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Abstract. Web blocks such as navigation menus, advertisements, head-
ers, and footers are key components of Web pages that define not only
the appearance, but also the way humans interact with different parts of
the page. For machines, however, classifying and interacting with these
blocks is a surprisingly hard task. Yet, Web block classification has var-
ied applications in the fields of wrapper induction, assistance to visually
impaired people, Web adaptation, Web page topic clustering, and Web
search. Our system for Web block classification, beryl, performs auto-
mated classification of Web blocks through a combination of machine
learning and declarative, model-driven feature extraction based on Dat-
alog rules. beryl uses refined feature sets for the classification of indi-
vidual blocks to achieve accurate classification for all the block types we
have observed so far. The high accuracy is achieved through these care-
fully selected features, some even tuned to the specific block type. At
the same time, beryl avoids a high cost of feature engineering through a
model-driven rather than programmatic approach to extracting features.
Not only does this reduce the time for feature engineering, the model-
driven, declarative approach also allows for semi-automatic optimisation
of the feature extraction system. We perform evaluation to validate these
claims on a selected range of Web blocks.

1 Introduction

When a human looks at a Web page, he or she sees a meaningful and well-
structured document. However, such interpretation is not accessible for the com-
puter as it only “sees” the technical layers of the Web page [19] represented
merely by the source code (e.g. HTML, CSS, and JavaScript files) and the ren-
dered models (e.g. the DOM tree, CSSOM with computed attributes, and exe-
cuted JavaScript). Whilst it is probably infeasible for a machine to replicate the
human’s perception and derive the associated mental model, it would be highly
useful for it to understand the logical structure and functional role of various
elements of the Web page for a wide range of different applications through
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the analysis of the layout, as well as visual and textual features. Web search
is an especially important potential application, since semantic understanding
of a Web page allows the restriction of link analysis to clusters of semantically
coherent blocks. Hence, we aim to build a system which provides a structural
and semantic understanding of Web pages.

This paper is concerned with the task of Web block classification. Informally
speaking, a Web block is a logically consistent segment of a Web page layout, an
area which can be identified as being visually separated from other parts of the
Web page. A Web block carries a certain semantic meaning, such as title, main
content, advertisement, login area, footer, and so on. It is through the semantic
meaning of individual Web blocks that a human understands the overall meaning
of a Web page. There are many blocks with a common semantic meaning (i.e.
a layer of Web specific objects [19]) among different websites and domains (e.g.
headers, navigation menus, logos, pagination elements, and maps) that share
common Web patterns. Even within one block type, individual blocks can vary
significantly in both their structural and visual representations. For example,
consider the diversity of navigation menus illustrated in Fig. 1. This diversity of
blocks makes the task of their accurate and fast detection challenging from a
research and implementation perspective. In general, the difficulty of the block
classification problem lies not only in the complexity of individual classifiers, but
also in the complexity of the entire system which needs to balance the individual
accuracies of its constituent classifiers and its overall performance.

There are several important applications of Web block classification including
automatic and semi-automatic wrapper induction [2,11,28,35], assisting visually
impaired people with navigating the website’s internal content [14], help in the
task of mobile Web browsing [3,14,24,25,30,31], ad removal, Web page topic
clustering [23], and the ubiquitous task of a Web search [5,6,27,29,34].

Our Web block classification system is known as beryl (Block classification
with Extraction Rules and machine Learning). There are three main require-
ments that it must meet:

1. be able to cover a diverse range of blocks;
2. achieve acceptable precision and recall results for each individual block in the

classification system, and maximise the overall performance of the system;
3. be adaptive to new block types and domains.

The task of Web block classification is technically challenging due to the
diversity of blocks in terms of their internal structure (their representation in the
DOM tree and the visual layout) and the split between domain-dependent and
domain-independent blocks. Hence, from a technical perspective, it is important
to have a global feature repository which can provide a framework for defining
new features and block type classifiers through the instantiation of template
relations. A beryl user will be able to extend it with new features and classi-
fiers with ease by generating them from existing template relations, rather than
writing them from scratch. This will make the whole hierarchy of features and
classifiers leaner and the process of defining new block types and their respec-
tive classifiers more straightforward and less time-consuming. Ideally, we aim
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to generate new block classifiers in a fully automated way such that, given a
set of structurally and visually distinct Web blocks of the same type, the block
classification system would be able to automatically identify the list of optimal
features for describing that block, taking some of these features from the existing
repository and generating new ones which did not exist in the repository before-
hand. However, this approach would almost be infeasible in the case of beryl
since the diversity of block types that we want to classify is likely to cause the
space of potential features to be extraordinarily large, if not infinite. Hence, we
will need to limit the approach of the generation of new features and block type
classifiers to a semi-automated approach.

Fig. 1. The diversity of navigation menu types

The contributions of our approach in beryl have two main aims: improving
the quality of classification and minimising the effort of generating new classifiers
(as explained in the above paragraph). Contributions 1–2 and 3–4 refer to the
quality of classification and generation aspects respectively.

1. We employ domain-specific knowledge to enhance the accuracy and perfor-
mance of Web block classifiers.

2. We provide template and global feature repositories which allow users of
BERyL to easily add new features and block classifiers.

3. We encode domain-specific knowledge through a set of logical rules, e.g. that
the navigation menu is always at the top or bottom of (and rarely to the side
of) the main content area of the page.
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4. The template and global feature repositories are implemented through base-
line global features and template relations used to derive local block-specific
features.

With respect to the employment of domain-specific knowledge for enhanc-
ing the performance of classifiers (contributions 1 and 3), our new approach to
feature extraction allows us to easily integrate domain-specific pre- and post-
classification filters which will ensure that the classifiers in question meet all the
additional restrictions imposed by the domain in which they are applied.

We have also implemented template and global feature repositories (contribu-
tions 2 and 4) which are crucial to the automation and large-scale evaluation of
the beryl system. The template repository is implemented through component-
driven approach to feature extraction that is covered in detail in Sect. 3. Our
system also supports baseline global features which can be shared between dif-
ferent classifiers. The template repository and baseline global features allow us
to easily extend the system with new classifiers without reducing the accuracy
of the classifiers that are already present in the system or significantly reducing
the system’s performance.

2 Related Work

There have been several papers published on this topic in the past ten
years including [4,7,8,12,15–17,20–22,24,26,32,33,35,36]. Broadly speaking,
Web block classification methods can be split into those based on machine learn-
ing (ML) techniques and those based on other approaches (i.e. the rule-based
and heuristics). Also, the features used for the analysis of Web blocks in ML-
driven and other algorithms can be subdivided into structural (based on the
structure of a DOM tree or another intermediary structure representing a Web
page), visual (based on the Web page’s rendering), and lexical (based on the
analysis of the page’s free text).

Most of the approaches taken in this research have attempted to classify
a relatively small set of domain-independent blocks with a limited number of
features, whereas we aim to develop a unified approach to classify both domain-
dependent and domain-independent blocks. Furthermore, none of the papers
with which we are familiar discussed the extensibility of their approaches to new
block types and features.

Finally, although most of these machine learning-based approaches require
significantly more training than beryl, they usually reach a precision level below
70% [12,15,17,20,24]. The highest value of F1 that any of these machine learning-
based approaches reach (apart from [10] that reaches the F1 of 99% but for a
single very specific block type of “next” links and [18] that reaches the overall
classification rate of 94% but for basic Web form elements within the trans-
portation domain and requires a labour-intensive labelling and complex training
procedure) is around 85% [24]. An evaluation of our beryl system (Sect. 4) has
shown that it can achieve much higher levels of precision and recall. This can
partly be explained by the fact that they have attempted to classify different



beryl: A System for Web Block Classification 65

blocks with the same set of features, whereas we attempt to employ individual
feature sets for different types of blocks.

Although most of the current block classification approaches are based on
machine learning methods, to our knowledge there is no universal approach to
the task of block classification.

3 Approach

The problem of Web block classification is, given a Web page P with associated
annotated DOM TP , to find a mapping from the set of sub-trees T ′

1, . . . , T
′
n of

TP to sets of labels, such that each sub-tree is labelled with, at most, one label
per block type. The novelty of our approach is that we try to tailor feature sets
for different Web blocks by application of declarative programming to feature
extraction. We propose a component-driven approach combined with the use of
Datalog-based beryl language and powered by the use of block-specific knowl-
edge. This, together with the repository of global features and relation templates,
helps to create tailored features for different blocks and domains.

Component-Based Approach to Feature Extraction. We give a description of how
our approach to feature extraction works in practice by introducing the concept
of a Component Model (CM)-driven approach to feature extraction.
Components are fragments of code that can be combined to allow for modular
definition of complex features that we want to extract. Components can have dif-
ferent types (e.g. we distinguish between rule-based components that are mapped
to Datalog programs and procedural components that are mapped to fragments
of Java code). Components can also have parameters attached to them, which
can either be atomic parameters, e.g. font size, sequential parameters, e.g. the
tags of the DOM tree we want to consider for analysis, or higher-level parameters
that can link to other components within the definition of a given component.
Parameters are assigned values through instantiations C[p �→ v], and for higher-
level parameters we allow references as values, i.e. expressions of the shape @n
where n is the unique name of the referenced component.

Definition 1 (Component type). A component type C is a triple 〈I,O, U〉 of
two relation schemas I and O, the respective schema of the input and output
relations for a component, and a set of formal parameters U .

Definition 2. A formal component parameter is a mapping of a unique name
p, the parameter name, to a parameter type τp ∈ P. P is the set of permissible
types and defined recursively as follows: Let PA be the set of atomic types such
as Integer or String . Then a permissible type is either an atomic type from PA,
a sequence type [τi] where τi is itself another type from P, or a component type.

τp =

⎧
⎪⎨

⎪⎩

α with α ∈ PA

[τi] with τi ∈ P

C withC a component type
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For each type τ , we denote with domain(τ) the set of permissible values for τ .

We call a parameter of atomic type an atomic parameter, of sequence type
a sequence parameter, and of component type a component parameter. For an
atomic type τ , domain(τ) is the corresponding set of values. For a sequence type,
it is the set of sequences over the values of the constituent type. For a component
type, it is the set of (references to) ground components of type C. We call a
component generic if it has at least one formal parameter, and higher-order if
there is at least one component type parameter in U .

Let N be the set of component names. Then C[p �→ v] is an instantiation for
component type C that binds the formal parameter with name p in C to the value
v, where v ∈ domain(p). We call an instantiation ground if all parameters in C
are bound to an actual value. For component parameters, we allow references
as values, i.e. expressions of the shape @n where n is the unique name of the
referenced component.

Definition 3. Let K be the set of primitive components. A (component) com-
position specification describes how to combine components into more com-
plex ones. A composition specification for a component type C is then a triple
C = (n,C′,E) where n is a unique name, C′ a ground instantiation for component
type C = (I,O, U), and E an expression that describes how to compose this com-
ponent from other, more primitive ones. Specifically, a composition expression
is an expression of the form:

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k where k ∈ K

@n where n is a reference to an already
defined component

E1 � . . . � Er whereEi are composition expressions
E1 ‖ . . . ‖ Er whereEi are composition expressions
E1 ⊕ . . . ⊕ Er whereEi are composition expressions

We call � isolated sequential composition, ‖ parallel, but isolated composi-
tion, and ⊕ sequential, but possibly dependent composition.

We write type(C) = C, input(C) = I, and output(C) = O. Compo-
nent expressions form trees (with possibly shared branches) and thus no cycles
between components are possible. We refer to the name n assigned to a compo-
sition expression e as name(e).

We refer to the components that are referenced in a composition expression
as sub-components C1, . . . , Cr and r the arity of C. We call the set of defined
sub-components in EC the set subs(C) of all components defined in EC or one
of its sub-expressions, i.e. subs(C) =

⋃
1≤i≤r subs(Ci) ∪ {(ni : Ci) : 1 ≤ i ≤ r}.

A composition expression EC is valid, if

1. the schemata of the sub-components are compatible: input(C) = input(n1),
output(ni−1) = input(ni) for all 1 < i ≤ r, and output(nr) =
output(C).
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2. for each composition parameter (p, τ) ∈ type(C) that is instantiated to com-
ponent reference @v, there is a sub-component v : Cv ∈ subs(C) such that
type(C) = τ .

Given a component (and corresponding composition expression) the semantic
of that component is then quite straightforward: in our framework, components
are implemented either as declarative rules (rule-based components, written and
evaluated as Datalog rules) or Java classes (procedural components). In both
cases, implementations may query parameters of the surrounding component.
For atomic parameters, the query returns the corresponding value, for sequence
parameters it returns a suitable representation of a sequence in Datalog or Java,
and for component parameters it returns an interface that allows the implemen-
tation to access the results of the other component.

Definition 4. Let C = (n,C′) be a component with corresponding composition
expression n : EC and U the set of parameters for type(C). Then, we denote
with �EC�(I) the output for C under E if executed on input I. The output is a set
of pairs n : O where n is a component name and O an instance of a component
output schema. As such, we write �EC�(I)[n] to access the output instance for
the component with name n.

�n : EC�(I) = {n : �EC�(I ∪ U)[name(EC)]}

�EC(I)� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{n1 : k(I)} ifE = k ∈ K
⋃

i≤r�Ci�(I) ifE = C1 ‖ . . . ‖ Cr
⋃

i≤r�Cr�(�Cr−1�(. . . �C1�(I) . . .)[name(Cr−1)]) ifE = C1 � . . . � Cr
⋃

i≤r�Cr�(�Cr−1�(. . . �C1�(I) . . .) ∪ I) ifE = C1 ⊕ . . . ⊕ Cr

We can now give a definition of a component model, which is a crucial part
of our beryl system, since each of its constituent classifiers corresponds to a
unique component model.

Definition 5 (Component model). A component model is a set M of executable
components such that for each component C ∈ M with a higher-order parameter
p that references a component C ′, then C ′ ∈ M (“no dangling references”).

Example 1. We give an example of a fragment of the real component model
we use for the Next Link classifier (Fig. 2). Let us consider one of the most
important features of the Next Link classifier that checks whether the direct left
numeric visual sibling of a given numeric node is a link or not (if it is not a
link that is a strong indicator that the numeric link in question is a numeric
next link). We define this feature from the global template relation two nodes
with unary relation properties connected by a binary relation that denotes two
nodes connected to each other by a binary relation that also defines a unary
property of the second node. Each of the nodes also holds one unary relation
property of their own. That is a very generic template that can be used in
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Fig. 2. An example of a component model for a single feature

many cases for different classifiers. In our case, the binary relation is the direct
left visual neighbour relation with the property of the second node (the one to
the visual left of the node in question) defined as is numeric. Note that the
direct left visual neighbour binary relation, in turn, utilises the visual proximity
binary relation that defines any visual proximity within the given boundaries
regardless of direction. We set the width and height parameters for the visual
proximity boundaries to 70 and 50 pixels respectively. The respective unary
relation properties of the two nodes in question are is numeric for the first node
and is a non-link for the second node.

The beryl Language. We provide a tool to the users of our system that allows
them to define powerful beryl component models in an easy and intuitively
understandable, declarative way. This beryl language is a version of Datalog
with some extensions and is one of the key modules of our framework.

The beryl language is a dialect of Datalog that includes safe and strat-
ified negation, aggregation, arithmetic, and comparison operators, denoted as
Datalog¬,Agg,ALU. The usual restrictions apply, i.e. all variables in a negation,
arithmetic operation, aggregation, or comparison must also appear in some other
(positive) context. Further, there may be no dependency cycles over such oper-
ators. In the context of the beryl system, this language is used in a certain
way:
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Table 1. beryl’s input facts

aStart and end labels of a node correspond to a pre-order traversal of the DOM tree
with a single incremental counter that assigns the start label the first time the node has
been explored, and the end label when all the node’s descendants have been explored.
b++ is a concatenation operator.
cAccording to a study by http://www.w3schools.com/browsers/browsers_display.asp

http://www.w3schools.com/browsers/browsers_display.asp
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1. there is a number of input facts for representing the annotated DOM (see
Table 1), as well as the output of previous components, such as the classifica-
tion facts in Table 1;

2. each program carries a distinguished set of output predicates and only entailed
facts for those predicates are ever returned.

The beryl language also uses a number of syntactic extensions to ease the
development of complex rule programs. The most important ones are names-
paces, parameters, and the explicit distinction of output predicates. All other
intensional predicates are temporary (“helper”) predicates only. For the purpose
of brevity, we omit the precise definitions of these extensions.

Specifically, there are two classes of components and component types, which
are used heavily in beryl language programs: components representing (1) rela-
tions and (2) features. These components operate on the universe U of DOM
nodes and atomic values appearing in the DOM of a page. We typically use
relations to either (a) distinguish sets of nodes, (b) relate sets of nodes to each
other, or (c) attach additional information to nodes.

The Standard Library of the beryl Language. The beryl language also provides
a set of predefined components that a specific block type may import, which are
defined through the input facts from Table 1 and are written in the
namespace. We call these predefined components standard relations. Figure 3
shows some of the standard relations in beryl: these range from structural
relations between nodes (similar to XPath relations) over visual relations (such
as proximity) to information about the rendering context (such as the dimensions
of the first and last screen).

Example 2. Let us reconsider Example 1. The graph representation of the com-
ponent model for this feature is given in Fig. 2. For the purpose of conciseness
in our notation we abbreviate the main component and its constituent sub-
components in the following way: (a) is numeric as C1, (b) is a non-link (or
non-clickable) as C2, (c) visual proximity as C3, (d) left visual neighbour as C4,
(e) direct left visual neighbour as C5, and (f) two nodes with unary relation
properties connected by a binary relation as C6. C1–C2 are unary relation com-
ponents, whilst C3–C6 are binary relation components. We give the rules for
these components in Fig. 4.

C1 and C2 are primitive components with no parameters attached to them
and therefore have trivial empty instantiations and identity-binding expressions:

C1[]; C1

2 C2[]; C2

The rules of C3 and C4 correspond to standard binary relations
and as

defined in Fig. 3. C3 has two parameters dH and dV that represent the pos-
sible positions of the top-left coordinate of CSS boxes corresponding to node
considered to be in the visual proximity of the CSS box of the given node. The
instantiations and composition expressions of these two components are the fol-
lowing:
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Fig. 3. The standard library of the beryl language

C3[dH �→70,dV �→50]; C3

2 C4[]; C3 � C4

We now give the instantiation and the binding expression of binary relation
component C5 that specifies whether one node is a direct left visual neighbour
of another node and has a single unary relation component parameter:

C5[sibling_pred �→ C1]; ((C3 � C4) ‖ C1) � C5

Finally, we give the instantiation and binding expression of binary relation
component C6 according to our example:

C6[binary_pred �→ C5,node_pred �→ C1,sibling_pred �→ C2];
2 ((((C2 ‖ C3) ⊕ C4) ⊕ C5) ‖ C2) � C6

Note that it seems more obvious to define the composition expression for
C5 as ((C1 ‖ C3) � C4) � C5, but in that case we would have to recompute
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Fig. 4. Rules corresponding to components C1–C6

C1 at the time of evaluation of the final component C6, and the composition
expression for C6 would have been ((((C1 ‖ C3) � C4) � C5) ‖ (C1 ‖ C2)) � C6,
as the semantics of the � operator would have restricted visibility of C2 at the
time of the computation of C6, and we would have encountered an additional
computational overhead.

Declarative Approach to Feature Extraction. In beryl, we use a declarative app-
roach to feature extraction wherever possible, in particular through the beryl
language described above, since that (1) allows us to combine it with relations
and global features which provide a succinct representation of the current feature
set. This, in turn, allows us to simplify the definition of new features through
the employment of existing global features or relation instantiations and to learn
new features by automatically finding the right combination of parameters for
relation instantiations. (2) It is also much easier to learn Datalog [1,9] predi-
cates automatically than to learn procedural language programs, which is likely
to come in useful in the large-scale block classification phase of beryl when we
will have to infer new features automatically. In other cases which require the
use of efficient libraries and data structures or intense numerical computation
(e.g. features acquired from image processing), we employ a procedural approach
for feature extraction implemented through Java.

We use Datalog as the declarative language of choice, since it is fast and
widely used [9,13]. Also, with a Datalog-based approach to feature extraction we
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Fig. 5. beryl’s accuracy results on the five classifiers

can easily extend our extraction rules to run on databases, which can come in
useful if we have to process large sets of training or evaluation data.

Web Block Classification. It does not seem feasible to solve the block classifi-
cation problem through a set of logic-based rules, as it is often the case that
there are many potential features which can be used to characterise a specific
block type. However, only a few play a major role in uniquely distinguishing
this block type from all others. Some of these features are continuous (e.g. the
block’s width and height), and it can be difficult for a human to manually specify
accurate threshold boundaries. Hence, for beryl, we decided to use a machine
learning (ML) approach to Web block classification.

Comparative Analysis of Machine Learning Techniques. The current version of
the beryl Web block classification system uses the C4.5 Decision Tree as the
classification model, as it allows us to check how the features are used in rules
that guide the overall classification, which is not the case with other ML clas-
sification models such as SVMs. Also, the rules generated by the C4.5 Decision
Tree can be easily translated into Datalog rules, which can become useful if we
decide to run the ML classification stage of beryl in Datalog, same as the feature
extraction stage.

4 Evaluation

In Fig. 5 we present the evaluation results for five domain-independent block
classifiers (headers, footers, sidebars, navigation menus, and next links) obtained
on 500 randomly-selected pages from four different domains (Real Estate, Used



74 A. Kravchenko

Fig. 6. Precision and recall of the pagination link model

Cars, Online Retail, Blogs and Forums). For each block type and domain, the
pages have been selected randomly from a listings page (such as yell.com) or
from a Google search. The latter favours popular websites, but that should not
affect the results presented here. For all these classifiers we have achieved good
precision, recall, and F1 scores. All the classifiers have precision and recall scores
above 80% apart from the Sidebar classifier, which has a precision score of just
below 80%. This can be explained by the fact that a sidebar usually does not
have obvious clues, such as the annotation for non-numeric next links, and
therefore it is harder to distinguish True Positives from False Positives and False
Negatives. Note that the Next Link and Header classifiers achieve a perfect pre-
cision of 100%. This can be explained by the fact that we use a highly tailored
feature set that includes features specific to the Next Link block, and that head-
ers are very distinct from other blocks, and our fairly simple set of six features
used for the classification of this block is sufficient to achieve a perfect separation
between header and non-header DOM nodes.

Accuracy of Pagination Link Classification. We put a special emphasis on the
Pagination Link classifier, due to its importance to the diadem system, and
hence have performed a more detailed evaluation for this block type than for
the other three. We present detailed evaluation results for the Pagination Link
classifier in Fig. 6, which illustrates that in all four domains our approach achieves
100% precision, and recall is never below 96%. This high accuracy means that
our approach can be used to crawl or otherwise navigate paginated websites
with a very low risk of missing information or retrieving unrelated Web pages.
Numeric pagination links are generally harder to classify than non-numeric ones,
due to their greater variety and the larger set of candidates. Though precision

http://www.yell.com
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Fig. 7. Performance of the pagination link model

is 100% for both cases, recall is on average slightly lower for numeric pagination
links (98% vs. 99%) and in some domains quite notable (e.g. Real Estate with
96% vs. 99%).

Performance Results. The speed of feature extraction is crucial for the scalability
of our approach to allow the crawling of entire websites. As discussed above, the
use of visual features by itself imposes a certain penalty, as a page needs to be
rendered for those features to be computed. We present the performance results
of beryl in Fig. 7, which shows, for the example of the Pagination Link classifier,
that the performance is highly correlated to page size, with most reasonably
sized pages being processed in well below 10 seconds (including page fetch and
rendering). It is interesting to observe that the domains for which we use Google
to generate the corpus, and for which the corpus is thus biased towards popular
websites, seem to require more time than the Real Estate domain, for which the
corpus is randomly picked from yell.com.

Comparison to Other Approaches. We compare the precision, recall, and F1

results achieved by the beryl system with the results of other systems that were
covered in Sect. 2. Some of the papers analysed there do not present the accuracy
results, so we omit them from this comparison, and for others we compare to the
approaches, which cover the block types also covered by the beryl system, and if
there is no overlap between the block types covered, we compare on the average
accuracy results for all classifiers in the system. As a lot of block types covered
by our system are not covered by other approaches, we compare the precision,
recall, and F1 metrics over two block types where there is an overlap (navigation
menus and pagination bars), and the average precision, recall, and F1 metrics for

http://www.yell.com
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entire classification systems. If there is no data for a specific metric or classifier
for the method we are benchmarking against, we indicate this by N/A in the
relevant cell of Table 2. In all cases beryl achieves higher precision and recall
results for individual classifiers, as well as average precision and recall results for
all classifiers. Our intuition is that the better results achieved by our system are
due to the fact that we use distinct feature vectors for each of the block types,
and each of these feature vectors is highly tailored to the block type it is being
extracted on, whilst other approaches attempt to use a single coarse-grained
feature vector for all block types their systems classify.

Table 2. Precision, recall, and F1 of the beryl system compared to other systems
Pagination bars Navigation menus System average
Precision Recall F1 Precision Recall F1 Precision Recall F1

beryl 1.00 1.00 1.00 0.88 1.00 0.94 0.97 1.00 0.98
[15] 0.42 0.96 0.58 0.98 0.37 0.54 0.73 0.65 0.69
[24] N/A N/A N/A N/A N/A 0.88 N/A N/A 0.75
[20] N/A N/A 0.82 N/A N/A 0.82 N/A N/A 0.52
[12] N/A N/A N/A N/A N/A N/A 0.77 0.71 0.74
[17] N/A N/A N/A N/A N/A N/A 0.75 0.66 0.70

5 Conclusion

We propose a Web block classification system, beryl, which utilises global fea-
ture and template repositories for providing substantial improvement in the
manual effort of defining new features and improving the performance of fea-
ture extraction.

We aim to pursue multiple avenues for future research, in particular (1) fur-
ther exploration of how domain knowledge can improve block classification and
the differentiation between domain-independent and domain-dependent classi-
fiers, (2) exploration of holistic approach to Web block classification, which
imposes constraints between different block types, e.g. that a footer cannot be
above a header, (3) exploration of the α-accuracy problem, which allows the sys-
tem to find an optimal balance between the accuracy and performance expecta-
tions set by the user, and (4) automatic learning of features for individual block
classifiers.
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