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Preface

This volume contains five fully revised regular papers, covering a wide range of very
hot topics in the field of data security in clouds, privacy languages, probabilistic
modelling in linked data integration, business intelligence based on multi-agent sys-
tems, collaborative filtering, and prediction accuracy.

We would like to sincerely thank the editorial board for thoroughly reviewing the
submitted papers and ensuring the high quality of this volume.

Special thanks go to Gabriela Wagner for her availability and her valuable work in
the realization of this volume of the Transactions on Large-Scale Data- and
Knowledge-Centered Systems.

June 2018 Abdelkader Hameurlain
Roland Wagner
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Keeping Secrets by Separation of Duties
While Minimizing the Amount of Cloud

Servers

Ferdinand Bollwein1 and Lena Wiese2(B)

1 Institute of Computer Science, TU Clausthal, Clausthal-Zellerfeld, Germany
ferdinand.bollwein@tu-clausthal.de

2 Institute of Computer Science, University of Goettingen, Göttingen, Germany
wiese@cs.uni-goettingen.de

Abstract. In this paper we address the problem of data confidential-
ity when outsourcing data to cloud service providers. In our separation
of duties approach, the original data set is fragmented into insensitive
subsets such that each subset can be managed by an independent cloud
provider. Security policies are expressed as sets of confidentiality con-
straints that induce the fragmentation process. We assume that the dif-
ferent cloud providers do not communicate with each other so that only
the actual data owner is able to link the subsets and reconstruct the orig-
inal data set. While confidentiality is a hard constraint that has to be
satisfied in our approach, we consider two further optimization goals (the
minimization of the amount of cloud providers and the maximization of
utility as defined by visibility constraints) as well as data dependencies
that might lead to unwanted disclosure of data. We extend prior work
by formally defining the confidentiality and optimization requirements
as an optimization problem. We provide an integer linear program (ILP)
formulation and analyze different settings of the problem. We present a
prototype that exploits a distributed installation of several PostgreSQL
database systems; we give an in-depth account of the sophisticated dis-
tributed query management that is enforced by defining views for the
outsourced data sets and rewriting queries according to the fragments.

1 Introduction

Data outsourcing and data processing in cloud services now-a-days manifest
in different variants and for different use cases: numerous providers offer cloud
services where data is processed off-premise and is no longer under the control of
the actual data owner. Using such cloud services offers several advantages like:

– scalability: customers can book resources according to their demand leading
to a reduction of hardware and maintenance costs;

– flexibility: cloud servers can run with an optimal payload and hence the overall
consumption of energy can be reduced;

– availability: customers can access their data from anywhere – independent of
their physical location;

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Hameurlain and R. Wagner (Eds.): TLDKS XXXVII, LNCS 10940, pp. 1–40, 2018.
https://doi.org/10.1007/978-3-662-57932-9_1
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2 F. Bollwein and L. Wiese

– reliability: cloud providers offer service level agreements and invest in relia-
bility of their systems so that data loss is reduced.

In particular for large data sets or when data can be accessed by many differ-
ent parties, using cloud services for data outsourcing offers many benefits. For
the purposes of this article we categorize data outsourcing into three different
variants:

– Data storage (single-owner read and write access): a single data owner man-
ages his or her data remotely at outsourcing providers; the data owner has
read and write access on the data. As one example for this setting, businesses
can profit by sparing the cost of maintaining an own computing center; as
another example, a patient can maintain his or her personal electronic health
record in the cloud.

– Data publishing (single-owner write, multiple-user read access): a single
data owner stores some data at outsourcing providers. Other users can then
query the data (that is, with read-only access). Access control may be enforced
on the published data: certain data items may only be queried by privileged
users. A particular variant of data publishing is the statistical evaluation of
the outsourced data: in this case, the data can even be distorted as long as
the final evaluation on the distorted data does not diverge much from the
evaluation on the original data.

– Data sharing (multiple-owner read and write access): multiple data owners
manage their data collaboratively where each data owner may selectively be
entitled only to certain read and write accesses. In the business example, in
contrast to data storage, different business units may share data and have the
added value of executing fine-grained access control; in the electronic health
record example, patients can selectively allow read and write access to some
of their health data for medical personnel.

However, outsourcing data also means that the user loses control over the
data and the cloud providers have to be trusted in order to ensure confidentiality
of sensitive or business-critical data. The three outsourcing variants each have
different security requirements which we now briefly discuss.

When using the data storage variant, data should be inaccessible to other
users or the cloud service provider. One possibility to ensure confidentiality
would be to encrypt the data stored in the cloud database, however, this limits
the provider’s ability of processing the data to answer complex queries by the
user. To achieve query answering on ciphertexts, property-preserving encryption
schemes are available that allow to sort ciphertexts, or to search for encrypted
keywords on the ciphertexts. While these schemes enable certain operations on
the encrypted data they come at the cost of an increased overhead; prototype sys-
tems that apply such encryption schemes are [27,31] for SQL databases (which
also feature homomorphic encryption for aggregations) and [34] for NoSQL
databases.

When using the data publishing variant, only certain characteristics of the
data are confidential. These characteristics can be hidden by distorting the
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data with some noise. Examples for the publishing of distorted data include k-
anonymity [28] and differential privacy [20]. For the example use cases, business-
critical or medical data would only published in a curated version including
slightly modified or generalized values.

In case of the data sharing variant, data should selectively be accessible
to some users but should be hidden from other users or third parties. For the
purpose of encrypted data sharing with multiple owners, multi-user property-
preserving encryption schemes exist but the distribution of appropriate crypto-
graphic keys is a major complication.

As an alternative, this article proposes a separation of duties approach to
address the complexity of encryption – however, we want to reinforce that in a
real-world system a combination of separation of duties and encryption would be
of added practical value. Our proposed approach applies to the data outsourcing
variant of data storage, where data confidentiality is achieved by distributing
data fragments among different separate cloud service providers – with a spe-
cific focus on data storage in cloud databases (“database-as-a-service”). If in
addition selective access rights on the distributed fragments are given to several
users, the data outsourcing variant of data sharing can also profit from our sep-
aration of duties approach. We refrain however from distorting data as would
be necessary for some data publishing scenarios mentioned above. A particu-
lar scenario that our approach is suited for is the outsourcing of medical data
into repositories. Here several data providers can submit their data into these
repositories. The important difference to encryption-based approaches is that
statistical evaluations are still possible on plaintext data; support for statistics
on certain attribute combinations can be enforced by visibility constraints.

Generally, the term separation of duties means that a specific task is handled
by multiple entities to prevent malicious behavior which could be carried out by
a single entity in control of the whole task. In the context of preserving confiden-
tiality in cloud databases, this is based on the observation that in many scenarios
data only becomes sensitive in association with other data. By distributing the
data among multiple database servers with a technique called vertical fragmen-
tation, these sensitive associations can be broken up such that each server only
maintains an insensitive portion of the data. The fragmentation process is guided
by a security policies that contains so-called confidentiality constraints. As long
as the servers are not collaborating to reestablish the association, this separa-
tion of duties approach ensures the confidentiality of the underlying data. The
huge advantage of our approach is that the data can be outsourced in plaintext
because and the data do not have to be encrypted which would drastically limit
the servers’ ability to process client queries. Moreover, no noise is added and the
data outsourced plaintext data retain their original values.

It is a challenging task to decide how the data is distributed among the
servers. On the one hand, the security requirements have to be met but on
the other hand the number of involved servers should be relatively small to
limit the costs for the user and ensure efficient querying. Therefore, the pro-
posed separation of duties approach can be viewed as a typical mathematical
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optimization problem. In this article we consolidate and extend our prior work
[6,7] in a multi-relational environment. Moreover, we extend the benchmarking
of our prototype implementation which is capable of distributing data (more
precisely, vertical fragments) among several database servers and which appro-
priately analyzes and rewrites arbitrary SQL queries. In detail, in this article we
make the following contributions:

– We investigate separation of duties in a realistic data model; in particular,
we consider multiple database relations as well as dependencies between data
which are allowed to span multiple relations – both of these are important in
real-world database systems to achieve non-redundancy and to avoid anoma-
lies for example by database normalization.

– We formulate separation of duties as a mathematical optimization problem
according to several optimization goals – satisfying confidentiality constraints
under dependencies while minimizing the amount of database servers, maxi-
mizing the amount of satisfied visibility constraints.

– We provide article a benchmarking of the optimization procedure (using IBM
CPLEX) on the widely used TPC-E data schema.

– We give a detailed account of the query rewriting approach followed when
accessing data that are distributed among different fragments.

– We provide details of a benchmarking of distributed query execution on the
fragmented TPC-H dataset. In particular, our approach can execute all of
the TPC-H benchmark queries – while currently existing approaches using
property-preserving encryption are unable to execute the entire query set.

We start this article with a survey of related work in Sect. 2. Section 3 sets
the necessary terminology; Sect. 4 analyzes the theory of several Separation of
Duties problems; Sect. 5 provides a translation into an integer linear program;
Sects. 6 and 7 describe the implementation and evaluation; Sect. 8 concludes the
article.

2 Related Work

Security and privacy have been challenging tasks ever since the introduction
of the principle of data outsourcing and a lot of research has been carried out
to address different aspects of this problem such as access control, data confi-
dentiality and data integrity. Security can be achieved by encryption – carried
out by the user before outsourcing the data to the database. Still, encryption
operations are generally very costly and moreover, existing cryptographic tech-
niques can still not be efficiently used to evaluate more complex queries like, for
instance, computations on the data. In this paper we focus on data confiden-
tiality by data fragmentation and distribution without encryption; however our
proposed approach can indeed be combined with conventional encryption (as in
[1]) or even novel encryption approaches (that we also applied in prior work as
for example order-preserving encryption [32], searchable encryption [33] or even
fuzzy searchable encryption [21,23]).
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Vertical fragmentation approaches split a database into two or more frag-
ments consisting each of a subset of the attributes (that is, columns) of the
entire database. The theory of vertical fragmentation for relational database
systems is well-studied. As an early resource, [9] study vertical fragmentation
that also takes transaction processing costs into account. Fragmentation is also
extensively covered in the standard textbook [26]. A more recent comparative
evaluation of vertical fragmentation approaches is provided in [25]; however all
of these approaches do not consider fragmentation as a security mechanism.

Vertical fragmentation can be used to break sensitive associations between
attributes. Vertical fragmentation for data outsourcing was first analyzed from
a security point of view in [1] where a single relation is divided into two frag-
ments. They model sensitive associations between columns of the single relation
as subsets of its columns. In each fragment some values of a tuple are stored as
plaintext while each fragment always additionally contains each entire tuple in
encoded form (for example, encrypted); that is, they rely on encryption whenever
it is impossible to meet the confidentiality requirements with those two servers
only. The two fragments are outsourced to two distinct honest-but-curious, non-
communicating servers. A user runs a client software for database management,
query optimization and query postprocessing. Query execution performance is
good for queries covering plaintext values but worse for querying encoded data.
The authors provide strategies to optimize query execution plans and identify
an optimal vertical fragmentation according to some cost matrix. In contrast to
this work, our approach supports more than two external servers as well as a
trusted owner server, so that we can refrain from using any form of encryption
and we consider more optimization goals.

Several approaches extended and improved this first analysis. [12,14] pioneer
the idea of a single data owner safeguarding as few data as possible of a single
relation. To do so, a database table is split vertically into a server fragment (to
be stored at an untrusted cloud server) and an owner fragment (to be stored
at a trusted local database server). Again, only two fragments are considered.
The aim is to store a minimal subset of columns in the local database such that
the remaining set of columns which is stored at the untrusted server is insen-
sitive. This approach works totally without encryption because the owner site
is assumed to be trusted. The authors define fragmentation correctness with
respect to completeness, confidentiality and non-redundancy, and analyze frag-
mentation metrics to assess quality of a fragmentation. A complexity analysis is
based on the weighted minimum target hitting set problem.

Other proposals such as [10,11,13,15,17–19] use vertical fragmentation as a
tool to split sensitive associations in a database table. It is required that those
fragments do not have an attribute in common such that the fragments are
unlinkable. Due to the unlinkability, the fragments can possibly be stored at a
single untrusted server which is then in possession of all the data but cannot
establish sensitive associations. In particular, [19] introduces the concept of k-
loose associations: while associations between single tuples (or the confidential
values therein) in two fragments remain protected, more general associations



6 F. Bollwein and L. Wiese

between groups (of size k) of confidential values can be published - and hence
improve data visibility. For a detailed security analysis, probabilities of one-to-
one associations between values given the published fragments and k-loose asso-
ciations are analyzed. The authors consider both confidentiality and visibility
constraints but assume that there is no conflict between these constraints.

In [18] the concept of data dependencies is introduced. The authors state
that certain combinations of attributes can be used by a sophisticated untrusted
server to draw conclusion about other attributes which could potentially lead to
the exposure of sensitive data. More specifically, [2,4] consider certain classes of
data dependencies (in particular, subcases of equality generating dependencies
and tuple generating dependencies) and investigate their impact on information
disclosure.

[8] proposes vertical fragmentation into two fragments: one with confiden-
tial and one with non-confidential attributes; only confidential attributes are
encrypted with the Advanced Encryption Standard (AES). Associations between
attributes are not considered. An analysis reveals that joins between the confi-
dential and non-confidential attributes are costly.

We extend and consolidate these prior approaches by supporting multiple
relations while combining several optimization goals into one problem definition.

In addition, some approaches go beyond vertical fragmentation and consider
other kinds of fragmentations: Expressive constraints and dependencies in first-
order logic have previously been analyzed in [4] for vertical as well as in [35] for
horizontal confidentiality-preserving fragmentations.

Several approaches cover only data publishing – as opposed to data stor-
age or data sharing as we do. In particular, [37,39] studies data publishing and
hierarchical data partitioning under the notion of differential privacy which is a
probabilistic measure of data confidentiality. Roughly, the probability distribu-
tion of the published data should not diverge substantially from similar data sets.
To achieve this they partition the original datasets into subsets and introduce
noise to ensure confidentiality for certain statistical queries; these queries are
however not general enough (mostly count queries are considered). As another
approach for data publishing is [24] that enumerates all possible hybrid fragmen-
tations (what the authors call “hierarchical partitioning”) of a table. Afterwards,
an optimal fragmentation is anonymized by generalizing data in each fragment
with a new value. More recently, [38] combine vertical fragmentation with k-
anonymity, l-diversity, and t-closeness to achieve more efficiency when publish-
ing multi-dimensional data. In contrast to these (as well as related) approaches,
we focus on data storage and data sharing instead of data publishing – hence in
our approach data are not distorted.

3 Background

As the underlying data model, we focus on the formal definition of a relational
database. As usual, a relation schema R ({a1, . . . , an}), or simply R (a1, . . . , an),
consists of a relation name R and a finite set of attributes {a1, . . . , an} with
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n ≥ 1. Each attribute ai is associated with a specific domain which is denoted by
the expression dom(ai). Next, a relation r, also denoted by r(R), over the relation
schema R(a1, . . . , an) is defined as an ordered set of n-tuples r = (t1, . . . , tm) such
that each tuple rj is an ordered list tj = v1, . . . , vn of values vi ∈ dom(ai) or
vi = NULL. The degree of a relation is defined as the number of attributes in r.

A database schema D = {R1(A1), . . . , RN (AN )} is defined by a name D
and a set of relation schemes Ri(Ai) where Ai denotes the corresponding set of
attributes. Finally, a database state d = {r1, . . . , rN} over a database schema
D = {R1(A1), . . . , RN (AN )} is a set of relations such that each ri is a relation
over the respective relation schema Ri(Ai).

As a tuple identifier tids for relation schema Rs a subset of As is chosen
that is a candidate key: the tuple values are functionally dependent on the key;
that is, two tuples with the same identifier value would be identical on all other
values. Formally, if rs is a relation over the schema Rs(As) and tids ⊆ As, for
the two tuples t1, t2 ∈ rs the following holds

t1[tids] = t2[tids] ⇒ t1 = t2

The set of all tuple identifiers is denoted by tid :=
⋃N

s=1 tids.
To illustrate the individual steps (namely, setup, select, insert, delete and

update), a small database D consisting of two tables D and P in a hospital
scenario serves as a running example. The first table stores information about
doctors and the second table stores information about patients:

D = { D(DocID,Name,DoB,ZIP,Specialty),
P(PatID,Name,DoB,ZIP,Diagnosis,Treatment,DocID) }

where DocID and PatID serve as tuple identifiers.

4 Separation of Duties Problems

Analogous to [1,12] we assume that Cloud service providers are “honest but
curious”. This means that servers handle requests and answer queries correctly;
but, while they do not manipulate the stored or returned data, still they analyze
data and user behavior and try to gain sensitive information from it.

A security policy consisting of confidentiality constraints (see Definition 1)
describes what information is confidential in terms of subsets of attributes (that
is, column names) of relations. The presented separation of duties approach aims
at protecting confidentiality of either all values in an individual column (the so-
called singleton constraints) or the combination of values for the same tuple in
different columns (the so-called association constraints). As an extension to prior
work, in a database containing multiple relations, sensitive associations can exist
among relations. This is expressed in the following definition of multi-relational
confidentiality constraints (Definition 1).
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Definition 1 (Multi-relational Confidentiality Constraints). Let the sets
A1, . . . , AN denote sets of attributes that are pairwise disjoint; furthermore,
let D = {R1(A1), . . . , RN (AN )} be a database schema and d = {r1, . . . , rN}
a database state over D. A multi-relational confidentiality constraint on D is
defined by a subset of attributes c ⊆ ⋃N

s=1 As. A multi-relational confidentiality
constraint c with |c| = 1 is called a singleton constraint. If |c| > 1 it is called an
association constraint.

The condition that the set of attributes are pairwise disjoint is introduced
to assure that attributes can uniquely be associated with the according relation
schema. This can easily be achieved by choosing a suitable naming convention
(like prependeding relation names to the attributes).

Vertical fragmentation is used to meet the security requirements expressed
by the confidentiality constraints. In Definition 2, correctness of vertical frag-
mentation is defined based on the three properties of completeness, disjointness
and reconstruction.

Definition 2 (Multi-relational Vertical Fragmentation, cardinality of
a fragmentation, physical fragments). Let A1, . . . , AN denote sets of
attributes that are pairwise disjoint; furthermore, let d = {r1, . . . , rN} be a
database state over the database schema D = {R1(A1), . . . , RN (AN )}. A set
of fragments f = (f0, . . . , fk) where fj ⊆ ⋃N

s=1 As for all fj is called a correct
(multi-relational) vertical fragmentation of d if the following conditions are met:

– Completeness:
⋃k

i=0 fj =
⋃N

s=1 As

– Disjointness: fi ∩ fj ⊆ tid, ∀ fi �= fj with fi, fj �= ∅
– Reconstruction: tids ⊂ (fj ∩ As), if fj ∩ As �= ∅
A fragmentation that satisfies all properties except the disjointness is called a
lossless (multi-relational) vertical fragmentation of r. The cardinality of a ver-
tical fragmentation Card(f) is defined as the number of nonempty fragments in
f : Card(f) =

∑k
j=0
fj �=∅

1.

For fragment fj, its multirelational physical fragment is the set of projections

dj := {πfj∩A1(r1), . . . , πfj∩AN
(rN )}

which is a database over the database schema Dj = {R1(fj ∩ A1), . . . , RN (fj ∩
AN )}. The individual relations πfj∩As

(rs) for s ∈ {1, . . . , N} are called relation
fragments.

Note that each fragment fj contains a subset of the attributes of each original
table; the physical fragment dj contains subtables of all the original tables. The
cardinality of the fragmentation f denotes the amount of non-empty fragments
fj . We will later on minimize the cardinality in order to minimize the amount
of occupied external cloud servers.

In this definition the completeness property ensures that every attribute is
contained in at least one fragment. The disjointness property prevents unnec-
essary copies of attributes that are not tuple identifiers; in other words, only
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tuple identifiers are allowed to be contained in more than one fragment. The
reconstruction property makes sure that a fragment contains all necessary tuple
identifiers to reconstruct the original relations by joining the corresponding rela-
tion fragments. More precisely, the reconstruction property ensures that a tuple
identifier tids is contained in a fragment fj , if and only if fj also contains a
non-tuple identifier attribute from relation rs. On the one hand, this ensures
that the individual relations can be reconstructed using join operation on the
tuple identifiers and on the other hand prevents fragments that only contain the
tuple identifier but no non-tuple identifier attribute of a specific relation.

In the following subsections we discuss three variants of separation of duties
by vertical fragmentation.

4.1 Standard Separation of Duties

As a minimum, confidentiality-preserving fragmentations must obey security
policies by ensuring that not all attributes contained in a confidentiality con-
straint are part of a fragment at the same time. The only exception is the owner
fragment f0 that is stored on the trusted client side and contains all singleton
constraints as well as subsets of association constraints if they cannot be satisfied
by distributing their attributes among several server fragments.

Definition 3 (Confidentiality). Let A1, . . . , AN denote pairwise disjoint sets
of attributes. Given a database state d = {r1, . . . , rN} over the database schema
D = {R1(A1), . . . , RN (AN )} and a set of confidentiality constraints C. A vertical
fragmentation f = (f0, . . . , fk) is confidentiality-preserving with respect to a set
of confidentiality constraints C if the following condition is met:

c �⊆ fj for all c ∈ C and j ∈ {1, . . . , k}
In this definition f0 is the owner fragment (to be stored at the trusted

database server) and f1, . . . , fk are the k server fragments (to be stored at the k
untrusted database servers). A confidentiality-preserving vertical fragmentation
therefore requires that the combination of attributes defined by a confidentiality
constraint is not jointly visible in a server fragment. For singleton constraints,
this implies that the corresponding attribute must be placed in the owner frag-
ment.

To avoid redundancy and unwanted interactions with the tuple identifiers, we
impose some restrictions on the set of confidentiality constraints. In particular,
tuple identifiers are assumed to be unsensitive information – because they are
needed to reconstruct the original relations – and hence should not be contained
in confidentiality constraints.

Definition 4 (Well-defined Confidentiality Constraints). Let A1, . . . ,
AN denote pairwise disjoint sets of attributes and let tids ⊂ As denote the desig-
nated tuple identifier for A1, . . . , AN respectively. Moreover, let d = {r1, . . . , rN}
denote a database state over the database schema D = {R1(A1), . . . , RN (AN )}.
A set of confidentiality constraints C is well-defined if it satisfies the following
conditions:
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– c �⊆ c′ for all c, c′ ∈ C with c �= c′

– c ∩ tids = ∅ for all c ∈ C and s ∈ {1, . . . , N} with c ⊆ As

The first condition requires that no confidentiality constraint c is a subset of
another c′ – due to the requirements for a confidentiality-preserving multi-
relational vertical fragmentation, the restriction that c is not jointly visible in
any server fragment already implies that c′ is not jointly visible in any server
fragment.

The second condition of the previous definition further implies that confiden-
tiality constraints c that contain only attributes from a single relation are not
allowed to contain tuple identifier attributes if they contain at least one non-tuple
identifier attribute. Such constraints can simply be replaced by the semantically
equivalent constraints c \ tids. This will avoid unnecessary case differentiations
in the remainder of this work.

Continuing our example, confidentiality constraints can express that patients’
and doctors’ names are highly confidential and that (as a kind of quasi-
identifiers) the combinations of a patient’s DoB, ZIP code and diagnosis as well
as a doctor’s DoB and ZIP code must not be revealed together.

C = {{P.Name}, {D.Name}, {P.DoB, P.ZIP, P.Diagnosis}, {D.DoB, D.ZIP}}
A confidentiality-preserving fragmentation consists of one owner fragment

f0 = {P0(PatID,Name),D0(DocID,Name)}
and two server fragments

f1 = {P1(PatID,DoB,DocID),D1(DocID,ZIP)}
and

f2 = {P2(PatID,ZIP,Diagnosis,Treatment),D2(DocID,DoB, Specialty)}.

It can be seen that no server fragment contains the entire set of attributes
specified in one confidentiality constraint. Moreover, the tuple identifiers are the
necessary information that enables the owner to reconstruct the two original
tables. Again note that each fragment contains a subset of the attributes of each
of the two original relations P and D; the cardinality of our fragmentation is 3
because we obtained one owner fragment and two server fragments.

As a last component, we consider storage space capacities for the servers.
We specify a weight function that assigns a weight to each set of attributes
that denotes the capacity consumption of the set: wd : P(A) −→ R

+. A simple
weight function could for example count the number of attributes in the set. We
then consider a maximum capacity Wj for each server Sj and require that the
summed weights of the fragment do not exceed the capacity of the server that
hosts this fragment.

With these preliminaries the definition of the Standard Multi-relational Sep-
aration of Duties Problem considering the cardinality of the fragmentation (as
in Definition 2) as well as the confidentiality (as in Definition 3) is as follows:
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Definition 5 (Multi-relational Separation of Duties). Given a database
schema D = {R1(A1), . . . , RN (AN )}, a database state d = {r1, . . . , rN}, a
well-defined set of multi-relational confidentiality constraints C, tuple identifiers
tids ⊂ As for all s ∈ {1, . . . , N}, a weight function wd, servers S0, . . . , Sk and
corresponding maximum capacities W0, . . . ,Wk ∈ R

+
0 , the Multi-relational Sep-

aration of Duties Problem consists of finding a correct confidentiality-preserving
fragmentation f = (f0, . . . , fk) of minimal cardinality Card(f) such that the
capacities of the storage are not exceeded, i.e. wd(fj) ≤ Wj for all 0 ≤ j ≤ k.

The maximum capacity W0 of the owner fragment can be set such that the
owner fragment only stores the attributes in the singleton constraints – which
cannot be outsourced due to their sensitivity. This can be achieved by choosing
a suitable capacity of the owner fragment. Yet, it must be considered that the
correct tuple-identifier attributes must also be part of the owner fragment to
satisfy the reconstruction property.

Lemma 1. If the set of singleton constraints A∗ := {c ∈ C | |c| = 1} denotes
the set of all sensitive attributes, when setting W0 to

W0 =
∑

s:As∩A∗ �=∅
wd(tids) +

∑

c∈C:|c|=1

wd(c).

the owner fragment only stores the attributes contained in singleton constraints
and the necessary tuple identifiers.

The Standard Separation of Duties Problem can be viewed as a combination
of two famous NP-hard problems, the bin packing problem due to the capacity
constraints of the storage locations and the vertex coloring problem due to the
confidentiality constraints.

4.2 Visibility Constraints

In the multi-relational scenario it is very important to control the resulting
fragmentation in order to increase the utility of the fragmented database and
avoid unnecessary joins when executing queries on the distributed fragments.
Increased usability means that certain combinations of attributes are stored on
a single server because they are often queried together. The notion of visibility
constraints will be adapted to this scenario: visibility constraints are defined as
subsets of attributes that should be placed in a single fragment – in this case,
we say that the visibility constraint is satisfied. Satisfaction of visibility should
only be enforced if the resulting fragmentation is not in conflict with the confi-
dentiality requirements. That is, confidentiality requirements are ranked higher
than visibility requirements. Formally, the definition of visibility constraints and
the amount of satisfied visibility constraints is as follows:

Definition 6 (Visibility constraint, satisfaction). Let d = {r1, . . . , rN}
be a database state over the database schema D = {R1(A1), . . . , RN (AN )}.
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A (multi-relational) visibility constraint over D is a subset of attributes v ⊆
⋃N

s=1 As. A multi-relational fragmentation f = (f0, . . . , fk) satisfies v if there is
a 0 ≤ j ≤ k such that v ⊆ fj. If such an fj exists, define Satv(f) := 1. Other-
wise, define Satv(f) := 0. For any set V of visibility constraints, the number of
satisfied visibility constraints is

SatV (f) :=
∑

v∈V

Satv(f)

Note that as opposed to other approaches we treat visibility constraints as
soft constraints; that is, conflicts in the specification are allowed and visibility
constraints will be satisfied only if the confidentiality can still be ensured. Hence,
it may happen that not all visibility constraints can be satisfied.

For example, focusing on our patient example table, in order to preserve the
privacy of the patients, the confidentiality constraint c = {DoB,ZIP} is enforced;
in addition, a visibility constraint v = {ZIP,Diagnosis} is introduced that enables
the statistical evaluation of the frequency of illnesses per ZIP code. Hence, one
possible privacy-preserving fragmentation is given by

f = {f0, f1, f2, f3}
with:

f0 = ∅, f1 = {PatID,DoB},

f2 = {PatID,ZIP,Treatment}, f3 = {PatID,Diagnosis}.

Another privacy-preserving fragmentation is given by

f ′ = {f ′
0, f

′
1, f

′
2, f

′
3}

with:

f ′
0 = ∅, f ′

1 = {PatID,DoB},

f ′
2 = {PatID,ZIP,Diagnosis}, f ′

3 = {PatID,Treatment}.

The important thing to notice here is that both fragmentations satisfy the
confidentiality constraint but in f the attributes in v are spread among two
servers while in f ′ they are on the same server; more formally, Satv(f) = 0 while
Satv(f ′) = 1. As a result, the second fragmentation f ′ is better because a query
for the two attributes ZIP and Diagnosis can be answered by a single server (the
one hosting f ′

2) without the need to join on patient ID.
Minimizing the number of servers versus maximizing the number of fulfilled

visibility constraints are two contrary goals. That is why in the following defi-
nition of the Extended Multi-relational Separation of Duties problem we intro-
duce a weighted sum of these two goals using two weights α1 and α2. Note that
satisfying the confidentiality constraints is still a hard constraint and will be
mandatory. Moreover, omitting the disjointness property of fragmentation helps
increase the number of fulfilled visibility constraints. Therefore, in the following
problem statement, only a lossless fragmentation is required.
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Definition 7 (Extended Multi-relational Separation of Duties). Given
database schema D = {R1(A1), . . . , RN (AN )}, a database state d =
{r1, . . . , rN}, a set of well-defined multi-relational confidentiality constraints C,
visibility constraints V , tuple identifiers tids ⊆ As for all s ∈ {1, . . . , N}, a
weight function wd, servers S0, . . . , Sk with maximum capacities W0, . . . ,Wk ∈
R

+
0 and positive weights α1, α2 ∈ R

+
0 , find a lossless confidentiality-preserving

fragmentation f = (f0, . . . , fk) of minimal cardinality which satisfies wd(fj) ≤
Wj for all 0 ≤ j ≤ k such that the weighted sum α1 Card(f) − α2 SatV (f) is
minimal.

Using the weighted sum serves the following two purposes:

1. α1 Card(f) is responsible for minimizing the cardinality (amount of frag-
ments) of the fragmentation. Hence we aim to use as few external servers
as possible to store the server fragments.

2. By subtracting α2 SatV (f) each satisfied visibility constraint will lower the
overall objective. Hence we aim to maximize the amount of satisfied visibility
constraints.

The obvious question arises of how to appropriately choose the weights α1 and
α2. In the following lemma we show that choosing the weights such that α2|V | <
α1 results in assigning highest priority to the minimization of the cardinality
of the fragmentation. Among those cardinality-minimizing fragmentations the
number of satisfied visibility constraints should be maximal.

Lemma 2. Consider weights α1 > 0 and α2 > 0 satisfying α2|V | < α1. If f is a
solution to the Extended Multi-Relational Single-Relational Separation of Duties
Problem and f ′ is a lossless confidentiality-preserving fragmentation that does
not violate the capacity constraints wd(fj) ≤ Wj for all 0 ≤ j ≤ k, the following
statements hold:

1. Card(f ′) ≥ Card(f)
2. If Card(f ′) = Card(f), then SatV (f) ≥ SatV (f ′)

Proof. Let f , f ′ and α1 and α2 be as stated in the lemma. First, Statement 1 is
proven by contradiction: suppose Card(f ′) < Card(f) which is equivalent to

Card(f) − Card(f ′) ≥ 1 (1)

because both Card(f) and Card(f ′) are positive integer values. Furthermore,
because f is a solution to the Extended Multi-Relational Separation of Duties
Problem, the following inequality holds:

α1 Card(f) − α2 SatV (f) ≤ α1 Card(f ′) − α2 SatV (f ′) (2)

At most |V | visibility constraints can be satisfied, such that 0 ≤ α2 SatV (f) ≤
α2|V |. Thus, because α2 SatV (f ′) ≥ 0 the following inequality can be derived:

α1 Card(f) − α1 Card(f ′) ≤ α2 SatV (f) − α2 SatV (f ′) ≤ α2 SatV (f) ≤ α2|V |
(3)
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Together, Inequality 3 and the assumption that α2|V | < α1 in the lemma lead
to the following inequality:

α1 Card(f) − α1 Card(f ′) < α1 (4)

As α1 is assumed to be greater than zero, the inequality

Card(f) − Card(f ′) < 1 (5)

must be satisfied which contradicts Inequality 1.
Up next, Statement 2 is proven by contradiction. Hence, it is assumed that

Card(f ′) = Card(f) and SatV (f) < SatV (f ′).
The inequality

α1 Card(f) − α2 SatV (f) ≤ α1 Card(f ′) − α2 SatV (f ′) (6)

as above can now be simplified to

α2 SatV (f ′) ≤ α2 SatV (f) (7)

due to the assumption that the cardinalities of f and f ′ are equal. This gives us
SatV (f) ≥ SatV (f ′) – a contradiction to the assumption that SatV (f) < SatV (f ′).

Finally, it should be noted that as for the standard problem, it is often
desirable that the owner fragment only consists of the attributes contained in
singleton constraints and the respective tuple identifiers. To achieve this, one
can again choose the weight of the owner fragment as explained in Lemma1.

4.3 Dependencies

To model correlations between data, database dependencies can be specified. For
example, in a medical setting a specific treatment might disclose the diagnosed
disease. In a data publishing and also a data sharing application, such dependen-
cies on the one hand enable users to infer more information from retrieved data;
on the other hand, in a separation of duties setting, dependencies can enable a
server to deduce much more information even though it only stores fragments
of a confidentiality-preserving fragmentation: in the example, the specific dis-
ease can be inferred which however might be highly confidential information.
Such inferences disclosing confidential information must be avoided and hence
dependencies have to be considered when applying separation of duties.

De Capitani di Vimercati et al. [18] have explored the technique of fragmenta-
tion to ensure data confidentiality in presence of dependencies among columns.
We will adopt their notion of dependencies that are specified as rules with a
left-hand side (the premise) and a right-hand side (the consequence); both the
premise and the consequence are sets of on column names. The intended seman-
tics is that of a functional dependency: any combination of values for the premise
uniquely discloses a combination of values for the consequence. Dependencies on
the patient table could for example be DoB,ZIP � Name (that discloses the
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name of a patient from the date of birth and zip code) or Treatment � Diagnosis
(that discloses a diagnosis from the treatment). De Capitani di Vimercati et al.
explore this problem only in a single-relational environment. For our application,
the definitions and theories will be translated into a multi-relational context.

Definition 8 (Data Dependency). A dependency δ over a database schema
D = {R1(A1), . . . , RN (AN )} is an expression of the form X � Y , with X,Y ⊂
⋃N

s=1 As and X ∩ Y = ∅. The left hand side of a dependency δ is called the
premise while the right hand side is called the consequence of δ. For simplicity,
the notations δ.premise and δ.consequence (or δ.p and δ.c, for short) are used
to denote the respective part of the dependency.

A simple approach to make the information disclosed by dependencies visible
in a fragment is adding the implied attributes to the fragment (this approach is
called fragment and dependency composition in [18]):

Definition 9 (Dependency Composition). For a given database schema
D = {R1(A1), . . . , RN (AN )}, a subset fj ⊆ ⋃n

s=1 As of attributes and a set
Δ of dependencies, the composition of fj with dependency δ ∈ Δ is the set of
attributes:

fj ⊗ δ =

{
fj ∪ δ.consequence, ifδ.premise ⊆ fj

fj , else

Next, we adopt the notion of closure of a set of attributes as in [18]; the
closure is a superset that is immune to dependency composition:

Definition 10 (Closure). Let A1, . . . , AN denote pairwise disjoint sets of
attributes and let d = {r1, . . . rN} be a database state over the schema D =
{R1(A1), . . . , RN (AN )}. Moreover, let Δ denote a set of dependencies. For any
subset f ⊆ ⋃n

s=1 As of attributes the closure with respect to δ is defined as the
minimal set f which satisfies f ⊆ f ⊆ ⋃N

s=1 As and for all δ ∈ Δ it holds that
f ⊗ δ = f . If the subset f satisfies f = f it is called closed.

If f = (f0, . . . , fk) denotes a lossless/correct fragmentation of d, the closure
of that fragmentation with respect to Δ is defined as f :=

(
f0, . . . , fk

)
. A frag-

mentation for which every server fragment fj ∈ {f1, . . . , fk} is closed is called a
closed fragmentation.

It is generally not possible to find a closed correct fragmentation satifying the
disjointness property. Hence, the following problem statement focuses on finding
a closed lossless multi-relational fragmentation.

Definition 11 (Multi-relational Separation of Duties in Presence of
Data Dependencies). Given a database state d = {r1, . . . , rN} over the given
database schema D = {R1(A1), . . . , RN (AN )}, tuple identifiers tids ⊂ As for
all s ∈ {1, . . . , N}, a well-defined set of multi-relational confidentiality con-
straints C, visibility constraints V , a set of dependencies Δ, a weight function
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wd, servers S0, . . . , Sk with maximum capacities W0, . . . ,Wk ∈ R
+
0 and positive

weights α1, α2 ∈ R
+
0 , find a closed lossless confidentiality-preserving fragmen-

tation f = (f0, . . . , fk) of d which satisfies wd(fj) ≤ Wj for all 0 ≤ j ≤ k such
that the weighted sum α1 Card(f) − α2 SatV (f) is minimized.

We now discuss the influence of dependencies on solvability of the Multi-
relational Separation of Duties problem. One might wonder, whether the con-
dition that the fragmentation is closed will prevent finding a solution when a
non-closed confidentiality-preserving fragmentation exists that would solve the
problem. As opposed to [18], in our problem statement this could be the case due
to the capacity constraints. As every fragment fj is a subset of its closure f j it
also holds that wd(fj) ≤ wd(f j). For the Extended Multi-relational Separation
of Duties Problem it was recommended to choose the capacity of the owner frag-
ment such that it can only hold the attributes contained in singleton constraints
and the respective tuple-identifier attributes (see Lemma 1). When dependen-
cies are taken into account however, using this capacity could make the problem
unsolvable because additional attributes should be stored in the owner fragment
because they are sensitive on their own due to dependency. To illustrate this,
a dependency δ ∈ Δ with |δ.premise| = 1 and δ.premise �= c for all c ∈ C is
supposed. The premise contains a single attribute which is not contained in a
singleton constraint. At first glance, it seems that this attribute is not sensitive
on its own and therefore, the attribute in δ.premise will not be placed in the
owner fragment when choosing the owner capacity W0 as described in Lemma 1.
Because the problem statement requires a closed fragmentation, the server frag-
ment that contains the attribute in δ.premise needs to hold δ.consequence, too.
Obviously, a problem arises if there exists a confidentiality constraint c ∈ C with
c ⊆ δ.premise∪δ.consequence because the fragmentation obeying W0 cannot be
confidentiality-preserving and therefore, no solution exists. Such situations occur
if the closure of an attribute is sensitive – in other words the attributes revealed
by a single attribute due to dependencies violate a confidentiality constraint.
Therefore, the actual set of sensitive attributes is given by the union of the two
sets

A∗ := {c ∈ C | |c| = 1}
and

A∗∗ :=
N⋃

s=1

{
as

i ∈ As | ∃c ∈ C with c ⊆ {as
i }

}
.

There are two possible solutions for this. The first one is to introduce new con-
fidentiality constraints c = {as

i } for all as
i ∈ A∗∗ which is justified because

those attributes can be regarded as sensitive attributes. The other solution is to
increase the capacity of the owner fragment such that it holds all the attributes in
A∗ and A∗∗ and the necessary tuple-identifier attributes to ensure the reconstruc-
tion property of the fragmentation. We chose the second solution and accom-
plished it by defining the capacity of the owner fragment as:

W0 =
∑

s:As∩(A∗∪A∗∗) �=∅
wd(tids) +

∑

a∈(A∗∪A∗∗)

wr(a),
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With this setting, the owner fragment only stores the minimum amount of
attributes necessary to ensure confidentiality.

5 ILP Formulation

In the following subsections, we discuss in detail how we translate the Multi-
relational Separation of Duties Problem in Presence of Data Dependencies into
an integer linear program (ILP) representation. All indicator variables zv, uvj

(both for the visibility constraints), pδj (for the dependencies), yj (for the frag-
ments) and xs

ij (for the attributes) are binary. Moreover, we establish the con-
vention that s ∈ {1, . . . , N}, as

i ∈ As (the attributes), as
i′ ∈ tids (the tuple

identifiers), j ∈ {0, . . . , k}, c ∈ C (the confidentiality constraints), v ∈ V (the
visibility constraints), δ ∈ Δ (the dependencies).

The overall ILP that results in a confidentiality-preserving closed fragmen-
tation (according to confidentiality constraints c ∈ C and dependencies δ ∈ Δ)
that at the same time occupies a minimum amount of servers and maximizes
the amount of satisfied visibility constraints v ∈ V is shown in Fig. 1.

min α1

k∑

j=0

yj − α2

∑

v∈V

zv (8)

s.t.
k∑

j=0

xs
ij ≥ 1, (9)

∑

as
i ∈A∗

s

xs
ij ≤ xs

i′j |A∗
s |, (10)

∑

as
i ∈A∗

s

xs
ij ≥ xs

i′j , (11)

N∑

s=1

∑

as
i ∈As

wd(as
i )x

s
ij ≤ Wjyj , (12)

∑

as
i ∈c

xs
ij ≤ |c| − 1, (13)

∑

as
i ∈v

xs
ij ≥ uvj |v|, (14)

k∑

j=0

uvj ≥ zv, (15)

∑

as
i ∈δ.p

xs
ij ≤ |δ.p| − 1 + pδj , (16)

∑

as
i ∈δ.p

xs
ij ≥ pδj |δ.p|, (17)

∑

as
i ∈δ.c

xs
ij ≥ pδj |δ.c|, (18)

Fig. 1. Integer linear program

A solution to the Separation of Duties Problem in Presence of Data Depen-
dencies can be derived from a solution to the ILP by constructing the fragments
according to the following rule. Attributes as

i for which the corresponding vari-
able xs

ij is equal to 1 in the ILP solution are contained in fragment j provided
that the fragment j shall be non-empty (which is denoted by yj = 1 in the ILP
solution).
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fj :=

⎧
⎨

⎩

N⋃

s=1
{as

i ∈ As | xs
ij = 1}, if yj = 1

∅, else

5.1 Translating Confidentiality

Indicator variables xs
ij ∈ {0, 1} are used to express that attribute as

i ∈ As from
relation rs is placed on server j. For every s ∈ {1, . . . , k} let A∗

s := As \ tid
denote the set of non-tuple identifiers of As. Binary variables y1, . . . , yk ∈ {0, 1}
are introduced which take a value of one if fragment fj should be non-empty and
a value of zero otherwise. In the objective function (8) the expression α1

∑k
j=0 yj

minimizes the cardinality of the fragmentation. Condition (9) ensures that every
attribute is placed in at least one fragment satisfying the completeness property.
Constraint (10) conditions that if there is a non-tuple identifier attribute con-
tained in fragment fj , i.e. the left hand side of the inequality is greater than one,
then the right hand side must equal |A∗

s | which is fulfilled if the variable xs
i′j for

the tuple identifier attribute as
i′ ∈ tids also equals one and is hence also part of

the fragment. The definition of the reconstruction property of multi-relational
fragmentation requires that the tuple identifiers tids are proper subsets of the
fragments; Constraint (11) takes care of this by allowing the variables xs

i′j for
attribute as

i′ ∈ tids to equal one if at least one variable xs
ij belonging to a non-

tuple identifier attribute as
i ∈ A∗

s equals one. Constraint (12) makes sure that
the storage capacities are not exceeded and that yj must take a value of one,
whenever any attribute as

i is included in fragment fj . Lastly Condition (13) is
used to guarantee a confidentiality-preserving fragmentation, because at most
c − 1 variables xs

ij for as
i ∈ c can be equal to one.

5.2 Translating Visibility

Additional binary variables uvj are introduced for every visibility constraint
v ∈ V and fragment j ∈ {1, . . . , k}. These variables should only take a value of
one if all attributes contained in v are placed in fragment fj . Moreover, indicator
variables zv for all visibility constraints v ∈ V are used to indicate whether there
is at least one fragment that contains all attributes of visibility constraint v ∈ V .
In the objective function (8) the summand −α2

∑
v∈V zv maximizes the number

of satisfied visibility constraints.
The constraints that ensure the proper treatment of the visibility constraints

are given by Conditions (14) and (15). The former ensures that for every frag-
ment fj and every visibility constraint v ∈ V variable uvj can only be equal to
one if the visibility constraint is satisfied in fragment fj . The latter then makes
sure that zv, the indicator variable for visibility constraint v ∈ V , can only be
equal to one if there is at least one uvj for j ∈ {1, . . . , k} that equals one, i.e.
visibility constraint v is satisfied one at least on server.
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5.3 Translating Dependencies

It can easily be seen that a server fragment fj equals its closure f j if and only if
for every data dependency δ ∈ Δ one of the conditions δ.p �⊆ fj or δ.p ∪ δ.c ⊆ fj

is true [18]. Hence, to check whether a server fragment fj is closed, one first has
to check for every data dependency δ ∈ Δ if δ.p ∈ fi. In the ILP formulation we
introduce indicator variables pδj ∈ {0, 1} for each data dependency δ ∈ Δ and
server j ∈ {1, . . . , k} that should take a value of one if and only if all attributes
in δ.p are stored in server fragment fj . After that, we have to make sure that
if a dependency premise is contained in a fragment the consequence must also
be contained. Together, Constraints (16) and (17) ensure that pδj equals one if
and only if all attributes in δ.p should be placed into the same server fragment
fj . The sum on the left hand side of Condition (16) is at most |δ.p|. If this is
the case, then pδj must equal one because otherwise the expression on the right
hand side would be smaller. Hence, if all attributes in the premise of δ are part
of fragment fj variable pδj must take a value of one. Furthermore, Condition
(17) achieves that variable pδj will be zero otherwise. If the left hand side of
the equality is smaller than |δ.p|, i.e. not all attributes in the premise of δ are
contained in fragment fj , then constraint can only be fulfilled if the right hand
side equals zero or in other words pδj equals zero.

Finally, Constraint (18) requires that all attributes in δ.c are part of server
fragment fj if all attributes in δ.p are part of fj : if pδj is equal to one the right
hand side of the inequality takes the value |δ.c|. In this case the constraint can
only be fulfilled if the sum on the right side is also |δ.c| which means that xs

ij

equals one for all as
i ∈ δ. On the other hand if pδj equals zero the condition is

always fulfilled.

6 Implementation

There are the following entities involved in the system:

– Untrusted Database Servers: These servers store the server fragments and
can process queries involving their respective fragment only. The individual
physical fragments are organized in database tables.

– Trusted Database Server: This server stores the owner fragment and man-
ages connections to the untrusted servers. Most common DBMSs provide
means to include database tables stored at remote servers. In PostgreSQL
for example, this can be realized with so-called Foreign Data Wrappers and
MySQL provides the FEDERATED Storage Engine. This enables the later
presented distributed database client to issue adequate high-level (possibly
SQL) queries directly to the trusted database server instead of issuing sub-
queries to each individual database server and then calculating the desired
result. Instead, the built-in query processor of the trusted database server
will decide how the query is actually optimized and executed.

– Distributed Database Client: The client acts as an additional layer
between the database users and the database servers. It computes the frag-
mentation using an ILP solver, stores the metadata of the fragmentation
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(i.e. at which server the columns are stored) and processes and rewrites user
queries such that they are based on fragments instead of relations of the orig-
inal database. The distributed database client can either access the database
servers directly if a query exclusively involves columns of a single fragment
or it can issue queries to the trusted database server which makes all other
fragments stored at the untrusted databases servers visible. Those queries
are then analyzed by the database system’s query processor which decides
how the query is internally executed by applying adequate optimization tech-
niques. Finally, the results of the queries are transferred to the user.

The major advantage of the presented framework is that the only compo-
nent that we had to implement is the distributed database client (available at
[5]) that relies on the advanced query optimization techniques already provided
by today’s DBMS. The chosen programming language is JAVA and the imple-
mentation relies on the popular open source DBMS PostgreSQL. Therefore, the
trusted database server and the untrusted database servers need to run a stan-
dard installation of PostgreSQL. To solve the ILPs the IBM ILOG CPLEX solver
is used due to its comprehensive range of available solving strategies and several
off-the-shelf optimizations. Lastly, to analyze and rewrite the users’ queries, the
distributed database client uses the open source project JSQLParser which is
a SQL parser for JAVA. After solving the ILP using the CPLEX solver, the
distributed database client continues with creating databases on the necessary
database servers to store the respective physical fragments. In particular, a new
database is set up at the trusted database server to store the owner fragment.
Subsequently, the table fragments are set up and populated with the data from
the original database. Using the foreign data-wrapper module postgres fdw, the
tables stored at the untrusted servers are made visible in the newly created
database at the trusted server. Therefore, the database at the trusted database
server contains each of the table fragments either as a local table if the fragment
is part of the owner’s physical fragment or as foreign table, otherwise. As a final
step, the distributed database client sets up views in the database of the trusted
database server using the local and foreign tables which correspond to the tables
of the original database.

We now describe in detail the functionality that is offered by our system.
To illustrate the individual steps, a small database consisting of two tables in a
hospital scenario serves as a running example. The first table stores information
about patients and the second table stores information about doctors working
in the hospital (Tables 1 and 2):

Setup. For the setup, the owner has to set up the database to be fragmented at
the trusted database server and specify the designated tuple identifier columns
of the table as primary key columns. Furthermore, the owner has to provide
a configuration file to tell the distributed database client where the database
servers are located and how much space is available on each server; see Fig. 2
for an example with one owner server and three remote servers. Additional files
can be created to specify the confidentiality constraints, visibility constraints
and data dependencies (see Figs. 3, 4 and 5). In contrast to the configuration
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Name, Address, Port, Username, Password, Capacity, IsOwner

S0, 192.168.178.92, 5432, postgres, postgres, 2.0, owner;

S1, 192.168.178.82, 5432, postgres, postgres, INF;

S2, 192.168.178.87, 5432, postgres, postgres, INF;

S3, 192.168.178.88, 5432, postgres, postgres, INF;

Fig. 2. Example configuration file

patient.P_Name;

doctor.D_Name;

patient.P_DoB, patient.P_ZIP, patient.P_Diagnosis;

doctor.D_DoB, doctor.D_ZIP;

Fig. 3. Example confidentiality constraints

patient.P_Diagnosis, patient.P_ZIP;

patient.P_Treatment, doctor.D_Specialty;

Fig. 4. Example visibility constraints

patient.P_DoB, patient.P_ZIP > patient.P_Name;

patient.P_Treatment > patient.P_Diagnosis;

patient.P_Diagnosis > patient.P_Treatment;

doctor.D_DoB, doctor.D_ZIP > doctor.D_Name;

Fig. 5. Example dependencies

Table 1. Table patient with primary key column P PatientID

P PatientID P Name P DoB P ZIP P Diagnosis P Treatment P DoctorID

1 J. Doe 07.01.1986 12345 Flu Nose spray 1

2 W. Lee 12.08.1974 23456 Broken Leg Gypsum 2

3 F. Jones 05.09.1963 23456 Asthma Asthma inhaler 1

4 G. Miller 10.02.1982 12345 Cough Cough syrup 1

Table 2. Table doctor with primary key column D DoctorID

D DoctorID D Name D DoB D ZIP D Specialty

1 H. Bloggs 04.02.1971 34567 Respiratory

2 G. Douglas 27.07.1965 23456 Fraction

file, those files are optional. Subsequently, the owner instructs the distributed
database client to set up the vertically fragmented database by solving an opti-
mization problem with the CPLEX solver based on the provided input data. The
weights of the specific columns are computed automatically and do not have to
be provided by the owner. After solving the ILP using the CPLEX solver, the



22 F. Bollwein and L. Wiese

Table 3. Owner Fragment

P PatientID P Name
1 J. Doe
2 W. Lee
3 F. Jones
4 G. Miller

D DoctorID D Name
1 H. Bloggs
2 G. Douglas

Table 4. Server fragment 1

P PatientID P DoB P DoctorID
1 07.01.1986 1
2 12.08.1974 2
3 05.09.1963 1
4 10.02.1982 1

D DoctorID D ZIP
1 34567
2 23456

Table 5. Server fragment 2

P PatientID P ZIP P Diagnosis P Treatment
1 12345 Flu Nose spray
2 23456 Broken Leg Gypsum
3 23456 Asthma Asthma inhaler
4 12345 Cough Cough syrup

D DoctorID D DoB D Specialty
1 04.02.1971 Respiratory
2 27.07.1965 Fraction

distributed database client continues with creating databases on the necessary
database servers to store the respective fragments. In particular, a new database
is set up at the trusted database server to store the owner fragment. Subse-
quently, the tables are populated with the data from the original database. In
the example, the table fragments shown in Table 3 are stored in the owner frag-
ment at server S0. Server S1 stores the table fragments shown in Table 4. Lastly,
Server S2 stores the table fragments shown in Table 5. We implemented this
functionality using the foreign data-wrapper module postgres fdw which makes
the server fragments available via the trusted database server as foreign tables.
As a final step, the distributed database client sets up views in the database of
the trusted database server using the local and foreign tables which correspond
to the tables of the original database as shown in Fig. 6.

SELECT. The distributed database client provides two possible ways of query-
ing the vertically fragmented database. The first possibility involves explicitly
rewriting the users’ queries using the JSQLParser such that they act on table
fragments instead of the original tables. The second possibility is based on the
created views.

The advantage of explicitly rewriting the users’ queries is that the dis-
tributed database client can analyze the queries to make educated decisions
which columns and table fragments are actually involved in the query and omit
those that are not. In the provided implementation, for each table involved in
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CREATE OR REPLACE VIEW doctor

AS

SELECT s2_doctor_frag.d_doctorid AS d_doctorid,

s0_doctor_frag.d_name AS d_name,

s2_doctor_frag.d_dob AS d_dob,

s1_doctor_frag.d_zip AS d_zip,

s2_doctor_frag.d_specialty AS d_specialty

FROM s2_doctor_frag

LEFT JOIN s0_doctor_frag USING(d_doctorid)

LEFT JOIN s1_doctor_frag USING(d_doctorid);

CREATE OR replace VIEW patient

AS

SELECT s2_patient_frag.p_patientid AS p_patientid,

s0_patient_frag.p_name AS p_name,

s1_patient_frag.p_dob AS p_dob,

s2_patient_frag.p_zip AS p_zip,

s2_patient_frag.p_diagnosis AS p_diagnosis,

s2_patient_frag.p_treatment AS p_treatment,

s1_patient_frag.p_doctorid AS p_doctorid

FROM s2_patient_frag

LEFT JOIN s0_patient_frag USING(p_patientid)

LEFT JOIN s1_patient_frag USING(p_patientid);

Fig. 6. View creation

SELECT p_name, p_diagnosis, d_name AS attending_doctor

FROM patient, doctor

WHERE patient.p_doctorid = doctor.d_doctorid AND p_name = ’J. Doe’;

Fig. 7. Original SELECT statement

the query, the distributed database client assesses which columns are needed
and greedily chooses table fragments to obtain all necessary columns. As an
example of a rewritten query, the SQL statement in Fig. 7 is rewritten inside the
distributed database client into the SQL query shown in Fig. 8.

There are two major points to notice in this query. First, only servers S0

and S1 take part in the query, i.e. the fragments stored on S3 are not affected.
Furthermore, the WHERE condition is pushed down in to the SELECT queries
affecting the table fragments as far as it can be processed by the respective server.
This could potentially lead to less data being transferred during the execution
process when tuples that do not satisfy the condition are excluded. This example
also shows the major drawback of explicitly rewriting the queries which lies in
the complexity of SQL that makes query rewriting a very challenging task.

In contrast, using views over the table fragments to recreate the origi-
nal tables is a simple strategy to avoid query rewriting. The queries remain
unchanged but logically they involve the views instead of real physical tables.



24 F. Bollwein and L. Wiese

SELECT p_name, p_diagnosis, d_name AS attending_doctor

FROM (SELECT

patientS0.p_name AS p_name,

patientS0.p_patientid AS p_patientid,

patientS2.p_diagnosis AS p_diagnosis,

patientS1.p_doctorid AS p_doctorid

FROM (SELECT p_name, p_patientid

FROM s0_patient_frag

WHERE ( true AND p_name = ’J. Doe’ )) AS patientS0

INNER JOIN (SELECT p_diagnosis, p_patientid

FROM s2_patient_frag

WHERE ( true AND true )) AS patientS2

ON patientS0.p_patientid =

patientS2.p_patientid

INNER JOIN (SELECT p_doctorid, p_patientid

FROM s1_patient_frag

WHERE ( true AND true )) AS patientS1

ON patientS2.p_patientid = patientS1.p_patientid) AS patient,

(SELECT

doctorS0.d_doctorid AS d_doctorid,

doctorS0.d_name AS d_name

FROM (SELECT d_doctorid, d_name

FROM s0_doctor_frag

WHERE ( true AND true )) AS doctorS0) AS doctor

WHERE patient.p_doctorid = doctor.d_doctorid AND p_name = ’J. Doe’;

Fig. 8. Rewritten SELECT statement

INSERT INTO doctor

VALUES (3, ’C. Hall’, ’12/11/1990’, 12345, ’Dermatology’);

Fig. 9. Original INSERT statement

Therefore, it is up to PostgreSQL’s query processor to decide how these queries
are executed. While this method is easy to implement, its major drawback lies
in the fact that each query involves all the columns of each table and unneces-
sary table fragments are not omitted from the query. For example, a query that
selects only one column of a table fragmented among three servers will always
involve all three of the servers although one would be sufficient. To the best
of our knowledge, the PostgreSQL query processor does currently not consider
excluding JOIN clauses of tables that are not affected by the query.

INSERT. When the distributed database client receives a request to insert a
specific row into a table, it determines the affected table fragments and inserts
a row, restricted to the according columns, in each of those. In the example,
an INSERT statement of the form shown in Fig. 9 is translated into the three
INSERT statements shown in Fig. 10.
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INSERT INTO s0_doctor_frag (d_doctorid,d_name)

VALUES (3, ’C. Hall’);

INSERT INTO s2_doctor_frag (d_doctorid, d_dob, d_specialty)

VALUES (3, ’12/11/1990’, ’Dermatology’);

INSERT INTO s1_doctor_frag (d_doctorid,d_zip)

VALUES (3, 12345);

Fig. 10. Rewritten INSERT statement

DELETE FROM doctor WHERE d_name=’G. Douglas’;

Fig. 11. Original DELETE statement

DELETE. Deletion of rows can be broken down into two parts. Because table
fragments only contain a subset of columns, it is generally not possible to evaluate
the condition specified by the WHERE clause of the SQL DELETE statement
with a single table fragment. Therefore, as the first part, a SELECT query is used
to detect the values of the tuple identifiers of the rows that should be deleted.
This SELECT query is executed by the distributed database client by either
using the defined views or explicitly creating an according SELECT statement
based on table fragments. The result of this query is stored in a temporary table.
Subsequently, DELETE queries are executed for each table fragment with the
condition that the tuple identifier values are present in the temporary table.
Finally, the temporary table is deleted. In the prototype implementation, this
is done by putting all of those queries into a single transaction, which is a
sequence of SQL statements that is being executed consecutively and if specified,
automatically deletes the created temporary tables at the end of the transaction.
To illustrate this, the DELETE statement in Fig. 11 results in the transaction
shown in Fig. 12. Note that the keyword TEMP specifies a temporal table and
the ON COMMIT DROP option specifies that the temporal table is deleted at
the end of the transaction.

UPDATE. Performing updates on rows of a specific vertically fragmented table
resembles the deletion of rows due to the fact that the WHERE condition has to
be specified. Therefore, as the first step, a temporal table is created that stores
the tuple identifier columns of the affected rows. Subsequently, the distributed
database client determines the involved table fragments and performs an update
operation on each of those. To make sure that the proper rows are updated,
the condition that the tuple identifier values are present in the temporal table
is enforced. Those operations are again executed in a single transaction and
the temporal table is dropped when the transaction is committed. Consider the
UPDATE query in Fig. 13 for which the resulting transaction is shown in Fig. 14.
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START TRANSACTION;

CREATE TEMP TABLE tmpdelete ON COMMIT DROP AS

(SELECT d_doctorid

FROM (SELECT doctors0.d_doctorid AS d_doctorid,

doctors0.d_name AS d_name

FROM (SELECT d_doctorid, d_name

FROM s0_doctor_frag

WHERE d_name = ’G. Douglas’) AS doctors0) AS doctor

WHERE d_name = ’G. Douglas’);

DELETE FROM s0_doctor_frag

WHERE (d_doctorid) IN (SELECT * FROM tmpdelete);

DELETE FROM s2_doctor_frag

WHERE (d_doctorid) IN (SELECT * FROM tmpdelete);

DELETE FROM s1_doctor_frag

WHERE (d_doctorid) IN (SELECT * FROM tmpdelete);

COMMIT;

Fig. 12. Rewritten DELETE statement

UPDATE patient SET p_zip = 23456 WHERE p_name = ’G. Miller’;

Fig. 13. Original UPDATE statement

START TRANSACTION;

CREATE TEMP TABLE tmpupdate ON COMMIT DROP AS

(SELECT p_patientid FROM

(SELECT patientS0.p_patientid AS p_patientid,

patients0.p_name AS p_name

FROM (SELECT p_patientid, p_name

FROM s0_patient_frag WHERE p_name = ’G. Miller’)

AS patientS0) AS patient

WHERE p_name = ’G. Miller’);

UPDATE s2_patient_frag SET p_zi=23456

WHERE (p_patientid)IN (SELECT * FROM tmpupdate);

COMMIT;

Fig. 14. Rewritten UPDATE statement

7 Evaluation

The prototype implementation is tested with two popular TPC benchmarks
(TPC-E and TPC-H) for databases [29,30]. Each of these benchmarks is suitable
to evaluate different aspects of the Separation of Duties Problem. The database
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defined by the TPC-E benchmark consists of 33 tables and a total number of
191 columns; we only use the TPC-E schema which due to its size it is suitable
to evaluate the effects of the number of constraints and dependencies on the
performance of the ILP solver and the resulting fragmentations. In contrast,
from the TPC-H benchmark we use data as well as queries in order to test
the distributed runtime performance of our approach. It consists of a database
containing 8 tables that models a typical database in a business environment.
Moreover, it defines 22 complex SQL queries that are typical in decision support
scenarios. Therefore, this benchmark is well-suited to test the implementation’s
capabilities in terms of query processing.

All of the tests were executed on a single PC equipped with an Intel Xeon E3-
1231v3 @ 3.40 GHz (4 Cores), 32 GB DDR3 RAM and a Seagate ST2000DM001
2TB HDD with 7200 rpm. The PC is running Ubuntu 16.04 LTS. The database
servers – including the trusted database server hosting the owner fragment – are
running in separate, identical virtual machines which are assigned 4 cores and
8 GB of RAM. The virtual machines are running Ubuntu Server 16.04 LTS with
an instance of PostgreSQL 9.6.1 installed. By running the servers in identical
virtual machines, it is guaranteed that the results are not influenced by hardware
or software differences. Lastly, the CPLEX version used by the implementation
is CPLEX 12.7.

7.1 TPC-E Data Set

The TPC-E benchmark is intended to model the workload of a brokerage firm.
It consists of 33 database tables which fall into four categories [29]:

– Customer tables: There are 9 tables that contain information about the
brokerage firm’s customers.

– Broker tables: There are 9 tables that contain information about the bro-
kerage firm.

– Market tables: There are 11 tables that contain information about compa-
nies, markets, exchanges and industry sectors.

– Dimension tables: There are 4 tables that contain common information
like zip codes or addresses.

Using the TPC-E database schema, our tests explore the influence of different
sizes of sets of well-defined confidentiality constraints, visibility constraints and
dependencies on the solver’s performance and the resulting fragmentation. The
trusted database server’s capacity is set to zero: it should not store any data;
this means that for the tests, singleton constraints are disallowed in the confi-
dentiality constraints; moreover, the case that an association constraint contains
an attribute that (after applying all possible dependencies) has an entire confi-
dentiality constraint in its closure is disallowed, too: more formally, we disallow
attributes a such that there is a constraint c with c ⊆ ā. This restriction is
introduced to allow a maximal number of possible choices for the placement of
the attributes during the optimization process because attributes contained in
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singleton constraints or single attributes with a sensitive closure can only be
placed in the owner fragment which would limit the number of decisions the ILP
solver has to draw.

Settings. The constraints and dependencies are generated randomly. To mea-
sure scalability of the approach, we introduce scale factors σC , σV , σΔ ∈ R

+
0 for

confidentiality constraints, visibility constraints and dependencies, respectively.
Note that the overall number of non-primary key columns is n = 142 in the TPC-
E database. The scale factors can be interpreted as constraints/dependencies per
non-primary key column. Because the primary-key columns act as tuple identi-
fiers, they are supposed to be insensitive and are therefore neither part of the
constraints nor part of the premise or consequence of dependencies.

Hence, if A∗ =
⋃33

s=1 As \ tids denotes the set of all non-primary key columns
of the 33 tables and P(A∗) denotes its powerset, the selection process is carried
out as follows:

– Confidentiality Constraints: For each of the designated cardinalities
ν ∈ {2, 3, 4, 5}, sets of confidentiality constraints Cν ⊆ P(A∗) of cardinality
|Cν | = �n

4 ·σC� are selected randomly from A∗. For each ν and Cν it holds that
|c| = ν for all c ∈ Cν . The resulting set of confidentiality constraints is then
given by C :=

⋃5
ν=2 Cν . Moreover, during the generation of the confidentiality

constraints it is ensured that the resulting set C is well-defined. Therefore,
this process results in a well-defined set of confidentiality constraints C of
cardinality |C| = 4 · �n

4 ·σC� which is equally divided into confidentiality con-
straints of cardinality 2, 3, 4 and 5. A scale factor of σC = 1 would therefore
result in a set of 144 confidentiality constraints which corresponds roughly
to the size of non-primary key attributes in the database. As confidentiality
constraints with lower cardinality are generally harder to satisfy than con-
straints with high cardinality, restricting ν to the values {2, 3, 4, 5} is not a
serious limitation.

– Visibility Constraints: Generating the visibility constraints is carried out
similarly to the generation of confidentiality constraints. The only difference
in the process is that the resulting set does not have a limitation of being well-
defined. Hence, for each of the cardinalities ν ∈ {2, 3, 4, 5}, sets of visibility
constraints Vν ⊆ P(A∗) of cardinality �n

4 · σV � are selected randomly such
that |v| = ν for all v ∈ Vν . The overall set of visibility constraints is hence
given by V :=

⋃5
ν=2 Vν which has a cardinality of |V | = 4 · �n

4 · σV � and is
equally divided into visibility constraints of cardinality 2, 3, 4 and 5.

– Dependency: Sampling dependencies is carried out differently because a
dependency δ = δ.premise � δ.consequence is defined by the two sets
δ.premise and δ.consequence. The scale factor σΔ determines the cardinality
of the set of dependencies Δ which is given by |Δ| = �n · σΔ�. The depen-
dencies itself are generated iteratively as follows: First, two random values
νp ∈ {2, . . . 5} and νv ∈ {1, . . . , 5} are determined which define the cardi-
nalities of the premise and the consequence. Then, δ.premise ⊆ P(A∗) and
δ.consequence ⊆ P(A∗) are chosen randomly such that |δ.premise| = νp and
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|δ.consequence| = νc. This process is executed �n · σΔ� times to obtain the
final set of dependencies. The cardinality of the premise of each dependency
is restricted to a value between 2 and 5 because on the one hand a premise of
cardinality one could make a single attribute sensitive and on the other hand
if the cardinality gets too large, it will become easier to place the attributes
into multiple fragments such that the dependency only slightly influences the
resulting fragmentation. Moreover, the cardinality of the consequence of each
dependency is restricted to be smaller than 5 to guarantee a moderate bal-
ance between the cardinality of the premise of a dependency and the impact
it has on the resulting fragmentation in terms of its consequence.

For each of the executed test runs the weights α1 and α2 required by the prob-
lem statement of the Multi-relational separation of duties problem in presence
of data dependencies are chosen such that they satisfy the inequality α2|V | < α1

presented in Lemma 2. Therefore, the resulting fragmentation shall be of minimal
cardinality and the number of satisfied visibility constraints shall be maximal
among all feasible fragmentations of minimal cardinality.

We executed several test runs with these settings. For all test runs a time
limit of 30 min is set for the optimization process. Previous tests have shown
that after this time a feasible solution can be found but the objective value does
not significantly improve after this time.

Furthermore, different measurements are introduced to measure the quality
of the resulting fragmentation. These measurements are based on the objective
value of the best integer solution objI found by CPLEX and the lower bound
objLP on the objective value which could be established by CPLEX during the
optimization progress by solving the LP-Relaxation of different subproblems of
the ILP; the LP-Relaxation of an ILP is obtained by allowing the variables to
take continuous instead of integral values. These measurements are defined as
follows:

– Relative MIP gap: The relative MIP gap is a well-known general expression
used by ILP solvers such as CPLEX to measure the quality of calculated
solutions of mixed integer linear programs, i.e. linear programs of which some
of the variables are restricted to be integer and others are real valued. Of
course, it is also applicable for the special class of integer linear programs
and it is defined by the following expression:

|objI − objLP |
|objI |

The relative MIP gap measures the percentage of how much the objective
value of an optimal solution can maximally deviate from the objective value
objI of a feasible solution due to the established lower bound. Therefore, if
this measure equals p, there is an uncertainty whether the objective value
could potentially be reduced by up to p percent. Our overall objective func-
tion considers both the minimization of the cardinality (number of external
servers) as well as the satisfaction of the visibility constraints.
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– Card gap: We introduce this measure specifically for the Separation of Duties
Problem to account for the quality of a feasible solution’s fragmentation and
it is defined as follows: ⌊ |objI − objLP |

|α1|
⌋

The purpose of this expression is to measure the uncertainty about the frag-
mentation’s cardinality of a feasible solution. For example, if this expression
equals one, then it might be possible to reduce the fragmentation’s cardinality
by one and potentially, one database server less is necessary. If this expres-
sion equals zero, the fragmentation’s cardinality is minimal and the number
of servers necessary cannot be reduced.

– Sat gap: Similarly, we introduce this measure to account for the uncertainty
of a solution in terms of visibility constraints with the following expression:

⌊ |objI − objLP |
|α2|

⌋

If this expression equals zero, the number of satisfied visibility constraints is
maximal for the feasible solution. Further, if this expression equals n ≥ 1, it
is uncertain, whether up to n more visibility constraints could potentially be
satisfied.

If all of these measures are equal to zero for a feasible solution’s objective value
objI and the established lower bound objLP , an optimal solution has been found.
However, these expressions require a good feasible solution on the one hand, and
a good lower bound on the other hand and if either of those cannot be found a
high uncertainty remains.

Test Runs. To study the impact of confidentiality constraint, visibility con-
straints and dependencies individually, the evaluation is structured into several
test cases.

First, the effects of increasing the number of confidentiality constraints is
studied; hence, the scale factors σV and σΔ are set to zero (no visibility con-
straints and no dependencies) and different values for σC are tested (I). Next,
σC is set to four, σΔ is set to zero and different scale factors σV are used to test
the influence of an increasing number of visibility constraints (II). Lastly, to test
the effects of the number of dependencies σC is set to four, σV is set to 0.25 and
different scale factors σΔ are evaluated (III).

For the first test case (I), the σV and σΔ is set to zero and the number of
confidentiality constraints is increased with the scale factor σC ∈ {1, 2, 4, 8, 16}.
The results of these test runs are summarized by Table 6. An optimal solution is
found nearly all of the scenarios as the relative MIP gap and the Card gap shows;
that is, it is not possible to find a solution with less external servers. As the scale
factor increases, more confidentiality constraints can only be satisfied when the
individual original tables are split into more fragments (that is, the cardinality
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of the fragmentation increases). In the scenario with 2272 confidentiality con-
straints in four out of five cases we met our timeout limit of 1800 s and stopped
the execution of CPLEX. Each of the fragments of one original table has to be
stored on a server separate from the other servers storing fragments of the same
original table; thus, the number of necessary database servers increases, too: for
a scale factor of σC = 1 (that is, 144 confidentiality constraints), two servers are
sufficient, for scale factors σC = 2 (284 confidentiality constraints) and σC = 4
(568 confidentiality constraints), three servers are necessary, for σC = 8 (1136
confidentiality constraints), there have to be four servers and for σC = 16 (2272
confidentiality constraints), five database servers have to be used. The runtime
to find the optimal solution increases significantly for a scale factor of σC = 16;
further optimizations of the solver could be employed to speed this setting up.

Table 6. Increasing number of confidentiality constraints (average over 5 runs)

σC |C| (# conf.
constraints)

Cardinality
(# servers)

MIP
gap

Card
gap

Optimal? Time (s)

1 144 2 0% 0 Yes 0.61

2 284 3 0% 0 Yes 1.79

4 568 3 0% 0 Yes 1.55

8 1136 4 0% 0 Yes 11.99

16 2272 5 16% 0 In 1 of 5 runs In 1 run 297.27
(otherwise timeout)

For the second test case (II), only the scale factor σV is changed and σC = 4
(568 confidentiality constraints) and σΔ = 0 (no dependencies) remain fixed. In
other words, the effects of increasing the number of visibility constraints are eval-
uated. For all of the runs, the resulting fragmentation has a cardinality of three
(which is minimal); because the weights α1 and α2 have been chosen according
to Lemma 2, the visibility constraints do not affect the cardinality of the frag-
mentation. The overall results of test runs are presented in Table 7. When the
number of introduced visibility constraints increases, the percentage of satisfied
constraints decreases (see column “Sat”). Note that not all visibility constraints
can be satisfied because they are conflicting with confidentiality constraints. The
column “Sat gap” tells us how many more visibility constraints could potentially
be satisfied in an optimal solution.

The most important thing to notice is that only the scenario with the lowest
number of visibility constraints (σV = 0.25 corresponds to 36 visibility con-
straints) can be solved optimally and for this scenario the time increases signifi-
cantly compared to the same scenario without visibility constraints (see σC = 4
in Table 6). The other three scenarios (72, 144, 284 visibility constraints, respec-
tively) exceeded the time limit and were canceled without having found an opti-
mal solution in terms of number of fragments and satisfied visibility constraints.
One way to improve the results could therefore be to develop provably good
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Table 7. Increasing number of visibility constraints (average over 5 runs)

σV |V |(#vis.
constraints)

Sat Cardinality
(# servers)

MIP
gap

Sat
gap

Optimal? Time (s)

0.25 36 27/36 3 0% 0 Yes 101.84

0.5 72 44/72 3 1.83% 7.4 No Timeout

1 144 68/144 3 4.08% 33.6 No Timeout

2 284 105/284 3 6.85% 113.6 No Timeout

heuristics to provide good starting solutions for the solver on the one hand and
on the other hand, to establish tight lower bounds to point the solver in the
right direction and allow less choices for the variables. Moreover, what is also
an important conclusion of these results is that visibility constraint should not
be viewed as a means to allow the execution of as much queries as possible on a
single server. Rather, they should be used selectively to speed up a small amount
of queries that are particularly relevant for the database.

Finally for the third test case (III), the effects of increasing the number of
data dependencies are analyzed (see Table 8). For that, the scale factors σC = 4
(568 confidentiality constraints) and σV = 0.25 (36 visibility constraints) are
fixed and the scale factors σΔ ∈ {1, 2, 4, 8, 16} (corresponding to 142, 284, 568,
1136 and 2272 dependencies, respectively) are used for the data dependencies.
Hence, these results resemble very much the scenario with σC = 4 and σV = 0.25
of the previous test runs with the additional introduction of data dependencies:

Table 8. Increasing number of data dependencies (average over 5 runs)

σΔ |Δ| (#
dependencies)

Card (#
servers)

Sat MIP gap Optimal? Time (s)

1 142 3 26.4/36 0% Yes 60.22

2 284 3 27.2/36 0% Yes 75.91

4 568 3 27/36 0% Yes 41.36

8 1136 3 25/36 0% Yes 47.18

16 2272 3 23.6/36 0% Yes 21.57

All of the scenarios are solved optimally. A noticeable result is that increasing
the number of data dependencies can in fact reduce the time needed to solve
the problem. An important take-away message from these test runs is that the
solver benefits from introducing data dependencies instead of using excessively
many confidentiality constraints.

7.2 TPC-H Data Set

The TPC-H benchmark is described as a decision support benchmark. This
means, that it simulates a system used to support decision making in business
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applications. We deemed this an appropriate setting to test distributed query
execution on the vertically fragmented data set. The 8 tables in the TPC-H
schema are customer, part, partsup, supplier, lineitem, orders, customer, nation
and region.

Unfortunately, the TPC-H data generator does not support PostgreSQL and
therefore, other tools had to be used to set up the TPC-H benchmark with
PostgreSQL. To set up the test database, the HammerDB [22] tool was used
with a scale factor of 1. Moreover, the query generator provided by DBT-3
[16] was used to obtain the 22 TPC-H queries conforming with PostgreSQL’s
standard.

7.3 Settings

The number of tables in the TPC-H database is reasonably small, so that the
following artificial scenario is used as the foundation for the tests:

– Confidentiality Constraints: The following rules are established for defin-
ing the constraints:

• The name and the account balance of the customers and suppliers are
sensitive:
c1 = {customer.c acctbal},
c2 = {supplier.s acctbal}

• The discount given on any order is sensitive:
c3 = {lineitem.l discount}

• A customer’s name and its address cannot be placed in the same server
fragment:
c4 = {customer.c name, customer.c address}

• A customer’s name can not be associated with a specific order:
c5 = {customer.c name, orders.o custkey}

• A supplier’s name can not be associated with a line item:
c6 = {supplier.s name, lineitem.l suppkey}

• The date of an order can not be associated with the total price:
c7 = {orders.o odate, orders.o totalprice}

• A supplier’s name can not be associated with the supplier’s cost for a
specific part:
c8 = {supplier.s name, partsupp.ps suppkey, partsupp.ps supplycost}

– Dependencies: Moreover, the following dependencies are introduced, con-
cerning personal information about the customers and suppliers:

δ1 = {customer.c address} � {customer.c name}
δ2 = {customer.c phone} � {customer.c name}
δ3 = {supplier.s address} � {supplier.s name}
δ4 = {supplier.s phone} � {supplier.s name}

– Visibility Constraints: As the main purpose of visibility constraints is to
speed up the execution of specific queries, a visibility constraint is introduced
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for each of the 22 queries consisting of all attributes in the query. Therefore,
if a visibility constraint is satisfied, the execution of the corresponding query
potentially involves a single database server only.

The weights α1 and α2 that are also needed for the problem statement are chosen
to satisfy the inequality presented in Lemma 2. Finding an optimal solution
to this specific instance of the Multi-relational Separation of Duties Problem
and setting up the vertically fragmented database takes around two and a half
minutes and the resulting fragmentation satisfies 5 of the 22 visibility constraints.
Overall, the tables are distributed among 12 table fragments on a total of 3
database servers. One of those is the trusted database server and the remaining
two are untrusted.

7.4 Test Runs

After the database is set up, the execution time of the 22 queries can be analyzed.
For that, each query is executed with the following methods:

1. The original non-fragmented database is queried. To ensure the comparability,
the original database is stored separately at the trusted database server.

2. The queries are rewritten by our trusted database client to act on table frag-
ments instead of the original tables. We measured the time for executing (t),
the time for rewriting the query (tr), the overall number of table fragments
(tf) that are involved in the rewritten query and the slowdown (sd) compared
to executing the query on the original database.

3. Instead of rewriting, the queries are cast to specific views set up in the trusted
database server to recreate the original tables. For this method, the execution
time (t) is measured, the number of involved table fragments (tf) and the
slow down (sd) compared to the execution time of the same query on the
original database. The number of involved table fragments is calculated by
summing the number of table fragments that were necessary to create every
view involved in the query.

4. If a query can be evaluated by a single database server (because it physically
stores all the involved attributes), the query is directly cast to this server. For
this method, only the execution time (t) is stated because it can be suspected,
that their execution time is about the same as for the original database.

Figure 15 summarizes the results of the test runs while Table 9 shows the
exact results. This evaluation shows the major advantage of the separation of
duties approach. Because the columns of the tables are outsourced in plaintext,
every query can potentially be executed. In particular, we are able to process
all queries of the TPC-H benchmark. This is in contrast to approaches using
property-preserving encryption: The MONOMI system [31] executes only 19
out of 22 TPC-H queries due to lacking support for views and text pattern
matching; according to [31] the CryptDB system [27] executes only four out of
the 22 queries.



Keeping Secrets by Separation of Duties While Minimizing 35

Fig. 15. Runtime results for TPC-H queries

However, we had to cancel two of the queries, namely Q17 and Q20, because
the timeout limit (30 min) was exceeded. Yet, the reason why these queries take
so much time is not related to the vertically fragmented database as the timeout
was also reached for the original non-fragmented database. Therefore, it can
be concluded this issue is related to the PostgreSQL database engine which
cannot find an adequate execution plan for those queries. Notably, [31] report
the same problems when running the TCP-H queries: “Queries 17, 20, and 21
cause trouble for the Postgres optimizer: they involve correlated subqueries,
which the optimizer is unable to handle efficiently”.

As it was suspected, queries Q11, Q12, Q13 and Q16 that can be evaluated in a
reasonable amount of time by a single server of the fragmented database can be
executed in about the same time as in the non-fragmented database. For these
4 queries, a visibility constraint could be satisfied which perfectly illustrates the
benefits of introducing those constraints. Interestingly, query rewriting and using
views performed considerably worse for three of those 4 queries (Q11, Q12, Q13).
This is especially noticeable because rewriting the query also leads to a situa-
tion where the query involves only one database server but this is obviously not
detected by PostgreSQL in conjunction with the foreign data wrapper exten-
sion postgres fdw. This observation justifies a prior analysis of the queries as
implemented in our distributed database client.

There is one query, Q21, for which the execution time on the fragmented
database is lower than the execution time for the non-fragmented database. For
this query, the fragmented database probably profited from a better execution
strategy that could be established by PostgreSQL due to the query rewriting or
the use of the views. However, we assume that such situations occur very rarely
in practice and are caused by PostgreSQL’s execution strategy.
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Table 9. Comparison between the different execution methods

Query I II III IV

t (ms) t (ms) tr (ms) tf sd t (ms) tf sd t (ms)

Q1 2267 40413 36 2 17.83× 41180 2 18.16× n.a.

Q2 353 4528 396 6 12.83× 4699 6 13.31× n.a.

Q3 861 15650 7 4 18.18× 19797 6 22.99× n.a.

Q4 3110 22917 12 4 7.37× 18571 4 5.97× n.a.

Q5 952 23658 5 7 24.85× 37036 10 38.9× n.a.

Q6 291 4167 1 2 14.32× 4039 2 13.88× n.a.

Q7 530 6817 14 6 12.86× 11653 9 21.99× n.a.

Q8 1305 33453 14 8 25.63× 38584 11 29.57× n.a.

Q9 1652 563036 9 7 340.82× 18532 9 11.22× n.a.

Q10 1417 8340 4 6 5.89× 12547 7 8.85× n.a.

Q11 193 595 7 3 3.08× 576 5 2.98× 218

Q12 457 5921 4 2 12.96× 10399 4 22.75× 424

Q13 1726 6103 2 2 3.54× 11821 4 6.85× 1696

Q14 341 3721 2 3 10.91× 3765 3 11.04× n.a.

Q15 663 8368 3 2 12.62× 8685 4 13.1× n.a.

Q16 603 3054 5 3 5.06× 2983 6 4.95× 634

Q17 Timeout Timeout 57 2 n.a. Timeout 3 n.a. Timeout

Q18 5998 50501 11 4 8.42× 51034 6 8.51× n.a.

Q19 646 859324 5 3 1330.22× 1927 3 2.98× n.a.

Q20 Timeout Timeout 61 5 n.a. Timeout 8 n.a. n.a.

Q21 1708506 136042 59 7 0.08× 79111 7 0.05× n.a.

Q22 534 10176 5 4 19.06× 10580 4 19.81× n.a.

An interesting thing to notice is that query rewriting outperformed query-
ing the views 13 times; querying the views was better for only 7 queries. Even
more interesting, rewriting the queries performed better in 9 out of 12 times
(ignoring the canceled queries) when the number of involved table fragments
was lower than for the views. This illustrates the advantage of query rewrit-
ing over using views because unnecessary table fragments can be omitted with
the former method. The overhead introduced by rewriting the queries is very
small for all of the queries compared to the execution time and can therefore be
neglected. Consequently, one can conclude that query rewriting is generally the
better strategy than using views. However, if for some reason a rewritten takes
very long to process, querying the views can potentially lower the execution time.
An example for such a situation is query Q19.
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8 Conclusion and Future Work

In this article, we extended our separation of duties approach with which con-
fidentiality in cloud databases can be enforced based on vertical fragmentation.
Our approach enforces a security policy consisting of confidentiality constraints
while at the same time respecting data dependencies, minimizing the amount of
external cloud servers (the cardinality of the fragmentation) as well as maximiz-
ing the amount of satisfied visibility constraints (the constraints introduced to
increase the utility of the resulting fragmentations). An implementation based
on the provided theories was presented by translating the separation of duties
problem into an integer linear program (ILP) representation and using an off-
the-shelf solver to obtain a confidentiality-preserving fragmentation. In addition,
we discussed our query rewriting approach, that enables an efficient distributed
execution of queries on the fragments.

To show the feasibility of the separation of duties approach, based on the
well-known TPC-E database schema the effects of different sizes of input data
were evaluated. The evaluation of a TPC-H benchmark showed the major advan-
tage of the separation of duties approach. As the columns of the database are
stored in plaintext, it is possible to evaluate any database query, regardless of
its complexity. Compared to encryption schemes, there is also no additional
resource-intensive workload like decrypting the received data at the database
user’s site. Therefore, users of cloud databases who potentially run devices with
a low computational power, especially benefit from this approach.

Several options for future work arise. Our approach is currently most applica-
ble to situations where the constraint sets remain fixed over time. Studying cer-
tain classes of “allowed” modifications of these sets (confidentiality constraints,
visibility constraints and dependencies) as well as their influences on security,
data distribution and query execution is a major future topic which can be based
on [3]. Moreover we plan to provide an in-depth analysis of different classes of
integrity constraints similar to [2,4] as well as considering the query execution
cost as an extra optimization goal. More generally in order to integrate our prior
work on property-preserving encryption [34] we aim to analyze the combination
of these encryption methods with separation of duties. Lastly it might be worth-
while to analyze the separation of duties approach in non-relational data models
[36].
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Abstract. The upcoming General Data Protection Regulation (GDPR)
imposes several new legal requirements for privacy management in infor-
mation systems. In this paper, we introduce LPL, an extensible Lay-
ered Privacy Language that allows to express and enforce these new
privacy properties such as personal privacy, user consent, data prove-
nance, and retention management. We present a formal description of
LPL. Based on a set of usage examples, we present how LPL expresses
and enforces the main features of the GDPR and application of state-of-
the-art anonymization techniques.

Keywords: Anonymization · GDPR · LPL · Personal privacy
Privacy language · Privacy model · Privacy-preservation · Provenance

1 Introduction

Privacy is a research field which is tackled by different disciplines including
computer and legal sciences. Each discipline has its own point of view on this
complex topic. In computer science, privacy languages, in addition to express
privacy rules, have been proposed to solve individual problem statements of
privacy like informing users of the privacy settings of a website [1] or sharing
and trading with (personal) data [2]. Furthermore, a privacy language is a data
model of formal description which is machine-readable for automatic processing.

The General Data Protection Regulation (GDPR), which will enter into force
on 25th May 2018 [3, Art. 99 No. 2], is designed to standardise data privacy
laws across Europe, to protect and empower all EU citizens (Data Subjects)
data privacy and to rework the way organizations (Controllers) approach data
privacy. Hereby, it advises to take a set of technical and organisational measures
that could be summarized by two main principles, which are Privacy by Design
and Privacy by Default, especially to protect Data Subject Rights.

We interpret Privacy by Design, which is an already existing concept that
becomes now a legal requirement in the GDPR, as the requirement for a cross-
domain definition of privacy policies which can be integrated in current business
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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processes [4]. Therefore, privacy should be made available in all technical sys-
tems. To reach the Privacy by Default principal, it should be ensured that data
access is permitted solely to persons and organizations that have the rights to
access it or to which the Data Subject gives an explicit consent [3, Art. 25].
Additional legal aspects are listed in Sect. 2.1.

Our objective is to design a privacy language which aims to facilitate express-
ing legal requirements under the usage of privacy-preserving methodologies.
With a formal definition of the privacy language we want to fulfill the prin-
ciple of Privacy by Design by creating a machine-readable privacy policy for
integration in technical systems. Furthermore, to fulfill the principle of Privacy
by Default, we aim to cover all crucial privacy processes including the Data Sub-
ject giving its consent to the data processing, storage of personal data, transfer
of personal data between Controllers, and privacy-preserving querying. Hereby,
our proposed privacy language will serve as the base for a privacy-preserving
framework supporting all mentioned processes. The privacy language presented
in this paper allows expressing a static status of an organization, which we plan
to extend by dynamic scenarios in future works.

To illustrate the purpose of our language, let’s take the example of a Data
Subject who registers an account for a service of Controller C1. Based on the
consent, the personal data as well as our privacy language representing the legal
privacy policy will be stored. According to the agreed privacy policy, the data will
be transferred to Controller C2 for statistical processing, whereas an additional
privacy policy is created between both Controllers represented by our privacy
language. The original privacy policy will then be appended to allow provenance
for the personal data. Controller C2 is processing personal data from several
sources with different privacy policies as a service. Based on the requesting entity,
Controller C2 anonymizes the data according to the different individual privacy
policies. Therefore, it can preserve privacy according to the legal regulations
while delivering the best possible data utility. Additionally, both Controllers
have to fulfill the Data Subject Rights given by the GDPR, e.g. disclosure of
personal data. The legally required responses will be generated automatically
based on our privacy language, reducing the workload for a Controller. To the
best of our knowledge, there is no language that lets express and enforce the
illustrated privacy-preserving features.

The main contribution of this paper is to present our Layered Privacy Lan-
guage (LPL). A formal description of its components is given. Then a set of usage
patterns illustrating how policies are enforced are presented. The main focus is
hereby on the Query-based Anonymization. Our goal with LPL is to model and
enforce privacy policies, so that in Large-Scale Data and Knowledge-Centered-
Systems it is possible to handle different personal privacy settings and therefore
comply with the GDPR.

The remaining of the paper is structured as follows. In Sect. 2, considered
aspects of privacy are listed and objectives for our proposed privacy language
are derived from them. Section 3 reviews related works and positions LPL to
them. Section 4 presents the formal description of LPL. Section 5 presents several
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usage patterns to illustrate several privacy aspects. Finally, Sect. 6 concludes and
outlooks for future works.

2 Requirements

A privacy language should be able to express both legal and privacy-preserving
requirements. Those requirements will be derived from the law and regulations
and current state of the art of privacy-preservation methodology.

2.1 Legal View

We put the focus on the legal situation of Europe. A privacy policy or a pri-
vacy form can be translated as a set of rules describing how data has to be
processed. Hereby, processing is broadly defined as collection, recording, organi-
sation, structuring, storage, adaptation or alteration, retrieval, consultation, use,
disclosure by transmission, dissemination or otherwise making available, align-
ment or combination, restriction, erasure or destruction of data [3, Art. 4 No.
2]. Data Minimisation denotes that only the minimum amount of data, which
is necessary for the processing of the purpose, should be inquired from the Data
Subject [3, Art. 5 No. 1 c)]. A privacy policy consists of several purposes of the
processing [3, Art. 4 No. 9], describing what data is used, how it is used, when
it will be deleted, who will use the data and if the data is anonymized [3, Art.
13 ]. Therefore, a privacy language has to be at least capable of modelling a
set of purposes that have a set of data, set of data recipients, retention and the
possibility to describe anonymized data [5]. Additionally several aspects of the
European laws on privacy should be considered:

– Consent: A user has to give his consent for the processing of its data [3, Art.
6]. Hereby, the GDPR specifies that a consent has to be given freely, specific,
informed and unambiguous [3, Art. 4 No. 11].

– Personal Data: The GDPR specifies personal data as any information that is
related to an identified or identifiable natural person. This is a broad definition
including among others name, location data, (online-)identifier and factors of
a natural person [3, Art. 4 No. 1].

– Purpose of the Processing: The processing of personal data is only allowed for
the defined purpose for which the user gave its consent. The GDPR specifies
that personal data can only be collected and processed for legitimate purpose
of the processing [3, Art. 5 No. 1 (b)]. The purpose of the processing is deter-
mined by the Controller which is a natural or legal person, public authority,
agency or other body [3, Art. 4 No. 7]. Exceptions to this are also possible
but will not be further discussed [3, Art. 6].

– Retention: According to the GDPR, personal data has to be deleted when
it is no longer necessary for the purpose of the processing for which it was
collected, which is a part of the ‘right to erasure’ or ‘right to be forgotten’
of the data subject [3, Art. 14 No. 1]. Therefore, deletion of personal data is
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strictly bound to the purpose of the processing. The policy is to delete data
when it is no longer necessary for the purpose of the processing or the purpose
of the processing is completed. For example if the purpose of the processing
is solely to use the e-mail for the newsletter, then data is revoked, once the
newsletter subscription is completed.

– Data Subject Rights: The GDPR defines several Data Subject Rights including
among others the ‘right of access by the data subject’ [3, Art. 15], ‘right to
rectification’ [3, Art. 16], ‘right to erasure’ [3, Art. 17], and ‘right to object’
[3, Art. 21] giving the Data Subject several rights that have to be considered.
For example, if the Data Subject has given its consent for the processing of
the personal data to a Controller, then the Data Subject has also the right to
demand the deletion of the personal data if there is a valid reason for it [3,
Art. 17].

This breakdown of the legal regulations omits further exceptions and special
cases for each of the mentioned points in favour of the scope of this paper. We
are further aware that the European law constraints are not compliant with
other regulations like the Health Insurance Portability and Accountability Act
(HIPAA), but similar basic concepts can also be found in these regulations [6].

2.2 Privacy-Preserving View

We will focus on Anonymization and Privacy Model Requirements, Data Storage
Requirements and Personal Privacy Requirements to describe the considered
requirements for our privacy language. We are aware that further requirements
from other privacy research fields like database trackers [7] could be added, but
those would be more relevant for a privacy framework, than a privacy language,
and therefore are out of scope for this paper.

Anonymization and Privacy Model Requirements. There are several pri-
vacy models like k-Anonymity [8], l-Diversity [9] or t-Closeness [10] defining
the properties a data-set must have to prevent re-identification. To explain the
requirement regarding the privacy-preservation item, let’s take in this section the
example of the k-Anonymity model. The properties of the privacy models are
usually adjusted by one or several parameters. Illustrated on k-Anonymity, the
parameter k defines for a data-set, that for each QID-group, at least k records
have to exist [8]. A QID (quasi-identifier) is hereby an attribute which can, in
combination with other QID attributes, be used for identification, but can by
itself not used for identification.

Based upon the chosen value, the properties of the anonymized data-set in
terms of utility and privacy are influenced.

Utility describes the data quality of an anonymized data-set in relation to the
original data-set. The quality of the data can hereby be highly dependent on the
context in which the data-set is supposed to be used. But in general utility can
be measured by Accuracy, Completeness and Consistency. Accuracy measures
the similarity, e.g. loss of information, between the anonymized value and the
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original value. Completeness measures the missed data in the anonymized data-
set. Consistency measures if the relationships between data items is preserved.
Based upon those measurements several methods have been developed for utility,
e.g. for k-Anonymity the height metric is used [11].

A trade-off between privacy and utility has to be found which is defined by
the privacy model as well as the corresponding parameters. An open question is
who decides on the privacy model and its parameters. The choice of the privacy-
preserving parameters defines the privacy of a data-set. Should those settings
exclusively be decided by a privacy expert, e.g. a privacy officer in a company, a
national authority or can this even be influenced or set by a user, is the question.

A higher value for parameter k results in higher privacy for the data-set.
With increasing privacy of the data-set, the more likely it is that anonymization
has to be applied on the data which has a negative impact on the utility. It
has to be considered that an overestimated value will result in an undesired
loss of utility. An underestimated value will result in insufficient privacy. This
leads to the requirement that the definition of diverse privacy models including
their privacy-preserving parameters has to be supported. This includes that data
attributes have to be able to be assigned to a specified privacy group (e.g. Quasi-
identifier) to enable a correct application of the privacy model. Because it is
an open question which entity (privacy officer, Data Subject, or both) should
influence the definition of the privacy-preserving parameters, we consider that
those parameters can be influenced by both.

Data Storage and Transfer Requirements. Thus far we considered privacy
only for a homogeneous data-set, but privacy has also to be considered in data-
warehouses, and other storage solutions, which implicates different data-sources
and queries. Each query-result can be imagined as a data-set for which privacy
has to be considered. Therefore, the data can be anonymized at different points in
time of privacy-preserving data-warehousing. For example it is possible that the
source data is already anonymized before it is integrated in the data-warehouse.
Alternatively, it is also possible to anonymize the data for each query conducted
on the data-warehouse. In general, the possibilities for the point of anonymiza-
tion in a data-warehouse scenario are anonymized sources, pre-materialization
anonymization, post-materialization anonymization and query-based anonymiza-
tion. Each of the approaches has its own advantages and disadvantages. It is
shown that post-materialization anonymization has significant advantages over
anonymized sources and pre-materialization anonymization in terms of data
quality. If an untrusted data publisher model is selected then anonymized data
sources are a necessity and therefore the post-materialization anonymization
approach cannot be chosen. Experiments for query-based anonymization have
not been conducted and therefore cannot be compared [12]. Based upon these
results, we assume that a as-late-as-possible anonymization is advantageous,
which we consider as a requirement.

In (privacy-preserving) data warehousing the data is combined in a single
warehouse system from one or more data-sources and queried by data-recipients.
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Generally speaking data will be transferred, materialized, anonymized and
queried. This process may be run through several times, thus the origin of the
data may be lost if it is not explicitly tracked. Therefore, it is required to store for
each data record the corresponding privacy policy. Assuming that different data-
sources have inherent different privacy policies, this process will lead usually to
a data warehouse with diverse privacy policies that have to be considered. For
example, we assume data-sources source1 and source2, whereas source1 delivers
data under privacy policy policy1 and source2 under policy2. Data from both
data-sources is combined in data-warehouse warehouse1 including their corre-
sponding privacy policies policy1 and policy2. Therefore, it is a requirement that
privacy policies, related to a specific data record, can be stored and transferred
with the data. Hereby, the data should be stored as long as possible in its raw
form to support a as-late-as-possible anonymization.

Furthermore, we are aware that sequential queries of a database have to be
considered for privacy preservation. Each release can hereby contain a different
set of attributes. The combination of those attributes, which are retrieved over
time, may allow the identification of a Data Subject and therefore cause a privacy
issue [7]. Although we are aware of this issue, we will not consider it for Query-
based Anonymization within the scope of this paper.

Personal Privacy Requirements. The approach of allowing a user to set his
Personal Privacy Preferences has been addressed in [13]. This approach gives
the user the control over its privacy settings. To be more specific, it considers the
minimum necessary anonymization of the data and therefore retains the maxi-
mum utility of the data. This approach considers Personal Privacy Preferences
in the anonymization process of the data [13]. But we also consider the privacy
model as part of the personal privacy settings. Therefore, an approach to find
the minimum necessary privacy model and value can be derived for a data-set,
which we denote as a requirement.

Additionally, we consider that it is possible that records from a data-source
with personal privacy policies exist [13]. Therefore, the diversity of privacy poli-
cies that has to be considered rises. When the data is queried and transferred to
a data recipient, it is possible that new privacy policies, representing additional
privacy policies, of the queried data-warehouse are applied to the data-set and
will be mixed up with the previous privacy policies, which can cause conflicts.
This is not only restricted to a data-warehouse scenario, like mentioned before,
but for every transfer of personal data. With every transfer of data it is possi-
ble, if not prevented, that the original Data Subject can no longer be identified
explicitly, but its personal data is still processed. Therefore, a loss in provenance
occurred. If the Data Subject wants to exercise his Data Subject Rights or the
Controller has to prove the origin of the processed data it will no longer be
possible. This has to be prevented. Consequently, we denote Provenance as a
requirement.

This leads to the requirement of defining personal privacy within a privacy
language on such a fine-grained level that each attribute may be influenced by
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both the privacy officer defining the maximum allowed anonymization and the
Data Subject defining its own minimal privacy settings. Considering that several
personalized privacy policies may be transferred and aggregated it is necessary
to be able to track the origin of the data and therefore provenance has to be
implemented within a privacy language.

2.3 Objectives

Based upon the legal and privacy-preserving view, we formulated the following
objectives for a privacy language both representing legal privacy policies and
ensuring privacy utilizing privacy-preserving methods.

It should be able to layer privacy policies to track the origin of the data
and therefore enable Provenance for the personal data. Hereby, data-source and
data-recipient should be differentiated to be able to grant fine-grained data pro-
cessing rules. This has also to include the processing of Data Subject Rights,
which are given by the law. The structure of the privacy language should match
the structure of a privacy policy which is based on purposes, describing the cir-
cumstances of the data usage. Therefore, for each purpose it should be possible
to describe the data that is processed, the data-recipient and retention. It is
required that privacy for a data-set can be specified utilizing privacy models.
But also privacy settings for single data fields are required to enable fine-grained
personal privacy. Therefore, both a minimum level, defining privacy settings of
the Data Subject, and maximum level, defining the upper limit for the Controller,
are required. Finally, the privacy language should support the user consent on
data access in a legal and human-readable way, whereas it has to considered that
multiple languages are supported. Summarizing a privacy language should fulfill
the following requirements:

– Differentiation between data-source and data-recipient to enable fine-grained
access-control

– Modelling of purpose-based privacy policies with modelling of: data, retention
and anonymization enabling personal privacy and privacy models

– Layering of privacy policies to ensure provenance
– Human-readability

In the following we will compare related works according to our requirements.

3 Related Works

We define a classification for privacy languages based on a broad literature
research as well as on our previously defined requirements, which we then apply
on a set of privacy languages to demonstrate a research gap.

Several privacy languages have been proposed in the literature, each with
their own distinct purposes. Although they are classified as privacy languages
by other works [14,15], we do not see a strong focus on Privacy (in a legal sense)
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Fig. 1. Categorizes for classification of privacy languages.

in every of them. Therefore, we developed a classification of privacy languages
according to their intended purposes (see Fig. 1). Hereby, we use the Privacy for
purposes in which the languages deal with legal aspects of privacy. We differenti-
ate between five intended purposes, that we could identify by a broad literature
research.

For Access Policy, policies for access control are implemented, such as XACL
[16], Ponder [17], Rei [18], Polymer [19], SecPAL [20], AIR [21], XACML [22]
and ConSpec [23]. For Service Level Agreement (SLA) Policy, agreements or
contracts for B2B processes are implemented, such as SLAng [24,25] and USDL
[26]. For Privacy Policy Information, policies are implemented to (only) inform
about their contents, such as P3P [27] and CPExchange [28]. For Privacy Policy
Preferences, personal privacy settings or preferences (of e.g. users) are modelled
to be matched against policies, such as APPEL [29] and XPref [30]. For Privacy
Policy Enforcement, policies are modelled and implemented to enforce privacy
policies, such as DORIS [31], E-P3P [32], EPAL [33], PPL [34], Jeeves [35],
Geo-Priv [36], Blowfish Privacy [37], Appel [38], P2U [2] and A-PPL [39].

Additionally, we analyse if the privacy languages consider several topics, that
we derived from our requirements, which will be detailed as follows. For Purpose-
oriented, the purpose of the processing of data is modelled as a high-level process
and not only as low-level CRUD operations. For Data-oriented, each data can
modelled uniquely and not only as (pre-defined) groups of data. For Reten-
tion, rules for automatic deletion of data or data-sets based on the retention
have to be modelled. The possibility of an active deletion request, issued by the
Data Subject, does not fulfill this criteria. For Access-Control, mechanisms for
authentication and authorization have to be enabled by the model. For Human-
Readability, the model should allow a human-readable presentation, so that the
Data Subject is informed about the content. For Privacy Model, the minimal
privacy properties of the data-set for a specific purpose have to be modelled.
For Personal Privacy, the Data Subject should be able to dissent the use of data
for a specific purposes or the processing of a specific purpose. Furthermore the
anonymization of data for a specific purpose should be able to be influenced. For
Provenance, after data has been transferred between (multiple) Controllers the
original Data Subject should still be identifiable, so that this Data Subject can
enforce his Data Subject Rights.

Based on the presented classification, we analysed a broad range of privacy
languages. An broad and comprehensive overview is shown in Table 1. It can
be observed that most privacy languages, which categorized as Privacy Pol-
icy Enforcement, are Purpose-oriented and Data-oriented. Furthermore, most
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consider the topics Retention and Access-Control. Both Geo-Priv and Blow-
fish Privacy specify the anonymization of personal data and therefore deal with
the topic Privacy Model. The topics Human-Readability, Personal Privacy and
Provenance are not dealt with by any of the privacy languages categorized as
Privacy Policy Enforcement. The topic Human-Readability is only dealt with by
AIR and USDL.

In summary, there is a lack of the legal and privacy-preserving requirements in
the design of privacy languages, that we will consider. It is also mentionable that
the representation of legal privacy policies (especially according to the GDPR)
has not been the intention of any of the described privacy languages and has also
not been done according to our knowledge. In the following, we give a formal
definition for LPL implementing the described requirements.

4 Layered Privacy Language (LPL)

In this section, we present a formal description of our Layered Privacy Language
(LPL) which satisfies the requirements presented in Sect. 2. The structure and
the components of the language are depicted in Fig. 2, whereas attributes are
omitted. All the elements presented in the diagram are described, including their
attributes, in the following subsections. For clarity of the description, Table 2
gives for each element, notations that will be used for a single element, a subset
of elements and the complete set.

Fig. 2. Overview of the structure of LPL. Attributes are omitted for better readability.

4.1 Layered Privacy Policy

The root-element of our privacy language is the LayeredPrivacyPolicy-element
lpp, which represents a privacy policy (legal contract), e.g. between a user and
a company. Only a single lpp is supposed to be defined for a LPL compliant file,
e.g. privacy policy. A LayeredPrivacyPolicy-element

lpp = (version, name, lang, ppURI , upp, ds, ̂P ) (1)

is a tuple consisting of the following attributes:
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– version: Version number for future version management of LPL.
– name: A textual representation of the privacy policy name.
– lang: Defining the language of the human-readable description in the LPL

privacy policy.
– ppURI: A link to the legal privacy policy to assure compliance with the cur-

rent law, which is implemented as a static human-readable description of the
privacy policy.

Additionally, each LayeredPrivacyPolicy lpp can have a reference to an Under-
lyingPrivacyPolicy upp. Let an UnderlyingPrivacyPolicy-element be

upp = (version, name, lang, ppURI , upp′, ds, ̂P ) (2)

where upp′ is another UnderlyingPrivacyPolicy-element denoting a previously
consented privacy policy. The set of all upp elements is denoted by UPP and
̂UPP denotes a subset of UPP.

Table 2. Overview over all elements, their formal definition and a reference to their
definition. Bold styled sets are tuples, which inherit an order.

Element Single
element

Subset of
elements

Set of
elements

Definition
reference

LayeredPrivacyPolicy lpp ̂LPP LPP Section 4.1

UnderlyingPrivacyPolicy upp ̂UPP UPP Section 4.1

Purpose p ̂P P Section 4.2

Entity e ̂E E Section 4.3

DataSource ds ̂DS DS Section 4.3

DataRecipient dr ̂DR DR Section 4.3

Retention r ̂R R Section 4.4

PrivacyModel pm ̂PM PM Section 4.5

PrivacyModelAttribute pma ̂PMA PMA Section 4.5

Data d ̂D D Section 4.6

AnonymizationMethod am ̂AM AM Section 4.7

AnonymizationMethodAttribute ama ̂AMA AMA Section 4.7

Hierarchy h ̂H H Section 4.7

HierarchyEntry he ̂HE HE Section 4.7

This allows to create layers of privacy policies to satisfy the objective of being
able to track privacy policies over multiple entities.

Let the (‘most underlying’) leaf-LayeredPrivacyPolicy

lppleaf = (version, name, lang, ppURI , ∅, ds, ̂P ) (3)
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be the first privacy policy for which a consent is given for. In other words,
the LayeredPrivacyPolicy with no UnderlyingPrivacyPolicy is the initial privacy
policy, which is usually a consent between an user and a legal entity. If an
additional privacy policy lppnew, e.g. for a data-transfer to a third party, has
to be added to an existing lppexisting, then the lppexisting will be wrapped by
lppnew. This results in

lppexisting = (version, name, lang, ppURI , ∅, ds, ̂P ) (4)

lppnew = (version, name, lang, ppURI , lppexisting, ds′,̂P ′) (5)

which is valid for each additional added privacy policy lpp′
new. Hereby, the data

source (ds′) will be the data recipient (dr) of lppexisting and ̂P ′ can be ̂P or a
subset of it. The DataSource-element ds and a set ̂P of Purpose-elements will
be described in the following. The set of all lpp elements is denoted by LPP and
̂LPP denotes a subset of LPP.

4.2 Purpose

The Purpose-element p, representing a legal purpose of the processing,

p = (name, optOut, required, descr, ̂DR, r, pm, ̂D) (6)

is a tuple consisting of the following attributes:

– name: A textual representation of the identifying name, e.g. ‘marketing’. In
the set of purposes there should be no duplicate names.

– optOut: A boolean defining if the Purpose is opt-out for true or opt-in for
false. Opt-out implies that the user has to actively deny this purpose. In the
opposite, opt-in implies that the user has to actively accept this purpose.

– required: A boolean defining if the Purpose has to be accepted by the user. If
the user does not accept a required Purpose then there cannot be a consent
for the corresponding lpp.

– descr: A human-readable textual representation of the purpose expressed in
the language defined by the language lang of lpp.

Moreover, each Purpose is linked to a set ̂DR of dr, one Retention-element r,
optionally one PrivacyModel -element pm and a set ̂D of d. The set of all p
elements is denoted by P and ̂P denotes a subset of P. It is important to note
that the set ̂P may be empty or consist of contradictory purposes, which is valid
for the structure but illogical for a privacy policy.

4.3 Entity

The Entity-element e, representing persons, companies or any other entity that
has processing-right on the data,

e = (name, classification, authInfo, type) (7)

is a tuple consisting of the following attributes:
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– name: Used for authorization in access control.
– classification: Classifies the Entity in either Person or Legal Entity.
– authInfo: Used for authentication of the Entity, e.g. a hashed password.
– type: Either DataSource or DataRecipient.

The set of all e elements is denoted by E and ̂E denotes a subset of E. The
Entity-element inherits the following 2 elements, which do not add additional
attributes, but are used for better readability of LPL.

DataSource. The DataSource-element ds inherits from Entity, whereas the type
is set to the corresponding value.

ds = (name, classification, authInfo, ‘DataSource’) (8)

The DataSource-element describes the current authority granting DataRecipi-
ents the processing of data, based upon its own processing-rights. For example
this can be the user (person) for whom the personal data is dedicated to or a
company (legal entity) that has collected the personal data for a specific pur-
pose. The set of all ds elements is denoted by DS and ̂DS denotes a subset of
DS.

DataRecipient. The DataRecipient-element dr inherits from Entity, whereas the
type will be set to DataRecipient.

dr = (name, classification, authInfo, ‘DataRecipient’) (9)

The DataRecipient-element represents the authority that gets specific
processing-rights (defined by the Purpose) granted. This can be a person or
a legal entity. For example given the DataSource-element representing the user
(person) which the personal data is referring to, then this authority can grant the
DataRecipient all processing-rights via ̂P. Assuming dsC represents a Controller
C that has collected the data from a user dsU under specific processing-rights
̂PC and wants to grant a third party drT processing-rights ̂PT , then dsC can only
grant drT the usage within the limits of its own processing-rights ̂PT ⊆ ̂PC . It
has to be noted that the processing-rights of dsC are a subset of the processing-
rights of the user, who has all the processing-rights ̂PT ⊆ ̂PC ⊆ ̂PU The set of
all dr elements is denoted by DR and ̂DR denotes a subset of DR.

4.4 Retention

The Retention-element r defines when the described data has to be deleted.

r = (type, pointInT ime) (10)

The element consists of the following attributes:

– type: Describing the general condition of the retention. Possible values are
Indefinite, AfterPurpose and FixedDate.
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– pointInTime: Textual representation describing the exact conditions for the
retention.

Depending on the type, the pointInT ime has diverse meanings. The type Indef-
inite without a value for pointInT ime defines that there is no time constrained
for the deletion of the data. The type AfterPurpose defines that after the com-
pletion of the corresponding purpose p the data has to be deleted within the
time-frame specified by pointInT ime. Lastly the type FixedDate in combina-
tion with pointInT ime explicitly defines the date for the deletion of the data
within the corresponding p. The set of all r elements is denoted by R and ̂R
denotes a subset of R.

4.5 Privacy Model

The PrivacyModel -element pm specifies the privacy conditions that have to be
fulfilled for the data in a data-set. This element can be given but it is not
mandatory. Alternatively, privacy can also be defined by AnonymizationMethod -
element, defining personal privacy, or even omitted if not necessary, e.g. when
the p does not describe any personal data.

pm = (name, ̂PMA) (11)

The applied privacy model is defined by the name, e.g. k-Anonymity [8] or
l-Diversity [9]. Each privacy model can have a set of PrivacyModelAttribute-
elements ̂PMA. Currently, we limit to one privacy model pm for each purpose
p. It may be a requirement that more than one privacy model is applied to
a data-set [40], which would be a possible future extension. The set of all pm
elements is denoted by PM and ̂PM denotes a subset of PM.

Privacy Model Attribute. A PrivacyModelAttribute-element pma, represents the
configuration of a privacy model,

pma = (key, value) (12)

is a tuple of the following attributes:

– key: Definition of a variable that is required by the correlating pm, e.g. k for
k-Anonymity.

– value: Definition of the actual variable content, e.g. for k the value ‘2’, which
describes that there have to be at least two records within the same QID-set
values to preserve the required k-anonymity property [8]

The set of all pma elements is denoted by PMA and ̂PMA denotes a subset
of PMA. The decision for utilizing ̂PMA can be explained by the existence of
privacy model (e.g. i X,Y-Privacy [41]) that support more than one variable.
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4.6 Data

The Data-element d, representing a data field that is concerned by a purpose p,

d = (name, dGroup, dType, required, descr, pGroup, am) (13)

is a tuple of the following attributes:

– name: Distinct name for the stored data field. A duplicate name within a ̂D
of a Purpose is not allowed. Because this could lead to discrepancies in the
processing, like it is possible with P3P DATA-Elements. P3P allows to define
contrary rules for the same data element within one purpose. This made the
determination of the valid rule unfeasible [42].

– dGroup: A textual representation of a logical data group. No predefined val-
ues are given. The logical data group can be used to specify data in e.g. a
procedure directory, which usually does not refer to each data field but groups
of it [3, Art. 30]. This enables to validate procedures directories [3] with a pri-
vacy policy automatically or even create one beforehand. E.g. data elements
representing title, prename and surname of a person could have the dGroup
‘name’.

– dType: Defines the type of data that the attribute has. Possible types are
Text, Number, Date, Boolean, Value Set for a set of predefined values and
Other for any data type that doesn’t fit the aforementioned types.

– required: A boolean defining if the data d to be accepted or could be neglected
by the user. If the user does not accept a required d then the corresponding
p will not be accepted. If the p is required, then the whole privacy policy lpp
is not accepted.

– descr: A human-readable description of the data field. Possible notes on the
anonymization, that is applied, can be added for better understanding. For
example, the age will be only analysed in ranges from ‘0–50’ and ‘50–100’.

– pGroup: This is the classification of the data field in Explicit, QID, Sensitive
and Non-Sensitive. The processing of the data field by the privacy models is
based upon this classification. E.g. for k-Anonymity the value of a data field
which is classified Explicit, has to be deleted [8].

The AnonymizationMethod -element am defines the minimum anonymization for
the data enabling personal privacy. The set of all d elements is denoted by D
and ̂D denotes a subset of D.

4.7 Anonymization Method

The AnonymizationMethod -element am, represents the anonymization that is
applied on a data,

am = (name, ̂AMA,h) (14)

is a tuple of the following attributes. The name represents the chosen anonymiza-
tion method. There are several methods available, for example Deletion, Sup-
pression or Generalization. Additionally each AnonymizationMethod has a set
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of AnonymizationMethodAttributes-elements ̂AMA and optionally a Hierarchy-
element h. The set of all am elements is denoted by AM and ̂AM denotes a
subset of AM.

Anonymization Method Attribute. An AnonymizationMethodAttribute-element
ama, represents the configuration of a anonymization method,

ama = (key, value) (15)

is a tuple of the following attributes:

– key: Definition of a variable that is required by the correlating am. Addition-
ally, defining a maximum and minimum Anonymization Level is possible.

– value: Definition of the actual variable content.

The key ‘Minimum Level’ defines the minimum Anonymization Level that is
applied to the actual data when used for a specific purpose. This allows to
anonymize as-late-as-possible. The key with the value ‘Maximum Level’ defines
the maximum level of anonymization that is applied and therefore gives the
creator of the privacy policy the possibility to define requirements for the
anonymization. The set of all ama elements is denoted by AMA and ̂AMA
denotes a subset of AMA.

Hierarchy. The Hierarchy-element h, saving all possible pre-calculated values
for one data field and the correlating anonymization method. The hierarchy h
will be used during the anonymization both for the Minimum Anonymization,
enabling personal privacy, and the Application of the Privacy Model.

h = (̂HE) (16)

Each h consists of a tuple of HierarchyEntry-elements ̂HE, representing each
entry in the hierarchy. We denote h.length as the amount of he elements in ̂HE.

h.length = |̂HE| (17)

The tuple of all he elements is denoted by HE and ̂HE denotes a sub-tuple
of HE. We decided for the calculation and storage of the possible anonymized
values within the privacy language over the calculation of the anonymized value
per query. The hierarchy is optional as not every AnonymizationMethod, e.g.
Deletion, will have several possible values. Additionally it may also not be suit-
able for all use cases to store pre-calculated values. The set of all h elements is
denoted by H and ̂H denotes a subset of H. Next section presents several usage
patterns of LPL privacy policies.
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5 Usage of LPL

In this section we present the life-cycle of LPL. Furthermore, we present Query-
based Anonymization, Provenance and Retention based on LPL.

For the sake of clarity and to avoid redundancy, for each usage pattern we
will define progressively the elements examples of LPL that are mandatory for
the illustration. Each previously defined element could be referenced in further
usage patterns if required. Only the relevant attributes will be instantiated for
better readability.

5.1 Life-Cycle

For LPL, we present the life-cycle steps through the following scenario: A com-
pany eC1 wants to create a new web-service which collects and uses personal
information. Therefore, eC1 creates a legal privacy policy that a user eU1, using
the service, has to accept. In this case dsU1 is the ‘DataSource’ and drC1 is the
‘DataRecipient’. Optionally, the data that is collected by eC1 could be trans-
ferred to a third party eC2 for a specific usage. Therefore, a contract between
eC1 and eC2 has to be concluded for the data transmission, whereas dsC1 is the
‘DataSource’ and drC2 is the ‘DataRecipient’.

dsU1 = (‘U1’, ‘Person’, publicKeyU1, ‘DataSource’) (18)
drC1 = (‘C1’, ‘Legal Entity’, publicKeyC1, ‘DataRecipient’) (19)
dsC1 = (‘C1’, ‘Legal Entity’, publicKeyC1, ‘DataSource’) (20)
drC2 = (‘C2’, ‘Legal Entity’, publicKeyC2, ‘DataRecipient’) (21)

The usage of LPL in this scenario can be separated into the following steps
(see Fig. 3):

Fig. 3. Life-cycle of LPL.

1. Creation: Company eC1 converts the legal privacy policy to an LPL privacy
policy lppraw. Hereby eC1 defines which Purpose- and Data- elements are
necessary for the usage of the web-services as well as all other elements. In
this case, a privacy policy will be transferred describing personal data to
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be used by drC1 and drC2 for the purpose ‘Marketing’. This includes the
anonymization for ‘postal-code’, but not for ‘salary’.

lppraw = (version, ‘LPP1’, lang, ppURI , ∅, ∅, {pU1}) (22)

pU1 = (‘Marketing’, optOut, required, descr, {drC1, drC2}, r, pm, ̂D1)
(23)

̂D1 = {dpostal, dsalary} (24)
dpostal = (‘postal-code’, dGroup, dType, required, descr, ‘QID’, am1) (25)
am1 = (‘Suppression’, {ama1, ama2, ama3, ama4}, ∅) (26)

ama1 = (‘Suppression Replacement’, ‘*’) (27)
ama2 = (‘Suppression Direction’, ‘backward’) (28)
ama3 = (‘Minimum Level’, ‘2’), ama4 = (‘Maximum Level’, ‘4’) (29)

dsalary = (‘salary’, dGroup, dType, required, descr, ‘Sensitive’, ∅) (30)

2. Negotiation: The privacy policy lppraw is presented to the user eU1 via a user-
interface, enabling an informed and voluntary consent. The user-interface
should also give eU1 the possibility to dissent with defined parts of lppraw
and still be able to form a contract with eC1, whereas a personalized privacy
policy lppdsU1-drC1 is created. This leads to the insertion of dsU1. If no consent
is found the user cannot use the web-service and no data nor privacy policy
of eU1 will be stored.

lppdsU1-drC1 = (version, ‘LPP1’, lang, ppURI , ∅, dsU1, {pU1}) (31)

A user-interface that allows to personalize the LPL privacy policy has been
developed and evaluated. It focuses on the consent or dissent to purposes.
Further features, like the personalization of minimum anonymization for spe-
cific data or the consent or dissent to specific data, are planned for future
work.

3. Pre-Processing: In this step, the lppdsU1-drC1 is processed and validated. This
step is conducted before the data values or the privacy policy is stored. For
example if the privacy policy is modified by the user and stored, then it has
to be re-validated to prevent malicious alterations.

4. Storage: Assuming consent is given by eU1 and therefore a contract between
eC1 and eU1 is formed, the (personalized) privacy policy lppdsU1-drC1 will be
saved along with the data of eU1. Therefore, lppdsU1-drC1 is not intended for
storing the actual data but to reference it.

5. Transfer: If eC1 transfers the data to eC2 the contract formed between those
two entities is also converted into a LPL privacy policy lppdsC1-drC2 . And the
existing personalized privacy policy will be added as an underlying privacy
policy upp.

lppdsC1-drC2 = (version, ‘LPP2’, lang, ppURI , {lppdsU1-drC1}, dsC1, {pU1})
(32)
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This allows a tracking of the data to its origin privacy policy. A (legal) privacy-
aware usage is also possible, because each legal usage of data is defined by
LPL and can be traced to the first consent between eU1 and eC1. This step
may be repeated several times if needed.

6. Usage: Whichever entity (in this scenario eU1, eC1 or eC2) wants to use the
data it has to be verified that the entity is authenticated and authorized to
query the data. If this is successful the data can be anonymized according to
the corresponding purposes.

Summarizing a LPL privacy policy lpp should represent and ensure legal pri-
vacy policies utilizing the steps Creation, Negotiation, Pre-Processing, Storage,
Transfer and Usage.

5.2 Query-Based Anonymization

In this step, LPL enables a query-based anonymization of the data of the Data
Subject on purposes which have been consented to and expressed by the LPL
privacy policy. Therefore, a query

q = {ereq, preq, ̂Dreq} (33)

is assumed as a request consisting of the following elements:

– ereq: The requesting entity. A ereq should be first authenticated and autho-
rized to have access to the data.

– preq: The purpose for which the data is requested. Data is only allowed to be
used for designated purposes which are either consented to or given by the
law.

– Dreq: The requested data attributes are given to prevent undesirable access.

Hereby, the processes denoted as Entity-Authentication, Purpose-Authorization,
Entity-Authorization, Data-Authorization, Minimum Anonymization and Appli-
cation of Privacy Model will be conducted in the given order to allow a query-
based anonymization (see Fig. 4).

Before the denoted process will be described in detail in the following, sup-
portive data structures will be introduced.

Supportive Data Structures. For processing the LPL privacy policies, addi-
tional data structures are assumed available for a Controller. These are Entity-
Hierarchy , Entity-Lookup Table ̂Elookup and Purpose-Hierarchy including Reg-
ulated Purposes, which will be presented in the following. The usage of both
Entity-Hierarchy and ̂Elookup will be shown in the following sections for Entity-
Authentication and Entity-Authorization. The usage of Purpose-Hierarchy and
Regulated Purposes is shown during Purpose-Authorization process.
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Fig. 4. Processes of the query-based anonymization.

Entity-Hierarchy. The Entity-Hierarchy allows to define Child-Entities that
inherit the rights of the Parent-Entity (see Fig. 5). We assume that a privacy pol-
icy defines general data recipient roles e.g. a company, but for further control of
the processing, which is defined in method descriptions, more fine-grained roles,
e.g. a marketing department or even individual employees, have to be defined.
This will be enabled by Entity-Hierarchy . Only the unique name, which spec-
ifies roles of e, is needed. This enables the lpp creator to define ds or dr, e.g.
‘The user dsU1 accepts that the data is used by company drC1 and drC2.’. If
eU1 accepts this then drC1 is granted the right to process the data according to
the defined purpose. To limit the usage within drC1 to a sub-set of employees,
additional entities have to be defined to inherit the rights. It is also possible that
a Child-Entity inherits from two Parent-Entities. This represents the use case
when several users allow a company to use their data.

Fig. 5. Possible structure of Entity-
Hierarchy .

Fig. 6. General structure of ̂Elookup.

Entity-Lookup Table. The ̂Elookup is the set of all entities (ds and dr) that exist
within all stored lpp and additionally all entities that are defined in Entity-
Hierarchy . Each entry of ̂Elookup has to define the name and authInfo (see
Fig. 6). The authInfo resembles the value that is authenticated against, e.g. the
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Fig. 7. Purpose-Hierarchy showing a possible inheritance hierarchy.

public key if a public/private key authentication is used or the hashed password
if a username/password authentication is used. We introduce it to have the
possibility to look up entities during the authentication process and potentially
other processes without traversing the Entity-Hierarchy .

Purpose-Hierarchy and Regulated Purposes. We introduce the Purpose-Hierarchy
for the Purpose-Authorization. The Purpose-Hierarchy is a data structure that
consists of several trees of purposes. For each purpose it is possible to define
Child-Purposes that inherit the rights of the Parent-Purpose (see Fig. 7). There-
fore, only the unique name of p is needed which specifies purposes. This enables
the lpp creator (e.g. drC1) to define a p in general in the first step, e.g. ‘The user
accepts that the dpostal and dsalary is used for ‘Marketing’.’, and in the second
step the privacy officer can define fine-grained inherent processes matching the
requirements of a method description.

We do not assume that it is possible that a Child-Purpose inherits from two
Parent-Purposes.

Additionally, we introduce Regulated Purposes that are given by law and
regulations and don’t have to be described by lpp. For example for the basic
right for disclosure of confidential information [3, Art. 15] we denote the purpose
‘[disclosure]’. Those purposes allow entities to have access to data based upon
the laws and regulations. For example a government agency might have the right
to access specific data for a Regulated Purpose or a user is allowed to access its
own data based upon the introduced Regulated Purpose ‘[disclosure]’.

Entity-Authentication. LPL will not be restricted to an access control solu-
tion by itself but builds upon existing access control methodology that we split
into Entity-Authentication and Entity-Authorization.

Entity-Authentication is necessary to identify an entity ereq that requests the
usage of data. In the following we will focus on the Authentication of an entity
e against a privacy policy lpp. We will show how the previous structures will be
used during the LPP life-cycle.

Creation. In the Creation step of a privacy policy lpp the dr entities will be
defined. Assuming we have a privacy policy lppraw from Eq. (22). The purpose p1
from Eq. (23) allows drC1, representing the company eC1, to use the data ̂D1. For
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each dr, the corresponding publicKey will be added as the value for authInfo.
For the Creation, we assume that the key pair, consisting of publicKeyC1 and
privateKeyC1 for drC1, has been created beforehand.

Negotiation. During the Negotiation step it would be possible to add the dsU1

to lppraw, but the user still could deny the privacy policy which would make
the generation of the public/private key pair obsolete. Therefore, the generation
of publicKeyU1 and privateKeyU1 for dsU1 has to be conducted during the
Pre-Processing step after consent is found.

Pre-Processing. During the Pre-Processing step, the set-up for the ds is con-
ducted resulting in lppdsU1-drC1 , whereas the dsU1 from Eq. (18) is added to
lppraw. Additionally, for each available e of lppdsU1-drC1 including the corre-
sponding publicKey will be saved in the ̂Elook-up, if not available already. This
cannot be done during the Creation because the user dsU1 has not been specified
yet. Therefore, the ̂Elook-up will consist of dsU1, drC1 and drC2.

̂Elook−up = {dsU1, drC1, drC2} (34)

It is important to note that ̂Elook-up may be extended by additional entities, e.g.
departments or employees, by the corresponding privacy officer.

Usage. During the Usage step an entity ereq requests data protected by the
privacy policy lppdsU1-drC1 . To ensure that ereq is allowed to use the data, it has
to be authenticated first. We assume the following scenarii:

Scenario 1: The employee ereq1 of company C1 requests data concerned by
lppdsU1-drC1 .

Scenario 2: The user ereq2 requests data concerned by lppdsU1-drC1 .

The requesting entities have the following configuration

ereq1 = (‘C1’, classification, privateKeyC1, type) (35)
ereq2 = (‘U1’, classification, privateKeyU1, type) (36)

where ereq1 is an employee using the authentication credentials from company
eC1 and where ereq2 represents the user eU1 from which the data protected by
lppdsU1-drC1 originates.

In general, we assume the following authentication process for our scenario.
The ̂Elook-up is traversed to identify matching entities to the requesting entity
ereq. We define that two entities match for our scenario if the following is valid.

erequesting.name == e.name (37)

If a matching entity ematch is found then the publicKeymatch is used to
encrypt a nonce and sent to ereq.

encryptedMessagematch = encrypt(nonce, publicKeymatch) (38)
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To successfully authenticate ereq the computed encryptedMessagematch has
to be decrypted with the privateKeyrequesting and sent back.

decryptedMessage = decrypt(encryptedMessagematch, privateKeyrequesting)
(39)

The requesting entity will be authenticated if the decryptedMessage equals
the nonce.

message = decrypt(encrypt(message, publicKey), privateKey) (40)

With this authentication mechanism we will describe the given scenarii. For
scenario 1, the requesting entity is ereq1. In ̂Elook-up the matching entity is drC1

with both name values are ‘C1’. In the next step it will be evaluated if ereq1 can
authenticate as the drC1 utilizing the public/private key authentication shown
before

nonce = decrypt(encrypt(nonce, publicKeyC1), privateKeyC1) (41)

which results in the authentication success for scenario 1.
In scenario 2, the requesting entity is ereq2. In ̂Elook-up the matching entity

is dsU1. Therefore, the authentication will be executed with publicKeyU1 from
dsU1 and privateKeyU1 from ereq2.

nonce = decrypt(encrypt(nonce, publicKeyU1), privateKeyU1) (42)

This successful authentication will result in the authorization of eU1 as ds
of lppdsU1-drC1 , which allows the requesting entity to have all processing-rights
authorized for the described data in lppdsU1-drC1 as shown in the following.

In general, the authentication process for an entity requires the name of
the requesting entity (entityName) as well as a secret to verify the identity.
The calculation of the secret depends on the individual implementation of the
authentication process which is based upon the authInfo. If a private/public
key pair is used like in the aforementioned scenarii then the secret will be the
decryptedMessage that has to be verified against the nonce. Additional steps
for setting up the encryptedMessage and transferring it to the ereq would be
necessary.

Purpose-Authorization. In the scenarii for Purpose-Authorization, we assume
that the requesting entity ereq is authenticated and therefore only focus on the
verification of the purpose preq given in the query. The query is rejected if the
purpose is invalid.

We assume that a purpose can have Child-Purposes, which are stored in the
Purpose-Hierarchy . We assume the set-up of lppdsU1-drC1 from Eq. (31). More-
over, we assume that the purpose ‘Marketing’, as well as its child-purpose
‘Newsletter’ and the purpose ‘Development’ are available in Purpose-Hierarchy ,
next to the Regulated Purposes given by law and regulations, which we restrict
to [disclosure] in the Purpose-Hierarchy (see Fig. 8). Therefore, we will describe
the following scenarii for our set-up:
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Scenario 1: Entity ereq1 requesting the ̂D1 protected by lppdsU1-drC1 for the
purpose ‘Newsletter’.

Scenario 2: Entity ereq2 requesting the ̂D1 protected by lppdsU1-drC1 for the
purpose ‘[disclosure]’.

In scenario 1, the entity ereq1 requests data for the purpose of ‘Newsletter’. The
data is protected by lppdsU1-drC1 containing only purpose pU1 which name is
‘Marketing’ defining the authorized purpose. Because we consider a Purpose-
Hierarchy , where every Child-Purpose of the authorized purpose is also autho-
rized, a set of Authorized Purposes has to be generated. Therefore, the requested
purpose ‘Newsletter’ will be identified in the Purpose-Hierarchy (see Fig. 8)
and all its Parent-Purposes as well as the purpose itself will be returned
{‘Marketing’, ‘Newsletter’}. Then, the purpose is considered as an authorized
purpose as its name behaves to the calculated purpose set.

In scenario 2, the entity ereq2 requests data for the ‘[disclosure]’ purpose.
The corresponding set of Authorized Purposes consists therefore of {[disclosure]}.
The purpose cannot be found in lppdsU1-drC1 , because this is a Regulated Purpose
defining a special case and a new purpose has to be crafted for it during runtime
automatically. For ‘[disclosure]’ a new purpose pdisclosure will be computed

pdisclosure = (‘[disclosure]’, optOut, required, descr, {drU1}, (43)
r, pm, {d′

postal, d
′
salary})

drU1 = (‘U1’, ‘Person’, publicKeyU1, ‘DataRecipient’) (44)

containing all d of the corresponding lppdsU1-drC1 and the dsU1 is transformed to
the dr of pdisclosure. Hereby d′

postal and d′
salary will be created by removing the

respective am if existent. The authorization of ereq2 will be executed according to
the Entity-Authorization. Therefore, ereq2 is requesting an authorized purpose.

In general, the authorization process for a purpose requires the name of the
purpose and the corresponding lpp (see Listing 1). The authorization is successful
if the name of the requested purpose or any of the corresponding Authorized
Entities matches any of the p of the lpp or if a Regulated Purpose is requested.

Entity-Authorization. In the following, we will focus on the Entity-
Authorization. An entity ereq is authorized to use the data if the dr or ds name
of the lpp matches the name of ereq, whereas name can either specify a role or
a specific user. We assume the employees ereq3 and ereq4 respectively from the
marketing departments M1 and M2 of company C1 and C2.

ereq3 = (‘M1’, ‘Person’, authInfo, ‘DataRecipient’) (45)
ereq4 = (‘M2’, ‘Person’, authInfo, ‘DataRecipient’) (46)

We assume the set-up of lppdsU1-drC1 from Eq. (31). User eU1 gave its consent
on the usage of its personal information for the purpose of ‘Marketing’ for
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1 P authorizePurpose(purposeName , lpp):
2

3 // initialize authorizedPurposes
4 authorizedPurposes = {};
5

6 // receive set of possible purposes
7 possiblePurposes = purposeHierarchy.getParentPurposes(purposeName);
8

9 if possiblePurposes != null
10 // verify if purpose matches at least one p of lpp
11 for possibleP : possiblePurposes
12

13 switch (possibleP)
14 //for each regulated purpose a individual case
15 case ’[disclosure]’
16 authorizedPurposes.add(createDisclosureP(lpp));
17

18 //add purpose if name match
19 default
20 for p : lpp.P
21 if match(possibleP , p.name)
22 authorizedPurposes.add(p);
23

24 return authorizedPurposes;

Listing 1. Pseudocode describing the authorization of purposes of an lpp
utilizing Purpose-Hierarchy . The special cases of Regulated Purposes are shown
exemplary for ‘disclosure’. The Entity-Hierarchy is assumed to be accessible
within the method.

company eC1, which is encoded in lppdsU1-drC1 . No further agreements exist
between user eU1 and company eC1. Company eC1 has a marketing department
‘M1’. Company eC2 has a marketing department ‘M2’. Company eC1 grants
eM2 from company eC2 access to the eU1 data for the purpose of ‘Marketing’
encoded in lppdsC1-drM2 .

eM2 = (‘M2’, ‘Legal Entity’, authInfo, ‘DataRecipient’) (47)

pC1 = (‘Marketing’, optOut, required, descr, {eM2}, r, pm, ̂D) (48)
lpp′

dsC1-drM2
= (version, name, lang, ppURI , lppdsU1-drC1 , dsC1, {pC1}) (49)

Fig. 8. Purpose-Hierarchy for the Purpose-Authorization scenarii. The Regulated Pur-
poses are separated for better understanding.
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Company eC1 and company eC2 exchange their data in a privacy conform
way. We will present the following scenarii:

Scenario 1: The employee ereq3 of the marketing department ‘M1’ requests per-
sonal information of user eU1 for the purpose of ‘Marketing’.

Scenario 2: The employee ereq4 of the marketing department ‘M2’ requests per-
sonal information of user eU1 for the purpose of ‘Marketing’.

Scenario 3: The user eU1 makes use of him being entitled to the disclosure of
confidential information [3, Art. 15], which is the basis for several
additional interests, towards company eC1. Therefore, ereq2 requests
its personal information for the purpose of ‘[disclosure]’.

For authorization we assume a role-based access control (RBAC) system [43]
with the roles in Fig. 9. The permission is provided by the LPL privacy policy.

In scenario 1, the employee ereq3 has the role ‘M1’. Based upon the (under-
lying) privacy policy lppdsU1-drC1 the role ‘C1’ is granted to use the data for
‘Marketing’. ‘M1’ is a child-role of ‘C1’ inheriting the permission to use the
personal data of eU1. Furthermore, the stated purpose in the LPL privacy policy
‘Marketing’ matches the purpose of the requester. This concludes that ereq3 is
authorized to access the personal information of eU1 in scenario 1.

In scenario 2, an employee ereq4 of company eC2 requests to access the per-
sonal data of eU1. The value ‘M2’ ereq4 matches the data recipient dr of pC1. The
purpose ‘Marketing’ matches the purpose defined in pC1 and therefore ereq4 is
authorized to access the data.

In scenario 3, the requesting entity ereq2 matches the DataSource-element
and therefore eU1 is authorized to request the personal data of itself.

In general, the authorization process for an entity requires the name of the
ereq as well as the purpose for which it should be verified against (see Listing 2).
The authorization is successful if the name of ereq or any of the corresponding
Parent-Entities matches any of the dr of the purpose. This process has to be
conducted after the Purpose-Authorization has been executed to consider special
cases that are defined by the law and regulations as shown in scenario 3.

Data-Authorization. We assume that ereq is authenticated, authorized and
uses an authorized purpose for the following scenarii. Hereby, the requested data
̂Dreq has to be verified against the described data within the authorized purposes.
If the verification is not successful, then the query will be rejected.

For the following scenarii we assume that an entity ereq1 is querying dif-
ferent sets of data ̂Dq1 and ̂Dq2. Those requests are validated against pU1 of
lppdsU1-drC1 . It is important to notice that p1 only allows access to dpostal, dsalary
and dage.

̂Dq1 = {dpostal, dsalary} (50)
̂Dq2 = {dpostal, dsalary, dage} (51)
dage = (‘age’, dGroup, dType, required, descr, pGroup, ∅) (52)
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1 boolean authorizeEntity(entityName , p):
2

3 // receive set of authorized entities
4 authorizedEntities = entityHierarchy. getParentEntities(entityName);
5

6 if authorizedEntitites != null
7 // verify if entity matches at least one dr of p
8 for dr : p.DR
9 if match(entityName , dr.name)

10 return true;
11

12 return false;

Listing 2. Pseudocode describing the authorization of an requesting entity e
against a single lpp utilizing Entity-Hierarchy . The Entity-Hierarchy is assumed
to be accessible within the method.

Additionally, we assume that the value of the name identifies a data-field and
no additional matching between the name and the stored data-fields is necessary.
This may change in a real world scenario but will not change basic behaviour
that will be described in the following scenarii for this set-up:

Scenario 1: Entity ereq1 requesting the ̂Dq1 from pU1 of lppdsU1-drC1 .
Scenario 2: Entity ereq1 requesting the ̂Dq2 from pU1 of lppdsU1-drC1 .

In scenario 1, the entity ereq1 requests ̂Dq1 for the purpose of ‘Marketing’. In
this scenario the requested set ̂Dq1 is a sub-set of the data-set ̂D1 defined in pU1.
This means that all requested data-fields are defined in the authorized purpose
and therefore the usage of the data is authorized. In scenario 2, the entity ereq1
requests ̂Dq2 for the purpose of ‘Marketing’. In this scenario, the requested
set ̂Dq2 is evaluated against the data-set ̂D1 defined in p1. Each in ̂Dq2 defined
entry has to be also defined in ̂D1 and return an invalid result as the requested
data ‘age’ is not a member of ̂D1. Therefore, the usage of the data ‘age’ is not
authorized and the whole query will be rejected.

Fig. 9. Example roles for the Entity-Authorization scenarii. The {} denotes a default
role without any processing-rights.
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1 D authorizeData(requestedD , P):
2

3 // initialize authorizedData
4 authorizedData = {};
5

6 //check for each requested data if it is authorized
7 for d : requestedD
8 // several authorized purposes are possible
9 for p : P

10 for dAuthorized : p.D
11 if match(d.name , dAuthorized.name)
12 authorizedData.add(d);
13

14 return authorizedData;

Listing 3. Pseudocode describing the authorization of data from Authorized
Purposes. The set of requested is assumed to be computed from a parsed query.

In general, the authorization process for data requires the name of the data of
the corresponding purpose p (see Listing 3). The authorization is successful if the
name of the requested data matches any of d from any AuthorizedPurpose. This
process has to be conducted after the Purpose-Authorization has been executed.

Minimum Anonymization. The AnonymizationMethod -element is intro-
duced to specify (personalized) privacy settings for each Data-element. Only
the relevant elements and attributes will be described for better understanding
in the following three steps - Negotiation, Pre-Processing and Usage. We denote
the anonymization of the data during the Usage step as Minimum Anonymiza-
tion which is conducted after the Data-Authorization. We assume the following
scenario (see Fig. 10).

The personal data ̂D of an user eU1 is requested by a company eC1. The data
is requested for the purpose ‘Marketing’. The corresponding purpose protecting
the data is pU1 which is described by lppdsU1-drC1 from Eq. (31). We focus only on
the personal data for postal-code dpostal with the value of ‘94032’ (for Passau in
Germany). The configuration of am1 from Eq. (26) describes the anonymization
method ‘Suppression’ with the replacement character ‘*’ starting from the last
character ‘backwards’. The minimum and maximum suppression levels are given.

Negotiation. In the Negotiation step it has to be verified if the, possibly from the
user personalized, privacy policy is valid. The privacy policy is valid if, among
to other conditions, the value of Minimum Level is not greater than the value
of Maximum Level. Initially the value of Maximum Level and Minimum Level
will be defined by eU1, whereas Maximum Level defines the maximal usable
anonymization for eU1 and the value of Minimum Level is an initial recom-
mended proposal for the privacy requirements. This asserts the validity of the
privacy policy before it is stored. We assume that the integrity of the value of
Maximum Level is preserved.
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Fig. 10. Relevant elements and attributes for the anonymization scenario in the state
during the Negotiation and after the Pre-Processing step.

Pre-Processing. In the Pre-Processing step a Hierarchy-element h will be created
for each anonymization method am. This step is conducted after the consent of
the user for the privacy policy is given and before the data and the privacy policy
are stored. In the AnonymizationMethod -element the name specifies the method
applied on the data value. In our scenario, we assume that the anonymization
method chosen by the user is Suppression. The set of AnonymizationMethodAt-
tributes ama is utilized for this process. The ama1 describes the character that
is used for the replacement during the suppression, which is ‘∗’ in this scenario.
The ama2 describes the variation of the anonymization method. Thus, current
scenario suppresses the value with ‘∗’ starting with the end of the postal-code.
According to this configuration the Hierarchy-element will be created, which
contains an ordered list of values, and added to the am. In our scenario the
hierarchy h1 for the postal-code ‘94032’ will contain ̂HE1.

̂HE1 = {‘94032’, ‘9403*’, ‘940**’, ‘94***’, ‘9****’, ‘*****’} (53)

We denote that the first value is at Level ‘0’ and the last element, in this case,
is at Level ‘5’. This Level will be referred to by the ama with Minimum Level
and Maximum Level. The hierarchy h1 will be added to am′

1 replacing am1.

am′
1 = (‘Suppression’, {ama1, ama2, ama3, ama4}, h1) (54)

h1 = (̂HE1) (55)

Therefore, the h1 holds all possible anonymized values for the data value.
The values are ordered in an hierarchical way from the least to most anonymized
value.

Usage. In the Usage step we assume ereq1 is requesting the data of eU1 for
the purpose ‘Marketing’. The corresponding p1 for the request will be pro-
cessed and therefore the defined anonymization method am′

1 has to be applied
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1 value computeAnonymizedValue(d):
2

3 //h(n) returns the hierarchy entry he at position ’n’
4 return d.am.h(selectMinLevel(d.am.AMA).value);

Listing 4. Pseudocode describing the computation for the anonymized value
utilizing hierarchy h.

to achieve the Minimum Anonymization. In this step only the ama with the
key ‘MinimumLevel’ and h are required to determine the anonymized value
(see Listing 4). In our scenario ama3 specifies the Minimum Level of ‘2’, which
means that the value on Level ‘2’ of h1 has to be selected. This results in the
anonymized value of ‘940 ∗ ∗’ for the postal-code.

Application of Privacy Model. The functionality of the PrivacyModel -
element and its corresponding PrivacyModelAttribute-element will be explained
in the following.

In general, a privacy model describes the probability of a record in a data-set
to be identified or de-anonymized [41]. For each record in a data-set, a privacy
model can be defined utilizing pm and pma of LPL. The pm will be processed
after the Minimal Anonymization has been conducted during the Usage step.
To avoid computational overhead, we decided to compute the minimum required
privacy model pmmin and apply it on the data-set. We specify the minimum
required privacy model pmmin as the privacy model with the highest privacy
requirements to guarantee that no initially given privacy constraints are vio-
lated. Therefore, the set of all defined privacy models has to be substituted. We
decided to consider the attacks which are mitigated by the privacy models for a
classification. Table 3 represents such a classification. Based upon this classifica-
tion, a rule-set for minimizing the used privacy models can be created beforehand
which we denote as Privacy Model Substitution Table. According to the classi-
fication, l-Diversity, which is the direct successor to k-Anonymity [9], covers
all attacks of k-Anonymity, namely Record Linkage and Attribute Linkage [41].
Therefore, the set of privacy models ‘ki1-Anonymity’ and ‘li2-Diversity’ will be
substituted to ‘lr1−Diversity’. The value for the parameter ‘lr1’ of the resulting
‘lr1-Diversity’ has to be calculated that it fulfills the privacy requirements of all
prior privacy models. Both values can be treated equivalent because l-Diversity
and k-Anonymity use similar definitions for the privacy. Therefore, ‘lr1’ will
have the maximum value of both ‘ki1’ and ‘li2’ resulting in‘(lr1,max(ki1, li2))’.
According to the properties of t-Closeness, the minimum of the parameters will
be used for the substitution of two t-Closeness privacy models [10]. The substitu-
tion with k-Anonymity or l-Diversity results in no reduction, because t-Closeness
does not cover all the attack models of the other privacy models. Additional rules
will be created by this scheme resulting in the Privacy Model Substitution Table.
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Table 3. Excerpt of mitigated attack models by privacy models [41].

Privacy model Attack model

Record
linkage

Attribute
linkage

Table
linkage

Probabilistic
attack

k-Anonymity x

l-Diversity x x

t-Closeness x x

Table 4. Privacy Model Substitution Table for the scenarii used in Sect. 5.2.

Privacy model set Substitution
privacy model

Substitution privacy
model attribute

{ki1-Anonymity, ki2-Anonymity} {kr1-Anonymity} {(kr1,max(ki1, ki2))}
{li1-Diversity, l2-Diversity} {lr1-Diversity} {(lr1,max(li1, li2))}
{ti1-Closeness, ti2-Closeness} {tr1-Closeness} {(tr1,min(ti1, ti2))}
{ki1-Anonymity, li2-Diversity} {lr1-Diversity} {(lr1,max(ki1, li2))}
{ki1-Anonymity, ti2-Closeness} {kr1-Anonymity},

{tr2-Closeness}
{(kr1, ki1), (tr2, ti2)}

{li1-Diversity, ti2-Closeness} {lr1-Diversity}
{tr2-Closeness}

{(lr1, li1), (tr2, ti2)}

Note that it is possible that another privacy model exists which covers all
attack models which would be more suitable for a substitution, but we limit our
example only on k-Anonymity, l-Diversity and t-Closeness.

The computation of pmmin and the application on the data-set will be
described in the following. For the scenarii we use the Privacy Model Substi-
tution Table shown in Table 4. We assume records for eE1, eE2, eE3 and eE4

representing entries in a database table. For each record we assume that the
record contains the postal-code dpostal and the salary per year dsalary. The val-
ues for each record are summarized in Table 5 for each e.

Table 5. Values for the dpostal and dsalary for each record.

Entity Postal-code Salary

eE1 94032 36.000

eE2 94032 45.000

eE3 94034 38.000

eE4 94032 45.000
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We assume the privacy models 2-Anonymity pm1, 3-Anonymity pm2 and
2-Diversity pm3.

pm1 = (‘k-Anonymity’, {pma1}) (56)
pma1 = (‘k’, ‘2’) (57)
pm2 = (‘k-Anonymity’, {pma2}) (58)

pma2 = (‘k’, ‘3’) (59)
pm3 = (‘l-Diversity’, {pma3}) (60)

pma3 = (‘l’, ‘2’) (61)

Only dpostal, which is classified as ‘QID’, will be considered in the anonymiza-
tion process of k-Anonymity [8]. The specified d and pm are combined in the
corresponding p individually for each record.

pE1 = (‘p’, optOut, required, descr, ̂DR, r, pm1, {dpostal, dsalary}) (62)

pE2 = (‘p’, optOut, required, descr, ̂DR, r, pm1, {dpostal, dsalary}) (63)

pE3 = (‘p’, optOut, required, descr, ̂DR, r, pm2, {dpostal, dsalary}) (64)

pE4 = (‘p’, optOut, required, descr, ̂DR, r, pm3, {dpostal, dsalary}) (65)

Explicit and non-sensitive attributes have been omitted for the following
scenarii. For eE1 and eE2 the privacy model 2-Anonymity pm1 is defined, for
eE3 3-Anonymity pm2 is defined and for eE4 2-Diversity pm3 is defined.

Scenario 1: Data of eE1, eE2 and eE3 are queried, the corresponding purposes
are pE1, pE2 and pE3.

Scenario 2: Data of eE1, eE3 and eE4 are queried, the corresponding purposes
are pE1, pE3 and pE4.

We assume the same purpose ‘p’ for each query and will describe the com-
putation of pmmin and the outcome for each scenario in the following.

In scenario 1, the data of the entities eE1, eE2 and eE3 is queried. The name
of the corresponding privacy models in pm1, pm1 and pm2 are all the same.
Therefore, the value of the corresponding attributes pma1, pma1 and pma2
have to be compared, which show different configurations. The computation of
the pmmin1 results in the value ‘3’ for k, because no additional conflicts occur.
The process will be executed in two steps. First pm1 and pm1 will be substituted
the resulting pm will then be substituted with pm2 to compute pmmin1 finally.
Therefore, for scenario 1 the valid privacy model for the data-set is 3-Anonymity.

pmmin1 = pm2 = (‘k-Anonymity’, {pma2}) (66)

Considering the corresponding values of Table 5 the data-set will be anonymized.
The initial table T will be anonymized to table T’, whereas the postal-code will
by suppressed to ‘9403∗’ for all records to achieve 3-Anonymity (see Table 6).
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1 PM calculateMinimumPM(PM):
2

3 resultPM = {};
4 iteratorPM = PM.iterator ();
5

6 // initialize
7 if resultPM.isEmpty ()
8 resultPM.add(iteratorPM.next());
9

10 while iteratorPM.hasNext ()
11 tempResultPM = resultPM;
12 pm = iterator.next();
13

14 for pm’ : resultPM
15 // subsitutePM utilizes PrivacyModelSubstitutionTable
16 minPM = substitutePM(pm’,pm);
17

18 // replace pm’ in resultPM if necessary
19 if not match(pm’, minPM)
20 tempResultPM.remove(pm ’);
21 tempResultPM.add(minPM);
22

23 resultPM = tempResultPM;
24

25 return resultPM;

Listing 5. Pseudocode describing possible algorithm to select privacy models.

In scenario 2, the entities eE1, eE3 and eE4 are queried. The name of the
corresponding privacy models pm1, pm2 and pm3 differ in this scenario. There
exists a conflict between the privacy models ‘k-Anonymity’ and ‘l-Diversity’.
For the computation of the pmmin2 both the correct privacy model and the
corresponding value has to be determined by substituting first pm1 and pm2 and
then substitute the result with pm3. According to the Privacy Model Substitution
Table the name for pmmin2 will be ‘l-Diversity’ with the value ‘3’ for ‘l’.

pmmin2 = (‘l-Diversity’, {pmamin2}) (67)
pmamin2 = (‘l’, ‘3’) (68)

Considering the corresponding values of Table 5 the data-set will be
anonymized. The initial table T will be anonymized to table T’ (see Table 7). We
assume for this scenario that the salary per year will be generalized to ‘50.000’
and the postal-code will be suppressed to ‘9403∗’ to match the conditions of
3-Diversity. In the scenarii we only showed the examples resulting in one privacy
model. But it is also possible that the result contains several privacy models
after the substitution has been conducted (see Listing 5).

5.3 Provenance

The UnderlyingPrivacyPolicy is introduced in LPL for Privacy Policy Prove-
nance. This means that LPL enables to distinguish between different privacy
policies and their origin. In this example we will show how the provenance is
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Table 6. Transformation of table T to table T’ for the given k-Anonymity privacy
model. Column Postal-code is a QID and Salary is a Sensitive Attribute.

User Table T Privacy model 3-anonymous table T’

Postal-code Salary Postal-code Salary

U1 94032 36.000 2-Anonymity 9403* 36.000

U2 94032 45.000 2-Anonymity 9403* 45.000

U3 94034 38.000 3-Anonymity 9403* 38.000

Table 7. Transformation of table T to table T’ for the given k-Anonymity and l-
Diversity privacy model. Column Postal-code is a QID and Salary is a Sensitive
Attribute.

User Table T Privacy model 3-diverse table T’

Postal-code Salary Postal-code Salary

U1 94032 36.000 2-Anonymity 9403* <50.000

U3 94034 38.000 3-Anonymity 9403* <50.000

U4 94032 45.000 2-Diversity 9403* <50.000

preserved during the Transfer and Usage step (see Fig. 11). Assuming we have
the scenario based on lppdsU1-drC1 and lppdsC1-drC2 . Hereby, dsU1 agrees that the
dpostal will be used by drC1 and drC2 for the purpose of ‘Marketing’.

Transfer. After the user eU1 has agreed on providing the postal-code to eC1 under
lppdsU1-drC1 , eC1 can form a contract with eC2 for outsourcing the ‘Marketing’
task creating lppdsC1-drC2 . Therefore, eC1 ensures the correct usage of the per-
sonal data by transferring the corresponding privacy policy with the personal
data to eC2. To ensure the provenance of the personal data, the privacy policy
of the data-source will be added to the privacy policy of the dr. This represents
the Transfer step, which can be repeated several times.

Usage. We will demonstrate following scenarii after the transfer of the data from
eU1 to eC1 and from eC1 to eC2 has been executed. Hereby ereq5 representing
eC2 and ereq2, the original data source, will be compared as requesting entities
as follows, demonstrating Provenance.

ereq5 = (‘C2’, classification, privateKeyC2, type) (69)

Scenario 1: Request of dpostal from data-warehouse eE3 by ereq5 for
‘Marketing’.

Scenario 2: Request of dpostal from data-warehouse eE3 by ereq2 for
‘[disclosure]’.

We show for each scenario if the request is successful and which source for
the data can be identified. Therefore, we assume the Entity-Authentication,
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Fig. 11. Relevant elements and attributes for the layered privacy policy scenario visu-
alizing the different privacy policy layers when the data is transferred.

Purpose-Authorization, Entity-Authorization and Data-Authorization have been
conducted successfully.

In scenario 1, the lppdsC1-drC2 has to be considered. UnderlyingPrivacyPoli-
cies are considered successively. For lpp the purpose ‘Marketing’ will be autho-
rized successfully according to pU1. The request will be successful and the data
will be anonymized to the value ‘940 ∗ ∗’ according to am1. For lppdsC1-drC2 ,
it is possible to identify eU1 as source when the UnderlyingPrivacyPolicies are
traversed utilizing the algorithm from Listing 6.

For scenario 2, the purpose ‘[disclosure]’ will be authorized successfully as
a Regulated Purpose and pdisclosure will be created. Due to the missing am of
dpostal the value ‘94032’ will be returned. The source for the data is identified as
the same like in scenario 1. For scenario 2, the ds could be identified successfully
despite the original data has been transferred several times already and the
original value ‘94032’ was returned for ereq2. The UnderlyingPrivacyPolicies of
LPL therefore enable the Provenance for the data source.

In general, to determine the source of a data in LPP it is necessary to firstly
identify the data by the name within a purpose (see Listing 6). If the lpp has no
upp then the ds of lpp is the source. If upp is available it has to be checked for
all p of it, if the name is contained. If so the process is repeated till no p with
name is found or no upp is available.

5.4 Retention

The Retention-element r provides the information when the data for a spe-
cific purpose p has to be deleted. With Retention a planned deletion of data is
denoted, which has to be differentiated from an action-based deletion, e.g. like it
is denoted by the right to erasure [3, Art. 17 No. 1 (b)] [3, Art. 17 No. 1 (c)] in
which the user actively withdraws or objects. The retention process is executed
during the Usage step.
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1 e determineSource(lpp , data):
2

3 dataSource = null;
4

5 //if data can be found in any purpose
6 for p : lpp.P
7 for d : p.D
8 //match data according to name
9 if match(data , d)

10 dataSource = lpp.ds;
11

12 // recursivly iterate over all upp
13 if lpp.upp != null
14 temp = determineSource(lpp.upp , data);
15

16 //if dataSource is found
17 if temp != null
18 dataSource = temp;
19

20

21 return dataSource;

Listing 6. Pseudocode describing possible algorithm to determine the source
of data.

There are three basic options that are used to define when the data has to
be deleted for a specific purpose.

For the type Indefinite there is no designation point in time for the deletion
of the data, so the data will not be deleted after a specific time.

r1 = (‘Indefinite’, ∅) (70)

For the type AfterPurpose the deletion of the data depends on the completion
of the purpose p itself, which will have to be managed separately within an
encapsulating framework.

r2 = (‘AfterPurpose’, ‘3 months’) (71)

After the purpose the data for this purpose has to be deleted within “3
months”.

The last type is FixedDate which defines exactly the deletion.

r3 = (‘FixedDate’, ‘01.01.2018’) (72)

Defining that on the 01.01.2018 the data of the corresponding purpose has
to be deleted. The way the processing of data deletion based upon a rule r
differs. One possibility is an automatic data deletion system. Within the system
the data will be deleted exactly at the point in time when the r of the privacy
policy defines it. The deletion checking has hereby to be done regularly. Further
research on the requirements of an automatic data deletion system based on LPL
is part of future work.



LPL, Towards a GDPR-Compliant Privacy Language 77

6 Conclusion and Future Works

This paper presents LPL, a privacy language that takes into account both legal
and privacy-preserving requirements. After deriving the main objectives, we have
given a formal definition of our privacy language. Later on, we describe the life-
cycle of LPL as well as a usage pattern for Query-based Anonymization utiliz-
ing Entity-Authentication, Purpose-Authorization, Entity-Authorization, Data-
Authorization, Minimum Anonymization and Application of Privacy Model.
Additionally, we outline how Provenance, Retention is enabled. LPL does not
cover all privacy aspects, which are partially already discussed by other works.
Furthermore, LPL is an extensible language and can easily let new security and
privacy concepts be integrated.

We consider LPL as a work in progress which we will extend in future works,
hereby we will cover additional aspects of the GDPR by LPL.

First of all, there is an ongoing implementation work of LPL behind which
we aim to validate experimentally a privacy-preserving framework based on LPL
to allow an automatic query-based anonymization for data-storages, like data-
warehouses. Not only anonymization, but also pseudonymization will be covered
in future work and the impact of personal privacy and privacy models on privacy,
utility and the performance will be evaluated.

To support privacy-aware applications (e.g. web-applications), which are
based on such data-storages, it is necessary to optimize the response time for
a query, by minimizing the computational overhead of LPL, so that common
usage of applications is not hindered by privacy. We project a set of optimiza-
tions along the process steps. As examples we could cite the calculation of the
minimum required privacy model or the authorization against every purpose for
a requesting entity, because in both cases the execution time depends on the
amount of processed privacy policies. Additionally we will extend our Query-
based Anonymization to consider sequential queries and releases to avoid a pri-
vacy breach, were we will also consider logical interference.

Furthermore, we project to implement an user-friendly interface that enables
the Data Subject to express simply its consent and have a fast overview over the
privacy policy. Also personal privacy should be facilitated, allowing the user to
refuse predefined purposes or adjust the privacy settings.

We assume that especially the combination of personal privacy and privacy
models will influence the utility of the resulting data-set. Hereby, different fac-
tors, like the amount of personalized privacy policies or the properties of the
data-set, will be investigated with the aim to identify all factors influencing the
trade-off between privacy and utility.

Additionally, diverse Regulated Purposes have to be identified and imple-
mented by our privacy-preserving framework to support the Data Subject Rights
of the GDPR. On one hand this may relieve the Controller from burdensome
manual responses and on the other hand this allows the Data Subjects to rely
on a lawful execution of their requests.

Another future work concerns conflict detection between different privacy
policies expressed in different LPL files. Those might occur during the transfer
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and aggregation of distinct data sources. Assuming the data sources origin from
conflicting legal spaces, further investigations for the resolution of conflicts in
terms of both legal and technical requirements and capabilities have to be exe-
cuted. It is imaginable that Provenance has to be omitted in such a scenario for
the sake of privacy. Therefore, scenarii with trusted and untrusted Controllers
have to be considered in future works to assess under which circumstances Prove-
nance can be provided.

Concluding we want to state that there is a various amount of open challenges
in the field of privacy that arise from the GDPR from which LPL focuses on
enforceable privacy policies.
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Abstract. The Web of Data consists of numerous Linked Data (LD)
sources from many largely independent publishers, giving rise to the
need for data integration at scale. To address data integration at scale,
automation can provide candidate integrations that underpin a pay-as-
you-go approach. However, automated approaches need: (i) to operate
across several data integration steps; (ii) to build on diverse sources of
evidence; and (iii) to contend with uncertainty. This paper describes the
construction of probabilistic models that yield degrees of belief both on
the equivalence of real-world concepts, and on the ability of mapping
expressions to return correct results. The paper shows how such models
can underpin a Bayesian approach to assimilating different forms of evi-
dence: syntactic (in the form of similarity scores derived by string-based
matchers), semantic (in the form of semantic annotations stemming from
LD vocabularies), and internal in the form of fitness values for candidate
mappings. The paper presents an empirical evaluation of the methodol-
ogy described with respect to equivalence and correctness judgements
made by human experts. Experimental evaluation confirms that the pro-
posed Bayesian methodology is suitable as a generic, principled approach
for quantifying and assimilating different pieces of evidence throughout
the various phases of an automated data integration process.

Keywords: Probabilistic modelling · Bayesian updating
Data integration · Linked Data

1 Introduction

There has been a general trend towards generating large volumes of data, espe-
cially with the explosion of social media and other sensory data from smart
devices. The Web is no exception to the accelerating and unprecedented rate
at which digital data is being generated. Because of this explosion, data is now
made available with different characteristics: with different degrees of structure
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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(e.g., structured or unstructured), often semantically annotated (e.g., Linked
Data (LD)), typically stored in various distributed data sources1, often designed
independently using different data models, and maintained autonomously by dif-
ferent actors. This makes it imperative to integrate data from various sources
with the aim of providing transparent querying facilities to end-users [19]. How-
ever, this integration task poses several challenges due to the different types of
heterogeneities that are exhibited by the underlying sources [10,12]. For instance,
in the case of the Web of Data (WoD), LD sources do not necessarily adhere to
any specific, uniform structure and are, thus, considered to be schema-less [5].
This can lead to a great diversity of publication processes, and inevitably means
that resources from the same domain may be described in different ways, using
different terminologies.

The challenging problem of resolving the different kinds of heterogeneities
that data sources exhibit with the aim of providing a single, transparent interface
for accessing the data is known as data integration [10,12]. A traditional data
integration system [19] builds on a mediator -based architecture where a virtual
schema is designed that captures the integration requirements and is presented to
the user for querying. In this approach, the integration schema is seen as a logical
schema since the data still resides in the underlying data sources (as opposed to
being materialized, as is typically the case for data warehouses). Typically, for
the underlying sources to interoperate, two basic capabilities are required: (i)
matching, i.e., the ability to quantify the degree of similarity between the source
schemas and the integration schema (often by considering their terminologies,
and, if available, samples of instance data), the result of which is a set of semantic
correspondences (a.k.a. matches); and (ii) mapping generation, i.e., the ability
to use the set of semantic correspondences in order to derive a set of executable
expressions (a.k.a. mappings) that, when evaluated, translate source instance
data into instance data that conforms to the integration schema.

Dataspaces are data integration systems that build on a pay-as-you-go app-
roach for incremental and gradual improvement of automatically derived specu-
lative integrations [20,30]. In this approach, the manual effort required to set up
a traditional data integration system is replaced with automatic techniques that
aim to generate a sufficiently useful initial integration with minimum human
effort [11,14]. Over time, as the system is continuously queried, users are stim-
ulated to provide feedback (e.g., on query results) that, once assimilated, lead
to a gradual improvement in the quality of the integration [2]. More specifically,
with a view to providing best-effort querying capabilities, dataspaces are envi-
sioned to have a life-cycle (depicted in Fig. 1) comprising the following phases:
(i) bootstrapping, where algorithmic techniques are used to automatically derive
an initial integration by postulating the required semantic correspondences and
using them to derive mappings between the source schemas and the integra-

1 One well-known example portal is the so-called Linked Open Data (LOD) cloud, at
https://lod-cloud.net/.

https://lod-cloud.net/
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tion schema2; (ii) usage, where best-effort querying services are provided to
answer user requests over the speculative integration, and explicit or implicit
feedback [24] is collected to inform the incremental improvement of the inte-
gration; and finally (iii) improvement, where the feedback that has been col-
lected during usage is assimilated in order to improve the initial integration,
e.g., by filtering erroneously-derived semantic correspondences and regenerating
the mappings previously derived from them.

Fig. 1. Dataspace life-cycle phases.

Because dataspaces depend on automation, and because automation can only
generate inherently uncertain outcomes, it is imperative to quantify and propa-
gate uncertainty throughout the dataspace life-cycle [18,31]. Broadly speaking,
it is not obvious how the inherent uncertainty arising during the various phases
of a dataspace system can be quantified and then reasoned with in a principled
manner. Motivated by this challenge, and taking into account the different types
of uncertainty that must be quantified and propagated across the phases of the
dataspace life-cycle, this paper contributes a methodology for quantifying uncer-
tainty (founded on the construction of empirical probabilistic models based on
kernel estimators) and for reasoning with different kinds of evidence that emerge
during the boostrapping phase of a dataspace system using Bayesian techniques
for assimilating: (a) syntactic evidence, in the form of similarity scores generated
by string-based matchers, (b) semantic evidence, in the form of semantic anno-
tations such as subclass-of and equivalent relations that have been asserted in, or
inferred from, LD ontologies, and (c) internal evidence, in the form of mapping
fitness values, produced during mapping generation.

1.1 Motivating Example: Uncertainty in Dataspaces

Our motivating example comes from the music domain. We assume the inferred
schemas for the Jamendo LD source3, denoted by s1, and the Magnatune LD

2 For schema-less sources (e.g., Linked Data sources) schema extraction techniques
can be used to infer schemas (e.g., [5]).

3 https://www.jamendo.com/.

https://www.jamendo.com/
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source4, denoted by s2, depicted in simplified ER notation in Fig. 2 (a) and (b),
respectively. The goal is integrate these to give rise to an integrated schema,
denoted by sint.

Fig. 2. Inferred schemas from LD sources.

For the identification of these candidate semantic matches, several approaches
have been proposed especially by the literatures on schema matching [27] in
the database area, and on ontology alignment [32] in the knowledge representa-
tion area. Figure 3 shows a subset of semantic correspondences (i.e., matches)
that might have been discovered across our example schemas using string-based
matching techniques (e.g., n-gram).

Fig. 3. Example schema matching results.

Figure 4 exemplifies different kinds of semantic evidence regarding our exam-
ple schemas. In this figure, solid arrows denote annotations (e.g., rdfs:sub
ClassOf) either internal, pointing to constructs in the same LD vocabulary, or
external, pointing to constructs in some other LD vocabulary; dashed arrows
denote equivalence annotations that define entities; and dotted lines show exam-
ples of one-to-one semantic correspondences where confidence is measured as a
d.o.b. As this example shows, semantic relationships may exist in addition to
syntactic ones, e.g., mo:MusicGroup is also subsumed by foaf:Group and not
simply named in a syntactically similar way to the latter. Section 3.2 presents a
methodology for quantifying semantic evidence that is founded on the construc-
tion of probabilistic models that can be used to inform a Bayesian approach for
making judgements on the equivalence of constructs.
4 http://magnatune.com/.

http://magnatune.com/
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≡
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Fig. 4. Different kinds of semantic evidence.

Table 1 shows examples of such internal evidence viz., where the fitness val-
ues and corresponding mapping correctness score (as explained in Sect. 2) are
assumed to have been returned by the mapping generation process. Some exam-
ples of mapping queries are provided in Table 2.

Table 1. Example of internal evidence from the mapping generation phase.

map id Target Source Fitness Mapping correctness

m1 : 〈〉 Solomusicartist Musicartist 0.845 0.86

m2 : 〈〉 Track Track 0.256 0.33

m3 : 〈〉 Musicgroup Musicartist 0.92 0.86

m4 : 〈〉 Lyrics Performance 0.0048 0

1.2 Summary of Contributions

This paper describes a probabilistic approach for combining different types
of evidence so as to annotate integration constructs with d.o.b.s on seman-
tic equivalence and on mapping quality. This paper contributes the follow-
ing: (a) a methodology that uses kernel density estimation for deriving likeli-
hoods from similarity scores computed by string-based matchers; (b) a method-
ology for deriving likelihoods from semantic relations (e.g., rdfs: subClassOf,
owl:equivalentClass) that are retrieved by dereferencing URIs in LD ontolo-
gies; (c) a methodology for aggregating evidence of conceptual equivalence of
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constructs from both string-based matchers and semantic annotations; (d) a
methodology for deriving likelihoods from mapping fitness values and mapping
correctness scores using bivariate kernel density estimation; and (e) an empirical
evaluation of our approach grounded on the judgements of experts in response
to the same kinds of evidence. Note that, in this paper, the experiments only
use LD datasets.

The remainder of the paper is structured as follows. Section 2 presents an
overview of the developed solution. Section 3 describes the contributed method-
ologies. The application of bayesian updating, as a technique for the incremen-
tal assimilation of data integration evidence, is introduced in Sect. 4. Section 5
presents an empirical evaluation of the methodology complemented by a discus-
sion of results. Section 6 reviews related work, and Sect. 7 concludes.

2 Overview of Solution

The main focus of this paper is on the bootstrapping phase of a data integration
system. More specifically, the techniques discussed in this section focus on oppor-
tunities for the quantification and assimilation of uncertainty using a Bayesian
approach to assimilate different forms of evidence. Figure 5 stands in contrast
with Fig. 1 and indicates the different types of evidence that inform different
bootstrapping stages in our approach. Our techniques have been implemented
as extensions to the DSToolkit [13] dataspace management system, which brings
together a variety of algorithmic techniques providing support for the dataspace
life-cycle.

Deriving d.o.b.s on Matches. Assuming that declared (or else inferred) con-
ceptual descriptions (e.g., schemas) for the sources and target integrated artefact
are available, the basic notion underpinning the bootstrapping process is that
of semantic correspondences. Given a conceptual description of a source and a
target LD dataset, denoted by S and T , respectively, a semantic correspondence
is a triple 〈cS , cT , P (cS ≡ cT |E)〉, where cS ∈ S and cT ∈ T are constructs (e.g.,
classes, or entity types) from (the schema of) the datasets, and P (cS ≡ cT |E)
is the conditional probability representing the d.o.b. in the equivalence (≡) of
the constructs given the pieces of evidence (e1, . . . , en) ∈ E. Such semantic
correspondences, therefore, quantify (as d.o.b.s) the uncertainty resulting from
automated matching techniques that yield syntactic evidence in the form of sim-
ilarity scores but also taking into account, when available, semantic annotations
from ontologies (as exemplified in Fig. 4).

Deriving d.o.b.s on Mappings. Given a set of semantic correspondences, the
mapping generation process derives a set of mappings M using (in the case of
DSToolkit) an evolutionary search strategy that assigns a fitness value to each
mapping in the solution set. A mapping m ∈ M denotes that one or more schema
constructs from S that can be used to populate one or more constructs from T .
The two sets of schema constructs that are related in this way by a mapping are
henceforth referred to as entity sets and notated as 〈ESS , EST 〉, where ESS ∈ S
and EST ∈ T .
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Fig. 5. Uncertainty propagation and evidence assimilation.

Table 2. Example generated mappings.

Mapping Fitness Value

m1 : 〈sint.Record,SELECT R.title as title, R.maker as maker,
NULL as description, NULL as date created,
T.title as track title, T.paid download as paid download
FROM s2.Record R, s2.Track T
WHERE R.track = T.title〉

0.42459

m2 : 〈sint.SoloArtist,SELECT M.name as name, M.img as img,
NULL as biography, M.homepage as homepage,
M.based near as based near FROM s2.MusicArtist M〉

0.84560

As a result of the search technique used in the mapping generation process,
a mapping fitness value y is a measure of the strength of the internal evidence
that a set of schema constructs in a source entity set ESS is semantically related
to a set of schema constructs in the target entity set EST . In this context,
P (m | f(m) = y) is the conditional probability representing the d.o.b. that an
attribute value in a tuple returned by the mapping m is likely to be correct,
given that the fitness value of m, is y i.e., f(m) = y. Such probabilities, there-
fore, quantify (as d.o.b.s) the uncertainty resulting from the automated mapping
generation technique used, i.e., one that yields mapping fitness values. Table 2
shows some mappings generated between a target schema, denoted by sint and
source schemas, denoted by s1, and s2, resp., along with their associated fitness
value scores.

Types of Evidence. As indicated above, our approach makes use of three dis-
tinct types of evidence: (a) syntactic evidence, in the form of strings that are
local-names of resource URIs; (b) semantic evidence, such as structural relations
between entities, either internal to a vocabulary or across different LD vocab-
ularies (e.g., relationships such as subclass of and equivalence); and (c) internal
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evidence, in the form of fitness values computed during mapping generation.
Table 3 briefly describes the types of evidence used in this paper and introduces
the abbreviations by which we shall refer to them. In particular, if TE is the
set of all semantic annotations, its subsets EE and NE comprise the assertions
that can be construed as direct evidence of equivalence and non-equivalence,
respectively.

Table 3. Types of evidence.

Type ID Description Evidence rule

Syntactic
evidence (LE)

- SLN similar-local-name string similarity(cT , cS)

Semantic
evidence (TE)

SU same-URI string equality(URIS , URIT )

- SB subsumed-by cS � cT

EE SA same-as owl:sameAs(cS , cT )

EC equivalent-class owl:equivalentClass(cS , cT )

EM exact-match skos:exactMatch(cS , cT )

NE DF different-from owl:differentFrom(cS , cT )

DW disjoint-with owl:disjointWith(cS , cT )

Mapping
generation
evidence

- MGE mapping fitness value fitness value(ESS , EST )

Collecting Evidence. To collect syntactic evidence (represented by the set
LE), given two sources, our approach extracts local names from the URIs of every
pair of constructs 〈cs, ct〉 and then derives their pairwise string-based degree
of similarity. Two string-based metrics are used in our experiments, viz., edit-
distance (denoted by ed) and n-gram (denoted by ng) [32]. Section 3.1 explains
in detail how probability distributions can be constructed for each matcher.
To collect semantic evidence, our approach dereferences URIs to obtain access
to annotations from the vocabularies that define the resource. For example,
the subsumption relation cS � cT is taken as semantic evidence. Section 3.2
explains in detail how to construct probability distributions for each kind of
semantic evidence published in RDFS/OWL vocabularies. To collect evidence
on mapping generation, we extract from the set of mappings generated by a
mapping generation algorithm their fitness value, and, therefore, we assume that
the search procedure underpinning the algorithm aims to maximize an objective
function founded on such fitness values [8]. Section 3.3 explains in detail how
to construct probability distributions for mapping fitness values. Later in our
methodology, the probability distributions thus constructed are used to denote
the likelihood of evidence term in Bayes’s formula.
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We use a Bayesian approach to evidence assimilation, i.e., given a degree of
uncertainty expressed as a d.o.b., once new evidence is observed, we use Bayes’s
formula to update that d.o.b. (referred to as the prior) into a new d.o.b. (referred
to as the posterior) that reflects the new evidence. Applying Bayes’s formula
in this way requires us to quantify the uncertainty of the evidence (referred
to as the likelihood). This means that in order to assimilate different kinds of
evidence, preliminary work is needed to enable the computation of the likelihoods
in applications of Bayes’s formula, i.e., the otherwise unknown term required for
the calculation of a posterior d.o.b. from a prior d.o.b. This requirement holds
for the equivalence of constructs, as captured by the posterior P (cS ≡ cT |E)
when the evidence is syntactic (as described in Sect. 3.1) and when the evidence
is semantic (as described in Sect. 3.2). Similarly, preliminary work is needed for
deriving a d.o.b. on mapping correctness, as captured by the posterior P (m |
f(m) = y), where f(m) = y is internal evidence from mapping generation in
which we relate the notion of mapping correctness to the fraction of correct
attribute values in a mapping extent (as described in Sect. 3.3).

The idea behind Bayesian updating [34] is that once the posterior
(e.g., P (cS ≡ cT |E)) is computed for some evidence e1 ∈ E, a new piece of
evidence e2 ∈ E allows us to compute the impact of e2 (i.e., measure how the
d.o.b. is changed in light of e2) by taking the previously computed posterior as
the new prior.

3 Constructing Likelihoods for Evidence

We now provide a detailed account of a principled methodology for constructing
probability distributions from relevant evidence with a view towards enabling a
Bayesian approach to quantifying and propagating uncertainty across the datas-
pace life-cycle.

3.1 Deriving Likelihoods for Similarity Scores

We call syntactic evidence the likelihoods derived from similarity scores pro-
duced by string-based matchers. We study the behaviour of each matcher (in
our case ed and ng) used to derive similarity scores.

To derive probability density functions (PDFs) for syntactic evidence, we
proceeded as follows:

1. From the datasets made available by the Ontology Alignment Evaluation
Initiative (OAEI)5, we observed the available ground truth on whether a pair
of local-names, denoted by (n, n′), aligns.

2. We assumed the existence of a continuous random variable, X, in the bounded
domain [0, 1], for the similarity scores returned by each matcher μ, where
μ ∈ {ed, ng}. Our objective was to model the behaviour of each matcher in
terms of a PDF f(x) over the similarity scores it returns, which we refer to
as observations in what follows.

5 http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org
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3. To empirically approximate f(x) for each matcher, we proceeded as follows:
(a) We ran each matcher μ independently over the set of all local-name pairs

(n, n′) obtained from (1).
(b) For each pair of local-names, we observed the independent similarity

scores returned by the matcher when (n, n′) agrees with the ground truth.
These are the set of observations (x1, . . . , xi) from which we estimate f(x)
for the equivalent case.

4. The observations x1, . . . , xi obtained were used as inputs to the non-
parametric technique known as kernel density estimation (KDE) (using a
Gaussian kernel6) [4] whose output is an approximation f̂(x) for both ed and
ng and for both the equivalent and non-equivalent cases.

We interpret the outcome of applying such a PDF to syntactic evi-
dence as the likelihood of that evidence. More formally, and as an example,
PDF ≡

ed
(ed(n, n′)) = P (ed(n, n′)|cS ≡ cT ), i.e., given a pair of local-names

(n, n′) the PDF for the ed matcher in the equivalent case PDF ≡
ed

yields the like-

lihood that the similarity score ed(n, n′) expresses the equivalence of the pair
of concepts (cS , cT ) that (n, n′), resp., denote. Correspondingly, for the non-
equivalent case, and for ng in both the equivalent and non-equivalent cases.

The PDFs derived by the steps described above are shown in Fig. 6(a) and
(b) for ed and in Fig. 6(c) and (d) for ng. The same procedure can be used to
study the behaviour of any matcher that returns similarity scores in the interval
[0, 1]. Note that the PDFs obtained by the method above are derive-once, apply-
many constructs. Assuming that the samples used in the estimation of the PDFs
remain representative, and given that the behaviour of matchers ed and ng is
fixed and deterministic, the PDFs need not be recomputed.

3.2 Deriving Likelihoods for Semantic Evidence

We call semantic evidence the likelihoods derived from semantic annotations
obtained from the WoD. We first retrieved the semantic annotations summarised
in Table 3. The set TE is the set of all such evidence, TE = SU ∪ SB ∪ SA ∪
EC ∪EM ∪DF ∪DW . We formed the subsets EE ⊂ TE = SA∪EC ∪EM and
NE ⊂ TE = DF ∪ DW comprising assertions that can be construed as direct
evidence of equivalence and non-equivalence, respectively.

To derive a PDF for semantic evidence, we proceeded as follows:

1. We assumed the existence of a Boolean random variable, for each type of
semantic evidence in Table 3, with domain {true, false}.

2. Using the vocabularies available in the Linked Open Vocabularies (LOV)7

collection, we collected and counted pairs of classes and properties that share
6 A Gaussian kernel was used due to its mathematical convenience. Note that any

other kernel can be applied. Of course, the shape of the distribution may differ
depending on the kernel characteristics.

7 http://lov.okfn.org/dataset/lov/.

http://lov.okfn.org/dataset/lov/
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(a) Edit-distance matcher behaviour
(equivalent case).
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(b) Edit-distance matcher behaviour
(non-equivalent case).
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(c) N-gram matcher behaviour
(equivalent case).
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(d) N-gram matcher behaviour
(non-equivalent case).

Fig. 6. Illustration of probability distributions for each matcher over [0, 1].

direct or indirect assertions of equivalence or non-equivalence for all the asser-
tions in TE and NE using SPARQL queries. For example, with respect to
equivalence based on OWL and RDFS class annotations:

SELECT DISTINCT ?elem1 ?elem2
WHERE {

{?elem1 a rdfs:Class .} UNION {?elem1 a owl:Class .}
?elem1 ?p ?elem2 .
FILTER (?p = owl:equivalentClass && !isBlank(?elem2)) }

3. From the set of pairs derived by the assertions in TE and NE, we counted
assertions that can be construed as evidence of equivalence or non-equivalence
for each pair, grouping such counts by kind of assertion (e.g., subsumed-by,
etc.)

4. We used the sets of counts obtained in the previous step to build contingency
tables (as exemplified by Table 4) from which the probability mass functions
(PMFs) for each kind of semantic evidence for both the equivalence and
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non-equivalent cases can be derived. In the case of Table 4, the likelihood
P (EC(n, n′)|cS ≡ cT ) is estimated by the fraction 305/396.

Table 4. Example of a contingency table.

Contingency table Semantic evidence

EC ¬EC Total

cS ≡ cT 305 91 396

cS �≡ cT 0 2552 2552

Total 305 2643 2948

We interpret the outcome of applying such a PMF to semantic evi-
dence as the likelihood of that evidence. More formally, and as an example,
PMF ≡

EC
(EC(u, u′)) = P (EC(u, u′)|cS ≡ cT ), i.e., given the existence of an asser-

tion that a pair of URIs (u, u′) have an equivalence relation, the probability
mass function for this kind of assertion in the equivalent case PMF ≡

EC
yields

the likelihood that the assertion EC(u, u′) expresses the equivalence on the pair
of constructs (cS , cT ) that (u, u′), resp., denote. Correspondingly, for the non-
equivalence case and for all other kinds of semantic evidence (e.g., SB, etc.) in
both the equivalent and non-equivalent cases.

The PMFs derived by the steps described above are also derive-once, apply-
many constructs, but since the vocabulary collection from which we draw our
sample is dynamic, it is wise to be conservative and view them as derive-seldom,
apply-often.

3.3 Deriving Likelihoods for Internal Evidence

We call internal evidence the likelihoods derived from mapping fitness values
returned by the mapping generation process.

Note that in quantifying the uncertainty in respect of matching outcomes, the
hypothesis of equivalence can be modelled as a Boolean random variable. How-
ever, in the case of mapping outcomes, this binary classification is undesirable. In
the case that we adopt a binary setting with two possible outcomes, viz., correct
or incorrect, a correct mapping would be one that produces exactly the same
extent as the ground truth, any other mapping would be deemed incorrect.
However, a mapping may still be useful even if it fails to produce a completely
correct result. In practice, requiring mappings to be correct in this most stringent
sense may lead to few correct mappings whilst ruling out many useful mappings.
Therefore, for mapping outcomes, rather than expecting a pair of constructs to
be either equivalent or not, we are interested in the degree of correctness of a
mapping, and, therefore, we start by associating a mapping correctness score to
a mapping.
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More formally, we denote by �m� the extent of m, i.e., the result of evaluating
m over some instance and introduce a measure δ(m) that assigns a degree of
correctness m as the fraction of correct attribute values in �m�, where δ(m) ∈
[0, 1]. This measure can be computed for a mapping m and the ground truth GT
(taken as an instance) based on the number of identical attribute values between
�m� and GT as follows:

S(m) =
|GT |∑

i=1

maxj=1...|�m�| (tsim(tGTi
, tmj

)) (1)

S′(m) =
|�m�|∑

j=1

maxi=1...|GT | (tsim(tGTi
, tmj

)) (2)

δ(m) =
S(m) + S′(m)
|GT | + |�m�| (3)

where �m� is the set of tuples resulting from the evaluation of m over GT , and
tsim() is a function that computes the similarity between two tuples as the ratio
of identical attribute-aligned values as follows:

tsim(tGT , tm) =

∣∣{a ∈ tGT |tGT (a) = tm(b), aligned(a, b)
}∣∣

arity(GT )
(4)

where a and b are attributes belonging to GT and �m�, resp., tGT (a) is the value
of the attribute a, tm(b) is the value of the attribute b, and aligned(a, b) is true
iff a and b are considered to be a match (i.e., there is a postulated conceptual
equivalence between a and b). Intuitively, S(m) estimates how similar the tuples
in GT are to the tuples in m, and S′(m) estimates how similar the tuples in m
are to those in the GT , whereas δ(m) combines these estimates.

With the goal of deriving likelihoods from internal evidence in the form
of mapping fitness values, we then correlate the latter with the corresponding
mapping correctness scores.

We must study the distribution of mapping fitness values for a comprehensive
set of mappings showing different fractions of correct attribute values in their
extent. We used a comprehensive set of paired observations obtained from a
diverse set of integration scenarios. Using a representative sample of observations
as input to KDE leads to a better estimate of the unknown distribution [33].
To collect as many observations as possible, we exposed the integration tool
(i.e., DSToolkit) to as many types of heterogeneities as are likely to be found in
real-world integration scenarios.

We used MatchBench [9] to systematically inject into an initial schema var-
ious heterogeneities (at the entity, and the attribute levels) between two sets of
schema constructs under the classification proposed by Kim et al. [17]. Examples
of schematic heterogeneities include missing attributes, inconsistent naming, as
well as horizontal and vertical partitionings.

In more detail, in order to derive probability density functions (PDFs) for
internal evidence, we proceeded as follows:
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1. Given a pair of initial schemas (S, T ), we injected a set of systematic hetero-
geneities into the initial schemas as described in [9], where for each hetero-
geneity introduced, so as to derive, using MatchBench, a new pair of schemas
(S′, T ′) that reflects the changes intended for that scenario.

2. For every new pair of schemas (S′, T ′), and a set of matches between S′ and
T ′, we derived, using DSToolkit, a set of mappings M ′ between S′ and T ′.

3. For each mapping mi ∈ M ′, we observed its fitness value f(mi) = y and
computed its degree of correctness δ(mi) = x, based on the extent produced
by the mapping mi and the corresponding ground truth GT (constructed by
hand), giving rise to a pair of measures (xi, yi) which we refer to as observa-
tions in what follows.

4. We assumed the existence of a continuous random variable X ∈ [0, 1] for the
correctness score of a generated mapping.

5. We assumed the existence of a continuous random variable Y ∈ [0, 1] for the
fitness value associated with a generated mapping.

6. The observations x1, . . . , xi, and y1, . . . , yi, i = |M | obtained as described
above were used as inputs to a bivariate KDE (using a Gaussian kernel)
whose output is an approximation of the PDF of the two continuous variables,
f̂(x, y).

We interpret the outcome of applying such a PDF to this internal evidence
as the likelihood of that evidence. The PDF yields the probability of observing
a mapping fitness value y given that a mapping has a correctness score x. More
formally, this is expressed as P (f(m) = y | δ(m) = x). As with the previous
cases, the obtained PDF is a derive-once, apply-many construct. Assuming that
the sample of mappings used for training remains representative, and highly
correlates mapping correctness scores with mapping fitness values, the PDF need
not be recomputed. As is the case with semantic evidence, a certain degree of
domain dependency suggests it is wise to consider the process one whose type is
derive-seldom, apply-often. Figure 7 depicts the resulting bivariate PDF.

4 Assimilating Evidence Using Bayesian Updating

The purpose of deriving likelihood models as described in Sect. 3 is to enable
the evidence to be combined in a systematic way using Bayesian updating. The
procedure for doing so is now described, but the benefits of the procedure are
only discussed in Sect. 5.

We denote by S and T the structural summaries (an ontology or a structural
summary derived by an approach like [5]) that describe, resp., the structure
of a source and a target LD source (over which we wish to discover semantic
correspondences) and that are used to derive a set of mappings between S and T .
Firstly, we show how to assimilate syntactic and semantic evidence to postulate
a d.o.b. on the equivalence of two constructs. Then, we elaborate on how the
Bayesian updating methodology can be used to update the derived posterior in
the light of additional evidence that emerge from the mapping generation phase,
and thereby postulate a d.o.b. on mapping correctness.
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Fig. 7. Bivariate PDF showing the correlation of mapping correctness score with the
mapping fitness values.

Assimilating Syntactic and Semantic Evidence on Matches. Given a
pair of constructs cS ∈ S and cT ∈ T , our objective is to derive a d.o.b. on
the postulated equivalence of a pair of constructs (denoted by H), given pieces
of evidence e1, . . . , en ∈ E. To reason over our hypothesis, we model it as a
conditional probability P (H|E) and apply Bayes’s theorem to make judgements
on the equivalence of two constructs. The classical form of Bayes’s theorem8 is:

P (H|E) =
P (E|H) P (H)

P (E)
. (5)

To formulate the hypothesis for the matches, we assume a Boolean hypothesis
to postulate equivalence of constructs. In this case, the hypothesis can take
one of two states: P (H) = {P (cS ≡ cT ), P (cS 	≡ cT )}. The prior probability,
i.e., P (H) = P (cS ≡ cT ), is the d.o.b. in the absence of any other piece of
evidence (we assume a uniform distribution). Thus, since N = 2, i.e., there are
two possible outcomes our hypothesis can take, the prior probability that one
of the outcomes is observed is 1/N . The probability of the evidence, P (E), can
be expressed using the law of total probability [23], i.e., P (E) = P (E|cS ≡
cT ) P (cS ≡ cT ) + P (E|cS 	≡ cT ) P (cS 	≡ cT ). To use Bayes’s theorem for
deriving a d.o.b. on the hypothesis given the available evidence, it is essential
to estimate the likelihoods for each type of evidence, i.e., P (E|cS ≡ cT ) and

8 Informally, the d.o.b., in the hypothesis given the evidence (the so-called posterior
d.o.b.) is equal to the ratio between the product of the d.o.b. in the evidence given
the hypothesis (which we call likelihood in Sect. 3) and the d.o.b. in the hypothesis
(the so-called prior d.o.b.) divided by the d.o.b. in the evidence.
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P (E|cS 	≡ cT ). For semantic evidence, the likelihoods are estimated from the
contingency tables constructed in Sect. 3.2. For continuous values, like similarity
scores, the constructed PDFs for each matcher from Sect. 3.1 are used to estimate
the conditional probabilities for the likelihoods. To determine these likelihoods,

we integrate the PDF over a finite region [a, b], viz., P (a ≤ X ≤ b) =
b∫
a

f(x) dx,

where the density f(x) is computed using KDE with a Gaussian kernel.
Recall that the idea behind Bayesian updating [34] is that once the posterior

(e.g., P (cS ≡ cT |E)) is computed for some evidence e1 ∈ E, a new piece of
evidence e2 ∈ E allows us to compute the impact of e2 by taking the previously
computed posterior as the new prior. Given the ability to compute likelihoods
for different kinds of evidence, we can use Bayesian updating to compute a d.o.b.
on the equivalence of (pairs of constructs in) two structural summaries S and T .
To see this, let P (e1,...,e

′
n) denote the d.o.b. that results from having assimilated

the evidence sequence (e1, . . . , en). The initial prior is therefore denoted by P (),
and if (e1, . . . , en) is the complete evidence sequence available, then P (e1,...,e

′
n)

is the final posterior. We proceed as follows:

i. We set the initial prior according to the principle of indifference between the
hypothesis that P (cS ≡ cT ) and its negation, so P () = 0.5.

ii. We collect the local-name pairs from the structural summaries S and T .
iii. We run ed on the local-name pairs and, using the probability distributions

derived using the methodology described above (Sect. 3.1), compute the like-
lihoods for each pair and use Bayes’s rule to calculate the initial posterior
P (ed).

iv. We run ng on the local-name pairs and, using the probability distributions
derived using the methodology described above (Sect. 3.1), compute the like-
lihoods for each pair and use Bayes’s rule to calculate the next posterior
P (ed,ng). Note that this is the d.o.b. given the syntactic evidence alone,
which we denote more generally by P (syn).

v. To get access to semantic annotations that span a variety of LD ontolo-
gies, we dereference every URI in S and T to collect the available semantic
annotations e.g., SB(cS ⊆ cT ).

vi. Using the methodology described above (Sect. 3.2), we compute, one at a
time, the likelihoods for the available semantic evidence, each time using
Bayes’s rule to calculate the next posterior (e.g., P (ed,ng,SB,...)), so that
once all the available semantic evidence is assimilated, the final posterior,
which we denote more generally by P (syn,sem), is the d.o.b. on cS ≡ cT ,
where, cS ∈ S ∧ cT ∈ T .

Before carrying out the empirical evaluation of this approach using syntac-
tic and semantic evidence described in Sect. 5, we studied analytically, using
Bayes’s theorem, the effect of each piece of evidence independently. Given a
series of initial prior probabilities in the range of [0, 1] and the evidence likeli-
hoods (see Sect. 3) we computed the posterior probabilities given each piece of
evidence. Figure 8(a) and (b) show how the posteriors P (cs ≡ ct|ed(cs, ct) = s),
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and, P (cs ≡ ct|ng(cs, ct) = s), resp., are updated when the available evidence
is similarity scores computed by the string-based matchers ed and ng. As an
example, consider Fig. 8(a) and assume that we are given a prior probability of
x = 0.5 and a similarity score that is y < 0.5, ed will cause the updated posterior
probability to fall relatively more. In this case, if the similarity score is y = 0.2,
the posterior probability drops to z = 0.2. In the case of ng, using identical
values as previously, the posterior probability drops to z = 0.36, which means
that ng causes a smaller decrease in the posterior than the ed does. In a simi-
lar fashion, the independent behaviours of different kinds of semantic evidence
have been studied. For example, Fig. 8(c) shows how the posterior is updated
when there is direct evidence that a pair of classes stand in a subsumption rela-
tionship (i.e., SB). A subsumption relation may indicate that the constructs are
more likely to be related than to be disjoint and a low initial prior is therefore
increased into a larger posterior. Similarly, Fig. 8(d) shows how the posterior is
affected when a pair of constructs stand in an equivalence relation (i.e., EC).
This is considered enough evidence to significantly increase a low prior to close
to 1; meaning that constructs are much more probably equivalent than if that
evidence had not been available.

Having observed how different posterior probabilities are updated in the pres-
ence of individual pieces of evidence, in Sect. 5 we empirically assess whether the
incorporation of semantic evidence from LD ontologies can improve on judge-
ments on the equivalence of constructs obtained through syntactic matching
alone.

Assimilating Evidence on Mappings. Similarly to the matching case, we use
the Bayesian updating methodology to revise a previously computed posterior
with a d.o.b. on mapping correctness in the light of evidence in the form of fitness
values. For this purpose, we postulate our hypothesis as a degree of correctness
of a mapping m, denoted as the mapping correctness score δ(m) = x. Therefore
the posterior d.o.b. can be expressed using Bayes’s theorem:

P (δ(m) = x | f(m) = y) =
P (f(m) = y | δ(m) = x)P (δ(m) = x)

P (f(m) = y)
(6)

where P (δ(m) = x) is the prior probability that a mapping m has a degree
of correctness x (drawn from a continuous uniform distribution, U(0, 1)), and
P (f(m) = y | δ(m) = x) is the likelihood of observing a mapping fitness value
y for a mapping m, given that m has a degree of correctness x. We use the
constructed PDF described in Sect. 3.3 to compute the conditional probability.
More specifically, and assuming that f(m) and δ(m) are two jointly continu-
ous random variables, described in terms of the derived PDF, the likelihood
P (f(m) = y | δ(m) = x), can be computed using the definition of conditional
probability as follows:

P (f(m) = y | δ(m) = x) =
P (f(m) = y ∩ δ(m) = x)

P (δ(m) = x)
(7)
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Fig. 8. Effect on the posterior probabilities using particular evidence on different prior
probabilities.

where the joint probability P ((f(m) = y ∩ δ(m) = x) ∈ B), B ∈ [0, 1] is
computed with a double integral over the estimated density function (derived
using KDE) f̂(y, x) as follows:

P (f(m) = y ∩ δ(m) = x) =
∫ ∫

B

f̂(y, x) dx dy (8)

The resulting probability, using Eq. 8, can be seen as the area under the
surface conditioned on the event [a − ε ≤ y ≤ a + ε, c − ε ≤ x ≤ c + ε], where
ε is a small positive number. P (δ(m) = x) in Eq. 7, is the marginal probability.
We use the computed probability using Eq. 7 as the likelihood term required by
Eq. 6.

For completeness, P (f(m) = y) in Eq. 6 is a normalization factor to sum the
probabilities to unity. This is the marginal probability denoted by

∫ ∞
−∞ fY (y |

X = x) fX(x) dx.
Finally, P (δ(m) = x | f(m) = y) denotes the posterior probability that

a value produced by a mapping m will be correct given an observed mapping
fitness value y.

The Bayesian updating methodology described above can underpin the uni-
form and consistent assimilation of different types of evidence to yield judge-
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ments on the correctness/quality of the individual artefacts involved in a data
integration life-cycle, i.e., matchings and mappings. Assimilation of new pieces
of evidence leads to updates to the prior d.o.b.s in these artefacts, which can
potentially be propagated to more complex artefacts or other phases in the life-
cycle. Thus, the d.o.b.s in matching equivalences are propagated to the mapping
generation process, which now uses those d.o.b.s as input rather than similarity
scores as in most of the literature on this topic. Similarly, d.o.b.s on mapping
correctness can be used as priors in an improvement phase that assimilate user
feedback on mapping results. Enabling this principled propagation over many
phases of a pay-as-you-go data integration process is a major contribution of
this paper.

We observe that Bayesian updating, as such, is not computationally expen-
sive but, of course, the construction of the likelihoods, which is essentially a
training/induction step, could be, as it is involves labelling. In a real-world appli-
cation where a specific concern leads to the generation of a specific training set,
one would appeal to sampling theory in order to avoid an unnecessarily large
training set. This, of course, need not be large. It rather needs to be representa-
tive of the underlying intended sources. So, this induction step, albeit relatively
expensive, may need to be done once but possibly not again. Unless, of course,
the population from which the sample was drawn changes significantly and irre-
versibly.

5 Experimental Evaluation

The evaluation of our approach is based on the idea of emulating the judgements
produced by human experts in the presence of different kinds of evidence as the
latter emerge from an automated data integration cycle. The collected judge-
ments derived from experts were then compared with the judgements derived by
the Bayesian updating approach (as discussed in Sects. 3 and 4).

This section describes our experimental evaluation, which had the following
goals: (a) to compare how well the Bayesian assimilation of syntactic evidence
alone performs against the aggregation of syntactic evidence followed by a pre-
defined function (viz., average), which is commonly used in existing matching
systems [3,32]; (b) to ascertain whether the incorporation of semantic evidence
can improve on judgements on the equivalence of constructs obtained through
syntactic matching alone; (c) to ascertain whether the derived d.o.b.s on mapping
correctness are consistent with the aggregated testimonies from human experts
against the computed mapping degrees of correctness given a ground truth; and
(d) to compare the d.o.b.s on mappings obtained using the Bayesian approach
with the mapping correctness scores using the ground truth.

5.1 Experimental Setup

Use of Expert Testimonies. To evaluate the application of Bayes’s theorem
for assimilating different kinds of evidence, the experimental evaluation was
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grounded on the rational decisions made by human experts on data integration
and ontology alignment when judging whether a pair of constructs is postulated
to be equivalent given both syntactic and semantic evidence, and postulating
whether a mapping expression will produce correct values, as construed in this
paper. Fifteen human experts were asked (through surveys) to judge the correct-
ness of matches and mapping expressions and their judgements were compared
to the judgements obtained through the use of our methodology. By experts, we
mean professionals in data integration.

Deriving Expert d.o.b.s in the Matching Stage. In the experiments investigating
matching, a set of pairs of constructs from different LD ontologies was collected,
making sure that different combinations of syntactic and semantic evidence (as in
Table 3) were present or absent. To obtain testimonies from the human experts,
a survey was designed based on the collected set of pairs of constructs, asking the
experts to make judgements on the equivalence of such pairs. Testimonies were
recorded on a discretization scale [6], as follows: {Definitely equivalent} mapped
to a d.o.b. of 1.0; {Tending towards being equivalent} mapped to a d.o.b. of 0.75;
{Do not know} mapped to a d.o.b. of 0.5; {Tending towards being not-equivalent}
mapped to a d.o.b. of 0.25; and {Definitely not-equivalent} mapped to a d.o.b. of 0.
By observing different pairs of constructs from real ontologies, approximately 40
common combinations of syntactic and semantic evidence have been identified.
For each combination, a question was designed to obtain individual testimonies
from each responder. Individual testimonies from each question were aggregated
using a weighted average, based on the confidence assigned to each item [6]. The
aggregated d.o.b.s obtained from the survey are treated as an approximation
of the experts’ confidence on equivalence of constructs given certain pieces of
syntactic and semantic evidence and act as a gold standard.

Deriving Expert d.o.b.s in the Mapping Stage. Similarly, for the mapping experi-
ments, a set of mappings and their results were collected and presented to human
experts in order to obtain individual testimonies on the correctness of mapping
results. The mappings were derived by integrating two real-world schemas from
the music domain, viz., Jamendo9 and Magnatune10, using DSToolkit [13]. An
on-line survey, consisting of a set of mapping expressions written in SPARQL
and a sample of the corresponding result tuples, was delivered to expert users
who were asked to postulate how likely it was that a value in the tuples produced
by that mapping would be correct. We used the following discretization scale:
{Definitely correct} mapped to a d.o.b. of 1.0; {Tending towards being correct}
mapped to a d.o.b. of 0.75; {Do not know/Partially correct} mapped to a d.o.b. of
0.5; {Tending towards being incorrect} mapped to a d.o.b. of 0.25; and {Definitely
incorrect} mapped to a d.o.b. of 0. For each question, we aggregated the indi-
vidual testimonies using an average. We treat the aggregated testimonies as an
approximation of a human-derived d.o.b. on mapping correctness.

9 http://dbtune.org/jamendo/
10 http://dbtune.org/magnatune/

http://dbtune.org/jamendo/
http://dbtune.org/magnatune/
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Datasets for the Matching Stage. For the purposes of the matching experiment,
the Bayesian technique was evaluated over the class hierarchies of ontologies
made available by the OAEI (Conference Track). These have been designed
independently but they all belong to the domain of conference organisation.
Note also that these ontologies share no semantic relations between them. Since
our technique assumes such relations for use as semantic evidence, we made
explicit some of these cross-ontology semantic relations using BLOOMS11, a
system for discovering rdfs:subClassOf and owl:equivalentClass relations between
LD ontologies [16]. We note that the contributions reported in this paper are
independent of BLOOMS, in that they can be used regardless of the sources of
semantic annotations. We found that, as it currently stands, the LOD cloud still
lacks the abundance of cross-ontology links at the conceptual level that is implied
by the vision of a Semantic Web. The results reported in this paper consider a
single pair of ontologies from the conference track, viz., ekaw (denoted by S)
and conference (denoted by T ).

Datasets for the Mapping Stage. The set of mappings used in the experiments
was derived using schemas from the music domain. In particular, we used three
schemas: Magnatune (as a source schema), Jamendo (as a source schema), and
DBTune (as the target schema). Magnatune is an online music streaming service
which offers an online music catalog. Jamendo is a linked open data repository.
DBTune is an ontology that describes music artists, records, tracks, and perfor-
mances. The schemas are depicted in Fig. 9.

Expectation Matrix. Given a pair of classes from the class hierarchies of the input
ontologies and given the available kinds of evidence, both syntactic and semantic,
a d.o.b. was assigned for each pair on the basis of the experts’ testimonies. More
formally, we constructed a n × m structure referred to from now on as the
expectation matrix and denoted by Mexp, where n = |S| and m = |T |. The
element ejk in the jth row and the kth column of Mexp denotes the d.o.b.
derived from the expert survey between the jth construct in S and the kth
construct in T according to the pieces of evidence present or absent. Similarly,
we constructed a vector e = e1, . . . , en, n = |M |, where the element ei denotes
the d.o.b. derived from the expert survey for the mapping mi ∈ M , and the
vector b = b1, . . . , bn, n = |M |, where the element bi denotes the d.o.b. derived
by the Bayesian approach for the mapping mi ∈ M .

Evaluation Metric. Let p1, p2, . . . , pn be the d.o.b.s derived for each pair of
classes from the ontologies by either the average aggregation scheme or the
Bayesian assimilation, and let a1, a2, . . . , an be the corresponding d.o.b.s in the
expectation matrix just described. In the same way, let p1, p2, . . . , pn be the
d.o.b.s for each mapping mi ∈ M by the Bayesian approach, and let a1, a2, . . . , an

be the corresponding d.o.b.s from each mapping mi ∈ M by the experts’ testi-
monies. We compute the mean-absolute error, MAE = (|p1 − a1| + . . . + |pi −
11 BLOOMS was configured with a high threshold, viz., >0.8.
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(a) Source Schema: Jamendo, s1.

(b) Source Schema: Magnatune, s2.

(c) Integration Schema: DbTune, sint.

Fig. 9. Schemas for deriving mappings.

an|)/n where |pi − ai| is the individual error of the i-th pair and n is the total
number of such errors. We also compute the correlation coefficient ρ between
mapping d.o.b.s and mapping correctness scores, and between mapping d.o.b.s
and aggregated experts’ testimonies, ρX,Y = cov(X,Y )/δXδY , where X is the
set of mapping d.o.b.s and Y is either the set of mapping correctness scores or
the set of aggregated experts’ testimonies.

5.2 Experimental Design

Traditional matching approaches (e.g., COMA [1]) exploit different pieces of
evidence, mostly from string-based matchers, to assess the similarity between
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constructs in ontologies or in database schemas. Such approaches combine simi-
larity scores computed independently, typically using averages. For the matching
evaluation, the antagonist to our Bayesian approach is a process that indepen-
dently runs matchers ng and ed on the local-names of classes from ontologies S
and T , and produces an average of the similarity scores. The aggregated result
of this computation is a matrix Mavg. The next step is to measure how close the
derived predictions are to the d.o.b.s obtained by the experts’ testimonies. In
doing so, we used MAE as the performance measure since it does not exaggerate
the effect of outliers [15]. The result from computing the error between Mavg

and the expectation matrix Mexp is denoted by δavg.
Similarly, the Bayesian assimilation technique (as described in Sect. 4) was

used (instead of an average) to assimilate the evidence computed by the string-
based matchers on pairs of local-names. The result of this computation is a
matrix Msyn, where n = |S| and m = |T |. The element ejk in the jth row and
the kth column of Msyn denotes the posterior probability P (syn) between the
jth class in S and the kth class in T according to the syntactic evidence derived
from the string-based matchers ed and ng. The next step is to measure how
close the predictions from Msyn are to the expectation matrix Mexp. The result
is denoted by δsyn.

To assess whether semantic evidence can improve on judgements on the equiv-
alence of constructs that use averaging alone to aggregate syntactic evidence, we
first used BLOOMS [16] to make explicit the cross-ontology semantic relations
and used this as semantic evidence. In the light of this new evidence, the Bayesian
assimilation technique updates the posterior probabilities P (syn) for each pair of
classes in Msyn accordingly. The result of this process is a new matrix Msyn,sem

with the same dimensions as Msyn, where, the posterior probabilities for the
elements ejk reflect both syntactic and semantic evidence, P (syn,sem). Again we
denote by δsyn,sem the error calculated between Msyn,sem and the expectation
matrix Mexp. Finally, to complete the evaluation, the individual absolute errors
used for the calculation of δavg, δsyn, and δsyn,sem have been examined.

To evaluate the derived d.o.b.s on mapping correctness, we compared the
resulting d.o.b.s against two measures: aggregated d.o.b.s that were obtained
from testimonies from human experts, and overall mapping correctness with
respect to an available ground truth. In both cases, we observed whether a
derived d.o.b. for a mapping by the Bayesian approach is consistent with the
d.o.b. estimated from human experts, and an estimated mapping correctness
score given a ground truth. We would expect that a low d.o.b., e.g., lower than
0.1 by the Bayesian approach, should relate to a low d.o.b. obtained from either
human experts or from an observed mapping correctness score. In contrast, a
high d.o.b., e.g., greater than 0.6, should likewise relate to a high d.o.b. derived
from human testimonies and from an estimated mapping correctness score. We
use MAE to estimate the overall error between the d.o.b.s by the Bayesian and
the experts’ testimonies, and the computed similarity given an available ground
truth obtained from a Benchmark.
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5.3 Results and Discussion

In experiments 1–3, individual errors are correlated against the expected value
(from experts’ testimonies).

Exp. 1 – Matching: AVG scheme vs. Bayesian Syntactic. The MAE error com-
puted for the average aggregation scheme against the expectation matrix was
δavg = 0.1079 whereas the error as a result of assimilating syntactic evidence
using the Bayesian technique was δsyn = 0.0698. To further understand the dif-
ference in errors, we measured the individual absolute errors that fall into each
of four regions of interest as these are shown in Fig. 10(a). They correspond to
the following minimum bounding rectangles, resp., Region 1 lies below the y = x
error line where AVG error >> Bayesian error and is the rectangle defined by
y = 0.2; Region 2 lies above the y = x error line where AVG error << Bayesian
error and is the rectangle defined by x = 0.2; Region 3 lies below the y = x error
line where AVG error > Bayesian error and is the rectangle defined by y > 0.2;
and Region 4 lies above the y = x error line where AVG error < Bayesian error
and is the rectangle defined by x > 0.2. We note that the larger the cardinality
of Region 1, the more significant is the impact of using semantic annotations as
we propose.

For the traditional aggregation scheme that produced Mavg we counted 3833
matches with individual errors greater than the analogous individual errors
derived by the Bayesian technique that produced Msyn. The use of Bayesian
aggregation significantly outperformed (i.e., has smaller individual errors than)
the use of AVG aggregation scheme for 87.49% of the total. Table 5 summarises
the results for each region showing how many individual errors are located in
each of the regions of interest in both absolute terms and relative to the total.

Exp. 2 – Matching: AVG scheme vs. Bayesian Syn. & Sem. To evaluate our
hypothesis that semantic annotations can improve outcomes we compared the
aggregated errors denoted by δavg and δsyn,sem. The mean absolute error
δsyn,sem = 0.1259 is lower than δavg = 0.1942 with a difference of 0.0683.
Figure 10(b) plots the individual errors for pairs of classes that have some seman-
tic relation between them. We are interested on cases where the individual errors
for the Bayesian technique are smaller than the AVG scheme. In particular, the
points that lie mostly between 0.1 and 0.3 on the x-axis and below the y = x
error line. For 71.43% of the total matches that have some semantic evidence
the Bayesian technique produces results closer to the testimonies, with individ-
ual errors that mostly lie in that region. Table 6 summarises the results for each
region showing how many individual errors are located in each of the regions of
interest in both absolute terms and relative to the total.
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Table 5. AVG scheme vs. Bayesian syn-
tactic.

No. Region Count Perc. (%)

1 Ravg>>Bsyn 3833 87.49

2 Ravg<<Bsyn 215 4.90

3 Ravg>Bsyn 31 0.70

4 Ravg<Bsyn 302 6.89

Table 6. AVG scheme vs. Bayesian syn-
tactic & semantic.

No. Region Count Perc. (%)

1 Ravg>>Bsyn,sem 125 71.43

2 Ravg<<Bsyn,sem 43 24.57

3 Ravg>Bsyn,sem 2 1.14

4 Ravg<Bsyn,sem 5 2.85

Table 7. Bayesian syntactic vs. Bayesian syntactic & semantic.

No. Region Count Perc. (%)

1 RBsyn>>Bsyn,sem 124 89.21

2 RBsyn<<Bsyn,sem 9 6.48

3 RBsyn>Bsyn,sem 5 3.60

4 RBsyn<Bsyn,sem 1 0.72

Exp. 3 – Matching: Bayesian Syn. vs. Bayesian Syn. & Sem. Similarly to Exp.2,
we compared the aggregated errors denoted by δsyn and δsyn,sem considering
only individual errors that have some semantic evidence. Again in this case
δsyn,sem = 0.1259 is closer to the expectation matrix than δsyn = 0.2768 with a
difference of 0.1509. The results of this experiment are summarised in Table 7.
The points of interest in this experiment are the ones where the individual errors
for Bsyn,sem, that considers both syntactic and semantic evidence, are smaller
than Bsyn. For 89.21% of the total matches discovered, that have some semantic
evidence, Bsyn,sem outperforms the configuration of the Bayesian scheme that
utilises syntactic evidence alone, i.e., Bsyn.

For the mapping generation case, we focus on the correlation between the
aggregated d.o.b.s from experts’ testimonies against the overall mapping cor-
rectness score, derived using ground truth, as well as with the d.o.b.s derived by
assimilating mapping generation evidence (i.e., fitness values) using the Bayesian
approach.

Exp. 4 – Mapping Generation: Bayesian d.o.b.s vs. Observed Mapping Correct-
ness. For each mapping in the integration, we observed the d.o.b. derived by the
Bayesian approach (x), and the mapping correctness score (y) using an avail-
able ground truth. We correlate these two measures in a scatter plot depicted
in Fig. 11(a). Here, we can observe that the Bayesian approach (x-axis) is being
more optimistic than the computed similarity using an available ground truth.
One possible reason for this is that the ground truth is inherently rigorous in
the sense that it does not allow for misleading interpretations of the actual data.
Thus, mapping correctness tends to be lower than the derived d.o.b.s. Compar-
ing the two measures, it can be seen that there is a positive correlation between
the Bayesian d.o.b.s and the mapping similarities as, for most cases, a low d.o.b.
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Fig. 10. (a) Shows the regions of interest, (b) Individual errors Bayesian against AVG
scheme.

correlates with a low mapping correctness. Similarly, a high d.o.b. relates to a
high similarity score. The computed MAE for the Bayesian d.o.b.s against the
mapping correctness was δ = 0.1274. The correlation coefficient between the
Bayesian d.o.b.s and the mapping correctness score is 0.92. Furthermore, the
computed MAE for the Bayesian d.o.b.s against the mapping correctness was
δ = 0.1296.

Exp. 5 – Mapping Generation: Bayesian d.o.b.s vs. Experts Testimonies. As in
Experiment 4, here we correlate the d.o.b. derived by the Bayesian approach with
the aggregated testimonies from experts. Figure 11(b) depicts this correlation.
Here, we observe that the experts’ testimony is slightly more optimistic than
the d.o.b.s derived by the Bayesian approach. Moreover, we observe that there
is a positive correlation, i.e., low d.o.b.s are correlated to low d.o.b.s by experts’
testimonies, whereas high d.o.b.s are correlated to high d.o.b.s from experts’
testimonies. The correlation coefficient between the Bayesian d.o.b.s and the
experts testimonies is strong but slightly lower than in Exp. 4, possibly due to
inevitable subjectivity, albeit reduced by expertise, in human judgements. The
computed MAE for the Bayesian d.o.b.s against the testimony from experts was
δ = 0.1113.

We also show the individual errors between the aggregated testimonies from
experts against the overall mapping correctness score, using ground truth. This
is depicted in Fig. 11(c). Here, we observe that in most cases, the individual
errors are low, i.e., <0.2. This may suggest that both techniques derive closely
related measures for individual mappings.
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(a) (b)

(c)

Fig. 11. (a) Inferred quality vs. observed quality, (b) Inferred quality vs. experts’ tes-
timonies, (c) Individual errors overall mapping correctness score vs aggregated experts
testimonies.

6 Related Work

Automatic techniques for bootstrapping a data integration system offers oppor-
tunities for on-demand approximate integrations [31]. This approximation arises
from the different kinds of uncertainty propagated throughout the process of
integration. In the context of LD sources, automatic schema extraction tech-
niques [5] are used to approximate the structure of the sources which is not
strictly enforced. Matching techniques are likely to be uncertain due to the
robustness of the matching techniques where the associations discovered between
the sources require selection and grouping to inform the generation of mappings.
This uncertainty on the match results is propagated throughout to mapping gen-
eration [2] influencing the ability to produce correct results. In this paper, we
make the case that the effects introduced by the inherited uncertainty can be
better understood by assimilating different forms of evidence in a principled, uni-
form manner throughout the integration processes. We then position this work
in relation to other proposals that are concerned with these challenges.
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Reacting to Different Pieces of Evidence for Matching. A variety of
strategies have been proposed in the literature for solving the problem of com-
bining different pieces of evidence about matches, some examples are: average,
weighted average, min, max and sigmoid functions [25]. However, it falls on users
to tune or select the appropriate aggregation method manually according to the
problem in hand. In contrast, the Bayesian assimilation of evidence technique
can be used as an alternative aggregation strategy for assimilating any piece of
evidence, complementing typical aggregation strategies used by state-of-the-art
schema and ontology matching systems [3,27,32]. When the appropriate prob-
ability distributions are made available, the approach presented in this paper
can be used as a generic aggregation strategy that presents results in terms of
d.o.b.s, rather than building on matcher-specific metrics.

Sabou et al. [28] presented an ontology matching paradigm that makes use of
additional external background knowledge that is made available from ontolo-
gies from the Semantic Web. The proposal in our paper makes use of addi-
tional semantic annotations from LD ontologies as evidence with the aim of
improving the decision making of different matchers that mostly work on syn-
tax. Approaches for discovering semantic relations from ontologies e.g., [29] can
be used to provide input to our Bayesian approaches to further improve the accu-
racy, thus improving the decision making of matching approaches. The uncer-
tainty in the decisions made by different matchers has also been observed in [22],
where a similarity matrix that describes the outcome of some matcher is mod-
elled as two probability distributions. An alternative statistical analysis is used
to model the similarity scores distribution returned by each matcher that uses
the parametric beta-distribution to estimate the underlying probability. The pro-
posal in our paper, however, makes no assumptions about the shape or parame-
ters of the underlying distribution, and uses a non-parametric statistical analysis
technique, based on kernel density estimation, to approximate the probability
distributions for each matcher using the sampled data.

We observe that the antagonist in our matching experiments (i.e., taking
the average of a collection of independently-produced similarity scores) is the de
facto standard for schema matching.

Uncertainty Management in Mapping Generation. Dong et al. proposed
an approach to manage uncertainty in data integration by introducing the con-
cept of probabilistic schema mappings, in which a probability is attached to each
generated mapping. This probability is derived from a probability mass function
on the fraction of attributes from a source schema that conform to attributes in
a mediated schema [7]. The assigned probability is used to produce a result con-
sisting of the top-k tuples during the query evaluation process. In our work the
probability assigned to each mapping denotes the d.o.b. that a tuple produced by
a mapping is likely to be correct, whereas in [7] the assigned probability denotes
the d.o.b that a mapping is correct among the mappings that describe the same
source and target concept. In addition, we are not restricted to one-to-one map-
pings, as we also deal with one-to-many relationships. [21] assumes the existence
of a set of matches annotated with probabilities to present a data integration
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process that annotates mappings with probabilities. In relation to mappings,
they use a discrete value to denote the semantic relationship between constructs,
whereas in our work we assign a degree of correctness in the continuous interval
[0, 1]. We do not simply assume the existence of probabilities, instead we have
described a systematic methodology for deriving them. In another study, van
Keulen [35], proposes a probabilistic approach to deal with uncertainty in data
cleaning, mapping and information extraction approaches. Here, uncertainty is
model as random events representing assertions on data instances, i.e., whether
two data instances relates to the same real-world object or not. In contrast, our
approach deals with uncertainty in postulating syntactic and semantic equiva-
lence between schema constructs from different sources.

We observe that there is no comparable antagonist for our mapping gener-
ation experiments insofar as work on mapping generation has mostly stemmed
from the data exchange literature and hence has focussed on generating map-
pings that can be used to materialize core solutions to the data exchange prob-
lem, whereas our contribution aims at producing a quantification of the uncer-
tainty associated with automatic mapping generation that closely correlates with
the corresponding expert judgements.

Most experimental work on automating data integration techniques is by
and large incomparable with ours because, so far, their primary intent has been
on evaluating a point solution (i.e., a technique that applies to a single stage,
such as matching, or mapping generation, of the end-to-end approach) whereas
one of our main goals has been to evaluate a cross-stage technique, i.e., one
of our contributions is to show how the quantified uncertainty resulting from
the matching stage influences the quantified uncertainty associated with the
generated mappings in the subsequent stage.

To the best of our knowledge, our work is the first attempt to evaluate the
techniques on their ability to correlate closely to the corresponding judgement
of experts. This is as ambitious as it is onerous and strongly suggests that future
work is needed to collect more data points and ascertain the true robustness of
our experimental results.

7 Conclusions

The WoD can be seen as vibrant but challenging: vibrant because there are
numerous publishers making valuable data sets available for public use; chal-
lenging because of inconsistent practises and terminologies in a setting that is
something of a free-for-all. In this context, it is perhaps easier to be a pub-
lisher than a consumer. As a result, there is a need for tools and techniques
to support effective analysis, linking and integration in the web of data [26].12

12 We observe once more that, in this paper, the experiments have only used LD
datasets but dataspaces are meant to be model-agnostic and, in particular, DSToolkit
is. DSToolkit is no longer being actively developed but requests for access to the
sources can be sent to the second author. The datasets used are publicly available
in the LOD cloud.
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The challenging environment means: (i) that there are many different sources
of evidence on which to build; (ii) that there is a need to make the most of
the available evidence; and (iii) that it is not necessarily easy to do (ii). This
paper has described a well-founded approach to combining multiple sources of
evidence of relevance to matching and mapping, namely similarity scores from
several syntactic matchers, semantic annotations, and mapping generation evi-
dence in the form of fitness values. The main finding from our experimental
results is confirmation that the contributed Bayesian approach can be used as
a generic approach of assimilating different kinds of evidence that are likely to
emerge throughout an automated integration process, in ways that reflect the
opinions of human integration experts.
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Abstract. Multi-agent systems (MAS) are an active research area of system
engineering to deal with the complexity of distributed systems. Due to the
complexity of business-intelligence (BI) generation in a distributed environ-
ment, the adaptation of such system is diverse due to integrated MAS and
distributed data mining (DDM) technologies. Bringing these two frameworks
together in the content of BI-systems poses challenges during the analysis,
design, and test in the development life-cycle. The development processes of
such complex systems demand a comprehensive methodology to systematically
guide and support developers through the various stages of BI-system life-
cycles. In the context of agent-based system engineering, several agent-oriented
methodologies exist. Deploying the most suitable methodology is another
challenge for developers. In this paper, we develop an exemplar of MAS-based
BI-system called BI-MAS with comprehensive designing steps as a running
case. For demonstrating the new approach, first we consider an evaluation
process to find suitable agent-oriented methodologies. Second, we apply the
selected methodologies in analyzing and designing concepts for BI-MAS life-
cycles. Finally, we demonstrate a new approach of verification and validation
processes for BI-MAS life-cycles.

Keywords: Business-intelligence (BI) � Distributed data mining (DDM)
Multi-agent system (MAS) � Agent-oriented modeling (AOM)

1 Introduction

Business-intelligence (BI) is a modern management support that includes users, dis-
tributed data mining (DDM) processes, intelligence tools, information management,
and analysis processes in order to improve decision-making and business performance
[1–3]. Agent technologies, or multi-agent systems (MAS) [1, 4, 5] are promoted as an
emerging technology that facilitates the design, implementation, and maintenance of
distributed systems. DDM [6, 7] originates from the need for mining intelligence over
decentralized data sources. Furthermore, DDM is known as one of the latest solutions,
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or procedures to reduce massive data-discovery problems in highly distributed envi-
ronments [1].

Researchers apply MAS together with DDM for reducing the complexities of BI-
systems in distributed environments [1, 9, 10]. Additionally, literature also comprises
several types of agent-based architectures and frameworks either in the content of
DDM, or BI-systems in [11–16]. Our studies discover that there exists a lack in
deployment of agent-oriented methodology in these mentioned architectures and
frameworks. Conversely, literature presents numerous types of agent-oriented
methodologies in [17–20, 29–35].

In the context of software engineering [2], each model of the designing phase must
describe a specific aspect of the system under consideration. In fact, the designing
processes of agent-based BI-systems require either an applicable agent-oriented
methodology, or a significant approach to capture requirement specifications and
translate them for the development process. The development process of BI-MAS that
comprise different types of agents in a distributed environment with the ability to
communicate, discover and access data from multiple sites, requires a comprehensive
methodology [3]. The main challenges for developing processes of BI-MAS are the
assigning of agents to perform tasks in parallel and the management of collaborations
and cooperation processes in complex applications [11, 21]. In such complex systems,
developers need a unified agent-oriented methodology for the entire life-cycle of agent-
based BI-systems.

In this paper, we address the current gap in the state-of-the-art for developing a
process of BI-MAS by answering the research question of how to develop a designing
approach for MAS-based BI-systems in distributed environments? To establish a
separation of concerns, we elicit the following sub-questions.

RQ1. What evaluation is required to find applicable methods out of existing agent-
oriented methodologies?
RQ2. What level of support do existing agent-oriented methodologies yield for
developers to define a systematic way for the conceptualization of BI-MAS models?
RQ3. What types of methods and tools are demanded to consider the verification
and validation (V&V) processes for proposed BI-MAS models?

The rest of the paper is structured as follows: Sect. 2 presents the related concepts
of BI-MAS, challenges of traditional BI, and new BI-MAS features in business
environments. Section 3 discusses existing agent-oriented methodologies and their
evaluation results. Section 4 outlines the analysis and detailed design processes of the
BI-MAS architecture by deploying combined agent-oriented methodologies. Section 5
comprises the mapping processes for BI-MAS models to a formalization using Colored
Petri Nets (CPN) and the results from model checking that are explored from validating
and the verification processes of the BI-MAS life-cycle. Section 6 describes the
evaluation results together with a critical comparative discussion that compares the
results of this paper against results from other research work. Finally, in Sect. 7 we
conclude our paper with a summary of our research findings and suggestions for the
future development of our research.
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2 Related Concepts and Challenges

In last decades, research shows that developing BI-systems changes considerably due
to different views of business owners, presentation of business-concepts, and the idea
behind access to business data. To resolve the current challenges of BI-systems,
research studies the combination of MAS and DDM technologies as a new-generation
for such systems. In this section, we briefly discuss main components, current chal-
lenges of BI, and concept of agent-based BI-systems.

2.1 Business-Intelligence Systems

BI is a term that refers to technologies, applications, and practices for the collection,
integration, analysis, and presentation of business information [22, 23]. BI-systems are
a set of applications, technologies and tools for the transformation of raw data into
meaningful and useful information in order to improve decisions and increase business
performance [1, 24]. Therefore, BI refers to broad categories of applications and
technologies that are used for corporate management, optimization of costumer rela-
tions, monitoring of business activities, data mining, reporting, planning, and decision-
making support on all levels of managements [4]. The value of a BI-system for
business is to provide adequate and reliable up-to-date information on various aspects
of enterprise activities in an organization.

BI-systems comprise an integrated set of technologies and tools that contain several
modules such as Extract, Transform and Load (ETL), data warehouse, Online Ana-
lytical Processing (OLAP), and tools for data mining and reporting [24, 25]. ETL is the
set of processes relevant for the transformation, organization, and integration of loading
data from numerous applications and systems into target systems, e.g., data ware-
houses. According to [4], a data warehouse is a subject oriented, integrated, time-
variant, and non-volatile collection of data that provides generalized and consolidated
data in multidimensional views. OLAP techniques use data warehouses designed for
sophisticated enterprise BI-systems for the interactive and effective analysis of data in
multidimensional spaces. Data-mining methods such as association, clustering, clas-
sification, prediction can be integrated with OLAP operations to enhance the interactive
mining of knowledge from various data sources [4].

2.2 Current Challenges of BI-Systems

Recent discussions about BI issues include OLAP techniques, data mining, and data
warehouses [5]. Business users rarely have real time access to data and work on
historical data that are not updated regularly. Most BI-applications need an
expert/specialist to run statistical reports, or data-mining processes to generate reports
for business users [6]. According to [7], the challenges of analyzing and generating
information are reflected with 27.4% when business users try to collect a single version
of real-time fact from multiple data sources and systems. Furthermore, the management
of information challenges is reported with 35.8% for delivering, self-service reporting
and analyzing of data.
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On the other hand, authors of [8] discover that existing BI-systems are deficient in
three points. Firstly, the current BI-systems can only provide solutions for specified
situation. Secondly, current BI-systems cannot deal with data from dynamic environ-
ments. Thirdly, the update speed is slow for BI-systems where the source code must be
rewritten when a new requirement is added. When the size of data highly increases for
existing BI-systems, this is another challenge for BI-analysts to react immediately to
events as they occur. Therefore, real-time BI-systems (RTBI) [6] emerge to provide
real-time tactical support for immediate enterprise actions in reaction to events that
employ classic data warehousing for deriving information. Additionally, RTBI also
need a comparison between present business events and historical patterns in order to
automatically detect problems in distributed environments.

2.3 Concept of Agent-Based BI-Systems

An intelligent agent (or simply an agent) is a piece of software, or a computer system
that performs services and gathers information autonomously [1, 5]. Agents need to
display intelligence properties in order to perceive their environment and be autono-
mous for performing tasks on behalf of the users in heterogeneous environments [9].
Intelligence also improves the capability of an agent, while interacting with the context
to perceive changes during knowledge exploration [10]. Hence, MAS provide an
effective approach for coordination and cooperation among multiple units in complex
distributed systems [11] and therefore, researchers incorporate MAS technology with
data-mining algorithms for developing agent/based BI-systems [12]. Recent research of
literature shows a trend for developing agent-based BI-systems in different domains
such as e-commerce, supply chain management, resource allocation, intelligent pro-
duction and so on [1, 28]. MAS are identified as a multiple role player in BI-systems,
e.g., user behavior learning, customizing interaction information, and user notification
when important events occur. Consequently, recent examples of agent-based BI-
systems are reported about in [1, 4, 10, 27, 28, 54–56].

3 Designing Method

In this research, we propose a new designing solution for novel BI-systems that
combine MAS and DDM technologies. The term of artifact is used to describe the high-
level overview of BI-MAS components and therefore, the design-science research
(DSR) [26] framework is applied for understanding, executing, and evaluating our
proposed artifact. According to [13], for designing a new artifact, rigor is achieved by
appropriately applying existing foundations and methodologies. With respect to DSR,
first, we refer into nine well-known existing agent-oriented methodologies introduced
in [17–20, 29–35]. Our studies discover that each of these methodologies has its own
strengths and weaknesses, and respected coverage phases that are limited by not
covering the entire development life-cycles. Finding and selecting a suitable agent-
oriented methodology can vary regarding the complexity of agent-based BI-systems.
Hence, agent-based BI-systems are designed with different system specifications and
choosing an appropriate agent-oriented methodology is a challenge for developers [14].
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Literature highlights several efforts of researcher for selecting existing agent-oriented
methodologies. In this regard, researchers propose multiple solutions in the format of
evaluation frameworks, comparison methods, and approaches in [30–32]. Each of these
evaluation processes are fulfilled based on different criteria and context to evaluate a
limited number of methodologies. Still, none of these evaluation processes are known
as a standard, or applicable method for comparing methodologies.

In this section for comprehending the analysis and design phases, we first briefly
demonstrate our proposed new artifact BI-MAS life-cycle and applicable functional
and non-functional requirements. Next, we demonstrate the selection processes of
applicable agent-oriented methodology based on each phases of the standard devel-
opment life-cycle (waterfall).

3.1 BI-MAS Life-Cycle

In this research, we consider those functional and non-functional requirements that are
relevant for BI-systems together with DDM and MAS-technology. In general, the
functional and none-functional requirements for a BI-system might be achieved from
the business need within the context of organizational strategies, system structure and
existing business processes. In this research, we assume to focus on the implementation
of MAS technologies in the internal structure of BI-systems. Hence, agents play key
roles in the BI-MAS development phases.

We explain the functional and non-functional requirements with representing a life-
cycle for BI-MAS (as depicted in Fig. 1). The life-cycle starts with receiving an input
from business stakeholders. The remaining life-cycle is defined as automated processes
to find information about particular input-data. To implement agent-abilities for the
entire BI-MS life-cycle, we assume that the workflow and data-flow are carried by
MAS technologies, i.e., dispatching to data-sources, aggregation of information, data-
mining processes, and so on. Table 1 illustrates all required notations used in BI-MAS
life-cycle.

According to [14], system requirements must express the properties of a system and
scenarios that specify the use-cases of intended systems and intended for implemen-
tation. For developing agent-based complex system, requirements and scenarios can be
expressed in various degrees containing formal, semi-formal, and informal [14].
Therefore, we summarize to explain the functional-requirements of BI-MAS by con-
sidering MAS technology sequentially using sub-sections (A–F).

A. BI-MAS shall support a user interface (UI) for business users to navigate, explore
and access into distributed data-sources, and receive information.

B. BI-MAS shall provide the means of aligning business intelligence, business pro-
cess improvement and automation in internal logical work plan and data mining
operation using MAS.

C. BI-MAS must contain those facilities, i.e., parallel ETL and OLAP processes, to
speed-up data exploration processes while data collecting from different source
systems into a more advanced discipline.

D. BI-MAS support parallel processes using MAS technology in data mining and
knowledge discovery process that plays important roles in today’s business area.
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E. BI-MAS shall contain local data warehouse to store historical explored information
within defined time specification.

F. BI-MAS shall emphasis on unifying data representation, cleaning, summarization,
aggregation and understandable querying over transactional stores.

Based on above mentioned assumption, we also deduce the following properties list
as non-functional requirements that are applicable for BI-MAS.

Reactivity - defines ability of an agent to perceive and respond actively the envi-
ronment in a timely manner.
Autonomy - represents ability of an agent to act independently without direct
interaction of user.

Fig. 1. BI-MAS life-cycle.

Table 1. Notation of BI-MAS life-cycle

Starting point of the life-cycle 

Represents task that can be assigned to an agent 

Shows data storage servers 

Used to represent the condition 

Represents data warehouse 

Illustrates optional task 

Ending point of the life-cycle 

118 K. Qayumi and A. Norta



Confidentiality - illustrates ability to protect the agents’ data from other unautho-
rized agents, or other hosts.
Collaboration - indicates the ability of agents to interact with each other to achieve
a common purpose, or objective.
Deliberately - shows activities of agents that represent an output in such a manner
that output of on activity is input for next consecutive processes.
Accuracy - defines ability of agents to present the high quality of its performance
during execution of several functions.
Reliability - illustrates the ability of agent during execution of several processes
without any interruption whether errors occur in the system.
Trustability - represents ability in which an agent trusts another agent in same host
to delegate part of their task in heterogeneous environments.
Security - indicates functions that are applied for agents to protect agent from
another harmful agents, or hosts.

3.2 Agent-Oriented Methodologies

In this section, we briefly explain the nine well-known agent-oriented methodologies as
follows. Tropos is an agent-oriented software engineering (AOSE) [15] methodology
that covers software development processes in five phases of: early- requirements, late-
requirements analysis, architectural-design, detailed design, and implementation. In
early requirements analysis, Tropos focuses on the understanding of a problem by
studying with organizational setting. Secondly, this methodology emphasizes on
analysis phase for a deeper understanding of the environment where software must
operate along with relevant functions and qualities. In the architectural-design phase,
the system global architecture is defined in terms of sub-systems that are interconnected
through data, control, and other dependencies. The required agents are specified at the
micro-level and each agent’s goals, roles and capabilities are specified in detail along
with the interaction behaviors.

PASSI (Process for Agent Societies Specification and Implementation) [16] is a
step-by-step requirement-to-code methodology for designing and developing multi-
agent integrating system. The analysis and design phases of PASSI are determined and
characterized by iterative step-by-step refinement. Therefore, producing a final stage to
concrete design and implementation phases is based on the FIPA standard [16]. In
addition, PASSI is composed of five models that address different design levels of
abstraction such as system requirements-, agent society-, agent implementation-, code-,
and deployment-models.

Prometheus [2] methodology is developed for building agent-based software sys-
tems. The main goal of Prometheus is to have a process with associated deliverables for
industry practitioners and undergraduate students without a previous background in
agents [17]. The Prometheus methodology consists of three phases such as system-
specification, architectural-design, and detailed-design phases. The system-specification
phase corresponds to the motivation layer and focuses on identifying the basic func-
tionalities of a system. The architectural-design phase focuses on the types of func-
tionalities that are delivered by agents. Additionally, this phase determines agent roles,
agent-acquaintance diagrams, data type and protocols that are applicable in system
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architecture. Finally, the detailed-design phase looks at the internal characteristics of
each agent and how it can fulfil its tasks within the overall system.

ADELFE [18] methodology developed to software engineering Adaptive-MAS
(AMAS). In fact, adaptive software is used in situations where either an environment is
unpredictable or a system is very open. This methodology guarantees that software is
developed according to the AMAS theory to cover preliminary-requirements, final-
requirements, analysis, design, implementation and tests. In the analysis phase, an
engineer is guided to decide to use adaptive multi-agent technology and to identify an
agent through the system and environment models. In the design phase, this method-
ology provides cooperative agent models and helps the developer to define local agent
behavior.

MOBMAS (Methodology for Ontology-Based Multi-Agent Systems) [19] is a
software engineering methodology that contains activities and associated steps to
conduct the system development, techniques to assist a process, and a definition of
models. The development process of MOBMAS is highly iterative and incremental
between activities. In total, there are five activities, each focusing on a significant area
of MAS development such as analysis-activity, MAS-organization design- activity,
agent-internal design-activity, agent-interaction design-activity, architecture design-
activity.

MaSE (Multi-agent Systems Engineering) [20] is an established object-oriented
methodology that supports a complete life-cycle to design and develop agent-based
systems. MaSE has been extended to an Organization-based MAS-Engineering (O-
MaSE) framework. Additionally, O-MaSE is an architecture-independent methodology
[2] that consists of three steps: capturing goals, applying use-cases, and refining roles.
Consequently, the design phase has four steps: creating agent classes, constructing
conversations, assembling agent classes, and system design. These steps are also called
models that describe a process to guide a system developer from an initial system
specification to system implementation. Furthermore, this methodology proposes nine
classes of models under its life-cycle such as goal-hierarchy, use-case, sequence-
diagrams, roles, concurrent-task, agent-classes, conversations, agent-architecture, and
development-diagrams [20].

Gaia [38, 39], is known as one of the first complete methodologies for the analysis
and design of MAS. This methodology is applied after gathering requirements that
cover the analysis- and design phases. In the analysis phase, the role model and
interaction model are constructed. The agent model, services model, and acquaintance
model are constructed during detailed design stages. Additionally, the Gaia method has
many similarities with MaSE [21]. In general, both MaSE and Gaia capture much of
the same type of information from requirements. In Gaia methodology, most of the
proposals concentrate on the analysis phase. As a MAS concept is quite complex, this
methodology provides models and guidance that is near to some anthropomorphic
modelling, which is convenient for understanding the system problem [21]. In Gaia,
roles and services help to organize the functionality that is associated to an agent or a
group of agents.

ROADMAP (Role-Oriented Analysis and Design for Multi-agent Programming)
[17, 20] methodology extends Gaia with four improvements such as formal models of
knowledge, role hierarchies, explicit representation of social structures, and
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incorporation of dynamic changes. In this methodology, a complex system is defined as
a computational organization of interacting roles at the analysis stage optimized for
quality goals, and populated with agents at the design stage. The roles in ROADMAP
have runtime realization that allows runtime reasoning, social aspects modifying, and
agent characterizing. In ROADMAP, the models that are constructed in analysis and
design phases including use case-, environment-, knowledge-, role-(characterized by
four attributes: responsibilities, permissions, activities and protocols), interaction-
(contains protocol model), agent-, services-, acquaintance-models.

RAP (Radical Agent-oriented Process) [17, 40] is based on Agent-Object Rela-
tionship (AOR) modeling. The essential objective of RAP/AOR methodology is to
enhance team productivity by agent-based work process management including both
workflows and automatic interactions among team members in a system [2]. Unlike
other mentioned agent-oriented methodologies, RAP/AOR is more concerned with
distributed MAS. In AOR, several models are included, i.e., agents’ actions, event
perceptions, commitments, and claims. The Agent’s role can be represented by AOR
agent diagrams where different agent types may relate to each other through a rela-
tionship of generalization and aggregation.

3.3 The Evaluation Results

Based on the defined life-cycle for BI-MAS (discussed in Sect. 3.1), we need to find a
fitting software engineering development method out of these nine well-known agent-
oriented methodologies. Each of these methodologies has its own respective concept,
modeling language, processes, specifications, principles, etc. It is very difficult to select
one of them by chance without either understanding the development phases, or having
an assessment results. Since the selection process of an agent-oriented methodology is
a challenge [30–32]. finding commonalities between these proposed evaluation
frameworks for performing the evolution process, must be well specified.

On the basis of our study, each of these discussed methodologies has relevant
development steps in their life-cycle similar to the waterfall model [22]. To evaluate
these methodologies, we need criteria in our evaluation processes that fall into the

Table 2. Notations for evaluation process of agent-oriented methodologies.

Notations Descriptions

F For fully coverage
M For mostly coverage
P For partial coverage
N For none or zero coverage
U The sum of total calculation for each methodology
m The number of agent-oriented methodologies
b Represents the respective weights
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Software Requirement categories termed Functional and Non-functional (as illustrated
in Table 3). Thus, the evaluation procedure with detailed description requires an
equation that takes into consideration each phase of development life-cycle [23]. Thus,
we define Eq. 1, in which several criteria are required as Table 2 illustrates.

As outlined in Table 3, to achieve the utility U of an agent-oriented methodology
m, for computing processes, each of these defined variables {F, M, P and N} receives a
score on the scale {3 | 2 | 1 | 0}. It means that 3 denotes full coverage, 2 mostly
coverage, 1 partial coverage, and 0 for none coverage of each components that is used
in each phases of a software development life-cycle. The respective weights (bs), for
the requirements for fully F, the mostly M, and partially P, can be set in many ways.
Our main concern from respective weights b in this equation is bF > bM > bP > bN.

Um ¼ bFF
m þ bm

X
i
Mm

i þ bP
X

j
Pm
j þ bN

X
k
Nm
k ð1Þ

Furthermore, the evaluation results of Eq. 1 are outlined in Table 3. As a result, if
we consider the second row (Non-functional) result that indicates very low scores of
these respective nine methodologies, certain methodologies do not cover non-
functional requirements at all, while others have merely low scores. Similarly, when
we consider Testing, again the coverage is either none, or very low score. We conclude
that none of these listed agent-oriented methodologies support fully the BI-MAS
development life-cycle individually and none of these methodologies has high scores
from initial-stage via very advanced-level of implementation to test processes.

On the other hand, our studies discover that the Gaia methodology, the extended
agent-oriented methodologies ROADMAP and RAP/AOR score best, especially during
the analysis and design phases (also shown in Fig. 2). The MaSE methodology also has
good scores in the analysis and design phases while the Non-functional and Testing
phases have very low scores. Additionally, the ROADMAP and RAP/AOR have a
comparable foundation for their development life-cycle and support each other. It
means both offer promising options in the analysis- and design-phases during
deployment [2].

Table 3. Evaluation result of agent-oriented methodologies.

Development life-cycle Tropos PASSI Prometheus ADELFE MOBMAS MaSE Gaia ROADMAP RAP/AOR

Functional 3 2 3 2 2 2 2 3 2

Non-functional 2 0 0 0 0 1 0 2 2

Analysis 3 1 1 3 2 3 3 3 3

Design 2 2 2 2 2 3 2 3 3

Implementation 2 1 1 2 1 1 1 3 3

Testing (V&V) 1 0 0 0 1 2 1 1 1

Utility m 12 6 7 9 8 12 9 15 14
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According to [17, 43], ROADMAP and RAP/AOR provide a common framework
of system features for specifying, designing, developing, and implementing intelligent
agent systems. At the level of computational design and implementation of these
methodologies the focus rests on different kinds of models from various aspects. For
instance, a goal-model to define actors in the intended system, a domain-model to
identify related objects in the system domain, a knowledge-model to indicate the
properties of objects in their respective contexts, an interaction-model to represent
MAS realistic interactions, and behavior-model to address the decision making and
performing activities of each agent. These contexts support us to select these two
methodologies to cover the analysis- and design-phases for BI-MAS life-cycle.

4 Detailed Design Phase of BI-MAS Architecture

To pursue the ROADMAP and RAP/AOR methodologies along with AOM techniques
[2] for fulfilling the analysis- and design-phases, our objective is to develop several
required models that transfer the defined functional and none-functional requirements
along with the terms of agent functions, roles, and behaviors. To provide a clearer
understanding from the analysis- and design phases, we consider the graphical notation
that is sufficiently expressed to handle the complexity of BI-MAS in following
subsections.

4.1 The Goal Model

In the goal model of BI-MAS that is depicted in Fig. 3, we first present the root-
functional goal of Run BI-system with the attached role of Stakeholder. According to
ROADMAP and RAP/AOR methodologies [2], the root-functional goal is called the

Fig. 2. Statistical analysis of agent-oriented methodologies
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value proposition that is too complex and therefore must be further refined into
manageable functional sub-goals. During characterizing the BI-MAS goal model,
simple tree-hierarchy schema diagram is generated by strict top-down decomposition.
This schema leads us to connect one particular agent per branch that contains relative
sub-tasks relevant to one requirement. To achieve a goal, the system requires a specific
role for each agent and also sub-goals with quality goals to represent functional and
non-functional requirements. In the first case, the quality goals Autonomy and Col-
laboration mean that the agents of a BI-system are capable of performing their tasks
autonomously and support each other during knowledge exploration. The main goal
includes roles and sub-goals that define capacities, or positions with functionalities that
are needed for the BI-MAS.

We decompose the main goal that is associated with Present information into
smaller related sub-goals such as Arrange schedules, Orchestrate selection processes,
Dispatch to data-sites, Mining data, and Aggregate information. The Arrange sched-
ules goal is decomposed into four sub-goals of Receive input data, Activate Miner,

Fig. 3. The goal model of the BI-MAS.
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Assign task for Miner, and Store information in assignment table. Additionally, this
goal is attached to the role of Scheduler and the quality goal of Reliability that rep-
resents the responsibility of an agent for setting an assignment to other single, or a
group of agents based on the received input data. The Orchestrate selection processes
goal includes two sub-goals Control processes and Activate Dispatcher with a quality
goal of Trustability.

Furthermore, this goal is attached to the role of Facilitator that is responsible for
activation and termination of Dispatcher agents. The Dispatch to data sites goal
comprises also two sub-goals Search for new information with the quality goal of
Security, and Transfer new information to data warehouse with an attached quality
goal of Confidentiality. We attach the role of Dispatcher to this goal that is responsible
to explore new information from different data-sites for transferal to a data warehouse.
The Mining data goal contains three sub-goals Evaluate available data, Apply mining
algorithm, and Send extract knowledge to Aggregator. This goal also attaches to the
role Miner together with the quality goal of Deliberately that represents the perfor-
mance of agents during knowledge exploration for sharing with other mining pro-
cesses. The Aggregate information goal includes three sub-goals Receive mining
outcome, Apply aggregation process, and Forward result to Stakeholder. We describe
these goals with the attached role of Aggregator with the quality goal of Accuracy that
is responsible to obtain knowledge from other miner agent/agents separately and after
the modification and collection processes, it submits the result to the Stakeholder.

4.2 The Domain Model

With respect to ROADMAP and RAP/AOR methodologies [2], for each defined role
there must be an agent mapped in. The model that shows knowledge about the envi-
ronments and illustrates relationships of agents is called domain model [24]. In this
section, we discuss the domain model that represents the entities of the problem domain
that are relevant for BI-MAS environments (shown in Fig. 4). This model describes the
main domain entities, the agents’ roles, and their relationships with each other within
two environments. In fact, an agent environment produces and stores objects that can
be modeled as resources, which are accessed by agents [2]. In this regard, we consider
two types of environments in which the agents either exist or migrate to. The local
environment where all the activities of agents perform between each other, are also
called agent host [6]. The distributed environment where the Dispatcher agents can
migrate to is related to Data sites of system. The agent that plays the role of Stakeholder
can interact with real BI users in a local environment via User interface.

All other remaining agents are software agents identifiable based on their activities
between these two environments. For instance, the Scheduler agent is responsible for
activating and assigning tasks to theMiner that is situated in the local environment. The
System assignment table comprises domain entities where all information about agents
and their responsibilities are stored that belong to this environment. The Miner agent is
responsible for discovering knowledge from a Data warehouse that is modeled as a
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domain entity of the local environment. In addition, the Aggregator has a responsibility
to summarize the collected information from the Miner agent and submit to Stake-
holder. Furthermore, the data sites of a system is modeled as a domain entity (Different
data sites) in the domain model that belongs to a distributed environment. Here, the
Dispatcher agent is responsible for transferring new information from a distributed to
local environment.

In the next section, we derive a knowledge model from the domain entities that is
relevant for the agent knowledge base.

4.3 The Knowledge Model

A knowledge model can be viewed as an ontology that provides a framework of
knowledge for agents of problem domains [2]. The agents’ knowledge model
demonstrates the agent role, internal knowledge and the relationship with objects in the
environment. Agents represent information about itself via knowledge attributes that
are intrinsic properties of an agent. There are two kinds of attributes: numeric- and non-
numeric attributes. A non-numeric attribute of an agent represents one or more quality
dimensions. The knowledge-attribute types are string, integer, real, boolean, date and
enumeration. In the knowledge model depicted in Fig. 5, each agent is modeled by
representing a type, name, id, and relationships within an environment. For instance,
the Miner agent knows about the task that is assigned by the Scheduler agent, and
knows about the DataWareHouse where it can search to explore new knowledge.

Fig. 4. The domain model of the BI-MAS.
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Several objects of various types such as SystemAssignmentTable, DataWareHouse,
Data sites of system, and User interface, are defined in the knowledge model. These
objects are shared between all agents playing different roles in the BI-MAS component.
For instance, the SystemAssignmentTable in which all information about the agents
activities are stored by the Scheduler agent is shared between the Facilitator, Miner,
and Dispatcher agents. Moreover, in each object of the knowledge model, several
related attributes and predicates are defined. For example, the object of Sys-
temAssignmentTable in Fig. 5 describes the attributes of OperationId, InputId, AgentId,
StartTime, and EndTime that represent the information relevant to each agent. Fur-
thermore, SystemAssignmentTable illustrates several status predicates of agents such as
isUnscheduled, isScheduled, isInProcess, and isCompleted that are demonstrates the
status of agents. Next, we describe more about what message flow and interaction
occur between agents involved in BI-MAS.

4.4 The Interaction Model

According to ROADMAP and RAP/AOR methodologies [2], the interaction modeling
must represents the interaction links between multiple agents of a system. Through
interaction modeling, we exhibit a clear concept for an observer to understand what
message flow and interaction occurs between agents and how the sequence of actions
are performed by each agent. Additionally, the interaction model can be captured by

Fig. 5. The knowledge model of the BI-MAS.
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any of interaction-diagrams, or interaction-sequence diagrams, or interaction-frame
diagrams. Below, we depict the interaction-diagram between Scheduler, Miner,
Facilitator, Dispatcher, and Aggregator agents with a depicted scenario of the mining
processes.

In interaction model depicted in Fig. 6, the arrows between agents demonstrate the
existence of an interaction link that allowing an agent to initiate interaction with
another agent. In general, an interaction can occur either by sending a message to
another agent or performing a physical action affecting to it. Information about each
interaction is extracted from responsibility, or role of each agent. In this diagram, each
action event is characterized by a sequence number. These numbers constitute an
interaction sequence between agents that are involved in this diagram.

Next, we elaborate the system scenario and behavior model that identify the
sequence of various activities in which each agent plays a specific role in BI-MAS
concept.

4.5 The Behavior Model

A behavior model is a scenario that is described to achieve the system goal by system
agents [2]. A scenario can be defined also as collective activities that involve either a
single, or multiple agents. Similarly, a scenario is illustrated with sub-scenarios that are
corresponding to sub-goals of the system. In this section, we present a motivational
scenario for each agent that has a specific role in BI-MAS. This scenario is based on the
format of a goal-based use-case that is originally used in the RAP/AOR methodology
[25]. For instance, the scenario corresponding to the goal “Present Information”

Fig. 6. The interaction model of the BI-MAS.
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(as illustrated in Table 4) has five sub-scenarios with respective sub-goals such as
“Arrange schedules”, “Orchestrate selection processes”, “Dispatch to data sites”,
“Mining data”, and “Aggregate information”. In addition, during the behavior mod-
eling, a scenario can be triggered by a situation that involves the agent initiating related
scenarios. For example, a scenario to reach for system goal “Present Information” is
triggered by an action “Send input data” that is performed by a Stakeholder (shown in
Table 4).

Table 4. A Scenario for achieving the goal “Present Information”.

SCENARIO 1

Goal Present information

Initiator Stakeholder

Trigger Send input data by Stakeholder

Description
Condition Step Activity Agent

type/roles
Resources Quality goals

1 Arrange Schedules
(Scenario 2)

Scheduler Input data Reliability

If data warehouse
is empty

2 Orchestrate selection
processes
(Scenario 3)

Facilitator Trustability

3 Dispatch to data-
sites (Scenario 4)

Dispatcher Input data Reactivity,
security, and
confidentiality

4 Mining data
(Scenario 5)

Miner Data
warehouse

Deliberately

If new explored
information is not
same

5 Aggregate
information
(Scenario 6)

Aggregator New
knowledge

Accuracy

Table 5. A Scenario for achieving the goal “Arrange schedules”.

SCENARIO 2

Goal Arrange schedules

Initiator Scheduler

Trigger Input data received by Scheduler

Description
Condition Step Activity Agent

type/roles
Resources Reliability

1 Receive input data Scheduler Input data
If more than one input
data arrive

2 Activate Miner agent Scheduler Input data

3 Assign task for Miner Scheduler Input data
4 Store information in

assignment table
Scheduler Input data
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Table 6. A Scenario for achieving the goal “Orchestrate selection processes”.

SCENARIO 3

Goal Orchestrate selection processes

Initiator Facilitator

Trigger Assign task for Miner by Scheduler

Description
Condition Step Activity Agent

type/roles
Resources Quality

goals

1 Control
processes

Facilitator Assignment
table

Trustability

If the requested data
more than one

2 Activate
Dispatcher

Facilitator

Table 7. A Scenario for achieving the goal “Dispatch to data sites”.

SCENARIO 4

Goal Dispatch to data sites

Initiator Dispatcher

Trigger Agent function activates by Facilitator

Description
Condition Step Activity Agent

type/roles
Resources Quality goals

If data belong to different
data sites

1 Dispatch to data-
sites

Dispatcher Different
data sites

Reactivity

If the new information is
not already in data
warehouse

2 Search for new
information

Dispatcher Data
warehouse

Security

3 Transfer new
information to data
warehouse

Dispatcher Data
warehouse

Confidentiality

Table 8. A Scenario for achieving the goal “Mining data”.

SCENARIO 5

Goal Mining data

Initiator Miner

Trigger New information transferred to data warehouse by Dispatcher

Description

Condition Step Activity Agent
type/roles

Resources Quality
goals

1 Evaluate available data Miner Data
warehouse

Deliberately

If data transferred more than
one data site

2 Apply mining algorithm Miner

3 Send extract knowledge to
Aggregator

Miner
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Agent behavior models are platform-independent [2], and can be expressed only in
terms of an abstract agent architecture. According to the abstract agent, an agent
behavior is determined by a controller based on agent perceptions and knowledge. In
this model (shown in Fig. 7), the controller is modeled in the terms of roles and
behavior that is relevant for BI-MAS requirements. In fact, the agent’s role starts a
sequence of activities comprising various actions. During the execution of each cycle
of an abstract agent, each agent role can be recognized and triggered by a perception.
Each defined agent can percept a message, or action that is performed by other agents.
In addition, some types of roles are not triggered in a system and occur as a start event
once per each execution cycle of an abstract agent. For instance, Fig. 7 represents the
behavior of an agent called Scheduler who initiates the execution life-cycle process by
perceiving input data.

The sequences of roles that are marked with R mean the following. R1 shows
activities “Receive input data”, “Activate Miner agent”, “Assign task for Miner”, and
“Store information in assignment table” that are listed in Table 5. The condition
attached to role R3 means it is triggered only if the requested input data does not exist
in the data warehouse. According to R3, the Facilitator performs activities that are
outlined in Table 6. Consequently, role R4 follows the Dispatcher with performing
activity types “Search for data” and “Transfer new information to data warehouse” (as
illustrated in Table 7). When the data is transferred in the data warehouse, the role R2
starts the activities of type “Evaluate available data”, “Apply mining algorithm”, and
“Send extract knowledge to Aggregator” (as illustrated in Table 8). Finally, after
receiving a confirmation message about new explored information, the role R5 is
started with activities types “Receive mining outcome”, “Apply aggregation process”,
and “Forward result to Stakeholders” by Aggregator (as illustrated in Table 9). To
know more about the notations that are used in agent behavior model demonstrated in
Fig. 7, we refer the reader to reference [2].

Table 9. A Scenario for achieving the goal “Aggregate information”.

SCENARIO 6

Goal Aggregate information

Initiator Aggregator

Trigger New knowledge shared by Aggregator

Description
Condition Step Activity Agent

type/roles
Resources Quality

goals

1 Receive mining outcome Aggregator New
knowledge

Accuracy

2 Apply aggregation process Aggregator New
knowledge

3 Forward result to
Stakeholders

Aggregator New
knowledge
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4.6 Overview of BI-MAS

As illustrated in Fig. 8, the baseline system requirements are transferred into a high-
level overview of BI-MAS by performing the analysis- and design-phases with the
support of the ROADMAP and RAP/AOR methodologies.

In Fig. 8, we present a three layered view for the BI-MAS framework. In this
research, the main focus is on the agent-level and therefore, the important components
of the BI-MAS comprise agents with different roles defined into an integrated layer-
based structure. Each layer comprises a single, or multiple agents that have key roles to
perform specific functional requirement (discussed in Sect. 3.1). To determine the
correlation among each layer, we assume to have one agent in the interface level and
the remaining must be defined on the operating level. For instance, the Stakeholder

Fig. 7. The behavior model of the BI-MAS.
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agent is defined as a human agent that interacts with the BI-MAS stakeholders through
User Interface. For simplicity, the User Interface module comprises functionality to
capture the input data (keywords) and reports back the research result (new explored
information) to stakeholders via BI-MAS system interface. It means that the operation
of BI-MAS follows sequences, i.e., an operation starts from the top (User Interface) to
bottom, and from the bottom to the top, while the research results are found and
transferred to stakeholders. The remaining agents (as shown in Fig. 8) are defined in
the processing level as follows:

Scheduler Agent - agent is responsible to This agent is responsible to receive the
requested keywords and determine the types of operations defined under the BI-
system and creates a work plan for other agents accordingly. After assigning tasks
to a single-, or group of agents, updated information is stored into the System
Assignment Table (as shown in Fig. 4).
Facilitator Agent - This agent is responsible to facilitate the mining process due to
activation and termination of the Dispatcher agents. Moreover, this agent comprises
a knowledge module that stores the history of requested keywords and previously
retrieved information in the data warehouse that helps the Miner agent to explore
new information without -waiting for the Dispatcher agent.
Miner Agent - The Miner agent plays an important role in the mining of data from
the local environment (Data warehouse) by deploying mining algorithms. Addi-
tionally, this agent comprises a module to share the explored information auto-
matically with other Aggregator agent.

Fig. 8. The general overview of the BI-MAS.
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Dispatcher Agent - To dispatch the agent into different data-sites, we use mobile
agents [26] that have the capability to travel into different network locations via
Internet connections. This agent is responsible to determine the computational
resources at different domains and store the retrieved information into data
warehouse.
Aggregator Agent - This agent is responsible to aggregate the collected new
information received from either single, or multiple Miner agents. In order to
present a compact and meaningful knowledge, the Aggregator agent plays a
transformation role by resolving the conflicts and contradictions of newly mined
information. Finally, this agent is responsible to report back the obtained knowledge
to the Stakeholder agent.

Moreover, in Data level, we assume to represent distributed data sites that might
have different types of databases with different datasets. With respect to the analysis
and design phases, the developed life-cycle of BI-MAS requires to verify and validate
with effective and technical methods.

In the next section, we describe the mapping processes of BI-MAS into several
formalization format.

5 Mapping the BI-MAS Models to a Formalization

In general, the verification and validation (V&V) [27] processes are conducted to
assure the quality of product-, or development life-cycle based on system requirements.
According to [28], the construction of V&V processes of self-adaptive software sys-
tems such as agent-based distributed systems have remained a very challenging task for
developers. There is a need for novel V&V methods to provide assurance of the result
for the entire life-cycle of complex-systems. As illustrated in Table 3, even the V&V
processes are not supported fully by any of existing agent-oriented methodologies. In
this section, we intend to represent a new approach of V&V processes for BI-MAS
with new methods and tools.

In this regard, our studies show that CPN-tool receive interest of researchers for
designing V&V processes of distributed systems [29]. With respect to [47, 48], Colored
Petri Nets (CPN) is a notation for the modeling and validating of systems in which
concurrency, communication, and synchronization are the foci. In order to formulate
the BI-MAS life-cycle, it is important to map BI-system models to a formal and
deterministic notation that allow us to fulfill the V&V processes. To accomplish the
V&V processes, we consider CPN-tools that supports extensions with time, color, and
hierarchy for modeling and analysis of distributed systems by a graphical simulation
tool [30]. The CPN language allows to organize a model as a set of modules, and it
includes a time concept for representing the time token to execute events in the
modelled system. The modules connect with each other through a set of well-defined
interfaces in a similar way as known from many modern programming languages.
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Table 10. Acronyms, names and descriptions of token colors.

Level CPN
module

Data
property

Description Type

1 BI-MAS sc Scheduler unique id based on that receives
input data from stakeholder/stakeholders

Integer

sh Based on this numbers, several stakeholders
can request multiple keywords with specific id

mid Activating numbers for Miner agents
key Stakeholder keywords searching for new

knowledge
String

s The final explored new knowledge
t The time sequences in which the data is arrived

in a place from different data-sites
Time

2 Activate
Agents

sh1 The stakeholder id that is stored in temporary
place to fulfill the aggregation processes

Integer

key1 The stakeholder keyword that is stored in
temporary place to fulfill the aggregation
processes

String

s1 The final explored knowledge that is stored in
temporary place to fulfill the aggregation
processes

t1 The time sequences that are used to compare
two results arrived from different data-sites
based on one keyword

Time

3 Search
for data-
sites

dsid Activated numbers for Dispatcher agents Integer
t The time that is generated for each sequence of

data, which is explored from different data-sites
Time

4 Data-
site1

sid1 Unique id that is related to data-site1 String
f1_key Finding key based on input keyword on data-

site1
s_r1 Present the result for searching keywords on

data-site1
Data-
site2

sid2 Unique id that is related to data-site2 String
f2_key Finding key based on input keyword on data-

site2
s_r2 Present the result for searching keywords on

data-site2
Data-
site3

sid3 Unique id that is related to data-site3 String
f3_key Finding key based on input keyword on data-

site3
s_r3 Present the result for searching keywords on

data-site3
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The CPN model contains places, drawn as ellipses or circles, transitions drawn as
rectangular boxes, a number of directed arrows connecting places and transitions, and
finally some textual inscriptions. For instance, places and transitions are called nodes
that are connected with directed arrows. An arrow always connects a place to a tran-
sition, or a transition to a place. In a CPN model, places may hold multiple tokens that
carry color (i.e., attributes with value). In addition, transitions are ready to fire when all
input places hold the required sets of tokens and produce condition-adhering tokens
into output places. In this section, we present step by step processes of mapping and
formal transformation of BI-MAS life-cycle that is prerequisite for V&V processes.

5.1 Related BI-MAS Data

For the formalization processes, the data elements of the BI-MAS model and sub-
modules are declared for 4 refinement hierarchical-levels. Table 10 lists all the relevant
token colors with their hierarchic refinement availability that is used for all lower- but
not for any higher hierarchy levels. In the left column of Table 10, number 1–4
represents sequentially from level 1 to level 4 the lowest refinement levels of the BI-
MAS components. In the second- and third columns showing are the name of nested
modules and token colors that are used during the formalization of BI-MAS models.
The fourth column textually explains the data-flow properties of the BI-MAS life-cycle.
Finally, the fifth column presents the token colors properties while their types are
defined either integer, string, or time. The integer-type of tokens is used as identifi-
cation number and string-type tokens can be either stakeholder input keywords, or a
matching result for corresponding search key. Time-type tokens also called time stamps
that can be used for different purposes in CPN models. In this paper, we use time as a
sequence number associated with objects to specify the first and last arrival of tokens
from other places into targeted places.

5.2 Formalized BI-MAS with Nested-Modules

With respect to [31], to resolve the complexity of a distributed system, the design
processes must be produced by modularity, regularity, and hierarchy characteristics. As
CPN-tools support hierarchy nested-modules, we use this property of CPN for applying
nested modules to cover the entire BI-MAS life-cycle. The top-level module of BI-
MAS depicted on Fig. 9 formalizes the cooperative environment of BI-MAS that are
used for data exploration, or data mining in distributed systems. Here, we assume that
each token represents several unique ids associated with search keys and matching
search results. This associated id helps the Aggregator agent to prevent conflicts and
contradictions at the end of life-cycle. The searching- and mining processes in this
complex system are well formed based on discrete business-process specifications that
start with a unique state, in which the tasks are processed in a parallel structure by
agents that lead to a unique end state. In this figure the life-cycle starts the processes
either by receiving a single input data or multiple input data (as discussed in Table 11)
simultaneously as requested by Stakeholders. The mining processes ends while agents
find new information based on the input data from different data-sites (shown in
Fig. 12).
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Fig. 9. The BI-MAS top level.

Fig. 10. Activity of Facilitator for generating Dispatcher agents.
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Fig. 11. Cooperative behavior of agents in different data-sites.

Fig. 12. One sample of the data-sites with two data sets in CPN model.
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The second model covers the formalization of the two main agents’ life-cycles
relevant to Facilitator and Aggregator, as shown with double lined rectangles (Activate
Agents) in Fig. 9. As demonstrated in Fig. 10, the life-cycles perform sub-module
looking to data-sites in automated structure, while the Facilitator receives at least one
keyword, or multiple keywords simultaneously. Here, for each search-key multiple
Dispatchers can be activated based on the number of data-sites. In this part, the agents
perform parallel computing that are used for quick access and manipulation of such
distributed data-sites. In addition, the activity of Aggregator proceeds by a normal-
ization function that is necessary for avoiding conflicts and contradicting data sets. For
instance, here we define an evaluation function that is applied for outcome results of
matching search-keys to normalize the consecutive search results depending on one
keyword (explained in Table 11).

The construction of the third model is related to double lined rectangles (Search for
data-sites) in Fig. 10. As illustrated in Fig. 11, the activities of an agent depend on the
cooperative behavior of agents to exploit such computing environments for scaling up
the data mining process. Here, the module shows that the data-mining processes can
fulfill without loading all data sets into a single site. Instead, the resulting mining
process transfers data into the warehouse. For V&V processes of BI-MAS, we assume
to have three data-sites with different data-sets. Due to page limitation, we present here
one sample, i.e., data-site 1 in Fig. 12. The remaining two other data-sites have the
same structure while only the contents are different.

Fig. 13. Agent-interaction model with built-in functions in CPN-Tools
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5.3 Transformations of BI-MAS Models to CPN Tools

The transformation of the corresponding types of conceptual models (explained in
Sects. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6), require syntactically procedures to represent the
automated simulation results using CPN-tools. The mapping constructs of knowledge-,
behavior- and interaction attributes can be transferred either by built-in functions, or
user defined properties of CPN-tools. Message Sequence Charts (MSC) is well-defined
functions for system engineering are used to present the communication messages of
sender and receiver in complex systems [32]. In addition, MSC functions are used for
adding new processes, presenting events between processes, and adding internal events
into single process, or external events between two objects.

Figure 13 shows the defined functions of transforming such as knowledge-,
interaction- and behavior models of BI-MAS using CPN-tools. To setup the MSC
function, it is required to add declarations to CPN. We create one process for each
agent as shown in Fig. 13, i.e. Stakeholder, Scheduler, Miner, Facilitator, Dispatcher
and Aggregator. Based on scenarios of behavior models in Sect. 4.5, it is important to
declare pockets for a sender who can send data from one place to receivers. In List.1,
we explain the compound data types that are transmitted between agents by using MSC
function.

List1. MSC functions to describe the pockets contain
1 fun send_keyword(sh,sc,key)=MSC.addEvent(msc,stakeholder,scheduler, "SEARCH 

["^key^"]"); 
2 fun receive_keyword(sh,sc,key)=MSC.addInternalEvent(msc,scheduler, "RECEIVE 

KEYWORD [ "^INT.mkstr(sh)^","^INT.mkstr(sc)^","^key^" ]"); 
3 fun assign_task(sh,mid,key)=MSC.addEvent(msc,scheduler,miner,"ASSIGN TASK [ 

"^INT.mkstr(sh)^","^INT.mkstr(mid)^","^key^" ]"); 
4 fun receive(sh,mid,key)=MSC.addEvent(msc,scheduler,facilitator,"REQUEST DISPATCHER 

ACTIVATION [ "^INT.mkstr(sh)^","^INT.mkstr(mid)^","^key^" ]"); 
5 fun activate(sh,dsid,mid,key)=MSC.addEvent(msc,facilitator,dispatcher,"ACTIVATE 

DISPATCHER [ "^INT.mkstr(sh)^","^INT.mkstr(dsid)^","^INT.mkstr(mid)^","^key^" ]"); 
6 fun search_data-sites(sh,dsid,mid,key,s)=MSC.addInternalEvent(msc,dispatcher, " FOUND 

KEYWORD[ "^INT.mkstr(sh)^","^INT.mkstr(dsid)^","^INT.mkstr(mid)^","^key^","^s^" ]"); 
7 fun transfer_data(sh,dsid,mid,ndid,key)=MSC.addInternalEvent(msc,dispatcher, " 

TRANSFER TO DATA WAREHOUSE[ 
"^INT.mkstr(sh)^","^INT.mkstr(dsid)^","^INT.mkstr(mid)^","^INT.mkstr(ndid)^","^key^" 
]"); 

8 fun new_knowledge(t,sh,key,s)=MSC.addEvent(msc,miner,aggregator, " EXTRACT 
KNOWLEDGE["^TIMED.mkstr(t)^","^INT.mkstr(sh)^","^key^" ,"^s^" ]"); 

9 fun submit_knowledge(t,sh,key,s)=MSC.addEvent(msc,aggregator, stakeholder, " SUBMIT 
KNOWLEDGE["^TIMED.mkstr(t)^","^INT.mkstr(sh)^","^key^" ,"^s^" ]"); 

6 Evaluation and Discussion

With respect to [33], the BI-MAS life-cycle can be evaluated by applying different
types of methods. In this paper, we consider in three types of empirical and non-
empirical methods that are applicable for designed modules of BI-MAS as follows.
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6.1 Validation and Verification of BI-MAS

As CPN models are executable and are used to model and specify the behavior of
agents in BI-MAS, this section presents the visualization and simulation result in CPN
models. For V&V processes, we present the simulation results that are generated
automatically. Each module of CPN can be simulated interactively, or automatically.
For interactive simulation, we use Message Sequence Chart (MSC) [32] that generates
automated results similar to single-step debugging. It also provides a way to ‘walk
through’ into CPN models that investigate different scenarios in detail and check
whether the model performs as expected. For simulating processes, we use two dif-
ferent scenarios as illustrated in Table 11 comprising testing and performance analysis.

Table 11. Scenario for simulation process of BI-MAS.

NO. Scenario description Initial input Final output Test-goal

I Single input scenario-
In this scenario, we
assume that an
organization has
business for three
products such as Car,
Bike, and Motorcycle.
Based on the number
of products, three data-
sites located in
different physical
locations containing
different information.
In this scenario, the
stakeholder requests to
receive particular
information of type
(Car) product

Searching for
(“Car”)

As shown in Fig. 14,
the output is
aggregated
information from
different data-sites
only regarding Car

To test the workflow
and data-flow for
single- input as a token
for the entire life-cycle
of BI-MAS

II Multiple-input
scenario- The stored
information is the same
as in the previous
scenario. Based on the
number of products,
three data-sites contain
different information.
In this scenario, the
takeholder requests
information regarding
multiple inputs
simultaneously

Searching for
(“Car”,
“Bike”,
“Motor
cycle”) at
same time

Due to page
limitation, the outputs
figures can not be
demonstrated

To test the workflow
and data-flow for
parallel processing the
life-cycle of BI-MAS
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Figure 14 shows an example of an MSC result during the execution of Scenario-I.
The MSC has six columns for this behavior- and interaction scenario, i.e. explained in
Sect. 4.5. The leftmost column represent the senders and the rightmost columns rep-
resent the receivers. The MSC captures a scenario where the first data packet sent by
the Stakeholder and the four middle columns represent the sender and receiver of the
BI-MAS life-cycle. Finally, this process is ended where the Aggregator transmits the
data packet (e.g., contains explored new information) to Stakeholder.

6.2 BI-MAS Models Properties

Colored Petri Nets is a formal modeling language that is well suited for modeling,
validating and analyzing larger and complex systems. CPN Tools supports state spaces
for hierarchical networks and offers facilities for collecting data during simulations and
for generating different kinds of performance analysis reports. With respect to [48–53],
the state space calculation and analysis considers each node that is involved in
graphical representation of CPN models. Therefore, for testing and performance
analysis of the BI-MAS life-cycle, we select the standard state space analysis instru-
ments to collect data about the system performance.

Fig. 14. MSC generated result for the BI-MAS life-cycle using CPN-tools
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In the first step, we consider the state space generation report for the BI-MAS life-
cycle. The statistic result of state space report outlined in Table 12 provides basic
information about size of behavioral properties and involved nodes. The first part of
this result is generated based on single input Scenario-I (i.e., listed in Table 11) and the
remaining parts of table are related to Scenario-II where we assume that 3 Stakeholders
searching for 3 different keywords. In the fourth column of the table, one sample of
dead transition is caused by an intentional separation of the BI-MAS in two parts for
generating the state-space report. Dead and live define two properties of CPN to check
the connection between entire nodes of graph.

The second V&V method is model checking, for which Table 13 shows results. To
apply this method, we use several checking properties such as reachability, detection of
loops, performance peaks during run time, full system utilization, and consistent ter-
mination. These results are generated automatically based on two test cases (i.e., either
single-, or multi-set scenarios of Table 11) are used as input data for the BI-MAS life-
cycle.

Table 12. State space report of BI-MAS sub-models.

BI-MAS sub-
models

State
space

Scc graph Dead Transition
Instances

Live Transition
Instances

Single key
searching - I

nodes: 37
arcs: 53
sec: 0
status: full

nodes: 37
arcs: 53
sec: 0

None None

Single key
searching-II

nodes:
562
arcs: 1024
sec: 0
status: full

nodes:
562
arcs: 1024
sec: 0

search_data_warehouse 1 None

Multi-key
searching- I

nodes:
3905
arcs: 6272
sec: 2
status: full

nodes:
3905
arcs: 6272
sec: 1

None None

Multi-key
searching- II

nodes:
343
arcs: 548
sec: 0
status: full

nodes:
343
arcs: 548
sec: 0

search_data_warehouse 1 None
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For model checking, we have three separate data-sites with different names and
content as listed in Table 13, to test the parallelisms in the BI-MAS. The model-
checking outcome is outlined in the second column that shows no loop exists in the
entire life-cycle of the BI-MAS. We prevent the loops by implementing parallel
methods as depicted in Fig. 11 where three Dispatcher agents re activated simulta-
neously to search for different data-sites.

Performance peaks in Table 13 represent places in the system that are bottlenecks.
Each peak requires computing power and time during execution time. Peaks exist in all
sub-modules of the BI-MAS with disparate levels but their potentials are very low. For
the first module of BI-MAS, a peak occurs for compare keywords and ids whether there
are multi-stakeholders waiting for multi-key results. In the second sub-module acti-
vating agents, a peak arises while the Facilitator agent generates several Dispatcher
agents based on a number of data-sites for each keyword received. For the third sub-
module search for data-sites, a peak is visible during transfer data that is associated
with a new token (time) based on a particular time sequence when the result arrives.
For all three data-sites, peaks occur due to searching and comparing processes for
matching several keywords within divers data sets.

The home marking that represents an initial making [34], is considered to find all
initial reachable nodes relevant to the BI-MAS life-cycle. Referring to [30], the home
marking can be reached from any marking state. As outlined in Table 13, no home
marking exists in the defined nodes of the BI-MAS The results for checking dead
markings is similar to the Dead Transition Instances demonstrated in Table 12. Finally,
the Utilization test represents all the subsets of the BI-MAS are used. It means that all
modules are used during the execution processes of the BI-MAS lifecycle.

Table 13. Model checking results for BI-MAS lifecycle.

Model Property 

Modules Loops Performance 
Peaks Utilization Home

marking
Dead
marking

BI-MAS No compare keywords yes no no 
Activate 
Agents No activating agents yes no no 

Search for 
data-sites No transfer data yes no no 

D
at

a-
si

te
s Data-site1 No search data-site 1 yes no no 

Data-site2 No search data-site 2 yes no no 

Data-site3 No search data-site 3 yes no no 
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6.3 Related Work Discussion

Our agent-based solution for the comprehensively designed next-generation of BI-
systems is not comparable with other proposed agent-based architectures, or frame-
works from literature due to the extension as stressed in the following steps.

(a) Defining a proper agent-based life-cycle for a BI-MAS with applicable functional-
and non-functional requirements that are known as essential for the development
of any types of agent-based BI-systems.

(b) Selection and implementation of proper agent-oriented methodologies for the
development procedure of BI-MAS models.

(c) Performance of step by step analysis- and design-phases with very detailed and
overall concepts for each model of a BI-MAS.

(d) Fulfillment of V&V processes including formal mapping, modeling, transforma-
tion and with the analysis results, employing different accepted checking methods.

By referring to related work of agent-based BI-systems, we reflect several con-
sideration points that are outlined in Table 14. The first column of this table presents
the list of proposed agent-based BI-systems in literature. Furthermore, in the scope of
agent-oriented methodologies, a gap exists for developed agent-based BI-systems. As
represented in the second column, all of these proposed BI-solutions have developed
without the implementation of any specific agent-oriented methodology. The system-
atic analysis- and design-phases listed in the third column are equally not given for all
methods. Only two of the methods are covered, while the overall phases are not define
on a sufficiently detailed-level. The fourth column represents the V&V processes that
are applicable only for two proposed BI-systems. As demonstrated, one of these
solutions covers only simulation processes, while others cover partially experimental
results related to the developed system. Overall, neither authors demonstrate the proper
transformation from the analysis and design phases to implementation, nor do the
authors present proper V&V results with standard tools, or methods.

Table 14. Comparison results of BI-MAS with related agent-based BI-systems

Types of agent-based BI-system Agent-oriented
methodology

Analysis &
design

V&V References

BI fusion of agent network No Partially
covered

No [8]

Combination Framework of BI solution Multi-
agent platform (CFBM)

No No No [35]

Multi Agent Based Business Intelligence
(MABBI)

No No Simulation [36]

Agent-based architecture of BI system No No No [37]
MAS for managing supply chains No No No [6]

Stock Trading Multi-Agent System (STMAS) No Partially
covered

Partially
covered

[11]

Self-Organized Multi-agent Technology based
BI Framework

No No No [38]

Model for using Agent Based Systems
(ABS) in BI

No No No [12]
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7 Conclusion

As we represent in the content of this paper, an agent-based BI-system requires a
comprehensive road-map and highly systematic development approach along with an
extensive verification- and validation processes. We discover that a complex system
development life-cycle comprises important phases such as analysis and design that are
essential for developers. Beside the implementation of a BI-MAS life-cycle, the
analysis- and design phases must ensure developers that adopted concepts such as
MAS and DDM are sufficiently. To achieve this enhancement, we define the BI-MAS
life-cycle along with functional and non-functional requirements for several agent-
levels. To transfer each of these requirements on a system-level within the structure of
MAS technology, we emphasize the need to find a comprehensive methodology.
Finding an applicable agent-oriented methodology is a considerable challenge,
according to literature. To tackle this challenge, we present a novel approach to
evaluate nine well-known agent-oriented methodologies that shows all methodologies
are incomplete.

Moreover, we also demonstrate the conceptualization processes for BI-MAS
models using agent-oriented methodologies such as ROADMAP and RAP/AOR along
with AOM techniques to generate a holistic development methodology. During the
enactment of ROADMAP and RAP/AOR, we discover are complementary for con-
structing the agent-level models of a BI-MAS in the analysis- and design-phases.
Additionally, several challenges and limitation occur too during these two phases. For
instance, a subset of BI-MAS agents must act in a static environment and other agents
are part of a dynamically changing-, or distributed environments. Representing such a
distinction in models is also a challenge for other existing agent-oriented methodolo-
gies. Moreover, none-functional requirements cannot be addressed with these two
methodologies, e.g., agent security is a key component in distributed environments.
Adding the security concept only in a model as a quality goal in goal-model without
projection into the domain model, knowledge model, etc., is not sufficient in a BI-
system development life-cycle. During the implementation of a BI-MAS, a need arises
for integrating complementary models to represent the processes of authenticating
agents, threat detection, and so on. It is necessary to use modified methods and tools to
achieve such diverse model integration.

On the other hand, our studies also discover that the CPN-tool is a good candidate
with its mathematical properties to perform V&V processes of agent-based BI-systems.
As V&V is the core part of development processes, we assume to perform these
processes with three different methods. Besides the intended processes for V&V, CPN
shows limitations while mapping and transforming BI-MAS models, e.g., the inner
action of BI-MAS agents cannot be modeled using CPN-tool. On the other hand, the
usage of state-space methods of CPN is generates analytical statistics about state
spaces, boundedness-, home- and live-markings, and fairness properties. Consequently,
a diagnostic understanding about dependability and concurrency conflicts emerges for a
BI-MAS.
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The current BI-MAS high-level components require exclusive tools and platforms
during the implementation-phase in real life organizations. In future work, to obtain the
full view of BI-MAS in enterprise-level concepts, we consider more research and
extensive models, i.e. data-warehouse architecture, types of servers, types of required
services, etc. In the enterprise-level deployments of BI-MAS again, there exists a need
for further research including two parts. Firstly, for the definition of the entire con-
textual organizational structure on a system-level, the integration of data warehouses
and analytics tools requires additional research work. Secondly, describing and
developing user-interfaces, middleware applications, and secure protocols are the
second part that needs research and development work. Unclear is also the projection of
important non-functional requirements such as security into other model types, e.g., for
agent behavior and –interaction. Finally, the verification- and simulation capabilities of
CPN do not cover all aspects of a BI-MAS to address dependability issues and con-
currency conflicts. Thus, we plan to explore additional formal checking techniques for
the goal of highly relyable system development.
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Abstract. The most widely used similarity metrics in collaborative filtering,
namely the Pearson Correlation and the Adjusted Cosine Similarity, adjust each
individual rating by the mean of the ratings entered by the specific user, when
computing similarities, due to the fact that users follow different rating practices,
in the sense that some are stricter when rating items, while others are more
lenient. However, a user’s rating practices change over time, i.e. a user could
start as lenient and subsequently become stricter or vice versa; hence by relying
on a single mean value per user, we fail to follow such shifts in users’ rating
practices, leading to decreased rating prediction accuracy. In this work, we
present a novel algorithm for calculating dynamic user averages, i.e. time-in-
point averages that follow shifts in users’ rating practices, and exploit them in
both user-user and item-item collaborative filtering implementations. The pro-
posed algorithm has been found to introduce significant gains in rating pre-
diction accuracy, and outperforms other dynamic average computation
approaches that are presented in the literature.

Keywords: Recommender systems � Collaborative filtering
User-user similarity � Item-item similarity � Dynamic average
Prediction accuracy � Ratings’ timestamps

1 Introduction

Collaborative filtering (CF) computes personalized recommendations, by taking into
account users’ past likings and tastes, in the form of ratings entered in the CF rating
database. User-user CF algorithms firstly identify people having similar tastes, by
examining the resemblance of already entered ratings; for each user u, other users
having highly similar tastes with u are designated as u’s nearest neighbors (NNs).
Afterwards, in order to predict the rating that u would give to an item i that u has not
reviewed yet, the ratings assigned to item i by u’s NNs are combined [1], under the
assumption that users are highly likely to exhibit similar tastes in the future, if they
have done so in the past as well [26, 30]. Analogous practices are followed in item-item
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CF algorithms, where the first step is to locate items that are similarly rated by users.
CF is the most successful and most applied technique in the design of recommender
systems [3]. In order to measure similarity between users or items, the Pearson Cor-
relation Coefficient and the Adjusted Cosine Similarity [4] (see also Sect. 3) are the
most commonly used formulas in CF recommender systems. In this context, both the
Pearson correlation coefficient and the Adjusted Cosine Similarity adjust the ratings of
a user u by the mean value of all ratings entered by u, and the ratings of an item i by the
mean value of all ratings for this item, respectively, so as to tackle the issue that some
users may rate items higher than others or that some items may be rated higher than
others. However, relying on a single, global mean value presumes that the users’
marking practices remain constant over time; in practice though, it is possible that a
user’s marking practices change over time, i.e. a user could start off being strict and
subsequently change to being lenient, or vice versa; similarly, an item could start as
being high rated and subsequently begin receiving lower marks, due to general shift of
interest (music or clothing trends, decline of interest for blockbuster movies or books
etc.). For instance, according to the MovieLens 20M dataset [9, 10], the Titanic movie
started off with an average of 4.30/5 in 1997, dropping to 3.06 in 2005, and finally
climbing back to 3.24 in 2015.

Similar situations arise for users: for example, consider that a user initially grades
Tudors (http://www.imdb.com/title/tt0758790/), which is the first historic period drama
series of high quality that she rates; being enthusiastic with the series, she enters a
rating of 10. Subsequently, the same user rates Game of Thrones (http://www.imdb.
com/title/tt0944947/), which she finds superb and better than Tudors, giving it the
highest available mark, i.e. 10. Finally, the user watches a few episodes from the show
Vikings (http://www.imdb.com/title/tt2306299), and grades this series with an 8. While
both Tudors and Game of Thrones have been equally rated by the user, this does not
necessarily reflect the fact that she considers them of equal quality; similarly, the fact
that Vikings got a lower grade than Tudors, does not necessarily mean that she con-
siders it of inferior quality: the user’s rating criteria and practices have simply evolved,
along with her experiences on historic period drama series.

Insofar, while many efforts have been made to improve the CF prediction accuracy,
and the aspect of changes in users’ interests has been extensively studied (Gama et al.
[24] provide a comprehensive review), the issue of shifts in rating practices has not
received adequate attention. Margaris and Vassilakis [33] introduce the concept of
dynamic user rating averages which follow the users’ marking practices shifts and
present two alternative algorithms for computing a user’s dynamic averages. These
algorithms are validated in the context of user-user CF, and have been found to achieve
better rating prediction accuracy than the plain CF algorithm, using the Pearson cor-
relation similarity metric.

In this paper, we extend the work in [33] by introducing a new dynamic average
computation algorithm, namely DAnext, which is capable of better following the users’
marking practices shifts, leading to improved prediction accuracy, as compared to the
two dynamic average algorithms presented in [33]. This improvement is consistent
under both user-user CF implementations and item-item CF implementations, where
similarities are measured using the Pearson Correlation and the Adjusted Cosine
Similarity respectively. To validate our approach, we present an extensive comparative
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evaluation among (i) the proposed algorithm, (ii) the two approaches proposed in [33]
and (iii) the classic static average (unique mean value), considering both the user-user
and the item-item CF implementations.

The proposed algorithm is based on the exploitation of timestamp information
which is associated with ratings; hence in this work, we use the Amazon datasets [7, 8],
the MovieLens datasets [9, 10], the Netflix dataset [11] and the Ciao dataset [51],
which contain timestamps. It is worth noting that the proposed algorithm can be
combined with other techniques that have been proposed for either improving pre-
diction accuracy in CF-based systems, including consideration of social network data
(e.g. [14, 25, 29]), location data (e.g. [34, 35]) and pruning of old user ratings (e.g. [12,
38]), or techniques for speeding up prediction computation time, such as clustering
(e.g. [36, 37, 40]).

The rest of the paper is structured as follows: Sect. 2 overviews related work, while
Sect. 3 presents the proposed algorithm, together with the algorithms presented in [33],
for self-containment purposes. Section 4 evaluates the proposed algorithm using the
aforementioned datasets and finally, Sect. 5 concludes the paper and outlines future
work.

2 Related Work

The accuracy of CF-based systems is a topic that has attracted considerable research
efforts. Koren [15] proposes a new neighborhood-based model, which is based on
formally optimizing a global cost function and leads to improved prediction accuracy,
while maintaining merits of the neighborhood approach such as explainability of
predictions and ability to handle new ratings (or new users) without retraining the
model. In addition, he suggests a factorized version of the neighborhood model, which
improves its computational complexity while retaining prediction accuracy. Liu et al.
[18] present a new user similarity model to improve the recommendation performance
when only few ratings are available to calculate the similarities for each user. The
model considers the local context information of user ratings, as well as the global
preference of user behavior. Ramezani et al. [39] propose a method to find the neighbor
users based on the users’ interest patterns in order to overcome challenges like sparsity
and computational issues, following the idea that users who are interested in the same
set of items share similar interest patterns, therefore, the non-redundant item subspaces
are extracted to indicate the different patterns of interest and then, a user’s tree structure
is created based on the patterns he has in common with the active user.

Research has shown that exploiting time in the rating prediction computation can
improve prediction accuracy, due to concept drift; concept drift is the phenomenon
when the relation between the input data and the target variable changes over time [24].
Change of interests [5, 24] is a typical example of concept drift. To this end, Zliobaite
et al. [22] develop an intelligent approach for sales prediction, which uses a mechanism
for model switching, depending on the sales behavior of a product. This research
presents an intelligent two level sales prediction approach that switches the predictors
depending on the properties of the historical sales. This approach is shown to achieve
better results as compared to both a baseline predictor and an ensemble of predictors.
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Ang et al. [21] address the problem of adaptation when external changes are asyn-
chronous, by developing an ensemble approach, called PINE, which combines reactive
adaptation via drift detection, and proactive handling of upcoming changes via early
warning and adaptation across the peers. In addition, PINE is parameter-insensitive and
incurs less communication cost while achieving better accuracy.

Elwell and Polikar [20] tackle the issue of concept drift in the context of online
learning, introducing a batch-based ensemble of classifiers, called Learn++.NSE, where
NSE stands for Non-Stationary Environments. Learn++.NSE learns from consecutive
batches of data without making any assumptions on the nature or rate of drift; it can
learn from such environments that experience constant or variable rate of drift, addition
or deletion of concept classes, as well as cyclical drift. The algorithm learns incre-
mentally, as do other members of the Learn++ family of algorithms, that is, without
requiring access to previously seen data. Learn++.NSE trains one new classifier for
each batch of data it receives, and combines these classifiers using a dynamically
weighted majority voting. The algorithm is evaluated on several synthetic datasets
designed to simulate a variety of nonstationary environments, as well as a real-world
weather prediction dataset. Minku et al. [19] present a new categorization for concept
drift, separating drifts according to different criteria into mutually exclusive and non-
heterogeneous categories. Moreover, they present a diversity analysis in the presence of
different types of drifts and it shows that, before the drift, ensembles with less diversity
obtain lower test errors. Nishida and Yamauchi [17] have developed a detection
method that includes an online classifier and monitors its prediction errors during the
learning process, which uses a statistical test of equal proportions. Experimental results
showed that this method performed well in detecting the concept drift in five synthetic
datasets that contained various types of concept drift.

Vaz et al. [16] propose an adaptation of the item-based CF algorithm to incorporate
rating age influence in predictions. It considers ratings in two dimensions: the active
user ratings and the community ratings, and it inserts a time weight, which gives more
relevance to more recent ratings than to older ones, both in the similarity calculation
and in the rating prediction equation.

Dror et al. [2] consider the temporal dimension in the context of recommender
systems by capturing different temporal dynamics of music ratings, along with infor-
mation from the taxonomy of music-related items; both these dimensions are exploited
by a rich bias model. The method proposed in this work is applied on a sparse, large-
scale dataset, and the particular characteristics of the dataset are extracted and utilized.
Liu et al. [13] present a social temporal collaborative ranking model that can simul-
taneously achieve three objectives: (1) the combination of both explicit and implicit
user feedback, (2) support for time awareness using an expressive sequential matrix
factorization model and a temporal smoothness regularization function to tackle
overfitting, and (3) support for social network awareness by incorporating a network
regularization term. Dias and Fonseca [31] explore the usage of temporal context and
session diversity in session-based CF techniques for music recommendation. They
compare two techniques to capture the users’ listening patterns over time: one
explicitly extracts temporal properties and session diversity, to group and compare the
similarity of sessions, the other uses a generative topic modeling algorithm, which is
able to implicitly model temporal patterns. Results reveal that the inclusion of temporal
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information, either explicitly or implicitly, significantly increases the accuracy of the
recommendation, as compared to the traditional session-based CF.

Li et al. [41] study the problem of predicting the popularity of social multimedia
content embedded in short microblog messages, exploiting the idea of concept drift to
capture the phenomenon that through the social networks’ “re-share” feature, the
popularity of a multimedia item may be revived or evolve. They model the social
multimedia item popularity prediction problem using a classification-based approach
which is used for two sub-tasks, namely re-share classification and popularity score
classification. Furthermore, they develop a concept drift-based popularity predictor by
ensembling multiple trained classifiers from social multimedia instances in different
time intervals.

Lu et al. [42] present a novel evolutionary view of user’s profile by proposing a
Collaborative Evolution (CE) model, which learns the evolution of user’s profiles
through the sparse historical data in recommender systems and outputs the prospective
user profile of the future. Kangasrääsiö et al. [43] formulate a Bayesian regression
model for predicting the accuracy of each individual user feedback and thus find
outliers in the feedback data set. Additionally, they introduce a timeline interface that
visualizes the feedback history to the user and provides her with suggestions on which
past feedback is likely in need of adjustment. This interface also allows the user to
adjust the feedback accuracy inferences made by the model. The proposed modeling
technique, combined with the timeline interface, makes it easier for the users to notice
and correct mistakes in their feedback, and to discover new items.

Lo et al. [52] address the issue of tracking concept drift in individual user pref-
erences; in this context they develop a Temporal Matrix Factorization approach
(TMF) for tracking concept drift in each individual user latent vector. To this end, a
time series of rating matrices is initially constructed from the ratings database; sub-
sequently this time series is used to capture the concept drift dynamics for each indi-
vidual user; and finally, the captured dynamics are taken into account in the rating
prediction computation phase. Cheng et al. [53] propose the ISCF (interest sequences
CF), a recommendation method based on users’ interest sequences; interest sequences
are first detected from the ratings, and are subsequently used to refine similarity metrics
between users, thus taking into account dynamic evolution patterns of users’
preferences.

However, none of the above mentioned works considers the issue of shifts in the
users’ rating practices. This issue has only recently received some attention: Margaris
and Vassilakis [33] introduce and exploit the concept of dynamic user rating averages
which follow the users’ marking practices shifts. Furthermore, they present two
alternative algorithms for computing a user’s dynamic averages and perform a com-
parative evaluation in the context of a user-user CF implementation. The results of this
evaluation show that the dynamic average-based algorithms exhibit better performance
than the plain CF algorithm in terms of rating prediction accuracy, at the expense of a
small to tolerable drop in coverage.

Interestingly, fuzzy recommender systems (FRS) [50] introduce the concept of
fuzzy user context in the process of rating prediction and recommendation formulation.
Under this approach, each rating entered by a user is associated with a particular
context element through a fuzzy membership function. The FRS approach could be
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exploited for accommodating user rating practices as a specific rating criterion; sub-
sequently the criterion would be used in the calculation of fuzzy similarity degree
between users and finally be incorporated in the final rating prediction. To implement
this approach would necessitate however a concrete, automated method for assigning
strictness labels to individual user ratings, the definition of an appropriate membership
& utility functions, and the evaluation of the overall system performance. To our
knowledge, no FRS has been reported in the literature to accommodate these features.

This paper extends the work presented in [33] by (1) introducing a novel algorithm
for dynamic average computation, which is able to follow the users’ shifts in rating
practices more accurately and (2) validating its performance against widely used
datasets with diverse characteristics, exploring both the user-user and item-item CF
implementations. The DAnext algorithm introduced in this paper is based on the
rationale that the rating practices of a user at some time point is formulated according to
the experiences she has amassed up to that time point and therefore it is more accu-
rately reflected by her subsequent ratings, which are influenced by the same (and some
additional) experiences. On the other hand, the DAvicinity algorithm introduced in [33]
assumes that the user’s ratings are mostly affected by temporally constrained factors,
such as user mood, while the DAprevious algorithm, also presented in [33], assumes that
the rating-related behavior of a user at a certain time point is better estimated by
considering the user’s behavior up to that time point. While it is also possible that the
ratings entered by a user during some period are affected by her mood [47], which
would favor the DAvicinity algorithm, the results indicate that the effect of the amassed
experiences is stronger than the effect of mood. Further qualitative evaluation on this
subject is required, and this is envisioned as part of our future work.

The newly introduced algorithm has been found to provide more accurate rating
predictions, by better capturing the shifts in users’ rating practices.

3 Exploiting Ratings’ Timestamps in Users Dynamic Average
Configuration

In CF, predictions for a user X are computed based on a set of users which have rated
items similarly with X; this set of users is termed “near neighbors of X” (X’s NNs). The
predominant similarity metric used in CF-based systems is the Pearson correlation
metric [3], where the similarity between two users X and Y is expressed as:

Pearson sim X; Yð Þ ¼
P

i2IX \ IY RX;i � RX
� � � RY ;i � RY

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2IX \ IY RX;i � RX
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2IX \ IY RY ;i � RY
� �2q ð1Þ

where i ranges over items that have been rated by both X and Y and RX (resp. RY ) is the
mean value of the ratings entered by X (resp. Y); as noted above, the Pearson corre-
lation formula uses a “global” mean value. The algorithms presented in this section
target the computation of RX (resp. RY ), aiming to substitute the global average, which
is insensitive to shifts in rating practices, by an average that is tailored to the time
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period that RX;i (resp. RY ;i) was entered. When a dynamic average computation algo-
rithm DAAlg is employed, the above formula is modified as:

Pearson sim X; Yð Þ ¼
P

i2IX \ IY RX;i � DAAlg RX;i
� �� � � RY ;i � DAAlg RY ;i

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2IX \ IY RX;i � DAAlg RX;i
� �� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2IX \ IY RY ;i � DAAlg RY ;i
� �� �2q

ð2Þ

Similarly, for item-item CF, the Adjusted Cosine Similarity (which is preferred
against the basic cosine similarity metric, since it takes into account the differences in
rating scale between different users [46]) is modified as:

Adj cos sim i; jð Þ ¼
P

u2U Ru;i � DAAlg Ru;i
� �� � � Ru;j � DAAlg Ru;j

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

u2U Ru;i � DAAlg Ru;i
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�
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u2U Ru;j � DAAlg Ru;j
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where u ranges over the users that have rated both i and j; again DAAlg Ru;i
� �

denotes the
dynamic average of user u at the time that DAAlg Ru;i

� �
was submitted.

While other similarity metrics, such as Euclidian distance [49], Manhattan Distance
[49], Spearman’s coefficient [4], Kendall’s Tau [4] etc. have been used in recommender
systems, in this paper we will confine ourselves to examining the Pearson similarity
metric for the user-user strategy and the adjusted cosine similarity metric for the item-
item strategy. This is due to the fact that the relevant formulas readily use the average
values of the users’ and items’ ratings, hence the substitution of the global user’s or
item’s average by the rating-specific dynamic average is a natural extension, while
other similarity metrics do not adjust ratings according to the global average. This is
also the case with the very promising matrix factorization technique [32]. In our future
work, we plan to investigate how dynamic averages can be integrated into the above
mentioned methods.

In the rest of this section we present the proposed technique for computing the
dynamic user averages. For completeness purposes, we will also describe the relevant
techniques described in [33], which are also used as yardsticks in the performance
evaluation section.

3.1 The Proposed Algorithm

Under the proposed approach for computing dynamic averages, a separate average for
each rating is calculated and stored. The algorithm for computing the dynamic average
proposed in this paper takes into account only the ratings that have been submitted after
the rating for which the dynamic average is submitted. Effectively, this algorithm is
based on the assumption that, when considering a particular rating r, ratings that have
been entered after r reflect more accurately the user’s strictness at the time point that
r was entered. Under this approach for computing dynamic averages, each user rating
ru,x is coupled with its own dynamic average DAnext(ru,x) which is computed as shown
in Eq. 4:
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DAnext ru;x
� � ¼

P
r2Ratings uð Þ

V
t rð Þ[ t ru;xð Þ r

r : r 2 Ratings uð Þ V
t rð Þ[ t ru;x

� ��� �� ð4Þ

The pseudocode for the computation of the dynamic averages under the proposed
algorithm is illustrated in Listing 1.

PROCEDURE bootstrapDynamicAverages(ratingsDB)
// Input: ratings database containing all users’ ratings
// Output: the ratings database is complemented with 
//   the dynamic averages of the ratings. For each rating,
//   the number of subsequent ratings is also stored to
//   facilitate the update of dynamic averages

FOREACH user u  users(ratingsDB)
ru = retrieveAllUserRatings(u, ratingsDB)
ru = sort ru by rating timestamp in asc order
calculateDAnext(ru)

END FOR
END PROCEDURE

PROCEDURE calculateDAnext(ratingList)
// Input: a list of ratings in ascending temporal order.
// Output: the dynamic averages of all the ratings in the 
// input list have been caclulated

// the last rating has no next, so its dynamic average
// defaults to the rating itself
numRatings = count(ratingList)
ratingList[numRatings].dynamicAVG = ratingList[numRatings].rating

sumOfNextRatings = 0
FOR i = numRatings -1 DOWNTO 1 STEP -1 
sumOfNextRatings += ratingList[i + 1].rating
ratingList[i].dynamicAVG = (sumOfNextRatings / (numRatings - i))

END FOR
END PROCEDURE

Listing 1. Pseudocode for the computation of the dynamic averages in the ratings database

After the dynamic averages have been computed as illustrated in Listing 1, the
Pearson similarity between two users X and Y can be computed as shown in Listing 2,
which implements the formula given in Eq. 2. The computation between each pair of
users can be done while the algorithm bootstraps, and the cached similarities can be
used thereafter for rating prediction, as in the typical case of user-user CF-based
systems.
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FUNCTION DA_BasedPearsonSimilarity(RatingsDB, X, Y) 
// Input: ratings database containing all users’ ratings and the
// identities of the users 
// Output: Pearson similarity metric 

ratingsX = retrieveAllUserRatings(X, RatingsDB) 
ratingsY = retrieveAllUserRatings(Y, RatingsDB) 
// find ids of items rated by both users 
commonItemIDs = commonItems(ratingsX, ratingsY) 
pearsonNominator = 0 
pearsonDenomX = 0 
pearsonDenomY = 0 
FOREACH itemID in commonItemIDs 
  ratingX = getRatingByItemID(ratingsX, itemId) 
  ratingY = getRatingByItemID(ratingsX, itemId) 
  pearsonNominator += (ratingX.rating – ratingX.dynamicAVG) * 

(ratingY.rating - ratingY.dynamicAVG) 
  pearsonDenomX += pow((ratingX.rating – ratingX.dynamicAVG), 2)
  pearsonDenomY += pow((ratingY.rating – ratingY.dynamicAVG), 2)
END FOR 
RETURN pearsonNominator / (sqrt(pearsonDenomX) *  

sqrt(pearsonDenomY)) 
END FUNCTION 

Listing 2. Pseudocode for the computation of the Pearson similarity between two users, consid-
ering the dynamic averages

When a new rating is entered in the database by some user u, the denominator of
Eq. 4 changes for all ratings r that have been entered by the particular user, therefore
the dynamic averages for all ratings entered by u must be recalculated. This will in turn
trigger the recalculation of all similarities between u and other users in a user-user CF
implementation (cf. Eq. 2) or the recalculation of all similarities between items that
u has rated and other items in an item-item CF implementation (cf. Eq. 3). The relevant
performance implications are discussed in Subsect. 4.10, together with the memory and
secondary storage requirements of the algorithm.
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PROCEDURE addRating(ratingsDB, user, item, rating) 
// add a new rating in the ratings database 

// INPUT: rating database, the user that gave the rating, 
// the item on which the rating was given and the rating 
// value 
// Output: updated rating database with the user’s new 
// dynamic averages 
// append rating to ratings db; this is positioned last, main-
taining 
// the temporal sort order within the ratings of each user 
// that has been established in the algorithm bootstrap 
appendRating(ratingsDB, new Rating(user, item, rating)) 
ru = retrieveAllUserRatings(user, ratingsDB) 
// recalculate the user’s dynamic averages 
calculateDAnext(ru) 
END PROCEDURE 

Listing 3. Pseudocode for inserting a new rating into the ratings database 

One issue that is worth discussing in the dynamic average computation procedure
described above is that recent ratings have only few next ones, therefore the dynamic
average computed for these ratings may be skewed. While this is true, it has to be noted
that the most recent ratings of each user u, where this skew appears, are only a small
fraction of the items that u has in common with her near neighbors (in our experiments,
less than 3.6% of the computations for evaluating similarities between users involved
the last four ratings of either u or u’s near neighbors), with the rest of the computations
being based on previous ratings that have at least four next ratings. In this respect, the
effect of this skew is small. In order to further improve the effectiveness of the algo-
rithm and minimize skew, variations of the algorithm may be introduced, which would
e.g. consider a number of past ratings in the dynamic average computation or use the
global average when an adequate number of more recent ratings is not available.
Further elaboration and experimentation on this aspect is required, and this is con-
sidered part of our future work.

3.2 Existing Dynamic Average Algorithms

In [33], two algorithms for computing dynamic user averages were proposed, namely
(a) the dynamic average based on the temporal vicinity of the ratings, which will be
denoted as DAvicinity and (b) the dynamic average based only on previous ratings, which
will be denoted as DAprevious. While Margaris and Vassilakis [33] describe their
application only in a user-user CF scenario, these algorithms can be also directly
applied in an item-item CF implementation, by using the corresponding dynamic
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averages in Eq. 3. In the next subsections, we briefly present these algorithms for
completeness purposes.

Computing the Dynamic Average Based on the Temporal Vicinity of the Ratings.
According to the DAvicinity algorithm, when computing the dynamic average DAvicin-

ity(r) for a rating r, each user rating r’ posted by the same user is assigned a weight on
the basis of its temporal vicinity to r: ratings that have been entered temporally close to
rare assigned higher weights, and as temporal distance increases, the weights decrease.
This approach is based on the rationale that user ratings that are temporally distant to
R may not accurately reflect the user’s strictness at that particular time, while ratings
that are temporally close to r form a better basis for deriving user strictness for the time
period that r was entered.

In more detail, for rating ru,x of item x by user u, which has been entered at t(ru,x),
the weight wu,x(ru,i) of a rating ru,i is computed using the standard normalization
function presented in [27]:

wu;x ru;i
� � ¼ 1� t ru;x

� �� t ru;i
� ��� ��

max t ru;i
� �� �

i2Ratings uð Þ
�min t ru;i

� �� �
i2Ratings uð Þ

ð5Þ

where t(ru,i) is the timestamp of rating ru,i, whereas min t ru;i
� �� �

i2Ratings uð Þ
and max t ru;i

� �� �
i2Ratings uð Þ

denote the minimum and the maximum timestamp in the database among ratings
entered by user u, respectively.

Finally, the dynamic average associated to rating ru,x is computed using the
formula:

DAvicinity ru;x
� � ¼

P
r2Ratings uð Þ wu;x rð Þ � rP
r2Ratings uð Þ wu;x rð Þ ð6Þ

Computing the Dynamic Average Based only on Previous Ratings. Under this
approach for computing dynamic averages, again each user rating ru,x is coupled with
its own average DAprevious(ru,x). When computing this average, only ratings entered by
the same user (u) prior to ru,x are taken into account; formally this approach is
expressed by Eq. 7:

DAprevious ru;x
� � ¼

P
r2Ratings uð Þ

V
t rð Þ\t ru;xð Þ r

jr : r 2 Ratings uð ÞVt rð Þ t ru;x
� �� �� ð7Þ

In Eq. 7, the denominator corresponds to the number of ratings that have been
entered by user u prior to rating ru,x, i.e. the rating for which the dynamic average
DAprevious ru;x

� �
is calculated. This approach is based on the rationale that all past

behaviour of the user is equally important in estimating her rating practices.
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4 Performance Evaluation

In this section, we report on our experiments through which we compared the proposed
algorithm with the DAvicinity and DAprevious algorithms presented in [33], as well as the
plain CF algorithm. We decided to consider in our evaluation both algorithms pre-
sented in [33] due to the following reasons:

1. the evaluation presented in [33] targets only the user-user CF approach, while in this
paper we examine both the user-user and item-item CF approaches; hence, both the
DAvicinity and the DAprevious algorithms should be tested in order to evaluate their
effectiveness in the item-item CF approach.

2. the comparison performed in [33] did not designate a clear winner between the
DAvicinity and the DAprevious algorithms; even though the DAprevious algorithm out-
performs the DAvicinity algorithm regarding prediction accuracy in most cases, there
is a tie between the algorithms when they are applied in the MovieLens 100K
dataset, while in the Netflix dataset the DAvicinity algorithm has been found to
produce more accurate recommendations than the DAprevious algorithm.

In this comparison we consider the following aspects:

1. prediction accuracy; for this comparison, we used two well-established error met-
rics, namely the mean absolute error (MAE) metric, as well as the Root Mean
Squared Error (RMSE) that ‘punishes’ big mistakes more severely. RMSE was used
in the Netflix competition [11],

2. the coverage of the algorithm, i.e. the percentage of the cases for which a prediction
can be computed and

3. the probability that an algorithm computes the correct user rating. Since user ratings
are typically integer numbers, while predictions are calculated as real numbers, for
comparing the prediction to the actual user rating we round the prediction to the
nearest integer. This is analogous to the practice used in the Netflix Competition
[11].

To compute the MAE, the RMSE and the probability to compute the correct
prediction, we employed the following techniques:

1. the standard “hide one” technique [30], which is extensively used in recommender
systems research; each time, we hid a random rating in the database and then
predicted its value based on the ratings of other non-hidden items. For each user,
this procedure was executed for 10 randomly selected ratings entered by that par-
ticular user.

2. each time, we hid the last rating only from each user, and then predicted its value
based on the ratings of other non-hidden items. One prediction for each user was
formulated.

3. dropping the last rating from every user, and then applying the technique listed in
item 2 above in the remaining dataset.

In all cases, the computation of the MAE, the RMSE and the correct prediction
probability was performed considering all users in the database. All results were in
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close agreement (MAE: ±.0.005; RMSE: ±.0.008; correct predictions: ±.0.2%; %
coverage: ±.0.4%), therefore in the rest of the paper we present only the results
obtained from the standard “hide one” technique.

Regarding the algorithms presented in the related work section, except for those
presented in [33], these are not directly comparable to our approach because they are
designed to handle different phenomena, and more specifically concept drift (i.e. the
change in users’ interests), significance decay of old ratings and session identification.
Nevertheless, to provide some insight on the magnitude of the improvement that can be
achieved by different approaches that take into account temporal dynamics, we com-
pare the performance of the DAnext algorithm against the following algorithms sourced
from the literature:

1. from the category of forgetting algorithms, i.e. algorithms that decay the importance
of old-aged ratings, we compare DAnext with the work of Vaz et al. [16];

2. from the set of algorithms targeting interest shift detection and exploitation, we
compare DAnext against the ISCF algorithm [53];

3. from the domain of temporally-aware session-based algorithms, we compare DAnext

with the work of Dror et al. [2], which examines the influence of the drifting effect
in short-lived music listening sessions; and

4. from the category of temporally-aware matrix factorization algorithms, we compare
DAnext against the algorithm proposed by Lo et al. [52], which tracks and exploits
concept drift in each individual user latent vector.

The algorithms employing dynamic averages may exhibit different coverage, since
the introduction of dynamic averages modifies the user-to-user and item-to-item sim-
ilarity metrics, and henceforth users or items that are deemed “similar” when using the
plain CF algorithm (i.e. when their standard Pearson or Adjusted Cosine similarity
surpasses a threshold) may be deemed “not similar” when using the dynamic average-
aware Pearson similarity or Adjusted Cosine Similarity, or vice versa. Under this
condition, some users that are characterized as “grey sheep” [6] when using the plain
CF algorithm (i.e. do not have enough near neighbours for a recommendation to be
computed) may gain enough neighbours when using a dynamic average-based algo-
rithm, thus increasing coverage; conversely some users for which a recommendation
was computed using the plain CF algorithm may become “grey sheep” when using a
dynamic average-based algorithm, in which case coverage decreases. An analogous
phenomenon also appears in an item-item CF implementation.

For our experiments we used a machine equipped with six Intel Xeon E7 - 4830 @
2.13 GHz CPUs, 256 GB of RAM and one 900 GB HDD with a transfer rate of
200 MBps, which hosted the datasets and ran the recommendation algorithms.

In the following paragraphs, we report on our experiments regarding ten datasets.
Five of these datasets are obtained from Amazon [7, 8], three from MovieLens [9, 10]
one from Netflix [11], while the last dataset is sourced from Ciao, a product review site,
where users can post their experiences with products or services (the site, dvd.ciao.co.
uk, has ceased its operations, however the datasets crawled from it still exist and are
used in CF research). These ten datasets used in our experiments (a) contain reliable
timestamps (most of the ratings within each dataset have been entered in real rating
time and not in a batch mode), (b) are up to date (published between 1998 and 2016),
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(c) are widely used as benchmarking datasets in CF research and (d) vary with respect
to type of dataset (movies, music, books, videogames and automotive) and size (from
1 MB to 4.7 GB). The basic properties of these datasets are summarized in Table 1.

In each dataset, users initially having less than 10 ratings were dropped, since users
with few ratings are known to exhibit low accuracy in predictions computed for them
[26]. This procedure did not affect the MovieLens and the NetFlix datasets, because
these datasets contain only users that have rated 20 items or more. Furthermore, we
detected cases where for a particular user all her ratings’ timestamps were almost
identical (i.e. the difference between the minimum and maximum timestamp was less
than 5 s). These users were dropped as well, since this timestamp distribution indicated
that the ratings were entered in a batch mode, hence the assigned timestamps are not
representative of the actual time that these ratings were given by the users.

In the following paragraphs, we report on our findings regarding the experiments
described above, using both a user-user CF implementation, which employs the
standard Pearson correlation coefficient for measuring user similarity, and an item-item
CF implementation, which employs the Adjusted Cosine Similarity for measuring item
similarity.

4.1 The Amazon “Videogames” Dataset

The results obtained from the Amazon “Videogames” dataset, are depicted in Table 2.
Column “% coverage” corresponds to the percentage of cases for which the algorithm
could compute predictions, or –equivalently– when the number of near neighbors

Table 1. Datasets summary

Dataset name #users #ratings #items Avg.
#ratings/user

DB size
(in text
format)

Amazon “Video-games” [7, 8] 8.1K 157K 50K 19.6 3.8 MB
Amazon “CDs and Vinyl” [7, 8] 41K 1,300K 486K 31.5 32 MB
Amazon “Movies and TV” [7, 8] 46K 1,300K 134K 29.0 31 MB
Amazon “Books” [7, 8] 295K 8,700K 2,330K 29.4 227 MB
Amazon “Automotive” [7, 8] 7.3K 113K 65K 15.5 2.6 MB
MovieLens “Old 100K Dataset” [9, 10] 0.94K 100K 1.68K 106.0 2.04 MB
MovieLens “Latest-
20M”,“recommended for new research”
[9, 10]

138K 20,000K 27K 145 486 MB

MovieLens “Latest 100K”,
“Recommended for education and
development” (small) [9, 10]

0.7K 100K 9K 143 2.19 MB

NetFlix competition [11] 480K 96,000K 17.7K 200 4,700 MB
Ciao [51] 1.1K 40K 16K 36.3 1 MB
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computed using the algorithm’s similarity metric was adequate [28] to formulate a
rating prediction.

We can observe that under both CF implementations (user-user and item-item), the
DAnext algorithm achieves the best results regarding prediction accuracy. In more detail,
under the user-user CF implementation, the DAnext algorithm achieves an improvement
in MAE of 1.6% against the runner up, which is the DAprevious algorithm and a 7.3%
improvement against the plain CF algorithm. Considering the RMSE metric, the
respective improvements are 1.3% and 5.7%. The DAnext algorithm also achieves the
highest percentage of correct predictions, with its performance edge on this metric
ranging from 0.5% to 0.7%. These improvements are achieved at the expense of a
coverage drop of 2.2% against the plain CF algorithm, which is deemed to be tolerable;
it is notable, however, that the DAnext algorithm achieves a better coverage percentage
than the DAprevious algorithm, which was the winner of the corresponding test in [33].

Regarding the item-item CF implementation, the DAnext algorithm has a perfor-
mance edge of 1.9% on the MAE metric against the DAprevious algorithm, which is the
runner up, while the relevant improvement against the plain CF algorithm is 3.9%.
Considering the RMSE metric, the respective improvements are 3.1% and 5.9%. With
respect to the correct predictions metric, the DAnext algorithm is ranked first, having a
performance lead of 0.6% against the DAprevious algorithm which is ranked second, and
a 1.2% performance lead compared to the plain CF algorithm. With respect to the
coverage metric, the performance of the DAnext algorithm is almost equal to the other
two dynamic averages approaches, lagging behind them by 0.1%, while the coverage
deterioration of the DAnext algorithm as compared to the plain CF algorithm is 0.6%,
which is deemed to be tolerable.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, at the
expense of small to tolerable deteriorations in coverage.

4.2 The Amazon “CDs and Vinyl” Dataset

Table 3 illustrates the results obtained from the Amazon “CDs and Vinyl” dataset. In
this dataset, the user-user CF implementation could formulate a prediction for 59.3% of
the cases, while for the item-item CF implementation coverage increases to 86.6%.

Table 2. Amazon “Videogames” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.777 1.082 32.04 72.14 0.383 0.596 66.61 94.41
DAvicinity 0.752 1.048 32.15 70.86 0.377 0.582 66.89 93.96

DAprevious 0.732 1.033 32.26 69.76 0.375 0.579 67.22 93.97
DAnext 0.720 1.020 32.76 69.95 0.368 0.561 67.86 93.85
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Regarding the rating prediction quality, the DAnext algorithm again outperforms all
other algorithms, under both the user-user and the item-item CF implementations. In
more detail, when considering the user-user CF implementation the DAnext algorithm
achieves the lowest MAE metric (0.663), having a performance lead of 0.9% against
the DAprevious algorithm, which is ranked second, and a performance lead of 5.6%
compared to the plain CF algorithm. For the RMSE metric, the respective performance
edges are 1.2% and 5.2%. The DAnext algorithm is also ranked first with regards to the
percentage of correct predictions metric, with its performance lead ranging from 0.4%
over the performance of the DAvicinity algorithm which is ranked second regarding this
metric, to 0.6% as compared to the plain CF algorithm. These benefits are achieved at
the expense of a coverage drop of 1.3% as compared to the plain CF algorithm, which
is considered to be tolerable. It is worth noting that coverage-wise, the DAnext algorithm
achieves a slightly better performance than the DAprevious algorithm, which is the runner
up with respect to prediction accuracy.

With respect to the item-item CF implementation, the DAnext algorithm attains the
lowest value for the MAE metric, which is 2.1% better than the MAE of the runner up
algorithm (DAprevious) and 3.3% better than the value of the plain CF algorithm.
Considering the RMSE metric, the respective improvements are 2.6% and 5.7%. The
DAnext algorithm also computes the highest percentage of correct predictions, outper-
forming the DAnext algorithm, which is ranked second, by 0.6% and the plain CF
algorithm by 2.5%. The DAnext algorithm exhibits a coverage drop of 0.3% against the
plain CF algorithm, which is very small, while coverage-wise it is almost equivalent to
the other two dynamic average-based algorithms.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, at the
expense of very small to small deteriorations in coverage.

4.3 The Amazon “Movies & TV” Dataset

Table 4 illustrates the results obtained from the Amazon “Movies & TV” dataset. We
can observe that, again, the proposed dynamic average-based algorithm DAnext achieves
the best results under both user-user and item-item CF implementations. Considering
user-user CF, the DAnext algorithm reduces the MAE by 7.0% as compared to the plain
CF algorithm, while it also achieves a MAE reduction of 1.3%, compared to the
DAprevious algorithm which is the runner up. The respective improvements for the RMSE
metric are 5.2% and 0.4%. The DAnext algorithm is also ranked first regarding the
percentage of correct predictions, with its performance edge ranging from 0.5% (against

Table 3. Amazon “CDs & Vinyl” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.702 1.010 29.15 59.30 0.335 0.557 64.87 86.55
DAvicinity 0.682 0.984 29.36 58.66 0.332 0.544 65.94 86.27

DAprevious 0.669 0.969 29.28 57.71 0.331 0.539 66.73 86.19
DAnext 0.663 0.957 29.74 57.95 0.324 0.525 67.32 86.21
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DAprevious) to 1% (against plain CF). The coverage of the DAnext algorithm, however,
lags behind that of the plain CF algorithm by 1.6%, a drop which is deemed tolerable.

Considering the item-item CF implementation, the DAnext algorithm decreases the
MAE by 3.1% against plain CF and by 1.8% against the runner up, which is the
DAprevious algorithm. The respective reductions in RMSE are higher (4.5% against the
plain CF algorithm and 2.8% against the DAprevious algorithm), indicating that the
DAnext algorithm manages to correct some predictions with high errors (recall that the
RMSE metric penalizes predictions with high errors). The DAnext algorithm is ranked
first with respect to the correct prediction percentage by a margin ranging from 0.5%
(against the DAprevious algorithm) to 0.8% (against the plain CF algorithm). Finally, the
coverage drop inflicted by the use of the DAnext algorithm is 0.6% as compared to the
plain CF algorithm, which is deemed small.

Overall, in this dataset the DAnext algorithm achieves noteworthy improvements in
rating prediction accuracy, under both the user-user and item-item CF implementations,
while the losses in coverage imposed by the algorithm are rated from small to tolerable.

4.4 The Amazon “Books” Dataset

Table 5 illustrates the results obtained from the Amazon “Books” dataset. For the user-
user CF, we can observe that again the DAnext algorithm is ranked first regarding
prediction accuracy, its MAE being 2.6% less than the MAE of the plain CF algorithm
and 0.5% smaller than the MAE of the DAprevious algorithm, which is ranked second.
The improvements regarding the RMSE metric are very similar to those of the MAE
(2.5% and 0.7% respectively). The DAnext algorithm is also ranked first regarding the
correct predictions percentage, by a narrow margin that ranges from 0.2% to 0.6%. The
coverage achieved by the DAnext algorithm is 1% inferior to that achieved by the plain
CF and the DAvicinity algorithms, which are tied for the first place; this drop, however, is
deemed small to tolerable.

Table 4. Amazon “Movies & TV” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.738 1.046 37.00 78.50 0.393 0.617 66.74 95.90
DAvicinity 0.713 1.014 37.37 77.26 0.390 0.611 66.81 95.60

DAprevious 0.695 0.996 37.55 76.91 0.388 0.606 67.09 95.30
DAnext 0.686 0.992 38.01 76.90 0.381 0.589 67.56 95.35

Table 5. Amazon “Books” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.625 0.883 43.67 53.75 0.301 0.466 71.97 90.87
DAvicinity 0.619 0.876 43.96 53.75 0.297 0.461 72.02 90.24

DAprevious 0.612 0.867 44.04 53.36 0.288 0.450 72.21 89.46
DAnext 0.609 0.861 44.26 52.73 0.278 0.441 72.71 89.77
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Regarding the item-item CF implementation, the DAnext algorithm achieves more
substantial improvements than in the user-user setting: it achieves a reduction of 7.6%
in the MAE, as compared to the plain CF algorithm and a reduction of 3.5% in the
MAE against the runner up, which is the DAprevious algorithm. The respective
improvements regarding the RMSE are 5.4% and 2%. The DAnext algorithm also
exhibits the best performance regarding the correct predictions percentage, surpassing
the DAprevious algorithm by 0.5% and the plain CF algorithm by 0.7%. These gains are
achieved at the expense of a coverage drop, which is quantified to 1.1% against the
plain CF algorithm; notably however, the DAnext algorithm attains better coverage than
the runner up algorithm in terms of performance (DAprevious), by a small margin of
0.3%.

Overall, in this dataset the DAnext algorithm achieves substantial gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
the losses in coverage imposed by the algorithm are rated from small to tolerable.

4.5 The Amazon “Automotive” Dataset

Table 6 illustrates the results obtained from the Amazon “Automotive” dataset. For the
user-user CF, we can observe that the DAnext algorithm is ranked first regarding pre-
diction accuracy, reducing the MAE by 7.6% in comparison to the plain CF algorithm;
the runner-up algorithm regarding the MAE metric is DAprevious, which achieves a
MAE 4.0% smaller than the plain CF algorithm, lagging behind DAnext by 3.6%. The
ranking is the same regarding the RMSE metric, with DAnext being the top-performing
algorithm, achieving an improvement in the RMSE by 8.0% in comparison to the plain
CF algorithm, which surpasses the performance of DAprevious –which is ranked second–
by 3.8%. The DAnext algorithm is also ranked first regarding the correct predictions
percentage, by a margin that ranges from 2.7% (against the DAprevious algorithm) to
5.4% (against the DAvicinity algorithm). The coverage achieved by the DAnext algorithm
is 1.4% inferior to that achieved by the plain CF algorithm, which is ranked first
regarding this metric; this drop, however, is deemed small to tolerable.

Regarding the item-item CF implementation, the DAnext algorithm achieves higher
performance improvements than in the user-user setting: it achieves a reduction of
9.0% in the MAE, as compared to the plain CF algorithm, with this improvement being

Table 6. Amazon “Automotive” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.645 1.022 56.12 53.16 0.310 0.582 60.34 91.77
DAvicinity 0.626 1.015 54.25 52.99 0.302 0.581 61.61 91.30

DAprevious 0.619 0.979 57.01 51.96 0.290 0.566 65.23 90.71
DAnext 0.596 0.940 59.68 51.75 0.282 0.533 66.28 90.37
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better by 2.6%, as compared to that achieved by the runner up, which is the DAprevious

algorithm. The respective performance edges regarding the RMSE are 8.4% and 5.7%.
The DAnext algorithm also attains the best performance regarding the correct predictions
percentage, surpassing the DAprevious algorithm by 1.1% and the plain CF algorithm by
5.9%. These gains are achieved at the expense of a coverage drop, which is quantified
to 1.4% against the plain CF algorithm.

Overall, in this dataset the DAnext algorithm achieves substantial gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
the losses in coverage imposed by the algorithm are rated from small to tolerable.

4.6 The MovieLens “Old 100K” Dataset

Table 7 depicts the results obtained from the MovieLens “Old 100K” dataset. In this
dataset, which is a relatively dense one, we can observe that in both the user-user and
the item-item CF implementations, practically no coverage drop is incurred by the
introduction of the dynamic average-based algorithms, and coverage is close to 100%
in all cases, with negligible variations. As shown in the next subsections, this behavior
is consistent across all dense datasets (i.e. all MovieLens datasets and the Netflix
dataset).

Regarding rating prediction quality, under the user-user CF implementation the
DAnext algorithm has a marginal performance edge over the runner up, DAprevious, since
it exhibits smaller values for both the MAE and the RMSE metric by 0.4%. In com-
parison to the plain CF algorithm the performance lead of the DAnext algorithm is
considerably higher (MAE: 3.9%; RMSE: 3.5%). With respect to the correct predic-
tions percentage criterion, the DAnext algorithm surpasses the performance of all other
algorithms, having a lead of 1.1% against the DAvicinity algorithm which is ranked
second and a lead of 2.2% against the plain CF algorithm.

Considering the item-item CF implementation, the DAnext algorithm is again ranked
first in all accuracy-related metrics. Regarding the MAE, the DAnext algorithm out-
scores the runner up (which is the DAprevious algorithm) by 1.3% and the plain CF
algorithm by 3.1%; in relation to the RMSE, the performance edge of the DAnext

algorithm against the DAprevious and the plain CF algorithms is 2.3% and 4.6%,

Table 7. MovieLens “Old 100K” dataset results

Method User-user CF (Pearson correlation) Item-Item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.735 0.939 42.34 99.82 0.622 0.797 48.99 99.90
DAvicinity 0.715 0.916 43.38 99.83 0.618 0.790 49.37 99.90
DAprevious 0.709 0.910 43.32 99.84 0.611 0.778 50.22 99.90
DAnext 0.706 0.906 44.49 99.81 0.603 0.760 50.82 99.90
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respectively. Finally, the DAnext algorithm produces correct results in 0.6% more cases
than the DAprevious algorithm does, and in 1.8% more cases than the plain CF algorithm
does.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
practically no loss in coverage is sustained.

4.7 The MovieLens “Latest-20M - Recommended for New Research”
Dataset

Table 8 depicts the results obtained from the MovieLens “Latest-20M, Recommended
for New Research” dataset. As noted in the previous subsection, the coverage in this
dataset is near 100% under both CF implementation strategies and remains practically
unaltered by the introduction of dynamic average-based algorithms.

With respect to rating prediction quality, under the user-user CF implementation the
DAnext algorithm is again ranked first, improving the MAE by 3.6% as compared to the
plain CF algorithm and by 1.2% as compared to the DAprevious algorithm, which is
ranked second. The respective improvements considering the RMSE metric are 4.8%
and 1.6%, respectively. Finally, the DAnext algorithm formulates the most correct
predictions, surpassing the performance of the DAprevious algorithm by 0.4% and that of
the plain CF algorithm by 1.8%.

Considering the item-item CF implementation, the DAnext algorithm has been found
to produce the most accurate recommendations, exhibiting improvements in the MAE
that range from 3.7% (against the DAprevious algorithm) to 7.7% (against the plain CF
algorithm); the corresponding improvements in RMSE range from 3.1% (against the
DAprevious algorithm) to 9.5% (against the plain CF algorithm). Finally, the DAnext

algorithm produces the most correct predictions, having a performance lead of 1.1% in
comparison to the DAprevious algorithm, and a lead of 5.4% against the plain CF
algorithm.

Table 8. MovieLens “Latest-20M - recommended for New Research” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

Plain CF 1.352 1.771 24.26 99.96 1.548 1.984 20.50 99.99
DAvicinity 1.326 1.740 24.98 99.90 1.512 1.921 22.87 99.97

DAprevious 1.319 1.714 25.60 99.96 1.484 1.853 24.81 99.96
DAnext 1.303 1.686 26.02 99.94 1.429 1.795 25.87 99.96
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Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy under both the user-user CF implementation and more substantial
gains under the item-item CF implementation, while practically no loss in coverage is
sustained.

4.8 The MovieLens “Latest 100K - Recommended for Education
and Development” Dataset

Table 9 depicts the results obtained from the MovieLens “Latest 100K- Recommended
for education and development” dataset. We can again notice that no coverage loss is
introduced by the dynamic average-based algorithms, with coverage being near-100%
in all cases.

With respect to rating prediction quality, under the user-user CF implementation
scenario the DAnext algorithm is ranked first, achieving a reduction in the MAE of 3.2%
in comparison to the plain CF and a reduction of 0.5% in comparison to the DAprevious

algorithm, which is ranked second. The respective gains for the RMSE metric are 4.3%
and 1%, being higher than those of the MAE metric, indicating that the DAnext algo-
rithm improves predictions with high errors. Finally, the DAnext algorithm computes
approximately 1.7% more correct predictions than both the plain CF and DAprevious

algorithms, while it also exceeds the performance of the DAvicinity algorithm (which is
the runner up for this metric) by 1.4%.

With regards to the item-item CF implementation scenario, the DAnext algorithm is
again ranked first, achieving a 6.2% reduction in the MAE and 5.2% reduction in the
RMSE, as compared to the plain CF algorithm. The DAprevious algorithm is ranked
second, lagging behind the DAnext algorithm by 2.0% regarding both the MAE and the
RMSE metrics. Finally, the DAnext algorithm manages to produce the most correct
predictions, computing 5.1% more correct predictions than the plain CF and 1.5% more
correct predictions than the DAprevious algorithm, which is ranked second.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy under the user-user CF implementation scenario and more sub-
stantial gains under item-item CF; in terms of coverage, practically no loss in coverage
is sustained.

Table 9. MovieLens “Latest 100K - recommended for education and development” dataset
results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

MAE (out
of 9)

RMSE % correct
predictions

%
coverage

Plain CF 1.404 1.858 24.16 99.57 0.999 1.374 34.34 99.70
DAvicinity 1.376 1.816 24.44 99.60 0.987 1.368 35.08 99.68
DAprevious 1.366 1.796 24.07 99.40 0.956 1.330 37.99 99.65
DAnext 1.359 1.778 25.83 99.49 0.937 1.303 39.46 99.69
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4.9 The “Netflix Competition” Dataset

Table 10 depicts the results obtained from the “Netflix Competition” dataset. Again,
the coverage is close to 100% in all cases, and the losses sustained by the introduction
of the dynamic average-based algorithms are negligible.

Regarding rating prediction quality, under the user-user CF scenario the DAnext

algorithm is ranked first; it achieves a MAE improved by 3.7% against the plain CF
algorithm and by 1.5% against the DAvicinity algorithm, which is ranked second; for the
RMSE metric, the respective improvements are 4.4% and 1.4%. Finally, the DAnext

algorithm computes 2.2% more correct predictions that the plain CF algorithm and
1.4% more correct predictions than the DAvicinity algorithm, which is ranked second for
this metric.

Considering the item-item CF implementation, the DAnext algorithm outperforms all
other algorithms by a wider margin. For the MAE criterion, it achieves an improvement
of 11.2% against the plain CF algorithm, and 5.8% against the DAprevious algorithm,
which is ranked second; the respective improvements for the RMSE metric are 15.9%
and 6.5%. Finally, the DAnext algorithm computes the most correct predictions, having
a performance edge of 4.2% against the DAprevious algorithm, which is the runner up,
and an edge of 10.7% against the plain CF algorithm.

Overall, in this dataset the DAnext algorithm achieves considerable gains in rating
prediction accuracy under the user-user CF implementation and more substantial gains
under the item-item CF implementation, while practically no loss in coverage is
sustained.

4.10 The “Ciao” Dataset

Table 11 illustrates the results obtained from the “Ciao” dataset. For the user-user CF,
we can observe that the DAnext algorithm is ranked first regarding prediction accuracy,
reducing the MAE by 6.1% in comparison to the plain CF algorithm; the runner-up
algorithm regarding the MAE metric is DAprevious, which achieves a MAE 3.4% smaller
than the plain CF algorithm, lagging thus behind DAnext by 2.7%. The ranking is the
same regarding the RMSE metric, with DAnext being the top-performing algorithm,
achieving an improvement in the RMSE by 9.7% against the plain CF algorithm, which
surpasses the performance of DAprevious –which is ranked second– by 3.0%. The DAnext

Table 10. “Netflix Competition” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.758 0.960 41.42 99.10 0.857 1.061 33.61 99.40
DAvicinity 0.741 0.931 42.25 99.03 0.811 0.956 39.98 99.30

DAprevious 0.752 0.936 42.12 99.00 0.808 0.954 40.08 99.23
DAnext 0.730 0.918 43.60 99.02 0.761 0.892 44.30 99.25
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algorithm is also ranked first regarding the correct predictions percentage, by a margin
that ranges from 1.7% (against the DAprevious algorithm) to 3.2% (against the plain CF
algorithm). The coverage achieved by the DAnext algorithm is 1.4% inferior to that
achieved by the plain CF algorithm, which is ranked first regarding this metric; this
drop, however, is deemed small to tolerable.

Regarding the item-item CF implementation, the DAnext algorithm achieves a
reduction of 5.0% in the MAE, as compared to the plain CF algorithm, with this
improvement being better by 1.9%, as compared to that achieved by the runner up,
which is the DAprevious algorithm. The respective performance edges regarding the
RMSE are 5.8% and 2.8%. The DAnext algorithm also attains the best performance
regarding the correct predictions percentage, surpassing the DAprevious algorithm by
1.6% and the plain CF algorithm by 3.5%. These gains are achieved at the expense of a
practically negligible coverage drop, which is quantified to 0.15%.

Overall, in this dataset the DAnext algorithm achieves substantial gains in rating
prediction accuracy, under both the user-user and item-item CF implementations, while
the losses in coverage imposed by the algorithm are rated from negligible to tolerable.

4.11 Algorithms Comparison

In this subsection, we consolidate our findings from all datasets, to provide a com-
prehensive overview of the algorithms’ performance regarding the prediction accuracy
metrics. In all comparisons, the performance of the plain CF algorithm is taken as a
baseline. We also compare the proposed algorithm against other approaches that have
been published and evaluated in the literature.

Figure 1 depicts the improvement in the MAE achieved by all dynamic average-
based algorithms under the user-user CF implementation scenario. Clearly, the DAnext

algorithm achieves the best results, with its performance lead being on average
approximately 1.5% against the DAprevious algorithm which is the runner up; the
respective reduction in the MAE against the baseline algorithm is 5.1% on average. It is
worth noting that the DAnext algorithm surpasses the performance of both other algo-
rithms in all datasets, while the DAprevious algorithm is ranked second in 9 datasets and

Table 11. “Ciao” dataset results

Method User-user CF (Pearson correlation) Item-item CF (adjusted cosine similarity)

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

MAE (out
of 4)

RMSE % correct
predictions

%
coverage

Plain CF 0.853 1.089 37.40 76.86 0.378 0.567 68.06 99.26
DAvicinity 0.844 1.064 37.86 76.21 0.373 0.560 69.01 99.26
DAprevious 0.824 1.016 38.93 75.96 0.366 0.550 69.99 99.13
DAnext 0.801 0.983 40.64 75.47 0.359 0.534 71.60 99.11
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third in one dataset (Netflix). From the detailed examination of our results, the DAnext

algorithm formulated the prediction with the lowest error in 94.3% of the prediction
formulation requests across all datasets (this percentage includes ties for the first place,
i.e. cases where the DAnext algorithm and some other algorithm(s) produced the same
prediction, and this was the closest prediction to the actual rating).

Figure 2 presents the respective improvements regarding the RMSE metric. In five
datasets (and on average), the improvements are very similar to those of the MAE
metric shown in Fig. 1, indicating that prediction improvements are spread uniformly
among predictions with high and low errors. In three datasets (MovieLens latest 20M;
MovieLens Latest 100K; and Ciao), the improvement in the RMSE metric is higher
than the improvement in the MAE metric by a margin ranging from 1.1% to 3.6%,
indicating that the DAnext algorithm manages to eliminate some high errors in pre-
dictions, while in two other datasets (Amazon Videogames and Amazon Movies and
TV), the improvements in the MAE metric surpass those in the RMSE metric by 1.6%
and 1.9% respectively, indicating that the DAnext algorithm mostly adjusts predictions
with low errors. Again, the DAnext algorithm is consistently ranked first across all
datasets, with its average performance lead against the runner up algorithm (DAprevious)
being 1.5%, and the respective performance lead against the plain CF algorithm being
5.3%.
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Fig. 1. MAE improvement achieved by the dynamic average-based algorithms under the user-
user CF implementation
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Figure 3 illustrates the improvement in the MAE achieved by the dynamic average-
based algorithms under the item-item CF implementation scenario. Again, the DAnext

algorithm is consistently ranked first across all datasets, achieving a reduction of 6.0%
on average against the baseline algorithm, and surpassing the performance of the
runner up algorithm (DAprevious) by 2.6% on average. Performance gains in this case
exhibit higher variations than those under the user-user implementation scenario,
mainly owing to the Netflix dataset in which the DAnext algorithm achieves very
substantial improvements in the MAE metric (11.2% against the plain CF algorithm
and 5.5% against the runner up, which is the DAprevious algorithm). From the detailed
examination of our results, the DAnext algorithm formulated the prediction with the
lowest error in 91.4% of the prediction formulation requests across all datasets.

Figure 4 presents the relevant improvements regarding the RMSE metric. Again,
DAnext achieves the best results, with its performance lead against the DAprevious

algorithm, which is the runner up, being equal to 3.0% on average; the respective
RMSE reduction against the baseline algorithm is 7.1% on average. In relation to the
baseline algorithm, the average RMSE metric improvement is higher than that of the
MAE metric by approximately 1.1%, indicating that the DAnext algorithm achieves to
eliminate some high prediction errors. Considering individual datasets, the RMSE
metric improvement is higher than the improvement of MAE in seven of the datasets
(Amazon Videogames, Amazon CDs and Vinyl, Amazon Movies and TV, MovieLens
old 100K, MovieLens latest 20M, Netflix and Ciao); in the remaining four three
(Amazon Books, Amazon Automotive and MovieLens Latest 100K), the improvement
in the RMSE metric lags behind the improvement of the MAE metric by a margin
ranging from 0.6% to 2.2%, indicating that in these datasets the DAnext algorithm
mostly improves predictions with low errors.
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Fig. 2. RMSE improvement achieved by the dynamic average-based algorithms under the user-
user CF implementation
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Figure 5 illustrates the improvements regarding the correct prediction percentage
for all dynamic average-based algorithms under the user-user CF implementation
scenario. The DAnext algorithm achieves improvements ranging from 0.4% to 3.6%
against the baseline algorithm. Regarding the dynamic average-based algorithms, we
can observe that the DAnext algorithm is consistently ranked first across all datasets; the
DAprevious algorithm is ranked second in six of the datasets, lagging behind the DAnext
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Fig. 3. MAE improvement achieved by the dynamic average-based algorithms under the item-
item CF implementation

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

DAvicinity DAprevious DAnext

Fig. 4. RMSE improvement achieved by the dynamic average-based algorithms under the item-
item CF implementation
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algorithm by a margin ranging between 0.22% and 2.67% (1.1% on average), while the
DAvicinity algorithm is ranked second in the remaining four datasets, falling behind the
performance of DAnext by a margin ranging between 0.3% and 5.43% (1.50% on
average).

Figure 6 depicts the corresponding findings for the item-item CF implementation.
Again, the DAnext algorithm is ranked first across all datasets, with the performance
gains being considerably higher: the improvement against the baseline algorithm is
3.8% on average, ranging from 0.7% to 10.7%, while in comparison to the runner up,
DAprevious, the performance edge of the DAnext algorithm is 1.2% on average, ranging
from 0.5% to 4.2%. A significant part of this performance edge is owing to the results
of the Netflix dataset, where the DAnext algorithm has the widest performance gap from
the other algorithms. Besides the Netflix dataset, we can observe that the DAnext

algorithm achieves its highest performance improvements in the latest MovieLens
datasets (MovieLens latest 20M and MovieLens Latest 100K) and the Amazon
“Automotive” dataset. The Netflix and both the Movielens datasets share the property
of being denser than other datasets (and being the only dense datasets in the experi-
ment), with their #ratings

#users �#items ratio exceeding 1%, while in the rest of the datasets this
ratio ranges from 0.001% (Amazon Books) to 0.537% (MovieLens old 100K). How-
ever, further investigation is required to determine whether this behavior is owing
solely to the density of the datasets, or to other properties as well. Interestingly, the
DAnext algorithm achieves substantial improvements in the Amazon “Automotive”
dataset too, which is relatively sparse.
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Fig. 5. Correct predictions percentage improvement achieved by the dynamic average-based
algorithms under the user-user CF implementation
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Summarizing, we can clearly see that in all datasets and under both CF imple-
mentation scenarios, the proposed algorithm outperforms all other algorithms achieving
(1) the highest MAE reduction, (2) the highest RMSE reduction and (3) the highest
correct predictions’ percentage.

In relation to other approaches reported in the literature, Vaz et al. [16] exploit
temporal dynamics by considering the age of user ratings and community ratings in an
item-item CF scenario. The method presented therein achieves a MAE improvement of
0.2% when the a parameter (which controls the way that the age of user ratings is
handled) ranges from 0.1 to 0.6 and the b parameter (which controls the way that the
age of community ratings is handled) is set to 0, i.e. when the age of community ratings
is disregarded. Under the item-item CF scenario, the presented algorithm achieves
MAE reductions ranging from 3.05% to 11.20%, clearly thus achieving substantially
higher improvements than the one presented in [16].

The ISCF (Interest Sequence CF) algorithm proposed by Cheng et al. [53]
accommodates temporal dynamics in a user-user CF scenario, by considering user
interest sequences, and is evaluated against the four real-world datasets (Ciao, Flixter,
MovieLens old 100K, MovieLens latest 100K). The ISCF algorithm achieves an
average reduction on the MAE (considering the four aforementioned datasets) by
2.41% (with improvements ranging from 0.21% to 4.33%), while the average reduction
on the RMSE is 3.0% (with improvements ranging from 0.59% to 7.81%). The DAnext

algorithm proposed in this paper achieves higher improvements regarding the MAE
and the RMSE than ISCF on average, both in individual datasets and on overall
average, as illustrated in Table 12.
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Fig. 6. Correct predictions percentage improvement achieved by the dynamic average-based
algorithms under the item-item CF implementation

178 D. Margaris and C. Vassilakis



Dror et al. [2] propose an algorithm for identifying and exploiting drifts in short-
lived music listening sessions. Their algorithm is evaluated against the Yahoo Music!
dataset; the algorithm presented in [2] encompasses two steps that exploit temporal
dynamics, namely the user session bias and the items temporal dynamics bias. These
two steps achieve a cumulative improvement in RMSE equal to 3.98%; on the other
hand, the proposed algorithm has been found to improve RMSE by 6.52% under the
user-user scenario and by 4.89% under the item-item scenario. Therefore, in this case
the DAnext algorithm is found to achieve higher improvement levels, under both the
user-user and the item-item CF scenarios, than the provisions for exploitation of
temporal dynamics proposed by Dror et al. [2].

Finally, Lo et al. [52] develop a temporal matrix factorization approach for tracking
concept drift in each individual user latent vector. The method proposed therein is
applied on four real-world datasets, achieving reductions in the RMSE metric ranging
from 0.24% (when applied on the MovieLens 20M dataset) to 5.04% (when applied on
the Ciao dataset); the average RMSE metric improvement achieved by the algorithm
presented in [52] considering the four real-world datasets is 1.73%. The respective
improvements regarding the RMSE metric achieved by the algorithm proposed in this
paper are as follows: regarding the MovieLens 20M dataset, the RMSE is decreased by
4.8% under the user-user scenario and by 9.5% under the item-item scenario; in regards
to the Ciao dataset, the RMSE is decreased by 9.7% under the user-user scenario and
by 5.8% under the item-item scenario; finally, the average RMSE reduction achieved
by the proposed algorithm across all ten examined datasets is 5.3% under the user-user
scenario and 7.1% under the item-item scenario. Recapitulating, the algorithm pro-
posed in this paper achieves more substantial improvements in rating prediction
accuracy than the one proposed in [52], both considering individual datasets and
average performance, and this performance edge is achieved under the user-user CF
scenario as well as the item-item CF scenario.

4.12 Algorithm Complexity and Scalability

In this subsection, we investigate the complexity and the scalability of the proposed
algorithm, and compare them with the complexity and scalability of the other algo-
rithms examined in our experiments [33]. In our investigation, we consider all phases
of the algorithms, i.e. (i) bootstrap (initial computations of dynamic averages and
Pearson similarities), (ii) computation of recommendations and (iii) update of dynamic
averages and Pearson similarities.

Table 12. Accuracy improvements achieved by the DAnext and the ISCF [53] algorithms

Ciao MovieLens old
100K

MovieLens latest
100K

Average (over all
tested datasets)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ISCF 0.21% 0.59% 3.23% 0.21% 0.59% 2.24% 2.41% 3.0%
DAnext 6.10% 9.73% 3.95% 3.51% 3.20% 4.3% 5.1% 5.3%
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Bootstrap Phase. Within the bootstrap phase, the dynamic average-based algorithms
(DAnext, DAprevious and DAvicinity) need in order to compute the dynamic averages for
each rating of the users as well as the Pearson similarities between users. The plain CF
algorithm needs to compute the global average of each user’s ratings and the Pearson
similarities between users. For each of the algorithms, the relevant complexities are
presented in the following paragraphs.

Computation of Needed Averages. For the DAnext algorithm, Eq. 4 indicates that for
each rating of a user all ratings subsequently entered by the same user need to be
examined to compute the rating’s dynamic average; under this view, the complexity of
the calculation of the dynamic averages for each user is O(ru2), where ru is the number
of ratings of the user. However, Listing 1 shows an optimization for the procedure of
calculating the dynamic averages, according to which ratings are sorted in ascending
timestamp order and then the sorted list is traversed from the end to the beginning,
computing at each step the relevant rating’s dynamic average by only considering the
previous rating’s value and the results of the computations made in the previous steps.
Thus the complexity of computing the dynamic averages for each user under the DAnext

algorithm is O(ru * log(ru)), i.e. the complexity of the sorting phase, which dominates
the complexity of the whole operation. The complexity of computing the dynamic
averages for all users is O N � �r � log �rð Þð Þ, where N is the number of users and r is the
average number of ratings per user.

Regarding DAprevious algorithm, the same technique can be employed for com-
puting dynamic averages (with the sorted list being traversed from the oldest rating to
the newest one), hence the complexity of the computing the dynamic averages for all
users is again O N � �r � log �rð Þð Þ:

In the case of the temporal vicinity algorithm, DAvicinity, Eq. 5 indicates that, when
computing the dynamic average for a specific rating ru,i, every rating ru,i’ entered by the
same user u is assigned a weight, based on its temporal vicinity to ru,i and subsequently
its value is multiplied by that weight to compute the dynamic average of ru,i. Therefore
the complexity of calculating the dynamic average for a specific rating is O(ru) and
consequently the complexity of computing all dynamic averages for a specific user’s
ratings is O(ru2) and the complexity of calculating all users’ dynamic averages is
O N � �r2ð Þ. An optimization is possible in this procedure: when computing the dynamic
average for a rating ru,i the initial and the final part of the temporally sorted rating list
for which wu;x ru;i

� �
\e, where e is a small value (e.g. 10−2), which will have a minimal

impact at the computation of the dynamic average of ru,i could be excluded from the
computation. However, due to the fact that the DAvicinity algorithm achieved the
smallest improvements out of all the dynamic average algorithms considered, such
optimizations were not considered further.

Finally, the plain CF algorithm computes each user’s global average with a single
pass along theuser’s ratings, therefore complexityof calculatingof theglobal average for a
user u is O(ru), and the complexity of computing all users’ global averages is O N � �rð Þ.
Computation of Pearson Similarities. The method for computing the Pearson simi-
larities between users is common to all four algorithms; the only difference between the
plain CF algorithm on the one hand and the dynamic average-based algorithms on the
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other is that the plain CF algorithm uses the single global average per user for adjusting
each rating (RX and RY , c.f. Eq. 1), while the dynamic average-based algorithms use a
precomputed, rating-specific average (DAAlg RX;i

� �
and DAAlg RY ;i

� �
, c.f. Eq. 2). This

does not affect the complexity of the operations, since the same amount of computations
takes place. In practice, performance differences may occur due to the fact that global
averages may be stored in registers for fast access, while dynamic averages should be
fetched from main memory, however this difference has been quantified to be small
(measurements are presented below). In terms of complexity, for computing the Pearson
similarity between two users X and Y the items rated in common by both users need to
be identified and for each of these pair of item ratings simple computations are per-
formed. The identification of items commonly rated among two users can be achieved
by creating a hash set for one of the user’s ratings and then iterating over the other user’s
ratings and examining whether they exist in the hash set. With a sufficiently large key
space value for the hash function (which is always possible since users have at most a
few thousand ratings and a hash set with tens of millions of distinct keys can be easily
accommodated in memory), insertion and lookup in the hash set is O(1), therefore the
complexity of the creation of the hash set is O(rx) and the complexity of the lookup is O
(rY), where rX and rY is the number of ratings entered by users X and Y, respectively.
Consequently, the complexity of the computation of the Pearson similarity between two
users X and Y is O(rx) + O(rY), or in the general case O 2 ��rð Þ. Since the Pearson
similarity between any pair of users needs to be computed, the overall complexity for the
computation of the Pearson similarity is O 2 � N2 ��r� �

; since however the Pearson
similarity is symmetric (i.e. Pearson_sim(X, Y) = Pearson_sim(Y, X)), the number of
computations can be reduced to the half, yielding an overall complexity of O N2 ��r� �

.
Table 13 summarizes the result of the complexity analysis for the bootstrap phase

of the four algorithms. Note that in the case of the plain CF algorithm, the complexity
of the Pearson similarity computation phase dominates the complexity of the dynamic
average computation phase, hence in the overall complexity only the former appears.

Regarding the disk storage space needed, the plain CF algorithm needs to store only
triples of the form (user, item, rating), while all dynamic average-based algorithms need
to extend the triple to accommodate the rating timestamp. Inmany cases, the timestamp is
stored as seconds since the epoch (1/1/1970), for which 8 bytes are sufficient. Even with
datasets with billions (109) of ratings, this extension can be accommodated, since even
commodity hardware supports storages at the TB level (1012).

Table 13. Complexity analysis for the algorithms; bootstrap phase

Method Dynamic average
computation
complexity

Pearson similarity
computation
complexity

Overall complexity

Plain CF O N � �rð Þ O N2 � �rð Þ O N2 � �rð Þ
DAvicinity O N � �r2ð Þ O N2 � �rð Þ O N � �r2ð ÞþO N2 � �rð Þ
DAprevious O N � �r � log �rð Þð Þ O N2 � �rð Þ O N � �r � log �rð Þð ÞþO N2 � �rð Þ
DAnext O N � �r � log �rð Þð Þ O N2 � �rð Þ O N � �r � log �rð Þð ÞþO N2 � �rð Þ
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Finally, in terms of memory storage, the dynamic average-based algorithms require
the storage of the dynamic average along with each rating. Dynamic averages are
represented with a float-typed value, requiring a four additional bytes. Taking into
account that the memory capacity of contemporary high-end servers has substantially
increased at the TB level (e.g. [48] can accommodate more than 6 TB of memory), this
extension is not expected to be a problem. It is worth noting that the DAprevious and the
DAnext algorithms may totally drop the timestamps from a user’s ratings after the user’s
dynamic averages have been computed, hence it is not necessary at any time point to
accommodate both all ratings’ timestamps and dynamic averages (the DAvicinity algo-
rithm may need to retain the timestamp in memory, in order to recompute the dynamic
averages when new ratings are entered).

In the case that the above quantified increases in storage space requirements is a
consideration, storage space needs may decrease by computing dynamic averages per
time window (e.g. week; month; year), in a fashion similar to the one described in [23].
The study of the effect that such an approach would have on the quality of formulated
predictions is part of our future work.

Figure 7 illustrates the time needed to compute all ratings’ (dynamic) averages for
the various datasets under each of the four examined algorithms.

In Fig. 7 (n.b. both axis are in logarithmic scale) we can notice that the time needed
by the plain CF algorithm to compute all global averages is less than 1 s (0.837 s. for
the Netflix dataset which contains 100M ratings), while the respective time needed by
the DAnext and DAprevious algorithms (whose lines fully coincide) is always less than
5 s (4.879 s for the Netflix dataset); this increment is definitely considered manageable.
On the other hand, the DAvicinity algorithm needs significantly more time, up to 230 s
for the Netflix dataset.
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Fig. 7. Time needed for (dynamic) average computation
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Figure 8 illustrates the time needed to compute the Pearson similarities for all user
pairs. The time needed by all algorithms has been found to be almost identical, with the
dynamic average-based algorithms needing approximately 0.98% more time than the
plain CF algorithm, which –as stated above– is attributed to the fact that global
averages may be stored in registers for fast access, while dynamic averages must be
fetched from main memory. While generally the time needed appears to scale linearly
with the number of ratings, we can notice three data points where scaling is not linear:

1. The time needed for the Amazon Videogames dataset (denoted as AV in Fig. 8) is
72 times higher than the time needed for the MovieLens “Old 100K Dataset”
(denoted as MLOLD), although the number of ratings is only 1.5 times higher. This
is attributed to the fact that the number of users in the Amazon Videogames dataset
is 8 times higher than the respective number of users in the MovieLens “Old 100K
Dataset” and, as indicated by the complexity formulas in Table 13, the time needed
is proportional to the square of the number of users, while scaling linearly with the
average number of ratings.

2. The time needed for the Amazon Movies dataset (denoted as AMV in Fig. 8) is 1.3
times higher than the time needed for the Amazon CDs and Vinyl dataset (denoted
as ACD), despite the fact that both datasets contain the same number of ratings.
Again, this is attributed to the fact that the Amazon Movies dataset contains a higher
number of users than the Amazon CDs and Vinyl dataset (approximately 11%
higher).

3. Finally, the time needed for the Amazon Books dataset (denoted as AB) is almost
equal to the time needed for the MovieLens “Latest 20M” dataset (denoted as
ML20), although the latter contains 2.3 times more ratings than the former. This is
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again owing to the fact that the Amazon Books dataset involves a significantly
higher number of users than the MovieLens “Latest 20M” (295K users vs. 138K or
2.13 times more).

In all cases we can observe that the computation of all Pearson similarities requires
from 0.3 ms (for the Ciao dataset, labeled as CI) to 75 min for a dataset containing
100M ratings (the Netflix dataset, labeled as NF), hence it is considered feasible. Since
computation of Pearson similarities is clearly parallelizable (computations for any pair
of users can proceed parallelly with the computation of any other pair), adding more
execution cores can further reduce the time needed.

Rating Prediction Computation Phase. Rating prediction computation in both the
plain CF and the dynamic average-based algorithms is performed using the following
prediction formula [3]:

cru;i ¼ ru þ
P

v2NN uð Þ Pearson sim u; vð Þ � rv;iP
v2NN uð Þ Pearson sim u; vð Þj j ð8Þ

where cru;i is the prediction for user u’s rating for item i and NN(u) is the set of nearest
neighbors for user u. The complexity of this formula is equal to O(|NN|), with |NN|
denoting the cardinality of the nearest neighbor set.

Figure 9 presents the time needed to compute a rating prediction, in relation to the
number of ratings in the database.

We can observe that the recommendation formulation time is under 1 ms in all
cases. The time needed to compute a rating prediction increases with the number of
ratings, owing to the fact that in our experiments the set of nearest neighbors was
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allowed to contain all users having a positive Pearson correlation with the user that the
prediction was computed for. Pruning the nearest neighbor set to contain the top
N similar users or users having a similarity above a higher threshold would render the
computation even more efficient.

Database Update Phase. The ratings database is updated when users enter new rat-
ings. When a rating is entered, the average(s) related to the user’s ratings are modified,
and additionally the user’s Pearson similarity to other users changes. In the following
subsections, we elaborate on the complexity and scalability of the database update
phase, under the four algorithms considered in the evaluation section.

Updating a user’s averages.
Under the plain CF algorithm, when a new rating rnew is entered in the database, the
new global average can be computed using Eq. 9:

avgu;new ¼ avgu;current � ratingsuj j þ rnew
ratingsuj j þ 1

ð9Þ

where ratingsu is the set of ratings that have been entered by user u before rnew was
entered and avgu,current is the current global average of user u. Therefore, the com-
plexity of updating a user’s global average upon insertion of a new rating is O(1).

When the DAprevious algorithm is employed, the arrival of a new rating rnew entered
by user u necessitates only the computation of the dynamic average for the newly
entered rating: indeed, since the dynamic average of any rating r is based only on
ratings entered by the same user before r, the dynamic averages of ratings previously
entered by the same user are not affected. If rlast is the last rating entered by user
u before rnew, then the dynamic average for rnew can be computed using Eq. 10:

DAprevious rnewð Þ ¼ DAprevious rlastð Þ � ratingsuj j þ rnew
ratingsuj j þ 1

ð10Þ

where ratingsu is the set of ratings that have been entered by user u before rnew was
entered. Consequently, the complexity of updating a user’s dynamic averages upon
insertion of a new rating is O(1).

When the DAnext algorithm is used, the arrival of a new rating rnew entered by user
u necessitates the computation of the dynamic averages for all ratings entered by u: this
is due to the fact that the newly entered rating rnew has a greater timestamp than all
existing ratings r entered by u, and therefore by virtue of Eq. 4 it affects the respective
dynamic averages. To recalculate the dynamic averages of all ratings, the algorithm
shown in Listing 1 can be employed. However, since the ratings are already ordered in
ascending timestamp order, the sorting operation can be skipped, and therefore the
complexity is reduced from O(ru * log(ru)) to O(ru), accounting for a single traversal of
the ratings in descending timestamp order.

Under the DAvicinity algorithm, when a new rating rnew is entered by user u, the
dynamic averages for all ratings entered by u must be calculated anew. This is because
(a) since the newly entered rating will have a timestamp greater than all other ratings in
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the database, the denominator of Eq. 5 changes, and consequently the weight of every
rating is modified and (b) the newly entered rating should be considered in the com-
putation of the dynamic average of every rating entered by user u, according to Eq. 6.
As shown in subsection “Bootstrap phase”, the complexity of computing the dynamic
averages for all ratings entered by some user u is O(ru

2), where ru is the number of
ratings entered by u.

Figure 10 illustrates the time needed for recomputing a user’s dynamic averages in
the context of the datasets used in this paper. We observe that the time needed for
DAnext algorithm ranges between 0.54 and 10 lsec, while the time needed by the
DAprevious and the plain CF algorithm remains constant. Finally, the DAvicinity algorithm
exhibits the worst performance among the examined algorithms.

Recomputing a User’s Pearson Similarities. When a new rating is entered, the Pearson
similarities between a user and other users need to be recomputed. For the plain CF and
the DAprevious algorithm, where the global average and the dynamic averages respec-
tively are not affected, this needs to be performed only for users that have rated the item
referenced in the newly entered rating. For the DAnext and DAvicinity algorithms, simi-
larities with all users need to be computed afresh, because the dynamic averages of all
ratings change, and this affects the outcome of the dynamic average-aware Pearson
similarity (c.f. Eq. 2).

Figure 11 depicts the performance of the procedure for recomputing the Pearson
similarity between the user for which a new rating was entered and all other users in the
dataset. For the Netflix dataset, which contains 480K users, the time needed is
approximately 30 ms. It has to be noted that parallelism is not as efficient in this case as
it has proven in the case of computing the pairwise similarities between all users,
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because the time needed to actually perform the calculations is now much smaller,
therefore the overhead of thread creation is now a considerable portion in the overall
execution time.

Besides having a high computation cost, recomputing the Pearson similarities upon
the arrival of each new rating is of low utility, because the results of some of these
computations will be overwritten almost instantly, as new ratings by other users enter
the database. For these reasons, the recomputation of the Pearson similarities can be
performed in an offline fashion, either periodically or when a substantial number of
new ratings has been amassed.

5 Conclusion and Future Work

In this paper we have introduced a novel dynamic average-based algorithm, DAnext,
which is able to better follow the variations of user rating practices and, consequently,
is able to produce more accurate rating predictions. The proposed algorithm has been
experimentally verified using ten datasets and compared to other dynamic average-
based algorithms presented in the literature [33], under both user-user and item-item CF
implementations. The DAnext algorithm has been found to consistently outperform all
other algorithms in all tested datasets, reducing prediction errors, as reflected through
the MAE and RMSE metrics, and also achieving the highest correct prediction per-
centages. In particular, the average MAE reduction compared to the plain CF algorithm
is 5.1% under the user-user CF implementation and 6.0% under the item-item CF
implementation; the respective gains regarding the RMSE metric are 5.3% and 7.1%.
In comparison to the runner up algorithm, i.e. the DAprevious algorithm [33], the
improvements in the MAE are 1.5% under the user-user CF implementation scenario
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and 2.6% under the item-item implementation scenario, while the respective gains in
the RMSE are quantified to 1.5% and 3.0%. Considering the correct prediction metric,
the proposed algorithm outperforms the runner up algorithm (DAprevious) by 1.09%
under the user-user CF implementation scenario and by 1.2% under the item-item
implementation scenario. These benefits are realized at the expense of drops in cov-
erage, which range from negligible to tolerable; coverage drops by 0.7% on average,
being less than 2.2% in all cases. For datasets with higher density, in particular,
practically no coverage loss occurs. We have also compared the improvements in
accuracy achieved by the proposed algorithm against the corresponding improvements
achieved by other algorithms exploiting temporal dynamics, and DAnext has been found
to achieve the most substantial improvements, in all cases.

Our future work will focus on investigating alternative methods for computing the
dynamic averages, as well as employing different dynamic average techniques for
different users, depending on the timestamp distribution of their rating history. The
adaptation of other similarity metrics, such as the Euclidian distance and the Manhattan
distance [49], to exploit information regarding identified shifts in rating practices will
be investigated.

The matrix factorization technique [32] and the fuzzy recommender systems
approach [50] are also particularly interesting areas for further research on how shifts in
rating practices can be accommodated in these approaches. For the matrix factorization
technique, in particular, the approach of time-aware matrix factorization models [44,
45] will be studied.

Since the DAnext algorithm introduced in this paper targets shifts in user rating
practices, which is a distinct aspect than those addressed in other approaches (e.g.
interest shifts; decay of old-aged ratings; etc.), opportunities exist for combining the
algorithm presented in our paper with algorithms from other categories, so that even
higher accuracy improvements can be harvested; such combinations will be investi-
gated in our future work.

Finally, exploring methods for decreasing the space overhead for the implemen-
tation of dynamic averages, considering the maintenance of dynamic averages at a
coarser granularity than the individual rating, such as monthly or yearly, as well as
decreasing the need for recomputing dynamic averages due to the arrival of new ratings
(e.g. periodic recomputation or the consideration of ratings only in a specific temporal
vicinity, when computing dynamic averages), will be explored.
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