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Preface

Due to their high stiffness and strength and their good processing properties,
short fibre reinforced thermoplastics are well-established construction materials.

Up to now, simulation of engineering parts consisting of short fibre reinforced
thermoplastics has often been based on macroscopic phenomenological models, but
deformations, damage and failure of composite materials strongly depend on their
microstructure. The typical modes of failure of short fibre thermoplastics enriched
with glass fibres are matrix failure, rupture of fibres and delamination, and pure
macroscopic consideration is not sufficient to predict those effects. The typical
predictive phenomenological models are complex and only available for very
special failures. A quantitative prediction on how failure will change depending on
the content and orientation of the fibres is generally not possible, and the direct
involvement of the above-mentioned effects in a numerical simulation requires
multi-scale modelling. On the one hand, this makes it possible to take into account
the properties of the matrix material and the fibre material, the microstructure of
the composite in terms of fibre content, fibre orientation and shape as well as the
properties of the interface between fibres and matrix. On the other hand, the
multi-scale approach links these local properties to the global behaviour and forms
the basis for the dimensioning and design of engineering components. Furthermore,
multi-scale numerical simulations are required to allow for an efficient solution
of the models when investigating three-dimensional problems of dimensioning
engineering parts.

Bringing together mathematical modelling, materials mechanics, numerical
methods and experimental engineering, this book provides a unique overview of
multi-scale modelling approaches, multi-scale simulations and experimental inves-
tigations of short fibre reinforced thermoplastics. The first chapters focus on two
principal subjects: the mathematical and mechanical models governing composite
properties and damage description. The subsequent chapters present numerical
algorithms based on the Finite Element Method and the Boundary Element Method,
both of which make explicit use of the composites microstructure. Further, the
results of the numerical simulations are shown and compared to experimental results.
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Lastly, the book investigates deformation, fatigue and failure of composite
materials experimentally, explaining the applied methods and presenting the results
for different volume fractions of fibres.

This book is a valuable resource for applied mathematicians, theoretical and
experimental mechanical engineers as well as engineers in industry dealing with
modelling and simulation of short fibre reinforced composites.

This research was supported by the Federal Ministry of Education and Research
(BMBF) of Germany within the BMBF programme “Mathematics for Innovations
in Industry and Services, 2013–2016”.

Saarbrücken, Germany Stefan Diebels
November 2018 Sergej Rjasanow
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Chapter 1
Multi-Scale Methods in Simulation—A
Path to a Better Understanding
of the Behaviour of Structures

Michael Hack

1.1 State of the Art—What We Can Do Today

The success of using simulation methods is highly connected to the efficiency one
can use them. Efficiency depends on many factors like process factors (Fig. 1.1):

• Easiness of setting up the simulation,
• Seamless process integration: applying the correct data at the correct places,
• Effectiveness of interpreting the results of the simulation,
• Integration into optimisation runs.

For these processes and user interaction oriented tasks, the software companies tailor
and provide their software platforms for the needs of their applications and users,
see e.g. [1].

But there are also strong influences of themethodology on accuracy and efficiency
of simulation tools:

• Get the correct material data,
• Adaptive calculation,
• Parallel computing.

To be able to improve the latter, a close collaboration between industry and research is
necessary. For the industry it helps to get access the most efficient methods available,
and for research it ensures that the newest developments find their way into real
applications.

Here applied mathematics plays a crucial role to provide deep insights into the
algorithms and applicability. So it is no surprise that the subsidiary of Siemens
PLM for durability in Kaiserslautern was originally a spin-off of the Mathematics
Department at the TU Kaiserslautern.

M. Hack (B)
Siemens PLM Software, Kaiserslautern, Germany
e-mail: michael.hack@siemens.com

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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Fig. 1.1 In multi-scale approaches the smaller scales provide the information that the next level
needs to run its analysis. Anything not coming from the scale below needs to be achieved by tests
on the upper scale (Figures from [2–6])

Fig. 1.2 Traditional view on the influences on fatigue life

Over the last decades new and highly efficient methodologies could find their
way into software. More than twenty years ago fatigue simulation with realistic
loads and complex structures could take weeks to run—no real time gain against
testing. As usage in the daily design process was not possible, the loads typically
were simplified, and very special load conditions were analysed. Another approach
was to restrict the analysis to user defined points. As these approaches could not esti-
mate the error introduced by the simplifications, the user had still to live with large
safety factors and over-designs. In a joint project new filter tools had been developed
in a Ph.D.-thesis [7] that provided good error estimates and efficient implementa-
tion. Using this approach, real live problems could be solved within hours, see [8]
(Fig. 1.2).
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Fig. 1.3 In reality much more factors especially from the manufacturing process are acting.
Traditionally they are captured by correction factors

1.2 Requirements from the Applications—New Materials
Need New Methodologies

In metals the fatigue problems typically initiate on imperfections in the metal or
on grain boundaries. These micro-structures are influenced by the manufacturing
process but the local distribution is normally unknown. On the other hand, two
centuries of fatigue testing on metal structures have given enough background to
replace a real modelling of the micro-structure by test based material data. This
was, and still is, possible as the material behaviour is quite homogeneous, and local
behaviour can be handled by empirical correction factors, see Fig. 1.3. Once we face
composite structures, we get a much more complex situation. While in metals the
damage mechanism is more or less unique namely the initiation of micro-cracks, in
composites there are multiple mechanisms as multiple materials are involved. Also
in metals the behaviour is typically isotropic and the local anisotropic behaviour
can again be handled by multi-axial criteria [8]. In composite structures the damage
mechanisms are more complex and may influence each other.

So trying to follow the empirical based approach, like for metals to get material
data, would at least lead to a tremendous set of test setups and also need so many
simplifications due to the missing reliability in material data large safety factors
would be needed.
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In the next sub-sections, we depict the challenges for short fibre reinforced plastic
materials analysed in the studies of this book project.

1.2.1 Orientation of Fibres

For composite structures, it is necessary to take the local microscopic structure into
account, as it defines the basic structural behaviour. For injectionmoulded short fibre
reinforced plastics the local distribution of the fibre orientation directly influences the
(anisotropic) local stiffness of the structure and also defines the damage behaviour,
see Fig. 1.1.

In order to study the behaviour of injection moulded short fibre reinforced plastic
components the evaluation of the local mechanical behaviour is necessary. In a first
step the simulation of the manufacturing process itself has to be conducted. An
outcome of such a simulation is the local distribution of the fibres (to be more precise
the probability distribution of the fibre orientations).

Nowadays the usage of injectionmoulding simulation software is a standard in the
development process. Such simulation software provides the local fibre orientation
distribution as an output. The fibre orientation subsequently has to be transferred
from themodel for the injectionmoulding simulation into themodel for the structural
simulation.

1.2.2 One Approach—The Master SN Curve Approach

The local distribution of fibres lead to different fatigue behaviour at each point
of the structure. The behaviour also changes with the direction the load is applied.
Therefore it is necessary that for a given material the fatigue behaviour is known for
any fibre distribution and any direction with respect to applied loads.

One idea to estimate the local material data is to combine test based approaches
with simulation approaches on the micro-scale. In a joint research project, the KU
Leuven and Siemens developed a hybrid master SN-curve approach [6, 9, 10]. The
basic idea is to separate the influences of the orientation from the basic fatigue
behaviour of the material (incl. considering temperature, wetness, etc.).

It was found that taking into account the effect of fibre matrix debonding and fibre
cracking on micro-level enables to split the effect of the fibre orientation from the
effects of the base materials and the environment, see [9, 10].

The basic idea behind the approach is to calculate the damage on microscopic
level. The first cycle of loading is modelled. The onset of debonding, progression of
fibre matrix debonding, and the subsequent loss of stiffness is based on the concept
of equivalent bonded inclusions. A thorough mathematical treatment of this concept
has been presented in [11].

In order to calculate a point on a SN-curve for an arbitrary but given orientation,
one starts from the point of same (macroscopic) damage on a given master SN-curve
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Fig. 1.4 Results of the master SN-curve approach (lower picture) compared to test results (upper
picture): The predicted points lie within the scatter band of the tests [6]

and calculates the progressive damage on the microscopic scale for the orientation of
the SN-curve. In order to get the point on the new SN-curve, the load that is needed
to reach the same microscopic damage for the new orientation is evaluated by an
iterative process. In Fig. 1.4 the results for a 50% Glass fibre reinforced PBT are
shown.
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1.2.3 Local and Global Stiffness Reduction

As opposed to metal structures, in composite structures a change in the local and
global stiffness before failure of the complete structure is observed. It can be seen
in the matrix material as well as in the composite structure. Detailed analysis on
different specimen had shown that this stiffness reduction over the lifetime is (at
least statistically) independent of the local fibre orientation [9].

These local stiffness changes lead to a redistribution of stresses. The influence
of these re-distributions lead to large differences between the component behaviour
and specimen behaviour. The slopes of specimen SN-curves are typically much
smaller than those of the component SN-curves. Without taking stiffness reduction
into account a correct simulation of the component behaviour was not possible, see
[6, 9].

For short fibre reinforced composites an exponential decay down to 90–85%
during the lifetime gives a good estimate, see Fig. 1.5.

To be able to apply a stiffness reduction algorithm with complex load scenarios,
it is necessary to use mathematical modelling to understand the background fatigue
simulation tools for metals and correctly enhance them for the needs of composite
fatigue modelling.

In the case of variable amplitude, traditional fatigue approaches for metallic mate-
rial use SN-curves, linear Miner-Palmgren [12] damage accumulation and cycle
count (rainflow counted cycles [13]) based damage evaluations.

Fig. 1.5 Decay of stiffness for short fibre reinforced specimen under cyclic loading [6]
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In 1945, Miner developed a linear damage accumulation method, based on the
work of Palmgren and added the contribution of various stress amplitude loading
to the damage. However, as for SN-curves, the loading history of the material is
not accounted for. In rainflow counting methods the damage level depend on full
closing hysteresis loop of load cycles. In the case of composite materials, the fatigue
behaviour is changing over time due to changes in the matrix damage state. When
applying variable amplitude loading, the largest load cycles that contribute to the
larger amount of damage commonly take a very long time to complete, due to the
many nested cycles. In this case, the approach to only consider cycles when they are
completed can no longer be justified.

In the 1990 Brokate and Krejci [14] applied the mathematical tools of hystere-
sis operators to fatigue theory [15] analysing the linear damage accumulation and
analogies between damage accumulation and energy dissipation.

Based on this work, it is possible to extend the rainflow based methodology to
non-linear damage accumulation in a both mathematical and methodological sense:
the damage hysteresis operator approach [7, 16].

The idea is based on the hysteresis operators for kinematic hardening (i.e. to
calculate elastic-plastic stress-strain behaviour from pseudo elastic stress histories)
and how dissipated energy is calculated in these models. The new idea is to replace
the constitutive laws of elasto-plastic stress-strain behaviour with constitutive laws
for a stress-damage potential behaviour [14, 15].

The hysteresis operator approach is able to calculate damage at any time increment
instead of closed cycle increment. The extensions explained in [7, 16] allow the
damage status and the damage behaviour to be updated depending on internal (i.e.
pre-damage) and any external factors (i.e. temperature, humidity). Therefore this
approach is also suited to follow the progressive damage curves and also including
the damage history of the material.

Combining these methodology it is possible to simulate the fatigue life for injec-
tion moulded structures with limited effort in testing [6, 17].

1.3 Open Tools—Necessary for Including New
Methodologies

We already learned in the sections before that for efficient and accurate simulation
the methodology and process needs to be adapted to the

• material as is,
• manufacturing processes—i.e. material as manufactured,
• environmental factors and loads,
• pre-damages and actual local damages due to the load,
• and many more.
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Fig. 1.6 Comparison of the allowable stress values (shift in SN-curves): In the left picture individual
allowable stresses including the manufacturing simulation [19], on the right traditional approach
using standards [18]

1.3.1 Manufacturing Influences

In Sect. 1.2 we have seen that classically, fatigue data have been taken frommaterial
tests for the material as available for the testing. In reality, the material as manufac-
tured often has different properties. Indeed in many cases special treatment is added
to manufacturing process to improve the properties of the material in places where
the structure has to endure higher loads. The traditional approach to incorporate this
influences in a fatigue simulation is to apply correction factors to modify the fatigue
data (typically the SN-curve) [18].

From an application point of view this can get to a tedious process, as the influ-
encing factors have to be extracted from the results of special manufacturing simu-
lation tools. From those the correction factors have to be calculated (often done with
spreadsheet calculation software) and applied to the fatigue simulation tools. The
latter often uses different representations (FE-Meshes) of the structure and so even
the simple application of the correction factors at the correct places (nodes/elements)
is an error-prone process.

To establish more applicable processes to include manufacturing processes the
BMBF-funded projectMaBIFF [19] included this task for the manufacturing process
of casting. In this project, first an investigation of the different properties of the
casted material on a micro-scale (22 properties on the distribution, structure, and
size of graphite, perlite, and ferrite) were analysed both from tests (micro-graphs)
and simulation. In a second step, the micro-scale properties were correlated with
fatigue data on the macro-scale.

For a real structure, first a simulation of the micro-scale material data was per-
formed. Amapping used the correlated fatigue data directly in the fatigue solver. The
fatigue solver for this was enhanced (opened) to be able to directly take the fatigue
data directly from the process. The project showed for the analysed component that
at the most loaded areas the manufacturing process lead to much better fatigue prop-
erties than for the rest of the structure and even better compared to standard fatigue
data from literature, see Fig. 1.6.
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Fig. 1.7 Traditional
approaches to incorporate
influences into fatigue
methodology: To be able to
include it the influences
where just added as
correction factors to the
material data, Hence the
solver was a kind of bottle
neck
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1.3.2 New Methodologies

While for metallic structures, the methodology for fatigue is established and also the
influence frommanufacturing haswidely been included in thesemethods by adapting
the parameters, composite materials showmore complex damaging behaviour. Often
different damage mechanisms act at the same time: in material damage (matrix
cracks, fibre cracking) but also interface damage (debonding) and interaction to
other materials or plies (delamination). They may not only occur at the same time
but also interact. The different mechanisms and the importance of them depend on
many factors:

• Selection of combined materials,
• Volume fraction of the different materials,
• Geometry of the materials (Fibre length, aspect ratio, …),
• Topology of the materials,
• External factors like temperatures and humidity.

This means that a lot of different methodologies for different materials but maybe
also for different levels of detail exist (Fig. 1.7).

Instead of implementing loads of different tools for each application and material
the better way is to allow one solver tool to integrate different methodologies into
one solver and only exchange parts of the implementation:

• how to filter the important areas in the structure and the important parts of the
loads for efficiency,

• how to get from local finite element results to local input for damage and fatigue
(forces, energies, stresses, strains),

• how to increase different damage modes,
• what is the influence on local stiffness,
• when local failure occurs (Fig. 1.8).
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Fig. 1.8 In the open solver approach [1] the new influence factors are on the same level as traditional
influence factors. They may also lead to changes in the solver, so we can go for any and the locally
best methodology

This approach has already been successfully implemented for applications like

• Intra-laminar damage in continuous fibre structures, [20–22],
• Short-fibre reinforces plastics [6, 17],
• Adhesives.

1.4 On the Path with MuSiKo

In the project MuSiKo, as presented in this book, many of the efficiency aspects and
the process aspects have been analysed in detail and with mathematical rigorousness
for the application of damage in short fibre reinforced plastics. An important point
in the project was also that it did not just focus on mathematical methods, but also,
on the testing side, on how to get parameters to fill in the methods.

In all this means the study perfectly fits in the projects and developments men-
tioned in the sections above. Whereas in the examples, the influence on micro-scale
is in most parts accounted for by a homogenisation to macro level on a testing based
or at least hybrid approach, here a full scale of methods from empirical to full FE2

is analysed.
Even though the main application case is static damage and not fatigue damage,

results are important for the whole process.
Especially the filter methodology is of interest for many cases of fatigue and

damage analysis, as they are not restricted to the application case of short fibre
reinforced composites.
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Fig. 1.9 In the past the step from marco-level to component level was established by the strain-
life methods and the introduction of FE-methods. For composites we need the same step from
micro-level to macro-level

1.5 Outlook—Virtual Testing and Material Design

We have seen that the applicability of simulation methods depends on the availabil-
ity of the data that are needed to run them. Looking historically, there are several
milestones in the fatigue of metals. Starting in the 19th century with component
tests [23] that allowed to simulate the accumulation, the damage induced by realis-
tic loads for a given structure, typically rail axles. An important step was to get from
the component level to the local analysis. Nominal stress based and local strain-life
approaches were developed. Here, material based fatigue data was needed. With the
material based data and the correction mechanisms, it is possible to analyse arbitrary
structures with these approaches with a limited set of test data. The scale here is what
we call macro-scale today.When we look at the composite structures a similar step is
needed. The material data needed at macro-level can hardly be tested. Again the goal
is to start from basic data, the best that can be determined on the basic constituents
of the material the matrix and the fibres. The goal is to be able to only use data on the
material and the manufacturing process for estimating the behaviour of the material
on macro level (Fig. 1.9).

We have seen there are different approaches to get the needed data. In Sect. 1.2,
we describe a hybrid approach where data on micro level are combined with results
of manufacturing simulation and test data on macro level. In [24], methods had been
developed to bypass the tests on macro level and estimate those from data on the
material level only.

TheMuSiKo project, as described in this book, analyses several mathematical and
numerical building blocks of methods that can be applied on micro-level directly, as
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well as how to derive the needed data from tests. Even though some of the methods
may today still seem hard to use from an point of view of computation time, it is
quite clear that several of the ideas will also progress the multi-scale methodology
for damages in the future.
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Chapter 2
Indicators for the Adaptive Choice
of Multi-Scale Solvers Based
on Configurational Mechanics

Ralf Müller, Charlotte Kuhn, Markus Klassen, Heiko Andrä
and Sarah Staub

2.1 Introduction

Configurational mechanics deals with the treatment of driving forces on different
types of defects and inhomogeneities. Classically defects and inhomogeneities

can be characterised by their dimensionality. In a three dimensional continuum,
point defects, such as interstitial atoms and vacancies, are zero dimensional defects.
Dislocation lines or crack fronts represent one dimensional defects. Two dimensional
defects are interfaces such as phase boundaries. Continuously distributed material
properties in gradient materials can be considered as three dimensional inhomo-
geneities. The theory of configurational forces provides a unified approach to char-
acterise all different types of defects and inhomogeneities. In a general approach,
configurational forces can be seen as driving forces on these different defects and
inhomogeneities. Configurational forces are of energetic character and are work
conjugated to the motion of defects and inhomogeneities. The general theory of con-
figurational forces can be found in the books of [7, 12, 14, 15]. The derivations are
different, but they all agree on the final result.
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In numerical schemes configurational forces also appear if the classical field equa-
tions (equation of motion, kinematics, and constitutive equations) are not satisfied
exactly, but only within the approximation of the numerical scheme, e.g. equilibrium
only in a weak sense in finite element schemes. This allows for the use of configura-
tional forces as a basis to improve the discretisation, for r -adaptive procedures see
e.g. [1, 18, 19, 21, 27–29] or for h-adaptive schemes see [8, 20].

In the context of multi-scale approaches configurational forces were used to trans-
fer information of the defect state on a micro-level to the macro-level. As shown in
[11, 13, 25, 26] the inhomogeneity on the micro-level causes configurational forces
that can be homogenised and influence e.g. the crack propagation on the macro-
level. It must be mentioned that the homogenisation of configurational forces is not
straightforward. The following section will be devoted to the discussion of the details
of homogenisation of configurational forces and the proper associated scale transi-
tions. To make the derivation compact and self contained, we will first briefly recall
the theory of configurational forces in a small strain framework. An extension to
finite strains can be found in [25, 26].

2.2 Basics of Configurational Mechanics

We restrict attention to static problems in the infinitesimal strain setting for an elastic
material, where the field equations are given by:

equilibrium: divσ + f = 0 ,

kinematics: ε = gradsym u = 1

2

(
grad u + (grad u)T

)
,

material law: σ = ∂W

∂ε
. (2.1)

In order to derive the balance law for configurational forces, we follow the approach
by [2] and compute the gradient of the strain energyW . The strain energyW depends
on the strain ε and explicitly on the position x, i.e W = W (ε; x). The computation
of the gradient yields

gradW = ∂W

∂ε
: grad ε + ∂W

∂x

∣∣
∣∣
expl.

= σ : grad grad u + ∂W

∂x

∣∣
∣∣
expl.

, (2.2)

where we have used the elastic material law, the symmetry of the stress σ and the
kinematic equation, i.e. compatibility. The above equation can be written in index
notation using Einstein’s summation convention for repeated indices by

W,k = ∂W

∂εi j
εi j,k + ∂W

∂xk

∣∣∣∣
expl.

= σi j ui,k j + ∂W

∂xk

∣∣∣∣
expl.

. (2.3)
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The first term on the right-hand side can be rewritten by the use of the product rule
and the equilibrium equation

σi j ui,k j = (
σi j ui,k

)
, j − σi j, j︸︷︷︸

− fi

ui,k . (2.4)

Combining (2.3) and (2.4) yields the configurational force balance in symbolic nota-
tion

div
(
W1 − (grad u)Tσ

)

︸ ︷︷ ︸
Σ

−(grad u)T f − ∂W

∂x

∣∣
∣∣
expl.︸ ︷︷ ︸

g

= 0 , (2.5)

where we observe a structure similar to the equilibrium condition. The divergence
of the configurational stress tensor Σ , sometimes also called Eshelby stress due to
seminal works of Eshelby, is balanced by a configurational volume force g. From
(2.5) it is obvious that the Eshelby stress Σ is a conserved quantity, i.e. divergence
free, if the physical volume forces vanish ( f = 0) and if thematerial is homogeneous
and defect free

(
∂W
∂x

∣∣
expl.

= 0
)
.

As discussed in [1, 19, 21, 27, 28] discrete solutions by standard displacement
finite elements are continuous in the displacement u across element edges. Gradients,
such as the strain, and thus the stresses are in general not continuous across element
edges. In the sense of configurational mechanics the elements can be considered
as small inhomogeneities, resulting in so-called ‘spurious’ or ‘numerically’ caused
configurational forces. For details on the use of these spurious configurational forces
in r - and h-adaptive schemes the reader is referred to [1, 18–21, 27–29] and the
literature cited in there. These spurious configurational forces appear in regions with
high strain gradients, see [20], and are therefore also an indicator for a necessary
model refinement on the micro-level in multi-level methods. The next section is
devoted to the basic concepts of a two-scale approach for the physical and configu-
rational quantities.

2.3 Realisation of Micro–Macro Transition

In order to compute a residual on the macro-level in the Finite Element Method, the
stress σ needs to be computed in every macroscopic (Gauß) integration point x. On
the micro-level different solution strategies can be applied, ranging from analytical
homogenisation methods to numerical methods based on Boundary Element, Finite
Element or Fast FourierMethods. In general, we assume that a scale separation holds,
i.e. the micro-level can be described by a representative volume element (RVE). The
characteristic length of the RVE l must be small compared to the characteristic size of
themacroscopic problem L (l � L).On the other hand theRVEmust be large enough
to cover the inhomogeneity on the micro-level. Following Hill’s principle [9], the
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connection between the micro- and macro-level is given by averaging procedures,
see also other textbooks on homogenisation and multi-scale approaches. Without
claiming completeness we refer to [4, 22–24]. Thus, the macroscopic strain ε∗ is
given by

ε∗ = 〈ε〉 = 1

|VRVE|
∫

VRVE

ε dV = 1

2|VRVE|
∫

∂VRVE

(u ⊗ n + n ⊗ u) dA , (2.6)

where we have assumed that no displacement jumps occur on the micro-level, i.e.
there are no cracks on the micro-level. In a similar way the macroscopic stress σ ∗ is
defined by the volume average of the microscopic stress via

σ ∗ = 〈σ 〉 = 1

|VRVE|
∫

VRVE

σ dV = 1

|VRVE|
∫

∂VRVE

t ⊗ x dA . (2.7)

In the above identity between the last two expressions, we have assumed that the
volume forces f vanish on the micro-level. Using Hill’s condition [9]

〈σ : ε〉 = 〈σ 〉 : 〈ε〉 = σ ∗ : ε∗ (2.8)

allows for the formulation of boundary conditions on the RVE. In order to do so, the
microscopic displacement field is decomposed as

u(x) = u∗ + grad u∗x + w(x) , (2.9)

where u∗ and grad u∗ are the displacement and the displacement gradient at the
macroscopic point x∗ to which the RVE is attached. The fluctuations on the micro-
scopic level are expressed by w. Equation (2.6) implies that

∫

∂VRVE

gradsym w dV = 1

2

∫

∂VRVE

(w ⊗ n + n ⊗ w) dA = 0 . (2.10)

The above relation is satisfied for prescribed linear displacements, i.e. w = 0 on
∂VRVE or periodic boundary conditions, where

w+ = w− . (2.11)

For a better understanding the two kinds of boundary conditions are sketched for a 2D
situation in Fig. 2.1. By (2.11), a non-zero fluctuation at a corner of the RVE results in
an identical fluctuation at all RVE corners. This induces a rigid body translation of the
entire RVEwhich does not influence the strains and stresses inside the RVE.Without
loss of generality, we can therefore assume vanishing fluctuations at the corners of
the RVE. Using (2.9) one can decompose the gradient grad u∗ into a symmetric part
related to the strain and skew symmetric part R∗ related to the macroscopic rotation,
such that
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u2

x1

u3
RVE boundary part ∂V +

RVE

RVE boundary part ∂V −
RVE

w+

w−
x3x4

u4

u1

undeformed RVE boundary

deformed RVE boundary

deformed RVE boundary
with w+ = w−

with w+ = w− = 0

x2

Fig. 2.1 Boundary conditions on the RVE: Linear displacements w = 0, and periodic boundary
conditions: w+ = w−

u(x) = (
u∗ + R∗x

) + (
ε∗x + w

)
, (2.12)

where the first contribution is a rigid body motion (translation and rotation) of the
RVE. Because of

ε = gradsym u = 1

2

(
R∗ + R∗T) + 1

2

(
ε∗ + ε∗T) + gradsym w = ε∗ + gradsym w

(2.13)
the macroscopic rigid body motion does not contribute to the microscopic strain and
thus, the microscopic stress. This is the reason, why in classical two scale homogeni-
sation schemes for infinitesimal strains the rigid body rotation R∗ is not transferred
between the scales. In the following we will neglect the macroscopic translation u∗,
but pay special attention to the macroscopic rotation R∗. As an illustrative example,
we consider the displacements of the corner points xK of the RVE for two different
scenarios. If the full displacement gradient is used, we get

uK | grad u = grad u∗xK , (2.14)

while if the symmetric gradient, i.e. strain, is used, we obtain

uK |ε = ε∗xK . (2.15)

The prescribed corner displacements differ by the macroscopic rigid body rotation,
as

uK | grad u − uK |ε = (
grad u∗ − ε∗) xK = R∗xK . (2.16)

If we suppose that
ugrad u = grad u∗x + w (2.17)
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is a solution to the boundary value problem in the RVEwith the corner displacements
given by (2.14) and a periodic fluctuation w, then

uε = ε∗x + w = ugrad u − R∗x (2.18)

is a solution to the boundary value problem that satisfies (2.15). However, both types
of boundary conditions render identical strains, as

εgrad u = ε∗ + gradsym w = εε . (2.19)

Thus, the two types of boundary conditions render the same macroscopic stresses
via (2.7).

In the followingwewill pay attention to the Eshelby stressΣ . In a straightforward
way, one defines the macroscopic Eshelby stress by the same averaging procedure
as for the physical stress, resulting in

Σ∗ = 〈Σ〉 = 1

|VRVE|
∫

VRVE

Σ dV = 1

|VRVE|
∫

VRVE

(
W1 − (grad u)Tσ

)
dV . (2.20)

It is also possible to define an Eshelby stress tensor based on homogenised macro-
scopic quantities. However, an Eshelby stress tensor computed in this manner is not
consistent with the Hill condition. A detailed discussion of different possible defi-
nitions of the macroscopic Eshelby stresses is omitted here. The interested reader is
referred to [11, 25, 26]. Using definition (2.20) one has to be careful regarding the
macroscopic rotation R∗. While the strain ε and the stress σ and consequently the
strain energy W are not affected by the two different boundary conditions for the
RVE, the displacement gradients grad ugrad u and grad uε differ by the macroscopic
rotation R∗, as can be seen from

grad ugrad u − grad uε = (
grad u∗ + gradw

) − (
ε∗ − gradw

) = R∗ . (2.21)

Thus, the Eshelby stresses Σgrad u and Σε differ in the RVE resulting in differ-
ent homogenised macroscopic Eshelby stresses. On the micro-level both Eshelby
stresses can be used to evaluate for example defects on the micro-level. But in the
homogenisation procedure only

Σ∗
grad u = 〈Σgrad u〉

is physically meaningful. This suggests that in the configurational context the use of
the displacement gradient boundary conditions according to grad u∗ is to be preferred.
If strain boundary conditions according toε∗ are used the direct homogenisation leads
to unphysical results, but the homogenised Eshelby stress can be corrected:
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Fig. 2.2 Multi-scale
approach for configurational
forces based on gradient
approach

macro

〈σ〉, 〈C〉, 〈Σ〉

ε, ∇u

micro

Fig. 2.3 Crack specimen
with homogeneous and
inhomogeneous RVE. Data
used: a = 10 cm,
u0 = 1mm, E0 = 70GPa,
ν0 = 0.3, E1 = 10GPa,
ν1 = 0.3, E2 = 300GPa,
ν2 = 0.3

a

a

0.
04

a

u0

u0

x

y

0

2 1

0.35a

Σ∗
grad u = 〈Σgrad u〉 = 1

|VRVE|
∫

VRVE

(
W1 − (grad ugrad u)

Tσ
)
dV

= 1

|VRVE|
[∫

VRVE

(
W1 − (grad uε)

Tσ
)
dV

]
− 1

|VRVE|
∫

RVE
R∗Tσ dV (2.22)

= 〈Σε〉 − R∗T〈σ 〉 = Σ∗
ε − R∗Tσ ∗ .

The correction term R∗Tσ ∗ allows the use of strain boundary conditions on the
RVE if these are preferred due to existing numerical two scale schemes.

The entire multi-scale approach in conjunction with the gradient based approach
for the configurational forces is summarised in Fig. 2.2.

To illustrate the effects of the use of different RVE boundary conditions, Fig. 2.3
shows a two-scale setup, where macroscopically a situation with a crack under a
mode I load is chosen. The configurational forces that result from a homogeneous
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∗-boundary conditions gradu∗-boundary conditions

Fig. 2.4 Homogeneous RVE: nodal configurational forces in the vicinity of the crack tip computed
with Σε (left) and Σgrad u (right). Deformation enlarged by a factor of 10

RVE, top right sketch in Fig. 2.3, are shown in Fig. 2.4. It is expected that only
at the crack tip a significant configurational force appears. This is the case if the
Eshelby stress based on the displacement gradient boundary condition Σgrad u is
used. For Σε unphysical configurational forces in the close vicinity of the crack tip
appear. In contrast to spurious configurational forces that appear due to the numerical
approximation scheme, these configurational forces do not vanish for refinedmeshes.
This is due to the missing rotational part in the computation ofΣε. Having identified
this issue, we will only use Σgrad u or Σε in combination with the correction (2.23)
in the following.

In order to study the influence of inhomogeneous microstructures on the macro-
scopic configurational forces, the second RVE in Fig. 2.3 is considered. Here an
anisotropic elastic behaviour is induced by the RVE composed of two materials
and a slanted interface. The anisotropy results in a non-symmetric deformation, as
can be seen from Fig. 2.5. It can be seen that the vertical mode I type load results
in significant tilt in the horizontal direction due to the anisotropy induced by the
RVE. In addition the configurational force deviates from the horizontal direction
indicating a kinked crack propagation. It should be noted, that due to their definition,
configurational forces point in the direction of an energy increase. Thus, if one

Fig. 2.5 Inhomogeneous RVE: deformation and configurational force at the crack tip. Deformation
enlarged by a factor of 10
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assumes crack propagation in the direction of an energy release, a crack will propa-
gate in the negative direction of a configurational force. For a discussion on the issue
of crack propagation by con-figu-rational forces the reader is referred to [5, 6, 16,
17, 19] and the literature cited in there.

2.4 Numerical Evaluation of Developed Indicators

In this section the application of configurational forces as an indicator for a refined
two scale homogenisation is demonstrated. As an introductory remark Fig. 2.6 indi-
cates different sources of configurational forces. Figure 2.6a, b shows configurational
forces originating from inhomogeneities, namely a crack in the case of (a), and an
interface in (b). The last example in Fig. 2.6c is defect-free. By theoretical consid-
erations no configurational forces are expected in the interior. Due to the rather coarse
numerical discretisation and the non-continuous stress and strain interpolation across
the element interfaces, configurational forces appear. They become larger in regions
with higher stress and strain gradients. In h-adaptive schemes, such as reported in
[20], the mesh is refined in such regions. However, in a multi-scale approach areas
with higher stress and strain gradients also require a more refined micromechanical
modelling. Thus, in the following examples a strategy is presented, that allows for
marking areas that require a highly resolvedmicro-scalemodel based onmacroscopic
configurational forces.

For an isotropic setup only the absolute value of a discrete configurational force G
at node x I in the discretised domain �h is considered, i.e.

‖ G(x I ) ‖=
√
G2

1 + G2
2 + G2

3 for x I ∈ �h . (2.23)

The two step scheme works as follows:
(1) A filtering step eliminates large configurational forces that are physically

relevant and appear for example at crack tips, interfaces or boundaries. A factor f is
introduced. The set of filtered nodes x f is given by

Fig. 2.6 Sources of configurational forces: a crack tip, b interfaces, c numerical discretisation
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1

15

1
4

10

3 2

V3 = 1V2 = 2 N2 = 1.5V1 = 1
f = 0.6

N3 = 2N1 = 3

option ’sort’

N2 = 1.5 N3 = 2 N2 = 1.5 N3 = 2N1 = 3N1 = 3 s= 0.33

N2 = 1.5 N2 = 1.5s= 0.7

option ’thre’

N1 = 3 N3 = 2 N1 = 3 N3 = 2

Fig. 2.7 Marking strategy based on filtered configurational forces: comparison of sorting (sort)
and threshold (thre) procedure

x f = {x I ∈ �h | ‖ G(x I ) ‖< f ‖ G ‖max} , (2.24)

with the maximal absolute value

‖ G ‖max= max
x I∈�h

‖ G(x I ) ‖ . (2.25)

(2) In a second step, based on an element indicator, defined by

Ne = 1

‖ x f ‖ Ve

∑
‖ G(x f ) ‖ for x f ∈ �e , (2.26)

in which ‖ x f ‖ is the number of filtered nodes on the element, elements are marked
for a refined micromechanical modelling. The marking is performed either based
on a percentage of elements from a sorted list of element indicators, or based on
a fixed threshold value. The main idea of the marking strategy is sketched by an
artificial problem in Fig. 2.7. In the sorting procedure (sort), only the lower third
of all elements are selected as elements with a reduced configurational force (blue)
while the remaining elements (red) need aRVE refinement. In the threshold procedure
(thre) the threshold is set at 0.7 · 3. This means that all elements with an indicator
lower than 2.1 do not need a refinement.

The strategy is applied to a macroscopic situation with realistic application back-
ground. Therefore a compact tension of a plate is considered. To mimic the mould
casting production process of a short fibre reinforced composite, a three layer setup
is studied, see Fig. 2.8.
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Fig. 2.8 Three layer setup of
a short fibre reinforced plate
in compact tension loading

a

u

u

t

a

0.
04

a

0.35a

Fig. 2.9 Configurational
forces: a in the centre, b in
the interface

The different layers are made up of composite materials with different fibre struc-
tures. The elastic responses of the different fibre orientations of the three layers were
computed using the micromechanical software GeoDict [3], which was also used
to generate two different RVEs that are used in the micromechanical computations.
The effective elasticity tensors and the RVEs are assigned to the two external layers
and the internal layer, respectively. The resulting configurational forces are depicted
in Fig. 2.9.

Subplot Fig. 2.9a shows the configurational forces in the central layer of elements.
As expected large configurational forces appear at the crack tip. These configurational
forces are of physical origin and, as discussed above, can be regarded as a crack
driving force. In addition, configurational forces appear at the boundary. They can be
regarded as reaction forces, that appear as reaction to fixing the geometry. In Fig. 2.9b
physically motivated configurational forces appear in the interface. The interface
between the layers with different elastic properties represents an inhomogeneity or
a defect, thus configurational forces appear.

In the first example (Figs. 2.10 and 2.11), the filter parameter is set to f = 1. This
leads to an unfiltered indicator in which physical as well as numerical configurational
forces are taken into account. In Fig. 2.10 the sorting option is then used to identify
regions of refined RVE modelling, which are represented as transparent elements
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s= 0 s= 0.2 s= 0.4

Fig. 2.10 Elements identified for refined modelling: sorting option with s = 0 (non marked),
s = 0.2, and s = 0.4; filter value f = 1

Fig. 2.11 Elements
identified for refined
modelling: sorting option
with s = 0.2 and s = 0.4;
filter value f = 1

s= 0.2 s= 0.4

(high indicator value) while the blue regions do not need a refined treatment (low
indicator value). Because the 3D view is not very easy to comprehend, 2D views are
provided in Fig. 2.11.

As can be seen from Figs. 2.10 and 2.11 the sortingmethod is capable of capturing
the vicinity of the crack tip in all three layers as well as the regions of the material
interface as relevant region for a refined modelling. Since the filtering is omitted in
this case, physical and numerical configurational forces determine the refinement
regions of the mesh.

The marking strategy based on a threshold value is reported in Fig. 2.12. It is
observed, that for the chosen threshold values, a very small region is detected for
refinement. In Fig. 2.13 a larger region for refinement is reported. This is achieved
by the same threshold values of s = 0.2, s = 0.4, and s = 0.6, but the filtering step
is modified by changing the value of f from 10−4 in Fig. 2.12 to 10−5 in Fig. 2.13.
By this means, only the smallest configurational forces, which generally have a
numerical character, are considered for the indicator. It should also be noted that in
this example the unfiltered option seems to be stronger influenced by the presence of
the interfaces between the layers, while the filtering method is more homogeneous
throughout the thickness of the specimen.
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s= 0.2 s= 0.4 s= 0.6

Fig. 2.12 Elements identified for refined modelling: threshold option with s = 0.2, s = 0.4, and
s = 0.6; filter value f = 10−4

s= 0.2 s= 0.4 s= 0.6

Fig. 2.13 Elements identified for refined modelling: threshold option with s = 0.2, s = 0.4, and
s = 0.6; filter value f = 10−5

2.5 Scalability

As the multi-scale computations are extremely time consuming, due to the fact that
each macroscopic finite element integration point requires the solution of a com-
plete boundary value problem, parallel computations are of importance. In order to
achieve scalability onmulti-processor machines the finite element programme FEAP
(Finite Element Analysis Program) from UC Berkeley is used. It has a build in (FE)2

implementationwith parallel execution of the RVEs. However, to enable the coupling
to other solvers on the micro-level of the RVE, a PYTHON interface is used. This
allows for the coupling of Fast Fourier Transform based solvers such as FeelMath,
boundary integral based solvers, and advanced analytical homogenisation techniques
in a very flexible way. The implementation of the coupling strategy described above
is depicted in Fig. 2.14, where FEAP itself is used as the solver on the micro-level.
It is emphasised here again that the PYTHON script “microproblem.py” can incor-
porate any other micromechanical solver. As a benchmark to check the scalability a
macroscopic tension specimen is simulated. Details on the geometry, discretisation,
RVE, and material data are given in Fig. 2.15. The scalability with an increasing
number of processors to calculate the RVEs is presented in Table 2.1. It is obvious
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Fig. 2.14 Parallel
implementation in FEAP
using a PYTHON based
coupling interface

Fig. 2.15 Parallel (FE)2

computation using FEAP:
specimen length
l = 115mm, displacement
load u = 1mm, macro-level:
80 elements, 640 Gauß
points, micro-level: 216
elements, Young’s moduli
E1 = 10GPa (blue),
E2 = 70GPa (red),
Poisson’s ratios:
|ν1 = ν2 = 0.3

)tuclartnec(EVRyrtemoegorcam

Table 2.1 Scalability of
benchmark problem,
computation time in seconds:
Comparison of PYTHON
interface with FEAP internal
(FE)2 implementation

CPUs PYTHON FEAP (FE)2

2 254.98 30.60

4 132.10 18.73

8 67.43 12.46

16 37.18 5.81

32 22.04 3.75

64 18.09 2.47

from Table 2.1 that both implementations, the PYTHON based interface and the
FEAP internal (FE)2, scale with the number of CPUs. The PYTHON based interface
relies on the execution of a PYTHON script started from within the running FEAP
program and all the communication is done via files. Thus, its performance is slower
than the direct use of the MPI communication environment running in the compiled
FEAP internal (FE)2 approach. But, as discussed above, the PYTHON interface can
readily be used to couple other existing micro-solvers without the need to couple
source codes by the MPI broadcast environment, which can be very cumbersome.
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Chapter 3
Modelling of Geometrical
Microstructures and Mechanical
Behaviour of Constituents

Heiko Andrä, Dascha Dobrovolskij, Katja Schladitz, Sarah Staub
and Ralf Müller

3.1 Analysis of Fibre Orientation for Glass Fibre
Reinforced Polymers Based on µCT Scans

3.1.1 Sample Preparation and Analysis of Fibre Direction

Throughout this chapter, a 2 mm thick polybutylene terephthalate (PBT) plate rein-
forcedwith 20weight percent glass fibres is considered. First, thematerial is spatially
imaged by micro-computed X-ray tomography (µCT), in order to determine analyti-
cally essential micro-structure features. Measuring the fibre orientation requires µCT
with nominal resolutions in the range well below 10 µm. To achieve this with a stan-
dard laboratory CT setup, samples of a few millimetre diameter have to be extracted
from the plate. These samples are extracted from the plate according to the scheme
shown in Fig. 3.1. To choose five samples is a compromise between the effort for
imaging and analysing on the one hand and capturing the systematic microstructural
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Fig. 3.1 Moulded glass fibre
reinforced PBT plate with
marked specimen positions
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differences expected at different positions w.r.t. the inlet or the flow front, respec-
tively. The positions are thus chosen according to the expected behaviour of the
latter. The five taken cuboidal samples of base edge length 2 mm are imaged using
ITWM’s CT device at a tube voltage of 160 kV and using a flat bed PerkinElmer and
a Thales detector, respectively. A voxel edge length of 1.2–1.3 µm is chosen, such
that the fibre diameter is resolved by approximately ten voxels. The resulting 2D
projection images are reconstructed using weighted filtered back projection, and the
microstructures are analysed based on the obtained three dimensional image data.

The analysis focuses on the fibre orientation, in particular in order to determine
the thickness of the different layers, which are typical for injection moulded GFRP
plates, and the main fibre orientation in each layer. In the following, the theoretical
background of the applied fibre orientation analysis method is summarised. Subse-
quently, the pre- and post-processing is described. The analysis results for the five
samples are finally presented in Sect. 3.1.2.

The fibre directions in the µCT images are analysed by means of the “SubField-
FiberDirection” function of ITWM’s software tool MAVI [4]. This function com-
putes, based on the local grey values, for each voxel the local fibre orientation. From
these local orientations, restricted to the fibre component, local orientation tensors
are derived. The following two paragraphs summarise very shortly the mathemati-
cal basis of the local orientation measurement. The fibre component is interpreted
mathematically as a random closed set Φ in the three-dimensional Euclidean space,
see e.g. [15, 18, 20]. The fibre direction distribution in a typical point of this set
corresponds to a measure in the space of non-oriented directions
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R(A) = 1

2πV (W )
E

∫

W∩Φ

IA (ν (x)) dx, (3.1)

where A ⊆ S2+ denotes a measurable set of non-oriented directions, ν(x) the direc-
tion of the fibre system at location x ∈ W , and W ⊆ R3 the considered region. The
expectation E is computed with respect to the distribution law of the random set Φ.
The function IA is an indicator for the set A, i.e. IA(ν) = 1 if ν ∈ A and otherwise
0.

The local fibre direction in each voxel is derived from the Hessian matrix—the
matrix of second order grey value partial derivatives. In order to compute it, the
original image f : W ∩ L �→ {0, . . . , 255} is first smoothed by a Gaussian filter gσ

of size σ . Here L = sZ3, s ∈ R denotes a 3D orthogonal isotropic lattice. Then the
Hessian matrix H(x) is approximated by finite difference quotients:

Hi j (x) =
(

∂2

∂xi∂x j

)
( f ∗ gσ ) (x), i, j = 1, 2, 3, x ∈ L. (3.2)

Let |λ1| ≤ |λ2| ≤ |λ3| be the eigenvalues of the Hessian H , ordered with respect to
magnitude. Then the local direction of the fibre systemΦ in x is given as the direction
corresponding to the smallest (in magnitude) eigenvalue |λ1| as glass fibres appear
bright compared to the polymer matrix surrounding them, see [3, 22]. Roughly,
the idea behind this approach is a local approximation of the fibre by a cylinder
of thickness 2σ in each voxel. The local fibre direction is then associated with the
minimal curvature of the grey value formation, the spatial direction in which the least
change is observed.

Initially, the method yields a local orientation in each voxel. In a second step, the
result is masked with a segmentation of the fibre system. Note that this means just,
that the fibre system has to be separated from the polymer matrix. The segmentation
of individual fibres in the 3D image is however not needed.

Given the distribution R of the fibre orientation in the typical point of the fibre
system, the second order orientation tensor a is derived as the outer product of the
components ν1, ν2, ν3 of the orientation vector averaged with respect to R

ai j =
∫

νiν j R(dν), i, j = 1, 2, 3. (3.3)

Thus, based on the image data, the orientation tensor is computed by averaging the
voxel-wise product over defined sub-volumes W0 ⊆ W

âi j =
∑

x∈W0∩L∩Φ

νi (x)ν j (x), (3.4)

see [21]. The main fibre direction ν̄ in sub-volume W is obtained as the eigenvector
associated to the largest eigenvalue of the tensor a. Of course, thismain fibre direction
is meaningful only if the distribution R has a cluster-like shape [2].
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Usually, the fibre system is segmented from the 3D image by a simple global
thresholding. This requires to remove global grey value fluctuations within the
image—a task easily achieved by so-called shading correction: The image is
smoothed extensively and subsequently subtracted from the original. Afterwards,
a global grey value threshold suffices to separate the bright fibres from the dark
matrix. MAVI’s “SubFieldFiberDirection” suggests to apply the threshold according
to Otsu [17] multiplied by 1.25 to avoid erroneous orientation information at the
fibre edges.

In this study, this usual procedure turned out to distort the strongly anisotropic fibre
orientation distributions within the layers towards isotropy. Therefore, to ensure that
exclusively voxels from thefibre cores contribute, the fibre system is segmented based
on Frangi’s vesselness index [3]. Again, the eigenvalues of the Hessian matrix are
exploited, this time to gain local structure shape information. The structure is locally
fibrous if and only if there are one small and two large eigenvalues (in magnitude).
Frangi’s index is designed for detecting bright fibres on dark background. Thus it is
non-zero only if λ2, λ3 < 0. In this case it is computed as

(
1 − exp

( − 2λ2
2/λ

2
3

))
exp

( − 2λ2
1/|λ2λ3|

)(
1 − exp

( − 2(λ2
1 + λ2

2 + λ2
3)/c

2
))

with c2 = (maxx∈W∩L ||H(x)||F )2 = maxx∈W∩L(λ1(x)2 + λ2(x)2 + λ3(x)2). This
index is now computed and used to derive a more precise segmentation of the fibre
system. That is, the global grey value threshold is applied on the image holding in
each voxel the local Frangi’s index.

3.1.2 Results

As a preliminary step, the three-dimensional images are rotated such that the imaged
cuboidal sample is oriented parallel to the coordinate axes. More precisely, the x-
direction corresponds to the injection direction, y to the cross-flow direction and z
to the direction in thickness of the plate.

Second, the layers are approximated. To this end, the images are first denoised
by a 5 × 5 × 5 pixel median filter. Then, the grey values are averaged along rays in
y-direction. This results in distinct bright spots the x–z-plane in the central region,
where high grey values are summed along fibres, see Fig. 3.2, right. The layers are
finally deduced from the curves of the row-wise grey value maxima: The global
maximum of the B-spline smoothed graph indicates the centre. The lower and the
upper bounds are derived from the two local minima closest to the global maximum.
More precisely, we chose the argument of the higher of these two minima to define
the half-width of the symmetric interval, see Fig. 3.2, left.

This yields the thickness values as reported in Table 3.1. The orientation tensor
for each layer is derived by averaging over the complete layer. A volume rendering of
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Fig. 3.2 Grey value means for determining the misoriented central layer, illustrated for sample 5.
Left: row-wisemaxima of averaged grey values. Right: grey valuemeans along stripes in y-direction

the fibre system contributing to the orientation results is shown in Fig. 3.3 illustrating
the orientation tensor results for the total thickness of the plate.

Subsequently, the local fibre orientation is analysed as described in Sect. 3.1.1
above. This yields the second order orientation tensors in the three layers, see
Table 3.1.As expected, the fibres aremainly oriented along the x-axis (flowdirection)
in the outer layers, whereas the fibres are oriented orthogonal to the flow direction
in the central layer.

The fibre orientation in themisoriented layers differswith respect to proportions of
fibres oriented in x- and y-directions (see Table 3.1 columns axx and ayy). Figures 3.4
and 3.5 contain slices through the upper and the misoriented central layers of all five
samples. Both these views as well as the quantitative results from Table 3.1 confirm
the expected curved flow front [14]. The main fibre orientation in the central layers
in the outer plate regions are tilted towards the plate edges in x-direction. This
observation is in perfect accordance with the expected faster fibre transport at the
outer regions compared to the inner plate part.

To summarise, in all three layers the fibres are almost oriented in-plane, i.e. the
thickness component z of the orientation tensor is small compared to the entries in x-
and y-direction. For all samples the flow direction is the governing direction in the
outer layers and thefibres are re-oriented in the central layer. Thus, virtually generated
volume elements should take into account the observed multi-layer composition in
order to represent the microstructure appropriately.
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(a) Fibre system (b) Orientation tensor component ayy

Fig. 3.3 Volume renderings of sample 5. Visualised are approximately 1.2mm × 0.9mm ×
2.0mm out of the totally analysed approximately 1.8mm × 1.1mm × 2.0mm. Fibre system as
obtained by thresholding the image holding the local Frangi’s index as voxel grey value. The local
fibre orientation analysis results are represented by the 2nd order orientation tensor component ayy .
That is, in plane, orthogonal to the injection direction x . The tensor component is colour coded using
a blue-to-red colour table with blue indicating values close to 0 and red close to 1. The misoriented
central layer is clearly visible due to the high (red) values for ayy there

3.2 Microstructure Generation

In the following the generation of virtual microstructures which have the same prop-
erties as the structures considered in Sect. 3.1.2 is described.

Stochastic volume elements with a fibre content of 20% are considered. The
morphology of the glass fibres is described by the fibre length of 250 µm and the
fibre diameter of 10 µm. The complete thickness of the 2 mm thick plate is resolved
in order to capture the layered structure of the moulded specimens. The samples are
described by 1024 voxels in each direction, i.e. the size of a voxel in each direction
is obtained as 1.9313 µm. Thus each single fibre is resolved by five voxels over
the thickness. The fibre orientation in each layer as well as the thickness of the
misoriented layer are prescribed according to Table 3.1.

The realisation of sample 1 is depicted in Fig. 3.6. The size of the sample is 2 mm
(1024 voxels) in each direction. Fibres belonging to the misoriented middle layer are
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Table 3.1 Analysis results for the 3D images of samples 1–5, extracted at the positions shown
in Fig. 3.1. The thickness of the central layers varies not only due to the varying strength of the
misorientation but also due to the misoriented layers not being oriented perfectly parallel to the
plate. Note that values of 1.00 or 0.00 for orientation vector components are due to rounding
Sample-
layer

Volume
(mm3)

Voxel size
(µm)

# voxels Orientation tensor diagonal elements Main fibre orientation

axx ayy azz ν̄x ν̄y ν̄z

1-1 1.82 ×
2.21 × 0.99

1.3 1 400 ×
1 700 × 760

0.68 0.27 0.04 −0.99 0.07 −0.00

1-2 1.88 ×
2.47 × 0.09

1.3 1 450 ×
1 900× 67

0.22 0.73 0.06 0.17 −0.99 −0.01

1-3 1.82 ×
2.34 × 0.84

1.3 1 400 ×
1 800 × 650

0.66 0.28 0.06 1.00 −0.08 −0.01

2-1 1.56 ×
0.86 × 0.90

1.2 1 300× 720 ×
750

0.69 0.26 0.05 1.00 0.10 −0.00

2-2 1.68 ×
1.92 × 0.08

1.2 1 400 ×
1 600× 65

0.35 0.60 0.05 −0.47 0.88 −0.01

2-3 1.68 ×
1.65 × 0.87

1.2 1 400 ×
1 375 × 725

0.69 0.26 0.05 1.00 0.05 −0.00

3-1 2.47 ×
2.08 × 0.78

1.3 1 900 ×
1 600 × 600

0.60 0.35 0.04 −0.91 −0.41 −0.05

3-2 2.60 ×
2.47 × 0.07

1.3 2 000 ×
1 900× 55

0.16 0.81 0.03 0.16 −0.99 −0.00

3-3 2.47 ×
2.21 × 0.78

1.3 1 900 ×
1 700 × 600

0.65 0.25 0.10 −0.99 −0.14 −0.03

4-1 1.56 ×
1.62 × 0.90

1.2 1 300 ×
1 350 × 750

0.66 0.28 0.05 −0.99 0.16 −0.00

4-2 1.56 ×
1.62 × 0.06

1.2 1 300 ×
1 350× 51

0.40 0.58 0.02 −0.60 −0.81 −0.02

4-3 1.56 ×
0.99 × 0.90

1.2 1 300× 825 ×
750

0.67 0.27 0.06 −0.98 0.18 0.00

5-1 1.80 ×
1.46 × 0.90

1.2 1 500 ×
1 215 × 750

0.68 0.26 0.06 −1.00 −0.02 0.00

5-2 1.80 ×
1.98 × 0.11

1.2 1 500 ×
1 650× 93

0.20 0.77 0.03 0.16 −0.99 −0.00

5-3 1.77 ×
1.14 × 0.90

1.2 1 475× 950 ×
750

0.69 0.24 0.06 1.00 −0.02 −0.01

highlighted in green. The fibres are distributed in such a way that the oriented and
the misoriented layer are not separated in a strict manner. Fibres may overlap into
the neighbouring layer.

In a next step the generated structures are compared to the corresponding samples
of the µCT images from Sect. 3.1.1. Figures 3.7 and 3.8 display 2D slices for each
sample from the upper and the middle layer. A comparison to the corresponding
CT slices shows good agreement between the structures. It is noted that the virtual
structures display a larger part of the microstructure (2 mm vs. 1.2 mm edge length)
and therefore the fibres appear smaller than in the CT images.
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(a) coordinate system (b) 5-3

(c) 4-3 (d) 1-3 (e) 2-3

(f) 3-3

Fig. 3.4 1 000 × 1 000 pixel slices from the upper layers of samples 1–3 and 800 × 1 000 pixel
slices from the upper layers of samples 4 and 5. Images are arranged as the sample extraction
positions shown in Fig. 3.1

3.3 Identification of Material Parameters for the Matrix
Material

Many methods for the characterisation of fibre reinforced composites are based on
measurements of composite specimens, which have certain special fibre orientations,
e.g. highly oriented or parallel fibres. In contrast, only measurements of the pure
constituents are necessary in the presented method. This is an advantage especially
in the case, if the constituents are isotropic or transversely anisotropic instead of fully
anisotropic. In this section the method for the determination of material parameters
and functions is described which are necessary to describe the rate-independent
nonlinear material behaviour of the polymer matrix.

Polybutylene terephthalate (PBT), which is considered as matrix material in this
book, is a thermoplastic semi-crystalline polymer and a type of polyester [1]. This
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(a) coordinate system (b) 5-2

(c) 4-2 (d) 1-2 (e) 2-2

(f) 3-2

Fig. 3.5 1 000 × 1 000 pixel slices from the misoriented central layers in samples 1–5. Images are
arranged as the sample extraction positions shown in Fig. 3.1

polymer material shows a complex temperature-dependent viscoplastic behaviour
with damage. However, this complex behaviour can be simplified to a time- and
temperature-independent model for many applications. For the sake of simplicity, a
standard time-independent elastoplasticity model with isotropic hardening and with
a single additional internal variable

d = Ad

A0
∈ [0, 1]

for isotropic damage is considered during the further procedure [6, 16, 19]. The
damage variable d is defined as the share of the damaged surface area Ad on the total
representative cross-section A0. The damage variable d can be measured by several
methods. The simplest method is to measure the degradation of the elastic modulus
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Fig. 3.6 Visualisation with GeoDict [5] of sample 1, size of realisation 2 mm in each direction

d = 1 − Ed

Ee
.

The degraded modulus can be determined in the unloading regime of cyclic tests (see
Fig. 3.10).

The corresponding rate-independent material law with memory is introduced in
Chap. 4

Remark 3.1 The viscoelastic damping, which is related to the area of the hysteresis
loops is not taken into account and the different material parameters are determined
for each testing speed. However, the model can be extended to capture viscoelastic
or viscoplastic effects.

Now the elastoplastic material model with damage from Chap. 4 is repeated
shortly. The free energy is decomposed into an elastic part (1 − d)Welastic, a plastic
part (1 − d)Wplastic, and a regularisation part Wdamage resulting in

W (ε, d, εp, r) = (1 − d)(Welastic(ε − εp) + Wplastic(εp, r)) + Wdamage(d)

http://dx.doi.org/10.1007/978-3-662-57957-2_4
http://dx.doi.org/10.1007/978-3-662-57957-2_4
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(a) coordinate system (b) sample 5

(c) sample 4 (d) sample 1 (e) sample 2

(f) sample3

Fig. 3.7 1 024 × 1 024 pixel (2 mm × 2 mm) slices from the upper layers of virtual realisations of
samples 1–5. Images are arranged as the sample extraction positions shown in Fig. 3.1

Both the elastic and plastic part are multiplied by the factor (1 − d) for including
the damage [6, 16]. The additional term Wdamage guarantees d < 1. In the case of
isotropic hardening the plastic part is written as a sum of both the linear hardening
term and the Voce hardening term

Wplastic(εp, r) = Wiso(r) = 1

2
H0r

2 + (K∞ − K0)

(
r + e−δr

δ

)
.

The plastic part Wiso depends on three positive material parameters

H0 ≥ 0, a1 := K∞ − K0 ≥ 0, δ ≥ 0 (3.5)

which have to be fitted for the plastic behaviour. The expansion of the yield surface
is then obtained as
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(a) coordinate system (b) sample 5

(c) sample 4 (d) sample 1 (e) sample 2

(f) sample 3

Fig. 3.8 1 024 × 1 024 pixel (2 mm × 2 mm) slices from the misoriented central layers of virtual
realisations of samples 1–5. Images are arranged as the sample extraction positions shown in Fig. 3.1

Fig. 3.9 Measured
stress-strain curves for PBT
at testing speeds of 0.1, 1.0
and 10.0 mm/s
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Fig. 3.10 Schematic
stress-strain diagram of the
first load cycle

ψ(r) = ψ̃(r; σy, H0, a1, δ) = σy + ∂Wiso

∂r
= σy + H0r + a1

(
1 − e−δr

)
,

where σy denotes the initial yield stress. The damage conjugated force is defined by

Y = −∂W

∂d
= Welastic + Wiso(r) + ∂Wdamage

∂d

= 1

2
εe : C : εe + Wiso(r) + ∂Wdamage

∂d
.

The last term can be neglected for small values of the damage variable d. Then the
conjugated force Y is equal to the strain energy of the undamaged material. The
damage accumulation is formulated as an explicit function

d = d̃(Y ; Y0, b1, b2) = Y − Y0
Y

+ b1

(
Y0
Y

− e−b2(Y−Y0)

)
(3.6)

of the damage conjugated force Y which contains three non-negative material
parameters

Y0 ≥ 0, b1 > 0, b2 ≥ 0. (3.7)

The basis for the identification of the PBT material parameters are cyclic loading
tests on pure PBT specimens which are explained in Chap. 6, see Fig. 3.9. Solely
uniaxial tensile tests are considered in this section. Therefore, the isotropic hard-
ening parameter r is identical with measured plastic strain εp, and the von Mises
equivalent stress is given by σ eq ≡ σ in the spatial one-dimensional case, i.e. for the
uniaxial tensile test. Each tensile test consists of several power-controlled loading-
unloading cycles with increasing amplitudes. For cycle k ∈ {1, 2, . . . , K }, the stress
σ k = σ k(t), t ∈ (T k−1, T k] is prescribed and εk = εk(t), t ∈ (T k−1, T k] is mea-
sured (where T 0 = 0). Then (i) the maximum measured stress, (ii) the maximum
measured total strain, (iii) the plastic strain, and (iv) the damage variable (see Fig.
3.10) are computed for each cycle k ∈ {1, 2, . . . , K }:

http://dx.doi.org/10.1007/978-3-662-57957-2_6
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σ k
max = max

t∈(T k−1,T K ]
σ k(t), εkmax = max

t∈(T k−1,T K ]
εk(t),

εkp = εk(t = T k), dk = 1 − Ek
d

Ee
.

The maximum elastic strain is taken as εke := εkmax − εkp. The corresponding data
(σ k

max, ε
k
e , ε

k
p, d

k) are listed in Table 3.2 for three testing speeds. The six unknown
material parameters from (3.5), (3.7) and the unknown yield stress σy are computed
by using the following fitting algorithm.

Algorithm 1: Parameter identification algorithm
Input : Young’s modulus Ee, initial plastic strain ε0p
for k ← 1 to K do

Compute effective stress σ̄ k = σ k

1−dk

end
NLLS: fitting σ̄ = ψ(r) = ψ̃(εp; σy, H0, a1, δ) using data points (εkp, σ̄

k)

Result: Plastic material parameter σy , H0, a1, δ
for k ← 1 to K do

Compute the damage conjugated force Y k = Welastic(ε
k
e ) + Wiso(ε

k
p) =

1
2 Ee(ε

k
e )

2 + W̃iso(ε
k
p; σy, H0, a1, δ)

end
NLLS: fitting d = d̃(Y ; Y0, b1, b2) using data points (Y k , dk)

Result: Damage material parameters Y0, b1, b2

Table 3.2 Measured material parameters
Testing speed
v/(mm/s)

Young’s modulus
E /MPa

Cycle
number k

Maximum stress
σmax/MPa

Elastic strain
εe/%

Plastic
strain εp/%

Damage
d ∈ [0.1]

0.1 2336 1 11.7 0.51 0.01 0.0

2 22.4 1.02 0.03 0.03

3 32.2 1.54 0.06 0.07

4 40.7 2.05 0.09 0.11

5 47.3 2.56 0.15 0.16

6 50.7 3.07 0.28 0.22

7 51.1 3.55 0.53 0.28

1.0 2385 1 11.2 0.49 0.02 0.0

2 21.6 0.98 0.04 0.03

3 31.4 1.48 0.05 0.08

4 40.4 1.98 0.07 0.11

5 47.8 2.48 0.11 0.16

6 53.0 2.98 0.18 0.21

7 54.5 3.38 0.34 0.25

10.0 2343 1 11.1 0.49 0.01 0.0

2 21.7 0.99 0.05 0.01

3 55.9 3.38 0.27 0.23

4 56.2 3.74 0.46 0.27
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3.3.1 Results

The determination of the Young’s modulus and the Poisson’s ratio for describing the
the isotropic linear elastic behaviour of PBT is described in Chap. 6. The unknown
parameters of the plastic yield ψ = ψ̃(r; σy, H0, a1, δ) function and the damage
function d = d̃(Y ; Y0, b1, b2) are fitted by using a nonlinear least-squares (NLLS)
Levenberg-Marquardt algorithm, see Algorithm 1. The initial plastic strain is zero at
the testing speeds of 0.1 and 10.0 mm/s, whereas an initial plastic strain of 0.016%
is estimated from the measurements at the testing speed of 1.0 mm/s. Furthermore,
the parameter H0 is set to zero for all testing speeds, because this parameter could
not improve the fit of the hardening curve. The results of the parameter identification
for three testing speeds are presented in Table 3.3. The good quality of the fits can be
seen on Figs. 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16. The Voce hardening parameter a1

Table 3.3 Material parameter for the pure PBT polymer

Testing speed v/(mm/s) 0.1 1.0 10.0

Elastic behaviour

Young’s modulus E /MPa 2336 2385 2343

Poisson’s ratio ν 0.4 0.4 0.4

von Mises J2-plasticity with isotropic hardening

Initial yield stress σY /MPa 3.32 3.24 1.00

Linear hardening H0/MPa 0.0 0.0 0.0

Voce hardening a1/MPa 66.31 69.34 79.34

δ 1123.6 1592.4 785.7

Isotropic damage

Threshold Y0/MPa 0.063 0.072 0.038

Parameter 1 b1 1.007 0.965 1.010

Parameter 2 b2/MPa−1 0.295 0.225 0.255

Fig. 3.11 Stress and
effective stress as function of
the plastic strain at a testing
speed of 0.1 mm/s (first fit)
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Fig. 3.12 Stress and
effective stress as function of
the plastic strain at a testing
speed of 1.0 mm/s (first fit)
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Fig. 3.13 Stress and
effective stress as function of
the plastic strain at a testing
speed of 10.0 mm/s (first fit)
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Fig. 3.14 Damage d as
function of the energy
release rate Y at a testing
speed of 0.1 mm/s (first fit)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2

D
am

ag
e
d

Energy release rate Y /MPa

Measured damage d
Fit of damage d = d(Y )



3 Modelling of Geometrical Microstructures and Mechanical … 47

Fig. 3.15 Damage d as
function of the energy
release rate Y at a testing
speed of 1.0 mm/s (first fit)
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Fig. 3.16 Damage d as
function of the energy
release rate Y at a testing
speed of 10.0 mm/s (first fit)
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is increasing with the testing speed. The damage parameters are almost identical. The
hardening curves are fitted very well also for very small plastic strains. However,
the computed yield stress σy is also very small. Therefore, in the second fitting
the initial yield stress σy is increased to 32.0 MPa, where the value is related to
a plastic strain of about 0.05%, and only the remaining material parameters are
fitted. At σ = 32.0 MPa the plastic strain is still below the value Rp02, which is
usually used as initial yield stress for metallic materials. The initial plastic strain
is set to zero for all testing speeds. The resulting elastoplastic material parameters
of the second fit are presented in Table 3.4 and in Fig. 3.17. The Voce hardening
parameter a1 is increasing with the testing speed as in the first fit. The second fit
of the plastic parameters can be used if small plastic strains are not of interest,
see Fig. 3.17. Finally, the cyclic tensile tests are simulated by taking the identified
material parameters from Table 3.3 (first fit) and Table 3.4 (second fit). The results
of the first and second fit are visualised in Figs. 3.18 and 3.19 for the testing speed of
0.1mm/s as well as in Figs. 3.20 and 3.21 for the testing speed of 10.0mm/s. For both
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Table 3.4 Material parameter for the pure PBT polymer

Testing speed v/(mm/s) 0.1 1.0 10.0

von Mises J2-plasticity with isotropic hardening

Initial yield stress σY /MPa 32.0 32.0 32.0

Linear Hardening H0/MPa 0.0 0.0 0.0

Voce hardening a1/MPa 39.96 43.56 45.45

δ 642.6 819.0 876.12

Fig. 3.17 Stress and
effective stress as function of
the plastic strain at a testing
speed of 0.1 mm/s (second
fit)
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Fig. 3.18 Simulation and
measurements of cyclic
tensile tests, testing speed
0.1 mm/s (first fit)
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testing speeds, there is no essential difference between the simulation results using
the plastic material parameters obtained from the first fit or second fit, respectively.
A detailed sensitivity analysis for every material parameter is outside the scope of
this section. The hysteresis loops (see Figs. 3.18, 3.19, 3.20 and 3.21) due to the
viscoelastic behaviour of the PBT polymer are not captured by the time-independent
elastoplastic material model with damage which is considered in this section.
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Fig. 3.19 Simulation and
measurements of cyclic
tensile tests, testing speed
0.1 mm/s (second fit)
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Fig. 3.20 Simulation and
measurements of cyclic
tensile tests, testing speed
10.0 mm/s (first fit)
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Fig. 3.21 Simulation and
measurements of cyclic
tensile tests, testing speed
10.0 mm/s (second fit)
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3.4 Numerical Solution of Periodic Boundary Problems
for Damage Coupled to Elastoplasticity

In the following the governing equations of a periodic boundary value problem and
their reformulation in terms of the Lippmann-Schwinger (LS) integral equations
are briefly reviewed. Subsequently, the numerical solution of the periodic boundary
value problem by application of fast Fourier transforms is outlined.

3.4.1 Formulation of the Periodic Boundary Value Problem

For the computation of the microscopic deformation a periodic boundary value
problem (BVP) on a representative volume element (RVE) ω is considered. At the
boundary ∂ω of the RVE an effective strain εM is applied. The kinematics for the
unknown strains depending on the displacements u and the fluctuations u∗ are given
as

ε(u)(x) = εM + ε(u∗) (x)

ε(u∗) (x) = 1
2

(
grad u∗(x) + gradT u∗(x)

)
}

x ∈ ω. (3.8)

At the boundary of the domain the following (anti-)periodic boundary conditions are
prescribed in terms of the Cauchy stress σ as

u∗(x) #
σ(x) · n −#

}
x ∈ ∂ω. (3.9)

Therein, # and −# denote periodicity or anti-periodicity, respectively. Therefore, the
fluctuations at opposite faces of the RVE are equal, whereas the tractions have the
same magnitude but point into opposite directions.

The equilibrium condition for the stresses read

div σ(x) = 0, x ∈ ω. (3.10)

The formulation of the BVP is completed by the constitutive functional F , which
connects the stresses to the strains and the history of the material via

σ(x) = F
[
ε(x), εp(x), r(x), d(x)

]
. (3.11)

According to Sect. 3.3, εp denotes the plastic strains and d the damage variable.
In a next step, the differential equation (3.10) for the stress equilibrium is reformu-

lated into the so-called Lippmann-Schwinger integral equation, see [10], according
to [23]. To this end the polarisation tensor τ is defined as
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τ(x) = σ(x) − C0 : ε(x), (3.12)

by introduction of a constant homogeneous reference stiffness tensorC0. The solution
of the local equilibrium equation (3.10) can then be obtained by application the non-
local Green’s operator Γ 0 applied to the stress polarisation

ε(x) = εM − (
Γ 0 ∗ τ

)
(x) . (3.13)

The Green’s operator depends only on the homogeneous reference stiffness and the
applied boundary conditions, and thus is independent of the strain fluctuations, see
[9]. The convolution operator ∗ in equation (3.13) is defined as

(
Γ 0 ∗ τ

)
(x) =

∫

ω

Γ 0 (x − y) : τ (y) dy. (3.14)

Finally, the nonlinear Lippmann-Schwinger integral equation is obtained as

εM = ε(x) + Γ 0 ∗ (
F

[
ε, εp, d

] − C0 : ε
)
(x). (3.15)

Please note, that the Green’s operator Γ 0 is independent of the fluctuations and
therefore only depends on the linear elastic reference stiffness as well as on the
boundary conditions, see [9]. In order to further simplify the notation in the following
the LS equation is rewritten by application of the operator Bε as

εM = (
(I + Bε) ε

)
(x). (3.16)

Therein I denotes the identity operator δi j , where δi j = 1 if i = j and δi j = 0
otherwise. The numerical solution of equation (3.16) is outlined in the following.

3.4.2 Numerical Solution of Lippmann-Schwinger Equation
via Fast Fourier Transforms

The numerical solution of the LS integral equation as given in (3.16) can be
obtained iteratively by using the Neumann series expansion for inverting the operator
I + Bε(x). Thus, the iterates of the local strains are obtained as

ε0(x) = εM (3.17)

εk+1(x) = −Bε(x)εk(x) + εM , k = 0, 1, 2, .... (3.18)

These iterates can be computed efficiently by the so-called basis scheme as pro-
posedbyMoulinec andSuquet [11] for linear elasticmaterial behaviour.An extension
towards the account of nonlinearmaterial behaviour is given byMoulinec and Suquet
in [12].
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The basis scheme consists of the following steps, which are repeated until con-
vergence is reached:

1. Solve the constitutive equation in the real space and compute the stress polarisa-
tion

τ k = σ − C0 : ε.

2. Transformation of the stress polarisation into the Fourier space

τ̂ k = FFT (τ ) .

3. Update the strain field in the Fourier space by application of the Green’s operator

ˆεk+1 = −Γ̂ 0 : τ̂ k .

4. Inverse Fourier transformation of the updated strain field

εk+1 = FFT−1
( ˆεk+1

)
.

Explicit expressions for the Green’s operator can be found e.g. in Mura [13].
Alternative solution schemes to the basis scheme which are also applicable to large
deformations are summarised in Kabel et al. [7].

3.5 Computational Homogenisation

In the following the computational homogenisation scheme connecting the micro-
scopic and the macroscopic scale is outlined. Here, focus is put onto classical first
order homogenisation schemes, see e.g. [8] for details. Basically, the computational
homogenisation scheme consists of the following four steps:

1. Generation of a representative volume element (RVE), see Sect. 3.2, and deter-
mination of the constitutive behaviour and material parameters of all phases.

2. Selection of admissible microscopic boundary conditions based on macroscopic
input quantities.

3. Solution of microscopic boundary value problem (according to Sect. 3.4).
4. Determination of macroscopic output variables in terms of averaged microscopic

quantities.

Here, the macroscopic variables are denoted by the indexM . The effective macro-
scopic quantities, stresses or strains respectively, are obtained by averaging the cor-
responding microscopic solution fields over the volume ‖ω‖ of the RVE ω
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σ M = 1

|ω|
∫

ω

σdv (3.19)

εM = 1

|ω|
∫

ω

εdv. (3.20)

In the numerical examples given in the next section, so called mixed boundary
conditions are prescribed to the RVE in order to reconstruct the performed exper-
iments. In case of these boundary conditions macroscopic periodic strains εM are
prescribed in loading direction (here 0◦ or 90◦ ) and the other boundaries are stress-
free. The effective stiffness in loading direction is then computed as the ratio of the
macroscopic strain and stress in the corresponding loading direction.

3.6 Numerical Examples

In the following the results for the purely elastic and the elasto-plastic simulations
are given and compared to the experimental data from Chap. 6.

In a first step the elastic behaviour is addressed. Therefore, the PBT matrix is
modelled as an isotropic linear elastic material (E = 2470 MPa, ν = 0.4). The PBT
matrix is reinforced by 20% (weight) linear elastic glass fibres with a Young’s mod-
ulus of 73,400 MPa and a Poisson’s ratio 0.22. The simulations are carried out on
the highly resolved (10243 voxels) virtual samples from Sect. 3.2. Mixed boundary
conditions as described in Sect. 3.5 are applied.

In Fig. 3.22 the simulations and the experimental data are compared for the
slowest measured loading. For the simulation of the 90◦ direction the simulation
reflects the measurements well for all 5 regarded samples. In 0◦ direction the simula-
tion underestimates the stiffness of the composite lightly for all regarded specimens.

Fig. 3.22 Comparison of
simulation and measurement
for elastic composite
behaviour, Samples 1–5
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Fig. 3.23 RVE for
elasto-plastic simulation,
size 512 × 512 × 256 voxel

Nevertheless, from Fig. 3.22 it is concluded that the simulations are in good coin-
cidence with the experimental data. For all realisations similar results are obtained
which is connected to the representativeness of the regarded volume elements.

A big advantage of the applied micromechanical approach is that not only the
effective quantities like stresses σ M and strains εM are available, but also the local
fields in the RVE. In a next step the simulation of the elasto-plastic PBT model
including damage is addressed. For this non-linear material behaviour a much higher
resolution of the fibres is required. Therefore, only the upper layer of the multi-
layered microstructure is considered, see Fig. 3.23. Herein, the fibres are resolved
by 16 voxels over their thickness, i.e. the voxel size is chosen as 0.625 µm.

The effective elastic stiffnesses of this one-layeredRVE result in EM
0 = 5301MPa

for the 0◦ direction and EM
90 = 3920 MPa for the 90◦ direction. Compared to the

average stiffness of the layered RVE (Ē M
0 = 5412 MPa and Ē M

90 = 3907 MPa) and
the experimental values (E0 = 6050 MPa and E90 = 3840 MPa) very good results are
obtained with the considered one-layered RVE.

For the elasto-plastic simulation the material parameters of the PBT matrix are
chosen according to Table 3.4 for the plastic contribution and Table 3.3 for the
damage. The simulation results for a loading and unloading scenario are depicted
in Fig. 3.24. For the 90◦ direction very good coincidence of the simulation and the
measurement are archived. For the 0◦ direction the simulation underestimates the
stresses, which follows from the fact that for the considered RVEs also the elastic
response yields lower stresses than the experiments.
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Fig. 3.24 Comparison of
simulation and experiment
for elasto-plastic model
including damage
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3.7 Conclusion

In summary, this section explains how the nonlinear behavior of the composite can
be simulated in an RVE using only the material characterization of the pure polymer
and the morphology of the microstructure.

Mechanical tests on the composite are not required.
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Chapter 4
Parallel Inelastic Heterogeneous
Multi-Scale Simulations

Ramin Shirazi Nejad and Christian Wieners

4.1 Introduction

Materials with micro-structures can be described effectively by homogenisation.
Formally, the effective description can be obtained by a two-scale limit, where in
every material point a periodic representative volume element (RVE) describing
the material on the micro-scale is appended. Classical homogenisation computes an
effective material response in one RVE and inserts the result into the macroscopic
problem. This procedure is analytically well investigated, see, e.g., [2, 18, 22] for
homogenisation and [1] for the two-scale limit. This is extended to heterogeneous
materials, and for a corresponding numerical method the finite element convergence
can be estimated with separate terms for the modelling and the approximation error
on micro- and macro-scale [30].

For inelastic materials the heterogeneous multi-scale method introduced in [5, 13,
14, 26] is called the FE2 method, see [23] for an overview. It is now well established
for two-scale models in plasticity, damage and fracture. In case of rate-independent
energetic material models [16] a full two-scale analysis for generalised standard
materials with periodic coefficients is established in [17].

Here we apply this method to a short fibre reinforced material with a polymer
matrix and glass fibre inclusions. Experimentally this material is investigated in
[21], and appropriate models combining damage and plasticity effects are derived in
[27, 28]. Here, the micro-structure requires a very fine resolution, so that for a full
3D simulation, e.g., cyclic loading in a tensile test, massive parallel computing is
required.

Our contribution is the formulation of these models as rate-independent energetic
material systems and the development of a fully scalable parallel algorithm for the
incremental problem. This is realised in the parallel finite element software M++
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[31] using multigrid methods for the solution of the linearisations on both scales.
It includes a highly scalable periodic parallel direct coarse grid solver [12] for the
linear system on the coarse level.

This work is organised as follows. We start in Sect. 4.2 with the heterogeneous
two-scale finite element method for linear elasticity by defining the correspond-
ing two-scale energy minimisation for the displacements on the macro-level and
the micro-fluctuations in all RVEs. It is shown that this is equivalent to the classical
homogenisation procedure where the macro-solution can be computed in two stages.
In the first step, in the RVEs a basis of periodic micro-fluctuations corresponding
to the symmetric tensor basis is computed, which then defines the homogenised
Hookian tensor describing the effective material behaviour. This is inserted into the
macro-problem which directly determines the homogenisation limit by the solution
of the coarse mesh problem. For this standard procedure we propose an efficient
parallel scheme, which is then evaluated numerically in Sect. 4.3 for a tensile test
with different micro-structures. For the extension to inelastic models we introduce
in Sect. 4.4 the analytic framework for rate-independent systems based on an energy
functional depending on displacement and internal memory variables, and on a dis-
sipation functional depending on the rate of the internal variables. Energy and dis-
sipation are defined for small strain damage and plasticity models, the incremental
stress response for these models are defined and the consistent tangent operator is
derived explicitly. This is extended to nonlinear two-scale algorithms in Sect. 4.5,
and finally in Sect. 4.6 the nonlinear numerical methods are evaluated by various test
scenarios.

All results in this chapter are part of the PhD thesis of the first author [24], where
the numerical realisation and the parallelisation strategy is explained in detail.

4.2 Parallel Heterogeneous Two-Scale FEM for Linear
Elasticity

We introduce the two-scale method for elastic solids in Ω ⊂ RD in the case of small
deformations. The method aims to approximate the deformation with a coarse mesh
size H in a heterogeneous medium with much smaller characteristic length scale δ.

Small strain elasticity In the continuous problem the displacement vector u is char-
acterised by minimising the total energy

E (u) =
∫

Ω

W
(
x, ε(u)

)
dx − 〈�,u〉

subject to boundary conditions u = uD on ΓD ⊂ ∂Ω . Here, a load functional

〈�, v〉 =
∫

Ω

b(x) · v(x) dx +
∫

ΓN

tN(x) · v(x) da
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with body forces b and surface tractions tN is applied, and the small strain isotropic
elastic energy is of the form

W (x, ε) = 1

2
C(x)[ε(x)] : ε(x) (4.1)

only depending on the linearised strain ε = ε(u) with ε(u) = sym Du.
We consider the case that C(·) is strongly inhomogeneous and cannot be resolved

on coarse meshes of mesh size H , i.e., we consider the case that C(·) can be resolved
only on a mesh size h < δ with δ � H , so that it is not feasible to compute the full
fine mesh solution in Ω .

Themulti-scale ideaAmulti-scale method aims to approximate the exact solution u
on the coarse level in a finite element space with mesh size parameter H > 0, where
the coarse approximation uH (referred as macro-solution) is obtained by solving a
suitable averaged problem. Therefore, we define a suitable averaged energy EH (·)
so that the coarse approximation can be determined as minimiser of this energy.

The construction of the averaged energy relies on the solution of local problems
in representative volume elements (RVE)

Yξ = ξ + δ(−0.5, 0.5)D ⊂ Ω

at sample points ξ ∈ ΞH ⊂ Ω . On the RVEs we define locally micro-solutions

uξ,h = uξ,H + vξ,h ,

where uξ,H is the linearisation of the macro-solution and vξ,h is the so-called micro-
fluctuation. This is approximated in a finite element space with mesh size parameter
h > 0. The two-scale setting is illustrated in Fig. 4.1.

The heterogeneous multi-scale method extends the two-scale homogenisation of
periodic micro-structures to applications, where the micro-structure in every RVE is
representative at least for a small neighbourhood extending the RVE. It is amodelling
assumption that a periodic continuation of themicro-fluctuation is appropriate. These
assumptions are quite restrictive but they allow for a full mathematical analysis
of the homogenisation error which is enhanced by the modelling error due to the
approximation of the heterogeneous micro-structure [30].

The discrete multi-scale setting Let Ω ⊂ RD be a Lipschitz domain, and define
the space V = H1(Ω;RD). For given Dirichlet data uD, we define the affine space
V (uD) = {

v ∈ V : v = uD on ΓD ⊂ ∂Ω
}
. The macro-solution is approximated in a

finite element space VH ⊂ V , and we set

VH (uD) = {vH ∈ VH : vH (x) = uD(x) for all nodal points x ∈ ΓD
}
.

On themesh corresponding to VH we select quadrature pointsΞH ⊂ Ω with weights
ωξ for ξ ∈ ΞH , and we introduce the notation
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Fig. 4.1 Illustrations of the two-scale model with isotropic and unidirectional fibre directions: In
the domain Ω , the macroscopic solution uH is approximated on a coarse scale with mesh size H .
The micro-structure of size δ � H is approximated at sample points ξ . The micro-fluctuation vξ,h
and the effective material response is computed in the representative volume element Yξ = ξ +
δ(−0.5, 0.5)D ⊂ Ω . The symmetries of the tensile test can be exploited to reduce the computational
domain for the approximation of the macro-solution

∫
ΞH

f (ξ) =
∑
ξ∈ΞH

ωξ f (ξ) ≈
∫

Ω

f (x) dx .

We assume that the quadrature is exact for ε(uH ).
Locally in every RVE, the micro-fluctuation is approximated in a finite element

space Vξ,h ⊂ Vξ with

Vξ = {
vξ ∈ H1

per(Yξ ,R
D) :

∫
Y ξ

vξ dx = 0
}
,

where H1
per(Yξ ,RD) denotes the restriction of Yξ -periodic H1

loc(R
D,RD) functions

toYξ . On the micro-scale we set the global finite element approximation space as the
product space Vh = ∏

ξ∈ΞH
Vξ,h . Furthermore, we assume that the elasticity tensor

C(x) for x ∈ Yξ is representative for the material properties in a neighbourhood of
any sample point ξ ∈ ΞH .

The multi-scale problem The multi-scale approximation represented by the macro-
solution and the micro-fluctuations in every RVE is defined as the minimiser
(uH , vh) ∈ VH (uD) × Vh of the two-scale energy

EH (uH , vh) =
∫

ΞH

Wξ (ε(uH ), vξ,h) − 〈�,uH 〉 ,

where the micro-energy is evaluated on the RVEs by

Wξ (εH , vξ,h) = 1

|Yξ |
∫
Y ξ

W
(
x, εH (ξ) + ε(vξ,h)

)
dx
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depending on the strain εH = ε(uH ) of the macro-solution and micro-fluctuations
vξ,h . In the RVE we define the linear approximation of the macro-solution by
uξ,H (x) = uH (ξ) + DuH (ξ)(x − ξ). This defines, together with the micro-
fluctuation, the micro-solution uξ,h = uξ,H + vξ,h , so that by construction uξ,h −
uξ,H is periodic, and the strain of the macro-solution εξ,H = ε(uξ,H ) ≡ ε(uH )(ξ) is
constant in the RVE Yξ .

The two-scale problem and the multi-scale tensor The minimiser of the two-scale
energy is characterised as the critical point of the two-scale energy: find (uH , vh) ∈
VH (uD) × Vh satisfying

Macro-Equilibrium 0 = ∂uEH
(
uH , vh

)
, (4.2a)

Micro-Equilibrium 0 = ∂vEH
(
uH , vh

)
, (4.2b)

i.e., solving the coupled linear problems

∑
ξ

ωξ

|Yξ |
∫
Y ξ

C(x)[ε(uH )(ξ) + ε(vξ,h)(x)] : ε(δuH )(ξ) dx = 〈�, δuH 〉 , (4.3a)

1

|Yξ |
∫
Y ξ

C(x)[ε(uH )(ξ) + ε(vξ,h)(x)] : ε(δvξ,h) dx = 0 (4.3b)

for test functions (δuH , δvξ,h) ∈ VH (0) × Vξ,h .
Now we reduce this system to an averaged macro-problem. Therefore, we intro-

duce an orthonormal basis η1, . . . η6 of Sym(3) = R3×3
sym . Corresponding to this basis

we compute micro-fluctuations wξ,h,1, . . . ,wξ,h,6 ∈ Vξ,h solving

1

|Yξ |
∫
Y ξ

C(x)[η j + ε(wξ,h, j )(x)] : ε(δvξ,h)(x) dx = 0 , δvξ,h ∈ Vξ,h . (4.4)

Inserting the representation of the macro-strain εξ,H = ε(uH )(ξ)with respect to this
basis

εξ,H =
6∑
j=1

(
εξ,H : η j

)
η j ,

we obtain for the micro-fluctuation solving (4.3b)

vξ,h =
6∑
j=1

(
εξ,H : η j

)
wξ,h, j .

This is now inserted into the macro-equation (4.3a), which yields
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∫
ΞH

Cξ,H [ε(uH )] : ε(δuH ) = 〈�, δuH 〉 , δuH ∈ VH (0)

with the two-scale elasticity tensor

Cξ,H =
6∑

j,k=1

(
1

|Yξ |
∫
Y ξ

C(x)[η j + ε(wξ,h, j )(x)] : ηk dx

)
η j ⊗ ηk . (4.5)

Together, we obtain the following result.

Lemma 4.1 The macro-solution uH ∈ VH (uD) of the heterogeneous multi-scale
method minimises the averaged energy

E avg
H (uH ) = 1

2

∫
ΞH

Cξ,H [ε(uH )] : ε(uH ) − 〈�,uH 〉 . (4.6)

The definition of the micro-fluctuations wξ,h,1, . . .wξ,h,6 by Eq. (4.4) ensures
that the two-scale elasticity tensor Cξ,H is symmetric. Due to Korn’s inequality the
averaged energy is uniformly convex, which assures the existence and uniqueness of
the minimiser in (4.6).

The parallel two-scale model In our parallel model we assume that the meshes to
resolve the geometry in the RVEs are so large that they can be distributed to all
processes. On the other hand, we do expect that we do not need to compute a micro-
fluctuation in all RVEsYξ , e.g., if the micro-structure is identical. In the most simple
case of two-scale homogenisation, we compute the micro-problem only once, as it is
now described for our first parallel two-scale FEM of the heterogeneous small strain
elasticity problem.

For the implementation, the RVEs Yξ = ξ + δ(−0.5, 0.5)D ⊂ Ω are mapped to
the unit cube Y = (0, 1)3. In this simple case the micro-structure described by the
elasticity tensor C is mapped to the same tensor for all ξ ∈ ΞH . Nevertheless, since
this cannot be expected for general applications, we describe the parallel algorithm
in a more general case which allows for different micro-structures and which also is
flexible for cases where only some of the RVE computations are required.

Here we consider the case, that the approximation of the micro-structure requires
a very fine mesh size, so that also the micro-problem has to be computed in parallel.
Therefore, we determine by a load balancing procedure a domain decomposition
Ω̄ = Ω̄1 ∪ · · · ∪ Ω̄ P and a further decomposition for the reference RVE Ȳ = Ȳ 1 ∪
· · · ∪ Ȳ P . The finite element spaces VH and Vξ,h are distributed to the processes
p ∈ P = {1, . . . , P} which results into a consistent representation of the macro-
deformation uH and the micro-fluctuations wξ,h,1, . . . ,wξ,h,6 by local functions

up
H = uH |Ω̄ p

and
wp

ξ,h, j = wξ,h, j | ¯Y p
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on process p. For the elastic two-scale solution the multi-scale tensor Cξ,H is eval-
uated only for a subset Ξ active

H with different micro-structures, i.e., we assume that
for all other points ξ ∈ ΞH \ Ξ active

H some active point ξ ′ ∈ Ξ active
H exists so that

we can choose Cξ,H = Cξ ′,H . The full parallel two-scale method is summarised in
Algorithm 2.

Algorithm 2: Parallel heterogeneous two-scale method for linear elasticity.
E1) Sequentially for all points ξ ∈ Ξ active

H with different micro-structure perform the following
steps:
M1) Compute the micro-fluctuations wξ,h,1, . . . ,wξ,h,6 ∈ Vξ,h solving in parallel

1

|Yξ |
∫
Y ξ

C(x)[ηl + ε(wξ,h,l )] : ε(δvξ,h) dx = 0 , δvξ,h ∈ Vξ,h .

M2) Evaluate the local contributions of the multi-scale tensor

Cp
ξ,H = 1

|Yξ |
6∑

l, j=1

(∫
Y

p
ξ

C(x)[ηl + ε(wp
ξ,h,l )] : η j dx

)
ηl ⊗ η j , p ∈ P .

M3) On the process q with ξ ∈ ΞH ∩ Ωq collect the full multi-scale tensor

Cξ,H =
P∑

p=1

Cp
ξ,H .

E2) Sequentially for all points ξ ∈ ΞH \ Ξ active
H ∩ Ω p find ξ ′ ∈ Ξ active

H with Cξ,H = Cξ ′,H and
send the multi-scale tensor to process p.

E3) Compute uH ∈ VH (uD) solving in parallel
∫

ΞH

Cξ,H [ε(uH )] : ε(δuH ) = 〈�, δuH 〉 , δuH ∈ VH (0) .

4.3 Numerical Experiments for Linear Elastic Two-Scale
Models

We evaluate the two-scale method for two component composites with the thermo-
plastic polymer polybutylene terephthalate as carrier matrix and embedded glass
fibres. We use isotropic linear elasticity with Lamé parameters λM = 3571.43 and
μM = 892.857 for the polymer,1 and λF = 30 000 and μF = 20 000 for the glass
fibre.2

For the test scenario we use a standardised uniaxial tensile test configuration
ISO 527-2:1996 type 1A, where experimental data are available [4, 21]. The com-

1BASF data sheet on http://www.plasticsportal.net.
2Data sheet on http://www.matweb.com.

http://www.plasticsportal.net
http://www.matweb.com
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Fig. 4.2 Approximation on the coarse level of the geometry of the standardised specimen with 20
mm shortened shoulders and reduction to one-fourth

putational domain Ω ⊂ (−0.2, 0.2) × (−2, 2) × (−6.5, 6.5) is approximated by a
hexahedral mesh, cf. Fig. 4.2.

Corresponding to the experimental setting we prescribe the displacement at the
Dirichlet boundary ΓD = {x ∈ ∂Ω : x3 = −6.5 or x3 = 6.5} with

uD(t, x) =
⎛
⎝ 0

0
u0 t

⎞
⎠ for x3 = 6.5 , uD(t, x) = 0 for x3 = −6.5 ,

σ (ε(u))n = 0 on ΓN = ∂Ω \ ΓD . (4.7)

The scaling factor is set to u0 = 0.01, and the linear model is tested for t = 1. For the
investigation of the convergence properties, we reduce the computation to one fourth
of the geometry Ωsym ⊂ Ω with symmetry boundary conditions on Γsym = {x ∈
∂Ωsym : x3 = 0 or x2 = 0} which corresponds to two-sided loading with u0 replaced
by 0.5u0.

In VH and in Vξ,h we use conforming hexahedral Q1 finite elements.

Numerical tests for different resolutions of the micro-structure In our first exper-
iment, the convergence of the classical two-scale homogenisation is tested, where
only one representative micro-structure is computed, and where the same effective
material response is used at all integration points. Therefore, we select from the
collection [8] one micro-structure Y δ

ξ of characteristic length scale δ with isotropic
glass fibre distribution and 10%fibre volume fraction. Corresponding to a basis of the
symmetric tensors, 6 periodic micro-fluctuations are computed by (4.4), see Fig. 4.3.

This defines by (4.5) the effective elasticity tensor

Cδ
ξ,H =

⎛
⎜⎜⎜⎜⎜⎜⎝

6813.81 4103.21 4091.94 −31.99 −1.79 −30.05
4103.21 6746.61 4090.63 −1.79 26.43 −3.04
4091.94 4090.63 6750.23 9.40 2.73 −22.82
−31.99 −1.79 9.40 2630.59 −7.91 −1.96
−1.79 26.43 2.73 −7.91 2598.53 10.05

−30.05 −3.04 22.82 −1.96 10.05 2597.09

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 4.3 Deformation of the 6 periodic micro-fluctuations wδ
ξ,h,k and the Frobenius norm distribu-

tion of the stress |σδ
ξ,h,k | in Y δ

ξ corresponding to the symmetric tensor basis η1, . . . , η6

The accuracy of the two-scale approximation depends on the mesh size of the
macro- and the micro-problem, and on the resolution δ of the geometry in the RVE.
Since the complex micro-structure in the RVE requires a very fine resolution of the
micro-problem, we test if smaller RVEs Y δ/2

ξ and Y δ/4
ξ with a coarser resolution of

the micro-problem are sufficient.
For the quantitative evaluation we compute the macroscopic stress integral

σ δ
H =

∫
ΞH

σ δ
ξ,H

with

σ δ
ξ,H = 1

|Y δ
ξ |

∫
Y δ

ξ

C(y)[εξ,H + ε(vξ,h)] dy

depending on εξ,H = ε(uH )(ξ), see Table 4.1.
We observe, that the coarse resolution with dim VH = 765 for the macro-problem

is sufficient to approximate |σ δ
H | with a relative error of less than 2%. On the micro-

scale, a relative error of less than 10% requires at least dim Vξ,h = 6 440 067 on Y δ
ξ ,

and dim Vξ,h = 823 875 on Y δ/2
ξ . The asymptotic results for Y δ/4

ξ show that in this
case the resolution of the micro-structure is not sufficient to obtain approximations
with a relative error smaller than 10%. For a detailed convergence analysis we refer
to [24, Chap. 4].
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Table 4.1 Numerical results for |σ δ
H | computed on the macro-scale in VH (row) and on the micro-

scale in Vξ,h (column) for the micro-structures Y δ
ξ , Y δ/2

ξ , and Y δ/4
ξ with isotropic fibre distribution

and 10% fibre volume fraction

DoFs 765 4 455 29 835 217 107 1 653 795

375 9.85312 9.81881 9.80574 9.80098 9.79927
2 187 8.63429 8.59902 8.58547 8.58050 8.57870

14 739 7.81376 7.77798 7.76413 7.75904 7.75720
107 811 5.83399 5.79482 5.77930 5.77350 5.77139
823 875 4.97443 4.93357 4.91718 4.91102 4.90876

6 440 067 4.60743 4.56594 4.54920 4.54287 4.54056
50 923 779 4.38415 4.34254 4.32568 4.31931 4.31697

DoFs 765 4 455 29 835 217 107 1 653 795

375 7.56932 7.53591 7.52304 7.51833 7.51663
2 187 7.97383 7.93835 7.92463 7.91960 7.91778

14 739 5.96454 5.92619 5.91105 5.90543 5.90339
107 811 5.06637 5.02650 5.01055 5.00456 5.00239
823 875 4.68158 4.64109 4.62479 4.61865 4.61641

6 440 067 4.50784 4.46708 4.45061 4.44440 4.44214
50 923 779 4.38927 4.34845 4.33192 4.32568 4.32341

DoFs 765 4 455 29 835 217 107 1 653 795

375 7.16115 7.12588 7.11215 7.10708 7.10525
2 187 5.52903 5.49100 5.47591 5.47028 5.46823

14 739 4.66845 4.62866 4.61271 4.60672 4.60454
107 811 4.29373 4.25314 4.23677 4.23059 4.22834
823 875 4.14409 4.10322 4.08669 4.08044 4.07816

6 440 067 4.04104 4.00008 3.98348 3.97720 3.97491
50 923 779 3.99777 3.95676 3.94012 3.93383 3.93153

Numerical tests for different fibre orientations and filler contentsNowwe inves-
tigate the elastic material properties for 10, 20 and 30% fibre volume content and 0◦,
45◦, 60◦ and 90◦ fibre orientationwith respect to the applied load in the tensile test.We
use a fine resolution in the RVEwith dim Vξ,h = 6 440 067, and dim VH = 6 551 523
for the macro-solution. Each computation is performed on a single node3 with 64
cores in approximately one hour.

The characteristic material values are evaluated by averaging in the cross section
Ωctr = (0, 0.5) × (−0.2, 0.2) × (0, 2) ⊂ Ω . Stress and strain in tensile direction are
numerically computed by

3AMD Opteron 6376 processor with 2.3 GHz and 512 GB RAM.
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Table 4.2 Characteristic material values for a uniaxial tensile test with unidirectional short fibres
with 10, 20 and 30% fibre volume fraction and orientations between 0◦ and 90◦

PBT 0◦ 45◦ 60◦ 90◦

Ez 2 500 6 116 3 333 3 167 3 338
νzy 0.40 0.38 0.44 0.36 0.21
νzx 0.40 0.38 0.36 0.41 0.51

σz 2.19371 5.30179 2.94166 2.78511 2.91609
εx -3.50e-4 -3.32e-4 -3.15e-4 -3.56e-4 -4.47e-4
εy -3.50e-4 -3.33e-4 -3.86e-4 -3.20e-4 -1.83e-4
εz 8.77e-4 8.66e-4 8.82e-4 8.79e-4 8.73e-4

PBT 0◦ 45◦ 60◦ 90◦

Ez 2 500 10 229 4 460 4 257 4 440
νzy 0.40 0.37 0.44 0.33 0.16
νzx 0.40 0.36 0.33 0.40 0.51

σz 2.19371 8.82239 3.94199 3.74542 3.8748
εx -3.50e-4 -3.09e-4 -2.93e-4 -3.53e-4 -4.44e-4
εy -3.50e-4 -3.19e-4 -3.89e-4 -2.92e-4 -1.40e-4
εz 8.77e-4 8.62e-4 8.83e-4 8.79e-4 8.72e-4

PBT 0◦ 45◦ 60◦ 90◦

Ez 2 500 15 443 6 621 6 032 5 973
νzy 0.40 0.34 0.39 0.31 0.13
νzx 0.40 0.34 0.33 0.38 0.50

σz 2.19371 13.293 5.83694 5.30212 5.21301
εx -3.50e-4 -2.92e-4 -2.89e-4 -3.38e-4 -4.34e-4
εy -3.50e-4 -2.93e-4 -3.45e-4 -2.68e-4 -1.15e-4
εz 8.77e-4 8.60e-4 8.81e-4 8.78e-4 8.72e-4

σz = 1

|Ωctr|
∫

ΞH∩Ωctr

Cξ,H [ε(uH )]zz , εz = 1

|Ωctr|
∫

ΞH∩Ωctr

ε(uH )zz (4.8)

to approximate Young’s modulus Ez = σz

εz
in z-direction. Analogously, the strain

averages εx and εy are defined to determine Poisson’s ratios

νzx = −εx

εz
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and
νzy = −εy

εz
,

cf. Table 4.2. All other orientations have a nearly equal stiffness character. Very
accurate transverse isotropy, i.e. νzx = νzy , can be observed in the case of parallel
fibre and tensile alignment. This corresponds to the symmetry of the rotational axis
along the fibre direction. For each different fibre alignment to the acting force the
material behaves strongly anisotropic. The full elastic properties of the multi-scale
material are contained in the effective elasticity tensors

C0◦
ξ,H =

⎛
⎜⎜⎜⎜⎜⎜⎝

6163.42 3976.58 3892.41 4.51 −1.13 0.58
3976.58 6196.72 3906.77 −0.17 0.47 −0.44
3892.41 3906.77 9111.39 1.42 22.383 1.57

4.51 −0.17 1.44 2219.04 −0.62 −0.71
−1.13 0.47 22.38 −0.62 2292.84 2.92
0.58 −0.45 1.57 −0.71 2.92 2253.73

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C45◦
ξ,H =

⎛
⎜⎜⎜⎜⎜⎜⎝

6189.56 3937.77 3936.05 −7.96 −43.42 13.42
3937.77 6886.21 4576.09 18.34 972.99 12.24
3936.05 4576.09 6897.25 25.26 977.66 27.34

−7.96 18.35 25.26 2249.67 30.39 41.09
−43.42 972.99 977.66 30.39 3642.93 29.39
13.42 12.24 27.34 41.09 29.39 2245.25

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C60◦
ξ,H =

⎛
⎜⎜⎜⎜⎜⎜⎝

6228.66 3938.61 3960.34 −0.29 −24.84 0.75
3938.61 7439.97 4308.68 13.46 972.10 4.09
3960.34 4308.68 6343.01 0.96 342.82 −10.06

−0.29 13.46 0.96 2303.76 −0.30 42.83
−24.84 972.10 342.82 −0.30 3051.26 6.32

0.77 4.09 −10.06 42.83 6.32 2246.48

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C90◦
ξ,H =

⎛
⎜⎜⎜⎜⎜⎜⎝

6163.42 3892.41 3976.58 0.58 1.13 −4.51
3892.41 9111.39 3906.77 1.57 −22.38 −1.44
3976.58 3906.77 6196.72 −0.45 −0.47 0.17

0.58 1.57 −0.45 2253.73 −2.92 0.71
1.13 −22.38 −0.47 −2.92 2292.84 −0.62

−4.51 −1.44 0.17 0.71 −0.62 2219.04

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The results fit well to experimental data provided by C. Röhrig [20, 21]. For a
directly extruded specimen of type 1A with parallel aligned load fibre orientation
and fibre volume content of 11.3% aYoung’s modulus of E0◦

z = 5 960 and for 17.9%
a modulus of E0◦

z = 8 240 is measured. For fibre orientations with angle 0◦, 45◦, 60◦
and 90◦ measurements of Young’s modulus of a specimen type 5A gives E0◦

z =
6 050, E45◦

z = 4 300, E60◦
z = 3 485 and E90◦

z = 3 840 for a volume filler content of
11.3%, and E0◦

z = 7 910, E45◦
z = 4 500, E60◦

z = 4 550 and E90◦
z = 4 430 for 17.3%

fibre volume content.
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4.4 Rate-independent Material Models with Memory

Inelastic effects can be described by material models with history variables. In this
section we introduce a small-strain damage and plasticity model and the framework
of energetic models as it is analysed in [15]. We specify the constitutive settings of
these models, and we derive the return mapping and the corresponding consistent
tangent operators.

Materials with memory We aim to find displacements u : [0, T ] × Ω → R3 in the
time interval [0, T ] of a material which is described by internal variables z : [0, T ] ×
Ω → RN and where the evolution is determined by the total energy and dissipation
functionals

E (t,u, z) =
∫

Ω

W (x, ε(u), z) dx − 〈�(t),u〉 ,

R(ż) =
∫

Ω

R(x, ż) dx .

The load functional is given by

〈�(t),u〉 =
∫

Ω

b(t) · v dx +
∫

ΓN

tN(t) · v da

with body forces b : [0, T ] × Ω → R3 and traction forces tN : [0, T ] × ΓN → R3.
We assume that the material is rate-independent, i.e., the inelastic deformation is

independent from scaling in time. This is achieved if the dissipation function R is
1-homogeneous.

We only consider small strains with the ansatz space V = H1(Ω,RN ) for the
displacements, and the test space V (0) = {

v ∈ V : v = 0 on ΓD
}
including homo-

geneous boundary conditions on theDirichlet boundaryΓD. For the internal variables
we use the space Z = L2(Ω,RN ). If the total energy functional E : [0, T ] × V ×
Z → R is bounded anduniformly convex inV (0) × Z for all t ∈ [0, T ], and if the dis-
sipation functionalR : Z → R ∪ {∞} is convex, proper and lower semi-continuous
(l.s.c.), an energetic solution

(u, z) : [0, T ] −→ V × Z

exists which is characterised by

Equilibrium 0 = ∂uE
(
t,u(t), z(t)

)
,

Flow Rule 0 ∈ ∂zE (t,u(t), z(t)) + ∂ R
(
ż(t)

)

and boundary conditions for the displacement u(t) = uD(t) on the Dirichlet bound-
ary ΓD.
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The incremental problem The evolution in time is approximated by a series
of incremental problems. Let 0 = t0 < t1 < · · · < tNmax = T be a time series with
�tn = tn − tn−1. Starting with (u0, z0) we define for n = 1, . . . , Nmax the fol-
lowing incremental problems depending on the given history variable zn−1, the
load functional �n = �(tn) and the Dirichlet data un

D = uD(tn): find a minimiser
(un, zn) ∈ V (un

D) × Z of the incremental functional

Jn(un, zn) = E (tn,un, zn) + R(zn − zn−1) .

In our applications Jn(·) is uniformly convex, so that a unique minimiser exists. It
is determined by computing a critical point ofJn(·) characterised by the nonlinear
system

Equilibrium 0 = ∂uE (tn,un, zn) , (4.9a)

Flow Rule 0 ∈ ∂zE (tn,un, zn) + ∂ R(�zn) . (4.9b)

Since we consider rate-independent materials, the flow rule is 1-homogeneous sat-
isfying �tnR((�tn)−1(zn − zn−1)) = R(zn − zn−1) and thus depending only on the
increment �zn = zn − zn−1.

A simple damage model Continuum damage mechanics phenomenologically
describes the expansion of micro-cracks and cavities with a single additional state
variable

d = Ad

A0
∈ [0, 1]

defined by the proportion of damaged area Ad of a representative cross sectional
area A0 (see, e.g., [9–11, 19]). This results into the effective stress response σ =
(1 − d)C[ε].

Within the energetic framework we set N = 1 and z = d. The free energy is
defined by

W (ε, d) = (1 − d)Welastic(ε) + Wdamage(d)

withWelastic(ε) = 1
2ε : C[ε], so that σ = ∂εW (ε, d) = (1 − d)C[ε]. The dissipation

functional

Rdamage(ḋ) =
{
0 ḋ ≥ 0 ,

+∞ otherwise
(4.10)

just ensures the irreversibility of the damage process.
The additional termWdamage determines the evolution of the damage variable and

guarantees d < 1. It is constructed in analogy to isotropic plasticity. We assume
that the damage evolution is locally controlled by a strictly monotone function Φ
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depending on the local elastic energy Y = Welastic(ε(u)) and the complementarity
conditions

ḋ ≥ 0 , Φ(Y ) − d ≤ 0 ,
(
Φ(Y ) − d

)
ḋ = 0 , (4.11)

i.e., d can only increase and not decrease and the material remains elastic, if the local
elastic energy is small satisfying Φ(Y ) < d. Here, the choice

Φ(Y ) = 1 − exp
( − H(

√
2Y − Y0)

)

with damping and yielding point material parameters H,Y0 ≥ 0 is designed such
that the material responds elastic for Φ(Y ) < 0, i.e.,

√
2Y < Y0, and Φ(Y ) −→ 1

for large Y . Nevertheless, since Φ(Y ) < 1 for all Y , the damage variable will not
reach d = 1 which prevents fracture in this model.

SinceΦ(·) is assumed to be strictly monotone, the inverse is uniquely defined and
the complementarity conditions (4.11) take the form

ḋ ≥ 0 , Y − Φ−1(d) ≤ 0 ,
(
Y − Φ−1(d)

)
ḋ = 0 .

Due to our choice of the dissipation this is equivalent to

Y − Φ−1(d) ∈ ∂ Rdamage(ḋ) .

This motivates the definition of the defect energy

Wdamage(d) =
∫ d

0
Φ−1(δ) dδ , (4.12)

i.e., Φ−1(d) = ∂dWdamage(d) and Y − Φ−1(d) = −∂dW (ε, d).
For fixed ε the flow rule 0 ∈ ∂dW (ε, d) + ∂ Rdamage(ḋ) characterises the mini-

mum of f (d; ε) = W (ε, d) + Rdamage(ḋ). Together, we observe that the minimiser
is characterised by (4.11).

For our choice of Φ we observe Φ−1(d) = 1
2

(
Y0 − 1

H log(1 − d)
)2
, so that

Wdamage(d) −→ ∞ for d −→ 1 prevents to reach a fully damaged material in this
model. Nevertheless, we will see below that the inelastic energy is not uniformly
convex, so that a well-defined evolution is only determined for sufficiently small
loads or displacements.

Remark 4.4.1 This simplemodel does not allow to compute the transition to fracture.
Due to the choice of Φ(·), the energy in this model is only convex for sufficiency
small damage, and the consistent tangent gets indefinite for d close to 1, so that one
cannot expect convergence for the Newton method for large loads, and simulations
for larger loads need an extension of the model.

The incremental flow rule for the damage model In the first step, we consider
the semi-discrete problem in time. For given history variable dn−1, the incremental
problem (4.9) determines (un, dn) ∈ V (un

D) × L2(Ω) with
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0 =
∫

Ω

∂εW (ε(un), dn) : ε(δu) dx − 〈�n, δu〉 , δu ∈ V (0) , (4.13a)

0 ∈ ∂dW (ε(un), dn) + ∂ Rdamage(d
n − dn−1) . (4.13b)

The solution (un, dn) of (4.13) is a critical point of the functional

Jn(u, d) =
∫

Ω

W (ε(u), d) dx − 〈�n,u〉 +
∫

Ω

Rdamage(d − dn−1) dx (4.14)

subject to the essential boundary conditions u = un
D on ΓD.

The incremental damage problem can be reduced to a nonlinear problem for the
displacement by inserting the local solution of the incremental flow rule depending
on the strain. This is based on the following result.

Lemma 4.2 For given history variable dn−1 and fixed strain ε the unique solution
�d of the local incremental flow rule in every material point

0 ∈ ∂dW (ε, dn−1 + �d) + ∂ Rdamage(�d)

is given by

�d = max
{
0, Φ

(
Y (ε)

) − dn−1} , Y (ε) = Welastic(ε) .

Proof Evaluating ∂dW (ε, dn−1 + �d) = −Y (ε) + Φ−1(dn−1 + �d) in the incre-
mental flow rule yields

Y (ε) − Φ−1(dn−1 + �d) ∈ ∂ Rdamage(�d) =

⎧⎪⎨
⎪⎩

{0} �d > 0 ,

(−∞, 0] �d = 0 ,

∅ �d < 0 .

This is equivalent to the complementarity condition

�d ≥ 0 , Φ
(
Y (ε)

) − dn−1 − �d ≤ 0 ,
(
Φ

(
Y (ε)

) − dn−1 − �d
)
�d = 0

which directly implies �d = max
{
0, Φ

(
Y (ε)

) − dn−1
}
. �

The evaluation of the flow rule defines the update of the damage variable

dn(ε) = dn−1 + �d = dn−1 + max
{
0, Φ

(
Y (ε)

) − dn−1
}

and the incremental stress response

σn(ε) = (
1 − dn(ε)

)
C[ε] .
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Choosing sgn(s) ∈ ∂ max{0, s} with

sgn(s) =
{
1 s > 0 ,

0 otherwise

defines the consistent tangent Cn(ε) ∈ ∂σn(ε) by

Cn(ε)[δε] = (
1 − dn(ε)

)
C(ε)[δε]

− sgn
(
max

{
0, Φ(Y (ε)) − dn−1

})
Φ ′(Y (ε)

)(
C[ε] · δε

)
C[ε]

with Φ ′(Y ) = H√
2Y

exp(−H(
√
2Y − Y0)).

The incremental problem can be solved by minimising the reduced functional for
the displacement

J red
n (u) =

∫
Ω

(∫ Y (ε(u))

0

(
1 − dn−1 − max

{
0, Φ(y) − dn−1

})
dy

)
dx − 〈�n,u〉

with first variation

∂ J red
n (u)[δu] =∫
Ω

(
1−dn−1−max

{
0, Φ(Y (ε(u)))−dn−1

})
C(ε(u))[ε(δu)] dx − 〈�n, δu〉

corresponding to (4.13a). Within a generalised Newton method, the consistent tan-
gent defines

∂2 J red
n (u)[�u, δu] =

∫
Ω

Cn(ε(u))[ε(�u)] : ε(δu) dx .

We observe Cn(ε)[ε] : ε < 0 for large ε, so that for our choice of Φ the second
variation of J red

n is not positive and thus J red
n is only convex for sufficiently small

strains. This restricts the application of our damage model to moderate loads. An
extended damage model with convex energy can be obtained by including gradient
terms, see, e.g., [29].

Small strain elasto-plasticity For the elasto-plastic model with hardening, the inter-
nal variables z = (εp, r) are the plastic strain εp with trεp = 0 and the isotropic hard-
ening parameter r , i.e., N = 6. The strain is decomposed into elastic and plastic part
ε(u) = εe + εp, and the free energy is given by

W (x, ε, εp, r) = Welastic(x, ε(u) − εp) + Wplastic(εp, r)

with the elastic energy (4.1) and defect energy
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Wplastic(εp, r) = Wkin(εp) + Wiso(r) (4.15)

combining kinematic and isotropic hardening. The translation of the yield surface is
described by kinematic hardening with

Wkin(εp) = 1

2
Kεp : εp

depending on the hardening parameter K ≥ 0. The expansion of the yield surface is
described by isotropic hardening determined by the yield function

Ψ (r) = σy + H0r + (K∞ − K0)(1 − exp(δr))

for given material parameters σy, H0, δ ≥ 0 and K∞ ≥ K0 ≥ 0. Now we construct
the remaining energy contribution and the dissipation such that the plastic evolution
satisfies the yield condition | dev σ − β| + Ψ (r) ≤ 0.

The energy definition corresponds to the constitutive stress-stain relation

σ = ∂εW (ε, εp, r) = ∂εWelastic(ε(u) − εp) = C[ε(u) − εp] .

It defines the back stress β = ∂εpWkin(εe) = Kεp, and the conjugated variables y =
(α, ζ ) = −∂zW (ε, z) with

α = ∂εpWelastic(ε(u) − εp) − ∂εpWkin(εp) = dev σ − β ,

ζ = −∂rWiso(r) .

This yields the constitutive relation ζ = −∂rWiso(r) = −Ψ (r) by defining

Wiso(r) =
∫ r

0
Ψ (ρ) dρ .

The plastic evolution is determined by the plastic potential

R∗
plastic(α, ζ ) =

{
0 |α| + ζ ≤ 0 and ζ ≤ 0 ,

+∞ otherwise ,

which is by duality equivalent to the dissipation functional

Rplastic(ε̇p, ṙ) =
{
0 ṙ ≥ |ε̇p| ,
+∞ otherwise .

(4.16)

The flow rule (α, ζ ) ∈ ∂ Rplastic(ε̇p, ṙ) in every material point is evaluated by duality,
i.e., (ε̇p, ṙ) ∈ ∂ R∗

plastic(α, ζ ). Introducing a consistency parameter λp this is equiva-
lent to the normality rule
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ε̇p = λp
α

|α| , ṙ = λp ,

and the complementarity conditions

λp ≥ 0 , |α| + ζ ≤ 0 , λp(|α| + ζ ) = 0 .

In particular, this implies |ε̇p| = ṙ , and assuming εp(0) = 0 and r(0) = 0 at initial
time t = 0, we obtain

r(t) =
∫ t

0
ṙ dt =

∫ t

0
|ε̇p| dt ,

i.e., r is the equivalent plastic strain.

The incremental flow rule for elasto-plasticity For the incremental problem the
local computation of the stress response and the consistent tangent in every material
point in the RVEs is reduced to a scalar nonlinear problem for the equivalent plastic
strain increment.

Lemma 4.3 For given history variables (εn−1
p , rn−1) and strain ε a unique solution

(�εp,�r) of the local flow rule in every material point

0 ∈ ∂(εp,r)W (ε, εn−1
p + �εp, r

n−1 + �r) + ∂ Rplastic(�εp,�r)

exists.

Proof For fixed history and given strain ε, the increment is a minimiser of

Φ(� εp,� r; ε) = W (ε, εn−1
p + � εp, r

n−1+ � r) + Rplastic(� εp,� r) .

Since the functional is uniformly convex in R6, the minimiser exists and it is unique.
For the evaluation we define the conjugated variables

(α, ζ ) = −∂(εp,r)W (ε, εn−1
p + � εp, r

n−1+ � r).

We obtain α = dev σ − K (εn−1
p + � εp) from the stress σ = C[ε − εn−1

p − �εp],
and ζ = −Ψ (rn−1 + �r). Evaluating

(� εp,� r) ∈ ∂ R∗
plastic(α, ζ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{0} |α| + ζ < 0 ,

[0,∞)

(
α
|α|
1

)
|α| + ζ = 0 ,

∅ |α| + ζ > 0

yields the normality rule
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(
� εp

� r

)
= λp

(
α
|α|
1

)

and the complementarity conditions for the consistency parameter λp

λp ≥ 0 , |α| + ζ ≤ 0 , λp(|α| + ζ ) = 0 .

The normality rule yields �r = λp = |�εp| and for the flow direction

�ε

|�ε| = α

|α| = 2μ dev ε − (2μ + K )(εn−1
p + �εp)

|2μ dev ε − (2μ + K )(εn−1
p + �εp)| = αtr

n (ε)

|αtr
n (ε)|

with the relative trial stress αtr
n (ε) = 2μ dev ε − (2μ + K )εn−1

p . Thus, defining the
flow function

Fn(�r; ε) = |αtr
n (ε)| − (2μ + K )�r − Ψ (rn−1 + �r)

we observe |α| + ζ = Fn(�r; ε). Now, for the given strain ε we have to distin-
guish two cases. If Fn(0; ε) ≤ 0, we set �r = 0. Otherwise, since Fn(·; ε) is strictly
monotone andnegative for large�r , the equation Fn(�r; ε) = 0 uniquely determines
�r > 0. Then, we obtain

�εp = �r αtr
n (ε)

|αtr
n (ε)| .

�

Evaluating the increment �rn(ε) defines the update of the history variables

rn(ε) = rn−1 + �rn(ε) ,

εp,n(ε) = εn−1
p + �rn(ε)

αtr
n (ε)

|αtr
n (ε)| ,

the incremental stress response

σn(ε) = C[ε − εp,n(ε)] ,

and the consistent tangent Cn(ε) ∈ ∂σn(ε) by

Cn(ε)[δε] = C[δε] − 4μ2�rn(ε)

|αtr
n (ε)| dev(δε)

+
(
4μ2�rn(ε)

|αtr
n (ε)| − 4μ2

2μ + K + Ψ ′(rn(ε)
)
)

αtr
n (ε) · δε

|αtr
n (ε)|

αtr
n (ε)

|αtr
n (ε)| ,

cf. [25, Sect. 3.3.2].
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Damageandelasto-plasticityFor themodel combiningdamage andelasto-plasticity
we use the internal variables z = (d, εp, r) with N = 7 components and the free
energy

W (x, ε, z) = (1 − d)Welastic(x, ε(u) − εp) + Wdefect(z)

= (1 − d)
(
Welastic(x, ε(u) − εp) + Wplastic(εp, r)

) + Wdamage(d)

with the elastic energy (4.1) and defect energy components (4.12) and (4.15). The
dissipation combines (4.10) and (4.16) to

R(ḋ, ε̇p, ṙ) =
∫

Ω

R(ḋ, ε̇p, ṙ) dx , R(ḋ, ε̇p, ṙ) = Rdamage(ḋ) + Rplastic(ε̇p, ṙ) .

The incremental two-scale elasto-plastic damagemodel For the incremental prob-
lem the local computation of the stress response and the consistent tangent in every
material point in the RVEs is evaluated first for the plasticity variables and then for
the damage variable.

Lemma 4.4 For given history variables (dn−1, εn−1
p , rn−1) and strain ε a unique

solution (�d,�εp,�r) of the local flow rule in every material point

0 ∈ ∂(d,εp,r)W (ε, dn−1 + �d, εn−1
p + �εp, r

n−1 + �r) + ∂ R(�d,�εp,�r)

exists.

Proof Inserting the conjugated variables

− ∂(d,εp,r)W (ε, dn−1 + �d, εn−1
p + �εp, r

n−1 + �r)

=
⎛
⎝ Y − Φ−1(dn−1 + �d)

(1 − dn−1 + �d)
(
dev(σ ) − K (εn−1

p + �εp)
)

−(1 − dn−1 + �d)Ψ (rn−1 + �r)

⎞
⎠=

⎛
⎝Y − Φ−1(dn−1+�d)

(1 − dn−1+�d)α

(1 − dn−1+�d)ζ

⎞
⎠

with Y = Welastic(ε − εn−1
p − �εp), the back stress α = dev σ − K (εn−1

p + �εp),
ζ = −Ψ (rn−1 + �r), and σ = C[ε − εn−1

p − �εp] into the flow rule yields

Y − Φ−1(dn−1 + �d) ∈ ∂ Rdamage(�d) ,

and, since R∗
plastic(·) is 1-homogeneous,

(�εp,�r) ∈ ∂ R∗
plastic(α, ζ ) = ∂ R∗

plastic

(
(1 − dn−1 + �d)(α, ζ )

)
.

This shows that in the first step, the plastic increment can be evaluated from the plastic
flow rule independent from the damage variable. We proceed as in Lemma 4.3. The
plastic flow rule is equivalent to the normality rule
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(
�εp

�r

)
= λp

(
α
|α|
1

)

and the complementarity conditions for the consistency parameter λp

λp ≥ 0 , |α| + ζ ≤ 0 , λp(|α| + ζ ) = 0 .

The normality rule yields �r = λp = |�εp| and for the flow direction

�ε

|�ε| = α

|α| = 2μ dev ε − (2μ + K )(εn−1
p + �εp)

|2μ dev ε − (2μ + K )(εn−1
p + �εp)| = αtr

n (ε)

|αtr
n (ε)|

with the relative trial stress αtr
n (ε) = 2μ dev ε − (2μ + K )εn−1

p . Thus, defining

Fn(�r; ε) = |αtr
n (ε)| − (2μ + K )�r − Ψ (rn−1 + �r)

we observe |α| + ζ = Fn(�r; ε). Now, for the given ε we have to distinguish two
cases. If Fn(0; ε) ≤ 0, we set�r = 0. Otherwise,�r > 0 is uniquely determined by
the equation Fn(�r; ε) = 0. Then, we obtain

�εp = �r αtr
n (ε)

|αtr
n (ε)|

which also defines Yn(ε) = Welastic(ε − εn−1
p − �εp). Now, the increment of the

damage variable is computed as in Lemma 4.2 depending on Yn(ε), i.e.,

�d = max
{
0, Φ(Yn(ε)) − dn−1

}
.

�

The evaluation of the flow rule defines the update of the history variables

dn(ε) = dn−1 + �d ,

εp,n(ε) = εn−1
p + �εp ,

rn(ε) = rn−1 + �r ,

the incremental stress response σn(ε) = (
1 − dn(ε)

)
C[ε − εp,n(ε)], and the consis-

tent tangent Cn(ε) ∈ ∂σn(ε) with

Cn(ε)[δε] = (
1 − dn(ε)

)
Cplastic
n (ε)[δε]

− sgn
(
max

{
0, Φ(Yn(ε)) − dn−1

})(
C[ε − εp,n(ε)] · δε)

C[ε]
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and

Cplastic
n (ε)[δε] = C[δε] − 4μ2�r

|αtr
n (ε)| dev(δε)

+
(
4μ2�r
|αtr

n (ε)| − 4μ2

2μ + K + Ψ ′(rn(ε)
)
)

αtr
n (ε) · δε

|αtr
n (ε)|

αtr
n (ε)

|αtr
n (ε)| .

4.5 Heterogeneous Two-Scale FEM for Inelasticity

The inelastic material behaviour for short fibre reinforced polymers is modelled by
a two-scale infinitesimal elasto-plastic damage material [27, 28]. Here, this model
is reformulated in the framework of generalised standard materials which directly
defines the corresponding algorithmic realisation within the FE2 framework.

Two-scale models with memory The energetic framework extends to the two-scale
setting as follows. We consider uH : [0, T ] → VH on the macro-scale satisfying the
Dirichlet boundary conditions, i.e., uH (t) ∈ VH (uD(t)), and locally in every RVEYξ

the micro-fluctuations vξ,h : [0, T ] → Vξ,h and the internal variables describing the
material history zξ,h : [0, T ] → Zξ,h has to be determined. Here, we use for the
internal variables piecewise constant vectors in Zξ,h ⊂ L2(Yξ ,RN ) represented by
zξ,h(ζ ) ∈ RN at the integration points ζ ∈ Ξξ,h ⊂ Yξ in theRVE. Together, we define
Zh = ∏

ξ∈ΞH
Zξ,h .

The model is determined by the corresponding two-scale energy and dissipation
functionals

EH (t,uH , vh, zh) =
∫

ΞH

Wξ (ε(uH ), vξ,h, zξ,h) − 〈�(t),uH 〉 ,

RH (żh) =
∫

ΞH

Rξ (żξ,h) ,

where the contributions at every sample point ξ ∈ ΞH is evaluated in the RVEs Yξ

by the locally averaged two-scale micro-energy and micro-dissipation

Wξ (εH , vξ,h, zξ,h) = 1

|Yξ |
∫
Y ξ

W (x, εξ,H + ε(vξ,h), zξ,h) dx ,

Rξ (żh) = 1

|Yξ |
∫
Y ξ

R(x, żξ,h) dx ,

depending on the macro-strain εξ,H = ε(uH )(ξ). Again, this defines the micro-
solution by uξ,h = uξ,H + vξ,h depending on the linearised macro-solution by
uξ,H (x) = uH (ξ) + DuH (ξ)(x − ξ), i.e., by construction the micro-fluctuation is
periodic and the strain of the macro-solution ε(uξ,H ) ≡ εξ,H is constant in Yξ .
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The incremental two-scale problem Starting with (u0
H , v0h, z

0
h) we solve for n =

1, . . . , Nmax the following incremental problems depending on the given history
variable zn−1

h : find a minimiser (un
H , vnh, z

n
h) ∈ VH (un

D) × Vh × Zh of the two-scale
incremental functional

Jh,n(un
H , vnh, z

n
h) = EH (tn,un

H , vnh, z
n
h) + RH (znh − zn−1

h ) .

The minimiser is determined by computing a critical point of Jh,n(·). This is char-
acterised by the nonlinear system

Macro-Equilibrium 0 = ∂uEH (tn,un
H , vnh, z

n
h) , (4.17a)

Micro-Equilibrium 0 = ∂vEH (tn,un
H , vnh, z

n
h) , (4.17b)

Flow Rule 0 ∈ ∂zEH (tn,un
H , vnh, z

n
h) + ∂ RH (�znh) . (4.17c)

The Macro-Equilibrium 0 = ∂uEH (tn,un
H , vnh, z

n
h) reads in variational form

∫
ΞH

1

|Yξ |
∫
Y ξ

∂εW (εn
ξ,H + ε(vnξ,h), z

n
ξ,h) : ε(δuH ) dx = 〈�n, δuH 〉

for δuH ∈ VH (0), where εn
ξ,H = ε(un

H )(ξ) denotes the macro-strain. We define the
micro-stress

σ n
ξ,h = ∂εW (εn

ξ,H + ε(vnξ,h), z
n
ξ,h)

depending on the macro-strain and the micro-fluctuation vnξ,h ∈ Vξ,h and then by
averaging in the RVE the macro-stress

σ n
ξ,H = 1

|Yξ |
∫
Y ξ

σ n
ξ,h dx ,

which together yields the macro-equilibrium in the form

∫
ΞH

σ n
ξ,H : ε(δuH ) = 〈�n, δuH 〉 , δuH ∈ VH (0) .

The Micro-Equilibrium 0 = ∂vEH (tn,un
H , vnh, z

n
h) reads in variational form

1

|Yξ |
∫
Y ξ

σ n
ξ,h : ε(δvξ,h) dx = 0 , δvξ,h ∈ Vξ,h .

The Flow Rule 0 ∈ ∂zEH (tn,un
h, v

n
h, z

n
h) + ∂RH (�znh) determines the history vari-

able znh from the macro-solution un
H and the micro-fluctuation vnξ,h . Depending on

the conjugated variable ynξ,h = −∂zW (εn
ξ,H + ε(vnξ,h), z

n
ξ,h) it is evaluated in every

integration point of the RVE Yξ and can be expressed by duality
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ynξ,h ∈ ∂ R(�znξ,h) ⇐⇒ �znξ,h ∈ ∂ R∗(ynξ,h) .

The two-scale damage problem We specify the incremental two-scale problem
(4.17) for the damagemodel andwe derive a generalisedNewtonmethod by inserting
the results in Lemma 4.2. Here, for given damage history dn−1

h and time tn , the
incremental two-scale problem aims to compute the uniqueminimiser (un

H , vnh, d
n
h ) ∈

VH (un
D) × Vh × Zh of the functional

Jh,n(un
H , vnh, d

n
h ) = EH (tn,un

H , vnh, d
n
h ) + RH (dn

h − dn−1
h )

by solving the nonlinear system

0 = ∂uEH (tn,un
H , vnh, d

n
h ) , (4.18a)

0 = ∂vEH (tn,un
H , vnh, d

n
h ) , (4.18b)

0 ∈ ∂dEH (tn,un
H , vnh, d

n
h ) + ∂ RH (�dn

h ) . (4.18c)

For this purpose, we define a return mapping procedure which evaluates the varia-
tional inequality (4.18c) which then allows to determine a suitable Newton lineari-
sation.

The flow rule (4.18c) is evaluated at every integration point in the RVEYξ . Insert-
ing Y (εξ,h) = 1

2εξ,h : C[εξ,h], we obtain from Lemma 4.2 for the damage variable

dξ,h,n(εξ,h) = dn−1
ξ,h + max

{
0, Φ

(
Y (εξ,h)

) − dn−1
ξ,h

}

and the stress response σ n
ξ,h = σξ,h,n(ε

n
ξ,h) with

σξ,h,n(εξ,h) = (
1 − dξ,h,n(εξ,h)

)
C[εξ,h] .

Inserting this result in (4.18) yields the reduced nonlinear problem to compute a
critical point (un

H , vnh) ∈ VH (un
D) × Vh of

〈Fh,n(uH , vh), (δuH , δvh)〉 =∫
ΞH

1

|Yξ |
∫
Y ξ

σξ,h,n(εξ,h) : (
ε(δuH ) + ε(δvξ,h)

)
dx − 〈�n, δuH 〉

for all (δuH , δvh) ∈ VH (0) × Vh . The consistent tangent operator

Cξ,h,n(εξ,h) = (
1 − dξ,h,n(εξ,h)

)
C

− sgn
(
max

{
0, Φ(Y (εξ,h)) − dn−1

ξ,h }
)
Φ ′(Y (εξ,h))C[εξ,h] ⊗ C[εξ,h]
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yields a Newton linearisation

〈F ′
h,n(uH , vh)(�uH ,�vh), (δuH , δvh)〉 =∫
ΞH

1

|Yξ |
∫
Y ξ

Cξ,h,n(εξ,h)[ε(�uH ) + ε(�vξ,h)] : (
ε(δuH ) + ε(δvξ,h)

)
dx

for (�uH ,�vh), (δuH , δvh) ∈ VH (0) × Vh .
The two-scale residualFh,n and its linearisationF ′

h,n allows for the construction
of a generalised Newton method of the incremental problem. This can be formulated
as follows: starting with (un,0

H , vn,0
h ) ∈ VH (un

D) × Vh , for k = 1, 2, ... the Newton
increment (�un,k

H ,�vn,k
h ) ∈ VH (0) × Vh is determined by solving

〈F ′
h,n(u

n,k−1
H , vn,k−1

h )(�un,k
H ,�vn,k

h ), (δuH , δvh)〉 =
− 〈Fh,n(u

n,k−1
H , vn,k−1

h ), (δuH , δvh)〉

for all (δuH , δvh) ∈ VH (0) × Vh . The next iterate is given by

(un,k
H , vn,k

h ) = (un,k−1
H , vn,k−1

h ) + sn,k(�un,k
H ,�vn,k

h )

with a suitable damping parameter sn,k ∈ (0, 1]. The iteration stops if the residual
Fh,n(u

n,k
H , vn,k

h ) is small enough.
It turns out that this monolithic Newton method for the combined two-scale prob-

lem is not efficient, since for every Newton step a full micro-macro problem has to
be solved. So we use an alternative approach to compute the Newton increment first
on the micro-scale and then on the macro-scale.

In the first time step n = 0, we compute for every ξ ∈ ΞH the micro-fluctuations
w0

ξ,h,1, . . . ,w
0
ξ,h,6 ∈ Vξ,h with respect to the basis η1, . . . , η6 solving (4.4).

In every time step n ≥ 1 we set wn,0
ξ,h,l = wn−1

ξ,h,l and we start with selecting u
n,0
H ∈

VH (un
D). For every macro-Newton step k ≥ 1 and for every ξ ∈ ΞH , the micro-

residual at εn,k−1
ξ,H = ε(un,k−1

H )(ξ) is given by

〈Fξ,h,n,k(vξ,h), δvξ,h〉 =
∫
Y ξ

σξ,h,n
(
ε
n,k−1
ξ,H + ε(vξ,h)

) : ε(δvξ,h) dx .

The micro-fluctuation vn,k
ξ,h is computed by a micro-Newton method solving approx-

imately the nonlinear problem Fξ,h,n,k(vξ,h) = 0. Starting with

vn,k,0
ξ,h =

6∑
j=1

(
ε
n,k−1
ξ,H : η j

)
wn,k−1

ξ,h, j ,
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we compute for m = 1, 2, . . . the strain ε
n,k,m−1
ξ,h = ε

n,k−1
ξ,H + ε(vn,k,m−1

ξ,h ), the stress

response σ
n,k,m−1
ξ,h = σξ,h,n(ε

n,k,m−1
ξ,h ) and the consistent tangent operator Cn,k,m−1

ξ,h =
Cξ,h,n(ε

n,k,m−1
ξ,h ).

Then, the increment �vn,k,m
ξ,h ∈ Vξ,h is computed by solving

∫
Y ξ

Cn,k,m−1
ξ,h [ε(�vn,k,m

ξ,h )] : ε(δvξ,h) dx = −
∫
Y ξ

σ
n,k,m−1
ξ,h : ε(δvξ,h) dx

for all δvξ,h ∈ Vξ,h defining v
n,k,m
h = vn,k,m−1

h + sξ,n,k,m�vn,k,m
h with sξ,n,k,m ∈ (0, 1].

If the micro-residual is small enough, we set vn,k
ξ,h = vn,k,m

ξ,h , σ n,k
ξ,h = σ

n,k,m
ξ,h ,

σ
n,k
ξ,H = 1

|Yξ |
∫
Y ξ

σ
n,k
ξ,h dx ,

and Cn,k
ξ,h = Cn,k,m

ξ,h . If vn,k
ξ,h is sufficiently close to the previous iterate, we usew

n,k
ξ,h,l =

wn,k−1
ξ,h,l andCn,k

ξ,H = Cn,k−1
ξ,H from the previous iteration, otherwisewe computewn,k

ξ,h,l ∈
Vξ,h solving

1

|Yξ |
∫
Y ξ

C(x)[ηl + ε(wn,k
ξ,h,l)] : ε(δvξ,h) dx = 0 , δvξ,h ∈ Vξ,h

for l = 1, . . . , 6 and the multi-scale tensor

Cn,k
ξ,H = 1

|Yξ |
6∑

l, j=1

(∫
Y ξ

Cn,k
ξ,h[ηl + ε(wn,k

ξ,h,l)] : η j dx

)
ηl ⊗ η j .

The macro-update �un,k
H ∈ VH (0) is computed solving

∫
ΞH

Cn,k
ξ,H [ε(�un,k

H )] : ε(δuH ) = −
∫

ΞH

σ
n,k
ξ,H : ε(δuH ) + 〈�n, δuH 〉

for all δuH ∈ VH (0) defining un,k
H = un,k−1

h + sn,k�un,k
h with sn,k ∈ (0, 1]. If the

macro-residual is small enough, we set un
H = un,k

H , vnξ,h = vn,k
ξ,h , we update the dam-

age variable dn
ξ,h = dn−1

ξ,h + max
{
0, Φ

(
Yξ (ε

n
ξ,h)

) − dn−1
ξ,h

}
, and then we proceed to

the next time step.

The two-scale elasto-plasticity model Specifying the incremental two-scale prob-
lem (4.17) for elasto-plasticity yields

0 = ∂uE (tn,un
H , vnh, ε

n
p,h, r

n
h ) , (4.19a)

0 = ∂vE (tn,un
H , vnh, ε

n
p,h, r

n
h ) , (4.19b)

0 ∈ ∂(εp,r)E (tn,un
H , vnh, ε

n
p,h, r

n
h ) + ∂R(�εn

p,h,�rnh ) . (4.19c)
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For given material history (εn−1
p,ξ,h, r

n−1
ξ,h ) and strain εn

ξ,h = ε(un
H )(ξ) + ε(vnξ,h), the

stress σ n
ξ,h = σξ,h,n(ε

n
ξ,h) is determined from the flow rule, cf. Lemma 4.3. Therefore,

we define the relative trial stress

αtr
ξ,h,n(εξ,h) = 2μ dev εξ,h − (2μ + K )εn−1

p,ξ,h ,

and the flow function

Fξ,h,n(�rξ,h; εξ,h) = |αtr
ξ,h,n(εξ,h)| − (2μ + K )�rξ,h − Ψ (rn−1

ξ,h + �rξ,h) .

If Fξ,h,n(0; εξ,h) ≤ 0, we set �rξ,h,n(εξ,h) = 0, otherwise the increment is defined
by solving the nonlinear problem Fξ,h,n

(
�rξ,h,n(εξ,h); εξ,h

) = 0. This defines the
update rξ,h,n(εξ,h) = rn−1

ξ,h + �rξ,h,n(εξ,h) and the response for the plastic strain and
the stress, and the consistent tangent operator

εp,ξ,h(εξ,h) = εn−1
p,ξ,h + �rξ,h,n(εξ,h)

αtr
ξ,h,n(εξ,h)

|αtr
ξ,h,n(εξ,h)| ,

σξ,h,n(εξ,h) = C[εξ,h − εp,ξ,h(εξ,h)] ,

Cξ,h,n(εξ,h) = C − 4μ2�rξ,h,n(εξ,h)

|αξ,h,n(εξ,h)|
(
dev− αξ,h,n(εξ,h)

|αξ,h,n(εξ,h)| ⊗ αξ,h,n(εξ,h)

|αξ,h,n(εξ,h)|
)

− 4μ2

2μ + K + Ψ ′(rξ,h,n(εξ,h)
) αξ,h,n(εξ,h)

|αξ,h,n(εξ,h)| ⊗ αξ,h,n(εξ,h)

|αξ,h,n(εξ,h)| .

Now, the residual,Fn,h , the linearisationF ′
n,h , and the generalised Newton method

for the macro-problem can be defined as for the damage model, and inserting the
elasto-plastic stress response yields the corresponding two-scale system for the com-
bined model.

The two-scale model combining damage and elasto-plasticity Here, the internal
variable has N = 7 components znξ,h = (dn

ξ,h, ε
n
p,ξ,h, r

n
ξ,h), and in (4.19a) we use the

combined energy anddissipation functional, cf. Sect. 4.4. Inserting the stress response
from Lemma 4.4 and the corresponding consistent tangent yields the residual and its
linearisation as in the previous cases.

Parallel nonlinear two-scale algorithms The full algorithm is realised in three
loops (see Fig. 4.4 for an overview): the outer loop for the time stepping, the Newton
iteration for the macro-problem for every incremental problem, and in the inner loop
theNewton iterations for themicro-problem for every RVE evaluating the local stress
response.

We extend the parallel algorithm in Sect. 4.2 to inelastic applications. Every
Newton iteration in the incremental problem has the structure of the linear two-scale
model, provided that the residual and the consistent tangent is evaluated in every
RVE. To obtain an efficient method, we use heuristic criteria in the RVE whether a
new multi-scale basis is required.
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Fig. 4.4 The parallel incremental two-scale algorithm
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The Newton method in every RVE is described in detail in Algorithm 3. This is
used in the full parallel two-scale method in Algorithm 4 for the evaluation of the
residual and for the computation of the linearisation on macro-scale. The damping
factors in S5) and N7) are chosen by a line search strategy such that the next residual
is decreasing.

Algorithm3:Nonlinear computation of themicro-fluctuation vn,k
ξ,h at time tn

and Newton iteration k in step N1) of Algorithm 4 depending on the strain approxi-
mation ε

n,k
ξ,H of the incremental macro-problem.

S0) On p with ξ ∈ Ω p evaluate ε
n,k
ξ,H = ε(un,k

H )(ξ) and send ε
n,k
ξ,H to all processes.

Set vn,k,0
ξ,h = ∑

l

(
ε
n,k
ξ,H : ηl

)
wn,k−1

ξ,h,l , Cn,k,0
ξ,h = Cn,k

ξ,h , and m = 0.

S1) Evaluate themicro-strain ε
n,k,m
ξ,h = ε

n,k
ξ,H + ε(vn,k,m

ξ,h ), the nonlinearmaterial response zn,k,m
ξ,h =

zξ,h,n(ε
n,k,m
ξ,h ), the micro-stress

σ
n,k,m
ξ,h = ∂εW (ε

n,k,m
ξ,h , zn,k,m

ξ,h ) ,

and the micro-residual

〈Fh(v
n,k,m
ξ,h ), δvξ,h〉 =

∫
Y ξ

σ
n,k,m
ξ,h : ε(δvξ,h) dx , δvξ,h ∈ Vξ,h .

S2) If the micro-residualFh(v
n,k,m
ξ,h ) is small enough, set vn,k

ξ,h = vn,k,m
ξ,h , σ n,k

ξ,h = σ
n,k,m
ξ,h andCn,k

ξ,h =
Cn,k,m

ξ,h , and go to N2).
S3) If m = mmax, reduce �tn and go to T1).
S4) Evaluate the consistent tangent operatorCn,k,m

ξ,h = Cξ,h,n(ε
n,k,m
ξ,h ) and compute�vn,k,m

ξ,h ∈ Vξ,h
solving in parallel

∫
Y ξ

Cn,k,m
ξ,h [ε(�vn,k,m

ξ,h )] : ε(δvξ,h) dx = −〈Fh(v
n,k,m
ξ,h ), δvξ,h〉 , δvξ,h ∈ Vξ,h .

S5) Select a damping parameter sn,k,m ∈ (0, 1] and set

vn,k,m+1
ξ,h = vn,k,m

ξ,h + sn,k,m�vn,k,m
ξ,h .

If sn,k,m ≤ smin, reduce �tn and go to T1).
S6) Set m := m + 1 and go to S1).
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Algorithm 4: Parallel heterogeneous two-scale method for inelastic mate-
rials using Algorithm 3 in Yξ .
T0) For all points ξ ∈ ΞH with representative micro-structure compute in parallel the micro-

fluctuations w0
ξ,h,1, . . . ,w

0
ξ,h,6 ∈ Vξ,h solving

∫
Y ξ

C(x)[ηl + ε(w0
ξ,h,l )] : ε(δvξ,h) dx = 0 , δvξ,h ∈ Vξ,h ,

and compute the elastic multi-scale tensor

C0
ξ,H = 1

|Yξ |
6∑

l, j=1

(∫
Y ξ

C(x)[ηl + ε(w0
ξ,h,l )] : η j dx

)
ηl ⊗ η j .

Set z0h = 0, t0 = 0, and n = 1.
T1) For given history variable zn−1

h and time increment �tn ∈ (0, T − tn−1) set tn = tn−1 + �tn
and compute the following steps:
N0) Set un,0

H = un−1
H , zn,0

ξ,h = zn−1
ξ,h , Cn,0

ξ,h = Cn−1
ξ,h , wn,0

ξ,h,l = wn−1
ξ,h,l , and k = 0.

Set Dirichlet data un,0
H (x) = uD(x, tn) on all nodal points x ∈ ∂ΩD of the macro-space

VH .
N1) Evaluate the macro-strain ε

n,k
H = ε(un,k

H ) and compute the micro-fluctuation for all ξ ∈
ΞH by Algorithm 3.

N2) Compute the macro-stress

σ
n,k
ξ,H = 1

|Yξ |
∫
Y ξ

σ
n,k
ξ,h dx

and the macro-residual

〈FH (un,k
H ), δuH 〉 =

∫
ΞH

σ
n,k
ξ,H : ε(δuH ) − 〈�n, δuH 〉 , δuH ∈ VH (0) .

N3) If macro-residual small enough, set unH = un,k
H , znh = zn,k

h , n := n + 1, and go to T1).
N4) If k = kmax, reduce �tn and go to T1).
N5) Compute the micro-fluctuations wn,k

ξ,h,1, . . .w
n,k
ξ,h,6 ∈ Vξ,h solving in parallel

∫
Y ξ

Cn,k
ξ,h[ηl + ε(wn,k

ξ,h,l )] : ε(δvξ,h) dx = 0 , δvξ,h ∈ Vξ,h .

Then compute the inelastic multi-scale tensor

Cn,k
ξ,H =

∑
l, j

(
1

|Yξ |
∫
Y ξ

Cn,k
ξ,h[ηl + ε(wn,k

ξ,h,l )] : η j dx

)
ηl ⊗ η j .

N6) Compute �un,k
H ∈ VH (0) solving in parallel

∫
ΞH

Cn,k
ξ,H [ε(�un,k

H )] : ε(δuH ) = −〈FH (un,k
H ), δuH 〉 , δuH ∈ VH (0) .

N7) Select a damping parameter sn,k ∈ (0, 1] and set

un,k+1
H = un,k

H + sn,k�un,k
H .

If sn,k ≤ smin reduce �tn and go to T1).
N8) Set k := k + 1 and go to N1).



88 R. S. Nejad and C. Wieners

Fig. 4.5 Deformation of the periodic micro-fluctuations w0
ξ,h,k corresponding to the basis tensors

ηk in Sym(3) and stress distribution in the RVE

4.6 Numerical Experiments for Inelastic Material Models

The inelastic two-scale method is now applied to fibre reinforced polymers, again
using the test configuration in Fig. 4.2 with boundary conditions (4.7). The material
parameters for the inelastic models are taken from [27]. The damping and yielding
point parameter in the damage model for the polymer is set to H = 0.22702 and
Y0 = 0.08692, and for isotropic plasticitywe use yield strengthσy = 25 and isotropic
linear hardening law with parameters H0 = 1 and K∞ − K0 = 0.

The two-scale damage model In the first experiment we investigate the inelastic
uniaxial tensile test with the damage model, using a fibre reinforced micro-structure
with 10%fibre volume fraction and a fibre orientation of 90◦.We use 1024 integration
points for the approximation of themacro-solution, and in every RVE a discretisation
with dim Vξ,h = 823 875 for the representation of the micro-fluctuations vnξ,h and
dim Zξ,h = 2 097 152 to represent the variable dn

ξ,h at every integration point in the
RVE.

At the beginning in step T0) ofAlgorithm 4, corresponding to the 6 symmetric ten-
sor basis ηk , the representative micro-fluctuations w0

ξ,h,k are computed determining
the averaged linear material, see Fig. 4.5.

Starting with d0 = 0, this is used to compute the elastic material response in every
loading step for all RVE until the material response gets inelastic, see Fig. 4.6 for an
example at a sample point.
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load step 15 load step 31 load step 42

Fig. 4.6 Evolution of the damage variable dnξ,h(ε
n
ξ,h) in the RVE at the sample point ξ =

(0.115470, 0.302831, 1.183013)�

load step 17

load step 21

load step 43

Fig. 4.7 Evolution of the stress (left) and the damage variable (right) in the tensile test with 10%
fibre volume fraction and fibre orientation of 90◦

The macroscopic evolution of the averaged stress and damage variable

σ n
ξ,H = 1

|Yξ |
∫
Y ξ

σ n
ξ,h dx , dn

ξ,H = 1

|Yξ |
∫
Y ξ

dn
ξ,h dx

is shown in Fig. 4.7. Finally, the material response in all RVEs gets inelastic.
The overall simulation for t ∈ [0, 132] requires 43 loading incrementswith 42 735

evaluations of the effective algorithmic tangent Cn
ξ,H with 216 894 Newton iterations
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Fig. 4.8 Stress-strain curves of a uniaxial monotonic tensile test for a unidirectional short fibre
reinforced material with different fibre volume fractions and fibre orientations. Here, stress σz and
strain εz are evaluated by (4.8)

for the computation of the micro-fluctuation in Algorithm 3. The computation takes
4d 22h 41min on the ForHLR II cluster4 with 512 = 32 × 16 cores.

Various fibre orientations and filler contents In the next test we investigate the
inelastic material response of the damage model for different fibre orientations and
volume fractions, see the stress-strain curves in Fig. 4.8. We clearly observe that the
strength of the material is increased by a large volume fraction of the fibres, and

4https://www.scc.kit.edu/dienste/forhlr2.php.

https://www.scc.kit.edu/dienste/forhlr2.php
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the damage process is stronger for a fibre orientation orthogonal to the applied load.
The simple damage model is limited to moderate loads, cf. Remark 4.4.1, so we stop
the incremental test when the overall amount of damage is getting too large and the
algorithmic tangent gets indefinite.

Comparison of inelastic two-scale models The simple damage model is not suf-
ficient for a realistic description of fibre reinforced polymers. Experimental data in
[21, Chap. 2.2, Fig. 6] exhibit in addition to the damage process characteristics of an
elasto-plastic yield limit and hardening effects. For the numerical investigation of the
different inelastic effects we consider cyclic loading using an uniaxial displacement
driven load at x3 = 6.5 with

u(t, x) =
{

(t − Tk−1)u0 Tk−1 < t < Tk loading,

(Tk − t)u0 Tk < t < Tk+1 unloading,
u0 = u0

⎛
⎝0
0
1

⎞
⎠

for the transition points T0 = 0 < T1 < T2 < · · · from loading to unloading and from
unloading to loading. The scaling factor is set to u0 = 0.01.

For the comparison of the different models we compute several load cycles, see
Fig. 4.9. The transition points T1, T3, T5, . . . are chosen such that the maximal stress
is increased in every load cycle, and for complete unloading we set T2k = 2T2k−1 −
T2k−2. We select an unidirectional micro-structure with 10% fibre volume fraction
and orientation aligned to the traction force. In all cases we use on the macro-scale
128 sample points and in each RVE a discretisation with dim Vξ,h = 107 811 and
262 144 integration points for the representation of the memory variables znξ,h .

For the inelastic evolution the simulation of the damage model requires 1 003
loading increments for 4 load cycles with together 457 012 Newton iterations for
the computation of the micro-fluctuation, and 73 155 evaluations of the effective
material response. Finally, the response in each sample point is inelastic. The load is
increased in every load cycle, so that the stress response is more and more reduced,
but no permanent deformation remains after unloading, see Fig. 4.9a.

In the elasto-plastic model we compute 298 loading increments for 2 load cycles
requiring 218 098Newton iterations for the computation of themicro-fluctuation vnξ,h
and 94 420 evaluations of the material response. Here, the response in 126 of 128
sample points behaves inelastic. Since the equivalent strain is monotone increasing in
every inelastic increment, a residual stress remains after unloading, which is clearly
observed in Fig. 4.9b. Also the yield stress and the linear hardening is characterised
by the stress-strain curve: the effective yield stress is linearly increased in every
loading cycle, and the elastic unloading is shifted in parallel by the equivalent strain
increment.

The results for the combined model are computed with 620 loading increments in
347296Newton iterationswith 51 691 evaluations for the effectivematerial response,
see Fig. 4.9c.Here,we observe both defectmechanisms, the shift of the residual stress
after unloading caused by hardening effects, and the decreasing stiffness in the elastic
unloading since in every load cycle the overall damage is increased.
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Fig. 4.9 Stress-strain curve (left) and stress-load step diagram (right) of uniaxial cyclic tensile tests
with 10% fibre volume fraction and 90◦ fibre orientation with respect to the tensile load for a short
fibre reinforced composite using different material models
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Table 4.3 Numerical results for the macroscopic stress integral for the damage model with RVEs
of different size

DoFs σ δ
H σ

δ/2
H σ

δ/4
H

375 95.739 73.746 63.559

2187 89.540 75.731 55.794

14739 85.206 64.988 50.780

107811 72.803 59.322 48.392

823875 66.679 56.745 47.373

6440067 63.955 55.558 46.654

h −→ 0 61.551 54.462 45.770

Fig. 4.10 Region of interest Ωctr = (0, 0.5) × (−0.2, 0.2) × (0, 2) ⊂ Ω with the full resolution
of the RVEs

Comparing with experimental data [21, Chap. 2.2, Fig. 6] we observe that the
two-scale model combining damage and plasticity is suitable for qualitatively correct
description of the effective material behaviour, and that the coarse resolution on the
macro-scale and the moderate resolution on the micro-scale is sufficient to capture
these effects correctly.

Convergence test for the inelastic two-scale method In order to test whether the
characteristic length scale resolution is sufficient,we compare the results of the tensile
test for the damage model depending on the sample size δ and the mesh size h of the
RVE, using an isotropic fibre distribution with 10% volume fraction, see Table 4.3.
Comparing the resultswith the elastic case in Table 4.1we observe that in the inelastic
case the full resolution of the micro-structure is required, since for fractions of the
RVE with δ/2 and δ/4 the material response is considerably different. Here, this
is tested with fixed approximation on the macro-scale with dim VH = 165, and for
different δ the convergence with respect to the mesh size h on the micro-scale is
considered. From this we can roughly estimate an accuracy of approximately 10%
for the stress-strain curves in Fig. 4.9. For more details on the convergence analysis
and the estimation of the extrapolated values for h −→ 0 we refer to [24, Chap. 7.3].

A reduced method The full simulation of the cyclic inelastic material behaviour is
computationally very expensive. So we reduce the computational model by using a
full resolution only in a region of interest Ωctr ⊂ Ω which is also used to evaluate
the stress-strain curve by (4.8), see Fig. 4.10. Then, we use a fine resolution Vξ,h and
Zξ,h for Yξ ⊂ Ωctr, and for Yξ �⊂ Ωctr coarser spaces V red

ξ,h and Z red
ξ,h .
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Fig. 4.11 Comparison of the
cyclic stress-strain curves
between the reduced (blue)
and full (red) two-scale
method

We evaluate the reduced model for the cyclic loading test with the damage model,
see Fig. 4.9a, using dim V red

ξ,h = 14 739 and dim Z red
ξ,h = 14 739 for ξ /∈ Ωctr. The

stress-strain curve is evaluated in the region of interest.
Comparing the results between the full and the reduced model in Fig. 4.11 shows

that they differ by less then 1%, i.e., the less accurate approximation in the RVEs out-
side the region of interest has only a very small influence to the averagedmacroscopic
solution inΩctr. The simulation for the reduced model with 938 time increments and
together 439814 Newton iterations in the RVEs requires 45 hours and for the full
model approximately 3 days on the IC2 cluster5 with with 256 cores distributed on
16 nodes.

Conclusion and outlook The full inelastic two-scale method of small-strain damage
and plasticity models can be realised in an extremely large tensor product finite
element space VH × ∏

ξ Vξ,h , and in case of fine micro-structures small mesh sizes h
are required. Since every RVE may have a different evolution, all memory variables∏

ξ Zξ,h need to be stored. Thus large parallel machines are required to realise this
method and to represent the data well distributed. Here we propose a parallel solution
scheme with an efficient parallel data representation and a stable two-stage nonlinear
Newton method to determine the minimiser of the incremental loading step.

Nevertheless, on parallel machines with 1024 cores the full simulation of several
loading cycles still requires a few days. For the next generation of high performance
computers, our method has to be enhanced, see [3] for concepts to a flexible load
balancing for a two-scale method applied to dual-phase steel. A further acceleration
can be achieved by model reduction [6, 7], where the presented parallel two-scale
method can be used in the offline phase in order to compute a suitable reduced basis.
Our first test in Fig. 4.11 shows that is approach is promising.

5https://www.scc.kit.edu/dienste/ic2.php.

https://www.scc.kit.edu/dienste/ic2.php
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Chapter 5
Fast Boundary Element Methods
for Composite Materials

Richards Grzhibovskis, Christian Michel and Sergej Rjasanow

5.1 Introduction

Boundary element method (BEM) has become an indispensable tool for comput-
ing approximate solutions to many important boundary value problems (BVPs). The
main advantages of this method are: the absence of a volume mesh, high accuracy
on low order elements, numerical stability, and a low number of discrete unknowns.
In its original form, BEM can be applied if the differential operator in question is
linear, elliptic, and has constant coefficients. The BVPs arising from mechanics of
composites often do not fit into these constraints. We consider a rather simple me-
chanical model involving material damage (see Sect. 5.2). It leads to a non-linear
BVP with variable (even solution dependent) coefficients. Our approach to obtain
a fast BEM for this BVP consists in the following steps. First, we reduce the non-
linear BVP to a sequence of linear elliptic, non-homogeneous BVPs with constant
coefficients. We then construct approximate particular solutions to the differential
equations from the latter problems with the help of a new kind of radial basis func-
tions (RBFs). These particular solutions allow us to reduce the non-homogeneous
BVPs to homogeneous ones, which can be treated by the pure BEM.

This chapter is organised as follows. The formulation of the non-linear BVP, its
reduction to a sequence of linear problems is described in Sect. 5.2. An approximate
solution is then written with the help of discrete boundary integral operators while
assuming that a particular solution is known.Away of constructing the necessary par-
ticular solution (or its approximation) is proposed in Sect. 5.3. An efficient numerical
procedure for the solution of the RBF interpolation problem is described in Sect. 5.4.
Theoretical results from Sects. 5.3 and 5.4 are illustrated with numerical examples in
Sect. 5.5. Approximate solutions to the original nonlinear BVP are then constructed
in the context of composite materials. The results are reported in Sect. 5.6.

R. Grzhibovskis · C. Michel · S. Rjasanow (B)
University of Saarland, 66123 Saarbrücken, Germany
e-mail: rjasanow@num.uni-sb.de

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
S. Diebels and S. Rjasanow (eds.), Multi-scale Simulation of Composite Materials,
Mathematical Engineering, https://doi.org/10.1007/978-3-662-57957-2_5

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57957-2_5&domain=pdf
mailto:rjasanow@num.uni-sb.de
https://doi.org/10.1007/978-3-662-57957-2_5


98 R. Grzhibovskis et al.

5.2 Mechanical Modelling

Consider a solid body modelled by a bounded Lipschitz domain Ω ⊂ R3. Suppose,
for simplicity, that a displacement field gD is given on the boundary Γ = ∂Ω . The
displacement field u ∈ (H 1(Ω))3 inside the domainΩ is the solution of the Dirichlet
BVP.1

{
div σd(u, x) = 0, x ∈ Ω,

γ0u(x) = gD(x), x ∈ Γ ,
(5.1)

where
σd(u, x) = (1 − d(u, x, hist))σ (u, x)

is the stress field and
γ0 : H 1(Ω) → H 1/2(Γ )

is the Dirichlet trace operator. The non-linear expression for the stress tensor σd was
derived in [32]. The linear material response σ(u, x) = Cε(u, x) to the strain

ε(u, x) = 1

2
(∇u(x) + ∇�u(x))

is reduced due to the displacement and history dependent damage d(u, x, hist) dis-
tributed inside the solid body. During an incremental application of the boundary
conditions, this damage first appears at points, where the deformation energy

Y (u, x) = ε(u, x) : Cε(u, x)

exceeds a certain material dependent threshold Y 2
0 . Once it is occurred, the material

remains damaged even if the load is reduced. The formula for the damage reads

d(u, x, hist) = max
τ∈hist(d(u, x, τ ), 1 − exp(−H0(

√
Y (u, x) − Y0))),

where d(u, x, τ ) denotes the damage during previous load increments. Taking a finite
number of increments, we look for the equilibrium of forces while accounting for
the history of the damage, i.e. we solve the following ninc non-linear BVPs

{
div σ(ui , x) = div (d(ui , x, (0, τi ))σ (ui , x)), x ∈ Ω,

γ0ui (x) = τi gD(x), x ∈ Γ,
(5.2)

where τi = i/ninc and i = 1, . . . , ninc. To resolve the non-linearity, we construct a
sequence (ui,k)k∈N to approximate the function ui for each load increment by setting

1One seeks for the solution u in the subspace
{
v ∈ (H1(Ω))3 : div σd (v, x) ∈ (L2(Ω))3

}
of the

Sobolev space (H1(Ω))3.
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u0,0 = 0 and employing fixed point iterations

{
div σ(ui,k+1, x) = div (d(ui,k, x, (0, τi ))σ (ui,k, x)), x ∈ Ω,

γ0ui,k+1(x) = τi gD(x), x ∈ Γ,
(5.3)

for 0 ≤ k ≤ Ki until the convergence criterion

‖ui,Ki+1 − ui,Ki ‖L2(Ω)/‖ui,Ki+1‖L2(Ω) < εStop

is fulfilled with some prescribed accuracy εStop. The approximate solution for the
load increment number i is then set as an initial approximation for the next increment,
i.e. ui+1,0 = ui,Ki+1 .

In what follows, we describe a boundary integral approach for solving the linear
problem (5.3) when the domain Ω either is isotropic and homogeneous (see Sect.
5.2.1) or consists of such parts (see Sect. 5.2.2). A new ansatz for approximating a
particular solution is proposed later to avoid volume integrals. It is based on matrix
valued radial basis functions, which are described in Sect. 5.3.

5.2.1 Single Domain Formulation

To perform a single fixed point iteration the linear Dirichlet BVP

{
div σ(v, x) = f (x), x ∈ Ω,

γ0v(x) = g(x), x ∈ Γ,
(5.4)

with v = ui,k+1, g = τi gD , and f (x) = div (d(ui,k, x, (0, τi ))σ (ui,k, x)) must be
solved. If the undamaged material is homogeneous and isotropic, it can be char-
acterised by just two scalar parameters (Lamé constants) λ and μ. In this case the
expression for stress reduces to

σ(v, x) = λ tr ε(v, x)I + 2με(v, x) ,

and the equilibrium of forces is determined by the Lamé system

μΔv + (λ + μ)grad div v = f . (5.5)

Suppose a function v f
P satisfies theEq. (5.5). The solution to theBVP (5.4) can then

be composed as the sum v = vB + v f
P , where the function vB solves the homogeneous

problem

{
μΔvB + (λ + μ)grad div vB = 0, in Ω,

γ0vB(x) = g(x) − γ0v
f
P(x), x ∈ Γ.

(5.6)
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Since the Lamé differential operator is elliptic with constant coefficients, its fun-
damental solution U ∗ is well known

U ∗(x, y) = 1 + ν

8πE(1 − ν)

(
3 − 4ν

|x − y| I + (x − y)(x − y)�

|x − y|3
)

. (5.7)

Here I is the three by three identity matrix. The Young modulus E and the Pois-
son’s ratio ν are related to the Lamé constants through

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
.

The solution to the problem (5.6) can be written with the help of the Neumann
trace operator

γ1 : H 1(Ω) → H−1/2(Γ ), γ1w(x) = lim
Ω
y→x

σ(w, y)n(x) (5.8)

and the boundary potentials

Ṽ : H−1/2(Γ ) → H 1(Ω), (Ṽ w)(x) =
∫
Γ

U ∗(x, y)w(y)dSy, (5.9)

K̃ : H 1/2(Γ ) → H 1(Ω), (K̃w)(x) =
∫
Γ

γ1,yU
∗(x, y)w(y)dSy . (5.10)

It reads

vB = Ṽ t − K̃ (g − γ0v
f
P), (5.11)

where the Neumann trace t = γ1vB represents traction forces on the boundary. This
function is the unique solution to the boundary integral equation on Γ

(V t) =
(
1

2
+ K

)(
g − γ0v

f
P

)
, (5.12)

with the single layer potential operator V = γ0Ṽ and the double layer potential
operator

K : H 1/2(Γ ) → H 1/2(Γ ), (Kw)(x) = v.p.
∫
Γ

γ1,yU
∗(x, y)w(y)dSy . (5.13)

Thus, the missing ingredient in the representation formula (5.11) is expressed
through the Dirichlet-to-Neumann mapping S (Steklov-Poincaré operator) as

t = S(g − γ0v
f
P) ,
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where

S : H 1/2(Γ ) → H−1/2(Γ ), S = V−1

(
1

2
+ K

)
. (5.14)

This operator can also be written in the following symmetric form

S = D +
(
1

2
+ K ′

)
V−1

(
1

2
+ K

)
, (5.15)

with the help of the adjoint double layer potential operator K ′ and the hypersingular
operator D, namely

K ′ : H 1/2(Γ ) → H 1/2(Γ ), (K ′w)(x) = v.p.
∫
Γ

γ1,xU
∗(x, y)w(y)dSy, (5.16)

D : H 1/2(Γ ) → H−1/2(Γ ), Dw = −γ1 K̃w. (5.17)

We sum up the above computations and write the solution to the BVP (5.4) as

v = (Ṽ S − K̃ )(g − γ0v
f
P) + v f

P . (5.18)

We can now determine the reaction forces on the boundary Γ by computing the
conormal derivative of the displacement v as

γ̄1v(x) = lim
Ω
y→x

(1 − d(v, y, hist))σ (v, y)n(x) =
= (1 − γ0d(x))(S(g − γ0v

f
P) + γ1v

f
P), (5.19)

where the material damage computed at the displacement field from the previous
iteration is denoted by d, i.e.

d(x) = d(ui,k, x, hist) . (5.20)

5.2.2 Multi-domain Formulation

We now consider a body with piecewise isotropic and homogeneous material prop-
erties. More precisely, we allow pairwise separated inclusions

Ωm , 1 ≤ m ≤ nΩ

to be present in the domain Ω , see Fig. 5.1. Their boundaries

Γm , 1 ≤ m ≤ nΩ
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Fig. 5.1 Notations for the
multi domain formulation Γ0

n

n

Ω2
Ω1

Ωmat

must not intersect the boundary Γ0 = ∂Ω . We denote by Ωmat the domain occupied
by the matrix material, i.e.

Ωmat = Ω \
nΩ⋃
m=1

Ωm .

This implies the relation

Γmat = ∂Ωmat =
nΩ⋃
m=0

Γm .

We now restate the BVP (5.3) in a form suitable for treatment with the boundary
integral method. As in the previous Subsection, denote the unknown function ui,k+1

by v, the right hand side of the PDE by f , and the given boundary datum by g.
Due to the assumptions on thematerial properties, the displacement field v satisfies

the equation
μmΔv + (λm + μm)grad div v = f in Ωm

form ∈ {mat, 1, 2, . . . , nΩ} in each each subdomain and in thematrixmaterial. Here
μm and λm are the Lamé constants of the corresponding material. The continuity
condition for the displacements on the internal boundaries reads

γ mat
0 v = γ m

0 v on Γm , 1 ≤ m ≤ nΩ ,

where the upper index of the trace operator indicates the domain in which the limit
is taken i.e.

γ m
0 w(x) = lim

Ωm
y→x
w(y), x ∈ Γm .

Assuming that the damage occurs only in the matrix material, the equilibrium of
the traction forces on the internal boundaries can be expressed as

γ̄ mat
1 v = γ m

1 v on Γm , 1 ≤ m ≤ nΩ ,

where
γ̄ mat
1 w(x) = (1 − γ mat

0 d(x))γ mat
1 w(x), x ∈ Γmat
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holds for any smooth w. The damage function in the above formula is determined by
(5.20). Thus, the BVP for the case with isolated inclusions reads for 1 ≤ m ≤ nΩ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μmatΔv + (λmat + μmat )grad div v = f , in Ωmat ,

μmΔv + (λm + μm)grad div v = 0, in Ωm ,

γ mat
0 v(x) = γ m

0 v(x), x ∈ Γm ,

γ̄ mat
1 v(x) = γ m

1 v(x), x ∈ Γm ,

γ mat
0 v(x) = g(x), x ∈ Γ0 .

(5.21)

The second equation in the above system implies, that

γ m
1 v = Smγ m

0 v , m = 1, . . . , nΩ .

Here the Steklov-Poincaré operator Sm for the m-th inclusion is defined by (5.15)
with the corresponding integration over the surfaceΓm . To find the displacement field
in the matrix material, we first have to introduce the particular solution. Suppose,
that we have constructed a function v f

P : Ωmat → R3 such that

μmatΔv f
P + (λmat + μmat )grad div v f

P = f in Ωmat

holds. We now look for the unknown in the form v = vB + v f
P . The BVP (5.21) in

these settings is reduced to the following m + 1 equations

((1 − d)Smat − Sm)γ mat
0 vB = Smγ mat

0 v f
P − (1 − d)γ mat

1 v f
P on Γm , (5.22)

γ mat
0 vB = g − γ mat

0 v f
P on Γ0 . (5.23)

Because of the Dirichlet condition above, this system is uniquely solvable. The
boundary Γmat is a union of mutually disjoint closed boundaries Γm , 0 ≤ m ≤ nΩ .
Thus, we write the trace γ mat

0 v as the sum

γ mat
0 v(x) =

nΩ∑
m=0

vm(x),

where

vm(x) =
{

γ mat
0 v(x) , x ∈ Γm,

0 , x ∈ Γ \ Γm .

A substitution of this ansatz into (5.22) and the use of (5.23) yields the integral
equations for all unknown functions vm for 1 ≤ m ≤ nΩ

(1 − d)

nΩ∑
j=1

Smat v j − Smvm = (5.24)

Smγ mat
0 v f

P − (1 − d)γ mat
1 v f

P + (1 − d)(Smat (γ
mat
0 v f

P − g)) on Γm .
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In the next subsection, we describe a symmetric Galerkin discretisation of the
above equations on triangular meshes.

5.2.3 Galerkin Discretisation of the Integral Equations

We consider a sequence of boundary element meshes

ΓN =
N⋃


=1

τ 
, N ∈ N . (5.25)

In themost simple case, we assume thatΓN is piecewise polyhedral and consists of

N = N0 +
nΩ∑
k=1

Nk

plane triangular boundary elements. Here, N0 denotes the number of boundary ele-
ments on the surface Γ0 while Nk is the number of boundary elements on the surface
Γk of the inclusion Ωk , k = 1, . . . , nΩ . The set of the nodes of the triangulation
(5.25) will be denoted by

{
x j
}M
j=1, where

M = M0 +
nΩ∑
k=1

Mk .

We use the piecewise constant functions on ΓN (ψ
 is 1 on τ
 and 0 outside τ
) as
basis and test functions for the discretised single layer potentials. These functions also
serve as test functions for the double layer potentials (5.13). The basis functions for
the hypersingular and the adjoint double layer potentials are chosen to be piecewise
linear: ϕ j (xi ) = δi j , ϕ j is linear on each τ
. These functions are also used as trial
functions for hypersingular operators (5.17) and double layer potentials (5.13).

Corresponding to the definition (5.15), the discretisation of the Steklov–Poincaré
operators for a given subdomain is

Sh = Dh +
(1
2
M�

h + K�
h

)
V−1
h

(1
2
Mh + Kh

)
. (5.26)

The above fully populated matrices are composed of the following three by three
blocks

(Vh)k
 = 〈V (ψ
 I ), ψk〉, (Kh)k j = 〈K (ϕ j I ), ψk〉, (Dh)i j = 〈D(ϕ j I ), ϕi 〉,
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where I is a three by three identity matrix, 〈·, ·〉 denotes the scalar product on L2(Γ ),
and k, 
 = 1, . . . , N , i, j = 1, . . . , M . The sparsemassmatrixMh consists of blocks

(Mh)k j =
⎛
⎝∫

τk

ϕ j (x)dsx

⎞
⎠ I.

We renumber the degrees of freedom according to Cartesian directions. Thus,
instead of composing the matrix Vh as N by N table of symmetric 3 by 3 blocks, we
compose 6 symmetric N by N blocks. Furthermore, the matrix corresponding to the
first term in (5.7) is computed separately. In these settings, the matrix Vh is

Vh = 1

2E

(
1 + ν

1 − ν

)⎛⎝(3 − 4ν)

⎛
⎝V0,h 0 0

0 V0,h 0
0 0 V0,h

⎞
⎠+

⎛
⎝V11,h V21,h V13,h

V21,h V22,h V23,h

V31,h V32,h V33,h

⎞
⎠
⎞
⎠ .

Here, the symmetric N × N matrix V0,h is the Galerkin discretisation of the single
layer potential for the Laplace operator by the use of the piecewise constant functions.
Its entries are given by

V0,h[k, 
] = 1

4π

∫
τk

∫
τ


1

|x − y| dsy dsx , k, 
 = 1, . . . , N . (5.27)

The symmetric N × N matrices Vi j,h are defined for i, j = 1, 2, 3 as follows

Vi j,h[k, 
] = 1

4π

∫
τk

∫
τ


(xi − yi )(x j − y j )

|x − y|3 dsy dsx , k, 
 = 1, . . . , N . (5.28)

These matrices do not depend on material parameters, and, therefore, can be
repeatedly used for identical inclusions. The inner integrals in (5.27)–(5.28) can be
computed analytically while the Gaussian quadrature rule should be applied to the
outer integrals, see [45] for details.

The double layer potential operator K can be represented in terms of the single
and double layer potential operators for the Laplace operator and of the above single
layer potential operator for the Lamé system as follows

(Kv)(x) = (K0v)(x) − (V0M(∂, n)v)(x) + E

1 + ν
(V M(∂, n)v)(x) ,

where K0 and V0 are the double and the single layer potentials for the Laplace
operator, and V is the single layer potential of linear elasticity. In addition, we have
used the matrix surface curl operator given by

Mi j (∂y, n(y)) = n j (y)
∂

∂yi
− ni (y)

∂

∂y j
(5.29)
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for i, j = 1, 2, 3. The Galerkin matrix Kh ∈ R3N×3M for the double layer potential
matrix of linear elasticity reads then

Kh =
⎛
⎝ K0,h 0 0

0 K0,h 0
0 0 K0,h

⎞
⎠−

⎛
⎝V0,h 0 0

0 V0,h 0
0 0 V0,h

⎞
⎠ T̃ + E

1 + ν
Vh T̃ ,

where V0,h and K0,h are the Galerkin matrices related to the single and double layer
potential of the Laplace operator. Furthermore, T̃ ∈ R3N×3M is a sparse transforma-
tion matrix related to the matrix surface curl operator M(∂, n). The entries of the
matrix K0,h ∈ RN×M are

K0,h[k, j] = 1

4π

∫
τk

∫
Γ

(x − y, n(y))

|x − y|3 ϕ j (y)dsydsx

for k = 1, . . . , N , j = 1, . . . , M .
For the Galerkin discretisation of the hypersingular operator D, the following

identity is used

〈Du, v〉Γ =
μ

4π

∫
Γ

∫
Γ

1

|x − y|
3∑

k=1

( ∂

∂Sk(y)
u(y),

∂

∂Sk(x)
v(x)

)
dsydsx +

∫
Γ

∫
Γ

(M(∂x , n(x))v(x))�
(

μ

2π |x − y| I − 4μ2U ∗(x, y)
)
M(∂y, n(y))u(y)dsydsx +

μ

4π

∫
Γ

∫
Γ

3∑
i, j,k=1

Mkj (∂x , n(x))vi (x)
1

|x − y|Mki (∂y, n(y))v j (y)dsydsx

with the surface curl operator M(∂, n) defined by (5.29) and

∂

∂S1(x)
=M32(∂x , n(x)),

∂

∂S2(x)
=M13(∂x , n(x)),

∂

∂S3(x)
=M21(∂x , n(x)).

Thus, the Galerkin matrix Dh ∈ R3M×3M can be represented in terms of the trans-
formation matrix T̃ and of the Galerkin matrices related to the single layer potentials
of both, the Laplace operator V0,h and the system of linear elastostatics Vh . We skip
the details.

The fully populated matrices Vi j,h and K0, h needed for applying the discrete
version of the Dirichlet-to-Neumann map Sh are efficiently approximated by the
use of the Adaptive Cross Approximation procedure (ACA) (see [6, 8, 9]). This
procedure reduces the computer memory requirement and the computational effort
of thewhole BEMmethod from quadratic to an almost linear complexity with respect
to the number of nodes in the mesh.
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5.3 Matrix Valued Radial Basis Functions

An interpolation by the means of radial basis functions (RBFs) has found its appli-
cation in many different areas of research, e.g. data mining [29], imaging [2, 49],
neuronal networks [54] and machine learning [14]. The interpolant is sought as a
linear combination of radial functions, and the coefficients are found from the in-
terpolation conditions. The procedure does not require an underlying mesh, and the
obtained interpolant is smooth. The solvability and the accuracy properties of the
interpolation problem have been extensively studied in [11, 15, 50].

Another application of the RBF technique is to approximate solutions of partial
differential equations (PDEs) [21] or BVPs [33, 50, 52, 53]. An approximate solution
ũ to the scalar PDE of the form Lu = f can be obtained by first constructing a RBF
interpolant for the right hand side f , i.e.

N∑
j=1

α jφ(xi − x j ) = f (xi ), X = {x j }Nj=1 ⊂ Ω ⊂ Rd

α = (α1, . . . , αN )� ∈ RN and then setting

ũ(x) =
N∑
j=1

α j φ̃(xi − x j ),

where the function φ̃ satisfies Lφ̃ = φ. This approach was applied to the Laplacian
and Helmholtz-type operators in [12, 38, 48] and extended to other scalar operators
in [37, 46]. An application to the Lamé system for a special kind of the right hand
side can be found in [1]. More precisely, the volume force density of the right hand
side must originate form a scalar potential. Our aim is to extend the construction of
an approximate particular solution to cases with fairly general right hand sides. We
consider a system of PDEs and look for an approximation to its particular solution
as a linear combination of matrix-valued RBFs

u p(x) =
N∑
j=1

Φ(x − x j )α j , (5.30)

where α j ∈ Rd andΦ : Rd → Rd × d. First studies consideringmatrix-valued RBFs
to construct divergence free interpolants can be found in [35, 36, 40]. Later on, in
2008, a theory for curl-free interpolants was established in [19, 20].

We apply the operator L to the ansatz (5.30)

Lu p(x) =
N∑
j=1

LΦ(x − x j )α j
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and solve the interpolation problem

N∑
j=1

LΦ(xi − x j )α j = f (xi ), i = 1, . . . , N , (5.31)

for a function f : Ω → Rd . A major mathematical challenge in this approach is to
specify the requirements on the operator L and theRBFΦ to guarantee the solvability
of the system (5.31). In what follows, we will address these issues in the context of
the Lamé system and refer to [23] for more details and proofs.

5.3.1 Functional Spaces

For x ∈ Rd , we denote ‖x‖2 the Euclidean norm of x . Let the domain Ω ⊂ Rd be
bounded and simply connected having a Ck,1 boundary Γ . That is the boundary Γ

is locally given by the graph of a k − 1 times continuously differentiable function
and its derivatives of order k are Lipschitz continuous.Ck(Ω) is the space of k-times
continuously differentiable functions. The Lebesgue spaces L p(Ω) and the Sobolev
spaces Wk

p(Ω) are defined in the usual way. On Rd for p = 2, we use the Fourier
transform

f̂ (ξ) =
∫
Rd

f (x) exp(−ix�ξ)dx, ξ ∈ Rd

to characterise H τ (Rd) as

H τ (Rd) =
{
f ∈ L2(R

d) : f̂ (·)(1 + ‖ · ‖22)τ/2 ∈ L2(R
d)
}

The inverse Fourier transform is

f (x) = (2π)−d
∫
Rd

f̂ (ξ) exp(iξ�x)dξ, x ∈ Rd .

Sobolev spaces for vector-valued functions f : Ω → Rd are equipped with norm

‖ f ‖(W τ
p (Ω))d =

⎛
⎝ d∑

j=1

∥∥ f j∥∥p

W τ
p (Ω)

⎞
⎠

1/p

, 1 ≤ p < ∞,

and the semi-norm

| f |(W τ
p (Ω))d =

⎛
⎝ d∑

j=1

∣∣ f j ∣∣pW τ
p (Ω)

⎞
⎠

1/p

, 1 ≤ p < ∞.
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5.3.2 RBFs for the Lamé System

We recall the Lamé equations (5.5). In linear isotropic elastostatics the displacement
field u ∈ R3 of an elastic body occupying some reference configuration Ω ⊂ R3

satisfies the equilibrium equations or Lamé equations

Lu = −μΔu − (λ + μ)grad divu = f in ∈ Ω .

The constants λ and μ are the so called Lamé constants and are described in form

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
,

where E > 0 is the Young modulus and ν ∈ (0, 1/2) denotes the Poisson’s ratio. For
a given radial basis function φ : R3 → R, we define the trivial matrix-valued RBF

Φtriv =
⎛
⎝φ 0 0

0 φ 0
0 0 φ

⎞
⎠ ,

as an extension of the scalar valued case. Let c ∈ R3 be a constant vector. We can
apply the differential operator L to the vector Φtriv(x)c and obtain

LΦtriv(x)c = −μΔΦtriv(x)c − (λ + μ)grad divΦtriv(x)c ,

which generates a new matrix-valued RBF ΦLamé having the components

(ΦLamé)i j = −δi jμΔφ − (λ + μ)∂i jφ, i, j = 1, 2, 3 .

An important role in the study of an RBF plays its positive definiteness.

Definition 5.1 A d × d matrix-valued function Φ is positive definite on Rd if for
any set of distinct points X = {x j }Nj=1 ⊂ Rd the quadratic form

N∑
i, j=1

α�
i Φ(xi − x j )α j , α j ∈ Rd

is strictly positive for all α = (α�
1 , . . . , α�

N )� �= 0.

We will use the notation

AX,ΦLamé =
(
ΦLamé(xi − x j )

)N
i, j=1

(5.32)

for the interpolation matrix.
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Proposition 5.1 Let φ ∈ C2(R3) a positive definite RBF in R3. Additionally assume
φ and −Δφ are in L1(R3). Then the matrix-valued RBF ΦLamé is positive definite in
the sense of Definition 5.1.

5.3.3 Native Spaces

Native spaces play a crucial role in error analysis and they will be used later for error
estimates. Our presentation follows [19, Sect. 3.1], which is a simple generalisation
of [50, Chap. 10].

Definition 5.2 Let H be a Hilbert space of vector-valued functions f : Ω → Rd . A
continuous d × d matrix-valued function Φ is called a reproducing kernel for H if
for all x ∈ Ω and c ∈ Rd we have

1. Φ(· − x)c ∈ H ,

2. c� f (x) = ( f, Φ(· − x)c)H for all f ∈ H .

To construct the native space, we define an intermediate space

FΦ(Ω) =
⎧⎨
⎩

N∑
j=1

Φ(· − x j )α j : x j ∈ Ω,α j ∈ Rd and N ∈ N

⎫⎬
⎭

and equip this space with the bilinear form

⎛
⎝ N∑

j=1

Φ(· − x j )α j ,

L∑
i=1

Φ(· − yi )βi

⎞
⎠

Φ

=
N∑
j=1

L∑
i=1

β�
i Φ(yi − x j )α j , x j , yi ∈ Ω.

This defines an inner product on FΦ(Ω) if Φ is symmetric positive definite. The
completion of FΦ(Ω) with respect to the norm

‖·‖Φ = √
(·, ·)Φ

is denoted byFΦ(Ω). For an element f ∈ FΦ(Ω), the values of the function f are
defined by an injective linear map R : FΦ(Ω) → (C(Ω))d with

R( f )(x) = (
( f, Φ(· − x)e1)Φ , . . . , ( f, Φ(· − x)ed)Φ

)�
.

Definition 5.3 The native space for a symmetric positive definite kernelΦ is defined
byNΦ(Ω) = R(FΦ(Ω)) and is equipped with the inner product

( f, g)NΦ(Ω) = (R−1 f, R−1g)FΦ(Ω).
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Lemma 5.1 Suppose Φ is as in Definition 5.3. Further suppose G is a Hilbert
space of functions f : Ω → Rd with reproducing kernel Φ. Then G = NΦ(Ω) and
the inner products are the same.

The theory for scalar-valued positive definite functions in [51] reveals an alterna-
tive representation.

Lemma 5.2 Suppose that φ ∈ C(Rd) ∩ L1(Rd) is a real-valued positive definite
function. Define

G =
⎧⎨
⎩ f ∈ L2(R

d) ∩ C(Rd) : f̂√
φ̂

∈ L2(R
d)

⎫⎬
⎭

and equip this space with the bilinear form

( f, g)G = (2π)−d

⎛
⎝ f̂√

φ̂

,
ĝ√
φ̂

⎞
⎠

L2(Rd )

= (2π)−d
∫
Rd

ĝ(ξ) f̂ (ξ)

φ̂(ξ)
dξ.

Then G is a real Hilbert space with inner product (·, ·)G and reproducing
kernel φ. Hence G is the native space of φ on Rd , i.e. G = Nφ(Rd), and both
inner products coincide. In particular, every f ∈ Nφ(Rd) can be recovered from its
Fourier transform f̂ ∈ L1(Rd) ∩ L2(Rd).

In [19], a generalisation of Lemma 5.2 by the pseudo-inverse is given. This
construction is necessary, since the Fourier transforms of Φdiv and Φcurl are not
invertible. But in our case, the Fourier transform is always invertible. So we can
generalise Lemma 5.2 as

Lemma 5.3 Suppose that φ ∈ C2(R3) ∩ L1(R3) is a real-valued positive definite
function and −Δφ ∈ L1(R3). Define

GLamé =
⎧⎨
⎩ f ∈ (C(R3) ∩ L1(R

3))3 :
∫
R3

f̂ (ξ)∗̂ΦLamé(ξ)−1 f̂ (ξ) dξ < ∞
⎫⎬
⎭

and equip this space with the bilinear form

( f, g)GLamé = (2π)−3
∫
R3

ĝ(ξ)∗̂ΦLamé(ξ)−1 f̂ (ξ) dξ

Then GLamé is a real Hilbert space with inner product (·, ·)GLamé and reproducing
kernel ΦLamé. Hence G is the native space of ΦLamé on R3, i.e. G = NΦLamé(R

3), and
both inner products coincide.
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5.3.4 Stability

Following the works of Wendland and Fuselier, [19, 50], we look for a function Ψ

for which

N∑
j,k=1

α�
j Φ(x j − xk)αk ≥

N∑
j,k=1

α�
j Ψ (x j − xk)αk ≥ θ ‖α‖22 for all α j ∈ R3

holds. Then θ is a lower bound for the smallest eigenvalue of the interpolation matrix
AX,ΦLamé . To get a simple condition on Ψ , we first take a look at the quadratic form

α�AX,ΦLaméα =
∫
R3

∣∣∣∣∣
√

λ + μ

N∑
i=1

ξ�αi exp(−ix�
i ξ)

∣∣∣∣∣
2

φ̂(ξ)dξ+

∫
R3

‖ξ‖22
∥∥∥∥∥
√

μ

N∑
i=1

αi exp(−ix�
i ξ)

∥∥∥∥∥
2

2

φ̂(ξ)dξ .

For a positive definite function φ, we know according to [50], that φ̂ is posi-
tive. It suffices now to find a positive ψ̂ with φ̂ ≥ ψ̂ . In [39], a general method for
constructing ψ is proposed, but it suffices here to choose a simpler one. Define the
characteristic function of the ball with radius σ/2 in d dimensions, centred at 0 ∈ Rd

with χσ
2 ,d . According to [50, Chap. 12], the inverse Fourier transform is given by

χ̌ σ
2 ,d(x) =

(
σ

4π ‖x‖2

)d/2

Jd
2

(‖x‖2 σ

2

)

where Jd
2
is a Bessel function of the first kind.

Lemma 5.4 Define ψσ = χ̌2
σ
2 ,d and the d-dimensional matrix valued RBF

(ΨLamé)i j = −δi jμΔψσ − (λ + μ)∂i jψσ , i, j = 1, . . . , d .

Then ΨLamé has the form

ΨLamé(x) = −B(x)((λ + μ)xx� + dμ ‖x‖22 I ) − A(x)(λ + (d + 1)μ)I,

where

B(x) = 8π2
((

χ̌ σ
2 , d+2(x)

)2 + χ̌ σ
2 ,d(x) · χ̌ σ

2 ,d+4(x)
)

,

A(x) = −4πχ̌ σ
2 , d(x) · χ̌ σ

2 , d+2(x) .
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The eigenvalues of ΨLamé are given by

{
−μd ‖x‖22 B(x) − A(x)(λ + (d + 1)μ), multiplicity d − 1,

−(B(x) ‖x‖22 + A(x))(λ + (d + 1)μ), multiplicity 1.

Lemma 5.5 It holds

|A(x)| ≤ 2d+5

(
σ 2

8π

)d+1 (‖x‖2 σ

2

)−d−2

,

‖x‖22 |B(x)| ≤ 2d+7

(
σ 2

8π

)d+1 (‖x‖2 σ

2

)−d−1

.

We now establish an upper bound for the largest eigenvalue of ΨLamé

Λ(x) = −
(
B(x) ‖x‖22 + A(x)

)(
λ + (d + 1)μ

)
.

Corollary 5.1 It holds

Λ(x) ≤ (λ + (d + 1)μ)2d+5

(
σ 2

8π

)d+1
((‖x‖2 σ

2

)−d−2

+ 4

(‖x‖2 σ

2

)−d−1
)

.

The Lemma from [40, 50, Chap. 11] reads:

Lemma 5.6 Let f : R → R be a scalar valued function and X ⊂ Rd a set of points
and qX = 1

2 mini �= j

∥∥xi − x j

∥∥
2 its separation distance. Then

∑
j �=k

f (
∥∥x j − xk

∥∥
2) ≤ 3d

∞∑
m=1

md−1κ f,m,

where
κ f,m = sup {| f (‖x‖2)| : mqX ≤ ‖x‖2 ≤ (m + 1)qX } .

Lemma 5.7 Let

σ ≥ max

{
2

qX
,
C̃

qX

}
, C̃ =

(
2d(d + 2)5π

8(d − 1)
Γ 2

(
d + 2

2

))1/(d+1)

.

We have

max
k

∑
j �=k

Λ(x j − xk) ≤ −(λ + (d + 1)μ)

2d
A(0).
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Theorem 5.1 Letφ be an even conditionally positive definite function that possesses
a positive Fourier transform φ̂ ∈ C(Rd). With the function

M(σ ) = inf‖ξ‖2≤σ
φ̂(ξ).

and under the premises of Lemmata 5.1 and 5.7 a lower bound on λmin(AX,ΦLamé) is
given by

λmin(AX,ΦLamé) ≥ 2

3
μ

(
σ 2

16π

)(d+2)/2
M(σ )4π

(4π)dΓ (d/2 + 1)
,

where σ ≥ C̃/qX and a constant C̃ is independent of λ, μ, φ and X.

5.3.5 Error Estimates

To identify the native space with a Sobolev space, it does not suffice that φ is positive
definite. Additionally, we assume that an algebraic decay condition

c1(1 + ‖ξ‖22)−(s+1) ≤ φ̂(ξ) ≤ c2(1 + ‖ξ‖22)−(s+1) (5.33)

holds for φ̂ and some s ∈ R. The domain Ω fulfils the properties that are required to
use the extension operator E from Stein, [47]. First we define an intermediate space
H̃ s(R3) by

(H̃ s(R3))3 =

⎧⎪⎨
⎪⎩ f ∈ (L2(R

3)3 :
∫
R3

∥∥∥ f̂ (ξ)

∥∥∥2
2

‖ξ‖22
(
1 + ‖ξ‖22

)s+1
dξ < ∞

⎫⎪⎬
⎪⎭ . (5.34)

Proposition 5.2 If the algebraic decay condition holds for φ, then the norms on
(H̃ s(R3))3 and GLamé are equivalent.

To identify (H̃ s(R3))3 as subspace of (Hs(R3))3, we need an additional Lemma.

Lemma 5.8 ([18]). In the space (H̃ s(R3))3, the norm (5.34) is equivalent to the
norm defined by

‖ f ‖2∗ =
∫
R3

∥∥∥ f̂ (ξ)

∥∥∥2
2

‖ξ‖22
dξ + ‖ f ‖2(Hs (R3))3 .

Thus, the space (H̃ s(R3))3 is a subspace of (Hs(R3))3. To get error estimates for
functions in Hs(Ω), we need an extension from Hs(Ω) to H̃ s(R3). For this purpose
we use Stein’s extension operator E, [47], and therefore Ω has to be bounded and its
surface have to be smooth enough. We define the extension operator F̃ by
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F̃g(x) = Eg(x) − Eg(x − x0). (5.35)

The point x0 must be chosen on such a way that the supports ofEg andEg(· − x0)
do not intersect. This is possible due to the construction of Stein’s extension operator.
Then the operator F̃ defines an extension

Let g ∈ (Hs(Ω))3.We have g ∈ (L1(R3))3, because g ∈ (L2(R3))3 has a compact

support, as does F̃g. Consequently ̂̃Fg is continuous and ̂̃Fg(0) is well defined. Due
to the construction it follows ̂̃Fg(0) = 0. Then with

∣∣∣̂̃Fg(ξ) − 0
∣∣∣ =

∣∣∣̂̃Fg(ξ) − ̂̃
Fg(0)

∣∣∣ =
∣∣∣

∫
supp(g)⊂R3

compact

F̃g(x)(1 − exp(−ıξ�x)dx
∣∣∣

≤
∫

supp(g)⊂R3

compact

|F̃g(x)| ‖ξ‖2 ‖x‖2 dx ≤ ‖ξ‖2
∥∥∥F̃g(x)∥∥∥

L1

sup
x∈supp(g)⊂R3

compact

‖x‖2

for ‖ξ‖2 ≤ 1, we have

∥∥∥F̃g∥∥∥
(H̃ s (Ω))3

=
∫
R3

∥∥∥̂̃Fg(ξ)

∥∥∥2
2

‖ξ‖22
dξ +

∥∥∥F̃g∥∥∥2
(Hs (R3))3

=
∫

‖ξ‖≤1

∥∥∥̂̃Fg(ξ)

∥∥∥2
2

‖ξ‖22
dξ +

∫
‖ξ‖>1

∥∥∥̂̃Fg(ξ)

∥∥∥2
2

‖ξ‖22
dξ +

∥∥∥F̃g∥∥∥2
(Hs (R3))3

≤
∫

‖ξ‖≤1

∥∥∥̂̃Fg(ξ)

∥∥∥2
L1

‖ξ‖22
‖ξ‖22

dξ +
∥∥∥F̃g∥∥∥2

(Hs (R3))3
+
∥∥∥F̃g∥∥∥2

(Hs (R3))3

≤ C
∥∥∥F̃g

∥∥∥2
(Hs (R3))3

.

As a direct consequence and Lemma 5.8, we can identify functions Hs(Ω) as the
restriction of functions H̃ s(R3) to Ω .

Proposition 5.3 Let Ω ⊂ R3 be a bounded domain with a smooth boundary. Then
it follows

Hs(Ω) =
{
f |Ω : f ∈ H̃ s(R3)

}

and the norms are equivalent.

To get interpolation error estimates for RBF outside the native space, we first
mention the result of Wendland, Narcowich and Ward [41, 51] concerning the error



116 R. Grzhibovskis et al.

estimates in Sobolev spaces for functions withmany zeros. This result will be applied
later to the error f − s f,X .

Proposition 5.4 SupposeΩ is bounded and satisfies an interior cone condition. Let
k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞, and let m ∈ N0 satisfy k > m + d/p
for p > 1 or, for p = 1, k ≥ m + d. Also let X ⊂ Ω be a discrete set with sufficiently
small mesh norm hX sufficient small. If u ∈ Wk+s

p (Ω) satisfies u|X = 0 then

|u|W |α|
q (Ω)

≤ Ck,d,p,q,|α|h
k+s−|α|−d(1/p−1/q)+
X,Ω |u|Wk+s

p (Ω),

where (x)+ = x if x ≥ 0 and is 0 otherwise and the semi norm

|u|Wk
q (Ω) =

⎛
⎝∑

|α|=k

‖Dαu‖qLq (Ω)

⎞
⎠

1/q

.

Remark 5.1 In the vector valued case, we have the same result for functions u ∈
(Wk+s

p (Ω))3.

We can now apply the method from [20] and [41] to get interpolation error esti-
mates for functions outside the native space. To do so, we first mention a few facts
about band limited interpolation and the reproducing kernel K τ .

Band-Limited Functions

In this subsection we review and establish important approximation properties of
band-limited function. Let σ > 0 and define Bσ to be

Bσ =
{
f ∈ (L2(R

3))3 : supp( f̂ ) ∈ B(0, σ )
}

where B(0, σ ) is the ball in R3 having centre in 0 and of the radius σ . We need a
further space

B̃σ =

⎧⎪⎨
⎪⎩ f ∈ Bσ :

∫
R3

∥∥∥ f̂ (ξ)

∥∥∥2
2

‖ξ‖22
dξ < ∞

⎫⎪⎬
⎪⎭ ,

which can be seen according to Lemma 5.8 as the subspace of band-limited functions
in (H̃ s(R3))3. Let f ∈ H̃r (R3). Then we can define a band-limited function ĝσ =
f̂ χσ , where χσ is the characteristic function of the ball B(0, σ ) and formulate the
following lemma:

Lemma 5.9 Let t ≥ r ≥ 0. For every function f ∈ H̃r (R3) and every σ > 0 exists
a function gσ ∈ B̃σ with the approximation property

‖ f − gσ‖H̃r ≤ σ r−t ‖ f ‖H̃ t .
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Additionally, we need some properties of the space H̃ τ (R3). This space is aHilbert
space with reproducing kernel K τ for τ > 3/2. We define the kernel K τ via its
Fourier transform and to identify the space later properly, we assume that (5.33)
holds. Additionally, the following results are independent of the chosen φ.

We define

ˆK τ (ξ) = (μ ‖ξ‖22 I + (λ + μ)ξξ�)(1 + ‖ξ‖22)−(τ+1) .

The inverse Fourier transform of this function is given by

K τ (x) = cτ (−μΔI − (λ + μ)∇∇�) ‖x‖τ−1/2
2 Kτ−1/2(‖x‖2) ,

where K is themodifiedBessel function of the second kind and cτ is a known constant
(see [50, Theorem 6.13]). We apply the theory from Sect. 5.3.4 to the kernel K τ

and consider interpolants of the form

g(x) =
N∑
j=1

K τ (x − x j )c j , c j ∈ R3, , j = 1, . . . , N

on the set X = {x1, . . . , xN }. Thus

‖g‖2
(H̃ τ (R3))3

= (g, g)GLamé
=
⎛
⎝ N∑
i=1

K τ (x − xi )ci ,
N∑
j=1

K τ (x − x j )c j

⎞
⎠
GLamé

= (2π)−3
∫

R3

⎛
⎝ N∑

j=1

ˆK τ (ξ)c j e
ı x�

j ξ

⎞
⎠

∗⎛
⎝ N∑
i=1

ˆK τ (ξ)−1 ˆK τ (ξ)ci e
ı x�

i ξ

⎞
⎠ dξ

= (2π)−3
N∑

i, j=1

∫

R3

( ˆK τ (ξ)c j
)∗

ci e
−ı (x j−xi )�ξ dξ =

N∑
i, j=1

c�j K τ (x j − xi )ci .

This is exactly the bilinear form from the stability estimates. It follows

λmin(AX,K τ ) ‖c‖22 ≤ ‖g‖2
(H̃ τ (R3))3

≤ λmax(AX,K τ ) ‖c‖22 ,

where c = (c�
1 , . . . , c�

N )� ∈ R3N .

Lemma 5.10 The smallest eigenvalue can be estimated by

λmin(AX,K τ ) ≥ cτ,λ,μq
2τ−3
X .
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Lemma 5.11 The kernel K τ has the following explicit form

K τ (x) = cτ

(−μ
(‖x‖ν−1

2 (−3Kν−1(‖x‖2) + Kν−2(‖x‖2) ‖x‖2)
)
I

− (λ + μ) ‖x‖ν−2
2 Kν−2(‖x‖2) xx�) ,

where ν = τ − 1/2. The eigenvalues of the kernel K τ are

−cτμ
(‖x‖ν−1

2 (−3Kν−1(‖x‖2) + Kν−2(‖x‖2) ‖x‖2)
)

which is double and the single eigenvalue

−cτ μ
(
‖x‖ν−1

2 (−3Kν−1(‖x‖2) + Kν−2(‖x‖2) ‖x‖2)
)

− cτ (λ + μ) ‖x‖ν
2 Kν−2(‖x‖2).

The single eigenvalue has the largest absolute value, which decreases for
‖x‖2 > 3. Furthermore it holds 0 < K τ (0) < ∞.

To get interpolation error estimates for band-limited functions, we follow [42].

Lemma 5.12 Let

g =
N∑
j=1

K τ (· − x j )c j , c j ∈ R3

and define gσ by ĝσ = ĝχσ . Then there exists a constant κ > 0, which is independent
of X = (x1, . . . , xN ) and the c j ’s, such that for σ = κ/qX the inequality

Iσ = ‖g − gσ‖(H̃ τ (R3))3 ≤ 1

2
‖g‖(H̃ τ (R3))3

holds.

The following theorem gives a bound on the distance between a given function
f ∈ (H̃ τ (R3))3 and fσ ∈ B̃σ . The estimate is exactly what one can expect according
to [20, Theorem 1] and [42, Theorem 3.4].

Proposition 5.5 Let τ , t ∈ R such that τ > 3/2 and t ≥ 0. Let X = {x j }Nj=1 ⊂ R3

be a point set with separation distance qX . If f ∈ (H̃ τ+t (R3))3, then there exists a
function fσ ∈ B̃σ (R3) such that fσ |X = f |X and

‖ f − fσ ‖(H̃ τ (R3))3 ≤ 5 dist(H̃ τ (R3))3( f, B̃σ ) ≤ 5κ−t qt
X ‖ f ‖(H̃ τ+t (R3))3

with σ = κ/qX , where κ ≥ 1 depends only on τ , λ and μ.

The following result estimates the RBF approximation error for functions outside
the native space.
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Proposition 5.6 Let k and s be as in Proposition 5.4 and τ decomposed as τ =
k + s. Further let 3/2 < β ≤ τ be a positive integer. If f ∈ (Hβ(Ω))3 then

∥∥ f − s f,X
∥∥

(Hμ(Ω))3
≤ C hβ−μ

X,Ω ρ
τ−β

X,Ω ‖ f ‖(Hβ (Ω))3

for all 0 ≤ μ ≤ β.

5.4 Numerical Methods for Matrix Valued RBFs

With the existence, stability, and accuracy results at hand, we turn to the task of com-
puting the interpolation coefficients and evaluating the interpolant. More precisely,
we formulate an efficient numerical algorithm to solve the linear system (5.31) with
the matrix valued RBF given by (5.32).

It is easy to see, that our RBFs do not have local supports, thus the resulting system
matrix is fully populated. This implies, that a direct solution of the interpolation
problem with N unknowns requires O(N 3) floating point operations. To alleviate
these prohibitively high costs we propose an iterative solution scheme based on
the Krylov subspace method (see Sect. 5.4.2). It requires repeated computations
of system matrix-vector products, which cost O(N 2) operations. A result of any
such matrix-vector product, however, can be approximately computed with a desired
accuracy with an almost linear cost. In our study, this acceleration is a byproduct
of a block-wise low rank approximation of the system matrix (see Sect. 5.4.1). This
approximation is constructed by means of the H - or H 2-matrix technique. The same
technique is also employed during the evaluation of the interpolant to reduce the
complexity.

5.4.1 Fast Matrix Vector Multiplication and Evaluation

A number of ways to accelerate matrix-vector products in the context of RBF inter-
polation have been proposed in recent years. In [43], certain optimality properties
of the thin plate splines were used to develop a method for fast matrix vector multi-
plication in the context of the RBF interpolation. In [2], the symmetries of a tensor
grid were utilised to rapidly evaluate the RBF interpolant. This particular choice of
the grid also allows for a special evaluation procedure via FFT of recursive Toeplitz
matrices (see [31]).

Another approach can be found in [4]. The authors recognised similarities between
the N -body problem and the evaluation of thin-plate splines and formulated a Fast-
Multipole method for the RBF interpolation. This led to evaluation procedures with
complexity of order O(N log N ) for various RBFs (see [3, 13, 44]).

One of the recently proposed methods is the multilevel evaluation, [34], a pro-
cedure with the complexity of order O(N ). In numerical tests, the order O(N ) is
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observed for the two- and three-dimensional case. However, the extension of this
method to the matrix-valued case is not possible, since it relies on the radial symme-
try of the functions.

In this study we employ a rapid interpolation and evaluation method based on
hierarchical, block-wise low rank matrices. Applications of this technique to scalar
RBFs can be found in [7, 22].

The H -matrix approximation technique was first presented in [24] as a generali-
sation of the panel clustering method. In general, if a given matrix can be partitioned
into low rankblocks it is referred to as an H -matrix. In practical applications the struc-
ture of an H -matrix is based block clusters trees. The latter comes from a hierarchical
decomposition of the underlying discrete geometry (e.g. point sets, triangular mesh).

The detailed description of construction of H -matrix approximants to the fully
populatedmatrices arising in numericalmethods for elliptic boundary value problems
can be found in [27]. These approximants can be constructed with a chosen accuracy.
The numerical cost and thememory requirement for the construction are almost linear
with respect to the number of rows/columns. Recipes for efficient operations with H -
matrices, such as multiplication, approximate inversion, factorisation can be found
in [7] and in [26]. In our study, we use these results to accelerate operations with the
BEM matrices (5.27), (5.30).

A further development of the H -matrix technique, the H 2-matrices, are presented
in [28]. The introduction of the so-called cluster bases allows for reducing the com-
plexity order to the linear one. An efficient way to perform linear algebra operations
with H 2-matrices was proposed in [7, 10, 25, 28].

An H - or an H 2-matrix approximant to the system matrix in our interpolation
problem (5.31) can be constructed if the element generating function fulfils certain
conditions. The matrix (ΦLamé)i j , i, j = 1, 2, 3 consists of the partial derivatives of
the kernel functionφ. Thekey requirement is that this functionmust be asymptotically
smooth.

Definition 5.4 ([7]). A function κ : Ω × Rn → R satisfying κ(x, ·) ∈ C∞(Rn\{x})
for all x ∈ Ω is called asymptotically smooth in Ω with respect to y if constants c
and γ can be found such that for all x ∈ Ω and all α ∈ Nn

0

|∂α
y κ(x, y)| ≤ c|α|!γ |α| |κ(x, y)|

‖x − y‖|α|
2

for all y ∈ Rn\{x}.

This requirement is fulfilled, for example, by the Wendland function or inverse
multiquadrics (see [30] for more details).

5.4.2 Fast Solver

The number of fast solvers for the interpolation problem is quite limited in compa-
rison to the algorithms for fast matrix-vector multiplication. They are, in particular,
an iterative method from [5] and the Countour-Padé or RBF-QR algorithm, [17].
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Here, we extend a Krylov method developed by Faul and Powell, [16], to the case of
matrix-valued RBFs. The method requires the underlying operator to be self-adjoint,
nevertheless it can be adapted for handling positive-semi-definite RBFs.

Induced Norm

Let s be of the form

s(x) =
N∑
j=1

Φ(x − x j )c j , (5.36)

with coefficients c j ∈ R3 and X = {x1, . . . , xN } ⊂ R3. Define the matrix M by

M = (Φ(xi − x j ))i, j=1,...N ∈ R3N×3N

which consist of blocks of the form

(Φkl(xi − x j ))k,l=1,2,3

for i, j = 1, . . . , N . The coefficient vector c is defined by

c = (c�
1 , . . . , c�

N )� ∈ R3N .

The interpolation problem is then given by

Mc = f,

for given point evaluations f (xi ) ∈ R3, i = 1, . . . N . We denote the space of all
functions s of the form (5.36) by S . For two functions s, t ∈ S ,

t (x) =
N∑
i=1

Φ(x − x j )d j ,

we define a bilinear form on S by

〈s, t〉 = c�Md.

By the virtue of the positive definiteness of Φ we obtain a norm

‖s‖S = 〈s, s〉1/2 .

Corollary 5.2 For s, t ∈ S , it follows

〈s, t〉 =
N∑
i=1

c�
j t (xi ) =

N∑
i=1

s(xi )
�d j .
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Proof A simple calculation shows

〈s, t〉 =
N∑
i=1

c�
j

N∑
j=1

Φ(xi − x j )d j =
N∑
i=1

c�
j t (xi ) =

N∑
i=1

s(xi )
�d j .

�

Thus, thematrixM is not needed to evaluate the bilinear form. Define the required
interpolant by s�. One can evaluate

〈
s, s�

〉 =
N∑
i=1

c�
j s

�(xi ) =
N∑
i=1

c�
j f (xi )

without knowing s�.

Krylov Subspace Method

The Krylov subspace method is an iterative solution method for the linear discrete
problem. It is based on the properties of the underlying linear operator A : S → S .
Let k be the iteration number, andSk is the linear subspace ofS , which is spanned
by A j s�, j = 1, ..., k, where s� is the required interpolant. The aim is to find an
interpolant sk+1 with ∥∥s� − sk+1

∥∥
S

<
∥∥s� − sk

∥∥
S

. (5.37)

The sequence
∥∥s� − s j

∥∥
S

, j = 1, ..., decreases strictly monotonically. The coef-
ficients A j s� however are not computed directly due to numerical instability. Instead,
we define search directions dk to find sk+1 with a scaling factor αk by

sk+1 = sk + αkdk, αk ∈ R. (5.38)

The search directions have to fulfil the orthogonality condition 〈dk, dk−1〉 = 0.
We can compute dk by

dk = A(s� − sk) + βkdk−1, βk ∈ R. (5.39)

The minimisation properties (5.37) and the orthogonality condition provide the
following

αk = 〈s� − sk, dk〉
〈dk, dk〉 and βk = − 〈dk−1, zk〉

〈dk−1, dk−1〉 .

For k = 0, we prescribe s0 = 0 and d0 = A(s� − s0). The following proposition is a
generalisation of [16, Sect. 3].
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Proposition 5.7 If the operator A has the properties

1. 〈s, As〉 > 0 for s ∈ S with s �= 0,
2. 〈t, As〉 = 〈At, s〉 for s, t ∈ S ,

then the Krylov subspace method converges.

Construction of A
Let ψ j , j = 1, . . . , 3N be a basis of S . The application of A to an element s ∈ S
is given by

As =
3N∑
j=1

〈
ψ j , s

〉
〈
ψ j , ψ j

〉ψ j .

Lemma 5.13 The operator A fulfils the requirements of the Proposition 5.7.

Proof Let t, s ∈ S . It follows, that

〈t, As〉 =
3N∑
j=1

〈
ψ j , s

〉 〈
ψ j , t

〉
〈
ψ j , ψ j

〉 = 〈At, s〉 .

Furthermore, if we assume 〈s, As〉 = 0, we obtain

〈s, As〉 =
3N∑
j=1

〈
ψ j , s

〉2
〈
ψ j , ψ j

〉 = 0.

Consequently
〈
ψ j , s

〉 = 0 for all j = 1, . . . , 3N . Since ψ j is a basis of S , we
can represent s in the form

s =
3N∑
j=1

θ jψ j .

Hence s = 0, because

‖s‖2S = 〈s, s〉 =
3N∑
j=1

θ j
〈
ψ j , s

〉 = 0.

�
The optimal choice for ψ j can be described as follows. By the use of the bilinear

form to construct orthogonal functions, we have Aψ j = ψ j for all j = 1, . . . , 3N .
The search direction d1 is then defined by d1 = α1s� where α1 = 1. If we choose ψ j

as the Lagrange basis, namely

ψ j =
N∑
l=1

Φ(x − xl)λ jl, λ jl ∈ R3
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and
ψ j (xi ) = δ⌊ j

3

⌋
,i
ek, k = j mod 3 + 1, i = 1, . . . , N ,

where ek ∈ R3 is the k-th canonical basis vector, it follows that Aψ j = ψ j and〈
ψi , ψ j

〉 = 0 for i �= j . Unfortunately, the numerical effort for this choice is too
high.

Consequently, we have to choose a modified basis

ψ j =
N∑

l=
⌊

j
3

⌋Φ(x − xl)λ jl, λ jl ∈ R3 (5.40)

and

ψ j (xi ) = δ⌊ j
3

⌋
,i
ek, k = j mod 3 + 1, i =

⌊
j

3

⌋
+ 1, . . . , N .

We have

〈ψk, ψm〉 =
N∑
i=1

λ�
ki

N∑
j=1

Φ(xi − x j )λmj =
N∑
i=1

λ�
kiψm(xi )

=
N∑
j=1

ψk(x j )
�λmj ,

where λmj = 0 respectively λki = 0 if not listed in (5.40). Hence, we have

〈ψk, ψm〉 = δkm .

However, the numerical effort is comparable to that of the full Lagrange basis,
so a further modification is necessary. Powell originated the idea of the approximate
Lagrange basis [16]. Instead of using the full index set for the summation index l in
equation (5.40), only subsets

In j ⊂ {
⌊
j

3

⌋
, . . . , N }

of the full index are used. A good choice are the q nearest neighbours of the point
x j . If N − j + 1 ≤ q we choose the remaining indices.

Lemma 5.14 The approximate Lagrange basis is a basis ofS .

Proof Let C ∈ R3N×3N and write the coefficients λ jl in columns. C is an upper
triangular matrix with positive diagonal entries. This follows by
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(λkk)kmod 3+1 =
N∑
j=1

ψk(x j )
�λk j = 〈ψk, ψk〉 > 0 for all k = 1, . . . , 3N .

The last inequality is strict due to ψk �= 0. �

The operator A has the form

As =
3(N−q)∑
j=1

〈
ψ j , s

〉
〈
ψ j , ψ j

〉ψ j + Hs, for s ∈ S ,

where

Hs =
3(N−q)∑

j=3(N−q)+1

〈
ψ j , s

〉
〈
ψ j , ψ j

〉ψ j .

The operator H maps functions s ∈ S to the 3q-dimensional subspace

S ⊃ S ′ =
⎧⎨
⎩s :

N∑
j=N−q+1

Φ(x − x j )c j , c j ∈ R3

⎫⎬
⎭ .

For all s ∈ S ′ it follows Hs = s. We deduce from

〈ψk, s〉 =
N∑
i=1

λ�
ki s(xi )

that the dependence of Hs on s is only through the values s(xi ), i = N − q +
1, . . . , N . Consequently we have Hs = Ht for the unique element t ∈ S ′ which
fulfils the conditions

t (xi ) = s(xi ) for all i = N − q + 1, . . . , N .

Hs is the solution of the interpolation problem in S ′ for s ∈ S .

Lemma 5.15 The operator A fulfils the requirements of the Proposition 5.7.

Algorithm

Input parameters: matrix-valued RBF, point set X = {xi }Ni=1, size of index set q and
the right hand side.

1. Construction of the index sets In j . Note that two index sets In j and Ink are identical

if
⌊

j
3

⌋
= ⌊

k
3

⌋
holds.

2. Solve the interpolation problems
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ψ j (xi ) = δ⌊ j
3

⌋
,i
ek, k = j mod 3 + 1, i = 1, . . . , N .

3. Factorise the interpolation Matrix H .

The coefficient vector for a function s ∈ S is defined by c(s) ∈ R3N . In the k-th
iteration the residuum rk,i ∈ R3 is given by

rk,i = fi − sk(xi )

for i = 1, . . . , N . For k = 1 define r1,i = fi . The application of A to s� − sk provides

c(dk) = c(A(s� − sk)) + βkc(dk−1), k ≥ 2,

where for k = 1 the searchdirectiondk−1 is omitted. From theorthogonality condition
and bilinear form on S , we deduce

βk = −
∑N

i=1 c(A(s� − sk))�i dk−1(xi )∑N
i=1 c(dk−1)dk−1(xi )

together with

αk =
∑N

i=1 c(dk)
�
i rk,i∑N

i=1 c(dk)
�
i dk(xi )

.

The coefficients c(s)i consist of the 3i, 3i + 1 and 3i + 2 components of c(s).

5.5 Numerical Examples

5.5.1 Krylov Subspace Method

To test the efficiency of the proposed Krylov subspace method, take uniformly dis-
tributed (step size is h) points in [0, 1]3. The matrix-valued RBF Φcurl generated by
an inverse multiquadric is used with a fixed scaling parameter. The number of Krylov
iterations depending on various parameters of the algorithm is shown in the Figs.
5.2 and 5.3. The method is clearly superior to the method of conjugate gradients,
which failed to converge in some cases (see Table 5.1). However, one observes that,
as the condition number increases (due to the problem size or a change in the scaling
parameter), an increase of the parameter q is necessary.
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Fig. 5.2 Krylov iterations in dependence of the parameter q
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Fig. 5.3 Krylov iterations in dependence of the scaling parameter

Table 5.1 Comparing the CG and the proposed method

N CG Krylov (q = 100)

1000 170 29

2000 542 41

3000 954 49

4000 1308 60

5000 >3N 70

5.5.2 Error Behaviour

We consider the interpolation by means of the matrix valued RBF ΦLamé. According
to our estimates, the actual error behaviour is limited by both, the smoothness of the
right hand side and the RBF φ used to generate ΦLamé. To generate the right hand
side, we use the function introduced by Franke
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f̃ (x1, x2) =
3

4
exp

(
− (9x1 − 2)2

4
− (9x2 − 2)2

4

)
+ 3

4
exp

(
− (9x1 + 1)2

49
+ (9x2 + 1)

10

)

+ 1

2
exp

(
− (9x1 − 7)2

4
− (9x2 − 3)

4

)
+ 1

5
exp

(
−(9x1 − 2)2 − (9x2 − 7)2

)
,

and define the right hand side as

f (x1, x2, x3) = ( f̃ (x1, x2), f̃ (x2, x3), f̃ (x1, x3))
�.

This function is of the classC∞([0, 1])3, thus the interpolation error is dominated
by the smoothness of φ. To stay in the correct space for the interpolation error
estimates, Wendland’s functions φ3,k are used. They are defined by

φ̃3,k(r) = I k φ̃�3/2+k+1�(r), k ∈ N ,

where

I φ̃(r) =

⎧⎪⎪⎨
⎪⎪⎩

∞∫
r

sφ̃(s)ds , r > 0

I φ̃(−r) , r < 0

.

and
φ̃l(r) = (1 − r)l+, l ∈ N.

These functions fulfil the algebraic decay condition

c1(1 + ‖ξ‖2)−3−2k−1 ≤ φ̂3,k ≤ c2(1 + ‖ξ‖2)−3−2k−1.

For our tests, we use the family

φ3,1 = (1 − r)4+(4r + 1),

φ3,2 = (1 − r)6+(35r2 + 18r + 3).

The results are log-log plotted in Fig. 5.4. We observe the predicted order of
convergence and its dependence on the smoothness of the kernel function.
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Fig. 5.4 L2-error in dependence of the step size h

5.5.3 Particular Solution for a Volume Force Density

Consider the Lamé equations

−
3∑
j=1

∂

∂x j
σi j (u, x) = fi (x), x ∈ Ω , i = 1, 2, 3 .

The right hand side f has the physical meaning of a density of a volume force. Ty-
pical examples are gravitational, electromagnetic, centrifugal, Coriolis and thermal
forces. In the following two subsections we illustrate and test our approach on the
cases of the gravitation and the centrifugal forces.

Gravitation

The gravitational force acts due to the mass of the body and plays an important role
in the static design of bridges and buildings. It has the density

f (x) = −ρge3

and e3 = (0, 0, 1)�, where ρ is the mass density of the material. A particular solution
to the Lamé system in this case can be written as

u p(x) =
(
0, 0,

ρgx23
2(λ + 2μ)

)�
.

We take Ω to be the half sphere
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Ω = {x ∈ R3 : x3 > 0, ‖x‖2 < 5},

and prescribe the Dirichlet data on the boundary

ΓD = {x ∈ Ω : x3 = 0, ‖x‖2 < 5}

by
(γ0u)(x) = (0, 0, 0)�.

The remaining part of the surface is stress free. A quasi-uniform sequence of
tetrahedron grids is used for the computation of the error. In Fig. 5.5, the surface
tractions for the second refinement are shown.

For the projection of the Dirichlet and Neumann data, a quadrature of order 8 was
used. It is important to note that the evaluation matrix can also be approximated by
an hierarchical matrix with a good compression ratio and an acceptable accuracy.
The parameters of the grids and the matrix compression ratios are listed in Table 5.2.

Fig. 5.5 Surface tractions. Dirichlet (left) and the Neumann (right) boundaries

Table 5.2 Parameters of the grid sequence

Number Vertices Elements Vertices Elements

Volume Surface

0 380 1368 261 518

1 2386 10,944 1038 2072

2 16,751 87,522 4146 8288

3 125,197 700,416 16,578 33,152

Number Qaud. points Compression

Quadrature Interpol. BEM

0 33,152 0.119 0.81 1.0

1 132,608 0.023 0.50 0.365

2 530,432 0.0158 0.27 0.205

3 2,121,728 0.002 – 0.057
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Fig. 5.6 Convergence of the numerical solution in L2-norm

The BEM, RBF interpolation and RBF evaluation matrices have been approximated
with the accuracy 10−6, 10−8 and 10−10 respectively. To obtain a reference solution,
the boundary values have been corrected using the exact particular solution and the
homogeneous BVP has been solved by BEM. The relative errors of the Dirichlet
and the Neumann data are shown in Fig. 5.6. We observe the expected rates of
convergence of the BEM. This implies, that the error in computing the particular
solution does not interfere with the overall procedure.

5.5.4 Centrifugal Force

The centrifugal force occurs in rotating bodies. It acts radially outwards from the
rotational axis. For fast rotations, e.g. in the case of a crankshaft, the arising force
causes a slight deformation of the component. The force has the density

f (x) = mω2r,

where r is the radius vector to the axis of rotation. In our example, a crankshaft,
rotating about the x1-axis is considered. The boundary values are given by

(γ0u)(x) = 0,

for
x ∈ ΓD = {x ∈ Γ : x1 = −2 or x1 = 8.25}.

The remaining part of the boundary is stress free. In Fig. 5.7 the deformed crankshaft
is shown. The arrows depict the displacement vector, the surface colour shows the
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Fig. 5.7 Deformed crankshaft (displacement scaling factor 200)

displacement in x1 direction. The values E = 75GPa and ν = 0.2 were used for the
material parameters.

5.6 Application to Fibre Reinforced Plastic

5.6.1 Linear Case

If the BVP is linear and homogeneous, our method reduces to H 2-matrix acceler-
ated BEM. We demonstrate the efficiency of the method on geometries relevant to
modelling composite materials on the level of micro structure. Consider a series of
Representative Volume Elements (RVEs) consisting of a soft matrix material with
fibre-like inclusions (see Fig. 5.8). The inclusions are randomly oriented and their

Fig. 5.8 RVE with uniform
distributed inclusions
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Table 5.3 Computing time for the homogenisation

227 150 100 50 25 0

Triangles 51,458 34,344 23,204 12,088 6534 978

Vertices 26,185 17,474 11,804 6146 3319 491

Time in h 2.9 1.06 0.47 0.15 0.08 –

Table 5.4 Compression of the potentials, 227 inclusions, accuracy 10−6

Matrix K V0 V1 V2 V3 V4 V5 V6

Compression (%) 11.7 4.1 6.8 7.3 7.3 6.9 7.3 6.9

number varies from 0 to 227 (volume fraction about 2.8%). In this case, the multi-
domain formulation from the Sect. 5.2.2 has to be employed. The parameters of
the meshes and the solution time for one Dirichlet BVP are listed in Table 5.3. We
observe almost linear dependency of the solution time on the number of vertices in
the mesh.

The compression ratio of the H 2-matrix of the single and double layer potentials
are listed in Table 5.4.

Tensile Test

A simple way to characterise material properties is the tensile test. Consider a thin
solid body shaped as in Fig. 5.10. The left and right sides are pulled apart, while the
rest of the boundary is stress free. The quantity of interest is the integral reaction
force, which dependence on the pulled distance is usually plotted.

On the macro scale we employ a standard Finite Element Method (FEM), but in
each its quadrature point the stress strain relation is computed by homogenising a
response of a RVE. This homogenisation is performed by the coupled BEM-RBF
method.

On themacro level use 224 elements, the relations on themicro scale are evaluated
in 8 Gauss quadrature points for every element (see Fig. 5.10) and every macro
load step. The homogenisation step is treated by BEM with different RVEs (227
uniformly distributed inclusions, 25 unidirectional inclusions). The unidirectional
inclusions are orientated along the horizontal axis. Thus, one expects a larger force
response compared to the RVE with uniformly distributed inclusions. In Fig. 5.9
force-displacement curves for different RVE are shown.

Homogeneous Material

As thefirst non-linear exampleweconsider aRVEwithout inclusions.TheBEM-RBF
coupled method is used for homogenisation step on the micro scale. The particular
solutions generated by the radial basis functions are relatively small compared to
the solution, because the damage variable is nearly constant (up to rounding errors).
Hence

div(dσ(uB + uR)) ≈ 0.
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Fig. 5.9 Force (N )-displacement (mm) curves

Fig. 5.10 Tensile test. The surface colour shows the surface traction

As a consequence, the fixed point iterations converge after only one step. For
the tensile test, on macro-scale again FEM with 8 quadrature points per element is
used. In contrast to the linear case, we observe a sub-linear behaviour in the force
(N )-displacement (mm) curve (see Fig. 5.11).

5.6.2 RVE with a Spherical Inclusion

We now consider a RVE with a spherical inclusion (Fig. 5.12). The discretisation
parameters are as follows

• 312 triangles, 158 vertices on the surface of the sphere,
• 1664 triangles, 834 vertices on the surface of the RVE bounding box,
• 10,979 tetrahedrons in matrix material, with 1339 vertices inside,
• 14,294 interpolation points,
• 126,464 quadrature points for the projection of the interpolation on the surfaces.



5 Fast Boundary Element Methods for Composite Materials 135

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

·10−3

without
H = 0.1
H = 0.2
H = 0.3
H = 0.4
H = 0.5

Fig. 5.11 Tensile test for homogeneous non-linear material

Fig. 5.12 RVE with
spherical inclusion

To have a differentiable right hand side dσ(uR + uB), we are here limited to the case
Y0 = 0. If we omit this restriction, the differentiation of the right hand side leads to
oscillations in the stress tensor, and therefore a higher energy. The parameter H is
critical. In a first experiment H is chosen in such a way, that the damage variable is
less then 0.20. The linear displacement field is prescribed on the outer boundary
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Fig. 5.13 Cut of the RVE with the yz-plane. Damage (left) and ezz (right)

u = ex, e =
⎛
⎝0.01 0 0

0 0.01 0
0 0 0.01

⎞
⎠ .

For the damage model we use the parameters

Y0 = 0, H = 0.1.

The material parameters are given by

Emat = 2.5GPa, Ephs = 75GPa, νmat = 0.35, νphs = 0.2.

In Fig. 5.13 the solution after 13 fixed point iterations is shown. The inclusion
was removed from the view, and the values of the damage variable or ezz can be seen.
The computational effort per iteration step is rather high due to the projection of the
solution of the last step and the particular solution on the boundary. An iteration step
took several hours. In Fig. 5.14, the error

‖ei+1 − ei‖
‖ei‖

is plotted against the number of steps. The fixed point iteration reaches an accuracy
of 10−7 after 13 steps. It is a stable fixed point.

To illustrate the effect of the damage variable on the conormal derivative, a line
plot was made through the points (0, 0, 5) and (0, 0,−5) (see Figs. 5.15, 5.16, 5.17).
It can be seen that, compared to the elastic predictor (step 0), the damage decreases at
the boundary, but increases significantly towards the inclusion. The reason for this is
that the contact betweenmatrix and inclusion is dictated by the interface conditions in
the form of coupled Dirichlet data. In a simplified way, these can also be understood
as how much the inclusion must shift in order to generate the corresponding stress.
However, the stress is scaled by the factor (1 − d). In the present example, the value
of (1 − d) is about 0.8 on the inner surface. This causes a smaller displacement on
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Fig. 5.15 Course of the damage variable

the boundary of the inclusion. In particular, in the regions of damage in the matrix
material the strain e increases accordingly.
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Chapter 6
Experimental Studies

Céline Röhrig and Stefan Diebels

6.1 Available Specimen and Preparation

The material studied in this work is a short fibre-reinforced composite. The matrix
consists of polybutylene terephthalate (PBT) which is a semi-crystalline thermo-
plastic. It is reinforced by short glass fibres (GF, E-type) to increase the stiffness
and strength leading to a high geometrical stability in applications. The fibres have a
cylindrical geometry. They possess diameters in the range of d = 10–12µmand aver-
aged lengths of l = 200µm. The polymeric matrix material PBT is chosen because
of its high resistance against outer influences like changes in humidity or contact
to chemicals. In order to investigate the influence of different fibre contents dif-
ferent specimens are available consisting either of the pure matrix material or with
different fibre contents from 5, 20 and 30 wt% of glass fibres. A materialographic
picture of a cross section is shown in Fig. 6.1. The picture presents the cross-section
from a directly extruded tensile bar with 5 wt% GF which corresponds to the lowest
available fibre content. The different orientations of the glass fibres can be clearly
seen.

In addition to the different fibre contents the specimens are available in different
geometries. The composite material is either directly extruded to tensile bars which
are firstly used in the uniaxial tensile tests or to thin sheets with a cross-section
of 150 × 150mm2 and a thickness of 2mm. The sheet specimens are used for the
following investigations concerning the influence of the fibre orientation and for the
multiaxial loading experiments. For this purpose, specimens of different shapes are
milled out from these sheets.
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Fig. 6.1 Materialographic specimen: cross-section tensile bar type 1A PBT GF5

l

h

l1
l2

Fig. 6.2 Tensile bar according to DIN EN ISO 527-2 type 1A

6.1.1 Tensile Bars

For the first series of uniaxial tensile tests the directly extruded tensile bars type 1A
of DIN EN ISO 527-2 [2] are used. Figure6.2 presents the geometry of these bars
of type 1A. The dimensions are l = 170mm, l1 = 110mm, l2 = 80mm, h = 20mm
and d = 4mm.

Using these bars, uniaxial tests at different strain rates and cyclic loading tests
are carried out in order to classify the material behaviour of the matrix material and
the composites with different fibre contents. For a detailed investigation of the fibre
orientation smaller tensile specimens are milled out of the sheet material.
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100mm

gate

Fig. 6.3 Moldflow®-simulation: process-induced fibre orientation

Fig. 6.4 Specimen
preparation by milling

β

filmgate

6.1.2 Sheet Material

Based on the production process of injection moulding of the polymeric composite a
certain fibre orientation is achieved depending on the geometry of the cavity, where
the flow gradient of the viscous polymer melt influences an alignment of the short
fibres. The process-induced fibre alignment can be seen in Fig. 6.1. In addition, an
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Fig. 6.5 Tensile bar according to DIN EN ISO 527-2 type 5A

Fig. 6.6 Tensile bars with
fibre orientations β as
expected to the main flow
direction during the
moulding of the sheets

0◦ 45◦ 60◦ 90◦

alignment of the polymer chains is also possible. Therefore, most of the short glass
fibres are oriented along the flow direction in the process. A further visualisation of
the process-induced fibre orientation is realised. The filling process of the plate cavity
is simulated with Moldflow®. A film gate is positioned on the right hand side. The
corresponding fibre orientation is presented in Fig. 6.3. As a basis the assumed align-
ment of the short glass fibres is approved by microsections and simulation results.

Consequently, the material behaviour of the composite is mainly influenced by
this orientation of the short glass fibres. An orientation distribution of the short glass
fibres in the moulded sheets is of great interest for the investigations of the mechan-
ical properties.

Therefore, specimens are milled out from the sheets in different angles β to the
main filling direction as shown in Fig. 6.4. The geometry of these small tensile bars
of DIN EN ISO 527-2 type 5A is shown in Fig. 6.5. The dimensions are l = 75mm,
l1 = 50mm, l2 = 25mm, h = 12.5mm and d = 2mm.

With this preparation procedure, small tensile bars with different main fibre ori-
entations are extracted from the sheets. For the uniaxial tensile tests, samples with
main fibre orientations in parallel to the tensile direction (0◦), rectangular to the ten-
sile direction (90◦) and two different directions in between (45◦, 60◦) are available.
Figure6.6 shows the positions of the different samples with respect to the main flow
direction during filling the cavity.
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6.2 Digital Image Correlation and Strain Measurement

In the next section, results of uniaxial tensile tests are shown. The first series of
experiments is used to characterise the general material behaviour of the PBTmatrix
as well as the different composites. The classical evaluation of the uniaxial tests
is based on the assumption of homogeneous distributions of stresses and strains.
Therefore, the stress in axial direction of the specimens is computed by the ratio of
the measured force and the initial cross-sectional area of the sample while the cor-
responding strain follows by the displacement of the device’s clamps and the initial
length of the sample. This simple evaluation of the experiments can only be used as a
first guess. A detailed investigation shows that the assumption of homogeneity is not
valid if large deformations and damage occur. In this case, localisation takes place
and a necking region forms. In this area the local deformation is much larger than the
average strain and the cross-section narrows down. These effects need to be resolved
by a local measurement. Touching methods will not lead to a satisfying solution of
the problem. On the one hand, strain gauges applied to the specimen’s surface may
affect the measurement itself by the high stiffness of the glue, which is needed dur-
ing the application. On the other hand, strain gauges allow for an local measurement
only at the position where they are applied. They do not deliver a full field measure-
ment. But this is necessary because the region of the localisation zone is arbitrary
and not known a priori. Therefore, a contactless measurement system is chosen for
the evaluation of the experimental data concerning the specimen deformation. As
a further advantage, this system will provide a full field measurementand can also
be used for the evaluation of the following multiaxial experiments. In experiments,
like true biaxial experiments or the Nakajima test, the strain is inhomogeneously
distributed from the very beginning. Therefore, a full field measurement of the local
deformation is indispensable. Hence, using an optical deformationmeasurement sys-
tem to evaluate the experimental data over the entire specimen surface is the chosen
method. In this procedure a series of pictures of the deforming specimen are taken
during the whole experiment. The recorded pictures of the specimen’s surface are
then evaluated using a digital image correlation (DIC) software [3, 4, 6, 17, 22].
The DIC software requires a stochastic pattern in each picture and tries to correlate
the patterns in the deformed and undeformed case. If the examined material has a
visible microstructure like foams [12, 13] or linen, a special specimen preparation
before experimental testing is not required. But if there is no stochastic microstruc-
ture visible on the surface, a speckle pattern has to be applied, e.g. a point cloud of
varnish particles is sprayed on the specimen surface e.g. by airbrush techniques. In
both cases, the DIC is based on a comparison of the gray values in the structures of
the images taken during the experiment.

In the following investigations a stochastic speckle pattern is applied onto the
surface of the composite as shown in Fig. 6.7.

The DIC software divides the pixels of an image in so-called subsets, e.g. small
parts of the whole image, and evaluates the gray values in the picture sequences.
During the deformation the software compares the gray values and their distribution
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Fig. 6.7 Speckled tensile bar type 1A

in the subsets with the undeformed state. The comparison is evaluated based on the
cross-correlation coefficient Cn according to Eq. (6.1)

Cn =
∑

i
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j
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(6.1)
In this relation, G0(xi , yi ) represents the gray value of the pixel i located in position
xi and yi in the reference picture and G0 is the mean value of the considered subset.
Gt (x ′

i , y
′
i ) and Gt are the corresponding gray values in the deformed state at time t .

The mean values G0 and Gt are substracted in order to eliminate local differences
in the brightness. The coordinates of a pixel in the reference picture are (xi , yi ),
whereby the same identified pixel in the picture of the deformed state is located at
position (x ′

i , y
′
i ). The pixel coordinates define the displacement and the deformation

of the subsets. According to Eqs. (6.2) and (6.3), u and v are the displacements of the
pixels in the two perpendicular directions e1, e2 while Δx and Δy are the positions
of the observed pixels in the masked area

x ′ = x + u + ∂u

∂x
Δx + ∂u

∂y
Δy = x + dx , (6.2)

y′ = y + v + ∂v

∂x
Δx + ∂v

∂y
Δy = y + dy . (6.3)

For the correlation procedure, the masked area is divided into small subsets, which
are deformed, displaced and rectified until the gray values of the deformed subset
are similar to the reference picture, cf. Fig. 6.8 [19]. The deformation field could
be calculated from the displacements of the pixels in the subsets by means of an
optimisation process considering the basics of continuum mechanics. The Lucas–
Kanade-algorithmEq. (6.4) [14] is commonly used to solve the optimisation problem

arg min︸︷︷︸
d

( ∑

i, j

||Gi (x + dx , y + dy) − G(x, y)||
)

. (6.4)

The in-plane strain is obtained as full-field information if all pixels are taken into
account which lay in the masked area of the specimen’s surface. The out-of-plane
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first deformation
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reference subset

second deformation

deform deform

equalize

Fig. 6.8 Scheme of digital image correlation

displacement cannot be obtained because two different points (X, Y ) may be pro-
jected to the same point P(X, Y ) in the image plane of the camera as sketched in
Fig. 6.9. But using a calibrated setup with two cameras also allows to compute the
out-of-plane displacement based on a stereoscopic evaluation of the images of both
cameras. Even if two cameras are used a thickness change of the specimens cannot
be detected because the measured out-of-plane displacement may result from a rigid
body motion of the specimens. Therefore, two systems each consisting of two cam-
eras have to be placed in front and rear of the specimens. This setup can be used
to compute the thickness change of the specimens by taking the difference between
the out-of-plane displacement on the front and rear sides. If homogeneity over the
thickness d of the sample is assumed the normal strain in the third direction e3 is
obtained from this information.

The influence of compressibility or anisotropic effects is of great interest concern-
ing the experimental characterisation of a thermoplastic composite material. For this
purpose the displacement information in all three spatial directions (see Fig. 6.10) is
needed in the analysed volume element during the experiment. Using a four camera
setup as shown in Fig. 6.11 allows not only tomeasure the in-plane strains on the front
and the rear of the specimens but also to measure the deformation in the thickness
direction during the strain localisation in the necking area.

Following this method, four pictures, which are triggered at the same time, have
to be taken by the four cameras during each load step of the experiment. Before
starting any measurement, the commercial digital image correlation software ISTRA
4D® provided by Dantec Dynamics® [8], which is used in the following to calculate
all strains and displacements, has to know the exact adjustment of the four cameras.
Therefore a calibration procedure is needed. For this purpose a calibration target with
an exactly defined thickness and an imprinted coordinate system is photographed by
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Fig. 6.9 Scheme of stereoscopy

Fig. 6.10 3D-deformation
of a cube
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Fig. 6.11 Four camera setup
with a specimen in the centre
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camera 1 camera 2 camera 3 camera 4

1)

2)

Fig. 6.12 Four camera setup: calibration photos and two stadiums of specimen in experiment (1)
initial step, (2) deformed state [18]

all cameras. Several photos are taken from the target in different positions. By the
exact knowledge of the target’s geometry the relative positions of the cameras are
automatically obtained by the software ISTRA 4D®. Finally these positions allow for
the calibration of all cameras to each other. The presented system has the possibility
of an expansion with up to 16 cameras in order to measure the full-field strains in a
complex geometry by means of a 360◦-3D-optical evaluation.

Completing a calibration procedure the correlation software is able to evaluate
the experimental data by comparing successively recorded photos with the unde-
formed shape of the specimen as reference. The special feature of the used 360◦-
3D-measurement system with the DIC-software ISTRA 4D® [8] is the calculation of
the two in-plane strains and additionally of the out-of-plane strain of the specimen.
In this case, the evaluation of all spatial strains on the material surface is guaran-
teed because the described measurement system realises the perfect superposition
of the information from the front side and the rear side of the tensile specimen. The
data acquisition for the four camera setup of the uniaxial tested tensile bar is repre-
sented in Fig. 6.12. The upper row of pictures shows the calibration measurement,
which is important for the identification of the exact camera positions to each other.
The second line represents the initial state of the specimen and the last line shows
the deformed specimen during uniaxial tension including a necking area. While the
required speckle pattern can be clearly seen on all images in the undeformed state, the
third image from the left in the bottom line shows that the speckle pattern changes and
tends to disappear in the region of the strain localisation. This change in the structure
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of the pattern sometimes may lead to a break-down of the automatic evaluation at
very high strains.

The break-down can be prevented if two subsequent sets of pictures are correlated
to each other instead of correlating to the initial frame. This leads to an incremental
evaluation of the strains. The draw-back of this incremental procedure is an increasing
error.

The amount of pictures clarifies the high effort of a digital image correlation
procedure. A subsequent specifically implemented scripting provides the stresses
from the measured force values and the current width and thickness of the samples
which are evaluated in the localisation zone with the smallest cross-section. The final
results in terms of stress-strain-curves are then realised by the relation of the strain
values to the forces and computed stresses, respectively.

6.3 Uniaxial Tensile Tests

Uniaxial tensile testing is a widely established and commonly standard test in the
field of material characterisation. Typically, a tensile specimen is mounted on the
device and loaded in axial direction. The load is applied either in force control or
in displacement control. The raw data, obtained from the tensile test, is a force-
displacement curve for the tested material. Using DIC the force-displacement curve
is complemented by a series of pictures of the deforming sample. Different samples
of the PBTwith fibre contents from 0 to 30wt% are used in the present investigations.
The experiments are performed either on large tensile bars of typeDINEN ISO527-2
type 1A [2] produced by injection moulding or on small bars according to DIN EN
ISO 527-2 type 5A [2] cut out of the thin sheets. The advantage of tensile tests is
that, on the one hand, they can be performed easily and, on the other hand, they gain
a lot of insight into the material behaviour.

Different types of experimental procedures are realised with the tensile bars. The
methods are explained in the following sections. First uniaxial tensile tests with dif-
ferent strain rateswill be discussed. Thiswill show the influence of the viscosity of the
composite. In a second series of experiments, monotonous loading conditions with
constant velocity are investigated until the samples break. The results are compared
to uniaxial tests with several loading-unloading cycles. These tests gain detailed
insight in the plastic behaviour and in the evolution of damage. All the uniaxial ten-
sile tests on the composite material are realised with a device Instron ElectroPuls
E10000 at room-temperature in tensile-compressionmode. Themotion of the device
is controlled directly by the displacement of the linear axis while the reaction force
is continuously recorded by a force sensor mounted to the drive to obtain the mea-
surement data, which are necessary for the evaluation of force-displacement curves
and for the characterisation of the material. Evaluating the experiments in terms of
stress-strain curves utilises the digital image correlation explained in the previous
Sect. 6.2. This allows to calculate the local strains directly from the specimen’s sur-
face and, in addition, the true stress can be calculated from the force measurement



6 Experimental Studies 153

2.8

2.6

2.4

2.2

2.0

1.6

1.4

1.8

1.2

1.0

0.8

0.6

0.2

0.4

0

E
ng

.T
an

ge
nt

ia
l S

tr
ai

nX
/s

tr
ai

n

Fig. 6.13 360◦-3D digital image correlation with four camera setup: tensile bar type 1A PBT
inclusive necking area [18]

because the current size of the cross-section can be determined from the local strain
information.

The deformation evaluation by means of the 360◦-3D-optical deformation mea-
surement in Sect. 6.2 is exemplary shown for a uniaxial tensile bar in Fig. 6.13. The
presented DIC-results show a deformed state of the specimen at the beginning of
the necking which is typically observed for thermoplastics. The 360◦-3D setup is
necessary for the simultaneous image capturing of the front and the rear side of the
tensile bar allowing for a measurement of the current thickness.

The tensile bars are designed in such a way that the axial loading during a uniaxial
tensile test can induce homogeneous stress and strain states in the centre of the
sample under ideal conditions. Thermoplastics and in particular the investigated
PBT show necking phenomena, i.e. even if the geometry of the specimen allows
for homogeneous strain states, a pronounced strain localisation is observed in the
experiments. Due to the temperature sensitivity of the material the localisation zone
is typically observed in the region where the sample was touched during mounting.
This localisation effect requires the full-field optical strain measurement because the
exact position of the necking zone is not known a priori. Furthermore, the current size
of the cross-sectional area changes in this region.While the engineering stress relates
themeasured force to the initial cross-sectional area the true stress is obtained as ratio
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Fig. 6.14 Evaluation in the
localisation zone of the
uniaxial tensile bar type 1A
PBT

of the force to the current area. Figure6.14 shows the engineering (or nominal) and
the true stress, which clearly differ if a strain localisation is observed. While the
engineering stress is constant after plastification or even decaying the true stress is
always increasing.

This effect is significant for the unfilled pure thermoplastic matrix material but
cannot be detected for the specimens with a sufficient high volume fraction of glass
fibres. The addition of short glass fibres changes the material behaviour of the com-
posite from highly plastic to nearly elastic. The higher the fibre content in the com-
posite material, the lower the influence of the remaining plasticity. The same can
be observed for viscous effects. While the unfilled PBT matrix shows a strong rate-
dependence the influence of the deformation rate is decreasing with increasing fibre
content. Both effects, the strain localisation and the viscous behaviour are not investi-
gated further in this contribution because the are of low importance for the composites
with 20 and 30 wt% of fibres. However, these are the compositions of the composite
which are typical for industrial applications.

For the subsequent determination of the stress-strain curves, the maximum axial
strain ε1(t) at time t is extracted from the full-field strain measurement by the DIC
software. This maximum strain value is related to the local stress in the necking area.
According to Fig. 6.15, the index 1 concerns to the loading direction while indices 2
and 3 represent the width and thickness direction of the sample. The nominal stress
σ = F(t)/A0 is obtained as ratio of the current force F(t) at time t to the initial cross-
section A0 while the true stress or Cauchy stress relates the same force to the current
cross-section A(t), which is also determined from the DICmeasurements. Due to the
production-induced anisotropy of the fibre orientation the current thickness and the
current width of the specimen have to be measured in the necking region. It cannot
be assumed that the transversal strains in width direction e2 and thickness direction
e3 are equal.
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Fig. 6.15 Coordinate
systems and axis directions
of DIC (tensile bar type 5A)

e1

e2
e3

Fig. 6.16 Uniaxial tensile
test (bar type 1A): strains
orthogonal to the tensile
direction

While the strains ε1 in axial direction and ε2 in width direction can directly be
extracted from the DIC results, the thickness measurement in the 360◦-3D camera
setup requires the choice of so-called gauge points. This points are pairs of points,
one on the front and one on the rear of the sample. The out-of-plane displacement
at this gauge points is evaluated from the stereoscopic evaluation of the DIC results.
Assuming homogeneity in the small thickness direction e3 of the sample allows to
compute the strain ε3 from the difference of the displacements at the gauge points and
the initial thickness. Figure6.16 shows the measured strains ε2, ε3 in the orthogonal
directions as a function of the longitudinal strain ε1. As can be seen, both strains
slightly differ and the difference increases with increasing fibre content. The smooth
curves in Fig. 6.16 represent the strain ε2 while the oscillating curves show ε3. The
oscillations result from the local evaluation of the thickness change at the individual
gauge points.

The evaluation of the digital image correlation allows not only for the analysis
of anisotropy but also of compressibility. While elastomers are usually assumed to
deform at constant volume and, therefore, behave incompressible, this is not true
for thermoplastics. The three-dimensional strain measurement can also be used to
determine the local volumetric strain. In a first step, the stretches λi are computed
from the strains εi by

λi = 1 + εi i = 1, 2, 3. (6.5)
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Fig. 6.17 Uniaxial tensile
test: volumetric deformation
as function of axial strain

Figure6.10 shows the deformation of a volume element. In a large strain setting the
incompressibility constraint requires

λ1 λ2 λ3 = 1. (6.6)

Figure6.17 shows the volumetric deformation as function of the axial strain for three
different composites with fibre contents 5, 20 and 30 wt%. As can be clearly seen,
the volume increases with increasing deformation and becomes more pronounced
with increasing fibre content. Therefore, the composite cannot be assumed to behave
incompressible. If an effective Poisson’s ratio is computed as ratio of the transversal
strains to the axial strain

ν = − ε2

ε1
(6.7)

the observed value differs from ν = 0.5 which represents incompressible behaviour.
Note in passing, that in a geometrically linear framework the Poisson’s ratio is a
constant.

Due to the large deformations applied during the experiments, Fig. 6.18 shows
a pronounce dependence of the effective Poisson’s ratio on the axial deformation,
which requires a large strain model in the simulations.

6.3.1 Uniaxial Tensile Tests at Different Strain Rates

For the chosen polymeric matrix material PBT rate-dependent effects are expected.
Hence, uniaxial tensile tests at different strain rates with the pure matrix material
have to be taken into account. Strain rates according to a cross-head speed of the
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Fig. 6.18 Uniaxial tensile
test: effective Poisson’s
ratio ν

Fig. 6.19 Uniaxial tensile
test: PBT at different strain
rates

device of v = 0.01mm/s, v = 0.1mm/s, v = 1mm/s and v = 10mm/s are chosen.
The specimens (tensile bar type 1A) are loaded until a necking area and the related
softening becomes visible. The results of the PBT matrix are presented in Fig. 6.19.
They show a pronounced visco-plastic behaviour of the semi-crystalline thermoplas-
tic polymer. A yield point is clearly visible. The yielding takes place nearly without
hardening. The formation of the localisation zone is related to the decrease of the
nominal stress-strain curve after a first local maximum followed by small hardening.
With increasing strain rate, the yielding point is shifted to higher stresses, the neck-
ing is attained earlier and the ductility of the specimens decreases, i.e. failure of the
specimens occurs earlier at lower strains.

In Fig. 6.20 the stress-strain curves of the composite with a high fibre content
of 30 wt% GF are shown for different loading velocities. The behaviour of the
composite completely differs from the matrix material. On the one hand, the stresses
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Fig. 6.20 Uniaxial tensile
test: PBT GF30 at different
strain rates

at comparable strains are much higher than for the pure matrix material, on the other
hand, the ductility is reduced i.e. fracture occurs already at small strains. Even if
a small rate dependence can still be seen, it is less pronounced than for the matrix
material. In addition, a yield point and a large plastic region are not present, however,
the failure of the samples occurs without showing strong softening effects.

In general, rate-dependent effects decrease with increasing fibre content. In the
applications, typically higher fibre contents are in use. Therefore, the following com-
prehensive investigations are carried out at one constant strain rate related to the
cross-head speed of the device of v = 0.1mm/s. A detailed discussion of the rate-
dependent effects is skiped.

6.3.2 Cyclic Loadings

Tensile Bar Type 1A

The analysis of loading-unloading cycles in the uniaxial tests of the composite mate-
rial provides more information than a single loading path. Therefore, the results of
the cyclic loading-unloading tests and the monotonous loading tests until failure are
compared. The tests are performed using the moulded tensile bars of type 1A. The
obtained stress-strain curves are shown in Fig. 6.21 for all available materials, i.e.
the pure matrix and composites with 5, 20 and 30 wt% fibre content. Figure6.21
summarises the results of the previous section. Increasing the fibre content increases
the stiffness and strength on the one hand, but ductility and the strain at failure are
decreased on the other hand. Furthermore, it is verified, that monotonous and cyclic
tests lead to comparable stress-strain curves. Furthermore, the accumulation of dam-
age can be seen in all unloading cycles as a decrease of the stiffness during unloading
and reloading.
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Fig. 6.21 Uniaxial loading until crack and cyclic loading tests (type 1A)

While the stress-strain curve of the monotonous test suggests nearly perfect plas-
ticity of the matrix material, the cyclic test shows that possible hardening effects
are compensated by the softening due to damage which occurs directly at the very
beginning of yielding. Additionally to the matrix damage, the short fibre-reinforced
composites allow for different types of damage mechanisms under load. In total the
composite may undergo damage by fibre cracking, matrix cracking or debonding of
fibres, which is sketched in Fig. 6.22. Macroscopically, in the analysis of the uniaxial
tensile tests the difference between these damagemechanisms can not be determined.
All these effects lead to a degradation of the stiffness during the unloading-reloading
cycles as shown in Fig. 6.21. Material damage increases with increasing fibre content
leading to the global decrease of the composite’s ductility. Finally, the influence of
the viscosity, which is neglected in further investigations as mentioned in Sect. 6.3.1,
is reflected in the small hysteresis loops which is formed between unloading and
reloading paths. The area of the hysteresis loops decreases with increasing fibre con-
tents, which again confirms the assumption that viscous effects are negligible for the
composite in a first approach.

Sheet Material

The fibres in the directly moulded tensile bars are mainly oriented in the axial direc-
tion. A variation of the fibre orientation is more or less impossible due to the produc-
tion process but necessary to study the influence of the anisotropy on the mechanical
behaviour. The influence of this process-induced main fibre orientation has been
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Fig. 6.22 Types of damage
in short fibre-reinforced
polymers

fibre cracking

d ebonding

matrix cracking

proven e.g. in [15]. Therefore, type 5A tensile bars are milled out of the available
sheets with the thickness d = 2mm. According to Fig. 6.6 tensile bars with different
main fibre orientations can be obtained by variations of the milling angle β.

Figure6.23 shows a light microscopy of a polished section of the rectangular
cross-section of type 5A tensile bars. The first picture results from a specimen at
β = 0◦ while the second materialographic picture was taken from a specimen at
β = 90◦. While in the first case the fibres are mainly aligned in the tensile direction
it can be seen that in the second case the fibres are aligned orthogonal to the tensile
direction. These differentmain fibre orientationswill lead to pronounced anisotropies
especially for the specimens with high fibre concentrations.

In the following investigations four different angles β (β = 0◦, β = 45◦, β =
60◦ and β = 90◦) are chosen, which allow to study the influence of the fibre ori-
entation explicitly. Figure6.24 shows the DIC evaluation of the strain field using a
two-sided camera setup before failure.

Figure6.25 presents the results of the tensile tests on bars of type 5A in terms of
stress-strain diagrams. Comparing stress-strain curves for different fibre orientations
shows a distinguished anisotropic behaviour for the higher volume fractions of glass
fibres. While the loading curves (a) and (b) for the pure PBT matrix and the low
volume fraction of 5 wt% glass fibres show only a weak anisotropy the influence
of the orientation increases with increasing degree of filling. This leads to larger
differences between the stress-strain curves (c) and (d) for the different orientations.
The weak anisotropic behaviour of the pure matrix material according to (a) results
from the production process which induces an orientation of the polymer chains
during moulding but this effect is negligible compared to the influence of the fibre
orientation. In general the specimens with a main orientation of β = 0◦ show the
stiffest behaviour while the weakest results are found for the orientation of β = 90◦.
Only the loading path is investigated, the influence of the necking,which ismentioned
above for the directly moulded tensile bars, is not studied further.

In Fig. 6.26 the loading and unloading curves are compared for the specimens
of same orientation but different fibre contents. In (a) the orientation is chosen as
β = 0◦ which implies that the fibres are mainly aligned to the axis of the tensile bar.
In this case the highest stress values are obtained for a given strain level. In contrast
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Fig. 6.23 Materialographic specimen: tensile bar type 5A PBT GF30

the results for a main orientation orthogonal to the axis of the tensile bar show lower
stresses because the fibres are mainly aligned perpendicular to the loading direction.
Both Figs. 6.25 and 6.26 show that the stiffness increaseswith increasing fibre content
and with increasing alignment of the fibres with the loading direction. Furthermore,
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Fig. 6.24 DIC evaluation tensile bar type 5a

(a) (b)

(c) (d)

Fig. 6.25 Different glass fibre contents: a PBT, b PBT GF5, c PBT GF20, d PBT GF30
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(a) (b)

(c) (d)

Fig. 6.26 Different glass fibre orientations: a β = 0◦, b β = 45◦, c β = 60◦, d β = 90◦

it can be seen, that the ductility of the matrix material is strongly reduced by the
fibres. An increasing fibre content leads to decreasing plastic deformations and an
early failure of the specimens at smaller strain levels for all orientations.

The results of the uniaxial tensile tests performed with specimens of different
orientations prove the assumption of a strong directional dependency of the char-
acteristic properties of the short fibre-reinforced composite material behaviour. The
anisotropic behaviour influences the stiffness and the ductility of the samples. The
effects increase with increasing fibre content.

6.3.3 Results of Uniaxial Tests

Based on the experimental results of the uniaxial tensile tests evaluated with the
help of a digital image correlation system, the following material parameters are
established. For the matrix material and the different fibre contents, the characteristic
values summarised in Table6.1 are extracted from the experimental analysis of the
uniaxial tensile tests. The densities are taken from [25] and the Young’s modulus is
calculated as the secant of the increasing stress from 0 to 1% of the nominal strain.
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Table 6.1 Composite material parameters
Material Fibre content w f

(wt%)
Fibre content n f
(vol%)

Young’s modulus
E0.01 (MPa)

Density [25] ρ( g

cm3

) Poisson’s
ratio ν

PBT 0 0 2330 1.3 0.4

PBT GF5 5 2.6 3130 – 0.42

PBT GF20 20 11.3 5960 – 0.43

PBT GF30 30 17.9 8240 – 0.45

Glass fibres 100 100 72,400 2.55 –

6.4 Biaxial and Inhomogeneous Tests

The uniaxial tensile test is probably the most widely used experiment for character-
ising the material behaviour because it is simple in its installation and performance.
There exist a lot of standards for the uniaxial test. In contrast, it reflects the load-
ing situation of real components only partially. The development of new material
descriptions and the optimisation of simulation procedures need an even lager data
set than obtained from the uniaxial tests. Previous works [23] have generally shown
that the use of data from uniaxial tensile tests is not suitable for the calibration of a
general material model which is supposed to describe the material behaviour under
realistic multiaxial loadings. In an application the material usually does not only
undergo uniaxial loadings but is loaded multiaxially with varying ratio of the princi-
ple stresses. Therefore, multiaxial characterisation methods are required if the model
has to be calibrated for predictive simulations.

The biaxial test gives a possibility to obtainmultiaxial data to evaluate thematerial
modelling description. The setup of a biaxial test and its evaluation are much more
complex than the uniaxial testing device. For the biaxial investigations in this work, a
self-constructed testing device is used [21]. In contrast to the uniaxial setup there are
two perpendicular axes that cross each other. Each axis consists of two drives which
are moving in opposite directions. This guarantees that the cruciform specimen stays
in an fixed position in the centre of the device. It furthermore simplifies the optical
strain measurement by DIC and a stationary camera setup can be used. Both axes
are controlled independently. Therefore, the specimen can be loaded independently
in both directions and different stress states can be applied ranging from uniaxial
tensile loading to equibiaxial tensile loading. As shown in Fig. 6.27 the forces are
measured by force sensors mounted to the clampings on each axis. Note in passing,
that the setup of the device does not allow for a direct evaluation in terms of stresses
and strains due to its inhomogeneous nature but requires the solution of boundary
value problems. A detailed description can be found in e.g. [11, 20].

For the biaxial testing device (see Fig. 6.28) a further specimen geometry, which is
adapted to the existing setup and presented in Fig. 6.29, has to be extracted from the
sheetmaterial. Therefore, the samples are alsomilled out of the plateswith a thickness
d = 2mm. The results of the uniaxial tensile tests presented in Sect. 6.3.3 show the
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Fig. 6.28 Setup biaxial testing device [20]

strengthening of the compositewith increasing fibre content. Therefore themaximum
forces applied on the sample sleeves have to be high enough to cause a measurable
deformation in centre of the cruciform specimen without inducing failure in the outer
regions of the specimen close to the clamps. This is another limiting factor for the
determination of a suitable specimen geometry. During the experiment the specimen
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Fig. 6.29 Biaxial specimen

stays in a stationary position in the centre of the setup. Thus, the inhomogeneously
deformed area in the middle is guaranteed for a continuous image recording during
the loading steps. The evaluation of the images is performed by the DIC-software
ISTRA 4D® giving the full field strain information on the surface of the specimen.

The interpretation of the biaxial tests and their results is more complex than for
the uniaxial tensile tests. In contrast to the uniaxial tensile tests, the measured force
values do not directly correlate to the specimen’s strain and to the stresses in the
centre of the biaxial sample. An inhomogeneous state is observed which has to be
correlated to the motion of the clamps and to the measured forces in both axes.
The procedure of an inverse method [7] has to be applied for the evaluation of the
experiment in order to calculate the stresses in the centre of the biaxial sample.
The field of strains is given from the data of the DIC-software. In order to perform
the following explained procedure, a material model has to be chosen a priori. In
Fig. 6.30 the inverse method is schematically presented to describe the procedure
where experimental and simulated data are used to compare the local displacement
fields. Starting the calculation, initially suggested parameters are needed, which can
be taken e.g. from uniaxial tests. For the investigated glass fibre reinforced composite
the fibre orientations have to be taken into account. The initially chosen parameters
are subsequently optimised by minimising the difference between measured and
computed strains on the surface of the whole sample. Finally, the stress field based
on the measured strain values of the DIC can be calculated from the chosen material
model with the optimised parameters [11, 20].

Equibiaxial tests with a speed of the clamping devices from v = 0.1mm/s in each
axis direction are chosen for the polymeric sheet material. The results of the biax-
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Fig. 6.30 Scheme of the inverse method

ial tests, presented in the following, are provided by the evaluation of the optical
strain measurement system with the DIC-software. Therein the strains of the inho-
mogeneously deformed area in the middle are analysed. The values of the evaluated
major strains (ε1 and ε2) in e1- and e2-direction are compared for the unfilled PBT
in Fig. 6.31 and a fibre content of 20 wt% GF in Fig. 6.32.

For the unfilled matrix material, comparable forces and strains are found in both
orthogonal axes directions. This again verifies the assumption that the pure PBT
behaves nearly isotropic as was already motivated by the uniaxial tensile tests on the
milled tensile bars of different directions (cf. Sect. 6.3.2). In the case of the PBT with
a fibre content of 20 wt% GF the production process of injection moulding leads to
an orientation, an alignment of the glass fibres parallel to the flow direction. This
effect is also visible in the results of the biaxial experiments. Although the two axes
are moving similarly, the axis direction of the cross specimen where the fibres are
mostly oriented in parallel to the tensile direction is stiffer and deforms less even
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if the mean force values in this direction are higher. In contrast to that the other
axis of the cruciform specimen shows lower force values. This effect is clarified
in the DIC-evaluation results where the strains in the perpendicular directions are
presented in Fig. 6.32. Here, the highest strain values are reached in the specimen
axis and indicate the beginning of failure. Therein the axis parallel to a main fibre
orientation is the stiffest one.

6.4.1 Nakajima Test

While biaxial devices as explained above are usually not available in a standard
testing laboratory some alternatives for multiaxial examinations are established. One
possibility is the so-calledNakajima test [16]which is approved formetallicmaterials
where forming limit diagrams (FLD) have to be measured [5]. A uniaxial device is
used to push a stamp into a thin plate which is clamped at its boundary. The test itself
is comparable to a deep-drawing process and schematically presented in Fig.6.33.
Variations of the specimen’s shape from full circles to small stripes allow to adjust
the biaxial ratio in the centre of the specimen from equibiaxial to nearly uniaxial
deformations. In the classical evaluation only the local strain in the centre of the
specimen is taken into account to construct the FLD.
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Fig. 6.33 Scheme Nakajima
setup
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Fig. 6.34 Nakajima
specimen R = 60mm,
h = 150mm, b = 150mm

h

b
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In this subsection, we describe the adaptation of the experimental setup for the
fibre-reinforced PBT composite. The investigations of different loading situations
with different biaxial ratios are realised by using different specimen geometries. First,
circular specimens are milled from the sheet material (150 × 150mm, d = 2mm).
Finally, these circles are tallied by two smaller circles. The shapes are based on those
for metallic materials as proposed by Hasek [10]. For clarification Fig. 6.34 presents
the specimen’s geometry with a milled out radius of R = 60mm.

With respect to the anisotropic behaviour there is the possibility to realise dif-
ferent loading situations by adjusting the fillet of the sample in relation to the
process-induced main fibre orientation. In applicational case not only the perpen-
dicular loading conditions are of of great interest for the investigated composite
material. Therefore the influence of unknown multiaxial loading impacts in between
is analysed. Additionally in order to give the possibility to compare the results of the
Nakajima tests to the ones obtained from the biaxial tests different types of specimens
are used. The complete circular plate (R = 0) is used and additionally different radii
R = 45mm, R = 60mm and R = 70mm are milled out from the sheet material.

Figure6.35 shows the movable punch, which is mounted on a uniaxial device.
It deforms the sheet material in the sample holder as shown in the detailed view in
Fig. 6.36. An additional lubricant is applied on the surface of the punch in order to
reduce the friction between the punch and the specimen. In the Nakajima setup a
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Fig. 6.35 Tested Nakajima specimen a PBT and b PBT GF30

one-sided four camera setup is indispensable to capture the photos of the specimen’s
deformation during the loading path. The maximum deformation depends on the
fibre content and the geometry. While hemispherical states of the resulting cup can
be achieved for the pure matrix material only small deformations with low curvature
are possible for the specimens with 20 and 30 wt% fibre content. The deformation
results including the fractures of the specimen are presented in Fig. 6.37 for the same
experimental procedure. The ductile unfilledPBTshows the remaining hemispherical
cup whereas the specimen with the high fibre content of 30 wt% on the right hand
side deforms less ductile and breaks rather brittle. This is in line with the results
found in the uniaxial test where the fibres strongly decrease the ductility.

In order to evaluate the experimental results of the Nakajima test the evaluation
method of the biaxial tensile test has to be followed as explained in Sect. 6.4. In addi-
tion to the full-field strain measurement on the surface of the specimens the reaction
force is also needed for the evaluation of the material modelling. Hence, a force
sensor (max. 50kN) which measures the values during the experiment continuously,
is fixed at the punch while the test position u of the punch is controlled.

The examinedmultiaxial loading case that has been chosen is realised by the spec-
imen geometry. The deformation of the complete specimen sheet provides an ideal
equibiaxial tension while the uniaxial information is more and more approximated
by a thinning bridge in the centred area (cf. Fig. 6.38).

The following results present the determined force-displacement curves, which
are qualitatively correlated to a stress-strain curve. The velocity of the punch move-
ment is v = 0.1mm/s, like in the uniaxial tensile tests. Concerning the different
fibre contents of the composite material, there is a significant characteristic material
behaviour of each type of composite as shown in Fig. 6.39. The entire circular plate
(R = 0) of the unfilled pure thermoplastic matrix material PBT shows the typical
elasto-plastic behaviour with yielding, hardening and softening after localisation.
Furthermore it shows the largest displacement values. These effects decrease with
higher milled out radii. For each fibre content there is a decrease of the force as well
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Fig. 6.39 Comparison of fibre contents: a PBT, b PBT GF5, c PBT GF20, d PBT GF30

as the displacement for thinner bridges of the specimen. Overall, the stiffness of the
specimens increases with increasing fibre contents because the maximum forces are
decreased significantly by a brittle failure.

The concluding results of the different specimengeometries are shown inFig. 6.40.
The influence of the remaining cross-section on the material behaviour is examined
for each fibre content. For each type of specimen geometry there is the highest defor-
mation for the unfilled PBT. The higher the fibre content the higher stiffness and
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Fig. 6.40 Comparison of geometries: a PBT R0, b PBT R45, c PBT R60, d PBT R70

brittleness and the composite material fails at smaller displacements of the punch.
Therein, the complete specimen without any radius reaches the highest forces related
to an equibiaxial state of stress in the centre of the sample and the largest deforma-
tions.With an increasing radius size, i.e. with decreasing cross-section, themaximum
forces of the loaded specimen decrease. There is nearly no difference in the results
of the force values for the thin bridges with R = 60 and R = 70mm in Fig. 6.40.

In addition the formability of a material can be investigated using the Nakajima
test. From the correlated strain data concerning the principle strains are extracted by
the DIC-software ISTRA 4D®. This information can be used to construct the classical
forming limit diagrams (FLD) [1, 9, 24].

6.5 Conclusion

In this chapter experimental investigations have been presented in detail for the
material characterisation of a short fibre-reinforced PBT matrix. The results give a
comprehensive overview of the behaviour of the short fibre-reinforced PBT at room-
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temperature. The main effects have been carried out by different types of uniaxial
tensile tests. It is found that the pronounced elasto-viscoplastic behaviour of the
unfilled matrix material changes with increasing fibre content. Viscous effects and
ductility decrease while stiffness and strength increase. Concerning the influence of
a production-induced main fibre orientation further uniaxial and biaxial tensile tests
followed by the Nakajima test have been realised. The results show the maximum
stiffness for a loading in fibre direction. Furthermore, the anisotropy induced by the
production process and already observed in the uniaxial tests also influences the
results of the multiaxial tests. Each type of experimental analysis has been evaluated
by means of an optical deformation measurement system with an attached digital
image correlation software. The full-field strain measurement is indispensable for
the evaluation of the inhomogeneous multiaxial tests. Further specific investigations
concerning i. e. the thermal or chemical behaviour need to be performed for a full
characterisation of the material.
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