dragonfly is the more efficient
of the two, mainly owing to the groups in which they are specified to operate.

Lancrenon and S̆krobot [472] provided a security proof (including forward se-
crecy) for Protocol 8.6 in the BPR00 model. The proof uses random oracles and
assumes the difficulty of the CDH problem. As in their specification, we have as-
sumed that the mapping of the password into the group element P is done using a
random oracle. In the original version [352, 350] a concrete function, referred to as
hunting and pecking, was used for this purpose.

8.3.4 SPAKE

The Simple Password-based Key Exchange (SPAKE) protocol was introduced by
Abdalla and Pointcheval [18] with the aim of reducing (but not eliminating) the use
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of random oracles in the security proof. A structural difference from other EKE-
based protocols is that the password is used as an exponent for the public value
associated with its owner, but otherwise the encryption of the Diffie–Hellman public
key is similar to Protocol 8.4. Protocol 8.7 shows the exchanged messages. Note that
the password must be interpreted as an element in Zq.

Public information: Hash functions H. Public values MA,MB ∈G with q = |G|.
Information shared by A and B: Password π ∈ Zq.

A B

rA ∈R Zq

tA = grA

m = tAMπ
A

m−−−−−−−→ tA = m/Mπ
A

rB ∈R Zq

tB = grB

m′←−−−−−−− m′ = tBMπ
B

tB = m′/Mπ
B

Z = trA
B Z = trB

A

K = H(IDA, IDB,m,m′,π,Z)

Protocol 8.7: SPAKE protocol

Abdalla and Pointcheval [18] proved the security of Protocol 8.7 in the BPR00
model, relying on the computational Diffie–Hellman assumption and taking H as
a random oracle. They defined two SPAKE variants. Protocol 8.7 is actually what
they called SPAKE2, while SPAKE1 looks identical except that π is absent in the
definition of K. SPAKE1 relies on different assumptions but was only shown to be
secure in a non-concurrent setting (where only one instance of the protocol can be
run at any one time). SPAKE2 (Protocol 8.7) is secure in the usual concurrent setting.

Note that the values MA and MB are fixed values, so that the computation of
the values of m and m′ need only be done once. Thus Protocol 8.7 is very efficient,
requiring only two exponentiations for each principal. Abdalla and Pointcheval [18]
credited Kobara and Imai [435, 436] with a similar prior protocol which works like
Protocol 8.7 but uses a MAC to derive the key, instead of a random oracle. Abdalla
and Pointcheval pointed out that in order for this to be secure special properties of
the MAC are required, and they therefore questioned the claim that a proof without
random oracles can be practically achieved.
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8.3.5 J-PAKE

A different approach to using the shared password is applied in the J-PAKE (Juggling
PAKE) protocol of Hao and Ryan [346]. One of the motivations for designing J-
PAKE was that many other PAKE protocols are covered by patents. J-PAKE has
been deployed in a number of real-world products and was standardised in the ISO
11770-4 standard [385].

As shown in Protocol 8.8, the protocol runs in two rounds, so the first pair and
second pair of messages can be sent in either order. This means that the protocol
can also run in three messages and three rounds by combining the second and fourth
messages into one.

Information shared by A and B: Password π ∈ Zq.

A B

rA,r′A ∈R Zq rB,r′B ∈R Zq

tA = grA , t ′A = gr′A tB = grB , t ′B = gr′B

tA, t ′A,KP(rA),KP(r′A)−−−−−−−−−−−−−−−−→
tB, t ′B,KP(rB),KP(r′B)←−−−−−−−−−−−−−−−−

Check KP(rB),KP(r′B) Check KP(rA),KP(r′A)
α = (tAtBt ′B)

r′Aπ β = (tBtAt ′A)
r′Bπ

α,KP(r′Aπ)
−−−−−−−−−−−−−−−−→

β ,KP(r′Bπ)
←−−−−−−−−−−−−−−−−

Check KP(r′Bπ) Check KP(r′Aπ)

Z = (β t ′B
−r′Aπ )r′A Z = (αt ′A

−r′Bπ )r′B

Protocol 8.8: J-PAKE protocol

The shared secret is the value Z = g(rA+rB)r′Ar′Bπ . Knowledge proofs are used to
show that the respective senders know the discrete logs of tA, t ′A, tB, t

′
B with respect to

base g, and the discrete logs of α and of β with respect to bases tAtBt ′B and tBtAt ′A.
While no concrete instantiation was required in the original specification, Schnorr
signatures were suggested as suitable. Note the similarity with the YAK protocol
(Protocol 5.40) regarding usage of proofs of knowledge.

Although Hao and Ryan [346] provided a security analysis of Protocol 8.8, they
did not provide a security reduction in any known computational model. Later, Ab-
dalla et al. [9] provided such a proof in the BPR00 model, assuming the difficulty of
the decisional square Diffie–Hellman assumption. They remarked that the usage of
Schnorr signatures as the proof of knowledge in the protocol causes technical prob-
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lems in the proof, which they resolved by assuming a so-called algebraic adversary
with restricted abilities. Adding the signer identity to the Schnorr signatures was rec-
ommended by Hao and Ryan [346] and assumed in the security proof of Abdalla et
al. [9]. Toorani [712] pointed out that unknown key-share attacks are possible if this
is not done.

In comparison with many other PAKE protocols. J-PAKE is somewhat ineffi-
cient, largely owing to the use of the proofs of knowledge, which add one exponenti-
ation for proof generation and two for proof verification (the latter can be combined
into a multi-exponentiation). Lancrenon et al. [471] proposed two more efficient
variants of Protocol 8.8, removing one of the pair of ephemeral values in each of the
first pair of messages. This saves four exponentiations on each side.

Public information: Full domain hash function H.
Information shared by A and B: Password π ∈ Zq.

A B

rA ∈R Zq rB ∈R Zq

tA = grA tB = grB

tA,KP(rA)−−−−−−−−−−−−−−−−→
tB,KP(rB)←−−−−−−−−−−−−−−−−

Check KP(rB) Check KP(rA)

D = H(IDA, IDB, tA, tB) D = H(IDA, IDB, tA, tB)
α = (DtB)rAπ β = (DtA)rBπ

α,KP(rAπ)
−−−−−−−−−−−−−−−−→

β ,KP(rBπ)
←−−−−−−−−−−−−−−−−

Check KP(rBπ) Check KP(rAπ)

Z = (β tB−rAπ )rA Z = (αtA−rBπ )rB

Protocol 8.9: J-PAKE variant of Lancrenon, S̆krobot and Tang

Protocol 8.9 shows one of the two variants, which Lancrenon et al. [471] called
RO-J-PAKE. As its name implies, it requires that the hash function H is modelled as a
random oracle. Their other variant, called CRS-J-PAKE, replaces D with a common
reference string. These differences influence the security proofs, but the computa-
tional requirements are the same except for the hash computation for D. Lancrenon
et al. [471] provided security proofs in the BPR00 model following the proofs of
Abdalla et al. [9].
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8.3.6 Katz–Ostrovsky–Yung Protocol

The protocol of Katz, Ostrovsky, and Yung (KOY) [414] has a strong theoretical
significance because of its security proof. The proof of security for many PAKE
protocols uses the random oracle model. From a theoretical viewpoint, eliminating
such an idealisation is very desirable. The KOY protocol was proven secure in the
BPR00 model without using random oracles, assuming the Decision Diffie–Hellman
problem is hard. The encryption algorithm used in the protocol is a variant of the
Cramer–Shoup algorithm [224], chosen because it has been proven to provide non-
malleability without itself using random oracles. As shown in Protocol 8.10, there
are a number of public parameters.

The first message, sent from A to B, consists of the encryption of the plaintext
message gπ

1 in the Cramer–Shoup variant. However, an amusing aspect of the proto-
col is that the encryption is turned around; the public parameters g1,g2,h,c,d form
a public key for which no corresponding private key is known. This ensures that in-
formation about the password is not leaked. But B already knows the value gπ

1 , and
so can obtain the correct parameters to form the session key. The second message,
returned from B, is also an encryption of gπ

1 using a different Cramer–Shoup vari-
ant but with the same public parameters. Notice that the signature sent in the third
message uses a signing key, SK, generated randomly by A at the start of the proto-
col, and is not intended to provide entity authentication. Indeed, neither party obtains
key confirmation or entity authentication. Katz et al. noted that the usual additional
checks are required, in particular that received values lie in the group G.

Although the protocol of Katz et al. is certainly practical, its computational re-
quirements are significantly greater than for protocols assuming random oracles,
around 5–10 times as great depending on which variant is compared and how the
computation is measured. There have been various optimisations of Protocol 8.10
(see also Sect. 8.3.8). Gennaro [293] designed a similar protocol which uses MACs
instead of signatures to obtain a more efficient variant.

8.3.7 Protocol of Jiang and Gong

Jiang and Gong [399] designed a simplified version of the Katz–Ostrovsky–Yung
protocol with a significantly reduced computational requirement. Indeed, it remains
one of the most efficient PAKE protocols with a security proof in the standard model.
Protocol 8.11 shows the protocol messages. The function Fσ denotes a member of a
pseudo-random function family with key σ .

In contrast to Protocol 8.10, there is no need to generate an ephemeral signature
key in Protocol 8.11, which makes use of a fixed encryption key PK (formally speak-
ing, this is a common reference string). The number of required exponentiations for
each principal is reduced from 15 in Protocol 8.10 to 4 if individual exponentiations
are counted, or more modestly if multi-exponentiations are considered. This count
excludes short exponentiations with the password and comes in addition to the cost
of encryption/decryption (in Protocol 8.11) or the cost of signing/verification (in Pro-
tocol 8.10). In addition to saving on computation, the Jiang–Gong protocol provides
mutual authentication within its three rounds, in contrast to the KOY protocol.
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Shared information: Generators g1,g2,h,c,d of G, where p−1 = qr. Hash function H. Pass-
word π .

A B

Generate ephemeral
signature keys PK,SK

rA ∈R Zq

tA = grA
1

uA = grA
2

vA = hrA gπ
1

α = H(IDA,PK, tA,uA,vA)

wA = (cdα )rA

IDA,PK, tA,uA,vA,wA−−−−−−−−−−−−−−−−→
xB,yB,zB,z′B,rB ∈R Zq

α = H(IDA,PK, tA,uA,vA)

E = gxB
1 gyB

2 hzB(cdα )z′B

tB = grB
1

uB = grB
2

vB = hrB gπ
1

β = H(IDB,E, tB,uB,vB)

wB = (cdβ )rB

IDB,E, tB,uB,vB,wB←−−−−−−−−−−−−−−−−
β = H(IDB,E, tB,uB,vB)

xA,yA,zA,z′A ∈R Zq

K = gxA
1 gyA

2 hzA(cdβ )z′A

K,SigSK(β ,K)
−−−−−−−→

Verify signature

Z = ErA txA
B uyA

B (vB/gπ
1 )

zA wz′A
B Z = KrB txB

A uyB
A (vA/gπ

1 )
zB wz′B

A

Protocol 8.10: Katz–Ostrovsky–Yung protocol

Jiang and Gong [399] proved the security of Protocol 8.11 in the BPR00 model
assuming the difficulty of the DDH problem. They also required that the encryption
function used provides CCA2 security.

8.3.8 Protocols Using Smooth Projective Hashing

The KOY protocol is based on the Cramer–Shoup encryption scheme [224]. Some
time after the concrete Cramer–Shoup cryptosystem was published, Cramer and
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Public information (common reference string): Public encryption key PK.
Shared information: Generators g,h of G, where p−1 = qr. Hash function H. Password π .

A B

rA ∈R Zq

tA = grA

vA = hrA gπ

tA,vA−−−−−−−→ rB,r′B ∈R Zq

µ = grB hr′B

P = vAg−π

σ = trB
A Pr′B

h = H(µ, tA,P, IDB, IDA)

r = Fσ (3)
C = EncPK(h;r)

P = hrA
µ,C

←−−−−−−−
σ = µrA

r = Fσ (3)
h = H(µ, tA,P, IDB, IDA)

C ?
= EncPK(h;r)

t = Fσ (1)
t−−−−−−−→ t ?

= Fσ (1)

K = Fσ (2)

Protocol 8.11: Jiang–Gong protocol

Shoup developed an abstracted version [225] by introducing the idea of a smooth
projective hash function (SPHF). This allowed them to find other versions of their
scheme, instantiated by different SPHFs. Even if these alternatives are not more effi-
cient than the original Cramer–Shoup cryptosystem, they rely on different computa-
tional assumptions.

The generalisation process which occurred with the Cramer–Shoup cryptosystem
has been repeated in the case of PAKE protocols. A generalised version of the KOY
protocol was developed by Gennaro and Lindell [296], who proposed an abstract
protocol which can be instantiated by any suitable SPHF. The shared knowledge of
the password enables both parties to obtain a shared secret owing to the different
ways of computing using the SPHF.

An SPHF computes values in some domain which includes a distinguished lan-
guage L. There are two ways of computing the hash on a value v; one is with the
hashing key hk, denoted H(hk;v), and the other is with a projected key hp in addi-
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tion to a witness w in the language, denoted HP(hp,w;v). If v ∈ L then these two
computations are equal; if not, they are almost certainly different.

For PAKE protocols the language is the set of encryptions of the password π and
the witness is π itself. The basic idea is that one party, A, generates an encryption of
the password c and sends it to the other party, B. B generates a hashing key, hk, with
a corresponding projected key, hp, and sends hp back to A. Both parties can compute
the same value, H(hk;c) = HP(hp,w;c), and B knows that A can only compute this
value with possession of π . The process is then also run in the opposite direction.

Later, a generalised version of the Jiang–Gong protocol was developed by Groce
and Katz [296]. Later still, Katz and Vaikuntanathan [417] optimised previous frame-
works by using non-adaptive SPHFs, which allowed them to achieve one-round
PAKE protocols that were secure in the standard model (without explicit authen-
tication). The benefit of such generalisations is that new SPHF constructions can
be used to realise new concrete PAKE protocols. For example, Katz and Vaikun-
tanathan [416] constructed a lattice-based SPHF and then applied the Gennaro and
Lindell [296] framework to obtain a PAKE based on lattice problems.

Abdalla et al. [10] noticed that the CCA encryption used in the frameworks of
Gennaro and Lindell [296], Groce and Katz [296] and Katz and Vaikuntanathan [417]
can be replaced by a weaker form of encryption secure against only plaintext-
checkable attacks. This allowed them to find more efficient concrete protocols using
what they called Short Cramer–Shoup encryption. They proposed three abstract pro-
tocols with corresponding concrete protocols, which they called Secure Password-
Only Key Exchange (SPOKE) protocols:

• a two-message, two-round protocol using the Gennaro and Lindell framework;
• a two-message, two-round protocol using the Groce and Katz framework with

server-side explicit authentication;
• a two-message, one-round protocol using the Katz and Vaikuntanathan frame-

work.

Protocol 8.12 shows the third of these concrete protocols, which Abdalla et al. [10]
called KV-SPOKE.

The triple (h,c,d) constitutes a public key for the Short Cramer–Shoup encryp-
tion scheme, for which no decryption key is known. These form a common reference
string for the protocol. As with other protocols in this section, the application of the
generic framework implies a proof using the BPR00 model without any ideal crypto-
graphic assumptions. For the instantiation of Protocol 8.12, the security proof relies
on the difficulty of the DDH problem.

Despite the optimisation over several years in these generic protocols based on
SPHFs, there is still a significant penalty in efficiency for protocols proven secure in
the standard model, as compared with those assuming random oracles. Protocol 8.12
requires 14 regular exponentiations from each principal.
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Shared information: Generator g of group G with prime order q. Hash function H. Password
π .

Public information (common reference string): Public key h,c,d for Short Cramer–Shoup en-
cryption scheme.

A B

rA,r′A,r
′′
A,sA,γA ∈R Zq rB,r′B,r

′′
B,sB,γB ∈R Zq

tA = grA hsA cγA tB = grB hsB cγB

t ′A = gr′A dγA t ′B = gr′B dγB

uA = gr′′A uB = gr′′B

vA = hr′′A gπ vB = hr′′B gπ

α = H(IDA, IDB, tA, t ′A,uA,vA) β = H(IDB, IDA, tB, t ′B,uB,vB)

wA = (cdα )r′′A wB = (cdβ )r′′B

tA, t ′A,uA,vA,wA−−−−−−−−−−−−−−−−→
tB, t ′B,uB,vB,wB←−−−−−−−−−−−−−−−−

β = H(IDB, IDA, tB, t ′B,uB,vB) α = H(IDA, IDB, tA, t ′A,uA,vA)

KA = (tBt ′B
α )r′′A KB = (tAt ′A

β )r′′B

KB = urA+β r′A
B (vB/gπ )sA wγA

B KA = urB+αr′B
A (vA/gπ )sB wγB

A
K = KAKB

Protocol 8.12: KV-SPOKE protocol of Abdalla, Benhamouda and Pointcheval

8.3.9 Protocols Using a Server Public Key

Some of the earliest proposed password-based protocols assume that users not only
share passwords with a server but also are in possession of, or at least can obtain, an
authentic server public key. This is a significant additional assumption, but it may be
realistic in certain applications; a user may trust a workstation to obtain the server’s
public key or there may be a means to allow the user to check the public key. Since
the user’s password must be entrusted to some computing device, it does not seem
unreasonable to give such a device some trust in obtaining the server public key.
Halevi and Krawczyk [341, 342] have proposed a method whereby users can verify
the hash of the server public key using sequences of (English) words.

In contrast to EKE and its variants, password-based protocols employing a server
key have no need to use the password as a key for encryption, but, instead, the pass-
word can be encrypted by the user with the server public key. A critical issue with
this approach is whether the adversary is able to gain any useful information from
the ciphertext containing the password. One immediate objection may be that the
adversary can make trial encryptions of candidate passwords and check if the same
ciphertext is obtained. Such a possibility illustrates that it is usually necessary for the
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encryption to be probabilistic so that a different ciphertext is obtained each time. We
will make this requirement more precise later.

In this section, we include both two-party and three-party protocols. Public key
computations on the client side are typically restricted to a single encryption in this
class of protocols. The two-party protocols tend to be more efficient for the client
than the two-party protocols using ephemeral public keys. However, in contrast to
the Diffie–Hellman-based PAKE protocols examined earlier, forward secrecy is often
sacrificed.

Kwon and Song [467, 468] proposed a set of password-based protocols. Protocol
8.13 is their basic protocol. The session key is generated by B and masked using
nonces sent by A in the first message. The protocol is simple and the computation
required for both parties is small. A drawback is that this protocol does not provide
forward secrecy.

Shared information: Hash function H. Password π . Authentic public key of B.

A B

Choose random rA,r′A
EncB(rA,r′A,π⊕ r′A)−−−−−−−−−−−−−−−−→ Decrypt and verify

Choose K
C = K⊕ rA⊕ r′A

Decrypt C and verify hash
C,H(π⊕ rA,K,r′A)←−−−−−−−−−−−−−−−−

H(π⊕ r′A,K,rA)−−−−−−−−−−−−−−−−→ Verify hash

Protocol 8.13: Kwon–Song basic protocol

The final message in Protocol 8.13 prevents a replay attack. An adversary who
obtains an old K value can replay the first message and obtain the new session key,
since B will reuse the same rA and r′A values. However, the adversary cannot complete
the protocol, since rA and r′A are still unknown and so the correct final message cannot
be formed.

Kwon and Song provided a GNY logic analysis of their basic protocol. How-
ever, there was no specification of the requirements for the public key encryption
algorithm. There does not seem to be any specific requirement for non-malleability,
since an adversary should not be able to obtain any of the encrypted values even if
an old session key is obtained.

Kwon and Song [467, 468] also provided some variant protocols. Their ‘Chal-
lenger’s Public Key Protocol’ requires the responder to know the authentic public
key of the initiator but includes an unspecified symmetric-key encryption algorithm
using the password. They also presented two key agreement protocols, the first of
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which does not provide forward secrecy, while the second is essentially the same as
Diffie–Hellman-based EKE.

Halevi and Krawczyk [341, 342] designed password-based protocols in a modu-
lar way and conducted a formal analysis. They provided a formal proof of security
for the challenge–response protocol that forms the basis of their other protocols, but
only an outline argument of how the proof can be extended to key establishment.
Boyarsky [127] argued that the protocols in the original paper [341] cannot be se-
cure without a stronger assumption on the asymmetric encryption algorithm used,
unless only one user is involved. A stronger assumption was used in the later paper
of Halevi and Krawczyk [342] but still not as strong as suggested by Boyarsky. How-
ever, all parties agree that a cryptosystem that provides non-malleability is sufficient
for security.

In all their protocols Halevi and Krawczyk assume that the user A already has
possession of a ‘public password’, which is a hashed version of the public key of the
server B. This value can be used to verify the server’s full public key, which is sent to
the user as part of the protocol. We omit this in our descriptions. Protocols for entity
authentication only were proposed, in addition to protocols for key exchange with
and without forward secrecy.

The key establishment protocols use a similar design to the SKEME protocols
defined in Protocols 5.30 and 5.42 in Chap. 5. We present the version without forward
secrecy in Protocol 8.14. In order to preserve our usual convention that A is the client
and B the server, the protocol is shown with the first message originating from B.
In practice, A would often need to start the protocol with a request to B to connect,
which would precede the protocol shown.

Shared information: Password π . Security parameter L.

A B

rB ∈R {0,1}L

Choose random K0
rB←−−−−−−−−−−−−−−−−

EncB(K0,π,rB, IDA, IDB)−−−−−−−−−−−−−−−−→ Decrypt and verify
y =MACK0(rB, IDB, IDA)

Verify y
y←−−−−−−−−−−−−−−−− K =MACK0(y)

K =MACK0(y)

Protocol 8.14: Halevi–Krawczyk password-based protocol

Protocol 8.14 is a simple version of the protocol of Halevi and Krawczyk. More
generally, they proposed that the encrypted message sent from A to B can take
the more complex form EncB(K0, fπ(rB,K0, IDA, IDB)) for a function fπ(X) used



354 8 Password-Based Protocols

to combine the password with the other protocol fields requiring verification. It is
required that f is one-to-one (injective) when either π or X is fixed.

However, Kolesnikov and Rackoff [445] showed that an explicit attack is pos-
sible for certain valid choices of f . This attack does not apply when fπ(X) is the
concatenation of π and X as used in Protocol 8.14. Note that although K0 is trans-
ported from A to B, the session key K is formed by key agreement since it includes
inputs from both parties.

The properties and computational requirements are similar to those of Protocol
8.13 but a difference is that in Protocol 8.14 the server and client both contribute to
the session key, whereas in Protocol 8.13 it is the server that generates the key. Like
the SKEME variant Protocol 5.42, Protocol 8.14 does not provide forward secrecy.
Another protocol with the same basic design as Protocol 8.14, but incorporating a
Diffie–Hellman exchange, was proposed by Halevi and Krawczyk to provide this
property. As usual, there is a computational cost in so doing, which amounts to two
extra exponentiations per user.

8.3.10 Comparing Two-Party PAKE Protocols

Some of the features of the prominent two-party PAKE protocols examined in this
section are summarised in Table 8.2. We compare only protocols which do not re-
quire a server public key, thus excluding the protocols of Kwon and Song (Protocol
8.13) and Halevi and Krawczyk (Protocol 8.14) from the table.

Table 8.2: Properties of two-party PAKE protocols

Properties→ No. of Security Mutual Client
↓ Protocol messages proof authentication exponentiations

DH-EKE (8.1) 4 No Yes 2
PAK (8.3) 3 ROM Yes 2
PPK (8.4) 2 ROM No 2
SPEKE (8.5) 3 ROM No 2
Dragonfly (8.6) 4 ROM Yes 3 (4)
SPAKE (8.7) 2 ROM No 2
J-PAKE (8.8) 4 ROM Yes 14 (10)
LST-J-PAKE (8.9) 4 ROM Yes 10 (7)
KOY (8.10) 3 Std No 15 (6)
Jiang–Gong (8.11) 3 Std Yes 4
KV-SPOKE (8.12) 2 Std No 14 (7)
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Efficiency

The number of messages is one measure of the communications efficiency that is
easy to compare for the different protocols. However, some of the protocols can run
with fewer message flows, but that may result in an increased number of rounds. Usu-
ally the protocols with four message flows achieve explicit mutual authentication, but
sometimes it is possible to run protocols, such as SPEKE, without authenticators to
use only two messages like PPK.

The public key operations dominate the other computations in all protocols in this
chapter, and so we count only these. Table 8.2 attempts to compare the comutational
performance of the two-party PAKE protocols from the client side. The requirements
for each protocol are estimated by counting the number of exponentiations required.
It must be appreciated that this is only an indication of the relative computational ef-
fort, which depends on several detailed factors. Furthermore, when security is based
on different computational problems the relationship between security and parameter
size can be quite different too.

In Table 8.2, we are normally counting exponentiations in the group G. For proto-
cols set in Z∗p, the group G is often a much smaller subgroup. For PAK and PPK we
assume that small exponents are used as proposed by MacKenzie and Patel [511],
although, strictly speaking, those authors suggested exponents slightly bigger than
the size of G. The cost of exponentiations can be reduced through the use of multi-
exponentation algorithms, and in Table 8.2 the counts in brackets are the numbers of
multi-exponentiations required. For the J-PAKE protocol, we assume that the knowl-
edge proof is a Schnorr signature and costs one exponentiation to compute and two
to verify (or one multi-exponentation). For the Jiang–Gong protocol, we assume that
encryption costs one exponentiation.

For Diffie–Hellman-based protocols, the basic requirements for each principal
are two exponentiations: one to calculate tA and the other to calculate Z. Although
this minimum is apparently achieved in the original Diffie–Hellman EKE, its vulner-
abilities make it a dubious choice today. However, we can still achieve this minimum
for protocols such as PAK, SPEKE and SPAKE. It is perhaps remarkable that today
it seems that the best password-based protocols possess most of the good properties
that we expect of protocols using long secrets.

Security

When selecting a protocol for use, undoubtedly the most important factor is security.
Following the trend in cryptography generally, key exchange protocols, and PAKE
protocols in particular, are today usually expected to come with a security proof.
Since there are a number of protocols with proven security, and especially bearing
in mind the many subtle attacks found on earlier protocols, it seems prudent to use
one of these. Examination of Table 8.2 reveals that we can select a two-party PAKE
protocol with a formal proof of security with little sacrifice in performance.

Although today we have many protocols with a security proof, many of them re-
quire some idealised model for the cryptographic primitives they make use of. This is
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usually the ideal cipher model or the random oracle model. Table 8.2 denotes proofs
which use random oracles as ROM. Since 2001 there has been a line of research
dedicated to avoiding such idealised models; protocols with proofs that avoid those
models are typically said to be secure in the standard model.

For the protocols examined in other chapters, it has been common to assume that
all parties have a public key known to all other entities. In practice, this requires a
pubic key infrastructure and trust in one or more certification authorities. For PAKE
protocols it is not obvious that any kind of trusted entities are required, but many
protocols assume the existence of a common reference string, generated once inde-
pendently of other protocol parameters. This is a less strong assumption than a full
public key infrastructure but avoiding even a common reference string is preferable,
at least theoretically. Goldreich and Lindell [310] proved the existience of secure
PAKE protocols based only on very general assumptions regarding the existence of
one-way functions and trapdoor one-way permutations.

8.4 Two-Party Augmented PAKE Protocols

Just as the original EKE protocol of Bellovin and Merritt has a corresponding aug-
mented protocol, examined in Sect. 8.2.2, many two-party PAKE protocols have an
augmented version in which the server stores only an image of the password, not the
password itself. We examine a number of such protocols in this section.

Most of the augmented PAKE protocols do not specify how to set up the pass-
word image on the server side. Of course, the password itself could simply by trans-
ported to the server using some secure channel, and the server itself could then com-
pute the image. However, a better method may be to allow the server to obtain the
image without ever knowing the password itself, thus reducing trust in the server
and minimising exposure of the password. Kiefer and Manulis [426] introduced the
notion of blind password registration, which allows a user to transfer an image of
a password to the server while at the same time allowing the server to ensure that a
chosen policy on password selection has been satisfied. Their protocol does not work
for all types of password image, but applies at least to a set known as verifier-based
PAKE, described by Benhamouda and Pointcheval [87].

Gentry et al. [299] proposed a generic method to convert any secure two-party
PAKE protocol into a secure augmented two-party PAKE protocol. The general idea
is to first run the original PAKE protocol with the image of π , f (π), in place of π ,
and then for the client to prove knowledge of π using a signature whose signing
key can only be obtained with knowledge of π . Generally, this process may add
a round of communication, as well as adding the cost of computing and verifying
the signature. For specific protocols, the extra messages could be piggybacked onto
existing protocols to reduce any increase in communication rounds, such as is done
in the PAK-Z+ protocol examined in Sect. 8.4.1. Gentry et al. [299] proved security
of their construction in the universal composability framework. Strictly speaking,
this means that their security theorem is only relevant when the conversion process
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is applied to a PAKE protocol with a universally composable proof already, which is
not the case for most PAKE protocols.

8.4.1 PAK-X, PAK-Y and PAK-Z

Several augmented variants of PAK have been designed. The first was called PAK-
X, designed by Boyko et al. [145]. PAK-X is very similar to Protocol 8.3 but incor-
porates an additional verifier. MacKenzie [507] then devised a conceptually simpler
version called PAK-Y, where the verifier takes the form of a Schnorr signature. Later,
MacKenzie [509] proposed a generalisation of PAK-Y, called PAK-Z, which allows
any digital signature to take the place of the Schnorr signature used in PAK-Y. Un-
fortunately, PAK-Z turned out to be insecure with certain choices of signature [299]
and had to be improved again, leading to Protocol 8.15, known as PAK-Z+, proposed
by Gentry et al. [298].

The structure of Protocol 8.15 essentially follows the generic conversion method
of Gentry et al. [299] applied to the PAK protocol (Protocol 8.3).The first two mes-
sages in Protocol 8.15 are similar to those of Protocol 8.3, but in the last message
A sends a signature of the fields IDA, IDB,m, tB,Z,P using the predefined signing
key V . The signature algorithm is not specified except that it must be existentially
unforgeable under a chosen message attack. The signature allows B to verify that A
possesses V by using the corresponding signature verification key W . Since knowl-
ege of π is necessary to obtain V , this also shows that A possesses π . (Note that B
neither possesses V nor is able to compute it.)

As in the basic PAK protocol (Protocol 8.3), the hash function H1 must take
values uniformly in G. This may require an expensive hash function or, otherwise,
short exponents can be used if G is chosen to be Z∗p [511]. The other hash functions,
Hi for 2 ≤ i ≤ 6, map to bit strings of appropriate size. As well as allowing any
strongly secure signature to be used, PAK-Z+ uses the same verifier k as used in
Protocol 8.3 so that the result is a modular approach to the set of PAK protocols.

The PAK-Z+ protocol was proven secure by Gentry et al. [298] in the BPR00
model assuming the difficulty of the computational Diffie–Hellman problem. The
proof models the hash functions as random oracles. PAK-Z+ is standardised in the
IEEE P1363-2 standard [373], where it is known simply as PAKZ. The standard
allows the protocol to be run in elliptic curve groups, as well as in Z∗p as shown in
Protocol 8.15.

8.4.2 B-SPEKE

Jablon [389] discussed the method used by Bellovin and Merritt to augment EKE
and proposed an alternative. He pointed out that Bellovin and Merritt’s technique
could be applied generally and, in particular, to his own SPEKE protocol, leading
to a variant he called A-SPEKE. His own augmentation technique he called the ‘B’
extension.
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Information held by A: Password π .
Information held by B: P = H1(IDA, IDB,π), V ′ = H2(IDA, IDB,π)⊕V , V ′′ = H3(V ), W .

Here W is the verification key for a signature scheme with corresponding signing key
V .

Shared information: Group G of prime order q and generator g of G.

A B

P = H1(IDA, IDB,π)

rA ∈R Zq

tA = grA

m = tA ·P
m−−−−−−−→ Check m 6= 0 ∈G

rB ∈R Zq

tB = grB

Z = (m/P)rB

sid = (IDA, IDB,m, tB)
a = H6(sid,Z,P)⊕V ′

k = H4(sid,Z,P)

Z = trA
B

tB,k,a,V ′′←−−−−−−−
sid = (IDA, IDB,m, tB)

k ?
= H4(sid,Z,P)

V = H2(IDA, IDB,π)⊕H6(sid,Z,P)⊕a

H3(V )
?
=V ′′

s = SigV (sid) s−−−−−−−→ Verify s using W
K = H5(IDA, IDB,m, tB,Z,P)

Protocol 8.15: PAK-Z+ protocol

Instead of employing a signature to prove knowledge of the password, as used
in Bellovin and Merritt’s ‘A’ extension, the ‘B’ variant uses an additional Diffie–
Hellman exchange. The server B stores two password images as before: one is the
square of the hash, P = H(π)2, and the other is V = gπ . During the protocol, B
sends an additional challenge gr̃B to A, and A must respond by showing knowledge
of the Diffie–Hellman key Z̃AB = gπ r̃B . A cannot simply send Z̃AB to B, since this
value could be used together with the challenge to form a dictionary attack on π .
However, if A returns a hash containing both Z and Z̃AB, the hash can be used both
to check knowledge of π and for confirmation of Z. Employing this technique with
the SPEKE protocol leads to B-SPEKE, Protocol 8.16.

Jablon was not explicit about the construction of the verifiers VA and VB in Pro-
tocol 8.16. We have adapted the verifier format used in Protocol 8.5. In any case,
the proof of MacKenzie for Protocol 8.5 does not cover Protocol 8.16. Jablon [389]
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Information held by A: Password π , interpreted as an element of Zq.
Information held by B: Derived password image V = gπ . Derived password image P=H(π)2

where H(π) is interpreted as an element of Z∗p.
Shared information: Subgroup G of Z∗p of prime order q = (p − 1)/2. Hash functions

H,H0,H1,H2. Security parameter L.

A B

P = H(π)2

rA ∈R {1, . . . ,2L}

tA = PrA
tA−−−−−−−→ rB, r̃B ∈R {1, . . . ,2L}

Z = t2rB
A

Check Z /∈ {−1,0,1}
tB = PrB , t̃B = gr̃B

Z = t2rA
B

tB,VB, t̃B←−−−−−−− VB = H1(tA, tB,Z,P)
Check Z /∈ {−1,0,1} Z̃AB =V r̃B

Verify VB

Z̃AB = (t̃B)π

VA = H2(tA, tB,Z, Z̃AB,P)
VA−−−−−−−→ Verify VA

K = H0(Z)

Protocol 8.16: B-SPEKE protocol

provided a number of variants of Protocol 8.16 to optimise various features; for ex-
ample, he presented a version designed to minimise the total time by allowing various
calculations to take place in parallel.

The security proof of SPEKE due to MacKenzie [508] does not extend to B-
SPEKE and there is no other known proof. However, Pointcheval and Wang [617]
designed a protocol conceptually similar to B-SPEKE, called Verifier-based Two-
Basis Password Exponential Key Exchange, or VTBPEKE. Although their protocol
is less efficient than B-SPEKE they did provide a security proof, which even includes
a proof of forward secrecy.

8.4.3 SRP

The SRP (Secure Remote Password) protocol was designed by Wu [740] as a more
efficient alternative to the original augmented EKE. The server B holds a salt value
s and the password image V = gH(s,π). Protocol 8.17 shows an optimised version of
SRP, minimising the number of messages.

The shared secret is Z= grArB ·V urB , which is unusual in that it is asymmetric with
regard to the inputs of A and B. Another unusual feature is the public random value
u chosen by B and included in the derivation of Z. The purpose of u is to ensure that
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Shared information: Subgroup G of Z∗p of prime order q = (p−1)/2. Hash function H.
Information held by A: Password π .
Information held by B: Password image V = gH(s,π). Salt value s.

A B

rA ∈R Zq

tA = grA
IDA, tA−−−−−−−→ u,rB ∈R Zq

Z = (tAV u)rB

V = gH(s,π) S,s,u←−−−−−−− S =V +grB

Z = (S−V )rA+uH(s,π)

M1 = H(tA,S,Z)
M1−−−−−−−→ Verify M1

M2 = H(tA,M1,Z)
K = H(Z)

Verify M2
M2←−−−−−−−

K = H(Z)

Protocol 8.17: SRP protocol

A knows the value of π and not just its image V . If A could know u in advance then
she could send grAV−u in the first message instead of tA and then B would calculate
Z = grArB . This means that A could complete the protocol with knowledge only of V .
In order to avoid this possibility, it is evident that u cannot be a fixed value. However,
for efficiency reasons, Wu suggested that u may be defined as a public function of S,
which would allow it to be omitted from the exchanged messages.

The symmetric encryption algorithm used with the password is addition modulo
p. Forward secrecy is provided since the ephemeral Diffie–Hellman key, grArB , is
needed in order to find Z. The main drawback of SRP is the lack of a formal secu-
rity proof. However, Wu did point out that security against passive eavesdroppers is
provided in the sense that an oracle that can find the session key from the exchanged
messages tA, S, and u is able to solve the Diffie–Hellman problem.

A minor weakness in Protocol 8.17, whose discovery was attributed by MacKen-
zie [508] to Bleichenbacher, allows the adversary to eliminate two passwords, π1 and
π2, with each protocol run. An adversary masquerading as B can exploit the symme-
try of the value S by choosing V1 = gH(s,π1) and V2 = gH(s,π2) and sending S =V1+V2
instead of a correctly formed S in the second message. Then if π1 is the correct pass-
word, the adversary can check that Z = V rA+uH(s,π1)

2 , while a symmetric test can be
used for π2.

The calculation of V must be done explicitly by A during the protocol, but Wu
implied that H(s,π) can be a ‘tiny’ exponent since the entropy of π is small. Wu
regarded it as optional whether the values p and g were fixed or were sent as part of
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the protocol itself (the former situation is intended in Protocol 8.17). If p and g are
sent as parameters by B at the start of the protocol, it is essential that A checks the
primality of q = (p−1)/2 and that g has order q.

The version of SRP shown in Protocol 8.17 became known as SRP-3 and was
standardised in the IEEE P1363 standard [373]. A later version, known as SRP-
6, was proposed by Wu [742] and was also standardised in the same IEEE P1363
standard [373], as well as in an ISO standard [385]. SRP-6 is shown as Protocol 8.18.

Shared information: Subgroup G of Z∗p of prime order q = (p−1)/2. Hash function H. Con-
stant c which is a function of q and g.

Information held by A: Password π .
Information held by B: Password image V = gH(s,IDA,π). Salt value s.

A B

rA ∈R Zq

tA = grA
IDA, tA−−−−−−−→ rB ∈R Zq

Z = (tAV u)rB

u = H(tA,S)
S = c ·V +grB

V = gH(s,IDA,π)
S,s←−−−−−−−

u = H(tA,S)
Z = (S− c ·V )rA+uH(s,IDA,π)

M1 = H(tA,S,Z)
M1−−−−−−−→ Verify M1

M2 = H(tA,M1,Z)
K = H(Z)

Verify M2
M2←−−−−−−−

K = H(Z)

Protocol 8.18: SRP-6 protocol

SRP-6 has two main changes from the SRP-3 protocol shown in Protocol 8.17.

• The value u is no longer chosen randomly by B but instead is computed as a hash
of the two exchanged messages. The purpose of this change is to counter attacks
that could occur if the message ordering is changed. Specifically, in the original
SRP protocol it is insecure to allow A to choose tA as a function of u (specifically,
to choose tA = V−u). The change prevents this attack even if messages are re-
ordered.

• The computation of S is changed to include the constant multiplier c for V .
Wu [742] originally suggested that c = 3 could always be used, but the standards
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instead say that c should be chosen for each set of parameters to be a function
of q and g. The purpose of this change is to defend against the attack mentioned
above, where one trial could elminate two passwords, by destroying the potential
symmetry in the S value.

8.4.4 AMP

The AMP (Authentication via Memorable Password) protocol of Kwon [465, 466] is
a variant of Diffie–Hellman-based EKE that employs a number of different features
found in other protocols. Like the PAK family, Protocol 8.19 masks one of the Diffie–
Hellman exchanges by multiplying it by a derived version of the password. However,
there is a different method to calculate the shared secret, which depends in an unusual
way on the exchanged values.

Shared information: Subgroup G of Z∗p of prime order q = (p− 1)/2r. Hash functions Hi,
1≤ i≤ 5.

Information held by A: Password π .
Information held by B: Password image V = gH1(IDA,π).

A B

rA ∈R Zq

tA = grA

IDA, tA−−−−−−−→ rB ∈R Zq

e = H2(tA, IDA, IDB) e = H2(tA, IDA, IDB)

T = (te
AV )rB

P = H1(IDA,π)
T←−−−−−−−

Z = T (rA+1)/(rAe+P) Z = (tAg)rB

H3(IDA, IDB, tA,T,Z)−−−−−−−−−−−−−−−−→ Verify hash

Verify hash
H4(IDA, IDB, tA,T,Z)←−−−−−−−−−−−−−−−−

K = H5(IDA, IDB, tA,T,Z)

Protocol 8.19: AMP protocol

The shared secret is Z = grB(rA+1), which, interestingly, is asymmetric like the
shared secret of SRP. The AMP protocol requires only two exponentiations for both
client and server. Both B-SPEKE and SRP also use two main exponentiations but
have additional exponentiations with ‘small’ exponents. In contrast, AMP requires
an inversion modulo q. Although the AMP specification allows a group G which is
a relatively small subgroup of Zp∗ , Kwon [466] recommended that p should be a
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strong prime so that q = (p− 1)/2. Informally, we can see that forward secrecy is
provided, since the password does not influence the value of the session key.

There are many versions of AMP [465]. Protocol 8.19 is a version known as
AMP+ and was standardised in the IEEE P1363 standard [373], as well as in an ISO
standard [385]. Both standards include elliptic curve versions, while there is also a
three-pass version available.

The AMP protocols lack a formal proof of security. One version, like Protocol
8.17, allowed an adversary to eliminate two passwords in one protocol run.2 How-
ever, this attack is prevented in Protocol 8.19.

8.4.5 AugPAKE Protocol

The AugPAKE protocol [672, 673] was proposed by Shin and Kobara aimed at the
IETF standards track, originally in 2010. It is standardised in the ISO 11770-4 stan-
dard [385]. AugPAKE is a four-round augmented EKE protocol with many similari-
ties to Protocols 8.17 and 8.19 but, unlike the latter two, has a proof of security in the
BPR00 model, where the hash functions H1,H2,H3 are modelled as random oracles.
Protocol 8.20 shows the message flows.

Shared information: Group G of prime order q. Hash functions H (mapping to Zq), and
H1,H2,H3 (mapping to {0,1}∗).

Information held by A: Password π .
Information held by B: Password image V = gπ .

A B

rA ∈R Zq

tA = grA
IDA, tA−−−−−−−→ rB ∈R Zq

u = H(IDA, IDB, tA)
Z = grB

u = H(IDA, IDB, tA)
IDB,Y←−−−−−−− Y = (tAV u)rB

Z = Y (rA+πu)−1

M1 = H1(IDA, IDB, tA,Y,Z)
M1−−−−−−−→ Verify M1

M2 = H2(IDA, IDB, tA,Y,Z)

Verify M2
M2←−−−−−−−

K = H3(IDA, IDB, tA,Y,Z)

Protocol 8.20: AugPAKE

2 This attack was described by Michael Scott in a message on the IEEE P1363 mailing list
in July 2001.
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The computational requirements for Protocol 8.20 are very similar to those for
SRP (Protocol 8.17). The designers pointed out that pre-computation of tA by A and
of Z by B can aid efficiency. They proposed to implement Protocol 8.20 in a subgroup
G of Z∗p where (p− 1)/2 has no small divisors, a so-called secure prime. When a
secure prime is used, the receiving parties must check that the values tA and Y do
not have trivial values 0, 1 or −1, but group membership tests are not required. The
security proof uses the strong Diffie–Hellman assumption. Although the protocol is
the subject of a patent application, the holder has declared willingness to ‘grant a
non-exclusive royalty-free license’ to implementations conforming to the standard.3

8.4.6 Using Multiple Servers

The motivation for augmented PAKE is that if the server is compromised then only
a hashed image of passwords is revealed. However, these passwords can be expected
to have low entropy, and such a breach will then allow an offline guessing attack. In
order to protect against such attacks, an alternative to storing the hash of a password
is to split the password across multiple servers. Several protocols have been designed
for this scenario. Secret sharing is part of the solution, but in addition it is necessary
to find ways to establish a shared session key without reconstructing the password.
The cost to be paid for such security enhancements is that two or more independent
servers must be active in each user session.

The first multiple-server PAKE protocols were due to Ford and Kaliski [281]
and to Jablon [390], but these lacked security proofs. The first protocol with a proof
appears to be due to MacKenzie et al. [512], but it required users to have authentic
public keys for each of the servers rather than requiring only a password. The same
can be said of a protocol of Brainard et al. [146, 706], which is dedicated to a dy-
namic way of sharing passwords between two servers without specifying a specific
key exchange protocol.

Multi-server password-only PAKE protocols have also been proposed. Di Rai-
mondo and Gennaro [247] designed such a protocol based on Protocol 8.10. Secu-
rity is guaranteed as long as less than one third (these authors claim that this can
be extended to one half) of the servers are corrupted. The efficiency of this secure
version requires the client to run n copies of the KOY protocol. Although Di Rai-
mondo and Gennaro also designed a transparent protocol, in which the user’s view
is the same as in the single-server case, that version is secure only against leaking
password information and not against leakage of the session key.

Finally, there have been protocols designed specifically for the two-server case.
Note that the Di Raimondo and Gennaro protocol [247] does not handle this case.
Katz et al. [413] designed such a protocol, again based on Protocol 8.10. Clients need
to do twice as much work as in Protocol 8.10, while servers do around four times as
much. Kiefer and Manulis [427] improved the situation by designing protocols that
are secure in the universal composability model. Yi et al. [759, 760] designed com-
pilers, based on ID-based cryptography, which can transform any two-party PAKE
protocol into a two-server version.

3 https://datatracker.ietf.org/ipr/2411/

https://datatracker.ietf.org/ipr/2411/
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8.4.7 Comparing Two-Party Augmented PAKE Protocols

The properties of the protocols examined in this section are summarised in Table 8.3.
As in Table 8.2, we have attempted to capture the main features regarding efficiency
and security.

Table 8.3: Properties of augmented password-based protocols

Properties→ No. of Security Mutual Client
↓ Protocol messages proof authentication exponentiations

Augmented EKE (8.2) 5 Broken Yes 2
PAK-Z+ (8.15) 3 ROM Yes 2
B-SPEKE (8.16) 3 No Yes 2
SRP (8.17, 8.18) 4 No Yes 2
AMP (8.19) 4 No Yes 2
AugPAKE (8.20) 4 ROM Yes 2

All of the protocols in Table 8.3 have at least three message flows and are all
designed to achieve mutual authentication as well as key agreement. The computa-
tional requirements for each protocol are estimated as the exponentiations required
for each side. B-SPEKE and SRP require additional exponentiations with very small
exponents, which can be similar to the entropy of the password, perhaps 32 bits. We
assume that PAK-Z+ uses small exponents even if the group is Z∗p [511]. PAK-Z+
also requires signature generation by the client (and verification by the server) for
some generic secure signature scheme.

The range of augmented protocols is smaller than those without the augmented
property (compare Table 8.2). Furthermore, we have listed only two examples, PAK-
Z+ and AugPAKE, with security proofs, and these are both in the random oracle
model. (The VTBPEKE protocol referred to in Sect. 8.4.2 should also be mentioned;
its proof is also in the random oracle model.)

The efficiency properties of augmented protocols typically match those of proto-
cols without the augmented property, except for the number of messages. Note that
four-message protocols, such as AugPAKE, which run in two rounds can typically be
converted to three-message protocols which can be run in three rounds by combining
the fourth message with the second message flow.

8.5 RSA-Based Protocols

Although most password-based protocols rely on Diffie–Hellman key exchange, it is
not surprising that the widespread popularity of the RSA algorithm [630] has been
the basis of some alternatives. We examine such protocols in this section.
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8.5.1 RSA-Based EKE

Bellovin and Merritt’s original EKE protocol is applicable to a number of public key
algorithms, and they included a version for RSA in their paper [84]. The basic model
for EKE dictates that A should choose an ephemeral RSA public key and send it to
B encrypted with π . B will then choose the session key and return it encrypted with
the RSA key and, optionally, with π .

Bellovin and Merritt recognised a number of potential problems with this ap-
proach and discussed some possible remedies. The main problem is how to make an
RSA key appear ‘random’ in order to avoid a partition attack, which might eliminate
candidate passwords that do not provide a valid RSA key pair when applied to de-
crypt the first message. They pointed out that sending the RSA key pair encrypted
with the password is dangerous, since most integer values do not make a good RSA
modulus. Therefore a partition attack is possible, whereby the adversary decrypts the
ciphertext with a candidate password and can eliminate that candidate if the plain-
text modulus has small factors. This would allow an adversary to eliminate a large
proportion of passwords.

In view of the above problem Bellovin and Merritt proposed that only the RSA
exponent e should be encrypted with π , while the modulus n would be sent as clear-
text. They further suggested that, since e must always be odd in the RSA algorithm,
either e or e+1 should be sent randomly to ensure that almost all integers less than n
could occur as the encrypted value (they suggested making n the product of two safe
primes4 to enhance this property). The first two messages in the protocol are then as
follows.

1. A→ B : IDA,n,{e}π

2. B→ A : {Ke mod n}π

. . . .

Notice that an eavesdropper who obtains an old session key K′AB can decrypt
the first message with a candidate π̃ to obtain a candidate ẽ and then calculate
{(K′AB)

ẽ mod n}π̃ . If the RSA encryption is deterministic, this can be used to verify
whether π̃ = π by comparing the result with the second message in the old protocol
run which used K′AB. Therefore it is important that randomness is included with the
session key as part of the RSA encryption.

Another necessary measure to prevent partition attacks is to ensure that candidate
decrypted values in the second message are smaller than n; as with Diffie–Hellman-
based EKE, this may be addressed by ensuring that the modulus is slightly less than a
power of 2. However, Patel [603] showed that these precautions are still not sufficient
to protect the protocol. The attack of Patel requires the adversary to replace the first
message with A,n′,X , where X is random and n′ is carefully chosen so that n′ = pq
with 3|(p−1) and 3|(q−1). This choice of n′ ensures that the mapping x 7→ x3 mod n
is a 9-to-1 mapping in Z∗n′ . On receipt of this message, B will ‘decrypt’ X with π and
use the resulting value e′ to encrypt the random value K. There is a probability of

4 A prime p is a safe prime if (p−1)/2 is also prime.
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1/3 that e′ is divisible by 3. Although the adversary cannot know if this is the case,
the attack can be repeated if it fails initially. Assuming it is the case, the adversary
can partition the candidate passwords into those that decrypt the second message into
a cubic residue and those that do not. The latter case occurs with probability about
8/9 and these candidates can be discarded, since the value Ke is a cubic residue.
Cubic residues can easily be recognised by the adversary by raising to the power
(p−1)/3 mod p and also raising to the power (q−1)/3 mod q, and then checking
that both results equal 1. By repeating the attack with the same first message, the
adversary can obtain a new reply and use it in the same way to discard a proportion
8/9 of the remaining candidate passwords. The attack can easily be generalised to
use any small value in place of 3 as the divisor. An attempt to avoid the attack by
having the receiver check that the decrypted e has no small factors fails because the
adversary can now discard passwords that result in such e values.

8.5.2 OKE and SNAPI

Although the attack of Patel seems fatal for RSA-based EKE, a new approach was
taken by Lucks [506] to revive the protocol. The protocol of Lucks was called OKE
(Open Key Exchange), which emphasises that the public ephemeral RSA key is
sent ‘in the open’ (as plaintext). Lucks provided a proof in a Bellare–Rogaway-style
model that OKE is secure in a general setting. However, there are problems in satis-
fying the assumptions of the proof in the RSA setting; the difficulties revolve around
the ability of the adversary to select the public RSA key in such a way as to obtain
information about the password, in much the same way as in Patel’s attack outlined
above. Indeed, MacKenzie et al. [510] subsequently did find an attack on the RSA
version of OKE along these lines. They also proposed a variant of RSA-based OKE
called SNAPI (Secure Network Authentication with Password Information), which
avoids the attack and is described in Protocol 8.21.

A critical factor in avoiding the attack on the OKE protocol is the choice of
RSA public key. The RSA modulus N is chosen using a security parameter L1 so
that 2L1−2 ≤ N ≤ 2L1 . The exponent e must be in the range 2L1 ≤ e ≤ 2L1+1. A
consequence is that exponentiation with e is more than a full-length exponentiation;
with typical values, e will be 1025 bits long.

An important check is that the parameter p must lie in the set SN = {x : x ≤
2η − (2η mod N)∧ (x,N) = 1}. Since p is an output of H which has length at least
L1 +L2 and N has length not more than L1, this will fail with a tiny probability if
N is chosen honestly, but an adversary could choose N with small factors to make
the probability high that (x,N)> 1. If the condition is not satisfied by the value of p
generated then q is set to the random value a, so that in any event q appears to A to
be random.

MacKenzie et al. [510] provided a proof of security of SNAPI in Shoup’s simu-
lation model. As well as possessing a security proof, a potential benefit of SNAPI is
that the ephemeral RSA key can be reused in several protocol runs. Since RSA key
generation is a computationally costly process, this is a useful advantage and means
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Shared information: Password π . Security parameters L1 and L2. A ‘long’ hash function H
with output of length η with η ≥ L1+L2, and three ‘short’ hash functions H1, H2 and H3
with outputs of length L2. A set SN = {x : x≤ 2η − (2η mod N)∧ (x,N) = 1}.

A B

nA ∈R {0,1}L2

Choose RSA public key N,e
A,nA,N,e−−−−−−−→ Check range of N,e

Check e is prime
Check length of nA

nB ∈R {0,1}L2

p = H(N,e,nA,nB, IDA, IDB,π)

a ∈R Z∗N
If p /∈ SN then q = a
else q = pae mod N

Check length of nB
nB,q←−−−−−−−

Check (q,N) = 1
p = H(N,e,nA,nB, IDA, IDB,π)

Check p ∈ SN

a = (q/p)d mod N

r = H1(N,e,nA,nB, IDA, IDB,q,a)
r−−−−−−−→ If p /∈ SN then halt

Verify r
t = H2(N,e,nA,nB, IDA, IDB,q,a)

K = H3(N,e,nA,nB, IDA, IDB,q,a)

Verify t t←−−−−−−−
K = H3(N,e,nA,nB, IDA, IDB,q,a)

Protocol 8.21: SNAPI protocol

that SNAPI can be more efficient than PAK. A drawback of this approach is that stor-
ing the ephemeral key makes it part of the long-term key for A, and then compromise
of the private key means that old session keys can be recovered for all sessions in
which that RSA key was used: in other words, this computational advantage comes
at the cost of a loss in forward secrecy. MacKenzie et al. [510] also proposed an
extension to SNAPI, called SNAPI-X, which allows the server side to store only an
image of π under a hash function, similarly to the protocols in Sect. 8.2.2. Park et
al. [601] proposed a variant of SNAPI in which a shorter value of e is used (they
suggested 96 bits), with the aim of improving the efficiency of the protocol. Unfor-
tunately, this change leads to weaknesses, as pointed out by Youn et al. [768].
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Another variant of OKE was proposed by Roe et al. [214, 633]. A novel feature
of their protocol is that A sends only the RSA modulus N, while the exponent e is
defined as a deterministic function of π; this makes the protocol potentially more
efficient than SNAPI (or the original OKE). In the original version of the proto-
col [633] B returns ze(π) mod N, where z is a random number of appropriate length
used to define various values, including the session key and a nonce nA. On receipt
of this value, A calculates the decryption key e(π)−1 mod φ(N) and decrypts z as in
normal RSA. Then A returns the value nA to B. Bleichenbacher [119] found that mul-
tiple passwords could be checked by a malicious B for each protocol run, by sending
ze(π1)e(π2)...e(πn) and using the returned nA value to check which, if any, of the e(πi)
values were removed by A. A later version of the protocol [214] avoids this attack by
adding 2e(π) mod N to the value ze(π) mod N sent by B.

8.6 Three-Party PAKE Protocols

The protocols we have examined so far in this chapter are appropriate for the situation
when a client wishes to connect securely to a server; this is the case of two-party
PAKE. We now consider three-party PAKE protocols, designed to allow two users to
establish a new key through the cooperation of a mutually trusted server. Although
the server shares a different password (or an image of the password) with each user
in both cases, the goals are different.

The proposed three-party PAKE solutions include both special-purpose protocols
and generic constructions. The idea of the latter is to run two two-party protocols,
each running between the server and one of the two principals; the two secure chan-
nels established can be then used to distribute a session key from the server. Some of
the three-party protocols in this section require that users have knowledge of a server
public key, while others are password-only protocols.

8.6.1 GLNS Secret Public Key Protocols

Gong, Lomas, Needham and Saltzer (GLNS) [319] (and the same authors earlier with
names permuted [500]) published the first password-based protocols for a variety of
authentication and key establishment scenarios. We call their set of proposals the
GLNS protocols. The majority of their protocols assume that users have knowledge
of the server public key – these protocols are examined in Sect. 8.6.3 below. Here we
examine their protocols which use ‘secret public keys’; these are ephemeral asym-
metric keys which might normally be made public but, in order to prevent guessing
attacks, are kept secret from eavesdroppers on the protocol. Gong et al. [319] pro-
vided variants of their protocols for both the three-party and the two-party situations.

The GLNS three-party secret public key protocol is shown in Protocol 8.22. Their
two-party ‘Direct Authentication Protocol’ uses similar ideas by essentially combin-
ing the roles of A and S. In the initial two messages, the server S sends encrypted
ephemeral public keys KS for A and K′S for B. Subsequently, these are used by A and



370 8 Password-Based Protocols

S has passwords πA and πB. S chooses random value nS and ephemeral encryption keys KS
and K′S.

A has password πA. A chooses random values nA,n′A,cA,rA.
B has password πB. B chooses random values nB,n′B,cB,rB.

1. A→ S : IDA, IDB

2. S→ A : IDA, IDB,nS,{KS}πA ,{K′S}πB

3. A→ B : EncS(IDA, IDB,nA,n′A,cA,{nS}πA),nS,rA,{K′S}πB

4. B→ S : EncS(IDA, IDB,nA,n′A,cA,{nS}πA),Enc
′
S(IDB, IDA,nB,n′B,cB,{nS}πB)

5. S→ B : {nA,K⊕n′A}πA ,{nB,K⊕n′B}πB

6. B→ A : {nA,K⊕n′A}πA ,{H1(rA),rB}K

7. A→ B : {H2(rB)}K

Protocol 8.22: GLNS secret public key protocol

B to encrypt the request for a session key in messages 3 and 4; in these messages
EncS(.) denotes encryption with KS and Enc′S(.) denotes encryption with K′S.

Gong et al. remarked on the similarity with the Otway–Rees protocol (Protocol
3.26), at least in terms of the general structure. But there are a number of additional
fields included in Protocol 8.22 which are worth examining. A (and B similarly)
chooses two nonces nA and n′A which are transmitted to the server. The first of these
is returned with K, with the usual purpose of allowing A to verify the freshness of
this key. The second nonce is used to mask K; its purpose is to prevent the adversary
from performing a password-guessing attack. If n′A is omitted from message 5 then
the adversary can decrypt the message with a candidate password π̃A and obtain a
candidate session key K̃AB. The adversary can then decrypt the second encrypted
field in message 6 using K̃AB and check for the correct H1(rA) value, in order to
confirm whether π̃A is the correct password of A. The encrypted fields using K in the
final two messages are intended to provide key confirmation.

The value cA (and cB symmetrically) is a random ‘confounder’ used to ensure
that the encryption with KS in message 4 is randomised. If cA were not used, and
the public key encryption were deterministic, then an adversary who obtained an old
K value could test a guess π̃ for πA as follows. First the field {KS}πA in message 2
is decrypted with π̃ to obtain a possible public key K̃S. Candidate values for nA and
n′A can also be obtained by decrypting the first field in message 6 with π̃ (remember
that we assume the adversary knows K). Then all the required inputs are available
to re-encrypt the first field in message 3, and check this against the actual value sent
in order to verify whether π̃ is correct. The ‘confounders’ cA and cB can be omit-
ted by requiring the asymmetric encryption algorithm to provide semantic security,
since this ensures that the encryption is randomised. Furthermore, the asymmetric
encryption algorithm must provide non-malleability; otherwise, the protocol is eas-
ily defeated by an adversary C who can change the encrypted name of B to C in
message 4 and hence masquerade as B to A.
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Just as we have seen previously with Diffie–Hellman-based EKE, the choice of
the correct encryption algorithms is a crucial matter. Patel [603] demonstrated that
use of RSA as the asymmetric encryption algorithm in Protocol 8.22 allows an active
attack similar to the one against OKE described in Sect. 8.5.2. However, Gong et al.
did specify that the encryption algorithm must have the property that any random
number could be a public key, a property not possessed by RSA. A protocol using
an algorithm that matches the password representation to the encryption algorithm,
such as used that in PAK, appears more promising.

Although Protocol 8.22 seems to be regarded in the literature as a fundamentally
sound one, we note that an attack is possible unless specific precautions are taken
by users in an implementation. To perpetrate the attack, the adversary masquerades
as the server in order to obtain encrypted messages from A and/or B which can be
used to verify password guesses. Specifically, the adversary can guess values for πA
and πB, generate new ephemeral keys KS and K′S, and use the guessed passwords to
form a possibly correct message 2. This message can be sent back to A following a
protocol initiation by A. The adversary can collect the subsequent message 4 intended
by B for the server. Now the adversary can detect if either of the password guesses
was correct, since, if so, the identifiers A and B will be present in the messages
when decrypted with the generated private keys. Further guesses can be verified or
discarded in the same way. Notice that A must accept a random value for the field
{KS}πA in message 2; otherwise an offline guessing attack is possible.

If the above attack is to be prevented, two precautions must be taken in any im-
plementation. Firstly, failed protocol attempts must be logged by users and the pass-
word disabled after a small number of failures. Although such precautions are usually
taken for failed logins at a server, it is less usual for this matter to be considered for
users. Secondly, it must not be possible for the adversary to start multiple parallel
runs of the protocol, since otherwise the correct passwords can be found before any
protocol run has failed. It seems likely that in some applications users would be re-
quired to enter the password for each protocol run, but in others the user’s computing
device might cache the password and reuse it for multiple runs.

Tsudik and Van Herreweghen [716], and later Gong [318], have proposed vari-
ants of Protocol 8.22 aimed at simplifying it and improving its efficiency. Protocol
8.23 shows the version of Tsudik and Van Herreweghen, which follows the same
basic design but reduces the amount of material that needs to be encrypted with the
ephemeral public keys. In distinction to Protocol 8.22, there is no attempt to provide
key confirmation.

Inclusion of the identities of A and B in the fields encrypted with πA and πB in
message 2 is critical to the security of Protocol 8.23. This is because there is nothing
else that allows the principals to know which party the session key is shared with.
The nonces nB and nA, when XOR’d with the encrypted fields using πB and πA in
message 5, act as ‘confounders’. The outer XOR prevents B (and A similarly), having
also obtained K, from mounting a brute force guessing attack on πA.

Ding and Horster [254] found an online attack on Protocol 8.23, one of several
undetectable online attacks that they discovered. The important feature of such at-
tacks is that an insider can perpetrate them in such a way that the server cannot detect
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S has passwords πA and πB. S chooses ephemeral encryption keys KS and K′S.
A has password πA. A chooses random value nA.
B has password πB. B chooses random value nB.

1. A→ S : IDA, IDB

2. S→ A : {KS⊕ IDB}πA ,{K′S⊕ IDA}πB

3. A→ B : A,EncS(nA),{K′S⊕ IDA}πB

4. B→ S : IDA, IDB,Enc
′
S(nB),EncS(nA)

5. S→ B : nB⊕{nB⊕K}πB ,nA⊕{nA⊕K}πA

6. B→ A : nA⊕{nA⊕K}πA

Protocol 8.23: Simplified GLNS secret public key protocol

that they have taken place and so cannot restrict the number of repetitions. Therefore
the adversary may be able to conduct an online exhaustive key search. In Ding and
Horster’s attack on Protocol 8.23, the insider adversary B masquerades as A to initi-
ate the protocol (the real A does not take part in the attack). The adversary collects
the response from S in message 2 and makes a guess at πA. This allows the adversary
to forge a corresponding value for message 3 and hence send a trial value to S in
message 4. On receipt of message 5, the adversary can verify whether the guess for
πA was correct, since this means that the same K value will be found. This attack is
undetectable by S as long as there is no redundancy in the encrypted fields in message
4.

A closer look at the attack of Ding and Horster reveals that there may be no
need for the adversary to be an insider in order to mount the attack. Instead, the
adversary can masquerade as both A and B by guessing both passwords πA and πB.
After initiating the protocol by masquerading as A, the adversary finds candidate
values for KS and K′S and uses these to construct message 4. On receipt of message
5, incorrect candidate passwords can be eliminated if the decrypted values of K are
different. In this version of the attack, both passwords must be found and so the
maximum number of trials required before success is the square of the number of
passwords. Depending on the size of the password space, this may still be a feasible
attack.

In Gong’s variant [318], the ephemeral secret public keys are generated by A
and B instead of S and consequently the number of protocol messages is reduced
to five. This variant is shown in Protocol 8.24, where KA and KB are the ephemeral
public keys chosen by A and B, respectively, and EncA(.) and EncB(.) denote en-
cryption with these keys. The confounders cS and c′S are chosen to prevent guessing
of encrypted contents and, as elsewhere, can be omitted if a public key encryption
algorithm with semantic security is used.

Ding and Horster [254] showed that there is an undetectable online attack on
Protocol 8.24 too. Again, the insider adversary B masquerades as A in a protocol run
that looks normal to S. Specifically, the adversary guesses πA and chooses a value
for KA (as well as for KB). On receipt of message 3, the adversary can decrypt both
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S has passwords πA and πB. S chooses random values cS and c′S.
A has password πA. A chooses random value nA and ephemeral encryption key KA.
B has password πB. B chooses random value nB and ephemeral encryption key KB.

1. A→ B : nA,{KA}πA

2. B→ S : nA,{KA}πA ,nB,{KB}πB

3. S→ B : EncA(IDA, IDB,cS,K,{nA}πA),EncB(IDB, IDA,c′S,K,{nB}πB)

4. B→ A : EncA(IDA, IDB,cS,K,{nA}πA),{nA}K,nB

5. A→ B : {nB}K

Protocol 8.24: Optimal GLNS secret public key protocol

encrypted messages and see if they give the same value for K: if so, then the guess
for πA was probably correct. Notice that S must accept random values in message
2; otherwise an offline guessing attack is possible. However, no explicit encryption
algorithm for use with πA and πB was specified by Gong.

As with the insider attack on Protocol 8.23, this attack may be extended to an
outsider attack by guessing both candidate passwords together. Indeed, an outsider
need guess only one of the passwords. For example, the adversary can guess πA,
choose a value for KA, and send a message to B as if it were from A. On receipt
of message 3, the adversary can detect if this guess was correct, since, if so, the
identifiers A and B will be present in the encrypted field using KA in this message,
when decrypted with the generated private key. This attack is not detectable by the
server S, but B will detect a failed password guess, since the adversary is not able to
find the correct K value and so cannot form the correct message 5. Therefore similar
remarks to those regarding the related attack on Protocol 8.22 apply.

8.6.2 Steiner, Tsudik and Waidner Three-Party EKE

Steiner et al. [691] proposed Protocol 8.25 as a direct generalisation of Diffie–
Hellman-based EKE. They remarked that, in distinction to many three-party pro-
tocols, the server does not generate, and indeed cannot obtain, the session key. Each
of A, B and S generates an ephemeral private key, rA, rB, and rS, respectively, and the
shared secret for A and B is Z = grArBrS . The encrypted fields using K in the final two
messages are intended as ‘authenticators’ that can be used for key confirmation of Z.

Protocol 8.25 provides forward secrecy against eavesdroppers. However, Ding
and Horster [254] showed that it is vulnerable to online undetectable guessing, as
shown in Attack 8.1. The insider adversary C records an old protocol run with A
and replays A’s input in message 2. Only the interaction with S in messages 2 and 3
is relevant for the attack. By guessing πA, the adversary can find the corresponding
value t̃A that A would have sent and use this value as C’s input to message 2. On
receipt of message 3, C can check if both returned values are the same in order to
confirm a correct guess of πA.
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S has passwords πA and πB. S chooses random value rS.
A has password πA. A chooses random value rA and calculates tA = grA .
B has password πB. B chooses random value rB and calculates tB = grB .

1. A→ B : {tA⊕ IDB}πA

2. B→ S : A,{tA⊕ IDB}πA ,{tB⊕ IDA}πB

3. S→ B : trS
A , trS

B
4. B→ A : trS

B ,{Message 1}K

5. A→ B : {{Message 1}K}K

Protocol 8.25: Steiner, Tsudik and Waidner three-party EKE

C has password πC and recorded message {tA⊕ IDC}πA . C guesses A’s password is π̃ and
chooses t̃A such that {tA⊕ IDC}πA = {t̃A⊕ IDC}π̃ .

2. C→ S : A,{tA⊕ IDC}πA ,{t̃A⊕ IDA}πC

3. S→C : trS
A , t̃rS

A

C checks if trS
A = t̃rS

A . If so, π̃ = πA.

Attack 8.1: Ding and Horster’s attack on Protocol 8.25

Lin et al. [493] also discovered an offline guessing attack on Protocol 8.25, as
shown in Attack 8.2. The adversary C masquerades as both A and S in order to find
the password of B. The values X and Y are chosen randomly by C and are simply
placeholders for missing values. The value rC is chosen by C in place of rArS in a
real protocol run. C knows that B will calculate Z = (grC)rB = trC

B , so messages 2 and
4 can be used to check a guess for πB.

C chooses random values X , Y and rC.

1. CA→ B : X
2. B→CS : A,X ,{tB⊕ IDA}πB

3. CS→ B : grC ,Y
4. B→CA : Y,{Message 1}K

C guesses πB = π̃ and decrypts {tB⊕A}πB with π̃ to obtain t̃B and calculates Z̃= t̃rC
B . Message

4 is used to check if guess is correct.

Attack 8.2: Lin–Sun–Hwang attack on Protocol 8.25
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Lin et al. [493, 494] proposed two alternative versions of Protocol 8.25. One
requires the client to know the correct public key of the server, while the later one,
from 2001, avoids the known attacks without the need for a server public key.

8.6.3 GLNS Protocols with Server Public Keys

In addition to their ‘secret public key’ protocol examined in Sect. 8.6.1, Gong et
al. [319] published several protocols assuming server public keys are available to
clients. We examine some of these and subsequent variants from other authors. Un-
fortunately, none of these protocols carries a security proof.

Protocol 8.26 shows the ‘compact’ version of the GLNS protocol for establishing
a new session key between A and B, who initially share passwords πA and πB with
the server S. There is a strong similarity with messages 3 to 7 of Protocol 8.22.

S has passwords πA and πB.
A has password πA. A chooses random values nA,n′A,cA,rA and timestamp TA.
B has password πB. B chooses random values nB,n′B,cB,rB and timestamp TB.

1. A→ B : EncS(IDA, IDB,nA,n′A,cA,{TA}πA),rA

2. B→ S : EncS(IDA, IDB,nA,n′A,cA,{TA}πA),EncS(IDB, IDA,nB,n′B,cB,{TB}πB)

3. S→ B : {nA,K⊕n′A}πA ,{nB,K⊕n′B}πB

4. B→ A : {nA,K⊕n′A}πA ,{H1(rA),rB}K

5. A→ B : {H2(rB)}K

Protocol 8.26: GLNS compact protocol

As in Protocol 8.22, the confounders cA and cB may be omitted by requiring that
the asymmetric encryption algorithm provides semantic security. Also, the asymmet-
ric encryption algorithm must provide non-malleability. If the long-term decryption
key of S is compromised then nA and n′A can be found, allowing a brute force search
for πA, and consequently revealing the session key. Therefore we conclude that for-
ward secrecy is not provided.

The encrypted timestamp {TA}πA included in the first message is used by S
to ensure that the message is freshly generated by A. Without this timestamp, the
adversary could replay message 1 and obtain two messages {nA,K⊕ n′A}πA and
{nA,K′AB⊕n′A}πA , the only difference being in the encrypted session keys. Then the
adversary could again mount a brute force attack on πA since a correct guess can
be identified when the first components of the two decrypted messages are identi-
cal. (This attack was observed by Tsudik and Van Herreweghen [716], as well as
by Gong et al. [319].) The use of timestamps requires the server to record all mes-
sages received for a period equal to the maximum time window allowed for clock
differences and message delay.

In order to remove this drawback, Gong et al. also provided a version of the pro-
tocol in which the server generates a nonce that must be sent with the client requests;
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its drawback, in turn, is the addition of two messages to the protocol. Tsudik and Van
Herreweghen [716], and later Gong [318], proposed a variant of this nonce-based
protocol, aimed at simplifying it and reducing computational requirements. Protocol
8.27 shows Gong’s optimal version, in which the number of messages exchanged is
reduced to five. Gong [318] observed that this is the same as the number of messages
used in the timestamp-based version.

S has passwords πA and πB.
A has password πA. A chooses random values nA,n′A,n

′′
A,cA,rA.

B has password πB. B chooses random values nB,n′B,n
′′
B,cB,rB.

1. A→ B : EncS(IDA, IDB,nA,n′A,cA,n′′A,{n′′A}πA),rA

2. B→ S : EncS(IDA, IDB,nA,n′A,cA,n′′A,{n′′A}πA),EncS(IDB, IDA,nB,n′B,cB,n′′B,{n′′B}πB)

3. S→ B : {nA,K⊕n′A}n′′A ,{nB,K⊕n′B}n′′B
4. B→ A : {nA,K⊕n′A}n′′A ,{H1(rA),rB}K

5. A→ B : {H2(rB)}K

Protocol 8.27: Optimal GLNS nonce-based protocol

The main difference between the nonce-based and timestamp-based protocols is
that in the former A and B send a third nonce to S, which is used both to authenticate
them to S and also as a shared secret to encrypt the session key in the reply from S.

8.6.4 Three-Party Protocol of Yen and Liu

The protocols of Yen and Liu [758] use ideas from the simplified GLNS three-party
EKE of Tsudik and Van Herreweghen (Protocol 8.23). By making use of a server
public key, they aim to avoid the need for ephemeral public keys. Protocol 8.28
shows their main protocol, in which the server generates the session key K. They
also proposed variants in which either the initiator or the responder can generate K.

S has passwords πA and πB. S chooses K.
A has password πA. A chooses random values nA,n′A.
B has password πB. B chooses random value nB.

1. A→ B : IDA,n′A,EncS(nA⊕πA,nA⊕ IDB⊕n′A)
2. B→ S : IDA, IDB,EncS(nA⊕πA,nA⊕B⊕n′A),EncS(nB⊕πB,nB⊕A⊕n′A)
3. S→ A : nA⊕{nA⊕K}πA ,{n′A}K,nB⊕{nB⊕K}πB

4. A→ B : nB⊕{nB⊕K}πB ,{n′A +1}K

Protocol 8.28: Yen–Liu protocol
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On receipt of message 2, S decrypts both ciphertexts to obtain two pairs of values,
say XA,YA and XB,YB. Then S sets nA = XA⊕πA and nB = XB⊕πB and checks that
nA ⊕YA ⊕ B = nB ⊕YB ⊕ A. If not, then S aborts the protocol. Despite a detailed
analysis by its authors, the Yen–Liu protocol does not provide authentication of both
parties. An insider adversary C is able to masquerade as B and successfully complete
a protocol run with A, including obtaining the new session key.

1. A→CB : IDA,n′A,EncS(nA⊕πA,nA⊕ IDB⊕n′A)
2. C→ S : IDA, IDC,EncS(nA⊕πA,nA⊕B⊕n′A),EncS(nC⊕πC,nC⊕A⊕n′′A)
3. S→CA : nA⊕{nA⊕KAC}πA ,{n′′A}KAC ,nC⊕{nC⊕KAC}πC

3′. CS→ A : nA⊕{nA⊕KAC}πA ,{n′A}KAC ,nC⊕{nC⊕KAC}πC

4. A→CB : nC⊕{nC⊕KAC}πC ,{n′A +1}KAC

Attack 8.3: Attack on Protocol 8.28

In Attack 8.3, A wishes to complete the protocol with B, but in fact completes it
with the adversary C. After receiving message 1 from A, C generates a new value n′′A
such that n′′A⊕C = n′A⊕B. This enables C to send a correct message 2 to S as if A is
intending to run the protocol with C. C needs to intercept message 3 from S in order
to replace the field {n′′A}KAC with the field {n′A}KAC expected by A. This can be done,
since C is able to extract KAC from message 3. When A receives the altered message
3′, the session key KAC will be extracted by A and used to confirm that the value n′A
was correctly received. Thus A will accept the key as shared with B, whereas it is
actually shared with C.

8.6.5 Generic Protocol of Abdalla, Fouque and Pointcheval

Abdalla et al. [16] seem to have been the first to achieve a three-party PAKE pro-
tocol with a proof of security. However, this was not a single protocol but rather a
generic method of combining any normal two-party PAKE protocol with any server-
based key distribution protocol in the manner of a protocol compiler. Protocol 8.29
illustrates the process.

A and S initially share a password πA and, similarly, B and S initially share a
password πB. These passwords are used in two-party PAKE protocols (denoted 2-
PAKE) during stage 1. Evidently, the compiler still works in the case that the generic
two-party PAKE protocol is an augmented-type protocol where S possesses only an
image of the passwords. In stage 2, S uses the two keys established during stage 1
to distribute a MAC key, km. Finally, in stage 3 the parties run Diffie–Hellman key
agreement with the messages authenticated using km.

Abdalla et al. [16] provided a security proof which says that, given a secure two-
party PAKE, a secure key distribution protocol and a secure MAC, the compiled
protocol is secure based on the decisional Diffie–Hellman assumption. The security
model used is based on the BPR00 model, but is slightly stronger in that it allows
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Information shared between A and S: Password πA.
Information shared between B and S: Password πB.

A S B
Stage 1

2-PAKE between S and A 2-PAKE between S and B
Input: πA Input: πB

Output: skA Output: skB

Stage 2
Key distribution from S to A Key distribution from S to B

Input: skA Input: skB

Output: km Output: km

Stage 3

rA ∈R Zq

tA = grA
tA,MACkm(tA, IDB, IDA)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ rB ∈R Zq
tB,MACkm(tB, IDA, IDB)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− tB = grB

K = grArB

Protocol 8.29: Abdalla–Fouque–Pointcheval compiler for three-party PAKE

multiple test queries in place of reveal queries. This stronger notion is required for
the input two-party PAKE and is also achieved for the compiled protocol. Abdalla
et al. [16] pointed out that many well-known PAKE protocols, such as PAK (Proto-
col 8.3) and KOY (Protocol 8.10), do satisfy the stronger notion so there are several
ways of instantiating the compiler with a concrete protocol. The key distribution
protocol used in Stage 2 of the compiler need only be secure in the usual BR model
and can be instantiated, for example, by the Bellare and Rogaway three-party proto-
col [78] (Protocol 3.41).

In addition to security against an outside adversary, the security analysis also
showed that an honest but curious insider adversary, which runs the protocol hon-
estly, does not get to learn anything useful about the shared secret K. However, the
compiled protocol may not be secure against undetectable online guessing attacks,
which we consider next.

8.6.6 Stronger Security Models for Three-Party PAKE

As pointed out by Abdalla et al. [16], a generic compiler cannot be expected to
yield the most efficient concrete protocol. There have been many three-party PAKE
protocols proposed attempting to achieve efficiency improvements over the generic
constructions. Regrettably, this is an area where many protocols are still proposed
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without a proof of security. Furthermore, many protocols have been proposed with
a claimed security proof later found to be faulty (see, for example the discussion
and references provided by Nam et al. [570].) A particular problem has been secu-
rity against the undetectable online attacks of Ding and Horster [254] discussed in
Sect. 8.6.2.

The usual security model for analysis of PAKE protocols is that of Bellare,
Pointcheval and Rogaway [74], which we refer to as BPR00. When using this model
for two-party PAKE protocols, it is natural to restrict the adversary’s access to send
queries since such queries allow the adversary to test a password by guessing and
running the protocol as a client. In practice, unsuccessful tests will be noticed by the
server, and the client account will be locked after a small number of attempts. It is
widely understood that such attacks cannot be completely prevented. However, in a
three-party PAKE it is not necessarily the aim of the server to explicitly authenticate
the two clients who wish to share the session key, and therefore it can be impossi-
ble for the server to notice failed password tests. Wang and Hu [729] noticed that
Abdalla et al.’s compiler may not protect against undetectable online attacks if the
protocols used as building blocks do not provide client authentication. For example,
this may happen if PPK (Protocol 8.4) is used for the two-party PAKE. This does not
indicate any error in the security analysis of Abdalla et al. [16], but rather shows that
this kind of attack is not captured in the model that they used.

Wang and Hu [729] proposed to add client authentication as part of the security
definition for three-party PAKE. When explicit authentication is provided, the server
can count failed password attempts and lock out user accounts according to some
policy, as in the two-party case. Wang and Hu [729] provided a compiler shown as
Protocol 8.30, related to that of Abdalla et al. [16] but replacing the key distribution
protocol with a custom method of explicit authentication.

Note that, unlike stage 3 in Protocol 8.29, stage 2 in Protocol 8.30 involves the
server in the protocol messages, specifically in order that the server can authenticate
the clients. It is also evident that this compiler results in more efficient protocols than
Protocol 8.29 if the two-party PAKE used is the same in both cases.

Instead of demanding explicit client authentication, Nam et al. [571] enhanced
the BPR00 model to explicitly capture undetectable online attacks. They also added
consideration of insider attacks to their model through the use of corrupt queries.
Nam et al. [571] designed a generic compiler, very similar to Protocol 8.30, for
obtaining secure protocols within their model. It is not yet clear which model is the
best one to analyse three-party PAKE protocols while optimal concrete protocols
remain to be established.

8.6.7 Three-Party Protocol of Yoneyama

Yoneyama [762, 763] designed a concrete three-party PAKE protocol. Messages to
the server are encrypted with the server public key and the server incorporates its
own randomness, which is included in the shared secret Z = grArBrS . Protocol 8.31
shows the messages.
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Information shared between A and S: Password πA.
Information shared between B and S: Password πB.

A S B
Stage 1

2-PAKE between S and A 2-PAKE between S and B
Input: πA Input: πB

Output: skA Output: skB

Stage 2

rA ∈R Zq rB ∈R Zq

tA = grA tB = grB

tA,MACskA(tA, IDA, IDB)−−−−−−−→ Check MAC
tA,MACskB(tA, IDA, IDB)−−−−−−−→

tB,MACskA(tB, IDA, IDB)←−−−−−−− Check MAC
tB,MACskB(tB, IDA, IDB)←−−−−−−−

K = grArB

Protocol 8.30: Wang–Hu compiler for three-party PAKE

We can identify similarities between Protocol 8.31 and the PAK protocol (Proto-
col 8.3) with regard to the way that the password is used to mask the Diffie–Hellman
values. A difference is that in Protocol 8.31 the tA and tB values are hidden using
encryption when sent to S. In addition, there is a similar requirement that the hash
functions H1 and H2 map to the group G. Yoneyama [763] provided a security proof
in a model which is related to the eCK model, except that leakage of ephemeral keys
is not allowed for the target session. It is assumed that the encryption scheme is CPA-
secure and that the DDH assumption holds. The hash functions H1, H2, and H3 are
modelled as random oracles. The messages CA and CB allow the server to explicitly
authenticate the users and thereby ensure that online guesses are detectable.

8.6.8 Cross-Realm PAKE Protocols

In the three-party PAKE setting it is assumed that both of the clients wishing to estab-
lish a session key share their passwords with the same server. This applies whether
the server has a public key (see Sects. 8.6.4 and 8.6.7) or not (see Sect. 8.6.2). In order
to make such protocols more scalable, it is natural to consider a situation where the
clients A and B use different servers, SA and SB, respectively. This is clearly a more
complex situation, involving four entities, and calls for more complex threat models.
Now we may be concerned about malicious servers attempting to learn passwords
of clients from other domains. We will refer to such protocols as cross-realm. Other
names used include cross-domain and 4-PAKE protocols.

There are different communications architectures possible for cross-realm pro-
tocols. In particular, some protocols assume direct communication between clients,
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Information shared between A and S: Password πA.
Information shared between B and S: Password πB.
Shared information: Hash functions H1,H2,H3.

A S B
PA = H1(IDA, IDB,πA) PB = H1(IDB, IDA,πB)

rA ∈R Zq rB ∈R Zq

tA = grA tB = grB

mA = tAPA mB = tBPB

CA =
EncS(mA,πA)

CA−−−−−−−→ CB←−−−−−−− CB =
EncS(mB,πB)

Decrypt CA and CB

Verify πA and πB

tA = mA/PA, tB = mB/PB

rS ∈R Zq,N ∈ {0,1}∗

t ′A = trS
A , t ′B = trS

B
P′A = t ′A ·H2(N,πB,mB)

P′B = t ′B ·H2(N,πA,mA)

N,CB,P′A,P
′
B←−−−−−−−

N,CA,P′A,P
′
B−−−−−−−→

t ′B = P′B/H2(N,πA,mA) t ′A = P′A/H2(N,πB,mB)

Z = (t ′B)
rA Z = (t ′A)

rB

K = H3(IDA, IDB, IDS,CA,CB,P′A,P
′
B,Z)

Protocol 8.31: Yoneyama protocol for three-party PAKE

while others instead use communication between the servers involved. Some pro-
tocols assume that servers already share keys in order to provide a secure channel
between them, while other do not. As in the case of three-party PAKE, there have
been many protocol proposals without a formal security analysis, while those which
do have a security proof often use different models. Chen et al. [196] provided a
good overview of much of this work. In principle, cross-realm protocols do not re-
quire servers to have public keys if there is some other way for them to communicate
securely. However, in practice most protocols do assume the existence of certified
server public keys.

Yoneyama [764] analysed a variant of Protocol 8.31 for the cross-realm setting.
The two protocols are very similar but the cross-realm version includes messages
between the servers, sent on an authenticated channel, allowing both A and B to
compute a shared secret Z = grArBrSArSB , where rA,rB,rSA,rSB are chosen by A, B, SA,
SB respectively.

Chen et al. [196] provided a generic protocol for the cross-realm case in the same
vein as the Abdalla et al. generic 3-PAKE construction of Protocol 8.29. The building
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blocks for the protocol consist of a two-party PAKE, denoted 2-PAKE, secure MAC
and signature schemes, and a key agreement protocol.

Public information: Public keys PKSA of SA and PKSB of sB
Information shared between A and SA: Password πA.
Information shared between B and SB: Password πB.

A SA SB B
Stage 1

rA ∈R Zq rB ∈R Zq

tA = grA
tA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ tB = grB

tB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Stage 2

2-PAKE between A and SA 2-PAKE between B and SB

Input: πA; Output: skA Input: πB; Output: skB

Stage 3
tA,MACkskA

(IDA, IDB, tA, tB)
−−−−−−−−−−−−−−−−→

tB,MACkskB
(IDB, IDA, tB, tA)

←−−−−−−−−−−−−−−−−
σA = SigSA

(IDA, IDB, tA, tB,PKSB)←−−−−−−−−−−−−−−−−
σB = SigSB

(IDB, IDA, tB, tA,PKSA)−−−−−−−−−−−−−−−−→
Stage 4

Key agreement between A and B
Input: tA, tB,σA,σB Output: K

⇐================================⇒

Protocol 8.32: Chen–Lim–Yang generic cross-realm PAKE

In stage 1 of Protocol 8.32, clients A and B exchange ephemeral keys tA and tB,
which will be used later in stage 4 to agree on a session key. The purpose of stages 2
and 3 is to allow the servers SA and SB to provide to the clients an assurance that the
exchange ephemeral keys are authentic. First, in stage 2 shared, keys are established
between each client and its server using 2-PAKE. Then, in stage 3, the clients provide
authenticated versions of the (claimed) tA and tB values to the servers, which respond
by signing these. Finally in stage 4, the clients run their key agreement protocol,
such as basic Diffie–Hellman, using the ephemeral keys, and authenticate the (tA, tB)
pair by checking the signatures from both servers. Note that the inclusion of the
public server keys in the signatures sent in stage 3 is a simple way for the clients to
authenticate the signing public key of the server from its peer’s domain.

Notice that, in distinction to many other protocol designs in this setting, there is
no need for any secure channel between SA and SB in Protocol 8.32; indeed, no in-
teraction between servers occurs at all. The protocol includes explicit authentication
of A and B to the servers SA and SB through the MAC tags sent in stage 3. Although
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the model used by Chen et al. does not explicitly model undetectable online attacks,
this feature does seem to prevent such attacks. Chen et al. [196] provided security
theorems and proofs in the model of Abdalla et al. [16] and assumed that the protocol
run in stage 4 is secure in the BR95 model.

Protocol 8.32 is not the most generic protocol designed by Chen et al. [196];
they proposed a number of other generic variants, including one which accommo-
dates reuse of ephemeral keys, and one which replaces the public-key key agreement
protocol in stage 4 with a symmetric-key one. Overall, there are many variants with
many options in this set of protocols and it is difficult to compare their different
properties.

8.6.9 Comparing Three-Party PAKE Protocols

As we have seen for other types of PAKE protocols, the early three-party PAKE
protocols are characterised by a lack of formal analysis and a gradual understand-
ing of the ways to design secure protocols. The GLNS protocols and their variants
examined in Sects. 8.6.1, 8.6.2 and 8.6.3 fall into this category and are vulnerable
to various attacks, particularly the undetectable online guessing attack. While there
are some interesting structural differences between such protocols, such as whether
or not a server public key is used, a detailed comparison of such protocols does not
seem worthwhile.

More modern protocols usually have a proof of security, although this is still not
always the case. Moreover, many protocols have proofs in quite different security
models, making them hard to compare with regard to security properties. Another
characteristic of the more modern constructions is that they are usually generic, rely-
ing on the use of existing two-party PAKE protocols as building blocks. Protocol 8.31
of Yoneyama is one exception to this. Cross-realm protocols, discussed in Sect. 8.6.8,
are an area where we can expect new results.

8.7 Group PAKE Protocols

One natural generalisation of PAKE protocols is to allow the number of parties to
be larger than two, as in the group key exchange protocols considered in Chap. 9.
The situation we focus on in this section is when multiple users share the same
password (or any short secret). Such a scenario could arise in various realistic real-
world applications such as adhoc meetings and civil emergencies.

Before considering the shared-password scenario, we note that there is also the
possibility that users who share different passwords may desire to set up a shared
group key. This alternative can evidently only be achieved with the help of an online
server (or possibly multiple servers) sharing each of the user passwords. Such pro-
tocols would generalise the three-party PAKE protocols examined in Sect. 8.6. This
scenario has not received much attention in the literature so far. One proposal, from
Byun et al. [172], was broken by Phan and Goi the following year [613]. There are
many different options possible here, including augmented versions, protocols with
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or without server public keys, and protocols in cross-realm settings. Potentially many
new protocols could be proposed and analysed, although it is not clear how many of
these would be of independent interest.

Now we turn back to the shared-password scenario, where a group of parties
share the same password. There are a number of criteria which can be used to differ-
entiate different group PAKE protocols.

Number of protocol rounds. Ideally, this does not increase with the number of
parties involved and is as small as possible.

Computation per party. Again this is ideally minimised, but in practice it increases
to some extent with the number of parties.

Security model. Some proofs assume idealised primitives, such as in the ideal ci-
pher model. Often there is a need for a common reference string or a public key
infrastructure.

While the security of group PAKE protocols should certainly include protection
against offline password attacks, it may be questioned whether insider attacks are
meaningful when the parties are identified only by possession of the password. Thus
it does not seem relevant for the adversary to aim to masquerade as different parties.
However, contributiveness is one kind of insider property which can be captured –
this property requires that the adversary cannot unreasonably influence the value of
the shared secret. Group PAKE protocols with contributiveness have indeed been
designed [13, 14].

In the remainder of this section we sketch some of the prominent work on group
PAKE protocols. At the time of writing, it seems fair to say that optimal solutions are
not yet known, and typically there is some compromise with regard to at least one of
the criteria listed above. We divide the work into concrete constructions and generic
constructions, the latter using some kind of protocol compiler.

8.7.1 Concrete Protocol Constructions

The first formally analysed group PAKE protocol in the shared-password setting was
proposed by Bresson et al. [150]. However, this required as many rounds as there are
parties which is a problem for efficiency. The protocol has a proof in the ideal cipher
model.

Abdalla et al. [12] provided the first protocol requiring only a constant number
of rounds, the number of rounds being four in their case. Computation is almost
constant in the number of users, consisting mainly of four multi-exponentiations
per user. However, the security proof still requires the ideal cipher model and relies
on the DDH assumption. Protocol 8.33 shows the protocol when executed between
parties U1, . . . ,Um with identities ID1, . . . , IDm.

Protocol 8.33 is based on the Burmester–Desmedt generalised Diffie–Hellman
protocol (Protocol 9.9) and the computational requirements are dominated by those
of the embedded Burmester–Desmedt protocol. Zheng et al. [778] designed a very
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Information shared between Ui for 1≤ i≤ m: Password π . Hash functions H1,H2,H3.

Ui−1 Ui Ui+1

Phase 1
Choose random nonce Ni and broadcast (Ui,Ni)

Phase 2
S = ID1,N1, . . . , IDm,Nm

ki = H1(S, i,π)
ri ∈R Zq

{ti}ki←−−−−−−− ti = gri
{ti}ki−−−−−−−→

Decrypt ti−1 and ti+1

Xi = (ti+1/ti−1)
ri

Zi−1,i = tri
i−1

Phase 3
Broadcast Xi

Z = (Zi−1,i)
mXm−1

i Xm−2
i+1 . . .Xi−2

Phase 4
Compute Ai = H2(S,{t1}k1 ,X1, . . . ,{tm}km ,Xm,Z, i)

Broadcast Ai

Check all A j values
K = H3(S,{t1}k1 ,X1,A1, . . . ,{tm}km ,Xm,Am,Z)

Protocol 8.33: Abdalla–Bresson–Chevassut–Pointcheval password-based group key
exchange

similar protocol by replacing the Burmester–Desmedt protocol with the variant pro-
tocol of Horng [363] and thereby achieved an improvement in computational effi-
ciency.

Abdalla and Pointcheval [19] provided a construction in the standard model (i.e.
with no idealised primitives) using smooth projective hashing (see Sect. 8.3.8). This
protocol requires five rounds and, although theoretically speaking it is efficient, it is
still fairly expensive computationally; in particular, it requires each party to verify
signatures from all other parties. Contemporaneously, Bohli et al. [122] designed a
related protocol which is more efficient; in particular, it requires only three rounds.

Xu et al. [746] designed two group PAKE protocols which are very efficient in
terms of rounds, but pay for this in computational efficiency. Specifically, they de-
signed a one-round protocol with a common reference string and a two-round proto-
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col without any trust (or set-up) assumptions. Unfortunately, both of these protocols
require the usage of indistinguishability obfuscation, which is not efficiently obtain-
able at the time of writing.

8.7.2 Generic Constructions

A number of authors have proposed compilers to achieve shared-password group
PAKE, starting either from a generic two-party PAKE protocol or from a group key
exchange protocol with public keys.

From 2-PAKE to Group PAKE

Abdalla et al. [11] gave a protocol construction with a security proof which does
not assume ideal primitives but requires a common reference string. Their compiler
takes in any 2-PAKE protocol and adds two rounds using a construction inspired
by the Burmester–Desmedt protocol. Abdalla et al. [14] later gave a protocol con-
struction with stronger security properties, particularly universal composability and
contributiveness. However, this newer construction adds four rounds to the underly-
ing 2-PAKE protocol.

Hao et al. [348] designed two group PAKE protocols using a generic but infor-
mal method of extending two-party PAKE protocols which they called the fairy-ring
dance. Generally, their idea is that each party runs the two-party PAKE protocol with
every other party and thereby obtains a shared key which can be used to authenticate
other messages. In particular, a pairwise MAC key is used to authenticate a parallel
run of the Burmester–Desmedt group exchange protocol (Protocol 9.9), where each
party authenticates its contribution separately to each other party. All parties can then
compute the shared secret exactly as in the Burmester–Desmedt protocol.

Because the above construction allows all instances of the 2-PAKE protocol as
well as the Burmester–Desmedt protocol to run in parallel, the number of rounds is
not increased beyond that of the 2-PAKE protocol (although it must be at least two
to allow the Burmester–Desmedt protocol to complete).

Hao et al. [348] applied their generic construction to achieve two concrete proto-
cols. One is based on SPEKE (Protocol 8.5) and requires only two rounds, while the
second protocol is based on J-PAKE (Protocol 8.8) and uses three rounds. However,
despite this attractive round complexity, the need to run the two-party PAKE proto-
col between all pairs of parties results in high computational cost. Hao et al. [348]
reported on simulations which showed that the protocol was still practical for groups
of modest size. No formal security analysis was provided.

From Group AKE to Group PAKE

An alternative to starting from a two-party PAKE and increasing the number of par-
ties is to start from a group key exchange protocol and replace the long-term keys
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with the shared password. Since many group key exchange protocols use the long-
term keys only for message authentication, the approach can be to replace signatures
with password-based authentication.

Li et al. [485] described such a compiler which adds four rounds to any group
key exchange protocol that is secure against passive adversaries. However, their proof
does require both ideal ciphers and random oracles. Wei et al. [733] used a similar
idea but removed the need for ideal primitives and also improved the result in terms
of computation. Their compiler adds only two rounds to the underlying passively
secure group key exchange protocol.

8.8 Conclusion

Password-based protocols allow users to establish a strong shared session key with
other principals using no secret other than a short string that can be committed to
human memory. Considering their more stringent requirements, it may be expected
that such protocols will be harder to design than authentication and key establish-
ment protocols with full-length keys. However, understanding of password-based
protocols has advanced rapidly since the early 1990s, when it was first realised that
they were possible at all. Today there are many protocols available that have security
assurances and practical performance similar to what can be achieved for protocols
using full-length keys.

In the basic two-party (or client–server) case it seems unlikely that we will find
more efficient protocols than those already known, barring any radical developments.
One such radical development may be the introduction of quantum computers, and it
is noticeable that most concrete protocols rely on some form of Diffie–Hellman as-
sumption. Thus we can expect post-quantum PAKE protocols to be a topic of emerg-
ing interest. In the three-party PAKE and group PAKE scenarios, things look less set-
tled. There may still be opportunities for improvements, particularly when stronger
security models are considered such as those protecting against ephemeral-key leak-
age. If it is desired to achieve security proofs that avoid idealisations such as random
oracles, then there is also a chance that improvements may arise; although efficient
protocols exist with standard-model proofs, they do not usually match the efficiency
of protocol with proofs in idealised models.



9

Group Key Establishment

9.1 Introduction

As electronic communications and information services become more sophisticated,
many applications involving multiple entities become necessary. Since these applica-
tions will generally require secure communications it is necessary to design protocols
that establish keys for groups of principals. There is a great variety of different prac-
tical requirements that may be appropriate in different applications, and the number
of protocols is very large. In this chapter we will mainly restrict attention to ways in
which the two-party protocols that have been explored in previous chapters can be
generalised to the multi-party situation.

Just as with two-party key establishment, different types of protocol are appropri-
ate depending on the application. Applications such as video and audio conferencing
may have very different requirements from other applications such as satellite TV or
Internet video broadcasting. Hardjono and Tsudik [349] discussed the following four
factors that influence the requirements for such protocols.

Application type. A fundamental feature is how many of the parties must be able to
send information. In a corporate teleconference all parties may wish to transmit.
In a satellite broadcast to a large group there is only one sender. There may be
many intermediate cases too.

Group size and dynamics. For small groups it is feasible for all principals to take
part in interactive key establishment; for very large groups it becomes impracti-
cal. Some protocols can easily accommodate addition and deletion of members
or subsets, while for others there may be a significant computation or communi-
cation cost.

Scalability. The efficiency of protocols may vary as the size of the group of users
changes.

Trust model. It is important to define which principals are trusted to generate and
authenticate keys.

Similar properties, as well as a number of typical application scenarios, were con-
sidered by Canetti et al. [177]. Detailed study of these issues is outside the scope of
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this book. However, in certain cases we are able to make some comments regarding
these matters.

The rest of this section discusses the generalisations of the efficiency and security
goals of two-party key establishment that are relevant for multi-party key establish-
ment. In the next section many generalisations of Diffie–Hellman key agreement
are described and analysed. Section 9.3 describes protocols that provide authenti-
cated group key agreement by adding authentication to the generalisations of Diffie–
Hellman key agreement. Section 9.4 looks at identity-based multi-party protocols
while Sect. 9.5 is concerned with some proposals for group key agreement that do
not use Diffie–Hellman as a basis. We then look at multi-party key transport proto-
cols in Sect. 9.6, including the important idea known as logical key hierarchy.

9.1.1 Efficiency in Group Key Establishment

Efficiency in group key establishment protocols can be measured in the same way as
for two-party protocols, taking into account communications, computation and stor-
age requirements (see Sect. 1.5.12). However, some aspects take more prominence
in the group setting.

Number of rounds. Recall that one round (Definition 25) contains messages that
can be communicated simultaneously. The number of rounds is often deemed
important in the two-party case, but in the multi-party case a particularly signif-
icant property is whether the number of protocol rounds is independent of the
number of principals. This is not the case for all protocols.

Efficiency for different principals. Two-party protocols typically impose the same
efficiency demands on both of the principals involved, even if they use a third-
party server which has different demands. Group key establishment protocols
have a variety of different stuctures. Sometimes there is one principal which
takes on a special role, sometimes called a group controller, which takes on a
higher load. Sometimes there is a hierarchy of principal roles, each of which has
a different load. This diversity can complicate comparison of different protocol
efficiencies.

Broadcast messages. Often some protocol messages need to be sent to all of the
protocol principals. In some communications environments, such as wireless
communications, broadcast of messages to all involved parties may be no more
costly than sending to a single party. Therefore when comparing group key es-
tablishment protocols, broadcast and point-to-point messages are sometimes dif-
ferentiated.

9.1.2 Generalised Security Goals

Before discussing some of the different types of group key establishment protocols
we first consider how the basic definitions for key establishment can be extended to
multi-party protocols. The informal definition of a good shared key given in Chap. 2
can be generalised to a good group key as follows.
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Definition 36. The shared session key is a good key for principal Ui to use with the
set of principals U only if Ui has assurance that:

• the key is fresh (key freshness);
• the key is known only to principals in U (key authentication).

If the group is large it may be too expensive, in terms of both communications and
computation, for each principal to receive and verify authentication information from
all other group members. Instead many protocols simply allow each group member
to implicitly authenticate the key with respect to only one other group member. In a
multi-party key transport protocol it is natural for the principal distributing the key to
provide key authentication. In a multi-party key agreement protocol group members
communicate with each other in some systematic way. For example, members are
often arranged in a logical ring and each principal’s key input can be authenticated
to the ‘next’ member. This may be regarded as a weaker form of authentication since
each principal is relying on every other group member to check the authenticity for
the whole group.

Generalisations of enhanced protocol properties can be tricky. We consider in
particular the important property of key confirmation. The potential problems are
illustrated by considering the definition given in the Handbook of Applied Cryptog-
raphy [550] which was discussed in Chap. 2.

Key confirmation is the property whereby one party is assured that a second
(possibly unidentified) party actually has possession of a particular secret
key.

For a two-party protocol this definition is useful: if A knows that the key is good for
use with B, and that a different entity has the key, then A knows that B must have
the key. But in a group it may be of quite limited use to know only that some other
member of the set of principals has the key.

Saeednia and Safavi-Naini [642] suggested that every principal should be sure
that either the same key is shared with all other principals or that no two principals
share the same key. In particular they considered that a situation in which a session
key is established by a subset of the intended set of principals, but which is not known
to other members of the set, is a major threat. In contrast Ateniese et al. [41, 42]
noted that key confirmation for all users requires ‘at the very least, one round of
simultaneous broadcasts’, implying that it may be too costly to justify.

Instead of making a judgement on whether or not group key establishment pro-
tocols ought to provide key confirmation we simply generalise our definition from
Chap. 2 so that we can examine which protocols provide the property.

Definition 37. Let U be a set of principals with Ui,U j ∈ U. Key confirmation of U j
to Ui is provided if Ui has assurance that a key K is a good key to communicate with
every principal in U, and principal U j has received K. Complete key confirmation is
provided to Ui if key confirmation of U j is provided to Ui for all U j ∈ U\{Ui}.
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A possible additional security goal for group key establishment is that of reusing
keying material to derive independent keys for subsets of the original group of par-
ties. Manulis [516] considered the problem of extracting pairwise keys by reusing
the ephemeral keys in group key exchange protocols. Later, together with Abdalla et
al. [15], this idea was extended to allow keys to be derived for any subgroup. The
potential advantage of this approach, compared with running a separate protocol, is
that both computation and communication can be saved. Indeed in the solution of
Abdalla et al. [15], independent pairwise keys can be derived without further inter-
action. They provided security models combining the aims of securing the full group
protocol and securing the subgroup keys.

9.1.3 Static and Dynamic Groups

After a multi-party key has been established between a group of principals it may
be desired either to add principals to the group or to remove principals from it. Of
course this may be done by simply restarting the protocol to establish a new key
for the modified group. However, this may be inconvenient, especially if the group
is large or the full protocol is computationally expensive. Therefore many group key
establishment protocols have been designed, or optimised, in order to allow members
to be easily added or removed.

Notice that this issue does not apply to key establishment protocols between two
principals and so we have a new way to classify protocols as catering for either static
groups, in which the group members are fixed, or dynamic groups, in which the
group members can change. Protocols for dynamic groups include sub-protocols for
joining and removing of principals. They may also include sub-protocols for merging
two groups together or partitioning a group into subgroups.

New security goals may also be required for dynamic groups. Kim et al. [431,
432] defined three new properties that may be applicable.

Forward secrecy. An adversary who knows a set of group keys cannot derive any
subsequent group key. (This is an unfortunate conflict with the more usual mean-
ing of the term forward secrecy.)

Backward secrecy. An adversary who knows a set of group keys cannot find any
earlier group key.

Key independence. An adversary who knows any set of group keys cannot find any
other group key.

The motivation for forward secrecy (in this sense) is that any group member who
leaves the group should not be able to learn any new group keys after leaving. Sim-
ilarly, backward secrecy ensures that new group members cannot learn old group
keys. Key independence is the strongest of the three properties, and implies the other
two.

In this chapter we will concentrate mainly on static groups, generalising the pro-
tocols in earlier chapters. However, we will mention extensions to dynamic group
protocols in many cases.
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9.1.4 Insider Attacks

In the analysis of either two-party or multi-party key establishment, we usually as-
sume that the adversary has the ability to corrupt and then masquerade as a legitimate
party. Simply by running the normal protocol, the adversary could obtain the session
key in any run in which it was involved. This shows that we cannot expect to de-
fend against attacks on the session key from such a powerful adversary. However,
other attacks may be defendable. Attacks against key confirmation, which we looked
at above, form one kind of example. A number of other insider attacks have been
identified as relevant.

Mutual Authentication

Katz and Shin [415] were the first to formalise the notion of insider security for
group key establishment. They observed that protocols secure in the sense of key
indistinguishability in the usual group setting can still be insecure with regard to two
specific attacks. They called these agreement, which is essentially the same as key
confirmation, and impersonation, in which the adversary attempts to confuse legiti-
mate users about the identities of the protocol participants. Katz and Shin performed
their analysis in the universal composability model and defined an ideal functionality
capturing insider attacks. They defined a compiler which takes any protocol which
is secure against attacks on the session key and turns it into one secure according to
their functionality. The compiler adds messages from each party to sign an acknowl-
edgement value related to the agreed key. Bresson and Manulis [156] later defined
a stronger notion of insider security by allowing the adversary to obtain ephemeral
secrets. Their security analysis is in the more popular game-based setting.

Key Compromise Impersonation

While forward secrecy has long been accepted as a valuable property for group key
establishment, it was not until relatively recently that the related property of resis-
tance to key compromise impersonation was studied. KCI occurs when the adversary
obtains the long-term key of Alice and then misleads her regarding the identities of
the other group members involved in a protocol run.

One reason for the delayed interest is that is seems harder to find scenarios in
which KCI attacks may be relevant. Gorantla et al. [330] suggested a situation where
a server, whose long-term key is compromised, will have difficulty to identify an
intruder if that intruder masquerades as different group members each time the in-
truder authenticates. In any case, applying the principle that we should always give
the adversary as much power as possible we should allow the possibility of such an
attack and defend against it if possible.

Contributiveness

We discussed the notion of key control for two-party key exchange in Sect. 5.1.2.
Naturally such properties can be considered in group key establishment protocols
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too. Pieprzyk and Wang [615] showed that many well-known key establishment pro-
tocols do not restrict key control. Later Bresson and Manulis [155] formalised con-
tributiveness as a property which prevents key control by insider adversaries. While
they argued that earlier models do not capture contributiveness, they provided a com-
piler based on adding signatures similar to that of Katz and Shin.

Robustness

A multi-party protocol is arguably more vulnerable than a two-party protocol to dis-
ruption from participants who aim to prevent others from completing the protocol
successfully. Guaranteeing protection from such attacks cannot be achieved in our
typical models in which the adversary completely controls the network and can sim-
ply block or alter all messages so that no subset of participants ever completes the
protocol successfully. Desmedt et al. [245] assumed the notion of a reliable broad-
cast channel in order to design a protocol providing robustness against insider ad-
versaries. The reliable broadcast channel guarantees that messages are sent correctly
to all protocol principals. Even with such an assumption, robust protocols seem to
require much more complexity than protocols without such a property. The protocol
of Klein et al. described in Sect. 9.3.2 is an example of a protocol designed to be
robust, but we do not focus on such protocols in this chapter.

9.1.5 Notation

The notation used in this chapter is shown in Table 9.1. Because many group key es-
tablishment protocols are based on generalisations of Diffie–Hellman key exchange
there is much similarity with the notation used in Chap. 5.

The Diffie–Hellman type protocols run in some suitable group G. For the purpose
of describing protocols we usually assume that G is a subgroup of Z∗p, but often G
can be more general, for example an elliptic curve group. We differentiate between
the set of all principals U who may participate in different protcol runs, and the set
of principals P who take part in a specific protocol run. In formal models P is often
called the partner identifier set and is a variable recorded by each user.

9.2 Generalising Diffie–Hellman Key Agreement

There are different ways that the basic Diffie–Hellman two-party key agreement can
be generalised to a multi-party protocol. In this section we will look at several of the
natural ways to do this without considering how to use them to provide authenticated
key agreement. In Sect. 9.3 we explore different ways that these protocols can be
incorporated into group protocols to provide establishment of good keys.
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Table 9.1: Notation for group key establishment protocols

p A large prime (usually at least 1024 bits).

q A prime with q|p−1.

G The (algebraic) group in which the protocol runs. Common examples are a
subgroup of Z∗p or an elliptic curve group. G is often of order q.

g A generator of G.

U The set of all principals that may run the protocol.

P The set of principals in the group intended to share the session key.

m The size (cardinality) of P.

Ui The i’th principal in P, where 1≤ i≤ m.

Pi The set of principals with which Ui intends to share the session key.

ri Random integer, typically of the same size as the order of G, chosen by Ui.

ti The value gri . All computations take place in Zp.

xi The private long-term keys of Ui.

yi The public key of Ui, the value gxi . These public keys will have to be certified
in some standard way which we do not consider here.

Z The shared secret calculated by the principals.

K The shared session key.

H(.) A one-way hash function. Certain protocols may require specific properties
and may specify particular functions.

9.2.1 Ingemarsson–Tang–Wong Key Agreement

Ingemarsson et al. [374] considered a model in which principals are connected in
a ring, so that principal Ui receives messages only from Ui−1 and sends messages
only to Ui+1. To enable a general description we allow any index i but Ui and U j
are the same principal when i≡ j mod m. Ingemarsson et al. described a number of
Diffie–Hellman generalisations based on the idea of symmetric functions.

Definition 38. The j’th symmetric function on the set S = {r1, . . . ,rm} is denoted S( j)

and consists of the sum of all possible products of j distinct elements of S.

For example, if m = 3 then S(1) = r1 + r2 + r3, S(2) = r1r2 + r1r3 + r2r3 and
S(3) = r1r2r3. Ingemarsson et al. showed that protocols exist in which the shared key
is gS( j)

for any j with 1 ≤ j ≤ m. However, they pointed out that all these protocols
are insecure against a passive adversary who can tap the communications channels
between the principals, except for the case j = m, which also turns out to be the case
that minimises the computations required for each principal. (More precisely they
considered how many of the communications channels need to be tapped in order for
the eavesdropper to find the shared key in each case.)
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Ui−1 Ui Ui+1

ri−1 ∈R Zq ri ∈R Zq ri+1 ∈R Zq
gri−1

−−−−−−−→ gri

−−−−−−−→
gri−1ri−2

−−−−−−−→ griri−1

−−−−−−−→
...

...
gri−1ri−2...ri−(m−1)

−−−−−−−→ griri−1...ri−(m−2)

−−−−−−−→

Z = (gri−1ri−2...ri−(m−1))ri

Protocol 9.1: Ingemarsson–Tang–Wong generalised Diffie–Hellman protocol

Protocol 9.1 shows the message flows between principals Ui−1, Ui and Ui+1 for
the case j = m. In the first round, principal U1 sends gr1 to U2, principal U2 sends gr2

to U3, and so on. In the second round principal U1 sends gr1rm to U2, U2 sends gr1r2 to
U3, and so on. At the end of m−1 rounds, principal Ui is able to calculate the shared
secret Z = gr1r2...rm by raising the final received message to its exponent ri.

Of interest in all such protocols is the amount of communication and computa-
tion required for each principal, as well as the number of rounds required. In this
case each principal must calculate m exponentiations, and send and receive m− 1
messages. As explained above, m−1 rounds are required.

9.2.2 Steiner–Tsudik–Waidner Key Agreement

Steiner et al. [692] proposed three protocols, named GDH.1, GDH.2 and GDH.3,
which can be regarded as variations of Protocol 9.1. Indeed, in each of their proto-
cols the same key as that of Protocol 9.1 is derived by the principals from the same
set of messages. The differences between all these protocols lie in where the compu-
tation is done and which messages are communicated. This leads to a flexible set of
protocols that can be adapted to a variety of applications depending on the priorities
in optimising communications or computational requirements.

The two phases of GDH.1 are shown in Protocol 9.2; messages travel in opposite
directions along the line in the two phases. During the first phase values are collected
up by the principals. Principal U1 initially sends gr1 to U2. Then U2 raises the received
value to its secret r2 and adds this to the received message to form the message sent
to U3. A similar pattern is followed by every other principal. At the end of the first
phase principal Um is able to calculate the shared secret Z = gr1r2...rm . In the second
phase principal Um starts sending messages in the opposite direction. The message
sent by Um to Um−1 is grm ,gr1rm ,gr1r2rm , . . . ,gr1r2...rm−2rm . Principal Um−1 now starts
the general pattern by using the last part of the message to form Z by raising it to its
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own random value rm−1, removing it from the message, then raising the remaining
m−2 parts of the message to its secret rm−1 before sending it to Um−2.

Ui−1 Ui Ui+1

Phase 1:
gr1 ,gr1r2 , . . . ,gr1r2...ri−1

−−−−−−−−−−−−−−−−→ ri ∈R Zq
gr1 ,gr1r2 , . . . ,gr1r2...ri

−−−−−−−−−−−−−−−−→
Phase 2:

hi+1 = gri+1ri+2...rm ,

hr1
i+1,h

r1r2
i+1 , . . . ,h

r1r2...ri−1
i+1←−−−−−−−−−−−−−−−−

hi = griri+1...rm , Z = (hr1r2...ri−1
i+1 )ri

hr1
i ,hr1r2

i , . . . ,hr1r2...ri−2
i←−−−−−−−−−−−−−−−−

Protocol 9.2: Steiner–Tsudik–Waidner GDH.1 protocol

In comparison with Protocol 9.1, GDH.1 reduces the average amount of compu-
tation required per principal. At the same time it takes twice the number of rounds;
in GDH.1 no message can be sent until the previous message has been received,
whereas in Protocol 9.1 many of the messages can be sent in parallel. In the next ver-
sion of their protocol,1 GHD.2, Steiner et al. reduced the number of rounds required
by gathering together more partial calculations in the first phase and replacing the
second phase with a single broadcast message from principal Um.

Protocol 9.3 shows the messages in the GDH.2 protocol. In the first phase Ui
receives i values from Ui−1; one of these values is the principal value pi−1, while
the remaining i− 1 values consist of pi−1 with one of the exponents r1,r2, . . . ,ri−1
‘missing’. Initially U1 starts Phase 1 by sending gr1 and g to U2. The notation used in
Protocol 9.3 is not intended to indicate how these values are calculated: the inverted
exponents are written only to conveniently summarise the values sent. On receiving
its message, Ui raises all received values to its exponent ri to form i new message
components and also includes the principal value pi−1 in the message sent on to
Ui+1.

The second phase of GDH.2 consists of a single message broadcast by Um, which
includes all the partial calculations necessary for every other Ui to find Z with a single
exponentiation using ri. On receiving the final message in the first phase, Um can
calculate the shared secret from the principal value pm−1 as Z = prm

m−1 = gr1r2...rm .
The final broadcast message can be calculated by Um by raising each of the other
m−1 components of its received message to its secret exponent rm.

1 This protocol is also known as IKA.1 in later papers of these authors [693].
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Ui−1 Ui Ui+1

Phase 1:
pi−1 = gr1r2...ri−1 ,

pr−1
1

i−1, pr−1
2

i−1, . . . , p
r−1

i−1
i−1−−−−−−−−−−−−−−−−→

ri ∈R Zq

pi = gr1r2...ri ,

pr−1
1

i , pr−1
2

i , . . . , pr−1
i

i−−−−−−−−−−−−−−−−→
Phase 2:

Um calculates Z = prm
m−1

Um broadcasts Zr−1
1 ,Zr−1

2 , . . . ,Zr−1
m

Ui calculates Z = (Zr−1
i )ri

Protocol 9.3: Steiner–Tsudik–Waidner GDH.2 protocol

Steiner et al. proposed another variant protocol designed to minimise the average
computation required for each principal. This protocol2, GDH.3, has four phases.

Phase 1. Partial information is generated by the first m−1 principals.
Phase 2. Principal Um−1 broadcasts gr1r2...rm−1 = Zr−1

m .
Phase 3. Each of the principals U1,U2, . . . ,Um−1 ‘removes’ its exponent from the

broadcast information and sends the result to principal Um to add the final expo-
nent to these partial values.

Phase 4. Principal Um applies its exponent rm to all the received partial calculations
and broadcasts the results. This allows each principal to find Z by applying its
exponent to the correct partial value.

Protocol 9.4 summarises the message flows for GDH.3. Again, the notation in
Protocol 9.4 is not intended to imply that any inversion of exponents is actually
calculated. In Sect. 9.2.9 below the relative features of each of the GDH variants are
compared, together with other generalised Diffie–Hellman protocols.

Protocols GDH.2 and GDH.3 are well suited for dynamic groups. Steiner et al.
provided explicit protocols for adding and deleting group members after the initial
key has been agreed. The idea is to reuse most of the keying material from the initial
protocol run, but one principal must renew its random value. The introduction of a
fresh random exponent makes the new and old keys independent so that any added
principal cannot find the initial key and a removed principal cannot find the new key.
Steiner et al. also provided a protocol for many principals to join the group together.

In the original paper [692] the protocols for addition and deletion of group mem-
bers required principal Um to choose a new random input and update the previous

2 Also known as IKA.2 [693].
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Phase 1. (for i < m−1)

Ui−1 Ui Ui+1
gr1r2...ri−1

−−−−−−−→
ri ∈R Zq

gr1r2...ri

−−−−−−−→
Phase 2.

Um−1 broadcasts Z′ = gr1r2...rm−1

Phase 3.
Ui Um

(Z′)r−1
i

−−−−−−−−−−−−−−−−→
Phase 4.

Um calculates Z = (Z′)rm

Um broadcasts Zr−1
1 ,Zr−1

2 , . . . ,Zr−1
m−1

Ui calculates Z = (Zr−1
i )ri

Protocol 9.4: Steiner–Tsudik–Waidner GDH.3 protocol

values, but later Steiner et al. [693] pointed out that any principal can act as a group
controller responsible for this. The protocols for adding and deleting principals are
essentially identical for both GDH.2 and GDH.3. In order to add a member the group
controller must refresh the message just before the final broadcast message using a
new random exponent. Then the added principal sends a new broadcast message and
all other principals calculate the new key in the same way as in the final phase of the
protocols. In the protocol for removal of a member the group controller broadcasts
a new message for the final phase which excludes the component intended for the
member to be removed.

9.2.3 Steer–Strawczynski–Diffie–Wiener Key Agreement

The generalised Diffie–Hellman key agreement protocol proposed by Steer et al.
[688] was designed for use in a secure audio teleconference. In their description the
messages between the principals are broadcast to all principals. However, not all
messages are required by all principals and in our description principals are arranged
in a linear fashion. Following the pattern of Protocol 9.2 there are two phases in
which messages flow in opposite directions. The shared secret Z has the following
value, but is calculated in a different way by each principal.

Z = grm(grm−1(g
...(g

r1r2 )
)).
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Ui−1 Ui Ui+1

Phase 1.

ri ∈R Zq
ti+1, ti+2, . . . , tm←−−−−−−−

ti, ti+1, . . . , tm←−−−−−−− ti = gri

Phase 2.
wi−1−−−−−−−→

vi = wri
i−1

wi = gvi

Z = t
(t(...

(t
vi
i+1))

m−1 )
m

wi−−−−−−−→

Protocol 9.5: Steer–Strawczynski–Diffie–Wiener generalised Diffie–Hellman proto-
col

Protocol 9.5 shows the messages flowing to and from a typical principal Ui to-
gether with the computations made by Ui. Principal U1 is able to calculate Z imme-
diately once Phase 1 is complete as follows:

Z = t
(t(...

(t
r1
2 )

)
m−1 )

m .

To start Phase 2 principal U1 sets w1 = t1 and sends this to U2 who can now
calculate Z. Notice that the principals at the right hand end of the sequence use
fewer computations than those at the left hand end. Principals U1 and U2 both use
m exponentiations, but the number of exponentiations required decreases by one as i
increases by one. Principal Um requires only two exponentiations: one in Phase 1 and
one in Phase 2 to find Z = vrm

m−1. As compared with Protocol 9.1 the increase in the
average number of computations is accompanied by a large decrease in the number
of messages that are sent. In Protocol 9.5 each principal sends and receives only two
messages (except for the end points which send and receive only one).

Computation of Z in Protocol 9.5 uses elements of G as exponents, but such
exponents should be in Zq. A mapping from G to Zq is easily defined if G = Z∗p,
but in general there is no efficient mapping known. Therefore implementation of
Protocol 9.5 in elliptic curve groups is not staightforward.

9.2.4 Kim–Perrig–Tsudik Tree Diffie–Hellman

Perrig [611] originally designed a key agreement protocol in which principals
are considered as leaves in a binary tree structure. Later, together with Kim and
Tsudik [431, 432] he considered this form of tree-based key agreement in much
more detail. In particular they showed that this protocol is very suitable when the
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composition of the group is changed without restarting the whole protocol. They
show that protocols designed to add or remove either single principals or groups can
be performed efficiently by restructuring the tree of keys.

In the basic protocol a secret is agreed between each pair of sibling nodes of
depth j. This secret is known to all principals at leaves that are children of those
nodes. This continues until a secret is agreed between the two nodes that are the
children of the root node, and this key is the group shared secret. In comparison with
the previous protocols we have looked at, an advantage of the tree-based protocol is
that the number of rounds required is only logarithmic in the number of principals.

U1

Z1,1 =

gr1r2

U2 U3 U4

Z1,2 =

gr3r4

Z2,1 =

gZ1,1Z1,2

Fig. 9.1: Kim–Perrig–Tsudik tree Diffie–Hellman protocol with four principals

Figure 9.1 illustrates the protocol for the case of four principals. We assume that
there are m = 2d principals involved. The description below works equally well in
general with d = dlog2 me and letting ri = 1 for m < i ≤ 2d . We denote by Z j,k the
k’th key shared during round j. A mapping from G to Zq is required in order to
compute Z2,1 (see discussion in Sect. 9.2.8).

In general there are d rounds as shown in Protocol 9.6. During the first round
each pair of sibling leaves shares a standard Diffie–Hellman secret. Conceptually we
place each shared secret at the node of depth d− 1 that is the parent node of the
two leaves (principals) that share it. During round 2 one of the principals from the
pair that share Z1,k calculates and broadcasts gZ1,k ; both principals also receive gZ1,k′

where Z1,k′ is the sibling node of Z1,k and thus both can calculate Z2,k′′ at the parent
node of Z1,k and Z1,k′ . During round i the two sets of principals who share keys at
sibling nodes of depth d− i+ 1 generate a Diffie–Hellman key by using these keys
as the input to the Diffie–Hellman protocol.

At the end of round d the shared secret Z = Zd,1 is calculated by each of the
principals as the root of the tree. Each principal can calculate the key for every node
between its leaf and the root of the tree. In round i one principal must be nominated to
broadcast gK , for each key K at depth d− i, to ensure that all principals can calculate
the key for the next round. We may regard this large number of broadcast messages
as the price to be paid for the reduced number of rounds.
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Round 1
Z1,1 = gr1r2

Z1,2 = gr3r4

...
Z1,2d−1 = grm−1rm

Round 2
Z2,1 = gZ1,1Z1,2

Z2,2 = gZ1,3Z1,4

...
Z2,2d−2 = gZ(1,2d−1−1)Z(1,2d−1)

Round d
Zd,1 = gZ(d−1,1)Z(d−1,2)

Protocol 9.6: Kim–Perrig–Tsudik tree Diffie–Hellman protocol

Bresson and Manulis [156] proposed a variant of Protocol 9.6 in which the tree,
rather than being balanced as in Fig. 9.1, is maximally unbalanced. That is, each
internal node has one child node which is a leaf. The advantage of this change is
that the protocol can be completed in two rounds. A possible disadvantage is that all
principals have varying computational requirements; indeed the average computation
per principal is higher than when using the balanced binary tree. Protocol 9.7 shows
how this works.

In the first round each principal Ui chooses a Diffie–Hellman ephemeral value
ri and broadcasts the public key ti = gri . In the second round U1 at a node with
maximal depth computes all values Z2,Z3, . . . up to the root of the tree Zm = Z.
With knowledge of r1, U1 computes Z2 = (t2)r1 and Z j = (t j)

Z j−1 for j > 2. Then
U1 broadcasts the public keys gZ2 ,gZ3 , . . . ,gZm−1 corresponding to the internal nodes.
Now every other principal Ui, i > 1, can compute the root of the tree starting from
Zi = (gZi−1)ri (where we write Z1 for r1). The root of the tree, Z, is the shared secret.

9.2.5 Becker and Wille’s Octopus Protocol

Becker and Wille [66] proposed their ‘Octopus’ protocol in order to provide an ex-
ample that minimises the number of simultaneous message exchanges between prin-
cipals. An exchange between two principals can include a pair of messages, one in
either direction. We will discuss this matter further in Sect. 9.2.9. A building block
for the Octopus protocol is the four-party key agreement shown as Protocol 9.8. The
resulting shared secret is the same as in Perrig’s four-party protocol in Fig. 9.1.

However, the number of exchanges required is reduced (to four) due to the man-
ner in which the key is derived. Firstly U1 and U2 exchange Diffie–Hellman messages
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U1 with
secret r1 = Z1

Z2 =

gr1r2

U2 with
secret r2

U3 with
secret r3

Um with
secret rm

Z3 =

gZ2r3

Z =

gZm−1rm

Protocol 9.7: Bresson–Manulis tree Diffie–Hellman protocol

to obtain the shared key Z12, while U3 and U4 similarly obtain Z34. Then U1 and U3
use these keys as inputs to a further Diffie–Hellman exchange so that both can obtain
the shared secret gZ12Z34 , while U2 and U4 do the same. As with Protocols 9.5, 9.6
and 9.7, a mapping is needed to take Z12 and Z34, elements of G, to elements of Zq.
Becker and Wille described such a mapping, but we omit it from our descriptions.

To set up the Octopus protocol the principals are partitioned into four subgroups
of as near equal size as possible (this is a four-legged Octopus, but Becker and Wille
also proposed a version with 2d legs). Each group has a distinguished member, the
subgroup controller, who manages the protocol for that subgroup. There are three
phases in the Octopus protocol.

Phase 1. Each subgroup controller runs a Diffie–Hellman exchange individually
with each of its group members. Let us denote the secret shared with the j’th
member of the i’th subgroup as Zi, j.

Phase 2. The four subgroup controllers run the basic protocol (Protocol 9.8) with
each controller using as input the product of all the keys agreed with members
of its subgroup: ri = ∏ j Zi, j. Thus controller U1 first agrees Z12 = g∏Z1, j ∏Z2, j

with controller U2. Then U1 sends gZ12 to controller U3 and receives gZ34 from
U3. This process allows each subgroup controller to calculate the group shared
secret:

Z = g(g
∏Z1, j ∏Z2, j )(g∏Z3, j ∏Z4, j ). (9.1)
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U3

U1

U4

U2

Z12 = gr1r2

Z34 = gr3r4

Z = gZ12Z34 Z = gZ12Z34

Protocol 9.8: Basic Octopus protocol with four principals

Phase 3. Each subgroup controller sends each member of its subgroup two values,
which consist of its two inputs to the last step in Phase 2 except that the se-
cret it shared with that principal during Phase 1 is missing from the exponent.
For example, suppose subgroup controller U1 shared secret Z1,k with one of its
subgroup members in Phase 1. Then U1 sends to that principal the two values
g∏ j 6=k Z1, j ∏Z2, j and g(g

∏Z3, j ∏Z4, j ). From these values the principal can first re-
construct g∏Z1, j ∏Z2, j using Z1,k and then the group shared secret Z shown in
Eqn. 9.1.

The number of message exchanges required in the Octopus protocol is m−4 during
each of Phases 1 and 3, and four during Phase 2, making a total of 2m− 4. The
exchanges in Phases 1 and 2 include two messages each, while those in Phase 3
consist of only one message. Thus in total there are 3m−4 messages sent.

9.2.6 Burmester–Desmedt Key Agreement

The protocol of Burmester and Desmedt [168] uses an ingenious method to obtain
efficiency both in the number of messages sent per user and in the amount of com-
putation required. Instead of using a symmetric function to define the shared key, as
in Protocol 9.1, Burmester–Desmedt key agreement uses a cyclic function. Protocol
principals are arranged in a ring so that U1 =Um+1. The protocol is simplest to under-
stand in the version that allows broadcast communications; below we also describe
how it can be implemented using communication only between adjacent users in the
ring. There are two phases in this broadcast version as shown in Protocol 9.9.
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Ui−1 Ui Ui+1

Phase 1:
ri ∈R Zq

ti←−−−−−−− ti = gri
ti−−−−−−−→

Xi = (ti+1/ti−1)
ri

Zi−1,i = tri
i−1

Phase 2:
Principal Ui broadcasts Xi to all other parties.

Ui calculates Z = (Zi−1,i)
mXm−1

i Xm−2
i+1 . . .Xi−2.

Protocol 9.9: Burmester–Desmedt generalised Diffie–Hellman protocol with broad-
casts

During Phase 1 each adjacent pair of users, Ui and Ui+1, performs a basic Diffie–
Hellman key exchange. However, instead of calculating the individual secrets, prin-
cipal Ui calculates the ratio, Xi, of its two secrets with adjacent principals. In Phase
2 each principal broadcasts its Xi value. Once all principals have broadcast their val-
ues, every principal can calculate the shared secret. The following calculation shows
that all principals calculate the same shared secret if all principals act correctly.

Z = (Zi−1,i)
m ·Xm−1

i ·Xm−2
i+1 · . . . ·Xi−2

= (Zi−1,i)
m
(

Zi,i+1

Zi−1,i

)m−1(Zi+1,i+2

Zi,i+1

)m−2

. . .

(
Zi−2,i−1

Zi−3,i−2

)
= Zi−1,i ·Zi,i+1 ·Zi+1,i+2 · . . . ·Zi−2,i−1

= gr1r2+r2r3+...+rmr1 .

Katz and Yung [419] gave a security proof for Protocol 9.9 in a model where the
adversary is passive. The adversary is able to observe protocol runs, and to reveal
non-target session keys and corrupt parties not involved in the target session. Their
security proof relies on the difficulty of the decision Diffie–Hellman problem. Katz
and Yung used this as the main example for their compiler to construct an authenti-
cated group key agreement protocol (see Sect. 9.3.5). Burmester and Desmedt [170]
provided their own security proof in the same model as Katz and Yung defined, but
assuming different variants of the Diffie–Hellman problem.

Just and Vaudenay [407] have pointed out that the Burmester–Desmedt protocol
can be generalised in two ways. Firstly, the keys shared between the adjacent prin-
cipals, the Zi,i+1 values, can be found using any key agreement protocol. Secondly,
there are alternative ways to combine these shared keys. One example is to choose
Xi = Zi,i+1−Zi−1,i and then define the shared secret as follows.
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Z = mZi−1,i +(m−1)Xi +(m−2)Xi+1 + . . .+Xi−2

= Z1,2 +Z2,3 + . . .+Zm,1.

Horng [363] designed a protocol closely related to Protocol 9.9 but with the prin-
cipals arranged in a logical line rather than in a ring. The shared secret is also subtly
different from that of Protocol 9.9, including only the adjacent exponent pairs on the
line: Z = gr1r2+r2r3+...+rm−1rm . The method for calculating the shared secret depends
on where the principal stands in the line, but it is more efficient than Protocol 9.9,
especially if the number of principals is large. Horng showed that any passive attack
on the protocol that can distinguish Z from a random string is as hard as the decision
Diffie–Hellman problem.

Since broadcast messages can be expensive in some communications networks,
Burmester and Desmedt also proposed a protocol version that uses only communi-
cation between adjacent principals. The basic idea of the protocol is unchanged, but
the calculations are distributed between different principals, reducing the computa-
tion required for each principal. There are three phases in this pairwise version as
shown in Protocol 9.10.

Ui−1 Ui Ui+1

Phase 1:
ri ∈R Zq

ti←−−−−−−− ti = gri
ti−−−−−−−→

Xi = (ti+1/ti−1)
ri

Zi−1,i = tri
i−1

Phase 2:
bi−1,ci−1−−−−−−−→ bi = Xibi−1

ci = bi−1ci−1
bi,ci−−−−−−−→

Phase 3:
di−1−−−−−−−→ di = di−1/Xm

i

Z = di−1 ·Zm
i−1,i

di−−−−−−−→

Protocol 9.10: Burmester–Desmedt pairwise generalised Diffie–Hellman protocol

Phase 1 in Protocol 9.10 is the same as in the broadcast version of the protocol
described above. After this phase each principal knows the secrets shared with each
adjacent principal. The purpose of Phase 2 is to distribute the computation of the
shared secret amongst all principals. This phase requires m rounds starting from U1
with b0 = c0 = 1. Alternatively, any one principal could gather all the Xi values and
do all the computation for this phase on behalf of the other principals.



9.2 Generalising Diffie–Hellman Key Agreement 407

When Phase 2 is complete, U1 has received the value cm =Xm−1
1 ·Xm−2

2 · . . . ·Xm−1
from Um and sets this value to d0. In the final phase each principal can calculate the
shared secret Z and also calculates the di value to be sent on to the next principal.
For example, U1 calculates Z = d0 ·Zm

0,1 and sends d1 = d0/Xm
1 on to U2. It follows

from the equality X1 = X2 ·X3 · . . . ·Xm that d1 = Xm−1
2 ·Xm−2

3 · . . . ·Xm so that U2
can calculate Z in a similar way. Notice that all the messages passed between the
principals can be calculated from the public Xi values, which are available to an
eavesdropper in the broadcast protocol version.

9.2.7 One-Round Tripartite and Multi-Party Diffie–Hellman

All the Diffie–Hellman generalisations described so far require at least two rounds
to complete. Later we will see that there are group key agreement protocols that can
be run in one round, but they do not achieve forward secrecy. The protocol of Joux
[402] is the only example currently known of a group key agreement protocol that
can be run in a single round and still provide forward secrecy; however, the protocol
can only work with three parties.

Joux’s protocol works in elliptic curve groups and exploits properties known
as pairings of group points. An overview of elliptic curve pairings is given in
Sect. 7.1.2.

If g generates a suitable pairing group then the three protocol parties, A, B and C,
each choose a random exponent and broadcast gxA , gxB and gxC to the other parties.
Using the bilinear property of pairings, it is possible for any of the principals to
calculate the shared secret Z = gxAxBxC because:

ê(gxB ,gxC)xA = ê(gxA ,gxC)xB = ê(gxA ,gxB)xC = ê(g,g)xAxBxC .

The security of Joux’s protocol is based on the difficulty of the decision bilin-
ear Diffie–Hellman problem. We examine proposals for authenticated versions in
Sect. 9.3.7.

Boneh and Silverberg [125] observed that the existence of cryptographically
strong multilinear maps, extending the bilinear maps provided by pairings, would
allow one-round key agreement for any number of users. Recently some candidates
for such maps have been proposed in the literature [291] but at the time of writing it
seems fair to say that the security of such constructions is not settled [201].

9.2.8 Security of Generalised Diffie–Hellman

Because we have considered only protocols without authentication in this section,
none of these protocols can provide security against an active adversary. However,
for many of the protocols in this section it is possible to relate their security to that
of two-party Diffie–Hellman key exchange. Since the Diffie–Hellman problem has
resisted all challenges for over 35 years this is as good a security property as we can
hope for.
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Definition 39. Suppose that n protocol principals each choose respective random
inputs r1,r2, . . . ,rn and derive the shared secret Z = gr1r2...rn . The n-party Diffie–
Hellman problem is to find Z given all elements of the set {gΠ(S)|S⊂{r1,r2, . . . ,rn}}.

Steiner et al. [692] gave a formal proof that the n-party decision Diffie–Hellman
problem problem is hard if the original two-party version is hard. This gives as-
surance that if the adversary is able to distinguish between a random value and the
shared secret, given the public values, then the adversary can also solve the two-party
DDH problem. However, as emphasised later by Steiner [689, page 56], the tightness
of that reduction between these two problems decreases exponentially with n. Bres-
son et al. [151] gave a tighter proof for the special cases relevant for their proofs,
discussed in Sect. 9.3.3.

Proofs of security seem more difficult when the shared secret is defined through
‘recursive’ use of Diffie–Hellman, because the output does not lie in the same al-
gebraic group as the input. However, if we work in a group G which is a special
subgroup of Z∗p then there exists an efficient bijection from the group G generated
by g to Zq; this mapping is invoked when moving the outputs of a Diffie–Hellman
protocol in G to the inputs in Zq.

Kim et al. [431, 432] considered the tree group Diffie–Hellman (TGDH) prob-
lem in a such a group G. They showed that the decisional TGDH problem is no
more than a polynomial factor harder to break than the DDH problem. Bresson and
Manulis [156] performed a related but more general anlaysis. Similarly Becker and
Wille [66], in their description of the Octopus protocol (Protocol 9.8), prove that if
ordinary Diffie–Hellman is secure then so is the Octopus protocol.

9.2.9 Efficiency of Generalised Diffie–Hellman

When comparing the relative efficiencies of the protocols in this section there are a
number of different measures that may be relevant depending on the implementation
and application scenario. Table 9.2 summarises the most important performance fea-
tures of each of the protocols. The purpose of this table is only to be indicative of
the comparative costs of each protocol and therefore we have taken licence in some
of the figures where the exact values differ only slightly from those indicated. For
example, in GDH.1 the end principals are required to send only one message, while
in GDH.2, Um sends only the broadcast message. Similarly the number of exponen-
tiations for Um in GDH.1 and GDH.2 is m.

In Table 9.2 the number of messages refers to the number of point-to-point
messages sent, while the total number of broadcast messages is in addition to the
point-to-point messages. Any message sent to more than one principal is counted
as a broadcast. A number of different papers also include tables of comparison
[31, 611, 692] but the reader should be aware that these do not all count items in
the same way. Amir et al. [31] have reported on extensive practical tests of the per-
formance of several of these protocols.

Choosing a suitable protocol for an application may depend on many factors
and it may not be sufficient to optimise any one particular performance parameter.
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Table 9.2: Computational requirements in generalised Diffie–Hellman protocols

Exponentiations Messages Broadcasts Rounds

per Ui per Ui in total in total

ITW (9.1) m m−1 m(m−1) 0 m−1

GDH.1 (9.2) i+1 2 2(m−1) 0 2(m−1)

GDH.2 (9.3) i+1 1 m−1 1 m

GDH.3 (9.4) 3† (m for Um) 2 2m−3 2 m+1

SSDW (9.5) m− i+2 2 2(m−1) 0 2(m−1)

KPT (9.6) dlog2 me+1‡ 1 m m−2 dlog2 me

BM (9.7) m+1− i 1‡ m+1 m+1 2

Octopus (9.8) 4‡ 3 3m−4 0 4

BDB (9.9) 3? 2 2m m 2

BD (9.10) 3? 4 4m−1 0 2m

† Calculation of an inverse also required.
‡ Minimum value. Some principals must do more.

? Average of two exponentiations with exponent m also required.

There is no single generalised Diffie–Hellman protocol that is the best for all the
criteria used in Table 9.2. If the lowest computation per principal is desired then the
Burmester–Desmedt (BD) or GDH.3 protocols are attractive. (Note, however, that
one principal has a high computational load in GDH.3.) If the number of rounds is to
be minimised then the Burmester–Desmedt broadcast (BDB) protocol looks attrac-
tive but the communications network used must support simultaneous broadcasts if
the figure of only two rounds is to be achieved. If broadcast communications are to
be avoided then GDH.1 or BD are both worth considering, although ITW may be the
best if the number of rounds should be minimised at the same time.

Becker and Wille [66] have provided lower bounds on several of the desirable
performance parameters. These bounds were derived from an analysis using basic
counting and inductive proofs. Their results are summarised in Table 9.3, which is
set out to emphasise the clear division between protocols with and without broadcast,
as made by Becker and Wille. As well as the number of messages used and the
number of (synchronous) rounds, Becker and Wille also considered the number of
exchanges (connections between pairs of users) and the number of simple rounds (in
which every party sends and receives at most one message). Notice that synchronous
rounds are only relevant when broadcast messages are used.

Comparison between Tables 9.2 and 9.3 shows that in many cases the bounds
derived by Becker and Wille can be met by practical protocols. Specifically GDH.1
and GDH.2 meet the bounds on the minimum number of messages for the two cases
without and with broadcast messages. In the case of GDH.2, adding the single broad-
cast message to the m− 1 point-to-point messages gives the bound of m messages
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Table 9.3: Performance bounds for group key agreement (Becker and Wille)

Messages Exchanges Simple Synchronous

rounds rounds

Without broadcasts 2(m−1) 2(m−2) dlog2 me –

With broadcasts m m dlog2 me 1

indicated in Table 9.3. When it comes to (simple) rounds, we have seen that Per-
rig’s protocol meets this bound. The Octopus protocol was specifically designed to
be optimal in terms of number of exchanges and meets the lower bound of 2m− 4.
Although Becker and Wille left it as an open question whether a protocol with only
one synchronous round is possible in the case without broadcasts, we will show in
Sect. 9.5 examples of protocols that meet this bound.

In the next section we will examine how the protocols introduced in this section
can be enhanced by adding authentication to the messages sent. We will also see
that there are other features that may prove important in comparing the suitability of
protocols for different applications.

9.3 Group Key Agreement Protocols

When examining two-party key agreement based on Diffie–Hellman in Chap. 5, two
classes of protocol were evident: those in which the long-term public keys were in-
cluded in the calculation of the shared secret and those in which long-term keys
were used only for message authentication. For general group key agreement the for-
mer class of protocols is completely missing. The reason for this is that there seems
to be no symmetrical way that long-term keying information from multiple users
can be incorporated into the shared key. Therefore all the published authenticated
group key agreement protocols make use of either public key encryption or digital
signatures to provide authentication of the messages sent in the various generalised
Diffie–Hellman key agreement protocols.

9.3.1 Authenticating Generalised Diffie–Hellman

The designers of many of the multi-party Diffie–Hellman generalisations that were
examined in Sect. 9.2 have ignored the issue of key authentication, or have simply
stated that authentication using digital signatures may be added. When there are no
long-term keys providing authentication, forward secrecy is meaningless. If key au-
thentication is added by, for example, signing protocol messages with a long-term
key, then forward secrecy will usually be provided automatically as long as the sig-
nature mechanism and ephemeral keys are independent.

Burmester and Desmedt proposed that their generalised Diffie–Hellman key ex-
change (Protocol 9.10) could provide key authentication if each ti value was authenti-
cated by any chosen means. They suggested that this means could be any good digital
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signature scheme but also provided an explicit interactive mechanism. However, Just
and Vaudenay [407] pointed out that authenticating the messages is not sufficient,
since it does not show that the party authenticating knows the random input ri and
consequently unknown key-share attacks are possible. In any case, this simple au-
thentication can only provide a weak form of key authentication in that each party
authenticates the participation of only one other party. There is no direct assurance
of which other parties may have the shared secret.

Just and Vaudenay [407] also proposed a generalised form of the Burmester–
Desmedt protocol, using their two-party key agreement protocol examined in Chap. 5
(Protocol 5.11) as the basic building block. They prove the security of their protocol
against a passive adversary. Although this protocol avoids the unknown key-share
attack against the Burmester–Desmedt protocol it still only provides weak key au-
thentication. Just and Vaudenay suggested that such problems may be avoided by
making each party broadcast a signed hash of all messages sent in the protocol. This
seems to be an expensive way to provide implicit key authentication.

9.3.2 Klein–Otten–Beth Protocol

Klein et al. [433] proposed a protocol that is related to the protocol of Ingemarsson
et al. (Protocol 9.1) but with two distinct enhancements designed to provide authen-
tication and robustness.

• Each message is protected by a digital signature of the sender, which also in-
cludes a unique identifier for the protocol run.

• Each intermediate value is calculated multiple times with the aim of detecting
and recovering from errors caused by principals deviating from the protocols.

More precisely there are m− 1 rounds to the protocol during which messages
are broadcast, via a write-only bulletin board, to all other principals. Messages all
consist of triples of the form (Ui,P,SigUi

(PID,gA)), where PID is an identifier, P is a
set of users in U, and A is the set of exponents input by the users in P. For example,
a particular message sent by U2 might be (U2,{U3,U2},SigU2

(PID,gr3r2)).

Round 1. Ui chooses random ephemeral input xi and broadcasts the triple

(Ui,{Ui},SigUi
(PID,gxi)).

Round j (2≤ j ≤ m−1). The following steps are taken.
1. Ui collects all messages from round j− 1 that exclude xi in the exponents.

For each of these Ui raises the gA value to the exponent xi, and forms the new
message triple (adding its identity to the set P) and broadcasts the result.

2. Each message with the same user set P is then compared. If there are any
differences then the recovery process is invoked.

3. Once these are resolved, all duplicates are deleted and j is incremented.
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The recovery protocol has as input a set of principals P and a set of message
triples using set P but with differing values of gA. All principals belonging to P
are required to reveal their secret input xi which allows checking against the signed
inputs from the previous round. Principals found to have cheated by a majority of the
other principals are expelled from the group. Those principals who have not cheated
choose new xi values and reconstruct their inputs for the current round.

Despite the attraction of having a protocol robust to disruption, this is an ex-
pensive protocol. Even without any recovery, each principal is required to perform
a total of 2+

(m−1
1

)
+
(m−1

2

)
+ . . .+

(m−1
m−2

)
= 2m−1 exponentiations, which becomes

impractical for large values of m.

9.3.3 Authenticated GDH Protocols

Ateniese et al. [41, 42] proposed two methods to extend their GDH.2 protocol (Proto-
col 9.3) to provide authenticated group key agreement. They remarked that the same
extensions can be applied to GDH.3 too, but implied that GDH.1 is less interest-
ing in practice, since the alternatives have smaller computation and communications
requirements (see Table 9.2).

The simplest method of providing authentication changes only the final broad-
cast message of Protocol 9.3. In order to achieve this extension it is assumed that
the distinguished principal Um shares a secret Ki with each Ui. It was suggested by
Ateniese et al. that this secret should be calculated from the static Diffie–Hellman
key, Si,m = gxixm , shared between Ui and Um; for example, Ki = F(Si,m) where F is
a function taking elements of G to Zq. Then the first phase of the protocol is the
same as Protocol 9.3. In the second phase Um sends Zr−1

i Ki to Ui. On receipt of this
message Ui can find the shared secret Z = gr1r2...rm by raising the received message
to the power riK−1

i . The message flows are shown in Protocol 9.11 which Ateniese
et al. called A-GDH.2.

The use of the shared secret Ki values means that principals can be sure that the
value they calculate for Z will be known only to those that actually participate in the
protocol with Um. This is on the assumption that Um follows the protocol faithfully.
In this sense the protocol provides implicit key authentication. However, in common
with many multi-party protocols, principals have no direct assurance of which other
principals are participating in the protocol. This means that the principals really know
which other parties have the shared secret only if the group is fixed or assured by
some other means. Ateniese et al. claimed a proof of security against passive attacks
but not against an active adversary. Indeed they pointed out that an attack similar
to Burmester’s triangle attack is possible, although they claimed that the unusual
circumstances involved make such attacks ‘very unlikely in practice’.

Pereira and Quisquater [609] conducted an analysis of the security of Protocol
9.11 using a systematic technique for deciding which powers of g can be obtained
by an active adversary. They showed that strong key authentication can indeed fail
if the group membership varies. They demonstrated an explicit attack in which the
adversary takes part in one protocol run and can find the key in a subsequent run in
which the adversary is not intended to be involved. To see how this attack can work
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Information shared by Ui and Um: Key Ki.

Phase 1.

Ui−1 Ui Ui+1

pi−1 = gr1r2...ri−1 ,

pr−1
1

i−1, pr−1
2

i−1, . . . , p
r−1

i−1
i−1−−−−−−−−−−−−−−−−→

ri ∈R Zq

pi = gr1r2...ri ,

pr−1
1

i , pr−1
2

i , . . . , pr−1
i

i−−−−−−−−−−−−−−−−→
Phase 2.

Um broadcasts Zr−1
1 K1 ,Zr−1

2 K2 , . . . ,Zr−1
m Km

Ui calculates Z = (Zr−1
i Ki)riK−1

i

Protocol 9.11: Ateniese–Steiner–Tsudik A-GDH.2 protocol

consider the particular case of A-GDH.2 when m = 4 shown in Protocol 9.12. The
attack proceeds as follows.

1. The adversary takes part in Protocol 9.12 as U3 but alters the message sent from
U3 to U4 by replacing gr1r3 with gr1r2 . As a consequence, U4 will include gr1r2r4K2

in the broadcast part intended for U2, instead of the correct value gr1r3r4K2 . The
adversary also obtains gr1r2r4 from the last broadcast part, since it knows K3. The
adversary records the values exchanged in this run.

2. The adversary observes a new protocol run involving only the other three prin-
cipals from the first run. In the new run suppose that new values r′1, r′2 and r′4
are chosen by U1, U2 and U4. The adversary replaces the message from U1 by
gr1r2r4 obtained from the first run. Then U2 will send gr1r2r4r′2 as part of its mes-
sage to U4. Finally the adversary can replace the part of the broadcast message
to U2 with gr1r2r4K2 recorded from the first run. This means that U2 will calculate
Z = gr1r2r4r′2 which was sent by U2 in the second message and so is known to the
adversary.

Pereira and Quisquater [609] also found a more convincing attack than that of
Ateniese et al. in which old keying material is replayed by an active adversary. This
attack could be prevented in the case that a one-way key derivation function is used
and only the derived session key becomes compromised.

Because the long-term keying material (the Ki values) is used only for the au-
thentication, it follows that forward secrecy from a passive adversary is provided in
Protocol 9.11, as long as the multi-party Diffie–Hellman assumption holds. However,
Pereira and Quisquater [609] also demonstrated that an active adversary can alter the
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Information shared by U j and U4: Key K j.

Phase 1.

U1 U2 U3 U4

r1 ∈R Zq
gr1 ,g−−−−−−−→

r2 ∈R Zq
gr1r2 ,gr2 ,gr1

−−−−−−−→
r3 ∈R Zq

gr1r2r3 ,gr2r3 ,gr1r3 ,gr1r2

−−−−−−−−−−−−−−−−→
Phase 2.

U4 chooses r4 ∈R Zq and broadcasts gr2r3r4K1 ,gr1r3r4K2 ,gr1r2r4K3 .

Ui calculates Z = gr1r2r3r4 .

Protocol 9.12: Protocol 9.11 when m = 4

protocol in such a way that all but one of the principals computes the same key but
forward secrecy will subsequently fail.

If principal Ui’s long-term key becomes compromised then Ki is also compro-
mised. In this situation the adversary can forge the messages intended for Ui in both
phases and hence can find the key that Ui calculates as Z. Therefore resistance to key
compromise impersonation is not provided. Key confirmation is not provided either
since Ui obtains no assurance that any other party has obtained the same key. How-
ever, Ateniese et al. suggested that Um may include gH(Z) in the broadcast message.
This gives each Ui key confirmation with respect to Um only.

In comparison with the unauthenticated GDH.2 protocol, Protocol 9.11 adds only
a small overhead. The computations required for Um and for each Ui remain essen-
tially unchanged except for the Ki values. If the protocol is run frequently the Ki
values may already be available.

In order to reduce the reliance on principal Um, Ateniese et al. designed an alter-
native method to provide authentication in GDH.2, resulting in a protocol that they
called SA-GDH.2. The general idea is to allow each principal to mutually authen-
ticate every other principal through use of a long-term shared secret. Each pair of
principals Ui and U j shares two keys Ki, j and K j,i. Ateniese et al. did not define how
these are calculated, but an obvious way is to use two different derivations of the
long-term static Diffie–Hellman key Si, j. Protocol 9.13 shows the message flows.

As in Protocols 9.3 and 9.11 there are two phases. During the first phase each
principal sends and receives a message with m ordered fields (for U1 the fields
V0,1,V0,2, . . . ,V0,m should all be taken to equal g). Ui raises the j’th received field
to the power riK j,i with the exception that the i’th field is left unchanged. The up-
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Information shared by Ui and U j: Keys Ki, j and K j,i.

Phase 1:

Ui−1 Ui Ui+1

Vi−1,1,Vi−1,2, . . . ,Vi−1,m−−−−−−−−−−−−−−−−→
ri ∈R Zq

V riKi,1
i−1,1,V

riKi,2
i−1,2, . . . ,Vi−1,i, . . . ,V

riKi,m
i−1,m−−−−−−−−−−−−−−−−→

Phase 2:
Um broadcasts Vm,i = Zr−1

i K1,i...Ki−1,iKi+1,i...Km,i for each i

Ui calculates Z =V
riK−1

1,i ...K
−1
i−1,iK

−1
i+1,i...K

−1
m,i

m,i

Protocol 9.13: Ateniese–Steiner–Tsudik SA-GDH.2 protocol

dated fields are then sent on to the next principal. On completion of the first phase,
Um is able to calculate the shared secret Z= gr1r2...rm from the last field of its received
message. This last field will be gr1r2...rm−1K1,mK2,m...Km−1,m and so Um needs to remove
the K j,m exponents for each 0≤ j ≤ m−1 and add the rm exponent.

In the second phase Um, after performing the same transformations as done by
each Ui in Phase 1, broadcasts the results. This allows every other principal to find
Z in the symmetrical way by removing the relevant Ki, j exponents and adding the
exponent ri.

The advantage of Protocol 9.13 over Protocol 9.11 is that a stronger form of im-
plicit key authentication is achieved. Each principal Ui knows that only principals
that possess one of the shared keys Ki, j are able to calculate the same value of Z
calculated by Ui. There is still no confirmation that any other principal does actu-
ally possess that key and again Ui must know the other group members’ identities by
some external means. Furthermore, the computational cost of Protocol 9.13 is greatly
increased for each principal, with the exception of Um: now each principal needs to
perform m exponentiations. Ateniese et al. [42] provide a more detailed analysis of
the communication and computational cost of the A-GDH.2 and SA-GDH.2 proto-
cols.

Bresson et al. [154], and later most of the same authors [148, 149], proposed
a different authenticated version of GDH.2 and provided proofs in the Bellare–
Rogaway model. Their protocol is the same as Protocol 9.3 with two additions.

• The group identity (the names of all principals involved in the protocol) is added
to each message flow.

• Each message flow is signed with a long-term key of the sender.
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The proof in their first paper [154] reduces the security of the protocol to that
of the m-party Diffie–Hellman problem, when the set of exponents is restricted to
those exchanged in the protocol. The reduction is not very tight, however. Their
next paper [148] extended their results in two ways. Firstly, additional protocols to
allow principals to join and leave an existing group were added and proven secure.
Secondly, the security reduction was made tighter, at least for a fixed-size group.
These first two papers assumed random oracles in the proofs; the latest paper in
the series [149] was able to remove this assumption, replacing the computational
m-party Diffie–Hellman assumption with a stronger m-party decision problem. The
results from all these papers have been combined into one journal paper [153].

9.3.4 Authenticated Tree Diffie–Hellman

Kim et al. [431, 432] focused on unauthenticated versions of their tree-based protocol
shown in Protocol 9.6. They assumed that all the messages are authenticated using
a suitable digital signature scheme and that messages include a protocol message
identifier and a timestamp of the sender. All of these features are assumed to be
checked by the receiving parties. Kim et al. did not consider a formal security model
for the authenticated protocol.

Bresson and Manulis [156] specified a slightly different authentication method
for their unbalanced Protocol 9.7. They required that each message is signed with
a secure digital signature scheme but used principal-chosen nonces instead of time-
stamps. Protocol 9.14 gives details of the protocol using the notation of Protocol 9.7.
Notice that here we use Pi to denote the set of principals which Ui is expecting to
share the session key with, which is not a priori assumed to be the same for all Ui.
The values 0, 1 and 2 are constants used to identify each messages position in the
protocol.

Protocol 9.14 takes three rounds, the third round allowing each principal to sign a
session identifier consisting of all the nonces. Bresson and Manulis also gave a secu-
rity proof for their authenticated key agreement protocol in a strong model allowing
the adversary to obtain ephemeral secrets.

9.3.5 Katz–Yung Compiler

Katz and Yung [418, 419] observed that many group key establishment protocols
lack scalability because the number of protocol rounds or messages increases as the
number of participants increases. They were therefore motivated to find a protocol
which can be proven secure in a suitable model but with a constant number of proto-
col rounds and the minimal number of protocol messages. They therefore settled on
the BDB protocol, Protocol 9.9, as a promising candidate but needed to add authen-
tication and provide a proof of security.

Rather than prove the authenticated version of the BDB protocol directly, Katz
and Yung proposed a compiler to transform a generic secure unauthenticated group
key establishment protocol into an authenticated protocol. By applying their com-
piler to the BDB protocol they then arrived at their goal. Of course this requires
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Shared information: Signature verification information for all principals. Public constants
V0,V1,V2.

Phase 1.
Each Ui chooses ri ∈R Z∗q, nonce ni ∈R {0,1}l and computes ti = gri .
Each Ui broadcasts ni, ti,Sigi(0,ni, ti,Pi).
All users check the signatures of all received messages.

Phase 2.
Ui sets the session identifier as SIDi = (n1, . . . ,nm)

U1 computes the internal node keys Z2,Z3, . . . ,Zm up to the root of the
tree.
U1 computes the set of public keys of internal nodes Y =
(gZ1 ,gZ2 , . . . ,gZm−2) U1 broadcasts Y,Sigm(1,Y,sid1,P1)

Phase 3.
All users Ui, 1 < i≤ m, perform the following:

• verify the signatures of all received messages;
• compute the root shared secret Z;
• compute authenticator µi = MACK(V1) using tempo-

rary key K, itself computed iteratively as Ki = ρm where
ρl = MACρl−1⊕π(nl)(V0), ρ0 = MACZ(V0) and π is a one-way
permutation;

• broadcast Sigi(2,µi,sidi,P1).

Each Ui checks the signatures from all parties in Pi. If all checks pass
then Ui computes the session key as K =MACKi(V2).

Protocol 9.14: Bresson and Manulis authenticated tree Diffie–Hellman protocol

proofs that the BDB protocol satisfies the required security property of unauthenti-
cated security, and that the compiler adds the expected security property to make the
protocol securely authenticated.

The Katz–Yung compiler takes a protocol π and transforms it to a new protocol
π ′ in a sequence of four steps as shown in Table 9.4. The basic idea is that each
party generates a nonce and then subsequent received messages must include the
nonce and must be signed. Thus each party in protocol π ′ has a signature key-pair
independent of the long-term keys in π . Since each party has to first send out its own
nonce, protocol π ′ has one more round than protocol π . While Katz and Yung were
particularly interested in applying their compiler to the BDB protocol, it could also
be used on any other protocol in Sect. 9.2, but security can only be guaranteed if the
starting protocol has a security proof as an unauthenticated group key establishment
protocol.

Katz and Yung used the security model of Bresson et al. [154] to define security
of their protocols. The model of Bresson et al. is a version of the BR93 model (see
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Table 9.4: Katz–Yung compiler [418, 419]

Input: Group key establishment protocol π secure against passive adversaries.
Output: Group key establishment protocol π ′ secure against active adversaries.

1. Each party generates signature keys independent of the keys for π . Signature verification
keys must be available to all protocol parties.

2. Each party Ui generates a nonce ri and broadcasts it to all others parties in U. Af-
ter receiving all nonces, each party Ui forms the set of all nonces it received: Ni =
{(U1,r1),(U2,r2), . . . ,(Um,rm)}.

3. Protocol π is now run between all parties with the following changes.
• When sending a message m from protocol π , party Ui adds its nonce set Ni to message

m and then signs the message with its signature key.
• When receiving a message in π ′, party Ui checks that the nonces it receives are the

same as those in Ni and verifies that the signature is valid from a party in U. If not,
then party Ui aborts the protocol. Otherwise Ui proceeds with protocol actions as
specified in protocol π .

4. The session key is computed the same way as in π .

Sect. 2.2) extended to the group setting using session identifiers as in the BPR00
model. Although Katz and Yung did not consider a formal definition for mutual
authentication, they noted that it is intuitively clear that the signatures from each
party can be used to provide such authentication.

The model used by Katz and Yung does not attempt to deal with insider attacks
and later Bohli et al. [121] pointed out that the authenticated version of the BDB
protocol, Protocol 9.9, derived by Katz and Yung using their compiler, does not sat-
isfy the insider security property of integrity. Indeed, it is not difficult to see that if
two colluding users in Protocol 9.9, say U1 and U3, run normally in Phase 1 but swap
their values in Phase 2, then two other parties, say U2 and U4, will not compute the
same session key. However U2 and U4 see the same messages so that in the security
model this means that they are valid partners. Even though such an attack will not
result in leakage of information, it can be considered a serious attack on the availabil-
ity of information. We emphasise that security against malicious insiders was never
claimed by Katz and Yung.

Dutta and Barua [263] adapted the Katz–Yung compiler to use sequence numbers
instead of nonces to provide freshness. This allowed them to obtain a two-round au-
thenticated version of the BDB protocol. Like Katz and Yung, they did not consider
insider attacks. However, they did include a formal analysis of the dynamic opera-
tions of the protocol, defining joining and leaving operations for protocol principals.

As defined in Table 9.4, the compiler requires all parties to verify signatures
from all other parties. When applied to unauthenticated protocols where there are
messages broadcast to all parties, such as the BDB protocol, this does not add to the
overall complexity. However, Desmedt et al. [243] observed that there are protocols
which require both O(logm) communication and O(logm) computation complexity
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(see Sect. 9.6.1). To apply the Katz–Yung compiler to such protocols would spoil
both the computation and communication complexity. Desmedt et al. [243] therefore
defined, and proved secure, a variant (actually a generalisation) of the Katz–Yung
compiler in which signatures are generated only for the set of parties from whom
messages are processed. This allowed them to achieve authenticated versions of the
protocols without increasing the computation and communication complexity.

9.3.6 Protocol of Bohli, Gonzalez Vasco and Steinwandt

Bohli et al. [121] analysed various insider attacks on group key establishment pro-
tocols and proposed a protocol to avoid such attacks. Protocol 9.15 is closely related
to an earlier protocol of Kim, Lee and Lee [428]

Shared information: Signature verification information for all principals.

Phase 1.
All users choose ri ∈R Z∗q, ki ∈R {0,1}l and compute ti = gri .
For i 6= m, Ui broadcasts ki, ti,Sigi(ki, ti,Pi).
Um broadcasts H(km), tm,Sigm(H(km), tm,Pi).
All users check the signatures of all received messages.

Phase 2.
Ui calculates xL

i = H(tri
i−1), xR

i = H(tri
i+1) and Ti = xL

i ⊕ xR
i .

Ui sets the session identifier as SIDi = H(Pi,k1, . . . ,kn−1,H(kn)).
For i 6= m, Ui broadcasts SIDi,Ti,Sigi(SIDi,Ti).
Um broadcasts (km⊕ xR

m),SIDm,Tm,Sigm(km⊕ xR
m,SIDm,Tm).

All users perform the following checks:

• verify the signatures of all received messages;
• check that T1⊕ . . .⊕Tm = 0;
• check that SIDi = SID j for all j;
• compute k′m = (km⊕ xR

m)⊕ Tm−1⊕ . . .⊕ Ti+1⊕ xR
i and check that

H(k′m) = H(km) where the second value is that sent during Phase 1
by Um.

If all checks pass then Ui computes the shared secret as Z =
H(Pi,k1,k2, . . . ,k′m).

Protocol 9.15: Bohli–Gonzalez Vasco–Steinwandt protocol

Each user chooses an input ki to the shared secret in addition to the Diffie–
Hellman ephemeral value ti = gri . There is one distinguished principal Um and km
is the only key input which is kept secret. Note that the Diffie–Hellman values are
not used in the shared secret calculation, instead they are used to mask the value of
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km which can be recovered only by those participating. This allows the protocol to
achieve forward secrecy. Note that this protocol cannot be achieved by application
of the Katz–Yung compiler to any one-round protocol.

Bohli et al. [121] proved that Protocol 9.15 satisfies the following three proper-
ties, in addition to providing indistinguishability of the session key as usual. Their
proof models the hash function H as a random oracle and relies on the difficulty
of the computational Diffie–Hellman problem. Their security definition requires that
the protocol has a well-defined session identifier.

Strong authentication. For any honest user Ui who has accepted with a certain set
of partners Pi, each honest U j ∈ Pi has an instance with the same session identi-
fier and which includes Ui in its set of expected partners: Ui ∈ P j.

Contributory. No subset of up to m−1 users is able to force the session key into a
pre-defined subset

Integrity. All accepting honest principals share the same session identifier and the
same set of principals Pi.

Later Gorantla et al. [330] described notions of KCI resistance for both outsider
and insider adversaries. They proved that Protocol 9.15 satisfies their strongest notion
of insider KCI resistance under the same assumptions as used by Bohli et al.

Bohli et al. [121] noticed that party Um in Protocol 9.15 can control the shared
secret Z to some extent by waiting to see the ki values of all other users before choos-
ing and committing to km in Phase 1. They therefore mentioned a slight variation in
which all principals Ui defer sending their ki values until Phase 2, instead sending
H(ki) in Phase 1, and then adding ki to the message broadcast by Ui in Phase 2.
Gorantla et al. [326] showed that this variant protocol is secure in the universally
composable model. They commented that using the UC model naturally addresses
insider attacks; moreover, Protocol 9.15 is a two-round protocol which cannot be
reached by application of the compiler of Katz and Shin [415] (see Sect. 9.1.4).

An adversary who has access to the ephemeral key, ri, of any protocol participant
Ui can obtain xR

i and hence k′m and the session key. Zhao et al. [774] therefore pro-
posed another variant of Protocol 9.15 by applying the NAXOS trick to combine the
long-term key with the ephemeral key before using it. They then proved security of
this variant in a strong model of security where ephemeral key leakage is available
to the adversary.

Surprisingly, Gao et al. [290] later significantly simplified Protocol 9.15 both
in terms of the messages sent and the computations required by each party. Proto-
col 9.16 shows that the structure is still essentially the same as Protocol 9.15 but the
ki values are no longer needed and the signatures are only used in the second phase.

Gao et al. [290] provided proofs that the optimised Protocol 9.15 is still secure
in the same model as in the original. Note that the protocol now becomes symmetric,
unlike Protocol 9.15 where principal Um sends messages and performs computations
different from other principals. On the theoretical side, Gao et al. [290] also pointed
out that the security proof can be made to work without assuming that H is a random
oracle, although it still requires a common reference string.
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Shared information: Signature verification information for all principals.

Phase 1.
All users choose ri ∈R Z∗q and compute ti = gri

Each Ui broadcasts ti
All users check that none of the received values equals the identity ele-
ment in G.

Phase 2.
Ui calculates xL

i = H(tri
i−1), xR

i = H(tri
i+1) and Ti = xL

i ⊕ xR
i

Each Ui broadcasts Ti,Sigi(Ti, t1, t2, . . . , tm,Pi)

All users perform the following checks:

• verify the signatures of all received messages;
• check that T1⊕ . . .⊕Tm = 0;

If all checks pass then Ui recovers each xR
j value using its own xR

i and
the Tj values and computes the shared secret as

Z = H(xR
1 ,x

R
2 , . . . ,x

R
m, t1, t2, . . . , tm,Pi,0).

Principal Ui also sets the session identifier as SIDi =
H(xR

1 ,x
R
2 , . . . ,x

R
m, t1, t2, . . . , tm,Pi,1).

Protocol 9.16: Optimised Bohli–Gonzalez Vasco–Steinwandt protocol of Gao, Ne-
upane and Steinwandt

9.3.7 Authenticated Tripartite Diffie–Hellman

When wishing to achieve one-round authenticated key agreement protocols it is natu-
ral to start from the one-round generalisations of Diffie–Hellman from pairings men-
tioned in Sect. 9.2.7. Al-Riyami and Paterson [25] considered a number of alternative
ways to add authentication to Joux’s three-party one-round protocol by employing a
long-term key for each party. However, their analysis was only partially formal and
when they did use a formal model they omitted reveal queries so that adversaries are
assumed not to see old session keys. Hitchcock et al. [358] applied general compilers
in the Canetti–Krawczyk model [178] with formal proofs. However, applying such
compilers adds one round to the protocol so we end up with a two-round protocol,
losing one of the main advantages of the Joux protocol.

Finally in 2009, Manulis et al. [518, 519] provided a proof in a strong model for
a one-round authenticated version of the Joux protocol. Generalised versions of the
protocol were later considered by the same authors plus Fujioka [285]. Protocol 9.17
shows the messages in the protocol of Manulis et al. Compared to their description,
we have omitted the protocol identiifier for simplicity, but that should be included in
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the computation of K if there is any possibility of confusion with messages of other
protocols.

Information shared by principals: Constants D,E,F different from 0 or 1.

Phase 1. Message broadcast

U1 U2 U3

r1 ∈R Zq r2 ∈R Zq r3 ∈R Zq

t1 = gr1 t2 = gr2 t3 = gr3

Broadcast U1, t1 Broadcast U2, t2 Broadcast U3, t3
Phase 2. Computation

Check t2, t3 ∈G Check t1, t3 ∈G Check t1, t2 ∈G
σ1 = ê(y2t2,y3t3)x1+Dr1 σ1 = ê(y1tD

1 ,y3t3)x2+r2 σ1 = ê(y1tD
1 ,y2t2)x3+r3

σ2 = ê(y2tE
2 ,y3t3)x1+r1 σ2 = ê(y1tD

1 ,y3t3)x2+Er2 σ2 = ê(y1t1,y2tE
2 )

x3+r3

σ3 = ê(y2t2,y3tF
3 )

x1+r1 σ3 = ê(y1t1,y3tF
3 )

x2+r2 σ3 = ê(y1t1,y2t2)x3+Fr3

σ4 = ê(y2tE
2 ,y3tF

3 )
x1+Dr1 σ4 = ê(y1tD

1 ,y3tF
3 )

x2+Er2 σ4 = ê(y1tD
1 ,y2tE

2 )
x3+Fr3

K = H(σ1,σ2,σ3,σ4,U1,y1, t1,U2,y2, t2,U3,y3, t3)

Protocol 9.17: Manulis–Suzuki–Ustaoglu authenticated Joux protocol

Protocol 9.17 makes use of three constants, D,E,F . In the earlier version of the
protocol [518] these values were instead derived from the participant public keys.
The computation required for each principal is relatively high due to the pairing
and exponentiation required for computation of each σ j value, for 1 ≤ j ≤ 4. In
compensation the protocol has a security proof in a strong model similar to the eCK
model. In particular it is assumed that the adversary can obtain ephemeral secrets
ri or long-term secrets xi where the combination of leaked secrets does not trivially
reveal the key. Manulis et al. [518, 519] provided a security proof on the assumption
that the bilinear Diffie–Hellman problem is hard and H acts as a random oracle. Later
Li and Yang [490] proved the security of a related protocol in similar security model
but without relying on random oracles.

9.3.8 Comparing Authenticated Group Diffie–Hellman

Performance of the authenticated protocols in this section is strongly related to the
performance of the related unauthenticated versions compared in Table 9.2. In most
cases signatures are added to at least one message from every participant which adds
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significantly to the computational burden. Important differences between authenti-
cated protocols can often be found in the security properties achieved. Some proto-
cols aim to achieve mutual authentication while other do not. In addition the number
of rounds can be affected by the authentication method. Table 9.5 is limited to these
aspects.

In Table 9.5 the first two rows refer to the GDH variants which do not have
concrete authenticated versions. The row named BDB-KY refers to the application
of the Katz–Yung compiler to the BDB protocol. Note that the MSU protocol has
only three principals. Insider security has a number of different flavours, for example
it may or may not include KCI resistance; these are not shown in the table but are
discussed in the descriptions of the individual protocols.

Table 9.5: Properties of authenticated Diffie–Hellman protocols

Insider Security Rounds Mutual
secure proof authentication

A-GDH.2 (9.11) No Insecure m No
SA-GDH.2 (9.13) No No m No
BM (9.14) Yes Yes 3 Yes
BDB-KY No Yes 3 Yes
BGS (9.15) Yes Yes 2 Yes
GNS (9.16) Yes Yes 2 Yes
MSU (9.17) (three-party) Yes Yes 1 No

Armknecht and Furukawa [39] derived general bounds on the communication
complexity of authenticated group key exchange. They placed a minimum require-
ment that the protocol should provide forward secrecy and mutual authentication
with insider security, which rules out some of the protocols we have looked at. They
also assumed that a unique session identifier is available to all parties (the so-called
common reference string model) which is by no means always realistic and we have
not generally assumed it in our descriptions. From their assumptions, Armknecht and
Furukawa showed that any protocol with m principals must use at least two rounds
and exchange m2/2+m/2−3 messages in total.

9.4 Identity-Based Group Key Establishment Protocols

In Chap. 7 we examined identity-based key agreement for two parties. This idea can
be generalised to multi-party protocols. Of course identity-based group key estab-
lishment protocols do not have to use key agreement, but published protocols seem
mainly to have considered this option. As is usual with identity-based protocols, the
convenience of using only identity information in place of public keys comes at the
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price of requiring a trusted authority to generate secret keys on behalf of principals.
In the following, IDi denotes the identifying string of entity Ui.

9.4.1 Koyama and Ohta Protocols

Koyama and Ohta [448] designed three protocols using different physical architec-
tures. A succession of attacks and consequent countermeasures have been published,
illustrating how difficult it is to consider all possibilities without a formal security
statement. Indeed, it may be suggested that problems with these early protocols arose
because at the time there was no clear notion of what are the desired security prop-
erties of such protocols.

Koyama and Ohta’s first protocol type uses Diffie–Hellman in Z∗n where n =
pq is an RSA modulus whose factorisation is known only to a trusted authority T .
The authority chooses public and private keys e and d, with ed ≡ 1 mod φ(n). The
principals are arranged in a ring where, as usual, we take Um+1 to mean U1. The
protocol can be viewed as a variant of Protocol 9.1 where authentication information
is added to each message.

Each principal is issued with a secret key by the authority. Before issuing any
secrets, the authority needs to choose a value M which will be the maximum number
of users who can participate in a group (with the current parameter values). In our
notation m is the size of the group so this means that m≤M. Because the computa-
tional requirements for each principal increase with M it should not be chosen larger
than necessary. Once M is fixed the authority can calculate the secret value Si, using
the following equation, and transfer it securely to principal Ui:

Si = IDdM−1 mod φ(n)
i .

A successful protocol run is shown as Protocol 9.18. There are m rounds in a run.
During each round, except for the last, each principal sends three values to the next
principal in the ring. On receipt of a triple in round j the principal performs a check
designed to verify that the triple has been processed by the previous j principals in
the ring. If the check is successful the principal constructs and sends on its own triple.
The first value in a triple, X j, is a partial version of the final shared secret and the
principal adds its random exponent to the received X j value. The final shared secret
Z is the following value.

Z = gem−1r1r2...rm .

Although not explicitly stated by Koyama and Ohta, it seems reasonable to say
that Protocol 9.18 is designed to provide a strong form of key authentication. It is
apparent that some group entity authentication is also intended. Indeed, Koyama
and Ohta [448] state that if the check in round m succeeds then Ui can verify that
the received messages came via Ui−1, Ui−2, . . . , and Ui−m+1 successively. However,
there is nothing that any principal can use to verify that any received message is not
replayed from an old protocol run. Therefore it is clear that no other principal need
be present in any specific run.
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Shared information: Identity information IDi of principal Ui, public RSA key (n,e), element
g of maximal order in Z∗n, prime c.

Information known only to Ui: Secret key Si with SeM−1

i mod n = IDi.

Ui−1 Ui Ui+1

Round 1.

ri ∈R Zq
geri ,Sigcri ,1−−−−−−−→

Round 2.
X1,Y1,Z1−−−−−−−→ T1 = X1Ze

1

(Y e
1 /T c

1 )
eM−2 ?

=
IDi−1

Xeri
1 ,Y e

1 Se
i Xcri

1 ,T1−−−−−−−−−−−−−−−−→

Round j.
X j−1,Y j−1,Z j−1−−−−−−−→ Tj−1 = X j−1Ze

j−1

(Y e
j−1/T c

j−1)
eM− j ?

= IDi−1IDi−2 . . . IDi− j+1

Xeri
j−1,Y

e
j−1Se j−1

i Xcri
j−1,Tj−1

−−−−−−−−−−−−−−−−→
Round m.

Xm−1,Ym−1,Zm−1−−−−−−−→ Tm = XmZe
m

(Y e
m−1/T c

m−1)
eM−m ?

= IDi−1IDi−2 . . . IDi−m+1

Z = X ri
m−1

Protocol 9.18: Koyama–Ohta type 1 identity-based group key agreement protocol

Koyama and Ohta’s second protocol type [448] allows every principal to commu-
nicate with each other principal, which they call a complete graph architecture. The
original version of these protocols was attacked by Yacobi [747] and a new version
was published by Koyama and Ohta the following year [449]. Koyama later refined
these protocols again [447] due to a conspiracy attack by Shimbo and Kawamura
[671]. We shall look only at the latest versions, which are anyway simpler than the
originals.

Initialisation phase. The trusted authority chooses a modulus N to be the product
of three distinct large primes: N = pqr. These primes must be large enough so
that pq cannot be factorised. A random value e is chosen so that N/2 < e < N
and then d is calculated so that de mod φ(N) = 1. An element g is chosen by the
authority that is of maximal order in Z∗N . The values N,r,g,e are all made public,
together with a hash function h.

Registration phase. Each principal Ui wishing to participate in a group must obtain
a secret key Si. This is generated by the authority from Ui’s identifying informa-
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tion IDi as Si = IDd
i mod N. Notice that IDi = Se

i mod N. Si must be transferred
securely to Ui. If desired, the values d, p and q may be destroyed after all prin-
cipals are registered.

Round 1. Each principal Ui chooses a value Pi ∈R Zr−1 and generates a timestamp
Ti. Principal Ui then calculates Xi = gePi mod N and Yi = Sigh(Xi,Ti)Pi mod N. Ui
broadcasts the triple (Xi,Yi,Ti). On receipt of the triples (X j,Yj,Tj), for all j 6= i,
Ui should verify that each timestamp Tj is fresh and, if so, check the following
equation.

Y e
j

X
h(X j ,Tj)
j

?
= ID j mod N.

If all m−1 checks are verified then Ui proceeds to round 2.
Round 2. Principal Ui chooses two values ri ∈R Zr−1 and Qi, j ∈R Zn−1 and gen-

erates a new timestamp T ′i . Then Ui calculates Ai, j = (X j +Qi, jr)eri mod N and
Bi, j = Si(X j+Qi, jr)h(Ai, j ,T ′i )ri mod N for all j 6= i. Ui sends the triple (Ai, j,Bi, j,T ′i )
to U j. On receipt of its own m−1 triples, Ui verifies that the timestamps T ′j are
fresh and if so performs the following check, for all j 6= i:

Be
j,i

A
h(A j,i,T ′j )
j,i

?
= ID j mod N.

If all checks pass then Ui calculates the shared secret Z as follows:

Z =

(
m

∏
j=1

A j,i

)P−1
i mod r−1

mod r.

If the protocol is run correctly then all principals obtain the same shared secret
Z = ge2(r1+r2+...+rm). On the assumption that Si is required in order to form (Xi,Yi)
pairs and (Ai, j,Bi, j) pairs, each principal does obtain implicit authentication of the
shared key. There is no key confirmation provided. Forward secrecy is provided since
knowledge of the Si values does not appear to help in obtaining Z. The computational
cost per principal is, depending on the implementation, around 4m exponentiations,
which is high compared with alternatives.

The third protocol type proposed by Koyama and Ohta uses a star architecture:
messages are exchanged only between one principal, say U1, and all other principals.
The protocol is related to the previous example, but now the shared secret collapses
to Z = ge2r1 and so this becomes a key transport protocol in the sense that only U1
contributes to the shared secret. Considerable computational savings result for all
principals except U1. Furthermore, forward secrecy of the key is still maintained.
However, apart from U1 no other principal now has any explicit assurance about the
other members of the group.

The Koyama and Ohta protocols have evolved to take into account a number
of attacks. However, there is no formal basis for their security and the problems in
earlier versions do not inspire confidence. They also have high computational costs
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in the versions that provide implicit key authentication. An implementation of these
protocols was reported by Goscinski and Wang [331].

Chikazawa and Inoue [203] devised an identity-based group key establishment
protocol that has similarities with Koyama and Ohta’s type 3 protocol. One distin-
guished principal, say U1, determines the key. The only messages sent are m− 1
messages from U1 to each other principal. Shimbo and Kawamura [671] found an
attack on this protocol and it was then repaired by Chikazawa and Yamagishi [204].
Their protocol was recently found to be vulnerable to attacks by Shim [669], who
proposed further modifications. Similar protocols were also published by Chen and
Hwang [191, 369]. None of these protocols provides forward secrecy.

9.4.2 Protocols of Saeednia and Safavi-Naini

Saeednia and Safavi-Naini [642] proposed two identity-based group key establish-
ment protocols based on the generalised Diffie–Hellman key agreement protocol of
Burmester and Desmedt which was examined in Sect. 9.2.6. Their idea is to use iden-
tity information of adjacent principals to gain authentication of keying material. A
composite modulus n = pq is used to provide a trapdoor so that only the trusted au-
thority is able to calculate user secrets related to identity information. Two bases are
used, g and h, which both have order p′q′ where p′ = (p−1)/2 and q′ = (q−1)/2
are also prime. In an initialisation stage, all principals are issued with two secrets by
the authority; these can only be found with knowledge of p′q′ (equivalent to knowing
the factorisation of n).

Both of the proposed protocols use this same initialisation. The first protocol is
computationally simpler but each party only uses the identity information of its ad-
jacent principals to gain assurance that these are the correct entities. Thus there is
no assurance as to who are the other protocol principals involved so this constitutes
only a weak form of key authentication. In Saeednia and Safavi-Naini’s second pro-
posal a form of signature is broadcast by all principals, thereby allowing stronger
authentication. This is shown in Protocol 9.19.

A close look at Protocol 9.19 reveals that it includes exactly Protocol 9.9 of
Burmester and Desmedt. Of course this means that the shared secret,

Z = gr1r2+r2r3+...+rmr1 .

is exactly the same, and is calculated by each principal in the same way, as in that
protocol. The additional fields used in Protocol 9.19 constitute the signature of each
principal on the exchanged ti and Xi values. However, it is also necessary for the ti
values to be broadcast so that all principals can sign them; in the Burmester–Desmedt
protocol these need only be passed to adjacent principals.

The signature generation and verification requires 2m exponentiations for each
principal; this dominates the computational requirements of the protocol except
when m is very large. Knowledge of the long-term secrets Si and Ti does not help
in finding ri and so forward secrecy is provided.
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Information held by trusted authority: Primes p′, q′ with p = 2p′+ 1 and q = 2q′+ 1 both
prime and modulus n = pq.

Shared information: Modulus n, elements g and h of order p′q′, integer u < min(p′,q′) and
hash function H.

Information held by Ui: Si = gID−1
i mod p′q′ , Ti = h−ID−1

i mod p′q′ .

Phase 1.
Ui chooses ri ∈R Zp′q′ and calculates ti = gri

Ui broadcasts ti
Ui calculates c = H(t1, t2, . . . , tm),Xi = (ti+1/ti−1)

ri ,wi = SH(Xi)ri
i T c

i

Phase 2.
Ui broadcasts Xi,wi

Ui checks wID j
j hc ?

= tH(X j)
j for j 6= i

Ui calculates Z = tmri
i−1Xm−1

i Xm−2
i+1 . . .Xi−2

Protocol 9.19: Saeednia–Safavi-Naini identity-based group key agreement protocol

9.4.3 ID-Based Group Key Agreement and Pairings

In Chap. 7 we examined how elliptic curve pairings have been used widely to design
protocols for identity-based key agreement. It may perhaps be expected that the same
would be true of group key exchange, but in fact there are relatively few identity-
based group key exchange protocols. A closer look shows that the two-party case is
well suited to pairings because ephemeral and long-term keys from two participants
can be paired together. We saw in Sect. 9.2.7 that pairings can be used to extend
the Diffie–Hellman construction to three-party key exchange in a natural way, but
this protocol is no longer identity-based. Extending to more parties with pairings can
be done, for example by building up using trees as with tree-based Diffie–Hellman.
However, there may be little reason for doing this since pairing computation is gen-
erally more expensive than exponentiation.

Most of the authenticated group protocols discussed in Sect. 9.3.1 use long-term
keys only in the signatures used to authenticate other messages. Identity-based signa-
tures, using pairings or not, can certainly be applied there. However, this is arguably
not of special interest since conceptually identity-based signatures are not fundamen-
tally different from ordinary PKI-based signatures.

Choi et al. [205] presented a bilinear version of the DBD protocol (Protocol 9.9)
and then integrated that with an identity-based authentication scheme to provide a
authenticated group key agreement protocol. They showed that this protocol is se-
cure under the decision bilinear Diffie–Hellman assumption and using random ora-
cles. However, no efficiency comparison was made with the ordinary DBD protocol
authenticated with normal signatures. Moreover, Choi et al. [205] did not consider
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insider attacks which were observed by Zhang and Chen [770]. Later authors have
developed enhanced protocols with better efficiency [242, 446, 782] or additional
properties such as anonymity [709, 726].

9.5 Group Key Agreement without Diffie–Hellman

Just as with the two-party case, almost all multi-party key agreement protocols are
based on Diffie–Hellman key agreement. However, it is possible to use alternative
techniques which can lead to advantages in efficiency. We will look at several exam-
ples in this section.

9.5.1 Pieprzyk and Li’s Key Agreement Protocol

Secret sharing allows a group of users to cooperate to derive a secret value. Some re-
searchers have shown how this can be exploited as a building block in group key es-
tablishment. The protocol described below employs the threshold scheme of Shamir
[664] introduced in Sect. 1.3.6. We will not present the full detail, but note that
recovery of secrets from a set of shares can be achieved using only additions and
multiplications of the share values.

The idea to adapt secret sharing for key broadcasting seems to have been first pro-
posed by Laih et al. [469] in a special case, and more generally by Berkovits [91].
The idea is to use an (m+1,2m) threshold scheme for which each receiving princi-
pal possesses one share; m further shares are broadcast when the key is established.
Pieprzyk and Li [614] used the same basic idea to design a group key agreement pro-
tocol but now each principal sets up its own threshold scheme. Instead of recovering
each principal’s secret during a protocol run, an image of the secret is found. This
allows the same secret sharing scheme to be used multiple times.

Initialisation phase. This phase must be run before any group key is established.
Each principal Ui engages in an (m+ 1,2m) secret sharing scheme in Zq with
every other principal. Using Shamir’s scheme this means that Ui chooses a poly-
nomial

fi(z) = ai,0 +ai,1z+ . . .+ai,mzm

with coefficients randomly chosen in Zq. The shares are values fi(x) with 1 ≤
x ≤ 2m. There are twice as many shares as principals, and they are divided into
two sets: si, j(1) = fi(2 j− 1) and si, j(2) = fi(2 j) with 1 ≤ j ≤ m. The first set
is kept secretly by Ui, while principal U j is given one share, si, j(2), from the
second set. The share must be sent in a secure way.
The secret associated with Ui is fi(0) which could be recovered from any m+1
shares. The shared secret for the whole group will be F(0) where F(x) = f1(x)+
f2(x) + . . .+ fm(x). But neither F(0) nor any fi(0) will be recovered during
any protocol run. This allows multiple group keys to be found following one
initialisation phase.
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Key agreement. This phase is run each time a new group key is required. The same
group may run this phase multiple times following one initialisation phase.
1. A new base value α is chosen for this session. A third party chooses this

by taking a random value r and broadcasting the value α = gr. It is not
necessary to keep the value of α (or even r) secret.

2. Principal Ui broadcasts the m values βi, j = αsi, j(1), for 1≤ j ≤m, which are
images of its first set of shares.

3. Each principal (indeed any eavesdropper too) can find the image of m shares
of the sum of the secret shares by calculating αF(2 j−1) = ∏

m
i=1 βi, j for 1 ≤

j ≤ m.
4. Principal U j can also obtain αF(2 j) = α∑

m
i−1 fi(2 j). Thus Ui has the image of

m+1 shares which allows calculation of the shared secret Z = αF(0) since
addition and multiplication of the exponents can be done by multiplication
and exponentiation of α .

Pieprzyk and Li provided an informal proof that the protocol maintains the con-
fidentiality of the session key against an adversary who observes multiple runs of the
protocol (with the same initialisation phase). They also proposed a final step in the
key agreement protocol in which each principal broadcasts a hash of three values: the
principal’s identity, the shared secret Z and the value α . This gives a weak form of
key confirmation; notice that any principal in the protocol can form all such values.

The computational requirements for each principal are mainly due to working
with the exponents of α . Calculation of the βi, j values requires m exponentiations
by each principal, and there is also a multi-exponentiation required to calculate the
shared secret. A useful feature of the protocol is that the key agreement phase (ex-
cluding key confirmation) can be completed in one round. However, this is only true
following some earlier initialisation, while there are a number of other drawbacks of
this protocol.

• Confidence in freshness of the key depends on a random α being available. This
means that the third party supplying this value must be trusted for this purpose.

• The initialisation phase must be run when a different group wishes to establish a
key. Also there are m−1 secrets that need to be stored by each principal for each
group that it belongs to.

• The secret shares are long-term keys whose compromise leads to compromise of
any session key. Therefore forward secrecy is not provided.

Pieprzyk and Li also proposed an extended protocol that allows any subgroup
to form a session key. A limitation of this extension is that users are not able to
verify which members of the group take part in any particular protocol run. A related
protocol has been proposed by Anzai et al. [36].

9.5.2 Tzeng–Tzeng Protocols

The protocols of Tzeng and Tzeng [717] have the same algebraic setting as Diffie–
Hellman but the shared secret is Z = gr1+r2+...+rm where ri is the ephemeral private
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input of principal Ui. Calculation of Z uses public information together with the
long-term private key of any principal, and consequently the protocols do not provide
forward secrecy.

In order to provide some element of fault tolerance, use is made of a proof of
knowledge which allows any entity to check that the message elements sent by each
party are properly constructed. We denote by PEDL(X1,X2, . . . ,Xm) a proof that the
discrete logarithm of Xi to the base yi is the same for each i with 1 ≤ i ≤ m. The
computational cost of generating each proof is m exponentiations with a similar cost
to verify it.

Tzeng and Tzeng proposed two protocols, the first one of which is shown as Pro-
tocol 9.20. This protocol makes use of a signature scheme; they specify an ElGamal
signature variant, but it is shown as a generic signature in Protocol 9.20. Their sec-
ond protocol incorporates private key information into the proof instead of using a
conventional signature.

Shared information: Session identifier SID.

Phase 1.
Ui chooses ri ∈R Zq.
Ui calculates ti = gri and broadcasts the following:
• ui, j = yri

j for 1≤ j ≤ m
• PEDL(ui,1,ui,2, . . . ,ui,m)
• SigUi

(ti,SID).

Phase 2.

Ui computes t j = ux−1
i

j,i .

Ui verifies proof of knowledge from each U j and signature on (t j,SID).
Ui calculates Z = (u1,i ·u2,i · . . . ·um,i)

r−1
i .

Protocol 9.20: Tzeng and Tzeng’s group key agreement protocol

Protocol 9.20 has some interesting properties. The fault tolerance property en-
sures that if one or more of the proof verifications fails then the party concerned can
be eliminated from the calculation of the shared secret. However, this mechanism
only works on the strong assumption that the broadcast channel provides integrity
of all messages; otherwise a malicious insider can send different proofs to different
principals. The cost of verifying each of the proofs from the other m−1 principals is
also high; about m(m−1) exponentiations for each principal.

Tzeng and Tzeng [717] pointed out that their protocols can be completed in one
(synchronous) round, which means that they meet the bound of Becker and Wille
for contributory key agreement with broadcasts discussed in Sect. 9.2.9. However,
their protocols require the session identifier SID to be known by all participating
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principals. Unless this session identifier is agreed beforehand their protocols cannot
be completed in one round. Tzeng and Tzeng also claimed a proof of security, but
they provide no reduction proof for a powerful adversary, concentrating instead on
the properties of the proof of knowledge. Boyd and González Nieto [143] have shown
an explicit attack on the second of the protocols.

9.5.3 Boyd–González Nieto Group Key Agreement

Boyd [132] proposed a protocol using generic encryption and signature techniques
together with a hash function possessing special properties. Its main virtue is its
simplicity and efficiency; perhaps its main drawback is a lack of forward secrecy.

Protocol 9.21 shows the message flows. One principal, say U1, is distinguished
and sends its random value r1 to each other user in an authenticated and confidential
way. The other users only have to broadcast their messages so that all principals in U
receive all the random ri values. U1 signs the value r1 together with the identities of
all principals in the group. Since this message is the same for every principal it only
needs to be formed and sent once in a broadcast to all users. The value of r1 is sent
to user Ui encrypted with that principal’s public key, Ki. The protocol then has two
stages. In the first stage U1 broadcasts one signature and m− 1 encryptions. In the
second stage each Ui broadcasts its ri value.

Shared information: Hash function h. Signature verification with respect to U1.
Information held by U1: Public encryption key with respect to Ui for 2≤ i≤ m.

Phase 1:
U1 broadcasts U,SigU1

(U,h(r1)).

U1 broadcasts EncU2(r1),EncU3(r1), . . . ,EncUm(r1).

Phase 2:
Ui broadcasts ri, for 2≤ i≤ m.

Each Ui calculates
Z =MACr1(h(r2)⊕h(r3)⊕ . . .⊕h(rm)).

Protocol 9.21: Boyd–González Nieto group key agreement protocol

The security is based on the properties of the MAC function and h. It must not
be possible to calculate MACr1(.) without knowledge of r1; since r1 is sent confiden-
tially to group members, no outsider can calculate Z. Key freshness is provided by
the one-wayness of h; no party is able to force an old value if at least one principal
chooses its ri freshly. Each principal gets an assurance from U1 regarding the mem-
bers of the group, and so U1 must be trusted for this purpose. A generalisation of the
protocol allows any principals to choose and encrypt a value for all other principals.
This can reduce trust but increases the computation and communication.
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The protocol can be completed with m broadcast messages. The computation
required for U1 is one signature and m− 1 public key encryptions. Other principals
use only one signature verification and one public key decryption. Compromise of
any principal’s decryption key results in compromise of Z so, as mentioned above,
forward secrecy is not provided.

Protocol 9.21 is a contributory key agreement protocol in the sense of Becker
and Wille [66]. Each of the broadcast messages can be sent simultaneously in one
synchronous round. Therefore this protocol satisfies Becker and Wille’s bound of
one synchronous round for key agreement with broadcasts, mentioned in Sect. 9.2.9.

Boyd and González Nieto [143] claimed a security proof for an almost identi-
cal protocol in the Bellare–Rogaway model. The differences are that the MAC is
replaced by a function f that is assumed to act as a random oracle, and the shared
secret is calculated as Z = f (r1,r2, . . . ,rm). Choo et al. [211] later demonstrated an
unknown key-share attack on Protocol 9.21 and pointed out some oversights in the
proof. As usual, such an attack can be prevented by including the identities of the
group members in a key derivation function. Gorantla et al. [328] subsequently pro-
vided a new security proof which incorporates this change and avoids any use of
random oracles.

Mailloux et al. [513] proposed to use a signcryption scheme to replace the sep-
arate encryption and signature functions in Phase 1 of Protocol 9.21. They also in-
cluded a shared session identifier in all signed messages and used batch verification
to improve efficiency. They prove security of their protocol in the random oracle
model assuming secure signature and signcryption. Their protocol does not provide
forward secrecy.

9.5.4 Generic One-Round Group Key Agreement from Multi-KEM

Gorantla et al. [329] proposed a simple generic construction for group key agreement
using a multi-KEM (mKEM). An mKEM [680] is a generalisation of a key encapsu-
lation mechanism which allows encapsulation of a new key for each of m parties in
the set P. The simple protocol has the following structure.

1. Each party Ui encapsulates a random key Ki for all other members of the group
and broadcasts the resulting value Ci.

2. On receipt of each C j, Ui decapsulates to obtain key K j. Ui also computes the
session identifier as sid= (C1,C2, . . . ,Cm,P). The session key is computed as

K = fK1(sid)⊕ fK2(sid)⊕ . . .⊕ fKm(sid)

where fk(·) is a pseudo-random function.

When instantiating the mKEM with any concrete CCA-secure version this construc-
tion was shown by Gorantla et al. [329] to be a secure group key agreement pro-
tocol without forward secrecy. With known instantiations of mKEM this is not a
very efficient protocol but it does have the distinction of requiring only one round of
communication.
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9.5.5 Asymmetric Group Key Agreement

Wu et al. [739] introduced the notion of asymmetric group key agreement (AGKA).
The motivation behind their protocol designs is to provide one of the common appli-
cations of group key agreement, namely the ability to send messages confidentially
to a group of parties. However, in other ways the AGKA protocols are quite unlike
the protocols which we have looked at in the rest of this chapter. In particular, no tra-
ditional shared session key is agreed during the protocol, but instead a shared public
key is generated which can be used by any party, including outsiders to the group.
Any group member can decrypt using a corresponding private key, which differs
amongst different group members.

One of the attractive features of the AGKA protocols of Wu et al. [739] is that
they only require one round of communication. In some situations, when the aim
of the group key agreement is only to provide confidentiality of messages to group
members, they can be more efficient than using proper group key agreement. Subse-
quently there have been constructions for AGKA protocols with additional proper-
ties, such as in the identity-based [771] and dynamic [776] settings.

9.6 Group Key Transport Protocols

The majority of published multi-party key establishment protocols rely on key agree-
ment. In this section we look at a few group key establishment protocols using key
transport. Many key transport protocols designed for two parties can be extended
to the multi-party case in a straightforward fashion. We will first look at some sim-
ple examples based on different logical architectures. Then we look at a method of
Mayer and Yung for systematically and formally extending two-party protocols for
multiple parties. Following this we look briefly at proposals for key transport for dy-
namic groups using key hierarchies. Key transport protocols require a distinguished
principal who generates the keys; we will sometimes call this principal the group
manager.

Before looking at the specific protocols, it should also be mentioned that key
pre-distribution schemes have been generalised to the multi-party case. The idea is
that a trusted centre will distribute secrets to each member of a community in such
a way that different subgroups can derive a shared secret known only to themselves.
Such schemes may be regarded as ‘no-message’ protocols since each party is able
to derive the correct key for a given group without any interaction. This means that
additional measures must be taken in order to obtain a fresh session key. Stinson
[697] has made a survey of such methods.

9.6.1 Burmester–Desmedt Star and Tree Protocols

As well as their key agreement protocol (Protocol 9.10) Burmester and Desmedt
[168] proposed two simpler key transport protocols based on star and tree configu-
rations. As with their key agreement protocol, these were initially proposed in unau-
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thenticated versions. Authenticated versions can be achieved by applying a suitable
compiler such as the Katz–Yung compiler variant proposed by Desmedt et al. [243].

Burmester–Desmedt Star Protocol

In the star protocol a distinguished principal U1 acts as a manager and interacts with
every other principal. First U1 agrees a Diffie–Hellman key Ki with Ui and then sends
the chosen session key K to Ui encrypted with Ki. The message flows are shown in
Protocol 9.22. Note that only messages between U1 and a single other principal, Ui,
are shown; a similar exchange takes place between U1 and all other principals.

U1 Ui

r1 ∈R Zq

t1 = gr1
t1−−−−−−−→

ri ∈R Zq
ti←−−−−−−− ti = gri

Choose random K
Ki = tr1

i

ci = {K}Ki

ci−−−−−−−→ Ki = tri
1

Decrypt K

Protocol 9.22: Burmester–Desmedt star protocol

Burmester and Desmedt suggested that Protocol 9.22 may be extended to form an
authenticated key transport protocol. To do so each principal Ui should authenticate
the value ti when sent to other principals. This authentication can be achieved using
a generic method such as a digital signature.

Hirose and Yoshida [357] proposed a very similar group key establishment pro-
tocol employing their own signature scheme, which was also used in their key agree-
ment scheme (Protocol 5.38). We show the message flows in Protocol 9.23 with a
generic signature. Only messages between U1 and a single other principal, Ui, are
shown since the messages with all other principals are similar.

The confidentiality of K is protected only by the ephemeral keys and so forward
secrecy is provided by this protocol. Apart from U1, no principal gains explicit as-
surance about the other parties who obtain K. The trust required in U1 and the high
computational load for this principal are the main drawbacks of this protocol. In an
earlier protocol, Hirose and Ikeda [356] used a novel approach to key confirmation
by allowing all users to contribute to a multisignature on the session key, using prin-
cipal U1 as a combiner. This multisignature can be verified by all principals using all
of their public keys.
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Shared information: Signature verification information for all principals.

U1 Ui

r1 ∈R Zq

t1 = gr1
t1−−−−−−−−−−−−−−−−→

ri ∈R Zq
ti←−−−−−−−−−−−−−−−− ti = gri

K ∈R {g0,g1, . . . ,gq−1}
ci = Ktr1

i
ci−−−−−−−−−−−−−−−−→

SigUi
(t1,ci)←−−−−−−−−−−−−−−−−

Verify signature
SigU1

(ti,ci)−−−−−−−−−−−−−−−−→
Verify signature

K = ci/tri
1

Protocol 9.23: Hirose–Yoshida group key transport protocol

Burmester–Desmedt Tree Protocol

Burmester and Desmedt’s tree protocol distributes the computational load more
evenly amongst principals. Principals are arranged in a binary tree, each principal
representing a node in the tree. (Leaf nodes may be left empty.) During the protocol
each principal first agrees a Diffie–Hellman key with its parent node and its two child
nodes. (The root of the tree has no parent so agrees a key only with its children, and
the leaves of the tree have no children, so they agree a key only with their parent.)
Once all keys are agreed, the root principal generates the session key K which is
sent recursively by every parent to its children protected, by multiplication, with the
shared key.

As with the star protocol, Burmester and Desmedt suggested to add authentica-
tion by having each party sign its ti value for each of its recipients. The advantage of
the tree protocol over the star protocol is that the computation is fairly even across
all nodes: leaves require two exponentiations, internal nodes four exponentiations,
and the root three exponentiations. Each principal needs to trust its parent node to
correctly propagate the key. Once again there is no explicit assurance about other
key recipients. Forward secrecy is provided because only ephemeral keys are used to
protect K.

The drawback of the original Burmester and Desmedt tree protocol [168] is that
the number of rounds required increases as 1 + dlog2 me because K can only be
propagated one level per round. However, Burmester and Desmedt later updated the
protocol [169] to show that it can be reduced to two rounds at the cost of using
broadcast communications. As in the original protocol, in the first round pairwise
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keys are agreed between all nodes in the tree and their parent node (except for the
root). However, for the second round these pairwise keys are propagated down to the
leaves of the tree; each node, apart from the root, forms two ciphertexts consisting
of the key shared with its parent encrypted with each of the keys shared with its two
children. At the same time the root node encrypts the shared key K with the keys of
its two children. Consequently every node in the tree can now recover K recursively.
Of course this variant adds communication and decryption costs in comparison with
the original protocol.

Desmedt and Lange [242] analysed a pairing-based variant of the Burmester and
Desmedt tree protocol in which the binary tree is replaced by a tree of “triangles”,
each a set of three nodes. The Joux tripartite protocol (see Sect. 9.2.7) is run inside
each triangle. Then the root node starts the propagation of the shared key down the
tree of triangles. Desmedt and Lange showed, using assumptions regarding the rel-
ative cost of pairings and exponentiation, that their pairing-based version is more
efficient than the original protocol. They also noted that increasing the branching
factor in the tree still further can likely lead to further enhancements. Later, Desmedt
and Mijayi [244] explored variants in which nodes can share an edge in different
triangles, instead of sharing just a node as considered by Desmedt and Lange [242].
They showed that this leads to new protocols which can reduce the overall computa-
tion and also allow for tuning the protocol according to the computational power of
different nodes.

9.6.2 Mayer and Yung’s Protocols

Mayer and Yung [530] made one of the early studies of provable security for multi-
party key establishment. They proposed generic transformations that allow two-party
key transport protocols to be extended to protocols for multi-party key transport in
such a way that a proof for the two-party case automatically extends to the multi-
party case. The transformations are quite straightforward, consisting basically of in-
dividual runs of the protocol between the group manager U1 and the key recipients
U2, . . . ,Um but with the runs authenticated simultaneously. They use a formal model
based closely on that of Bellare and Rogaway.

Mayer and Yung include two example protocols for which their method works.
One is based on the shared key two-party protocol of Bellare and Rogaway (Pro-
tocol 3.2). This requires that each party already shares a secret with the key sender,
which may not be realistic in many applications for authenticated key transport. Their
second example is based on Blake-Wilson and Menezes’ provable secure protocol
(Protocol 4.19) examined in Chap. 4.

The message flows for the Mayer–Yung generalisation of the Blake-Wilson and
Menezes protocol are shown in Protocol 9.24. Only flows between the server U1 and
Ui are shown, although in fact the messages from U1 are broadcast to all other prin-
cipals, and the messages from Ui to U1 are gathered together for all i. The protocol
is proven secure in the sense that if all parties accept the key then they must all agree
on the messages exchanged and an adversary cannot obtain K.
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Shared information: Public encryption key and signature verification information for all prin-
cipals.

U1 Ui

Choose nonces ni,Ni

Choose nonce N1
Ni,ni←−−−−−−−−−−−−−−−−

Choose random key K
Ci = EncUi(Ui,K) for 2≤ i≤ m

U2,N2,C2,U3,N3,C3, . . . ,Um,Nm,Cm,N1
SigU1

(U2,N2,C2,U3,N3,C3, . . . ,Um,Nm,Cm,N1)−−−−−−−−−−−−−−−−→
Verify signature

(U1,N1),SigUi
(U1,N1)←−−−−−−−−−−−−−−−−

Verify signature
U2,n2,U3,n3, . . . ,Um,nm

SigU1
(U2,n2,U3,n3, . . . ,Um,nm)−−−−−−−−−−−−−−−−→

Verify signature

Protocol 9.24: Mayer–Yung group key transport protocol

It may be observed that Protocol 9.24 uses one round more than Blake-Wilson
and Menezes’ Protocol 4.19 on which it is based. This is due to a deliberate reorgan-
isation of the protocol for reasons that we now explain. In any protocol the adversary
can always make one or more principals accept and complete the protocol, while
others do not accept. This can be achieved by deleting the final protocol message to
any recipient. Mayer and Yung called this situation an inconsistency and discuss two
alternative consistency requirements.

Consistency type 1. If the key recipients U2, . . . ,Um accept the session key then the
group manager U1 has also accepted it.

Consistency type 2. If the group manager U1 accepts the session key then the recip-
ients U2, . . . ,Um have accepted it.

A protocol cannot provide both forms of consistency. Mayer and Yung argue that
for group key transport protocols the first type of consistency is more useful than
the second type. This is because denial of service attacks may become possible if
U1 is left in a state where it has not yet accepted, but the other principals believe
that the protocol is complete. Since U1 is usually a server, it is more vulnerable to
this kind of problem. Mayer and Yung also provided a generic transformation that
allows a protocol with one type of consistency to be transformed into a protocol
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with the other type. Protocol 9.24 is the result of this transformation applied to the
Blake-Wilson and Menezes protocol, which results in the additional message flow.

9.6.3 Key Hierarchies

Any group key transport protocol seems to require secure communication between
the initiator and all other principals in order to initially establish the key. Solutions
in which a single key is securely sent to each member, such as Protocols 9.22, 9.23
and 9.24, are appropriate in static groups. However, in dynamic groups it turns out
that much may be gained from using a hierarchy of keys. When the group key is
changed, in particular due to group members being added or deleted, different keys
in the hierarchy can be used to save on both communications and computation.

To see the idea, consider the key hierarchy illustrated in Fig. 9.2 which is based
on a binary tree. Each principal in the group shares a set of keys with the group
manager. Each principal knows the key at one leaf of the tree and also every key that
is the parent of a key that it knows. For example, in Fig. 9.2 principal U5 knows the
set of keys in bold, namely {k5,k56,k5678,K}. The key K at the root of the tree is the
key shared by the group and can be used for secure communications.

k1 k2 k3 k4 k5 k6 k7 k8

k12 k34 k56 k78

k1234 k5678

K

Fig. 9.2: Key hierarchy using binary tree

In this example each principal needs to store multiple keys, and indeed this is
typical in key hierarchies. However, the potential advantage can immediately be seen
if we consider what happens if it is required to remove user U5 from the group. The
set of keys known to U5 needs to be changed, but this does not require the group
manager to communicate directly with every principal. All principals on the left side
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of the tree can know the new shared key K′ if the manager encrypts K′ with k1234 and
sends it to these users (possibly by broadcasting it). Key k56 must be replaced by k′56
and can be sent to U6 encrypted with k6 (and k′56 could become the new individual
key of U6). Then key k5678 can be replaced by k′5678 and sent encrypted with k78
and with k′56. In total the manager has to encrypt and send five new keys rather than
having to encrypt a new key for all seven remaining principals which would occur
with a flat hierarchy.

In general the manager needs to generate a new key for each level of the tree and
encrypt each new key with the keys of the two child nodes (except for the deleted
node). If h = dlog2 ne denotes the height of the tree then this means that the manager
need only encrypt and send 2h− 1 keys, which is a considerable saving over n− 1
when n is large. A similar saving can be made when adding new group members.
(Recall that it is usually required that new members cannot know old group keys, so
that K and all keys on the path from the new member to the root must be changed.)

The idea of using key hierarchies seems to have been published independently
at about the same time by both Wong et al. [735] and Wallner et al. [725]. Both
of these papers contain a detailed analysis of the various different related schemes.
Wong et al. included experimental results on the comparative practical performance
of different dynamic group operations depending on parameters such as group size
and specific topology of the hierarchy. McGrew and Sherman [533] proposed key
hierarchies based on one-way function trees in which the key at each node is defined
by the keys at each of its child nodes. This can result in smaller message sizes.
All these papers concentrate only on the dynamic operations and say little about
establishing the initial group key.

9.7 Conclusion

Over the past 10–15 years, significant progress has been made in the topic of group
key establishment protocols. Generic designs and improved concrete protocols have
been developed, strong security models have been defined, and many protocols now
have security proofs in the strong formal models. To a large extent, we can now
say that design and analysis of group key agreement is at a similar state to that of
two-party key agreement.

As in the two-party case, we have a number of alternative models and it is not al-
ways clear what is the best model to use, especially with regard to insider attacks. An
integrated security model in which protocols can be fairly compared would be very
beneficial. The three-party case has seen elegant solutions based on bilinear maps
from elliptic curve pairings. At the time of writing the security status of multilinear
maps remains unclear, but an efficient and secure instantiation would be a very sig-
nificant tool for design of new group key agreement protocols, particularly if such
maps can remain secure in the face of quantum computers.



A

Standards for Authentication and Key Establishment

Practitioners often look to standards bodies to recommend techniques that can be
used with the assurance of independent verification of correctness and suitability.
Several standards exist covering protocols of the type we have examined in this book.
This appendix lists the main relevant standards and briefly summarises their contents.
In many cases specific protocols have been examined in the body of the book and we
refer to these where appropriate.

Standards are issued by many different bodies, both national and international.
We have included mainly international standards; many national standards bodies
issue their own versions of international standards with little or no alteration. Because
of their international influence we also mention some US national standards. We
additionally include some protocols which are not standardised by any organisation
but which are widely deployed in certain settings.

A.1 ISO Standards

The International Organization for Standardization (http://www.iso.ch), also
known as the ISO, has published numerous standards on cryptographic mechanisms
and protocols.

A.1.1 ISO/IEC 9798

ISO issued the six-part standard ISO/IEC 9798 on the topic of entity authentication.

• Part 1: General (3rd edition, 2010).
• Part 2: Mechanisms using symmetric encipherment algorithms (3rd edition,

2008).
• Part 3: Mechanisms using digital. signature techniques (2nd edition, 1998; with

amendment, 2010).
• Part 4: Mechanisms using a cryptographic check function (2nd edition, 1999).
• Part 5: Mechanisms using zero knowledge techniques (3rd edition, 2009).
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• Part 6: Mechanisms using manual data transfer (2nd edition, 2010).

The protocols in Part 2 of the standard were examined in Sect. 3.2.3. Some of
the protocols in Part 3 of the standard were examined in Sect. 4.2.1. The protocols in
Part 4 of the standard were examined in Sect. 3.2.4.

A.1.2 ISO/IEC 11770

ISO issued the six-part standard ISO/IEC 11770 on the topic of key management.
Some of the protocols in Parts 2 and 3 of the standard are strongly related to protocols
in Parts 2 and 3 of ISO/IEC 9798.

Part 1: Framework (2nd edition, 2010).
Part 2: Mechanisms using symmetric techniques (2nd edition, 2008). The proto-

cols in this part of the standard were examined in Sects. 3.3.4 (the server-less
protocols) and 3.4.4 (the server-based protocols).

Part 3: Mechanisms using asymmetric techniques (3rd edition, 2015). Protocols
in this part of the standard include both key transport protocols which have been
examined in Sect. 4.3.1 and key agreement protocols which were summarised in
Sect. 5.6.

Part 4: Mechanisms based on weak secrets (2nd edition, 2017). This part of the
standard is concerned with password-based protocols. It includes five of the
password-based key agreement protocols described in Chap. 8. Two are ‘bal-
anced’ protocols where both parties hold the shared password: SPEKE (Pro-
tocol 8.5) and J-PAKE (Protocol 8.8). Three are augmented protocols where a
server holds only the image of the client password: SRP (Protocol 8.18), AMP
(Protocol 8.19) and AugPAKE (Protocol 8.20). There is also one password-
authenticated key retrieval mechanism which allows a server to furnish a user
with a strong secret while the user only stores a password. This is based on a
scheme of Ford and Kaliski [281].

Part 5: Group key management (2011). This part of the standard is devoted to
group key establishment using a key distribution centre. (This means that it
excludes group key agreement which was covered extensively in Chapter 9.)
Much of the document is taken up with describing key management structures
for groups, particularly various types of trees including the octopus structure
shown in Protocol 9.8. There are two specific mechanisms included in the stan-
dard, but both are given abstract descriptions. Protocols based on key chains are
also described. With regard to security properties the standard only considers
what are termed forward secrecy and backward secrecy for dynamic groups: the
former states that leaving group members should not learn future keys1 while
the latter states that new group members should not learn past keys.

1 Note that this definition of forward secrecy is different from what we use in most of this
book.
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Part 6: Key derivation (2016). Part 6 of ISO/IEC 11770 standardises key deriva-
tion functions in two classes called one-step and two-step functions. The one-
steps functions compute one or more keys as the output of a hash function or, in
one case, a MAC algorithm. The two-step functions apply a key extraction func-
tion followed by a key expansion function, the latter of which can be repeated to
obtain further keys.

A related standard is ISO/IEC 15946 (Part 1, 3rd edition, 2016; Part 5, 2nd
edition, 2017) which covers cryptography based on elliptic curves. This standard
includes details for implementing elliptic curve mechanisms defined in Part 3 of
ISO/IEC 11770.

A.1.3 ISO 9594-8/ITU X.509

A series of standards for directory systems was first issued in 1988 jointly by ISO
and CCITT (which was later re-formed as ITU). The section of the standard num-
bered 9594-8 (ISO version) or X.509 (ITU version) was known as the Authentication
Framework. This section of the standard provides information on how to use a di-
rectory to store public key certificates, including the format of certificates. It also
includes examples of how to use the certificates to provide authentication and key
establishment. In the most recent version of the standard (8th edition, 2017) the
Authentication Framework has been renamed Public-Key and Attribute Certificate
Frameworks. Portions of the X.509 specification have also been published by the
Internet Engineering Task Force, which we note below.

Under the heading ‘Strong authentication’ three key establishment protocols
were presented. Unfortunately there were some problems with the protocols in the
first version of the standard and they were subsequently updated. The protocols have
been examined in Sect. 4.3.5.

A.2 IETF Standards

The Internet Engineering Task Force (IETF) (http://www.ietf.org) produces
standards concerned with development of Internet technology. In contrast to many
other standards bodies, the IETF works in an open way and all its documents are
freely available on the Internet. Documents are first proposed as ‘Internet-Drafts’;
after a series of revisions and discussion, some become standardized in documents
that are known (for historical reasons) as ‘Requests for Comments’ (RFCs). There
are different types of RFCs, including informational, historical, proposed standards,
and Internet standards.

Some RFCs are also developed by the Crypto Forum Research Group (CFRG), a
working group of the IETF’s sister organisation Internet Research Task Force (IRTF),
which aims to bridge theory and practice by bringing new cryptographic techniques
to the Internet community and serving as an ‘expert crypto consultant’ to IETF work-
ing groups.

http://www.ietf.org
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Table A.1 summarises some prominent RFCs that specify or use prominent au-
thenticated key exchange protocols. Some of these were examined earlier and we
provide pointers to where they are described in this book. For many of these proto-
cols there are additional RFCs available which cover related information or exten-
sions of these protocols for different applications. We also include Internet-Drafts in
a few areas which are under development but as of writing have not yet progressed
to RFCs.

A.3 IEEE P1363 Standards

The Institute of Electrical and Electronics Engineers (IEEE) is a US-based insti-
tution with a worldwide membership. The IEEE Standards Association (http:
//standards.ieee.org) issues standards in a wide range of electronics and
communications areas. The IEEE P1363 Working Group has developed a number of
standards under the heading Standard Specifications for Public-Key Cryptography.
At the time of writing there are five active standards in force from the P1363 group.

1363-2000: Public-Key Cryptography. The original P1363 standard includes spec-
ifications for public key algorithms and key agreement protocols based on dis-
crete logarithms. The only key establishment protocols included in P1363-2000
are basic Diffie–Hellman key agreement and authenticated versions using the
Unified Model and MQV. These were examined in Sects. 5.4.4 and 5.4.5.

1363a-2004: Amendment 1: Additional Techniques. This update to the original
standard incorporates implementation details for elliptic curves.

1363.1-2008: Public Key Cryptographic Techniques Based on Hard Problems
over Lattices. This includes encryption and signature algorithms but no authen-
tication or key establishment protocols.

1363.2-2008: Password-Based Public-Key Cryptographic Techniques. There is
much overlap with the ISO/IEC 11770-4 standard (see Sect. A.1.2). The 1363.2-
2008 standard includes versions of PAK (Protocol 8.3), PPK (Protocol 8.4),
SPEKE (Protocol 8.5), AMP (Protocol 8.19), B-SPEKE (Protocol 8.16) and a
variant known as W-SPEKE, PAK-Z (Protocol 8.15) and SRP (Protocol 8.17).
Most of the protocol specifications include versions for both the elliptic curve
setting and for discrete logarithms in finite fields.

1363.3-2013: Identity-Based Cryptographic Techniques Using Pairings. There
are many different identity-based cryptographic primitives included in this stan-
dard but only two key agreement protocols, namely Protocol 7.12 of Wang and
the variant of Smart’s protocol discussed in Sect. 7.3.2.

A.4 NIST Standards

The US National Institute of Standards and Technology (NIST) (https://www.
nist.gov) issues a range of standards and guidelines covering cryptographic tech-
niques. Federal Information Processing Standards (FIPS) are standards developed by

http://standards.ieee.org
http://standards.ieee.org
https://www.nist.gov
https://www.nist.gov
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Table A.1: Some RFCs for key establishment protocols

RFC Year Description Status Section

Kerberos

1510 1993 Kerberos v5 Historic 3.4.3

4120 2005 Kerberos v5 Proposed standard 3.4.3

Transport Layer Security (TLS) protocol

2246 1999 TLS v1.0 Proposed standard 6.3

4346 2006 TLS v1.1 Proposed standard 6.3

5246 2008 TLS v1.2 Proposed standard 6.3

6347 2012 Datagram TLS v1.2 Proposed standard 6.5

8446 2018 TLS v1.3 Proposed standard 6.3

Internet Key Exchange (IKE) protocol

2409 1998 IKEv1 Proposed standard 5.5.5

4306 2005 IKEv2 Proposed standard 5.5.6

7296 2014 IKEv2 Internet standard 5.5.6

Secure Shell (SSH) protocol

4252 2006 SSHv2 Authentication protocol Proposed standard

4253 2006 SSHv2 Transport Layer protocol Proposed standard

Other protocols

2412 1998 Oakley protocol Informational 5.5.3

3830 2004 Multimedia Internet Keying (MIKEY) Proposed standard

6189 2011 ZRTP (for real-time streaming) Informational

Other protocols – password-based

5683 2010 PAK protocol Informational 8.3.1

6628 2012 AugPAKE protocol Experimental 8.4.5

7664 2015 Dragonfly protocol Experimental 8.3.3

Public key management

5280 2008 X.509v3 Public Key Infrastructure Proposed standard

6962 2013 Certificate Transparency Experimental

– 2018 Automatic Certificate

Management Environment (ACME) Internet-Draft
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NIST for use in non-military government computing systems. NIST Special Publi-
cations (SPs) provide additional guidelines for certain techniques.

The following list describes FIPS and Special Publications that NIST has issued
that address key exchange and authentication:

FIPS 196: Entity Authentication Using Public Key Cryptography (1997). This
document includes two of the protocols contained in ISO/IEC 9798-3. FIPS 196
was withdrawn in 2015 as being obsolete.

FIPS 140-2 Annex D: Approved Key Establishment Techniques for FIPS PUB
140-2, Security Requirements for Cryptographic Modules (draft 2017).
FIPS 140-2 specifies how cryptographic hardware and software modules should
be assessed for security. Annex D provides a list of approved key establishment
algorithms that can be used in FIPS 140-2-certified modules. It is a very short
document that simply consists of references to other documents, the most im-
portant of which are the following two Special Publications.

SP-800-56A revision 2: Recommendation for Pair-Wise Key Establishment Sch-
emes Using Discrete Logarithm Cryptography (2013). This document de-
fines two fundamental key agreement primitives: Diffie–Hellman (DH), and
Menezes–Qu–Vanstone (Sect. 5.4.5), which can be instantiated over either fi-
nite fields or elliptic curves. The Special Publication then shows a variety of
key agreement protocols built from these primitives, categorized according to
the number of static and ephemeral keys used in the protocol. Using the nota-
tion (xE,yS) to denote a protocol with x ephemeral keys and y static keys, NIST
SP-800-56A rev. 2 gives protocols for (2E,2S), (2E,0S), (1E,2S), (1E,1S), and
(0E,2S). Variants also included which provide key confirmation. Several of the
protocols in NIST SP-800-56A are based on protocols in the ANSI X9.42 and
X9.63 standards.

SP-800-56B revision 1: Recommendation for Pair-Wise Key Establishment Sch-
emes Using Integer Factorization Cryptography (2014). This document fo-
cuses on public key encryption using the RSA algorithm, and includes three key
exchange protocols based on key transport using RSA public key encryption.

NIST’s Post-Quantum Crypto Project (http://nist.gov/pqcrypto), run-
ning from 2016 through to 2023–2025, aims to standardise one or more key encap-
sulation mechanisms believed to be resistant to attacks by quantum computers.

A.5 Other Standards and Protocols

A.5.1 ANSI

ANSI, the American National Standards Institute, is a non-profit organisation that
develops a range of voluntary standards. The ANSI X9 committee (http://
www.x9.org) provides standards for financial services industries. It has published
numerous standards covering cryptographic algorithms and authentication mecha-
nisms. Two standards, X9.42 and X9.63, are devoted to key agreement protocols.

http://nist.gov/pqcrypto
http://www.x9.org
http://www.x9.org
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X9.42 Public Key Cryptography for the Financial Services Industry: Agree-
ment of Symmetric Keys Using Discrete Logarithm Cryptography (2001).
This covers key agreement for protocols based on conventional discrete loga-
rithms. It includes Diffie–Hellman in static, ephemeral and hybrid (one-pass)
versions, as well as the Unified Model and MQV protocols in full and one-pass
versions.

X9.63 Public Key Cryptography for the Financial Services Industry: Key Ag-
reement and Key Transport Using Elliptic Curve Cryptography (2001, re-
vised in 2011). This includes elliptic curve versions of all but one of the proto-
cols in X9.42. In addition it includes versions with key confirmation, an elliptic
curve STS protocol (see Sect. 5.5.2) and two elliptic curve key transport proto-
cols.

A.5.2 Widely Deployed Protocols

There are a variety of other purpose-specific standards and protocols, maintained by
industry consortia, non-profit organizations, or the original creator of the protocol.

Bluetooth (https://www.bluetooth.com) versions 3.0 (2009) and higher
support elliptic curve Diffie–Hellman key exchange. Authentication can be pro-
vided using the Secure Simple Pairing (SSP) protocol, which can operate in a va-
riety of modes. The numeric comparison and passkey entry modes involve com-
paring or entering a 6-digit PIN (derived using a message authentication code)
from one device to another, thereby authenticating the key exchange. The ‘just
works’ mode does not involve a PIN entry or comparison, and instead works with
no user interaction (or just the user pressing a single button to confirm pairing);
this mode does not protect the key exchange from man-in-the-middle attacks.

EMV ‘Chip-and-PIN’. (https://www.emvco.com) The EMV chip-and-PIN
system is used in credit and bank cards to secure physical card transactions; there
are more than 6 billion EMV cards deployed worldwide. Chip-and-PIN cards
establish a secure channel with a (point-of-sale) terminal using a channel es-
tablishment protocol involving elliptic Diffie–Hellman key exchange, signatures
and certificates, and an authenticated encryption scheme. The protocol aims to
achieve standard security notions for security channels (authentication, key es-
tablishment, confidentiality and integrity of messages) as well as an unlinkability
property. See [165] for an academic analysis of the EMV protocol.

Mobile phones. The GSM protocol was one of the first digital mobile phone proto-
cols. It provides authentication of a mobile device to a cell tower, and encryption
for that communication link. Session keys are established using symmetric cryp-
tography techniques based on a long-term shared secret key between the mobile
device and the carrier. The design of the original GSM authentication and key
establishment protocol, as well as the proprietary cryptographic functions used
therein, contains a variety of weaknesses which can be readily exploited. A new
security protocol called AKA (Authentication and Key Agreement, not to be
confused with the AKA protocol described in Sect. 4.3.9) was developed as part

https://www.bluetooth.com
https://www.emvco.com
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of the 3G and LTE standards. AKA depends on symmetric cryptography based
on long-term shared secret keys. The core AKA protocol design eliminates some
of the design weaknesses in the GSM protocol, and the new proprietary ciphers
used in AKA are somewhat better (though still have some weaknesses), but a se-
curity risk remains when 3G phones downgrade to GSM when no 3G connection
can be established.

Tor (https://www.torproject.org). The Tor anonymity network allows
users to transmit their communications through a series of relays and obscure
the source and destination of their communication. Links between relays are
encrypted using keys established by an elliptic curve Diffie–Hellman-based pro-
tocol called ntor, discussed in Sect. 1.5.11.

Off-the-Record Messaging (OTR) (https://otr.cypherpunks.ca). The
OTR protocol allows secure instant messaging between two parties with confi-
dentiality and integrity of communication and mutual authentication of parties,
as well as subsequent deniability of communications. The key exchange com-
ponent of OTR is a variant of the SIGMA protocol (Sect. 5.5.6) in a finite-field
Diffie–Hellman group. Parties can authenticate to each other either by checking
the fingerprint (hash) of their long-term signature keys, or by checking that they
both know a shared secret passphrase; the latter is checked using a zero knowl-
edge protocol called the Socialist Millionaires’ Protocol, which can be viewed
as a form of password-authenticated key exchange protocol. Every time either
party sends an instant message, they send along a fresh Diffie–Hellman public
key and a new shared secret is established; this construction is called a ‘ratchet’
and yields an aggressive form of forward secrecy.

Signal (https://whispersystems.org/docs). The Signal protocol was
first introduced in a messaging app called TextSecure, later renamed Signal, and
has since been adopted by WhatsApp, Facebook Messenger, and Google’s Allo
instant messaging app. Signal allows secure messaging between two parties with
confidentiality and integrity of communication. Signal is designed to work in an
asynchronous scenario where one of the parties is offline for a period of time.
In Signal each party has a variety of long-term, medium-term, and ephemeral
public keys. A session is initially established using a ‘triple Diffie–Hellman’
sub-protocol where the initial session key is the hash of three (or four) Diffie–
Hellman shared secrets. Like OTR, parties send fresh Diffie–Hellman public
keys along with subsequent messages so new shared secrets can be established.
However, Signal also includes a ‘symmetric ratchet’: if the same party sends two
messages in a row without receiving a reply from the peer, it applies a key deriva-
tion function to the session key to derive a new one. This results in the ‘double
ratchet’ protocol: an asymmetric (Diffie–Hellman) ratchet when fresh Diffie–
Hellman keys have been exchanged, and a symmetric (KDF) ratchet when fresh
Diffie–Hellman keys have not been exchanged. See [222] for an academic anal-
ysis of the Signal protocol.

https://www.torproject.org
https://otr.cypherpunks.ca
https://whispersystems.org/docs


B

Tutorial: Building a Key Establishment Protocol

This appendix is a tutorial introduction to the topic of key establishment. It is in-
tended to lead the beginner (who may already be familiar with cryptographic algo-
rithms and communications protocols) through the fundamentals of the subject by
following common mistakes in a hypothetical protocol design. At the same time it
enables us to start establishing some common concepts and notation used through-
out this book. The procedure we will use to explain the ideas is to try to design a
protocol for key establishment from first principles. Problems with the protocol will
be revealed in stages through presentation of legitimate attacks so that each may be
solved in turn. Eventually a good protocol is achieved.

Before we start designing any protocol the communications architecture must be
established. We choose one common scenario, but the reader should be aware that
there is a wide variety of alternatives (these are explored in Sect. 1.2). Our scenario
has a set of users, any two of whom may wish to establish a new key for use in secur-
ing their subsequent communications through cryptography. Such a key is known as a
session key. It is important to understand that successful completion of key establish-
ment (and entity authentication) is only the beginning of a secure communications
session: once an appropriate key has been established its use comes in protecting the
real data to be communicated with whatever cryptographic mechanisms are chosen.

In order to achieve their aim the users interact with an entity called the server
which will also engage in the protocol. All users trust the server to execute the pro-
tocol faithfully and not to engage in any other activity that will deliberately compro-
mise their security. Furthermore, the server is trusted to generate the new key and to
do so in such a way that it is sufficiently random to prevent an attacker gaining any
useful information about it.

Our protocols thus involve three entities (often called principals or parties in the
literature). These are two users whom we denote A and B (often expanded to Alice
and Bob) and the trusted server S. The aim of the protocol is for A and B to establish a
new secret key KAB which they can use for subsequent secure communications. The
role of S is to generate KAB and transport it to A and B. The aims of the protocol can
be summarised as follows.
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• At the end of the protocol the value of KAB should be known to both A and B, but
to no other parties with the possible exception of S.

• A and B should know that KAB is newly generated.

Let us begin with a completely naı̈ve outlook. A protocol to achieve transport
of a new session key KAB is shown in Fig. B.1. The protocol consists of three mes-
sages. Firstly, user A contacts S by sending the identities of the two parties who are
going to share the new session key; secondly, S returns the key KAB to A; finally, A
passes KAB on to B. Before we examine the (lack of) security of this protocol we
should acknowledge that, as a specification of the protocol, Fig. B.1 is significantly
incomplete. Note the following features.

S

A B

1. IDA, IDB

2. KAB

3. KAB, IDA

Fig. B.1: First protocol attempt

• Only the messages passed in a successful run of the protocol are specified. In
particular there is no description of what happens in the case that a message of the
wrong format is received or that no message is received at all. The inclusion of all
such information is standard in specifying ordinary communications protocols,
and is essential to prove basic functional properties [636]. It is unfortunate that
it is commonplace to omit such information from specifications of cryptographic
protocols in the academic literature.

• There is no specification of internal actions of principals. In many protocols the
internal actions are fairly obvious; for example, they may be simply to calculate
what is required to output the next message. But in others there are numerous
alternatives and the choice can have security-critical relevance.

• It is implicitly assumed that A and B ‘know’ that the received messages are part of
the protocol. It is common practice to omit such details which would be required
for a networked computer to be able to track the progress of a particular protocol
run. This may include details of which key should be used to decrypt a received
message which has been encrypted.
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Despite the obvious limitations associated with specifying protocols by showing
only the messages of a successful run, it remains the most popular method of de-
scribing cryptographic protocols in the literature. An equivalent representation of the
protocol of Fig. B.1 is to show the messages sent in a successful run, each preceded
by the principals between whom it is intended to pass. For example, the protocol in
Fig. B.1 could be specified as follows.

1. A→ S : IDA, IDB

2. S→ A : KAB

3. A→ B : KAB, IDA

Protocol B.1: First protocol attempt in conventional notation

This notation is often preferred when a more compact description is desired.
However, it does make the protocol harder to visualise. Furthermore, it may be ar-
gued that it tends to reinforce, even more than the diagrammatic version, an assump-
tion that messages automatically reach their destination securely. In the authors’ ex-
perience it is usually helpful when trying to understand a protocol for the first time
to draw a figure showing the message flows between the principals involved.

In this book we generally use two different formats for protocol descriptions.
One is the format of Protocol B.1, showing only the protocol messages. However, we
usually describe any internal actions explicitly in the commentary. The second format
is to show the protocol flows between principals and include, where appropriate, any
internal checking that is required. Although the second format is more complete,
it is more cumbersome and we generally use it when the details are less obvious.
For both formats we try to be as precise as possible about the properties required of
cryptographic mechanisms. (Such properties are discussed in Sect. 1.3.)

B.1 Confidentiality

The reader is probably already aware of the obvious problem with our first attempt.
Nevertheless it is our purpose here to be explicit about our assumptions. The problem
is that the session key KAB must be transported to A and B but to no other entities. It
is an assumption that the adversary, against whose attacks we are implementing our
security, can eavesdrop on all messages that are sent or received. This is a realistic
assumption in typical communications systems such as the Internet and corporate
networks. Indeed, if this possibility can be discounted then there is probably no need
to apply security at all.

Security Assumption 1 The adversary is able to eavesdrop on all messages sent in
a cryptographic protocol.
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In order to provide confidentiality it is necessary to use a cryptographic algorithm
and associated keys. For now we will simply make the assumption that the server S
initially shares a secret key with each user of the system. The keys KAS and KBS are
shared between A and S, and between B and S, respectively. The need to keep KAB
confidential leads immediately to our second protocol attempt shown in Fig. B.2.

S

A B

1. IDA, IDB

2. {KAB}KAS ,{KAB}KBS

3. {KAB}KBS , IDA

Fig. B.2: Second protocol attempt

This protocol starts, as our first attempt, with A sending to S the identities of the
two parties who are to share the session key. S generates the session key KAB, then
encrypts it with each of the keys KAS and KBS and sends the result back to A. Principal
A then relays the encrypted key to B along with her identity so that B knows who else
has this key.

This protocol is just as insecure in an open environment as our first attempt, but
for a completely different reason. A passive eavesdropper cannot see KAB since en-
crypted messages may only be read by the legitimate recipients who have the keys
required to decrypt. This brings us to the question of cryptographic algorithms. Fun-
damental cryptographic properties and their use in cryptographic protocols are re-
viewed in Sect. 1.3. An understanding of cryptographic algorithms is essential for
the correct design of protocols. However, the details of the exact cryptographic al-
gorithm used are often irrelevant and such details are frequently avoided during both
protocol design and analysis. All the attacks described in this section are independent
of the cryptographic algorithms used.

In many analyses an assumption of ‘perfect cryptography’ is made, which means
that there is nothing gained whatsoever by the adversary in observing an encrypted
message. Naturally this convenient assumption brings with it certain responsibilities
for the protocol designer. In order to make a design practical there must be suitable
cryptographic algorithms available that satisfy the security requirements. Further-
more, these requirements must be made explicit as part of the protocol specification.
An alternative approach is to include an abstract model of the cryptographic algo-
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rithms as part of the protocol specification. The protocol analysis can then aim to
verify that any advantage gained by the adversary from eavesdropping on the proto-
col is sufficiently small. A comparison of these two different views has been made
by Abadi and Rogaway [7].

B.2 Authentication

The problem with the protocol in Fig. B.2 is not that it gives away the secret key KAB.
The difficulty is that the information about who else has the key is not protected. We
need to take into account that the adversary is not only able to eavesdrop on messages
sent, but can also capture messages and alter them.

Security Assumption 2 The adversary is able to alter all messages sent in a cryp-
tographic protocol using any information available. In addition the adversary can
re-route any message to any other principal. This includes the ability to generate
and insert completely new messages.

We may summarise the situation by saying that the adversary has complete con-
trol of the channel over which protocol messages flow. The reason for the difficulty in
designing authentication protocols now begins to clarify. In contrast to ordinary com-
munications protocols, there is an unknown and unpredictable principal involved.
Although there may be no more than four or five messages involved in a legitimate
run of the protocol, there are an infinite number of variations in which the adver-
sary participates. These variations have an unbounded number of messages and each
must satisfy the protocol’s security requirements. Over the past 10 years there have
been various methods devised to gain confidence in the security of protocols; some
of these are discussed in Chap. 2.

S

A B

1. IDA, IDB

2. {KAB}KAS ,{KAB}KBS

3. {KAB}KBS , IDA C 3′. {KAB}KBS , IDD

Fig. B.3: Attack on the second protocol attempt
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One attack on our second protocol is shown in Fig. B.3. The attack is very sim-
ple. The adversary C simply intercepts the message from A to B and substitutes D’s
identity for A’s (where D could be any identity including C’s own). The consequence
is that B believes that he is sharing the key with D whereas he is in fact sharing it
with A. The subsequent results of this attack will depend on the scenario in which
the protocol is used, but may include such actions as B giving away information to
A which should have been shared only with D. Although C does not obtain KAB we
still regard the protocol as broken since it does not satisfy our requirement that the
users should know who else knows the session key. However, another attack on the
protocol does allow C to obtain the session key as shown in Fig. B.4.

S

A C

1. IDA, IDB

2′. {KAC}KAS ,{KAC}KCS

3. {KAC}KCS , IDA

C

1′. IDA, IDC

2. {KAC}KAS ,{KAC}KCS

Fig. B.4: Alternative attack on second protocol attempt

In this second attack C alters the message from A to S so that S encrypts the key
KAC with C’s key, KCS, instead of with B’s key. Since A cannot distinguish between
encrypted messages meant for other principals she will not detect the alteration. No-
tice that KAC is simply a formal name for the bitstring representing the session key
so will be accepted by A. Also C collects the message from A intended for B so that
B will not detect any anomaly. The result of this attack is that A will believe that the
protocol has been successfully completed with B whereas in fact C knows KAC and
so can masquerade as B as well as learn all the information that A sends to B. Notice
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that, in contrast to the previous attack, this one will only succeed if C is a legitimate
user known to S. This, again, is a quite realistic assumption – it is widely agreed that
insiders are often more of a threat than outsiders.

Security Assumption 3 The adversary may be a legitimate protocol participant (an
insider), or an external party (an outsider), or a combination of both.

To overcome the attack, the names of the users who are to share KAB need to
be bound cryptographically to the value of KAB. This leads to the protocol shown
in Fig. B.5 where the names of A and B are included in the encrypted messages re-
ceived from S. It can easily be checked that in this protocol neither of the two attacks
on the protocol of Fig. B.2 will succeed. It is a necessary property of the encryp-
tion algorithm used by S that it is not possible to alter the value of the encrypted
messages. The importance of distinguishing between this integrity property and the
confidentiality property of cryptographic algorithms is discussed further in Sect. 1.3.

S

A B

1. IDA, IDB

2. {KAB, IDB}KAS ,{KAB, IDA}KBS

3. {KAB, IDA}KBS

Fig. B.5: Third protocol attempt

B.3 Replay

So far our protocol has improved to the point where an adversary is unable to at-
tack it by either eavesdropping or altering the messages sent between the legitimate
users. However, even now the protocol is not good enough to provide security in nor-
mal operating conditions. The problem stems from the difference in quality between
the long-term key-encrypting keys shared initially with S, and the session keys KAB
generated for each protocol run.

One reason that a new key is generated for each session is that session keys
are expected to be vulnerable to attack. They are likely to be used with a variety
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of data of regular formats, making them targets for cryptanalysis; also they may be
placed in relatively insecure storage and could easily be discarded carelessly after the
session is closed. A second reason for using new session keys is that communications
in different sessions should be separated. In particular, it should not be possible to
replay messages from previous sessions.

For these reasons a whole class of attacks becomes possible based on the notion
that old keys may be replayed in a subsequent session. Notice that even if A is careful
in the management of session keys used by her, compromise of a session key by B
may still allow replay attacks when A communicates with B.

Security Assumption 4 An adversary is able to obtain the value of the session key
KAB used in any sufficiently old previous run of the protocol.

C

A B

1. IDA, IDB

2. {K′AB, IDB}KAS ,{K′AB, IDA}KBS

3. {K′AB, IDA}KBS

Fig. B.6: Attack on third protocol attempt

Figure B.6 shows a replay attack on our third protocol attempt. This time C inter-
cepts the message from A to S – indeed S plays no part in the protocol. The key K′AB
is an old session key used by A and B in a previous session; by Security Assumption
1, C can be expected to know the encrypted messages via which K′AB was transported
to A and B. By Security Assumption 4, C can be expected to know the value of K′AB.
Thus when A completes the protocol with B, C is able to decrypt subsequent infor-
mation encrypted with K′AB or insert or alter messages whose integrity is protected
by K′AB.

Notice that the replay attack in Fig. B.6 can still be regarded as successful even
if C has not obtained the value of K′AB. This is because C has succeeded in making A
and B accept an old session key. Such an attack may be useful to C because it allows
C to replay messages protected by K′AB which were sent in the previous session. In
addition it enables C to obtain more ciphertext with the same key which might aid in
cryptanalysis.
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There are various mechanisms that may be employed to allow users to check that
session keys have not been replayed. These are considered in detail in Sect. 1.3.7, but
for now we will improve our protocol using the popular method called challenge–
response. In this method, A will generate a new random value NA commonly known
as a nonce (a number used only once).

Definition 40. A nonce is a random value generated by one party and returned to
that party to show that a message is newly generated.

Principal A sends her nonce NA to S at the start of the protocol together with the
request for a new key. If this same value is received with the session key then A can
deduce that the key has not been replayed. This deduction will be valid as long as the
session key and nonce are bound together cryptographically in such a way that only
S could have formed such a message.

Since B does not directly contact the server S, it is inconvenient for him to send
his own nonce to S to be returned with KAB. How, then, is he able to gain the same
assurance as A that KAB has not been replayed?

If the encrypted key for B is included in the encrypted part of A’s message, then
A can gain assurance that it is fresh. It is tempting to believe that A may pass this
assurance on to B in an extra handshake: B will generate a nonce NB and send this to
A protected by KAB itself. Then A can use the session key to send a related reply to
B. This leads to a fourth protocol attempt shown in Fig. B.7.

S

A B

1. IDA, IDB,NA

2. {KAB, IDB,NA,{KAB, IDA}KBS}KAS

3. {KAB, IDA}KBS

4. {NB}KAB

5. {NB−1}KAB

Fig. B.7: Fourth protocol attempt (Needham–Schroeder)

The protocol in Fig. B.7, which we have reached by a series of steps, is one of
the most celebrated in the subject of cryptographic protocols. It was published by
Needham and Schroeder in 1978 [581] and has been the basis for a whole class of
related protocols. Unfortunately the original Needham–Schroeder protocol is vulner-
able to an almost equally celebrated attack due to Denning and Sacco [240]. Their
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attack illustrates that there was a flaw in the above argument used to justify the pro-
tocol design. This can be pinpointed to an assumption that only A will be able to
form a correct reply to message 4 from B. Since the adversary C can be expected to
know the value of an old session key, this assumption is unrealistic. In the attack in
Fig. B.8, C masquerades as A and is thus able to persuade B to use the old key K′AB.

C B

3. {K′AB, IDA}KBS

4. {NB}K′AB

5. {NB−1}K′AB

Fig. B.8: Attack on fourth protocol attempt

As usual, once an attack has been spotted, it is relatively easy to suggest ways of
overcoming it. The method we choose here is to throw away the assumption that it
is inconvenient for both B and A to send their challenges to S. This leads to our final
protocol shown in Fig. B.9.

It would be rash to claim that this protocol is secure before giving a precise mean-
ing to that term. Yet we can say that it avoids all the attacks that we have met so far,
as long as the cryptographic algorithm used provides the properties of both confiden-
tiality and integrity, and the server S acts correctly. The security of a protocol must
always be considered relative to its goals; the different possible goals are considered
in detail in Chap. 2, as well as ways to gain greater assurance that they are met.

S

A B

2. IDA, IDB,NA,NB

3. {KAB, IDB,NA}KAS ,{KAB, IDA,NB}KBS

1. IDB,NB

4. {KAB, IDA,NB}KBS

Fig. B.9: Fifth protocol attempt
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To enable both users to send their nonces to S, the protocol is now initiated by B
who sends his nonce, NB, first to A. A adds her nonce, NA, and sends both to S who is
now able to return KAB in separate messages for A and B, which can each be verified
as fresh by their respective recipients. Although it may seem that we have achieved
more than the protocol in Fig. B.7 using fewer messages, A has in fact achieved less
in this protocol. This is because A in Fig. B.7 could verify not only that the key is
new and known only by A, B and S, but also that B has in fact received the key.
This property of key confirmation is achieved due to B’s use of the key in message 4,
assuming that {NB}KAB cannot be formed without knowledge of KAB. In the protocol
of Fig. B.9, neither A nor B can deduce at the end of a successful protocol run that the
other has actually received KAB. We leave it as an exercise for the reader to construct
variant protocol runs showing why this is the case.

It is worth noting that it has been a very common pattern for published protocols
to be subsequently found to be flawed. Each time a new protocol is designed and an
attack is found our understanding of protocol design improves. The frequent occur-
rence of such attacks should be a caution, particularly for implementers of security
protocols. Much of the recent research in cryptographic protocols has been devoted
to remedying the situation.

B.4 Design Principles for Cryptographic Protocols

Abadi and Needham [6] proposed a set of principles intended to act as ‘rules of
thumb’ for protocol designers. They were derived from observation of the most com-
mon errors that have been found in published protocols. By following these princi-
ples designers are less likely to make errors, but it must be emphasised that there can
be no guarantee that this will result in a good protocol. Furthermore, there are many
examples of protocols that ignore one or more of the principles and yet are (believed
to be) secure.

The principles are paraphrased in Table B.1. Many of them can be related to dis-
cussions and examples earlier in this tutorial. For example, Principle 9 could refer
directly to the attack shown in Fig. B.8. We believe that most of the principles are
self-explanatory. Abadi and Needham discussed each principle in detail with exam-
ples to illustrate their application.
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Table B.1: Abadi and Needham’s principles for design of cryptographic protocols

1. Every message should say what it means: the interpretation of the message should depend
only on its content.

2. The conditions for a message to be acted upon should be clearly set out so that someone
reviewing a design may see whether they are acceptable or not.

3. If the identity of a principal is essential to the meaning of a message, it is prudent to mention
the principal’s name explicitly in the message.

4. Be clear about why encryption is being done.

5. When a principal signs material that has already been encrypted, it should not be inferred
that the principal knows the content of the message.

6. Be clear about what properties you are assuming about nonces.

7. If a predictable quantity is to be effective, it should be protected so that an intruder cannot
simulate a challenge and later replay a response.

8. If timestamps are used as freshness guarantees, then the difference between local clocks at
various machines must be much less than the allowable age of a message.

9. A key may have been used recently, for example to encrypt a nonce, and yet be old and
possibly compromised.

10. It should be possible to deduce which protocol, and which run of that protocol, a message
belongs to, and to know its number in the protocol.

11. The trust relations in a protocol should be explicit and there should be good reasons for
the necessity of these relations.



C

Summary of Notation

Notation is described in each chapter as it is introduced. In this appendix the main
notational conventions are summarised.

A and B Two users who wish to share a new session key
S A trusted server
NP Random nonce value chosen by principal P
TP Timestamp chosen by principal P
KAB Key shared by A and B
CP Adversary C masquerading as principal P
EncP(M) Public key encryption of message M with public key of principal P
EncapA(·) Public key encapsulation of a shared secret with public key of party A.
MACK(M) Message authentication code tag of M using shared key K
SigP(M) Digital signature with appendix of message M by principal P
{M}K Symmetric encryption of message M with shared key K to provide

confidentiality and integrity
[[M]]K Encryption of message M with key K to provide confidentiality
[M]K One-way transformation of message M with key K to provide integrity
p A large prime (usually at least 2048 bits)
q A prime (typically of 256 bits) with q|p−1
Zp The field of integers (under addition and multiplication) modulo p
Z∗p The multiplicative group of non-zero integers modulo p
G A subgroup of Z∗p. Often a subgroup of order q, but sometimes

equal to Z∗p
g A generator of G
rP Random integer chosen by principal P
tP Ephemeral public keys: tP = grP

xP The private long-term key of principal P
yP The public key of principal P: yP = gxP

Z The shared secret calculated by the protocol principals
K The session key calculated by the protocol principals
SAB The static Diffie–Hellman key of P and Q: SAB = gxAxB
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462 C Summary of Notation

H(.) A one-way hash function
x ∈R X The element x is chosen uniformly at random from the set X

F ?
= G Verify that F and G evaluate to the same value

ê Elliptic curve pairing: ê : G1×G2→GT
U The set of principals intended to share a conference session key
Ui The i’th principal in U , where 1≤ i≤ m
π A key of short length, such as a password
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147. Brandt, J., Damgård, I., Landrock, P., Pedersen, T.: Zero knowledge authentication
scheme with secret key exchange. In: S. Goldwasser (ed.) Advances in Cryptology –
Crypto ’88, Lecture Notes in Computer Science, vol. 403, pp. 583–588. Springer (1989)

148. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange – the dynamic case. In: C. Boyd (ed.) Advances in Cryptol-
ogy – ASIACRYPT 2001, Lecture Notes in Computer Science, vol. 2248, pp. 290–309.
Springer (2001)

149. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key ex-
change under standard assumptions. In: L. Knudsen (ed.) Advances in Cryptology – EU-
ROCRYPT 2002, Lecture Notes in Computer Science, vol. 2332, pp. 321–336. Springer
(2002)



References 473

150. Bresson, E., Chevassut, O., Pointcheval, D.: Group Diffie–Hellman key exchange secure
against dictionary attacks. In: Y. Zheng (ed.) Advances in Cryptology - ASIACRYPT
2002, Lecture Notes in Computer Science, vol. 2501, pp. 497–514. Springer (2002).
DOI 10.1007/3-540-36178-2 31

151. Bresson, E., Chevassut, O., Pointcheval, D.: The group Diffie–Hellman problems. In:
K. Nyberg, H.M. Heys (eds.) Selected Areas in Cryptography, 9th Annual International
Workshop, SAC 2002, Lecture Notes in Computer Science, vol. 2595, pp. 325–338.
Springer (2002)

152. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key ex-
change. In: F. Bao, et al. (eds.) Public Key Cryptography - PKC 2004, Lecture Notes in
Computer Science, vol. 2947, pp. 145–158. Springer (2004). DOI 10.1007/978-3-540-
24632-9 11

153. Bresson, E., Chevassut, O., Pointcheval, D.: Provably secure authenticated group Diffie–
Hellman key exchange. ACM Trans. Inf. Syst. Secur. 10(3) (2007)

154. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenticated
group Diffie-Hellman key exchange. In: 8th ACM Conference on Computer and Com-
munications Security, pp. 255–264. ACM Press (2001)

155. Bresson, E., Manulis, M.: Contributory group key exchange in the presence of malicious
participants. IET Information Security 2(3), 85–93 (2008)

156. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions. In:
M. Abe, V.D. Gligor (eds.) Proceedings of the 2008 ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2008, pp. 249–260. ACM (2008)

157. Bresson, E., Manulis, M., Schwenk, J.: On security models and compilers for group key
exchange protocols. In: A. Miyaji, et al. (eds.) Advances in Information and Computer
Security, Second International Workshop on Security, IWSEC 2007, Lecture Notes in
Computer Science, vol. 4752, pp. 292–307. Springer (2007)

158. Brouwer, A.E., Pellikaan, R., Verheul, E.R.: Doing more with fewer bits. In: K.Y. Lam,
et al. (eds.) Advances in Cryptology – ASIACRYPT ’99, Lecture Notes in Computer
Science, vol. 1716, pp. 321–332. Springer (1999)

159. Brown, D., Menezes, A.: A small subgroup attack on Arazi’s key agreement protocol.
Bulletin of the ICA 37, 45–50 (2003)

160. Brubaker, C., Jana, S., Ray, B., Khurshid, S., Shmatikov, V.: Using Frankencerts for
automated adversarial testing of certificate validation in SSL/TLS implementations. In:
35th IEEE Symposium on Security and Privacy, pp. 114–129. IEEE Computer Society
(2014)

161. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and elimina-
tion of an ECC-related software bug attack. In: O. Dunkelman (ed.) Topics in Cryptology
– CT-RSA 2012, Lecture Notes in Computer Science, vol. 7178, pp. 171–186. Springer
(2012). DOI 10.1007/978-3-642-27954-6 11

162. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: V. Atluri, C. Diaz
(eds.) 16th European Symposium on Research in Computer Security, ESORICS 2011,
Lecture Notes in Computer Science, vol. 6879, pp. 355–371. Springer (2011). DOI
10.1007/978-3-642-23822-2 20

163. Brusilovsky, A., Faynberg, I., Zeltsan, Z., Patel, S.: Password-Authenticated Key (PAK)
Diffie-Hellman Exchange. RFC 5683 (Informational) (2010). DOI 10.17487/RFC5683.
URL https://www.rfc-editor.org/rfc/rfc5683.txt

164. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
Relaxed yet composable security notions for key exchange. International Journal of
Information Security 12(4), 267–297 (2013). DOI 10.1007/s10207-013-0192-y

https://www.rfc-editor.org/rfc/rfc5683.txt


474 References

165. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV chan-
nel establishment protocol. Cryptology ePrint Archive, Report 2013/031 (2013). URL
https://eprint.iacr.org/2013/031

166. Buchholtz, M.: Automated analysis of infinite scenarios. In: R. De Nicola, D. Sangiorgi
(eds.) Trustworthy Global Computing - International Symposium, TGC 2005, Lecture
Notes in Computer Science, vol. 3705, pp. 334–352. Springer (2005)

167. Burmester, M.: On the risk of opening distributed keys. In: Y. Desmedt (ed.) Advances in
Cryptology – CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, pp. 308–317.
Springer (1994)

168. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system.
In: A.D. Santis (ed.) Advances in Cryptology – EUROCRYPT ’94, Lecture Notes in
Computer Science, vol. 950, pp. 275–286. Springer (1995)

169. Burmester, M., Desmedt, Y.: Efficient and secure conference-key distribution. In:
T.M.A. Lomas (ed.) Security Protocols, Lecture Notes in Computer Science, vol. 1189,
pp. 119–129. Springer (1996)

170. Burmester, M., Desmedt, Y.: A secure and scalable group key exchange system. Inf.
Process. Lett. 94(3), 137–143 (2005)

171. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proceedings of the
Royal Society of London A426, 233–271 (1989)

172. Byun, J.W., Lee, D.H.: N-party encrypted Diffie–Hellman key exchange using different
passwords. In: J. Ioannidis, et al. (eds.) Applied Cryptography and Network Security,
Third International Conference, ACNS 2005, Lecture Notes in Computer Science, vol.
3531, pp. 75–90 (2005). DOI 10.1007/11496137 6
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