
Enhancing Rating Prediction Quality Through
Improving the Accuracy of Detection of Shifts

in Rating Practices

Dionisis Margaris1 and Costas Vassilakis2(&)

1 Department of Informatics and Telecommunications, University of Athens,
Athens, Greece

margaris@di.uoa.gr
2 Department of Informatics and Telecommunications,

University of the Peloponnese, Tripoli, Greece
costas@uop.gr

Abstract. The most widely used similarity metrics in collaborative filtering,
namely the Pearson Correlation and the Adjusted Cosine Similarity, adjust each
individual rating by the mean of the ratings entered by the specific user, when
computing similarities, due to the fact that users follow different rating practices,
in the sense that some are stricter when rating items, while others are more
lenient. However, a user’s rating practices change over time, i.e. a user could
start as lenient and subsequently become stricter or vice versa; hence by relying
on a single mean value per user, we fail to follow such shifts in users’ rating
practices, leading to decreased rating prediction accuracy. In this work, we
present a novel algorithm for calculating dynamic user averages, i.e. time-in-
point averages that follow shifts in users’ rating practices, and exploit them in
both user-user and item-item collaborative filtering implementations. The pro-
posed algorithm has been found to introduce significant gains in rating pre-
diction accuracy, and outperforms other dynamic average computation
approaches that are presented in the literature.

Keywords: Recommender systems � Collaborative filtering
User-user similarity � Item-item similarity � Dynamic average
Prediction accuracy � Ratings’ timestamps

1 Introduction

Collaborative filtering (CF) computes personalized recommendations, by taking into
account users’ past likings and tastes, in the form of ratings entered in the CF rating
database. User-user CF algorithms firstly identify people having similar tastes, by
examining the resemblance of already entered ratings; for each user u, other users
having highly similar tastes with u are designated as u’s nearest neighbors (NNs).
Afterwards, in order to predict the rating that u would give to an item i that u has not
reviewed yet, the ratings assigned to item i by u’s NNs are combined [1], under the
assumption that users are highly likely to exhibit similar tastes in the future, if they
have done so in the past as well [26, 30]. Analogous practices are followed in item-item

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Hameurlain and R. Wagner (Eds.): TLDKS XXXVII, LNCS 10940, pp. 151–191, 2018.
https://doi.org/10.1007/978-3-662-57932-9_5

http://orcid.org/0000-0002-7487-374X
http://orcid.org/0000-0001-9940-1821
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57932-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57932-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57932-9_5&domain=pdf

CF algorithms, where the first step is to locate items that are similarly rated by users.
CF is the most successful and most applied technique in the design of recommender
systems [3]. In order to measure similarity between users or items, the Pearson Cor-
relation Coefficient and the Adjusted Cosine Similarity [4] (see also Sect. 3) are the
most commonly used formulas in CF recommender systems. In this context, both the
Pearson correlation coefficient and the Adjusted Cosine Similarity adjust the ratings of
a user u by the mean value of all ratings entered by u, and the ratings of an item i by the
mean value of all ratings for this item, respectively, so as to tackle the issue that some
users may rate items higher than others or that some items may be rated higher than
others. However, relying on a single, global mean value presumes that the users’
marking practices remain constant over time; in practice though, it is possible that a
user’s marking practices change over time, i.e. a user could start off being strict and
subsequently change to being lenient, or vice versa; similarly, an item could start as
being high rated and subsequently begin receiving lower marks, due to general shift of
interest (music or clothing trends, decline of interest for blockbuster movies or books
etc.). For instance, according to the MovieLens 20M dataset [9, 10], the Titanic movie
started off with an average of 4.30/5 in 1997, dropping to 3.06 in 2005, and finally
climbing back to 3.24 in 2015.

Similar situations arise for users: for example, consider that a user initially grades
Tudors (http://www.imdb.com/title/tt0758790/), which is the first historic period drama
series of high quality that she rates; being enthusiastic with the series, she enters a
rating of 10. Subsequently, the same user rates Game of Thrones (http://www.imdb.
com/title/tt0944947/), which she finds superb and better than Tudors, giving it the
highest available mark, i.e. 10. Finally, the user watches a few episodes from the show
Vikings (http://www.imdb.com/title/tt2306299), and grades this series with an 8. While
both Tudors and Game of Thrones have been equally rated by the user, this does not
necessarily reflect the fact that she considers them of equal quality; similarly, the fact
that Vikings got a lower grade than Tudors, does not necessarily mean that she con-
siders it of inferior quality: the user’s rating criteria and practices have simply evolved,
along with her experiences on historic period drama series.

Insofar, while many efforts have been made to improve the CF prediction accuracy,
and the aspect of changes in users’ interests has been extensively studied (Gama et al.
[24] provide a comprehensive review), the issue of shifts in rating practices has not
received adequate attention. Margaris and Vassilakis [33] introduce the concept of
dynamic user rating averages which follow the users’ marking practices shifts and
present two alternative algorithms for computing a user’s dynamic averages. These
algorithms are validated in the context of user-user CF, and have been found to achieve
better rating prediction accuracy than the plain CF algorithm, using the Pearson cor-
relation similarity metric.

In this paper, we extend the work in [33] by introducing a new dynamic average
computation algorithm, namely DAnext, which is capable of better following the users’
marking practices shifts, leading to improved prediction accuracy, as compared to the
two dynamic average algorithms presented in [33]. This improvement is consistent
under both user-user CF implementations and item-item CF implementations, where
similarities are measured using the Pearson Correlation and the Adjusted Cosine
Similarity respectively. To validate our approach, we present an extensive comparative

152 D. Margaris and C. Vassilakis

http://www.imdb.com/title/tt0758790/
http://www.imdb.com/title/tt0944947/
http://www.imdb.com/title/tt0944947/
http://www.imdb.com/title/tt2306299

evaluation among (i) the proposed algorithm, (ii) the two approaches proposed in [33]
and (iii) the classic static average (unique mean value), considering both the user-user
and the item-item CF implementations.

The proposed algorithm is based on the exploitation of timestamp information
which is associated with ratings; hence in this work, we use the Amazon datasets [7, 8],
the MovieLens datasets [9, 10], the Netflix dataset [11] and the Ciao dataset [51],
which contain timestamps. It is worth noting that the proposed algorithm can be
combined with other techniques that have been proposed for either improving pre-
diction accuracy in CF-based systems, including consideration of social network data
(e.g. [14, 25, 29]), location data (e.g. [34, 35]) and pruning of old user ratings (e.g. [12,
38]), or techniques for speeding up prediction computation time, such as clustering
(e.g. [36, 37, 40]).

The rest of the paper is structured as follows: Sect. 2 overviews related work, while
Sect. 3 presents the proposed algorithm, together with the algorithms presented in [33],
for self-containment purposes. Section 4 evaluates the proposed algorithm using the
aforementioned datasets and finally, Sect. 5 concludes the paper and outlines future
work.

2 Related Work

The accuracy of CF-based systems is a topic that has attracted considerable research
efforts. Koren [15] proposes a new neighborhood-based model, which is based on
formally optimizing a global cost function and leads to improved prediction accuracy,
while maintaining merits of the neighborhood approach such as explainability of
predictions and ability to handle new ratings (or new users) without retraining the
model. In addition, he suggests a factorized version of the neighborhood model, which
improves its computational complexity while retaining prediction accuracy. Liu et al.
[18] present a new user similarity model to improve the recommendation performance
when only few ratings are available to calculate the similarities for each user. The
model considers the local context information of user ratings, as well as the global
preference of user behavior. Ramezani et al. [39] propose a method to find the neighbor
users based on the users’ interest patterns in order to overcome challenges like sparsity
and computational issues, following the idea that users who are interested in the same
set of items share similar interest patterns, therefore, the non-redundant item subspaces
are extracted to indicate the different patterns of interest and then, a user’s tree structure
is created based on the patterns he has in common with the active user.

Research has shown that exploiting time in the rating prediction computation can
improve prediction accuracy, due to concept drift; concept drift is the phenomenon
when the relation between the input data and the target variable changes over time [24].
Change of interests [5, 24] is a typical example of concept drift. To this end, Zliobaite
et al. [22] develop an intelligent approach for sales prediction, which uses a mechanism
for model switching, depending on the sales behavior of a product. This research
presents an intelligent two level sales prediction approach that switches the predictors
depending on the properties of the historical sales. This approach is shown to achieve
better results as compared to both a baseline predictor and an ensemble of predictors.

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 153

Ang et al. [21] address the problem of adaptation when external changes are asyn-
chronous, by developing an ensemble approach, called PINE, which combines reactive
adaptation via drift detection, and proactive handling of upcoming changes via early
warning and adaptation across the peers. In addition, PINE is parameter-insensitive and
incurs less communication cost while achieving better accuracy.

Elwell and Polikar [20] tackle the issue of concept drift in the context of online
learning, introducing a batch-based ensemble of classifiers, called Learn++.NSE, where
NSE stands for Non-Stationary Environments. Learn++.NSE learns from consecutive
batches of data without making any assumptions on the nature or rate of drift; it can
learn from such environments that experience constant or variable rate of drift, addition
or deletion of concept classes, as well as cyclical drift. The algorithm learns incre-
mentally, as do other members of the Learn++ family of algorithms, that is, without
requiring access to previously seen data. Learn++.NSE trains one new classifier for
each batch of data it receives, and combines these classifiers using a dynamically
weighted majority voting. The algorithm is evaluated on several synthetic datasets
designed to simulate a variety of nonstationary environments, as well as a real-world
weather prediction dataset. Minku et al. [19] present a new categorization for concept
drift, separating drifts according to different criteria into mutually exclusive and non-
heterogeneous categories. Moreover, they present a diversity analysis in the presence of
different types of drifts and it shows that, before the drift, ensembles with less diversity
obtain lower test errors. Nishida and Yamauchi [17] have developed a detection
method that includes an online classifier and monitors its prediction errors during the
learning process, which uses a statistical test of equal proportions. Experimental results
showed that this method performed well in detecting the concept drift in five synthetic
datasets that contained various types of concept drift.

Vaz et al. [16] propose an adaptation of the item-based CF algorithm to incorporate
rating age influence in predictions. It considers ratings in two dimensions: the active
user ratings and the community ratings, and it inserts a time weight, which gives more
relevance to more recent ratings than to older ones, both in the similarity calculation
and in the rating prediction equation.

Dror et al. [2] consider the temporal dimension in the context of recommender
systems by capturing different temporal dynamics of music ratings, along with infor-
mation from the taxonomy of music-related items; both these dimensions are exploited
by a rich bias model. The method proposed in this work is applied on a sparse, large-
scale dataset, and the particular characteristics of the dataset are extracted and utilized.
Liu et al. [13] present a social temporal collaborative ranking model that can simul-
taneously achieve three objectives: (1) the combination of both explicit and implicit
user feedback, (2) support for time awareness using an expressive sequential matrix
factorization model and a temporal smoothness regularization function to tackle
overfitting, and (3) support for social network awareness by incorporating a network
regularization term. Dias and Fonseca [31] explore the usage of temporal context and
session diversity in session-based CF techniques for music recommendation. They
compare two techniques to capture the users’ listening patterns over time: one
explicitly extracts temporal properties and session diversity, to group and compare the
similarity of sessions, the other uses a generative topic modeling algorithm, which is
able to implicitly model temporal patterns. Results reveal that the inclusion of temporal

154 D. Margaris and C. Vassilakis

information, either explicitly or implicitly, significantly increases the accuracy of the
recommendation, as compared to the traditional session-based CF.

Li et al. [41] study the problem of predicting the popularity of social multimedia
content embedded in short microblog messages, exploiting the idea of concept drift to
capture the phenomenon that through the social networks’ “re-share” feature, the
popularity of a multimedia item may be revived or evolve. They model the social
multimedia item popularity prediction problem using a classification-based approach
which is used for two sub-tasks, namely re-share classification and popularity score
classification. Furthermore, they develop a concept drift-based popularity predictor by
ensembling multiple trained classifiers from social multimedia instances in different
time intervals.

Lu et al. [42] present a novel evolutionary view of user’s profile by proposing a
Collaborative Evolution (CE) model, which learns the evolution of user’s profiles
through the sparse historical data in recommender systems and outputs the prospective
user profile of the future. Kangasrääsiö et al. [43] formulate a Bayesian regression
model for predicting the accuracy of each individual user feedback and thus find
outliers in the feedback data set. Additionally, they introduce a timeline interface that
visualizes the feedback history to the user and provides her with suggestions on which
past feedback is likely in need of adjustment. This interface also allows the user to
adjust the feedback accuracy inferences made by the model. The proposed modeling
technique, combined with the timeline interface, makes it easier for the users to notice
and correct mistakes in their feedback, and to discover new items.

Lo et al. [52] address the issue of tracking concept drift in individual user pref-
erences; in this context they develop a Temporal Matrix Factorization approach
(TMF) for tracking concept drift in each individual user latent vector. To this end, a
time series of rating matrices is initially constructed from the ratings database; sub-
sequently this time series is used to capture the concept drift dynamics for each indi-
vidual user; and finally, the captured dynamics are taken into account in the rating
prediction computation phase. Cheng et al. [53] propose the ISCF (interest sequences
CF), a recommendation method based on users’ interest sequences; interest sequences
are first detected from the ratings, and are subsequently used to refine similarity metrics
between users, thus taking into account dynamic evolution patterns of users’
preferences.

However, none of the above mentioned works considers the issue of shifts in the
users’ rating practices. This issue has only recently received some attention: Margaris
and Vassilakis [33] introduce and exploit the concept of dynamic user rating averages
which follow the users’ marking practices shifts. Furthermore, they present two
alternative algorithms for computing a user’s dynamic averages and perform a com-
parative evaluation in the context of a user-user CF implementation. The results of this
evaluation show that the dynamic average-based algorithms exhibit better performance
than the plain CF algorithm in terms of rating prediction accuracy, at the expense of a
small to tolerable drop in coverage.

Interestingly, fuzzy recommender systems (FRS) [50] introduce the concept of
fuzzy user context in the process of rating prediction and recommendation formulation.
Under this approach, each rating entered by a user is associated with a particular
context element through a fuzzy membership function. The FRS approach could be

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 155

exploited for accommodating user rating practices as a specific rating criterion; sub-
sequently the criterion would be used in the calculation of fuzzy similarity degree
between users and finally be incorporated in the final rating prediction. To implement
this approach would necessitate however a concrete, automated method for assigning
strictness labels to individual user ratings, the definition of an appropriate membership
& utility functions, and the evaluation of the overall system performance. To our
knowledge, no FRS has been reported in the literature to accommodate these features.

This paper extends the work presented in [33] by (1) introducing a novel algorithm
for dynamic average computation, which is able to follow the users’ shifts in rating
practices more accurately and (2) validating its performance against widely used
datasets with diverse characteristics, exploring both the user-user and item-item CF
implementations. The DAnext algorithm introduced in this paper is based on the
rationale that the rating practices of a user at some time point is formulated according to
the experiences she has amassed up to that time point and therefore it is more accu-
rately reflected by her subsequent ratings, which are influenced by the same (and some
additional) experiences. On the other hand, the DAvicinity algorithm introduced in [33]
assumes that the user’s ratings are mostly affected by temporally constrained factors,
such as user mood, while the DAprevious algorithm, also presented in [33], assumes that
the rating-related behavior of a user at a certain time point is better estimated by
considering the user’s behavior up to that time point. While it is also possible that the
ratings entered by a user during some period are affected by her mood [47], which
would favor the DAvicinity algorithm, the results indicate that the effect of the amassed
experiences is stronger than the effect of mood. Further qualitative evaluation on this
subject is required, and this is envisioned as part of our future work.

The newly introduced algorithm has been found to provide more accurate rating
predictions, by better capturing the shifts in users’ rating practices.

3 Exploiting Ratings’ Timestamps in Users Dynamic Average
Configuration

In CF, predictions for a user X are computed based on a set of users which have rated
items similarly with X; this set of users is termed “near neighbors of X” (X’s NNs). The
predominant similarity metric used in CF-based systems is the Pearson correlation
metric [3], where the similarity between two users X and Y is expressed as:

Pearson sim X; Yð Þ ¼
P

i2IX \ IY RX;i � RX
� � � RY ;i � RY

� �
ffiP

i2IX \ IY RX;i � RX
� �2q

�
ffiP

i2IX \ IY RY ;i � RY
� �2q ð1Þ

where i ranges over items that have been rated by both X and Y and RX (resp. RY) is the
mean value of the ratings entered by X (resp. Y); as noted above, the Pearson corre-
lation formula uses a “global” mean value. The algorithms presented in this section
target the computation of RX (resp. RY), aiming to substitute the global average, which
is insensitive to shifts in rating practices, by an average that is tailored to the time

156 D. Margaris and C. Vassilakis

period that RX;i (resp. RY ;i) was entered. When a dynamic average computation algo-
rithm DAAlg is employed, the above formula is modified as:

Pearson sim X; Yð Þ ¼
P

i2IX \ IY RX;i � DAAlg RX;i
� �� � � RY ;i � DAAlg RY ;i

� �� �
ffiP

i2IX \ IY RX;i � DAAlg RX;i
� �� �2q

�
ffiP

i2IX \ IY RY ;i � DAAlg RY ;i
� �� �2q

ð2Þ

Similarly, for item-item CF, the Adjusted Cosine Similarity (which is preferred
against the basic cosine similarity metric, since it takes into account the differences in
rating scale between different users [46]) is modified as:

Adj cos sim i; jð Þ ¼
P

u2U Ru;i � DAAlg Ru;i
� �� � � Ru;j � DAAlg Ru;j

� �� �
ffiP

u2U Ru;i � DAAlg Ru;i
� �� �2q

�
ffiP

u2U Ru;j � DAAlg Ru;j
� �� �2q

ð3Þ

where u ranges over the users that have rated both i and j; again DAAlg Ru;i
� �

denotes the
dynamic average of user u at the time that DAAlg Ru;i

� �
was submitted.

While other similarity metrics, such as Euclidian distance [49], Manhattan Distance
[49], Spearman’s coefficient [4], Kendall’s Tau [4] etc. have been used in recommender
systems, in this paper we will confine ourselves to examining the Pearson similarity
metric for the user-user strategy and the adjusted cosine similarity metric for the item-
item strategy. This is due to the fact that the relevant formulas readily use the average
values of the users’ and items’ ratings, hence the substitution of the global user’s or
item’s average by the rating-specific dynamic average is a natural extension, while
other similarity metrics do not adjust ratings according to the global average. This is
also the case with the very promising matrix factorization technique [32]. In our future
work, we plan to investigate how dynamic averages can be integrated into the above
mentioned methods.

In the rest of this section we present the proposed technique for computing the
dynamic user averages. For completeness purposes, we will also describe the relevant
techniques described in [33], which are also used as yardsticks in the performance
evaluation section.

3.1 The Proposed Algorithm

Under the proposed approach for computing dynamic averages, a separate average for
each rating is calculated and stored. The algorithm for computing the dynamic average
proposed in this paper takes into account only the ratings that have been submitted after
the rating for which the dynamic average is submitted. Effectively, this algorithm is
based on the assumption that, when considering a particular rating r, ratings that have
been entered after r reflect more accurately the user’s strictness at the time point that
r was entered. Under this approach for computing dynamic averages, each user rating
ru,x is coupled with its own dynamic average DAnext(ru,x) which is computed as shown
in Eq. 4:

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 157

DAnext ru;x
� � ¼

P
r2Ratings uð Þ

V
t rð Þ[t ru;xð Þ r

r : r 2 Ratings uð Þ V
t rð Þ[t ru;x

� ��� �� ð4Þ

The pseudocode for the computation of the dynamic averages under the proposed
algorithm is illustrated in Listing 1.

PROCEDURE bootstrapDynamicAverages(ratingsDB)
// Input: ratings database containing all users’ ratings
// Output: the ratings database is complemented with
// the dynamic averages of the ratings. For each rating,
// the number of subsequent ratings is also stored to
// facilitate the update of dynamic averages

FOREACH user u users(ratingsDB)
ru = retrieveAllUserRatings(u, ratingsDB)
ru = sort ru by rating timestamp in asc order
calculateDAnext(ru)

END FOR
END PROCEDURE

PROCEDURE calculateDAnext(ratingList)
// Input: a list of ratings in ascending temporal order.
// Output: the dynamic averages of all the ratings in the
// input list have been caclulated

// the last rating has no next, so its dynamic average
// defaults to the rating itself
numRatings = count(ratingList)
ratingList[numRatings].dynamicAVG = ratingList[numRatings].rating

sumOfNextRatings = 0
FOR i = numRatings -1 DOWNTO 1 STEP -1
sumOfNextRatings += ratingList[i + 1].rating
ratingList[i].dynamicAVG = (sumOfNextRatings / (numRatings - i))

END FOR
END PROCEDURE

Listing 1. Pseudocode for the computation of the dynamic averages in the ratings database

After the dynamic averages have been computed as illustrated in Listing 1, the
Pearson similarity between two users X and Y can be computed as shown in Listing 2,
which implements the formula given in Eq. 2. The computation between each pair of
users can be done while the algorithm bootstraps, and the cached similarities can be
used thereafter for rating prediction, as in the typical case of user-user CF-based
systems.

158 D. Margaris and C. Vassilakis

FUNCTION DA_BasedPearsonSimilarity(RatingsDB, X, Y)
// Input: ratings database containing all users’ ratings and the
// identities of the users
// Output: Pearson similarity metric

ratingsX = retrieveAllUserRatings(X, RatingsDB)
ratingsY = retrieveAllUserRatings(Y, RatingsDB)
// find ids of items rated by both users
commonItemIDs = commonItems(ratingsX, ratingsY)
pearsonNominator = 0
pearsonDenomX = 0
pearsonDenomY = 0
FOREACH itemID in commonItemIDs
 ratingX = getRatingByItemID(ratingsX, itemId)
 ratingY = getRatingByItemID(ratingsX, itemId)
 pearsonNominator += (ratingX.rating – ratingX.dynamicAVG) *

(ratingY.rating - ratingY.dynamicAVG)
 pearsonDenomX += pow((ratingX.rating – ratingX.dynamicAVG), 2)
 pearsonDenomY += pow((ratingY.rating – ratingY.dynamicAVG), 2)
END FOR
RETURN pearsonNominator / (sqrt(pearsonDenomX) *

sqrt(pearsonDenomY))
END FUNCTION

Listing 2. Pseudocode for the computation of the Pearson similarity between two users, consid-
ering the dynamic averages

When a new rating is entered in the database by some user u, the denominator of
Eq. 4 changes for all ratings r that have been entered by the particular user, therefore
the dynamic averages for all ratings entered by u must be recalculated. This will in turn
trigger the recalculation of all similarities between u and other users in a user-user CF
implementation (cf. Eq. 2) or the recalculation of all similarities between items that
u has rated and other items in an item-item CF implementation (cf. Eq. 3). The relevant
performance implications are discussed in Subsect. 4.10, together with the memory and
secondary storage requirements of the algorithm.

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 159

PROCEDURE addRating(ratingsDB, user, item, rating)
// add a new rating in the ratings database

// INPUT: rating database, the user that gave the rating,
// the item on which the rating was given and the rating
// value
// Output: updated rating database with the user’s new
// dynamic averages
// append rating to ratings db; this is positioned last, main-
taining
// the temporal sort order within the ratings of each user
// that has been established in the algorithm bootstrap
appendRating(ratingsDB, new Rating(user, item, rating))
ru = retrieveAllUserRatings(user, ratingsDB)
// recalculate the user’s dynamic averages
calculateDAnext(ru)
END PROCEDURE

Listing 3. Pseudocode for inserting a new rating into the ratings database

One issue that is worth discussing in the dynamic average computation procedure
described above is that recent ratings have only few next ones, therefore the dynamic
average computed for these ratings may be skewed. While this is true, it has to be noted
that the most recent ratings of each user u, where this skew appears, are only a small
fraction of the items that u has in common with her near neighbors (in our experiments,
less than 3.6% of the computations for evaluating similarities between users involved
the last four ratings of either u or u’s near neighbors), with the rest of the computations
being based on previous ratings that have at least four next ratings. In this respect, the
effect of this skew is small. In order to further improve the effectiveness of the algo-
rithm and minimize skew, variations of the algorithm may be introduced, which would
e.g. consider a number of past ratings in the dynamic average computation or use the
global average when an adequate number of more recent ratings is not available.
Further elaboration and experimentation on this aspect is required, and this is con-
sidered part of our future work.

3.2 Existing Dynamic Average Algorithms

In [33], two algorithms for computing dynamic user averages were proposed, namely
(a) the dynamic average based on the temporal vicinity of the ratings, which will be
denoted as DAvicinity and (b) the dynamic average based only on previous ratings, which
will be denoted as DAprevious. While Margaris and Vassilakis [33] describe their
application only in a user-user CF scenario, these algorithms can be also directly
applied in an item-item CF implementation, by using the corresponding dynamic

160 D. Margaris and C. Vassilakis

averages in Eq. 3. In the next subsections, we briefly present these algorithms for
completeness purposes.

Computing the Dynamic Average Based on the Temporal Vicinity of the Ratings.
According to the DAvicinity algorithm, when computing the dynamic average DAvicin-

ity(r) for a rating r, each user rating r’ posted by the same user is assigned a weight on
the basis of its temporal vicinity to r: ratings that have been entered temporally close to
rare assigned higher weights, and as temporal distance increases, the weights decrease.
This approach is based on the rationale that user ratings that are temporally distant to
R may not accurately reflect the user’s strictness at that particular time, while ratings
that are temporally close to r form a better basis for deriving user strictness for the time
period that r was entered.

In more detail, for rating ru,x of item x by user u, which has been entered at t(ru,x),
the weight wu,x(ru,i) of a rating ru,i is computed using the standard normalization
function presented in [27]:

wu;x ru;i
� � ¼ 1� t ru;x

� �� t ru;i
� ��� ��

max t ru;i
� �� �

i2Ratings uð Þ
�min t ru;i

� �� �
i2Ratings uð Þ

ð5Þ

where t(ru,i) is the timestamp of rating ru,i, whereas min t ru;i
� �� �

i2Ratings uð Þ
and max t ru;i

� �� �
i2Ratings uð Þ

denote the minimum and the maximum timestamp in the database among ratings
entered by user u, respectively.

Finally, the dynamic average associated to rating ru,x is computed using the
formula:

DAvicinity ru;x
� � ¼

P
r2Ratings uð Þ wu;x rð Þ � rP
r2Ratings uð Þ wu;x rð Þ ð6Þ

Computing the Dynamic Average Based only on Previous Ratings. Under this
approach for computing dynamic averages, again each user rating ru,x is coupled with
its own average DAprevious(ru,x). When computing this average, only ratings entered by
the same user (u) prior to ru,x are taken into account; formally this approach is
expressed by Eq. 7:

DAprevious ru;x
� � ¼

P
r2Ratings uð Þ

V
t rð Þ\t ru;xð Þ r

jr : r 2 Ratings uð ÞVt rð Þ t ru;x
� �� �� ð7Þ

In Eq. 7, the denominator corresponds to the number of ratings that have been
entered by user u prior to rating ru,x, i.e. the rating for which the dynamic average
DAprevious ru;x

� �
is calculated. This approach is based on the rationale that all past

behaviour of the user is equally important in estimating her rating practices.

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 161

4 Performance Evaluation

In this section, we report on our experiments through which we compared the proposed
algorithm with the DAvicinity and DAprevious algorithms presented in [33], as well as the
plain CF algorithm. We decided to consider in our evaluation both algorithms pre-
sented in [33] due to the following reasons:

1. the evaluation presented in [33] targets only the user-user CF approach, while in this
paper we examine both the user-user and item-item CF approaches; hence, both the
DAvicinity and the DAprevious algorithms should be tested in order to evaluate their
effectiveness in the item-item CF approach.

2. the comparison performed in [33] did not designate a clear winner between the
DAvicinity and the DAprevious algorithms; even though the DAprevious algorithm out-
performs the DAvicinity algorithm regarding prediction accuracy in most cases, there
is a tie between the algorithms when they are applied in the MovieLens 100K
dataset, while in the Netflix dataset the DAvicinity algorithm has been found to
produce more accurate recommendations than the DAprevious algorithm.

In this comparison we consider the following aspects:

1. prediction accuracy; for this comparison, we used two well-established error met-
rics, namely the mean absolute error (MAE) metric, as well as the Root Mean
Squared Error (RMSE) that ‘punishes’ big mistakes more severely. RMSE was used
in the Netflix competition [11],

2. the coverage of the algorithm, i.e. the percentage of the cases for which a prediction
can be computed and

3. the probability that an algorithm computes the correct user rating. Since user ratings
are typically integer numbers, while predictions are calculated as real numbers, for
comparing the prediction to the actual user rating we round the prediction to the
nearest integer. This is analogous to the practice used in the Netflix Competition
[11].

To compute the MAE, the RMSE and the probability to compute the correct
prediction, we employed the following techniques:

1. the standard “hide one” technique [30], which is extensively used in recommender
systems research; each time, we hid a random rating in the database and then
predicted its value based on the ratings of other non-hidden items. For each user,
this procedure was executed for 10 randomly selected ratings entered by that par-
ticular user.

2. each time, we hid the last rating only from each user, and then predicted its value
based on the ratings of other non-hidden items. One prediction for each user was
formulated.

3. dropping the last rating from every user, and then applying the technique listed in
item 2 above in the remaining dataset.

In all cases, the computation of the MAE, the RMSE and the correct prediction
probability was performed considering all users in the database. All results were in

162 D. Margaris and C. Vassilakis

close agreement (MAE: ±.0.005; RMSE: ±.0.008; correct predictions: ±.0.2%; %
coverage: ±.0.4%), therefore in the rest of the paper we present only the results
obtained from the standard “hide one” technique.

Regarding the algorithms presented in the related work section, except for those
presented in [33], these are not directly comparable to our approach because they are
designed to handle different phenomena, and more specifically concept drift (i.e. the
change in users’ interests), significance decay of old ratings and session identification.
Nevertheless, to provide some insight on the magnitude of the improvement that can be
achieved by different approaches that take into account temporal dynamics, we com-
pare the performance of the DAnext algorithm against the following algorithms sourced
from the literature:

1. from the category of forgetting algorithms, i.e. algorithms that decay the importance
of old-aged ratings, we compare DAnext with the work of Vaz et al. [16];

2. from the set of algorithms targeting interest shift detection and exploitation, we
compare DAnext against the ISCF algorithm [53];

3. from the domain of temporally-aware session-based algorithms, we compare DAnext

with the work of Dror et al. [2], which examines the influence of the drifting effect
in short-lived music listening sessions; and

4. from the category of temporally-aware matrix factorization algorithms, we compare
DAnext against the algorithm proposed by Lo et al. [52], which tracks and exploits
concept drift in each individual user latent vector.

The algorithms employing dynamic averages may exhibit different coverage, since
the introduction of dynamic averages modifies the user-to-user and item-to-item sim-
ilarity metrics, and henceforth users or items that are deemed “similar” when using the
plain CF algorithm (i.e. when their standard Pearson or Adjusted Cosine similarity
surpasses a threshold) may be deemed “not similar” when using the dynamic average-
aware Pearson similarity or Adjusted Cosine Similarity, or vice versa. Under this
condition, some users that are characterized as “grey sheep” [6] when using the plain
CF algorithm (i.e. do not have enough near neighbours for a recommendation to be
computed) may gain enough neighbours when using a dynamic average-based algo-
rithm, thus increasing coverage; conversely some users for which a recommendation
was computed using the plain CF algorithm may become “grey sheep” when using a
dynamic average-based algorithm, in which case coverage decreases. An analogous
phenomenon also appears in an item-item CF implementation.

For our experiments we used a machine equipped with six Intel Xeon E7 - 4830 @
2.13 GHz CPUs, 256 GB of RAM and one 900 GB HDD with a transfer rate of
200 MBps, which hosted the datasets and ran the recommendation algorithms.

In the following paragraphs, we report on our experiments regarding ten datasets.
Five of these datasets are obtained from Amazon [7, 8], three from MovieLens [9, 10]
one from Netflix [11], while the last dataset is sourced from Ciao, a product review site,
where users can post their experiences with products or services (the site, dvd.ciao.co.
uk, has ceased its operations, however the datasets crawled from it still exist and are
used in CF research). These ten datasets used in our experiments (a) contain reliable
timestamps (most of the ratings within each dataset have been entered in real rating
time and not in a batch mode), (b) are up to date (published between 1998 and 2016),

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 163

(c) are widely used as benchmarking datasets in CF research and (d) vary with respect
to type of dataset (movies, music, books, videogames and automotive) and size (from
1 MB to 4.7 GB). The basic properties of these datasets are summarized in Table 1.

In each dataset, users initially having less than 10 ratings were dropped, since users
with few ratings are known to exhibit low accuracy in predictions computed for them
[26]. This procedure did not affect the MovieLens and the NetFlix datasets, because
these datasets contain only users that have rated 20 items or more. Furthermore, we
detected cases where for a particular user all her ratings’ timestamps were almost
identical (i.e. the difference between the minimum and maximum timestamp was less
than 5 s). These users were dropped as well, since this timestamp distribution indicated
that the ratings were entered in a batch mode, hence the assigned timestamps are not
representative of the actual time that these ratings were given by the users.

In the following paragraphs, we report on our findings regarding the experiments
described above, using both a user-user CF implementation, which employs the
standard Pearson correlation coefficient for measuring user similarity, and an item-item
CF implementation, which employs the Adjusted Cosine Similarity for measuring item
similarity.

4.1 The Amazon “Videogames” Dataset

The results obtained from the Amazon “Videogames” dataset, are depicted in Table 2.
Column “% coverage” corresponds to the percentage of cases for which the algorithm
could compute predictions, or –equivalently– when the number of near neighbors

Table 1. Datasets summary

Dataset name #users #ratings #items Avg.
#ratings/user

DB size
(in text
format)

Amazon “Video-games” [7, 8] 8.1K 157K 50K 19.6 3.8 MB
Amazon “CDs and Vinyl” [7, 8] 41K 1,300K 486K 31.5 32 MB
Amazon “Movies and TV” [7, 8] 46K 1,300K 134K 29.0 31 MB
Amazon “Books” [7, 8] 295K 8,700K 2,330K 29.4 227 MB
Amazon “Automotive” [7, 8] 7.3K 113K 65K 15.5 2.6 MB
MovieLens “Old 100K Dataset” [9, 10] 0.94K 100K 1.68K 106.0 2.04 MB
MovieLens “Latest-
20M”,“recommended for new research”
[9, 10]

138K 20,000K 27K 145 486 MB

MovieLens “Latest 100K”,
“Recommended for education and
development” (small) [9, 10]

0.7K 100K 9K 143 2.19 MB

NetFlix competition [11] 480K 96,000K 17.7K 200 4,700 MB
Ciao [51] 1.1K 40K 16K 36.3 1 MB

164 D. Margaris and C. Vassilakis

computed using the algorithm’s similarity metric was adequate [28] to formulate a
rating prediction.

We can observe that under both CF implementations (user-user and item-item), the
DAnext algorithm achieves the best results regarding prediction accuracy. In more detail,
under the user-user CF implementation, the DAnext algorithm achieves an improvement
in MAE of 1.6% against the runner up, which is the DAprevious algorithm and a 7.3%
improvement against the plain CF algorithm. Considering the RMSE metric, the
respective improvements are 1.3% and 5.7%. The DAnext algorithm also achieves the
highest percentage of correct predictions, with its performance edge on this metric
ranging from 0.5% to 0.7%. These improvements are achieved at the expense of a
coverage drop of 2.2% against the plain CF algorithm, which is deemed to be tolerable;
it is notable, however, that the DAnext algorithm achieves a better coverage percentage
than the DAprevious algorithm, which was the winner of the corresponding test in [33].

Regarding the item-item CF implementation, the DAnext algorithm has a perfor-
mance edge of 1.9% on the MAE metric against the DAprevious algorithm, which is the
runner up, while the relevant improvement against the plain CF algorithm is 3.9%.
Considering the RMSE metric, the respective improvements are 3.1% and 5.9%. With
respect to the correct predictions metric, the DAnext algorithm is ranked first, having a
performance lead of 0.6% against the DAprevious algorithm which is ranked second, and
a 1.2% performance lead compared to the plain CF algorithm. With respect to the
coverage metric, the performance of the DAnext algorithm is almost equal to the other
two dynamic averages approaches, lagging behind them by 0.1%, while the coverage
deterioration of the DAnext algorithm as compared to the plain CF algorithm is 0.6%,
which is deemed to be tolerable.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, at the
expense of small to tolerable deteriorations in coverage.

4.2 The Amazon “CDs and Vinyl” Dataset

Table 3 illustrates the results obtained from the Amazon “CDs and Vinyl” dataset. In
this dataset, the user-user CF implementation could formulate a prediction for 59.3% of
the cases, while for the item-item CF implementation coverage increases to 86.6%.

Table 2. Amazon “Videogames” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.777 1.082 32.04 72.14 0.383 0.596 66.61 94.41
DAvicinity 0.752 1.048 32.15 70.86 0.377 0.582 66.89 93.96

DAprevious 0.732 1.033 32.26 69.76 0.375 0.579 67.22 93.97
DAnext 0.720 1.020 32.76 69.95 0.368 0.561 67.86 93.85

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 165

Regarding the rating prediction quality, the DAnext algorithm again outperforms all
other algorithms, under both the user-user and the item-item CF implementations. In
more detail, when considering the user-user CF implementation the DAnext algorithm
achieves the lowest MAE metric (0.663), having a performance lead of 0.9% against
the DAprevious algorithm, which is ranked second, and a performance lead of 5.6%
compared to the plain CF algorithm. For the RMSE metric, the respective performance
edges are 1.2% and 5.2%. The DAnext algorithm is also ranked first with regards to the
percentage of correct predictions metric, with its performance lead ranging from 0.4%
over the performance of the DAvicinity algorithm which is ranked second regarding this
metric, to 0.6% as compared to the plain CF algorithm. These benefits are achieved at
the expense of a coverage drop of 1.3% as compared to the plain CF algorithm, which
is considered to be tolerable. It is worth noting that coverage-wise, the DAnext algorithm
achieves a slightly better performance than the DAprevious algorithm, which is the runner
up with respect to prediction accuracy.

With respect to the item-item CF implementation, the DAnext algorithm attains the
lowest value for the MAE metric, which is 2.1% better than the MAE of the runner up
algorithm (DAprevious) and 3.3% better than the value of the plain CF algorithm.
Considering the RMSE metric, the respective improvements are 2.6% and 5.7%. The
DAnext algorithm also computes the highest percentage of correct predictions, outper-
forming the DAnext algorithm, which is ranked second, by 0.6% and the plain CF
algorithm by 2.5%. The DAnext algorithm exhibits a coverage drop of 0.3% against the
plain CF algorithm, which is very small, while coverage-wise it is almost equivalent to
the other two dynamic average-based algorithms.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, at the
expense of very small to small deteriorations in coverage.

4.3 The Amazon “Movies & TV” Dataset

Table 4 illustrates the results obtained from the Amazon “Movies & TV” dataset. We
can observe that, again, the proposed dynamic average-based algorithm DAnext achieves
the best results under both user-user and item-item CF implementations. Considering
user-user CF, the DAnext algorithm reduces the MAE by 7.0% as compared to the plain
CF algorithm, while it also achieves a MAE reduction of 1.3%, compared to the
DAprevious algorithm which is the runner up. The respective improvements for the RMSE
metric are 5.2% and 0.4%. The DAnext algorithm is also ranked first regarding the
percentage of correct predictions, with its performance edge ranging from 0.5% (against

Table 3. Amazon “CDs & Vinyl” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.702 1.010 29.15 59.30 0.335 0.557 64.87 86.55
DAvicinity 0.682 0.984 29.36 58.66 0.332 0.544 65.94 86.27

DAprevious 0.669 0.969 29.28 57.71 0.331 0.539 66.73 86.19
DAnext 0.663 0.957 29.74 57.95 0.324 0.525 67.32 86.21

166 D. Margaris and C. Vassilakis

DAprevious) to 1% (against plain CF). The coverage of the DAnext algorithm, however,
lags behind that of the plain CF algorithm by 1.6%, a drop which is deemed tolerable.

Considering the item-item CF implementation, the DAnext algorithm decreases the
MAE by 3.1% against plain CF and by 1.8% against the runner up, which is the
DAprevious algorithm. The respective reductions in RMSE are higher (4.5% against the
plain CF algorithm and 2.8% against the DAprevious algorithm), indicating that the
DAnext algorithm manages to correct some predictions with high errors (recall that the
RMSE metric penalizes predictions with high errors). The DAnext algorithm is ranked
first with respect to the correct prediction percentage by a margin ranging from 0.5%
(against the DAprevious algorithm) to 0.8% (against the plain CF algorithm). Finally, the
coverage drop inflicted by the use of the DAnext algorithm is 0.6% as compared to the
plain CF algorithm, which is deemed small.

Overall, in this dataset the DAnext algorithm achieves noteworthy improvements in
rating prediction accuracy, under both the user-user and item-item CF implementations,
while the losses in coverage imposed by the algorithm are rated from small to tolerable.

4.4 The Amazon “Books” Dataset

Table 5 illustrates the results obtained from the Amazon “Books” dataset. For the user-
user CF, we can observe that again the DAnext algorithm is ranked first regarding
prediction accuracy, its MAE being 2.6% less than the MAE of the plain CF algorithm
and 0.5% smaller than the MAE of the DAprevious algorithm, which is ranked second.
The improvements regarding the RMSE metric are very similar to those of the MAE
(2.5% and 0.7% respectively). The DAnext algorithm is also ranked first regarding the
correct predictions percentage, by a narrow margin that ranges from 0.2% to 0.6%. The
coverage achieved by the DAnext algorithm is 1% inferior to that achieved by the plain
CF and the DAvicinity algorithms, which are tied for the first place; this drop, however, is
deemed small to tolerable.

Table 4. Amazon “Movies & TV” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.738 1.046 37.00 78.50 0.393 0.617 66.74 95.90
DAvicinity 0.713 1.014 37.37 77.26 0.390 0.611 66.81 95.60

DAprevious 0.695 0.996 37.55 76.91 0.388 0.606 67.09 95.30
DAnext 0.686 0.992 38.01 76.90 0.381 0.589 67.56 95.35

Table 5. Amazon “Books” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.625 0.883 43.67 53.75 0.301 0.466 71.97 90.87
DAvicinity 0.619 0.876 43.96 53.75 0.297 0.461 72.02 90.24

DAprevious 0.612 0.867 44.04 53.36 0.288 0.450 72.21 89.46
DAnext 0.609 0.861 44.26 52.73 0.278 0.441 72.71 89.77

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 167

Regarding the item-item CF implementation, the DAnext algorithm achieves more
substantial improvements than in the user-user setting: it achieves a reduction of 7.6%
in the MAE, as compared to the plain CF algorithm and a reduction of 3.5% in the
MAE against the runner up, which is the DAprevious algorithm. The respective
improvements regarding the RMSE are 5.4% and 2%. The DAnext algorithm also
exhibits the best performance regarding the correct predictions percentage, surpassing
the DAprevious algorithm by 0.5% and the plain CF algorithm by 0.7%. These gains are
achieved at the expense of a coverage drop, which is quantified to 1.1% against the
plain CF algorithm; notably however, the DAnext algorithm attains better coverage than
the runner up algorithm in terms of performance (DAprevious), by a small margin of
0.3%.

Overall, in this dataset the DAnext algorithm achieves substantial gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
the losses in coverage imposed by the algorithm are rated from small to tolerable.

4.5 The Amazon “Automotive” Dataset

Table 6 illustrates the results obtained from the Amazon “Automotive” dataset. For the
user-user CF, we can observe that the DAnext algorithm is ranked first regarding pre-
diction accuracy, reducing the MAE by 7.6% in comparison to the plain CF algorithm;
the runner-up algorithm regarding the MAE metric is DAprevious, which achieves a
MAE 4.0% smaller than the plain CF algorithm, lagging behind DAnext by 3.6%. The
ranking is the same regarding the RMSE metric, with DAnext being the top-performing
algorithm, achieving an improvement in the RMSE by 8.0% in comparison to the plain
CF algorithm, which surpasses the performance of DAprevious –which is ranked second–
by 3.8%. The DAnext algorithm is also ranked first regarding the correct predictions
percentage, by a margin that ranges from 2.7% (against the DAprevious algorithm) to
5.4% (against the DAvicinity algorithm). The coverage achieved by the DAnext algorithm
is 1.4% inferior to that achieved by the plain CF algorithm, which is ranked first
regarding this metric; this drop, however, is deemed small to tolerable.

Regarding the item-item CF implementation, the DAnext algorithm achieves higher
performance improvements than in the user-user setting: it achieves a reduction of
9.0% in the MAE, as compared to the plain CF algorithm, with this improvement being

Table 6. Amazon “Automotive” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.645 1.022 56.12 53.16 0.310 0.582 60.34 91.77
DAvicinity 0.626 1.015 54.25 52.99 0.302 0.581 61.61 91.30

DAprevious 0.619 0.979 57.01 51.96 0.290 0.566 65.23 90.71
DAnext 0.596 0.940 59.68 51.75 0.282 0.533 66.28 90.37

168 D. Margaris and C. Vassilakis

better by 2.6%, as compared to that achieved by the runner up, which is the DAprevious

algorithm. The respective performance edges regarding the RMSE are 8.4% and 5.7%.
The DAnext algorithm also attains the best performance regarding the correct predictions
percentage, surpassing the DAprevious algorithm by 1.1% and the plain CF algorithm by
5.9%. These gains are achieved at the expense of a coverage drop, which is quantified
to 1.4% against the plain CF algorithm.

Overall, in this dataset the DAnext algorithm achieves substantial gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
the losses in coverage imposed by the algorithm are rated from small to tolerable.

4.6 The MovieLens “Old 100K” Dataset

Table 7 depicts the results obtained from the MovieLens “Old 100K” dataset. In this
dataset, which is a relatively dense one, we can observe that in both the user-user and
the item-item CF implementations, practically no coverage drop is incurred by the
introduction of the dynamic average-based algorithms, and coverage is close to 100%
in all cases, with negligible variations. As shown in the next subsections, this behavior
is consistent across all dense datasets (i.e. all MovieLens datasets and the Netflix
dataset).

Regarding rating prediction quality, under the user-user CF implementation the
DAnext algorithm has a marginal performance edge over the runner up, DAprevious, since
it exhibits smaller values for both the MAE and the RMSE metric by 0.4%. In com-
parison to the plain CF algorithm the performance lead of the DAnext algorithm is
considerably higher (MAE: 3.9%; RMSE: 3.5%). With respect to the correct predic-
tions percentage criterion, the DAnext algorithm surpasses the performance of all other
algorithms, having a lead of 1.1% against the DAvicinity algorithm which is ranked
second and a lead of 2.2% against the plain CF algorithm.

Considering the item-item CF implementation, the DAnext algorithm is again ranked
first in all accuracy-related metrics. Regarding the MAE, the DAnext algorithm out-
scores the runner up (which is the DAprevious algorithm) by 1.3% and the plain CF
algorithm by 3.1%; in relation to the RMSE, the performance edge of the DAnext

algorithm against the DAprevious and the plain CF algorithms is 2.3% and 4.6%,

Table 7. MovieLens “Old 100K” dataset results

Method User-user CF (Pearson correlation) Item-Item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.735 0.939 42.34 99.82 0.622 0.797 48.99 99.90
DAvicinity 0.715 0.916 43.38 99.83 0.618 0.790 49.37 99.90
DAprevious 0.709 0.910 43.32 99.84 0.611 0.778 50.22 99.90
DAnext 0.706 0.906 44.49 99.81 0.603 0.760 50.82 99.90

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 169

respectively. Finally, the DAnext algorithm produces correct results in 0.6% more cases
than the DAprevious algorithm does, and in 1.8% more cases than the plain CF algorithm
does.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
practically no loss in coverage is sustained.

4.7 The MovieLens “Latest-20M - Recommended for New Research”
Dataset

Table 8 depicts the results obtained from the MovieLens “Latest-20M, Recommended
for New Research” dataset. As noted in the previous subsection, the coverage in this
dataset is near 100% under both CF implementation strategies and remains practically
unaltered by the introduction of dynamic average-based algorithms.

With respect to rating prediction quality, under the user-user CF implementation the
DAnext algorithm is again ranked first, improving the MAE by 3.6% as compared to the
plain CF algorithm and by 1.2% as compared to the DAprevious algorithm, which is
ranked second. The respective improvements considering the RMSE metric are 4.8%
and 1.6%, respectively. Finally, the DAnext algorithm formulates the most correct
predictions, surpassing the performance of the DAprevious algorithm by 0.4% and that of
the plain CF algorithm by 1.8%.

Considering the item-item CF implementation, the DAnext algorithm has been found
to produce the most accurate recommendations, exhibiting improvements in the MAE
that range from 3.7% (against the DAprevious algorithm) to 7.7% (against the plain CF
algorithm); the corresponding improvements in RMSE range from 3.1% (against the
DAprevious algorithm) to 9.5% (against the plain CF algorithm). Finally, the DAnext

algorithm produces the most correct predictions, having a performance lead of 1.1% in
comparison to the DAprevious algorithm, and a lead of 5.4% against the plain CF
algorithm.

Table 8. MovieLens “Latest-20M - recommended for New Research” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

Plain CF 1.352 1.771 24.26 99.96 1.548 1.984 20.50 99.99
DAvicinity 1.326 1.740 24.98 99.90 1.512 1.921 22.87 99.97

DAprevious 1.319 1.714 25.60 99.96 1.484 1.853 24.81 99.96
DAnext 1.303 1.686 26.02 99.94 1.429 1.795 25.87 99.96

170 D. Margaris and C. Vassilakis

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy under both the user-user CF implementation and more substantial
gains under the item-item CF implementation, while practically no loss in coverage is
sustained.

4.8 The MovieLens “Latest 100K - Recommended for Education
and Development” Dataset

Table 9 depicts the results obtained from the MovieLens “Latest 100K- Recommended
for education and development” dataset. We can again notice that no coverage loss is
introduced by the dynamic average-based algorithms, with coverage being near-100%
in all cases.

With respect to rating prediction quality, under the user-user CF implementation
scenario the DAnext algorithm is ranked first, achieving a reduction in the MAE of 3.2%
in comparison to the plain CF and a reduction of 0.5% in comparison to the DAprevious

algorithm, which is ranked second. The respective gains for the RMSE metric are 4.3%
and 1%, being higher than those of the MAE metric, indicating that the DAnext algo-
rithm improves predictions with high errors. Finally, the DAnext algorithm computes
approximately 1.7% more correct predictions than both the plain CF and DAprevious

algorithms, while it also exceeds the performance of the DAvicinity algorithm (which is
the runner up for this metric) by 1.4%.

With regards to the item-item CF implementation scenario, the DAnext algorithm is
again ranked first, achieving a 6.2% reduction in the MAE and 5.2% reduction in the
RMSE, as compared to the plain CF algorithm. The DAprevious algorithm is ranked
second, lagging behind the DAnext algorithm by 2.0% regarding both the MAE and the
RMSE metrics. Finally, the DAnext algorithm manages to produce the most correct
predictions, computing 5.1% more correct predictions than the plain CF and 1.5% more
correct predictions than the DAprevious algorithm, which is ranked second.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy under the user-user CF implementation scenario and more sub-
stantial gains under item-item CF; in terms of coverage, practically no loss in coverage
is sustained.

Table 9. MovieLens “Latest 100K - recommended for education and development” dataset
results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

Plain CF 1.404 1.858 24.16 99.57 0.999 1.374 34.34 99.70
DAvicinity 1.376 1.816 24.44 99.60 0.987 1.368 35.08 99.68
DAprevious 1.366 1.796 24.07 99.40 0.956 1.330 37.99 99.65
DAnext 1.359 1.778 25.83 99.49 0.937 1.303 39.46 99.69

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 171

4.9 The “Netflix Competition” Dataset

Table 10 depicts the results obtained from the “Netflix Competition” dataset. Again,
the coverage is close to 100% in all cases, and the losses sustained by the introduction
of the dynamic average-based algorithms are negligible.

Regarding rating prediction quality, under the user-user CF scenario the DAnext

algorithm is ranked first; it achieves a MAE improved by 3.7% against the plain CF
algorithm and by 1.5% against the DAvicinity algorithm, which is ranked second; for the
RMSE metric, the respective improvements are 4.4% and 1.4%. Finally, the DAnext

algorithm computes 2.2% more correct predictions that the plain CF algorithm and
1.4% more correct predictions than the DAvicinity algorithm, which is ranked second for
this metric.

Considering the item-item CF implementation, the DAnext algorithm outperforms all
other algorithms by a wider margin. For the MAE criterion, it achieves an improvement
of 11.2% against the plain CF algorithm, and 5.8% against the DAprevious algorithm,
which is ranked second; the respective improvements for the RMSE metric are 15.9%
and 6.5%. Finally, the DAnext algorithm computes the most correct predictions, having
a performance edge of 4.2% against the DAprevious algorithm, which is the runner up,
and an edge of 10.7% against the plain CF algorithm.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy under the user-user CF implementation and more substantial gains
under the item-item CF implementation, while practically no loss in coverage is
sustained.

4.10 The “Ciao” Dataset

Table 11 illustrates the results obtained from the “Ciao” dataset. For the user-user CF,
we can observe that the DAnext algorithm is ranked first regarding prediction accuracy,
reducing the MAE by 6.1% in comparison to the plain CF algorithm; the runner-up
algorithm regarding the MAE metric is DAprevious, which achieves a MAE 3.4% smaller
than the plain CF algorithm, lagging thus behind DAnext by 2.7%. The ranking is the
same regarding the RMSE metric, with DAnext being the top-performing algorithm,
achieving an improvement in the RMSE by 9.7% against the plain CF algorithm, which
surpasses the performance of DAprevious –which is ranked second– by 3.0%. The DAnext

Table 10. “Netflix Competition” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.758 0.960 41.42 99.10 0.857 1.061 33.61 99.40
DAvicinity 0.741 0.931 42.25 99.03 0.811 0.956 39.98 99.30

DAprevious 0.752 0.936 42.12 99.00 0.808 0.954 40.08 99.23
DAnext 0.730 0.918 43.60 99.02 0.761 0.892 44.30 99.25

172 D. Margaris and C. Vassilakis

algorithm is also ranked first regarding the correct predictions percentage, by a margin
that ranges from 1.7% (against the DAprevious algorithm) to 3.2% (against the plain CF
algorithm). The coverage achieved by the DAnext algorithm is 1.4% inferior to that
achieved by the plain CF algorithm, which is ranked first regarding this metric; this
drop, however, is deemed small to tolerable.

Regarding the item-item CF implementation, the DAnext algorithm achieves a
reduction of 5.0% in the MAE, as compared to the plain CF algorithm, with this
improvement being better by 1.9%, as compared to that achieved by the runner up,
which is the DAprevious algorithm. The respective performance edges regarding the
RMSE are 5.8% and 2.8%. The DAnext algorithm also attains the best performance
regarding the correct predictions percentage, surpassing the DAprevious algorithm by
1.6% and the plain CF algorithm by 3.5%. These gains are achieved at the expense of a
practically negligible coverage drop, which is quantified to 0.15%.

Overall, in this dataset the DAnext algorithm achieves substantial gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
the losses in coverage imposed by the algorithm are rated from negligible to tolerable.

4.11 Algorithms Comparison

In this subsection, we consolidate our findings from all datasets, to provide a com-
prehensive overview of the algorithms’ performance regarding the prediction accuracy
metrics. In all comparisons, the performance of the plain CF algorithm is taken as a
baseline. We also compare the proposed algorithm against other approaches that have
been published and evaluated in the literature.

Figure 1 depicts the improvement in the MAE achieved by all dynamic average-
based algorithms under the user-user CF implementation scenario. Clearly, the DAnext

algorithm achieves the best results, with its performance lead being on average
approximately 1.5% against the DAprevious algorithm which is the runner up; the
respective reduction in the MAE against the baseline algorithm is 5.1% on average. It is
worth noting that the DAnext algorithm surpasses the performance of both other algo-
rithms in all datasets, while the DAprevious algorithm is ranked second in 9 datasets and

Table 11. “Ciao” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.853 1.089 37.40 76.86 0.378 0.567 68.06 99.26
DAvicinity 0.844 1.064 37.86 76.21 0.373 0.560 69.01 99.26
DAprevious 0.824 1.016 38.93 75.96 0.366 0.550 69.99 99.13
DAnext 0.801 0.983 40.64 75.47 0.359 0.534 71.60 99.11

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 173

third in one dataset (Netflix). From the detailed examination of our results, the DAnext

algorithm formulated the prediction with the lowest error in 94.3% of the prediction
formulation requests across all datasets (this percentage includes ties for the first place,
i.e. cases where the DAnext algorithm and some other algorithm(s) produced the same
prediction, and this was the closest prediction to the actual rating).

Figure 2 presents the respective improvements regarding the RMSE metric. In five
datasets (and on average), the improvements are very similar to those of the MAE
metric shown in Fig. 1, indicating that prediction improvements are spread uniformly
among predictions with high and low errors. In three datasets (MovieLens latest 20M;
MovieLens Latest 100K; and Ciao), the improvement in the RMSE metric is higher
than the improvement in the MAE metric by a margin ranging from 1.1% to 3.6%,
indicating that the DAnext algorithm manages to eliminate some high errors in pre-
dictions, while in two other datasets (Amazon Videogames and Amazon Movies and
TV), the improvements in the MAE metric surpass those in the RMSE metric by 1.6%
and 1.9% respectively, indicating that the DAnext algorithm mostly adjusts predictions
with low errors. Again, the DAnext algorithm is consistently ranked first across all
datasets, with its average performance lead against the runner up algorithm (DAprevious)
being 1.5%, and the respective performance lead against the plain CF algorithm being
5.3%.

0%
1%
2%
3%
4%
5%
6%
7%
8%

DAvicinity DAprevious DAnext

Fig. 1. MAE improvement achieved by the dynamic average-based algorithms under the user-
user CF implementation

174 D. Margaris and C. Vassilakis

Figure 3 illustrates the improvement in the MAE achieved by the dynamic average-
based algorithms under the item-item CF implementation scenario. Again, the DAnext

algorithm is consistently ranked first across all datasets, achieving a reduction of 6.0%
on average against the baseline algorithm, and surpassing the performance of the
runner up algorithm (DAprevious) by 2.6% on average. Performance gains in this case
exhibit higher variations than those under the user-user implementation scenario,
mainly owing to the Netflix dataset in which the DAnext algorithm achieves very
substantial improvements in the MAE metric (11.2% against the plain CF algorithm
and 5.5% against the runner up, which is the DAprevious algorithm). From the detailed
examination of our results, the DAnext algorithm formulated the prediction with the
lowest error in 91.4% of the prediction formulation requests across all datasets.

Figure 4 presents the relevant improvements regarding the RMSE metric. Again,
DAnext achieves the best results, with its performance lead against the DAprevious

algorithm, which is the runner up, being equal to 3.0% on average; the respective
RMSE reduction against the baseline algorithm is 7.1% on average. In relation to the
baseline algorithm, the average RMSE metric improvement is higher than that of the
MAE metric by approximately 1.1%, indicating that the DAnext algorithm achieves to
eliminate some high prediction errors. Considering individual datasets, the RMSE
metric improvement is higher than the improvement of MAE in seven of the datasets
(Amazon Videogames, Amazon CDs and Vinyl, Amazon Movies and TV, MovieLens
old 100K, MovieLens latest 20M, Netflix and Ciao); in the remaining four three
(Amazon Books, Amazon Automotive and MovieLens Latest 100K), the improvement
in the RMSE metric lags behind the improvement of the MAE metric by a margin
ranging from 0.6% to 2.2%, indicating that in these datasets the DAnext algorithm
mostly improves predictions with low errors.

0%

2%

4%

6%

8%

10%

12%

DAvicinity DAprevious DAnext

Fig. 2. RMSE improvement achieved by the dynamic average-based algorithms under the user-
user CF implementation

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 175

Figure 5 illustrates the improvements regarding the correct prediction percentage
for all dynamic average-based algorithms under the user-user CF implementation
scenario. The DAnext algorithm achieves improvements ranging from 0.4% to 3.6%
against the baseline algorithm. Regarding the dynamic average-based algorithms, we
can observe that the DAnext algorithm is consistently ranked first across all datasets; the
DAprevious algorithm is ranked second in six of the datasets, lagging behind the DAnext

0%

2%

4%

6%

8%

10%

12%

DAvicinity DAprevious DAnext

Fig. 3. MAE improvement achieved by the dynamic average-based algorithms under the item-
item CF implementation

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

DAvicinity DAprevious DAnext

Fig. 4. RMSE improvement achieved by the dynamic average-based algorithms under the item-
item CF implementation

176 D. Margaris and C. Vassilakis

algorithm by a margin ranging between 0.22% and 2.67% (1.1% on average), while the
DAvicinity algorithm is ranked second in the remaining four datasets, falling behind the
performance of DAnext by a margin ranging between 0.3% and 5.43% (1.50% on
average).

Figure 6 depicts the corresponding findings for the item-item CF implementation.
Again, the DAnext algorithm is ranked first across all datasets, with the performance
gains being considerably higher: the improvement against the baseline algorithm is
3.8% on average, ranging from 0.7% to 10.7%, while in comparison to the runner up,
DAprevious, the performance edge of the DAnext algorithm is 1.2% on average, ranging
from 0.5% to 4.2%. A significant part of this performance edge is owing to the results
of the Netflix dataset, where the DAnext algorithm has the widest performance gap from
the other algorithms. Besides the Netflix dataset, we can observe that the DAnext

algorithm achieves its highest performance improvements in the latest MovieLens
datasets (MovieLens latest 20M and MovieLens Latest 100K) and the Amazon
“Automotive” dataset. The Netflix and both the Movielens datasets share the property
of being denser than other datasets (and being the only dense datasets in the experi-
ment), with their #ratings

#users �#items ratio exceeding 1%, while in the rest of the datasets this
ratio ranges from 0.001% (Amazon Books) to 0.537% (MovieLens old 100K). How-
ever, further investigation is required to determine whether this behavior is owing
solely to the density of the datasets, or to other properties as well. Interestingly, the
DAnext algorithm achieves substantial improvements in the Amazon “Automotive”
dataset too, which is relatively sparse.

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

DAvicinity DAprevious DAnext

Fig. 5. Correct predictions percentage improvement achieved by the dynamic average-based
algorithms under the user-user CF implementation

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 177

Summarizing, we can clearly see that in all datasets and under both CF imple-
mentation scenarios, the proposed algorithm outperforms all other algorithms achieving
(1) the highest MAE reduction, (2) the highest RMSE reduction and (3) the highest
correct predictions’ percentage.

In relation to other approaches reported in the literature, Vaz et al. [16] exploit
temporal dynamics by considering the age of user ratings and community ratings in an
item-item CF scenario. The method presented therein achieves a MAE improvement of
0.2% when the a parameter (which controls the way that the age of user ratings is
handled) ranges from 0.1 to 0.6 and the b parameter (which controls the way that the
age of community ratings is handled) is set to 0, i.e. when the age of community ratings
is disregarded. Under the item-item CF scenario, the presented algorithm achieves
MAE reductions ranging from 3.05% to 11.20%, clearly thus achieving substantially
higher improvements than the one presented in [16].

The ISCF (Interest Sequence CF) algorithm proposed by Cheng et al. [53]
accommodates temporal dynamics in a user-user CF scenario, by considering user
interest sequences, and is evaluated against the four real-world datasets (Ciao, Flixter,
MovieLens old 100K, MovieLens latest 100K). The ISCF algorithm achieves an
average reduction on the MAE (considering the four aforementioned datasets) by
2.41% (with improvements ranging from 0.21% to 4.33%), while the average reduction
on the RMSE is 3.0% (with improvements ranging from 0.59% to 7.81%). The DAnext

algorithm proposed in this paper achieves higher improvements regarding the MAE
and the RMSE than ISCF on average, both in individual datasets and on overall
average, as illustrated in Table 12.

0%

2%

4%

6%

8%

10%

12%

DAvicinity DAprevious DAnext

Fig. 6. Correct predictions percentage improvement achieved by the dynamic average-based
algorithms under the item-item CF implementation

178 D. Margaris and C. Vassilakis

Dror et al. [2] propose an algorithm for identifying and exploiting drifts in short-
lived music listening sessions. Their algorithm is evaluated against the Yahoo Music!
dataset; the algorithm presented in [2] encompasses two steps that exploit temporal
dynamics, namely the user session bias and the items temporal dynamics bias. These
two steps achieve a cumulative improvement in RMSE equal to 3.98%; on the other
hand, the proposed algorithm has been found to improve RMSE by 6.52% under the
user-user scenario and by 4.89% under the item-item scenario. Therefore, in this case
the DAnext algorithm is found to achieve higher improvement levels, under both the
user-user and the item-item CF scenarios, than the provisions for exploitation of
temporal dynamics proposed by Dror et al. [2].

Finally, Lo et al. [52] develop a temporal matrix factorization approach for tracking
concept drift in each individual user latent vector. The method proposed therein is
applied on four real-world datasets, achieving reductions in the RMSE metric ranging
from 0.24% (when applied on the MovieLens 20M dataset) to 5.04% (when applied on
the Ciao dataset); the average RMSE metric improvement achieved by the algorithm
presented in [52] considering the four real-world datasets is 1.73%. The respective
improvements regarding the RMSE metric achieved by the algorithm proposed in this
paper are as follows: regarding the MovieLens 20M dataset, the RMSE is decreased by
4.8% under the user-user scenario and by 9.5% under the item-item scenario; in regards
to the Ciao dataset, the RMSE is decreased by 9.7% under the user-user scenario and
by 5.8% under the item-item scenario; finally, the average RMSE reduction achieved
by the proposed algorithm across all ten examined datasets is 5.3% under the user-user
scenario and 7.1% under the item-item scenario. Recapitulating, the algorithm pro-
posed in this paper achieves more substantial improvements in rating prediction
accuracy than the one proposed in [52], both considering individual datasets and
average performance, and this performance edge is achieved under the user-user CF
scenario as well as the item-item CF scenario.

4.12 Algorithm Complexity and Scalability

In this subsection, we investigate the complexity and the scalability of the proposed
algorithm, and compare them with the complexity and scalability of the other algo-
rithms examined in our experiments [33]. In our investigation, we consider all phases
of the algorithms, i.e. (i) bootstrap (initial computations of dynamic averages and
Pearson similarities), (ii) computation of recommendations and (iii) update of dynamic
averages and Pearson similarities.

Table 12. Accuracy improvements achieved by the DAnext and the ISCF [53] algorithms

Ciao MovieLens old
100K

MovieLens latest
100K

Average (over all
tested datasets)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ISCF 0.21% 0.59% 3.23% 0.21% 0.59% 2.24% 2.41% 3.0%
DAnext 6.10% 9.73% 3.95% 3.51% 3.20% 4.3% 5.1% 5.3%

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 179

Bootstrap Phase. Within the bootstrap phase, the dynamic average-based algorithms
(DAnext, DAprevious and DAvicinity) need in order to compute the dynamic averages for
each rating of the users as well as the Pearson similarities between users. The plain CF
algorithm needs to compute the global average of each user’s ratings and the Pearson
similarities between users. For each of the algorithms, the relevant complexities are
presented in the following paragraphs.

Computation of Needed Averages. For the DAnext algorithm, Eq. 4 indicates that for
each rating of a user all ratings subsequently entered by the same user need to be
examined to compute the rating’s dynamic average; under this view, the complexity of
the calculation of the dynamic averages for each user is O(ru2), where ru is the number
of ratings of the user. However, Listing 1 shows an optimization for the procedure of
calculating the dynamic averages, according to which ratings are sorted in ascending
timestamp order and then the sorted list is traversed from the end to the beginning,
computing at each step the relevant rating’s dynamic average by only considering the
previous rating’s value and the results of the computations made in the previous steps.
Thus the complexity of computing the dynamic averages for each user under the DAnext

algorithm is O(ru * log(ru)), i.e. the complexity of the sorting phase, which dominates
the complexity of the whole operation. The complexity of computing the dynamic
averages for all users is O N � �r � log �rð Þð Þ, where N is the number of users and r is the
average number of ratings per user.

Regarding DAprevious algorithm, the same technique can be employed for com-
puting dynamic averages (with the sorted list being traversed from the oldest rating to
the newest one), hence the complexity of the computing the dynamic averages for all
users is again O N � �r � log �rð Þð Þ:

In the case of the temporal vicinity algorithm, DAvicinity, Eq. 5 indicates that, when
computing the dynamic average for a specific rating ru,i, every rating ru,i’ entered by the
same user u is assigned a weight, based on its temporal vicinity to ru,i and subsequently
its value is multiplied by that weight to compute the dynamic average of ru,i. Therefore
the complexity of calculating the dynamic average for a specific rating is O(ru) and
consequently the complexity of computing all dynamic averages for a specific user’s
ratings is O(ru2) and the complexity of calculating all users’ dynamic averages is
O N � �r2ð Þ. An optimization is possible in this procedure: when computing the dynamic
average for a rating ru,i the initial and the final part of the temporally sorted rating list
for which wu;x ru;i

� �
\e, where e is a small value (e.g. 10−2), which will have a minimal

impact at the computation of the dynamic average of ru,i could be excluded from the
computation. However, due to the fact that the DAvicinity algorithm achieved the
smallest improvements out of all the dynamic average algorithms considered, such
optimizations were not considered further.

Finally, the plain CF algorithm computes each user’s global average with a single
pass along theuser’s ratings, therefore complexityof calculatingof theglobal average for a
user u is O(ru), and the complexity of computing all users’ global averages is O N � �rð Þ.
Computation of Pearson Similarities. The method for computing the Pearson simi-
larities between users is common to all four algorithms; the only difference between the
plain CF algorithm on the one hand and the dynamic average-based algorithms on the

180 D. Margaris and C. Vassilakis

other is that the plain CF algorithm uses the single global average per user for adjusting
each rating (RX and RY , c.f. Eq. 1), while the dynamic average-based algorithms use a
precomputed, rating-specific average (DAAlg RX;i

� �
and DAAlg RY ;i

� �
, c.f. Eq. 2). This

does not affect the complexity of the operations, since the same amount of computations
takes place. In practice, performance differences may occur due to the fact that global
averages may be stored in registers for fast access, while dynamic averages should be
fetched from main memory, however this difference has been quantified to be small
(measurements are presented below). In terms of complexity, for computing the Pearson
similarity between two users X and Y the items rated in common by both users need to
be identified and for each of these pair of item ratings simple computations are per-
formed. The identification of items commonly rated among two users can be achieved
by creating a hash set for one of the user’s ratings and then iterating over the other user’s
ratings and examining whether they exist in the hash set. With a sufficiently large key
space value for the hash function (which is always possible since users have at most a
few thousand ratings and a hash set with tens of millions of distinct keys can be easily
accommodated in memory), insertion and lookup in the hash set is O(1), therefore the
complexity of the creation of the hash set is O(rx) and the complexity of the lookup is O
(rY), where rX and rY is the number of ratings entered by users X and Y, respectively.
Consequently, the complexity of the computation of the Pearson similarity between two
users X and Y is O(rx) + O(rY), or in the general case O 2 ��rð Þ. Since the Pearson
similarity between any pair of users needs to be computed, the overall complexity for the
computation of the Pearson similarity is O 2 � N2 ��r� �

; since however the Pearson
similarity is symmetric (i.e. Pearson_sim(X, Y) = Pearson_sim(Y, X)), the number of
computations can be reduced to the half, yielding an overall complexity of O N2 ��r� �

.
Table 13 summarizes the result of the complexity analysis for the bootstrap phase

of the four algorithms. Note that in the case of the plain CF algorithm, the complexity
of the Pearson similarity computation phase dominates the complexity of the dynamic
average computation phase, hence in the overall complexity only the former appears.

Regarding the disk storage space needed, the plain CF algorithm needs to store only
triples of the form (user, item, rating), while all dynamic average-based algorithms need
to extend the triple to accommodate the rating timestamp. Inmany cases, the timestamp is
stored as seconds since the epoch (1/1/1970), for which 8 bytes are sufficient. Even with
datasets with billions (109) of ratings, this extension can be accommodated, since even
commodity hardware supports storages at the TB level (1012).

Table 13. Complexity analysis for the algorithms; bootstrap phase

Method Dynamic average
computation
complexity

Pearson similarity
computation
complexity

Overall complexity

Plain CF O N � �rð Þ O N2 � �rð Þ O N2 � �rð Þ
DAvicinity O N � �r2ð Þ O N2 � �rð Þ O N � �r2ð ÞþO N2 � �rð Þ
DAprevious O N � �r � log �rð Þð Þ O N2 � �rð Þ O N � �r � log �rð Þð ÞþO N2 � �rð Þ
DAnext O N � �r � log �rð Þð Þ O N2 � �rð Þ O N � �r � log �rð Þð ÞþO N2 � �rð Þ

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 181

Finally, in terms of memory storage, the dynamic average-based algorithms require
the storage of the dynamic average along with each rating. Dynamic averages are
represented with a float-typed value, requiring a four additional bytes. Taking into
account that the memory capacity of contemporary high-end servers has substantially
increased at the TB level (e.g. [48] can accommodate more than 6 TB of memory), this
extension is not expected to be a problem. It is worth noting that the DAprevious and the
DAnext algorithms may totally drop the timestamps from a user’s ratings after the user’s
dynamic averages have been computed, hence it is not necessary at any time point to
accommodate both all ratings’ timestamps and dynamic averages (the DAvicinity algo-
rithm may need to retain the timestamp in memory, in order to recompute the dynamic
averages when new ratings are entered).

In the case that the above quantified increases in storage space requirements is a
consideration, storage space needs may decrease by computing dynamic averages per
time window (e.g. week; month; year), in a fashion similar to the one described in [23].
The study of the effect that such an approach would have on the quality of formulated
predictions is part of our future work.

Figure 7 illustrates the time needed to compute all ratings’ (dynamic) averages for
the various datasets under each of the four examined algorithms.

In Fig. 7 (n.b. both axis are in logarithmic scale) we can notice that the time needed
by the plain CF algorithm to compute all global averages is less than 1 s (0.837 s. for
the Netflix dataset which contains 100M ratings), while the respective time needed by
the DAnext and DAprevious algorithms (whose lines fully coincide) is always less than
5 s (4.879 s for the Netflix dataset); this increment is definitely considered manageable.
On the other hand, the DAvicinity algorithm needs significantly more time, up to 230 s
for the Netflix dataset.

0.0001

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000 100000

tim
e

(s
ec

)

#ratings (unit: 1,000 ratings)

Plain CF DAnext DAprevious DAvicinity

Fig. 7. Time needed for (dynamic) average computation

182 D. Margaris and C. Vassilakis

Figure 8 illustrates the time needed to compute the Pearson similarities for all user
pairs. The time needed by all algorithms has been found to be almost identical, with the
dynamic average-based algorithms needing approximately 0.98% more time than the
plain CF algorithm, which –as stated above– is attributed to the fact that global
averages may be stored in registers for fast access, while dynamic averages must be
fetched from main memory. While generally the time needed appears to scale linearly
with the number of ratings, we can notice three data points where scaling is not linear:

1. The time needed for the Amazon Videogames dataset (denoted as AV in Fig. 8) is
72 times higher than the time needed for the MovieLens “Old 100K Dataset”
(denoted as MLOLD), although the number of ratings is only 1.5 times higher. This
is attributed to the fact that the number of users in the Amazon Videogames dataset
is 8 times higher than the respective number of users in the MovieLens “Old 100K
Dataset” and, as indicated by the complexity formulas in Table 13, the time needed
is proportional to the square of the number of users, while scaling linearly with the
average number of ratings.

2. The time needed for the Amazon Movies dataset (denoted as AMV in Fig. 8) is 1.3
times higher than the time needed for the Amazon CDs and Vinyl dataset (denoted
as ACD), despite the fact that both datasets contain the same number of ratings.
Again, this is attributed to the fact that the Amazon Movies dataset contains a higher
number of users than the Amazon CDs and Vinyl dataset (approximately 11%
higher).

3. Finally, the time needed for the Amazon Books dataset (denoted as AB) is almost
equal to the time needed for the MovieLens “Latest 20M” dataset (denoted as
ML20), although the latter contains 2.3 times more ratings than the former. This is

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000 100000

tim
e

(s
ec

)

ratings (unit: 1000 ratings)

AV

ACD

AMV
AB ML20

ML100 & MLOLD

NF

AA

CI

Fig. 8. Time needed for computing the pairwise Pearson similarities between users

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 183

again owing to the fact that the Amazon Books dataset involves a significantly
higher number of users than the MovieLens “Latest 20M” (295K users vs. 138K or
2.13 times more).

In all cases we can observe that the computation of all Pearson similarities requires
from 0.3 ms (for the Ciao dataset, labeled as CI) to 75 min for a dataset containing
100M ratings (the Netflix dataset, labeled as NF), hence it is considered feasible. Since
computation of Pearson similarities is clearly parallelizable (computations for any pair
of users can proceed parallelly with the computation of any other pair), adding more
execution cores can further reduce the time needed.

Rating Prediction Computation Phase. Rating prediction computation in both the
plain CF and the dynamic average-based algorithms is performed using the following
prediction formula [3]:

cru;i ¼ ru þ
P

v2NN uð Þ Pearson sim u; vð Þ � rv;iP
v2NN uð Þ Pearson sim u; vð Þj j ð8Þ

where cru;i is the prediction for user u’s rating for item i and NN(u) is the set of nearest
neighbors for user u. The complexity of this formula is equal to O(|NN|), with |NN|
denoting the cardinality of the nearest neighbor set.

Figure 9 presents the time needed to compute a rating prediction, in relation to the
number of ratings in the database.

We can observe that the recommendation formulation time is under 1 ms in all
cases. The time needed to compute a rating prediction increases with the number of
ratings, owing to the fact that in our experiments the set of nearest neighbors was

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0 20000 40000 60000 80000 100000

tim
e

(m
se

c)

ratings (unit: 1000 ratings)

Fig. 9. Time needed for computing a rating prediction for a user

184 D. Margaris and C. Vassilakis

allowed to contain all users having a positive Pearson correlation with the user that the
prediction was computed for. Pruning the nearest neighbor set to contain the top
N similar users or users having a similarity above a higher threshold would render the
computation even more efficient.

Database Update Phase. The ratings database is updated when users enter new rat-
ings. When a rating is entered, the average(s) related to the user’s ratings are modified,
and additionally the user’s Pearson similarity to other users changes. In the following
subsections, we elaborate on the complexity and scalability of the database update
phase, under the four algorithms considered in the evaluation section.

Updating a user’s averages.
Under the plain CF algorithm, when a new rating rnew is entered in the database, the
new global average can be computed using Eq. 9:

avgu;new ¼ avgu;current � ratingsuj j þ rnew
ratingsuj j þ 1

ð9Þ

where ratingsu is the set of ratings that have been entered by user u before rnew was
entered and avgu,current is the current global average of user u. Therefore, the com-
plexity of updating a user’s global average upon insertion of a new rating is O(1).

When the DAprevious algorithm is employed, the arrival of a new rating rnew entered
by user u necessitates only the computation of the dynamic average for the newly
entered rating: indeed, since the dynamic average of any rating r is based only on
ratings entered by the same user before r, the dynamic averages of ratings previously
entered by the same user are not affected. If rlast is the last rating entered by user
u before rnew, then the dynamic average for rnew can be computed using Eq. 10:

DAprevious rnewð Þ ¼ DAprevious rlastð Þ � ratingsuj j þ rnew
ratingsuj j þ 1

ð10Þ

where ratingsu is the set of ratings that have been entered by user u before rnew was
entered. Consequently, the complexity of updating a user’s dynamic averages upon
insertion of a new rating is O(1).

When the DAnext algorithm is used, the arrival of a new rating rnew entered by user
u necessitates the computation of the dynamic averages for all ratings entered by u: this
is due to the fact that the newly entered rating rnew has a greater timestamp than all
existing ratings r entered by u, and therefore by virtue of Eq. 4 it affects the respective
dynamic averages. To recalculate the dynamic averages of all ratings, the algorithm
shown in Listing 1 can be employed. However, since the ratings are already ordered in
ascending timestamp order, the sorting operation can be skipped, and therefore the
complexity is reduced from O(ru * log(ru)) to O(ru), accounting for a single traversal of
the ratings in descending timestamp order.

Under the DAvicinity algorithm, when a new rating rnew is entered by user u, the
dynamic averages for all ratings entered by u must be calculated anew. This is because
(a) since the newly entered rating will have a timestamp greater than all other ratings in

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 185

the database, the denominator of Eq. 5 changes, and consequently the weight of every
rating is modified and (b) the newly entered rating should be considered in the com-
putation of the dynamic average of every rating entered by user u, according to Eq. 6.
As shown in subsection “Bootstrap phase”, the complexity of computing the dynamic
averages for all ratings entered by some user u is O(ru

2), where ru is the number of
ratings entered by u.

Figure 10 illustrates the time needed for recomputing a user’s dynamic averages in
the context of the datasets used in this paper. We observe that the time needed for
DAnext algorithm ranges between 0.54 and 10 lsec, while the time needed by the
DAprevious and the plain CF algorithm remains constant. Finally, the DAvicinity algorithm
exhibits the worst performance among the examined algorithms.

Recomputing a User’s Pearson Similarities. When a new rating is entered, the Pearson
similarities between a user and other users need to be recomputed. For the plain CF and
the DAprevious algorithm, where the global average and the dynamic averages respec-
tively are not affected, this needs to be performed only for users that have rated the item
referenced in the newly entered rating. For the DAnext and DAvicinity algorithms, simi-
larities with all users need to be computed afresh, because the dynamic averages of all
ratings change, and this affects the outcome of the dynamic average-aware Pearson
similarity (c.f. Eq. 2).

Figure 11 depicts the performance of the procedure for recomputing the Pearson
similarity between the user for which a new rating was entered and all other users in the
dataset. For the Netflix dataset, which contains 480K users, the time needed is
approximately 30 ms. It has to be noted that parallelism is not as efficient in this case as
it has proven in the case of computing the pairwise similarities between all users,

0.10

1.00

10.00

100.00

10 100 1000 10000 100000

tim
e

(μ
se

c)

#ratings (unit: 1,000 ratings)

Plain CF DAnext DAprevious DAvicinity

Fig. 10. Time needed for recomputing a user’s average(s)

186 D. Margaris and C. Vassilakis

because the time needed to actually perform the calculations is now much smaller,
therefore the overhead of thread creation is now a considerable portion in the overall
execution time.

Besides having a high computation cost, recomputing the Pearson similarities upon
the arrival of each new rating is of low utility, because the results of some of these
computations will be overwritten almost instantly, as new ratings by other users enter
the database. For these reasons, the recomputation of the Pearson similarities can be
performed in an offline fashion, either periodically or when a substantial number of
new ratings has been amassed.

5 Conclusion and Future Work

In this paper we have introduced a novel dynamic average-based algorithm, DAnext,
which is able to better follow the variations of user rating practices and, consequently,
is able to produce more accurate rating predictions. The proposed algorithm has been
experimentally verified using ten datasets and compared to other dynamic average-
based algorithms presented in the literature [33], under both user-user and item-item CF
implementations. The DAnext algorithm has been found to consistently outperform all
other algorithms in all tested datasets, reducing prediction errors, as reflected through
the MAE and RMSE metrics, and also achieving the highest correct prediction per-
centages. In particular, the average MAE reduction compared to the plain CF algorithm
is 5.1% under the user-user CF implementation and 6.0% under the item-item CF
implementation; the respective gains regarding the RMSE metric are 5.3% and 7.1%.
In comparison to the runner up algorithm, i.e. the DAprevious algorithm [33], the
improvements in the MAE are 1.5% under the user-user CF implementation scenario

0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000

tim
e

(m
se

c)

ratings (unit: 1000 ratings)

Fig. 11. Time needed to recompute the Pearson similarities between a user and all other users

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 187

and 2.6% under the item-item implementation scenario, while the respective gains in
the RMSE are quantified to 1.5% and 3.0%. Considering the correct prediction metric,
the proposed algorithm outperforms the runner up algorithm (DAprevious) by 1.09%
under the user-user CF implementation scenario and by 1.2% under the item-item
implementation scenario. These benefits are realized at the expense of drops in cov-
erage, which range from negligible to tolerable; coverage drops by 0.7% on average,
being less than 2.2% in all cases. For datasets with higher density, in particular,
practically no coverage loss occurs. We have also compared the improvements in
accuracy achieved by the proposed algorithm against the corresponding improvements
achieved by other algorithms exploiting temporal dynamics, and DAnext has been found
to achieve the most substantial improvements, in all cases.

Our future work will focus on investigating alternative methods for computing the
dynamic averages, as well as employing different dynamic average techniques for
different users, depending on the timestamp distribution of their rating history. The
adaptation of other similarity metrics, such as the Euclidian distance and the Manhattan
distance [49], to exploit information regarding identified shifts in rating practices will
be investigated.

The matrix factorization technique [32] and the fuzzy recommender systems
approach [50] are also particularly interesting areas for further research on how shifts in
rating practices can be accommodated in these approaches. For the matrix factorization
technique, in particular, the approach of time-aware matrix factorization models [44,
45] will be studied.

Since the DAnext algorithm introduced in this paper targets shifts in user rating
practices, which is a distinct aspect than those addressed in other approaches (e.g.
interest shifts; decay of old-aged ratings; etc.), opportunities exist for combining the
algorithm presented in our paper with algorithms from other categories, so that even
higher accuracy improvements can be harvested; such combinations will be investi-
gated in our future work.

Finally, exploring methods for decreasing the space overhead for the implemen-
tation of dynamic averages, considering the maintenance of dynamic averages at a
coarser granularity than the individual rating, such as monthly or yearly, as well as
decreasing the need for recomputing dynamic averages due to the arrival of new ratings
(e.g. periodic recomputation or the consideration of ratings only in a specific temporal
vicinity, when computing dynamic averages), will be explored.

References

1. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun.
ACM 40(3), 66–72 (1997)

2. Dror, G., Koenigstein, N., Koren, Y.: Yahoo! music recommendations: modeling music
ratings with temporal dynamics and item taxonomy. In: Proceedings of the 5th ACM
Conference on Recommender Systems (RecSys 2011), New York, NY, USA, pp. 165–172
(2011)

3. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender
systems. In: Brusilovsky, P., Kobsa, A., Nejdl,W. (eds.) The AdaptiveWeb. LNCS, vol. 4321,
pp. 291–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_9

188 D. Margaris and C. Vassilakis

http://dx.doi.org/10.1007/978-3-540-72079-9_9

4. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

5. Li, L., Zheng, L., Yang, F., Li, T.: Modeling and broadening temporal user interest in
personalized news recommendation. Expert Syst. Appl. 41(7), 3168–3177 (2014)

6. Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adap.
Interact. 12(4), 331–370 (2002)

7. McAuley, J.J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and
complementary products. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
pp. 785–794 (2015)

8. McAuley, J., Targett, C., Shi, J., van den Hengel, A.: Image-based recommendations on
styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Santiago, Chile, pp. 43–52 (2015)

9. MovieLens datasets. http://grouplens.org/datasets/movielens/. Accessed 22 Sept 2017
10. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans.

Interact. Intell. Syst. (TiiS) 5(4), 19 (2015). Article No. 19
11. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering

for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–
348. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_32

12. Margaris, D., Vassilakis, C.: Pruning and aging for user histories in collaborative filtering.
In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence, Athens,
Greece, pp. 1–8 (2016)

13. Liu, N.N., He, L., Zhao, M.: Social temporal collaborative ranking for context aware movie
recommendation. ACM Trans. Intell. Syst. Technol. (TIST) 4(1) (2013). Article No. 15

14. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information
diffusion. In: Proceedings of the 21st International Conference on World Wide Web, Lyon,
France, pp. 519–528 (2012)

15. Koren, Y.: Factor in the neighbors: scalable and accurate collaborative filtering. ACM Trans.
Knowl. Discov. Data (TKDD) 4(1) (2010). Article No. 1

16. Vaz, P.C., Ribeiro, R., de Matos, D.M.: Understanding temporal dynamics of ratings in the
book recommendation scenario. In: Proceedings of the 2013 International Conference on
Information Systems and Design of Communication, ACM ISDOC 2013, New York, NY,
USA, pp. 11–15 (2013)

17. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V.,
Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 264–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75488-6_27

18. Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve the
accuracy of collaborative filtering. Knowl.-Based Syst. 56, 156–166 (2014)

19. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in
the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

20. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments.
IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

21. Ang, H.H., Gopalkrishnan, V., Zliobaite, I., Pechenizkiy, M., Hoi, S.C.H.: Predictive
handling of asynchronous concept drifts in distributed environments. IEEE Trans. Knowl.
Data Eng. 25(10), 2343–2355 (2013)

22. Zliobaite, I., Bakker, J., Pechenizkiy, M.: Beating the baseline prediction in food sales: how
intelligent an intelligent predictor is? Expert Syst. Appl. 39(1), 806–815 (2012)

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 189

http://grouplens.org/datasets/movielens/
http://dx.doi.org/10.1007/978-3-540-68880-8_32
http://dx.doi.org/10.1007/978-3-540-75488-6_27

23. Vaz, P.C., Ribeiro, R., DeMatos, D.M.: Understanding temporal dynamics of ratings in the
book recommendation scenario. In: Proceedings of the 2013 International Conference on
Information Systems and Design of Communication (ISDOC 2013), Lisbon, Portugal,
pp. 11–15 (2013)

24. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. 1(1) (2013). Article No. 1

25. Margaris, D., Vassilakis, C., Georgiadis, P.: Recommendation information diffusion in social
networks considering user influence and semantics. Soc. Netw. Anal. Mining 6(108), 1–22
(2016)

26. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems.
Found. Trends Hum.-Comput. Interact. 4(2), 81–173 (2011)

27. He, D., Wu, D.: Toward a robust data fusion for document retrieval. In: Proceedings of the
4th IEEE International Conference on Natural Language Processing and Knowledge
Engineering (NLP-KE), Beijing, China, pp. 1–8 (2008)

28. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of
mouth”. In: Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing
Systems, Denver, Colorado, USA, pp. 210–217 (1995)

29. Margaris, D., Vassilakis, C., Georgiadis, P.: Knowledge-based leisure time recommenda-
tions in social networks. In: Alor-Hernández, G., Valencia-García, R. (eds.) Current Trends
on Knowledge-Based Systems. Intelligent Systems Reference Library, vol. 120, pp. 23–48.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51905-0_2

30. Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.P.: Probabilistic memory-based
collaborative filtering. IEEE Trans. Knowl. Data Eng. 16(1), 56–69 (2004)

31. Dias, R., Fonseca, M.J.: Improving music recommendation in session-based collaborative
filtering by using temporal context. In: Proceedings of the 25th IEEE International
Conference on Tools with Artificial Intelligence, Herndon, VA, pp. 783–788 (2013)

32. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
IEEE Comput. 42(8), 42–49 (2009)

33. Margaris, D., Vassilakis, C.: Improving collaborative filtering’s rating prediction quality by
considering shifts in rating practices. In: Proceedings of the 19th IEEE International
Conference on Business Informatics, Thessaloniki, Greece, vol. 01, pp. 158–166 (2017)

34. Bao, J., Zheng, Y., Mokbel, M.: Location-based and preference-aware recommendation
using sparse geo-social networking data. In: Proceedings of the 20th International
Conferences on Advances in Geographic Information Systems (SIGSPATIAL 2012),
Redondo Beach, California, pp. 199–208 (2012)

35. Zheng, Y., Xie, X.: Learning travel recommendations from user-generated GPS traces. ACM
Trans. Intell. Syst. Technol. (TIST) 2(1), 29 (2011). Article No. 2

36. Gong, S.: A collaborative filtering recommendation algorithm based on user clustering and
item clustering. J. Softw. 5(7), 745–752 (2010)

37. Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online
collaborative filtering. In: Proceedings of the 16th International Conference on World Wide
Web, Banff, Alberta, Canada, pp. 271–280 (2007)

38. Margaris, D., Vassilakis, C.: Enhancing user rating database consistency through pruning.
Trans. Large-Scale Data Knowl.-Centered Syst. XXXIV, 33–64 (2017)

39. Ramezani, M., Moradi, P., Akhlaghian, F.: A pattern mining approach to enhance the
accuracy of collaborative filtering in sparse data domains. Phys. A: Stat. Mech. Appl. 408,
72–84 (2014)

40. Najafabadi, M.K., Mahrin, M.N., Chuprat, S., Sarkan, H.M.: Improving the accuracy of
collaborative filtering recommendations using clustering and association rules mining on
implicit data. Comput. Hum. Behav. 67, 113–128 (2017)

190 D. Margaris and C. Vassilakis

http://dx.doi.org/10.1007/978-3-319-51905-0_2

41. Li, C., Shan, M., Jheng, S., Chou, K.: Exploiting concept drift to predict popularity of social
multimedia in microblogs. Inf. Sci. 339, 310–331 (2016)

42. Lu, Z., Pan, S.J., Li, Y., Jiang, J., Yang, Q.: Collaborative evolution for user profiling in
recommender systems. In: Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI 2016), pp. 3804–3810 (2016)

43. Kangasrääsiö, A., Chen, Y., Głowacka, D., Kaski, S.: Interactive modeling of concept drift
and errors in relevance feedback. In: Proceedings of the 2016 Conference on User Modeling
Adaptation and Personalization (ACM UMAP 2016), New York, NY, USA, pp. 185–193
(2016)

44. Gantner, Z., Rendle, S., Schmidt-Thieme, L.: Factorization models for context-/time-aware
movie recommendations. In: Proceedings of the Workshop on Context-Aware Movie
Recommendation (ACM CAMRa 2010), New York, NY, USA, pp. 14–19 (2010)

45. Zhang, J.D., Chow, C.Y.: TICRec: a probabilistic framework to utilize temporal influence
correlations for time-aware location recommendations. IEEE Trans. Serv. Comput. 9(4),
633–646 (2016)

46. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference on World
Wide Web (WWW10), Hong Kong, pp. 285–295 (2001)

47. Winoto, P., Tang, T.Y.: The role of user mood in movie recommendations. Expert Syst.
Appl. 37, 6086–6092 (2010)

48. DELL: PowerEdge R930 Rack Server specs. http://www.dell.com/us/business/p/poweredge-
r930/pd?ref=PD_OC. Accessed 22 Feb 2018

49. Cha, S.-H.: Comprehensive survey on distance/similarity measures between probability
density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307 (2007)

50. Son, L.H.: HU-FCF: a hybrid user-based fuzzy collaborative filtering method in
recommender systems. Expert Syst. Appl. 41, 6861–6870 (2014)

51. Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N.: ETAF: an extended trust antecedents
framework for trust prediction. In: Proceedings of the 2014 International Conference on
Advances in Social Networks Analysis and Mining ASONAM 2014, Beijing, China,
pp. 540–547 (2014)

52. Lo, Y.-Y., Liao, W., Chang, C.-S., Lee, Y.-C.: Temporal matrix factorization for tracking
concept drift in individual user preferences. IEEE Trans. Comput. Soc. Syst. 5(1), 156–168
(2018)

53. Cheng, W., Yin, G., Dong, Y., Dong, H., Zhang, W.: Collaborative filtering recommen-
dation on users’ interest sequences. PLoS One 11(5), e0155739 (2016)

Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection 191

http://www.dell.com/us/business/p/poweredge-r930/pd%3fref%3dPD_OC
http://www.dell.com/us/business/p/poweredge-r930/pd%3fref%3dPD_OC

	Enhancing Rating Prediction Quality Through Improving the Accuracy of Detection of Shifts in Rating Practices
	Abstract
	1 Introduction
	2 Related Work
	3 Exploiting Ratings’ Timestamps in Users Dynamic Average Configuration
	3.1 The Proposed Algorithm
	3.2 Existing Dynamic Average Algorithms

	4 Performance Evaluation
	4.1 The Amazon “Videogames” Dataset
	4.2 The Amazon “CDs and Vinyl” Dataset
	4.3 The Amazon “Movies & TV” Dataset
	4.4 The Amazon “Books” Dataset
	4.5 The Amazon “Automotive” Dataset
	4.6 The MovieLens “Old 100K” Dataset
	4.7 The MovieLens “Latest-20M - Recommended for New Research” Dataset
	4.8 The MovieLens “Latest 100K - Recommended for Education and Development” Dataset
	4.9 The “Netflix Competition” Dataset
	4.10 The “Ciao” Dataset
	4.11 Algorithms Comparison
	4.12 Algorithm Complexity and Scalability

	5 Conclusion and Future Work
	References

