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Abstract. In view of the increasing amount of information in the form
of alarms, messages or also acoustic signals, the operators of systems are
exposed to more workload and stress than ever before. We develop a concept
for the reduction of alarm floods in industrial plants, in order to prevent
the operators from being overwhelmed by this flood of information. The
concept is based on two phases. On the one hand, a learning phase in
which a causal model is learned and on the other hand an operating phase
in which, with the help of the causal model, the root cause of the alarm
sequence is diagnosed. For the causal model, a Bayesian network is used
which maps the interrelations between the alarms. Based on this causal
model the root cause of an alarm flood can be determined using inference.
This not only helps the operator at work, but also increases the safety and
speed of the repair. Additionally it saves money and reduces outage time.
We implement, describe and evaluate the approach using a demonstrator
of a manufacturing plant in the SmartFactoryOWL.

1 Introduction

The next industrial revolution (digital transformation) not only affects society but
also the working world. In the future, a few plant operators will have to operate
highly automated and complex plants. Especially, the vision of complete networking
of all components and parts of a plant (IoT) leads to overloaded operators due
to the enormous load of information. This is particularly critical in the area of
the alarm management of plants and machines, since none, too late or incorrect
intervention can result in high material damage or even personal injury. As a result
of the increasing automation, additional sensors are increasingly installed because
of their allegedly very good ratio of security per cost. However, this results in an
enormous number of warnings and alarms, which overexert the operator [15]. Such
situations are called alarm floods. As an effect of this, the operator is only able
to acknowledge most of the alarms, but cannot process the information that they
provide. This may cause dramatic effects especially at high hazard facilities like in
the process industry and reduces the overall value of an alarm system (see Example:
Refinery Explosion).

The Author(s) 2018

O. Niggemann and P. Schiiller (Eds.), IMPROVE — Innovative Modelling Approaches
for Production Systems to Raise Validatable Efficiency, Technologien fiir die intelligente
Automation 8, https://doi.org/10.1007/978-3-662-57805-6_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57805-6_7&domain=pdf

112 Concept for Alarm Flood Reduction with Bayesian Networks

An alarm flood corresponds to a time interval in which the number of alarms is
higher than the reactivity of an operator. There exist different reasons for an alarm
flood. Most common is a badly designed alarm management system. Based on [21,
24, 28] typical distinctive features of an inefficiently designed alarm management
are: missing alarm philosophy, irrelevant alarms, chattering or nuisance alarms,
incorrectly configured alarm variables, alarm design isolated from related variables,
permanent alarms in normal state, alarms and warnings at the same time, missing
option to remove remedied alarms and too many priorities.

Therefore an effective alarm management for factories is of huge interest and
current research topic. Regardless of very good alarm management, the weaknesses
of humans are that they are not able to perform 100 percent consistently well
all the time. For example, if operators are tired, sick, distracted or stressed, their
performance might be degraded. Therefore, even with well managed alarm systems,
it is recommended to limit the credit given to alarms [13]. However, despite an
effective alarm system design and configuration efforts, the occurrence of alarm
flooding cannot be eliminated completely [5]. The spread of alarms has become
one of the biggest problems for plant operators in modern times. Therefore, it is
essential to protect the operator from unnecessary information and to help him
focus on his task. One way to accomplish it, is to reduce the amount of alarms in
an alarm flood. In particular, sequences of alarms, which are connected in a causal
context, are very suitable because they cannot be excluded despite a good alarm
management. This alarm sequence is reduced so that only the alarm which points
to the cause is displayed. For this purpose the root cause of the alarm flood must
be identified. The root cause is an initiating cause of a causal chain which leads to
an alarm flood. To achieve this, we developed a concept based on a causal model of
the interrelations of the alarms. This is discussed in more detail in Section 4. We
use Bayesian networks, which where developed by J. Pearl et al. [22] as a causal
model. With the causal model we determine the potential root causes followed by
an inference of the root cause of the current alarm flood. After the inference of
the root cause, the alarm flood can be reduced to one alarm that caused the other
alarms. This alarm is also the closest to the actual cause of the fault. However, this
applies to a single alarm sequence. If multiple alarm sequences occur, there are also
several root causes that are displayed, minimum one per alarm sequence.

In the following, a meaningful example is depicted to illustrate the effects of
alarm floods. It also shows the importance to address this aspect in the field of
research.

Example: Refinery Explosion

On the 24th July in 1994 an incident of the Pemproke Cracking Company Plant at
the Texaco Refinery in Milford Haven happened. An explosion was followed by a
number of fires caused by failures in management, equipment and control systems.
These failures led to the release of 20 tonnes of flammable hydrocarbons from the
outlet pipe of the flare knock-out drum of the fluidised catalytic cracking unit.
These hydrocarbons caused subsequently the explosion. The failures started after
plant disturbances appeared caused by a severe electrical storm.
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The incident was investigated and analysed by the Health and Safety Executive
(HSE) [11]. In total, there appeared 2040 alarms for the whole incident. 87% of
these alarms were categorized in high priority. In the last 10.7 minutes before the
explosion two operators had to handle 275 alarms. The alarm for the flare drum was
activated approximately 25 minutes before the explosion but was not recognized
by the operators. As a result, 26 persons were heavily wounded and the total cost
of the economical damage was ca. €70 million. In a perfect scenario, where they
would have found the crucial alarm immediately, the operators would have had 25
minutes to shut down the plant or at least minimize the possible damage caused by
an explosion. This was impossible because of the flood of alarms so the operators
could not handle the situation in an appropriate way.

Based on incidents like this, especially the chemical and oil industry expedited
the topic of alarm management in industrial plants. One result is the guideline
EEMUA 191 7Alarm Systems- A Guide to Design, Management and Procure-
ment” by the non-profit organization Engineering Equipment & Materials Users’
Association (EEMUA) [8]. The quasi-standard EEMUA 191 for alarm management
recommends to have only one alarm per 10 minutes. The huge difference between
this number and the 275 alarms from the example demonstrates the high potential
for improvement. This is supported by the study of Bransby and Jenkinson [4].
They investigated 15 plants including oil refineries, chemical plants, pharmaceuti-
cal plants, gas terminal, and power stations. The average alarm rate per 10 minutes
under normal operation ranged from 2 to 33 and the peak alarm rate per 10 minutes
in plant upsets varied from 72 to 625.

Based on the guideline EEMUA 191, the International Society of Automa-
tion (ISA) developed a new standard called ANSI/ISA-18.2-2009 ”Management of
Alarm Systems for the Process Industries” in 2009 [17]. In 2014, another standard
based on ISA 18.2 was developed by the International Electrotechnical Commission
(IEC) the TEC62682:2014 [16]. The increasing focus of organizations and industry
on the topic of alarm management shows the importance of reducing the amount
of alarms in the future. In this challenge, the alarm flood reduction is one of the
main tasks.

This is not only a beneficial effect for the safety of people, especially the em-
ployees, but also the plant itself. Moreover, the company can save a lot of money
due to increased production and improved quality because the operator is able to
focus better on the failures. This will also reduce the time to correct the failures
and prevent unnecessary shut downs of parts of the plant.

In this work, we present an entire novel concept for alarm flood reduction in
industrial plants. We depict the current status of alarm management in industrial
plants and the state of the art in the field of alarm flood reduction (Section 2). For
our approach a causal model, which represents the relations between the alarms
in the plant is fundamental. Therefore, we discuss in Section 3 what knowledge
is required for an accurate representation in the causal model. In our approach a
Bayesian network is used as a causal model. In case of an alarm flood we are able to
apply inference to identify the root cause and reduce the alarm flood to only the root
cause. The whole approach is described in detail in Section 4. For the evaluation
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we applied our approach to a manufacturing plant in the SmartFactoryOWL. In
the conclusion we give an outlook for further research which needs to be done to
utilize the concept in real industrial plants.

2 State of the Art of Alarm Management

The basic intention of alarm management is to assist the operator in detecting, diag-
nosing and correcting the fault. Due to the advancing technology and automation,
an increasingly number of alarms occur in plants, which requires a great amount
of effort in the detection of faults. In addition, the risk of committing mistakes and
unnecessarily exchanging parts increases. In the next paragraphs the current status
of treating alarm floods in industrial plants is depicted and subsequently, relevant
work in the field of alarm flood reduction is presented.

Current Status

The traditional practice for operators is using a chronologically sorted list-based
alarm summary display [3]. During an alarm flood this alarm list reveals multiple
weak points. In many cases the alarms occur faster than the human being is able to
read them. The most common ways to handle alarm floods can be roughly grouped
in one of the following approaches [5,7,26]:

— alarm shelving,

alarm hiding/suppressing,
— alarm grouping,

usage of priorities.

With alarm shelving the operator is able to postpone alarm problems till he has
time to focus on the problem. This creates the opportunity to solve the problems
subsequently. Alarm hiding means that some alarms are suppressed completely
for special occasions like the starting procedure. Consequently, alarms that are
expected, but irrelevant for this special situation, do not disturb the operator.
Alarm grouping is used to create an alarm list which is clearer for the operator.
Instead of many alarms, there will be only one alarm for one group. The technique
of prioritizing enables the operator to identify immediately the most important
alarms to prevent critical effects.

Most of these techniques just disguise the real problem. To reduce the amount
of alarms in an alarm flood it is necessary to identify the real root cause or the
alarm, which points out the real root cause. So that the operator is still provided
with the required information to correct the faulty behaviour of the plant. In the
next subsection some approaches for reducing the amount of alarms in an alarm
flood are presented.
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Related Work

There exist several concepts addressing the topic of alarm flood reduction. Wang
et al. [28] give a comprehensive overview over the diverse ideas. For an overview
of methodologies with probabilistic graphical models please refer to our previous
work [29]. In this paragraph we will only focus on the most recent approaches
in science. Most of them are related to the topic of pattern matching. Folmer et
al. [9] developed an automatic alarm data analyzer (AADA) in order to identify the
most frequent alarms and those causal alarms which allow to consolidate the alarm
sequence. Ahmed et al. [2] use similarity analysis to investigate similar alarm floods
in historical dataset. Based on the results they group patterns of alarms. A similar
strategy is pursued by Fullen et al. [10]. They developed a case-based reasoning
method on similar alarm floods. Cheng et al. [6] use a modified Smith-Waterman
algorithm to calculate a similarity index of alarm floods by considering the time
stamp information. Karoly and Abonyi [19] propose a multi-temporal sequence
mining concept to extract patterns and formulate rules for alarm suppression. Xu
et al. [30] introduce a data driven method for alarm flood pattern matching. With
a modified BLAST algorithm using the Levenshtein distance they discover similar
alarm floods. Rodrigo et al. [23] do a multiple steps causal analysis of alarm floods
to reduce them. After removing chattering alarms and identifying alarm floods, they
cluster similar alarm floods. Following this they try to isolate the causal alarm of
an alarm flood. We want to focus on reducing alarm floods by identifying the root
cause of it. Therefore we need a causal model which represents the dependencies
of the alarms. Probabilistic graphical models, such as Bayesian nets, fault trees,
or Petri nets are particularly suitable for this purpose. They have been already
used in the field of alarm flood reduction. Especially Bayesian networks show great
potential for this task.

Abele et al. [1] propose to combine modelling knowledge and machine learning
knowledge to identify alarm root causes. They use a constrained-based method
to learn the causal model of a plant represented by a Bayesian network. This
enables faster modelling and accurate parametrization of alarm dependencies but
expert knowledge is still required. Wang et al. [27] apply an online root-cause
analysis of alarms in discrete Bayesian networks. They restrict the Bayesian network
to have only one child node. The method is evaluated on a numerical example
of a tank-level system. Wunderlich and Niggemann [29] investigate and evaluate
different structure learning algorithms for Bayesian network in the field of alarm
flood reduction. It turned out, that Bayesian networks are feasible and the state of
the art structure learning algorithms are able to learn the causal relationships of
alarms from industrial plants.

Based on the findings in our previous work, we developed a concept for the
reduction of alarms. The foundation for this concept is the Bayesian network as a
causal model. It is essential to learn a very accurate causal model in order to identify
the causal chain and to determine the root cause. Therefore, it is important to know
how a causal model can be learned in an unsupervised way and what information
about the plant or process is necessary to be included.
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3 Knowledge Representation

The research on alarm floods is still in an early stage and has a high potential of
improvement. Therefore we want to find out, which knowledge is necessary and
required to improve the situation. In general, once the amount of alarms is too
high to be handled, the new arriving alarms will be ignored by the operator. This
means the amount of alarms is randomly reduced which has a high potential of
causing a disaster. Therefore, to improve the handling it is necessary to use all
available knowledge to reduce the alarm flood in an intelligent way. Best case sce-
nario would be if only the alarms which hint to the real causes, would be displayed.
Therefore, it is a demanding task to identify all required causal relations between
alarms [14]. To be able to achieve this, it is necessary to construct a causal model.
Probabilistic graphical models are suitable for this use case. They represent in an
easy-to-understand way the relationships and their probabilities. All these models
are composed of nodes n and edges e. In our use case a node is equal to one alarm.
The relations of two alarms (nodes) are represented by edges. For the causal model
it is beneficial to include as much knowledge about the system as possible to be
close to the reality. There are two extreme ways to achieve a representation of the
real world such as phenomenological and first principle representation. The first
approach is to learn the statistical relations of the alarms based on the alarm logs.
However, it does not include every aspect of the plant. For example, as shown in
Fig. 1, only the symptoms (alarms) are presented. But the alarms themselves may

Fig. 1. Phenomenological representation

not be depended directly on each other. It’s more viable to believe, that based on
location or process flow the alarms are propagating and have effect on each other.
The representation only depicts correlations and not causal relationships.
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This leads to the second approach. Here, a first principle model of the system is
built to create an exact image of the system. Not only the symptoms (alarms) are
included, but also all aspects such as sensor values see Fig. 2. This has an advantage

Fig. 2. First principle representation

of representing a deeper knowledge about the relations between the alarms and how
the dependencies are. However, in most cases this is not possible due to missing
information about some parts of the plant such as process flow. Also the creation
of a model needs an expert and is very time-consuming. Hence, a combination of
both is the most favourable solution. The model should include as much knowledge
about the plant (process flow, environment etc.) as possible without being too time
consuming. Finding a good balance is one of the challenges for researchers. In a
best case scenario, the advantages of fast learning from historical data approach
can be combined with the valuable expert knowledge about the plant and process.

We use a Bayesian network as a data-driven approach and try to fill it with as
much information about the plant as possible.

4 Concept for Alarm Flood Reduction

Based on the findings, we design a concept for reducing alarm floods. To represent
the causal relationships, we use Bayesian networks. An overview of the overall
concept is shown in Fig. 3.

The concept consists of two different phases. First, the learning phase which is
outlined in red and second, the operating phase which is outlined in green. In the
learning phase, all historical data about the machine or system are used to learn a
causal model of the alarms and their probabilities. This is done offline and usually
takes several minutes to hours to calculate. The causal model contains information
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Phase 2: Operating
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Fig. 3. Overview Concept Alarm Flood Reduction

about relations and dependencies of all alarms. However, the learning of the causal
model is necessary only in the case of major changes of the system (for example,
the production of a new product).

Once the learning of the causal model has been completed, the second phase,
the so-called operating phase, can begin. The current alarms are used together
with the causal model. With the aid of the causal model, it is possible to conclude
the root cause of the current alarm sequence. This inference allows the number of
alarms to be reduced to these root causes and thus to only display these root causes
to the operator. Thus, the operator can correct the fault quickly and purposefully.

Demonstrator For the evaluation of this alarm flood reduction concept, we im-
plemented two simple scenarios of alarm floods in the Versatile Production System
(VPS), which is located in the SmartFactoryOWL !. This scenarios serve as use
cases to identify the root cause. The VPS is a manufacturing plant in a laboratory
scale where sensors, actuators, bus systems, automation components, and software
from different manufacturers are considered. The VPS is a hybrid technical pro-
cess considering both continuous and discrete process elements with a focus on the
information processes and communication technologies from the plant level down
to the sensor level. It thus provides an ideal multi vendor platform for testing and
validation of innovative technologies and products.

! https://www.smartfactory-owl.de
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The use cases are implemented in the "bottle filling module” of the VPS. The
bottles can be filled either with water or with grain. The two use cases represent
two possible root causes for an alarm flood. We want to identify these root causes
with correctly learnt dependencies of alarms. In Fig. 4 an overview of the ”bottle
filling module” is depicted. The module consists of a conveyor belt and a rotary

Start area / collection area of bottles

| 0 N ] -—

\ Conveyor belt
— 1

[ | Grain
Water filling filling
] .

Put the

capon
Caps

®

Camera

[T Il -=stations
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Fig. 4. Overview bottle filling module

table with six stations. At the first station the bottle is handed over by the conveyor
belt to the rotary table. It’s possible to fill the bottle either with water at station
two or to fill it with grain at station three. The next two stations are there for
putting the cap on. At the first step, the cap is placed on top of the bottle and in
the second step, the cap is fastened. In the last station the bottle is handed over
back to the conveyor belt passing a camera check, whether the bottle is filled.

In total the following alarms are implemented: bottle rotary table entrance
(BRE), timer water tank (TW), drive filling (DF), timer filling (TF), timer cap 1
(TC1), timer cap 2 (TC2), bottle not filled (BNF). The real dependencies between
the alarms are depicted in Fig. 5. This structure shows the real causality within
the plant. The two root causes for an alarm flood are bottle rotary table entrance



120 Concept for Alarm Flood Reduction with Bayesian Networks

Drive filling (DF)
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Fig. 5. Real causality structure

(BRE) and drive filling (DF). If a bottle is missing the alarm BRE triggers. This
alarm causes the subsequent alarms TW, TF, TC1, TC2, and BNF. In the other
root cause of a blocked drive the alarm DF causes the subsequent alarms TF, TC1,
TC2, and BNF.

4.1 Learning Phase

Bayesian networks are a class of graphical models which allow an intuitive rep-
resentation of multivariate data. A Bayesian network is a directed acyclic graph,
denoted as B = (N, E), with a set of variables X = {X7, Xs,...,X,}. Each node
n € N is associated with one variable X;. The edges e € E, which connect the
nodes, represent direct probabilistic dependencies.

Abele et al. [1] and Wang et al. [27] have already tried to use Bayesian networks
for detection of a root-cause in an alarm flood. Abele et al. learned a Bayesian net-
work, which is consequently the basis for root-cause analysis of a pressure tank
system. The structure of the Bayesian network was learned with a constrained-
based method and needed some expert knowledge to achieve the correct model of
the pressure tank system. Therefore, they concluded that expert knowledge and
machine learning should be combined for better results. Wang et al. applied a spe-
cial kind of Bayesian networks. They restrict themselves to only one-child nodes.
This is a huge restriction and it cuts off many possible failure cases, because in a
modern and complex industrial plant the interconnectivity is increasing dramati-
cally. This means that the alarms are also more connected and dependent on each
other.
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Structure Learning

Therefore, we want to pursue the idea of Abele et al. and use the Bayesian network
as a model to represent the causality of the alarms. But other than Abele et al. we
do not limit ourselves to constraint-based learning methods. All in all these learning
algorithms can be differentiated into the following three groups of methods:

— constrained-based,
— score-based,
— hybrid.

In a constrained-based method the Bayesian network is a representation of inde-
pendencies. The data is tested for conditional dependencies and independencies to
identify a structure, which explains the dependencies and independencies of the
data the best. Constrained-based methods are susceptible to failures in individ-
ual independence tests. Just one wrong answered independence test misleads to a
wrong structure.

Score-based methods view Bayesian network as specifying a statistical model.
Therefore, it is more like a model selection problem. In the first step, a hypothesis
space of potential network structures is defined. In the second step, the poten-
tial structures are measured with a scoring function. The scoring function shows
how good a potential structure fits the observed data. Following this, the compu-
tational task is to identify the highest-scoring structure. This task consists of a
superexponential number of potential structures 20(n?) Therefore, it is unsure if
the highest-scoring structure can be found, so the algorithms use heuristic search
techniques. Because the score-based methods consider the whole structure at once,
they are less susceptible to individual failures and better at making compromises
between the extent to which variables are dependent in the data and the cost of
adding the edge [20].

Hybrid methods combine aspects of both constraint-based and score-based
methods. They use conditional independence tests to reduce the search space and
network scores to find the optimal network in the reduced space at the same time.
In a previous work [29], we have already investigated different structural algorithms
for reducing alarm flood. It turned out that a hybrid approach is the most promising
due to the greater accuracy.

Algorithm

In the following, an hybrid method algorithm is presented and evaluated on the
use cases. The Max-Min Hill-Climbing (MMHC) from Tsamardinos et al. [25] per-
formed the best in previous tests and is chosen for the evaluation of the con-
cept. MMHC is a hybrid of a constrained-based and score-based approach. In the
first step, the search space for children and parents nodes is reduced by using a
constrained-based approach, namely Max-Min Parents and Children (MMPC) al-
gorithm. In the second step, the Hill-Climbing algorithm is applied to find the best
fitting structure from the reduced search space.
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For a better understanding of the associated pseudo code, we need a few def-
initions. The dataset D consists of a set of variables 1J. In the variable PC, the
candidates of parents and children for the node X are stored. This set of candidates
is calculated with MMPC algorithm. The variable Y is a node of the set PC,. The
pseudo code of MMHC looks as follows:

Algorithm 1 MMHC Algorithm

1: procedure MMHC(D)
2: Input: data D

3: Output: a DAG on the variables in D
4: % Restrict

5: for every variable X € 9 do

6: PCx = MMPC(X, D)

7 end for

8: % Search

9:

Starting from an empty graph perform Greedy Hill-Climbing with operators add-
edge, delete-edge, reverse-edge. Y — X if Y € PCx
10: Return the highest scoring DAG found
11: end procedure

The algorithm first identifies the parents and children set of each variable, then
performs a greedy Hill-Climbing search in the reduced space of Bayesian network.
The search begins with an empty graph. The edge addition, removal, or reversing
which leads to the largest increase in the score is taken and the search continues
in a similar way recursively. The difference from standard Hill-Climbing is that
the search is constrained to only consider edges which where discovered by MMPC
in the first phase. The MMPC algorithm calculates the correlation between the
nodes. Based on a training dataset the MMHC algorithm gives the structure which
is depicted in Fig. 6. The training data set was recorded at the VPS and consists
of 525 observations of the seven alarms. The states of the alarms are binary coded
with 0 for inactive and 1 for active.

The result is very close to the true causal model in Fig. 5. Both, the use-case
with the missing bottle (BRE - TW — TF — TCl — TC2 — FNB) and the
use-case with the blocked drive (DF — TF — TC1 — TC2 — FNB) are shown
correctly. Only the connection between DF and BRE is not present in reality.

In a graph with n nodes, there exist n - (n — 1) possible connections. For the
evaluation we define the following terms. A true positive connection (TP) is an
edge which is in the original and in the learned Bayesian network. A false positive
connection (FP) is an edge which is not in the original but in the learned Bayesian
network. A false negative connection (FN) is an edge which is in the original but
not in the learned Bayesian network. A true negative (TN) connection is an edge
which is not in the original and not in the learned Bayesian network. The results
of the evaluation for the MMHC algorithm is depicted in detail in Table 1.
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Fig. 6. BN Max-Min Hill-Climbing

Table 1. Results of evaluation

MMHC
True Positive (TP) 6
False Positive (FP) 1

False Negative (FN) 0
True Negative (TN) 35

Accuracy [%) 97.62
F1-Score 0.92
Mean runtime [ms] | 9.82

The MMHC learned all six edges from the original Bayesian network with the
correct orientation. With only one misaligned edge (FP) and zero unwanted edges
(FN) MMHC shows its strength. The accuracy is with 97.62% very good and un-
derlined with an Fl-score of 0.92. One slight disadvantage is the runtime. Based
on the mean of 1000 runs the MMHC algorithm needs 9.82 ms which is quite
long compared to other methods. However, it has to be considered, that in today’s
world the bottleneck is not the calculation power. The accuracy of the structure is
more important. All in all, the hybrid method with the MMHC algorithm is best
suited for learning a causal model from alarms. This was proven by Wunderlich
and Niggemann [29], who evaluated different structure learning algorithms.

Parameter Learning

Once the structure of the causal model has been learned, it is still necessary to
calculate or estimate the probabilities for the dependencies. Only in the combi-
nation of structure and parameters (probabilities) the inference of the root cause
can be done in the operation phase. To learn the parameters, the classical method
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maximum likelihood estimation (MLE), which was developed by R.A. Fischer, is
used. Here, a parameter p is estimated to maximize the probability of obtaining
the observation under the condition of the parameter p. In other words, the MLE
provides the most plausible parameter p as an estimate with respect to the observa-
tion. If the parameter p is a probability in the Bayesian network and the historical
data D represents the observations, the likelihood function is composed as follows:

n

L(DIp) = [[ f#(DIp) (1)

i=1

The probability density function of D under the condition p is f(D|p). In Figure 7
the causal model with the learned probabilities is shown. It is noteworthy that the
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Fig. 7. Bayesian net with Probabilities

variant with active alarms TW and DF never occurs so there are no probabilities
in this regard. With the learned structure and the probabilities, the inference can
begin.

4.2 Operation Phase

There are two different variants for the inference, namely the exact inference and
the approximate inference. For the exact inference, the probabilities are calculated
specifically for the query. One famous method of exact inference is the variable
elimination (VE). In doing so, variables irrelevant to the query are eliminated from
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the probability distribution. This is computationally very complex and expensive.
Therefore, such a method is only feasible for very small Bayesian networks.

An alternative and more frequently used are the approximate inference methods.
Here the model, which is represented by the Bayesian network, is randomly simu-
lated. This process is called sampling. This makes it possible to approximate the
probability of the query. For example, it can be determined how high the proba-
bility is that a particular node assumes a specific state. The cases in which this is
occurred are counted and set in proportion to the total sample size. A disadvantage
of this method is that under certain circumstances, a large number of samples are
required in order to provide a reliable result and thus significantly increase the
calculation time.

To evaluate our concept, we opted for the simple and fast logic sampling (LS) algo-
rithm. The LS algorithm is a very simple procedure developed by Max Henrion in
1986 [12]. In this case, a state is arbitrarily assumed per sample for the root nodes
according to their probability table. Thus, a certain number of samples, which
are determined, are carried out. Subsequently, the probability that e.g. a node X
assumes the state True as follows:

No. of cases with X=True

P(X =True) = (2)

No. of all samples

This process always converges to the correct solution, but in very rare cases the
number of samples required can become exorbitant [18].

Inference

In this subsection we apply and evaluate the inference with the LS algorithm on the
VPS demonstrator. In the previous subsection it was shown, that a decent structure
could be learned. Combined with time-limited expert knowledge we achieved an
accurate causal model. Based on this causal model and the learned probabilities
the inference of the root causes is enabled. For the inference of an alarm flood in
the demonstrator we use as possible root causes the two alarms BRE and DF. This
is given by the learned structure of the Bayesian network. For the evaluation we
investigate the use case of a missing bottle. Therefore we have as evidence E the
alarms (TW, TF, TC1, TC2, BNF) and formulate the following two queries.

P(BRE = active|E = active) No. of cases with BRE=active given E=active

No. of all samples
3)

P(DF — active| E — active) — No. of cases with DF=active given E=active

No. of all samples

(4)
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The two queries calculate the probability of BRE or DF to be active given that all
alarms of evidence are active. In our use case, the estimation shows a probability
of 97 % for BRE to be active and a probability of 40 % for DF to be active. This
results in the conclusion, that the alarm BRE is the root cause for the current
alarm flood.

A comparison of the concept for the use case of a missing bottle in the VPS is
shown in Table 2.

Table 2. Alarm Flood Reduction

Without With
Timer Filing Bottle Rotary Table Entrance
Timer Cap 1
Timer Cap 2

Bottle Not Filled
Bottle Rotary Table Entrance
Timer Water Tank

If a bottle is missing, the six alarms (Timer Filing, Timer Cap 1, Timer Cap
2, Bottle Not Filled, Bottle Rotary Table Entrance and Timer Water Tank) will
appear. The operator is not immediately able to identify the cause of this alarm
sequence. It changes when our concept is applied in this scenario. The amount of
alarms can be reduced from six to only one alarm. This one alarm BRE is also the
cause of the alarm flood. This result allows the operator to quickly and efficiently
identify the cause and take the necessary steps to remedy the problem. A similar
result is also obtained for the other use case of a blocked drive for grain filling.

5 Conclusion

We presented the increasing problem of overwhelming alarm floods in industrial
plants. One way to solve this problem is to reduce the alarm floods, especially
sequences of alarms caused by one alarm. Therefore, we propose a concept to
identify the real root cause of an alarm flood using Bayesian networks. The Bayesian
network serves as a causal model and enables inference about the root cause. Instead
of all alarms, only the root cause is depicted to the operator. This supports the
operator to take better care of the plant. The concept is evaluated on real use cases
of a demonstrator in the SmartFactoryOWL. For the use cases the concept shows
a promising result identifying the real root cause. Obviously, the demonstrator is
still quite small and not complex compared to real industrial plants. Therefore, it is
necessary to evaluate how this approach scales on real industrial plants, where also
additional challenges appear. This not only means the increasing complexity, but
also the occurrence of disturbances or missing or incorrect historical data records.
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Nevertheless, we think that Bayesian networks are a good foundation to learn
a causal model of the dependencies of alarms in a plant. Bayesian networks are
robust against uncertainty such as incomplete or defective data. Because it’s a
data-driven approach it reduces the amount of time in which an expert is needed
for constructing the causal model. The expert knowledge is still necessary, but the
approach with Bayesian network can be improved by including time behaviour or
dynamic process like a product change in the plant. Also the algorithms for learning
the structure can be improved by using methods like Transfer Entropy for a better
edge orientation.
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