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Preface

The first edition of this book was published in 2003. Inevitably, certain parts of the
book became outdated quickly. At the same time new developments have contin-
ued apace, including new concrete protocols, new understanding of protocol security
properties, and new cryptographic primitives and techniques which can be used in
protocol design. Work on a new edition began as early as 2010, but even as it was
being written its scope expanded. We are aware that some important protocols have
been omitted, and that there are emerging areas which will see considerable activity
in the near future (post-quantum secure protocols being one obvious example). How-
ever, we still hope that we have been able to capture most of the main developments
that have occurred since the first edition.

This second edition has broadly the same purpose and scope as the first edition.
We hope to provide a helpful reference for the expert while still being accessible
to those newer to the topic, including those trying to obtain a broad overview of
the field. In comparison with the first edition, there are three new chapters and all
the other chapters (one renamed) have been extensively revised. The new book is
around 50% larger with around 225 concrete protocols described and a bibliography
with almost twice as many references. Some older material, which we deemed less
relevant today, has been removed.

Chapter 1 replaces the first two chapters from the first edition. The chapter is in-
tended to provide the necessary background on cryptography, attack scenarios
and protocol goals with an expanded coverage. The initial tutorial introduction
has been moved to an appendix, while some parts of Chapter 2 from the first edi-
tion were removed as they seemed no longer relevant. An updated, but somewhat
shortened, introduction to protocol verification is also included.

Chapter 2 is the first completely new chapter, describing computational models for
key exchange and authentication. The purpose of this chapter is not to provide
a tutorial on how to read, let alone write, computational proofs, but rather to
try to help readers understand what a computational proof provides and how to
compare the many different computational models in use. In later chapters we
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have freely made reference to the major computational models when discussing
specific protocols and their security.

Chapter 3 is an updated chapter covering protocols using shared key cryptography.
This includes major updates on the status of the protocols in the ISO 9798-2 and
11770-2 standards.

Chapter 4 is an updated chapter on protocols using public key cryptography. Again,
this includes new developments of the ISO standard protocols, this time for the
9798-3 and 11770-3 protocols. Coverage of TLS is moved to the new Chap. 6
which is devoted to TLS.

Chapter 5 on key agreement is, as in the first edition, the longest chapter. There is
an amazing diversity of ideas in design of key agreement protocols, even in the
simplest case covered in this chapter, which is limited to two-party protocols in
the public key setting. Even though several older protocols from the first edi-
tion have been omitted, the revised chapter is now more than ten pages longer,
illustrating that there are still many new developments occurring.

Chapter 6 is a completely new chapter on the TLS protocol. As the most prominent
key establishment protocol in use today, we believe it is more than justifiable to
devote a chapter to TLS. The development of the protocol in the past 10 years,
culminating in the new TLS 1.3 protocol, provides many lessons for those re-
searching and implementing key establishment protocols.

Chapter 7 is the third new chapter and is dedicated to ID-based protocols. While
it gathers in some early ID-based protocols already included in the first edition,
the coverage of pairing-based protocols forms the bulk of the chapter and is
completely new.

Chapter 8 is an updated chapter on password-based protocols. This is another topic
where there has been a great deal of research activity since the first edition lead-
ing to a significant expansion in the chapter.

Chapter 9 is an updated (and renamed) chapter on group key establishment. Al-
though group protocols have a long history there has been much recent work to
modernise the topic with stronger security properties and formal proofs.

Appendix A covers standards for key establishment and authentication protocols
from various standards bodies, updated and expanded from the first edition.

Appendix B consists of a tutorial introduction to protocols for authentication and
key establishment. This is unchanged from the corresponding section in the first
edition, apart from some small notational revisions.
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Introduction to Authentication and Key Establishment

1.1 Introduction

Authentication and key establishment are fundamental steps in setting up secure
communications. Authentication is concerned with knowing that the correct par-
ties are communicating; key establishment is concerned with obtaining good cryp-
tographic keys to protect the communications, particularly to provide confidentiality
and integrity of the data communicated. Because the modern world increasingly re-
lies on digital networks, the security of communications is a critical element in the
functioning of society today, and will become only more important in the future.

Protocols for authentication and key establishment (AKE) have acquired a rep-
utation for being difficult to analyse and to design correctly. This may be because
of a lack of intuition behind what such protocols are intended to achieve, in contrast
to concepts like encryption and data integrity which are more easily compared with
familiar real-world situations. Protocols for AKE come in many types according to
various criteria. One of the aims of this book is to classify protocols so that they are
easier to compare. In this chapter we aim to introduce the main properties that may
be used to classify AKE protocols. For the complete newcomer to the subject we
include more basic material in tutorial fashion in Appendix B.

We first present in Sect. 1.2 a loose classification of the different architectural
settings that are commonly encountered in AKE protocols, in terms of the partic-
ipants, their roles and their initial key material. Section 1.3 outlines cryptographic
mechanisms including methods to ensure freshness. Cryptographic primitives are
fundamental tools required in almost all practical protocols so we highlight how
these are applied in different AKE protocol types. This is followed by a survey of
the well-known types of attacks on AKE protocols; understanding protocol failures
is essential in understanding how to design and assess protocols. Having understood
what may be considered valid attacks, we turn the focus around and define what are
the typical goals of AKE protocols in Sect. 1.5. Some of these are common to most
protocols; others are optional depending on the specific application requirements.
Finally, in Sect. 1.6 we discuss some prominent tools for analysis of AKE protocols.
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2 1 Introduction to Authentication and Key Establishment

1.2 Protocol Architectures

Authentication and key establishment typically occur at the start of a communica-
tions session, which we often call simply a session. Authentication allows those par-
ties active in the session to learn the identity of other parties in the session. Key
establishment is used to set up a session key, used to subsequently protect the data
communicated during the session with the help of whatever cryptographic mecha-
nisms are chosen.

There are three features that we regard as architectural criteria to classify differ-
ent protocols: which keys are already established, how new keys are generated, and
how many users a protocol is designed to serve. Note that the second criterion is
applicable only to protocols concerned with key establishment in contrast to authen-
tication.

1.2.1 Cryptographic Keys

As a matter of general principle it is not possible to establish an authenticated session
key without existing secure channels already being available. In fact this principle
can be stated formally and proven to be correct [129]. Therefore, except for the pos-
sibility of secure physical establishment of keys, it is essential either that keys are
already shared between different principals or that authentic public keys are avail-
able. Therefore a key establishment protocol always features two types of keys:

session keys, which are established during the protocol;
long-term keys, which exist before the protocol is run.

Session keys are almost always keys for use with symmetric-key cryptography
and are shared between the protocol parties after completion of the protocol. In the
protocols we examine throughout this book we almost always assume that there is
only one session key defined from a single run of the protocol. In practice, it is
common to derive a number of further keys from the session key, for example to
obtain different keys for each direction of a bidirectional secure channel. Long-term
keys often come in different types; we take particular note of the following options.

Shared keys. Keys for symmetric-key cryptography may be shared by the protocol
parties beforehand (and are often called pre-shared keys). These may be shared
on a pairwise basis between parties, which may include trusted servers as well
as ordinary users of the protocol. The protocols in Chap. 3 apply this type of
long-term key.

Public—private key pairs. Protocol parties may have long-term public keys for
which they hold the corresponding private key. Typically this means that a public
key infrastructure (PKI) must be in place so that parties can validate public keys
via certificates. It is common to omit the details of certificate communication
and verification in AKE protocol descriptions, although there have been some
attempts to analyse protocols together with PKI concerns [136]. The protocols
in Chaps. 4, 5 and 6 apply this type of long-term key.
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Identity-based keys. An alternative to normal public key cryptography is identity-
based cryptography in which public keys can be replaced by identity strings and
shared public parameters. A key generation server is required in order to dis-
tribute corresponding private keys to protocol parties. The protocols in Chap. 7
apply this type of long-term key.

Passwords. Strictly speaking we can regard passwords as a special type of shared
key, often shared between a user and a server. There are, however, cases where
the server does not keep the plaintext password, but only a one-way image of it.
In any case, password-based AKE protocols require special treatment since they
cannot resist all attacks that protocols using high-entropy full-length keys can.
The protocols in Chap. 8 apply this type of long-term key.

1.2.2 Method of Session Key Generation

There are various ways to generate session keys in an AKE protocol. In the following,
we use the term user to mean an entity who will use the session key for subsequent
communication. We also use the term principal or party to mean an entity who will
engage in the protocol. For example, in a protocol which uses a key server (often
called an authentication server) there are users who will obtain the session key while
the server is a principal but not a user.

Definition 1. A key transport protocol is an AKE protocol in which one of the prin-
cipals generates the session key and this key is then transferred to all protocol users
in that session.

Definition 2. A key agreement protocol is an AKE protocol in which the session key
is a function of inputs from all protocol users in that session.

Definition 3. A hybrid protocol is an AKE protocol in which the session key is a
function of inputs from more than one principal in the session, but not by all users.
This means that the protocol is a key agreement protocol from the viewpoint of some
users, and a key transport protocol from the viewpoint of others.

The type of protocols described in Definition 3 are not common in the literature
but are easily instantiated. An example is given in Protocol 1.1 below. Protocols using
an online key server often use key transport, whereas protocols where users have
public keys (often certified by an offline server) often use key agreement. However,
this is not always the case, and there are examples of key agreement protocols in
which an online key server provides an input to the session key, and key transport
protocols using public long-term keys.

We focus on key transport protocols in Chaps. 3 and 4 although they do occur in
other chapters too. We focus on key agreement protocols in Chap. 5 but they are also
prominent in Chaps. 6, 7, 8 and 9.
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1.2.3 Number of Parties

A final component of the protocol architecture is the number of parties, or principals,
that are intended to take part in a session of the protocol. The majority of AKE pro-
tocols have concentrated on the case where two users wish to establish a session key
for point-to-point communications and this case is the focus of most of the chapters
in the book. Extending to the case of group key establishment, where more than two
users wish to establish a joint session key, can complicate matters a great deal. Group
protocols are examined in Chap. 9. In most cases group key establishment protocols
apply key agreement, but there are also key transport examples; it is quite possible
for a group protocol to look like a key transport protocol to some principals (who
receive the session key on a cryptographic channel) and a key agreement protocol to
other principals (who have an input to the session key).

1.2.4 Example

The three criteria mentioned above may be used to classify key establishment proto-
cols in different ways. We have used all three as criteria for splitting the material in
this book into chapters. Nevertheless, it is not always easy to decide where a protocol
should lie. We give in Protocol 1.1 an example with unusual properties. This proto-
col uses an online server, applies hybrid key generation and has two users. As far
as we are aware, this simple protocol does not correspond to any protocol published
elsewhere.

At the start A and B share long-term keys, K45 and Kpg respectively, with S. The
session key is calculated as Kap = f(Np,Ns) for a suitable function f, where Ng and
Ng are random values generated by B and S respectively. We use /D4 to denote the
identity of party A and IDp to denote the identity of party B. The notation {...}g
indicates encryption with a shared key K.

Goal: Hybrid key establishment of shared key Kx5 = f(Ng,Ns)

1.A— B: IDs,N4

2.B—S: {NB~,IDA7IDB}KBS>NA

3.8 —A: {Kup,IDa,IDg,Np}k,s, Ns
4. A—B: NS7{IDA71DB}KAB
5.B—A: {IDB7IDA}KAB

Protocol 1.1: A protocol in an unusual class

Upon receiving message 2, S must check that the value obtained by decrypting
the field IDp is the same as the identity of the principal whose key is used to decrypt
the message. On receipt of message 4, B uses Np to compute K4g = f(Np,Ns). From
B’s viewpoint Protocol 1.1 is like a key agreement protocol because B has input to
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the key. From A’s viewpoint it looks like a key transport protocol. This is why we
call it a hybrid protocol according to Definition 3.

1.3 Cryptographic Tools

In this section we highlight the importance of distinguishing the possible different
properties that may be provided by cryptographic algorithms. Much of the material
in this section is summarised from the classic book of Menezes, van Oorschot and
Vanstone [550]. More modern treatments can be found in other textbooks [412, 678].
A good understanding of the algorithms and methods of cryptography is highly
beneficial in assessing cryptographic protocols, but it is not the purpose of this sec-
tion to develop such an understanding, only to give a brief overview. We can identify
four fundamental objectives that may be achieved by cryptographic algorithms.

Confidentiality ensures that data is available only to those authorised to obtain it.
This is usually achieved through encryption of the data so that only those with the
correct decryption key can recover it. In AKE protocols, it is essential that the
long-term keys (and possibly some internal values) remain confidential, while
the goal is to establish a session key that is itself confidential.

Data integrity ensures that data has not been altered by unauthorised entities. This
can be achieved through use of hash functions in combination with encryption,
or by use of a message authentication code to create a separate check field. Data
integrity is required in many AKE protocols to protect elements such as identity
fields and nonces.

Data origin authentication guarantees the origin of data. It is a fundamental step
in achieving entity authentication in protocols as well as in establishing keys.
Since altering the data must alter its origin, we may say that data origin authen-
tication implies data integrity. Although it is in principle possible to achieve data
integrity without origin authentication, they are normally achieved by the same
cryptographic mechanisms.

Non-repudiation ensures that entities cannot deny sending data that they have com-
mitted to. This is typically provided using a digital signature mechanism. Non-
repudiation is rarely a requirement in protocols for authentication and key es-
tablishment, but it automatically provides the important data integrity and data
origin authentication services.

Some cryptographic transformations can provide more than one of these proper-
ties. It is often noted that if the message source has sufficient redundancy, for example
a natural language source like English, then encryption for confidentiality automati-
cally provides some degree of data integrity. However, it is a serious error to believe
that just because a decrypted message makes sense it must be the same message that
was sent. Before looking at the properties of cryptographic algorithms meeting the
different objectives, let us consider an example illustrating the importance of identi-
fying which properties are provided.
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The one-time pad is one of the simplest cryptosystems and it is also provably
secure in a very strong sense. If we assume that the message is a string of n bits
bi,by,... b, then the key is a random string of bits kj,k»,...,k,. Encryption takes
place one bit at a time and the ciphertext string ci,ca,...,c, is found by adding,
modulo 2, each message bit to the corresponding key bit:

ci=b;®kiforl <i<n.

Decryption is the same process as encryption, since adding modulo 2 is a self-inverse
operation. Now, suppose that an adversary knows that the one-time pad is used to se-
cure the amount sent in a funds transfer. The adversary may alter any of the bits of
the ciphertext and change the amount sent even without finding what the original
amount was. If the amounts are usually small then the adversary could alter the most
significant bit and expect to increase substantially the amount sent. This simple ex-
ample shows that the one-time pad on its own provides no data integrity even though
it provides perfect secrecy.

‘We now consider definitions for the cryptographic mechanisms that are typically
used to provide the main cryptographic services. Table 1.1 summarises the notation
which we will use for these mechanisms throughout this book.

Table 1.1: Summary of notation for cryptographic algorithms

Encq(M) Public key encryption of message M with public key of party A.
{M}k Symmetric encryption of message M with shared key K.

Encap,(:) Public key encapsulation of a shared secret with public key of party A.
MACk (M) Message authentication code of M using shared key K.

Siga (M)  Digital signature of message M generated by party A.

The definitions we will give are informal, but rely on an intuitive understanding
of what it means for a computation to be easy or difficult. In complexity theory a
computation is said to be easy (or feasible) if the time it takes to complete increases
as a polynomial (which could be a constant) of the input length. If the time required
increases faster than any polynomial then we may say that the computation is hard (or
infeasible). Sometimes it is more meaningful to have a specific number of operations
in mind. Nowadays it is accepted that performing up to around 2%° fundamental
computational operations is ‘easy’ while performing 2'%° such operations is ‘hard’,
with something of a grey area in between.

1.3.1 Confidentiality

Definition 4. An encryption scheme defines four sets: a set of encryption keys Kg,
a set of decryption keys Kp, a message set M, and a ciphertext set C, together with
three algorithms.
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1. A key generation algorithm, which outputs a valid encryption key k € Kg and a
valid decryption key k=' € Kp.

2. An encryption algorithm, which takes an element m € M and an encryption key
k € K and outputs an element ¢ € C. The encryption algorithm may be ran-
domised so that a different c will result given the same m.

3. A decryption function, which takes an element ¢ € C and a decryption key k' €
K and outputs an element m € M (or possibly a special error symbol). We require
that if ¢ is a valid encryption of m, then the decryption of c yields m.

An encryption scheme is a symmetric key algorithm if Kz = Kp and k = k~!. In
contrast, in an asymmetric or public key encryption algorithm k and k! are different
and it is computationally hard to obtain the private key k! from the public key k. As
shown in Table 1.1 we use different notation to distinguish between symmetric and
asymmetric encryption.

Although all encryption algorithms are intended to hide information from the
adversary, different algorithms can provide different properties. The following def-
inition tries to capture the idea that the ciphertext should not be any help to the
adversary in learning anything new, including the plaintext.

Definition 5. An encryption scheme provides semantic security if anything that can
be efficiently computed given the ciphertext can also be efficiently computed without
the ciphertext.

A useful equivalent characterisation of semantic security is indistinguishability.
This means that, given the ciphertext corresponding to one out of two chosen mes-
sages, the adversary cannot guess with probability greater than 1/2 which message is
actually the plaintext. In this challenge the adversary is able to obtain the encryption
of any chosen messages; in other words the adversary is allowed a chosen plaintext
attack.

Definition 6. An encryption scheme provides non-malleability if it is infeasible to
take a ciphertext of one message and transform it into the ciphertext of a different
related message, without knowledge of the original message.

The property of non-malleability is strictly stronger than semantic security. In-
deed the definition is known to be equivalent to the indistinguishability property men-
tioned above when the adversary is additionally given the decryption of any chosen
ciphertexts; an algorithm with non-malleability is secure against a chosen ciphertext
attack.

Since non-malleability is a stronger property than semantic security it is not sur-
prising that algorithms providing non-malleability in general have greater compu-
tational requirements and message expansion than those providing only semantic
security. The extent of the overhead varies from algorithm to algorithm, but where
computation and bandwidth are at a premium it is important to know whether an
algorithm used in a protocol must provide non-malleability. There are many AKE
protocols in which non-malleability is required, although some protocol designers
have only implicitly recognised this.
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In addition to defining what an adversarial goal is, we often specify elements
that an adversary may have access to, in addition to the ciphertext of interest. We
have already mentioned the two following types of attack which give such help to
the adversary.

Definition 7. In a chosen plaintext attack (CPA) the adversary can obtain cipher-
texts of any chosen messages. In a chosen ciphertext attack (CCA) the adversary can
obtain the decrypted plaintext of any chosen ciphertexts, except for the one under
attack.

The abbreviation IND-CPA is often for an encryption algorithm which provides
indistinguishability against chosen plaintext attacks. Similarly, the abbreviation IND-
CCA is often used to describe an encryption algorithm which provides indistin-
guishability against chosen ciphertext attacks.

CCA attacks are sometimes divided into CCA1, where the adversary has access
to the decryption function only until it fixes its target ciphertext for attack, and CCA2
where the adversary always has access to the decryption function but cannot use it
on the target ciphertext.

An encryption scheme is designed to provide confidentiality to any message, even
a single bit. Such a general mechanism is not needed when the goal is to so trans-
mit a random value confidentially. An alternative mechanism is a key encapsulation
mechanism (KEM), which is designed to generate a new random-looking value, to-
gether with an encapsulated version of that value which can only be recovered by
the chosen recipient. We can regard a KEM as a kind of encryption scheme which
can only be used to encrypt new random values. Since KEMs are often more effi-
cient than general encryption schemes, it is not surprising that they have been used
in preference to encryption in some AKE protocol designs. We will see examples of
key agreement protocols designed using KEMs in Sect. 5.8.

Definition 8. A key encapsulation mechanism consists of four sets: a public key set
Kg, a private key set Kp, a randomness set R, and a ciphertext set C together with
three algorithms.

1. A key generation algorithm, which outputs a valid public key K € Kg and a valid
private key K~' € Kp.

2. An encapsulation algorithm, which takes a public encapsulation key k € K and
outputs a new symmetric key k and an element ¢ € C. The encapsulation algo-
rithm is usually randomised so that a different (c,k) pair is output each time it
is called. We normally write (c,k) = Encapg(+), ignoring the randomness.

3. A decapsulation function, which takes an element ¢ € C and a private key
K~ € Kp and outputs a symmetric key k. We require that if (c,k) is output by
Encapg(+), then k is output by Decapg—1(c).

1.3.2 Data Origin Authentication and Data Integrity

Data authentication and integrity are essential in most protocols for authentication
and key establishment. These two cryptographic services are strongly connected and
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are typically both provided together using the same mechanism. This is because the
origin of a message can only be guaranteed if the message has not changed since it
was formed.

The most common mechanism for providing data origin authentication and data
integrity is to append a tag to a message constructed using a message authentication
code (MAC). The message may be transmitted either in plaintext or encrypted. On
receipt of the MAC tag, a recipient with the correct key is able to recompute the tag
from the message and verify that it is the same as the tag received.

Definition 9. A message authentication code (MAC) is a family of functions param-
etrised by a key k such that MACy(m) takes a message m of arbitrary length and
outputs a fixed-length value, and satisfies the following properties.

1. It is computationally easy to calculate MACy(m) given k and m.

2. Given MAC values for any number of messages under the given key k (even
messages chosen adaptively by an adversary), it is computationally hard to find
any valid MAC value for any new message.

1.3.3 Authenticated Encryption

It is very natural that data may have to be secured in terms of both confidentiality
and data integrity at the same time. For example, data sent over a secure channel
is routinely protected in both these ways. An authenticated encryption algorithm
provides both properties together.

Although it is quite possible to build authenticated encryption by combining sep-
arate algorithms, such as encryption and MACs, there are potential benefits of using
an integrated algorithm; such benefits may be efficiency and less chance to combine
the algorithms in a bad way. In Chapter 6 we describe attacks which are possible due
to an unfortunate mix of MAC and encryption. Today there are standardised algo-
rithms for authenticated encryption, such as the GCM mode of operation for block
ciphers [575].

1.3.4 Non-repudiation

Non-repudiation is usually provided through a digital signature mechanism. Al-
though non-repudiation is not a property that is typically required for authentica-
tion or key establishment protocols, nevertheless digital signatures are a common
element in their construction. This is because digital signatures also provide authen-
tication and data integrity services; their implementation through public keys makes
them useful for providing these essential services.

Definition 10. A digital signature algorithm consists of four sets: a set of signing keys
Ks, a set of verification keys Ky, a message set M, and a signature set S, together
with three algorithms.

1. A key generation algorithm, which outputs a valid signature key k € Kg and a
valid verification key k™' € Ky .
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2. A signature generation algorithm, which takes an element m € M and a signature
key k € Ky and outputs an element s € S. We will write s = Sig, (m) where K is
the signature generation key of party A. The signature generation algorithm may
be randomised so that a different output will result given the same m.

3. A verification function, which takes a signature s € S, a message m € M, and a
verification key k="' € Ky and outputs an element v € {0,1}. If v =1 then we say
the signature is valid or if v = 0 we say that the signature is invalid.

A digital signature algorithm is regarded as secure if it is computationally hard
for the adversary to find a valid signature of any message that has not been previ-
ously signed, even given many previously signed messages (chosen adaptively). A
signature with this property is often said to be unforgeable.

In the above definition we have stated that it is necessary to possess both the
signature s and the message m in order to verify the signature. This is sometimes
called a signature with appendix. In contrast, a signature that can be verified with-
out separate knowledge of the message is called a signature with message recovery.
Throughout the book we will use the notation Sig, (m) to denote a signature with ap-
pendix of message m from party A. Notice that even though we assume that m must
be available in order to verify Sigy (m), it does not follow that an adversary cannot
obtain information about m from Sig, (m).

1.3.5 Examples of Cryptographic Algorithms

Table 1.2 lists some of the best known cryptographic algorithms which provide the
different types of cryptographic properties discussed earlier in this section. Some of
these algorithms have been proven secure in the sense that there is a proven reduction
to some well-known difficult problem. However, the reader should be aware that
these reductions have varying complexities and the underlying problems have no
proof regarding their absolute difficulty. The IEEE P1363 standard [372] covers a few
public key algorithms and how to implement them. Several books [412, 520, 678]
provide detailed descriptions of such algorithms and explain their security proofs.

The Advanced Encryption Standard (AES) is given as an example of a block ci-
pher. The security properties of any block cipher depend critically on the mode of
operation of the cipher, and so we have just given the generic term ‘confidential-
ity as its provided security service. One particular mode is GCM (Galois counter
mode) which is included in the table as an example of an algorithm for authenticated
encryption.

Modern complexity-theoretic definitions are nowadays in frequent use in the lit-
erature of cryptography. The definitions given above are informal versions of these.
Study of the formal definitions is helpful in gaining a deeper understanding of
what algorithms are appropriate to use in a particular protocol, but is outside the
scope of this book. Relationships exist between the different formal definitions of
confidentiality [73]. Similarly formal definitions of security for digital signatures
are available. Certain algorithms have been proven to possess the different crypto-
graphic properties defined above, given certain reasonable assumptions on the under-
lying mathematical problems, and sometimes about the existence of functions with
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Table 1.2: Some well-known cryptographic algorithms and their properties

Algorithm Type Cryptographic service

AES [237, 574] Block cipher Confidentiality

ElGamal encryption [267] Public key cipher ~ Semantic security
Cramer—Shoup [224] Public key cipher ~ Non-malleability
RSA-OAEP [77] Public key cipher =~ Non-malleability

RSA signature [372, 630]  Digital signature Non-repudiation

DSS [577] Digital signature Non-repudiation

SHA-2 [579] Hash function One-way function

HMAC [71] MAC Data integrity

GCM [575] Block cipher mode Confidentiality and integrity

random-like properties. In many protocols the cryptographic algorithms used are not
specified. However, it is helpful to know that appropriate algorithms do actually ex-
ist.

1.3.6 Secret Sharing

Secret sharing is a mechanism that allows the owner of a secret to distribute shares
amongst a group. The owner of the secret is often called the dealer. Individual shares
are of no help in recovering the secret, but if all shares in some predefined access sets
are available then the secret can be collectively found. A (¢,n) threshold scheme is
a secret sharing scheme for which n shares are distributed, such that any set of # (or
more) shares is sufficient to obtain the secret, while any set of t — 1 (or fewer) shares
is of no help in recovering the secret.

There are some similarities between secret sharing and key establishment for
groups since, for both, a group of users cooperates to derive a secret value. How-
ever, a secret sharing scheme on its own lacks the means to provide fresh keys, to
distribute keys to principals, and to provide key authentication. We look at some
specific schemes based on secret sharing in Chap. 9.

The most well-known threshold scheme is due to Shamir [664] and is based on
the use of polynomial interpolation. This allows any polynomial of degree d to be
completely recovered once any d + 1 points on it are known. Polynomial interpola-
tion works over any field, but in cryptographic applications the field is typically Z,
the field of integers modulo p, for some prime p.

In order to share a secret s € Z,, in Shamir’s (¢,n) threshold scheme, the dealer
generates a polynomial of degree t — 1,

f@=ay+aiz+...+a_177",
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with coefficients randomly chosen in Z, except for ap = s. The shares are values
Sf(x) with 1 < x < n. If any ¢ shares are known then s can be recovered. For example,
if £(1),f(2),...,f(t) are known then:

=Y T 5

1<j<njzi ] T

Given any ¢ — 1 points on the polynomial (excluding the value at 0), all possible
values for f(0) can be obtained given one extra point. Consequently, absolutely no
information about the secret can be obtained if # — 1 or fewer shares are known.

1.3.7 Freshness Mechanisms

One of the basic requirements for protocols used to establish a session key is that
each user of the key should be able to verify that it is new and not replayed from an
old session. This property extends to a variety of other protocol types. For example,
protocols designed to achieve authentication in real time also need to ensure that
messages sent are not replays. Thus we see that the need to ensure that message ele-
ments are new, or fresh, is a very common protocol requirement. It is thus worthwhile
to look at the typical ways that freshness is achieved in existing protocols.

We can consider two different ways that freshness of a value may be guaranteed
to a particular user. The first is that the user has a part in choosing the value (which
will often be a new session key), while the second is that the user has to rely on
something received with the value that is known to be fresh itself. A typical instance
of the first case is in a key agreement protocol. Here two users A and B both choose
an input, N4 and Np respectively, to a new session key K4p. The session key is formed
by choosing some function of the inputs:

Kap = f(Na,Np).

A desirable property of the function f is that it should not be possible for A or
B to force an old value of K4p even if the other’s input is known. This means that
each user has independent assurance that Ksp is fresh. This property is achieved
for A if, once N, is chosen, B is unable to choose Np in such a way that Kyp is
an old value. If we define the function g(.) = f(Na,.) then this means that g must
be a one-way function. In practice it may be necessary to add other conditions to
disallow exceptional values. A symmetrical condition must also hold to provide the
same property for B. One very common example of such a function is the basic
Diffie—Hellman protocol which we examine in detail in Chap. 5.

Let us turn now to the second case, where freshness depends on something re-
ceived with the message. Suppose that a principal A wishes to verify the freshness
of a session key Ksp that has been generated by some principal S (which may be a
server or perhaps the principal B that shares K4p). Principal A must trust S to freshly
generate K4p but needs to be sure that the message received is not an old message
that has been replayed by the adversary. Assume that A receives the message field
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F(Kup,N) which is a function of K45 and a freshness value N. What are the prop-
erties required of F to allow the recipient to be sure that the composite message is
fresh? F must provide data origin authentication and data integrity so that the recipi-
ent can deduce that F(Ksp,N) was generated by S and has not been altered. If A can
be sure that N is fresh then she can also be sure that F(Kag,N) is fresh. Since S is
trusted to generate and authenticate only fresh keys, A can therefore deduce that K4p
is fresh. We next consider the different forms that the freshness value N can take.

A freshness value must have the property that it can be guaranteed not to have
been used before. (In some protocols, values used for freshness are also required to
have other properties, but this is because they are used for other purposes as well as
to ensure freshness.) There are three common types of freshness value used: time-
stamps, nonces and counters. Gong [317] classified the various ways that these types
may be used in a protocol.

Timestamps. The sender of the message adds the current time to the message when
it is sent. This is checked by the recipient when the message is received by com-
paring with the local time. If the received timestamp is within an acceptable
window of the current time then the message is regarded as fresh. The difficulty
of using timestamps is that synchronised time clocks are required and must be
maintained securely. Gong [314] pointed out that if a principal’s clock is ad-
vanced beyond the time in the rest of the system, a vulnerability can exist even
after the clock has been corrected. This is because an adversary could have cap-
tured, and suppressed, a message that will become fresh in the future. Gong calls
this a suppress relay attack.

Nonces (random challenges). The recipient A of the message generates a nonce
(‘number used only once’) Ny4, and passes it to the sender of the message B.
The nonce N, is then returned with the message after processing with some
cryptographic function f as shown in Protocol 1.2. A checks the nonce on receipt
and deduces that the message is fresh because the message cannot have been
formed before the nonce was generated. A disadvantage of using a challenge
is that it requires an interactive protocol which may add to both the number of
messages and the number of message exchanges required. Attention must also
be paid to the quality of random numbers produced, since if the nonce to be
used is predictable a valid reply can be obtained in advance and later replayed (a
preplay attack).

1.A—B: N,
2.B—A: f(Na,...)

Protocol 1.2: Use of a nonce (random challenge)

Counters. The sender and recipient maintain a synchronised counter whose value is
sent with the message and then incremented. A disadvantage of counters is that
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state information must be maintained for each potential communication partner.
Management of counters can also cause problems in the presence of channel
errors. Gong [317] pointed out that if a counter is not synchronised with the
receiver then preplay attacks are possible.

Mitchell [556] suggested a hybrid between counters and timestamps. His idea is
to use a counter based on real time. For example, the counter may be the time in
seconds from some starting point: this allows a 32-bit counter to be used for over
136 years before repeating. The motivation for such a suggestion is that a server
authenticating multiple clients can easily recover from loss of the counter states by
checking its real-time clock. Mitchell discusses an application in mobile telephony
in which the mobile handset may not have a reliable clock but is still required to
verify freshness of session keys generated by a server.

A different way of obtaining freshness, which is less common, is if an element is
transformed with a cryptographic key that is known to be fresh. For this method to
work the cryptographic transformation must provide data integrity. Then the recipient
can be sure that the fresh key has been used to form the message, and so the message
must have been formed after the key was formed.

1.4 Adversary Capabilities

The purpose of this section is to summarise common ways that an adversary may
attack a protocol. We can consider these as techniques or strategies that an adversary
may use. Before looking at these we sound a couple of notes of caution.

Firstly, the list will not be complete. The ways in which the adversary may inter-
act with one or more protocol runs are infinite. There are almost certainly attack pos-
sibilities that we have omitted. Indeed, it could be argued that it is not tremendously
helpful to know that a protocol is not vulnerable to a certain list of threats; what is
really required is confidence that it meets its security objectives given a known list
of assumptions. We consider ways in which we may be able to achieve such guar-
antees in Sect. 1.6 and Chap. 2. On the other hand, we should not underestimate the
usefulness of a list of typical weaknesses to check against.

Secondly, different protocols have different objectives. Some protocols are con-
cerned with key establishment, others solely with entity authentication. There may be
additional goals, such as confirmation that the session key was correctly received by
the protocol users. We consider different goals for AKE protocols in Sect. 1.5. Nat-
urally, whether or not a protocol achieves particular goals depends on what attacks
are deemed possible.

Bearing in mind these caveats, we now consider the most commonly encountered
threats to cryptographic protocols. Table 1.3 lists and defines the attacks and they are
considered in turn in more detail below. There are certainly other ways to classify
attacks; an alternative list, with examples, was given by Carlsen [182].
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Table 1.3: Types of protocol attack

Eavesdropping The adversary captures the information sent in the protocol.

Modification The adversary alters the information sent in the protocol.

Replay The adversary records information seen in the protocol and
then sends it to the same or a different principal, possibly
during a later protocol run.

Preplay The adversary engages in a run of the protocol prior to a run
by the legitimate principals.

Reflection The adversary sends protocol messages back to the principal

who sent them.

Denial of service The adversary prevents or hinders legitimate principals from

completing the protocol.

Typing attacks The adversary replaces a (possibly encrypted) protocol mes-
sage field of one type with a (possibly encrypted) message
field of another type.

Cryptanalysis The adversary gains some useful leverage from the protocol

to help in cryptanalysis.

Certificate manipulation The adversary chooses or modifies certificate information to

attack one or more protocol runs.

Protocol interaction The adversary chooses a new protocol to interact with a

known protocol.

1.4.1 Eavesdropping

Eavesdropping is perhaps the most basic attack on a protocol. Nearly all protocols ad-
dress eavesdropping by using encryption. It is obvious that encryption must be used
to protect confidential information such as session keys. In certain protocols there
may be other information that also needs to be protected. An interesting example is
that protocols for key establishment in mobile communications usually demand that
the identity of the mobile station remain confidential. Eavesdropping is sometimes
distinguished as being a passive attack since it does not require the adversary to dis-
turb the communications of legitimate principals. The other attacks we consider all
require the adversary to be active. It should be remembered that many sophisticated
attacks include eavesdropping of protocol runs as an essential part.

1.4.2 Modification

If any protocol message field is not redundant then modification of it is a potential
attack. Use of cryptographic integrity mechanisms is therefore pervasive in protocols
for authentication and key establishment.

Whole messages, as well as individual message fields, are vulnerable to mod-
ification. Many attacks do not alter any known message field at all, but split and



16 1 Introduction to Authentication and Key Establishment

reassemble fields from different messages. This means the integrity measures must
cover all parts of the message that must be kept together; encryption of these fields is
not enough. Examples of attacks on protocols in which encryption does not provide
the required integrity properties were given by Stubblebine and Gligor [699] and by
Mao and Boyd [521].

1.4.3 Replay

Replay attacks include any situation where the adversary interferes with a protocol
run by insertion of a message, or part of a message, that has been sent previously
in any protocol run. Replay is another fundamental type of attack which is often
used in combination with other attack elements. Just as almost all protocols address
eavesdropping and modification attacks by using cryptography, almost all protocols
include elements to address possible replay attacks. Various means to combat replay
were discussed in Sect. 1.3.7.

It is possible for the replayed message in an attack to have been originally part of
a protocol run that happened in the past. Alternatively the replayed material may be
from a protocol run that takes place at the same time as the attacking run. Syverson
[703] produced a taxonomy of replay attacks based upon this distinction.

1.4.4 Preplay

Preplay might be regarded as a natural extension of replay, although it is not clear
that this is really an attack that can be useful on its own. The distinction is that, in
a preplay attack, the adversary is active in the earlier protocol run, with the aim of
setting up the correct conditions for an attack on the later run. An interesting example
of an attack that employs preplay is the so-called triangle attack of Burmester [167]
which will be presented in Sect. 5.3.5.

1.4.5 Reflection

Reflection is really an important special case of replay. In a typical scenario a prin-
cipal engages in a shared key protocol and the adversary simply returns a challenge
to the originating party. This attack may only be possible if parallel runs of the same
protocol are allowed but this is often a realistic assumption. For example, if one prin-
cipal is an Internet host, it may accept sessions from multiple principals while using
the same identity and set of cryptographic keys. The possibility of instigating sev-
eral protocol runs simultaneously is another common and realistic strategy for the
adversary.

Consider Protocol 1.3, which gives a very basic example. Suppose A and B al-
ready share a secret key K and choose respective nonces Ny and Np for use in the
protocol. The protocol is intended to mutually authenticate both parties by demon-
strating knowledge of K.

On receipt of message 2, A deduces that it must have been sent by B since only
B has K. However, if A is willing to engage in parallel protocol runs then there is
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1.A—=B: {Na}x
2.B—A: {NB}KyNA
3.A—B: N

Protocol 1.3: A protocol vulnerable to reflection attack

another possibility, namely that message 2 was originally formed by A. An adversary
C can successfully complete two runs of the protocol, as shown in Attack 1.1.

1. A= C: {Ns}k
1.C—A: {Na}x
2.A=C: {NA}IONA
2. C—A: {NA}K,NA
3. A5 C: N
3.C—A:N,

Attack 1.1: Reflection attack on Protocol 1.3

Immediately after receiving the first message, C starts another run of the protocol
with A, and reflects back the message received from A. The reply allows C to respond
to the first message and then both runs of the protocol can be completed. In fact all
cryptographic processing has been performed by A, while A believes two protocol
runs have been completed with B.

These sorts of attacks are sometimes called oracle attacks since A acts as an or-
acle to C by presenting the required decryption. An extensive treatment of reflection
attacks was given by Bird et al. [103].

1.4.6 Denial of Service

In a denial of service attack (often contracted to DoS attack) the adversary prevents
legitimate users from completing the protocol. Denial of service attacks in practice
take place against servers which are required to interact with many clients. Attacks
can be divided into those that aim to use up the computational resources of the server
(resource depletion attacks) and those that aim to exhaust the number of allowed
connections to the server (connection depletion attacks).

As a matter of principle it seems that it is impossible to prevent denial of service
attacks completely. Any attempt to establish a connection must either result in allo-
cation of a connection or use some computational work to establish that the attempt
is invalid. Nevertheless there are certain measures that may be taken to reduce the
impact of denial of service attacks and some protocols are much more vulnerable to
this sort of attack than others, so it is important not to ignore this issue.
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Aura and Nikander [45] suggested using stateless connections to protect against
connection depletion attacks. Their idea is to make the client store all the state
information required by the server and return it to the server as necessary with
each message sent. In this way the server need not store any state information.
Of course it is necessary that the state information returned to the server can be
verified by the server to be authentic and it may also need to be confidential.
Therefore there is an overhead in both communication and computation incurred
by transforming protocols to provide stateless connections.

A practical mechanism for delaying the need for state at the server is the use
of cookies, which first seems to have been suggested by Karn and Simpson for
their Photuris protocols (most recent version 1999 [411] but originally published
in 1995). When a client attempts to make a connection the server sends back a
cookie. This procedure is similar to the familiar use of cookies by web servers,
but here the cookies take a special form: they are a function of a secret known
only to the server and other information unique to the particular connection. At
this stage the server stores no state for this request. The client needs to return
the cookie in the next message and its validity can be checked by the server
from the information sent and its secret. The idea is to ensure, before investing
significant resources, that the client is making a unique request for connection.
This technique prevents denial of service attacks in which the adversary sends
random connection requests. By changing the server secret on a regular basis
(perhaps every 60 seconds) even the same client can be prevented from making
unlimited connection requests.

Meadows [537] suggested that in order to protect against connection depletion
each message in a protocol must be authenticated. However, to minimise possibly
wasted computation the authentication can be weak at the start of the protocol and
increase in strength with subsequent messages. Cookies formed by the server,
and which must be returned by the client, may form the weak authentication.
Meadows developed a formal framework based on the idea of fail-stop protocols
introduced by Gong and Syverson [320] which abort as soon as a bogus message
is discovered.

Juels and Brainard [404] proposed a mechanism that they called client puzzles
to form stronger authentication than that provided by cookies. Their idea is that
when the load on a server becomes high (possibly as a result of a denial of service
attack) the server will send a ‘puzzle’ of moderate computational difficulty to
each client which must be solved before a new connection is made. Genuine
clients will be only mildly inconvenienced by this demand but an adversary trying
to make multiple connections will have to solve many puzzles. Formal models
exist to measure the effectiveness of client puzzles for denial of service resistance
in AKE protocols [334, 686].

1.4.7 Typing Attacks

When a protocol is written on the page its elements are clearly distinct. But in prac-
tice a principal receiving a message, whether encrypted or not, simply sees a string
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of bits which have to be interpreted. Typing attacks exploit this by making a recipi-
ent misinterpret a message, accepting one protocol element as another one (that is, a
message element of a different type). For example, an element which was intended
as a principal identifier could be accepted as a key. Such an attack typically works
with replay of a previous message.

An example can be seen in the well-known protocol of Otway and Rees [597]
shown in Protocol 1.4 (see also Sect. 3.4.2). Principals A and B, with identities /D4
and /Dg, share long-term keys, K45 and Kps respectively, with the server S. S gen-
erates a new session key K4p and passes it to both A and B. M and N, are nonces
chosen by A and Np is a nonce chosen by B.

Goal: Key transport of K4p from S to A and B

1.A— B: M,ID4,IDg,{Ny,M,ID4,IDp}k,

2. B—S: M,IDy,IDg,{Ns,M,IDy,IDg}k,;,{Ng,M,ID4,IDg } k.
3.5 —B: M, {NA>KAB}KA57{N37KAB}K55

4. B—A: M?{NA7KAB}KAS

Protocol 1.4: Otway—Rees protocol

The typing attack works because of the similarity in the encrypted parts of the
first and last messages — they start with the same message field and are encrypted
with the same key. As usual for this kind of attack we need to make some extra
assumptions if the attack is to succeed. The attack depends on the length of the
composite field M,ID4,IDp being the same as that expected for the key Kyp. This
may be a quite reasonable assumption; for example, M may be 64 bits, and /D4 and
IDp could be 32 bits, so that K4p would have to be of length 128 bits, which is a
popular choice of symmetric key size. With these assumptions, an adversary C is
able to execute Attack 1.2. Here we introduce the notation Cp to indicate that the
adversary C is masquerading as principal B.

1.A— Cp: M,ID4,IDg,{Ns,M,IDs,IDp}k,,
4, Cp—A: {NA,M,IDA,IDB}KAS

Attack 1.2: Typing attack on Otway—Rees protocol

C masquerades as B and intercepts the message from A. C then returns the en-
crypted part of this message to A, which is interpreted by A as message 4 of the
protocol. With the assumptions mentioned above, A will accept the composite field
M, IDg4,IDp as the shared key K4p. Of course C knows the values of M, ID4 and IDp
from message 1, and so is able to continue masquerading as B for the duration of the
session.
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Typing attacks can be countered by various measures. Ad hoc precautions include
changing the order of message elements each time they are used, and ensuring that
each encryption key is used only once. More systematic methods are to include an
authenticated message number in each message or an authenticated type field with
each field. Naturally these come at a cost in computation and bandwidth. Aura [44]
has considered systematic methods to avoid typing-based replay attacks.

Chen and Mitchell [197] defined parsing ambiguity attacks, a related notion to
typing attacks in the sense that both attack types depend on principals misinterpret-
ing message fields. However, rather than re-using protocol messages in ‘the wrong
place’, parsing ambiguity attacks simply expect two or more concatenated fields to
be parsed wrongly. Chen and Mitchell illustrated such attacks with several examples
from international standard protocols. As with typing attacks, these attacks can be
prevented by using appropriate coding methods to avoid any possibility of misinter-
preting message types and their encoding.

1.4.8 Cryptanalysis

Cryptographic algorithms used in AKE protocols are often treated abstractly and
considered immune to cryptanalysis. However, there are some exceptions that should
be mentioned. The most important exception is when it is known that a key is weak
and is (relatively) easy to guess once sufficient evidence in available. This ‘evidence’
will normally be a pair of values, one of which is a function of the key; examples are
a plaintext value and the corresponding ciphertext, or a plaintext value and its MAC.

The most common example of use of a weak key is when the key is formed from a
password that needs to be remembered by a human. In this situation the effective key
length can be estimated from the set of values that are practically used as passwords,
and is certainly much smaller than would be acceptable as the key length of any
modern cryptosystem. A number of protocols have been designed specifically to
hide the evidence needed to guess at weak keys. These are examined in some detail
in Chap. 8.

1.4.9 Certificate Manipulation

In public key protocols the certificate of a principal acts as an offline assurance from
a trusted authority that the principal’s public key really does belong to that principal.
Other principals which make use of a certificate are trusting that the authority has
correctly identified the owner of the public key at the time that the certificate was
issued. However, it is not necessarily expected that the authority is provided with
evidence that the corresponding private key is actually held by the principal claiming
ownership of the key pair. This leads to potential attacks in which the adversary gains
a certificate asserting that a particular public key is its own, even though the adversary
does not know the corresponding private key. If this public key is a function of an
existing public key some undesirable consequences may arise.

An example of a certificate manipulation attack was given by Menezes et al.
[551] on a key agreement protocol of Matsumoto et al. [526]. (This protocol, and
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related ones, will be examined in some detail in Sect. 5.3.) Principals A and B possess
public keys y4 = g™ and yp = g8 respectively, and corresponding private keys x4
and xp. Here g generates a suitable group in which the discrete logarithm problem
is hard. Each public key is certified and so A and B possess certificates Cerz(A) and
Cert(B) respectively which contain copies of their public keys g*4 and g*8. A normal
protocol run proceeds as shown in Protocol 1.5, where r4 and rp are random values
chosen by A and B respectively.

Goal: Key agreement

1.A— B: g",Cert(A)
2.B—A: g8, Cert(B)

Protocol 1.5: A protocol vulnerable to certificate manipulation (MTI protocol)

The shared key is Kap = g*A"5™8"4, calculated by A as (g'#)*™y# and by B as
(g")*8y'E. The adversary C engineers an attack by choosing a random value xc,
claiming that g*4*¢ is its public key, and obtaining a certificate for this public key.
(Notice that C cannot obtain the corresponding private key x4xc.) C then masquer-
ades as B in Protocol 1.5, and completes two runs of the protocol, one with A and
one with B, as shown in Attack 1.3.

1. A= Cp: g, Cert(A)
I'.C—B: g Cert(C)
2'.B—C: g'8 Cert(B)
2. Cp—A: g'8%¢ Cert(B)

Attack 1.3: Certificate manipulation attack on MTI protocol

After the attacking run is complete, A will calculate the key
Kap = (ngXC)XA (yB)rA — ngXCfB+XBfA
and B will calculate the key

Kcp = (g47C)8 (g )" = gATCTBTIBIA

Thus A and B have found the same key, but A believes this key is known only to A and
B while B believes it is known only to C and B. This is an example of an unknown
key-share attack, which will be discussed in more detail in Section 5.1.3.

Attacks of this sort can be avoided by demanding that every principal demon-
strates knowledge of the private key before a certificate is issued for any public key.
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Such a demonstration is ideally achieved using zero knowledge techniques so that
the trusted authority gains nothing useful about the private key. A more convenient
method may be to have the private key owner sign a specific message or a challenge.
More generally this process is part of public key validation which provides assurance
that the public and corresponding private key have been properly generated as speci-
fied in the protocol. It is possible to give a formal treatment of security incorporating
certificate manipulation attacks [136].

1.4.10 Protocol Interaction

Most long-term keys are intended to be used for a single protocol. However, it could
be the case that keys are used in multiple protocols. This could be due to careless
design, but may be deliberate in cases where devices with small storage capability
are used for multiple applications (smart cards are the obvious example), or where a
single certificate is used in multiple protocols, in multiple versions of a protocol, or
in multiple ways within the same version of a protocol.

It is easy to see that protocols designed independently may interact badly. For
example, a protocol that uses decryption to prove possession of an authenticating key
may be used by an adversary to decrypt messages from another protocol if the same
key is used. Kelsey et al. [423] gave several examples of how things can go wrong,
and discussed the chosen protocol attack, in which a new protocol is designed by
the adversary to attack an existing protocol. In Sect 6.10.2 we look at cross-protocol
attacks on TLS where long-term keys are shared across different protocol versions.

Apart from limiting keys to be used in unique protocols, one method to prevent
such attacks is to include the protocol details (such as a unique identifier and the
version number) in an authenticated part of the protocol messages. Protocols with a
security proof in the universal composability framework [181] are immune to such
attacks.

1.5 Goals for Authentication and Key Establishment

Any attack on a protocol is only valid if it violates some property that the protocol
was intended to achieve. In other words, all attacks must be considered relative to
the protocol goals. Experience has proven that many protocol problems result when
designers are unclear about the protocol goals they are trying to achieve. This in
turn leads to disputes about whether protocol attacks are valid, since designers may
regard the goals differently from analysers. Gollmann [311] recognised that it is a
difficult matter to decide exactly what is meant by commonly used words such as
‘authentication’; even if everyone has a general idea of the meaning of such a word,
the interpretation may vary with the protocol. It turns out that although most authors
can agree on general definitions, their ideas diverge when precision is required.
Clarity in describing protocol goals is desirable for all parties concerned. De-
signers have to make use of the protocol goals to justify each message field and all
cryptographic processing. Experience shows that protocols with well-defined goals
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are streamlined and transparent to analyse. Analysers make use of protocol goals to
direct their attempts to find attacks or prove they do not exist.

Many authors have considered the question of what are the appropriate goals
for cryptographic protocols, mainly in the context of protocol analysis. Definitions
of various goals also appear in a number of standards for cryptographic protocols.
However, there is a lack of agreement as to what are the desirable goals for authen-
tication and key establishment, as well as precise definitions for these goals.

Let us consider an initial example to illustrate the divergent paths that may be
taken in assessing protocol goals and attacks. In Protocol 1.6 principals A and B
wish to authenticate each other, using an initially shared key Kqp. We will discuss
below some possible meanings of authenticate, but for now we will assume that both
users wish to know that their communicating peer is in possession of Kyp.

1.LA—=B: N,
2.B—A: MACKAB(IDB.,IDA,NA),NB
3.A—B: MACKAB (IDA.,IDB,NB)

Protocol 1.6: Example protocol

Both A and B choose nonces, N4 and Np respectively, and generate a tag from
a message authentication code using the shared key. Protocols similar to this one
have been published in the literature (although we do not believe this exact one has
been suggested before). An attack on Protocol 1.6 is possible which is very similar
to some previously published attacks [103, 253]. In Attack 1.4, principal A is used as
an ‘oracle’ by the adversary C.

1. C4 = B: N¢

2. B—Cy: MACKAB(IDB>IDA7NC)7NB
1. Cp—A: Np

2 A Cp: MACKAB (IDA,IDB,NB),NA
3. C4 = B: MACk,,(ID4,IDp,Np)

Attack 1.4: Attack on Protocol 1.6

From the view of B the protocol has completed normally. However, the protocol
has not run correctly and it is certainly not the case that A is the communication peer
of B. On the other hand, if the protocol goal for B was to establish that A is ready and
willing to communicate with him then the protocol has not failed. Indeed we may
note that A was sent a challenge by someone purporting to be B and replied with a
message to the effect that she was prepared to communicate with B. This example
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illustrates how careful we must be to evaluate attacks against definitions of protocol
goals.

In the next few sections we will consider various possible definitions for the
fundamental goals of authentication and key establishment protocols and explain
the reasons for our choice of definitions that we will use in subsequent chapters.
This will lead to further goals which are desirable in many AKE protocols. This
chapter concentrates on goals for protocols where the session key is shared between
two principals; additional goals which may be useful in multi-party protocols are
discussed further in Chap. 9.

1.5.1 Models of Security

As well as deciding what are the required goals of a protocol, we need to agree on the
attack model that will be used to decide whether a goal is achieved. This concerns
what actions we allow to the adversary. Generally models allow at least two general
capabilities to the adversary.

e The adversary controls the communications between all principals, which means
that the adversary can observe all messages sent, alter messages, insert new mes-
sages, delay messages or delete messages. This may be more than is achiev-
able by an adversary in practice, but by assuming a more powerful adversary we
achieve a stronger form of security.

e The adversary can obtain any session keys used in different runs of the protocol.
This reflects the typical requirement that session keys should be independent of
each other.

In addition to allowing the adversary to obtain session keys unrelated to the ses-
sion key in current use, some models also allow the adversary to obtain long-term
keys. This is often called corruption of principals since it allows the adversary to par-
ticipate in protocol runs as a normal participant. Of course an adversary in possession
of the long-term key of Alice can authenticate as Alice, so we need to restrict what
is a successful attack in such circumstances. Often we need to prevent corruption of
any of the principals involved in the protocol run which is the target of the attack.
However, this restriction is not necessary as we will see when we consider forward
secrecy and key compromise impersonation a little later.

Later, in Sect. 1.6 and Chap. 2, we will look in more detail at formal models
of security for AKE protocols. In this section we continue with an informal look at
protocol goals.

1.5.2 Key Establishment or Authentication?

In the early literature on cryptographic protocols it was common to refer to all proto-
cols concerned with setting up session keys as ‘authentication protocols’. This is not
entirely satisfactory because some protocols that set up session keys provide no au-
thentication of one party to the other, while other protocols designed to provide entity
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authentication involve no session key. Therefore it has become usual to distinguish
between two types of protocols. We will use the term entity authentication protocols
for protocols that provide only authentication while using the term key establishment
protocol (also often called a key exchange protocol) for protocols that involve setting
up a new key, typically for a communications session.

Gollmann [311] put forward a number of different options for what could be
meant by authentication. The first one is as follows.

Goll. The protocol establishes a fresh session key, known only to the participants in
the session and possibly some trusted third parties.

This goal may be achieved even though each party knows nothing about even the
existence of the other party, let alone whether the other party is willing to engage in a
session. Thus this is a goal about key establishment rather than entity authentication.

The second goal suggested by Gollmann is as follows, in which A and B are the
protocol principals.

Gol2. A cryptographic key associated with B was used in a message received by A
during the protocol run. The protocol run is defined by A’s challenge or a current
timestamp.

This is a goal concerning entity authentication. It says nothing about a new session
key and can be satisfied by a protocol that is not concerned with key establishment.

There appears to be more dissent in the literature regarding the nature of entity
authentication than there is with regard to key establishment. One reason for this
may be that it is difficult to be clear about the purpose of entity authentication in
the absence of key establishment. Diffie et al. [253] say that it is ‘accepted that
these topics should be considered jointly rather than separately’, while Bellare and
Rogaway [78] go further in stating:

...entity authentication is rarely useful in the absence of an associated key
distribution, while key distribution, all by itself, is not only useful, but it is
not appreciably more so when an entity authentication occurs along side.
Most of the time entity authentication is irrelevant: it doesn’t matter if you
have been speaking to a given communication partner, in that by the time
you become aware of [an authenticated entity] there will be no particular
reason to believe that the partner is still ‘out there’ anyway.

In our view there are situations when entity authentication by itself may be useful,
such as when using a physically secured communication channel. But it is important
to appreciate exactly what it provides.

Syverson and van Oorschot [705] identified what they termed six ‘generic formal
goals’. These are expressed in English in Table 1.4; for formal statements readers
should refer to their paper. There are clearly dependencies between various of these
goals. For example, SVO2 is a stronger property than SVO1. Furthermore, it is not
clear why these particular goals are important; for example, it might be questioned
whether secure key establishment is useful without key freshness. To be fair to these
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Table 1.4: Syverson and van Oorschot’s generic formal goals for protocols

SVO1 Far-end operative A believes B recently ‘said’ something.
SVO2 Entity authentication A believes B recently replied to a specific challenge.

SVO3 Secure key establishment A has a certain key K that A believes is good for
communication with B.

SVO4 Key confirmation In addition to SVO3, A has received evidence confirming
that B knows K.

SVOS5 Key freshness A believes a certain key K is fresh.

SVO6 Mutual understanding of shared key A believes that B has recently confirmed
that B has a certain key K that B believes is good for communication with A.

authors, they state that it is not intended as a ‘definitive list of the goals that a key
agreement or key distribution protocol should meet’.

The least of these goals, SVO1, simply says that B has recently done something,
independent of any other entities or keys. We will refer to this goal a few times later,
and sometimes use descriptions such as B is alive to describe the assurance that A
achieves, or simply say that a protocol which reaches this goal provides liveness.

So far we hope to have convinced the reader that there is no unanimity, either on
what the goals of authentication and key establishment protocols should be or on how
to define those goals. We will now look in more detail at different classes of goals
which can be considered in three categories: those concerning entity authentication;
those concerning key establishment and those which are optional additions to key
establishment.

1.5.3 Entity Authentication

The ISO Security Architecture [375] defines entity authentication as ‘the corrobora-
tion that an entity is the one claimed’. This is not as precise a definition as one might
like since it does not explain which entity is the subject. Menezes et al. [550] gave a
more comprehensive definition as follows.

Definition 11. Entity authentication is the process whereby one party is assured
(through acquisition of corroborative evidence) of the identity of a second party in-
volved in a protocol, and that the second has actually participated (i.e. is active at,
or immediately prior to, the time the evidence is acquired).

Protocol 1.7 is an example that seems to provide entity authentication of B to A
satisfying this definition. A sends her nonce to B, who replies by signing it. It seems
clear that A knows that B must have engaged in this protocol and that the signature
is fresh.

Definition 11 is a clear explanation, but does not go as far as is possible or perhaps
even desirable. Imagine user A having received some messages in an entity authen-
tication protocol. What is it that she can hope to have learnt from those messages?
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1.A—B: Ny
2. B— A: Sigg(Ny)

Protocol 1.7: A simple authentication protocol

One aspect is that user B is really out there now, somewhere on the network. This
is the far-end operative property (SVO1) that we have already seen. The only other
assurance that seems relevant is to know that B is ready to engage in communication
with A.

Attack 1.5 on Protocol 1.7 shows why this extra assurance may be desirable.
In this protocol run A can verify that the signature received was formed by B, yet
B has not indicated that he is aware of A. In some sense we may even accept that
the adversary C has provided assurance that he is B. On the other hand C does not
appear to be doing anything other than faithfully replaying messages between A and
B. The next definition tries to capture the notion of one principal being prepared to
communicate with another principal.

1. A—Cp: Ny
I.C—B: Ny
2. B—C: Sigg(Na)
2. Cp—A: SigB(NA)

Attack 1.5: An attack on Protocol 1.7

Definition 12. A principal A is said to have knowledge of B as her peer entity if A is
aware of B as her claimed peer entity in the protocol.

Considering again the fundamental elements used in authentication protocols this
seems to be all that can be achieved. Messages can convey either freshness, or prin-
cipals with which communication is desired. Combining these leads to a strong defi-
nition of entity authentication. (There are several alternative ways of expressing this
property which all indicate that A is authenticated to B only if A is prepared to engage
in communications with B.)

Definition 13. Strong entity authentication of A fo B is provided if B has a fresh
assurance that A has knowledge of B as her peer entity.

An enhanced version of Protocol 1.7 can provide this stronger assurance. Pro-
tocol 1.8 provides strong entity authentication of B to A. It may be checked that an
adversary C cannot use Attack 1.5 to convince A that B is aware of A as his peer
entity.

According to Definition 13, there are two subgoals of entity authentication:
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1.A— B:IDy,Ny
2. B—A: Sigg(IDa,Ny)

Protocol 1.8: Another simple authentication protocol

e A (once) has had knowledge of B as her peer entity;
e A is operative.

The latter of these is the far-end operative property discussed before in goal SVO1
of Table 1.4. Notice that it is straightforward to extend Definition 13 to a multi-party
goal of entity authentication of a group of users U to A: the principal A is freshly
aware of the principals in U as her peer entities.

Entity authentication is a service that is provided by one entity to one or more
other entities. Most often we are concerned with the interaction between two entities
and then it is common to differentiate between two situations.

Definition 14. Mutual authentication occurs if both entities are authenticated to each
other in the same protocol. Unilateral authentication (sometimes called one-way au-
thentication) occurs if only one entity is authenticated to the other.

When multiple entities are involved there are many possibilities for different
combinations of entity authentication; in principle a protocol can authenticate any
subset of the entities to any other subset. In practice there seem to be few situations
where a complex rule for who should be authenticated to whom is useful.

1.5.4 Key Establishment

Menezes et al. [550] gave the following definition for key establishment.

Key establishment is a process or protocol whereby a shared secret becomes
available to two or more parties, for subsequent cryptographic use.

This definition can be extended and made more specific. One way to understand
the possible goals for key establishment is to consider what may be achieved with
typical message components. There are three types of message components that are
conventionally used in cryptographic protocols for key establishment and entity au-
thentication. These are:

1. keys, which may be long-term keys or session keys;
2. identifiers for protocol principals;
3. nonces, which may be random values, timestamps or counters.

These components are combined and processed with cryptographic mechanisms to
provide confidentiality and/or authentication. For key establishment a new session
key may be associated with a nonce, or with identifiers of protocol principals. In
practice a session key is not of any use unless it is known to be fresh and it is known
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which other entities may possess it. Most authors agree that secure key establishment
should require the two goals that the key is known to be fresh and is known only to
the other protocol participant(s), possibly including trusted third parties. This is often
referred to as establishing a good key.

Definition 15. A shared session key is a good key for A to use with B only if A has
assurance that:

the key is fresh (key freshness);
the key is known to at most A and B and any mutually trusted parties (key au-
thentication).

The second of these properties is often also called implicit key authentication. (As
pointed out by Gollmann [312], this property may equally be regarded as being about
confidentiality of the key.) It can be argued that key authentication must imply key
freshness, since a key that is not fresh cannot be guaranteed to be kept confidential.
From this viewpoint a separate requirement for key freshness is not required.

Although not a common requirement, public session keys are certainly possible.
The above definition is easily extended to this case.

Definition 16. A public session key is a good key for A to use with B only if:

e the key is fresh (key freshness);
e the corresponding private key is known only to B (key authentication).

An interesting additional goal has been considered by some authors, including
Janson and Tsudik [394].

Definition 17. Key integrity is the property that the key has not been modified by the
adversary, or equivalently only has inputs from legitimate principals.

e For a key transport protocol, key integrity means that if the key is accepted by
any principal it must be the same key as that chosen by the key originator.

e [or a key agreement protocol, key integrity means that if a key is accepted by any
principal it must be a known function of only the inputs of the protocol principals.

Note that there is no contradiction if a key establishment protocol provides the
good key property but fails to provide key integrity. It is quite conceivable that an
adversary may be able to disturb a protocol, whether it is a key transport or a key
agreement protocol, in such a way that the key has been changed from its ‘correct’
value but is still fresh and unknown to the adversary. Protocol 3.15 is an example
which provides key integrity.

1.5.5 Key Confirmation

Definition 18. Key confirmation of B fo A is provided if A has assurance that key K
is a good key to communicate with B, and that principal B has possession of K.
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Key confirmation provides evidence that the partner has the same key but leaves
open the possibility that the key is intended by the partner for a different commu-
nication session (with the assumption that the partner may be engaged in several
conversations). Key confirmation provides evidence that the partner wishes to com-
municate with some entity, and so implies the far-end operative property, but may not
imply entity authentication. Key confirmation is typically achieved by having both
parties send each other some fresh data using a cryptographic function depending on
the key; this is often referred to as a handshake.

Shoup [674] has put forward the idea that key confirmation is not a valuable
security property. His point is that it is not really useful for a principal to know
that the partner has, or can obtain, possession of the session key, but rather that the
partner has accepted the session key. It is never possible to guarantee this for both
parties, since one party must always finish, and therefore accept, without the other
party knowing. Nevertheless, the property as stated may or may not be achieved,
perhaps even mutually. As with entity authentication, we prefer not to judge whether
this property is a useful one.

It can be seen that Definition 18 requires that the identified other party has re-
ceived the session key. Not all authors use this definition of key confirmation. For
example, the following definition is given in the Handbook of Applied Cryptography
[550]:

Key confirmation is the property whereby one party is assured that a second
(possibly unidentified) party actually has possession of a particular secret
key.

This contrasts with the definition in the ISO/IEC 11770-2 key management standard
[376].

Key confirmation: the assurance for one entity that another identified entity
is in possession of the correct key.

The following definition is also taken from the Handbook of Applied Cryptography.

Definition 19. Explicit key authentication is the property obtained when both (im-
plicit) key authentication and key confirmation hold.

Notice that it does not matter for this definition whether or not key confirmation
includes identification of the other party in possession of the key. This is because
implicit key authentication assures B that only A may have the key, so any party that
shows possession of the key must be entity A.

Mutual belief in the key, following SVO6 in Table 1.4, adds to key confirmation
that the key is known by the partner to be good. (Actually, SVO6 does not require the
good key property, but seems of little value if it does not also hold.) It provides both
key confirmation and entity authentication since if the partner has acknowledged that
the key is good for the communication this can be taken as a confirmation that the
partner is willing to communicate.
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Definition 20. Mutual belief in the key K is provided for B only if K is a good key
Jfor use with A, and A wishes to communicate with B using key K which A believes is
good for that purpose.

1.5.6 Example: STS Protocol

We turn to an example to focus discussion on the subtleties of assessing protocol
attacks against published goals. The station-to-station (STS) protocol [253] uses a
digital signature in the exchanged messages to add authentication to the well-known
Diffie—Hellman protocol [252]. This uses arithmetic in a multiplicative group with
generator g. Exponents x and y are chosen randomly by A and B respectively and
are used to form the session key Kyqp = g*. Protocol 1.9 shows the messages in a
successful protocol run.

l.LA—>B: g
2.B—A: gy7{SigB(gy7gx)}KAB
3.A— B: {Siga(g", ") }kus

Protocol 1.9: STS protocol

Here Sigy (.) represents the signature by the principal X on the string in the brack-
ets, while {M }x denotes symmetric encryption of message M using key K. The par-
ticular signature algorithm chosen does not matter for the protocol. Consider how
the good key goal is achieved for A.

1. The signature in message 2 can only be formed by B.

2. Itis not a replay from an old protocol run since A knows that g* was fresh.

3. The signature alone does not imply that B knows K4p. Therefore the encryption
with K4p is necessary to provide assurance that B really knows Kup.

Thus it appears that A gains key confirmation, as well as a good key with B, from
message 2. With regard to authentication goals, it seems clear that both users achieve
liveness of the other, since each receives a signed message containing a value they
know to be fresh. Strong entity authentication, in the sense of Definition 13, is more
problematic since there is no explicit inclusion of identifiers in the signed messages
which could be used to deduce the identity of the desired communications partner.
Lowe [502] has proposed an attack on the STS protocol. To be quite precise, the
protocol analysed by Lowe is slightly different in that principal identifiers are added
to each message to give the modified version shown in Protocol 1.10. The addition of
the identifiers appears to make no material difference to the protocol since they are
attached as plaintext and so are vulnerable to both eavesdropping and modification.
However, their addition is critical to the interpretation of the attack. Lowe [502] states
that the identifiers were ‘included to make the subsequent explanations clearer’.
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1.A—B: IDA,IDB,gx
2. B—A: IDp,IDy, 8", {Sigp(8”,8") }kus
3.A—B: IDA7IDB,{SigA(gX7gy)}KAB

Protocol 1.10: STS protocol modified to include identifiers

Lowe’s attack does not affect the key establishment properties but is addressed at
whether entity authentication is achieved. Suppose that C is an adversary who wishes
to attack the protocol. C intercepts a protocol run started by A and masquerades as B.
In parallel, C starts a protocol run with B. Attack 1.6 shows an attacking run, where
Cp denotes C masquerading as principal B.

1. A=Cp: IDA,IDB,gX

I'.C—B: IDc,IDg,g"

2. B—C: IDg,IDc,g",{Sigp(g’",8") ks
2. Cg—A: IDBJDA:g'Vv{SigB(gyvgx)}KAB
3. A— Cp: IDy,IDp,{Siga(g".8") ks

Attack 1.6: Lowe’s attack on Protocol 1.10

The attack is very simple: C is doing little more than relaying each message that
passes between A and B. What is the result? In the attacking run B has no indication
that A has engaged in the protocol and yet A has completed a successful run and
accepted that her partner is B. Is this a successful attack on the STS protocol? If we
apply the same attack to the original STS protocol (Protocol 1.9) without identifiers,
we see that C does nothing more than relay messages between A and B, so how can
this constitute an attack?

Diffie et al. [253] defined security based on matching conversations. In other
words, for a secure protocol the accepting parties should agree on the messages ex-
changed in the protocol run. (Section 2.2 provides a detailed discussion of matching
conversations.) When applying Attack 1.6 to their original protocol the conversation
of A does indeed match that of B and so the attack does not violate their definition of
security. A reasonable conclusion may be that the attack is invalid on the STS proto-
col as specified by its authors and in accordance with their definition of security. But
what about the modified protocol? Is it really different from the original and is the
attack valid in that case? The answer must depend on the intended goals.

After the attacking run it is clear that the good key goal has not been broken.
Key confirmation has indeed been achieved: A can be sure that B knows the
shared key.

e A does not know that B knows the key is good for use with A. In other words the
mutual belief in key goal (Definition 20) is not achieved for A.
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e The attack shows that A would be wrong to conclude, after a successful run,
that B wishes to communicate with her. Thus strong entity authentication (using
Definition 13) is not achieved.

We conclude that the attack would be valid if either mutual belief in the key or
strong entity authentication were protocol goals. However, it is clear from the paper
of Diffie et al. that they did not regard these as goals of their protocol. The insight
gained from the attack is therefore that the protocol does not meet extended goals
that could be desired by some users.

Lowe [502] proposed that the identity of the other party be included in the signa-
tures in order to prevent the attack. This also allows an informal argument that strong
entity authentication is achieved, if the included identifier is interpreted as the name
of the entity with which communication is desired.

1.5.7 Forward Secrecy

The idea of forward secrecy is that when a long-term key is compromised, session
keys that were previously established using that long-term key should not be com-
promised too. Key agreement protocols in which the long-term key is used only to
authenticate the exchange provide typical examples of protocols with forward se-
crecy. Key transport protocols in which the long-term key is used to encrypt the
session key cannot provide forward secrecy.

Definition 21. A key establishment protocol provides forward secrecy if compromise
of the long-term keys of a set of principals does not compromise the session keys
established in previous protocol runs involving those principals.

Definition 22. A protocol provides partial forward secrecy if compromise of the long-
term keys of one or more specific principals does not compromise the session keys
established in previous protocol runs involving those principals.

If a protocol does not provide (full) forward secrecy then partial forward secrecy
may still be useful if there is an asymmetry in the roles of the principals involved. For
example, in a client—server protocol it may be deemed more likely that a client long-
term key will be compromised than that the server key will be. In this situation partial
forward secrecy, in which compromise of client long-term keys does not compromise
old session keys, is a useful property.

The term ‘forward secrecy’ seems to have been coined by Giinther [336]. In fact
he used the term perfect forward secrecy but, in common with other authors, we have
dropped the word ‘perfect’; this is not only for the sake of brevity, but also because
it gives connotations with the term ‘perfect secrecy’ which refers to unconditional
(information-theoretic) security which is not relevant here.

The critical concept in providing forward secrecy is an ephemeral public key; this
is a public key that is used only for the duration of the key establishment protocol and
is then destroyed along with the corresponding private key. If the long-term public
key is used only for authenticating the session key then the session key cannot be
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recovered without the ephemeral private key. The most commonly used ephemeral
keys are of the type needed in the Diffie—Hellman protocol which is examined in de-
tail in Chap. 5. This is not the only type of ephemeral public key however; ephemeral
keys can be used for any public key cryptosystem. Furthermore, it is a common mis-
conception that forward secrecy can be achieved only with key agreement.

As an example consider Protocol 1.11 which provides key transport between A
and B. Here K7 is an ephemeral public key chosen by A uniquely for this session.
This key is sent to B and signed by A together with a nonce N4 chosen by A. B then
uses this ephemeral key to transport the session key K4p confidentially back to A.
Here Ency(.) denotes encryption with K7 and & is a one-way hash function.

1.A—B: KT,NA,SigA(KT,]DB)
2.B—A: EnCT(KAB),SigB(h(KAB),IDA,NA)

Protocol 1.11: Key transport protocol providing forward secrecy

The private key corresponding to the ephemeral public key should be destroyed
by A immediately after the session key is recovered. It can be seen that compromise
of the long-term signature keys will not help an adversary in obtaining the session
key.

The long-term keys used in a protocol providing forward secrecy may be either
shared or public. Consider Protocol 1.12, in which A and B share long-term keys
Kas and Kpg with server S. Random values r4, rp and Kg are chosen by A, B and
S respectively. The protocol includes Diffie—-Hellman-like key agreement, using the
generator g of some multiplicative group, together with encryption using the long-
term keys.

1.A— S: IDy,IDp
2.A— B:IDy,g"
3.§—B: {IDAJDB7KS}KBS
4. S—>A: {IDA7IDBaKS}KAS
5.B—A:IDp,g""

Protocol 1.12: Server-based protocol providing forward secrecy

The session key Kyp is calculated by A as Kyp = (g"2)"Xs and by B as Kyp =
gy 8Ks. Once the ephemeral values r4 and rg are destroyed the session key is
p y y
protected against compromise of the long-term keys shared with S.
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1.5.8 Weak Forward Secrecy

Protocols which provide forward secrecy are often more expensive, either computa-
tionally or with regard to communications complexity, than those without it. There-
fore there is value in considering a weakened security property which may be less
costly. Bellare et al. [74] and later Krawczyk [453] defined weak forward secrecy to
be similar to normal forward secrecy but where the adversary is forbidden to take an
active part in the protocol run which is being targeted.

Definition 23. A protocol provides weak forward secrecy if compromise of the long-
term keys of one or more specific principals does not compromise the session keys
established in previous protocol runs involving those principals when the adversary
did not take an active part in the session under attack.

This means that in a protocol providing weak forward secrecy the victim prin-
cipal executes the session under attack with a legitimate party whose messages are
transmitted correctly to the victim. The adversary is not allowed to interfere in the
session. Such a restriction could make sense in a scenario where the adversary is
eavesdropping on a large number of sessions and has not yet decided which ones to
attack.

In order to differentiate from weak forward secrecy we will sometimes use the
term strong forward secrecy to denote the normal version of forward secrecy where
the adversary is allowed to be active in the target session. Krawczyk [453] and Boyd
and Gonzalez Nieto [142] provided generic attacks which show that strong forward
secrecy is not possible if either of the following applies:

the protocol messages are independent of the long-term key of the sender;
the adversary is allowed to reveal ephemeral secrets of the partner party to the
test session.

An example of a protocol with only weak forward secrecy is a key agreement
protocol of Matsumoto et al. [526]. (This protocol will be examined in Sect. 5.3.)
Principals A and B possess public keys y4 = g*4 and yp = g*8 respectively, and cor-
responding private keys x4 and xp. Here g generates a suitable group in which the
discrete logarithm problem is hard. A normal protocol run proceeds as shown in
Protocol 1.13, where r4 and rp are random values chosen by A and B respectively.

Goal: Key agreement. Shared key Kyp is (derived from) shared secret g'’5.

ILA> By}
2.B—A:yf

Protocol 1.13: A protocol with weak forward secrecy (MTI protocol)

The shared key is Kap = g"4", calculated by A as (y) "4 and by B as
(yg‘ Y8 '8, The active adversary C engineers an attack by choosing a random value
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rc, and replying to the message of A with the response y/rf. Then A completes the
protocol normally and computes the shared secret as K45 = g"4"8. Once A has sent
some data, encrypted with K4p, to what A assumes is B, C can close the connection.
If this protocol provided strong forward secrecy then C would be allowed to obtain
the long-term key of B, xg. Then C can compute the shared key as (yz' ) "¢ and thus
recover the secrets of A. Note that this attack no longer applies if C is forbidden from
being active in the session under attack since it needs to choose its r¢ value during
the protocol run.

Many well-known two-message protocols provide only weak forward secrecy.
There has been some misunderstanding in the literature regarding whether two-
message protocols can achieve strong forward secrecy at all. In fact two-message
protocols proven to have strong forward secrecy have been known since at least
2004 [397] (see Protocol 5.39). Indeed, there is even a known way to achieve for-
ward secrecy in one-message protocols [337], although this requires a long-term key
which is updated over time.

One generic way to ensure that a secure protocol with weak forward secrecy
actually provides strong forward secrecy is to add key confirmation. This is because
key confirmation requires an active adversary to know the session key before being
allowed to obtain the long-term keys, so if the protocol can be broken then it is
broken even without giving the long-term keys to the adversary.

Another way to ensure strong forward secrecy is to add explicit authentication to
the messages exchanged. Boyd and Gonzalez Nieto [142] provided a generic method
to add strong forward secrecy to any protocol by adding a MAC tag to the messages.
A similar method using digital signatures was provided by Cremers and Feltz [235]
while a protocol using a specific signature was designed by Huang [366].

1.5.9 Key Compromise Impersonation

When an adversary learns the long-term key of Alice the adversary can impersonate
Alice to other principals until the compromise is detected and the long-term key is
revoked.! Key compromise impersonation refers to an attack in which the adversary
uses Alice’s compromised long-term key to masquerade fo Alice as another user.

Definition 24. A protocol provides resistance to key compromise impersonation if
compromise of a long-term key of a principal A does not allow the adversary to
masquerade to A as a different principal.

The typical situation in which key compromise impersonation is possible is when
the protocol gives assurance only that each entity has any one of a pair of long-
term keys. This situation is commonly found in key agreement protocols where the
security is often based on the property that a particular value can be calculated with
knowledge of the long-term key of either of the two principals.

! However, there are measures that can be taken to protect compromised signature keys
against abuse, as discussed by Just and van Oorschot [406].
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A simple example is the static Diffie—Hellman value g4*8 which can be com-
puted by either of A, with public key y4 = g™, or B, with public key yp = g"8. A
protocol which we will look at later (Protocol 5.12) combines this static value with
an ephemeral Diffie-Hellman value to obtain the session key. Since these values can
be computed with the long-term private key of either A or B it is vulnerable to key
compromise impersonation.

Protection against key compromise impersonation seems to require use of asym-
metric cryptography. If each party can verify that the correct private key was used
then the other party must be present. For example, if each party receives a digital
signature from the other, the adversary cannot forge the signature from B if it only
has A’s private key. Several examples of protocols secure against key compromise
impersonation are presented in Chap. 5.

1.5.10 Deniability

Deniability is a privacy property of security mechanisms that is desirable in certain
circumstances. The idea is that it should be possible for a user employing such a
mechanism to later deny taking part in the communication. Of course it is possible to
conduct the communication without any cryptographic mechanisms at all, and then
the communication can always be denied. However, it may be desirable to provide
authentication to the receiver and to set up a secure channel to protect the confi-
dentiality and integrity of the information being sent. A typical scenario for such
communication is an ‘off-the-record’ disclosure from an insider, /, in some organi-
sation to a news reporter, R. The reporter may want to verify the source of the data
and the disclosing insider may want to use a secure channel for the communication.
Yet / would like to ensure that if R later tries to implicate / in the communication,
then / can deny having taken part.

Definitions for deniability in key establishment were preceded in the literature by
definitions of deniable encryption [176] and deniable authentication [43]. Deniability
of communications can be achieved if a key establishment protocol is used with the
deniability property. Once I is able to convincingly deny having taken part in estab-
lishing the key, / can also deny having used the key to form a secure communications
channel with R. Both of these properties can be achieved by first establishing a ses-
sion key in a deniable key establishment protocol and then using standard encryption
and authentication schemes keyed by the session key.

Informally, deniability should prevent anybody from convincing an impartial
judge that a particular protocol principal took part in the protocol. We will call the
adversary attempting to prove participation the accuser. The accuser may be an out-
sider, not taking part in the protocol run, or an insider who is running the protocol
with /. In the former case it is much easier to achieve deniability; in particular, any
protocol using protocol messages which depend only on public information is de-
niable against outsiders. This is because the transcript of the protocol could always
have been produced by the accuser alone and so the judge will not be convinced. An
example is Protocol 1.13 above, since the protocol messages are simply random val-
ues in a group. Many existing protocols achieve this property of outsider deniability.



38 1 Introduction to Authentication and Key Establishment

When the accuser is allowed to run the protocol with 7, deniability is much harder
to achieve — in this case the accuser has the opportunity to try to construct messages
in such a way that the key could only have been constructed by the victim. If the
accuser can link the session key to the protocol session and show that only the victim
could have formed the key then the judge can be convinced.

In most solutions for deniability it is assumed that there is no special communi-
cation between the accuser and the judge prior to the protocol run; there is only a
generic set-up process. We can envisage stronger adversaries who can communicate
with the judge prior to the protocol run, or even during the protocol itself. It is not
clear that these stronger adversaries are realistic. A judge who is also a protocol par-
ticipant will always be convinced and this is basically the situation when the judge
can communicate directly with the accuser during the protocol run.

Mao and Paterson [522] seem to have been the first to discuss deniability for key
establishment and considered a variety of informal definitions. The first is similar to
what we called outsider deniability above, while the second and third are a form of
insider deniability.

o For weak deniability there should be no values, such as digital signatures, which
can be used to identify the protocol principals.

e For strong deniability the accuser is a peer of the victim willing to divulge
ephemeral secrets used in the protocol run.

e For complete deniability the accuser is willing to divulge long-term secrets used
in the protocol run.

Mao and Paterson provided variants of the Internet Key Exchange (IKE) protocols
which intuitively satisfy these definitions using identity-based keys.

Di Raimondo et al. [248] provided the first formal definitions for deniable key
establishment. Their definitions are based on the idea of simulatability, similar to
the notion of zero knowledge. The intuition is that if any one party, who may be an
insider, could alone have produced a protocol transcript that is indistinguishable from
a normal protocol run, then the judge should never be convinced that the victim was
active in the protocol run. There are some subtleties regarding the precise restrictions
on the simulator which are important, at least in theoretical terms [602].

A simple and efficient deniable key exchange protocol was proposed by Jiang and
Safavi-Naini [400] shown in Protocol 1.14. The protocol uses a trapdoor permuta-
tion, such as RSA, to send a random value from each party to the other together with
a hashed value to prove knowledge of the value. We denote the trapdoor permuta-
tion simply as public key encryption in Protocol 1.14, although simpler instantiations
may be possible. The session key, Ky4p, is then a hash of the random values from each
party and the party identifiers. Although the protocol is very efficient it does not pro-
vide forward secrecy because the session key is computed from a hash of the random
values chosen by each party.

Yao and Zhao [753] designed a protocol suitable for use with Internet Key Ex-
change. This protocol uses MACs instead of signatures where the MAC keys can be
fully simulated by either party. Their security proof uses the random oracle model
and depends on the so-called fresh-challenge knowledge of exponent assumption.
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Shared information: security parameter k; random oracle H.

A B

ser {0,1}F

EnCB(S),H(S,[DA,IDB) rEr {0 1}k

Enca(r),H(r,s,1Dy,1Dp,0)

H(s,r,IDy,IDg, 1)

Kap = H(s,r,ID4,IDg,2) Kap = H(s,r,ID4,IDg,2)

Protocol 1.14: Protocol of Jiang and Safavi-Naini [400]

They also proved both forward secrecy and key compromise impersonation (KCI)
resistance.

Cremers and Feltz [227] proposed a one-round protocol which provides full for-
ward secrecy as well as deniability. Since their protocol includes signatures of both
parties, strong deniability is not possible. However, they achieve instead a property
which they call peer-and-time deniability; similar to the peer independence property
of Di Raimondo et al. [248], this property allows users to deny communication with
a particular party, in addition to denying the time when communication may have
taken place. This latter property prevents an accuser from showing that a particular
party was active after a certain time.

Bohli and Steinwandt [120] defined deniability for group key exchange and pro-
vided a four-round protocol which satisfies their definition. Following this other au-
thors have proposed other constructions but with varying formal definitions of deni-
ability. Zhang et al. [773] propose a three-round deniable group key exchange pro-
tocol. Neupane et al. [583] defined a compiler to convert any unauthenticated group
key exchange protocol into one providing deniability as well as standard security
properties, at the cost of one additional round.

Deniability has not been a property of prime interest to AKE protocol designers.
Perhaps this is because it is not concerned at all with keeping the identity of the
protocol participants hidden, only that they can plausibly claim that they were not
participating. When privacy is of high concern to protocol principals they may be
more interested in hiding their identities altogether. We look at this goal next.

1.5.11 Anonymity

It may appear to be a contradiction to consider anonymity when our focus is on
protocols to provide authentication or authenticated key exchange. However, there
are situations where both can make sense together. One is where the goal is to remain
anonymous only to outsiders, while the legitimate parties authenticate only between
themselves. Another is where two parties communicate with one party, remaining
anonymous while the other authenticates. Following the terminology of Goldberg et
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al. [308] we call these external and internal anonymity and will consider these two
situations separately below. First we note a couple of different flavours of anonymity.

e It is possible that all protocol principals remain anonymous to each other. For
example, it is simple to use plain Diffie—Hellman without any authentication.
However, it is not clear what security can be provided in such a situation.

e A way to provide limited anonymity is for users to authenticate as being a mem-
ber of some well-defined group. Special digital signatures, such as group signa-
tures [190] and ring signatures [631], have been designed for this purpose. They
could be used to authenticate key exchange messages, for example to sign Diffie—
Hellman key exchange. There are also anonymous password-based key exchange
protocols [723] which allow users to authenticate as being a member of a group
by using a low-entropy password.

External Anonymity

A protocol achieves external anonymity if an adversary observing the protocol is
unable to determine the identity of at least one of the protocol principals. This form
of anonymity is not difficult to achieve in two-party protocols if it is desired to hide
the identity of only one of the principals. In many applications, an AKE protocol is
run between a client and a server; there may be no need to hide the identity of the
server but the client identity may be more sensitive. For example, if the client is a
mobile device it is often desired to hide its identity to prevent tracking of its physical
location.

An example of a protocol designed to provide external anonymity is the Oakley
protocol, examined later in this book (see Protocols 5.28 and 5.29). The client is
assumed to have the public key of the server and can use it to encrypt its identity in
addition to a secret input to the session key computation. Once the server has received
the client identity, it can obtain the public key of the client (that too could have been
sent encrypted by the client) and use that to hide its own input to the session key.
Thus both client and server ultimately authenticate each other, but the client identity
is never sent in clear text. Note that for this idea to work properly the encryption
scheme used should provide key privacy [69].

It seems intuitively that external anonymity cannot be obtained for both princi-
pals in a two-party protocol, since one party must reveal its identity first. However,
this is not always the case as shown by the idea of secret handshake protocols [51]
where principals only authenticate each other if they both possess matching creden-
tials. This, however, seems to require a special set-up phase before the protocol starts
to set up mutually trusted groups.

Internal Anonymity

A protocol achieves internal anonymity if an adversary actively participating in the
protocol is unable to determine the identity of at least one of the protocol principals.
Protocols of this type are required as part of anonymous communications services
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such as the Tor anonymity network [255]. Each client needs to set up a secure session
key with multiple communications servers; the servers have known public keys, but
the client wishes to remain anonymous. Note that in this scenario the server may be
the adversary attempting to learn the identity of the client.

Since the client need not even have a long-term key in this scenario it may seem
as first that any protocol will work. However, there are some important security prop-
erties that must hold. Firstly, the protocol must still provide confidentiality, so the
session key must be shared only with the correct server. Secondly, it must not be
possible for the adversary to distinguish between protocol runs given any two differ-
ent clients.

Goldberg et al. [308] designed a protocol called ntor, shown as Protocol 1.15,
which provides internal anonymity. Only principal B, the server, has a public key.
The principals exchange ephemeral Diffie-Hellman values, but compute two shared
elements which are combined as a shared secret, Z, which is used as to derive the
session key.

Shared information: public key of B, yp.
Information known to B: private key of xp, with yp = g*5.
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Protocol 1.15: Protocol ntor of Goldberg, Stebila and Ustaoglu [308]

Goldberg et al. [308] provided a formal analysis of Protocol 1.15 and showed
that it provides anonymity as well as a session key secure against outsiders. They
gave a formal definition of one-way anonymity which, roughly speaking, says that an
adversary cannot distinguish which of any two chosen clients took part in a protocol
run. The ntor protocol is now deployed in the Tor software.

A number of variants to the ntor protocol have been proposed. Backes et al.
[47] proposed a protocol called Ace which is slightly more efficient than Proto-
col 1.15. Ghosh and Kate [303] proposed a one-way anonymous protocol based on
the learning with errors (LWE) problem and designed to be secure against adversaries
equipped wth quantum computing.

1.5.12 Protocol Efficiency

It is usually desirable to make protocols as efficient as possible. At the same time,
it is not unusual that stronger security goes along with lower efficiency. Since all
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protocols involve multiple parties, we may need to consider the overall efficiency
as well as the efficiency with regard to individual parties. There are usually two
main concerns with regard to efficiency: computational efficiency and communica-
tions efficiency. We should also not forget storage efficiency: how big are the required
long-term keys and the working memory required during a protocol run? This can be
relevant for devices with limited storage capacity.

Computational efficiency is concerned with the computations that the protocol
principals need to engage in to complete the protocol. The amount of computation
required in cryptographic protocols will depend on the algorithms used to provide the
cryptographic services, such as encryption and decryption functions, generation and
verification of digital signatures and message authentication codes, and calculation
of hash functions. These can vary considerably between specific algorithms and, in
particular, computations required for public key algorithms are usually much greater
than those for symmetric algorithms. Furthermore, there has been, and continues to
be, considerable research into improvements of implementations of different funda-
mental cryptographic operations, such as multiplication in finite fields. Advances in
implementations can make a significant difference to the relative merits of different
cryptographic algorithms. It is not always easy to compare the computational effi-
ciency of protocols when they use different cryptographic settings, but often proto-
cols have the same or a similar setting and a simple count of the number of arithmetic
operations can be useful.

Communications efficiency is concerned with the number and length of messages
that need to be sent and received during the protocol. We will sometimes use the term
flow to describe a single set of message components which can all be sent together.
As well as minimising the size and number of message flows, it can be important
to have as few rounds as possible in the protocol. Gong [316] gives the following
definition.

Definition 25. One protocol round includes all messages that can be sent in parallel
from any point in the protocol.

Many protocols can be run in a smaller or larger number of rounds by group-
ing messages together in different ways. Minimising the number of protocol rounds
is not necessarily the most efficient choice. In Chap. 5 we will describe many key
agreement protocols with two message flows which can be run together in one round.
As explained in Sect. 5.4.13, such protocols can be extended to provide key confir-
mation by adding two message components to be sent in each direction. This natu-
rally results in protocols which can be run in two rounds with two message flows in
each round. However, the same protocols can also be run in three rounds (one more
round), each of one message flow, so three flows in total (one less flow). This works
by piggybacking the first key confirmation message onto the second protocol flow
(see Protocol 5.22). Which way to run the protocol depends on whether it is better to
minimise the number of rounds or the number of flows. Chapter 9 discusses group
key establishment where the number of rounds can be large (for example, propor-
tional to the size of the group). For such protocols, reducing the number of rounds
can significantly improve the delay in completing a protocol run.
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1.6 Tools for Verification of Protocols

The sheer complexity of behaviour that security protocols can exhibit makes their
verification no small task. It has long been recognised that informal arguments about
protocol correctness are not reliable. Therefore, much research has been devoted to
ways of gaining assurance that the security goals are satisfied using formal math-
ematical methods. It is beyond the scope of this book to cover such techniques in
detail, but we believe it is worthwhile to give a flavour of how they work. We aim to
make practitioners aware of what it means to conduct an analysis or obtain a proof
with these approaches. In this section we focus on the tools available for protocol
analysis, including a brief overview of some of the methods.

Formal methods for analysing security protocols are often divided into two major
categories.

Symbolic methods treat the cryptographic primitives in a protocol as symbols
which can be manipulated deterministically using specified rules. For example,
a ciphertext could be modelled as a symbol which can be used as an input to a
decryption algorithm. If the correct decryption key is used then the correspond-
ing plaintext symbol is returned, but otherwise nothing can be gained from the
ciphertext. An adversary can only use the defined interfaces to compute with
symbols. One way to differentiate different symbolic methods is by the crypto-
graphic primitives which they support. For example, many tools today support
Diffie-Hellman operations by symbolically defining the relevant computations.

Computational models allows the adversary to compute whatever can be effi-
ciently computed with the known inputs. For example, a ciphertext could be
a bit string output by a probabilistic algorithm which can be used to help an ad-
versary to compute something about the plaintext. Whether the computations of
the adversary are useful depends on what the defined security goals are.

Chapter 2 is devoted to examining computational models for authentication and
key exchange, which have been extensively developed in the cryptographic research
community since 1993. We will therefore not describe them further in this section.
We focus more on symbolic models here. For these there exist some automatic tools
which can be applied without a deep knowledge of the theory behind them.

Symbolic methods are often said to use the Dolev—Yao model. This is in recogni-
tion of a pioneering paper by Dolev and Yao [256] which has a simple model in which
the adversary mainly uses the principals as oracles to try to decrypt things which it
could not do otherwise. Only public key encryption is involved in the original model.
Although there is no limit on the number of times a public key can be applied, and
therefore infinitely many cases to consider, Dolev and Yao provide theorems which
allow certain designs to be proven secure. No tools or automatic checking was in-
volved in their work. Later, symbolic methods are often said to use the Dolev—Yao
model even though they may typically include many cryptographic primitives other
than public key encryption and consider much more complex security properties than
secrecy of specific values.
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The general idea behind tools using symbolic models is to show that bad states,
representing successful attacks, cannot be reached. Usually we do not wish to ex-
plicitly bound the scope of an adversary in terms of how many runs of the protocol
it can observe since that could exclude certain attacks. Indeed, Millen [554] showed
that there exist protocols which require an unbounded number of parallel sessions in
order to find a certain attack. However, since no tool can use infinite resources all
tools have some limitations on what they can achieve. For example, some tools do
not guarantee to terminate, while others always terminate but perhaps only with a
partial result that no attacks exist up to a certain horizon.

In the following subsections we highlight the applicability and main features of
a range of tools supporting security analysis. We focus on tools which are currently
available at the time of writing. This means that we do not cover historically im-
portant tools such as Mur¢ [561] and AVISPA [38]. Some useful sources of further
information are the surveys of Basin et al. [60] and Meadows [540].

1.6.1 FDR

Lowe [501] developed a method for verifying security protocols using FDR, a model
checker for the process algebra CSP [636]. This method was used to find a previously
unknown attack on the Needham—Schroeder public key protocol (see Sect. 4.3.3). A
comprehensive introduction to the method, including background on CSP, is con-
tained in the book of Ryan and Schneider [638]. Although it has been around for
quite a long time, FDR has been regularly updated and continues to be used for
security protocol analysis.

Each principal taking part in the protocol is modelled as a CSP process represent-
ing the protocol steps performed by the principal. In CSP, communication is mod-
elled by the notion of channels. In Lowe’s formulation of the Needham—Schroeder
public key protocol the following channels are defined:

e comm, which carries messages sent by honest principals;
e fake, which carries messages introduced by the intruder;
e intercept, which carries messages that are killed by the intruder.

In CSP, a communication is an event of the form c.v where c¢ is the name of the
channel on which the communication takes place and v is the value of the message
that passes along the channel. Message components are put together using a dot. For
example, message 1 of the Needham—Schroeder public key protocol is expressed by
the event comm.Msgl.a.b.Encrypt.kb.na.a. Here the letters a and b stand for vari-
ables denoting principal identities; na stands for a variable denoting a nonce; and kb
stands for a variable denoting a public key. The simplest way of constructing pro-
cesses in CSP is by prefixing. A process that performs an action x and then behaves
like process P is denoted x — P (pronounced ‘x then P’). The — operator is right
associative, so x — y — P = x — (y — P). The initiator in the Needham-Schroeder
public key protocol is defined by the CSP process INITIATOR(a,na) below.
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INITIATOR (a,na) =
user.a?b — I _running.a.b —
comm!Msgl.a.b.Encrypt.kb.na.a —
comm.Msg2.b.a.Encrypt.kana' .nb —
if na = nd’
then comm!Msg3.a.b.Encrypt.kb.nb —
I_commit.a.b — session.a.b — Skip
elseSTOP

The question marks model inputting of data. The initiator waits for the value for b
from the channel user and then sends message 1. The event I_running.a.b indicates
that a is taking part in a protocol run with b. The initiator then waits for a correspond-
ing message 2, decrypts this message and checks that the value for na’ matches the
same value sent in message 1 (the initiator will accept any value for nb). If the nonce
matches, then the initiator sends message 3 and commits to the session. The event
I_commit.a.b represents the fact that the initiator is committing to a session with b;
the event session.a.b represents the fact that a carries out a session with b; and Skip
represents a process that completes its task. If the nonce does not match then the
initiator halts; this is represented by the CSP process STOP.

A CSP process RESPONDER(b,nb) that captures the steps performed by the
responder is defined similarly.

The intruder is modelled using the CSP choice operator (1. The choice operator
can be applied to any number of processes. The resulting process can choose to act
like any one of the processes. For the Needham—Schroeder public key protocol the
intruder is modelled with the choice operator applied to 12 processes: three for over-
hearing the messages sent by the honest principals, three for intercepting messages
by the honest principals, three for replaying overheard messages, and three for gen-
erating messages using the known nonces and injecting them. The intruder is defined
by the process INTRUDER (mls,m2s,m3s,ns), where the sets mls, m2s, m3s collect
the undecrypted messages 1, 2 and 3 the intruder has overheard so far and ns is the set
of nonces the intruder has learnt. The part of the intruder process involving message
1 only is as follows; the parts involving messages 2 and 3 are similar.

INTRUDER(m1s,m2s,m3s,ns) =
comm.Msg1?a.b.Encrypt.k.n.a —
if k = Ki then I(mls,m2s,m3s,ns U{n})
else I(mlsU{Encrypt.k.n.a'},m2s,m3s,ns)
O intercept .Msgl?a.b.Encrypt.k.n.d —
if k = Ki then I(mls,m2s,m3s,ns U{n})
O fake.Msg1?a.b?m : mls — I(mls,m2s,m3s,ns)
O fake.Msg1?a.b\Encrypt %k : ns?a’ — I(m1s,m2s,m3s,ns)
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To analyse the protocol, we need to restrict the CSP specification of the protocol
and intruder so that the resulting system is finite. For example, Lowe’s CSP model
of the Needham—Schroeder public key protocol is limited to a single initiator A, a
single responder B, and a single intruder. Despite this restriction, Lowe found an
attack on this protocol. This finite CSP model of the protocol, represented by the
process SYSTEM, is compared against other CSP processes that capture the desired
security properties. Lowe formalised two authentication properties as the following
CSP processes:

Al = I_running. A.B — R_commit.A.B — Al
AR = R_running A.B — I_commit A.B — AR

The first process, Al, has the behaviour that the responder B commits to a session
with initiator A only if A took part in the protocol run. The second process, AR, has
the behaviour that the initiator A commits to a session with responder B only if B
took part in the protocol run.

To check whether a given property holds for a protocol, one tests for refinement
between the CSP processes representing the protocol and the property in question.
In CSP, a process P refines process Q if every trace of P is also a trace of Q. In-
tuitively, a trace is a sequence of events. The first authentication property amounts
to checking that SYSTEM refines Al; the second property amounts to checking that
SYSTEM refines AR. The FDR tool is used for testing these refinements. It turns out
that the refinement check involving AR succeeds, while the one involving Al does
not. FDR produces a trace in the latter case, which shows that B commits to a session
with A, although A never attempted to interact with B. This trace is the famous attack
published by Lowe.

Lowe proposed a correction to the protocol to prevent the attack found on the
original protocol. No attack on the corrected protocol was found using the model
checking technique. However, since the model checking is carried out on a small
system running the protocol, the question remains whether there is an attack on an
arbitrary system (with an arbitrary number of initiators and responders). To answer
this question, Lowe offered a proof that any attack on the general protocol implies an
attack on the smaller protocol. The proof is by hand and runs to several pages. Since
no attack is found on the smaller system, he concludes that there can be no attack on
an arbitrarily sized system.

Lowe [503] wrote a program called CASPER to make his model checking tech-
nique accessible to protocol designers and implementers lacking specialist skills in
CSP. CASPER automatically produces a CSP model of a protocol as well as the in-
truder using a more abstract description of the protocol, similar to the conventional
description. The CASPER input language is machine-readable and provides special
syntax to make explicit certain aspects of protocols. For example, the first message
of the Needham—Schroeder public key protocol is represented as:

<pkb := PK(B)>
1. A —> B: {na, A}{pkb}
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The first line represents that principal A uses a function PK to look up B’s public key.
As well as the definition of the sequence of messages passed between the principals,
CASPER requires the definition of the actual system to be checked. To define the
actual system, one has to instantiate the parameters appearing in the protocol defi-
nition to actual values. Consider a system with a single initiator, Alice, and a single
responder, Bob, each of whom has a public key, a secret key and a nonce. This is
defined by writing the following lines within the f system heading in the CASPER
input file.

INITIATOR(Alice, Na, SKa)
RESPONDER (Bob, Nb, SKb)

The size of the system to be model-checked can be changed very easily.

CASPER provides a concise notation for specifying a range of security proper-
ties, including a number of authentication properties described in another paper by
Lowe [504].

1.6.2 NRL Analyzer and Maude-NPA

As part of a long-term project on cryptographic protocol analysis, the US Naval
Research Laboratory (NRL) developed a special-purpose software tool known as
the Analyzer [535]. It was one of the first tools developed for this purpose and was
improved over many years to provide increased automatic support for the user. The
original tool is a Prolog program with several thousand lines of code.

The Analyzer is a hybrid that possesses features of both a model checker and
a theorem prover. Searching begins from an insecure state, looking backwards to
see if that state can be reached from the initial state. If so then an explicit attack
has been found. Lemmas may be proven to show that infinite classes of states are
unreachable. These may lead to a proof that all paths to the insecure state start in
unreachable states.

The specification of a protocol consists of several elements such as the following.

System state, which includes the values known by the adversary and the protocol
principals, as well as event sequences that have occurred.

Protocol rules, which state how honest principals behave and what is learnt by the
adversary after each protocol step. The adversary may encrypt or decrypt with
known keys and concatenate known values. It is assumed that the adversary is
able to recognise which key was used to encrypt any ciphertext.

Rewrite rules, which define the cryptographic properties, such as that encryption
and decryption are inverse operations.

Protocol goals are defined by the insecure states. As well as the values known to
the adversary (such as keys) the state can include a notion of local variables (such as
a value that some principal believes is the key) or conditions on sequences of events.
In common with other tools, cryptographic properties are defined implicitly by what
values may be found by the adversary using known keys. However, some extensions
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take into account the specific properties of certain algorithms, in particular cipher-
block chaining for block ciphers [700].

The Analyzer was used to analyse a large number of protocols and to reproduce
many known faults and find new ones. Initially the subjects were restricted to rel-
atively simple key establishment protocols, but the tool was also used to analyse
complex protocols such as the (IKE) protocol [536] (see Chap. 5 for a description of
IKE).

A successor to the original Analyzer, rewritten in the logic Maude, was developed
and released as Maude-NPA in 2007 [271]. (NPA stands for NRL Protocol Analyzer.)
Version 3 of Maude-NPA became available in 2017. Maude-NPA puts the tool on
a more formal foundation; in particular, if the analysis terminates without finding
an attack then this constitutes a proof that no attack exists in the model. The new
tool retains many of the features of the Analyzer, including the backward searching
technique. Maude-NPA has been used to analyse a variety of cryptographic protocols
incorporating broader concepts such as homomorphic encryption [270] and security
API protocols [321, 322].

1.6.3 ProVerif

ProVerif is an open source tool, first developed around 2003 by a team led by Bruno
Blanchet. A detailed description, a comparison with other tools and a survey of app-
lications were given by Blanchet [115].

Inputs to ProVerif consist of protocol specfications using an adaptation of the pi
calculus together with a choice of the security property to be analysed. The output
can be one of three possibilities: confirmation of the property, an attack showing that
the property is false, or a ‘false attack” which means that the tool has given up. It is
also possible that ProVerif will not terminate at all, because in general the problem
of determining security with an unbounded number of sessions is undecidable [115].
ProVerif is designed to be an automatic tool so that it will run without further inter-
vention from the user.

The tool is extensible by users through definition of equations for additional cryp-
tographic properties. For example, this allows coverage of properties such as Diffie—
Hellman [464] and bilinear pairings [599].

Proverif has been applied to a wide range of protocols, both by the tool designers
and by others. These include protocols in different application areas such as elec-
tronic voting, RFID, and trusted platform modules. Example analyses related to au-
thentication and key establishment have been provided for JFK [3], Kerberos [116]
and Diffie-Hellman-based protocols such as draft TLS 1.3 [93].

1.6.4 Scyther and Tamarin

Scyther, scyther-proof and Tamarin are three open source tools developed by re-
searchers at ETH and Oxford.> Although Scyther is an older tool than Tamarin, sup-
port for use of Scyther is still widely available at the time of writing. In particular,

Zhttps://people.cispa.io/cas.cremers/tools/index.html.
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tutorial materials are available for Scyther, making it a good choice for learning about
protocol security. Scyther also features a graphical interface to help users understand
how a protocol works and to illustrate attacks.

Scyther was first made available around 2008 and advertised as a ‘push-button
tool’ [231] for analysis and verification of security protocols. Scyther has been ap-
plied to analysis of many of the protocols which are presented later in this book
including HMQV, KEA+, NAXOS and JKL. In an extended study, Scyther was used
to analyse all of the protocols in the ISO/IEC 11770 standard [228, 229] and those in
the first four parts of the ISO/IEC 9798 standard [61, 64] (see Sections 3.2.3, 3.3.4,
3.4.4 and 5.6 for details of these protocols). Scyther identified a number of problems
with both standards and was also used to demonstrate the absence of problems in
revised versions.

The original Scyther tool is suited to finding typical attacks in symbolic mod-
els. While it provides an unbounded search, the absence of an attack does not for-
mally constitute a proof of security. Later a version of Scyther known as Scyther-
proof [541] was developed which can output a proof in a logic known as Is-
abelle/HOL. Scyther-proof was used to provide proofs to repaired versions of proto-
cols in the ISO/IEC 9798 standard [61, 64].

In 2010, Basin and Cremers [62, 63] designed extensions to Scyther to model
compromise of parties by the adversary. This compromising adveraries version of
Scyther allows attacks such as weak forward secrecy and key compromise imperson-
ation to be captured, which at the time was not possible with other symbolic tools.
Although this extension does not allow protocols to be proven secure in computa-
tional models, it does allow separation of computational models by finding symbolic
attacks on some protocols which shows that they cannot be secure in the correspond-
ing computational model. Basin and Cremers used their analysis to provide hierar-
chies of protocols such that certain protocols can be shown to be better than others
(in a partial order) at avoiding attacks from certain types of adversaries.

The Tamarin prover [542] is a successor to Scyther. Tamarin allows for more
faithful representation of cryptographic models and has built-in support for Diffie—
Hellman and bilinear pairings. It provides a security proof in the symbolic model as
long as the analysis terminates without an attack. Although it is not guaranteed to
terminate, experience shows that on well-known protocol examples it typically does
so within a few seconds [656]. Unlike Scyther, Tamarin allows user extensions which
gives much more flexibility to the user. Like Scyther, Tamarin has been applied to
many well-known protocols such as KEA+, NAXOS, UM, JKL, STS-MAC [656]
and draft TLS 1.3 [230].

Dreier et al. [259] reported on extensions to the scope of Tamarin which pre-
viously had been unable to deal with some cryptographic primitives such as blind
signatures. By overcoming these limitations they were able to provide Tamarin anal-
yses for protocols in applications such as digital cash and e-voting.
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1.6.5 Tools for Computational Models

This section has so far looked at tools using symbolic methods based on the model
of Dolev and Yao. In the cryptographic research community the modern standard
for proofs of protocols (and primitives) is a reductionist computational proof which
shows a protocol to be secure as long as some computational assumption holds. We
look in some detail at computational security models for key establishment proto-
cols in Chap. 2. In some restricted cases proof in the Dolev—Yao model can imply a
computational proof [48], but in general this is not the case.

Reductionist proofs have, up to today, normally been performed by hand, without
the help of tools, in the same way as traditional proofs in mathematics. When the
model and proof are simple this has been a satisfactory situation, but increasingly
problems have arisen due to complexity when more advanced security properties are
considered or where complex protocols are involved. One particular problem is that
real world protocols tend to be much more complex than those traditionally studied
in the research literature. Therefore there has significant interest to provide machine
support for computational proofs [56].

As far back as 2005, Halevi [340] proposed a way to develop a tool to remove
much of the routine checking that is typically necessary in reductionist proofs and
based on the well-established technique of game-hopping [675]. Today there are
tools available which aim to achieve exactly this task, although in our (limited) ex-
perience current tools are not easy to use for the non-expert. They usually require
interaction with the user and their output can be difficult to interpret. We mention
here two prominent examples.

EasyCrypt [58] was developed by researchers in Spain (at IMDEA) and France (at
INRIA) and originates from 2009. At the time of writing the tool is still under
development. EasyCrypt has been applied to provide proofs for several cryp-
tographic primitives and protocols. In particular it was used to verify one part
of a proof of the TLS handshake protocol [99] in an implementation known as
miTLS. EasyCrypt has also been used [57] to provide verified proofs of some
well-known key agreement protocols such as NAXOS (Protocol 5.15). Interest-
ingly, the proof for NAXOS [57] allowed reduction to a more standard compu-
tational problem than that used in the original handwritten proof.

Cryptoverif [113, 114] was developed by Blanchet, originally around 2005, but
at the time of writing is still under development. The tool is specifically based
on the technique of using a sequence of games. It has been used to provide
computational proofs for many protocols which we examine later in this book,
including the Needham—Schroeder shared key protocol [113], Kerberos [116],
SSH [173] and draft TLS 1.3 [93].

It seems likely that in the future tools to support computational proofs will be
developed much further and may even replace the handwritten proofs in common
use today. This would certainly help to make such proofs more reliable and perhaps
more widely used.
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1.6.6 Comparison of Tools

In this section we have briefly introduced some of the most prominent tools available
for formal analysis of authentication and key establishment protocols. Although there
are a number of related ideas, each of these tools has both strengths and weaknesses.
Our brief survey has certainly not been exhaustive and research in this area continues
to be active. Table 1.5 summarises some of the properties of several of the analysis
tools.

Table 1.5: Summary of some tools used for protocol analysis

Properties — Type Usage

1 Tool

FDR Symbolic Automatic
Maude-NPA Symbolic User-guided
ProVerif Symbolic Automatic
Scyther Symbolic Automatic
Tamarin Symbolic  Automatic/user-guided

EasyCrypt  Computational User-guided
CryptoVerif Computational User-guided

All of the tools in Table 1.5 have been mentioned in previous subsections. The
properties in Table 1.5 do not include any measure of how useful each tool is in pro-
viding assurance about protocol security. This is very difficult to compare, especially
when tools use different techniques. However, roughly we can divide the tools into
those that are automatic and those which require user intervention. It seems reason-
able to suggest that an automatic tool should be used in the early protocol design
stage to filter out any simple errors while the more complex tools, which generally
provide proofs of some sort, should be used at a later stage.

Cremers et al. [236] performed a comparison of four tools: AVISPA, Pro Verif,
Scyther and FDR. They examined two main features.

1. How much of the state space was explored in each tool. They noted that different
tools often explore quite different states.

2. How efficiently each tool performed its analysis. They concluded that ProVerif
was the fastest of the four, with Scyther coming a close second.

Cremers et al. noted that there have been very few studies comparing different tools,
a situation which does not seem to have changed much recently. This does not make
selection of the right tool easy for the non-expert.

In 2003, Meadows [538] discussed various promising research directions which
the formal methods community could follow to extend existing approaches to pro-
tocol security analysis. Twelve years later [540] she followed up on this with a new
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paper where she examined how far these directions had developed, concluding that
the area is still vibrant with many exciting new directions.

1.7 Conclusion

This chapter has introduced important background concepts needed to understand
the many protocols examined later in the book. Seeing the large variety of protocol
goals, the many different cryptographic primitives that can be used, and the different
kinds of adversaries, may help to explain why there exist so many different protocols
for authentication and key establishment. Later in the book we will often refer to the
concepts we have introduced here.

The focus of this chapter has been on providing informal, intuitive understanding
of the concepts. However, to obtain high assurance of security a formal approach
is needed. The final main section of this chapter looked briefly at different tools
available for protocol analysis. This remains an active research area and we cannot
say that there is a universal method to ensure that any chosen protocol has no flaws,
particularly if we demand an automatic tool. The next chapter looks in more detail at
formal models designed by cryptographers for use with computational proofs.
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Computational Security Models

2.1 Introduction

During the early years of open academic research in cryptography it was common-
place to see research papers following a sequence of break, fix, break, fix ...: a
scheme would be proposed and then others would analyse it, often finding an attack.
The scheme was then patched up and subjected to further scrutiny, and so the cycle
would continue. Although this pattern applied to many different kinds of crypto-
graphic schemes, it was nowhere more true than for protocols for authentication and
key exchange.

Starting in the 1980s research began into providing more formal approaches to
protocol specification and analysis. While a formal security definition allows the
possibility of a mathematical proof of security, no less important is the ability to give
a specific and unambiguous definition of what it means to be secure. Even without
a proof, a formal definition allows designers to specify what a protocol is intended
to achieve so that claimed attacks can be judged by whether or not they violate what
the protocol is actually intended to achieve.

Initial models came from outside the cryptographic research community and
treated any cryptographic primitives as a black box [538]. Such approaches have
been summarised in Sect. 1.6. This chapter is about the computational approach
favoured in the cryptography research community, often called provable security or
reductionist security.

The provable security approach is used in the cryptographic research community
to prove security of a variety of cryptographic schemes. Such proofs are complexity-
theoretic reductions; the security of the subject algorithm or protocol S is related to
the security of another better understood problem P in the sense that if there is an
efficient algorithm that can break S then there is an efficient algorithm to solve P.
Note that we usually have no guarantee that P really is hard to solve; for example, P
might be the integer factorisation problem, whose absolute difficulty is not known.
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2.1.1 The Significance of a Computational Proof of Security

It is important to understand the limitations of a formal computational model and of
any proof within such a model. A security proof is always relative to the model used.
Any model may or may not capture what was intended and models often simplify
real-world complexities. A security proof says nothing about attacks which are not
captured within the model used.

We examined many different potential security goals for key establishment and
authentication in Sect. 1.5. Different computational security models aim to capture
different subsets of these goals. Indeed, with the exception of protocol efficiency, all
of the protocol goals discussed in Sect. 1.5 have been defined in some computational
models. Since there often are different interpretations of the informal meaning of
such goals, it is perhaps not surprising that there are also varying formal definitions.
Thus even with a formal definition it remains impossible to say unequivocally that a
protocol achieves a particular goal, but it is at least possible to say whether a goal is
reached as defined in the chosen model.

The notion of provable security has received some criticism, notably by Koblitz
and Menezes [438]. Some potential limitations are the following.

e Current provable security techniques do not help in protocol design. A small
change in the protocol will require a new proof to be constructed.

e Choosing the right model, and obtaining a correct proof within the model, is often
difficult. Suboptimal solutions can be adopted because proofs for better solutions
cannot be found.

e Security proofs tend to be difficult to understand for the average practitioner.
They typically run to several pages of mathematical reasoning and there are few
people who check such proofs in any detail. Sometimes proofs have turned out
to be wrong [211], whether or not the protocol is secure in the model.

Even if you agree with these points, they do not imply that a proof of secu-
rity is not worthwhile. On the contrary, our view is that a security proof is a very
valuable attribute of any cryptographic protocol. Formal security models allow us
to unambiguously decide whether or not a protocol meets its security design goals.
A proof within such a model undoubtedly increases confidence that security errors
in the design have been avoided. At the same time, a security proof is a theoretical
object which, in the case of real-world systems, should be supplemented by informal
scrutiny, machine analysis, and any other approaches available to gain assurance.

Many complexity-theoretic proofs for protocols rely on the so-called random
oracle model [76]. The random oracle model assumes that a hash function works
in an idealised manner: it returns truly random values each time it is used, except
that it always returns the same output when the input is the same. No such function
exists in reality, but a random oracle seems to be representative of the way that we
want hash functions to work. The research community has differing views on the
reasonableness of the random oracle model, but everyone agrees that it is better if a
proof does not rely on it.



2.1 Introduction 55
2.1.2 Elements of Computational Models

The driving force behind any computational security model is the adversary. While
the adversary represents our concept of an attacker with a will to break the protocol,
formally it is simply an algorithm. The adversary’s abilities are constrained only
by its computational power: typically we require that the adversary is reasonably
efficient but otherwise the strategy it uses is unconstrained.

The adversary is given access to a number of oracles (or queries) which allow it
to control all the messages sent to protocol principals and often give the adversary
access to various secret information. For example, insider attacks are modelled by
allowing the adversary to corrupt principals and obtain their stored values. Also the
adversary is usually given access to session keys from sessions other than the one it is
targeting. Cryptographic algorithms may be modelled either with generic properties
(for example, an encryption algorithm secure against chosen plaintext attacks) or
as specific transformations (for example, a Diffie-Hellman operation in a particular
group).

Security of protocols is usually defined in terms of a security game played by
the adversary in combination with its environment. In Fig. 2.1 the environment is
denoted as a challenger with the job of presenting to the adversary A any elements
required by the model. This may include public keys and parameters at the start of
the game and may require the challenger to compute random values. The adversary’s
queries must be consistently answered as they would be if the adversary were run-
ning against a real implementation of the protocol. The challenger is responsible for
answering the queries from the adversary and is often said to simulate the environ-
ment.

public values

Challenger for | 991y [ Adversary A
scheme S __fesponse | against S
output

decide whether
adversary wins/loses

Fig. 2.1: Security game for scheme S

The game ends when the adversary halts its computations and gives its output.
There must be a formally specified condition, applied at the end of the game, to
decide whether or not the adversary has won the security game. Security is then
defined based on limiting the success of the adversary in winning the game. For
some given scheme S, we would like to ensure that no efficient adversary A is able
to win the security game with a probability which is non-negligible in the length of
the long-term keys. Often we need to settle for a bit less than this.
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Once a security model is in place, it is possible to try to achieve a proof of security
by a reduction to an existing scheme T as shown in Fig. 2.2. To achieve this, the
proof constructs a new adversary against T which uses the adversary A rather like
a sub-routine in a program. If A is successful, the proof tries to use this success to
solve the given instance of T. Here scheme T could be a simple problem (like the
computational Diffie—Hellman problem or factoring) or it could be a full security
property of another scheme such as one of those defined in Sect. 1.3. We may, for
example, achieve a proof that a protocol (scheme S) is secure if an encryption scheme
(scheme T) which it uses is secure.

public values

query
response

public values

Adversary | Challenger
for for
scheme T | scheme S

Challenger for
scheme T

< AUy [ Adversary A
response

against S

output output

Fig. 2.2: Reduction from scheme S to scheme T

‘We can summarise the main elements in a provable security analysis as follows:

e the security definition, including the specification of the adversary’s capabilities
and a winning condition;
the specification of the protocol to be analysed; and
a theorem and its proof bounding the probability that an adversary can win the
security game against the protocol.

The security goals captured in a particular protocol security model vary, and can
include entity authentication, session key confidentiality, or both. Models vary ac-
cording to what queries are allowed to the adversary as well as the winning condition
of the security game. Moreover, terminology and notation can vary greatly between
models, even when the basic ideas are the same. Table 2.1 summarizes some com-
mon concepts present in most computational models.

Table 2.1: Common terminology in computational models for key exchange

Party A protocol principal possessing a long-term key and which usually takes part in
multiple runs of the protocol

Instance The actions of a specific protocol run at some party

Partnering Rules to specify when the model regards two instances as being linked

Freshness Rules to specify whether a session is a valid target for the adversary

Key derivation Application of a key derivation function (KDF) to obtain a session key from a
shared secret
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One important concept in all of the models is that of an instance, often called
a session. In informal descriptions, a session is commonly regarded as a protocol
run executed between two parties, but in computational models a session is almost
always located at a single party. Instead of thinking about parties sharing a session
we rather think of parties who may have matching sessions which share the same
session key. Usually an instance shares state (specifically a long-term key) with other
instances at the same party. Instances also have a local state which is updated as the
protocol is run. Different models can have very different notation for sessions, even
when the concept is the same, which can be a source of confusion. We return to this
issue in Sect. 2.5.

Another tricky notion is that of a partner of an instance. The idea is to identify
which instances can be expected to share the same session key (or state related to the
session key). Models usually do not allow the adversary to win against a chosen in-
stance if the session key from a partner of that instance has been obtained. Therefore
it is very important to precisely define which instances can be partners. Different
models use different ways to define partners. We will mention two common ways
later in this chapter: matching conversations between instances and session identi-
fiers.

In the remainder of this chapter we take a mainly historical perspective on the
development of security models. Generally speaking, older models are simpler than
more modern models so this can help ease the exposition. In addition, there is no
model which encompasses all other models and it is not uncommon to see older ap-
proaches used in recent papers. The next three sections cover three major families
of models: the Bellare—Rogaway (BR) family, the Canetti-Krawczyk (CK) family,
and the extended CK (eCK) family. Section 2.5 compares some of the main features
of different models and discusses which models are stronger than others. Most of
the chapter deals with models for two-party protocols with a single long-term key
per party, but Sect. 2.7 looks at models which go beyond this boundary. Finally in
Sect. 2.8 we look at models for defining secure channels established using key ex-
change protocols, which use a weaker security definition than most of the models.

Conceptually, the goal of secure key exchange is for the principals to complete
the protocol in possession of a session key which is random from the viewpoint of
the adversary. Consequently, most models for key exchange follow the key indistin-
guishability approach in which the goal of the adversary is to distinguish the agreed
session key from a random string. This is by far the most common approach in the
literature. An alternative is the simulation-based approach in which the goal of the
adversary is to distinguish between interactions with a real system and interactions
with an ideal system, with the latter being secure by definition. The most prominent
of the simulation-based approaches is the universal composability (UC) framework
[181]. An earlier related approach is Shoup’s model discussed in Sect. 2.6. Mod-
els for secure channels, explored in Sect. 2.8, cannot achieve indistinguishability of
session keys because they allow the adversary to observe key usage on the channel.
Therefore they use models related to authenticated encryption where the adversary’s
goal is to distinguish ciphertexts or to forge valid messages.
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2.2 Bellare—Rogaway Model

Bellare and Rogaway pioneered the study of authentication and key establishment
protocols using computational cryptographic models. Their paper on entity authen-
tication and key distribution from 1993 [75] is one of the earliest papers in the area
of practice-oriented provable security which they established; it was presented even
before their famous paper on the random oracle model. Many of the elements which
they introduced are present in most of the models which have been proposed subse-
quently. In addition there are many refinements and extensions to their original ideas
which were developed by themselves and others.

In this section we start by describing the 1993 model and then follow its devel-
opments during the 1990s through Bellare and Rogaway’s own work in 1995, the
extensions to public-key based protocols by Blake-Wilson and Menezes, and then
the password-based model of Bellare, Pointcheval and Rogaway of 2000.

2.2.1 BR93: The First Computational Model

By 1993 there were already formal methods tools to analyse security with the Dolev—
Yao approach and the BAN logic had recently become popular. Within the cryptog-
raphy research community efforts had started to understand how to design robust
protocols and classify attack types. Bellare and Rogaway specifically acknowledge
the papers of Diffie er al. [253] and Bird er al. [103] as logical precursors to their
work.

Communication Model

Consider a set of identifiers which represent protocol principals. Each principal has
a long-term secret key and an internal state which updates as the protocol runs.

A protocol is a function IT which represents the specification of the protocol by
stating what the output of a specific principal will be if it is given a specific input
message in a specific protocol state. More precisely, I is a sequence of transitions,
each with five inputs and three outputs as shown in Table 2.2.

Table 2.2: Protocol inputs and outputs in the BR93 model

Inputs
i the identity of the sender of the current message;
Jj the identity of the intended recipient of the current message;
a the long-term secret of the sender;
Kk the transcript of the current protocol run for the current session.
Outputs
m the output message from the current transition (which can be empty);
0 the output decision which can have values in {accept, reject, none};
« the updated local state of the sender of the message.
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While the abstract definition of the protocol allows for multiple principals to
be engaged in multiple runs of the protocol, we can also consider a single run, or
a session at a particular party. We call this an instance of the party and denote an
instance by IT; ;, where i is the party at which the session takes place, j is the intended
partner of 7, and s is an index that is unique for a particular pair (i, j). We say that an
instance accepts if and when its output decision becomes “accept”.

Matching Conversations

In all the computational models, a critical issue is how to identify partners of protocol
instances. To achieve authentication instances should only accept when the protocol
is run with their intended partners. For key establishment the adversary should also
be prevented from getting (too much) information about the session key of an in-
stance also from its partner. For example, although the adversary is allowed to obtain
session keys from independent sessions, this should not include the partner session.

BR93 uses the notion of matching conversations to define partners. The idea is
that the communicating entities should agree on the messages that have been sent and
received in the protocol run they are involved in. Of course the entity sending the last
message in the protocol cannot know if that message was ever received (during the
protocol in question) and so we need to relax the requirement for the party sending
the last message.

To capture what this means we have to specify what a conversation is. Atomic
events in the BR93 model are transitions at one instance where a message is received,
the state is updated, and a message is sent. From the external view all that can be seen
is a message sent and received at a certain time as shown in Fig. 2.3. A conversation
is therefore a finite sequence of events at one instance I1T; where each event is of the
form (7,r,m) for a time 7, an incoming message r and an outgoing message .

r H,-A; j m

Fig. 2.3: Atomic event (7,r,m) in the BR93 model

In the BR93 model, and in all other similar models we look at in this chapter,
the adversary is free to choose the incoming message r in any way. Indeed the only
way that instances communicate in the model is through the adversary. The adver-
sary is free to simply relay messages between instances so that the conversations
proceed exactly as they would in a real run of the protocol without the adversary
being present. Such an adversary is known as a benign adversary. But equally the
adversary can choose to fabricate messages, using any efficient algorithm, to change,
delay or reorder messages, or simply to delete them.

Another matter which we have to take care of is that the first message in a proto-
col occurs with no received message to cause it. We use the BR93 notation by writing
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(T, 4,m) for the event at an instance which initiates the protocol run — here A denotes
the empty string, 7 is the time of the event and m is the first protocol message. We
call the instance where this event occurs the initiator. Similarly, when the final pro-
tocol message is received it causes no output message in response. Again we use the
BR93 notation (7,r,A) for the event at an instance which ends the protocol run by
receiving message r at time T with an empty output. We call the instance where this
event occurs the terminator.

Consider any two conversations at instances Hf ; and I'I;ﬁi, so that one instance
is at party i intending to communicate with party j, while the other is at party j
intending to communicate with party i. Depending on the protocol specification, the
instance which is the initiator (sends the first message) may, or may not, also be the
terminator (receives the last message). Suppose that protocol IT has R messages in
total. If R is odd, say R = 2p — 1, then the initiator is not the terminator; moreover
the initiator sends p messages and receives p — 1 messages while the terminator
sends p — 1 messages and receives p messages. If R = 2p is even then the initiator
is the terminator; moreover both the initiator and the terminator send and receive p
messages.

Case 1: R Odd

To be concrete we look first at the case where R = 2p — 1 is odd. Since exactly one
instance can be the initiator we shall assume that IT;; is the initiator which means
that IT j’ ; 1s the terminator. Then we will denote the conversation of I} ; as a sequence
of atomic events,

<t07r0 = }L)mo)a (t17r17m1)7- LR (tp—larp—lamp—l)
and the conversation of I} ; as another sequence of atomic events,

(uoas07n0)?(ulvsl7”1)7"'?(”[[1*175[1*17”[)*] = A’)

In order for these two conversations to be matching we will require that mg = sy,
ny = r; and so on. However, at the end of the matched messages we have a slight
difference depending on which party we are looking at: only when matching to the
terminating party do we include the last message in the conversation. This is because
in the protocol we must allow the non-terminating party to accept once it has sent
its last message even though the adversary can trivially delete this last message. This
leads to the following definition.

Definition 26. For the case of an odd number of protocol messages, we say that the
conversation at IT; ; matches the conversation at IT} ; when:

Litg<ug<ty<up<...<up
2. my = 50,10 =T1,...,Mp_1 = Sp_1.

Similarly the conversation at HJ’.J matches the conversation at IT} ; when:

Ltg<ug <ty <u <...<up
2. mo = 80,10 ="r1,...,Np—2 ="Tp—1-
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Case 2: R Even

We now look at the case R = 2p is even. Again we shall assume that IT; is the
initiator so that the first event at IT} i has ry = A. Since R is even this means that H $
is also the terminator so that the last event at H ;i has mp = A.

Then H ; » has conversation,

(IOarO :z'vm()),(tlarlyml)a"'7([p7rp7mp :)L)

and IT j’ ; has conversation,
,

(M(),S(),I’l()),(lll,S],nl),...,(Mp,],Sp,],l’lp,]).

Now we can adjust the definition of matching based on the different conversation
formats. Again, only when matching to the terminating party do we include the last
message in the conversation.

Definition 27. For the case of an even number of protocol messages, we say that the
conversation at IT} ; matches the conversation at I1} ; when:

I tg<uy <ty <u <. <up-1<ip
2. mo = 80,10 ="r1,...,Mp—-1 = Sp—1-

Similarly the conversation at H]{i matches the conversation at IT} ; when:

1. tg<ug <ty <u <...<up-1<tp
2. mo = 80,10 = I1,---,10p—-1 = Fp.

Mutual Authentication

We are now ready to discuss the first of the two security properties analysed in the
BR93 paper. This is mutual authentication, which informally means that both parties
should gain assurance that they are in conversation with each other. Many protocols
for key establishment do not require, and do not provide, this property but in the
BR93 model it is a requirement for secure key establishment.

In the security game for mutual authentication the adversary interacts with the
instances by sending a message r of its choosing at time 7, and receiving a response
m, as depicted in Fig. 2.3. Since this is the only interaction that the adversary is
allowed to perform, there may not seem any need to give it a specific name. In later
models this interaction became known as a send query to distinguish it from other
adversarial queries. In addition to the message r chosen by the adversary, the inputs
to such a query must include (i, j,s) values to identify the specific instance to receive
the query. The output of the query is the output message m specified by the protocol
definition.

There are two requirements in the security definition for mutual authentication.
The first is that instances will accept when they have engaged in matching conversa-
tions. This is a correctness notion since is it how we expect the protocol to work in the
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absence of a malicious adversary. Remember that in the BR93 model the adversary
actually transports messages even if only in a benign way. The second requirement
says that if an instance accepts then there must have been another instance with a
matching conversation.

Definition 28. A protocol II is a secure mutual authentication protocol in the BR
model if, for any efficient adversary A, both of the following hold.

1. If the conversations at I1f ; and IT} ; match each other then both instances will
end in the accept state.

2. The probability that there exists any instance Hls jin the accept state but without
an instance H]t',i which has a matching conversation is negligible.

Bellare and Rogaway went on to provide examples of protocols satisfying Defi-
nition 28.

Key Establishment

The second security property defined in the BR93 model is key establishment, or
authenticated key exchange. In the BR93 model secure key establishment is only
defined for protocols which provide mutual authentication. This results in a signifi-
cant limitation in the set of protocols which can be proven secure in the strict BR93
model. Subsequent developments from the BR93 model, which we explore later in
this chapter, do not have such a restriction.

In a successful run of a key establishment protocol, instances will eventually have
a session key as part of their local states (¢ as defined in Table 2.2). Since one of
the main reasons to have session keys is to keep sessions independent, the adversary
should be allowed to obtain session keys for some sessions while the protocol still
remains secure for the remaining sessions. In order to capture this property, in the
BR93 model the adversary is allowed to obtain the session keys from any instances
that it chooses. To this end, an adversary query called reveal is introduced with inputs
(i,J,s) to identify the specific instance to receive the query, and output equal to the
session key. The adversary is allowed to ask reveal queries only to instances which
have output an accept decision. (In the BR93 formalism this is ensured by assuming
that the private state of each instance is empty until the instance has accepted.)

We do not require the adversary to output the session key of its targeted session
in order to win its security game — we require only the much weaker condition that
the adversary can reliably distinguish the session key from a random string of the
same length. This is in line with the principle that we should make the security game
as easy for the adversary as we can without allowing the adversary to win trivially.
Note that an adversary which can reliably predict, say, the least significant bit of
the session key can reliably win the security game. The requirement is formalised
through the test query.

At some point the adversary must decide to issue a test query whose inputs
(i,7,s) specify the instance to receive the query. This instance is often known as
the target session. Only one test query is allowed during the whole game. To answer
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the test query we imagine a challenger who flips a fair coin to define a bit b; if b =0
then the response is the session key at that instance, but if » = 1 then the response
is a completely random string of the same length as a session key. The adversary’s
final output is a bit b’ which is its own guess at the value of b. Then we say that the
adversary wins the security game if and only if ' = b.

There is one important restriction which we have ignored so far. We allowed the
adversary to obtain any session key by asking reveal queries but this will trivially
allow the adversary to win by revealing the session key of the target session or its
partner. Therefore we must restrict the adversary access to the reveal queries by
introducing the notion of freshness. The adversary will only be allowed to ask the
test query to a fresh session. In particular, this prevents the adversary from asking a
reveal query to the target session and any matching session.

Definition 29. We say that an instance II; ; in the BR93 model is fresh if:

1. Hf ; has accepted;

2,11 ; has not been asked a reveal query;

3. if Hj’-"i has a matching conversation with st, j then Hj’-’i has not been asked a
reveal query.

We summarise the whole BR93 security game in Table 2.3. As outlined in
Sect. 2.1.2 we can regard this game as being played with a challenger which is re-
sponsible for choosing the long-term keys of the parties and choosing the random bit
b (Step 1). Since the game is a guessing game, the adversary can always win with
probability 1/2 by simply outputting a random guess for b. Therefore we are only
interested in how much better the adversary can do than guessing so we define the
adversary’s advantage as Pr(b' = b) — % We are now able to give the BR93 security
definition for authenticated key exchange.

Table 2.3: Key exchange security game in the BR93 model

1. Long-term keys are generated for all parties. In the BR93 paper only symmetric keys are
used and each party starts with a symmetric key shared with every other party. A random
secret bit b is chosen by the challenger (this can happen at any time before step 3).

2. The adversary can interleave in any chosen way the following actions:

e send messages to any instance (including starting new instances by sending the empty

string) and receive the correct response;

e ask reveal queries to any instance to obtain the session key.

The adversary asks a test query to any fresh instance as defined in Definition 29.

4. The adversary can continue to send messages and ask reveal queries as long as the tested
session remains fresh.

5. Eventually the adversary outputs its guess bit b'.

et
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Definition 30. A protocol I1 is a secure authenticated key exchange protocol in the
BR93 model if it is a secure mutual authentication protocol and both of the following

hold.

1. For any benign adversary A who relays conversations between II} j and Hjt-.l-,
both instances will end in the accept state with the same session key.

2. The advantage of any efficient adversary A in the security game is negligible.

Timing of test Query

In contrast to what is shown in Table 2.3, the original BR93 model required the test
query to be the adversary’s final query in the game. (This also applies to the original
BR95 model discussed in Sect. 2.2.2.) Although this may seem a natural and correct
assumption, it is not necessary and there is no reason to prevent the adversary from
continuing with other queries as long as they do not trivially allow the adversary
to win the game. At the least, allowing the adversary to make extra queries cannot
make the adversary any weaker and this is always desirable if we can still obtain a
security proof. Moreover, we can think of protocols, albeit somewhat contrived, that
would be secure if the adversary is restricted to make test its final query, but insecure
otherwise.

Consider a protocol, otherwise secure, in which instances will accept further
queries after accepting the key, and if that query includes the accepted session key
the instance will return a special flag. Such a protocol, in other words, allows the
adversary to test guesses of the session key within the protocol. Such a protocol is
insecure when we allow the adversary to continue querying after the test session
since the adversary can simply test whether the key it received in response to the
test query receives the special flag. As later reported by Bellare and Rogaway [74]
they were alerted to this issue in a private communication by Petrank in 1995 and
thereafter the adversary’s power was increased to allow further queries after the test
session. Canetti and Krawczyk [178, Appendix A] also discussed this issue.

Limitations of the BR93 Model

The BRI3 paper was a pioneering publication and the basic ideas are still in wide
use today. With hindsight we can see a few limitations of the original model which
later models have sought to overcome. We summarise these here before going on to
look at other models.

e The cryptographic setting in BR93 is very simple. Each party already shares a
long-lived key with every other party. This is not realistic in many distributed
communication settings. Furthermore, public keys play a crucial role in modern
cryptography and they are not considered at all.

e There is a strong coupling between authentication and key exchange. While many
protocols do provide both services, many others do not and these cannot be prop-
erly analysed in the BR93 setting. Even if both are desired, it can be useful to be
able to analyse key exchange independently of authentication.
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e There are limited adversarial capabilities. The adversary in BR93 is not allowed
to obtain long-term keys of principals and therefore the model does not capture
malicious insiders which are common in practice.

Such issues may not be important within the limited cryptographic setting of BR93,
but we will see later that they can be important when we want to capture security
properties of more diverse protocols.

2.2.2 BRY5: Server-Based Protocols

Two years after their first model was published, Bellare and Rogaway [78] presented
a new model which we will refer to as the BR95 model. It is aimed at a different
situation: key establishment using an online server. Bellare and Rogaway called this
the three-party case. We look at protocols in this category in Chap. 3. The basic ideas
of the model they used for this purpose are the same as in the BR93 model, but there
were also some changes. Perhaps the most prominent change is the de-coupling of
key establishment and entity authentication. It is no longer necessary for a secure key
exchange protocol to be one which also provides mutual authentication. Indeed, the
protocol which they prove secure in their paper does not provide entity authentication
— no party gets any assurance that its intended partner has taken part in the protocol
at all when the protocol is completed.

Without entity authentication there is a need for a different mechanism to define
partnering in the BR95 model. Some way of defining partners is always required
since the partner of the test query cannot be subject to a reveal query otherwise the
adversary can always win the security game. The BR95 model introduced the idea
of a parmer function which takes as inputs (i, j,s) specifying the instance, IT};, to
receive the query and a transcript of the protocol run so far. The output of the partner
function is a value ¢ which specifies the partner instance HJ’-J. No specific partner
function is defined for any protocol, but protocol security is defined by requiring
the existence of a partner function which ensures that the adversary’s advantage in
winning the security game is negligible. The effect of this is to change the definition
of freshness in the BR95 model; in comparison with Definition 29 for the BR93
model, the third condition must now require that the partner of IT};, as defined by
the partner function, has not been asked a reveal query.

An explicit send query is defined in the BR95 model to allow the adversary to
interact with honest parties running the protocol. (To be precise, there are two such
queries in the BR95 paper, one for messages to clients and one for messages to the
server. Here we conflate the two as is done in later models.) The send query has an
instance and a protocol message (possible empty) as input and provides the adversary
with the output which would be computed by the honest party running the protocol
(see also Table 2.4 later). The adversary can freely choose the input message and
instance.

In addition to the reveal query available in the BR93 model, the BR95 model
has a corrupt query which allows the adversary to obtain the long-term key of any
party. Long-term keys are shared with the server, but the server itself cannot be cor-
rupted. All instances at parties which have been corrupted through this query are no
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longer fresh, so they cannot be used as the target of the test query by the adversary.
The corrupt query also has an input which allows the adversary to specify a new
long-term private key for the corrupted party. This does not seem an unreasonable
expectation for a real-life adversary who corrupts a party.

Later Shoup and Rubin [676] adapted the BR9S model in order to model server-
based key exchange with the aid of smart cards for the user machines. The idea
is that the long-term key will never leave the smart card and can only be accessed
through a defined interface. The difference in the model is that the adversary is able
to additionally obtain any of the state information in a non-target session except what
is stored in the smart card. In addition the adversary is able to query the smart card
interface at any time. Finally smart cards themselves can also be corrupted to obtain
the long-term key, but then sessions using that card can no longer be fresh. Shoup
and Rubin designed an efficient protocol secure in this extended model.

Limitations of the BR95 Model

Some of the innovations of the BR95 model have stood the test of time; most models
today include some kind of corrupt query as well as explicit queries for send and
reveal. However, the introduction of the partner function has proved to be problem-
atic. Choo et al. [209] demonstrated that the partner function used in the BR95 paper
is incorrect — with the function specified, the adversary is easily able to win the game
because instances which might be expected to be partners are not according to the
definition. However, they found an alternative partner function which does not have
the same problem. This illustrates a potential problem with the partner function idea
— different partner functions are possible for the same protocol and the right function
to use is not necessarily obvious from the protocol. Later Rogaway [634] discussed
the limitations of the partner function definition as an example of the difficulty of get-
ting security definitions correct. Free choice of the partner function is not normally
allowed in more recent models, but the model rather defines the partner function, for
example through matching conversations.

2.2.3 The Public Key Setting: The BWM and BWJM Models

In a natural progression, Blake-Wilson and Menezes [108] in 1997 extended the
BR93 model to the public key setting. We refer to this as the BWM model. Instead of
each pair of users initially sharing long-term symmetric keys as in BR93, the BWM
model assumes that each user has a public—private key pair for signing messages and
a public—private key pair for encryption. The main ideas of the model are largely
the same as in the BR93 model. In particular mutual authentication is a requirement
for secure key exchange. As in BR9S5, a corrupt query is available to the adversary
allowing recovery and replacement of long-term private keys, in addition to a reveal
query to obtain accepted session keys.

The BWM model uses matching conversations to define mutual authentication
as in BR93. However, Blake-Wilson and Menezes noticed that the standard security
definition for digital signatures causes a slight problem. The adversary may be able
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to alter each signature output by an instance to form new valid signatures, something
not ruled out by the standard security definition for signatures. This means that the
peer instance will accept using the altered signature even though matching conversa-
tions have not occured, violating the second requirement of Definition 28. Therefore
a slightly altered version of the matching conversations definition is provided which
allows malleable tags to be added to the messages which match. Blake-Wilson and
Menezes point out an alternative solution to this problem, which is to strengthen
the security definition of signatures to prevent malleability. Signatures secure in this
definition later became known as strongly unforgeable signatures [32].

In the same year, Blake-Wilson, Johnson and Menezes [107] extended the BWM
model to consider key agreement. We call this the BWJM model. They differentiate
between authenticated key agreement (which they abbreviate as AK) and authenti-
cated key agreement with key confirmation (which they abbreviate as AKC). The
AKC definition follows closely the BR93 model by requiring a secure AKC pro-
tocol to already provide mutual authentication as in Definition 28. This means that
a secure AKC protocol must have at least three flows. Two examples, with proofs,
are provided by Blake-Wilson et al. using Diffie-Hellman constructions and secure
message authentication codes.

Blake-Wilson ef al. [107] also considered how to decouple key establishment
from mutual authentication to provide AK, still using the notion of matching conver-
sations to define partnering. However, the only protocol considered uses a weakened
model in which reveal queries are forbidden to the adversary. Although these authors
suggest that ‘no key agreed in an AK protocol should be used without key confirma-
tion’, later results by Jeong, Katz and Lee [397] and by Kudla and Paterson [459]
show that one-round protocols without any key confirmation (or mutual authentica-
tion) can provide security in models allowing reveal queries.

2.2.4 BPROO: Forward Secrecy and Passwords

In 2000, Bellare and Rogaway, this time together with Pointcheval, proposed the
latest refinement of their key exchange model [74] which we refer to as the BPR0O
model. The model incorporates a number of enhancements, notably allowing capture
of the forward secrecy property. However, the main motivation of the BPROO model
was to include analysis of password-based protocols (see Chap. 8).

Recall that the security game for key establishment, originally defined in the
BR93 model, requires the adversary to distinguish the session key from a random
string with non-negligible probability. Security in such a game is essentially un-
achievable for a password-based protocol where users have low-entropy passwords.
This is because the adversary will have a non-negligible probability of correctly
guessing a user’s password which will always allow the adversary to win the se-
curity game. Therefore the security definition in the password-based setting has to
be relaxed by requiring a successful adversary to win with an advantage that is signif-
icantly better than the probability of simply guessing the password correctly. More-
over, the adversary can always use a send query to test the correctness of a password
guess and therefore it is necessary to limit the number of active attack messages
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while at the same time allowing a large number of passive eavesdropping events. In
order to accommodate this, a new execute query was made available to the adver-
sary. In a good password-based protocol, the adversary’s advantage can be kept small
by severely limiting the number of send queries; this corresponds to the real-world
technique of locking out a user after a small number of password failures.

Partnering in the BPROO model is captured in a new way, different from the
use of matching conversations in BR93 and partner functions in BR95. The BPR0O
model introduces the notion of session identifiers (SIDs), which have been used in
many later models. The exact form of session identifiers is not specified but should
uniquely define a session between two parties — it is suggested that the concatenation
of protocol messages can be used to define the SID. BPR0OO also uses the notion
of partner identifiers (PIDs) at each instance to specify the identity of the principal
which that instance intends to communicate with. When an instance accepts a session
key it must have also decided on a SID and PID. In the BPROO model partners must
have the same SID and session key, and record each other’s principal as the PID.

Another innovation in the BPROO model is the consideration of forward secrecy.
This is captured by modifying the definition of freshness. If forward secrecy is re-
quired then corrupt queries only affect the freshness of an instance if it occurs before
the test query is issued. The corrupt query in the BPROO model has two variants: one
which returns the state of the party it is sent to, including any randomness but not the
session key, and one which only returns the long-term key. The first kind of corrupt
query was used in the BR95 model. The second kind allows BPROO to formally cap-
ture the property of weak forward secrecy which forbids the adversary from being
active in the test session.

Table 2.4 summarises the adversarial queries available in the BPROO model. This
table applies also to the BR93 and BR95 models for the subset of queries that are
defined in those models.

Table 2.4: Queries in the BPROO model

Query Inputs Outputs Purpose
send Instance + input message  Output message Active attacks
execute Instance pair Protocol transcript Passive attacks
reveal Instance Accepted session key Compromise of session keys
corrupt Principal Long-term key =~ Compromise of long-term keys
test Fresh instance Session key Adversary challenge
or random string on indistinguishability

Limitations of the BPR00 Model

One curious feature of the BPROO model is that the definition of session freshness
does not differentiate between which parties have been corrupted. Thus, when mod-
elling a protocol which does not provide forward secrecy, all sessions are no longer
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fresh if any party is corrupted and consequently the adversary cannot ask the test
query to any valid party. This means that corruption is disallowed completely which
seems a quite unnecessary restriction. Choo et al. [208] showed that this limits the
ability of the BPROO model from capturing certain realistic attacks. However, this
does not seem to be a fundamental limitation of the model, and can be fixed by mak-
ing the freshness definition more precise by only limiting corruption with regard to
the target session and its partner.

2.2.5 Summarising the BR Model Variants

Table 2.5 summarises the development of the Bellare—Rogaway models from 1993 to
2000. Here we can see how the models evolved to capture different kinds of protocols
and security properties. For the earlier models with only symmetric key cryptography
the forward secrecy property is not applicable (marked N/A’ in the table).

Table 2.5: Comparison of the main Bellare—Rogaway model versions

Model Setting Partnering Forward
mechanism secrecy
BR93 Two-party shared key Mutual authentication ~ N/A
BRO95 Server-based Partner function N/A
BWM Public key Mutual authentication No

BWIJM  Key agreement  Matching conversations  No
BPR0O0O  Password-based Session identifiers Yes

2.3 Canetti-Krawczyk Model

In 1998 a different direction in formal modelling of key exchange was started by Bel-
lare, Canetti and Krawczyk [72]. Initially the idea was to take a very general approach
incorporating not just key exchange but also authentication of exchanged data. An-
other feature of the new approach was an attractive ability to design protocols in a
modular way. In 2001, Canetti and Krawczyk [178] made fundamental changes to
the model, avoiding some shortcomings of the 1998 security definition, but retaining
the modular features. This model is ofter referred to as the CKO1 model. In 2005,
Krawczyk made the model much more specific and concrete in order to analyze the
HMOQV protocol [453]. While these three stages have significant differences, and the
HMQV model is finally quite close to the BR model, there is a logical development
between them which we follow in this section.

2.3.1 BCK98 Model

A central concept introduced in the BCK98 model is the authenticated links model,
abbreviated as AM. In the AM the adversary A has restricted capabilities compared
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with the usual key exchange models. In particular A is not able to fabricate mes-
sages but can only activate instances using messages output by legitimate parties. To
differentiate the usual kind of stronger model, the latter model is called the unau-
thenticated links model, and abbreviated as UM.

The main purpose of introducing the AM is that secure protocols can generally
be much simpler while at the same time there is a general method to promote a
protocol which is secure in the AM to one that is secure in the UM. This is achieved
by applying a transformation, or compiler, whose input is a protocol 7 secure in the
AM and whose output is a new protocol 7’ secure in the UM. Such a transformation
is called an authenticator. Secure protocols in the AM can be defined independently
of authenticators but then combined with any authenticator to obtain secure protocols
in the UM.

The BCK98 model follows an approach to defining security of key exchange
which is quite different from the BR indistinguishability approach — their definition
is instead simulation-based. This means that they consider an ideal secure key ex-
change protocol and compare this with the real protocol 7. Roughly speaking, if 7
is secure then for any efficient adversary running 7 there is an efficient adversary
against the ideal protocol such that the output of the real and ideal systems are indis-
tinguishable.

Problems in the BCK98 Model

It turns out that the simulation-based security definition in BCK98 is too strong.
The result is that the basic protocols which were originally claimed to be secure in
the model do not in fact satisfy the definition. (This is acknowledged in the CKO1
paper [178].) The main issue, as discussed by Shoup [674], is that the corruption
allowed in BCK98 is too strong. The BCK98 model only considers corruption in
which the adversary obtains session keys as well as long-term keys and can choose
which parties to corrupt at any time: Shoup calls this strong adaptive corruption.
It turns out that in this situation some basic protocols, such as Diffie-Hellman key
exchange, are not secure in the AM. This is unsatisfactory since Diffie—Hellman is a
basic building block against which we have no realistic attacks in the AM.

To fix these problems it is natural to make a weaker security definition. Shoup
[674] also used a simulation-based approach but allows for weaker version of cor-
ruption so that security can still be obtained for protocols which we believe should
be secure. Later Canetti and Krawczyk considered definitions in the universal com-
posability (UC) model [181] which can be considered to be a generalisation of the
security definition of BCK98. However, the CKO1 model takes a pragmatic approach
by using an indistinguishability definition, like that of the BR models, while retaining
the AM and UM and the authenticators to map between them.

2.3.2 CKO01 Model

The CKO1 model [178] contains more than just a model for defining security of key
exchange protocols. There are two other significant contributions, which together
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were highlighted by Canetti and Krawczyk as the main motivation for their work. The
first of these is an extension of the modular approach to design of secure protocols
already started in the BCK98 model as mentioned above. The second is a model for
secure channels and an analysis of how these can be achieved from a secure key
exchange model. In this section we focus on the model and its differences from the
BR models but we will also say something about the modular approach. We defer a
discussion of secure channels in the CKO1 model until Sect. 2.8.

Adversary Capabilities in CK01

The adversary in the CKOl model works in the same basic manner as in the BR
models. Specifically it controls the communications between all parties. The nota-
tion used in CKOI is rather different from that in the BR models and in particular
there is no separate notation for instances. Instead sessions can be identified as in-
stances and are named using session identifiers which are distinct at any party. More
specifically, a session can be identified by a tuple (F;, P;,s) for a principal P; intend-
ing to communicate with a principal P; using a session identifier s. Note that the
session identifier s has a completely different role from the instance number s in the
BR notation. This is discussed further in Sect. 2.5 and in Table 2.8.

As well as scheduling message interactions with parties (sessions) and observing
the response, the adversary has available some specific queries which go beyond
what is in the BR models.

Party corruption. The corrupt query allows the adversary to obtain the long-term
key of a party exactly as in the BR95 and BPROO models. The query returns the
long-term key of the party and also all the memory which may include ephemeral
keys or session keys.

Session key reveal. Just as in the BR models, the adversary can obtain the session
key of any completed session by asking a reveal query.

Session state reveal. Except in corrupt queries, the BR model does not allow the
adversary to obtain information which may be stored during (or after) the session
key computation. The CKO1 sessionstate query can be asked of an incomplete
session and receives the internal state in return. The model allows the protocol
to specify what is included in the session state; a typical example would be an
ephemeral Diffie—Hellman exponent.

Session expire. CKO1 models forward secrecy by allowing the adversary to expire
sessions. The effect of this query is to delete the session key from the session
specified as input to the query. This means that party corruption at the target
session can occur after the session has expired without trivially giving away the
session key.

Security in the CK01 Model

The definition of security in the CKO1 model follows very closely the BR defini-
tions we have seen in previous sections, but with appropriate adjustments to the new
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queries. In particular the definition is based on the absence of an efficient adversary
who can distinguish the session key in a fresh session from a random string in the
session key space. In order to highlight the similarity we continue to use the same
terminology as in the BR model to describe the security game, instead of changing
to the terminology used in the CKO1 paper. Thus Table 2.6 describing the security
game and the security definition in Definition 32 can be observed to be similar to
Table 2.3 and Definition 30.

Table 2.6: Security game in the CKO1 model

1. Long-term keys are generated for all parties using a protocol-dependent function called
initialization which is run before the protocol starts.

2. The adversary can interleave in any chosen way the following actions.

a) The adversary invokes a new protocol instance with a specified partner principal,
a session identifier s and a role. There must be no other session between the same
parties with the same value of s.

b) The adversary sends a message to any session from a specified principal and observes
the response. The response can include an indication that the session is complete in
which case all memory is erased except for the session key.

¢) The adversary can ask reveal queries to any instance to obtain the session key.

d) The adversary can ask sessionstate queries to any incomplete instance to obtain the
session state.

e) The adversary can ask corrupt queries to any instance to obtain the state of the
principal.

f) The adversary can ask expire-session queries to any completed instance which
erases the session key from the session state.

3. At some point the adversary asks a test query to a fresh instance. The adversary can
continue to send messages and ask other queries in step 2, as long as the tested session
remains fresh.

4. Bventually the adversary outputs its guess bit &’

Partnering in the CKO1 model is defined through session identifiers. More specif-
ically, any party P, starts a protocol run when it receives an input of the form
(P, Pj,s,role) for a session identifier s and role € {initiator, responder}.

Definition 31. Two sessions (P, Pj,s,role) and (P;,P;,s',role) in the CKOI model
are said to be matching if s = s" and role’ # role. A session (P;,P;,s,role) is fresh as
long as:

it has not been asked a sessionstate query;
it has not been asked a reveal query;
if P, was asked a corrupt query then the session was first asked an expire-session
query;
e the above three conditions also hold for any matching session (Pj, B;,s, role’).
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The third condition captures forward secrecy by allowing the adversary to ask a
corrupt query to the owner of the test session, or the owner of a matching session,
as long as the session has been expired. A variant of the definition without forward
secrecy prevents any corrupt query to the test session or its partner.

Definition 32. A protocol I1 is a secure authenticated key exchange protocol in the
CKOI model if both of the following hold:

1. if two uncorrupted parties complete matching sessions then both instances will
end in the accept state with the same session key,

2. the advantage of any efficient adversary A in guessing the correct bit in the
security game is negligible.

It is interesting to compare this definition with the earlier BR model definition
(specifically Definition 30). The second part of both definitions deals with indistin-
guishability of the target session key from random and is essentially the same in both
cases. However, the first parts are a little different. The BR93 definition says that par-
ties running the protocol with a benign adversary will always accept with the same
session key. This is only a functional requirement which does not seem to have any
security implications. However, the first part in the CK definition is rather different
and does have security implications. Indeed we will see later that some natural ways
of designing protocols can end up with matching sessions which do not have the
same session key.

Modular Design

The CKO1 model inherited the idea of an ideal AM world and a real UM world as
defined in the BCK98 model outlined in Sect. 2.3.1. Indeed, Definition 32 speci-
fies security in the UM and a similar definition applies in the AM where the only
difference is that the adversary is restricted from fabricating any messages.

A key result of the CKO1 paper is that a protocol 7 which is secure in the AM
can be transformed into a protocol %' (7r) which is secure in the UM by applying a
valid authenticator €. Furthermore, a method of building valid authenticators from
basic authenticators is defined that can be applied to single messages. This allows
protocols to be designed which automatically inherit a security proof by combining
a basic protocol secure in the AM with a secure authenticator.

The CKO1 paper defined a few building blocks which can be used with the mod-
ular method. Two basic protocols secure in the UM are basic Diffie—Hellman key
exchange and simple key transport using encryption. These can be combined with
two valid authenticators from the BCK98 paper, one using signatures and one using
CCA-secure encryption. These authenticators transform each protocol message into
an interactive pair of messages. As an example, Canetti and Krawczyk showed that
signed Diffie—Hellman (Protocol 5.25) can be derived as a combination of the basic
Diffie—Hellman protocol and the signature-based authenticator. However, in order to
obtain an efficient three-message protocol they had to apply optimisations without
formal justification.
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Later, Hitchcock et al. [359] showed that the kind of optimisations used in the
CKO1 paper can be formally justified and also showed that it is permissible to ‘mix-
and-match’ authenticators for extra flexibility. They also pointed to a few additional
building blocks providing the beginnings of a library for designing secure protocols
with a variety of properties. For example, with the four AM-secure protocols and the
five valid authenticators they obtained 60 distinct UM-secure protocols.

Despite the attractiveness of this approach it has not seen any significant further
development. One reason for this may be that the most efficient protocols known
today cannot be split in any obvious way into an authenticator and a more basic pro-
tocol. In fact it is impossible to achieve any secure two-message protocol using the
known authenticators, since authenticators always add extra messages when applied
to a protocol in the AM. Thus any secure UM protocol with only one message per
party results in a protocol in the UM with at least three messages. For similar rea-
sons, one-pass protocols (with limited security properties) can also not be reached
using authenticators.

Post-specified Peers

Canetti and Krawczyk designed a variant of the CKO1 model the following year [179]
in which the instances in a protocol run may not be aware of the identity of the
peer party in the run until the session is completed. This turns out to be a relatively
common situation in practice; an example is where it may be desirable for a mobile
device to reveal its identity only to a trusted server once it is confident that the party
it is communicating with is indeed the correct server. The model was used by Canetti
and Krawczyk to analyse the IKE protocol (see Sect. 5.5.5).

The implications of this change mainly relate to the definition of matching in-
stances in the model. In Definition 31 above it was required that each instance knows
the identity of its matching partner and that the partners must agree on the pairing.
One way to avoid the problem is to delay partnering by saying that a session can only
have a matching session if both have completed. However, this allows the adversary
to ask a sessionstate query to incomplete sessions, allowing the adversary to win the
security game against protocols which seem naturally secure. Therefore Canetti and
Krawczyk revised the definition of matching to allow a completed session to have a
matching partner which has not completed. In the post-specified peer model a ses-
sion is identified by a pair (F;,s) and the intended partner P; can be considered as an
output of a completed session. Then a session (P},s) is the partner of a completed
session (P;,s) as long P; is the intended partner of (P;,s) and either

e (Pj,s) is not complete, or
e (Pj,s) is complete with intended partner P;.

Canetti and Krawczyk pointed out that the post-specified model gives a relaxed
definition of security so that a protocol proven secure in the usual (pre-specified)
model may not be secure in the post-specified model. Later, Menezes and Us-
taoglu [546] applied this observation to show that the HMQV protocol (Proto-
col 5.14) is not secure in the post-specified setting. They also described a combined
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model so that protocols secure in the post-specified setting can be run in either variant
and still be secure.

Problems in the CK01 Model

The CKOI model has received some significant criticism. A lot of this can be simply
addressed by using techniques that are widely used in more recent models. However,
we summarise some of the issues here.

Session identifiers. The usage of session identifiers has turned out to be one of the
most controversial aspects of the CKO1 model because there is no concrete def-
inition of how they are obtained. Instead, the CKO1 paper states that session
identifiers are:

...chosen by a ‘higher layer’ protocol that ‘calls’ the protocol. We re-
quire the calling protocol to make sure that the session id’s of no two
[protocol] sessions in which the party participates are identical. Fur-
thermore, we leave it to the calling protocol to make sure that the two
parties that wish to exchange a key will activate matching sessions [178,
Section 2.1].

Using examples later in their paper, Canetti and Krawczyk suggest concrete
ways that session identifiers may be established, for example by prior agreement
or by deriving them from signed messages exchanged during the protocol. How-
ever, this still leaves open exactly what is allowed and falls short of a practical
generic method. This issue was addressed in the HMQV model.

Session state query. Some authors have criticised the lack of a concrete definition
of what constitutes session state. The question of exactly what values should
be available to the adversary continues to be an area where new models are
developing.

Restrictions on queries. In the CKO1 definition of freshness, no session which has
had a sessionstate query can be fresh. This rules out some attacks which are
captured in other models since the test session cannot have its ephemeral keys
revealed. Moreover, since the corrupt query gives away all session state, it cannot
be used to model only corruption of the long-term key.

2.3.3 HMQV Model

Analysis of the HMQYV protocol (Protocol 5.14) was performed by Krawczyk [453]
in an updated version of the CKO1 model. This model uses the same basic format as
CKOI but addresses many of its criticisms. To differentiate it from the CKO1 model
we will call it the HMQV model. The model is tailored to protocols which exchange
Diffie—Hellman protocols in two message passes and combine these with the long-
term keys. Many other modern protocols fit this pattern.

As in the CKO1 model, partnering is defined using session identifiers, but ses-
sion identifiers in the HMQV model are defined concretely as 4-tuples. A session
at principal A with intended partner B has a session identifier (ID4,IDg,Out,In)
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where In and Out are the messages received and sent by the session. Matching is
then defined the same way as in the original CKO1 model so that completed sessions
are matched if and only if their identifiers are of the form (ID4,IDp,Out,In) and
(IDp,ID4,In,Out).

As well as capturing (weak) forward secrecy, the HMQV model is also adapted to
capture key compromise impersonation (KCI) attacks. This is achieved by allowing
the adversary to obtain the private key of the owner of the test session. In other
words, the definition of what it means to be fresh is adapted so that a session is still
fresh if the long term key of the owner is compromised.

Krawczyk also made a concrete assumption about what is available to the adver-
sary using the sessionstate query. To be precise he looks at two different situations.
At first he assumes that the session state is empty except for the session key which
can be obtained with a normal reveal query. Later he looks at an alternative where
the sessionstate query gives away the ephemeral secret key chosen for that session.
The reason for allowing both variants is that the security proof for the HMQV proto-
col requires a stronger computational assumption for the case where the sessionstate
query gives away the ephemeral secret. This ability to define the contents of the
sessionstate query can be regarded as a flexible feature of the CK model.

2.4 ¢CK Model

By 2005 it was widely accepted that the CK and BR models had adequately captured
the main security issues for key exchange. There were some options available for
exactly how freshness and adversary queries were defined but these could be seen as
nuances which could be matched to specific protocols and computational assump-
tions. Therefore it was a surprise to many that a new model with a rather different
idea was proposed in 2007 by LaMacchia, Lauter and Mityagin [470]. They called
their model an extended Canetti—-Krawczyk model and it is now widely referred to
as the eCK model.

The eCK model tackles directly some of the perceived weaknesses in the CK and
BR models. Specific advantages are:

e the adversary can obtain ephemeral secrets which belong to the test session;
e the adversary can obtain the long-term key of the test session and of its partner
even before the session is completed.

Due to the above observations it was widely believed that the eCK model was strictly
stronger than the CKO1 (or HMQV) model, but this is not true since there are other
features which the eCK model does not capture.

The general idea behind the eCK model is simple and appealing. Each party in a
protocol run has two secrets — a long-term secret and an ephemeral secret, the latter
chosen for this particular protocol run. If the two principals are A and B, let us denote
their long-term secrets by x4 and xp, and their ephemeral secrets by r4 and rp. An
adversary who can obtain both of x4 and r4 can compute the session key in the same
way as the principal A. Similarly an adversary who obtains xp and rg can obtain the
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session key. However, a priori there is no reason why an adversary who obtains any of
the other pairs of secrets should be able to obtain the session key (or even distinguish
it from a random string); the adversary should be able to obtain the long-term keys
or the ephemeral keys of both parties, even for the test session. There is one more
restriction which must always apply to the adversary — if the adversary is active in the
test session then it can choose the ephemeral secret and therefore must be prevented
from obtaining the long-term key of the partner of the test session. This leads us to
the definition of freshness in the eCK model. First we define some notation for the
adversary queries as shown in Table 2.7.

Table 2.7: Queries in the eCK model

Query Inputs Outputs Purpose
send  Parties and message  Protocol message Control message flow
reveal Session identifier ~Accepted session key Compromise session keys
ephemeral Session identifier Ephemeral key Leak short-term keys
longterm Principal Long-term key Compromise long-term keys
test Fresh instance  Session key or random Adversary challenge

As in the HMQV model, partnering is defined through session identifiers defined
from the transcript of the messages exchanged. However, there is a subtle difference
which can become important as discussed in Sect. 2.5: sessions are only partners
if they agree on which one of them takes the initiator and which takes the respon-
der role. Thus (for one-round protocols) sessions are matched if and only if their
identifiers are of the form (role, ID4,IDp, Out,In) and (role’,IDg,ID4,In, Out) with
role’ # role.

A session with identifier sid at party P; with intended partner P; is fresh as long
as:

the session was not asked a reveal query;

if a matching session exists with session identifier sid’ then:

— not both of ephemeral(sid) and longterm(P;) queries were asked;

— not both of ephemeral(sid’) and longterm(P;) queries were asked;
e if no partner exists then:

— not both of ephemeral(sid) and longterm(P;) queries were asked;

— longterm(P;) was not asked.

LaMacchia et al. [470] designed a protocol called NAXOS (Protocol 5.15) which
can be proven secure in the eCK model. Their idea is to use Diffie-Hellman where the
ephemeral exponent r is combined with the long-term secret x using a hash function
H. Thus a principal with long-term key x will choose random r for a new session,
but sends g”*") instead of sending g’ as we normally expect. The point of this is
that an ephemeral(sid) query then only returns r which does not allow the adversary
to learn the Diffie-Hellman exponent actually used. Since the adversary is never
allowed to ask for both r and x in a fresh session we can hope that H (x, ) will never
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be available to the adversary. This so-called NAXOS trick has been used in several
subsequent protocols to achieve security in the eCK model.

2.4.1 MU08 Model

Menezes and Ustaoglu [547] adapted the eCK model in order to analyse the Uni-
fied Model protocol (Protocol 5.12) in a formal way. They mentioned that their
model, which we will refer to as the MUO8 model, was ‘a weakening of the ex-
tended Canetti-Krawczyk (eCK) definition’ because it does not capture KCI attacks.
This was a deliberate choice, necessary because the UM protocol is insecure against
KCI attacks. Therefore in order to obtain a proof it is necessary to weaken the secu-
rity model. This process of matching the model with the expected security properties
of the protocol is a common device, and one reason for the proliferation of security
models.

The weakening of security in the MUOS is achieved by preventing the adversary
from asking the longterm query to the owner of the target session. However, while
the MUOS8 model is weaker than eCK in this sense, it can also be seen as stronger in
another sense. This is because it allows both longterm and ephemeral queries to be
made to the target session or its partner (when it exists), but only when the longterm
query occurs after the session at that party expires.

2.4.2 eCK-PFS Model

Motivated by the need to better understand when full forward secrecy (as opposed
to weak forward secrecy) can be obtained, Cremers and Feltz [234, 235] defined
two variants of the eCK model which both give the adversary greater powers. This
difference can be defined in terms of which sessions remain fresh (and so available
for the adversary to choose as the test session). In order to describe these models they
introduced the notion of an origin session.

Definition 33. A session with identifier sid’ is an origin session for a completed ses-
sion with identifier sid if the output messages (one or more) from session sid’ equal
the input messages (one or more) for session sid.

Note that if a session sid has a partner session sid’, then sid’ is an origin session
for sid and also sid is an origin session for sid’; this is because partner sessions agree
on the messages sent and received. The first extension of Cremers and Feltz for the
eCK model, which they called eCK", allows the adversary to replay the message
from an origin session sid’ as well as obtain the long-term key of the partner to the
test session, as long as ephemeral(sid’) has not been asked. So here the adversary has
a partial ability to be active by replaying messages from other sessions, but does not
have the ability to choose new messages (and thereby know the ephemeral secret).

The second extension of Cremers and Feltz is called eCK-PFS and differs from
eCK" only in that the adversary is now allowed to obtain the long-term key of the
peer to the test session after the test session is complete, even if there is no origin
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session. This is similar to the MUOS model, in that the adversary can be fully active
in the test session and obtain the long-term key of the peer to the test session later.
A little more formally, a session in the eCK-PFS model with identifier sid at party P;
with intended partner P; is fresh as long as:

the session was not asked a reveal query;

if an origin session exists with session identifier sid’ then:

— not both of ephemeral(sid) and longterm(P;) queries were asked;

— not both of ephemeral(sid’) and longterm(P;) queries were asked;
e if no origin session exists then:

— not both of ephemeral(sid) and longterm(P;) queries were asked;

— longterm(P;) was not asked until after session sid was complete.

2.4.3 seCK Model

Saar et al. [653] proposed the seCK model as a strengthened version of the eCK
model. The seCK model allows the adversary to obtain intermediate results, in par-
ticular the exponent of the Diffie—Hellman messages sent. For example, in the case of
the NAXOS protocol this would allow the adversary to obtain the exponent H (x, r)
where the first message sent is the value g’ (*1) The motivation for this is that some
implementations could compute such values in secure memory (such as on a smart
card) and export them to main memory from where they may become exposed. Al-
though Saar et al. also proposed a protocol which they claimed secure in the seCK
model, Yoneyama and Zhao [767] later showed that this protocol is not actually se-
cure in either the seCK or the eCK model. Yoneyama and Zhao also provide evidence
that it is difficult to find any protocol which is secure in the seCK model.

2.5 Comparing Computational Models for Key Exchange

As we have seen in this chapter so far, there are many different computational models
for key exchange. While they all can be seen as developments from the BR93, there
have been a few different directions. It is a natural question to ask whether there
is a best model to be used in some sense, for example which model most closely
captures reality or which model is strongest. While there has been some significant
work in examining such questions, in the current situation we cannot give very strong
answers. There are a number of factors which we can use to compare individual
models.

What the adversary is allowed to obtain. As models have developed, the adver-
sary has generally been made stronger by giving it more access to secrets. From
the initial BR93 model which gave the adversary session keys and long-term
keys from non-target session, this has grown to include session state and/or
ephemeral keys in target and non-target sessions. Since BR93 it has always been
assumed that the adversary obtains transcripts.
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What the adversary is allowed to change or choose. Models normally assume an
active adversary, but this is not always the case depending on what else the
adversary is expected to know. Some early models allow the adversary to ac-
tively choose long-term keys. An aspect that has not been widely considered is
whether an adversary can actively choose randomness or ephemeral keys. Mod-
els in which the adversary is passive (a pervasive wire-tapper) when the protocol
is run may still be interesting to explore.

When the adversary is allowed to obtain things. With the introduction of forward
secrecy, models had to take into account whether compromise of long-term keys
happens before or after the target session is completed. There may be interesting
cases where the adversary obtains ephemeral data only at a later time.

How partnering is defined/what freshness means. Partnering can be very subtle.
We discuss this more below.

What it means for the adversary to win. Since BR93 most models have demanded
indistinguishability of the session key from a random string. Many real-world
protocols cannot achieve this (see Sect. 2.8 below) and weaker security notions
may be sufficient in many cases.

2.5.1 Comparing the BR and CK Models

Choo et al. [208] made a comparison of the three BR model variants (BR93, BR95
and BPROO) and the CKO1 model, being four of the main indistinguishability models
known at the time of their paper.! They compared each of the six pairs of models to
see if one was stronger than the other. Here model X is said to be stronger than model
Y if a protocol that is secure in model X is always secure in model Y. There are some
difficulties in making a direct comparison between these different models.

e The BR93 and BPR0OO models consider the goal of mutual authentication while
BR95 and CKOI consider only key exchange (with implicit authentication).

e Partnering is defined differently in each of the four models. Particularly, in the
BR93 model instances can only be partners if they have matching conversations.
This is arguably stronger than necessary and a protocol that is secure in BR93 can
be transformed into one that is technically insecure in CKO1 simply by adding
random fields which are ignored by protocol participants. Since CK0O1 does not
restrict how session IDs are defined the random fields may not affect partner-
ing, but matching conversations are easily violated by an adversary who changes
the random fields. Choo et al. [208, Section 3.5] use such a trick to show that
protocols secure in the CKO1 model need not be secure in the BR93 model.

In order to avoid these difficulties, Choo et al. apply two conditions in making
most of their comparisons.

1. Only the key exchange goal is considered; entity authentication is ignored.

I Although the original BR93 model omits the corrupt query and is applied only to shared-
key protocols, Choo et al. assumed later versions of the model, such as the BWM (see
Sect. 2.2.3).
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2. The CKOI model uses the concatenation of protocol messages as the session
identifier.

Given these two conditions, Choo et al. found that the CKO1 model is strictly
stronger than all three BR model variants. They also showed that BR93 is strictly
stronger than both BR95 and BPROO. For the other pairs they found that BR93 and
CKO1 are incomparable (neither one is stronger than the other). These relationships
are summarised visually in Fig. 2.4.

CKO1
!
BR93
v N\
BRY5 BPROO

Fig. 2.4: Hierarchy of models according to Choo et al. [208] assuming CKO1 uses
protocol transcripts for session IDs

The main reason that the CKO1 model is typically stronger is the addition of the
sessionstate query which is absent in all the BR variants. As mentioned in Sect. 2.2.4,
BPROO has a coarse interpretation of the corrupt query, which leads to its potential
weakness even though it can capture forward secrecy.

2.5.2 Comparing eCK and Other Models

Cremers [226] performed a careful comparison of the CKO1, HMQYV and eCK mod-
els. He pointed out that they are all strictly incomparable — protocols secure in one
of the models can be insecure in the other two.

Specifically, Cremers pointed out that any role-symmetric protocol which in-
cludes the identities of the parties in the key derviation function cannot be secure
in the CK or HMQV models. The reason for this is that in these models sessions
can match even if they disagree on the roles of the parties. (For CKO1 there is no
requirement for the session identifier to depend on the party identities. In HMQV
the roles are explicitly excluded from the session identifier.) When identities are in-
cluded in the KDF this means that matching session can both accept with different
session keys thus violating the first requirement of Definition 32. Arguably this is not
a serious security issue since the adversary does not again any advantage in knowing
the test session key this way. Cremers also pointed out that protocols which do not
include the session identifiers (or some other way of differentiating the roles) cannot
be secure in the eCK model. Such protocols cannot be matching in the eCK model
since partners are required to agree on their respective roles.

By the above method Cremers showed that these three models are incomparable.
However, this comparison relies only on the way that matching is defined. This seems
not to capture the fundamental differences between the models since matching could
have been specified equally in all three models without changing things too much.
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(A similar remark could be made regarding the comparisons of Choo et al. [208],
discussed above, between the CK and BR models.)

Other differences were also discussed by Cremers [226]. Since the CKO1 model
does not allow sessionstate queries on the test session it cannot be stronger then
either eCK or HMQV. Also, neither CK nor HMQV allow the long-term key of the
test session and the ephemeral key of its partner to be revealed, as eCK does, so
they cannot be stronger than eCK. In the other direction, eCK does not allow full
forward secrecy to be modelled since it does not restrict long-term key corruption
based on expiration of the test session, so eCK cannot be stronger than CK. In an
earlier paper [232], Cremers showed an elegant attack on the NAXOS protocol with a
suitable definition of session state. This attack can also be described in HMQV. Since
NAXOS has a security proof in the eCK model this is another way to show that eCK
cannot be stronger than CK or HMQV. Ustaoglu [719] showed that a similar attack
is also possible on the HMQYV protocol. This seems a paradox since HMQV protocol
has a proof in the HMQV model. However, the HMQYV analysis places restrictions
on what can be obtained from the sessionstate queries [453, Sections 5.1 and 7 in full
version]. Therefore it may be more accurate to say that the attack illustrates that the
HMQYV model can be stronger than the eCK model based on the precise definition
of the sessionstate query.

Another way to illustrate the separation between the eCK and HMQV models is
consideration of forward secrecy. In the eCK model there is no notion of whether
compromise of long-term keys takes place before or after a session is complete. The
adversary is free to reveal long-term or ephermal keys at any time as long as the
combination of revealed keys is within the allowed set. This means that it is impos-
sible to model forward secrecy in the eCK model since an adversary who knows the
long-term key of a party and then is active in that session has as much information as
a legitimate party. Therefore the most that can be acheved in the eCK model is weak
forward secrecy. Since the CK and HMQV models can capture behaviour where a
session is expired and only then is the long-term key revealed, they do not share this
restriction. The eCK-PFS model [234, 235], mentioned in Sect. 2.4, extends the eCK
model to include consideration of the timing of the long-term key compromise and
therefore captures forward secrecy.

2.5.3 Sessions and Session Identifiers

The notion of sessions, or instances, is an important concept in all the computational
models for key exchange. Unfortunately the notation and terminology used have been
highly inconsistent, even when the intent has been identical. In this chapter we have
chosen to keep the notation as used in the original papers in the hope that this will
make reference back to those papers more meaningful. Here we discuss how those
notations are related.

Some models use the terms instance and session interchangeably, some use just
one of these terms, and some separate the notation of instance and session (for ex-
ample an instance may contain a session identifier as one of its state variables).
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There are two main approaches to denoting sessions. The first is to use an identi-
fier which names an instance at a party. This was the original BR approach with their
IT}; notation discussed in Sect. 2.2. The instance is then modelled to include various
state variables which may include a session identifier. The second approach is to use
explicit session identifiers with the expectation that these will (perhaps eventually)
identify unique instances at a particular party. Some models allow session identifiers
to evolve over time while for others they are not defined until they are fixed.

There are too many different notations and conventions in use to list them ex-
haustively. Instead, in Table 2.8 we present prominent examples of such notations.
For some of these it is possible to separate the instance identifier (usually a party
and an instance number) and the session identifier (typically a partial transcript). For
others such a separation is harder.

Table 2.8: Comparing various instance and session styles

Model Instance Session Notes
identifier identifier
BR93/95 Hf j -
BPROO IT;; s Session identifier s defined by the pro-

tocol. Partner identity is part of state.
Matching sessions have the same s.

CKO1 (P;, Pj,s,role) s No explicit s defined. Matching ses-
sions have same s.

HMQV - (ID4,IDg,Out,In) Explicit matching rule is defined.

eCK - (role,ID,T) 7 is the transcript. Explicit matching
rule is defined.

eCK-PFS (Pi) - Explicit matching rule defined.

MUO08 - (ID4,IDp,*) = isevolving transcript. One session can

have multiple matching sessions.

2.5.4 Incorporating Public Key Infrastructure

In early models, specifically BR93 and CKO01, the long-term keys of principals were
generated with some known algorithm at the start of a run of the adversary. The
adversary consequently could have no chance to influence the public keys in use and
certain attacks which rely on adversarially chosen keys could not be captured. Later
models therefore allowed the adversary to choose the long-term key for corrupted
parties. This was first allowed in the BR95 model by allowing the adversary to input
a new key to the corrupt query. Later models allow the adversary to update the long-
term (public) keys of corrupted parties at any time, either implicitly [453, 470] or
through an additional query [718, 188, 308] typically called establishparty.
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More recently Boyd et al. [135] provided a more comprehensive treatment of cer-
tificates including the ability of adversaries to register invalid keys at the certification
authority. They claimed for the first time to consider the following three features:

e registration of multiple public keys per user;
o flexible checking by certification authorities via a verification procedure;
e adversarial choice of public keys per session.

2.6 Shoup’s Simulation Model

Shoup [674] developed a security model which remains unpublished, even though it
has been used by several different authors to analyse various protocols. We call this
Shoup’s simulation model. There are many similarities with the Bellare—-Rogaway
model, in particular the adversary runs the network to set up all connections, and has
various attacking options. We may regard Shoup’s model as being more abstract than
Bellare and Rogaway’s, and indeed it is formally shown to be a generalisation. The
major novelty is that Shoup defines two systems, an ideal system and a real system.

In the ideal system the adversary can run the protocol by initialising users, start-
ing and aborting sessions, and interacting with applications. The adversary thus de-
cides which sessions are connected but the session keys are chosen perfectly ran-
domly and independently of other parameters. These can be obtained by the adver-
sary by choosing to compromise sessions, but otherwise remain secret. A significant
difference from the Bellare—Rogaway model is that Shoup’s model includes the pos-
sibility of using the agreed key in an application. Use of the session key is ruled out
in the Bellare—Rogaway model since it allows the adversary to distinguish between
the session key and a random value.

In the real system the adversary still controls the network but is not given the keys
and random values chosen by the principals. The adversary can initialise principals
and can invoke instances of principals to respond to messages as in the Bellare—
Rogaway model. In addition, a trusted third party, TTP, is defined, and principals
can interact with TTP to obtain long-term keys. This allows explicit inclusion of
certificate information for public keys in the model, another distinction from that of
Bellare and Rogaway. Security is defined in a simple manner.

1. Each principal must terminate after a small (polynomial) number of message
interactions.

2. If the adversary simply relays messages faithfully between principals then both
accept and share the same session key.

3. For any efficient adversary in the real world there must exist an efficient adver-
sary in the ideal world such that it is computationally infeasible to differentiate
between the behaviour of the two adversaries and the information gained by
them.

The motivation behind the notion of simulatability is that whatever the adversary
could gain by interacting with the real system could have been gained in the ideal
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system. But by construction the ideal system gains nothing for the adversary. An
attractive feature of this security definition is that it is independent of the protocol
goals. Shoup defined three shades of security by allowing the adversary different
powers to corrupt principals.

Static corruptions cover the case in which the adversary does not use interactions
with the principals to decide which principals to corrupt. In this case corruption
is not explicitly modelled but any real system adversary is able to register prin-
cipals for which the secrets and random values are known. Shoup proved that
security with static corruptions in his simulation model is equivalent to security
in the Bellare—Rogaway model. This seems paradoxical since Bellare and Rog-
away explicitly allow the adversary to corrupt principals at any time. However,
Shoup pointed out that there is an efficient reduction from the Bellare—Rogaway
model to the same model in which only static corruptions are allowed.

Adaptive corruptions are those in which the adversary can choose which princi-
pals to corrupt at any time. Protocols that are secure against an adversary who
can adaptively corrupt must provide forward secrecy. The reason is that if old
session keys could be found from a corrupted long-term key then it must be pos-
sible to simulate this in the ideal world where no such compromise is available.
Shoup showed that security against adaptive corruptions in the simulation model
is equivalent to security with forward secrecy in the Bellare—-Rogaway model.

Strong adaptive corruptions are adaptive corruptions in which the adversary ob-
tains not only the long-term key of corrupted principals, but also any short-term
secrets that have not been explicitly erased. Shoup explained how to maintain a
secure session that is compatible with security of such a protocol.

2.7 Models for Enhanced Scenarios

Most models in the literature have focused on the case of two-party key establishment
where the parties already have a long-term secret, either shared with a trusted third
party or (more commonly in recent years) with a corresponding certified public key.
There are various common scenarios which do not fit this case and models have been
adapted or enhanced to take care of the differences.

e One example is password-based protocols (see Chap. 8) where the long-term se-
crets may be easily guessable by the adversary. We discussed in Sect. 2.2.4 how
the winning condition of the adversary is typically relaxed in order to take this
into account. Boyko et al. [145] distinguished between verifier- and non-verifier-
based protocols and provided the first security definition for the former. Later,
Abdalla et al. [16, 17] provided a stronger model, called real-or-random secu-
rity, which allows the adversary unlimited access to the test query which always
answers with the same choice of either the real session key or a random one.
Abdalla et al. showed that this model is strictly stronger than the more usual
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indistinguishability model. There are also simulation-based definitions for secu-
rity of password-based protocols as well as ideal functionalities in the universal
composability model. Pointcheval [616] provided a nice overview of recent de-
velopments.

e Another example is the identity-based scenario (see Chap. 7) where the long-term
public key of any principal can be computed from the identity of the principal and
public parameters. As in other identity-based settings, it is normal for identity-
based key exchange models to provide the adversary with an extract oracle
which reveals long-term private keys, subject to usual restrictions. The adversary
may also be allowed to access the long-term master key in order to capture for-
ward secrecy against the key generation centre. Formal models for identity-based
key exchange were first discussed by Chen and Kudla [194]. Generalisations of
identity-based key exchange to the attribute-based and predicate-based settings
also required corresponding extensions to the models [104, 327, 694, 765].

In the rest of this section we will consider two scenarios which generalise the
basic key exchange models. The first is the case of group key exchange where the
number of principals involved is more than two. The second is the case of multi-
factor key exchange where the number (and type) of long-term secrets per principal
is more than one.

2.7.1 Models for Group Key Exchange

Group key exchange (see Chap. 9) has similar goals to two-party key exchange —
to securely establish a session key and, optionally, to provide mutual authentication.
As may be expected, to a large extent the models which have evolved for group key
exchange have broad similarities to those for the two-party case. There are, however,
a few issues that do not arise in the two-party case which have to be considered when
making the generalisation.

e In the two-party case both principals are involved in either sending or receiving
every message of the protocol. In the group case there can be, and often are,
messages sent only between a subset of the principals. This makes partnering
more tricky.

e Group key exchange protocols often include extensions to add or remove princi-
pals to an already accepted session.

e In the group case a subset of principals can collude in order to try to deceive other
principals — these are usually called insider attacks.

Bresson et al. [148, 149, 154] were the first to generalise the BR models from
the two-party to the multi-party case. In the first version of their model [154] the
basic adversary queries are the same as we saw in the BR model, but an im-
portant distinction is the way that partnering is defined. The session identifier set
(SIDS), SIDS(Hf), at an instance IT7, is a set whose elements consists of tran-
scripts of messages between IT7 and every other potential instance H}. Then two
instances IT’ and I1 jt are directly partnered if they are both in the accepted state and
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SIDS(IT?) NSIDS(IT}') # 0. Finally, two instances I} and IT; are partnered if there is
a path of directly partnered instances between I’ and H§ Bresson et al. [157] later
noted that this definition of partnering fails to capture the intuitive understanding
of mutual authentication. They gave examples where m uncorrupted principals ac-
cept each other but have different session keys. Later definitions [156, 330] typically
demand that partners all share the same session identifier.

In their first paper, Bresson et al. [154] only considered static groups defined at
the start of the protocol, but they extended this to the dynamic case in their second
paper [148]. In the third paper [149] they extended the model once more, in particular
including adversary queries to model the addition and removal of principals after
sessions have accepted. In order to prove their protocol secure they also made use of
a model of a smart card interface as previously used by Shoup and Rubin [676] (see
Sect. 2.2.2.)

Insider attacks were first formally modelled by Katz and Shin [415]. Their def-
inition of insider security formalises the intuition that an honest party U should not
be deceived about the participation of another honest party U’ even if there are dis-
honest parties in the set of partners expected by U and U’. Note that in a two-party
protocol such a situation can never occur since there can be no additional corrupted
party to disturb the protocol, so in this sense insider attacks are not relevant for two-
party protocols. Katz and Shin ignored the case of KCI attacks in their formal model
since they cannot be captured in the universally composable formalism which they
used. Gorantla et al. [330] later provided a formal definition for insider attacks in a
game-based definition.

Later work has expanded on the model to include additional adversary queries,
in particular including state reveal and ephemeral key reveal queries similar to those
in the CK and eCK models [774, 285].

2.7.2 Models for Multi-factor Key Exchange

Pointcheval and Zimmer [618] extended the basic AKE models to take into account
the situation where a client may have three different authentication factors, each of
which has different security properties. One is a full-strength cryptographic key, such
as may be stored in a cryptographic token, the second is a password which may be
memorised by a human client, and the third is a biometric such as a fingerprint. The
model allows the adversary to obtain two of the three factors. Password security is
defined with a real-or-random security criterion so that the adversary is still allowed
to make unlimited (polynomially) guesses through send queries. However, there is
a liveness assumption with regard to the biometric factor. Instead of making an un-
realistic assumption that the biometric is secret, it is assumed that when a client’s
biometric has not been corrupted, the adversary can only use messages in the send
query which have been output by an auxiliary compute query. The compute query
takes as input an instance, a full-length secret and a password, while the biometric
is chosen randomly from a distribution different from the correct one. The compute
query models the adversary’s ability to be active in the protocol using its own bio-
metric which will usually be distinct from the correct one. The liveness assumption is
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a reflection of the assumption that when a biometric is used for authentication there
will be physical mechanisms in place to ensure that the owner of the biometric is
present when it is used.

Stebila et al. [687] proposed a similar multi-factor model but, instead of mod-
elling three factors of different type, they allowed any number of factors. These fac-
tors are all passwords, but each may be one of three types: a password shared with a
server; a password for which a server stores only an image, or a one-time password.
Fleischhacker et al. [279] proposed a generalised framework allowing a mixture of
multiple types of factors and showed how to design secure protocols in their model
in a generic manner.

2.8 Secure Channels

In the key exchange models we have looked at so far in this chapter, security has
been defined to be essentially as strong as possible. The indistinguishability-based
definitions used in our three main model classes (BR, CK and eCK) capture the
notion that, in a computational sense, the adversary learns nothing useful about the
session key. The intuition is that if the session key accepted by the parties is random
from the adversary’s viewpoint then it should be good for any application requiring
a shared key.

It is worth giving greater consideration to the combination of authenticated key
exchange with applications for at least two reasons.

1. When we use the session key in a particular application we should be aware that
the key exchange protocol and the application in practice run in parallel so we
should worry about analysing the security of the combination of key exchange
and applications. Just because they are individually secure does not necessarily
imply that they are secure when combined. We may need to restrict how the
session key is used to ensure that security is maintained.

2. In some applications we may be unable to achieve the strong indistinguishabil-
ity definition for key exchange. Indeed this turns out to be the case in several
prominent real world secure channel protocols whose wide deployment makes
them difficult to change. This does not necessarily imply that the key exchange
in combination with the application is insecure, depending on what is required
for security of the application. Therefore we may need to weaken the security
model so that an achievable level of security can be defined.

One of the primary uses of the session key generated by an AKE protocol is for
encryption and authentication of application data. The term secure channel is often
used to describe the process of establishing a session key and then using it to secure
application data in this way. In this section we will compare various definitions of
secure channels. There has been significantly less work on secure channels than on
AKE protocols, though a resurgence of interest in secure channels has come about
due to increasing scrutiny of real-world secure channel protocols such as TLS.
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2.8.1 CKO01 Secure Channels

Section 2.3.2 described the Canetti—-Krawczyk model for authenticated key ex-
change. In the same 2001 paper [178], Canetti and Krawczyk also defined a se-
cure network channels protocol and showed how to construct such a channel from
a CKO1-secure AKE protocol, a secure symmetric encryption scheme, and a secure
message authentication code.

The definition of secure network channels created by Canetti and Krawczyk, as
well as the intermediate notions we will discuss below, are given in the same sim-
ulation paradigm as used by Bellare et al. [72] and discussed in Sect. 2.3.1. Recall
that, in this simulation paradigm, we first define what we consider to be an ‘ideally’
secure protocol, and then compare this with the real protocol 7. Roughly speaking, if
7 is secure then for any efficient adversary running 7 there is an efficient adversary
against the ideal protocol such that the outputs of the two systems are indistinguish-
able.

The main definition of secure channels of Canetti and Krawczyk is as follows: a
secure network channels protocol is a network channels protocol that provides secure
network authentication and secure network encryption. We now define each of these
concepts in turn.

Network Channels Protocol

A network channels protocol is defined as a combination of a key exchange protocol
7 and a pair of functions (snd,rcv), which will provide encryption and authentica-
tion of application data. The adversary can interact with a collection of parties imple-
menting the network channels protocol in a way similar to the CKO1 AKE model of
Sect. 2.3.2. In particular, a session is identified by a tuple (F;, P;,s) for a principal P,
intending to communicate with principal P; using session identifier s. The adversary
can make the following queries of parties.

Establish session. The query establish-session allows the adversary to direct party
P; to run the key exchange protocol 7 and establish a session key k with party P;
and session identifier s.

Send message. The party is given a message m, to which it applies the keyed send-
ing function sndy(m) and returns the result m’.

Receive message. The party is given an input 7', which in normal operation would
be the output of a send query; the party applies the keyed receiving function
rcvk(m/ ); if the result is not an error, then it records the output.

Expire session. The effect of the expire-session query is to delete the session key
from the session specified as input to the query.

In the simulation paradigm, the security experiment maintains a transcript of all
query events, such as ‘P; established session s with P;’, or ‘P; send message m to P;
in session s°, and so on.
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Secure Network Authentication Protocol

A network channels protocol is said to be a secure network authentication protocol
if it emulates an ‘ideal’ network authentication protocol. The ideal network authenti-
cation protocol has the same adversary interface as described for a network channels
protocol, but the operations performed for each query are ideal:

Establish session. The party does not run the key exchange protocol, instead it
records in an ideal transcript simply that session s has been established with
party P;.

Send message. The party does not actually apply snd; or return a value to the ad-
versary. Instead the party simply records that message m is sent to the recipient
P;.

Receive message. The party does not actually receive any value from the adversary
or apply rcvy. Instead the party simply records that the message from F; is re-
ceived.

Expire session. The party has no session key to delete, and simply records the ses-
sion as expired.

Clearly, an ideal network authentication protocol really does provide authenti-
cated transmission of messages, since they are sent and received over an ideally
authenticated channel, rather than passing back through the adversary’s hands.

A secure network authentication protocol can be constructed by using a secure
(existentially unforgeable under chosen message attack) message authentication code
and appending the MAC tag to the message.

Secure Network Encryption Protocol

A network channels protocol is said to be a secure network encryption protocol if it
provides confidentiality of communications, roughly in the sense of indistinguisha-
bility of messages under chosen plaintext attack. In particular, the standard network
channels protocol experiment is extended with the following adversary query:

Test session. The adversary can, once, indicate a single test session (F;, P;,s), as
well as two equal-length messages mg and m;. A secret bit b is chosen (but not
given to the adversary), and P, is activated with send(P;, P;,s,m). The output is
returned to the adversary.

The adversary outputs a bit &/, its guess for b, and wins if it guesses correctly.
The adversary is also allowed to corrupt parties and reveal session keys and states,
provided it does not expose values that would allow it to trivially win the game.
A network encryption protocol is said to be secure if the adversary’s advantage in
guessing b is negligible in the security parameter.
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Secure Network Channels Protocol

A network channels protocol is said to be a secure channels protocol if it is both a
secure network authentication protocol and a secure network encryption protocol.

Canetti and Krawczyk showed how to construct a secure channels protocol from
a CKO01-secure key exchange protocol 7, a pseudorandom function family f, an IND-
CPA secure symmetric encryption scheme (Enc, Dec), and an unforgeable message
authentication code MAC in the natural way, using an encrypt-then-MAC construc-
tion. In particular, the parties first execute the key exchange protocol 7 to derive a ses-
sion key k. Then both parties compute the encryption key ko = f(k,0) and the MAC
key ki = f(k, 1). To send a message m, the sender constructs c||z, where ¢ = Ency, (m)
and 1 = MAC, (¢). The receiver verifies and then decrypts analogously.

2.8.2 CKO02 Secure Channels

In 2002, Canetti and Krawczyk [181] updated their aforementioned 2001 paper [178]
to create universally composable notions of key exchange and secure channels.

The UC framework is, like the BCK98 definitions, simulation-based, but is meant
to be stronger, and it aims to ensure security when the protocol is composed with any
other secure protocol.

e In the original BCK98 simulation framework, no adversary can distinguish be-
tween interacting with the real system and with an ideal system. In other words,
for every adversary interacting with the real system, there exists a simulator in-
teracting with the ideal system such that the two worlds have indistinguishable
distributions.

e In the UC framework, in addition to the main adversary there is another adver-
sarial entity, the environment, which prepares all inputs to the protocol(s). No
environment should be able to distinguish between interacting with the adver-
sary and the real protocol(s), or with the simulator and the ideal protocol.

Security in the UC framework is defined in terms of emulation of an ideal func-
tionality. In the secure network channels ideal functionality, the parties are directed
to establish a secure channel between them; then, when one party is directed to send
a message to another party, the message is delivered over an ideal private connection,
while the adversary is told the length of the message.

2.8.3 Authenticated and Confidential Channel Establishment (ACCE)
Protocols

Several prominent real-world protocols, including the Transport Layer Security
(TLS) protocol and the Secure Shell (SSH) protocol, aim to provide a secure chan-
nel. They do so by first establishing a session key using a key exchange protocol,
and then using that key to perform authenticated encryption for application data. At
a high level, this matches the approach of CK01. While the approach of Canetti and
Krawczyk to defining and constructing secure channels is attractive — the definitions
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are relatively simple, and the construction is elegant and modular — it is not always
appropriate for analysing protocols that arise in practice.

Jager, Kohlar, Schige, and Schwenk [392] proposed the authenticated and con-
fidential channel establishment (ACCE) protocols model in 2012 for the purposes
of modelling the security of signed-Diffie-Hellman ciphersuites in TLS. There were
three main motivations for introducing a new model. First, the CKO1 secure channels
definition is in the simulation framework, rather than the more widely used game-
based approach. Second, the security properties provided by TLS are more granu-
lar than properties captured by CKOI1 secure channels. And third, the construction
of TLS does make use of a key exchange protocol and an authenticated encryption
scheme. Instead there is an overlap between these two components, where key confir-
mation messages from the key exchange protocol are sent over the encrypted channel
using the same key used for application data. This makes it impossible to prove the
real session key in TLS is indistinguishable from a random key.

The ACCE model is a Bellare—-Rogaway style model, with some changes. There
are two security goals in the ACCE model: entity authentication and channel confi-
dentiality and integrity. Entity authentication is defined in terms of matching conver-
sations like in the BR93 model for authenticated key exchange, and the adversarial
interaction in the entity authentication is similar as well.

The most significant change from AKE security models is of course that the
ACCE model includes secure transmission of application messages as an explicit
goal. Thus, the execution is divided into two phases:

e In the pre-accept phase, parties typically execute an authenticated key exchange
protocol, performing mutual authentication and establishing a session key. (In
TLS, this corresponds to the handshake protocol.) Upon successful authentica-
tion, a party enter the accept state. During the pre-accept phase, a session key is
established.

e In the post-accept phase, parties can transmit application data over the encrypted
and authenticated channel. (In TLS, this corresponds to the record layer proto-
col.)

The adversary can interact with each party’s execution 7 using the following
queries.

Send pre-accept phase protocol message. This send query directs the party to pro-
cess a protocol message in the pre-accept phase. It has no effect once the party
has entered the accept state.

Session key reveal and Long-term key reveal. These queries allow the adversary
to obtain the session key of any accepted session or obtain the long-term secret
key of a party.

The above queries are similar to those typically found in the key exchange secu-
rity models seen earlier in this chapter. However, the ACCE model does not include
a test query for session key indistinguishability. Instead, the security experiment ex-
plicitly models the security of the channel. The main idea is that, in the post-accept
phase of each session, the adversary plays a stateful authenticated encryption game,
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meaning the adversary attempts either to distinguish which of two messages was en-
crypted by the sender (an IND-CPA-like game) or to cause a receiver to accept a
ciphertext that was not sent by the corresponding sender.

Specifically, in each session 7}, each party has a secret random bit bf, and the
adversary’s goal is to guess the bit in any uncompromised session. (Here ‘uncom-
promised’ means, as usual, that the adversary has not revealed the session key of
the session (or its partner) or compromised the long-term key of the partner prior
to acceptance.) The session’s secret bit b is used for two purposes simultaneously.
Firstly, b is used to choose which of two adversary-supplied messages is encrypted
(as in an IND-CPA security experiment for encryption). Secondly, b} is implicitly
leaked to the adversary if the adversary successfully injects a forged ciphertext.

An adversary in the ACCE model is deemed successful if one of two events hap-
pens: either the adversary causes some uncompromised session to accept maliciously
(i.e. without a matching session), or the adversary guesses the hidden bit 5} of any
uncompromised session 7] with probability significantly better than 1/2.

Variants

Several variants of ACCE have been developed since it was first proposed. The orig-
inal ACCE definition of Jager ef al. aimed to capture stateful length-hiding authen-
ticated encryption with auxiliary data as the notion most appropriate to TLS. Addi-
tionally, ACCE has been extended to cover:

e other types of authentication, specifically server-only authentication [442, 456],
authentication using pre-shared symmetric keys [489], and passwords [517];

e other security properties of real-world protocols, such as renegotiation [304] and
multi-ciphersuite security [89]; see Chap. 6 for more information on these con-
cepts.

2.9 Conclusion

In this chapter we have attempted to identify the major developments in computa-
tional models for key exchange without getting drawn too deeply into the technical
details. A general trend has been that models have become more complex since the
original computational model of Bellare and Rogaway was proposed in 1993. While
the vast array of available models provides a rich arsenal from which the protocol an-
alyst can choose a suitable weapon, it is usually difficult to compare results proven in
different models. As we saw in Sect. 2.5, it is often the case that between two models
neither one is stronger, and currently there is no common agreement on the “right”
model for key exchange.

From the observed trends it is hard not to predict that new, probably even more
complex, models will be proposed. One consequence of this is that proofs by hu-
mans becomes ever more difficult and error-prone. In the past few years there has
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been a new emphasis on tools for helping to deal with proof complexity in com-
putational security models [58, 117] and such tools have been successfully applied
to key exchange models [57]. Progress towards unifying existing models would be
very beneficial. At the same time, new directions in key exchange models, such as
the ideas of George and Rackoff [301], may be overdue.
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Protocols Using Shared Key Cryptography

3.1 Introduction

The majority of protocols for key establishment and entity authentication that have
been proposed in the literature concentrate on the case where there are exactly two
users who wish to communicate or establish a session key. This is commonly referred
to as the two-party case. In this chapter we discuss two-party key establishment and
authentication protocols based on symmetric algorithms. The next chapter discusses
two-party protocols using public key algorithms, while the multi-party case is cov-
ered in Chap. 6.

We can classify two-party key establishment protocols using the following two
criteria discussed in Chap. 1.

1. The cryptographic keys available a priori.
2. The method of session key generation.

If only shared keys are available to establish a new session key, there are essentially
two cases to consider with respect to criterion 1.

(a) The two principals already share a secret key.
(b) Each principal shares a key with a trusted server.

Criterion 2 is concerned with the method of session key generation, for which there
are three different possibilities in general: key transport, key agreement and hybrid. If
a protocol has only two principals and is server-less, as in case (a) above, one cannot
distinguish between key transport and hybrid key generation. The criteria mentioned
above lead to the classification of 1 x 2+ 1 x 3 = 5 different classes of protocols.
The recognition of the criteria allows two-party shared key protocols found in the
literature to be classified into one of the above five classes. However, in this chapter
we mainly emphasise the division between server-less and server-based protocols.
In the remainder of this section, we explain the notation used to describe pro-
tocols in this chapter. Section 3.2 discusses protocols aimed at providing entity au-
thentication without key establishment. Section 3.3 discusses protocols aimed at pro-
viding key establishment without a server, including key transport protocols and key
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agreement protocols. Section 3.4 discusses protocols aimed at providing key estab-
lishment using a server, including key transport protocols, key agreement protocols
and hybrid protocols. For each class of protocols, we provide published protocols
from the literature.

Notation

A widely used notation for denoting a message part as a ciphertext is {M}x where
M is the input data to a symmetric encryption algorithm that is parametrised by the
secret key K. There are other familiar notations for indicating the use of encryption
when specifying protocols but the above notation remains a popular one. Frequently,
protocol designers have used the above-mentioned notation to imply that encryption
provides both confidentiality and integrity properties. Recall from Chap. 1 that there
are many variants of encryption providing security against different threats. Ignor-
ing such differences leads to problems for implementers and also prevents proper
security analysis.

If the protocol designer requires encryption for achieving both confidentiality
and integrity, in other words if the protocol requires authenticated encryption, then
we will use the above notation for encryption when presenting the protocol. Some
designers use one notation for cryptographic transformations that provide message
integrity and another notation for cryptographic transformations that provide con-
fidentiality. In such cases, we use the notation [[-[|x to denote a ciphertext obtained
from an encryption algorithm that provides the confidentiality property alone and the
notation [-]x to denote a ciphertext obtained from a one-way cryptographic transfor-
mation such as a MAC which provides the integrity property alone.

The notation used in this chapter is summarised in Table 3.1.

Table 3.1: Notation used throughout Chap. 3

Aand B The two users who wish to share a new session key
S A trusted server

ID4, IDp, IDg  The identities of A, B and S

{M}k Authenticated encryption of message M with key K
M] g Encryption of message M with key K to provide confidentiality
M]k One-way transformation of message M with key K to provide integrity

3.2 Entity Authentication Protocols

Protocols that aim at providing entity authentication without key establishment are
relatively scarce in the literature. Perhaps this is because the variety of approaches is
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quite limited, or maybe because the usefulness of such protocols is questionable as
discussed in Chap. 2. In this section we examine the prominent examples and discuss
whether they achieve the definitions of entity authentication introduced in Chap. 2,
or the simpler liveness property.

3.2.1 Bird-Gopal-Herzberg-Janson—Kutten—-Molva-Yung Protocols

A paper by IBM researchers Bird et al. [103] in 1993 was one of the first to demon-
strate a wide class of attacks on several authentication protocols, including a draft
protocol proposed by ISO. Based on the attacks on these protocols, they developed
a set of security criteria to avoid such attacks and proposed protocols that meet their
criteria. They started with a basic protocol which they did not regard as secure, and
improved it in a series of steps through consideration of various attacks and other
design requirements. Eventually, a good protocol was achieved.

Protocol 3.1 is the basic protocol of Bird ef al. Here u and v are two functions
such that K4p is needed to calculate them, and they do not give away Kup.

1.A—B: Ny
2.B—A: A/\/B,Lt(ng,]VA7 .. )
3.A—B: V(KAB,NB,. . )

Protocol 3.1: Bird et al. canonical protocol 1

Initially we will assume that the functions u and v are the same. Under this as-
sumption the protocol does not achieve the matching conversation goal, which Bird
et al. regarded as important for the security of any authentication protocol. In At-
tack 3.1, A is used as an oracle against B. Suppose [ is an adversary who wishes to
attack the protocol.

e [ starts a protocol run with B while masquerading as A.
e In parallel, [ starts a protocol run with A while masquerading as B.

1. Iy = B: N

2. B—ly: NB,M(KAB,NI,...)
1. Ig —A: Np

2. A —Ip: NA,M(KAB7NB7. . )
3. 4 > B: M(KAB,NB,...)

Attack 3.1: An oracle attack on Protocol 3.1



98 3 Protocols Using Shared Key Cryptography

In Attack 3.1, B accepts even though the conversations do not match. In light of
this attack, Bird er al. concluded that the functions u and v must be different from
one another so that A’s reply in the parallel session cannot be used by the adversary
to complete the first run. While the condition that # and v be different is adequate to
prevent the attack, it is not necessary to achieve the protocol goals. As long as the
identities of the sender and the intended partner are included inside the functions u
and v, the authentication goal can be achieved even if the functions u and v are the
same. Of course, a similar attack on such a protocol is still possible, but it would not
violate the protocol goal.

3.2.2 Bellare-Rogaway MAP1 Protocol

The MAP1 mutual authentication protocol was proposed in a landmark paper of Bel-
lare and Rogaway [75]. They provided a formal definition of matching conversations
and showed that MAP1 is provably secure. The messages are shown in Protocol 3.2.

1.LA—=B: N,
2.B—A: Np, [[DBJDA>NA7NB]KAB
3.A—B: [IDA,NB}KAB

Protocol 3.2: Bellare—Rogaway MAP1 protocol

In the Bellare-Rogaway model of security (see Sect. 2.2), an adversary may only
interact with sessions of the same protocol. An attack of Alves-Foss [30] shows why
this assumption is important in practice. He designed Protocol 3.3, known as EVEL,
which can also be shown to be provably secure.

1.A—=B: Ny
2.B—A: NB,[[DA,[DB,NA,NB][(AB
3.A—B: [IDA,NB}[(AB

Protocol 3.3: Protocol for attacking MAP1 protocol

The only difference between MAP1 and EVEI is that the identities of A and B
are swapped in message 2. A chosen protocol attack on the MAP1 protocol is now
possible. Suppose [ is an adversary who wishes to attack the protocol. In Attack 3.2
A is used as an oracle against herself.

e [ masquerades as B in a run of the MAPI protocol started by A.
e In parallel, [ starts a run of the EVE1 protocol with A while masquerading as B.



3.2 Entity Authentication Protocols 99

1. A= 1Ip: Ny

1. Ig —A: Ny

2 A Ip: NA, [IDB’IDAvNAvN‘UKAB
2. Iy = A: N}, [IDg,IDs,Na, NIk,
3. A= 1Ip: [IDAvN,Q]KAB

Attack 3.2: Chosen protocol attack on MAP1

Is Attack 3.2 on the MAPI protocol valid? A reasonable conclusion may be that
the attack is invalid since it violates an assumption of the model used in proving the
protocol secure. On the other hand, the attack is a reminder that provable security
does not guarantee security against chosen protocol attacks.

3.2.3 ISO/IEC 9798-2 Protocols

The international standard ISO/IEC 9798 Part 2 [380] specifies six protocols using
symmetric encryption algorithms. Four of these protocols are intended to provide
entity authentication alone, while two are intended to provide key establishment as
well as entity authentication. These last two are essentially identical to two protocols
in the ISO/IEC 11770-2 standard, which are described in Sect. 3.4.4. Two of the
four protocols aimed solely at entity authentication are concerned with unilateral
authentication, while the other two are concerned with mutual authentication. Below
we examine these protocols with some optional text fields omitted.

The first protocol, shown as Protocol 3.4, consists of a single message from a
claimant A to a verifier B. It provides unilateral entity authentication of A to B. The
timestamp Ty allows B to deduce that A is live, while inclusion of the identity B
ensures that A has knowledge of B as her peer entity.

A—B: {TAJDB}KAE

Protocol 3.4: ISO/IEC 9798-2 one-pass unilateral authentication protocol

The second protocol (Protocol 3.5) is similar to the first, but uses a nonce instead
of a timestamp. It provides the same properties as Protocol 3.4.

1.B—A: Np
2.A—B: {NB-,IDB}KAB

Protocol 3.5: ISO/IEC 9798-2 two-pass unilateral authentication protocol
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The third protocol (Protocol 3.6) is constructed from two instances of Proto-
col 3.4. It provides mutual entity authentication between A and B.

1.A—B: {TA,IDB}KAB
2.B—A: {TB-,IDA}KAB

Protocol 3.6: ISO/IEC 9798-2 two-pass mutual authentication protocol

Attack 3.3 on Protocol 3.6 was found by Basin, Cremers and Meier [61] using
the tool Scyther. The result is that A rejects the first run and instead accepts the other
run in which adversary I masquerades as B. Both parties accept and could correctly
infer that the other has indicated a recent willingness to communicate. However,
Attack 3.3 shows that A and B do not agree on their roles: both accept as responders
(while A rejects as initiator in the first run). This shows that the protocol does not
guarantee the property known as injective agreement.

1. A—B: {TAJDB}KAB
2. B—ly: {TB:[DA}KAE
1. Ig —A: {TBaIDA}KAB
2. A —Ip: {T/(,IDB}KAB

Attack 3.3: Attack on Protocol 3.6

In order to avoid Attack 3.3, Basin et al. [61] proposed that messages in this
protocol (and indeed for all protocols in the standard) should include elements to
prevent messages being interchanged with messages in other protocols or with dif-
ferent messages within the same protocol. This can be done by including a protocol
and message identifier in each message. This proposal was made mandatory in a
2013 corrigendum to the 9798-2 standard.

The fourth protocol (Protocol 3.7), like Protocol 3.6, is aimed at providing mu-
tual authentication but uses nonces instead of timestamps. Notice that Protocol 3.7
is not simply a combination of two instances of the nonce-based unilateral authen-
tication protocol (Protocol 3.5) in which the number of messages has been reduced
from four to three. Instead, the second message includes both nonces which binds
them together. This design may be chosen because the standard implicitly regards
the matching conversation goal as important for security.

In all of the above four protocols, the inclusion of the identity of B in the en-
crypted message from A is optional. Furthermore, in Protocol 3.6, the inclusion of

! Technical Corrigendum 3 to ISO/IEC 9798-2:2008, February 2013.
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1.B—A: Ng
2.A—B: {NA7NBJDB}KAB
3.B—A: {NB’NA}KAB

Protocol 3.7: ISO/IEC 9798-2 three-pass mutual authentication protocol

the identity of A in the encrypted message from B is also optional. The standard com-
ments that these fields are included to prevent reflection attacks. Their inclusion is
made optional so that the protocols can be ‘optimised’ for networking environments
where such attacks are precluded by other means.

3.2.4 ISO/IEC 9798-4 Protocols

The international standard ISO/IEC 9798 Part 4 [378] specifies four protocols using
a cryptographic check function or, in other words, a message authentication code. All
of these protocols are intended to provide entity authentication alone, and they cor-
respond very closely to the first four protocols in the ISO/IEC 9798 Part 2 standard
examined in Sect. 3.2.3. Thus two of the four protocols are concerned with unilat-
eral authentication, while the other two are concerned with mutual authentication.
As before we examine these protocols with some optional text fields omitted.

The first protocol, shown as Protocol 3.8, consists of a single message from a
claimant A to a verifier B. It provides unilateral entity authentication of A to B. The
timestamp Ty allows B to deduce that A is live, while inclusion of the identity B
ensures that A has knowledge of B as her peer entity.

A—B: Ty, MACKAB(TAJDB)

Protocol 3.8: ISO/IEC 9798-4 one-pass unilateral authentication protocol

The second protocol (Protocol 3.9) is similar to the first, but uses a nonce instead
of a timestamp. It provides the same properties as Protocol 3.8.

1.B—A:Np
2.A—B: MACKAB(NB,IDB)

Protocol 3.9: ISO/IEC 9798-4 two-pass unilateral authentication protocol

The third protocol (Protocol 3.10) is constructed from two instances of Proto-
col 3.8. It provides mutual entity authentication between A and B. An attack, essen-
tially the same as Attack 3.3 on Protocol 3.10, was found by Basin et al. [61] which
shows that A and B do not necessarily agree on their roles.
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1.A—B: TA,MACKAB(TA,IDB)
2.B—A: TB,MACKAB(TB,IDA)

Protocol 3.10: ISO/IEC 9798-4 two-pass mutual authentication protocol

As before, to avoid the attack messages in the protocol should include elements
to prevent messages being interchanged with messages in other protocols or with
different messages within the same protocol. This proposal was made mandatory in
a 2012 corrigendum to the 9798-4 standard.”

The fourth protocol (Protocol 3.11), like Protocol 3.10, is aimed at providing
mutual authentication but uses nonces instead of timestamps.

1.B—A: Ng
2.A—B: NA,MACKAB(NA,NB,IDB)
3.B—A: MAC[(AB(NB,NA)

Protocol 3.11: ISO/IEC 9798-4 three-pass mutual authentication protocol

Similar to the protocol in ISO/IEC 9798-2 examined in Sect. 3.2.3, in all of the
ISO/TEC 9798-4 protocols, the inclusion of the identity of B in the encrypted message
from A is optional. Furthermore, in Protocol 3.10, the inclusion of the identity of A
in the encrypted message from B is also optional.

3.2.5 Woo-Lam Authentication Protocol

All the entity authentication protocols we have looked at so far assume that a shared
key already exists between the two principals involved. Woo and Lam [736] devised
several protocols for authentication. One of these was a unilateral authentication pro-
tocol using a trusted server as a key translation centre with the job of converting mes-
sages encrypted with one key that it knows into messages encrypted with a different
key. Protocol 3.12 shows the message flows.

The idea is that B chooses his nonce Np and challenges A to encrypt it with Kug.
On receipt of the purported encryption, B asks S to translate it into an encryption with
Kps, which B can decrypt and check. There are several attacks known on Protocol
3.12, the first of which was found by Abadi (as attributed by Woo and Lam [737]).

As shown in Attack 3.4, the adversary [ starts two runs with B, in one of which
I claims to be A. The two protocol runs continue in parallel but / simply sends a
random value R when asked to respond to the challenge intended for A. Furthermore,
I uses the challenge intended for A in the encryption for the legitimate run. The server
S can only successfully translate the properly encrypted ciphertext but the returned

2 Technical Corrigendum 2 to ISO/IEC 9798-4:1999, July 2012.
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1.A— B:IDy

2.B—A: Np

3.A—B: {NB}KAS

4. B— S: {IDp,{Np}k,s } Kps
5.8 — B: {Np}ky

Protocol 3.12: Woo-Lam unilateral authentication protocol

value is correct only for the run where I masquerades as A. The result is that B accepts
the run in which 7 is masquerading as A and rejects the other run.

1. Iy — B: ID,
1!.1—=B: ID;

2. B—14: Np

2.B—1: Np

3. I, > B:R

3.1—B: {Np}k,

4. B—S: {IDs,R}k,q

4. B—S: {ID;,{N}K ks
5. S—B: {Np}ky

Attack 3.4: Abadi’s attack on Protocol 3.12

Woo and Lam [737] considered a number of variants of Protocol 3.12 in an effort
to identify the precise source of the problem. Clark and Jacob [217] showed that most
of these were still vulnerable to typing attacks. However, such attacks are prevented
if principals can detect replay of messages they have created, which is an assumption
of Woo and Lam.

3.2.6 Comparison of Entity Authentication Protocols

Table 3.2 summarises the major properties of the seven entity authentication proto-
cols described earlier. For the goals, an entry (*) indicates that the goal is claimed for
the protocol but fails due to attack. In the second column, we indicate whether the
definition of entity authentication given in Definition 13 is achieved. From the table,
we see that all the protocols meet this definition.

In many protocols, knowledge of the peer entity is conveyed implicitly in the
authentication message. For example, in the Bellare—-Rogaway MAP1 protocol even
though the identity of B is not included in the authentication field of message 3, it is
possible to infer it through the use of K4p. In the final column, we indicate whether
specific attacks have been proposed in the literature. As discussed in Sect. 3.2.1, the
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Table 3.2: Summary of major properties of specific entity authentication protocols

Properties — Liveness Entity Attack
J Protocol authentication

Bird et al. canonical 1 (3.1) A+B A+B Yes
Bellare—Rogaway MAP1 (3.2) A+B A+B Yes
9798-2 one-pass unilateral (3.4) B B No
9798-2 two-pass unilateral (3.5) B B No
9798-2 two-pass mutual (3.6) A+B A+B No
9798-2 three-pass mutual (3.7) A+B A+B No
Woo-Lam (3.12) B (%) B (%) Yes

attack on the Bird et al. canonical protocol fails to violate the authentication goal.
The chosen protocol attack on the Bellare—-Rogaway MAP1 protocol does violate
the authentication goal, but that attack was aimed at showing a limitation of security
proofs in practice rather than showing a weakness of the protocol. The attacks on the
ISO/TEC 9798-2 protocols discussed in Sect. 3.2.3 are avoided by using the latest
version of the standard including corrigenda.

3.3 Server-Less Key Establishment

This section discusses protocols that allow keys to be established directly between
two users without the use of a server. The protocols considered require that the two
users already share a long-term secret key and may require either that one user gen-
erates the established key (key transport) or that both users contribute part of the
established key (key agreement).

Table 3.3 gives additional notation used in this section. In the remainder of this
section, we examine server-less key transport protocols followed by server-less key
agreement protocols.

Table 3.3: Additional notation used for server-less protocols

Kap The long-term key initially shared by A and B

K)p The value of the new session key

3.3.1 Andrew Secure RPC Protocol

Although dating from 1989, the Andrew secure RPC protocol [654], shown in Proto-
col 3.13, is still a widely used example in the literature. The protocol has two rather
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independent components. In the first three messages, A and B perform a handshake
using a key they already share, K4p. In the final message, B sends a new session key
K} to A. Nonce Ny is chosen by A and nonces Np, Ny are chosen by B.

1.A—B: {Np}k,,

2. B—A: {Ny+1,Ng}x,,
3.A—B: {Ng+1}k,

4. B—A: {K)ygNp ks

Protocol 3.13: Andrew secure RPC protocol

Burrows et al. [171] pointed out a major problem with Protocol 3.13: A has no
assurance that K, 5 is fresh. An intruder could substitute a previously recorded mes-
sage 4 (from B to A) and force A to accept an old, possibly compromised, session key.
Another problem was pointed out by Clark and Jacob [216]. They proposed Attack
3.5, a typing attack in which an intruder records message 2 and substitutes it in place
of message 4.

1.A—B: {NA}KAB
2.B—A: {NA-I—I,NB}KAB
3.A—B: {NB+]}KAB

4. Ig A {NA+ 17NB}KAB

Attack 3.5: Clark—Jacob attack on Andrew protocol

The result of the attack is that A accepts the value N4y + 1 as a session key with
B. Clark and Jacob pointed out that the potential damage of Attack 3.5 depends on
what property the nonce N4 is assumed to have. If Ny4 is a predictable nonce such
as a counter value, then an attacker could force A into accepting a bogus quantity
as a session key, whose value could be known to the attacker. If Ny were random,
however, then the potential damage of the attack is not so immediate since there is
no release of the session key.

It is interesting to consider a revised version of the protocol suggested by Bur-
rows et al. shown as Protocol 3.14. Their idea was to change the treatment of the
nonces used in the protocol. The nonce Ny need not be secret; when sent by A in
plaintext it still forms a typical usage of the challenge-response mechanism. The
nonce Np could be omitted altogether. Instead of sending Np, B could send a key
K}, along with A’s nonce in message 2. Further differences can be found in the last
two messages of Protocol 3.14. In the second last message, the encryption with K,
is intended to assure B that A knows the key. In the last message, B sends Ny in
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plaintext since its purpose is not connected with protocol, but with the subsequent
communications session.

1.A—B: IDs,Ny
2.B—A: {NA’KAB}KAB
3.A=B: {Na}g,,

4. B—A:Nj

Protocol 3.14: Revised Andrew protocol of Burrows ef al.

Lowe [502] published Attack 3.6 on Protocol 3.14. An intruder / engages in two
protocol runs with A while masquerading as B. In one of these runs [ is the initiator
of the protocol, while in the other A is induced to act as initiator.

1. A—1Ig: IDs,N4

1. Ip — A : IDp,Ny

2/ A —Ip: {NA’K;{B}KAB
2. Ig —A: {NAvK;\B}KAB
3. A= 1Ip: {NA}KAB

3. Ip —A: {NA}KAB

4. I A : Ny

4. A—1g: N,

Attack 3.6: Lowe’s attack on revised Andrew protocol

The result of the attack is that A has completed two successful runs of the pro-
tocol, apparently with B, although B has not engaged in the protocol. More impor-
tantly, the attack defeats goals concerning entity authentication rather than key estab-
lishment. The attack is valid if either entity authentication or key confirmation was a
protocol goal. Lowe proposed to fix the protocol by adding B’s identity to message 2.
A similar attack was found by Liu et al. [499] on an alternative revised version of the
protocol suggested by Burrows ef al. in which the final encrypted message received
by A includes A’s nonce.

3.3.2 Janson-Tsudik 2PKDP Protocol

Janson and Tsudik [394] proposed Protocol 3.15 which extends a two-party authen-
tication protocol of Bird et al.[103] to provide key establishment. One distinctive
aspect of 2PKDP is that it employs two separate cryptographic algorithms: one al-
gorithm that provides confidentiality and another that provides authentication. The
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algorithm used for confidentiality purposes is bitwise exclusive-or, while that for au-
thentication is a MAC algorithm. The protocol design allows an encryption-based
(CBC-MAQC) or hash-based MAC algorithm to be used. In the first message, A sends
her nonce Ny to B. In the second message, B generates a new session key K} , and
computes two values, AUTH and MASK, using Kup.

1.A— B: IDj,Ny
2. B—A: AUTH,MASK © K
3.A = B: [Na,Kyp,Alks

Protocol 3.15: Janson-Tsudik 2PKDP protocol

The quantities AUTH and MASK are defined as follows:

AUTH = [Ns,K)5,Blk,s
MASK = [AUTH]|

Kap-

The second part of message 2 can be viewed as analogous to an encryption of K},
using a one-time pad. Upon receiving message 2, A computes a MAC under K4p of
the received AUT H value to allow decryption of the session key from the second part
of message 2, then verifies that the first part of message 2 agrees with the MAC under
Kap of the nonce sent earlier, the received session key, and B’s identity. Verification
of the first part of message 2 implies key freshness as well as key integrity. Upon
receiving message 3, B verifies that the received value is correct, which implies key
confirmation of A to B.

3.3.3 Boyd Two-Pass Protocol

Protocol 3.16 by Boyd [130] allows both A and B to contribute part of the established
key. The messages sent are simply the random numbers chosen by A and B. The new

1.LA—=B: N,
2.B—A: Np

Protocol 3.16: Boyd two-pass protocol

key is Kz = f(Na,Np,Kap), where f is a combining function such that it must be
infeasible to find f(.,.,Ksp) without knowledge of Ksp, even after repeated use.
This property is necessary to ensure key authentication (that is, the secrecy of K}, ).
Another property required of f is that it is one-way in the first two inputs. This
property is necessary to ensure key freshness. For a concrete example, any practical
secure MAC algorithm may be chosen for f.
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3.3.4 ISO/IEC 11770-2 Server-Less Protocols

The international standard ISO/IEC 11770 Part 2 [381] specifies 13 protocols us-
ing symmetric encryption algorithms. Six of these protocols are server-less, while
the other seven rely on a trusted server. The server-based protocols are described in
Sect. 3.4.4. Some of the protocols make use of a key derivation function f(-) in form-
ing the new session key from two or more inputs. Two examples of f are given in the
appendix of the standard: one is bitwise XOR of the inputs and the other is applica-
tion of a hash function to the concatenation of the inputs. Cremers and Horvat [229]
performed an analysis of the protocols in ISO/IEC 11770-2 using the Scyther tool.
For the six protocols discussed in this section they did not find any violations of the
security properties claimed in the standard.

The first two of the six server-less protocols each use only one message pass
and provide only implicit key authentication. Mechanism 1, shown as Protocol 3.17,
consists only of the encrypted timestamp of A. The new session key is derived as
Ky = f(Kap,Ty) where f is the key derivation function. The single message in
mechanism 2, shown as Protocol 3.18, consists only of the new encrypted session
key. This means that B gains no assurance about its freshness.

A= B: {Ts}k,,

Protocol 3.17: ISO/IEC 11770-2 Key Establishment Mechanism 1

A—B: {KI/AAB}KAB

Protocol 3.18: ISO/IEC 11770-2 Key Establishment Mechanism 2

The other four server-less protocols are derived from each of the four two-party
entity authentication protocols that were described in Sect. 3.2.3 by adding a key (or
more generally keying material) to each encrypted message. The next four protocols,
Protocols 3.19 to 3.22, may be compared with the four entity authentication proto-
cols, Protocols 3.4 to 3.7. The entity authentication properties of each corresponding
pair are the same.

Mechanism 3, shown as Protocol 3.19, consists of a single message from a
claimant A to a verifier B. The new session key, K, 5, is chosen by A and encrypted for
B. Both A and B achieve the good key property, but only B achieves key confirmation.

A—B: {TA,IDB,KAB}[(AE

Protocol 3.19: ISO/IEC 11770-2 Key Establishment Mechanism 3
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Mechanism 4, shown as Protocol 3.20, uses a nonce instead of a timestamp. The
properties achieved are the same as for Mechanism 3.

1.B—A: Np
2.A—B: {NB7IDB7KAB}KAB

Protocol 3.20: ISO/IEC 11770-2 Key Establishment Mechanism 4

Mechanism 5, shown as Protocol 3.21, is constructed from two instances of Pro-
tocol 3.19. Now both A and B choose keying material, Fyp and Fps respectively.
(Optionally either one of these may be omitted.) The session key is derived as
K = f(Fap,Fpa) where f is the key derivation function. Both A and B obtain the
good key property of Definition 15, but if Fp4 is included in the session key deriva-
tion only A will achieve key confirmation.

1.A— B: {Ty,IDp,Fap}k,,
2. B—A: {Tp,IDs, Fpa i,

Protocol 3.21: ISO/IEC 11770-2 Key Establishment Mechanism 5

Mechanism 6, shown as Protocol 3.22, is similar to Protocol 3.21. Keying mate-
rial is provided from both parties and the session key is calculated in the same way. A
major difference is that it uses nonces instead of timestamps. The key establishment
properties achieved are the same as for Mechanism 5. However, like Protocol 3.7,
inclusion of both nonces in messages 2 and 3 binds the protocol messages together.
In contrast, an adversary could interleave two runs of Protocol 3.21 so that A and B
do not see matching conversations.

1.B—A:Ng
2. A— B: {Ns,Np,IDp,Fa}K,,
3.B—A: {NB-,NAyFBA}KAB

Protocol 3.22: ISO/IEC 11770-2 Key Establishment Mechanism 6

As with the authentication protocols in Sect. 3.2.3, in all of the above four proto-
cols, the inclusion of the identity of B in the encrypted message from A is optional.
Furthermore, in Protocol 3.21, the inclusion of the identity of A in the encrypted
message from B is also optional.
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3.3.5 Comparison of Server-Less Protocols

Table 3.4 summarises the major properties of the 10 server-less protocols described
earlier. The last five columns summarise the goals that these protocols meet. For these
goals, an entry (*) indicates that the goal is claimed for the protocol but fails due to
an attack. From the table, we see that all the protocols except the Andrew secure
RPC protocol and ISO/IEC 11770-2 Mechanism 2 meet the good key goal. Further,
the revised version of the Andrew protocol suggested by Burrows et al. achieves the
good key goal but fails to meet the key confirmation goal.

Table 3.4: Summary of major properties of specific server-less protocols

Properties — No.of  Key Key Key Key  Attack
} Protocol passes control freshness auth. conf.

Andrew (3.13) 4 B No (*) Yes No Yes
BAN-Andrew (3.14) 4 B Yes Yes No (%) Yes
Janson-Tsudik (3.15) 3 B Yes Yes Yes No
Boyd (3.16) 2 A/B Yes Yes No No
11770-2 Mech. 1 (3.17) 1 A Yes Yes B No
11770-2 Mech. 2 (3.18) 1 A No Yes No No
11770-2 Mech. 3 (3.19) 1 A Yes Yes B No
11770-2 Mech. 4 (3.20) 2 B Yes Yes B No
11770-2 Mech. 5 (3.21) 2 A/B Yes Yes A No
11770-2 Mech. 6 (3.22) 3 A/B Yes Yes A No

Table 3.4 indicates that key confirmation may be obtained by one principal in
most of the ISO mechanisms. This is because when a key is received from the part-
ner, the recipient knows that the sender is in possession of the key. It is interesting
to note that the ISO/IEC 11770-2 standard [381] indicates that none of these pro-
tocols provides key confirmation. This may be because mutual key confirmation is
expected. The standard indicates that key confirmation may be achieved by send-
ing a time-varying parameter encrypted with the session key. Note that Mechanism
1 allows B to know that A sent the timestamp (assuming that reflection attacks are
prevented) and so B has assurance that A has the ability to calculate the session key.

3.4 Server-Based Key Establishment

There exist numerous examples of server-based protocols in the literature. Most of
these are key transport or key agreement protocols in which the server, or one or both



3.4 Server-Based Key Establishment 111

users, has the responsibility for key generation. Hybrid protocols in which all three
of them share the responsibility for key generation are less common and not as well
known as the other two classes of protocols.

An important consideration in the design of server-based key transport protocols
is who generates the session key. Many protocol designers implicitly assume that
the users are not capable of generating good-quality session keys, leaving this task
for the server. However, this dependence is not always necessary, as may be seen in
published protocols where users, not the server, choose a session key.

Table 3.5 gives additional notation used in this section.

Table 3.5: Additional notation used for server-based protocols

Aand B Two users wishing to establish a session key

S The server

Kys,Kps Long-term keys initially shared by A and S, and by B and S
Kap Session key to be shared by A and B

3.4.1 Needham-Schroeder Shared Key Protocol

The famous protocol proposed by Needham and Schroeder [581] in 1978 is shown as
Protocol 3.23. As discussed in Chap. 1, this protocol achieves the good key property
with respect to A but not B. The second message encrypted with A’s shared key Kg
includes both A’s nonce and B’s identity, assuring A of session key freshness and key
authentication, respectively.

1.A—S: IDs,IDp,Ny

2. S — A: {Na,IDp,Kap,{Kap,IDA } Ky } Ky
3. A— B: {Kap,IDa}ky

4. B—A: {NB}KAB

5.A—B: {NB— I}KAB

Protocol 3.23: Needham—Schroeder shared key protocol

For B the situation is slightly different: he decrypts the encrypted message re-
layed by A to learn the session key value and then carries out a nonce handshake
with A to be sure that the message is not a replay. However, the handshake can be
easily subverted since an adversary can be expected to know the value of an old ses-
sion key. This weakness of the protocol was originally pointed out by Denning and
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Sacco [240]. In their attack an intruder uses a compromised session key to masquer-
ade as A to B. To overcome the attack, Denning and Sacco suggested Protocol 3.24
as a solution, using timestamps to allow verification of key freshness.

1.A—S: ID,IDg
2.5 A: {IDp,Kap, Ts, {IDx Kap, Ts} s Y Kos
3. A= B: {IDa,Kap, Ts} Kys

Protocol 3.24: Denning—Sacco protocol

An attack of Chevalier and Vigneron [202] shows that it is essential that all fields
within encrypted messages are checked. In Attack 3.7, an adversary [ starts a run
of the protocol as B, and intercepts the reply sent by S. Now, suppose that the im-
plementation is such that B does not distinguish between the timestamp 75 and the
concatenated field Ts, {IDp,Kup, Ts} Kus- Then I can simply reuse the message sent
by S to masquerade as A in a new run with responder B. The result is that B does not
achieve liveness of A. Note the attack does not affect key establishment properties.

1. I = S: IDp,IDy
2. S—1Ip: {IDa,Kap,Ts,{IDp,KaB, Ts }K,s } Kss
3. 1p — B: {IDy, K, Ts,{IDp, Kap, Ts } Kys } Kis

Attack 3.7: Chevalier—Vigneron attack on Denning—Sacco protocol

Bauer et al. [65] discussed the vulnerability of the Needham—Schroeder protocol
to the compromise of A’s long-term key: an intruder who learns the long-term key
of A can impersonate A (as in the Denning—Sacco attack) even after the compromise
is detected and the long-term key replaced. They suggested a solution without using
timestamps shown as Protocol 3.25. The protocol they proposed is essentially sym-
metric with respect to A and B: each of them sends a nonce to S in plaintext, and S
returns the nonces in separate messages for A and B.

1.A— B:IDjg,Ny

2. B—S: ID4,Ny,IDg, Np

3.5—B: {KAB7IDA7NB}K337{KAB7IDB-,NA}KAS
4. B—A: {KAB7IDBaNA}KA5

Protocol 3.25: Bauer—Berson—Feiertag protocol
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Buchholtz [166] proposed an attack on Protocol 3.25, shown as Attack 3.8. The
outcome of the attack is that B has completed a protocol run using nonce Np with
initiator A. Similarly, A has completed a protocol run using nonce N with initiator B.
However, there is a single run of server S with the nonces N and Np. Although the
attack violates protocol goals regarding agreement on roles and exchanged values, it
does not affect the key establishment properties.

1. A—B: IDy,Ny

2. B—Ig:ID4,Ny,IDg,Np

1”.B—A: IDg,Nj,

2. A~ Is: IDp,Nj,IDs, N,

2. Ig—S: IDg,N},IDp,Ng

3. S—1Ip: {KAﬁalDAJVB}KBS?{KAB7IDB7N,Q}KA5
3. I —B: {KAB,IDA,NB}KBS,anylhing

3".Is — A : {Kap,IDp,N} } ks, anything

Attack 3.8: Buchholtz’s attack on Bauer—-Berson—Feiertag protocol

3.4.2 Otway—Rees Protocol

The Otway—Rees protocol [597], like Protocol 3.25, provides symmetric assurances
of freshness. The message flows are shown as Protocol 3.26, where M is a second
nonce generated by A. This protocol is susceptible to a typing attack, as described in
Sect. 1.4.7. The attack described there is due to Boyd [128], subsequently rediscov-
ered by Clark and Jacob [216].

1.A— B: M,IDy,IDg,{Ny,M,ID4,IDp}k,,

2. B—S: M,IDp,IDg,{Ns,M,IDs,IDp}k,.,{Ng,M,ID4,IDp} g,
3.S—B: 1‘/[7 {NAvKAB}KAs7{NB7KAB}KBS

4. B—A: M, {NAvKAB}KAS

Protocol 3.26: Otway—Rees protocol

Consider exactly what actions are required of S upon receiving message 2 in the
protocol. There are essentially two possibilities:

Al. S checks that the values obtained by decrypting the fields M, ID4 and IDp in the
two encrypted parts match.

A2. S checks that the plaintext versions of (M,ID4,IDg) match the values obtained
by decrypting the fields M, ID4 and IDp in the two encrypted parts.
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An attack of Boyd and Mao [138] shows that it is essential that the plaintext
versions of M, A and B are checked. Without this, the session key can turn out to be
shared between A and an intruder, allowing the intruder to masquerade as B as shown
in Attack 3.9. Suppose A starts a protocol run with B. An intruder C who wishes to
impersonate B chooses a nonce N¢ and substitutes the message shown in Attack 3.9
in place of the original one.

2. Cp— S: M,IDy,IDc,{Na,M,ID4,IDg}k s, {Nc,M,IDa,IDp }K

Attack 3.9: Attack on Otway—Rees protocol without plaintext checking

If we assume that S does only the checking specified in A1, the message will be
found correct by S and so S will encrypt Kyp with the key Kcg in message 3'. It is
clear that this attack violates the goal of implicit key authentication: A believes the
key is shared with B, whereas in fact it is shared with C. Note that the attack is easily
prevented if S does the checking specified in A2. Whether this is a valid attack on
the protocol depends on the action taken by S, something (unfortunately) not clearly
specified in the protocol description.

In Protocol 3.26 the encrypted message received by a user from the server does
not include a concrete field for the identity of the other user to whom S intends to
make the key known. What indication, then, does a user have about who else the
session key is shared with? The answer to this question can be found by examining
a simplified version of the protocol due to Burrows et al. shown as Protocol 3.27. In
the simplified version of the protocol, the nonce Np is sent unencrypted in message
2.

1.A— B: M,ID4,IDg,{Ns,M,ID4,IDp}k,,

2. B— S: M,IDp,IDg,{Ns,M,IDs,IDp}k,,,Ng,{M,IDy,IDp} g,
3.—>B: M, {NA7KAB}KA57{N37KAB}KBS

4. B—A: M, {NA>KAB}KA5

Protocol 3.27: Otway—Rees protocol modified by Burrows et al.

Protocol 3.27 was shown to be flawed by Boyd and Mao. Consider an attacker C
who has obtained the encrypted message {M,ID¢,IDp}k,, by engaging in a previ-
ous legitimate run of the protocol with B. To attack the protocol, C starts a run with
B and masquerades as A by capturing message 2 and modifying it, replacing cleart-
ext identifier A by C and {M,ID4,IDp}k,, by {M,IDc,IDp} k. The attacking run
proceeds as shown in Attack 3.10.

The result of the attack is that B believes that the session key is shared with A,
whereas in fact it is shared with C. Notice that the above attack is not applicable to
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1. C4 —B: M,IDA,IDB,{Nc,M,IDc,IDB}KCS

2. B—Cs: M,ID4,IDp,{Nc,M,IDc,IDp} ks, N, {M,ID4,IDp} ky
2. Cg — S: M,IDc,IDg,{Nc,M,IDc,IDp}K s, N, {M,IDc,IDg } K,
3. S—B: M, {NC>KCB}KCS7{NB7KCB}KBS

4. B— CA : M7 {NC7KCB}KC5

Attack 3.10: Attack on Otway—Rees protocol modified by Burrows et al.

the original Otway—Rees protocol where the nonce Nj is cryptographically bound
to the identity A by encryption in message 2. As a result of this binding, B can rely
on the nonce Np in message 3 to infer that the key is shared with A. The attack on
the simplified protocol is possible because it removes the binding. The treatment
of nonces in the Otway—Rees protocol was discussed by van Oorschot [593] and
subsequently by Abadi and Needham [6]. The latter authors suggested an alternative
protocol where the nonce Np (as well as the nonce Ny ) is sent unencrypted in message
2 and yet the above attack is prevented. The main idea is that in Protocol 3.28 the
encrypted message received by each user includes the identity of the other user to
whom S makes the session key known.

1.A— B: IDs,IDg,Ny
2.B—S: IDA,ID,Na,Np

3.8 — B: {Ns,IDy,IDp,Kag},s {N8,IDA,IDg, Kap} kcys
4. B—A: {Ny,IDs,IDg, Kap} ks

Protocol 3.28: Otway—Rees protocol modified by Abadi and Needham

This idea was first discussed in a preliminary draft of Boyd and Mao’s pa-
per [137] and subsequently by van Oorschot [593]. With this modification, it is easy
to check that the previous attack no longer works. Note that Protocol 3.28 is similar
in structure and goal to the protocol of Bauer et al. (Protocol 3.25). Like the original
Otway—Rees protocol it provides key authentication and key freshness assurances,
although it differs with respect to goals for entity authentication. In Protocol 3.26,
A has assurance that B is alive: when A receives message 4, she knows that B must
have sent message 2 recently. In Protocol 3.28, A does not achieve liveness of B.

3.4.3 Kerberos Protocol

The Kerberos software system was developed at MIT to protect the network services
provided as part of project Athena. It is one of the de facto standards for authentica-
tion on computer networks. Kerberos uses as its building block a key establishment
protocol based on the Needham—Schroeder protocol but with timestamps instead of



116 3 Protocols Using Shared Key Cryptography

challenge-response, following Denning and Sacco’s suggestion. A good overview of
the current version of the Kerberos protocol, known as Version 5, can be found in a
paper by Neuman and Ts’o [582]. The Version 5 protocol has evolved from the Ver-
sion 4 protocol; it addresses several shortcomings of the Version 4 protocol including
some potential security weaknesses.

Differences between Kerberos Versions 4 and 5 are described by Kohl et al.
[441]. One weakness of the Version 4 protocol is that the encryption method used
does not provide adequate integrity protection for encrypted messages, even though
the protocol was specifically designed with this requirement in mind. Version 4
makes use of a non-standard mode of DES known as plaintext cipher-block chain-
ing (PCBC) mode with the property that errors in the decrypted ciphertext propagate
to all successive blocks of plaintext. However, as pointed out by Kohl [440], PCBC
encryption is susceptible to a block-swapping attack which allows a partially gar-
bled message to be accepted by the receiver. Kerberos Version 5 uses standard CBC
encryption and embeds a checksum in the message before encryption to provide suf-
ficient integrity protection.

The basic Kerberos protocol involves three parties: a client which desires to use
some service, an application server which provides a service, and an authentication
server (AS) which is contacted by the client before attempting to access the appli-
cation server. We will use the notations A, B and S below to denote the Kerberos
terms client, application server and AS, respectively. The client and the server do not
initially share a key between themselves, but they do share a key with S. For the sake
of clarity, Protocol 3.29 shows only those message fields that are critical to security;
details of other message fields can be found in RFC 1510 [439].

I.A—S: ID4,IDg, Ny
2.8 —A: {KAB,IDB,L,NA,.. ~}KAS7{KABJDA7L7~ "}KRS
3.A—B: {IDA,TA}KAB,{KAB,IDA,L,. . '}Kus

Protocol 3.29: Basic Kerberos protocol

In the Kerberos papers, the protocol message fields that are encrypted with Kpg
and Ky p are referred to as the ficket and the authenticator, respectively. Among other
data, the ticket contains the session key generated by S that will be used by the client
and server, the client’s identity, and an expiration time L after which the session key
is no longer valid. The authenticator contains the client’s identity and a timestamp
from the client’s clock. If the timestamp is successfully verified by the application
server, then the server obtains assurance that the client possesses the session key
contained in the ticket.

The basic Kerberos protocol allows an optional fourth message shown in Protocol
3.30, in which the server returns the client’s timestamp along with other optional
information, all encrypted using the session key.
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4. B—A: {TA7"'}KAR

Protocol 3.30: Optional Kerberos message to complete mutual authentication

The Kerberos protocol has key establishment as well as entity authentication
as its goal. From A’s viewpoint the protocol provides the good key property since
A can be confident that the key is fresh and known only to herself and B. From
B’s viewpoint the protocol provides only key authentication since the ticket does
not contain any information from which B can be confident that the key is fresh.
However, the freshness of the key is judged by a different measure. To ensure key
freshness from B’s viewpoint, the protocol relies on the expiration time contained in
the ticket, rather than sending with the key a quantity known to be new. As long as
the ticket has not expired, B can still be confident that the session key is safe, even
if it was used in a previous session with A. The use of a ticket without an absolute
freshness indicator has a useful aspect. It makes it possible for a client to cache the
ticket from the server so that a session key may be re-established directly with B
without the intervention of S. (Protocols that use tickets to re-establish session keys
are often known as repeated authentication protocols in the literature.)

As for the authentication properties achieved by the protocol, the combination of
authenticator and ticket in the third message provides strong entity authentication of
A to B. The fourth message, if present, provides entity authentication of B to A.

3.4.4 ISO/IEC 11770-2 Server-Based Protocols

The server-less protocols in the international standard ISO/IEC 11770 Part 2 [381]
were described in Sect. 3.3.4. Here we discuss the seven server-based protocols in
that standard. In four of these the server chooses the session key and acts as a key
distribution centre. In the other three the session key is chosen by either A or B and
the server acts as a key translation centre to make that key available to the other party.

The first version of the ISO/IEC 11770-2 standard was published in 1998. From
2004 a number of attacks were found on several of the server-based protocols. A
second edition of the standard was published in 2008. There were further attacks
found on some of the protocols in the second edition, although currently all known
attacks can be avoided by taking appropriate precautions as we explain below. We
first mention the two protocols for which no attack was found.

Key Establishment Mechanism 7. The server simply encrypts and sends K4p to
both parties including the identity of the peer entity. This is similar to the Bauer—
Berson—-Feiertag protocol (Protocol 3.25) but the lack of nonces means that nei-
ther A nor B gains key freshness.

Key Establishment Mechanism 10. As shown in Protocol 3.31, principal A first
sends an encrypted request message to S which checks its authenticity (including
checking the freshness of the timestamp or sequence number). This provides the
rather unusual feature that only authentic parties are able to request new keys. S
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replies by sending the key to both principals after encrypting it together with the
identity of the peer entity and a timestamp or counter.

1.A—S: {Ty,IDp}k,q
2.85—A: {TS>KAB>IDB}KAS
3.8 — B: {T},Kap,ID ks

Protocol 3.31: ISO/IEC 11770-2 Key Establishment Mechanism 10

In Key Establishment Mechanism 8, shown in Protocol 3.32, principal A sends
a nonce to S and the key is returned encrypted for A together with A’s nonce and
the identity of B. In addition the key is encrypted for B together with a timestamp or
counter and the identity of principal A.

1.A—S: Ny,IDg
2.8 —A: {Na,Kap,IDB} ks, {Ts, Ko, IDA } iy
3.A—B: {T87KA371DA}KBS

Protocol 3.32: ISO/IEC 11770-2 Key Establishment Mechanism 8

Chen and Mitchell [197] found a typing attack on Protocol 3.32 using a parsing
ambiguity. Suppose that a malicious principal’s identity C is equal to the concatena-
tion of bit O with A’s identity, that is, C = (0,A). The attack proceeds as shown in
Attack 3.11. The result of the attack is that B believes the value (K¢p,0) is a key to

1. C—S: Nc,IDp
2. S—=C: {Nc,Kcp.IDB}kqs {Ts, Kcp,IDc} iy
3/. CA — B {TS7(KCB:0)7IDA}KBS

Attack 3.11: Chen—Mitchell attack on ISO/IEC 11770-2 Key Establishment Mech-
anism 8

be shared with A, although it is known to C. One way to prevent Attack 3.11 is to
ensure that parsing of message components is unambiguous and this was required in
a corrigendum to the standard in 2009.

Key Establishment Mechanism 8 was one of several protocols from ISO/IEC
11770-2 attacked by Cremers and Horvat [229] in their analysis using the Scyther
tool. Their attack assumes an adversarial principal taking roles both as a server S, and
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as a user A or B. Similar attacks also apply against Key Establishment Mechanisms
9, 12 and 13. The attacks are not prevented by precautions against type checking but
a defence is to prevent principals from using the same key when acting in different
roles: a principal which can both be a server and have a role as initiator should have
two independent keys to use in each role. This precaution was already mandated for
related protocols in the ISO/IEC 9798-2 protocols (see Technical Corrigendum 3 to
ISO/TEC 9798-2, February 2013).

In Key Establishment Mechanism 9 both principals send their nonces to S and
they are returned with the encrypted key and the identity of the peer entity. This
protocol is identical to Protocol 3.25 except that it also provides key confirmation
through an additional exchange using the session key. An essentially identical proto-
col is also included in ISO/IEC 9798 Part 2 [380] where it is called five-pass authen-
tication.

The first of the protocols that uses S as a key translation centre, called Key Estab-
lishment Mechanism 11, does not provide key freshness. Nevertheless, the standard
claims that it provides key authentication which Cremers and Horvat [229] showed
is not correct if the principals can be tricked into accepting a principal identity as
a key value. Again, this kind of attack can be prevented by labelling protocol fields
with their type.

In comparison with Key Establishment Mechanism 11, Mechanism 12 is similar
but now adds a nonce for A to check that the key was received by S and a timestamp
for B to check freshness. The session key, K4p, is chosen by A. Protocol 3.33 shows
the version of the protocol from the first (1998) edition of the 11770-2 standard.

1.A—=S: {NA-,IDB7KAB}KAS
2.8 —A: {NAJDB}KAS7{TS’KAB’IDA}KBS
3. A— B: {Ts,Kup,ID } ks

Protocol 3.33: ISO/IEC 11770-2 (1998) Key Establishment Mechanism 12

An optional handshake for entity authentication and key confirmation is also
specified. It is interesting to compare this protocol with the wide-mouthed-frog pro-
tocol (Protocol 3.36) below. Although there are distinct similarities, the asymmetry
in Protocol 3.33 prevents the reflection attack described on Protocol 3.36.

Unfortunately, Protocol 3.33 was shown to be flawed by Cheng and Comley [200]
who pointed out two attacks. In Attack 3.12, the adversary / masquerades as A by
replaying the first message from a previous run of the protocol, containing an old key
K5 used by A and B. I intercepts the reply sent by S to A and forwards the encrypted
part intended for B unchanged, thereby forcing B to use the old key K, 5. Attack 3.12
works because the nonce N4 cannot be checked for freshness by S. In fact the 1998
standard allowed any time-varying parameter to be used in place of N4, and one way
to avoid the attack is to replace N4 by a timestamp so that the replay can be detected
by S.
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I.IA%SZ {NA,IDB,KAB}KAS
2. S—)IA . {NAaIDB}KA57{TS7KAB~,IDA}KBS
3. IA —B: {Ts,KAB,IDA}KBS

Attack 3.12: Replay attack on Protocol 3.33

Attack 3.13, also found by Cheng and Comley [200], is an example of a typing
attack which allows a malicious principal C to masquerade as principal B to A. To
perpetrate the attack, C sends an encrypted request to S as if it intends to send prin-
cipal A a session key equal to B’s identity. C replays the second encrypted part of the
message sent out by S back to S to start another run of the protocol while masquerad-
ing as B. C then completes the rest of the protocol as if it were B. The result of the
attack is that A accepts the identity of C as a session key with B.

1. C—S: {NC:IDBJDA}KCS

2. S—C: {NA>IDB}KC5-7{TSJDAJDC}KBS
3. Omitted.

. Cp—S: {TSJDAJDC}KBS

2. 85— Cp: {T&IDA }KBS7 {T§7IDC11DB}KA5
3. Cp—A: {T,JDCJDB}KAS

Attack 3.13: Typing attack on Protocol 3.33

Cheng and Comley proposed a modified protocol, shown as Protocol 3.34, which
avoids these attacks. Unfortunately, Protocol 3.34 was itself found to be vulnerable

.LA—S: {NA,IDB7KAB}KAS
2.8 — A {Na,IDp, {Ts, Kap, 1D } Ky } K5
3.A—B: {TS7KAB7IDA}KBS

Protocol 3.34: Key Establishment Mechanism 12 modified by Cheng and Comley

to a typing attack by Mathuria and Sriram [525], as shown in Attack 3.14. This attack
assumes that A cannot differentiate a random session key from the encrypted value
{T37KABvA}KBS'

The revised version of ISO/IEC 11770-2 from 2008 (including Technical Cor-
rigendum 1) makes the following changes to Key Establishment Mechanism 12 in
comparison with Protocol 3.33.
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1.A *>IS : {NA,IDB,KAB}KAS
2. IS —A: {NAaIDB7KAB}KAS
3.A—=Ip: Kup

Attack 3.14: Attack on Cheng and Comley’s Protocol 3.34

1. The time-variant parameter, shown as Ny in Protocol 3.33, must be either a time-
stamp or a counter. This prevents Attack 3.12.

2. Each message includes a message identifying number. This prevents messages
being replayed in the ‘wrong position’ such as in Attack 3.13.

3. Contatenation must be implemented in such a way as to ensure that there is a
unique parsing of messages. This prevents parsing ambiguity attacks [197].

Even with all these precautions an attack was still found by Cremers and Hor-
vat [229] as mentioned above. In this role mixup attack [61] the attacking principal
plays the roles of the server and a normal user. This can be prevented by ensuring
that different keys are used in different roles.

The final protocol in ISO/IEC 11770-2, Key Establishment Mechanism 13, is
shown as Protocol 3.35. This time both parties send their nonces to S, while K4p is
chosen by B. Mathuria and Sriram [525] found a typing attack on Protocol 3.35 too,
but Technical Corrigendum 1 to ISO/IEC 11770-2, September 2009, demands that
there is no ambiguity in parsing concatenated messages, thus ruling out such attacks.

1.A—B: Ny
2.B—=S: {NB’NA7IDA7KAB}KBS
3.—B: {NB,IDA}](BS,{NA,KAB,[DB}[(AS
4. B—A: {NA7KAB7IDB}KA5

Protocol 3.35: ISO/IEC 11770-2 Key Establishment Mechanism 13

In this section we have seen that the server-based protocols in the ISO/IEC
11770-2 standard have been the subject of several attacks. Nevertheless, these at-
tacks all have fixes and the protocols can still be considered secure if implemented
carefully. As a result of their analysis of the related protocols in ISO/IEC 9798-2,
Basin et al. [61] propose two principles for security protocol designs, which they
suggested can complement earlier principles [6].

Position tagging. Messages should include information about the protocol they are
for and their position in that protocol.

Inclusion of principals and their roles. Messages should include the identity of all
relevant principals and their roles.
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3.4.5 Wide-Mouthed-Frog Protocol

Numerous server-based key transport protocols assume that users trust only a server
to choose the key for a session. The wide-mouthed-frog protocol, due to Burrows et
al. [171], is intended for environments where one user trusts the other to choose the
key. The server simply makes the key chosen by one user available to the other. The
message flows are shown in Protocol 3.36, where Ty and T denote timestamps from
the local clocks of A and S, respectively.

1.A— S: A {Ty,IDp,Kup}k,s
2.8 B: {Ts,IDs, Kap ks

Protocol 3.36: Wide-mouthed-frog protocol

The intention is that the timestamps in messages 1 and 2 provide freshness as-
surances to S and B, respectively. However, this may not provide adequate protection
as shown by Attack 3.15. Suppose [ is an intruder who has recorded one run of the
protocol. I replays the message sent out by S in the first run back to S to start a
second run of the protocol while masquerading as B. This would cause S to send
{T{,IDp, K}k, Where T is a new timestamp. Again / replays this message to S
to start a third run of the protocol, this time masquerading as A. The intruder con-
tinues to execute new runs of the protocol, long after the session key is discarded.
Therefore I can force B to re-accept the key again simply by allowing him to receive
a sufficiently up-to-date message from S containing the key.

1. Ig —S: IDB,{TS7IDA7KAB}KBS
2. S — Iy : {T¢,IDg, Kap ks

1" Iy — S: A {T{,IDp,Kag} ks
2". S+ B: {TllleA7KAB}KBS

Attack 3.15: Attack on wide-mouthed-frog protocol

Attack 3.15 was discussed by Anderson and Needham [34] and by Clark and
Jacob [216]. However, it should be mentioned that in the BAN logic paper [171],
where Protocol 3.36 first appeared, it is assumed that each principal will recognise
and reject their own messages. This prevents these attacks.

3.4.6 Yahalom Protocol

The Yahalom protocol first appeared in the BAN logic paper [171]. It is frequently
used as a benchmark protocol by researchers using formal methods for protocol ver-
ification (for example, see Paulson [607]). One reason for this may be that it has a
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rather unusual structure. More importantly, it is subject to some subtle attacks, which
make it a challenging subject for testing a new technique.

1.A—B: IDs Ny

2. B—S: IDp,{ID,Na,Np} iy

3.8 —A: {IDp,Kap,Na,Ni}k\s> {IDa, KaB } Ky
4. A= B: {IDa,KapYkys, {NB} ks

Protocol 3.37: Yahalom protocol

Protocol 3.37 provides key authentication to both A and B. Key freshness is more
problematic because the positions of A and B differ. Note that A gains key freshness
from the first part of message 3. A knows that this part is not a replay from an old
protocol run since she knows the message was sent recently. The same cannot be
said of the message received by B. In message 4, B has no direct indication of the
freshness of the key from the server but infers that the key K45 was used recently by
A. Since the server makes Np available only to the party requested by B, B can be
assured that the encryption with K4p must have been formed by A recently. If A acts
properly in relaying the message that was encrypted for B by S as part of the current
run, then B can be assured of session key freshness. If A misbehaves by relaying a
similar encrypted message she has from an old run, then B cannot determine if the
key is fresh. It seems clear that both users gain liveness of the other. A knows that
B is active as verification of the first part of message 3 implies B sent message 2
recently. Because of the encryption of Np with K4p in message 4, B is assured that
A really knows K4p. Thus it appears that B gains key confirmation and liveness from
message 4.

Burrows et al. suggested a modified form of the Yahalom protocol, shown in
Protocol 3.38. The nonce Np is sent unencrypted by B in message 2 and is returned
by S in the message part encrypted with Kpg. The modified form constitutes a typical
usage of the challenge—response mechanism.

1.A—B: IDy Ny

2. B—S: IDp,Ng,{IDa, Ny} ks

3.8 —A: N, {IDp,Kap,Na}k.s, {IDa, Kap, N5} ks
4. A— B: {ID,Kap, N5 }kys, {NB} K05

Protocol 3.38: Yahalom protocol modified by Burrows et al.

Paulson [607] suggested a protocol closely related to Protocol 3.38. The only
difference is that the message encrypted with Kps includes B’s identity.
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Protocol 3.38 was shown to be flawed by Syverson [703] who pointed out two
attacks. Suppose / is an intruder who wishes to attack the protocol. In Attack 3.16
the intruder / starts a protocol run with B while masquerading as A. After receiving
the second message, I starts another run with B by sending an arbitrary value Ny
concatenated with Np from the first run. The intruder 7 is then able to play the role
of S in message 4 of the first run by replaying the encrypted component sent out by
B in the second run back to B.

1. Ix — B: ID4,N;

2. B—)ISZ IDB7NB,{IDA7NI}KBS
1. Iy — B: ID4,(N;,Np)

2. B—Is: IDp,Ny,{IDa,Ny,Np}kys
3. Omitted.

4. Is—B: {IDA7N17NB}K1;S7{NB}NI

Attack 3.16: Syverson’s attack on modified Yahalom protocol

Attack 3.16 is an example of a typing attack. The result of the attack is that B will
interpret the value N; as a session key with A. The attack relies on the assumption
that nonces can be of arbitrary length (this is termed substituting ‘doubled’ nonces
for nonces by Syverson).

Attack 3.17 shows Syverson’s second attack on Protocol 3.38. It begins with the
intruder [ intercepting an initial message from A to B. On receiving this message, 1
initiates a new protocol run with A using Ny as challenge, while masquerading as
B. The second protocol run proceeds as follows. I modifies the message from A to
S, replacing the new nonce N); with the old nonce Ny. I also intercepts the message
from S to B and simply replays the encrypted components of this message back as
encrypted components of message 3 in the first run but with the order of components
switched.

1. A—Ig: IDs,Ny

1. Ip — A: IDp,Ny

2. A= lg: IDa,Ny,{IDg,Natx,,

2", Iy —S: IDA7NA7{IDB7NA}KAS

3. S—)]A : NA7{IDA7KAB7NA}KB_§7{IDB7KAB7NA}KAS
2. Omitted.

3. IS —A: N],{IDB,KAB,NA}KAS,{IDA,KAB,NA}KBS

Attack 3.17: Syverson’s alternative attack on modified Yahalom protocol
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Attack 3.17 shows that A would be wrong to conclude, after a successful run, that
B is active. Note that these two attacks are different not only in structure but also in
aim. The first attack violates key establishment properties whereas the second attack
violates entity authentication properties.

3.4.7 Janson-Tsudik 3PKDP Protocol

The 3PKDP protocol proposed by Janson and Tsudik [394] is a server-based pro-
tocol that uses 2PKDP (discussed in Sect. 3.3.2) as a building block. This protocol
has two executions of 2PKDP: firstly between A and S (messages 1 to 3), and then
between B and S (messages 4 to 6). The final three messages are intended for en-
tity authentication. In Protocol 3.39 the quantities AUTH and MASK are defined as
follows.

AUTH, = [Na,Kap,IDglk
MASK, = [AUTH]Jk
AUTHp = [N,Kap, Ay
[

MASKp = [AUTHp]|

Kps-

.A—S: IDy,IDp,Ny

.S—A: AUTH4,MASK, ® Kup
A= S [NAvKABleA]KAS

B —S: IDp,ID4,Np

S — B: AUTHp,MASKg ® Kap
B—S: [NByKABleB}KBS

A — B: IDs,N}

B—A: [NA7N1.{3"IDB]KAE7N[,5’
A= B: [N}, N, DIk,

R B R

Protocol 3.39: Janson—Tsudik 3PKDP protocol

Protocol 3.39 achieves goals concerning both key establishment and entity au-
thentication. It achieves the good key goal and the mutual authentication goal. Con-
sidering that the entity authentication goal implies the far-end operative property, it
is easily seen that the protocol also provides the enhanced goals of mutual belief in
the key and key confirmation. One oddity of this protocol is that messages 3 and 6
do not seem to have any useful purpose. All S can hope to learn from these messages
is that A and B are really out there, a property that is not crucial to the service pro-
vided by the protocol. Protocol 3.40 is a modified version proposed by Janson and
Tsudik which omits the above-mentioned messages and routes all communication
with S via B. It achieves the same goals as 3PKDP using five messages rather than
nine messages.
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1.A—B: IDA,NA,NA

2. B— S: ID4,IDp,N4,Np

3.8 = B: AUTHA,MASKs ® Kap,AUTHg, MASKp ® Kap
4. B — A: AUTH,,MASK4 ® Kyp, [N, Ny, IDpk,;,Nj
5.A— B: [N4,Ng,ID4lk,,

Protocol 3.40: Janson—Tsudik optimised 3PKDP protocol

3.4.8 Bellare—-Rogaway 3PKD Protocol

Protocol 3.41 was proposed by Bellare and Rogaway [78]. It has key establishment
as its goal and is provably secure in the Bellare—Rogaway model. The 3PKD protocol
uses two distinct cryptographic transformations: a symmetric encryption algorithm
and a MAC. As one possibility, the encryption function can be constructed from a
keyed pseudorandom function fx. Specifically, the encryption of message m using f
under a shared key K is computed as the quantity (r,m® fx(r)), where r is a random
number.

1.A—=B: Ny

2.B—S: Ny, Np

3.85—=A: [[KABHKAS? [IDA7ID37NA7 [[KAB]]KAS}KAS
4.S—B: [[KAB]]KBS’ [IDAJDB?NBv [[KAB]]KBS}KBS

Protocol 3.41: Bellare—Rogaway 3PKD protocol

Protocol 3.41 provides both A and B with assurances of key authentication and
key freshness. It is not designed to provide entity authentication or key confirmation.
The provably secure style definition has the property that if the session key itself is
used to cryptographically protect messages within the protocol, the resulting protocol
cannot be considered secure. Thus standard techniques for key confirmation, such as
encrypting something using the session key, are not compatible with the security
proof of the 3PKD protocol.

3.4.9 Woo-Lam Key Transport Protocol

Woo and Lam [737] proposed a protocol intended to achieve mutual entity authen-
tication as well as key establishment. As shown in Protocol 3.42, principals A and
B exchange nonces before contacting the server. This allows them to include both
nonces in the encrypted messages sent to S.

Clark and Jacob [217] found an attack on Protocol 3.42 in which a malicious
principal B can force A to accept two copies of the same session key as new keys.
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A — B: Ny

B—A:Ng

A—B: {IDA7IDB7NA7NB}KA5

B — S: {IDa,IDg,Ny,N}k,s, {ID,IDg,Ns, N} ks
S—B: {[DB,NA,NB,KAB}[(AS,{IDA,NA,NB,KAB}KBS
B—A: {IDB,NA,NB,KAB}KAS,{NA,NB}KAB

A—B: {NB}KAB

N AW =

Protocol 3.42: Woo-Lam key transport protocol

Lowe [502] also found a typing attack which allows the adversary to masquerade as
A and obtain the session key accepted by B. Even without these attacks, it is difficult
to recommend Protocol 3.42 as a practical protocol in view of the large number of
message flows and encryptions required in comparison with the alternatives.

3.4.10 Gong Key Agreement Protocols

Gong [316] designed several protocols to illustrate lower bounds he derived on the
numbers of messages and rounds in server-based protocols for key establishment.
Because he was not concerned with minimising message lengths, he took a con-
servative approach to message formats. In the protocols in this section, messages
encrypted with key K are of the format

{Sender, Recipient, Clientl, Key, Client2, Freshness ID} ¢

where Client] and Client2 will share Key, and Freshness ID may be a nonce or a
timestamp. Since some of these fields may be identical, there is some redundancy in
many of the messages.

Protocol 3.43 is a key agreement protocol since the session key is derived from
the information contributed by both A and B. The server makes each party’s con-
tribution available to the other but does not itself contribute any information to the
session key. The encrypted portions of the protocol messages include timestamps to
provide freshness guarantees.

1. A= S: ID4,IDp, {IDy,IDs,IDA, Ky, IDp, Tp bk
2. S — B: {IDs,IDg, 1Dy, K{,IDp, Ts } &,
3. B—S: {IDp,IDs,IDp,Ky,ID 5, Tg } ks
4.8 — A: {IDg,IDy,IDp,K2,ID 5, Ts} ks

Protocol 3.43: Gong’s timestamp-based protocol

The values K; and K, are random numbers serving as contributions of A and B
respectively to the session key. Both A and B compute the session key as f(Ki,K>)
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where f is a one-way function. This protocol provides to both A and B implicit
key authentication and key freshness. The timestamps may be replaced by random
nonces to provide freshness guarantees. The resulting protocol has one more message
as shown in Protocol 3.44.

1.A— B: IDs,IDg, Ny
2. B—S: IDA,IDg,Ng,{IDp,IDs,IDg, Ky,ID4, Np } iy
3.5—A: {[Ds,IDA,IDB,KQ,IDA,NA}[(AS,NB
4.A—S: {IDs,IDs,ID,K},IDg, Ng},

5.8 — B: {IDs,IDp,IDy,K},IDg,Ng} ks

Protocol 3.44: Gong’s nonce-based protocol

Protocols 3.43 and 3.44 may be extended to provide key confirmation; the cost
is an extra message. In the first protocol, B could make use of K4p as an encryption
key in message 3 to assure A that he really knows K4p. A new fifth message could
provide B with similar assurance. In the second protocol, A could make use of Ksp
as an encryption key in message 4 to assure B that she really knows K4p. A new sixth
message could provide A with similar assurance.

In Protocols 3.43 and 3.44 both A and B check the freshness of an element re-
ceived with the keying material. While this is the usual method for ensuring session
key freshness in key transport protocols, it is generally redundant in key agreement
protocols. Each user can ensure that the key is fresh by simply ensuring that its key-
ing material is fresh; there is no need for a user to be able to verify that the input
received from the other user is fresh. Thus, the timestamps in Protocol 3.43 and the
nonces in Protocol 3.44 could be eliminated. Protocol 3.45, due to Gong, makes use
of this optimisation. It provides key authentication, key freshness and key confir-
mation in only five messages. As before, both A and B compute the session key as

(K1, Kz).

1.A— S: ID4,IDg,{ID4,IDs,ID4,K,,IDp} ks, Na

2.8 — B: ID4,IDp,{IDs,IDp,ID4,K|,IDp} ks, Na

3. B—S: {IDg,IDg,IDp,K>,ID4 } kss,{IDp,IDA, N4 } k.5, NB
4. S — A: {IDg,ID4,IDp,K>,IDp } ks, {IDB,IDA, N } K5 - NB
5.A— B: {IDs,IDg,Np}k,,

Protocol 3.45: Gong’s alternative protocol
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3.4.11 Boyd Key Agreement Protocol

Protocol 3.46, proposed by Boyd [131], provides key authentication, key freshness
and key confirmation in only four messages. It is a server-based protocol in which
both users as well as the server contribute to the key value. The values Ny and Np
are generated by A and B respectively as input to the MAC function determining the
session key. Additionally, S generates a value K which serves as the MAC key. Both
A and B compute the session key as Kap = MACk, (N4, N3).

1.A—S: IDs,IDg, N4

2. 8= B: {IDa,IDp,Ks} s, {ID4,IDg, K5} iy, Na
3.B—A: {[DA,]DB,KS}[(AS, [NA]KA37NB

4. A—B: [NB][(AE

Protocol 3.46: Boyd key agreement protocol

3.4.12 Gong Hybrid Protocol

Protocol 3.47, due to Gong [313], is an example of a hybrid protocol in which only A
and S have an input to the key derivation function. It employs two one-way functions:
a function f used for key derivation and a function g used for authentication. These
functions need not be distinct. The output of the key derivation function f is divided
into three components:

f(Ns,Nu,IDg,Kps) = (Kap,Ha,Hp).

The first component is the session key value itself. The second component is sent
from A to B to assure the latter that A has the key. The third component provides
A with reciprocal assurance. In this protocol B derives freshness by checking an
element received with the key, while A derives freshness by generating a fresh input
to the session key generation process.

1.A— B: ID,,IDg, Ny

2. B—S: ID4,IDp,Ny,Np

3.8 B: Ns, f(Ns,Ng,IDs,Kps) © (Kap,Ha,Hp),g(Kap, Ha, Hp, Kps)
4. B— A: Ng,Hp

S.A—B: H,

Protocol 3.47: Gong’s hybrid protocol
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Boyd and Mathuria [140] demonstrated an unusual feature of Protocol 3.47. Sup-
pose A has executed a normal run of the protocol with B, with the derived session
key being K}, ; and the other two quantities being H and Hy,. Furthermore, suppose
that A has also recorded the reply from the server to B and thus is in possession of the
value g(K), 5, H),Hp, Kps). Now, A is able to complete the protocol with B as shown
in Attack 3.18.

3. S—Ap: Ns, f(Ns,Np,IDs,Kps) © (Kap,Ha,Hp),
8(Kap,Hy,Hp,Kps)

3'. Ags — B Ng, f(Ns,Np,IDa,Kps) ® (K} 3, Hy, Hp),
8(Kyg Hj, Hp, Kps)

4. B—>A: NgH

5. A>B: H|

Attack 3.18: Insider attack on Protocol 3.47

The insight gained from this attack is that a malicious principal A can force B into
accepting an old session key as new. It highlights an assumption that was probably
not obvious when the protocol was designed.

Saha and RoyChowdury [644] proposed Protocol 3.48 as an improvement to Pro-
tocol 3.47. The general design is similar but it adds B’s nonce to the input of the
function used for authentication of the key. This allows the weakness of Gong’s pro-
tocol to be avoided. The session key Kysp is chosen by S and the reply sent from S
to A is symmetrical to S’s reply to B. Another protocol with the same design goals,
but allowing A to choose the key, was proposed by the same authors. Both protocols
enjoy a formal proof of security in the Bellare—Rogaway model.

1. A—B: ID,IDg,Ny

2. B—S: IDs,IDg,Na,Ng

3.8 — B: Ns, f(Ns,Ng,IDa,Kps) ® (Kap,Ha,Hg),g(Kap, Ha, Hp, Np, Kps),
f(Ns,Na,IDp,Kas) ® (Kap,Ha,Hg),8(Kap,Ha, Hp,Na,Kas)

4. B—A: Ns,Hp, f(Ns,Na,IDp,Kas) © (Kap,Ha,Hg),8(Kap, Ha, Hp, Na, Kas)

5.A—B: Hy

Protocol 3.48: Saha—RoyChowdhury protocol

3.4.13 Comparison of Server-Based Protocols

Table 3.6 summarises the major properties of the 22 server-based protocols described
earlier. For the goals an entry (*) indicates that the goal is claimed but fails due to at-
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tack. From the table, we see that all of the protocols except the Needham—Schroeder
protocol and the wide-mouthed-frog protocol achieve the key freshness goal. Further,
all of the protocols except the BAN Otway—Rees protocol and the BAN Yahalom
protocol achieve the key authentication goal.

Table 3.6: Summary of major properties of specific server-based protocols

Properties — No.of Key Fresh Key Key Attack
J Protocol passes control key auth. conf.
Needham-Schroeder (3.23) 5 S A(*) A+B A Yes

A+B A+B No No
A+B A+B No No
A+B  A+B No No
A+B A (*) No Yes
A+B  A+B No No
A+B A+B B No
A+B A+B  No No
A+B A+B  No No
A+B A+B  No No
No (*) Yes No Yes
A+B  A+B B No
A+B A (*) No(*) Yes
A+B A+B A+B No
A+B A+B A+B No
A+B A+B No No
No (*) B(*) A+B Yes
A/B A+B  A+B No No
A/B A+B  A+B No No
A/B A+B A+B A+B No
SIAIB A+B A+B A+B No
S/A A+B A+B A+B No

Denning—Sacco (3.24)
Bauer—Berson—Feiertag (3.25)
Otway—Rees (3.26)
Otway—Rees modified (3.27)
Otway—Rees modified (3.28)
Kerberos (3.29)

11770-2 Mechanism 10 (3.31)
11770-2 Mechanism 12 (3.33)
11770-2 Mechanism 13 (3.35)
Wide-mouthed-frog (3.36)
Yahalom (3.37)

BAN Yahalom (3.38)

3PKDP (3.39)

Optimised 3PKDP (3.40)
Bellare—Rogaway (3.41)
Woo-Lam (3.42)

\nh t'i ! ”rh ”a ”a > W > “”h &”a ”a t”h ”h U1 U,

Gong timestamp (3.43)
Gong nonce-based (3.44)
Gong alternative (3.45)
Boyd four-pass (3.46)
Gong hybrid (3.47)

WD A L R 9 R N O R RN R W W W R AR PR W
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3.5 Key Establishment Using Multiple Servers

Each of the server-based protocols we have examined so far in this chapter has in-
volved three principals: one server and two users. One natural way to generalise this
situation is to allow more than two users. Key establishment with multiple users is
the subject of Chap. 9. A different generalisation is to use more than one server.
There are at least two potential benefits of such an architecture.

e If one or more servers become unavailable, it may still be possible for the users
to establish a session key.

e If one or more servers are untrustworthy, users may still be able to establish a
good key.

There have been a few concrete proposals for protocols using multiple servers. We
examine two of these in this section.

3.5.1 Gong’s Multiple Server Protocol

Gong [315] proposed a number of variant protocols all with the same basic structure.
A feature of all these protocols is that the users, A and B, choose the keying material
while the n servers, S1,95,...,S5,, act as key translation centres to allow keying ma-
terial from one user to be made available to the other. Initially A shares a long-term
key K4 ; with each server §;, and similarly B shares Kp; with ;.

In order to ensure that the correct key can be recovered even if some servers
become unavailable, A and B both split up their secrets using a threshold scheme
(see Sect. 1.3.6). Specifically, A chooses a secret x and splits it into shares xp, x»,
..., X, so that x can be recovered from any ¢ shares. Similarly B chooses a secret y
and divides it into shares yy, y», ..., ¥,. Protocol 3.49 shows a simplified version of
Gong’s main protocol. Messages 2 and 3 are repeated for each of the n servers so
there are 2n + 3 messages sent in total. On receipt of the translated shares from each
server, A is able to recover the secret y of B, and similarly B recovers x. The session
key is defined as Kxp = h(x,y).

1.A— B: IDp,IDp,Ny,{IDs,IDp, x;,cc(x)}k, ,

2. B— S;: IDp,IDp,No, N, {IDs,IDg, x;,cc(x)}k, ., {IDp.IDa,yi,cc(y) } ks,
3.8; — B: {IDp,Ny,yi,cci(y) } &, ;» {1Da, Np. Xi, cci(x) by,

4.B— A: {IDp,Na,y1,cc1()}Ky1»-- > {IDB: Nasyn, ccn(y) } Ky > {Na Y Kis» NB
5.A—B: {NB}KAB

Protocol 3.49: Gong’s simplified multi-server protocol

In order to prevent malicious rogue servers from disrupting the protocol, A and
B form a cross-checksum for all the shares. The cross-checksum for x is cc(x) =
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(h(x1),h(x2),...,h(x,)) where h is a one-way function. The cross-checksum cc;(x)
received from server S; may or may not be equal to the correct value cc(x). When B
receives a checksum cc;(x) from server S; he calculates h(x;) for every x; received
from any other server S;, and compares the result with that in cc;(x). If they are
the same then S; is allocated one credit point. When all the checks are complete B
retains those shares from the servers with the most credit points. The users require ¢
shares in order to recover the secret. The process will ensure that the correct secret
is recovered as long as half of the responding servers are honest and ¢ of them are
available.

In Protocol 3.49 an adversary could replay the messages of A or B (or even both)
since the server cannot detect replayed requests. However, this does not seem to
be a major problem since both parties have assurance that Ksp is fresh, from the
freshness of their own input. Gong’s main protocol [315] differs from Protocol 3.49
by including an initial exchange between A and each server, in which each server
delivers a nonce that is returned with the encrypted messages intended for translation.
A consequence of this is that servers can detect replayed requests and ignore them,
but the cost of this is that the number of messages is increased to 4n + 3.

3.5.2 Chen-Gollmann-Mitchell Protocol

Chen et al. [193] designed two protocols using multiple servers. A significant differ-
ence from Protocol 3.49 is that in both of their protocols the servers, instead of the
users, choose the keying material. Furthermore, instead of sharing one secret, each
server chooses an independent secret value. Both users employ a cross-checksum to
decide which servers have given valid inputs and all of these are used in the defi-
nition of the session key. The parallel protocol of Chen et al. is shown as Protocol
3.50. Messages 2 and 3 are repeated n times between B and each server S; so there
are 2n + 4 messages in total.

1.A— B: ID4,IDg,Ns

2.B— Si: IDA,IDB,NA,NB

3.5, —B: {IDB7NA7Ki}KA_i7{IDA7NB7K1'}KB>,»

4. B—A: {[DB7NA7K1}KA.1>“'>{IDB7NA7KH}KA_,I7CCB(1)7'"7CCB(n)
5.A—B: CCA(I),.. .,CCA(H),{IDB,NB,N‘/A}

6. B—A: {IDy,N,Ng}

Protocol 3.50: Chen—Gollmann—Mitchell multi-server protocol

The cross-checksum used in Protocol 3.50 is quite different from that used in
Protocol 3.49. If B has apparently received all n keys, then

CCB(i) = {h(K1)7h(K2)7 s ah(Kn)}K,-a
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for all i with 1 <i <n, where & is a one-way function. However, if B has not received
any message from server S; then ccp(j) is simply an error message, and also i(Kj) is
replaced by an error message in the calculation of the other ccp(i) values. On receipt
of the checksums ccg(1),...,ccp(n) from B, A first decrypts the values and compares
them. Some of these may be different if A and B have received some different K;
values, but as long the majority of the servers are honest and operational, the majority
of the decrypted values will be the same. The K; secrets are retained for this majority
of i values and the others discarded. The cross-checksums ccy (i) are then defined in
a symmetrical way, except that error messages are inserted either if A did not receive
a K; value, or if B has indicated that he did not receive it.

Once the good keys have been identified, the session key Kjp is defined to be the
hash of all the good K; values concatenated. Chen et al. showed that as long as at
least half of the servers are honest and operational, then an honest A and B pair will
accept the same K; values and hence the same K4p.

Chen et al. also proposed a variant of Protocol 3.50, which they called a ‘cascade
protocol’. The difference is that instead of B making a request to each server by
repeating message 2, the request is passed on from server S; to server S, and so on.
The response from each server is also sent on to the next server. Finally server S,
returns all the server responses to B, and the last three messages are the same as in
Protocol 3.50. The advantage of the cascade protocol is that the number of messages
sent is reduced to n+ 5 since all but one of the responses in message 3 of Protocol
3.50 are no longer required. However, the protocol will only work if all the servers
are operational; if only one server fails to cooperate, either maliciously or due to an
error, then the protocol will fail.

3.6 Conclusion

To a large extent the problem of key establishment between two parties using sym-
metric cryptography seems to have been solved. There have been no significant new
protocols in recent years. Efficient solutions have evolved which have resisted at-
tacks or even have security proofs. Tables 3.2, 3.4 and 3.6 show that there exist a
variety of protocols which should be suitable for most applications requiring these
sorts of protocols.
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Authentication and Key Transport Using Public Key
Cryptography

4.1 Introduction

It is generally regarded that there are two main potential advantages of public key
techniques over symmetric cryptography. The first is that public key systems allow
the straightforward definition of digital signatures, thereby enabling the service of
non-repudiation which is so useful in commercial applications. The second is the
simplification of key management, because there is no requirement for the online
third party that is part of typical protocols based on symmetric cryptography. The
first of these advantages is not really our concern in this book since non-repudiation
is of limited value in authentication and key establishment. However, the second
advantage has led to a great variety of new key establishment protocols since the
invention of public key cryptography. In the modern distributed communications en-
vironments exemplified by the Internet, public-key-based protocols have become far
more important than protocols based on symmetric cryptography.

There are two costs that must be paid in exchange for these benefits. The first one
is the high computational cost that comes with all known public key cryptosystems.
Despite the advances made in public key cryptosystems and the advantages of elliptic
curve cryptology [105], public key algorithms require two or three orders of magni-
tude more computation than symmetric algorithms. Although computing power on
a typical desktop or mobile device is such that a handful of public key operations
will not cause a delay of more than a fraction of a second, the overhead for servers
of multiple clients and for low-power computing devices is still significant. At the
same time increased computing power means that longer key sizes are required so
that the cost of public key operations increases. It is therefore essential that designers
of public-key-based protocols should minimise the number of public key operations
wherever possible. Another issue to be considered is whether the protocol requires
more private key operations (signature generations and decryptions) or more public
key operations (signature verifications and encryptions). RSA and related algorithms
are much more efficient for public key operations than for private key operations,
while for most algorithms based on discrete logarithms the opposite is true. Fur-
thermore, although algorithms based on discrete logarithms (including elliptic curve
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algorithms) are more efficient than RSA overall, a protocol that requires mainly pub-
lic key operations may be much more efficiently implemented using RSA with a
small public exponent. Generally it is not a simple task to compare the efficiency of
different protocols when implemented using different algorithms.

The second cost of public key cryptography is that public keys still need to be
managed. The best solution for a public key infrastructure is still the subject of con-
siderable research. Although public keys need not (indeed usually should not) be kept
confidential their integrity must be maintained, normally through use of certificates
signed by reputable third parties. The question of how to deal with compromised
private keys is a tricky one, but the most established solution is to use certificate
revocation lists to check whether a public key is still valid, much as a blacklist is
checked before accepting a credit card. In the descriptions of protocols given in this
chapter we shall ignore the certificates, or any other means, used to ensure that a
public key is valid, and simply assume that public keys are available to the parties
that need them and are guaranteed to be correct. What correct means here is that the
claimed owner of the public key is the only entity who is able to use the correspond-
ing private key. Designers and users of public key protocols need to be aware that
this is an important simplification that must be addressed in any implementation.

In this chapter we shall not cover the important class of public-key-based key
agreement protocols which are the subject of Chap. 5. In the remainder of this sec-
tion we explain our notation in this chapter and discuss general design principles for
public key protocols. Section 4.2 examines public key protocols for entity authenti-
cation and Sect. 4.3 covers public key protocols providing key transport.

4.1.1 Notation

The notation used in this chapter is summarised in Table 4.1. In all our protocol
descriptions generic algorithms for public key encryption and digital signatures are
shown, although in some cases we will note that certain protocols were designed
with specific algorithms in mind. We assume that all encryption algorithms provide
semantic security and sometimes comment if non-malleability is also required.

Table 4.1: Notation used throughout Chap. 4

Ency (M) Encryption of message M using the public key of principal X
Sigx (M) Signature with appendix of message M by principal X

Ny Random nonce value chosen by principal X

Tx Timestamp chosen by principal X

{M}k Symmetric encryption of message M with key K
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4.1.2 Design Principles for Public Key Protocols

Anderson and Needham [35] proposed a set of what they called robustness principles
for public-key-based protocols. These can be considered as more specific instances of
the general principles for protocol design proposed earlier by Abadi and Needham
and which are discussed in Sect. B.4. They form a checklist that can be used by
protocol designers to avoid the most common errors. A summary of these principles
is shown in Table 4.2. Anderson and Needham gave several examples of potential
attacks that can result from ignoring these principles.

Table 4.2: Anderson and Needham’s robustness principles for public key protocols

1. Sign before encrypting. If a signature is affixed to encrypted data then one cannot
assume that the signer has any knowledge of the data.

2. Be careful how entities are distinguished. If possible avoid using the same key for two
different purposes (such as signing and decryption) and be sure to distinguish different
runs of the same protocol from each other.

3. Be careful when signing or decrypting data that you never let yourself be used as an
oracle by your opponent.

4. Account for all the bits — how many provide equivocation, redundancy, computational
complexity, and so on.

5. Do not assume the secrecy of anybody else’s ‘secrets’ (except possibly those of a
certification authority).

6. Do not assume that a message you receive has a particular form (such as g” for known
r) unless you can check this.

7. Be explicit about the security parameters of cryptographic primitives.

Later Syverson [704] questioned the applicability of some of the principles pro-
posed by Anderson and Needham by showing examples when they are not appropri-
ate. Nevertheless, Syverson concluded that the principles are still useful but should
be used intelligently and critically by the protocol designer. In this chapter we will
see that several protocols ignore the first Anderson—Needham principle, including
protocols that are proven secure. Indeed, with suitable precautions, it is known that
signing either before or after encrypting can provide suitable security [32]. This is
discussed further in Sects. 4.3.1 and 4.3.2.

4.2 Entity Authentication Protocols

Before looking at protocols for key establishment we examine some protocols that
achieve only authentication. In this section we examine some prominent examples, in
particular those in the international standard ISO/IEC 9798 Part 3 [377]. We discuss
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whether they achieve the definition of entity authentication introduced in Defini-
tion 13 or the simpler liveness property.

4.2.1 Protocols in ISO/IEC 9798-3

Five protocols in ISO/IEC 9798-3 are designed for authentication between a pair of
principals. (Two further server-based protocols are also included whose purpose is
to verify the public keys of principals — we do not cover these here.) Two of these
protocols are for unilateral authentication of one party to another, and three are for
mutual authentication of both parties to each other. Two of the protocols (Protocols
4.2 and 4.5) are also included in the former US standard FIPS 196 [573] which
includes some further guidance on the use of optional fields.

Each protocol includes options for various ‘text’ fields to be included in each
message for application-dependent data. According to the standard, a text field may
be included in a signature for various reasons including:

to authenticate any information;

to add extra redundancy to the signature;

to provide additional time variant parameters such as timestamps;
to provide validity information for the protocol in use.

Unsigned text fields may be used for the claimed identity of the message sender
which is not otherwise explicitly stated in the protocols. Since they are not part of the
basic protocols we shall ignore the optional text fields in the following descriptions.

The first protocol in the standard, shown as Protocol 4.1, consists of a single
message from a claimant A to a verifier B. The timestamp T is used to provide
freshness, or alternatively it may be replaced by a counter. The protocol assures B
that A is alive, as well as providing assurance that A is aware of B as her peer entity.

1.A—B: TA,IDB,SigA(TA,IDB)

Protocol 4.1: ISO/IEC 9798-3 one-pass unilateral authentication

The second protocol (Protocol 4.2) uses a nonce instead of a timestamp, which is
the most obvious difference from Protocol 4.1. The other difference is the inclusion
of the random value N4 chosen by A. This field has nothing to do with authentication
but is included to ensure that A is not signing a message that has been chosen by B;
this could cause problems for A if the signature scheme and signing key used in the
protocol are also used in other applications. This protocol provides entity authenti-
cation of A to B.

It is interesting that the standard allows the field containing the identity B in mes-
sage 2 to be omitted, stating that its inclusion ‘depends on the environment in which
this authentication mechanism is used’. With a weaker definition of entity authenti-
cation, having no requirement for knowledge of the peer entity, the omission of this
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1.B—A: Ng
2.A—B: NA,NB,IDB,SigA(NA,NB,IDB)

Protocol 4.2: ISO/IEC 9798-3 two-pass unilateral authentication

field is acceptable. However, if knowledge of the peer entity is required then this field
must be included in the signature of message 2. The standard specifically forbids ex-
clusion of the corresponding field in the one-pass Protocol 4.1. We can speculate that
the reasoning behind this is that when a timestamp is used B has nothing to connect
him to the protocol instance, whereas when B’s challenge is returned he can reason
that he is ‘connected’ with A even if A has not indicated this. We refer the reader to
Sect. 1.5.3 for more discussion on the possible shades of entity authentication.

The third protocol (Protocol 4.3) is simply the combination of two instances of
Protocol 4.1 for one-pass unilateral authentication and as in that protocol the time-
stamps Ty and T may be replaced by counters. This protocol provides mutual entity
authentication. Because the messages sent are independent of each other, this proto-
col can be executed in one round.

1.A—B: TA,IDB,SigA(TA,IDB)
2.B—A: TB,IDA,SigB(TB,IDA)

Protocol 4.3: ISO/IEC 9798-3 two-pass mutual authentication

Chen and Mitchell [197] showed that a typing attack applies if the optional text
fields are included in each message, shown as Protocol 4.4.

1.A—B: TAJDB,teth,SigA(TA,IDB,tCth)
2.B—A: TB,IDB,teth,SigB(TB,IDA,teth)

Protocol 4.4: ISO/IEC 9798-3 two-pass mutual authentication with text fields in-
cluded

Suppose that a malicious principal’s identity C is equal to the concatenation of
B’s identity with some bit-string x, that is, IDc = (IDg,x). The attack proceeds as
shown in Attack 4.1.

In addition to the Chen and Mitchell attack, Basin er al. [61] found two other
attacks: a role mixup attack in which the principals play different roles from the ones
they intend to play; and a reflection attack in which two instances of the same party
are intended to communicate but only one actually participates. Basin er al. [61]
designed new protocol versions using their two principles of (i) tagging messages
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1. C—A: Tg,A,texty,Sige(Te,IDa, texty )

2. A—=C: TA,IDc,teth,SigA(TA,IDc,teth)
1. Cy —B: TA,IDA,teth,,SigA(TA7IDB7tCXt3)
2. B— Cy: TB,IDA,text4,SigB(TB,IDA,texu)

Attack 4.1: Chen—Mitchell attack on Protocol 4.4

to include their protocol and position, and (ii) including in messages the identity
of the relevant principals and their roles. (See Sect. 3.4.4 for further discussion on
these principles.) Such measures were made mandatory in a 2012 corrigendum to the
9798-3 standard.

The fourth protocol (Protocol 4.5) is an extension of Protocol 4.2, allowing both
A and B to use respective nonces, N4 and Np. The standard again allows the field B in
message 2 and the field A in message 3 to be omitted; but the field must be included
at least in message 2 if it is desired for B to gain assurance that A is aware of B as her
peer entity. The standard specifically forbids exclusion of the corresponding fields in
Protocol 4.3 for two-pass mutual authentication.

1.B—A: Ng
2.A—B: NA,NB,[DB,SigA(NA,NB,[DB)
3.B—A: NB,NA,]DA,SigB(NB,NA,IDA)

Protocol 4.5: ISO/IEC 9798-3 three-pass mutual authentication

Blake-Wilson and Menezes [108] proved the security of Protocol 4.5 using the
Bellare—Rogaway model described in Chap. 2. This means that the protocol satisfies
the matching conversations property. By providing signatures of the other party’s
identity in messages 2 and 3, the protocol also provides knowledge of the peer entity.

Protocol 4.6 shows an earlier version of Protocol 4.5 that was proposed during
the standardisation process. The only difference from Protocol 4.5 is that B chooses
and signs a nonce Np, in the final message, which is different from the nonce Ng used
in the first two messages. A probable reason for this choice is that it ensures that B
does not have to sign a message that is predictable by A.

Protocol 4.6 is subject to Attack 4.2, which has become known as the ‘Canadian
attack’ because it was publicised by the Canadian team taking part in the standards
process. In the attack the adversary C sets up two protocol runs, masquerading as
B to A and as A to B. The response from A in the second run can be used by C to
complete the first run with B.

The result of the attack is that A completes the protocol apparently with B,
whereas in fact the protocol was run with C. In terms of matching conversations

! Technical Corrigendum 2 to ISO/IEC 9798-3:2008, March 2012.
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1.B—A: Ng
2.A—B: NA,NB,IDB,SigA(NA,NB,IDB)
3.B—A: ng,NA,IDA7SigB(N1/3,NA,IDA)

Protocol 4.6: Early version of ISO/IEC 9798-3 three-pass mutual authentication

1. Cp —>A: N¢
2. A—Cg: NA,NC7IDB7SigA(NA,NcJDB)
1'.Cy = B: Ny
2'. B— Cy : Np,Na,IDy,Sigp(Np,Na,IDy)
3. Cg—A: NB,NA,IDA,SigB(NB,NA,IDA)

Attack 4.2: Canadian attack on Protocol 4.6

this is a valid attack, since A and B disagree on the second message. However, A
is correct to conclude that B is alive and has indicated awareness of A as his peer
entity. Therefore the extensional protocol goals do not seem to be violated. This at-
tack is closely related to Attack 1.4 discussed in Chap. 1. Mitchell and Thomas [558]
discuss Attack 4.2. They also considered methods to prevent signatures obtained dur-
ing similar protocols being abused by an adversary. These methods include use of a
protocol identifier in every signed message.

Protocol 4.7 is the final two-party protocol in the standard; it allows authentica-
tion to be conducted in parallel between A and B. Thus messages 1 and 1’ can be sent
together, as can 2 and 2’. As with Protocol 4.5 the standard allows the identity fields
B and A, in messages 2 and 2’ respectively, to be omitted. Once again, omission of
these fields means that knowledge of the peer entity cannot be provided, this time in
either direction.

1. A= B: Ny
.B—A:Ng
2. A—B: NA7NB,IDB7SigA (NA,NB,IDB)
2.B—A: NB7NA7IDA7SigB(NB7NA,IDA)

Protocol 4.7: ISO/IEC 9798-3 two-pass parallel authentication

We note that Protocols 4.5 and 4.7 both link together previous protocol messages
in their signed messages; this means that they provide the matching conversations
property described in Chap. 1. In this sense it can be argued that they provide more
than Protocol 4.3 even though all three protocols provide mutual entity authentica-
tion.
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4.2.2 Protocols in ISO/IEC 9798-5

The international standard ISO/IEC 9798-5 [382] is devoted to entity authentication
mechanisms using zero knowledge techniques. Six classes of protocols are specified,
depending mainly on the algebraic setting. The standard specifies protocols based on:

discrete logarithms in the integers modulo a prime;
discrete logarithms in the integers modulo a composite;
discrete logarithms in elliptic curve groups;

the identity-based setting;

public key encryption;

integer factorisation.

The protocols apply zero-knowledge proofs from the literature due to Fiat—
Shamir [275], Guillou—Quisquater [335], Schnorr [657], Brandt et al. [147] and Gi-
rault et al. [307]. With one exception, only unilateral authentication is specified for
each protocol type. The exception, the integer factorisation setting, has protocols for
both unilateral and mutual authentication. These protocols are strongly dependent on
specific cryptographic mechanisms and are designed to prove knowledge of private
keys corresponding to known public keys.

4.2.3 SPLICE/AS

The protocol known as SPLICE/AS was proposed in 1990 by Yamaguchi et al. [749]
to provide mutual authentication between a client A and a server B. A number of
different papers have progressively found attacks and proposed improvements. The
full protocol includes retrieval of certified public keys from an authentication server.
Hwang and Chen [370] showed that the original certificate format was flawed, al-
lowing an adversary to alter the apparent public key of either client or server. The
authentication part is shown in Protocol 4.8, where L is a lifetime of the message,
purported to be used to prevent replay.

1.A—B: IDA,IDB,TA,L,EnCB(NA),SigA(IDA,TA,L,EnCB(NA))
2. B—A: IDp,IDs,Encs(IDp,Ny+ 1)

Protocol 4.8: SPLICE/AS protocol

The protocol is intended to provide mutual entity authentication. The server B
checks the signature and timestamp on receipt of the first message in order to au-
thenticate A. When A receives the returned message she checks her nonce in order to
authenticate B. However, Protocol 4.8 was attacked by Clark and Jacob [215] who
noted that an adversary C is able to intercept the message from A to B and replace
the signature of A with C’s own signature. Consequently A believes the protocol has
been run with B while B believes it has been run with C.
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1. A— Cp: IDa,IDp,Ty,L,Encg(Ny4),Sigs(IDs,Ty,L,Encg(N4))
.C—B: ID(;,IDB,TA,L,Er‘ICB(]VA),SigC(IDc,TA,L7 EncB(NA))
2.B—C: IDB,IDc,EnCC(IDB,NA + 1)
2. Cp — A: IDp,ID4,Ency(IDp,Ns+1)

Attack 4.3: Attack of Clark and Jacob on SPLICE/AS protocol

Attack 4.3 shows that neither party can be aware of their peer entity and that
matching conversations cannot be guaranteed. However, the responder B can be sure
that the signer of the first message is live, while A also gets this assurance, since only
B is able to decrypt Ny. Clark and Jacob proposed Protocol 4.9 as an alternative to
prevent their attack.

1.A—B: IDA,[DB,TA,L,EnCB(IDA,NA),SigA(IDA,TA,L7 EncB(IDA,NA))
2. B—A: IDp,IDs,Encs(IDp,Ny+1)

Protocol 4.9: Clark—Jacob variant of SPLICE/AS

This protocol is again intended to provide mutual entity authentication. A look
at the message sent from A to B shows that A has given no indication that she wishes
to communicate with B so that this protocol does not provide knowledge of the peer
entity. The only difference from Protocol 4.8 is that the identity of A is included
in the encrypted field of message 1 which, it is assumed, cannot be altered by C.
This assumption is only reasonable if the public key encryption algorithm used is
non-malleable. Gray [333] pointed out that Attack 4.3 still works if the encrypted
identity of A can be changed to another identity. He therefore proposed the simplified
Protocol 4.10 which does provide knowledge of the peer entity. This can be seen as
a hybrid of Protocols 4.3 and 4.5 since B relies on a timestamp to ensure liveness
while A uses a nonce.

1.A—B: IDA,IDB,TA,L,NA,SigA(IDB,TA,L,NA)
2.B—A: IDB,IDA,NA,SigB(IDA,NA)

Protocol 4.10: Gray variant of SPLICE/AS

4.2.4 Comparison of Entity Authentication Protocols

Table 4.3 compares some of the main features of the various entity authentication
protocols explored in this section. While there were attacks on the older protocols,
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the analysis of the standardised protocols in the ISO/IEC 9798-3 standard by Basin
et al. [61] has led to a better understanding. The versions referred to in Table 4.3
are those with the corrections specified by Basin et al. which have been formally
analysed.

Table 4.3: Summary of properties of public key entity authentication protocols

Properties — Liveness Entity Security Attack
} Protocol authentication proof

9798-3 one-pass unilateral (4.1) B B Yes No
9798-3 two-pass unilateral (4.2) B B Yes No
9798-3 two-pass mutual (4.3) A+B A+B Yes No
9798-3 three-pass mutual (4.5)  A+B A+B Yes No
9798-3 two-pass parallel (4.7) A+B A+B Yes No
SPLICE/AS (4.8) A+B No No Yes
Clark—Jacob SPLICE (4.9) A+B No No Yes
Gray SPLICE (4.10) A+B A+B No No

4.3 Key Transport Protocols

As discussed in Chap. 1, key transport refers to protocols in which one principal
chooses a session key and securely transports it to the other principal, or principals.
Sometimes it can be difficult to classify protocols as key transport or key agreement.
Some protocol specifications allow each of two principals to choose and transport
their own key but leave open whether these two will be combined to form an agreed
key, or used separately. We have included in this chapter those protocols that can
potentially be used for key transport, but may be implemented to provide key agree-
ment. An important practical example of key transport is found in various versions
of the TLS handshake protocol; this is discussed in detail in Chap. 6.

4.3.1 Protocols in ISO/IEC 11770-3

In this section we shall examine protocols specified in the international standard
ISO/IEC 11770 Part 3 [383]. The standard specifies six key transport protocols in a
generic fashion and with some optional items. We shall see that many of these stan-
dardised protocols are related to other previously published protocols, particularly
those in ISO/IEC 9798-3.

Protocols in the standard are presented using generic encryption and signature
functions, but specific examples are included in an annex (which is not a formal part
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of the standard). As with the protocols in ISO/IEC 9798-3 discussed in Sect. 4.2.1,
there are various optional text fields included in all the standardised protocols which
are mostly ignored in our descriptions here. The standard does not distinguish be-
tween signatures with message recovery and signatures with appendix by assuming
that if a signature with appendix is used then the message signed is sent together with
the signature. We show all protocols using signatures with appendix.

Protocol 4.11 shows Mechanism 1, the simplest in the standard. The session key
K4p is chosen by A and sent to B encrypted with B’s public key. Also encrypted are
the identity of A and the timestamp T (or alternatively a counter). In this protocol, as
with all the key transport protocols in this standard, it is essential that the public key
encryption used provides non-malleability as well as semantic security. If this were
not the case then the adversary may be able to change the value of the fields A and
T4 included with the encrypted session key. Notice that these fields are not generally
required to be confidential, so it may be inferred that the designers intended to use
the non-malleability to bind them to the session key. However, the properties of the
encryption algorithm used are not explicitly stated in the standard.

1.A—B: EnCB([DA,KAB,TA)

Protocol 4.11: ISO/IEC 11770-3 Key Transport Mechanism 1

From A’s viewpoint Protocol 4.11 provides a good key since A can choose the
key to be fresh and the encryption provides confidence that it is known only to herself
and to B. However, A achieves no assurance with regard to key confirmation, or even
that B is operative. Since there is no authentication at all of the origin of the key this
protocol gives no assurance to B as to who this key is shared with. As long as B can
rely on the freshness of T, he knows that the message received is fresh; but this does
not seem useful since without authentication of the sending party B cannot deduce
that Ky p itself is fresh. Indeed the standard states that the inclusion of Ty is optional.

Protocol 4.12 shows Mechanism 2, which extends Mechanism 1 by adding a
signature of the whole message by A. The timestamp 74 may again be replaced by
a counter. As before, the protocol provides a good key for A but provides no key
confirmation from B. However, in contrast to Protocol 4.11, the signature of A allows
B to achieve key confirmation. As long as B trusts A to generate the key faithfully, B
also achieves the good key property. Protocol 4.12 is similar to Protocol 4.1 for entity
authentication given in Sect. 4.2. Indeed, through use of the optional text fields in that
protocol, Protocol 4.12 conforms to the 9798-3 standard as well as to 11770-3.

1.A— B: IDp,Ty,Encp(IDa,Kap), Siga(IDp, Ta, Encp(ID4, Kap))

Protocol 4.12: ISO/IEC 11770-3 Key Transport Mechanism 2
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It is interesting to note that this protocol violates the first principle of Anderson
and Needham (see Table 4.2). The motivation behind this principle is that the signa-
ture does not provide assurance that the signer knows the plaintext in the encrypted
message. For example, in Protocol 4.12 an adversary C could remove the signature of
A and replace it with C’s own signature. This illustrates that it is essential that B trusts
the signer of the message only to sign keys that it has generated and encrypted. How-
ever, as long as the encryption used is non-malleable an adversary cannot change the
identity of A in the encrypted part of the message and so this does not result in a valid
attack.

Anderson and Needham gave details of an attack on both RSA and discrete log-
arithm encryption algorithms which allows a malicious principal B to gain a signa-
ture on an encrypted message of his choice by registering a new public encryption
key matched to the signed encrypted message. However, these attacks do not apply
if non-malleable versions of encryption are used; also Syverson [704] discussed a
number of practical difficulties with the attack. Nevertheless it is prudent for users of
this protocol to consider such possibilities.

Mechanism 3, shown in Protocol 4.13, swaps around the order in which the sig-
nature and encryption are applied in Mechanism 2. The intention of each of the fields
is the same so that the protocol achieves the same goals as Mechanism 2 as long as
B trusts A to generate a good key. The inclusion of the timestamp 7y (or a counter)
is again optional in the standard but without it B cannot gain key freshness or key
confirmation.

1.A—B: EnCB(IDB,KAB,TA,SigA(IDB,KAB,TA))

Protocol 4.13: ISO/IEC 11770-3 Key Transport Mechanism 3

Protocol 4.14 is a closely related protocol proposed by Denning and Sacco [240].
Two preliminary messages, which allow principal A to obtain public key certificates
for both A and B, are omitted here. The only difference from Protocol 4.13 is the
omission of the identity of B.

1.A—B: EncB(KAB7TA7SigA (KAB7TA))

Protocol 4.14: Denning—Sacco public key protocol

This omission allows an attack, discussed by Abadi and Needham [6], in which a
malicious B can engage in a protocol run with A as initiator, and then send message 1
to C re-encrypted with C’s public key. As a result C believes the key to be shared with
A but it is also known to B. Abadi and Needham suggested including the identities of
both A and B in the signature of message 1 to prevent this attack, but including only
B’s identity, as in Protocol 4.13, seems sufficient.
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Mechanism 4, shown in Protocol 4.15, is a two-pass protocol very similar to
Mechanism 2 (with roles reversed), the main difference being that A now uses a
nonce Ny to achieve key freshness and entity authentication of B. As long as B is
trusted to generate the key, A achieves the good key and key confirmation properties.
B achieves the good key property but no authentication of A.

1.A—=B: Ny
2.B—=A: IDAJ\’A,IVB7 EncA (IDB7KAB),SigB(IDA,NA,NB, EncA (IDB,KAB))

Protocol 4.15: ISO/IEC 11770-3 Key Transport Mechanism 4

The random number Np is optional in the standard, and is apparently used only
to maintain consistency with Protocol 4.2 which is the corresponding entity authen-
tication protocol in the 9798-3 standard. Protocol 4.15, with Np omitted, was proven
secure by Shoup in his simulation model [674] under the assumption of only static
corruptions by the adversary (recall that this is equivalent to a proof of security in
the Bellare—-Rogaway model as discussed in Chap. 2).

Protocol 4.16 shows Mechanism 5, which is a mutual version of Mechanism 4
for which two session keys Kxp and Kp4 are chosen by A and B respectively. The
standard suggests that the two session keys may be combined using a one-way hash
function, in which case this protocol is strictly a key agreement protocol rather than a
key transport protocol. It also suggests that either Encg(ID4, Ksp) could be omitted
from message 3 so that Kga becomes the session key, or Ency (IDg, Kga) could be
omitted from message 2 so that Kp is the session key. If K4p is used to define the
session key, then only B obtains key confirmation. Mechanism 5 conforms to the
9798-3 standard by adding optional text fields to Protocol 4.5, the corresponding
entity authentication protocol.

1.A—B: Ny
2. B— A: Np,Na,ID4,Enca(IDp,Kpa),Sigg(Np,Na,IDa, Enca(IDp, Kpa))
3.A—B: 1\7,4,1\/15’,11)37 EnCB(IDA7KAB),SigA (NA7NB7IDB, EnCB(IDA,KAB))

Protocol 4.16: ISO/IEC 11770-3 Key Transport Mechanism 5

The final key transport protocol in the ISO/IEC 11770-3 standard is Mechanism
6, shown in Protocol 4.17. In contrast to all the other protocols in the standard it
uses only encryption and no signatures. Perhaps it is most clear here that the en-
cryption algorithm requires non-malleability since otherwise all the fields used for
authentication could be potentially altered by the adversary.

The standard states that K45 and K4 may be combined using a one-way function
to form a single session key. It is also stated that K4p may be used by A to encipher
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1.A—B: EnCB(IDA.,KAB,NA)
2.B—A: EnCA(IDB,KBA,NA,NB)
3.A—B: N

Protocol 4.17: ISO/IEC 11770-3 Key Transport Mechanism 6

messages for B and to authenticate messages from B, and Kp4 may be used in an
analogous way by B. The protocol achieves mutual entity authentication and mutual
key confirmation.

An earlier draft version of the ISO/IEC 11770-3 standard included Protocol 4.18
instead of Protocol 4.17; the former has become known as the Helsinki protocol due
to the location of a particular meeting of the relevant standards committee. The only
difference from the final standardised Protocol 4.17 is that in message 2 the identity
field of B is missing.

1.A—B: EnCB(IDA.,KAB,NA)
2.B—A: EnCA(KBA,NA,NB)
3.A—B: N

Protocol 4.18: Helsinki protocol

Attack 4.4 on the Helsinki protocol was published by Horng and Hsu [364] in
1998. There is a strong similarity between this attack and Lowe’s earlier attack on
the Needham—Schroeder public key protocol discussed in Sect. 4.3.3 below. The
adversary, C, induces A to commence the protocol with C, and then starts a protocol
run with B while masquerading as A.

1. A= C: Encc(IDa,Kap,Na)
. C4 — B: Encg(ID4,K} 5, Na)
2'.B— Cy: EnCA(KBA,NA NB)

2. C—A: EnCA(KBA,NA7NB)

3.A—>C: Np

3. Cy — B: Np

Attack 4.4: Attack on Helsinki protocol

Both A and B have the view of a successful protocol run. However, if the session
key is f(Kap,Kpa) for some one-way function f, then A ‘believes’ she shares this
key with C, while B ‘believes’ he shares f (K} 5, Kpa) with A. Notice that the goal of
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implicit key authentication has not been violated in this attack, because C does not
know Kp4 and therefore cannot compute either of the session keys accepted by A and
B. However, entity authentication is not achieved in that B has incorrect knowledge
of his peer entity. Mitchell and Yeun [560] proposed to fix the protocol by adding B’s
identity to message 2 which, as we have seen, was the solution adopted in the final
ISO/IEC 11770 standard.

Earlier versions of the ISO/IEC 11770-3 standard claimed that key confirmation
is achieved for both A and B in Protocol 4.17. Although this intuitively seems to
be true, Cremers and Horvat [229] showed that a complex attack is possible which
violates key confirmation in the case where an optional text field (not shown in Pro-
tocol 4.17) is used. The additional text field in the first message allows a principal
in the role of B to interpret an instance of message 2 as an instance of message 1,
and that principal will hence generate a new message 2. Although this attack requires
several, possibly unrealistic, assumptions it shows that the claimed key confirmation
property does not always hold. This claim of key confirmation is removed in the
2015 version of the ISO/IEC 11770-3 standard.

4.3.2 Blake-Wilson and Menezes Key Transport Protocol

Blake-Wilson and Menezes [108] have proven the security of Protocol 4.19, which
is a simplified version of Protocol 4.16 (indeed it is an optional variant conforming
to the standard). Here the session key Kj4p is chosen by B. The protocol was strongly
related to Protocol 4.5 for entity authentication, and like that was proven secure in
the Bellare—Rogaway model. The proof incorporates the assumption that the encryp-
tion algorithm provides non-malleability by assuming that the adversary is able to
conduct a chosen ciphertext attack.

1.A— B:IDyg,Ny
2. B— A: IDp,IDy,Np,Ny,Ency (IDp,Kap),Sigp(IDp,IDs,Np, Ny, Enca(IDp, Kap))
3.A—B: IDA,IDB,NB,SigA(IDA,IDB,NB)

Protocol 4.19: Blake-Wilson—Menezes key transport protocol

‘We note that again this protocol ignores the first principle of Anderson and Need-
ham (see Table 4.2) not to sign encrypted data. In this case the order of encryption
and signature is not chosen by chance; it has to be this way around in order for the
proof to work. The reason for this is that it is necessary in the proof to be able to
simulate how the principals in the protocol behave when the plaintext is not known.
If the plaintext is included in a signature then it is not possible to determine if a
received message has been properly signed without knowing if the plaintext in the
signature is the same as in the ciphertext. Anderson and Needham [35] commented
that protocol logics, such as the BAN logic, on the contrary cannot be used when
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encrypted messages are signed. This illustrates an interesting dichotomy between
different methods of protocol validation.

4.3.3 Needham-Schroeder Public Key Protocol

The Needham—Schroeder public key protocol [581] was one of the earliest published
key establishment protocols along with its well-known companion using symmetric
encryption (see Sect. 3.4.1). Protocol 4.20 shows the messages exchanged. There
is a strong similarity with the Helsinki protocol (Protocol 4.18). The protocol was
designed to provide mutual entity authentication but with the option of using the
exchanged nonces, N4 and Np, as shared secrets for key establishment.

1.A—B: EnCB(NA,[DA)
2.B—A: EnCA(NA,NB)
3.A—B: EncB(NB)

Protocol 4.20: Needham—Schroeder public key protocol

Although this protocol was designed as long ago as 1978, it aroused quite some
interest much later. Lowe in 1996 [501] discovered Attack 4.5 which shows that B
cannot be sure that the final message came from A. Notice that A has never explic-
itly declared her intention to converse with B so this protocol cannot provide any
assurance to B that A has knowledge of B as the peer entity.

1. A=C: EnCC(NA,IDA)
1'. C4 — B: Encg(Ny,IDy)
2'.B—=Cy: Enca(Na,Ng)
2. C—A: Ency(Na,Np)
3. A=~ C: EncC(NB)
3.C4y —B: Encp(Np)

Attack 4.5: Lowe’s attack on Needham—Schroeder public key protocol

Attack 4.5 is similar to Attack 4.4 on the Helsinki protocol. In order to fix the
protocol against his attack, Lowe proposed the variant Protocol 4.21 which simply
includes the identifier of B in the second message.

Lowe was able to prove secure a finite model of Protocol 4.21 using the model
checker FDR (see Sect. 1.6.1) and extended the proof to the infinite version using
several pages of mathematical reasoning. It is again important to notice that this
revised protocol is only secure as long as the encryption algorithm used provides
non-malleability. Otherwise it cannot be guaranteed that an adversary will not be
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1.A—B: EnCB(NA,]DA)
2.B—A: EnCA(NA,NB,IDB)
3.A—B: EncB(NB)

Protocol 4.21: Lowe’s variant of Needham—Schroeder public key protocol

able to alter the value of the identifier B in message 2 even without knowing the
values of Ny and Ng. Protocol 4.21 has a lot in common with Protocol 4.17 and the
properties it achieves are the same. Instead of encrypting an explicit session key, the
nonces of A and B can act as a shared secret; this is the reason why the third message
needs to be encrypted.

Attack of Bana, Adao and Sakurada

Bana, Adao and Sakurada [52] proposed a typing attack on Protocol 4.21. In the
attack shown as Attack 4.6, an adversary I masquerades as B and intercepts the third
message from A. I then replays this message to B to initiate a new run with B. This
attack requires the assumption that the encryption of a single nonce sent in the third
message of one run will be interpreted as the encryption of a nonce and a principal
identity when replayed as the first message of another run.

3. A—1Ip: Encg(Np)
1'.1—B: EnCB(N[,ID[)
2.B—1I: EnC](NI.,Nl/;,]DB)
3. I4 — B: Encp(Np)

Attack 4.6: Bana—Addo—Sakurada attack on Needham—Schroeder-Lowe protocol

Key Compromise Impersonation Attack of Basin, Cremers and Horvat

Basin, Cremers and Horvat [59] later showed that a key compromise impersonation
attack is possible on Protocol 4.21. Attack 4.7 shows an attacking run, where an
intruder 7 induces A to start a protocol run with B. The intruder then intercepts mes-
sage 2 from B and decrypts this message, using knowledge of the private key of A,
to obtain N4. Finally, ] masquerades as B to A, by sending an encrypted message
which consists of a concatenation of N4 and a nonce value chosen by /, which will
be accepted by A. This means that A will accept N; as shared with B, whereas it is
actually shared with 1. The result of the attack is that it is no longer safe to use the
nonces of A and B as a shared secret. Note that the attack requires more assumptions
than usual, namely that the party to be impersonated is online.
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1. A— B: Encp(Na,IDs)

2. B—1y: EnCA(NA,NB,IDB)
2. Ig —A: EnCA(NA,NI,IDB)
3. A=~ 1Ip: EnCB(N[)

Attack 4.7: Key compromise impersonation attack on Needham—Schroeder-Lowe
protocol

To overcome the attack, Basin ef al. suggested Protocol 4.22 as a solution, using
hashing to make the nonces of A and B secret from an adversary who has obtained
either A or B’s private key but not both.

1.A— B: Encg(Na,ID4)
2. B— A: Ency(h(Na,Ng),Np,IDp)
3. A — B: Encg(h(Np))

Protocol 4.22: Needham—Schroeder—-Lowe protocol modified by Basin et al.

4.3.4 Needham-Schroeder Protocol Using Key Server

The original Needham—Schroeder public key protocol allows A and B to obtain each
other’s public keys from a trusted server. This requires additional message flows
that are omitted from the simplified version attacked by Lowe. The full version of
the protocol with a key server present (sometimes called NSPK-KS) is shown as
Protocol 4.23.

1.LA—=S: IDg
2.S—A: Cert(B)

3. A — B: Encp(Na,IDy)
4.B—S: IDy

5.8 —B: Cert(A)

6. B— A: Ency4(Ns,Np)
7.A— B: Encp(Np)

Protocol 4.23: Needham—Schroeder public key protocol using key server

Meadows [534] found an attack on Protocol 4.23 using the NRL Protocol Ana-
lyzer. The attack depends on the assumption that a random nonce can be used as a
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principal name. The attacker / masquerades as A to initiate a protocol run with B. [
intercepts B’s reply and sends it to A as the first message of a new protocol run. Upon
receipt of this message, A believes it is a run initiated by a principal having identity
Np. Now A will send Np in cleartext to S. Using knowledge of N, I can masquerade
as A to B in the first run, as shown in Attack 4.8.

Iy — B: EnCB(NI,IDA)
B—S: ID,

S— B: Cert(A)

B — 14 : Ency(N;,Np)
. 1—A: EnCA(NI,NB)
2 A— Is: Np

7. Iy — B: Encp(Np)

AN

Attack 4.8: Meadows’ attack on NSPK-KS

4.3.5 Protocols in the X.509 Standard

The X.500 series of recommendations was standardised by the ITU (formerly CCITT)
in parallel with ISO to provide directory services for communications. One purpose
of the directory is to store certificates for public keys and Part 8 of the standard [387]
uses such public keys as the basis for the Authentication Framework. This framework
specification includes a number of protocols for authentication and key establishment
which can be used for access control to the directory or for other purposes. The pro-
tocols are classified as either simple or strong. Simple authentication uses passwords
sent either in cleartext or as input to a one-way function; we shall consider only the
strong authentication protocols that use public key cryptographic methods.

There are three protocols specified, with one, two and three message flows re-
spectively. Each protocol extends the previous one by adding an extra message. The
goal of each protocol is transport of a session key from A to B and, for the two- and
three-flow protocols, transport of a session key from B to A.

In the simplest protocol there is only one message which is sent from A to B. The
certificates (or more generally a chain of certificates) are omitted in the following
descriptions, as well as optional signed data. The standard allows for simplified ver-
sions in which the session key is omitted, intended to provide entity authentication
only. Protocol 4.24 shows the one-pass version with the encrypted data forming the
session key K4p; this is suggested as only one possibility by the standard.

There is a strong similarity between Protocol 4.24 and Protocol 4.12. The main
difference is that here the identity of A is missing from the encrypted data, which
makes any potential attacks on Protocol 4.12 easier to mount. In particular, an adver-
sary may remove the signature on the message and replace it with a new signature on
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1. A— B: Ty,Na,IDp,Encp(Kap),Sigs (Ta,Na,IDp, Encp(Kap))

Protocol 4.24: X.509 one-pass authentication

the identical message which leads to B believing that the key was sent by the adver-
sary. This problem has been pointed out by Burrows et al. [171] while I’ Anson and
Mitchell [371] also discussed the consequences of such an attack when the encrypted
portion of the message acts as a confidential request for information. Both sets of au-
thors suggested that to fix this problem the signature should include the unencrypted
key (hashed to protect its confidentiality) with the encrypted key sent separately. An
alternative is to use Protocol 4.12 instead.

Basin et al. [59] have pointed out that a compromise of B’s long-term private
key allows a key impersonation attack against B, a key compromise impersonation
attack. As an improvement, they proposed a variant of the one-pass protocol, adding
a second pass as shown in Protocol 4.25.

1. B— A: Ency(Np)
2.A—B: TA,NA,IDE7 EnCB({KAB}NB),SigA(’1:4,1\IAJD1_L37 EnCB({KAB}NB))

Protocol 4.25: Basin—Cremers—Horvat variant of X.509 one-pass authentication

Protocol 4.25 employs a symmetric key chosen by B uniquely for this session,
Np. Notice that an adversary who knows B’s long-term private key can remove the
asymmetric encryption to obtain the ciphertext { K4p }n,. However, this will not help
the adversary in obtaining the session key K4p as long as Np remains confidential.

Protocol 4.26 is the two-pass X.509 protocol; the same first message is sent from
A to B as in Protocol 4.24 and a reply is sent from B to A, which is symmetrical
except that both nonces are included in the signed part of this message.

1. A — B: Ty,Na,IDp,Encp(Kap),Sigs (Ta,Na,IDg, Encp(Kap))
2.B—A: Tg,Np,IDs,Ns,Enca(Kpa),Sigp(Tp,Np,IDs,Na, Ency (Kpy))

Protocol 4.26: X.509 two-pass authentication

Similar remarks to those concerning Protocol 4.24 apply. The protocol may be
fixed in different ways such as by adding the sender’s name to the encrypted blocks
to form a mutual version of Protocol 4.12. The encrypted data sent from B to A is
shown as a session key Kpy; although the standard suggests this data may be used as
a session key there is no recommendation on whether this should be used separately
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or combined with K4p. Protocol 4.27 is the final X.509 protocol and includes a third
message intended to provide acknowledgement of message 2 by A.

1.A—B: TA,NA,[DB,EnCB(KAB),SigA(TA,NA,]DB,EnCB(KAB))
2. B—A: Tp,Np,IDa,Na,Ency (Kpa),Sigp(Ts,Np,IDs,Na, Enca (Kpa))
3.A—B: NB,IDB,SigA(NB,IDB)

Protocol 4.27: X.509 three-pass authentication

There is no need in either this protocol or the two-pass protocol for both Tp
and Ny to be included since either of them is enough for A to acquire freshness of
Kpa. Indeed the standard states that 7z may be set to zero which, as pointed out by
Burrows et al. [171], makes Tp completely redundant. The standard also states that
T4 need not be checked in message 1 either.

In the first (1988) version of the X.509 standard, the field B was absent from the
third message of Protocol 4.27. A consequence of this was that if T was not used
for freshness then the protocol could be attacked, since B is not able to check that
message 3 is part of the same protocol run. Specifically C can replay an old first
message from A to B and, in order to complete the protocol, need only obtain A’s
signature on the challenge received in message 2. C can now obtain such a signature
by engaging in a protocol run with A as the initiator. This attack was detailed by both
Burrows et al. [171] and I’ Anson and Mitchell [371].

4.3.6 Public Key Kerberos

Protocol 4.28 involves two parties: a client A and an authentication server S. The first
message includes an authenticator Sig, (T4, N4 ) containing a timestamp and a nonce
Ny signed by A, the name of the ticket granting server B for whom A wants a session
key, and another nonce N. If the timestamp is sufficiently recent, S generates a fresh
symmetric key k and replies with a message containing credentials for A. The first
part of this message contains S’s signature over k and the nonce N4 sent in the first
message. Because the signature is encrypted using A’s public key, only A can learn k.
Using k, A learns the session key K4p from the last part of the second message. The
field TGT is of the form {Kup,ID4, Ts} k,s, Where Kps is a long-term key shared by
B and S. Note that A cannot read the data that is encrypted with Kpg.

1. A— S: Cert(A),Siga(Ta,Na),IDa,IDg, N}
2.85—A: EnCA(Cert(S),Sigs(k,NA))JDA,TGT,{KAB,NA7T5,IDB}/<

Protocol 4.28: Ticket granting protocol of public key Kerberos
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Protocol 4.28 was attacked by Cervesato et al. [185] who noted that an adversary
I is able to intercept the message from A to S and replace the signature of A with I’s
own signature. Consequently, A accepts a session key for use with B, even though it
is known to /. Attack 4.9 is similar to Attack 4.3 on the SPLICE/AS protocol.

1. A=Ig: Cert(A),SigA(TA,NA)JDA,IDB,NA

1'.1—S: Cert(I),Sig;(Ts,Na),ID;,IDg, N}

2. S —1: Enci(Cert(S),Sigs(k,Na)),ID;, TGT,{Kip, N}, Ts,IDp }1
2. Is—A: EnCA(Cer[(S),Sigs(k,NA)),IDA,TGT, {K[B,NA., TSJDB}k

Attack 4.9: Attack of Cervesato et al. on public-key Kerberos

In order to fix the protocol against this attack, Cervesato et al. proposed a variant
protocol which simply includes the identifier of A in the signature of S.

4.3.7 Beller-Chang-Yacobi Protocols

Beller, Chang and Yacobi [80, 81, 82], and Beller and Yacobi [83] proposed hy-
brid protocols using a combination of asymmetric and symmetric cryptographic al-
gorithms. These protocols were designed to satisfy the requirements of the mobile
communications environment. They were intended to provide security between a mo-
bile station and a base station of the fixed network, rather than to provide end-to-end
security between mobile users.

There are at least two requirements in addition to those usually needed for au-
thentication and key establishment protocols.

e The computational load on the mobile station must be minimised, even at the
expense of increased load on the base station.
e The identity of the mobile station must remain hidden from the adversary.

The protocols of Beller ef al. were critically examined by Carlsen [183], who
identified some possible attacks and suggested protocol modifications to avoid them.
He also pointed out an inherent shortcoming of their protocols. Although these pro-
tocols hide the identity of an initiating mobile station, the dual requirement of hiding
the identity of the responding station remained unsolved.

The protocols of Beller et al. rely on a public key cryptosystem for which en-
cryption is particularly efficient, at least in comparison to other public key cryp-
tosystems. The specific public key cryptosystem employed is due to Rabin [622], in
which encryption and decryption are tantamount, respectively, to modulo squaring
and extracting a modulo square root (MSR). Instead of showing the mathematical
details of the MSR algorithms, we shall continue to use our more general notation in
describing the protocols of Beller et al. (hereafter referred to as the MSR protocols).
The MSR protocols consist of three variants with different complexity and security
features.
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MSR Protocol

In the following, the notation SCp is a structure known as the secret certificate of the
mobile station, B, which is issued by a trusted central authority. This certificate can
be checked by anyone using the public key of the central authority in order to verify
the mobile station’s identity. Unlike a usual public key certificate, this certificate must
be kept secret from all other mobile users and eavesdroppers, because it is all that is
required to masquerade as B. Protocol 4.29 shows the basic MSR protocol [82].

1.A— B: IDs,K;y
2.B—A: EnCA(KAB),{IDB,SCB}KAB

Protocol 4.29: Basic MSR protocol of Beller, Chang and Yacobi

Upon receiving the base station A’s public key K4, the mobile station uses it
to encrypt the session key Kyp, and sends the encrypted message to A. The mobile
station also sends its identity and secret certificate encrypted under K4p to authen-
ticate K4p to the base station. The symmetric encryption with K4p in message 2
is of negligible computational effort compared to the public key encryption in the
same message; therefore the computational effort at the mobile station is effectively
limited to that of modulo squaring of the session key. Carlsen [183] identified two
security weaknesses in Protocol 4.29. The first of these weaknesses appears to have
been recognised as early as 1993 by Beller et al. [82] themselves.

The public key of A is uncertified, thereby allowing anyone to masquerade as A.
It is not possible for A to differentiate between a new run of the protocol and
one where messages from an old run are replayed by a malicious adversary. At
the least this may allow the adversary to transfer connection charges to B. In
addition replay of an old compromised session key then allows the adversary to
masquerade as B.

Improved MSR (IMSR) Protocol

The improved MSR protocol of Beller et al. [82], IMSR, overcomes a major weak-
ness of MSR by using a public key certificate of the base station. This results in
a twofold increase in the computational complexity as compared to Protocol 4.29
since the mobile station now calculates an additional modulo square to verify the
base station’s certificate on receiving message 1.

Apart from this feature it is identical to the basic MSR protocol, and therefore
does not address the problem of replay. Carlsen [183] recognised this and suggested
an ‘improved IMSR’ protocol which includes a challenge-response mechanism to
allow B to detect a session key replay as shown in Protocol 4.30. (He also adds an
expiration time to the public key certificate of A, to allow for checks on the certifi-
cate’s validity, while at the same time deleting A’s identity from the certificate for
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purposes of anonymity. The effect of this latter change is that base station ‘imper-
sonation attacks’ become possible, as pointed out by Mu and Varadharajan [569]. As
usual, this public key certificate is omitted from our description.)

1.A— B:IDy,Ny
2. B—A: Encs(Kag),{Na,IDp,SCp}k,,

Protocol 4.30: Improved IMSR protocol of Carlsen

Upon receiving the final message, A decrypts it using the session key Kup, and
checks that the value Ny is the same as the nonce sent in message 1. Curiously, al-
though Carlsen clearly identified the problem of replay, his suggested improvement
does not really overcome it. In the above protocol, if K4p is compromised an adver-
sary can obtain SCp, and thus freely masquerade as B.

Beller et al. [81] mentioned the security threat posed to the IMSR protocol by
an adversary who obtains the session key; however, they do not treat the problem of
replay as such. They suggested two methods to protect the certificate of B against
a compromised session key. One of these, called the split-certificate method, is to
have the mobile station send at least half of its certificate encrypted together with
Kup under the base station’s public key. The other, called the split-key method, is to
divide K4p into two subkeys, one of which is used to encrypt the protocol message
that authenticates B to A, and the other is used as the session key proper. Both these
methods can also be used to overcome the weakness of Protocol 4.30.

Beller-Yacobi Protocol

In a separate publication, Beller and Yacobi [83] suggested a further variation on
the IMSR protocol. Like the MSR+DH protocol discussed below, the Beller—Yacobi
protocol employs a public key for the mobile as well as the base station. The mo-
bile station’s private key is used to implement digital signatures using the ElGamal
algorithm [267]. The main reason for choosing this algorithm is that most of the
computations required for signature generation can be executed prior to choosing
the message to be signed. This means that it is easy for the mobile processor to do
most of its work offline, during idle time between calls. The basic structure of Proto-
col 4.31 is similar to Protocol 4.29. The main difference is in the last two messages
which implement a challenge—response mechanism based on digital signatures.

In the third message, A sends a nonce Ny encrypted using K4p. B then returns
Ny signed using his private key together with his identity, public key and certificate
Cert(B), all encrypted under Ksp. Finally, A decrypts this message and verifies the
signature on Ny.

We now present a potential attack on Protocol 4.31 [141]. Although this attack
makes quite strong assumptions, it may be taken seriously because it indicates a flaw
in the protocol design. We understand that the same attack was found independently
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1.A— B:IDs,Ky

2.B—A: EncA(KAB)

3.A—B: {NA}KAB

4. B—A: {[DB,KB,CEFI‘(B),SigB(NA)}[(AB

Protocol 4.31: Beller—Yacobi protocol

by the original authors subsequent to the protocol’s publication. The adversary, C,
must be a legitimate user known to A. Further, C needs to be able to set up simul-
taneous sessions with both A and B. (C could be a rogue mobile and base station in
collusion.) In Attack 4.10, C is able to convince B that C is A.

1. A=>Cp: ID4, Ky

2. Cp — A: Ency(Kap)

3. A —)CB : {NA}K/\B

'.C—B: IDc, K¢

2.B—C: Encc(K)p)

3.C—B: {NA}K/I&B

4.B—C: {IDp,Kp,Cert(B),Siga(Na) i,
4. Cp — A: {IDp,Kp,Cert(B),Sigp(Na) } ks

Attack 4.10: Attack on Beller—Yacobi protocol

The essence of the attack is that C starts a parallel session with B in order to
obtain B’s signature on A’s challenge N4. At the end of the attack, A accepts Kjp
as a session key with B, whereas in fact it is shared with C. The session started
between C and B can be dropped after the receipt of message 4’. Note that message
3 must precede message 3’, and message 4’ must precede message 4; the remaining
messages may overlap each other.

There is a simple way to alter the protocol so as to avoid the attack [141]. Essen-
tially the change is to have B sign the new session key K4p when it is first sent to
A, in message 2, together with the challenge N4, which guarantees its freshness. The
key must have its confidentiality protected by a suitable one-way hash function 4, but
the use of such a function is a standard practice in most digital signature schemes.
Since K4p is now authenticated in message 2, message 4 is redundant and message
3 is used simply for B to verify that A has received the key. Protocol 4.32 shows the
revised version.

Comparison with Protocol 4.31 shows that Protocol 4.32 is no more costly in
either computational or communications requirements than the original. Therefore
it appears to be just as suitable as the original for the situation where B has limited
computing power.
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1.A— B:IDy,Ny
2. B—A: Ency(Kap),{IDp,Kp,Cert(B)}k,,,Sigp(h(IDa,IDg,Na, Kap))
3.A—B: {NA}KAB

Protocol 4.32: Improved Beller—Yacobi protocol

Beller-Yacobi MSR+DH Protocol

Beller and Yacobi also proposed an extended version of the IMSR protocol which
incorporates Diffie-Hellman key exchange [252]. (Diffie-Hellman key exchange and
many related protocols are discussed in detail in Chap. 5.) A major improvement is
that now the mobile terminal has a public key which means that it no longer needs to
reveal its permanent secret to the base.

In this protocol the base station A has two public keys: the Diffie—Hellman key
and a public key used for encryption in the modular square root system. The mo-
bile station B has one public key. Carlsen [183] has also suggested an ‘improved
MSR+DH’ protocol by making similar modifications to those carried out in the im-
proved MSR protocol. Protocol 4.33 shows the improved MSR+DH protocol [183].

1.A— B: IDs,Ny
2.B—A: EncA(x),{NA,IDB}x

Protocol 4.33: Carlsen’s improved Beller—Chang—Yacobi MSR+DH protocol

The static Diffie-Hellman key Sap (see Sect. 5.2) is used to derive the session
key as Kyp = {x}s,,. Although the security of the MSR+DH protocol appears far
improved over the other MSR variants, it carries a computational price. Now both
parties need to calculate a full modular exponentiation at session set-up leading, as
per the calculations of Beller et al., to a 100 times increase in the required computing
power.

4.3.8 TMN Protocol

One of the earliest key establishment protocols designed for use in a mobile envi-
ronment was that of Tatebayashi, Matsuzaki and Newman [708], which has widely
become known as the TMN protocol. A favourite with protocol analysts due to its
many vulnerabilities, we include it for its historical importance. The principals are
two mobile stations A and B who wish to exchange a session key to provide end-
to-end security, and a server S with whom they share distinct long-term secrets. The
design takes account of the limitations in mobile station computational ability by re-
quiring the mobile stations only to encrypt with short RSA [630] public exponents.
A number of attacks have been published on the TMN protocol, some of which rely
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on the specific cryptographic algorithms used, and others which exploit problems in
the message structures [424].

The TMN paper [708] includes two protocols. The first protocol (called KDP1)
contains no authentication information and was found by the designers to be vul-
nerable to certain attacks. As an improvement, Protocol 4.34 (called KDP2) was
proposed. The field sy4 is a shared secret value between S and A while T4 is a time-
stamp generated by A. The fields s and 7y are defined analogously. The session key
Kyp is generated by B, while A generates a one-time key-encrypting key KEK. The
second protocol message is simply a request from S for B to respond.

1.LA—S: EnCS(TA,SA,KEK)
2. 85— B:RSVP

3.B—S: EnCS(TB,SB,KAB)
4. S —A: {KAB}KEK

Protocol 4.34: Simplified TMN protocol (KDP2)

The encryption in message 4 is carried out using a symmetric cryptosystem. The
identities of A and B are relevant to the intended meaning of messages 3 and 4,
respectively, although they are not included within the encrypted fields of these mes-
sages. As a result, neither A nor B has any assurance of who else has the session key
Kap. Since S has a shared secret with both A and B, it is questionable whether the use
of public key cryptography in the TMN protocol is justified.

A different attack, based on the algebraic properties of the encryption algorithms,
was found by Park er al. [600]. These authors proposed a variant protocol with dif-
ferent algorithms, but its general structure is identical to Protocol 4.34. Consequently
it suffers from the same weaknesses.

4.3.9 AKA Protocol

The Texas A&M University Anarchistic Key Authorization (AKA) protocol was pro-
posed by Safford et al. [643]. The name of the protocol reflects the use of informally
certified public keys in the style of PGP [783] although that does not seem to in-
fluence the design in any particular way. AKA employs an unusual mechanism to
provide forward secrecy; instead of Diffie—Hellman key agreement, short-term RSA
keys are used.

A number of variations on the basic idea were given by Safford et al. providing
greater efficiency and flexibility. Protocol 4.35 is one simple version in which only B
chooses a short-term public key; in other variants both parties choose and exchange
a short-term public key. The public keys K4 and Kp are long-term public keys of A
and B while K, is a short-term public key chosen by B for this session; encryption of
M using K} is denoted by Ency(M).
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1.A—B: Ky
2.B—A:KgK
3.A—B: EHCE(NA,IDA)
4. B— A: Ency(Np)

5. B— A : Enca(Sigg(Na))
6. A — B: Ency(H(Ng))

Protocol 4.35: AKA protocol

The session key is defined as a function of the shared secret N4 & Np. The point of
using the temporary public key can be seen if we consider the result of a compromise
of either A’s or B’s long-term private key. Since the private key corresponding to Kj,
is not compromised then N4 cannot be recovered and so forward secrecy is provided.

Abadi [1] has shown that this protocol is vulnerable to an attack due to the lack
of sufficient authenticating information inside the signature of B in message 5. This
means that an adversary C can interleave a run of the protocol with B with another
run with A in which C masquerades as B. Attack 4.11 shows a specific attacking run:
C replaces B’s short-term public key with a new short-term key K(.. C can use the
signature of message 5 to convince A that C is in fact B. C simply aborts the run with
B after capturing message 6 from A.

1. A= Cp: Ky

1!.Cy = B: Ky

2. B—Cy: KB,Ké

2. Cp—A: KB,K/

3. A—Cp: EnCC(NA,IDA)

3. Cy — B: EnCB(NAJDA)

4'. B— Cy : Ency(Np)

4. Cp — A: Enca(N¢)

5'. B— Ca : Enca(Sigg(Nya))

5. Cp—A: Ency(Sigp(Na))
c(H(N,

A
6. A— Cp: Enc )

Attack 4.11: Abadi’s attack on AKA protocol

The result of the attack is that A and C share the secret Ny @ N¢ but A believes
that this secret is shared with B. Abadi pointed out that this attack can be prevented
by including more fields in the signature in message 5; specifically the nonce Np and
the identities of A and B should be included.

A similar attack applies to the other AKA variants. In the versions where both A
and B choose a short-term key, the adversary can replace them both with new short-
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term keys and obtain all encrypted information before sending it on re-encrypted
with the expected key.

4.3.10 Comparison of Key Transport Protocols

Table 4.4 summarises the main features of the main key transport protocols exam-
ined in this chapter. Some additional variants of the protocols listed in the table are
included earlier in this chapter. We record the properties of key control, key fresh-
ness, key authentication and key confirmation in each case, even though in many
cases these properties are not formally proven.

Table 4.4: Summary of major properties of key transport protocols using public key
cryptography

Properties — Key Key Key Key Attack Security
J Protocol control freshness auth. conf. proof
11770-3 Mechanism 1 (4.11) A A A No No No
11770-3 Mechanism 2 (4.12) A A+B A+B B No No
11770-3 Mechanism 3 (4.13) A A+B A+B B No No
11770-3 Mechanism 4 (4.15) B A+B  A+B A No Yes
11770-3 Mechanism 5 (4.16) A+B A+B  A+B A No No
11770-3 Mechanism 6 (4.17) A+B A+B  A+B No No No
Blake-Wilson—Menezes (4.19) B A+B A+B A No Yes
Needham—Schroeder (4.20) A+B A+B  A+B A+B Yes Yes
Needham—Schroeder key server (4.23) A+B A+B  A+B A+B Yes No
X.509 one-pass (4.24) A A A No Yes No
X.509 two-pass (4.26) A A A No Yes No
X.509 three-pass (4.27) A+B A+B No No No No
Public key Kerberos (4.28) S A+B B A+B Yes No
(DMSR (4.30) B B A+B A Yes No
Improved Beller—Yacobi (4.32) A A+B A+B A+B No No
TMN (4.34) B B No No Yes No
AKA (4.35) A+B  A4B No No Yes No

Because key transport protocols cannot in general provide it, we do not include
forward secrecy in the table. The same applies to resistance to key compromise im-
personation. If we restrict to basic key transport protocols, where all keying material
is chosen by one party and sent encrypted with the other party’s public key, then nei-
ther forward secrecy nor KCI resistance can be provided. This is because knowledge
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of just one party’s private key is then sufficient to obtain the session key. Note that
some of the protocols which we examined in this chapter, such as Protocols 4.22 and
4.25, do not fall into this category. The session key may be based on private inputs
of both parties, as in Protocol 4.22; such a protocol is really key agreement, not key
transport. Also the session key may be only indirectly encrypted with the receiver’s
long-term key, as in Protocol 4.25.

The protocols in the ISO/IEC 11770-3 standard have benefited from the formal
analysis by Cremers and Horvat [229] and have been updated to avoid the problems
they identified. For many applications they are perhaps the best choice of protocol if
key transport is needed.

As remarked at the end of Sect. 4.3.1, the intuitive key confirmation property
of 11770-3 Mechanism 6 has been shown not to hold in general, if optional text
fields are implemented. We also recall that Chen and Mitchell [197] have pointed out
that all protocols in the ISO/IEC 11770 and 9798 series of standards are potentially
vulnerable to parsing ambiguity attacks unless appropriate precautions are taken (see
Sect. 1.4.7).

4.4 Conclusion

The ISO/IEC 11770-3 standard specifies a variety of key transport protocols using
asymmetric cryptography. Blake-Wilson and Menezes provided a proof for a simpli-
fied version of one of these which provides extra confidence in their security. Later,
Cremers and Horvat [229] provided a formal analysis of all the ISO/IEC 11770-3
protocols and found some weaknesses. They proposed changes to avoid the prob-
lems by adding message tags preventing interchanging of messages, and by prevent-
ing arbitrary usage of optional text fields. It would be useful to have security proofs
for each of the protocols. The TLS protocol, discussed in detail in Chap. 6, has been
widely scrutinised and provides an alternative to some of the ISO/IEC protocols.

The other key transport protocols examined in this chapter all seem to have some
problems, and they cannot be recommended over the ISO standard solutions. We
think that the study of these protocols can nevertheless be instructive in understand-
ing typical mistakes in protocol design. Basin, Cremers and Horvat [59] have pro-
posed improvements to several existing protocols to avoid the problem of key com-
promise impersonation.

Recent attention in the research community has focused on key agreement rather
than key transport. One reason for this is that key transport protocols do not usually
provide forward secrecy, which is often possible with key agreement. Key agreement
is the topic of the following chapter.
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Key Agreement Protocols

5.1 Introduction

Key agreement, as the name implies, is a process in which principals cooperate in
order to establish a session key. Amongst the class of public key protocols for key es-
tablishment without a server, key agreement has become much more popular than key
transport in recent years. There is an intuitive feeling that key agreement is ‘fairer’
than key transport and can result in higher-quality random keys than key transport
can. In addition, by basing key agreement on the Diffie-Hellman protocol, forward
secrecy can often be achieved. We will consider these points further below. Notice
that key agreement does not have to use public key cryptography, but most examples
do so. In this chapter we look only at key agreement based on public key cryptogra-
phy; some examples of key agreement using symmetric cryptography were discussed
in Chap. 3.
The definition of key agreement given by Menezes et al. [550] is as follows:

A key agreement protocol or mechanism is a key establishment technique
in which a shared secret is derived by two (or more) parties as a function of
information contributed by, or associated with, each of these (ideally) such
that no party can predetermine the resulting value.

A similar definition is given in the international standard ISO/IEC 11770-3 [383], al-
though it insists that neither party can predetermine the shared secret. In this chapter
we are concerned with key agreement between any two principals A and B. The gen-
eral format of such protocols requires each principal to select an independent input
to the key. For our two principals, these will be denoted r4 and rp, respectively. The
principals will then send each other messages depending on r4 and rg, and possibly
depending on other values too.

The plan for the rest of the chapter is as follows. Before looking at specific key
agreement protocols, we consider some of the special properties and attacks that
can apply to them. Of course, all the general attacks on key establishment protocols
discussed in Chap. 1 are relevant too.
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Section 5.2 looks at the basic Diffie-Hellman protocol and emphasises its prop-
erties and limitations. Then, in Sect. 5.3, we examine in detail a set of protocols
based on Diffie-Hellman which are known as the MTI protocols. This set of pro-
tocols was designed relatively early and serves to illustrate many of the properties
of and potential attacks on key agreement protocols. Section 5.4 includes a num-
ber of more recent protocols whose exchanged messages are identical to those of
Diffie-Hellman. Extra information, particularly public and private keys, is used in
the calculation of the shared secret. Section 5.5 is devoted to protocols that add extra
authentication information to the exchanged messages rather than (or in addition to)
the definition of the shared secret. International standard ISO/IEC 11770-3 specifies
key agreement protocols in an abstract format. These are summarised in Sect. 5.6.
Up to this point all the detailed protocols have been described in the setting of the
multiplicative group of integers modulo a prime p. In Sect. 5.7 we list some alter-
native groups that have been proposed for the Diffie-Hellman protocol. Finally, we
look at some key agreement protocols that do not use the Diffie—Hellman technique
in Sect. 5.8.

5.1.1 Key Derivation Functions

There are usually two stages to forming the session key.

1. The random inputs r4 and rp, and possibly the long-term public/private keys, are
combined to form a shared secret, Z.

2. The session key K is formed from Z, and possibly other inputs, using a key
derivation function.

In different protocols, the key derivation function and its inputs will generally be
different. A typical key derivation function is a one-way hash function of the shared
secret and other data such as an algorithm identifier for the session key, a counter
and public information about A and B. A generic key derivation function, known as
KDF1, is specified in the IEEE P1363-2000 standard [372]; although KDF1 does
specify the hash function to be used, the inputs to the function are left open.

Earlier protocols tended to focus only on the shared secret and leave the key
derivation function unspecified. However, since security proofs started to be a ma-
jor focus, it has become normal to be more specific regarding the properties of both
the function and its inputs. Krawczyk [454] proposed a formal definition for se-
cure key derivation functions and proposed a concrete construction. The ISO/IEC
11770-6 standard [384] specifies two-step key derivation functions applying a key
extraction function followed by a key expansion function, the latter of which can be
repeated to obtain further keys. The standard specifies one specific extraction func-
tion which can be combined with any one of four expansion functions. The functions
all make use of a suitable MAC algorithm and follow the general pattern specified
by Krawczyk [454].

Many protocol designers have simply used a hash function for key derivation,
often modelled as a random oracle in the proofs. In our descriptions in this chapter,
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we have usually included the inputs to the key derivation function when they are
specified by the designers. However, we often focus on the shared secret Z, since
this is often the simplest way to highlight the differences between many protocols.

5.1.2 Key Control

One potential benefit of key agreement is that each principal does not have to rely on
any other party to generate appropriate keys. As long as neither party is malicious, it
can often be guaranteed that the session key is sufficiently random if at least one of
the principals is able to generate sufficiently random inputs. A related benefit is that
principals can often be sure that the session key is fresh by ensuring that their own
input is fresh. For this to be true, neither of the principals must be able to force the
key to be any chosen value, otherwise one party could force use of an old key.

Key control is a term used to describe the extent to which principals have the
ability to choose or influence the value of the shared key (or session key). As ex-
pressed in the definitions of key agreement given above, it is usually desired that
neither principal can control the shared secret value.

In most practical situations one party will receive the random input of the other
party before it has had to reveal anything about its own random input. This gives
that party an ‘advantage’ in that it can effectively choose a number of bits of the
session key. Mitchell et al. [559] have pointed out that, by choosing about 2° random
values, the party with the advantage can effectively choose any s bits of the key by
generating new keys until the desired bits occur. Although s will typically be much
less than the total key length, it is important to be aware of this possibility in assessing
the properties of a key agreement protocol.

Mitchell et al. pointed out that such an attempt to control the key can be prevented
by ensuring that both parties fix their random input before information about the
other party’s input is known. Ways to achieve this include strict use of timeouts
and use of a third party, but the most reasonable seems to be to have the first party
send a hash of its random input as a commitment, which will be opened in a later
message after the second party’s random element is received. A major drawback of
this approach is that an extra message is required in the protocol.

A lack of strict key control applies to most published key agreement protocols.
At present, designers do not seem to be concerned enough about it to propose coun-
termeasures.

5.1.3 Unknown Key-Share Attacks

Unknown key-share attacks are applicable in a security model that allows malicious
insiders. The aim of the adversary C is to make one principal, say A, believe that the
session key is shared with C when it is in fact shared with a different principal, B.
The adversary need not, and usually does not, obtain the session key. Nevertheless,
such an attack is profitable to the adversary in an application where B will deliver
some information of value (such as electronic cash) to principal A. Since A believes
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the session key is shared with C, credit for this deposit will rest with C. (This means
that this key is not good to establish credit in the sense of Abadi [2].)

Unknown key-share attacks seem to have first been described by Diffie er al.
[253]. Their importance is somewhat controversial, since there are some general
methods that can be used to avoid them. Furthermore, the assumptions made in many
of the proposed attacks are rather unusual. A common scenario is for the adversary to
obtain a public key certificate that has the same public key value as another principal.
(The adversary will not know the corresponding secret key.) There are a number of
methods that can help to defeat the attack.

e Certifiers of public keys can ensure that each entity is in possession of the cor-
responding private key before a certificate is issued. Some authors assume that
this precaution is always taken and do not regard an unknown key-share attack as
valid if the adversary does not know the private key corresponding to the certified
public key.

e Key confirmation can often defeat the attack. The confirmation messages should
include the identities of both principals so that the key is confirmed to be held by
specific claimed entities, rather than known only to some unidentified party.

e A general method to ensure that unknown key-share attacks do not apply is to
include both principal identities within the key derivation function. As long as
the function used is collision-resistant then A, if she believes the key is shared
with C, will not derive the same session key as B, who believes the session key
is shared with A. Somewhat surprisingly, Blake-Wilson and Menezes [110] dep-
recated this method of avoiding unknown key-share attacks on the grounds that
the requirements of key derivation functions have not been widely studied.

5.1.4 Classes of Key Agreement

The most well-known technique used in key agreement protocols is Diffie-Hellman
key exchange [252]; indeed, sometimes key agreement is even used synonymously
with the Diffie-Hellman technique. There are some special advantages of basing key
agreement on Diffie-Hellman.

e Most of the protocols can be generalised to work in any Abelian (commutative)
group. This allows a flexible choice of groups, including some that are particu-
larly efficient in terms of computational and storage requirements.

e Many protocols based on Diffie—Hellman have the forward secrecy property,
which is costly to achieve any other way. (However, several examples in this
chapter show that basing a protocol on Diffie-Hellman does not guarantee that
forward secrecy is achieved.)

It should be remembered that there are other ways of designing key agreement
protocols apart from using the Diffie—Hellman primitive. A widely used alternative
is to use a one-way function of user inputs to derive the session key. There can be
advantages in this approach too.
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e There can be computational savings over Diffie—Hellman by reducing (or elimi-
nating) the number of expensive exponentiations.

e Keys can be guaranteed to be random even if one input becomes known — a
property lacking in Diffie-Hellman-based protocols.

In Sect. 5.8, we will examine protocols using encryption and key encapsulation in
place of Diffie—Hellman.

5.1.5 Protocol Compilers for Key Agreement

Our focus in most of this chapter is on concrete key agreement protocols proposed
in standards and the academic literature. There are also generic methods available
to construct protocols from other primitives or from protocols with weaker security
properties. These are often called protocol compilers. Here we mention some com-
pilers designed for two-party key agreement. In Chap. 9, we will also describe a
compiler due to Katz and Yung designed for group key agreement, which, of course,
includes two-party key agreement as a special case.

Jager et al. [391] designed compilers to combine key agreement protocols secure
against passive adversaries with dedicated authentication protocols in such a way as
to achieve protocols secure against active adversaries. They used a BR-style model
but did not deal with forward secrecy. Their first compiler requires only standard
model arguments, while their second is more efficient but uses a random oracle in
the proof.

Li et al. [488] presented two compilers which take in a protocol I, secure against
passive adversaries, and add either (deterministic) signatures or CCA-secure encryp-
tion of the transcript of I1. They provided a formal analysis in a BR-style model
including state reveals and forward secrecy (it was required that I did not use long-
term keys). One potentially useful aspect of these compilers is that they do not require
any modification to the input protocol I, allowing them to be applied to existing im-
plementations of IT without modification.

Generally, such compilers do not achieve the same efficiency as the dedicated
protocols which we examine in this chapter. However, they allow flexible combi-
nation of protocols and the ability to plug in new protocols whenever they become
available. We emphasise also that the above compilers are not limited to application
to Diffie—-Hellman-based protocols, but apply to any key agreement protocol.

5.2 Diffie-Hellman Key Agreement

Diffie-Hellman key agreement was published in 1976 [252]." This elegant and sim-
ple construction has been the basis for a vast range of protocols, but on its own
lacks any authentication. Later in this chapter we examine different ways to add au-
thentication to produce more effective key agreement protocols. In this section we

11t seems that the idea was invented previously in 1974 but was not made public at that time
[734].
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introduce Diffie-Hellman and mention some protocols in which one or both of the
Diffie—Hellman inputs are fixed, and which therefore lack some of the usual benefits
of the technique.

In the basic Diffie-Hellman protocol, two principals A and B agree publicly on an
element g that generates a multiplicative group G. They then select random values r4
and rp, respectively, in the range between 1 and the order of G. A calculates t4 = g"4
and B calculates 15 = g8, and they exchange these values as shown in Protocol 5.1.
The shared secret is Z = g"A"8. This value can be calculated by both A and B owing
to the commutative property of exponentiation: Z = 1,% = r'.

Shared information: Generator g of G.
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Protocol 5.1: Diffie-Hellman key agreement

Diffie-Hellman key agreement was originally described in the multiplicative
group Z, of non-zero integers modulo a large prime p. It has become more usual
to define the group G in which the protocol takes place to be a subgroup of Zj, of
prime order g. (Note that the order of Zj, is p — 1, which cannot be prime.) There are
two potential advantages of this. Firstly, several attacks (to be described shortly) can
be avoided. Secondly, the size of the group G can usually be made much smaller than
Z,,, which results in computational savings. Typical sizes in use today are 2048 bits
for the length of p and 256 bits for the length of g. Several other algebraic groups
have been proposed as the setting for Diffie—-Hellman key exchange. Examples are
given in Sect. 5.7. In particular, elliptic curve groups are popular today. To enable a
uniform presentation, all the Diffie—Hellman-based protocols in this chapter are de-
scribed with G as a subgroup of Z, even in cases when the protocol designers have
prescribed other groups.

Diffie—Hellman is secure against passive eavesdroppers on the widely accepted
assumption that it is infeasible to recover g'4"8 from the values of g’4 and g'8. This is
often referred to as the computational Diffie—Hellman (CDH) assumption. Breaking
the Diffie—-Hellman problem is clearly no harder than solving the discrete logarithm
problem, since by finding the discrete logarithm of either of the exchanged values the
Diffie—Hellman key can be found. It is a long-standing open question as to whether
the Diffie—Hellman problem is really as hard as the discrete logarithm problem, de-
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spite considerable research on the topic [403, 527]. In formal analysis of Diffie—
Hellman-based protocols, it is often possible only to obtain a proof based on the
generally stronger decisional Diffie—Hellman (DDH) assumption. This states that it
is a hard problem to distinguish between a genuine Diffie-Hellman triple (g*,¢”, &™)
and a triple (g%, g”,¢%) for random exponents x, y and z.

The fundamental limitation of the basic Diffie-Hellman protocol is that there is
no authentication of the messages sent. This is illustrated by the well-known ‘man-in-
the-middle’ attack in which the adversary C masquerades as B to A and masquerades
as A to B. Attack 5.1 shows how both A and B complete a normal run, but both share
keys with C, namely g"A’C and g'¢"B, respectively.

A C B
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Attack 5.1: Man-in-the-middle attack on basic Diffie-Hellman

The shared secret g"A"8 derived in basic Diffie-Hellman is called an ephemeral
Diffie—Hellman key, since it depends only on randomly chosen values and lasts only
until the session key is derived. In contrast, if A and B exchange their respective long-
term public keys y4 = g* and yg = g*8 then both can calculate the value Syp = g"4"B.
This is often called a static Diffie-Hellman key, since it does not depend on any
random input. As we will see in Sect. 5.4, it is a common method to design protocols
based on Diffie-Hellman by mixing the ephemeral and static values in such a way as
to obtain the desired properties.

Static Diffie-Hellman is one example, indeed the most widely seen example in
practice, of non-interactive key exchange (NIKE). A NIKE protocol enables princi-
pals to derive a shared secret without any protocol messages being exchanged. (Of
course, the principals still need to obtain the static keys by some means, but for NIKE
there are no direct protocol messages between principals.) Another example of NIKE
is the SOK identity-based protocol (see Sect. 7.1.3). Freirre et al. [284] proposed sev-
eral different formal security definitions, based on different assumptions regarding
what long-term keys may be registered by the adversary. Their definition requires the
specification of exactly how the session key should be derived from the shared se-
cret. Use of static Diffie-Hellman, or NIKE in general, on its own to derive session
keys falls outside the main focus of this chapter, since any such protocol does not
allow generation of new session keys. However, NIKE can still be a useful building
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block in the generation of key agreement protocols. We mention one example of this
in Sect. 5.5.1.

The static Diffie-Hellman key can be used in a very simple protocol by incor-
porating it together with a fresh value in a one-way function. Suppose that & is a
fixed key derived from S4p. Rueppel and van Oorschot [637] noted that k could be
used to transport a random session key K by sending {K}; or, alternatively, the ses-
sion key could be defined as K = MACk (r), where r is a sequence number or nonce
sent in cleartext. Such protocols could provide implicit key authentication, but fail
to provide some of the typical advantages of key agreement. In particular, there is
no joint key control and neither forward secrecy nor resistance to key compromise
impersonation is provided.

The notation used in this section is included in Table 5.1 and will be used
throughout this chapter for describing Diffie—-Hellman-based protocols. We will also
continue to use notation introduced in Table 4.1.

Table 5.1: Notation used throughout Chap. 5

P A large prime (typically between 1024 and 3072 bits).
A prime (typically between 160 and 256 bits) with ¢|p — 1.

(S

G A group whose order divides p — 1. G is often a group of order ¢, and may be
a subgroup of Z; or an elliptic curve group.

g A generator of G.

ra, rp Random integers, typically of the same size as the order of G, chosen by A
and B, respectively. Sometimes we will call these ephemeral private keys.

ta,tp  Ephemeral public keys, t4 = g’ and tp = g'8. All computations take place in
Zp.

x4, xp The private long-term keys of A and B, respectively.

va,yp Long-term public keys of A and B, y4 = g* and yp = g*2. These public keys
will have to be certified in some standard way that we usually ignore.

V/ The shared secret calculated by the principals. This may be computed by the
principals in different ways.

K The derived session key.
SaB The static Diffie-Hellman key of A and B, Syp = g"*5.
N4, Np Nonces chosen by A and B, respectively.

H(.) A one-way hash function. Certain protocols may require specific properties
and may specify particular functions.

x €r X The element x is chosen uniformly at random from the set X.

F1G Verify that F and G evaluate to the same value.
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5.2.1 Small Subgroup Attacks

Small subgroup attacks seem to have been first recognised by Vanstone (attributed
in later descriptions [478, 594]). The idea of small subgroup attacks is to exploit
the structure of the group G in which Diffie-Hellman key agreement takes place.
If the order of G is composite then G will have subgroups; furthermore, if g lies
in some subgroup then so does g"4"8. The idea of the small subgroup attack is to
force the shared secret to lie in a small set. Then there will be relatively few possible
values available for the session key, which will help the adversary and possibly allow
exhaustive search.

One way to avoid small subgroup attacks is to make G of prime order. This is
frequently done by choosing g to have prime order ¢, where g|p — 1. In this case the
only proper subgroup of G consists of the single identity element. In order to avoid
attacks, it may still be necessary to check that received elements do lie in the correct
group (and are not equal to the identity). See Sect. 5.3.1 for a specific example of a
small subgroup attack.

A related type of attack, first proposed by Lim and Lee [492], exploits small sub-
groups that are outside the subgroup generated by G. In these attacks the adversary,
who is an insider, sends the recipient a value that should be in the group G, but is
mixed with a value outside G. This allows the adversary to gain information about
the value of the victim’s private key. This type of attack can still work when G is a
prime-order subgroup of Zj,. It can be prevented if the principals ensure that all re-
ceived elements are inside G. Further details, including a specific example, are given
in Sect. 5.3.3.

Zuccherato [784] has summarised the situations in which small subgroup attacks
are a threat, and proposed different ways in which they can be avoided.

5.2.2 ElGamal Encryption and One-Pass Key Establishment

Before considering protocols in which both principals contribute a random value, we
first look at the situation where only one principal does so. These protocols can be
considered as halfway between using static Diffie—Hellman keys and the inclusion of
ephemeral keys. These protocols are useful when it is possible only to have commu-
nications in one direction; a typical application scenario would be secure electronic
mail.

ElGamal encryption [267] was not conceived as a key establishment protocol, yet
we can view it in this manner. The sender A forms a shared secret using her random
input r4 in combination with B’s long-term yp by calculating Z = yg‘. On receipt of
an encrypted message and the ephemeral public key t4 = g'4, principal B is able to
reconstruct the same secret Z = tzB and so decrypt the message. Evidently B receives
no authentication regarding the session key and cannot even check the freshness of
Z; however, A does obtain implicit key authentication.

Protocol 5.2 shows one-pass key establishment as proposed by Agnew et al. [22].
The static Diffie-Hellman key is used together with a nonce k4 to form the shared
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Shared information: Static Diffie-Hellman key, Syp5.
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Protocol 5.2: Agnew—Mullin—Vanstone protocol

secret. The nonce k4 is sent encrypted from A to B using B’s public key yp: the
ElGamal encryption algorithm is used for this purpose.

The shared secret is Z = Szf}g. Implicit key authentication is provided for both
parties, since knowledge of either x4 or xp is required to form Z. However, B has no
way of knowing that the shared secret is fresh. Entity authentication is not achieved
for either party, and neither is forward secrecy nor protection against key compromise
impersonation. The encryption of k4 prevents the adversary from using a known Z
value to obtain S4p and mounting a future active attack.

Nyberg and Rueppel [585, 587] investigated ways of incorporating message re-
covery into signatures based on the discrete logarithm. As an application of this
technique, they suggested the use of ElGamal encryption of a signed session key as
a one-pass key establishment protocol. Protocol 5.3 is their initial protocol [585]. If
the protocol runs correctly then both A and B calculate the shared secret Z = g™*5.
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Protocol 5.3: Original Nyberg—Rueppel protocol

Later, Nyberg [584] pointed out that it is possible for an adversary who finds an
old Z value to replay the old » value and, by replacing the corresponding s with s+ u,
to establish a new key K’ = K- y%. She therefore designed the enhanced Protocol 5.4.
This employs a time-varying parameter, which could be a counter. Neither of these
protocols provides forward secrecy, since knowledge of xp allows the adversary to
compute Z in the same way as B.
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Shared information: Time-varying parameter ¢.
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Protocol 5.4: Revised Nyberg—Rueppel protocol

Other schemes for authenticated message exchange that are suitable for one-pass
key establishment have been proposed by Horster ef al. [365]. (A revised version of
this paper, not formally published, includes an attack on some of the schemes, which
was found by C. H. Lim.) Schemes for combined encryption and signature, known
as signcryption, due originally to Zheng [779], can also be used for this purpose.
Gorantla et al. [324] formally analysed this connection and showed that, with suitable
conditions, secure signcryption schemes can be converted to secure one-pass key
establishment protocols and vice versa.

In Sect. 5.4, we will examine several two-pass key agreement protocols. Most of
these can be converted into one-pass key establishment protocols by replacing the
random input of the receiving party with that principal’s long-term secret. Blake-
Wilson and Menezes [109] discussed this procedure and illustrated its application.

Chalkias et al. [187] proposed a dedicated one-pass protocol and claimed stronger
properties than, for example, one-pass HMQYV (see Sect. 5.4.6) particularly with re-
spect to KCI resistance. This interpretation depends on the definition of what con-
stitutes a KCI attack. As Chalkias et al. discussed [187], an adversary who has the
long-term key of recipient B can always replay any one-pass protocol run with B
and obtain the session key. In this sense, no one-pass protocol can achieve KCI re-
sistance. The protocol of Chalkias et al. aims to limit this attack by preventing the
replay from being used to allow the adversary to masquerade as different entities
from the one that originally sent the replayed message. Their protocol is relatively
computationally expensive, requiring three exponentiations on the sender side and an
elliptic curve pairing on the receiver side. It also uses a timestamp indextimestamp
which many designers prefer to avoid.

5.2.3 Lim-Lee Protocol Using Static Diffie-Hellman

We have already seen a one-pass protocol that uses the static Diffie—Hellman key
in Protocol 5.2 above. Lim and Lee [491] proposed a three-pass protocol using the
static Diffie-Hellman key together with random inputs from both principals. This
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allows both parties to be sure that the key is fresh. In Protocol 5.5, the symmetric key
K is a static key derived in some (unspecified) way from the static Diffie—-Hellman
key S, AB-

Shared information: Shared key K derived from Syp.
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Protocol 5.5: Lim-Lee protocol using static Diffie-Hellman

Lim and Lee suggested that the session key may be defined either as K = N4y G Np
oras K= K® Ny ® Np. As long as A and B both use random inputs, this ensures the
freshness of the key. However, with either of these choices for K it is possible for B to
completely control the session key value. As is usual with protocols using only static
keys, Protocol 5.5 does not provide even partial forward secrecy, since knowledge of
one of the long-term keys is sufficient to find S45. Key compromise impersonation is
possible too.

5.3 MTI Protocols

Matsumoto, Takashima and Imai (MTI) [526] showed in 1986 how to define three
classes of authenticated key agreement protocols. These incorporate authentication
into the Diffie-Hellman exchange in a very elegant manner by combining the long-
term and ephemeral inputs into a single equation. Although many protocols have
been designed using the same ideas as in the MTI protocols, in their original form the
protocols have various shortcomings. Nevertheless, we look at them in some detail
in this section for two reasons. Firstly, a detailed knowledge of these protocols will
be very helpful in understanding the many protocols based on them. Secondly, they
form a useful vehicle to explain many types of attack on key agreement protocols.

The MTI protocols are divided into three families: A, B and C. Protocol 5.6
shows the basic protocol of type A, denoted A(0). In the original specifications the
subgroup G in which Diffie-Hellman exchange takes place is equal to the whole of
Z,; as we will see below, a better choice is to make G a subgroup of prime order g.
When both principals follow the protocol, the shared secret is Z = g“A"B 574

If we accept that knowledge of either x4 or xp is required in order to compute
Z, then implicit key authentication follows. Below we will mention a number of
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Protocol 5.6: MTI A(0) protocol

potential attacks on the scheme that show that this assumption is not always valid.
As with any two-pass key agreement protocol, key confirmation is not achieved in
the basic protocol.

Matsumoto et al. [526] showed that there is an infinite sequence of protocols
with a related format. Protocol 5.7 shows the A(k) class of protocols, defined for
any integer k. When both principals follow the protocol, the shared secret is Z =
gXA rBX]E; +XBrAXf, .
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Protocol 5.7: MTI A(k) protocol

This sequence of protocols constitutes one of the three classes of MTI protocols.
These classes are all of the same basic format: they involve only two messages and
achieve implicit key authentication but no key confirmation. Table 5.2 summarises
the base (k = 0) protocols for each of the classes A, B and C; in this table, z4 and zp
are the messages sent from A to B and from B to A, respectively. The computational
effort needed by each principal in protocols A(0) and B(0) is the same and consists of
one exponentiation before message exchange and one multi-exponentiation to obtain
the key. Protocol C(0) is slightly less complex, since an ordinary exponentiation only
is required to obtain the key.

For each sequence, to obtain the k’th protocol from the base protocol the ex-
ponent in z4 must be multiplied by xﬁ and that in zp by x’l‘;. The equation used to
compute Z by A must use rAxﬁ in place of r4, and the equation for B to compute Z
must use r;_zg)cf‘9 in place of rg. The exponents needed to calculate the shared secret for
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Table 5.2: Base protocols for each class of MTI key exchange

Type za zB V/ Computed by A Computed by B
A©) g™ g gharstasia BA yg\ ZXB yzﬂ
B(0) y;’? yZXB grA+rE Z)I;;lg’*‘ ZZ,}‘ grg
—1 —1
SO T 5 @ "

each protocol are shown in Table 5.3. Note that the protocols for negative k values
are only well defined in the case that xp is chosen to be invertible in G (for example,
xp must be prime to p — 1 in the case that G = Z;,). The extra computational effort
required by the variants with parameter k is one exponentiation with an exponent of
size |k|.

Table 5.3: Exponent of shared secret for each MTI protocol

k Ak) B(k) C(k)

—1 -1 -1 -1 -1, —1
—1 XAXg TB+XBX, TA X, ratxgrp X, rAXg TB

0 XAV +XBTA ra+rp rATB

1 XAXBIYB + XBXATA XATA +XBTB XATAXBTB
2 xAx%rB + XBX,%; ra xi ra + x%rB x/% rAx%rB
k xAxgrB —l—xBxﬁ In xﬁrA —O—xllgrB x/’f\ rAxgrB

The MTI protocols provide an elegant and flexible approach to authenticated key
agreement and have been the subject of considerable scrutiny in the research com-
munity. A number of attacks have been proposed which we examine now. It is worth
noting that all known attacks can be prevented by use of suitable countermeasures.

5.3.1 Small Subgroup Attack

A small subgroup attack (see Sect. 5.2.1) applies to the MTI protocol sequence C(k)
in the situation that the group G is the whole of Z7, as originally proposed. We
suppose that the factorisation of p — 1, which is the order of G, is known to the
adversary. The attack is easiest in the case that p — 1 has a very small factor r; let
us write w = (p — 1)/r. The attack works by raising the exchanged messages to the
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power w, which moves these elements into the small subgroup of G of order r. Attack
5.2 shows a small subgroup attack on MTI protocol C(1). The adversary C plays in
the middle between A and B.

Shared information: Generator g of Zy,. Small factor rof p—1.w=(p—1)/r.

A C B
T4 €R Zq
r'aX,
a=yg
<A
e
w
A
rB €R Zq
<B _ .IXp
R— B =Y
ZW’
Z=()" —F Z= ()"

Attack 5.2: Small subgroup attack on MTI C(1)

The shared secret calculated by A and B is

Z — ngerBrAw.

Since this is an element in the small subgroup, C can easily find the shared secret by
exhaustive search and verify it from subsequent use in communications between A
and B. Notice that in the extreme case when r = 1 it follows that w = p — 1, and so
the element received by both A and B is 1.

This small subgroup attack can be prevented by making G a subgroup of prime
order ¢. In addition, it is necessary to check that the received elements really are in
the group G and are not equal to the identity.

5.3.2 Unknown Key-Share Attacks

Menezes et al. [551] discovered unknown key-share attacks on all the classes of MTI
protocols. All the attacks require the adversary C to obtain a certificate for a long-
term key yc which is related to the public key of A by the equation yc = yff = ghaxc,
This means that C cannot know the private key xsx¢ corresponding to the public key
yc. Attack 5.3 shows an unknown key-share attack on the MTI protocol B(0).

71 _
The shared secret calculated by A is (erBxC )xA1 g™ = g"8"A_ while B calculates

(v )'s 'g’8 = g"*75 o get the same value. Although A and B both have the same
session key, A believes it to be shared with B, while B believes it to be shared with
C. There are several ways to avoid the attack, including:
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Shared information: Public key of C is yc = yfff.

A C B
rA €R Zq
ZA
2 =Yg —
<A
— B €ER Zq
ZB
. =y
2c !
— 2c =72z
x;l ra x.;l g
ZAB:ZC g ZBC:ZA 8

Attack 5.3: Unknown key-share attack on MTI B(0)

having certification authorities check that principals know the corresponding pri-
vate key before issuing a public key certificate;
including the principal identities in the key derivation function.

Menezes et al. [551] suggested adding to the message returned by B a hash of

the key generated and B’s randomised reply. A must check this on receipt of message
2 and abort the protocol if the check fails. Protocol 5.8 shows MTI B(0) modified
in this way. Just and Vaudenay [407] pointed out that the protocol is still insecure if
degenerate values such as 0 or 1 are accepted by A. For example, in Protocol 5.8 the
adversary C can masquerade as B if A will accept the response (up,h) = (0,H(0,0));

the

shared secret is calculated by A as 0 and is known to C.

Shared information: Hash function H.

A B
rA €ERZq
4=y LY N g €ER Zg
=y L =50 g
Z:nglg"A ,h h=H(zp,Z)
H(zp,Z) = h

Protocol 5.8: Modified MTI B(0) protocol
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5.3.3 Lim-Lee Attack

Lim and Lee [492] devised ingenious attacks on interactive protocols that work in
prime-order subgroups. Their attack is applicable to MTI variants in which G is a
prime-order subgroup. As already mentioned, this is desirable in order to avoid small
subgroup attacks on C(k) protocols and is also very beneficial in terms of the savings
in computational requirements due to smaller exponent sizes.

The idea of the attack is that the adversary C will engage in a run of the protocol
with the victim B. For B the run will seem normal, but in the first message C sends
a value that is not in the group G; consequently, the key calculated by B will give
away information about B’s long-term secret key xp. In an interesting echo of the
prime-order subgroup attack discussed in Sect. 5.3.1, this requires that (p —1)/q,
rather than g itself, contains many small factors. Attack 5.4 illustrates the procedure
on MTT protocol A(0).

Information known to C: f of small order r with r|(p — 1) /q.

C B
rc €R Zq
f
tc= ng L B €R Zq
tp=g"
B
Zcp =15yg =Zpc/B™ — Zpc = (Bte)®yl

Test each value of xp mod r

Attack 5.4: Lim-Lee attack on MTI A(0)

Suppose that 8 is an element whose order 7 is a small factor of (p —1)/g. The
shared secret is calculated by B as Zgc = (Bic )"y . Now, since t¥ = yj{ and y/ =
t°, C can calculate Zgc/B* and, since there are only r possible values for 3%,
C can try out each of these in turn. There are a number of ways that C can verify
whether the correct value has been found. One is if a check function is returned by B
as in the modified MTI protocol of Menezes et al. described in Protocol 5.8 above.
Another possibility is if A waits for an authenticated message sent by B following
the protocol. Whatever the method used, having identified the value of Zpc, C can
obtain *8, which reveals the value of xg mod r. To complete the attack, C repeats
this procedure with new factors of (p — 1)/qg in place of r until the value of xp is
obtained. A very similar attack applies to all the A(k) and B(k) MTI protocols.

Lim and Lee suggested two ways to avoid this attack. The first is that each re-
cipient of a protocol message must check that the received value lies in G. The cost
of this is an exponentiation, which is a significant extra computational burden. The
second method, which they favour, is to choose the prime p so that (p — 1) /¢ has no
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small factors apart from 2. In this case the attack will give away one bit of informa-
tion about the principal’s secret: the adversary chooses § = —1, with order r = 2, to
obtain x4 mod 2.

5.3.4 Impersonation Attack of Just and Vaudenay

Just and Vaudenay [407] found an impersonation attack on the MTI A(0) protocol on
the assumption that the adversary can claim to have the same identity as the attacked
principal A. This may be possible, for example, in an implementation where several
devices share the same identity. Attack 5.5 shows how C can impersonate A, to A
herself, by choosing #c based on both the message received from A and a random
input. At the end of the attack, both principals calculate the shared secret as yff.

A Ca
rA €R Zq
1
th=g" % rc €R Zq
—1_r
Ic=1t, &°
Ic
Zaa =13y} — Zac =Yy

Attack 5.5: Just—Vaudenay impersonation attack on MTI A(0)

The attack also extends to the whole of the MTI A(k) class of protocols. The
adversary simply returns z¢ = z;l g'¢, and A will calculate the shared secret as Zj4 =
y,C. A similar attack is also applicable to the MTI B(0) protocol, although it does not
seem to be quite so strong in this case. If C masquerades as A to A and returns
c = z;l -g'¢ then A will calculate Z4 = g* e Although C cannot calculate this
value directly, C could replay it to get the same key any number of times. Also, if
rc = 0 is chosen, the shared secret becomes Z4 = 1. The obvious way to avoid all
these attacks is for both A and B to ensure that the other has a different identity.

5.3.5 Triangle Attacks

Burmester [167] has shown that a ‘triangle’ attack can be mounted on MTI A(0),
given certain assumptions about the release of session keys. The attack also applies
to the MTI B(0) protocol, as well as to several protocols related to MTI A(0) which
will be mentioned later. The format of the attack is as follows.

1. The adversary C eavesdrops on a session between A and B.

2. C starts separate sessions with A and B in which C uses information gained
during step 1. (C does not obtain the session key used in these sessions as a
result.)
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3. C now induces A and B to reveal the keys used in the sessions between them.
Because A and B believe that the session key should be known to C, this may be
a reasonable assumption in certain application scenarios.

4. With this information, C can recover the key used in step 1.

It can be seen that this attack requires more assumptions than usual. It illustrates
how difficult it is to consider all possible attacks on cryptographic protocols. A spe-
cific example of the triangle attack on the MTI protocol A(0) is as follows.

1. C records the values t4 and tp used by A and B to form Z = g"8*AT7A%s,

2. C uses t4 as its input in a run with B. The agreed key calculated by B is Z' =
g'B*cHa%8 where fg = g'8 is the value sent by B in this run. Similarly, C uses 73
in a session with A, which A uses together with its new value 7, = g™ to generate
a key 7/ = ngxC+erA_

3. C somehow obtains Z' and Z"".

4. C can now calculate Z =27, - 2" - 1.

Burmester discussed ways to prevent the attack. Perhaps the simplest is the sen-
sible precaution never to reveal previous session keys; good practice is to destroy
session keys immediately after use. Another way is to insist on key confirmation be-
fore using a session key. A generic method to incorporate key confirmation into key
agreement protocols is explained in Sect. 5.4.13.

5.3.6 Yacobi’s Protocol

Yacobi [748] proposed a protocol identical to the MTI protocol A(0) except that a
composite modulus is used. He supplied a proof of security of this protocol based on
the idea that the exchanged messages are independent of the private keys and hence
protocol runs may be perfectly simulated by anyone; therefore a passive attacker
should gain nothing from observing a previous protocol run. Yacobi also claimed
that this argument extends to the case of an active attacker who is able to obtain old
session keys.

Subsequently, Desmedt and Burmester [241] pointed out that it cannot be as-
sumed that a malicious protocol partner will act according to the protocol. They
showed that the protocol must leak information unless the Diffie-Hellman assump-
tion is false. This theoretical result shows that the proof is flawed, but does not result
in any practical attack on the Yacobi or MTI protocols. Desmedt and Burmester
proved that a modified protocol is indeed secure in this model. The messages ex-
changed are identical, but after sending t4 = g’4 and tp = g"# both principals engage
in a zero knowledge protocol to show that they know r4 and rp, respectively. Now
the protocol will only complete if the principals act ‘correctly’, and so it can always
be simulated.

As well as the drawback of the extra interaction required, the proof of security
of Burmester and Desmedt’s variant does not encompass all the possible actions
of an adversary, and also partial information about the secret is not accounted for.
Therefore it is difficult to say how useful the proof of security is. Indeed, a generic
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unknown key-share attack applies (Attack 5.7), as does Burmester’s triangle attack
(see Sect. 5.3.5).

5.3.7 Forward Secrecy and Key Compromise Impersonation

Since Diffie—Hellman key exchange is known to have the attractive property of for-
ward secrecy, it is natural to expect that the MTI protocols will have this property.
However, this turns out not to be always the case.

The shared secret in MTI protocol A(0) is g*4"8 7874 which can be found from
knowledge of the long-term keys x4 and xp and the exchanged messages. The same
is true for all protocols in the sequence A(k). Again, for the protocols in the sequence
B(k) it is not necessary to know either r4 or rp to find the shared secret when both
x4 and xp are known; therefore these protocols do not provide forward secrecy ei-
ther. (Both of the sequences A(k) and B(k) do provide partial forward secrecy, since
compromise of only one of x4 and xp does not reveal past session keys.)

The shared secret in the MTI protocol C(0) is g"A"8, the ephemeral Diffie—
Hellman key. The Diffie-Hellman assumption asserts that this secret is hard to com-
pute without knowledge of either r4 or rp. Noting that neither r4 nor rp can be found
from the exchanged messages, we conclude that C(0) does provide weak forward se-
crecy. A similar argument applies to all the protocols in the protocol sequence C(k).

‘We now turn our attention to key compromise impersonation. Consider again the
MTI protocol A(0) and suppose that an adversary C has obtained the long-term se-
cret x4 of A. In order to masquerade as B to A, C must send some value X in message
2 in such a way that C can find the value X*y7# calculated by A as the session key. If
we assume that A will reject degenerate values such as O or 1 then the value cannot
be found without knowledge of either xp or r4, neither of which is available to C.
Therefore we deduce that protocol A(0) is not vulnerable to key compromise imper-
sonation.” Similarly, in order to attack any protocol in the sequence A(k) the adver-

sary must find an X such that X* yg‘xﬁ‘ can be found. Again, this requires knowledge
of either r4 or xp and so key compromise impersonation seems impossible.

A similar property holds for the protocol sequence B(k), the difference being that
now the adversary cannot find g"4 without knowledge of either xg or ry. Therefore
we conclude that the MTI B(k) family is also not vulnerable to key compromise
impersonation.

However, the situation with C(0) is different. Here C needs to find an X such
that X1 ™ may be calculated. With knowledge of x4, C can construct an appropriate
value for X. This observation leads to Attack 5.6. After receiving C’s reply, A calcu-
lates the shared secret as yg‘ '€ which can also be calculated by C as z:\c. Therefore
protocol C(0) is vulnerable to key compromise impersonation. A similar attack also
applies to any protocol in the sequence C(k).

In summary, we find that the sequences A(k) and B(k) provide protection against

key compromise impersonation but do not provide even weak forward secrecy, while

2 Although Just and Vaudenay [407] stated that A(0) is vulnerable to key compromise im-
personation, this statement was later retracted.



5.4 Diffie-Hellman-Based Protocols with Basic Message Format 185

Information known to C: Private key of A, x4.

A C
rA €R Zq
_ A 2A 7
4 =Yg —_— rC €R Lgq
Xalc
iB =Yg
X3 ra B e
Z=2zy — 7=z

Attack 5.6: Key compromise impersonation attack on MTI C(0)

the situation for the sequence C(k) is exactly the opposite. A natural question that
arises is whether it is possible to achieve both properties at the same time. In
Sect. 5.4, we will examine several protocols which achieve this.

5.4 Diffie-Hellman-Based Protocols with Basic Message Format

In this section, a number of protocols are examined for which the messages ex-
changed are the same as in the basic Diffie-Hellman protocol. Only two message
passes are involved: A sends 74 = g4 and B sends tg = g"8. In contrast to the basic
Diffie—Hellman protocol, the calculation of the shared key involves other compo-
nents in order to achieve authentication of the key. This other information typically
includes the public and private keys of the parties involved, so there is some function
F such that A calculates the shared secret as Z = F(ra,15,x4,yg) while B calculates
in the symmetrical fashion Z = F(rg,t4,x5,y4). The MTI A(0) protocol discussed
above fits into this class but has a number of potential weaknesses.

We remark that sometimes our presentation of protocols is not identical to that
given in the original sources. In particular, we sometimes drop some fields such as
plaintext identities and returned outgoing messages. Such fields may be useful and
important in practical implementations but do not usually affect the security. Our aim
is to help the reader to see similarities and differences between protocols by making
the presentation as consistent as possible.

One general property is that all protocols in this class are vulnerable to the basic
unknown key-share attack unless extra precautions are taken. Suppose that the adver-
sary C can obtain a certificate for the public key used by B. Then C may sit between
A and B and masquerade as B to A as shown in Attack 5.7.

Principal A calculates the shared secret as Zg = F(r4,1p,x4,y5), while B cal-
culates Zgc = F(rp,ta,xp,yc) = F(rp,ta,x5,y8) = Z since yc = yp. This attack is
prevented if certificates are issued only to users who have shown that they know the
private key corresponding to their public key. However, even this is not sufficient
to prevent unknown key-share attacks in all cases. Other countermeasures which
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Shared information: yc = yp.

A (& B
r4 €R Zq
’ A 17\
=g —a —A B €R Ly
t t
B B tg =g
ZAB:F(VA»ZBJCAJ’B) ZBC:F(VB,[A,XB,yC)

Attack 5.7: Unknown key-share attack on generic protocol

can defeat such attacks were mentioned in Sect. 5.1.3, in particular using key con-
firmation (see Sect. 5.4.13) or including the principal identities in a key derivation
function.

5.4.1 KEA Protocol

Goss [332] was awarded a US patent covering a protocol that is extremely simi-
lar to the MTI protocol A(0). The difference is that the shared secret is defined as
7 = g"\"B @ g*8'A instead of Z = g*"8 - g*8"4 as in MTI A(0). The similarity carries
over into many of the protocol properties: forward secrecy is not provided, but key
compromise impersonation seems impossible. It is also vulnerable to Burmester’s
triangle attack (see Sect. 5.3.5).

The Key Exchange Algorithm (KEA) protocol was designed by the US National
Security Agency for use with the SKIPJACK algorithm in key escrow implemen-
tations [572]. Originally classified, the protocol was released in June 1998 [580].
The KEA protocol is, like the Goss protocol, a variant of the MTI protocol A(0),
as shown in Protocol 5.9. The differences are that the shared secret is defined as
7 = g"'8 + ¢g*8"A mod p and that there are extra checks in place. As with the Goss
protocol, KEA inherits resistance to key compromise impersonation, but does not
provide forward secrecy.

The KEA protocol specification includes exact parameter sizes: p is a 1024-bit
prime and G is a subgroup of order g for a 160-bit prime ¢ with ¢|p — 1. There is
also a particular key derivation function specified, which makes use of the SKIP-
JACK algorithm itself to form the 80-bit session key. As usual, we have omitted the
processing of the certificates which is an essential part of the protocol.

Before calculating the shared secret, several checks should be made. A checks
that the following are true.

1. tp and yp are integers greater than 1 and less than p.
2. t3 mod p =1 and y} mod p = 1, which ensures that 75 and yg are both in G.

B makes the analogous checks. If any check fails then the checking party halts. These
checks prevent most of the attacks described for the MTI protocols. The specification
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A B
TA €ERZq
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Z =1y +y} mod p Z =" +y¥ mod p

Protocol 5.9: KEA protocol

also requires each party to check that Z does not equal 0 before accepting the key.
However, Blake-Wilson and Menezes [109] have pointed out that this check seems
unnecessary. If 75 and yg are in the prime-order subgroup G then 7' = —yj' would
imply that —1 is an element of order 2 in G. The checks already made before calcu-
lating Z ensure that 75 is in G, and as long as yp is a genuine public key it must also
be in G.

Lauter and Mityagin [477] analysed Protocol 5.9 and pointed out that it is vul-
nerable to Attack 5.7 because the principal identities are missing from the specific
KEA key derivation function. They therefore revised the protocol with a key deriva-
tion function H and defined the session key as K = H(g"'8,g"8"4 D4, IDg). With
this change, they renamed the protocol KEA+ and were able to provide a security
proof in a Canetti-Krawczyk style model including weak forward secrecy and KCI
resistance, assuming that H is a random oracle and that the gap Diffie-Hellman prob-
lem is hard. They also suggested a variant with key confirmation using MACs in the
manner shown in Sect. 5.4.13.

The Open Protocol for Access Control Identification and Ticketing with privac,
or OPACITY, is a suite of security protocols designed for use with smart cards [645].
The OPACITY key agreement protocol has similarities with KEA, as well as other
protocols such as the Unified Model protocol (see Sect. 5.4.4), in that the shared
secret has inputs t,?‘ and tjﬂ. Some authors [754] have commented on this similar-
ity. However, the similarity applies more at a conceptual level than in the details.
It should also be noted that the OPACITY specification describes much more than
key agreement, including renegotiation of keys, channel security employing session
keys, and privacy enhancements. We do not include details here, since it is hard to
isolate the key establishment aspects from the other aspects. Dagdelen et al. [238]
performed a detailed analysis of OPACITY and showed that it is secure in a Bellare—
Rogaway-style model assuming the difficulty of the Gap Diffie-Hellman problem.

5.4.2 Ateniese—Steiner-Tsudik Protocol

Ateniese et al. [41, 42] examined key agreement for groups. Their general protocol
will be examined in Chap. 6, but here we consider their two-party key agreement pro-
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tocol which was used as a building block. Protocol 5.10 gives a slightly rearranged,
but equivalent, description.

Shared information: Static Diffie—Hellman key Syp.

A B
rA €R Zq
1,
= grA % B €R Zq
tp=g"
B
K =H(Sap) — K =H(Sap)
Z=1pk Z=1F%

Protocol 5.10: Ateniese—Steiner—Tsudik key agreement

The shared secret is Z = g""8K  where K = H(S4p). In the initial paper [41], the
function H is specified as either a hash function with range in Z; or simply reduction
modulo g. However, the later version of the paper [42] specifies that H should be a
bijection from G to Z, in the case that p = 2g+ 1. This latter choice ensures that all
possible chosen secrets will be equally likely.

There are many similarities with the Unified Model protocol (Protocol 5.12) and
the security properties are similar. Specifically, forward secrecy is provided and un-
known key-share attacks are avoided if the principals are guaranteed to know the pri-
vate keys corresponding to their public keys. Key compromise impersonation attacks
are possible, since knowledge of either of the long-term private keys is sufficient to
complete the protocol as either initiator or responder.

5.4.3 Just—Vaudenay-Song—Kim Protocol

Recognising that the MTI A(k) protocols do not provide forward secrecy, Just and
Vaudenay [407] proposed a variant of MTI A(0) with this property. Their protocol
also includes a key confirmation handshake. Later, Song and Kim [685] proposed a
very similar protocol designed for use on elliptic curves and with optimised com-
putation, but the shared key is the same in both protocols. The protocol has some
enhanced properties over MTI A(0) but unfortunately a security weakness is also
introduced, as explained below.

Protocol 5.11 shows a combined version of the two protocols that we call the
Just—Vaudenay—Song—Kim (JVSK) protocol. In keeping with our custom in this sec-
tion we omit the handshake for key confirmation included in the Just—Vaudenay pro-
tocol (Song and Kim also provide variants with key confirmation). Just and Vaudenay
also proposed a variant of the MTI C(0) protocol.
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Protocol 5.11: Just—Vaudenay—Song—Kim protocol

The shared secret is Z = g*A’BT*B"AT7a’8_Note that Z is the key of the MTI A(0)
protocol multiplied by the ephemeral Diffie-Hellman key. This change allows the
protocol to provide forward secrecy. However, contrary to a claim of Song and Kim
[685], the protocol becomes vulnerable to key compromise impersonation. Attack
5.8 shows how this can be implemented with the adversary C masquerading as B,
using knowledge of x4. The attack still applies if key confirmation messages are
included, as in the Just—Vaudenay version of the protocol.

Information known to C: Private key of A, x4.
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Attack 5.8: Key compromise impersonation attack on Just—Vaudenay—Song—Kim
protocol

There is another flaw in Protocol 5.11, in which an active adversary can replace z4
with y; ! and 5 with y;'. In this case B will calculate Z = y/# -y, =y, =5 }.
Similarly, A calculates Z = yj -;*""* = 5} and so both principals have agreed the
same key, which is the inverse of their static Diffie—Hellman key. If, as we usually
assume, the agreed key becomes known to the adversary then the attack can be run
again to compromise new sessions. The attack can be avoided if B checks that t4 #
y;l and A does similarly, which adds to the required computation. However, there is
no guarantee that other attacks are not possible even if these checks are included. This

attack will not work in the version of the protocol that includes key confirmation,
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as long at the values of #4 and 7 are included in the confirmation messages. Such
messages were included in the Just—Vaudenay version of the protocol.

5.4.4 Unified Model Protocol

The Unified Model is a protocol in the NIST SP-800 56A standard [576] which ap-
parently originates in a standards committee document due to Ankney, Johnson and
Matyas in 1995 (cited by Blake-Wilson and Menezes [109]). It has a very simple de-
sign and attractive security properties. As shown in Protocol 5.12, the shared secret is
the concatenation of the static and ephemeral Diffie-Hellman keys: Z = g"4"8 g*A*8,

Shared information: Static Diffie—Hellman key Syp.
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Protocol 5.12: Unified Model key agreement protocol

Before accepting the shared key, A must make the following checks. B makes the
analogous checks.

1. 1 < tp < p. In particular, degenerate values such as 0 and p should not be al-
lowed.

2. 1t} mod p = 1. This ensures that both components of Z are in G as long as A has
chosen #4 correctly.

The Unified Model protocol provides forward secrecy, since it is necessary to
know one of the ephemeral private keys to find Z. The direct inclusion of the static
Diffie-Hellman key prevents unknown key-share attacks if the principals have shown
knowledge of the private keys corresponding to their public keys. This is because
derivation of the shared secret requires knowledge of one of the long-term private
keys. However, the protocol does not prevent key compromise impersonation, since
knowledge of either of the long-term keys is sufficient to calculate Z.

Security proofs for the Unified Model protocol were first provided by Blake-
Wilson et al. [107] in the Bellare—Rogaway model. The basic version shown in Pro-
tocol 5.12 was proven secure as long as the Diffie-Hellman assumption holds, but
only with a weakened adversary unable to reveal keys from other sessions. Indeed,
Blake-Wilson et al. [107] pointed out an explicit attack in which the adversary starts
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two sessions with the same party and then reflects the first message from each ses-
sion back to the other session. The two sessions will then accept the same session
key, and knowledge of one session key trivially reveals the other.

Jeong et al. [397] provided a security proof of Protocol 5.12 in the Bellare—
Rogaway model for the case that the session key derivation includes the exchanged
messages, so that K = H(t4,15,Z) for a key derivation function H modelled as a
random oracle. Note that this variation requires that the initiator and responder are
differentiated, which breaks the symmetry and prevents the attack mentioned above.

The three-round version with key confirmation added (see Sect. 5.4.13) was
proven secure by Blake-Wilson et al. [107] against an adversary able to obtain ses-
sion keys from other sessions. Certainly, in this model key confirmation provides a
useful security function, rather than simply being a convenient hint to the partner
that the key is ready to use. Menezes and Ustaoglu [547] also provided a security
proof in a stronger (eCK-style) model (but still not as strong as eCK) for the three-
round version of the protocol including key confirmation but now relying on the gap
Diffie-Hellman assumption.

5.4.5 MQYV Protocol

The MQYV protocol was originally due to Menezes et al. [551]. It was later improved
by these authors plus Law and Solinas [478] and standardised in the IEEE P1363-
2000 standard [372].

A special operation is defined on any element ¢ of Z,, which results in the output
t =t mod 2" +2". The outputs of the operation are of fixed size w, which must be
large enough to prevent exhaustive search of 2" elements. Typically, w would be
80. Protocol 5.13 shows the message exchange in our usual discrete log setting; the
protocol is often described in an elliptic curve setting, where by convention the group
is written additively.

A B
TA €ERZq
th=g" — rB €R Zq
1p=g"
Spa =rp+1ax4 mod g # Sp =rp-+ipxp mod g
Z = (15y§)5 Z=(1ay})%

Protocol 5.13: MQV protocol

The shared key is Z = g{a*7a%4)("s+15%8) Before accepting the shared key, A must
make the following checks. B makes the analogous checks.
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1. 1 < tp < p. In particular, degenerate values such as 0 and p should not be al-
lowed.

2. 1t} mod p = 1. This ensures that Z € G as long as A has chosen t4 correctly.

3. Z # 1. Together with the previous check, this ensures that Z has order ¢, pre-
venting any small subgroup attacks.

MQYV is designed to provide forward secrecy and also protects against key com-
promise impersonation. The special operation on the exponents destroys the alge-
braic structure; this may have benefits for practical security but at the same time it
obstructs a security proof in terms of any established hard problems. It was shown by
Kaliski [409] that MQV is vulnerable to unknown key-share attacks even in the case
that users have shown possession of their private keys. Attack 5.9 shows Kaliski’s
attack, in which the adversary C intercepts and modifies the message sent by A to B.

A C B
rqA €R Zq
1a=g"
A
S/ NN uerZy
tc=15g"
xc = (i) 'umod ¢
. Ic
Y=g S g €R Ly
tB [B _ g
A — Ip=g
Sa =ra+iaxg mod g Sp = rp+1tpxg mod g
Zip = (l‘Bygj)SA Zcp = (letCQ)SB

Attack 5.9: Kaliski’s unknown key-share attack on MQV protocol

Although C is able to find the private key x¢ corresponding to yc, it can only be
calculated once the first message #4 from A has been seen. An implementation of the
attack would therefore require C to get yc certified before sending on the message #¢
to B, a scenario that sounds slightly far-fetched but should not be ruled out without
justification. Kaliski suggested that the attack provides a lesson that an active certi-
fication authority should be considered in any protocol description. Indeed, modern
certificate authorities (CAs) such as Let’s Encrypt using the ACME protocol are def-
initely active online CAs. As usual, the unknown key-share attack may be prevented
by including the identities in the key derivation function. It may also be prevented in
MQYV by addition of key confirmation.

The point of using the reduced-size exponents 74 and 7 is that the total calcu-
lations required by each principal are reduced, by half of one exponentiation, when
compared with most other protocols of this type, such as the Unified Model. On the
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other hand, it may be possible to perform some of the computation offline by choos-
ing random values in advance and assuming the partner’s public key is available. In
such a case two of the required exponentiations may be performed offline for the
Unified Model but only one for MQV, so that MQV requires half of one exponen-
tiation more online computation. A detailed comparison of the Unified Model and
MQV was presented by Blake-Wilson and Menezes [109].

Although there has not been any generic security proof for MQV, Kunz-Jacques
and Pointcheval [462] did provide a security proof for a version of MQV with key
confirmation and in a specific group. Their proof is in a Bellare—Rogaway-style
model and relies on a ‘custom’ variant of the Diffie—-Hellman problem tied to the
special definition of 7, known as the f-randomized computational Diffie—-Hellman
problem. The same authors [463] also formally analysed an MQV variant protocol
designed to be secure in a model differentiating secure storage from less secure com-
putation.

5.4.6 HMQYV Protocol

The general MQV protocol has never benefited from a security proof. However, in
2005 Krawczyk [453] proposed a variant protocol, named HMQYV, and provided an
extensive security analysis with proofs of various properties.

The essential difference between HMQYV and the original MQV (Protocol 5.13)
lies in the way that the values S4 and Sp are calculated. Specifically, the special op-
eration f =t mod 2" 42" used in MQYV is replaced by application of a hash function
H modelled as a random oracle, and with output size |g|/2. The shared secret thus
becomes Z = glra+da)rstess) where d = H(t4,1Dp) and e = H(tp,1D,). In the de-
scription in Protocol 5.14, notice that the session key K is directly specified as the
output of the hash function H' with any chosen output length.

Information computed during protocol: d = H(t4,IDp) , e = H(tp,IDy).

A B
rqA €R Zq
tha=g" L) rB €R Ly
1p=g"
LB
SpA =ra+dxq mod g Sp =rp-+exp mod g
Z = (ayy)> Z = (1)
K=H'(Z)

Protocol 5.14: HMQV protocol
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Publication of the HMQV protocol was followed by significant controversy con-
cerning the security properties of the protocol and their proofs, particularly in com-
parison with the original MQV protocol [543, 545]. One of the main issues relates to
the circumstances in which the public keys, both static keys and received ephemeral
keys, need to be checked to lie within the group G. Sometimes these checks are
needed in order to avoid small subgroup attacks. We refer to such tests as group
membership tests.

Group membership for long-term keys (v4 and yg) could be checked by a cer-
tification authority and therefore implicitly provided in the key’s certificate. This is
more efficient than asking the protocol principals to check, since certificates remain
valid for a long period. However, practice shows that certification authorities may
not be diligent in carrying out such checkss so it is not universally accepted that this
is a good solution.

Group membership tests can be costly, but the cost depends to a large extent on
the structure of the group G. HMQV is defined to run in any G with prime order q.
Typical choices for G would be subgroups of Z,, and elliptic curve groups. In the
former case the group membership check is relatively expensive, close to the cost of
an additional exponentiation, while in the latter case the check is usually cheap or
even free.

HMQYV Security

Krawczyk [453] provided several different security proofs for HMQYV, depending
on what security properties were considered and which version of the protocol was
analysed. Table 5.4 summarises the different properties for four main situations. For
the two-pass version, as shown in Protocol 5.14, security in the CK model is achieved
under the computational Diffie—Hellman assumption. In order to achieve security
against ephemeral-key disclosure, the assumptions are strengthened to the gap Diffie-
Hellman (GDH) assumption and the knowledge-of-exponents (KEA) assumption.
In addition, as observed by Menezes [543], the protocol must include checks that
the received ephemeral keys lie in G. (The requirements for group membership are
mentioned in the revised HMQYV paper, but only in the preface.) All proofs require
that the hash function H has the properties of a random oracle.

Sarr and Elbaz-Vincent [651] found a KCI attack on HMQYV in the case that
group membership tests are not applied. The attack is similar to the Lim—Lee attacks
in Sect. 5.3.3, in which the attacker chooses an ephemeral key outside the subgroup
in which the protocol operates. Some special properties of the chosen parameters
need to be satisfied which do not hold in general, but that attack shows at the least
that the security results claimed cannot hold generically. The attack will be detected
and prevented if group membership tests are used. Including both #4 and #p in the
computation of d and e also prevents the attack.

Menezes and Ustaoglu [546, 548] observed that HMQV may not be secure in the
post-specified peer model. They described an attack in which A starts the protocol,
sending ¢4 without selecting its peer entity. An adversary finds an identity M so that
d = H(ts,IDg) = H(ta,IDyy) for some honest party B. The adversary then registers
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Table 5.4: Security of HMQYV protocols

Protocol Security Computational ~ Group membership
version property assumption tests needed
two-pass HMQV CK-secure with CDH No
weak forward secrecy
two-pass HMQV Leakage of GDH and KEA Yes
ephemeral secrets
three-pass HMQV-C CK-secure plus CDH No

full forward secrecy
and key confirmation
one-pass HMQV CK-secure without CDH Yes
replay protection

M as a legitimate party. This allows the adversary to complete an unknown key-share
attack in which A and B compute the same session key, but A believes that the key
is shared with M while B believes it is shared with A. Since this requires finding
a collision in H it is not necessarily practical, but it exploits the birthday paradox
to achieve the attack in less than the expected time. Krawczyk [453, Remark 7.2]
suggested that in cases where the output size of the hash H was small a random
nonce could be chosen and included in the e and d hashes at the time they were first
computed, which would prevent the Menezes and Ustaoglu attack. Another defence
is to include the party identities in the key derivation function used to compute K.

Hao [344] proposed an attack in which the adversary chooses an invalid pub-
lic key within a small subgroup and can complete the protocol without possessing
any private key. While this is a surprising property, it does not violate any claimed
security property so it is debatable whether it constitutes a valid attack.

One-Pass and Three-Pass HMQV

Table 5.4 mentions the three-pass and one-pass variants of HMQV. The three-pass
variant, called HMQV-C, where the C denotes confirmation, adds MACs in the man-
ner of Sect. 5.4.13 and provides full forward secrecy as well as key confirmation.
Note that group membership may be required to avoid the Sarr and Elbaz-Vincent
attack [651], unless other measures are taken as in the FHMQYV variant mentioned
below.

The one-pass variant of HMQYV consists of a single message ¢4 sent from A to B.
The session key is computed as in Protocol 5.14 with the adjustments tp = e = 1,
Sp = xp and d = H(t4,IDs,IDg). Thus A computes Z = yg4 and B computes
7= (tAy;{)xB. (A later version of the one-pass protocol [343] also adds the identi-
ties of the parties and the protocol message to the key derivation function as recom-
mended by Menezes [543].) The protocol provides the same security as the two-pass
protocol except that B has no way of checking whether or not the received message
is replayed. Such protection can never be provided in a one-pass protocol without
extra mechanisms such as timestamps or counters.
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HMQYV variants

Ustaoglu [719] described a protocol called the Unified Protocol, or UP. The shared
secret has two parts, Z; and Z,, where Z| = g(fA +2a)(rptexs) and Z, = g<’*‘ +dxp)(rp+g)
with d = H(t4) and e = H(tp). At the cost of one additional exponentiation, UP al-
lows a security proof in the eCK model in a relatively straightforward manner and
with a tighter reduction than in the HMQV proof. Indeed, the security proof of Us-
taoglu [719] is in the model of Menezes and Ustaoglu [548], called eCK+ by Us-
taoglu [719], which is a stronger model than eCK. The eCK+ model incorporates
security in both pre- and post-specified models.

Sarr et al. [652] explored attacks on HMQV in which the adversary is allowed
to obtain (perhaps partial) information about the internal computed values of the
targeted principal, specifically the secret exponents S4 and Sy and the shared secret
input to the key derivation function H'. They showed that if such information is avail-
able then there are attacks on HMQYV and they therefore proposed a variant protocol,
which they called FHMQV. The changes in FHMQV compared with Protocol 5.14
consist of increasing the set of inputs to the two hash computations. Specifically the
new values of d and e become d = H(ts,t5,ID4,IDp) and e = H(tp,t4,ID4,IDg),
while the computation of the session key becomes K = H'(Z,4,t5,1Bs,IDp). In ad-
dition, group membership tests are required for the received ephemeral keys. Later,
Liu et al. [498] criticised the analysis of FHMQYV, observing that the model used was
incomparable with that used by Krawczyk, and also claiming gaps in the proof for
FHMQWV. This latter claim was later addressed by Sarr and Elbaz-Vincent [651], who
provided new proofs.

Zhao and Zhang [775] proposed a protocol which they called sHMQV, with
strong similarities to FHMQV. Again the differences from HMQV are the inputs
to the hash functions, which are identical to those used in FHMQV except that ID4
is dropped from d and IDp is dropped from e. The main difference comes in how
sHMQV is analysed. Zhao and Zhang [775] used a model involving a trusted hard-
ware module, which was used to hide the ephemeral secrets r4 and rp from the
adversary while allowing access to the exponents S4 and Sp.

Pan and Wang [598] described a variant of HMQYV using the twin Diffie-Hellman
technique of Cash et al. [184]. They called the resulting protocol TMQV. The ad-
vantage of this idea is that it removes the GDH assumption in favour of the CDH
assumption. However, it does double the size of the public key and, as pointed out
by Pan and Wang, gives a non-tight security reduction.

5.4.7 NAXOS Protocol

As discussed in Chap. 2, LaMacchia et al. [470] introduced the eCK security model
in 2007 and accompanied it with a protocol design known as NAXOS.? Protocol 5.15
shows the protocol messages and the computation of the shared secret.

3 The protocol name is not an acronym, but a Greek island different from Kea.
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A B
]
Ty €R Zq
/
ra=H(r)y,x4)
A
tp=g" E— s €R Lq
rg = H(rp,xp)
tp=g"
B
Z= i 7=y

K = H'(Z,ID,,1Dp)

Protocol 5.15: NAXOS protocol

The shared secret consists of three components: g8, g"*8 o"A’8 The specifi-
cation requires that these are combined with the principal identities to form the ses-
sion key using a key derivation function. There is some similarity between NAXOS
and earlier protocols such as those of Just and Vaudenay and of Song and Kim (see
Sect. 5.4.3). In particular, the components are almost the same as those used in Pro-
tocol 5.11, but there are two significant differences.

e The exponents are not added together, but rather simply concatenated in a specific
order. This means that the protocol principals must be aware of some ordering of
who should take the role of A and who should take the role of B.

e Instead of using the random values 7, and rj directly as ephemeral Diffie—
Hellman values, they are first hashed together with the long-term keys x4 and
xp respectively. The reason for this is that an adversary who obtains the random
values #;, and rj does not obtain the shared secret, and this allows the NAXOS
protocol to be secure in the eCK model.

Intuitively, it can be seen that any adversary who lacks one of the pairs (x4,7}) or
(xg,rp) out of the set {xa, 7/, xp,rp} is unable to compute the shared secret. LaMac-
chia et al. [470] provided a security proof of Protocol 5.15 in the eCK model assum-
ing that the gap Diffie—Hellman problem is hard.

A variant protocol known as NAXOS+ was proposed by Lee and Park [480],
which adds the static Diffie-Hellman value into the computation of the shared secret.
Lee and Park showed that this change, which adds one exponentiation per principal,
allows the protocol to be proven secure in the eCK model under the computational
Diffie-Hellman assumption. A different protocol due to Huang and Cao [367] has
similar properties to NAXOS+ but requires a pair of long-term keys for each party.
Barthe et al. [57] showed, with the help of machine support, that security of the
original NAXOS can be proven assuming only the computational Diffie—Hellman
assumption if long-term keys are always generated honestly (i.e. not by the adver-
sary).
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The NAXOS Trick

The technique of hashing together the random value and the long-term key has be-
come known as the NAXOS trick and has been repeated in several later protocols. As
mentioned above, the technique allows protocols such as Protocol 5.15 to be proven
secure in the eCK model, where the adversary can obtain rg and rg but is still unable
to find useful information about the shared secret.

In some ways, the NAXOS trick seems artificial. It is justified by an assumption
that an attacker may have access to the random values generated by protocol prin-
cipals but not to other values computed using those random values. Note that it is
possible, and often specified for particular protocols, that the values r4 and rp are
recomputed just before they are needed in the computation of 74 and ¢z and, later, in
the computation of Z. This means that the r4 and rp values are never sfored. But does
this necessarily mean that they are more secure? That must depend on the physical
implementation and what parts of the system may be controlled or accessed by the
adversary. It has been pointed out by Ustaoglu [719] that side-channel attacks may
be an effective way to obtain r4 and rp values, especially when pre-computation is
used. This has been used as an argument to avoid the NAXOS trick, but eCK-secure
protocols avoiding such tricks seem to be less efficient. Examples are the HMQV
variant Unified Protocol [719] (see Sect. 5.4.6) and a variant of Protocol 5.21 [566].

The NAXOS trick uses a hash function modelled as a random oracle for the
security proof. A related idea, sometimes called the rwisted PRF trick, avoids using
a hash function to allow the trick to work within a standard-model proof. In the
twisted PRF trick, the long-term and ephemeral keys are used alternately as the key
and the input to independent pseudo-random functions (PRFs). Later we will see the
twisted PRF trick applied in Protocols 5.21 and 5.44.

We note that, strictly speaking, protocols using the NAXOS trick do not fit into
this section, since they do not use the basic Diffie-Hellman messages. However,
since they use no explicit authenticating information, we feel that it makes sense to
set them beside other protocols whose messages do have the basic Diffie-Hellman
format.

5.4.8 CMQYV Protocol

In comparison with the HMQV protocol, Ustaoglu [718] identified two disadvan-
tages of NAXOS. First, the protocol is less efficient, requiring in total four expo-
nentiations per party as compared with the 2.5 needed in HMQV. Second, there is
no natural way to derive a one-pass version of NAXOS; for example, if 13 = 1 is
chosen, then the shared secret essentially reduces to g’i\xB, allowing an attacker to
freely choose r/, and to masquerade as A. At the same time, Ustaoglu recognised
the additional security properties of NAXOS as well as the simplicity of the proof
in comparison with HMQV. This motivated the protocol CMQV [718] (combined
MQYV), which aims to achieve the efficiency and flexibility of HMQV with the secu-
rity and ease of proof of NAXOS. Protocol 5.16 show the message flows and secret
key computation for CMQV.
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Information computed during protocol: d = H(t4,1Da,IDg) , e = H(tp,ID4,IDp).
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Sq4 =r4+dxs mod g Sp =rp+exp mod g
Z = (1pyp)™ Z=(11y})*

K= H’(Z,tA,tB,]DA,IDB)

Protocol 5.16: CMQV protocol

We can say that Protocol 5.16 essentially uses the shared-secret derivation from
HMQV together with the NAXOS trick. Thus the shared secret for CMQV is Z =
g(rf4+dXA)(r§;+exB), but note that now d and e depend on both identities, a difference
from HMQV. Ustaoglu presented a proof of security for CMQV in the eCK model
under the gap Diffie—Hellman assumption. In comparison with that for HMQYV, the
proof is quite short. However, like that for HMQV, the proof requires application of
the forking lemma, which impacts the tightness of the reduction. It is required that
the message recipients check membership of the group G. Despite the similarity with
HMQYV, the hash function H used in CMQV is assumed to map to the whole of G,
rather than mapping to bit strings of half the length of the size of G as in HMQV. This
means that CMQV does not always achieve the same efficiency as HMQYV, although
it is always more efficient than NAXOS.

5.4.9 NETS and SMEN

Lee and Park [479] continued on from the CMQV design, looking for efficient proto-
cols which can satisfy eCK security with a simple security proof. In particular, they
addressed the undesirable use of the forking lemma in the security proof of CMQYV,
which results in a less tight security reduction. They defined a new protocol, NETS,
shown as Protocol 5.17.

Protocol 5.17 makes use of the NAXOS trick to compute the ephemeral expo-
nents, and the shared secret consists of two components: Z = g(xA”A)("B”B), g'B,
Lee and Park proved security of NETS in the eCK model assuming the difficulty of
gap Diffie-Hellman but without relying on the forking lemma. Subsequently, Barthe
et al. [57] showed, with the help of machine support, that security can also be proven
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Protocol 5.17: NETS protocol

only under the computational Diffie-Hellman assumption if long-term keys are gen-
erated honestly.

The efficiency of Protocol 5.17 is an improvement upon NAXOS and matches
CMQV when one simply counts the number of exponentiations. However, as ac-
knowledged by Lee and Park [479], CMQYV (and also (HIMQV) can use techniques
for multi-exponentiation which are not available for NETS. At the same time, the
tighter security reduction should mean that smaller keys are possible for NETS than
for CMQYV, so it is not easy to compare precisely the efficiency for the same security
level.

A later protocol with, at least superficially, similarities with Protocol 5.11 is due
to Wu and Ustaoglu [738]. Known as SMEN (Secure MQV or Efficient NAXOS),
Protocol 5.18 uses the NAXOS trick and incorporates two independent Diffie—
Hellman ephemeral values. The main theoretical advance of SMEN compared with
NETS is that SMEN can exploit multi-exponentation to obtain efficiency improve-
ments. Apart from that, it has similar properties to NETS, particularly those of having
a compact proof without the forking lemma and using the NAXOS trick.

The shared secret is Z = g"A’B+XB’A+7A73, which looks similar to that of Protocol
5.11, but note the differences due to both the NAXOS trick and the use of two dif-
ferent ephemeral secrets. Wu and Ustaoglu proved that SMEN is secure in the eCK
model based on the gap Diffie-Hellman assumption. Later, Lu et al. [S05] demon-
strated a KCI attack on SMEN, but the attack applies only in a different security
model in which the session state from non-target sessions is allowed to be revealed
to the adversary. Wu and Ustaoglu [738] also define a protocol called SMEN— which
avoids using the NAXOS trick at the cost of a small reduction in efficiency.
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Protocol 5.18: SMEN protocol

5.4.10 Protocol of Kim, Fujioka, and Ustaoglu

Kim et al. [429] proposed Protocol 5.19 in order to achieve a protocol which avoids
using the NAXOS trick while at the same time maintaining a compact proof in the
eCK model.

Shared information: Public keys: y4,74 of A and yp,¥p of B
Information of A: Private keys: x4,%4 with yq = g%, 4 = g™
Information of B: Private keys: xp,%p with yp = g%, 5 = g%

A B
rA €R Zq
t
thw=g" — A B €R Zq
tp = grE
B
(_
Z = (tgy)™ " (1gyp) ™4+ Z = (taya)st"8, (154 )5 ®

K= H/(Z,Z‘AJB,IDA,IDB)

Protocol 5.19: Protocol of Kim, Fujioka, and Ustaoglu (KFU)

The shared secret consists of two components:

7 — g(XA +ra) (s trp) gt +ra)(Ep+rp)
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The format of the shared secret has a similarity with NETS (Protocol 5.17) but the
protocol avoids using the NAXOS trick to derive the exponents for 74 and #5. Proto-
col 5.19 requires each principal to have two long-term public/private key pairs. The
computation of Z consists of the same basic operation run twice, once with the first
long-term key pair of both parties, and once with the second.

Kim et al. [429] proved that Protocol 5.19 is secure in the eCK model based
on the gap Diffie—Hellman assumption. They also defined a second protocol which
uses the same pair of long-term keys for each principal but computes Z with four
components:

Z = gl tra) s trs) o(atra)(W+78) o(Tatra)wstrs) o(Tatra)(Tp+7s),

They proved security of this variant assuming the difficulty of the computational
Diffie-Hellman problem. Although it adds to the computational cost, this variant
still uses only a single basic Diffie—-Hellman message exchange. Pan and Wang [598]
pointed out attacks on the KFU protocols in other security models, particularly the
seCK model (see page 79).

5.4.11 OAKE Protocol

The OAKE (Optimally-balanced Authenticated Key Exchange*) protocol was de-
signed by Yao and Zhao [754] as a compromise between the HMQV and KEA pro-
tocols, aiming to benefit from the best aspects of each. Based on the observation that
HMQV has the best known performance in total, while KEA has the best known
performance online (see Sect. 5.4.14), OAKE combines the methods of forming the
shared secret Z in HMQV and in KEA as shown in Protocol 5.20 (compare Proto-
cols 5.14 and 5.9). OAKE even marginally improves on the overall performance of
HMQV by removing one of the hash computations.

The shared secret in Protocol 5.20 is Z = g'A*BTB¥A+€rA’s Yao and Zhao [754]
proved the security of OAKE in the Canetti—-Krawczyk computational model based
on either the gap Diffie—Hellman problem or a combination of the gap discrete loga-
rithm problem and the knowledge-of-exponent assumption.

In addition to computational concerns, Yao and Zhao [754] also considered pri-
vacy issues. They pointed out that KEA, and related protocols whose secret inputs
are of the form y};', can easily be simulated by either party. This means that they pro-
vide a form of deniability. In contrast, (H)MQYV, like many other protocols, is much
harder to simulate because the static Diffie-Hellman value g*A*8 seems to be required
in order to compute a valid transcript and key. OAKE is easy to simulate, like KEA.
In case deniability was seen as undesirable, Yao and Zhao also defined a variant
protocol called T-OAKE (traceable OAKE) with similar computational properties to
OAKE but which now includes g*4*8 in the shared secret component.

4 The authors of the OAKE protocol actually specified a much longer version of the proto-
col name: ‘(toward) Optimally-balanced (implicitly) Authenticated (Diffie—-Hellman) Key-
Exchange (in the integrity of protocol efficiency, security, privacy, and easy deployment)’.
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Information computed during protocol: e = H(IDa,ya IDp,yp.ta,18)-
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Protocol 5.20: OAKE protocol

5.4.12 Moriyama—Okamoto Protocols

Okamoto [591] designed Protocol 5.21 with the aim of achieving security in the
eCK model but without using random oracles, so that it can be proven secure in the
standard model. This was the first protocol to use the twisted PRF trick in place of
the NAXOS trick in order to avoid the random-oracle assumption. The long-term
and ephemeral keys are combined using pseudo-random function families £ and F.
The hash functions H4 and Hp, used to compute ¢ and d, are chosen from a family
of target collision-resistant functions.
The shared secret can be shown to be computed equally by A and B as follows:

o xAtexa3 Xaptexa4 iy ra  ~dra

7 =1g; Igs ‘Ip3°Yg VB
_ JBaitexas)  rp(xaptexad) | FgFa XBara XBara  Xpadra  xpadry
=81 &> 81 81 & 8 &
(XAl XpoNrg (. XA3 Xadvcrp FpFa  ra(xp1+dxp3)  ra(xpp+dxpa)
= (g, &) (g, gy " )-8 g "8
_ rg ~crg g (Bitdxp3) (xp2+dxpa)
=Ya Ya l3lan Tyn .

From Z, the session key is computed using a special type of function called a
7wPRF, or pseudo-random function with pairwise-independent random sources. The
existence of such a function is an assumption of the security proof. In comparison
with other protocols in this section, Protocol 5.21 is quite complex, using five pri-
vate key elements and two public keys elements, exchanging three elements, and
requiring eight basic exponentiations per principal.

Later, Moriyama and Okamoto [566] designed a new version of Protocol 5.21
which avoids the twisted PRF (and NAXOS) trick but requires an even longer public
and private key pair. They also developed a related protocol secure against side-
channel attacks in the so-called leakage resilience model [567].
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Pre-shared information: Two generators g1 and g, for G. Public keys: y4,74 of A and yp,p

of B
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Protocol 5.21: Okamoto protocol

5.4.13 Adding Key Confirmation

In this section, we have so far considered only key agreement protocols with two
message flows without any key confirmation. All the protocols we have described
can be extended to provide key confirmation in a generic way, and indeed this tech-
nique was explicitly used by many of the protocol authors. Most of the protocols we
have described in this section provide weak forward secrecy. This technique not only
provides key confirmation but also changes a protocol with weak forward secrecy
into one with forward secrecy.

Protocol 5.22 shows the general procedure. In the first two messages A and B ex-
change their ephemeral Diffie—-Hellman keys as usual, while in the second and third
they exchange MACs using the derived key K’. To ensure that the protocol does not
give away material to help the adversary, two different hash functions are used, H;
and H», which are assumed to be independent. The key K’ is calculated using hash
function H;, while H; is used to derive the shared session key K = H>(Z). This en-
sures that there is no obstacle to a Bellare—Rogaway-style proof of security as a result
of this procedure. Exactly this procedure was used by Blake-Wilson et al. [107, 109]
to provide key confirmation to the Unified Model and prove its security. Yang [752]
provided a formal proof that this process provides explicit entity authentication for
any two-message protocol that is secure in the eCK model.
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Shared information: Two independent hash functions, H; and Hj.
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Protocol 5.22: Generic addition of key confirmation to basic Diffie—Hellman proto-
cols

Although the MACs exchanged contain essentially the same fields, the ordering
is different. This ensures that no MAC may be replayed to the opposite role, either
to the initiator or to the responder of the protocol; in particular, it prevents a simple
reflection of the MAC value in the third message. The inclusion of the message flow
numbers also ensures this.

5.4.14 Comparison of Basic Diffie—-Hellman Protocols

Table 5.5 summarises and compares the main features of some of the protocols we
have examined in this section. The table includes only two-pass protocols, although
many protocols also have one-pass and three-pass versions. Due to this restriction we
expect that in most cases only weak forward secrecy will be achieved. As pointed out
in Sect. 5.4.13, such protocols can be converted to ones with strong forward secrecy
by adding key confirmation.

In comparing the computed shared secrets in each protocol, note that those proto-
cols which use the NAXOS trick use values of r4 and rg which have been combined
with the respective long-term secrets. SMEN uses two ephemeral keys and KFU uses
two long-term keys; the additional keys are denoted by adding a tilde.

Security properties are arguably the most important issues to compare in Table
5.5. Older protocols often lack some of the basic security properties and usually do
not have a proof of security. They are still interesting, at the least to understand what
can go wrong and why more modern protocols are designed the way they are.

All modern protocols have a proof of security, but the models used are not al-
ways the same. The most common is the eCK model, but some analysts use the CK
model with enhancements to capture KCI resistance and ephemeral-key leakage, de-
noted CK™ in the table. Because the UM protocol does not provide resistance to
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KCI attacks, it cannot be secure in the full eCK model and its proof is in a weakened
version, denoted eCK™. The proof for MQV is in a version of the BR model which
is weaker than the eCK or CK* models and only applies when key confirmation is
added. More details can be found in the descriptions of the individual protocols. Most
of the security proofs require a random oracle but there are some exceptions, such
as for Protocol 5.21. Many protocols use the NAXOS trick with a random oracle to
hash the ephemeral and long-term secrets, while Protocol 5.21 uses the alternative
twisted PRF trick instead (denoted TPRF in Table 5.5).

The computational requirements are indicated in Table 5.5 by simply count-
ing the number of exponentiations computed by each principal in a protocol run;
this number is divided into those that must be online (after the protocol starts) and
those that may be offline, assuming that the partner’s public key is available and
the ephemeral Diffie—Hellman private key is chosen in advance. It is important to
note that we have counted only those computations required to calculate the shared
secret. For all protocols, it is typically necessary to perform an extra online exponen-
tiation to prevent small subgroup attacks in the case that G is a subgroup of much
smaller size than Z;‘, (see Sect. 5.3.1). For MQV and HMQYV, the value of one of the
exponents used is half the size of the other exponents, which accounts for the half
exponentiation shown in the table.

Different implementation optimisations are possible in many of the protocols.
Two important ones are multi-exponentiation [550, Algorithm 14.88] and fixed-
based exponentiation [550, Sect. 14.6.3], possibly including pre-computation. These
optimisations can significantly alter the relative efficiency but may require extra stor-
age. Some researchers [429, 719] have estimated the efficiency for many of the pro-
tocols in Table 5.5 taking into account such techniques. However, this is not easy
because different levels of tightness in security proofs can influence what security
parameters can safely be used [719].

Overall, there seems to be no clear winner amongst this class of protocols. Today,
many key exchange protocols are proven to be secure in strong security models. With
the emerging threat of quantum computers which could efficiently find discrete log-
arithms, it may be that none of these protocols will remain secure within a relatively
short time.

5.5 Diffie—-Hellman Protocols with Explicit Authentication

In this section we look at protocols that add information to authenticate the Diffie—
Hellman messages exchanged between the parties. In many cases the additional al-
gorithms used for authentication are made deliberately independent of the Diffie—
Hellman exchange, which reduces the chance of ‘unfortunate’ interaction between
different protocol fields. Two features are common in the protocols in this section, in
contrast to those in Sect. 5.4.

e The shared secret is usually the ephemeral Diffie—Hellman key. In this case the
protocol will usually possess forward secrecy as long as the shared secret and
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the long-term keys of the principals are completely independent. There are ex-
ceptions in which protocol designers have reused the ephemeral Diffie—-Hellman
inputs in the authentication information.

e The ephemeral public keys are often signed by the principal generating them. In
this case key compromise impersonation is always avoided, since knowing A’s
private key does not help the adversary to forge B’s signature. A similar effect
occurs if the ephemeral public keys are encrypted with the partner’s public key.

From the range of protocols we have identified in the literature, there are three
typical methods of adding authentication to Diffie-Hellman key exchange.

1. The protocols messages, including the ephemeral Diffie—-Hellman keys, are
signed with a digital signature.

2. A message authentication code (MAC) is computed and added to the messages,
including the ephemeral Diffie-Hellman keys. The key used for this MAC is
typically derived from long-term keying material of the parties, such as a static
Diffie-Hellman key.

3. A proof of knowledge is added to the messages, proving that the message is
well-formed. This does not provide explicit authentication, but links the sender
to an entity who generated the ephemeral secret key.

It is not immediately obvious why using explicit authentication should be useful
in comparison with the protocols in Sect. 5.4. Adding such fields increases message
lengths and usually will increase computational requirements. Nevertheless, the type
of protocols we examine in this section are more common in the real world than
those in Sect. 5.4. Some possible reasons are:

e entity authentication and key confirmation can be provided, even in one round;

e full forward secrecy can be provided in one round;

e generic solutions are available using standard primitives for signatures and
MACs, which can be replaced when new algorithms become available.

5.5.1 Generic Constructions for Authenticated Diffie-Hellman

In later subsections we will see several concrete constructions for protocols which
add explicit authentication to Diffie-Hellman key exchange in order to provide var-
ious properties. Here we mention a few generic constructions which have typically
been designed to achieve strong security goals, perhaps with less than optimal effi-
ciency.

Boyd and Gonzélez-Nieto [142] and, later, Cremers and Feltz [234, 235] pro-
vided compilers to convert a one-round protocol into one which provides full for-
ward secrecy, still in only one round. The former compiler works by adding a MAC
to the exchanged messages using a shared key derived from a static Diffie—-Hellman
key. The latter compiler uses signatures instead for the same purpose. Although both
provide full forward secrecy according to the usual definitions, the Cremers and Feltz
compiler based on signatures provides security in a slightly stronger model. Gener-
ally, these compilers do not result in very efficient protocols, since they have to be
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applied to protocols which are already secure in models, such as the eCK model, that
provide weak forward secrecy.

Bergsma et al. [90] constructed a generic one-round key agreement protocol rely-
ing on any non-interactive key exchange (NIKE) and secure signature scheme. Their
protocol is not particularly efficient but it does have the benefit that it has a security
proof without relying on random oracles, and in a strong model providing eCK secu-
rity and full forward secrecy in one round. Protocol 5.23 shows the generic protocol
of Bergsma er al. instantiated using Diffie—Hellman for the generic NIKE scheme.

Shared information: Pseudo-random function family F.
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Protocol 5.23: Bergsma—Jager—Schwenk protocol instantiated with Diffie-Hellman

Bergsma et al. [90] proved security of Protocol 5.23 (with any suitable NIKE) in
the eCK-PFS model of Cremers and Feltz [235]. The signature scheme applied was
required to be deterministic in order to avoid problems where leakage of randomness
leads to leakage of long-term signing keys.

5.5.2 STS Protocol

The Station-to-Station (STS) protocol, due to Diffie et al. [253], adds a digital sig-
nature to the exchanged messages to provide authentication for the Diffie-Hellman
protocol. In addition, the shared secret is used to provide further assurances. Protocol
5.24 shows the main version of the STS protocol; a variant in which the encryption
is replaced by the use of a MAC is shown in Protocol 5.26. The shared secret is
Z = g'2"8 and the session key K is derived from Z in some unspecified way.
Because the shared secret is the ephemeral Diffie-Hellman key, forward secrecy
is provided by the STS protocol. Also, the signatures provide protection against key
compromise impersonation, since if a long-term key is lost this does not help an
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Protocol 5.24: STS protocol of Diffie, van Oorschot and Wiener

adversary to forge a signature of a different entity. Lowe’s attack [502] on the STS
protocol was discussed in Sect. 1.5.6. This shows that the protocol does not provide
mutual belief in the key, or strong entity authentication.

Diffie et al. [253] explained that the symmetric encryption in Protocol 5.24 is
essential in order to prevent unknown key-share attacks. Specifically, without the
encryption, the adversary C could remove the signature of A in the final message and
replace it with C’s own. The result is that A and B both complete the protocol but B
believes that the key is shared with C, while A believes that it is shared with B. An
unknown key-share attack remains possible if the adversary can obtain a certificate
for a public key that is identical to that of the victim (who can be either A or B). In a
similar way to Attack 5.7, the adversary simply relays messages between A and B.

Unknown key-share attacks can be prevented by including the identity of the
partner entity in the signatures exchanged. Moreover, this change provides an ex-
plicit indication of the peer entity so that a stronger form of entity authentication
is achieved (in particular, Lowe’s attack no longer applies). In addition, there no
longer seems to be a need for the symmetric encryption in the protocol. This leads to
the STS variant shown in Protocol 5.25. An essentially identical protocol has been
proven secure using the model of Bellare et al. [72, 178] (see also the description by
Blake-Wilson and Menezes [109]).

The role of the encryption mechanism in the STS protocol can be taken by a
MAC, since its purpose is to ensure that the signing party has possession of the
session key and not to provide confidentiality. This leads to the STS variant [253]
shown in Protocol 5.26. A potential disadvantage in comparison with Protocol 5.24
is the increased length of the second and third messages.

Blake-Wilson and Menezes [110] proposed an unknown key-share attack on Pro-
tocol 5.26. As in the description above, the adversary must register a new pub-
lic key, but since the adversary can choose the correct private key the certifica-
tion process cannot be used to prevent the attack. Given a signature Sigy(t4,75)
used in the protocol run, the adversary C must find a new public key such that
Sige(ta,tp) = Sigy(ta,tp). There are two problems that the adversary faces in en-
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Protocol 5.25: Modified STS protocol
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Protocol 5.26: STS protocol using MACs

gineering this situation. The first is to find such a key that satisfies this duplicate
signature property, and the second is to have the new key certified in real time.

Blake-Wilson and Menezes showed that the first problem can be solved for many
popular signature schemes. The second problem has features in common with Attack
5.9 on the MQV protocol. Once this substitution is achieved, the attack proceeds
again, with the adversary simply relaying messages between the parties. However,
this attack can work only against the version of STS using MACs (Protocol 5.26),
and not against Protocol 5.24, because the adversary needs to see the signature in
order to calculate the new public key.

Since the adversary knows the private key of the new public key in this second
attack, asking certifiers to check this knowledge is not sufficient to prevent the attack.
Instead, Blake-Wilson and Menezes suggested a number of preventative measures.
The generic solution of including the principal identities in the key derivation func-
tion still works. Blake-Wilson and Menezes suggested including the identities within
the signature as a preventative measure. However, Baek and Kim [49] showed that
this is still not sufficient, and instead recommended including identities explicitly
within the MAC as well as in the signature.
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5.5.3 Oakley Protocol

In this section, and the following five, we consider protocols designed for practical
use on the Internet. In contrast to the separate key establishment protocols that we
mainly focus on in this book, these sets of protocols can be customised by negotiation
of various protocol features during the protocol run itself. This flexibility can result
in new security threats. More examples of such threats are discussed in Chap. 6 with
respect to TLS.

Oakley is defined in the IETF’s RFC 2412 [596] from 1998. The basic design
is similar to the STS protocol but the specification emphasises the following differ-
ences.

e As part of the protocol, principals A and B choose cookies CK4 and CKp, respec-
tively, which are used to mitigate denial-of-service attacks. The correct cookie
must be returned in subsequent messages. The exact format of the cookies is not
specified and it is optional whether or not cookies are exchanged before the key
exchange begins.

e The protocol includes negotiation of cryptographic algorithms that are used to
support the protocol, including the encryption algorithm, key derivation function
and authentication method. The group used for Diffie—Hellman itself can also be
negotiated.

e There need be no use of encryption (or a MAC) for authentication of the session
key. In some versions this allows the session key to be derived after completion
of the protocol if desired.

Several specific protocols are given in the Oakley documentation. We examine
simplified versions of three of these, ignoring some plaintext fields such as a string
indicating the name of the protocol itself. A further option does not use Diffie—
Hellman, and therefore fails to provide forward secrecy.

Protocol 5.27 is named ‘aggressive’ because it anticipates that certain possible
problems will not arise. In particular:

e it only works when B can use the same group as initially proposed and used by A
in the first message;

e it does not force either principal to respond with a cookie before the other prin-
cipal stores state information regarding the connection.

In the first message of Protocol 5.27, principal A offers a list of possible algo-
rithms, 1ist, for encryption, hashing and authentication, which A is prepared to use
for this session. B responds with a particular algorithm set, algo, in message 2. The
nonces Ny and Np are chosen by A and B, respectively, and are of unspecified size.
Protocol 5.27 has a similar basic structure to Protocol 5.25, but here A needs to cal-
culate two signatures instead of one.

As well as checking all received signatures, both parties must ensure that the
received ephemeral values are not the degenerate values 1 or p — 1. A specific key
derivation function is used to calculate the session key from the shared secret Z =
g""8 ag follows:
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Protocol 5.27: Oakley aggressive-mode protocol

K = MACy, n; (Z,CKy,CKp). 5.1)

Oakley was specifically designed to provide forward secrecy, which follows from
the use of the ephemeral Diffie—-Hellman key as the shared secret. In addition, the
signatures of both parties prevent key compromise impersonation. Unknown key-
share attacks are prevented by inclusion of the principal identities in the signatures,
similarly to Protocol 5.25.

Protocol 5.28 is an Oakley variant designed to prevent disclosure of user identi-
ties, and for this reason the user identities are encrypted instead of being signed. The
identity B’ can be thought of as a domain name for B and may be a generic identity
at the location of B; for example, if B is an entity in a corporate environment, B’ may
be the public key of the corporation, with a known public key. The reason for using
the generic name is so that the recipient node is able to decrypt without receiving the
identity of the recipient in plaintext. An interim key K = H (N4, Np) is used with the
hash function H in order to authenticate the exchange.

In this variant the shared secret is again Z = g"A"8, and the session key is defined
using Eqn (5.1). Forward secrecy and protection against unknown key-share attacks
are both provided as in Protocol 5.27. Unknown key-share attacks are prevented
because of the encryption of the N4 and Np values used in the MAC calculation.

Protocol 5.29 is a ‘conservative’ Oakley variant which exchanges cookies before
the key exchange itself commences. This is the way that cookies were originally de-
signed to work, so that some assurance about the origin of the request is obtained
before the computationally expensive part of the protocol begins, and without re-
quiring the responder to store any state. The first message is simply an indication to
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Protocol 5.28: Alternative Oakley protocol

B that the protocol should commence. The consequence of the use of cookies in this
manner is the increased number of messages and rounds required in the protocol.

As in Protocol 5.28, the principal identities are protected in Protocol 5.29 but here
a temporary key K, derived from the shared secret, is used for this purpose. The first
four messages exchanged are therefore anonymous. Once again, the session key is
defined using Eqn (5.1). Forward secrecy and protection against key compromise
impersonation and unknown key-share attacks appear to be provided as in Protocol
5.28. However, there is an important difference in this protocol which could cause
problems, as we now explain.

The return of the encrypted nonce sent from B to A in Protocol 5.29 opens up
the possibility of an interesting attack in which the adversary masquerades as A, and
subsequently uses the real A as a decryption oracle. The attack depends on an as-
sumption that the message field Enca (Ng,N¢) sent by B will be interpreted by A as
the encryption of a single nonce when replayed by C in a second protocol run. This
need not be unreasonable, since the length of nonces is variable in the Oakley speci-
fication. In a correct implementation, each nonce should have its length specified and
therefore A should detect the problem and abort the protocol. On the other hand, the
attack would still work if A were to ignore the second nonce and simply decrypt Np,
discarding the second nonce. Therefore we believe that a careless implementation
could be vulnerable to the attack. In more detail, the attack proceeds as follows.

1. C masquerades as A and sends #c = g'¢ to B so that B accepts the temporary key
K' = H(Zcg) as shared with A.

2. C sends {ID4,IDg,Encg(N¢)}x to B in the fifth message flow. B will choose a
nonce Np and calculate K = H(N¢,Np).
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Protocol 5.29: Oakley conservative protocol

3. Bsends {Encs(Ng,N¢),...}x to C as part of the sixth message flow. The adver-
sary can remove the symmetric encryption to obtain Enc (N, N¢).

4. C starts a second protocol run with A. This proceeds normally until the fifth mes-
sage flow, when C sends {ID¢,ID4,Enca(Ng,Nc)}g», where K” is a temporary
key shared between C and A.

5. Aslong as A interprets the pair (Np, N¢) as a single nonce from C, she will reply
with {Ence (N, Np,Ne)} . C can extract Np and so complete the first protocol
run with B.

5.5.4 SKEME Protocol

SKEME is due to Krawczyk [450]. Like Oakley, it is a set of protocols suitable for
negotiation of services in a general networked environment. In addition to it provid-
ing establishment of a good key, Krawczyk [450] stated additional requirements for
SKEME as follows.

Periodic key refreshment: It should be possible to update the session key used at
low computational cost. A special mode of the protocol is included for this pur-
pose.
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Forward secrecy: This property should be available as an option. In some cases it
may be sacrificed for efficiency gains.

Key separation: This is a principle governing how the shared secret is used to ob-
tain session keys. Different cryptographic functions are provided with indepen-
dent keys.

Privacy and anonymity: As well as providing confidentiality of user data, it may
be desirable to hide the identities of the communicating parties. For this reason
the SKEME protocol avoids digital signatures, which can always be used at least
to confirm the identity of the signer.

Denial-of-service protection: SKEME was designed to employ cookies in the same
way as Oakley. This requires an additional initial message exchange that is omit-
ted from the descriptions below (as well as in those of Krawczyk [450]).

Efficiency and simplicity: The design tries to reduce the options and use compact
and uniform message formats. In addition, efficient algorithms such as hash
functions are preferred over the use of digital signatures.

Support for multiple models and algorithms: Certificate and shared key models
are supported. Cryptographic algorithms are specified in a generic sense so as to
avoid dependence on particular primitives.

There are a number of possible protocols.

1. The basic mode, shown as Protocol 5.30, which uses the public keys of both
parties to provide forward secrecy and anonymity of the principals.

2. A version using public keys but without forward secrecy, which is described as
Protocol 5.42 later.

3. A version using an existing shared secret and providing forward secrecy. This is
similar to Protocol 5.30, but the encrypted field in messages 1 and 2 is omitted
and instead the previously shared key is used as the key Ky for the MAC.

4. A rekeying mechanism.

In Protocol 5.30, the nonces N4 and N are shown as being chosen in [0,2%] for
some security parameter; the size of L was not specified by Krawczyk, who said
only that they should be ‘chosen as (pseudo-)random values’. The shared secret is
Z = g'+'B, with session key K = H(Z).

Krawczyk presented arguments that the simple modes of SKEME, in which Kj is
previously shared, can be proven secure in the Bellare—-Rogaway model. Moreover,
Bellare et al. [72] showed that Protocol 5.30 can be derived as an output of their
modular design method, and therefore the protocol inherits a formal proof of security
in their model.

5.5.5 Internet Key Exchange

As part of an initiative to secure the foundations of the Internet, the Internet Engi-
neering Task Force developed an IP security protocol, known simply as IPSec [425],
to provide security services to any application running over the Internet Protocol (IP).
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Protocol 5.30: SKEME protocol, basic mode

The concerns of IPSec go considerably beyond key establishment, so here we exam-
ine only a very small part of the development. The reader interested in understanding
the complexity of designing an overall system to secure Internet communications is
encouraged to consult the considerable literature on IPSec. We refer to a number of
useful sources in this section.

During the 1990s a number of different key establishment protocols were pro-
posed for inclusion within the IPSec solution. These included Oakley (see Sect. 5.5.3),
SKEME (see Sect. 5.5.4) and Photuris [677]. Through a long and complex evolution
a single proposed Internet standard emerged in 1998, known as Internet Key Ex-
change, or IKE [351]. Owing to many criticisms of the protocols [274, 610, 780,
781], a new version of IKE, IKEv2, was eventually proposed and standardised; we
examine IKEv2 in Sect. 5.5.6.

The IKE protocol is strongly related to the Oakley and SKEME protocols. It has
two phases. The first phase is concerned with establishing a secure channel by key
exchange. The second phase is concerned with using the secure channel to set up
sessions known as security associations, which can be used to protect the confiden-
tiality and/or integrity of exchanged data. However, the need for this split has been
questioned [610] and the indications are that the revised version of IKE will not have
two phases. We will not consider the second phase further here.

The IKE protocols employ cookies similar to those of the Oakley protocol. How-
ever, the protocol specification requires some state to be recorded even in the first
message exchange in order to check a returned cookie. Therefore, although there is
some mitigation of denial-of-service attacks, the result is not as effective as when
stateless cookies are used. In addition it is optional whether cookies are exchanged
at all before the key exchange begins. This weakening of the cookie mechanism has
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received considerable criticism [610]. The protocol also includes negotiation of cryp-
tographic algorithms that are used to support the protocol, including the encryption
algorithm, key derivation function, and authentication method. The group used for
Diffie—Hellman itself can also be negotiated.

Because IKE emerged as a compromise solution, it is not surprising to learn that
it contains a lot of different options. It contains no fewer than eight key establishment
protocols, which can be divided into two sets of four according to whether main mode
or aggressive mode is used. The protocols in main mode use six messages, which can
be divided into three pairs with the following aims.

Stage 1. Exchange cookies and agree on the algorithms to be used.
Stage 2. Exchange ephemeral Diffie-Hellman keys and nonces.
Stage 3. Perform entity authentication and key confirmation.

This division presents an attractive framework, but the large number of exchanges
is another point of significant criticism. The aggressive mode collapses most of the
functionality into only three message exchanges in a more conventional manner. In
general the protocols in aggressive mode suffer from two limitations in comparison
with the main mode.

e Use of cookies is of limited value, since the responder needs to start the compu-
tationally expensive part of the protocol before the cookie exchange is complete.

e Because the Diffie-Hellman exchange begins in the first message, the respond-
ing party can only complete the protocol if the group used is supported by the
responding party. (This can be negotiated in the main mode.)

Protocol 5.31 shows one of the four main versions of the IKE protocol; this one
uses digital signatures for authentication. In Stage 1, principal A offers a list of ac-
ceptable algorithms, 1ist, that A is prepared to use, and B responds with a particular
algorithm set, algo. Once the ephemeral Diffie—Hellman keys have been exchanged
in the second pair of messages, both parties can derive the shared secret and form the
temporary key KM = MACy, v, (Z), which is used to form the MAC of the protocol
parameters in the final message exchange. We have used the suggestion of Ferguson
and Schneier [274] in replacing the more general keyed hash function used in the
IKE specification with a MAC, since it seems that a MAC is what is required here.
Indeed, HMAC [71] is the only explicit suggestion in the standard for this function.
In addition to KM, several other keys are derived from Z. One of these is used to en-
crypt the final message exchange and is denoted by K’ in Protocol 5.31. We have not
specified the function used to derive K, but the IKE specification does so in terms of
a generic keyed hash function. Although examples of possible functions are given,
Ferguson and Schneier [274] criticised the lack of any description in the specification
of the properties that such a function should have.

Since the principal identities are hidden in all messages, the protocol provides
anonymity against a passive eavesdropper. However, Perlman and Kaufman [610]
pointed out that an active adversary can discover the identity of A by masquerad-
ing as B during the first two phases, and thereby obtain the correct value of K. Of
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Protocol 5.31: IKE main protocol using digital signatures
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course, the adversary cannot forge B’s signature and so is unable to complete the
final message of the protocol. But if A were a mobile station who wished to protect
her location then the attack could be deemed successful. Perlman and Kaufman sug-
gested that, to protect A’s identity, the contents of the final message should be moved
back to the fourth message. Although this means that a similar active attack is now
possible against B’s identity, they argued that the initiator is more vulnerable to such
an attack in a typical application involving a mobile client connecting to a server.
Moreover, this suggestion reduces the number of messages by one.

Ferguson and Schneier [274] pointed out that a reflection attack is possible on
Protocol 5.31. The adversary masquerades as B and simply copies and returns the
values CKy and t4 in place of CKp and tp in the first two stages. Then A will also
accept her own signature reflected back in the final message. Of course, the attack is
only meaningful if A will accept her own identity as the identity of her peer principal.
Since IKE may be configured only to authenticate IP (machine) addresses, this may
not be an unreasonable assumption. This is an attack against the key confirmation
and entity authentication properties; the adversary does not obtain the shared secret.
The attack also applies to the main mode of IKE, when authentication is based on a
previously shared secret.

The signatures in the final two messages are intended to provide authentication
and integrity of the parameters that have been agreed earlier in the protocol. However,
it is an oversight that the list of algorithms that was offered by A is included in the
MAC, while the set, algos, accepted by B is not part of the calculation. Potential
problems with this omission were described by both Zhou [780] and Ferguson and
Schneier [274]. The adversary can cause A and B to believe that different sets of
algorithms were accepted, or make A accept a weak set and attack the algorithms in
a subsequent session.

Meadows [536] performed a formal analysis of IKE using the NRL Analyzer.
She identified a number of ambiguities in the specification which could lead to in-
secure implementations. Indeed, the incompleteness of the specification has been a
recurring theme in the several analyses of IKE that have been published. Meadows
also pointed out that several of the IKE protocols do not provide strong entity authen-
tication in the sense discussed in Chap. 2. (Meadows refers instead to ‘penultimate
authentication’ as the property that, when an entity accepts a key, the peer entity
should have taken part in the earlier part of the protocol. Here we reinterpret this
to mean that B does not achieve assurance that A has knowledge of B as the peer
entity.) In Protocol 5.31, the adversary C can sit between A and B masquerading as A
to B while A believes the protocol is being executed with C. The protocol messages
are relayed unchanged by C, but the final message from B is simply deleted. Con-
sequently, A will not accept but B completes the protocol properly. The effect is the
same as in Lowe’s attack on STS discussed in Chap. 2 and cannot be accepted as an
attack unless strong entity authentication is a protocol goal. Nevertheless, this extra
property could easily be achieved by including the peer identity in the signatures of
the last two messages of the protocol.
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5.5.6 SIGMA and Internet Key Exchange v2 (IKEv2)

In response to the serious deficiencies in the original IKE protocols, highlighted in
the previous section, a new version of IKE (IKEv2) was introduced. Originally pro-
posed in 2005, the protocol has been updated since and is currently a proposed stan-
dard in RFC 7296 [420]. According to the standard, the main differences between
IKEv2 and the original IKE are simplification, increased efficiency, increased ro-
bustness against denial-of-service, and repair of cryptographic weaknesses.

There are numerous variants and extensions of the IKEv2 protocol. All versions
employ Diffie—Hellman key exchange and later authenticate this initial exchange us-
ing one of several options. We look only at the version which uses signatures to
authenticate the Diffie—-Hellman values. The signatures are encrypted with a key de-
rived from the initial ephemeral Diffie-Hellman exchange in order to hide the identi-
ties of the principals. A passive adversary cannot obtain either of the signatures, but
an active adversary can masquerade during the initial unauthenticated messages, ob-
tain the encryption key and reveal the signature (and so the identity) of the first party
to sign. In IKEv2, the initiator sends the first signed message, so it is the responder
that has stronger assurance against disclosure of identity.

The signature version of IKEv2 is based on a design principle for protocols called
the ‘Sign-and-MAC’ approach, or SIGMA, due to Krawczyk and Canetti [180, 452].
Protocol 5.32 shows one specific instance of the SIGMA approach, designed to pro-
tect the identity of the initiator, and hence it is called SIGMA-I.
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Protocol 5.32: SIGMA-I protocol

Protocol 5.32 can be seen to have strong similarities with Protocol 5.26, the MAC
variant of STS, but there are also some important differences. First, note that there
are three symmetric keys derived from the shared secret Z = g"A"3:
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o K, the session key for use after the protocol is complete;
e Ky, the key used for the MAC within the protocol;
e Kp, the key used to encrypt the final two messages.

Each of these keys must be independently derived from Z so that revealing one does
not compromise any other. The encryption algorithm, denoted {-} ., is used to hide
the identities of the participants, and must provide authenticated encryption in order
to hide the initiator identity against active adversaries.

Krawczyk [452] explained the design principles behind the SIGMA protocols.
One requirement is that each principal should be able to authenticate even without
knowing the identity of its peer. This allowed Canetti and Krawczyk [180] to provide
security proofs in the post-specified peer model. It may seem strange that the SIGMA
protocol uses both signatures and MACs together. The idea [452] is that the signature
is used only to authenticate the ephemeral Diffie—-Hellman values, while the MAC is
used to bind the identities to the key.

Protocol 5.33 shows the (simplified) initial exchanges in the IKEv2 proto-
col [420] when signatures are used for authentication. The full protocol is much more
complex than shown and proceeds with subsequent exchanges used to derive child
security associations. In contrast to Protocol 5.31, cookies for denial-of-service miti-
gation are not shown in Protocol 5.33. Although cookies are allowed in the standard,
they are not used in the basic protocol, since they would add an extra round of com-
munication; in IKEv2, cookies are added only on demand when a denial-of-service
attack is suspected.

As in the SIGMA protocols, the keys Kr and K} are independently derived from
the shared secret and nonces. Also similarly, encryption with Kg should provide
authenticated encryption independently from the MAC keyed by Kj,.

There are a number of different possible concrete groups specified in RFC
7296 [420] (and related RFC documents cited within it) in which the Diffie-Hellman
key exchange can be run with a range of parameter sizes. The proposed groups are
included in the set 1ist sent in the first message and chosen by the recipient. Note
that A has to send t4 before the Diffie—Hellman group is fixed so A must make an
assumption that her preferred group will be chosen by B. If this does not happen, the
first two messages need to be run again.

Reuse of ephemeral Diffie-Hellman keys is allowed in RFC 7296 [420]; this de-
stroys forward secrecy for the window in which the keys are reused but saves com-
putation. Menezes and Ustaoglu [549] described how small subgroup attacks may be
possible in some scenarios with ephemeral-key reuse. They remarked, however, that
their attacks do not apply to IKEv2 as long as checks are in place to validate group
membership, or groups without small subgroups are used.

In addition to the computational analysis of the core SIGMA protocol of Canetti
and Krawczyk [180], Cremers [233] carried out a symbolic analysis of IKEv2 (and
also IKEv1) using the Scyther tool. The analysis covered many variations of IKEv2,
although this did not include analysis of the identity protection property. Cremers
reported a number of previously unknown weaknesses, including a reflection attack
on subsequent protocol messages following the initial authentication.
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Protocol 5.33: IKEv2 protocol, initial exchanges

5.5.7 Just Fast Keying

A protocol strongly related to IKEv2, called Just Fast Keying (JFK), was proposed by
Aiello et al. [23]. Like the SIGMA protocols examined in Sect. 5.5.6, JFK comes in
two versions, called JFKi and JFKr, each designed for identity protection against one
of the two parties involved. The protocols have in-built mechanisms to protect against
denial of service. Protocol 5.34 shows a simplified version of the JFKi protocol,
designed to protect the identity of the initiator A, who may be a client interacting with
a server B. In our description we have omitted the security association information
which includes details of the cryptographic services to 