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Preface

The Formal Grammar conference series (FG) provides a forum for the presentation of
new and original research on formal grammar, mathematical linguistics, and the
application of formal and mathematical methods to the study of natural language.
Themes of interest include, but are not limited to:

– Formal and computational phonology, morphology, syntax, semantics, and
pragmatics

– Model-theoretic and proof-theoretic methods in linguistics
– Logical aspects of linguistic structure
– Constraint-based and resource-sensitive approaches to grammar
– Learnability of formal grammar
– Integration of stochastic and symbolic models of grammar
– Foundational, methodological, and architectural issues in grammar and linguistics
– Mathematical foundations of statistical approaches to linguistic analysis

Previous FG meetings were held in Barcelona (1995), Prague (1996),
Aix-en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento
(2002), Vienna (2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin
(2007), Hamburg (2008), Bordeaux (2009), Copenhagen (2010), Ljubljana (2011),
Opole (2012), Düsseldorf (2013), Tübingen (2014), Barcelona (2015), Bolzano-Bozen
(2016), and Toulouse (2017).

FG 2018, the 23rd conference on Formal Grammar, was held in Sofia, Bulgaria,
during August 11–12, 2018. The conference consisted in a special session, dedicated to
the memory of Richard T. Oehrle, who passed away in 2018, and seven contributed
papers selected from 11 submissions. The present volume includes the contributed
papers.

We would like to thank the people who made the 23rd FG conference possible: the
invited speakers, the members of the Program Committee, and the organizers of
ESSLLI 2018, with which the conference was colocated.

August 2018 Annie Foret
Gerg Kobele

Sylvain Pogodalla
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Feature Resolution by Lists:
The Case of French Coordination

Gabrielle Aguila-Multner1(B) and Berthold Crysmann2

1 U Paris-Diderot, Paris, France
gabrielle.aguilamultner@gmail.com

2 Laboratoire de linguistique formelle, CNRS & U Paris-Diderot, Paris, France

berthold.crysmann@gmail.com

Abstract. In this paper, we shall address resolution of gender and per-
son in French coordination and suggest that a list-based encoding of
feature values provides for a very simple and intuitive resolution mech-
anism in coordinate structures by means of simple list concatenation,
while it leaves the treatment of agreement in head-compositional struc-
tures entirely unaffected. We shall discuss the implementation of this
approach in the context of an emerging computational HPSG of French
based on the LinGO Grammar Matrix (Bender et al. 2002), and argue
that the problem at hand calls for concatenation by recursive copying
(Emerson 2017), as opposed to difference lists (Clocksin and Mellish
1981). Finally, we conclude that the list-based encoding of person and
gender values can act as a drop-in replacement for the standard sort-
based encoding, since it is not only more flexible in the treatment of
feature resolution, but also bears the further potential of representing
more elaborate person systems, like the inclusive/exclusive distinction.

Keywords: Coordination · Feature resolution · Person hierarchy
Gender · TDL

1 Feature Resolution in Coordination

Probably the most basic function of coordination is to combine individuals or
events into aggregates. With individuals this typically creates aggregates that are
treated as plurals, e.g. for the purposes of agreement. E.g. consider the examples
in (1) and (2).

(1) Le
the

chien
dog.sg

et
and

le
the

chat
cat.sg

dorment.
sleep.prs.3pl

‘The dog and the cat sleep.’

The research reported on this paper has been partially carried out within the excellency
cluster (LabEx) “Empirical Foundations in Linguistics”, supported by a public grant
overseen by the French National Research Agency (ANR) as part of the “Investisse-
ments d’Avenir” program (reference: ANR-10-LABX-0083).

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Foret et al. (Eds.): FG 2018, LNCS 10950, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-662-57784-4_1
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2 G. Aguila-Multner and B. Crysmann

(2) Le
the

chien
dog.sg

et
and

le
the

chat
cat.sg

endormis
asleep.pl.m

se
refl

réveillent.
awaken.prs.3pl

‘The dog and the cat that were asleep are waking up.’

While the morphosyntactic number value of aggregates standardly reflects
their semantic plurality (see, however, An and Abeillé 2017 for closest conjunct
agreement in French NPs), there is no a priori expectation as to gender or per-
son values of the coordinate structure unless, of course, they are composed of
individuals of the same kind.

Languages like English do not show gender agreement in the plural, whereas
French does, as illustrated by the agreement between subject and verb (3) or
between subject and a predicative adjective (4).

(3) a. Les
the

chevaux
horse(m).pl

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

‘The horses left.’
b. Les

the
tortues
turtle(f).pl

sont
be.prs.3pl

parties.
leave.ptcp.pl.f

‘The turtles left.’

(4) a. Les
the

frelons
hornet(m).pl

sont
be.prs.3pl

dangereux.
dangerous.pl.m

‘Hornets are dangerous.’
b. Les

the
guêpes
wasp(f).pl

sont
be.prs.3pl

dangereuses.
dangerous.pl.f

‘Wasps are dangerous.’

Gender agreement carries over to coordinate structures, as shown in (5).

(5) a. Le
the

cheval
horse(m)

et
and

l’âne
the donkey(m)

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

‘The horse and the donkey left.’
b. La

the
tortue
turtle(f)

et
and

la
the

salamandre
salamander(f)

sont
be.prs.3pl

parties.
leave.ptcp.pl.f

‘The turtle and the salamander left.’

For coordination to be functional, in a linguistic sense, there need to be
resolution strategies to determine agreement not only in the case of matching
gender (or person) specifications, as in (5), but also in case of mismatch.

1.1 Gender Resolution

The resolution of gender in French follows a pattern illustrated below. For a
typological survey of gender systems and resolution strategies see Corbett (1991).
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(6) a. Les
the

juments
mare(f).pl

et
and

les
the

ânesses
donkey(f).pl

sont
be.prs.3pl

parties.
leave.ptcp.pl.f

‘The mares and the female donkeys left.’

b. * Les
the

juments
mare(f).pl

et
and

les
the

ânesses
donkey(f).pl

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

(7) a. Les
the

chevaux
horse(m).pl

et
and

les
the

ânesses
donkey(f).pl

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

‘The horses and the female donkeys left.’

b. * Les
the

chevaux
horse(m).pl

et
and

les
the

ânesses
donkey(f).pl

sont
be.prs.3pl

parties.
leave.ptcp.pl.f

(8) a. Les
the

juments
mare(f).pl

et
and

les
the

ânes
donkey(m).pl

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

‘The mares and the donkeys left.’

b. * Les
the

juments
mare(f).pl

et
and

les
the

ânes
donkey(m).pl

sont
be.prs.3pl

parties.
leave.ptcp.pl.f

(9) a. Les
the

chevaux
horse(m).pl

et
and

les
the

ânes
donkey(m).pl

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

‘The horses and the donkeys left.’

b. * Les
the

chevaux
horse(m).pl

et
and

les
the

ânes
donkey(m).pl

sont
be.prs.3pl

parties.
leave.ptcp.pl.m

As can be seen, any occurrence of a masculine inside the coordinate struc-
ture resolves to masculine for the entire coordination, and only coordinations of
exclusively feminine NPs (6) show feminine agreement. This is true at any level
of embedding inside the coordinate structure, as example (10) testifies, and the
constraints on agreement hold locally, as well as across non-local dependencies,
as illustrated by the relative clause in (11).

(10) a. Les
the

juments,
mare(f).pl

les
the

ânesses
donkey(f).pl

et
and

les
the

poneys
pony(m).pl

sont
be.prs.3pl

partis.
leave.ptcp.pl.m

‘The mares, the female donkeys and the ponies left.’

b. * Les
the

juments,
mare(f).pl

les
the

ânesses
donkey(f).pl

et
and

les
the

poneys
pony(m).pl

sont
be.prs.3pl

parties.
leave.ptcp.pl.f

(11) a. Le
the

chien
dog(m)

et
and

la
the

tortue,
turtle(f)

qui
who

étaient
be.ipfv.3pl

endormis,
asleep.m.pl

se sont
be.prs.3pl

réveillés.
awaken.ptcp.pl.m

‘The dog and the turtle, who were asleep, woke up.’

b. * Le
the

chien
dog(m)

et
and

la
the

tortue,
turtle(f)

qui
who

étaient
be.ipfv.3pl

endormies,
asleep.f.pl

se sont
be.prs.3pl

réveillées.
awaken.ptcp.pl.f
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1.2 Person Resolution

Person resolution strategies are somewhat more complex than gender resolution
strategies owing to the ternary distinction of person values in French. Person
agreement is illustrated for simple non-coordinated subjects in examples (12),
while the resolution pattern in coordinate structures can be observed in (13–15):

(12) a. Nous
1pl

nous entendons
get.along.prs.1pl

bien.
well

‘We get along well.’
b. Vous

2pl
vous entendez
get.along.prs.2pl

bien.
well

‘You get along well.’
c. Elles

3pl.f
s’entendent
get.along.prs.3pl

bien.
well

‘They get along well.’

(13) a. Toi
you

et
and

moi
I

allons
will.prs.1pl

bien
well

nous entendre.
get.along.inf.1pl

‘You and I will get along well.’
b. * Toi

you
et
and

moi
I

allez
will.prs.2pl

bien
well

vous entendre.
get.along.inf.2pl

c. * Toi
you

et
and

moi
I

vont
will.prs.3pl

bien
well

s’entendre.
get.along.inf.3pl

(14) a. Les
the

enfants
child.pl

et
and

moi
I

allons
will.prs.1pl

bien
well

nous entendre.
get.along.inf.1pl

‘The children and I will get along well.’
b. * Les

the
enfants
child.pl

et
and

moi
I

vont
will.prs.3pl

bien
well

s’entendre.
get.along.inf.3pl

(15) a. Toi
you

et
and

les
the

enfants
child.pl

allez
will.prs.2pl

bien
well

vous entendre.
get.along.inf.2pl

‘You and the children will get along well.’
b. * Toi

you
et
and

les
the

enfants
child.pl

vont
will.prs.3pl

bien
well

s’entendre.
get.along.inf.3pl

The generalisation can be formulated in terms of the person hierarchy (1 > 2 > 3):

– any first person conjunct triggers first person agreement;
– in the absence of any first person conjunct, any second person conjunct trig-

gers second person agreement;
– otherwise (i.e. if all conjuncts are third person), third person agreement is

used.

Once again, neither the depth of embedding in the coordinate structure (16)
nor the locality of the agreement relation (17) seem to affect this pattern.



Feature Resolution by Lists: The Case of French Coordination 5

(16) a. Les
the

enfants,
child.pl

les
the

parents
parent.pl

et
and

moi
I

nous entendons
get.along.prs.1pl

bien.
well

‘The children, the parents, and I get along well.’
b. * Les

the
enfants,
child.pl

les
the

parents
parent.pl

et
and

moi
I

s’entendent
get.along.prs.3pl

bien.
well

(17) a. Les
the

enfants
child.pl

et
and

moi,
I

qui
who

nous sommes
be.prs.1pl

rencontrés
meet.ptcp.pl.m

hier,
yesterday

nous entendons
get along.prs.1pl

bien.
well

‘The children and I who have met yesterday get along well.’
b. * Les

the
enfants
child.pl

et
and

moi,
I

qui
who

se sont
be.prs.3pl

rencontrés
meet.ptcp.pl.m

hier,
yesterday

s’entendent
get along.prs.3pl

bien.
well

The pattern for person resolution we observe for French is actually more
widely attested across languages and commonly referred to in the context of
the person hierarchy: e.g. English antecedent-anaphora agreement follows this
pattern (Zwicky 1977), and so does subject-verb agreement in languages such as
German or Russian (King and Dalrymple 2004).

1.3 Discussion

Lexical-Functional Grammar uses rather sets to represent coordinations in f -
structure. Properties imposed on the set can be distributed over the members
of the set, e.g. case specifications, or not, as e.g. person, number or gender
specifications (Dalrymple and Kaplan 2000; King and Dalrymple 2004). Since
these sets tend to be flat, membership constraints may suffice to percolate non-
distributive features onto set members.1

HPSG does not recognise an intermediate level of representation such as f -
structure but rather builds up semantics in parallel with syntactic structure. E.g.
in MRS (Copestake et al. 2005), coordinations of individuals are represented as
a group individual (together with its quantifier) that embeds the semantic con-
tribution of its left and right daughters via the l-index and r-index features
respectively (cf. (18)). The hook features index and ltop, which define the
syntax-semantics interface (Copestake et al. 2001), however, solely expose the
index and label of the coordinate structure as a whole, as illustrated by the

1 Nevertheless, distribution of features in LFG will need to differentiate according to
feature values, making the statement of resolution quite clumsy. E.g. feminine gender
values will be distributive, whereas masculine values on the coordinate structure will
only require membership on one of the f -structure sets contributed by the conjunct-
daughters. One can imagine that such a regime will become even more unwieldy,
once we move to a tri-fold resolution scheme, as observed with person.
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sample MRS in (18). As a masculine noun triggering masculine agreement of
the entire coordination can be embedded arbitrarily deep in a coordination of
feminines (see example (10)), access to any person or gender features of con-
juncts would necessitate traversing the MRS graph, e.g. by means of functional
uncertainty, a solution that runs counter the idea of a lean interface between
syntax and semantics, as advanced by Copestake et al. (2001).

(18) MRS for la girafe et l’éléphant (quantifiers omitted)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mrs

hook

⎡
⎢⎢⎣
index c

[
ref-ind

num pl

]

ltop l

⎤
⎥⎥⎦

rels

〈

⎡
⎢⎢⎢⎢⎢⎢⎣

pred and coord rel

arg0 c

lbl l

l-index g

r-index e

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pred girafe n rel

lbl handle

arg0 g

⎡
⎢⎣
ref-ind

num sg

gend f

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pred éléphant n rel

lbl handle

arg0 e

⎡
⎢⎣
ref-ind

num sg

gend m

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, ...

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A straightforward alternative solution would shift the burden to the syntax:
for gender alone, a rather brute-force approach would expand what is now a single
coordination rule into three, projecting fem to the coordination in the case of all
feminine daughters, projecting mas from a masculine left daughter, and finally,
projecting mas from the right daughter with a feminine left daughter2. The same
needs of course to be done for person, yet with combinations of three values to
be taken care of, instead of just two. Worse, since both gender and person may

2 This last restriction avoids spurious ambiguities with all masculine coordinations,
using three rules for the four logical combinations.
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need to be resolved at the same time, as illustrated by the example in (19), the
rules may actually multiply out, in the worst case.3

(19) Elle,
3sg.f

son
her

frère
brother(m.sg)

et
and

moi
1.sg

nous sommes
be.prs.1pl

bien
well

entendus.
get.along.ptcp.pl.m

‘She, her brother, and I got on well.’

This is not just uneconomical, but the need to multiply out rules for combina-
tions of feature values is something that unification grammar set out to eliminate
in order to improve over CFGs. Furthermore, enumeration of combinations will
end up obfuscating the linguistically rather clear person and gender hierarchies
that govern resolution.

A rather radical approach to feature resolution has been proposed by Sag
(2003): instead of unification, he proposed subsumption checks, an approach
that bears some similarity to Ingria (1990). This change in the underlying logic
of typed feature formalism, however, has not been widely adopted. Furthermore,
there is no implementation to date that supports this. Fortunately, as we shall
show below, a simple extension to the representation of gender and person fea-
tures is sufficient to address the issue of feature resolution using a standard
unification formalism.

In the following section, we shall therefore develop a theory of feature resolu-
tion that crucially distinguishes between a feature itself and its resolution poten-
tial. More concretely, we shall enrich the representation of per and gend values
in order to distinguish between e.g. being first person or being masculine and
containing a first person or masculine. We shall show that once the signature of
these features is slightly enriched, feature resolution in coordinate structures can
be done deterministically. This move leaves untouched standard phrase struc-
ture rules targeting entire index values, including all of person, number, and
gender features, whereas coordinate structures will have the required flexibility
to determine the resolution potential for each feature either holistically, as in
the case of semantically motivated number (pl), or else in terms of a syntactic
resolution strategy.

3 These observations are only true, in a strict sense, for pure unification formalisms. In
systems like Trale (Penn 2004) the disjunctions between rules could be relegated to
attached relational constraints or even better, implicational constraints, as pointed
out to us by an anonymous reviewer. However, once a general solution has been
found for formalisms without these more elaborate constraints, it certainly helps
towards closing the gap in expressiveness between the two competing approaches to
HPSG implementation.
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2 Analysis

2.1 The Basic Approach: Using Lists to Express Existential
Constraints

To apply this idea to gender resolution, we first enrich the type gend with a
feature m taking a list as its value, cf. (20). The type mas is then constrained to
have a non-empty m list, while the type fem is required to have an empty m list

(20) Type constraints for gender[
gend

M list

]

⎡
⎢⎣
mas

M

〈[ ]
, ...

〉
⎤
⎥⎦

⎡
⎣fem
M

〈 〉
⎤
⎦

Similarly, we enrich the type per with the two list-valued features me and
you, cf. (21); the type 1st requires a non-empty me list, but does not constrain
the you list; the type 2nd requires a non-empty you list and an empty me list;
finally the type 3rd requires both lists to be empty.

(21) Type constraints for person
⎡
⎢⎣
per

me list

you list

⎤
⎥⎦

⎡
⎢⎣
1st

me

〈[ ]
, ...

〉
⎤
⎥⎦

⎡
⎣2nd-or-3rd
me

〈 〉
⎤
⎦

⎡
⎢⎣
2nd

you

〈[ ]
, ...

〉
⎤
⎥⎦

⎡
⎣3rd
you

〈 〉
⎤
⎦

While this elaborate structure will change nothing with respect to standard
projection of index values in head-compositional structures, we gain added flex-
ibility when dealing with coordination: recall that coordinations of individuals
(or events) introduce their own index variable, which represents the aggregate.
Thus, what needs to be done to capture feature resolution is to determine the
per and gend values of the group variable on the basis of the respective features
of the group members, whereas the num value transparently represents plural
semantics of the aggregate.
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Given our list representation, we expand the coordination rule types of the
Grammar Matrix4 (Drellishak and Bender 2005) by the constraint in (22) above,
enabling us to directly compute the values of agreement features by list concate-
nation.

(22)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coord

ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
hook.index

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ref-ind

num pl

gend
[
m 1 ⊕ 2

]

per

[
me 3 ⊕ 4

you 5 ⊕ 6

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dtrs

〈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎣
hook.index

⎡
⎢⎢⎢⎢⎢⎣

ref-ind

gend
[
m 1

]

per

[
me 3

you 5

]

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎣
hook.index

⎡
⎢⎢⎢⎢⎢⎣

ref-ind

gend
[
m 2

]

per

[
me 4

you 6

]

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Furthermore, to ensure lists are lexically well-terminated, we constrain lexical
types accordingly: (23) defines basic-noun-lex, a type from which lexical types
fro nouns and pronouns inherit.5

4 The LinGO Grammar Matrix (Bender et al. 2002) is a starter kit for the develop-
ment of implemented HPSG-style grammars, which has been distilled, originally, from
the implemented grammars of English (Copestake and Flickinger 2000) and Japanese
(Siegel and Bender 2002). On the syntactic side, the Matrix provides type definitions
for grammars developed in the spirit of Ginzburg and Sag (2000). With respect to
semantics, the Matrix provides compositional principles for semantics construction in
Minimal Recursion Semantics (Copestake et al. 2005), ensuring both reversibility and
cross-linguistic interoperability.

5 The list type 0-1-list denotes a list with length of at most 1. It is straightforwardly
defined in TDL as follows:

i. 0-1-list := list.

ii. 1-nelist := 0-1-list ∧ nelist ∧ [rest elist ].

iii. elist := 0-1-list.
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(23) basic-noun-lex →⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat
[
hd noun

]

cont

⎡
⎢⎢⎢⎢⎣
hook

⎡
⎢⎢⎢⎣index

⎡
⎢⎢⎢⎣

gend
[
M 0-1-list

]

per

[
me 0-1-list

you 0-1-list

]
⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

With these basic constraints in place, we will obtain the following results for
gender in a coordination of two NPs:

(24) a.
⎡
⎣gend m

[
M

〈[ ]〉]⎤
⎦+

⎡
⎣gend m

[
M

〈[ ]〉]⎤
⎦

=

⎡
⎣gend

[
M

〈[ ]
,
[ ]〉]⎤

⎦

b.
⎡
⎣gend m

[
M

〈[ ]〉]⎤
⎦+

[
gend f

[
M

〈 〉]]

=

⎡
⎣gend

[
M

〈[ ]〉]⎤
⎦

c. [
gend f

[
M

〈 〉]]
+

⎡
⎣gend m

[
M

〈[ ]〉]⎤
⎦

=

⎡
⎣gend

[
M

〈[ ]〉]⎤
⎦

d.
[
gend f

[
M

〈 〉]]
+

[
gend f

[
M

〈 〉]]

=

[
gend

[
M

〈 〉]]

Note that the result of list concatenation is underspecified as to the gend
type6, but the resulting non-empty m lists in (24a-c) are only compatible with the
type constraints of [gend mas], thus triggering masculine agreement, whereas
the empty list in (24d) is only compatible with the type constraint for [gend
fem].

6 The LKB, unlike Trale, does not allow inference from features to the types that
introduce or constrain them.
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2.2 A Closer Look at List Concatenation in TDL

Pure unification formalisms7, such as the LinGO LKB (=Linguistic Knowledge
Builder; Copestake 2002) do not recognise lists as primitive data structures, nor
do they provide any specific list operations like, e.g. member/2 or append/3.
Rather, lists are encoded as feature structures in first/rest (or hd/tl) nota-
tion, which provides easy access for push and pop operations. List concatenation,
however, is typically done via difference lists (Clocksin and Mellish 1981), which
maintain an additional pointer to the end of an open list onto which additional
lists can be unified.

In a first attempt, we have therefore used difference lists to concatenate the
respective person and gender lists, such as gend.m or per.me in coordinate
structures. The problem that soon transpired was that difference lists are open
lists by necessity, such that any attempt to constrain to a non-empty difference
list of indeterminate length (25a) was even successful with empty difference lists
(25b), unifying a list element onto the pointer to the end of the list, as shown in
(25c).8

(25) a. Non-empty difference list underspecified for length⎡
⎢⎢⎢⎣
list

⎡
⎣first

[ ]

rest list

⎤
⎦

last list

⎤
⎥⎥⎥⎦

b. Empty difference list[
list l

last l

]

c. Unifying a non-empty list onto an empty difference list⎡
⎢⎢⎢⎣
list l

⎡
⎣first

[ ]

rest list

⎤
⎦

last l

⎤
⎥⎥⎥⎦

The only possible solution would have been to terminate this pointer at some
point, which proved hard to do in a general and principled fashion. Furthermore,
it was difficult to express length constraints on difference lists, as used, e.g. in
(23) above.

7 TDL (=Type Description Language; Krieger 1996.) was the original description lan-
guage of the PAGE system (Uszkoreit et al. 1994) and currently is the standard
description language for typed feature structure grammar development and runtime
platforms within the DELPH-IN collaboration, such as the LKB (Copestake 2002),
Pet (Callmeier 2000), and Ace (Crysmann and Packard 2012). Grammars specified
in TDL include the English Resource Grammar (Copestake and Flickinger 2000)
among several others, as well as the LinGO Grammar Matrix (Bender et al. 2002).

8 Note that checking for cyclic feature structures – a check which the LKB indeed
performs—will not provide a solution: once we need to underspecify the length of
the list, reentrancy between the rest and last cannot be stated.



12 G. Aguila-Multner and B. Crysmann

Fortunately, Emerson (2017) has recently proposed a method to perform
concatenation directly on lists, using recursive copying of list members. Following
his proposal, we implemented the constraint in (22) using the list definitions in
(26), yielding an implementation of the coordinate structure constraint as in
(27).

(26) List concatenation in TDL (Emerson 2017)
a. list-copy := list ∧[

copy list

next list

]

b. nelist-copy := list-copy ∧ nelist ∧⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

first f

rest

⎡
⎢⎣
list-copy

copy r

next n

⎤
⎥⎦

copy

[
first f

rest r

]

next n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c. elist-copy := list-copy ∧ elist ∧[
copy n

next n

]

The declarations in (26) faithfully replicate the proposal by Emerson (2017)
for purely list-based append: the core idea is to augment a typed feature structure
list representation with features for a successor list (next) and a result list copy.
In essence, the first/rest part of the enriched structure represents the first list,
the next feature the second list and the copy holds the resulting concatenation.
The type list-copy merely introduces the appropriate features (26a). The second
clause (26b) recurses over the first list, token-identifying element by element the
members of the first list with the members of copy, the result list. Once the end
of the first list has been reached, a subtype of elist, (26c) identifies the second list
(next) with the result list (copy). The copy feature of the entire list will thus
consist of the second list, plus the elements of first prepended to it member by
member.

In the implementation of feature resolution in French, we consequently use
Emerson-style list concatenation, as illustrated in (27). Using gender as an exam-
ple, the next feature of the gend.m list of the left conjunct is equated, in coor-
dinate structures, with the gend.m list of the right conjunct, and the resulting
list concatenation in the left daughter’s gend.m.copy will be token-identical to
the gend.m list on the mother of the coordinating construction.
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(27)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coord

ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
hook.index

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ref-ind

num pl

gend
[
m 1

]

per

[
me 3

you 5

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dtrs

〈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hook.index

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ref-ind

gend

⎡
⎢⎢⎣m

⎡
⎢⎣
list-copy

copy 1

next 2

⎤
⎥⎦

⎤
⎥⎥⎦

per

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

me

⎡
⎢⎣
list-copy

copy 3

next 4

⎤
⎥⎦

you

⎡
⎢⎣
list-copy

copy 5

next 6

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ss.loc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat c

cont

⎡
⎢⎢⎢⎢⎢⎢⎣
hook.index

⎡
⎢⎢⎢⎢⎢⎣

ref-ind

gend
[
m 2

]

per

[
me 4

you 6

]

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fully in parallel to gender, the constraint in (27) equally describes concate-
nation of person values, broken down to me and you features.

3 Conclusion

In this paper we have discussed resolution of gender and person features in
French coordination and suggested to augment the representation of their values
with a list-based encoding, and we have shown how this simple extension in the
type signature enables us to address the issue of resolution in terms of simple
list concatenation. Both the simplicity of the approach and the cross-linguistic
recurrence of the phenomenon will make this solution easily applicable to a wider
range of languages, both theoretically and within the context of multilingual
grammar engineering.

The redundancy between type-based encoding of person and gender features
and the list-based one raises the obvious question whether the latter can fully
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substitute for the former. As for French, we can answer this question in the affir-
mative, since the lists we propose clearly cover the full inventory of distinctions,
yet provide the additional option of distinguishing between exclusively having
some property (closed list) and containing some property (open list). Further-
more, feature resolution by concatenation constitutes a simple and uniform mode
of composition. The decomposition of person into me and you features bears
the further potential to provide an encoding of inclusive and exclusive person
distinctions in the plural, as suggested, e.g. by Anderson (1992). Finally, the
present approach clearly shows that feature resolution can be done with unifica-
tion alone, obviating the need for subsumption checks.
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Abstract. Multi-word expressions, verb-particle constructions, idioma-
tically combining phrases, and phrasal idioms have something in com-
mon: not all of their elements contribute to the argument structure of
the predicate implicated by the expression.

Radically lexicalized theories of grammar that avoid string-, term-, logi-
cal form-, and tree-writing, and categorial grammars that avoid wrap oper-
ation, make predictions about the categories involved in verb-particles and
phrasal idioms. They may require singleton types, which can only substi-
tute for one value, not just for one kind of value. These types are asymmet-
ric: they can be arguments only. They also narrowly constrain the kind of
semantic value that can correspond to such syntactic categories. Idiomati-
cally combining phrases do not subcategorize for singleton types, and they
exploit another locally computable and compositional property of a corre-
spondence, that every syntactic expression can project its head word. Such
MWEs can be seen as empirically realized categorial possibilities rather
than lacuna in a theory of lexicalizable syntactic categories.

Keywords: Syntax · Semantics · CCG · Multi-word expression
Idiom · Verb-particle · Lexical insertion · Type theory

1 Introduction

A type is a set of values. When we write a syntactic type, say NP, we mean a
set of expressions (values) which can substitute for that type. This type serves
to distinguish some expressions from for example the set of expressions that can
substitute for a VP type.

The distinction is crucial for solving the correspondence problem in syntax-
semantics. For this purpose we talk about semantic types, for example e for
things and t for propositions. The concepts that can substitute for semantic
types are not expressions in the sense that syntactic expressions are, because
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they are not observable, but they leverage a theory to hypothesize about the
kind of semantics that these types stand for.

These two species of types are then put in a correspondence in a theory
of syntax-semantics connection. The understanding is that if one substitutes
a certain expression for a syntactic type, then its corresponding semantic type
substitutes for a certain kind of semantic value. We know less about the semantic
values; but, at the level of the correspondence problem, this is not very critical.
It is however crucial to make the distinctions and propagate them in a parsing
mechanism rather than solving all type-interpretation problems in one go.

We need a theory which provides explicit vocabulary and mechanism for the
correspondence, to be more specific about the equal relevance of substitution
for subexpressions which purportedly do not contribute to the meaning of the
expression.

In the categorial grammar parlance, for which we will use Combinatory Cat-
egorial Grammar [29,30], hereafter CCG, we can exemplify the correspondence
as follows, where we use the “result-first argument-next” notation:

(1) a. hits := (S\NP3s)/NP : λxλy.hit ′xy

b. hit := VP inf/NP : λxλy.hit ′xy

Some syntactic types are further narrowed down by features, such as NP3s

above for third person singular NP, which are, in CCG, not re-entrant.
We argue in the paper that in a radically lexicalized theory which adheres

to transparency of derivations by type substitution (rather than lexical inser-
tion), such as CCG, there are built-in degrees of freedom to support Multi-word
Expressions (MWEs) and idioms without complicating the mechanism.

Paracompositionality is key to projection of their properties in a derivation. It
is the idea that, in addition to the compositionality of the lexical correspondence,
which is compositional partly because it relies on non-vacuous abstractions, type
substitution by (i) what we call singleton types and (ii) what is called head-
dependencies in the NLP literature is also compositional because it spells non-
vacuous abstraction as part of the correspondence, but as something related
to the contingency of the predicate, rather than the argument structure of the
predicate. In a radically lexicalized grammar both sources are available in a
lexical item. These types are paracompositional also in the sense that whether
we have an idiom reading or compositional one is already decided by the category
of the head in the derivational process.

The term contingency is used here in the sense of Moens and Steedman [23]
where it relates to extension of happenings. In the case of events (culminations,
points, processes and culminating processes), which have definite extension, it is
an event modality of space, time and manner; and, in the case of states where
extension is indefinite (e.g. understand) it is some property of the state. From
now on when we use the term ‘contingency’ we mean something related to exten-
sion of the predicate, rather than who does what to whom in the predicate.

MWEs are expressions involving more than one word in which the properties
of the expression are not determined by the composition of the properties of the
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constituent words, which would be the case for phrases. There is a tendency to
treat them as single lexical units [10,33]; but, as we shall see, CCG does not
require the single unit to be the phonological representation to the left of ‘:=’
in the format of (1). This property of CCG naturally extends to coverage of
verb-particle constructions e.g. look the word up as discontiguous MWEs headed
by a lexical item.

Phrasal idioms and idiomatically combining phrases are classes identified by
Nunberg, Sag and Wasow [24] to account for systematic variation in syntactic
productivity of idioms. Typewise they will relate to singleton types (phrasal
idioms) and head-word subcategorization (idiomatically combining phrases) in
our formulation.

As a preview of the article, we can think of the meaning distinctions as rang-
ing from “beans” i.e. the nounphrase beans itself as a category (this is what we
call the singleton type); to NPbeans as the category of an NP headed by the word
beans, which has wider range of substitution; and, to the polyvalent NP with the
widest substitution for that type. This much is categorial grammar with type
substitution. CCG as an empirical theory adds to this the claim that there is
an asymmetry in the range of substitutions: the singleton types can be argu-
ments only, and arguments of arguments and results, but never the result. We
shall see that this has implications for the linguist’s choice of handling syntactic
productivity in a grammar.

Some implications follow: Because of paracompositionality, all expressions
requiring a singleton type would involve the semantic type of a predicate, and
all idiomatically combining phrases requiring a different interpretation than the
compositional one would have the same consequence independent of their syn-
tactic productivity. In short, every idiom must contain a predicate (but not
necessarily a verb). We cover these implications in the article.

2 Substitution in a Derivation

In (1a), the ‘/NP ’ can be substituted for by certain kinds of expressions, for
example John, me, the ball, a stone in the corner, etc. Its corresponding seman-
tic counterpart in the logical form (LF), written after the colon, has the place-
holder x which can be typed as e, to be suitably substituted for by a semantic
value described above. The ‘\NP3s’ can be substituted by narrower expressions,
for example eliminating I, you. Because this is an indirect correspondence, its
semantic counterpart y can have the same type e.

The tacit assumption of indirectness is sometimes made explicit, for example
in Bach’s [2] rule-by-rule hypothesis: The derivational process operates with
syntactic types only, and when it applies the semantics of the rule, its semantics
works only with LF objects. Quoting from Bach: “Neither type of rule has access
to the representations of the other type except at the point where a translation
rule corresponding to a given syntactic rule is applied.” The “syntactic rule” in a
lexicalized grammar such as CCG is the combinatory syntactic type of a lexical
correspondence. The “translation rule” is the lexically-specified logical form, LF,
as in (1).
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The derivational process reveals partially derived types, for example S\NP3s:
λy.hit ′s′y for (1a), if function application substitutes say a stone for ‘/NP ’,
with some semantic value s′. The semantic type of such derived categories is
concomitantly functional, e.g. e �→ t for this syntactic type. John hits is e �→ t
too, with category S/NP : λx.hit ′x john′.

We can see the relevance of derived types to substitutability in a closer look
at (1b). If function application substitutes for the ‘/NP ’ in the example, the
derived category would be VP inf : λy.hit ′s′y in this case. This is also an e �→ t
type semantically. However, its syntax is narrower so that we can account for
the expressions in (2).1

(2) John persuaded Mary to/* hit/*hits the target.

The derivational process works as below, with VP to-inf distinct from VP inf .

(3) John persuaded Mary to hit Harry

NP ((S\NP)/VPto-inf)/NP NP VPto-inf/VP inf VP inf/NP NP
: j′ : λxλpλy.persuade′(px)xy : m′ : λp.p : λxλy.hit′xy : h′

>

(S\NP)/VPto-inf
:λpλy.persuade′(pm′)m′y

>

VP inf
:λy.hit′h′y

>

VPto-inf
:λy.hit′h′y

>

S\NP
:λy.persuade′(hit′h′m′)m′y

<

S
: persuade′(hit′h′m′)m′j′

Here function application is shown in forward form (>) and backward form
(<). Derivation proceeds from top to bottom in display, as standard in CCG;
i.e., bottom-up as far as parsing is concerned, and one at a time. For brevity
alternative derivations using function composition are not shown; their impli-
cations for constituency are discussed in Steedman references. We also eschew
the slash modalities of Baldridge and Kruijff [3] to avoid digression, which can
further restrict the combination possibilities of syntactic types. They are men-
tioned later when they are relevant to discussion. The LF contains a structured

1 This is equivalent to saying that in CCG the type VP is not always an abbrevation for
S\NP , which might be the case in other brands of categorial grammars. The English
facts above could be taken care of by featural distinctions such as S inf , S to-inf , Sfin

in S\NP , rather than also positing a VP . But in ergative languages the ‘\NP’ does
not always coincide with the same LF role as it does in English, such as in Dyirbal’s
control construction, where the controlled absolutive argument can be the patient
NP of the transitive clause or syntactic subject of an intransitive clause, but not
the ergative NP of the transitive clause. It seems to require VP : λx.pred ′x where
x’s role in the controlled clause pred′ is determined by verbal morphology of the
controlled clause; see [22] for the phenomenon. Assuming a VP cross-linguistically
makes narrower predictions about control. We handle this problem elsewhere.
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form, viz. the predicate-argument structure, which is written in linear notation
for simplicity; for example hit′xy is same as ((hit′x)y); i.e., it is left-associative.

In preparation for final discussion of substitution (§6) in relation to the wrap-
ping operation, we can redraw this derivation by showing the substituting expres-
sions as we proceed, which we do in Fig. 1.

Fig. 1. Substitution of syntactic expressions for syntactic types. Boxes show segments
combined. We display some one-at-a-time derivations on the same line to save space.

MWEs present a challenge for substitution in such correspondences. In
Schuler and Joshi’s [28]:25 words: “In the pick .. up example, there is no coher-
ent meaning for Up such that �pick X Up� = Pick(�X�,Up).” They go on to
show how tree-write in the form of TAG transformations, rather than string-
rewrite of CFG transformations such as [27], can deliver different meanings of
such expressions after a fully compositional tree is established for ‘pick’, ‘..’ and
‘up’.

In such systems, post-processing and reanalysis of a categorial surface deriva-
tion are possible, both for TAG and HPSG,2 therefore these transformations are
possible, indeed useful, to simplify large-scale grammar development.

For radically lexicalized grammars such as CCG where such options are not
available, three paths to maintaining compositionality in the presence of “non-
compositional” and/or idiomatic parts seem to be available:

2 TAG transformations take a phrase structure tree and decompose it to elementary
structures to deliver an LF. [21] is a different TAG way to incorporate meaning pos-
tulates of [25]. HPSG uses phrasal post-classification to the same effect. For example
[4,27] perform it at the final stage of parsing as a semantic check on bags of predi-
cates for idiom entries, and [17] use semantic frame identification, viz. compositional
vs idiomatic, which are built in to theory. The diversity of approaches in the volume
for idioms [14] is testimony to the practice that the idioms are decisive factors in
polishing our theories linguistically, psychologically and computationally.
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(4) a. letting the logical form change the compositional meaning,

b. introducing surface wrap,

c. reassessing the substitutability of argument types, to the extent that (i)
they can be narrowed by head-dependencies, and (ii) the semantic con-
tribution of some parts of the correspondence to the predicate-argument
structure can be ignored in a principled way, and locally.

The problem is exacerbated by phrasal idioms which seem to have partially
active syntax in some non-compositional parts, for example kick the (prover-
bial/old) bucket, but note �the bucket that John kicked, �kick the great bucket in
the sky, and *the breeze was shot. (� is used to indicate unavailability of idiomatic
reading. The last two examples and judgments are from [27].) However, there
are also phrasal idioms which are syntactically quite active, e.g. the beans that
John spilled, and spilling the musical/artistic/juicy beans.

Option (4a) does not always necessitate post-processing of MWEs in CCG,
but, as we shall see later in (23), it does not guarantee locality of derivations
either. One way to realize it is the following:

(5) kicked := (S\NP)/NP : λxλy.if head(x) = bucket ′then die′y else kick′xy

This approach to phrasal idioms which is similar to meaning postulates for
the same task such as [25] would then have to make sure that the head meaning
bucket′ has some predefined cluster of modifiers such as proverbial or old, but
not much else, for example �kick the bucket that overflowed. It would also have
to overextend itself to avoid the idiomatic reading in �the bucket that you kicked.

As an alternative, the type NPbucket below is inspired by trainable stochastic
CFGs which can distinguish argument PPs from adjunct PPs by encoding head
dependencies for CFG rules, for example VPput → Vput NP PPon: (We shall fix
the unaccounted vacuous abstraction in it later in the paper.)

(6) kicked := (S\NP)/NPbucket : λxλy.die′y

It might appear to be LF-motivated just like (5) above; but, it is actually a
case of (4c/i). NPbucket, meaning NP headed by bucket, can be made distinct
from NPbuckets because different surface expressions can be substituted for them.
(6) overgenerates for the examples given above, but it might be the right degree
of freedom to exploit in the syntax-semantics correspondence of idiomatically
combining MWEs such as NPbeans for spill the beans.

In the remainder of the paper, we show that option (4c/ii) has been implicit
in CCG theory all along but never used, in the form of syntactic types for which
only one value can substitute (Sect. 3). We call them singleton types. This way of
lexical categorization and subcategorization predicts very limited syntax, but not
as metalinguistic marking that [27] proposed for kick the proverbial/old bucket.
It is due to having to enumerate different senses and contingencies of phrasal
idioms (e.g. proverb bucket for senses above, also covering e.g. when I face the
proverbial bucket), and pick up for MWEs. In Sect. 4 we show that idiomatically
combining phrases have principled distinctions from singleton types. Head-word
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subcategorization such as (6) is the more promising option for them, which rad-
ically lexicalized grammars can handle without extension. There are also idioms
which require analysis combining both options such as those with semantic reflex-
ives where the referent is not part of the idiom, e.g. I twiddle my/*his thumbs.
Section 5 covers these cases.

These findings reveal some aspects of type substitution and its projection
when the expressions are not fully compositional at the level of the predicate-
argument structure. As such they may have implications beyond CCG.

Finally we show that adopting option (4b) to analyze for example pick · · · up
as pick up (· · · )wrap overgenerates in the combinatory version of wrap (Sect. 6),
and complicates the grammar with a domino-effect in the surface version of wrap;
therefore, it would do more damage than good if adopted for (discontiguous)
MWEs and phrasal idioms. CCG can continue to avoid all forms of wrap in the
presence of all kinds of MWEs and phrasal idioms.

3 Singleton Types

A brief preview of the proposal for (4c/ii) is as follows. A singleton syntactic
type self-represents because it can substitute for one value only. We designate
such types with strings, such as “up” or “the bucket”; for example:

(7) a. picked := (S\NP)/“up”/NP : λyλxλz.cause′(init′(holdx
′yz))z

b. kicked := (S\NP)/“the bucket” : λxλy.diex
′y

(Init′ is a function that yields a culminating state in the sense of [23].)
We call categories in (7) ‘paracompositional’ to highlight the fact that,

although their LF correspondence is intact so that the derivational process is
transparent, they might have seemingly vacuous abstraction from the perspective
of the predicate-argument structure, symbolized by the placeholders x above.3

However, one can make a case that this abstraction, corresponding respec-
tively to singleton categories “up” and “the bucket”, might have a role inside
the LF constants shown in primes, as contingencies. We write them for example
as die′

xy (as ceremonial death, reported death, etc.), rather than die′y. These
LF ‘constants’ are convenient generalizations in CCG standing in for a plethora
of features anyway, so it seems natural to think of them as having their own

3 van der Linden [32], which is another categorial approach to idioms, allows vacuous
abstractions, i.e. define semantics without mention of x in the LF of (7b). Apart from
our empirical claim that they have a place in LF because they relate to contingency,
vacuous abstractions seem to open ways to resource insensitivity which is unheard
of in natural language; for example, the K combinator with its vacuous abstraction
λxλy.x can delete things from LF. We have yet to find a word or morpheme that
does this; see [5]:81 for some speculation.

[32]’s treatment of phrasal idioms such as kick the bucket assumes partial involve-
ment of the head verb kick for the semantics of the idiom, whereas in our conception
it is fully responsible for the idiom with the aid of singleton types.
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abstraction. (The semantic types corresponding to these contingencies are then
α �→ t for some α.)

It will be seen in Sect. 3.2 that the examples in (7) differ in their sense from
picked up the book and kicked the blue bucket, therefore a separate grammar
entry is empirically justified. The sense distinction is reflected explicitly in the
LF, as we shall see later. Both possibilities for substitution, for the syntactic
type and for its placeholder in the LF, are principally restricted by CCG.

Singletons also engender a way for such entries to be morphologically more
transparent, for example by being susceptible to inflection, e.g. picking, by pro-
viding a segmental alternative to contiguous but MWE pick up · · · , which would
need a morphological pointer for inflection, as noted by [27,33] for their anal-
yses. Nunberg, Sag and Wasow’s [24] dichotomy between phrasal idioms and
idiomatically combining items also vanishes, because of the singleton types and
head-word subcategorized argument types. The distinction between syntactically
pseudo-active kick the bucket and more active spill the beans naturally follows
from whether the idiomatic part has a role in the predicate-argument structure,
which we capture by systematically choosing between option (4c/i) and (4c/ii)
per lexical correspondence.

3.1 Parsing and Correspondence with Singleton Types

The crucial property of a category in a lexical correspondence such as α :=
A/“s” with singleton s, is that the string “s” as a category does have its own
correspondence. This cannot be a literal match without categorial processing of
the surface string, with s to the right of α. It is a compositional derivational
process arising from (a) below, to lead to (b). The lexically specifiable difference
from a polyvalent category such as NP, VP is that the item α subcategorizes
for the string s, hence treat it as a category, rather than subcategorize for the
category of s, viz. B in the example. To obtain B , the derivational process
works as usual for s, independent of the item α. We shall see in (9) that rules of
function application need no amendment for this interpretation. (8b) is lexically
determined by α.

(8) a. s := B : s′

b. α s

A/“s” : λx.px B : s′
>

αs := A : ps′

Same idea applies to backward application, for α := A\“s” and the sequence
sα.

In other words, the surface string s is derived by the derivational process as
well. It is just that the item α carrying the singleton type as an argument decides
what to do with its semantics, which we indicated schematically above as modal
contribution to contingency of p, as px of α. This is not post-processing of a
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category in a radically lexicalized grammar, in which all and only head functors
decide what to do with the semantics of their arguments.

It means that, whether an argument type is polyvalent or singleton, there
has to be an LF placeholder for it, otherwise the derivational process, which is
completely driven by syntactic types in CCG, cannot proceed. It can be seen in
the basic primitive of CCG, viz. function application:

(9) X/Y : f Y : a → X : fa (>)
Y : a X\Y : f → X : fa (<)

The LF of the functor, f , has to be a lambda abstraction, to be able to take
any Y and yield fa. This is true of singleton ‘/Y ’ and ‘\Y ’ too.

We can clearly see the role of substitution rather than insertion in projection
of types. The rule (>) above is in fact realized as below (similarly for others):

(10) α := X/Y : f β := Y : a → αβ := X : fa (>)

There is no sense in which we can insert something into α and β as they form
αβ because these are surface expressions.

The singleton types present an asymmetry in argument-result (or domain-
range) specification. Functors such as A/B and A\B have domain B and range
A, and, apart from trivial identities where A and B are the same singleton, the
interpretation where the range itself (A) is a singleton is problematic. Since A|B
is a function into A for some slash ‘|’, if it is not a trivial case of singleton identity,
say “up”/“up”, it is difficult to see how A can be singleton. Although there are
no formal reasons to avoid singleton results, and results of results, we conjecture
that singletons are arguments, and arguments of results and arguments, because
there seems to be no nontrivial function of a singleton-result with grammatical
significance.

A related argument can be made about a singleton’s potential to be the over-
all syntactic category of a lexical item. The notion of extending the phonological
range of an item such as (a) below coincides naturally with “words with spaces”
idea (e.g. ad hoc, by and large, every which way), which is common in NLP of
MWEs, but (b) is also an option.

(11) a. every which way := (S\NP)\(S\NP) : λpλx.omni ′px

b. every which way := “every which way” : omniway ′

Notice that (b) is different than having scored := (S\NP)/“every which way”
for lexically specified verbal adjunction in the manner of [13], which, given (8),
must either use entries similar to (11), or derive every which way syntactically,
and choose to trump its category because it wants a narrower LF due to single-
ton subcategorization. However we think that both options may be redundant,
because of the following.



Paracompositionality, MWEs and Argument Substitution 25

In CCG the head functor decides the semantics of its entry even if it subcat-
egorizes for a singleton category. Therefore the entries in (a–b) above which we
use in (a–b) below may be redundant if the words in “words with spaces” are
part of the grammar, and if they can combine in any way, say as in (c) below
for some A, B, C :

(12) a. My team scored every which way

NP (S\NP)/“every which way” (S\NP)\(S\NP)
>

S\NP
b. scored every which way

(S\NP)/“every which way” “every which way”
>

S\NP
c. scored every which way

(S\NP)/“every which way” A/B B/C C
>

B
>

A
>

S\NP

There would be no post-processing or reanalysis in these cases; they would be
multiple analyses because of redundancy. The transparency of derivation requires
that in configurations like (8b) the constituents of the rule applying can them-
selves be derived.

The rules that allow CCG to rise above function application in projection,
composition and substitution also maintain the transparency of the syntactic
process, by being oblivious to the nature of argument types in these rules:4

(13) X/Y : f Y/Z : g → X/Z : λx.f(gx) (>B)
X/Y/Z : f Y/Z : g → X/Z : λx.fx(gx) (>S)

If the result categories are not singletons, as we argued, then the rules above
never face a case where Y is a singleton. This means that, since singletons are

4 We show only one directional variant of each rule for brevity. The same idea applies
to all variants; see Steedman references for a standard set of rules, and [5] for review
of proposals for combinatory extensions.
Bozşahin [5]: Sect. 10 shows that all projection rules of CCG can be packed into
one monad to enable monadic computation with just one rule of projection. This
is possible because CCG is radically lexicalized in the sense that combinatory rules
cannot project anything which is not in the lexicon. What appears to be rule choice
when presented as (9/13) becomes dependency passing within monad with one rule
of combination.
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arguments, meaning they bear a slash, say ‘|A’ for some slash ‘|’ in {\, /}, the
slash is inherently application-only, equivalently ‘|�A’ in [3] terminology.5

This is corroborated by examples like below where there is no idiomatic
reading: (We show the derivation for the hypothetical case where singletons
would be allowed to compose. Typing the singleton as ‘/�“the bucket”’ eliminates
the derivation. The slashes in the paper are harmonic ‘\�’ or ‘/�’ unless stated
otherwise.)

(14) �John kicked and Mary did not kick
S/“the bucket” (X\�X)/�X S/(S\NP) (S\NP)/VP inf VP inf/VP inf VP inf/“the bucket”

>B
S/VP inf

>B
S/VP inf

>B
S/“the bucket”

&
S/“the bucket”

the bucket

NP

For polyvalent types, one-to-one correspondence of syntactic types and place-
holder types is meant to capture the thematic structure in CCG, for example for
the door opened versus someone opened the door, by having two different (albeit
related) correspondences for open.

For a singleton, its functor (and there must be one, since they can only be
arguments) decides lexically whether there is a predicate-argument structural
role for the placeholder in the LF, as we see in the distinction of spill the beans,
where secret′ is an argument of divulge′, versus kick the bucket, where bucket′

or anything related to it is not an argument of die′.
Therefore, for CCG, MWEs and phrasal idioms are not exceptions that need

non-transparent derivation, apart from lexical specification as something special.
They are consequences of the nature of categories and radical lexicalization.

Also because of the properties described in this section, a string as a category
cannot be empty, which would violate CCG’s principle of adjacency and principle
of transparency (see Steedman references). No rule in (9) or (13) can apply if one
of the categories is empty. Therefore the surface string itself for the singleton (s
in example (8)) cannot be empty either.

Having explored the possibilities for the singleton types in combinatory cat-
egories, we look at their use.

5 The way this is implemented in many CCG systems including ours is for example
to constrain the slashes as follows:

X/�Y : f Y : a → X : fa (>)
X/�Y : f Y/�Z : g → X/�Z : λx.f(gx) (>B)

It is easier to describe slash-modal control from the perspective of syntactic types
of expressions accessing these rules. ‘�-rules’ are accessible by all categories, ‘�’ and
‘×’ are compatible only with themselves, and with the most permissive slash.
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3.2 Verb-Particles and Phrasal Idioms with Singleton Types

In verb-particle constructions, the differences in the syntax-semantics correspon-
dence force the following lexical distinctions. We now write the categories in more
detail than in the preview.

(15) a. picked := (S\NP)/“up”/NP -heavy : λyλxλz.cause′(init′(holdx
′yz))z

b. picked := (S\NP)/NP+lexc/“up”: λxλyλz.pickx
′yz

c. picked := (S\NP)/NP : λxλy.pick′xy ∧ choose′xy

The features above are all finite-state computable, just like morphological
ones, as phonological weight (∓heavy) and lexical content (∓lexc) in an expres-
sion substituting for a category. All CCG category features can be interpreted
this way, because combinators do all the syntactic work.

The reason for having two different grammar entries (a–b) for pick up follows
from the fact that they are not equally substitutable, for example as an answer
to What did you do?

(15b) leads to achievement, and (15a) to culmination. Both cases also differ
from (c), which provides wider substitution for NP , and with a different mean-
ing. We treat (a–c) distinctions surface-compositionally, which are transparently
projected without wrap:

(16) I picked the book up

NP1s (S\NP)/“up”/NP -heavy NP ((S\NP)\(S\NP))/NP
: i ′ :λyλxλz.cause′(init′(hold ′

xyz))z : def ′book′ :λxλpλy.up′(py)x
>

(S\NP)/“up”
:λxλz.cause′(init′(hold ′

x(def ′book′)z))z
>

S\NP
:λz.cause′(init′(hold ′

λxλpλy.up′(py)x(def
′book′)z))z

<

S
: cause′(init′(hold ′

λxλpλy.up′(py)x(def
′book′)i ′))i ′

where hold′ at the end of the derivation can interpret its event modality (con-
tingency) compositionally, since it is a closed lambda term.

Notice that the word up knows nothing about the verb-particle construc-
tion. Its category is for a PP head, say PPup, as a predicate modifier. It is the
verb that delivers the distinct meaning. Its subcategorization is for a singleton,
which eschews the syntactic category of the word up but not its phonology and
semantics, as described in (8b).

(15b) can be assumed to arise from the syntactic category VP/NP+lexc/“up”
by finite inflection. CCG has options here, to accommodate morphology without
having to have a “morphological insertion point” in a contiguous but MWE
entry pick up := VP/NP+lexc, to avoid ?pick upped.6 This is made possible by
singleton types.

6 The fact that this form is also attested in child and adult language suggests that
these entries may be bonafide lexical options.
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Examples (15a–b) use a degree of freedom which is relevant to phrasal idioms.
The singleton syntactic type “up” corresponding to the LF placeholder x main-
tains the compositionality of the correspondence; but, it may have no contribu-
tion to the predicate-argument structure at all in some cases, which would make
it paracompositional, because its semantic type is a closed lambda term as far
as predicate-argument structure is concerned. Notice that in (8b), s′ is not in
the predicate-argument structure of p; it is a contingency of p.

Consider the following examples in this regard, where x for bucket′ as an
event modality might mean ‘ceremonial death’, ‘reported death’, etc.:

(17) a. kicked := (S\NP)/�“the bucket”: λxλy.die′
xy

b. kicked := (S\NP)/NP : λxλy.kick′xy

They anticipate very limited syntax in the semantically paracompositional
part in the idiom reading (a) because of having to enumerate them (kick the
old/proverbial bucket vs kick the bucket that John thought overflowed).7 These
assumptions cannot give rise to the idiom reading in the bucket that you kicked,
with no further stipulation than singleton categories in a lexical entry (cf. a–b;
‘*’ on the right of a derivation means it is not possible):

(18) a. �the bucket that you kicked

(N\N)/(S/NP) S/(S\NP) (S\NP)/�“the bucket”
*>B

S/“the bucket”
b. the bucket that you kicked

NP/N N (N\N)/(S/NP) S/(S\NP) (S\NP)/NP
>B

S/NP
>

N\N
<

N
>

NP

Given the polyvalent argument category of the relative pronoun, we can see
that relativization out of phrasal idioms would not be possible even if we allowed
composition of singleton types, therefore the syntactic productivity of idiomati-
cally combining phrases arises from their use of head-dependencies rather than
singletons, as we shall soon see in derivations similar to (b), in (26).

We note that carrying the head-word in a polyvalent category to have the
same effect, for example kick := (S\NP)/�NPbucket, overgenerates the idiom read-
ing, because the bucket that John thought overflowed can substitute for NPbucket.

The direct approach to categories that we see in radically lexicalized gram-
mars, whether they are polyvalently substitutable or not, contrasts with systems

7 It is tempting to try NPproverbial bucket : proverb
′death′ for kick the proverbial bucket

which is a head-subcategorizing category; but, we would have to overextend ourselves
to eliminate the idiom reading in kick the proverbial bucket that overflowed if we have
to. In this sense we suggest that phrasal idioms are best treated with singleton types.
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of rewrite and/or record keeping in which post-processing is possible. For exam-
ple there is no reanalysis or post-processing mechanism needed to eliminate the
idiomatic reading below:

(19) �Mary      dragged    and    John            kicked         thebucket.

S/(S\NP) (S\NP)/NP S/(S\NP) (S\NP)/�“the bucket”
>B *>B

We can then follow [31] in assuming that passive is a polyvalent lexical process
headed by the passive morpheme, mapping for example VP inf/NP to VPpass,
which eliminates passivization *the breeze was shot from the entry:

(20) shoot :=VP inf/“the breeze” : λxλy.smalltalk ′
xone

′y

Idioms such as at any rate, beside the point further demonstrate that all
idioms needing restricted types must contain a predicative element in the domain
of locality of their head because we are required by paracompositionality to
record the special reading and contingency, for example as extension of discursive
clarification (a) and comparison (b):

(21) a. at := (S/S)/“any rate” : λxλs.more′exactly′sx

b. at := (S\S)/“any rate” : λxλs.contrastwith′
xs

4 Head-Word Subcategorization and Idioms

The difference between idiomatically combining phrases and phrasal idioms such
as kicking the bucket is clear: The syntactically active ones are active because
the idiomatic part has a role in the predicate-argument structure. ‘Secret’ is an
argument of ‘divulge’, whereas ‘bucket’ is not an argument of ’die’. For example,
spill the beans seems to require categorization such as (a) below in the manner
of (6), rather than (b) fashioned from (5) or singleton-subcategorizing (c). Cf.
also the non-idiomatic spill in (d). Tense morphology renders finite versions of
VP inf below as S\NP , eg. spilled := (S\NP)/NPbeans for (a).

(22) a. spill := VP inf/NPbeans : λxλy.divulge′
xsecret

′y

b. spill := VP inf/NP : λxλy.if head(x) = beans′then divulge′
xsecret

′y
else spill ′xy

c. spill := (VP inf/“beans”)/PredP : λpλxλy.divulge′
pxsecret

′y

d. spill := VP inf/NP : λxλy.spill ′xy

PredP is a predicative phrase type, which includes the quantifier phrase. The
syntactic type of the idiomatic argument in (a) encodes the head-dependency
from surface structure. It avoids the idiomatic reading in to spill the bean, which
(b) may not. (b)-style solutions would depend on LF objects, which may not
always reflect surface forms in full. In fact (b) requires post-processing to elimi-
nate the idiom reading in the following example:
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(23) �You spilled and Mary cooked the beans

S/(S\NP) (S\NP)/NP (X\�X)/�X S/(S\NP) (S\NP)/NP NPbeans
:λp.p you′ :λxλy.if · · · :λpλqλz.and ′(pz)(qz) :λp.pm′ :λxλy.cook′xy : def′beans′

>B >B
S/NP S/NP

:λx.if head(x) = · · · :λx.cook′xm′
&

S/NP
:λz.and ′(if head(z) = · · ·)(cook′z m′)

>

S/NP : and ′(if head(def′beans′) =
beans′ then divulge′secret′you′ · · ·)(cook′(def′beans′)m′)

This is still the case if we treat the construction as multi-headed, as [15]:238
do, by also assuming the beans := NPbeans : secret′, and changing the LF choice
condition of spill to ‘if head(x)=secret′ then divulge′xy else spill ′xy’. Cook′ does
not refer to this entry.

The process of marking head-word dependencies requires statistical learning,
as the category such as NPbeans in (22a) implies. It has been known in TAG
systems with supertags since [6] that disambiguating such categories is feasible
with training. The earliest approach to such marking in CCG is [8,9] as far as
we know, where probabilistic CCGs are similarly trained. Later work such as [1]
shows further progress in disambiguation of head-dependencies.

NPbeans is a polyvalent type, not a singleton. Therefore we get the following
accounted for by (22a) (some of the examples are from [33]):

(24) a. spill /several/the musical/the artistic/mountains of/loads of/ beans

b. spill the beans no one cares about

Head-marking of an argument category by the idiom’s head is required
because of examples such as below, where an idiomatic reading is eliminated
despite relatively free syntax because the coordinands would not be like-typed:

(25) �You spilled and Mary cooked the beans

S/(S\NP) (S\NP)/NPbeans (X\�X)/�X S/(S\NP) (S\NP)/NP NPbeans
>B >B

S/NPbeans S/NP
*&

Right-node raising succeeds when non-idiomatic entries such as (22d) do not
subcategorize for head-word marked arguments. (25) is unproblematic with it.

When the head of the construction does not require identical types as does
the conjunction above, head-projection works with simple term match; cf. the
one for kicking the bucket in (18a) (h is for head-word feature):

(26) the beans that you spilled

NPh/N h N beans (N h\N h)/(S/NP) S/(S\NP2s) (S\NP)/NPbeans
>B

S/NPbeans
>

N h\N h
<

N beans
>

NPbeans
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The example also shows that argument types of idiomatically combining
phrases must be composable; therefore; (22c) is inadequate.8

5 Idioms Requiring a Combined Approach

There seems to be cases where a combination of singletons and head-marked
polyvalent subcategorization is needed. The give creeps construction, which is
sometimes considered not an idiom because of its compositionality [19], is para-
compositional in our sense, and idiomatically combining in [24] terminology,
because although creeps seems to be an event modality of revulse′ rather than
its argument, fear′ is an argument. A simple head-marking approach such as
‘/NPcreeps’ would overgenerate in cases such as �give me some creeps, but we
have give me the absolute/shivering/full-on creeps. Notice also that the construc-
tion and related items resist dative shift (judgments are from [20]; ‘*’ seems to
be equivalent to ‘�’ in our terms):

(27) a. The Count gave me the creeps./ *The Count gave the creeps to me.

b. His boss gave Max the boot./ *His boss gave the boot to Max.

Richards [26] observes that (a) below can be the unaccusative of give; and,
(b) is widely attested in the web (but recall �give me some creeps).

(28) a. Mary got the creeps.

b. give some creeps

c. give := VP/N creeps/“the”/NP : λxλyλzλw.cause′(init′(revulse′
zfear

′
yx))w

Assuming that dative shift is polyvalent, following [31], in the form of lexical
mapping from VP/NP/NP to VP/PP to/NP , we can eliminate it for the type
in (c), which we think captures the insight of Richards, and permits adjunction
within an N, e.g. mountains of creeps.

Another class of idioms forces a combined approach as well. Semantic reflex-
ives in I twiddled my thumbs/ate my words/racked my brain/lose my mind are
not morphological reflexives and they are inherently possessive, for example:

(29) twiddled := (S\NPagr)/“thumbs”/NP -lexc,+poss,agr

: λxλyλz.pass′y time′
(self ′

z)
z ∧ inalien′(xyz)

8 One way to put it altogether is to use a feature such as ∓special in addition to h,
which ordinary verbs negatively specify, heads of idiomatic combination positively
specify, and heads of syntactic constructions eg. coordinators and relative markers
(under)specify as they see fit. The value ‘+special’ need not be further broken down
for singletons because they are self-representing, and, presumably, featureless. For
example phonological weight is intrinsically captured in “the beans”; also, lexical
content.
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The LF captures the properties that the subject idles on his own time, the
lexical possessive in the LF of x which is presumably lexically poss′ is inalien-
able and belongs to the subject. This is a reflexive in the sense that it must
be bound in its local domain determined by pass′. The referent (z) is avail-
able in one domain of locality in a radically lexicalized grammar because the
head of the idiom does not require a VP in phrase-structure sense but a clause.
Agreement is locally available too; by insisting on same agreement features. The
head-dependency is that the argument does not contain lexical material, leaving
out examples such as John twiddled John’s thumbs as an idiom.

6 No Wrap

We have seen that options (4c/i) and (4c/ii) are not mutually exclusive. We
also suggested that singleton type is a forced move to avoid loss of meaning
composition. One consequence of this is the treatment of verb-particles without
wrap, which are not related to idioms although they are MWEs. We now consider
option (4b) in more detail from this perspective, which at first sight seems to be
just as lexical as the two alternatives we have considered so far.

The projection principle of CCG, which says that lexical specification of
directionality and order of combination cannot be overridden during derivations,
eliminates (30) from projection because it has the second-combining argument
(Y ) of a function applying before its first-combining argument (Z ), an operation
of the general class that has been proposed in other categorial approaches under
the name of “wrap.”

(30) (X/Y)/Z : f Y: a → X/Z : λz.fza (*)

Wrap of the kind in (30) has a combinatory equivalent, namely Curry’s com-
binator C (see [11]). CCG’s adjacency principle eliminates this combinator on
empirical grounds, rather than formal, as a freely operating rule. Adding (30) to
CCG’s projection has the effect of treating VSO and VOS as both grammatical,
which is not the case for Welsh, and to carry the same meaning, which is not the
case for Tagalog although both VSO and VOS are fine. These properties must
be part of a lexicalized grammar rather than syntactic projection.

The version of wrap which [2,12,16] employ is different, which was elimi-
nated from consideration so far because it is non-combinatory; and, it violates
adjacency of functors and arguments. That wrap is the following:

(31) s1 s2

X/WY : f Y : a
wrap

first(s1) s2 rest(s1) := X : fa

where first() function gives the first element in a list of surface expressions
for Bach [2], or first word for Dowty [12]; and, rest() returns the rest of the
expression. The wrapping slash ‘/W’ of Jacobson [16] does the infixation of s2.
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Semantically, it is function application. Syntactically, no combinator can do
what this rule does to its input expressions, which is to rip apart one surface
expression (s1) and insert into it. It differs from C, which wraps one independent
expression in two independent expressions.

The appeal of surface wrap to MWEs was to be able to write a category
for pick · · · up as for example pick := (S\NP)/WNP/Pup : λxλyλz.pickx

′yz; cf.
(16).

Syntactic wraps such as above, whether combinatory or non-combinatory,
have domino effects on dependency and constituency, unlike ‘lexical wrap’, where
a lexical entry specifies its correspondence; for example, for the strictly VSO
Welsh verb gwelodd := (S/NP)/NP3s : λxλy.saw′yx; note the LF.

An example of global complications in grammar caused by wrap can be seen
below, where dashed boxes denote wrapped-in material; cf. Figure 1.

(32) a. persuade to do the dishes John

VP inf/WNP/VP inf VP inf NP
>

persuade to do the dishes := VP inf/WNP
wrap

persuade John to do the dishes := VP inf

b. persuade to do the dishes John easily

VP inf/WNP/VP inf VP inf NP
>

persuade to do the dishes := VP inf/WNP
wrap

persuade John to do the dishes := VP inf
<

persuade John to do the dishes easily := VP inf

c. persuade John to do the dishes easily

VP inf/VP inf/NP NP VP inf
>

VP inf/VP inf

Derivation (a) is Bach’s use of non-combinatory wrap rule in (31). Given
these categories which involve wrap, there is one interpretation for (b), where the
adverb can only modify persuade. With the unwrapped version of persuade in (c),
two interpretations are possible: one modifies the VP complement of persuade,
and the other, persuade John, both of which are required for adequacy.

7 Conclusion

One point of departure of CCG from other categorial grammars and from tree-
rewrite systems is that (i) we can complicate the basic vocabulary of the theory,
but (ii) not its basic mechanism such as introducing wrap, if a better explanation
can be achieved. The first point has been made by Chomsky repeatedly since
[7]:68. Singleton types could be viewed as one way of doing that, much like S\NP
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vs. VP distinction. We have argued that it is actually not a complication at all
in CCG’s case, because the possibility has been available, in the notion of type
as a set of values, which can be a singleton set. CCG differs from Chomskyan
notion of category substitution by eliminating move, empty categories and lexical
insertion altogether, which means that all computation is local, type-driven, and
there is no action-at-a-distance, to address the second point. The expressions
substituting for these types are then locally available in the course of a derivation.
This seems critical for MWEs.

The possibility of a singleton value is built-in to any type. The asymmetry
of CCG’s singletons’ categorization, that they can be arguments, and arguments
of arguments and results, and, their inherent applicative nature, deliver MWEs
and phrasal idioms as natural consequences rather than stipulation or a “pain in
the neck for NLP.” Syntactically active idioms are not singleton-typed because
they have relevance to predicate-argument structure; and, their narrower syntax,
compared to free syntax, seems to necessitate head-marking of some argument
categories, which is known to be probabilistically learnable.

Some implications of our analyses are that all idioms can be made compo-
sitional at the level of a lexical correspondence without losing semantic distinc-
tions, and without meaning postulates or reanalysis. Categorial post-processing
of MWEs and phrasal idioms, and multi-stage processing of them in the lexi-
con, as done by [10,33], may be unnecessary if we assume type substitution to
be potentially having one value, and surface head-marking to be an option for
polyvalent argument types. One conjecture is that any idiom in any language has
to involve a predicate implicated by some predicative element in the expression
to keep the meaning assembly paracompositional.

The analyses in the article can be replicated by running the CCG tool
at github.com/bozsahin/ccglab. The particular fragment in the chapter is at
github.com/bozsahin/ccglab-grammars/cb-ag-fg2018-grammar.
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Abstract. This paper investigates the consequences of one-to-many
licensing relationships for Minimalist Grammars (MGs; [30]) on the
example of case. Dependent Case Theory [2,23] has proposed that a
single noun phrase can assign accusative case to arbitrarily many other
noun phrases in particular structural configurations. Taking a licensing
view rather than an assignment view on the distribution of case, this
implies that accusative case can be licensed by a single licensor on arbi-
trarily many licensees. This paper argues that the distribution rules for
case can be formalized as at most monadic second-order constraints,
which are known to be translatable into an MG with refined Merge-
features [16]. However, an implementation as Move-features is not fea-
sible because such an MG would need to “count” and would thereby
generate non-regular derivation tree languages. It is argued that this
increase in complexity can be avoided by suspending the SMC for licens-
ing relationships that involve neither displacement of phonological nor
of semantic features.

Keywords: Dependent Case Theory · Minimalist Grammar
Licensing · Persistent features · SMC

1 Introduction

In natural language syntax, long-distance dependencies are sometimes formalized
as covert movement. The licensee moves into the licensor’s specifier position and
establishes a local feature checking/valuation relationship without effects on the
word order at PF, nor on the scope relations at LF. In some constructions, one
licensor is involved in multiple dependencies of the same type, even in arbitrarily
many. This paper explores one such construction in detail: accusative assignment
in the framework of Dependent Case Theory (DCT). DCT argues that accusative
is assigned to a noun phrase (NP) in the presence of another NP obeying cer-
tain structural configurations. Phrased differently, one NP can license accusative
case on arbitrarily many NPs standing in these configurations. Other examples
of one-to-many licensing relationships in natural language syntax include NPI-
licensing, anaphor-binding, negative concord, agreement, parasitic morphology,
and sequence of tense.

The questions that arise are the following:

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Foret et al. (Eds.): FG 2018, LNCS 10950, pp. 37–61, 2018.
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1. What is the state of the derivation at the point of applying these movement
operations?
How does the derivation keep track of the arbitrary number of licensees?

2. What is the decision procedure to determine in what order the licensees move?

I will show that one-to-many licensing configurations cannot be computed within
the power usually assumed for natural languages (regular tree languages; Sect. 4).
We do not have independent reason to justify the increase in power to context-
free tree languages, which is necessary to capture these arbitrarily many move-
ment steps. In fact, we can show that a formalization within regularity is possi-
ble as long as we do not resort to covert movement to formalize it, but employ
MSO-definable constraints imposed by refined selection features [16] (Sect. 3).
This illustrates a fundamental asymmetry between selection and licensing: every
constraint that is definable by MSO-logic can be expressed by selection, but not
necessarily by licensing.

Minimalist Grammars [30] have formalized the restriction to regularity of
their derivation trees into what is known as the Shortest Move Constraint
(SMC)—a categoric constraint against arbitrarily many licensees simultaneously
awaiting movement [29]. This paper exhibits a formal procedure to circumvent
the SMC for particular feature checking relationships without increasing the nec-
essary power of the formalism (Sect. 5). Given that the licensing movement exhib-
ited by DCT influences neither PF nor LF, we can avoid answering question 2.
Rather, we can establish all required licensing relationships simultaneously, irre-
spective of their number. Thus the formalism does not need to remember the
number of waiting licensees, answering question 1. At any given time, the only
relevant information is whether or not at least one licensee is in need of licensing.
Whenever a licensing relationship is established, all unchecked licensees will be
checked.

This then establishes a way to formalize one-to-many licensing relationships
with movement features in frameworks that hitherto were constrained by the
SMC.

Predictions for wh-Movement. Constructions with one-to-many licensing
relationships requiring movement that influences PF have been discussed in the
literature on the example of multiple wh-fronting [12,13]. This phenomenon is
outside the scope of this paper, but I do make a prediction about it: For con-
structions in which not all fronted wh-words stand in a c-command relation to
another fronted wh-word (in their respective base positions), and not increasing
the formalism’s power, we predict that the order of moved wh-phrases is not
determined by the derivation, i.e., it is either completely free (arbitrary) or com-
pletely fixed (determined by a deterministic post-syntactic mapping establishing
linear order without reference to syntactic features). However, see [5] and refer-
ences cited therein on the absence of wh-movement as well as wh-movement to
lower positions.
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1.1 Outline

This paper is structured as follows. In Sect. 1.2, I introduce the basic idea behind
Dependent Case Theory and illustrate the challenges raised by unbounded
dependent-down case assignment. Section 2 defines Minimalist Grammars as
regular tree grammars generating derivation tree languages [18,30,32]. The fol-
lowing three sections discuss possible implementations of MGs generating tree
languages whose distribution of accusative case matches Dependent Case The-
ory. Section 3 proves that an implementation with a regular tree language is
possible by giving an implementation using monadic second-order constraints.
Section 4 shows that an implementation with long-distance licensing relation-
ships is not possible without significantly increasing the complexity class of this
tree language from a regular to a context-free tree language. Section 5 suggests
an amendment: long-distance licensing relationships can be employed if we adapt
the formalism so that dependent-case is only assigned to a single nominal, rather
than to unboundedly many. Section 6 concludes.

1.2 Dependent Case

Dependent Case Theory (DCT; [23,34]) regulates how and when nominals receive
morphological case-marking. At present, the rules that generate the distribution
of case morphology in various works on DCT [2,4,21,23,27,28] are given as
high-level descriptions of the relevant configurations. For each case there are
rules specifying the contexts in which it can be assigned. These rules fall into
four categories, defining inherent cases, dependent cases, unmarked cases, and
default cases, which in turn stand in a hierarchy (1) such that if a noun is eligible
for more than one case, only the case in the highest-ranked (left-most) category
will be assigned.

(1) inherent cases > dependent cases > unmarked cases > default cases [23]

Inherent cases (also: lexical, quirky, idiosyncratic cases) are assigned due to a
fixed property of the element that introduces the nominal into the derivation.
For example, in Icelandic the verb ‘to help’ always assigns dative to its helpee-
argument, even under passivization, where non-inherently accusative marked
arguments undergo case alternation to nominative. We use the term structural
cases to refer to all non-inherent cases.

Dependent cases are structural cases that are assigned in configurations of
two or more nominals in the same case assignment domain that stand in a c-
command relationship. Dependent-down cases are assigned to the c-commanded
nominal, and dependent-up cases to the c-commanding nominal. For example,
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accusative is a dependent-down case and applies in the CP domain. Dependent-
up cases include ergative [3] in the CP domain, and dative in the VP domain
[4].1

Unmarked cases arise when dependent cases do not, i.e., in the absence of
other elements in the structure, and they are sensitive to the case assignment
domain. In most languages, nominative is the unmarked case in the CP domain.
Genitive has been argued to be the unmarked case in the DP domain [2,23].

Default cases arise outside of case assignment domains, such as in fragment
answers or hanging topics. In many languages, default case is nominative, how-
ever, for English it has been argued that default case is accusative [23].

Algorithm. An algorithm based on Marantz’s [23] disjunctive case hierarchy, in
more modern syntactic terminology of e.g. [2], is given in Fig. 1. As soon as the
noun phrase (NP) α receives case, the algorithm is exited, leading to at most
one case per NP per case-assignment domain. Together with the algorithm’s
assertion that every NP will receive case2, this leads to an assignment of exactly
one case per NP per case-assignment domain. The rule ordering of dependent-
down case before dependent-up case captures the fact that in a sequence of

Fig. 1. Algorithm for case assignment in DCT

1 Language differ with respect to restrictions on the licensing nominals, in particular
with respect to their case marking. In many languages, nominals with inherent case
cannot be licensors (“quirky subjects”, e.g. in Icelandic [34], Diyari, Kannada [2]). If
the subject carries dative, the object will carry nominative, not accusative. However,
Tamil as well as some dialect of Faroese exhibit dat–acc patterns [2, pp. 187–194],
and some dialects of Kurdish allow erg-marking on the subject if the object carries
inherent dat [1], as is also found in Warlpiri, Burushaski, and Ingush [2, pp. 187–
194]. In this paper, I will model the Icelandic patterns, but everything I say extends
straight-forwardly to the Faroese pattern.

2 It has been argued [20,21] that unmarked cases are the morphological marking that
arises in the absence of case. In this paper, I take unmarked cases to be assigned
and licensed like other cases.
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three NPs α, β, γ such that α c-commands β, and β c-commands γ, all in the
same domain D associated with both a dependent-up case (e.g., ergative) and
a dependent-down case (e.g., accusative), NP β receives accusative rather than
ergative; [2, p. 232] on Diyari.

Dependent-Down Case Licensing is Unbounded. Dependent-down case
licensing has a property that the other categories of case do not share. A single
NP can assign dependent-down case to unboundedly many nominals in its c-
command domain. In (2), arrows indicate assignment of accusative case.

(2) NP1 NP2 NP3 NP4
. . .

In principle, there are two kinds of configurations for such a series of NPs to
stand in. The first is pairwise c-command relations: NP1 c-commands NP2,
NP2 c-commands NP3, NP3 c-commands NP4 etc. Asymmetrical c-command
is transitive: it follows that NP1 also c-commands NP3 and NP4, that NP2

also c-commands NP4 etc. We thus have multiple potential case assigners for
NPi, i > 2: NP1, . . . , NPi−1. We will refer to this configuration as daisy-chain
configuration.

The second configuration contains NP2 to NPn in such positions that for all
i: NPi does not c-command any NP in the above sequence. Thus all dependent-
down case-marked NPs in this sequence only have one potential case assigner:
NP1. We will refer to this construction as 1:n-configuration. Clearly, combina-
tions of these two configurations are also possible.

The daisy-chain configuration is well-attested, for example in Finnish [22,26].
In a sequence like (2), we can observe that removal of NP1 results in NP2

changing its case from accusative to nominative, but all following NPs retain
accusative case. Similarly, additional removal of NP2 changes the case on NP3

from accusative to nominative, but the case on NP4 etc. remains unchanged.
Under the assumption that the structures with NP1 and without NP1 are iden-
tical in all relevant aspects except for the presence or absence of NP1, this is
evidence for NPi+1 receiving its accusative case from NPi, i > 1, and not from
NP1.3 The daisy-chain configuration is directly expressable by regular tree gram-
mars using licensor features for case and thereby does not pose a problem for
the formalism.

The 1:n-configuration is attested in Sakha [4,33]. In “raising to object” con-
structions, the subject of an embedded clause (finite or nominalized) can receive
accusative marking.

3 [20,21] argue that only case-less NPs (carrying unmarked case) can license dependent
case. If this is correct, the daisy-chain configuration for case assignment does not
exist, and these structures employ the 1:n-configuration instead where all assignment
is performed by NP1.
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(3) Masha
Masha.nom

[ Misha-ny
Misha-acc

kel-ie
come-fut.3sg

dien
that

] djie-ni
house-acc

xomuj-da.
tidy-pst.3sg

‘Masha tidied up the house (thinking) that Misha would come.’ [33, 368]

Baker and Vinokurova [4, Sect. 3.5] show that the availability of this accusative
marking is dependent on the presence of a matrix subject, and not on other
sources of accusative marking (such as functional heads) in either the embedded
clause or the matrix clause. When changing the matrix predicate to subject-less
predicates like ‘it became certain’ or ‘it became necessary’, the embedded subject
cannot carry accusative, and the matrix object cannot carry accusative.4 This
then supports an analysis like (4), where the source of both accusatives is the
matrix subject.

(4) TP

Mashanom

CP

Mishaacc

. . . C

dien

VP

houseacc V

T

There remains the empirical question whether Sakha allows arbitrarily many
instances of raising to object in one sentence. Given that dien-clauses are prob-
ably adjuncts, it is not unreasonable to think that there could be more than one
in a single clause. Such a configuration is illustrated in (5).

4 They do not, however, provide an example showing that both NPs lose their
accusative-marking together.
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(5) TP

Mashanom

CP

Mishaacc

. . . C

dien

CP

Aisenacc

. . . C

dien

VP

houseacc V

T

This paper does not aim to contribute to this empirical question and will
instead assume DCT as formalized in the literature: (4) extends to configurations
with unboundedly many adjunct-clauses, whose subject can receive accusative
case that is licensed by the matrix subject.

A Similar Issue with Unmarked Case. Similar to dependent-down cases, a
single clause can contain unboundedly many NPs carrying unmarked case. Unlike
dependent-down cases, unmarked cases do not have an obvious licensor, however
they are dependent on the case-assignment domain. Formally, we can interpret
this as the head of this domain (for [2]: the phase head) licensing unmarked case.
Then the treatment of unmarked case becomes parallel to that of dependent-
down case. This is illustrated in (6), after a construction discussed in [2, p. 86]:
Amharic dyadic unaccusatives (possessor or experiencer constructions) as well
as passives of triadic verbs with a goal-argument. Since the two NPs in (6) do
not stand in a c-command relationship, both are realized with unmarked case.

(6) vP

VP

PP

NPnom P NPnom V

v
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Case as Agree. An alternative option arises from feature valuation and Late
Insertion: unmarked (and also default) cases are the elsewhere-forms of nominals
that arise when lexical and dependent cases are not available. Instead of having
nominals with unmarked case enter a licensing relationship with the head of
the case assignment domain, we can make use of this relationship indirectly.
Ermolaeva [11] has established a formal framework for Agree operations. Feature
values can be transmitted along branches in a tree, ‘riding’ on top of merge- and
move-operations. Nominals will carry a feature for the unmarked case in their
case assignment domain, to be valued indirectly by the domain head. Following
[2], i.a., I take case assignment domains to correspond to the complement of
phase heads. A C-head will value the features on its complement as nominative
(7a), and a D-head as genitive (7b). The outgoing information is specified as a
superscript on =T resp. =N together with a right arrow.

(7) a. [ ε :: =T[U :nom]→ C ] b. [ ε :: =N[U :gen]→ D ]

We specify all lexical items to percolate this morphological information down the
tree, as illustrated in (8). Every lexical item will receive the value for unmarked
case from its selector Z with a left arrow and pass it on to all LIs it selects: =X
and =Y in (8). Simplifying [11], (8) uses the variable α to indicate that the value
received via Z is the same as the value outgoing via X and Y.

(8) [
[

φ
U : α

]
:: =X[U :α]→ =Y[U :α]→ Z← ]

NPs will receive the value for U from their selector as well. They are the only
LIs whose phonological realization is sensitive to the value of U . If they have
received nom as value of U , they are pronounced as such, if they have received
gen as genitive, and if U has not been valued, as default case. Since values
are transmitted on top of Merge and Move operations, we can straightforwardly
use Agree to assign a value for inherent cases, which are selected for directly.
However, dependent cases are transmitted at a distance, so they require discus-
sion.5 The valuation for dependent cases either has to proceed via Move-features,
which, as we will see, constitutes a problem, or via refined Merge-features that
are sensitive to the presence of the licensor. We will see in Sect. 3 details about
such a refinement for a licensing account.

An alternative might be to transmit the hypothetical value D for depen-
dent case from the phase head across the entire case assignment domain, like
unmarked case above, and then to introduce a spell-out rule that states that if an
NP α has an admissible c-commander, it will spell out its hypothetical depen-
dent case D, and if it doesn’t, its hypothetical unmarked case U . I leave an
investigation into the possible advantages of either approach for future research.
Either way, if unmarked cases are a 1:n-challenge in the same way as dependent-
down cases, the present treatment of dependent-down cases will extend to them.

5 [28, p. 205] brings up the idea that dependent cases are feature values that are assigned
in the presence of the licensing NP, but does not spell out how this might proceed.
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On the other hand, if unmarked cases can be solved by different means, the
present treatment of dependent-down cases is not affected.

2 Preliminaries

Our data structure are labeled trees t = 〈V,�, label〉 over a ranked alphabet
〈Σ,Arity〉 such that V is a set of nodes (vertices), � (dominance) is a partial
order on V , from which derive the predicates strict dominance � (for all u, v ∈
V : u � v iff u � v and ∃w ∈ V : u � w but not v � w) and immediate dominance
� (for all u, v ∈ V : u � v iff u � v and �w ∈ V : u � w and w � v), and
label is a function V → Σ such that for all v ∈ V, σ ∈ Σ: label(v) = σ only
if the number of nodes that v immediately dominates |{v′ ∈ V : v � v′}| is
equal to Arity(σ). Two additional conditions must hold for t: the root condition:
∃r ∈ V : ∀v ∈ V : r � v, and the chain condition: ∀u, v, w ∈ V : u � w and v � w
implies that either u � v or v � u [17].

Following [18], we define Minimalist Grammars (MGs) as regular tree gram-
mars G that generate derivation tree languages MDTL(G), which are subse-
quently mapped to various output structures by using monadic second-order
transductions to specify final landing sites of moved elements, ordering of sib-
lings, and headedness [16, Sect. 1.2.3]. For instance, they can be mapped to
phrase structure trees, multi-dominance trees, strings, and many other represen-
tations.

We describe MGs by specifying their non-branching terminal nodes (their
lexicon Lex) and the distribution of their branching terminal nodes with respect
to Lex. A lexicon Lex is a finite set of triples l = 〈p, s, f1 · · · fn〉 (lexical items,
LIs) containing phonological content p (not to be specified further), semantic
content s (not to be specified further), and a finite sequence f1 · · · fn of syntactic
features, n ≥ 1. We write lexical items as [ p :: f1 · · · fn ], omitting the semantic
content, with exponent(l) = p and features(l) = f1 · · · fn. A syntactic feature f
has a type τ and a polarity π. Its type τ classifies f as either selection feature
τ ∈ sel or licensing feature τ ∈ lic, thus sel and lic are disjoint. Its polarity π is
either positive or negative. The set Feat of syntactic features of a lexicon Lex is
Feat = {〈τ, π〉 : 〈τ, π〉 ∈ features(l), l ∈ Lex, π ∈ {+,−}}. For a syntactic feature
f = 〈τ, π〉, we use the following notations and designations:

π = + π = −
τ ∈ sel =τ , “selector” τ , “category”
τ ∈ lic +τ , “licensor” -τ , “licensee”

The sequence of syntactic features on a lexical item is always such that (i) all
positive features precede all negative features, (ii) there is exactly one negative
selection feature, (iii) the negative selection feature precedes all other negative
features [14,19].

A derivation tree t = 〈V,�, label〉 will be in MDTL(G) depending on the
syntactic features on its lexical items (its leaves), the distribution and labels of
interior nodes, and well-formedness condition on its root. Nodes labeled Merge
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and Move introduce associations between two syntactic features of the same type
but opposite polarity on two different lexical items. A Merge node m is projected
by a feature =f on a lexical item l1 dominated by one of its two children and is
an occurrence of a feature f of the same type but opposite polarity on a lexical
item l2 dominated by its other child. A Move node m is projected by a feature
+g on a lexical item l1 dominated by its single child c and is an occurrence of
a feature -g of the same type but opposite polarity on a lexical item l2 also
dominated by c. There are locality restrictions. Informally, the positive features
on an LI must project in order (i.e., for mi the interior node projected by fi,
mi+1 � mi) and negative features must find the closest matching occurrence.

The well-formedness conditions on the root of t state that all features on all
lexical items in t must have been associated with an interior node, except for
one category feature z which must be in a given set F of allowed non-associated
features.

Constraints on the distribution of terminal nodes follow from the feature
calculus on LIs developed by [18,30,32]. A function h maps each node v ∈ V
in t to a tuple of feature sequences representing all the non-associated features
on nodes dominated by v. If v is a lexical item, it does not dominate any nodes
other than itself, and h(v) only contains v’s own feature sequence. If v is an
interior node, h manipulates the feature sequences of v’s children depending on
v’s label in the following way:

Definition 1 (Merge). Given a node v ∈ V with label(v) = Merge, and two
nodes u,w ∈ V such that v � u and v � w and h(u) = 〈=xf2 · · · fk, φ1, . . . , φl〉
(x ∈ sel, fi ∈ Feat for 1 ≤ i ≤ k (i.e., the sequence f2 · · · fk is potentially
empty), φi ∈ Feat∗ for 0 ≤ i ≤ l) and h(w) = 〈xg2 · · · gm, ψ1, . . . , ψn〉 (gi ∈ Feat
for 1 ≤ i ≤ m, ψi ∈ Feat∗ for 0 ≤ i ≤ n), then h(v) = merge1(h(u), h(w))
combines h(u) and h(w) into a single sequence of sequences of features as defined
below:

〈=xf2 · · · fk, φ1, . . . , φl〉 〈xg2 · · · gm, ψ1, . . . , ψn〉 merge1〈f2 · · · fk, φ1, . . . , φl, g2 · · · gm, ψ1, . . . , ψn〉
If the initial features of the initial sequences of both h(u) and h(w) don’t match
such that they are of the same type x ∈ sel and differ in their polarity,
merge1(h(u), h(w)) is undefined.

Definition 2 (Move). Given a node v ∈ V with label(v) = Move, and a node
u ∈ V such that v � u and h(u) = 〈+xf2 · · · fk, φ1, . . . , φi−1, -xg2 · · · gl, φi+1, . . . ,
φn〉 (x ∈ lic; fj , k, gj , l, φj , n as above) such for all j : 1 ≤ j ≤ n, j 
= i: φj’s
initial feature is not -x, then h(v) = move1(h(u)) is defined as given below:

〈+xf2 · · · fk, φ1, . . . , φi−1, -xg2 · · · gl, φi+1, . . . , φn〉
move1〈f2 · · · fk, φ1, . . . , φi−1, g2 · · · gl, φi+1, . . . φn〉

If the initial feature of h(u)’s initial sequence is not a licensor feature +x, and
if there is not exactly one sequence of features in h(u) whose initial feature is a
licensee feature -x of the same type, move1(h(u)) is not defined.
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These definitions do not make reference to the ordering of phonological features
on LIs. I assume that all linear order is established by post-syntactic mapping
to derived structures.

The root condition can then be stated as: for r the root node, h(r) =
〈z, ε, . . . , ε〉 such that z ∈ F .

Definition 3 (MG). An MG G = 〈N,T, S, P 〉 is a regular tree grammar with
T = Lex ∪ {Merge, Move}. The non-terminals N are tuples of sequences of
features occurring in Lex, N ⊂ (Feat+)+, namely N = {〈s0, . . . , s|lic|〉 : si ∈
{β : αβ = features(l), l ∈ Lex}, 0 ≤ i ≤ |lic|}, i.e., all (|lic| + 1)-tuples made up
of feature sequences that occur as suffix of the feature sequence of some lexical
item. The start symbol S = 〈C, ε, . . . , ε〉 ∈ N , C ∈ F . The production rules P are
defined based on the feature calculus operations merge and move; for Ai, Aj , Ak ∈
N :

1. Ai → Merge(Aj , Ak) if Ai = merge(Aj , Ak)
2. Ai → Move(Aj) if Ai = move(Aj)
3. Ai → l if Ai = features(l), l ∈ Lex,

where X(Y,Z) stands for X � Y and X � Z.

We now turn to implementing DCT as further constraints on MGs, which as
[16] has shown can be implemented as refined sel features iff the constraint is
MSO-definable.

3 Dependent-Down Case is Regular

This section shows that dependent-down case can be formalized as MSO-
constraint, thereby proving that an MG with Dependent Case Theory falls into
the same complexity class as a standard MG: the class of regular tree grammars.

3.1 Defining the MSO-Logic

We define an MSO-logic for derivation trees t = 〈V,�, label〉 as generated by an
MG G. To do so, we define a model structure D = 〈D,F, P 1, P 2〉 containing a
domain D, a set F of functions on D, a set P 1 of first-order predicates, and a
set P 2 of second-order predicates whose domain are tuples of unary first-order
predicates; a signature Σ = 〈FS,PS1,PS2,VS〉 of function symbols FS, first-
order predicate symbols PS1, second-order predicate symbols PS2, and variable
symbols VS; and a signature interpretation Φ, which maps FS → F , PS1 → P 1,
and PS2 → P 2. Our domain D is the set of nodes V in t. P 1 contains the
characteristic functions of � and � such that �↑ : (x, y) → t if x � y, f else;
and �↑: (x, y) → t if x � y, f else; whose symbols are � and �, respectively.
Furthermore, for every label σ in the range of label, P 1 contains a predicate
labeled Labelσ which identifies the nodes that have this label:

(9) Φ(Labelσ) : n → t if label(n) = σ, f else.
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Similarly, P 1 contains for each feature f a predicate labeled Featf identifying
the nodes labeled with lexical items that contain this feature.

(10) Φ(Featf ) : n → t if label(n) = l for some l ∈ Lex, and f ∈ features(l);
f else.

The predicate labeled Occ holds of a branching node m and a non-branching
node n iff m is an occurrence of some feature on the label of n.

(11) Φ(Occ) : (m,n) → t if label(n) = l for some l ∈ Lex, and m is an
occurrence of some feature f in l; f else.

Furthermore, P 1 contains predicates labeled assignsc,i for each inherent case c
in the natural language under discussion and for each integer i between 1 and
the maximal number of positive features on LIs in the range of label.

(12) Φ(assignsc,i) : n → t iff n is a non-branching terminal node labeled with
some l ∈ Lex, and l has at least i positive features, and l’s i-th positive
feature fi is ∈ sel, and l assigns inherent case c via fi; f else.

P 1 and P 2 contain predicates for all possible extensions. For all subsets A ⊆ D,
P 1 contains a predicate A↑ identifying the nodes in A, and for all subsets B ⊆ P 1

of unary first-order predicates, P 2 contains a predicate B↑ identifying the unary
first-order predicates in B.

The function labeled Sliceroot takes a node n that is either labeled with a
lexical item l or projected by a lexical item l, and returns the highest node that
l projects. For c l’s unique category feature:

(13) Φ(Sliceroot) : n → the Merge-node projected by =fk

if label(n) = [ p :: . . . =fk c . . . ];
the Move-node projected by +fk

if label(n) = [ p :: . . . +fk c . . . ];
n if label(n) = [ p :: c . . . ];
undefined else.

For a full definition see [15, p. 61].
Furthermore, for each integer i between 1 and the maximal number of positive

features on LIs in Lex, F contains a function labeled Proji that takes a non-
branching node n and returns the branching node m projected by n’s i-th positive
feature:

(14) Φ(Proji) : n → the Merge/Move-node projected by n’s i-th positive
feature if n is labeled with an LI that has at least i positive features,
undefined else.

It follows that for all nodes n,m, Proj0(n) = n, and Proji+1(n) = m iff m �
Proji(n) and n’s label has at least i + 1 positive features.
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3.2 Defining Shorthand Predicates

Before giving the full MSO-constraint capturing the rules of Dependent Case
Theory, we will introduce some shorthand predicates (inspired by “pseudo-
features” in [14,16]). These are not predicates in the model structure D, but
abbreviations of MSO-formulas that serve no other purpose than to improve
readability.

First, we define three index sets stating the different cases for the natural
language that we model. For example, in Turkish,

(15) a. Inh = {abl,dat, loc}
b. Dep = {acc,dat}
c. Unm = {nom,gen}

Note that dative (dat) is both an inherent and a dependent case. This is to
demonstrate that this formalism can deal with such ambiguities and with sys-
tematic syncretism in general.

We also specify which case is the default case in this language. For Turkish,
def = nom.

Second, for each case c we specify a set compatc of LIs whose exponent is
compatible with this case. In the following, we demonstrate the formalism by
using one element of each index set. Without loss of generality, we choose abl
for inherent cases, acc for dependent cases, and nom for unmarked cases. For
Lex the lexicon of G:

(16) a. compatabl = {x ∈ D : label(x) = l, l ∈ Lex, N ∈ features(l),
exponent(l) is ablative}

b. compatacc = {x ∈ D : label(x) = l, l ∈ Lex, N ∈ features(l),
exponent(l) is accusative}

c. compatnom = {x ∈ D : label(x) = l, l ∈ Lex, N ∈ features(l),
exponent(l) is nominative}

If a leaf in t has an exponent that is syncretic between multiple cases, this leaf will
appear in multiple sets.6 For each leaf, we will define a shortcut predicate stat-
ing the “actual” (syntactic) case it has, out of all the cases it is morphologically
compatible with. We will call these predicates inhabl, depacc, etc. This determi-
nation depends on the leaf’s context: is it selected for by an LI that requires a
certain case? Does it stand in a dependent case licensing configuration? What is
its case assignment domain?, and so on. In order to define these “actual” case
predicates, we first introduce some auxiliary predicates. These predicates hold
of a tuple of nodes iff the formula on the right-hand side of ⇔def evaluates to t.

6 For linguistic arguments in support of this approach, see the feature indeterminacy
problems discussed in [8–10].
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A node x c-commands a node y iff x does not strictly dominate y (this
excludes x ≡ y), and all nodes z that strictly dominate x also stricly dominate
y (this excludes y dominating x):

(17) ccom(x, y) ⇔def ¬x � y ∧ (∀z : z � x → z � y)

A node x is a phase head iff its category feature is either C or Voice or D. (Other
definitions are possible depending on one’s theory of phases.)

(18) phase(x) ⇔def FeatC(x) ∨ FeatVoice(x) ∨ FeatD(x)

A node x is in case assignment domain i if there is a phase head y with category
feature i that c-commands x and there is no phase head z distinct from y that
c-commands x but does not also c-command y.

(19) domaini(x) ⇔def (∃y : phase(y) ∧ Feati(y) ∧ ccom(Sliceroot(y), x)∧
(∀z : (phase(z) ∧ ccom(Sliceroot(z), x)) →

(z ≡ y ∨ ccom(Sliceroot(z), y))))

Two nodes x and y are in the same case assignment domain iff all phase heads
z that c-command one also c-command the other:

(20) samedomain(x, y) ⇔def (∀z : phase(z) →
(ccom(Sliceroot(z), x) ↔ ccom(Sliceroot(z), y)))

We are now ready to define when a leaf has a particular actual inherent case:
A nominal leaf x with potential inherent case c has c as its actual case iff x is
merged by an LI y that selects for c.

(21) For k the maximum number of positive features on LIs in the range of
label:
inhabl(x) ⇔def compatabl

↑(x)∧
(∃m : m � Sliceroot(x)∧

(∃n :
∨

1≤i≤k(Proji(n) ≡ m ∧ assignsabl,i(n))))

Since each inhc for some case c is a pseudonym for a 1-place predicate D →
{t, f} ∈ P 1, we can define a set of these predicates, (22). This then provides us
with the second-order predicate “inh↑”.

(22) inh = {inhi: i ∈ Inh}
A potential dependent-down case is an actual case iff the nominal x has the
required exponent and does not carry inherent case and is c-commanded by
another nominal y in the same case assignment domain that does not have an
actual inherent case. The case assignment domain is specified for each case, here
C for acc.

(23) depacc(x) ⇔def compatacc
↑(x) ∧ domainC(y) ∧ (∀p : inh↑(p) → ¬p(x))∧

(∃y : samedomain(x, y)∧ (∀p : inh↑(p) → ¬p(y))∧
ccom(Sliceroot(y), x))
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Note that depacc contains the second-order predicate inh↑. Strictly speaking,
this is not necessary. We could have expressed (∀p : inh↑(p) → ¬p(x)) as the
conjunction ¬inhabl(x) ∧ ¬inhloc(x) ∧ ¬inhdat(x), iff the natural language we
model contains exactly these inherent cases. As we will see shortly, this holds for
all second-order shortcut predicates. Thus the present characterization of Depen-
dent Case Theory is in fact first-order definable.7 However, we will continue the
second-order notation for readability purposes.

For a dependent-up case, replace ccom(Sliceroot(y), x) with ccom
(Sliceroot(x), y).

We define the set of all shorthand predicates denoting actual dependent case:

(24) dep = {depi : i ∈ Dep}
Potential unmarked cases are licensed as actual cases if the structural con-

ditions for dependent cases are not met. DCT uses assignment rules where the
assignment of accusative takes precedence over the assignment of nominative.
Thus it is excluded that nominative could arise in a structural environment
where accusative is attested. However, when employing a licensing view to DCT,
we not only need to make sure that accusative is licensed only if there is a c-
commander, but also that nominative is licensed only if there is no c-commander.
(For domains with a dependent-down case like CP in ergative languages: abso-
lutive is licensed iff it doesn’t c-command another eligible NP.8 For domains
with both dependent-up and dependent-down cases: both conditions must hold.)
We thus need to treat unmarked cases as Baker’s [2] negative dependent cases,
although for a different reason. For the formalism, this does not matter: we
remain inside MSO-definability.

(25) unmnom(x) ⇔def compatnom
↑(x) ∧ domainC(x)∧

(∀p : (inh↑(p) ∨ dep↑(p)) → ¬p(x))∧
¬(∃y : samedomain(y, x) ∧ ccom(Sliceroot(y), x)∧

(∃q : (dep↑(q) ∨ unm↑(q)) ∧ q(y)))

(26) unm = {unmi : i ∈ Unm}
A potential default case becomes an actual case if the nominal’s potential inher-
ent, dependent, and unmarked cases are all not its actual case.

(27) def(x) ⇔def compatdef
↑(x)∧

(∀p : (inh↑(p) ∨ dep↑(p) ∨ unm↑(p)) → ¬p(x))

7 This is a welcome result. MSO can capture many patterns that we do not expect
to find in the case distribution in natural language. For instance, MSO-logic can
implement modulo-counting, i.e., for a sequence of NPs, the case of the NP depends
on its position in the sequence modulo some integer.

8 This follows the traditional formalization of DCT [23]. More recently, data have
shown that erg–erg–abs patterns are unattested [2,24] and realized as erg–abs–
abs instead. This paper does not aim to contribute to this issue.
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We now have predicates determining for each node n whether n is a nominal LI
carrying a certain syntactic case. The predicates are defined in such a way that
out of inh ∩ dep ∩ unm ∩ {def}, only one of these predicates will be t of n.

3.3 Defining the MSO-constraint

We are now ready to formulate a version of the Case Filter that assures that
every nominal will have a syntactic case. We state the following MSO-constraint
on derivation trees generated by our MG:

(28) ∀x : FeatN(x) → (∃p : (inh↑(p) ∨ dep↑(p) ∨ unm↑(p) ∨ {def}↑(p)) ∧ p(x))

We walk through some scenarios to get an impression of a completeness and
soundness proof for (28) with respect to the algorithm in Fig. 1. (28) is complete
iff every syntactic tree whose cases have been assigned by Fig. 1 fulfills (28). (28)
is sound iff every tree that fulfills (28) will be assigned the same cases by Fig. 1.

The algorithm assigns exactly one case to any NP. It doesn’t assign more
than one case because it exits the algorithm as soon as a case is assigned. It
doesn’t assign no case at all because of its catch-all assignment of default case.
Similarly, (28) doesn’t license more than one syntactic case on any NP due to
the definitions of dependent, unmarked, and default cases ensuring that no case
lower on the case assignment hierarchy in (1) is licensed as well.

It is easy to see that for intransitives, the algorithm will assign an unmarked
case corresponding to the domain the single NP is in, and (28) will only license
this unmarked case on the single NP. For regular transitives, the algorithm will
assign a dependent case to one of the two NPs, and an unmarked case to the
other. (28) will license exactly these cases as well. For transitives that assign an
inherent case to one argument α, the algorithm will assign this inherent case to α
and unmarked case to the other argument (for languages of the Icelandic-type).
(28) will only license this assignment.

Incorrect configurations include dependent case on the single NP argument
of an intransitive. The algorithm will not assign this. (28) will not license this.
Another incorrect configuration is a regular transitive with both arguments
marked with the same type of dependent case (both up or both down). The
algorithm will not assign this. (28) will not license this. Finally, the algorithm
will not license unmarked case on two NPs standing in a c-command relation.
(28) will also not license this, due to the explicit condition on unmarked cases
that there must not be a c-commanding/c-commanded NP in the same case
assignment domain.

3.4 Conclusions

Graf [16] has shown that any constraint that can be defined in MSO logic can be
added to an MG that is strongly equivalent to an MG without this constraint.
In this section, we saw that the distribution of morphological case as defined by
DCT (Sect. 1.2) can be formalized as MSO constraint. Thus it follows that the
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rules of DCT, including one-to-many licensing in the assignment of dependent-
down cases, is not more complex than other constraints commonly imposed onto
MGs.

We now turn to a new question: What is the relationship between the class of
constraints that have an MSO-formalization, to the class of constraints captured
by Move-dependencies? Are they equivalent, like MSO-constraints and Merge-
dependencies, or is one more expressive than the other? Schematically,

(29) Merge ⇔ MSO ?⇔? Move

We take a step towards exploring this question in the next section by attempting
to formalize the rules of Dependent Case Theory as Move-dependencies.

4 Dependent-Down Case as Move is Non-regular

Alternatively to specifying the distribution of cases via MSO-statements about
the configurations these cases can appear in, we treat Case as a feature on lexical
items with a compatible exponent and “check” it against a licensor. This checking
can happen at a distance and corresponds to the deletion of “uninterpretable”
features under Agree in early Minimalist literature; [6], et seq., i.a. We explore
the option of taking cases to be licensee features -f on the nominal that carries
case.

For dependent-down case, we take the c-commanding nominal as licensor. In
a clause with a transitive verb, accusative case is assigned to the object in the
presence of the c-commanding subject. This is schematized in (30).

(30) Merge

Move

[ Masha :: +Acc N -Nom ]

. . .

Merge

[ Misha-ny :: N -Acc ] . . .

. . .

4.1 Generalizing the Movement Type

Our definition of the distribution of Move-nodes and the application of the oper-
ation move in Definition 2 does not work for (30). Applying move1 to the feature
sequence on the child of Move, 〈+Acc N -Nom〉, is undefined. This problem arises
because the only kind of movement defined in Sect. 2 was raising movement: the
Move node must dominate the LI x carrying the negative feature; thereby the
LI y projecting this Move node must have selected for the subtree containing x.
However, in (30), this is not the case. The projecting LI Masha does not select
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for anything; rather, it connects to the subtree containing Misha-ny by being
selected.

This mismatch arises because the movement in (30) is not raising. Graf [15]
has shown that MGs can handle other (generalized) movement types besides rais-
ing, including lowering and sideward movement, different sizes of the moved con-
stituent (head, phrase, pied-piped phrase), and different linearizations (covert,
to the left, to the right). In order to define these movement types, he recognizes
that the requirement that a Move-node m can be associated to a feature -f on
an LI l only if m dominates l, is a special case of an MSO-definable relation
between m and l.

(31) Rraising(m, l) iff m � l

Other movement types may be defined in terms of different relations. The move-
ment type dd employed by dependent-down case licensing uses the relation Rdd

between a Move-node m associated with feature -f on a lexical item l, (32), and
the movement type du for dependent-up case licensing the relation Rdu in (33):

(32) Rdd(m, l) iff ccom(Sliceroot(m), l)
(33) Rdu(m, l) iff ccom(Sliceroot(l),m)

Like with raising, it holds that every -f must have a Move-node as occurrence,
and that every Move-node can only be an occurrence of one negative -f feature.
Also like raising, we impose a minimality requirement: the Move-node that is an
occurrence of a feature -f must be the closest possible Move-node in terms of
Rdd. Additionally, dd movement is bounded by case assignment domains. Both
the Move-node and the LI with -f must be in the same domain, and this domain
must be of a particular type.

After [15], we define a constraint on which Move-nodes can be associated to
which -Acc features: For a non-branching node l labeled with -Acc and a Move-
node m, m is an occurrence of l iff they stand in relation Rdd and are in the
same case assignment domain which is a CP, and there is no other non-branching
node x with either -Acc or +Acc that is closer in terms of Rdd:

(34) ∀m : ∀l : (LabelMove(m) ∧ Feat-Acc(l)) →
(Occ(m, l) ↔ (Rdd(m, l) ∧ domainC(m) ∧ samedomain(m, l)∧

(∀x : (Feat-Acc(x) ∨ Feat+Acc(x)) →
(Rdd(x, l) → Rdd(x,m)))))

4.2 Generating Non-regular Tree Languages

Recall the two configurations for dependent-down case assignment discussed in
Sect. 1.2. In the 1:n-configuration, a single nominal n licenses case on multiple
accusative-marked lexical items. In our system above, this corresponds to n
projecting multiple Move-nodes, which each stand in a Rdd relation with one of
the case-marked LIs.
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However, (34) does not define which Move-node is an occurrence of which
-Acc. This ambiguity is illustrated in (35).

(35) . . .

Move[Acc]
= Sliceroot(Masha)

Move[Acc]

[ Masha :: +Acc +Acc N ]

. . .

. . .

[ Misha-ny :: N -Acc ] . . .

. . .

[ djie-ni :: N -Acc ] . . .

This is not a problem per se as nothing in the grammar depends on which Move-
node associates with which LI. I will argue that any derivation will succeed as
long as there exists a bijection.

However, this implies that the grammar allows a single licensor to enter into
arbitrarily many licensing relationships. In this section, we have silently been
assuming that the lexicon contains multiple versions of every non-inherently
case-marked nominal: one with +Acc and one without. However, if a nominal can
carry arbitrarily many +Acc features, the lexicon will grow from finite to infinite.
Since the non-terminals in our tree grammar are made up of feature sequences on
lexical items, the grammar will no longer be regular. This constitutes a significant
increase in complexity of our formalism, which we would like to avoid in the
absence good reason to adopt it. The proof is straight-forward, for instance
with the pumping lemma for regular tree languages [7, Sect. 1.2]. Section 5 will
propose an amendment to the formalism that allows us to remain in the realm
of regularity.

4.3 Conclusions

In this section, we have seen that an MG that formalizes dependent-down case
as lic-features checked by the c-commanding nominal does not generate regular
derivation tree languages. This is due to there being no restriction on the number
of instances of dependent-down case that a single nominal can license, and to the
requirement in our grammar of a one-to-one relationship between Move-nodes
projected by +Acc features and -Acc features (the SMC). Regular languages
cannot count to arbitrarily large numbers.

However, in Sect. 3 I showed that in general a tree language with an equiva-
lent distribution of accusative-marked nominals as L is regular and expressible
by MGs by refining its sel-features via MSO-constraints. It follows that a for-
malization with case as lic-features is not equivalent to a formalization with case
as sel-features.

In the next section, we will explore a possibility to use lic-features while
not increasing the complexity of the derived tree language beyond regular tree
languages. We will achieve this by suspending the SMC for selected features.
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5 Selectively Suspending the SMC

The formalization in Sect. 4 increases the complexity of MGs in two ways. First,
for dependent-down case licensing in 1:n-configurations, the licensor carries an
+Acc feature for every licensing relationship. This results in unboundedly large
lexical items and thereby an infinite lexicon. The second problem is the require-
ment that the number of +Acc features must match the number of Move-nodes
projected by these +Acc features, and also the number of -Acc features on the
licensees resp. the number of licensees. This requires our tree grammar to count,
which is not possible for a regular tree grammar. This stands in clear contrast
to the results of Sect. 3.

5.1 Persistent Licensor Features

We can dissociate the number of +Acc features on the licensor from the number of
projected Move-nodes by allowing a single +Acc to project multiple Move-nodes.
Taking inspiration from Stabler’s [31] persistent licensee features, we allow the
licensor feature +Acc to be persistent. We add the rule in (37) in addition to the
existing move1-rule from Definition 1,

(36)
〈+Accf2 · · · fk, φ1, . . . , φi−1, -Accg2 · · · gl, φi+1, . . . φm〉

move2〈+Accf2 · · · fk, φ1, . . . , φi−1, g2 · · · gl, φi+1, . . . φm〉
We also amend the definition of MGs from Definition 3 to contain the pro-

duction rule in (37):

(37) Ai → Move(Aj) if Ai = move2(Aj)

This will restrict the necessary lexical items to 2 per noun.9 We have now solved
the first of our two problems: the number of +Acc features no longer needs to
9 We could even reduce this to a single lexical item per noun. This is irrelevant for the

formalism because the blow-up to the lexicon is constant and thereby negligible, but
it does have linguistic significance. Given that the phonological content of a poten-
tial licensor virtually never changes with respect to whether it is a licensor or not
(J. Bobaljik, p.c.), we would not like our formalism to employ accidental homophony
to capture this because doing so would allow us to derive non-homophonous pairs
of licensors, thereby overgenerating with respect to the linguistic data. We have two
options to capture this systematic syncretism. The first one is to assume a genera-
tive lexicon that contains entries of the one type (either licensors or not) and derives
entries of the second type. The second option is to introduce a rule that deletes +Acc
from a nominal and applies optionally, (i), and to add the scheme for production
rules in (ii) to our MG.

(i)
〈+Acc f2 · · · fi N fj · · · fk, φ1, . . . , φn〉

del〈f2 · · · fi N fj · · · fk, φ1, . . . , φn〉
(ii) Ai → Aj if Ai = del(Aj); Ai, Aj ∈ N .
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match the number of projected Move-nodes and of -Acc features in the deriva-
tion. However, the second problem remains: the number of Move-nodes needs to
match the number of -Acc features. In Sect. 5.2, I propose a solution to both
problems by keeping the number of -Acc features finite.

5.2 Suspending the SMC

The solution lies in abandoning the requirement that each Move-node can only
associate with one -Acc feature. If a single Move-node could associate with
unboundedly many -Acc features, we would lose the one-to-one requirement
that cannot be expressed by regular tree grammars.

This requirement is known as the SMC and can be paraphrased as “Every
Move-node can be associated with one negative feature.” What I propose is
to change this definition to: “Every Move-node that is not projected by +Acc is
associated with exactly one negative feature.” The association of one Move-node
to arbitrarily many -Acc features allows the formalism to not distinguish between
the exact number of -Acc features and Move-nodes, but to only differentiate
between two states: “at least one -Acc feature needs checking” and “no -Acc
feature needs checking”. We alter the functions merge1 and move1 defined above
to implement this. -Acc features are deleted when they do not contribute to the
distinction between these two states, i.e., when there already is another -Acc
awaiting association with a Move-node.

We define the function merge2 that reduces two -Acc to one. For x ∈ sel,
fj1 , gj2 , hj3 , ij4 ∈ Feat, 0 ≤ j1 ≤ k, 0 ≤ j2 ≤ l, 0 ≤ j3 ≤ m, 0 ≤ j4 ≤ n; and
Φ,X, Ψ,Ω ∈ (Feat∗)∗:

(38)
〈=xf2 · · · fk, Φ, -Acc g2 · · · gl, X〉 〈xh2 · · · hm, Ψ, -Acc i2 · · · in, Ω〉

merge2〈f2 · · · fk, Φ, -Acc g2 · · · gl, X, h2 · · · hm, Ψ, i2 · · · in, Ω〉

We alter the definition of merge1 in Definition 1 on p. 10, repeated as (39),
to apply subordinately to (38), i.e., only if it is not the case that for some
i ≤ l, j ≤ n, φi and ψj start with -Acc:

(39)
〈=xf2 · · · fk, φ1, . . . , φl〉 〈xg2 · · · gm, ψ1, . . . , ψn〉 merge1〈f2 · · · fk, φ1, . . . , φl, g2 · · · gm, ψ1, . . . , ψn〉

We define the function move3 as in (40) to avoid introduction of a second initial
-Acc feature. For x, fj1 , gj2 , hj3 ∈ Feat; 0 ≤ j1 ≤ k, 0 ≤ j2 ≤ l, 0 ≤ j3 ≤ m;
Φ,X, Ψ ∈ (Feat∗)∗; and -x -Acc g3 · · · gl preceding or following -Acc h2 · · · hm:

(40)
〈+xf2 · · · fk, Φ, -x -Acc g3 · · · gl,X,-Acc h2 · · · hm, Ψ〉

move3〈f2 · · · fk, Φ, g3 · · · gl,X,-Acc h2 · · · hm, Ψ〉
The rule move1 from Definition 2 on p. 10, repeated in (41), applies only when
it is not the case that g2=-Acc and for some j, 1 ≤ j ≤ n, the first element in
φj is -Acc:
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(41)
〈+xf2 · · · fk, φ1, . . . , φi−1, -xg2 · · · gl, φi+1, . . . , φn〉

move1〈f2 · · · fk, φ1, . . . , φi−1, g2 · · · gl, φi+1, . . . φn〉
A Minimalist Grammar licensing dependent-down case with licensor features

without increasing the complexity of its derivation tree language beyond regu-
larity, is then defined as follows:

Definition 4 (MG, licensing dependent-down case). An MG G =
〈N,T, S, P 〉 is a regular tree grammar with T = Lex∪{Merge,Move}. The non-
terminals N are tuples of sequences of features occurring in Lex, N ⊂ (Feat+)+,
namely N = {〈s0, . . . , s|lic|〉 : si ∈ {β : αβ = features(l), l ∈ Lex}, 0 ≤ i ≤ |lic|},
i.e., all (|lic| + 1)-tuples made up of feature sequences that occur as suffix of the
feature sequence of some lexical item. The start symbol S = 〈C, ε, . . . , ε〉 ∈ N ,
C ∈ F . The production rules P are defined based on the feature calculus oper-
ations merge1,merge2,move1,move3 as defined in (39), (38), (41), and (40),
respectively. For Ai, Aj , Ak ∈ N :

1. Ai → Merge(Aj , Ak) if Ai = merge1(Aj , Ak) or Ai = merge2(Aj , Ak)
2. Ai → Move(Aj) if Ai = move1(Aj) or Ai = move3(Aj)
3. Ai → l if Ai = features(l), l ∈ Lex.

The new rules merge2 and move3 do not increase the weak nor the strong gen-
erative capacity of MGs. The same string language and phrase structure lan-
guages are derivable by MGs with MSO-definable constraints, as demonstrated
in Sect. 3. This is so because the present movement is not actual movement:
no phonological or semantic features are displaced. It serves merely the feature
calculus operations determining the distribution of case morphology. The aim of
this paper has been to show that this can be achieved with refined sel-features
as well as with SMC-liberated lic-features.

6 Conclusions

I have shown that dependent-down cases pose a problem for MGs because they
allow one-to-many licensing relationships involving one licensor and arbitrar-
ily many licensees. MGs with a one-to-one association between licensor nodes
and licensee features (i.e., with the SMC) would need to generate non-regular
derivation tree languages in order to ensure that the number of licensor nodes
and licensee features match.

However, the high-level rules for dependent-down case assignment are well
within the range of regular tree languages. I have shown that this is the case
by providing a monadic second-order formula, which is known to be imposable
onto an MG by refining its Merge-features [16]. We can thus see an asymme-
try between the operations Merge and Move: while these constraints can be
expressed as refined Merge-features, they cannot be expressed via Move-features
while staying in the same complexity class.

I have argued that it is possible to realize dependent-down case as Move-
features if the SMC is suspended. This amounts to adding new rules for merge
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and move that will discard a newly activated -Acc feature if there is already
an active -Acc in the derivation. In this way, we can formalize a single licensor
node being able to license arbitrarily many licensee features.

We have motivation to abandon the SMC for case licensing because it affects
neither word order at the PF interface nor scope at the LF interface. However,
this does not extend to other instances of one-to-many licensing dependencies
in natural languages: quantifier raising and multiple wh-fronting affect LF and
PF respectively and so cannot be licensed in this way. Note that Gärtner and
Michaelis’s [12,13] approach of wh-clustering requires the wh-elements to stand
in pairwise c-command relationships. This is parallel to the “daisy-chain” con-
figuration of dependent-down case licensing, and does not raise an issue in either
construction. The present paper makes an empirical prediction about multiple
wh-fronting: On the assumptions in [12,13] about wh-fronting, for constructions
in which not all fronted wh-words stand in a c-command relation to another
fronted wh-word (in their respective base positions), the PF-order of moved
wh-phrases will be either completely free (arbitrary) or completely fixed (deter-
mined by post-syntactic linearization rules), but is crucially not determined in
the derivation.

I leave an empirical investigation of this phenomenon, as well as of QR and
the attestation of unbounded 1:n dependent-down case assignment for future
research.
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Locality from Uyghur Backness Harmony

Connor Mayer(B) and Travis Major

UCLA, Los Angeles, CA 90095, USA
connormayer@ucla.edu

Abstract. In this paper we describe the process of backness harmony
in Uyghur, where suffix forms are determined first from the backness of
certain vowels in the stem, or, if no such vowels are present, from the
backness of dorsals in the stem. We show that this pattern cannot be
captured by a tier-based strictly local (TSL) language. This is problem-
atic for the weak subregular hypothesis, which claims that all segmental
phonological stringsets are TSL languages. Next, we consider an alterna-
tive phonological analysis that is compatible with a TSL representation,
but empirically unsupported. Finally, we consider the possibility that
Uyghur backness harmony might be a lexicalized pattern, and find some
suggestive evidence in support of this. This alternative appears to be
the most likely way in which Uyghur backness harmony might, in prin-
ciple, turn out to be compatible with the hypothesis that TSL languages
provide an upper bound on phonological learnability.

Keywords: Uyghur · Vowel harmony · Backness harmony
Subregular hierarchy · Subregular hypothesis · Formal complexity
Phonology · TSL

1 Introduction

Researchers in computational linguistics propose that insights from theories of
computation can guide how we study linguistic systems and what predictions
we make about the structures of natural language (e.g. [21]). Hypothesizing that
some aspect of language is bound by a particular computational structure has
the potential to capture the wide variety of patterns seen across languages, while
simultaneously constraining the types of patterns we should expect.

It is commonly accepted that phonological processes are regular: that is, they
can be computed by regular grammars/automata (e.g. [28,29]). This applies to
both phonological stringsets (the properties of surface strings that may be char-
acterized by phonotactic and markedness constraints) and phonological maps
(the relationship between underlying and surface forms).

A stronger claim is that all phonological stringsets are tier-based strictly local
(TSL) languages, which are subregular. That is, valid stringsets can be expressed
as prohibitions on substrings, but these substrings may belong to “tiers” which
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Foret et al. (Eds.): FG 2018, LNCS 10950, pp. 62–83, 2018.
https://doi.org/10.1007/978-3-662-57784-4_4
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contain only some subset of the segments in a language [23]. This is referred to
as the weak subregular hypothesis [21].1

There are several existing counterexamples against TSL as an upper bound
for phonological complexity. Some suprasegmental patterns have been identified
as being outside of TSL, such as culminative quantity-sensitive stress rules [4]
and circumambient patterns like unbounded tone plateauing [25]. A handful
of segmental patterns that cannot be generated by single TSL grammars are
described by McMullin [34]. McMullin claims that some of these exceptions can
be captured using the intersection of multiple TSL grammars. However, the more
complex patterns require a more powerful system, such as using an Optimality
Theory account with constraints based on violations of TSL grammars. de Santo
and Graf have formalized the intersection of multiple TSL languages as multi-tier
strictly local (MTSL) languages, and proposed an extension of TSL, structure-
sensitive TSL (SS-TSL), that allows the more problematic patterns described
by McMullin to be captured [13]. Graf has also defined an extension of strictly
piecewise (SP) grammars, interval-based SP (IBSP) grammars, which introduces
domain restrictions to SP grammars and allows the problematic suprasegmental
patterns described above to be captured [18].

This paper provides new data on a phonological process that is beyond the
capacity of TSL grammars, providing a counterexample to the weak subreg-
ular hypothesis: backness harmony in Uyghur. This pattern is of interest for
several reasons. First, it is a segmental process that cannot be generated by
TSL grammars. These patterns are less common than suprasegmental patterns
[25]. Furthermore, this pattern is significantly more complex than any segmental
pattern previously discussed: Uyghur backness harmony cannot be captured by
any of the classes that have been investigated in subregular phonology, with the
exception of the overly powerful star-free languages. This makes it a particularly
difficult case for anything but the weakest versions of the subregular hypothesis.

The paper is organized as follows. Section 2 will give a brief description of
the properties of TSL languages. Section 3 will outline the characterization of
backness harmony in Uyghur presented in the literature, and Sect. 4 will show
that this pattern cannot be generated by grammars in any of the classes that
have been previously investigated in subregular phonology. We briefly sketch an
enhancement similar to SS-TSL that is able to capture this pattern, but leave
its elaboration and implications for future research.

Given this data, it is either the case that previously considered subregular
languages are insufficient to capture all phonological stringsets, or that another
analysis for this phenomenon must be adopted. In Sect. 5 we describe an alterna-
tive characterization of Uyghur backness harmony that is compatible with a TSL
analysis. We then present original experimental data suggesting that this analy-
sis lacks empirical support. With this result in mind, Sect. 6 shows that Uyghur

1 The strong subregular hypothesis claims that phonological stringsets are either
strictly local (SL) or strictly piecewise (SP) languages [20]. Some autosegmental
processes like stress have been claimed to be fully regular (e.g. [17]), though there is
debate on whether alternative analyses are possible [20].
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backness harmony exhibits many of the characteristics that are frequently taken
as evidence of a lexicalized pattern. We elaborate on the implications of this
in Sect. 7. If the description of Uyghur backness harmony in the literature is
correct, then the weak subregular hypothesis is false. If this conclusion is to be
avoided, then the most likely alternative to this description appears to be that
the pattern is in fact lexicalized.

2 Tier-Based Strictly Local Languages

Tier-based strictly local languages fall within the subregular hierarchy, shown
in Fig. 1. Researchers have identified a variety of subregular language classes,
and established their mathematical properties and the relationships between
them (e.g. [14,38,44,45]). We will not go into detail here about the subregular
hierarchy in general, but many excellent descriptions and applications can be
found elsewhere (e.g. [21,41,42,48,49]).

Fig. 1. The subregular hierarchy. Classes we discuss in this section are circled.

The class of TSL languages properly contains the class of strictly local (SL)
languages and is properly contained within the class of star-free languages. It is
incomparable with other subregular classes [23]. We first describe the properties
of SL languages, and then examine how TSL languages expand on these.

Σ represents an alphabet. We will use the alphabet Σ = {a, b, c} throughout
the examples in this section. The symbols � and � are initial and final markers
respectively, which are not in Σ. We will occasionally omit these for readability.
The k-factors of a string w ∈ {�} · Σ∗ · {�} are defined as all substrings of w
that are of length k, where A ·B = {ab | a ∈ A, b ∈ B}. A string u is a substring
of a string w if w = xuy for some strings x, y ∈ Σ∗. We can define a function
Fk(w) that returns the set of k-factors of w:

Fk(w) = {u | u is a k-factor of w} (1)

For example, F2(�ababac�) = {�a, ab, ba, ac, c�}.
A strictly k-local grammar consists of a finite set of k-factors taken from

({�, �} ∪ Σ)k, which describe illicit substrings.2 A string w ∈ {�} · Σ∗ · {�}
is well formed with respect to a k-SL grammar G iff Fk(w) ∩ G = ∅, i.e. if it

2 These can equivalently be formulated as licit substrings.
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contains no illicit substrings. A language L is SL iff there is some k ∈ N such
that L can be generated by a strictly k-local grammar.

For example, suppose we want to define a language that prohibits all strings in
which b is immediately followed by c. We could define a strictly 2-local grammar
G = {bc}, which rules out strings such as w1 = ababca, because F2(w1) ∩ G =
{bc}, but permits strings such as w2 = abacba, because F2(w2) ∩ G = ∅.

TSL grammars differ from SL grammars in that they are defined over a tier
T ⊆ Σ [23]. Only the segments on this tier are considered when checking for
illicit k-factors. Formally, the representation of a string on a tier is generated by
means of an erasing, or projection, function ET , which removes symbols from
the string that are not in T :

ET (σ1 · · · σn) = u1 · · · un (2)

where ui = σi iff σi ∈ T and ui = λ (the empty string) otherwise. A k-TSL
grammar consists of a set of k-factors taken from ({�, �} ∪ T )k. A string w ∈
{�} · Σ∗ · {�} is well formed with regard to a TSL grammar G iff Fk(ET (w)) ∩
G = ∅, i.e. if it contains no illicit substrings when projected on T . A language
L is TSL iff it can be generated by a strictly k-local grammar over T for some
k ∈ N.

Suppose we want to define a language where words cannot contain both b
and c. SL grammars are unable to capture this. We may define a strictly k-local
grammar G that contains the k-factor bak−2c, where ak−2 represents the symbol
a repeated k − 2 times. This factor will rule out words like abak−2ca, but not
words like abak−1ca, because the window of length k over which the k-factors
operate is too small to see both the b and the c. Increasing k will not help, since
it is always possible to increase the number of intervening a’s. This is the result
of a general property of SL languages [42]:

Theorem 1 (Suffix substitution closure). A language L is SL iff there is
some k ∈ N such that if there is a string x of length k − 1 and strings u1, t1, u2,
and t2, such that u1xt1 ∈ L and u2xt2 ∈ L then u1xt2 ∈ L.

In contrast, it is trivial for a TSL grammar to capture this by letting T =
{b, c} and G = {bc, cb}. Under this formulation, the number of intervening a’s is
irrelevant, because they are excluded from T .

3 Uyghur Backness Harmony

Uyghur is a southeastern Turkic language with SOV word order. It has roughly
10 million speakers in the Xinjiang Uyghur Autonomous Region in the People’s
Republic of China and neighboring regions such as Kazakhstan and Kyrgyzstan.
It has a rich system of vowel and consonant harmony along several dimensions.
We focus here on backness harmony, which requires suffix forms to agree in
backness with vowels and certain consonants within a stem.

The Uyghur vowels are shown in Table 1. The vowels behave as front or back
as specified in the table, with the exception of /i/ and /e/, which are transparent
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Table 1. The Uyghur vowel system. Harmonizing vowels are in bold.

Front Back

Unrounded Round Unrounded Round

High i y u

Mid e ø o

Low æ a

Table 2. The harmonizing Uyghur dorsal consonants

Front Back

Voiceless k q

Voiced g K

to harmony processes [30,47].3 We refer to /i/ and /e/ as transparent vowels,
and the remainder of the vowels as harmonizing vowels. A subset of the dorsal
consonants, shown in Table 2, also participate in backness harmony, with velars
patterning with front vowels, and uvulars patterning with back vowels.4

Native Uyghur stems tend to be harmonious with respect to backness. This
is not an absolute requirement for stems, however, and disharmonious stems are
especially common in loanwords (e.g. /pæmidur/ ‘tomato’). Such stems play a
particularly interesting role in harmony processes.

The segments of a large class of Uyghur suffixes are underlyingly unspecified
for backness. These suffixes take on the back feature of the stems they attach
to. We will use the locative case marker /-DA/ as a representative example
throughout the paper, but similar patterns occur with many other suffixes.

The examples in Table 3 provide a representative characterization of the pat-
tern. Each example has a corresponding description of the particular type of
harmony it illustrates. We refer back to these examples throughout the paper.

The voicing alternation of the initial segment in the suffix is not important,
but note crucially that the vowel changes from front to back depending on the
stem. The process for determining the backness value of the suffix is as follows:

1. Match the backness of the final harmonizing vowel in the stem. In (4) the
stem is treated as a back stem because the final harmonizing vowel /o/ is
back, and in (3) the stem is treated as a front stem even though it contains
both front and back vowels because the final harmonizing vowel /æ/ is front.

2. If the stem has no harmonizing vowels, find the final dorsal consonant in the
stem and match its backness. Note that in (5), the stem is treated as front
even though it has only transparent vowels because the stem contains /g/,
while in (6) the stem is treated as back because of its uvulars.

3 Note that these vowels are the only ones in the system that have no counterparts
differing only in backness. Because /e/ only occurs in loanwords and as the result of
certain phonological processes, we focus primarily on /i/ throughout the paper.

4 The velar sounds /x/ and /N/ do not harmonize.
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Table 3. Examples of Uyghur backness harmony. The alternating suffix is indicated
in bold, and the harmony triggers are underlined.

Table 4. Examples of stems with arbitrary backness specification. The alternating
suffix is indicated in bold.

Harmonizing vowels always take precedence over harmonizing dorsals, as (7)
and (8) show. In these examples the harmonizing vowel determines the form
of the suffix, even though a dorsal with the opposite backness intervenes. The
process of only falling back on consonants to determine stem backness when
insufficient information from vowels is available is the cause of the difficulties for
TSL, as we will see in the next section.

Words with no harmonizing vowels or dorsals are arbitrarily specified for
backness.5 This is shown in Table 4. Such stems are theoretically problematic,
but we will set them aside for now and return to them in Sect. 6.

4 The Formal Complexity of Uyghur Backness Harmony

In this section we focus on the pattern involving harmonizing vowels and dor-
sals described above. Because the actual segmental content is not of crucial
5 There is a statistical tendency for such stems to be treated as back.
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importance, we use a more abstract notation to simplify the specification of
the grammars. Vf and Vb refer to the sets of front and back harmonizing stem
vowels.

Vf = {y, ø,æ} (11)

Vb = {u, o, a} (12)

Cf and Cb refer to the sets of front and back harmonizing dorsal stem consonants.

Cf = {k, g} (13)

Cb = {q, K} (14)

We use the symbols Sf and Sb to refer to the sets of front and back suffix forms.
These symbols comprise an alphabet Σh = {Vf , Vb, Cf , Cb, Sf , Sb}. We define

a homomorphic mapping function h : Σ∗ �→ Σ∗
h that converts strings from the

full Uyghur alphabet to the notation described above (i.e. it maps stem symbols
individually according to the definitions in (11) to (14), entire suffixes to Sf or
Sb, and all other sounds to the empty string λ).

Uyghur backness harmony can be characterized succinctly with the following
regular expression, which picks out licit strings. The class of regular languages
is closed under homomorphism.

(Σ∗
hVfVb

∗
Sf )|(Σ∗

hVbVf
∗
Sb)|((Vf |Vb)

∗
CfC∗

fSf )|((Vf |Vb)
∗
CbC

∗
b Sb) (15)

Thus it is clear that this pattern is at most regular.

4.1 Challenges for TSL

In this section we will show that Uyghur backness harmony as described in (15)
cannot be captured using TSL languages, but first we must comment on our
notation. Although the set of regular languages is closed under relabeling, the
set of SL (and hence TSL) languages is not. For example, the language (ab)∗

is SL, but its image under the relabeling {a �→ c, b �→ c}, (cc)∗, is not SL. To
avoid an increase in generative capacity, we apply this relabeling to the grammar
rather than the language. In other words, the relabeling is applied to the k-factors
defined in the grammar, and the resulting grammar filters out candidate strings
in the image of that relabeling. This provably results in no increase in generative
capacity so long as the mapping is many-to-one, as it is here [1].

To deal with the vowel component, we can define a grammar over the tier

Tv = Vf ∪ Vb ∪ Sf ∪ Sb (16)

containing the following illicit 2-factors:

VfSb (17)

VbSf (18)
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These factors rule out forms like *[aKinæ-da] (cf. (3)) and *[qoichi-dæ] (cf. (4)).
Harmony with dorsals can be captured by defining a grammar over the tier

Tc = Cf ∪ Cb ∪ Sf ∪ Sb (19)

containing the following illicit 2-factors:

CfSb (20)

CbSf (21)

These factors rule out forms like *[gezit-ta] (cf. (5)) and *[qirKiz-dæ] (cf. (6)).
Thus 2-TSL grammars can capture the vowel and consonant patterns in isolation.

The difficulty arises when combining these two patterns into a single TSL
grammar. Because harmonizing dorsal and vowel information must be considered
simultaneously, we must define a grammar over a tier that contains both the
relevant dorsals and vowels:

T = Tv ∪ Tc (22)

The grammar over T must be able to look to the beginning of the string to
check for the presence of harmonizing vowels. We extend T to contain � and
use C = Cf ∪ Cb for the sake of brevity. Suppose we define k-factors over T for
some fixed k of the following form:

VbC
k−2Sf (23)

VfCk−2Sb (24)

� Ck−3CbSf (25)

� Ck−3CfSb (26)

(23) and (24) try to capture harmony with vowels, while (25) and (26) try to
capture cases with only harmonizing dorsals. These cannot work for all possible
forms. Consider the following word on T :

w = VbC
k−1
f Sf (27)

This word, which has a mismatch between the final vowel and suffix form, will
be erroneously included because the number of post-vowel dorsal consonants is
too large for the k-factors to see both the vowel and suffix form at the same
time. Checking for the absence of harmonizing vowels is bounded by k under
suffix substitution closure, and therefore a TSL grammar over a tier containing
both harmonizing dorsals and vowels cannot capture this pattern for arbitrary
values of k, placing it outside of TSL.

Another possibility for capturing this pattern is to use the intersection of
the TSL languages on Tv and Tc defined in (16)–(18) and (19)–(21) respectively.
The class of TSL languages is not closed under intersection, and the resulting
language falls in the class of multi-tier strictly local languages (MTSL), which
properly contains the class of TSL languages [13]. Even this more powerful for-
malism cannot capture this pattern. The difficulty arises from the fact that



70 C. Mayer and T. Major

violations on Tc should be ignored unless neither Vf nor Vb appear in Tv. Con-
sider again examples (7) and (8), which we repeat in Table 5 along with their
tier-based representations.

Table 5. Examples of Uyghur backness harmony over intervening, conflicting dorsals.
The alternating suffix is indicated in bold, and the harmony triggers are underlined.

Violations on one tier cannot be overlooked given the contents of another, so
this grammar rules both (28) and (29) as illicit because they are ill-formed on
Tc. It would rule them ill-formed on Tv if suffixes of the opposite backness were
used. Thus Uyghur backness harmony is also not MTSL.

4.2 Challenges for Other Subregular Languages

The previous section showed that neither TSL nor MTSL grammars can capture
the pattern in (15). We focused on these classes because they have received the
most consideration as possible subregular upper bounds for phonotactic com-
plexity. In this section we will sketch the arguments that the other subregular
classes of languages that have been applied to phonology, including more expres-
sive extensions of TSL, do not contain this pattern. We do not provide formal
definitions of these languages here, but refer the reader to previous work.

Uyghur Backness Harmony is Not SS-TSL or SS-MTSL. Structure sen-
sitive tier-based strictly local (SS-TSL) languages generalize the tier-projection
process used in TSL [13]. TSL uses a 1-Input Strictly Local (1-ISL) projection,
meaning that the projection function considers each segment in isolation (i.e.
whether that segment is a member of T ) [10]. SS-TSL generalizes this projection
to a k-ISL projection, which means the projection function can consider a win-
dow of size k around the target segment. For example, we may define a SS-TSL
grammar that will project a segment a to a tier only when it is immediately
followed by segment b, but not otherwise. Structure sensitive multi-tier strictly
local languages (SS-MTSL) are the intersection of multiple SS-TSL languages.

Intuitively, one might try to capture the Uyghur pattern by projecting har-
monizing dorsals only when they are not preceded by a harmonizing vowel. It
is easy to show using the suffix substitution closure property discussed at the
end of Sect. 2 that cannot work for all forms. Assume a 2-SS-TSL grammar that
includes the illicit 2-factor CbSf . Assume also that the projection function is
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k-ISL for some k, with the target segment falling into the final slot in the win-
dow (i.e. the context we consider is the target segment plus the preceding k − 1
segments). The string VfCk

b Sf will be excluded from this language even though
it is a valid Uyghur word because the last of the k occurrences of Cb will be
projected onto the tier. SS-MTSL fails for the same reason.

Uyghur Backness Harmony is Not PT or SP. Piecewise testable (PT)
grammars are an extension of strictly piecewise (SP) grammars. SP grammars
are similar to SL grammars but prohibit subsequences (i.e. precedence relations
between segments) rather than substrings [45]. PT languages are the closure
of SP languages under the Boolean operators ∧ and ¬ [41]. Informally, these
languages extend SP with the ability to require some subsequence be present in
a string.

Even the basic vowel harmony pattern cannot be captured by a PT language.
The intuition behind this is that the backness of suffixes is determined by the
immediately preceding harmonizing vowel, but PT languages cannot precisely
capture the order in which vowels occur. For example, VfVbSb and VbVfSb both
contain the subsequences VfSb and VbSb, but the first is a legal word while the
second is not. We can show this more formally using the following theorem [41]:

Theorem 2 (k-Subsequence Invariance). A language L is Piecewise
Testable iff there is some k ∈ N such that for all strings x and y, if x and
y contain the same set of subsequences of length k or less, then either x ∈ L and
y ∈ L or x 
∈ L and y 
∈ L.

Consider the following pair of words for some k ∈ N:

w1 = (VfVb)kSb (30)

w2 = (VbVf )kSb (31)

These words contain the same subsequences of length k or less,6 but w1 is a
valid word while w2 is not. Thus even the simplest subcase of Uyghur backness
harmony is not PT, and since PT properly contains SP, it is also not SP.

Uyghur Backness Harmony is Not LTT or LT. Locally threshold testable
(LTT) grammars are an extension of locally testable (LT) grammars. LT lan-
guages are the closure of the SL languages under the Boolean operators ∧ and ¬
[41,42]. Informally, these languages extend SL with the ability to require some
element be present in a string. LTT languages are the closure of LT languages
under the first order logic operators ∀ and ∃, which quantify over position indices
[41,42]. Indices can be compared for equality and successorship. Informally, this

6 This can be shown by induction: both words contain the same subsequences when
k = 1, and the subsequences added with each increase in k will be the k-subsequences
generated by prepending Vf or Vb to all subsequences of length k − 1.
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extension allows LTT languages to count the number of occurrences of each
k-factor up to a certain threshold.

It is simple to show that Uyghur backness harmony as described in (15) is
outside of LTT by appealing to the following theorem [41]:

Theorem 3 (Local Threshold Test Invariance). A language L is Locally
Threshold Testable iff there is some k ∈ N and some threshold t ∈ N such that,
for all strings x and y, if for any k-factor w, x and y contain the same number
of occurrences of w or have at least t occurrences, then either x ∈ L and y ∈ L
or x 
∈ L and y 
∈ L.

Consider the following two words for some k ∈ N:

w1 = (Cf )k−1Vb(Cf )k−1Vf (Cf )k−1Sf (32)

w2 = (Cf )k−1Vf (Cf )k−1Vb(Cf )k−1Sf (33)

Both have the same number of occurrences of every k-factor, but w1 is a valid
Uyghur word while w2 is not. Therefore Uyghur backness harmony is not LTT,
and since LTT properly contains LT, it is also not LT.

Uyghur Backness Harmony is Not IBSP. Interval-based strictly piecewise
(IBSP) grammars are an extension of SP grammars that allow k-subsequences
to be defined over a particular interval, such as a word or a prosodic phrase
[18]. The set of IBSP languages properly contains both TSL and SP languages,
and is properly contained by the star-free languages. Uyghur backness harmony
is a word-level process, and an IBSP grammar that is defined over words will
encounter the same issues as the PT and SP grammars described above. We can
think of no interval below the word that is able to avoid these problems, and so
we conjecture that Uyghur backness harmony is not IBSP.

4.3 A Formal Lower Bound for Uyghur Backness Harmony

The pattern in (15) can be captured by the non-counting (NC) or star-free lan-
guages, which are the most expressive subregular languages [35]. NC languages
allow the use of the first order logic operators ∃ and ∀, which quantify over
position indices in the string. Indices can be compared for equality, using the ≈
operator, and precedence, using the < operator. Predicates over indices P (x) are
true if the symbol at index x is P . All of the language classes described above
are properly contained by the class of NC languages.

The following expressions define a NC grammar that captures licit forms
under Uyghur backness harmony.

∀x[Sb(x) ⇒ ∀y[Vf (y) ⇒ ∃z[Vb(z) ∧ y < z < x]]] (34)
∀x[Sf (x) ⇒ ∀y[Vb(y) ⇒ ∃z[Vf (z) ∧ y < z < x]]] (35)
∀x[Sb(x) ∧ ¬∃y[Vf (y) ∨ Vb(y)] ⇒ ∀z[Cf (z) ⇒ ∃w[Cb(w) ∧ z < w < x]]] (36)
∀x[Sf (x) ∧ ¬∃y[Vf (y) ∨ Vb(y)] ⇒ ∀z[Cb(z) ⇒ ∃w[Cf (w) ∧ z < w < x]]] (37)
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The first two expressions require suffixes to match the backness of the final
harmonizing stem vowel. The latter two require suffixes to match the backness
of the final harmonizing stem dorsal if there are no harmonizing stem vowels.

Although further weakening the weak subregular hypothesis to include NC
languages captures the data presented above, this is not a desirable result from
the perspective of learnability. It has been shown that TSL languages are effi-
ciently learnable in polynomial time from polynomial data [22,26,27], while NC
languages are not [16]. This makes theories of phonological learning somewhat
more problematic. Below we briefly sketch a proposal for a new subregular class
that is less powerful than the NC class but still sufficient to capture this pattern.

4.4 OSS-TSL

A generalization of TSL, which we tentatively call output structure-sensitive tier-
based strictly local (OSS-TSL), can capture Uyghur backness harmony.7 SS-TSL
generalizes the projection function of TSL from a 1-ISL map to a k-ISL map.
The class of 1-ISL maps is identical to the class of 1-output strictly local (1-OSL)
maps, meaning the TSL projection function could be equally characterized as
a 1-OSL function [10]. We could thus generalize the projection mechanism to
be k-OSL. This would allow the tier projection function to consider material
already on the tier when choosing whether to project a segment from the input.

The pattern in (15) requires a 2-OSL projection function that behaves as
follows: Vf , Vb, Sf , and Sb are always projected, while Cf and Cb are only
projected if the previous symbol is not Vf or Vb. In other words, we stop adding
dorsals to the tier as soon as we encounter a harmonizing vowel. 2-factors defined
over this tier would simply check for backness mismatches between the suffix and
the preceding symbol.

It is beyond the scope of this paper to consider the formal properties of OSS-
TSL grammars and how widely applicable they will be in describing natural
language phonology. We intend to investigate this in future research.

5 An Analysis Without Transparent Vowels

Given the uncommonness of segmental patterns that are as problematic for the
weak subregular hypothesis as Uyghur backness harmony, it is worth investigat-
ing whether the characterization of the pattern presented above is correct. The
issues this pattern poses for TSL representations hinge on backness being deter-
mined first from vowels, and then from consonants if the vowels prove insufficient.
A possible alternative analysis that is compatible with a TSL representation is
that Uyghur in fact has no transparent vowels. Rather, there are two different
surface versions of /i/ and /e/ which are not reflected in the orthography or
in past descriptions of the phonology, one of which is front and one of which is

7 We also suggest that SS-TSL might be relabeled as input structure-sensitive tier-
based strictly local (ISS-TSL).
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back. We represent the back variants as /1/ and /9/ respectively, and refer to the
pairs as /I/ and /E/ when backness is not important. Such an analysis makes
the 2-factors defined over Tv in the previous section sufficient to capture Uyghur
backness harmony: Vf now includes /i/ and /e/, and Vb includes /1/ and /9/, so
no reference to consonants is necessary. This account is supported by historical
evidence: Uyghur once had a distinction between the front and back unrounded
vowels /i/-/W/ and /e/-/È/ as in Turkish, but these vowels have since collapsed
into /i/ and /e/ [30].

Under this formulation, /I/ and /E/ are underlying specified as [± back].
This allows us to tidily capture forms like (9) and (10), which no longer need to
be arbitrarily specified as front or back, but now select their suffix based on the
quality of the final vowel, as below:

1t-ta “on the dog”
dog-LOC (38)

biz-dæ “on us”
we-LOC (39)

The generalization that suffixes tend to match the backness of the final har-
monizing vowel in the stem, or, if these are lacking, the final dorsal, can be
captured by cooccurrence restrictions: /I/ and /E/ must agree in backness with
the nearest harmonizing vowel or dorsal, which gives the appearance of suffixes
harmonizing with consonants. Thus we can reanalyze (4), (5), and (6) as below.

qo1ch1-da “on the shepherd”
shepherd-LOC (40)

gezit-tæ “on the newspaper”
newspaper-LOC (41)

q1rK1z-da “on the Kyrgyz”
Kyrgyz-LOC (42)

In sum, this approach allows us to determine suffix backness by looking only at
the final vowel in the stem, which is always specified for backness. This removes
the need for a dorsal consonant tier, and allows this pattern to be captured easily
by the TSL grammar over Tv described in the previous section.

There are two issues with this approach. The first is that there are a small
number of stems in the language that still appear to follow a pattern where
vowels are considered before consonants, as exemplified below:

tæstiq-tæ “on the sanction”
sanction-LOC (43)
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Here we might expect the final /i/ of the stem to take on the backness of the
adjacent uvular, but instead we see that this word takes a front suffix. Words
like this are rare, but it is unclear how to achieve the proper backness of the final
vowel. One solution is to stipulate that vowels are considered before consonants,
which leads back to the problem we hoped to avoid. Another solution is to stipu-
late that the surface forms of /I/ and /E/ are identical to their underlying forms,
and the tendency for these forms to agree in backness with nearby harmonizing
vowels and dorsals is simply a coincidence.

The second issue is that there have been no studies looking at the phonetic
realization of /i/ and /e/ in stems that differ in the backness of their suffixes.
Positing two separate phonemes without such data for the sake of a more theo-
retically amenable analysis is rather ad hoc, although it has been done. Lindblad,
for example, proposes such an analysis, where an underlying contrast between
/i/ and /1/ is neutralized by a post-lexical fronting process [30]. This is essen-
tially unfalsifiable. In the following section we present original data from a small
study investigating whether there is phonetic support for such an analysis.

5.1 An Acoustic Study of the Transparent Vowel /i/ in Uyghur

In the present study we restrict ourselves to stems containing neither harmo-
nizing vowels nor dorsals. This is because coarticulatory processes, where the
articulation of a sound is influenced by nearby sounds, are a confounding factor
in trying to show that there is a phonological distinction between /i/ and /1/
in Uyghur. Coarticulatory processes are common across languages, and though
they often become phonologized, the presence of coarticulation does not neces-
sarily provide evidence for a phonological process (e.g. [24,36]). In other words,
we cannot tell using measurements whether the vowels in (42), for example, are
phonologically [1] or simply a little backer because of the nearby uvulars.

Vowel-to-vowel coarticulation has been studied extensively (e.g. [3,11,12]).
A finding that is relevant for the pattern described here is that languages vary
in their patterns of V-to-V coarticulation: coarticulation tends to be greater
when there is less risk of confusion between meaningfully distinct phonemes
[31,32]. This suggests that, under the assumption that phonological /1/ and /9/
do not exist, /i/ and /e/ should be the most susceptible of the Uyghur vowels to
coarticulation with nearby back sounds, since these are the only two that have
no corresponding vowel differing only in backness.

Less has been said about the effects of uvular consonants on vowels, but stud-
ies of languages such as Cochabamba Quechua [15] and Ditidaht [46] show that
uvulars produce a backing effect on nearby vowels (particularly front vowels).

These findings suggest that the vowels /i/ and /e/ should exhibit backing
around back vowels and uvulars by phonetic coarticulatory processes, and hence
acoustic evidence of such cannot be taken as proof of a phonological distinction.
A domain that is free from this confound is the set of stems that have neither
harmonizing vowels nor dorsal consonants. A significant difference in backness
between the vowels in stems that take front suffixes and those that take back
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suffixes could not be attributed to phonetic coarticulation, and would be com-
pelling evidence for a meaningful phonological contrast. Phonetic studies have
been performed for a similar process in Hungarian [5,6], and the methodology
here is similar to that employed by Blaho and Szeredi.

Methodology. Two native speakers of Uyghur from the Urumchi region, one
male and one female, read the words in Table 6. All words are monosyllabic
with only the transparent vowel /i/ and no dorsal consonants. Both speakers
were presented with the same list of words. Words were removed if they were
unfamiliar to the speaker or if they were produced with no vowel.8 The speakers
did not agree on the backness of all words when suffixes were added: bolded
words in the tables highlight disagreements.

Table 6. Word lists for speakers 1 (left) and 2 (right). Bolded forms indicate disagree-
ments in stem backness between the speakers.

The speakers produced the words in the carrier sentence

tursun hazir dEdi
Tursun again say.PAST
Tursun said again

(44)

Words were elicited in two forms: with no harmonizing suffix (bare for nouns,
and with the third person past tense suffix -di for verbs) and with a harmonizing
suffix (the locative -DA for nouns, and the infinitive -mAQ for verbs, where Q
alternates between /k/ and /q/ depending on backness). The purpose of eliciting

8 Uyghur has a process of vowel lenition that can occur adjacent to voiceless conso-
nants: e.g. speaker 1 produced /iS/ with a vowel while speaker 2 did not, and speaker
2 produced /it/ with a vowel while speaker 1 did not.
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words with a suffix was to confirm the predicted coarticulatory effect of a nearby
back or front vowel.

The stem vowels were segmented by hand using Praat [7], and F1 and F2
were extracted at vowel midpoints using a script. We ran two linear mixed effects
models in R [40] using the nlme package [39], with F1 and F2 as the dependent
variables respectively. Stem backness (i.e. whether the stem takes a front or back
suffix) and the presence of a harmonizing suffix were the independent variables.
Word and subject were random effects.

Fig. 2. Plots of F1 (left) and F2 (right)

Results. The results are shown in Fig. 2. There were no significant effects of
stem backness or suffix presence on F1. Similarly, there was no significant effect
of stem backness on F2, but there was a significant interaction between stem
backness and the presence of a suffix on F2 (β = 183.47; t = 3.65; p < 0.01).
This indicates that back vowels in the suffixes pulled /i/ back, lowering F2.
These results provide no evidence that the vowel /i/ provides a cue for backness
in stems with no harmonizing vowels or dorsals, though they do demonstrate a
coarticulatory effect between /i/ and nearby back vowels.

Discussion. The fact that nearby back vowels induce backing on /i/ suggests
that /i/ is indeed susceptible to coarticulation with neighboring segments. Hence
it is plausible that in stems containing harmonizing vowels or dorsals, informa-
tion about these segments may be conveyed through the transparent vowels. The
challenge for adopting this analysis is making a convincing case that this is a
phonological pattern, not merely a phonetic one. The general results here do
not support this analysis: stems containing only the vowel /i/ and non-dorsal
consonants show no acoustic distinction based on the backness of their suffixes,
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and must still be arbitrarily specified as front or back. Although this analysis is
able to circumvent the issues for a TSL representation, it does so with no gain
in explanatory power, and at the cost of additional stipulation.

6 Uyghur Backness Harmony as a Lexicalized Process

The characterization of Uyghur backness harmony in Sects. 3 and 4 is incompat-
ible with the theory that all phonological stringsets are TSL languages. There is,
however, evidence that backness harmony in Uyghur may be learned as a lexical
or morphological process, rather than a phonological one, which is consistent
with the idea that TSL provides an upper bound on phonological complexity.

Under a morphological account of backness harmony, all stems are specified
lexically as taking either front or back suffixes (or, put in a slightly different
way, speakers simply memorize which stems take which suffixes). This pattern
is easily captured using a TSL grammar, and is consistent with the hypothesis
that morphotactic processes are also maximally TSL [1].

Under this analysis, stems lacking harmonizing vowels or dorsals are treated
identically to all other stems. What this approach sacrifices is the strong gener-
alization that stems with harmonizing vowels and dorsals tend to take suffixes
that agree in backness. Although such approaches run counter to the tendency in
generative phonology to limit lexical specification, there is some motivation for
adopting them in certain cases. We will present a brief summary of a particularly
notorious case, and show that Uyghur satisfies the same motivating criteria.

Positing a morphological process over a phonological one is often based on the
complexity of the phonological analysis required to capture the pattern, partic-
ularly regarding learnability. Such analyses often require underlying forms that
differ substantially from any surface form, baroque interactions between inde-
pendent processes (e.g. rules or constraints), and some way to capture inconsis-
tent generalizations and variation within or between speakers. Examples include
French liaison (e.g. [9]), Polish /o/-/u/ alternation [43], irregular English past
tense morphology [2], and possessive prefixes in Odawa [8]. Such cases have two
common themes. First, these processes typically originated as predictable and
productive phonological patterns that were subsequently obscured by diachronic
change. This led to a reanalysis by language learners, since insufficient evidence
was available to reconstruct the original pattern. Second, in the absence of reli-
able structural cues, speakers tend to rely on statistical generalizations to deter-
mine the appropriate surface realization in unfamiliar cases.

We focus on Maori passives as a representative example. This was first raised
as a challenge for phonological analysis by Hale [19] and has been written on
extensively since (see [37] for an excellent overview). Table 7 (from [37]) shows
a sample of Maori passive forms.

This pattern developed as the result of all word-final consonants being lost in
unsuffixed forms, but maintained in medial position when the passive suffix /-ia/
is present. A phonological analysis must either make reference to properties of the
stems that systematically predict particular suffix forms (which are not obvious)
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Table 7. Maori passives

or assume the presence of word-final consonants underlyingly and a process of
surface deletion. Even in the latter case, bizarre assumptions are often required
to support this analysis, such as Hale’s suggestion that there is an underlying /p/
at the end of certain forms that is never realized in any surface form [19]. There is
also evidence that these passive forms have been analyzed as separate, competing
morphemes by speakers, with /-tia/ coming to be preferred as the default but
substantial free variation possible within and between speakers. Sophisticated
statistical analyses also show that the suffix form can be predicted reasonably
well from subtle properties of the stem, suggesting that speakers may be sensitive
to statistical generalizations when choosing the appropriate suffix [37].

Uyghur backness harmony shares many of the properties of the Maori passive
system. Disharmonic stems tend to occur mostly in loanwords and compounds
[47], suggesting an increase in such stems as more foreign words entered the
language. Similarly, as described earlier, historical Uyghur once had a distinction
between the front and back vowels /i/-/W/ and /e/-/È/ that collapsed into /i/
and /e/, eliminating the backness contrast that would have determined the suffix
of many of the problematic forms discussed here [30]. As demonstrated by the
responses of the participants in the study in the previous section, there is also
inter-speaker variation on which suffixes certain forms take. We are conducting
corpus and experimental studies to evaluate the extent to which the process of
backness harmony has been productively acquired by Uyghur speakers [33].

More evidence is needed to establish that Uyghur backness harmony is
treated by speakers as a lexicalized process, but there are several points in favor
of this account: it provides a consistent analysis, with the generalizations around
harmonizing vowels and dorsal consonants reflecting statistical remnants of a
past, more reliable stage of the language; it exhibits many of the properties of
languages where similar processes have been claimed; and, it is consistent with
the theory that TSL provides an approximately correct upper bound on phono-
logical learnability [34]. Assuming that only phonological patterns that can be
effectively learned will be effectively propagated, it is perhaps no coincidence
that non-TSL patterns are so uncommon in the world’s languages.
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7 Discussion and Conclusion

A motivation that is commonly put forward for studying phonological processes
through the lens of formal complexity is that it allows a detailed characterization
of the data that is agnostic to any particular theory. This in turn provides clear
requirements for the expressive and restrictive capabilities of any theory leveled
at the data (e.g. [21,42]), and also suggests upper bounds on the complexity of
patterns that can be effectively learned (e.g. [34]). In this paper we presented a
pattern that is a challenge for current hypotheses about how complex phonolog-
ical stringsets may be.

We first showed that the pattern of stem-suffix backness harmony in Uyghur
cannot be generated by a tier-based strictly local grammar, nor by any of the
subregular language classes previously applied to phonology. This is problematic
for the weak subregular hypothesis, which claims that all phonological stringsets
are maximally TSL. We then explored an alternative analysis that suggests the
pattern is phonological and contained solely on the vowel tier, but rejected it for
lack of empirical support. Finally, we showed that even though Uyghur surface
strings are beyond TSL, there is some evidence that the pattern of backness
harmony may be lexicalized. This is consistent with the idea of TSL as an upper
bound on effective phonological learnability. More empirical data is needed to
claim with certainty that this is the case, but we feel that this is a promising
hypothesis.

We do not go into considerations of the merits of one phonological theory
over another, but it is worth noting that the characterization of Uyghur backness
harmony bears on this as well. The interaction of backness harmony with other
phonological process in Uyghur has been put forward as evidence for a deriva-
tional theory of phonology [47], and the considerations discussed here bear on
the validity of these claims.

Assuming that backness harmony in Uyghur is governed by the phonotactic
knowledge of its speakers, the analysis presented in Sects. 3 and 4 is incompatible
with the weak subregular hypothesis. If, on the other hand, backness harmony
is indeed a lexicalized process, this would be consistent with the idea that TSL
languages provide an approximately correct upper bound on phonological learn-
ability. In addition to the simple presentation of this data as a challenging case
for subregular phonology, we hope that we have illustrated how theories of formal
complexity can serve as useful conceptual tools in addition to those traditionally
employed by phonologists.
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Tenth Meeting of the ACL Special Interest Group on Computational Morphology
and Phonology, pp. 39–48 (2008)

38. Pin, J.E.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
39. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team: nlme: Linear and

nonlinear mixed effects models. R Package Version 3.1-131 (2017)
40. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria (2017)
41. Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and sub-

regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012–2013. LNCS,
vol. 8036, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39998-5 6

42. Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subreg-
ular hierarchy. J. Log. Lang. Inf. 20, 329–342 (2011)

43. Sanders, R.N.: Opacity and sound change in the Polish lexicon. Ph.D. thesis, UCSC
(2003)

44. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

45. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

46. Sylak-Glassman, J.: The effects of post-velar consonants on vowels in Ditidaht.
In: Weber, N., Sadlier-Brown, E., Guntly, E. (eds.) Papers for the International

https://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23


A Challenge for Tier-Based Strict Locality 83

Conference on Salish and Neighbouring Languages 49, vol. 37. University of British
Columbia Working Papers in Linguistics (2014)

47. Vaux, B.: Disharmony and derived transparency in Uyghur vowel harmony. In:
Proceedings of NELS, vol. 30, pp. 671–698 (2000)
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to island domains. However in näıve parsing/theorem-proving by back-
ward chaining sequent proof search for Lb the bracketed island domains,
which can be indefinitely nested, have to be specified in the linguis-
tic input. In realistic parsing word order is given but such hierarchical
bracketing structure cannot be assumed to be given. In this paper we
show how parsing can be realised which induces the bracketing structure
in backward chaining sequent proof search with Lb.

Keywords: Lambek calculus with brackets · Bracket induction
Categorial grammar

1 Introduction

Relativisation involves dependencies which can be medial as well as peripheral
and which, although unbounded, are constrained with respect to certain island
domains; furthermore these unbounded dependencies can be multiple, or para-
sitic, in a way which appears to depend on islands. The Lambek calculus L of
Lambek [9] can provide a very rudimentary account of relativisation limited to
unbounded peripheral extraction; the Lambek calculus with bracket modalities
Lb of Morrill [13] and Moortgat [11] can further condition this account according
to island domains; and the Lambek calculus with bracket modalities and univer-
sal subexponential Lb! (after Girard [3]) accommodates furthermore medial and
parasitic extraction (Morrill [14]). However in näıve parsing/theorem-proving
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by backward chaining sequent proof search for Lb and Lb! the bracketed island
domains, which can be indefinitely nested, have to be specified in the linguistic
input. In realistic parsing word order is given but such hierarchical bracketing
structure cannot be assumed to be given. In this paper we show how parsing can
be realised which induces the bracketing structure in backward chaining sequent
proof search for Lb.

1.1 Relativisation

Relativisation is an unbounded dependency construction; the distance between
a relative pronoun (filler) and the position it binds (gap) can be unboundedly
long:

(1) a. the man thati Mary loves ei

b. the man thati John thinks Mary loves ei

c. the man thati Suzy knows John thinks Mary loves ei

...

Some domains are islands to relativisation and cannot be penetrated by the filler-
gap (extraction) dependency, for example adverbial phrases are weak islands
(extraction is semi-acceptable) and relative clauses themselves are strong islands
(extraction is unacceptable):

(2) a. ?the paper thati John laughed [without reading ei]
b. (?)the paper thati John went to Paris [without reading ei]
c. *the waitress thati John saw the man [that married ei]

Relativisation can be medial:

(3) the contract thati John signed ei yesterday

And although islands block singleton extractions, relativisation can have a par-
asitic gap in a weak island dependent on a non-island host gap:

(4) the paper thati John filed ei [without reading ei]

Such parasitic gaps can also appear in subjects, which are weak islands:

(5) a. ??the man thati [the friends of ei] laughed
b. the man thati [the friends of ei] praised ei

A single host gap can license parasitic gaps in multiple islands; for example:

(6) the paper thati [the editor of ei] filed ei [without reading ei]
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In this paper we give an account in terms of the Lambek calculus with bracket
modalities Lb of the data of (1–2). We provide a calculus and consider a bracket-
inducing parsing/theorem-proving algorithm. We illustrate this algorithm on an
example of a lexical grammar for a small fragment of English. The input of
this algorithm is just a string (linearly ordered sequence of words), without any
bracketing information. The job of the algorithm is to induce (guess) the cor-
rect placement of brackets, as well as to derive the resulting Lb sequent. The
algorithm relies on the assignment of types drawn from the lexical grammar.
In Sect. 6 we discuss the complexity of our algorithm, in comparison with both
a näıve approach with brute-force guessing of the correct bracketing and the
pseudo-polynomial algorithm for theorem-proving (but not parsing) in Lb pre-
sented in our earlier paper [5].

As for examples (3–6), their parsing involves Lb!, the extension of Lb with
the universal exponential modality, which is beyond the scope of the present
paper. For Lb!, the derivability problem in general is algorithmically undecid-
able [7]. A practically useful fragment, however, guarded by the so-called bracket
non-negative condition, was shown to be decidable [17] and to belong to the NP
complexity class [7]. In other words, despite undecidability of the whole calculus,
practical parsing with Lb! has the same complexity as for Lb without the expo-
nential. We hope to extend the results presented here from Lb to Lb! (restricted
by the bracket non-negative condition) in a subsequent paper.

Our analysis of linguistic examples in this paper follows Morrill [14,20]. This
paper’s purposes are mostly technical. Namely, we present an approach that
allows the parsing algorithm for Lb to induce open and closed “symbolic” brack-
ets by itself and therefore avoid requesting this information (which is not part
of the actual text in natural language) from the user. Therefore, we refrain from
deep discussions of the design of the lexical grammar itself and its empirical
justification. In particular, we leave beyond the scope of this paper the subtle
issues of semi-grammaticality [20, Sect. 5.4] of extraction from weak islands; see,
for instance, examples (2b) and (5a). For such examples, Morrill [20, Sect. 5.4]
suggests including further structural rules that allow some violation of brack-
eting, but with a cost for such. The number of applications of such rules is
supposed to be counted, and the more times they are used the less grammatical
the target sentence is considered. The modification of the algorithm described
in this paper to allow such rules is a topic for further investigation.

1.2 Lambek Calculus with Bracket Modalities

The set Tp of types of the Lambek calculus with bracket modalities Lb is defined
in terms of a set P of primitive types as follows:

Tp ::= P | 〈 〉Tp | [ ]−1Tp | Tp•Tp | Tp\Tp | Tp/Tp
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A configuration Config is a well-bracketed string of types:

Config ::= TreeTerm | Config,Config
TreeTerm ::= Tp | [Config]

Note that this definition builds in “Lambek’s restriction” whereby configurations
(and bracketed configurations) are non-empty. Lambek’s restriction, even in the
fragment without brackets, is motivated linguistically; otherwise we could derive
the sequent (CN/CN)/(CN/CN), CN ⇒ CN , validating grammatically incor-
rect phrases like “very book” (compare with “very interesting book”, parsed as
(CN/CN)/(CN/CN), CN/CN,CN ⇒ CN). In this paper, Lambek’s restric-
tion is crucial for the construction to work (see Sect. 5).

A sequent is an expression of the form Config ⇒ Tp.

1.3 Sequent Calculus for Lb

Let Δ(Γ ) signify a structure Δ with a distinguished substructure Γ . The sequent
calculus for Lb is as follows:

id
P ⇒ P

Γ ⇒ A Δ(A) ⇒ B
Cut

Δ(Γ ) ⇒ B

Δ(A) ⇒ B
[ ]−1L

Δ([[ ]−1A]) ⇒ B

[Δ] ⇒ B
[ ]−1R

Δ ⇒ [ ]−1B

Δ([A]) ⇒ B 〈 〉L
Δ(〈 〉A) ⇒ B

Δ ⇒ B 〈 〉R
[Δ] ⇒ 〈 〉B

Δ(A,B) ⇒ D •L
Δ(A•B) ⇒ D

Δ ⇒ A Γ ⇒ B •R
Δ,Γ ⇒ A•B

Γ ⇒ B Δ(C) ⇒ D
/L

Δ(C/B, Γ ) ⇒ D

Γ,B ⇒ C
/R

Γ ⇒ C/B

Γ ⇒ A Δ(C) ⇒ B \L
Δ(Γ,A\C) ⇒ B

A,Γ ⇒ C \R
Γ ⇒ A\C

Moortgat [11] shows that this calculus enjoys Cut-elimination: that every theo-
rem has a Cut-free proof. We omit Cut in what follows.
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Fig. 1. Lexical grammar

1.4 Grammar

Consider the micro-Lb lexical grammar in Fig. 1 whereby weak islands are singly
bracketed and strong islands doubly bracketed. For example, (1a) is derived as
follows:
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N ⇒ N

N ⇒ N
〈 〉R

[N ] ⇒ 〈 〉N S ⇒ S
\L

[N ], 〈 〉N\S ⇒ S
/L

[N ], (〈 〉N\S)/N,N ⇒ S
/R

[N ], (〈 〉N\S)/N ⇒ S/N

CN ⇒ CN CN ⇒ CN
\L

CN,CN\CN ⇒ CN
[ ]−1L

CN, [[ ]−1(CN\CN)] ⇒ CN
[ ]−1L

CN, [[[ ]−1[ ]−1(CN\CN)]] ⇒ CN
/L

CN, [[[ ]−1[ ]−1(CN\CN)/(S/N), [N ], (〈 〉N\S)/N ]] ⇒ CN

Examples (2a–c) are blocked because the bracket modalities require the island
bracketings which prevent the hypothetical subtype of the relative pronoun from
associating into the object positions of “reading” and “married” respectively. We
discuss example (2a) in detail in Subsect. 5.3.

2 Inducing Brackets

The general strategy will be to represent symbolic half-brackets in the input by
variables for which the flow of information is propagation from endsequent to
axiom leaves and instantiation from axiom leaves to endsequent. Thus we need
a coding of brackets which represents the terminal yield of sequents in terms of
open and closed “symbolic” half-brackets which are uninstantiated bottom up.

Such antecedents are of the pattern:

(Onset Tp Offset)+

where Onset is of the form [*, Tp is a type, and Offset is of the form]*. This
formulation builds in Lambek’s restriction whereby there must be at least one
type in an antecedent and within brackets.

We represent Onsets and Offsets by lists of zeros; the length of the list is
the number of brackets. For example, [[[ is coded [0, 0, 0], ] is coded [0] and no
brackets are coded by the empty list [] (∅).1

A symbolically bracketed antecedent Δ is well-bracketed (is a BI-Config), if
it is the case that at every point of Δ, the sum of all Onsets to the left of this
point is greater or equal than the sum of all Offsets to the left of this point, and
that for the whole Δ these two sums are equal.

In the following section we present the bracket inducing rules.

3 Bracket Inducing Rules

Regarding notation, in bracket inducing BI-Lb rules, we use Δ (and also Δ1,
Δ2) for sequences starting with an Onset F and ending with an Offset G, and

1 We use this notation because it prefigures a planned future extension to exponentials
in which onsets are coded by lists of naturals representing the size of so-called stoups;
the zeros in the coding of Lb essentially mean that here all stoups are empty.
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Ω for sequences starting and ending with types (in particular, just a singleton
type is also an Ω).

All rules have a premise-to-conclusion property by which all sequents gen-
erated have well-bracketed antecedents. Fragments of the antecedent, however,
are not necessarily well-bracketed: in a sequent of the form Δ1,Δ,Δ2 ⇒ B an
opening bracket in Δ1 could have its corresponding closing bracket in Δ2, and in
this case Δ1 and Δ2 are not well-bracketed. Also recall that we are working with
a Cut-free version of Lb, therefore the Cut rule is not included in the BI-Lb
calculus.

Identity axiom:

id∅, P, ∅ ⇒ P

Bracket modalities:
Δ1, F,A,G,Δ2 ⇒ B

[ ]−1L
Δ1, F⊕[0], [ ]−1A, [0]⊕G,Δ2 ⇒ B

[0]⊕F,Ω,G⊕[0] ⇒ B
[ ]−1R

F,Ω,G ⇒ [ ]−1B

Δ1, F⊕[0], A, [0]⊕G,Δ2 ⇒ B 〈 〉L
Δ1, F, 〈 〉A,G,Δ2 ⇒ B

F,Ω,G ⇒ B 〈 〉R
[0]⊕F,Ω,G⊕[0] ⇒ 〈 〉B

Lambek connectives: the original Lambek rules should also be modified in
order to include the new bracket induction mechanism, as shown below.

Δ1, F,A, ∅, ∅, B,G,Δ2 ⇒ D •L
Δ1, F,A•B,G,Δ2 ⇒ D

Δ1 ⇒ A Δ2 ⇒ B •R
Δ1,Δ2 ⇒ A•B

F1, Ω,G1 ⇒ B Δ1, F2, C,G2,Δ2 ⇒ D
/L

Δ1, F2, C/B, ∅, F1, Ω,G1⊕G2,Δ2 ⇒ D

Δ, ∅, B, ∅ ⇒ C
/R

Δ ⇒ C/B

F1, Ω,G1 ⇒ A Δ1, F2, C,G2,Δ2 ⇒ D \L
Δ1, F2⊕F1, Ω,G1, ∅, A\C,G2,Δ2 ⇒ D

∅, A, ∅,Δ ⇒ C \R
Δ ⇒ A\C

4 Correctness

We define a translation # : Config → BI-Config in terms of injective functions
#(0∗, 0∗) : Config → BI-Config as follows:

(7) a. #(Δ) = #(∅, ∅)(Δ)
b. #(F,G)(P ) = F, P,G

#(F,G)([Δ]) = #(F⊕[0], [0]⊕G)(Δ)
#(F,G)(Γ,Δ) = #(F, ∅)(Γ ),#(∅, G)(Δ)

Then we have the following:
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(8) Proposition (BI completeness)

�Lb Γ ⇒ A =⇒ �BI-Lb #(Γ ) ⇒ A

Proof. Trivial induction on derivation in Lb. Q.E.D.

(9) Lemma (BI soundness)

�Lb Γ ⇒ A ⇐= �BI-Lb #(Γ ) ⇒ A

Proof. First we show, by induction on derivation in BI-Lb, that if �BI-Lb

Δ ⇒ A, then Δ = #(Γ ) for some Γ ∈ Config; in particular, that Δ is well-
bracketed in the sense of Sect. 2. In the only non-trivial induction steps, those
of /L and \L, the well-bracketedness of the antecedent in the conclusion follows
from the fact that the antecedent of the minor (left) premise is contiguous in the
antecedent of the conclusion. Second, we prove the soundness lemma itself, also
by induction on the derivation of #(Γ ) ⇒ A in BI-Lb. Again, the non-trivial
case here is the branching rule, /L, for example. Here we use the above consid-
eration to establish the fact that both premises are actually #-translations of
some Lb sequents. After that, the instance of /L in BI-Lb transforms into an
instance of the corresponding rule in Lb. Q.E.D.

(10) Theorem (BI correctness)

�Lb Γ ⇒ A ⇐⇒ �BI-Lb #(Γ ) ⇒ A

Proof. By BI soundness and BI completeness. Q.E.D.
Notice that throughout this section Fi’s and Gi’s in BI-Lb derivations are

ground terms of the form [0, 0, . . . , 0] or ∅ (representing constant natural num-
bers). Thus, BI-Lb is actually just an equivalent formulation of Lb, and no real
bracket induction is taking place yet. In the next section, we treat Fi’s and Gi’s
as variables, whose values are not yet known when we start the proof search.

5 Parsing

5.1 Bracket-Inducing Proof-Search and Parsing

The usual parsing procedure using a categorial grammar works as follows. Using
a lexical grammar, such as that of Fig. 1, we assign types to words of a string,
and these types form the left-hand side of the sequent we are going to derive.
The right-hand side is a fixed type, usually primitive, like S for “sentence,” for
example. If the sequent is derivable, the string is considered valid, and, moreover,
we can extract some semantic information from the proof via Curry–Howard
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correspondence (see [12]). This works perfectly well when antecedents are just
linearly ordered lists of formulae (for example, with the “pure” Lambek calculus).
With brackets, the situation becomes more involved. Now left-hand sides of
sequents also include the bracketing structure. In the näıve generalisation of
the Lambek-style parsing procedure to Lb-grammars, the bracketing structure
should be provided to the parsing algorithm along with the input string and the
lexical grammar. For example, since in our lexicon transitive verbs have type
(〈 〉N\S)/N (the subject forms a weak island), one needs to provide “[John] loves
Mary” instead of just “John loves Mary” as the input string for the algorithm.
The parser/theorem-prover CatLog3 of Morrill [15] currently depends on being
provided with such bracketing structure in the input. A real natural language
string, however, does not come with any brackets. Thus, the more appropriate
formulation of the parsing problem involves an existential quantifier over possible
bracketings. A string is considered valid if the sequent constructed from the
corresponding types is derivable in Lb for some bracketing.

More formally, a string s is of type A according to a grammar if and only if
it has a factorization s = w1 +w2 + · · · + wn such that w1: A1, w2: A2, . . . , and
wn: An are in the grammar lexicon and the following is derivable in BI-Lb:

(11) F1, A1, G1, F2, A2, G2, . . . , Fn, An, Gn ⇒ A

for some values of F1, G1, F2, G2, . . . , Fn, Gn. (Recall that Fi and Gi are
natural numbers, but written in the form [0, 0, . . . , 0], linearly bounded, for a
given lexicon, by the total length of the sequent.)

Notice that Lambek’s non-emptiness restriction is crucial here. It guarantees
that every pair of brackets has at least one formula inside, thus brackets are well-
organised: in the beginning of the sequent there is [[. . . [ (corresponding to F1), in
the end ] . . . ]] (corresponding to Gn), and between two formulae ] . . . ][. . . [ (cor-
responding to Gi, Fi+1). Without Lambek’s restriction, a more weird behaviour
is possible. For example, the sequent s/〈 〉(p/p) → s becomes derivable, but only
with the following bracketing: s/〈 〉(p/p), [ ] → s, which does not map to a BI
sequent of the form (11), and thus would not be found by the algorithm we
describe below.

The proof search procedure using bracket induction works as follows. We start
with a sequent with no brackets placed, A1, . . . , An ⇒ A, and insert variables for
symbolic brackets: F1, A1, G1, F2, A2, G2, . . . , Fn, An, Gn ⇒ A. Then we do proof
search from the goal sequent to axiom leaves, annotating each rule application
with side effects, which are equations on Fi’s and Gi’s. For each new sequent, we
introduce new fresh variables in the places where bracketing is altered, or put ∅,
where the rule postulates that there should be no bracketing. Symbolic brackets
in the context are just copied upwards. The rules of BI-Lb are annotated with
side effects as follows (side effect annotations are placed on the right of the rules):
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Identity axiom:
F = ∅
G = ∅F, P,G ⇒ P

Rules for bracket modalities:

Δ1, F
′, A,G′,Δ2 ⇒ B F = F ′ ⊕ [0]

G = G′ ⊕ [0]Δ1, F, [ ]−1A,G,Δ2 ⇒ B

F ′, Ω,G′ ⇒ B F ⊕ [0] = F ′

G ⊕ [0] = G′
F,Ω,G ⇒ [ ]−1B

Δ1, F
′, A,G′,Δ2 ⇒ B F ⊕ [0] = F ′

G ⊕ [0] = G′
Δ1, F, 〈 〉A,G,Δ2 ⇒ B

F ′, Ω,G′ ⇒ B F = F ′ ⊕ [0]
G = G′ ⊕ [0]F,Ω,G ⇒ 〈 〉B

Lambek rules:

Δ1, F,A, ∅, ∅, B,G,Δ2 ⇒ D

Δ1, F,A•B,G,Δ2 ⇒ D

Δ1 ⇒ A Δ2 ⇒ B

Δ1,Δ2 ⇒ A•B

F1, Ω,G′
1 ⇒ B Δ1, F2, C,G′

2,Δ2 ⇒ D G1 = ∅
G2 = G′

1 ⊕ G′
2Δ1, F2, C/B,G1, F1, Ω,G2,Δ2 ⇒ D

Δ, ∅, B, ∅ ⇒ C

Δ ⇒ C/B

and symmetrically for \. The rules without annotations have no side effects.
The proof search procedure yields a tree which we call pre-derivation. In

the pre-derivation, instead of constant ground terms (natural numbers) we use
variables or ∅’s. On the other hand, the pre-derivation is annotated by side-effect
equations that allow computing the ground terms for symbolic brackets.

The side effect equations are actually very simple: on the left-hand side we
have either a term with only one occurrence of a symbolic bracket variable from
the conclusion of the rule application, or just a ground term, if there was a ∅.
The right-hand side includes variables from the premises. Thus, once the tree is
constructed upto axioms, the algorithm tries to resolve side effects going back-
wards (from axiom leaves to the goal sequent). For axiom leaves, the symbolic
bracket variables receive the zero (∅) value, and then we recursively go down.
At each step we either evaluate the new variable in the conclusion, or, if there
was a ∅, check whether the right-hand side of the equation (which is already
computed) is also ∅.

Sometimes the side effect equations could be non-satisfiable. For example, for
the sequent P ⇒ [ ]−1P , which is not derivable under any bracket assignment, we
have F1, P,G1 ⇒ [ ]−1P , and after applying [ ]−1R (which is the only possible
rule here) we get F2, P, G2 ⇒ P with side effects F2 = F1 ⊕ [0] and G2 =
F1 ⊕ [0]. On the other side, we have F2 = G2 = ∅ from the axiom, which gives
a non-satisfiable equation F1 ⊕ [0] = ∅ (recall that Fi and Gi should always be
non-negative integers).

Another, more sophisticated and linguistically relevant example is given in
Subsect. 5.3.

Therefore, even when a pre-derivation is obtained, we still have to resolve the
side-effects; fortunately, this can be done in linear time and does not substantially
slow down the proof search process. If resolving of side effects succeeds, variables
get replaced with ground terms (natural numbers), obtaining a derivation (in the
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standard sense) in BI-Lb. By Theorem (10), this yields derivability of the original
sequent, with some brackets assigned, in Lb. If resolving side-effects failed, the
algorithm continues the proof search.

Correctness of the bracket-inducing proof search algorithm is justified by the
following theorem, whose proof is straightforward.

(12) Theorem. For a sequent of the form F1, A1, G1, . . . , Fn, An, Gn ⇒ A, in
which Fi and Gj are variables, the algorithm described above yields all BI-
Lb derivations of all instances of this sequents with ground terms (natural
numbers) substituted for these variables. (In particular, it returns “not deriv-
able” if there are no such derivations.)

5.2 A Positive Example

In this subsection we run our bracket-inducing proof search algorithm on the
common noun group in (1a), “man that Mary loves.” In order to show that it is
of type CN, if we prove the following in the BI-Lb calculus:

(13)
F1,CN, G1, F2, [ ]−1[ ]−1(CN\CN)/(S/N), G2, F3, N,G3,

F4, (〈 〉N\S)/N,G4 ⇒CN

The following pre-derivation is annotated with side effects at axiom leaves and
rules. The goal sequent (13) above is pre-derived using /L from two sequents with
the following pre-derivations (we omit side effects that are trivially satisfied, like
∅ = ∅ ⊕ ∅):

∅, N, ∅ ⇒ N

F11 = ∅
G9 = ∅

F11, N, G9 ⇒ N
F5 = [0]⊕F11
G3 = G9⊕[0]

F5, N, G3 ⇒ 〈 〉N
F6 = ∅

F6, S, ∅ ⇒ S
F4 = ∅
F3 = F6⊕F5

F3, N, G3, F4, 〈 〉N\S, ∅ ⇒ S
G5 = ∅

F3, N, G3, F4, (〈 〉N\S)/N, G5, ∅, N, ∅ ⇒ S

F3, N, G3, F4, (〈 〉N\S)/N, G5 ⇒ S/N

and
F10 = ∅
G1 = ∅

F10,CN, G1 ⇒ CN

F9 = ∅
G8 = ∅

F9,CN, G8 ⇒ CN
F8 = ∅
F1 = F10⊕F9

F1,CN, G1, F8,CN\CN, G8 ⇒ CN
F7 = F8⊕[0]
G7 = [0]⊕G8

F1,CN, G1, F7, [ ]−1(CN\CN), G7 ⇒ CN
F2 = F7⊕[0]
G6 = [0]⊕G7

F1,CN, G1, F2, [ ]−1[ ]−1(CN\CN), G6 ⇒ CN

The side-effects for the lowermost application of /L, which yields the goal
sequent (13), are G2 = ∅ and G4 = G5 ⊕ G6.
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Using side effects, the algorithm computes the bracketings from leaves to root
as follows:

F11 = G9 = F6 = F10 = G1 = F9 = G8 = ∅
F5 = [0] ⊕ F11 = [0] ⊕ ∅ = [0]
G3 = G9 ⊕ [0] = ∅ ⊕ [0] = [0]
F8 = F4 = G5 = ∅
F1 = F10 ⊕ F9 = ∅ ⊕ ∅ = ∅
F3 = F6 ⊕ F5 = ∅ ⊕ [0] = [0]
F7 = F8 ⊕ [0] = ∅ ⊕ [0] = [0]
G7 = [0] ⊕ G8 = [0] ⊕ ∅ = [0]
F2 = F7 ⊕ [0] = [0] ⊕ [0] = [0, 0]
G6 = [0] ⊕ G7 = [0] ⊕ [0] = [0, 0]
G2 = ∅
G4 = G5 ⊕ G6 = ∅ ⊕ [0, 0] = [0, 0]

and establishes the fact that the following sequent (with ground terms substi-
tuted for symbolic bracket variables) is derivable in BI-Lb:

∅,CN, ∅, [0, 0], [ ]−1[ ]−1(CN\CN)/(S/N), ∅, [0], N, [0], ∅, (〈 〉N\S)/N, [0, 0] ⇒CN.

This sequent corresponds to the following Lb-sequent:

CN, [[[ ]−1[ ]−1(CN\CN)/(S/N), [N ], (〈 〉N\S)/N ]] ⇒ CN

and the following bracketing of the CN group: “man [[that [Mary] loves]].”

5.3 A Negative Example

In this section we run the bracket-inducing proof search to invalidate (2a), “the
paper that John laughed without reading”. In order to make the reasoning
shorter, we focus on the central part, namely, we show that the dependent clause
“John laughed without reading” is not of type S/N . The natural bracketing for
this dependent clause would be “[John] laughed [without reading]” (the subject
and the without-clause form weak islands), and one can see that the correspond-
ing sequent, according to the lexicon from Fig. 1,

[N ], 〈 〉N\S, [ [ ]−1((〈 〉N\S)\(〈 〉N\S))/(〈 〉N\S), (〈 〉N\S)/N ] ⇒ S/N

is not derivable in Lb, since the N which comes from the right-hand side appears
outside the bracketed weak island and cannot penetrate the brackets.

Using our bracket-inducing proof search procedure, we establish a stronger
fact that there exists no bracketing for which the sequent saying that “John
laughed without reading” is of type S/N could be derivable in Lb.

We shall do proof search in the BI-Lb calculus for the following:

(14)
F1, N,G1, F2, 〈 〉N\S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S))/(〈 〉N\S), G3,

F4, (〈 〉N\S)/N,G4 ⇒ S/N

and show that it yields no derivation.
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The basic idea here is that when the proof search comes to the application
of [ ]−1L, there is always going to be ∅ on the right, thus the side effect for
[ ]−1L would fail, and the pre-derivation will not become a real BI-Lb derivation.
Accurate justification of this idea requires exhaustive case analysis, which we
perform below.

A direct implementation of the algorithm (see Sect. 6) would do a complete
proof search. Here we make some optimisations. First we notice that the /R rule
is invertible, therefore we can apply it immediately:

(15)
F1, N,G1, F2, 〈 〉N\S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S))/(〈 〉N\S), G3,

F4, (〈 〉N\S)/N,G4, ∅, N, ∅ ⇒ S

Second, we are going to use count invariants in order to reduce the number of
possible cases to be considered. Count invariants for the Lambek calculus were
introduced by van Benthem [2] and then extended to the calculi with brackets
and additive connectives [23] and universal exponential [8]. Here we use a very
weak form of the count invariant:

(16) Lemma. If a sequent is provable in Lb (or BI-Lb), then each primitive type
occurs in it an even number of times.

The proof is a straightforward induction on the derivation of the sequent.
On the top-level, there are three connectives, so we have three cases to con-

sider.
Case 1. Apply /L to the long formula in the center of the sequent (15).

Notice that (〈 〉N\S)/N and the rightmost N should both go to the left premise,
since otherwise it would violate the count invariant and therefore be a priori not
derivable. The side effect here is G3 = ∅, and the right premise is as follows

F1, N,G1, F2, 〈 〉N\S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S)), ∅ ⇒ S.

For this very sequent, further proof search fails, since application of [ ]−1L is not
possible, neither immediately, nor after applying \L to the formula on the left,
due to the rightmost ∅.

Case 2. Apply /L to the rightmost /. This yields a side effect G4 = ∅ and
the (interesting) right premise is as follows:

F1, N,G1, F2, 〈 〉N\S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S))/(〈 〉N\S),
G3, F4, 〈 〉N\S, ∅ ⇒ S

Applying /L to the central formula yields, as the right premise,

F1, N,G1, F2, 〈 〉N\S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S)), ∅ ⇒ S

and again the ∅ on the right violates the side condition for [ ]−1L, whenever it
gets applied.
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Applying \L to the right formula makes further derivation impossible, since,
due to Lambek’s restriction, after that there will be no way to decompose the
central formula.

Finally, applying \L to the left formula gives

F ′
1, S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S))/(〈 〉N\S), G3, F4, 〈 〉N\S, ∅ ⇒ S

and we do the same case analysis as above.
Case 3. Apply \L to the leftmost occurrence of \. The right premise is as

follows:

F ′
1, S,G2, F3, [ ]−1((〈 〉N\S)\(〈 〉N\S))/(〈 〉N\S),

G3, F4, (〈 〉N\S)/N,G4, ∅, N, ∅ ⇒ S

and we proceed similarly to Cases 1 and 2.
This analysis shows that even if the proof search procedure for (14) suc-

cessfully finishes at axiom links, resolving side effects fails when it comes across
the application of [ ]−1L due to ∅ on the right. Therefore, “the paper that John
laughed without reading” does not receive type S/N for any bracketing.

6 Complexity Estimations

6.1 Bracket Induction vs. Generate-and-Test Brackets

The proof search algorithm with side-effects presented in the previous section,
still has exponential running time. In general, this is inevitable, due to the NP-
hardness of the original Lambek calculus [22]. However, the proof search with
bracket induction has a significant advantage in speed compared to a näıve
approach where the algorithm searches for all possible bracketings by brute force
and does proof search independently for each sequent obtained in this way. More
precisely, non-determinism in parsing with Lb-based categorial grammar comes
from three sources:

1. non-unique type assignment (a lexical item can have several different types),
2. bracketing,
3. proof search.

In the bracket induction approach presented in the present paper, the second
source above is handled together with the third one. Thus, our algorithm is
still exponential, but is also exponentially faster than the näıve one. This makes
bracket induction applicable in practice, while attempts to implement brute force
bracket guessing fail to parse even simple sentences in reasonable time. An imple-
mentation of our parsing algorithm in Prolog, written by the first author, with
an example and runtime log showing execution times are available on GitHub:
https://github.com/skuzn/BI-Lb

The lower exponential bound on the running time of the bracket-inducing
proof search algorithm in the present paper comes from the fact that in the

https://github.com/skuzn/BI-Lb
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Lambek calculus, even without brackets, there exist examples of sequents with
exponentially many derivations: P/P, . . . , P/P, P, P\P, . . . , P\P ⇒ P. Thus, if
we want to yield all possible derivations (parsings) for a sentence, even the
output length could be exponential, unless we represent it in a compressed way,
as in [5,21]. The proof search algorithm yields all possible (pre-)derivations in
an uncompressed form, and therefore has exponential worst case running time.

6.2 Pseudo-polynomial Approaches

The more subtle question is the comparison of the bracket-inducing parsing
procedure presented here with the pseudo-polynomial algorithm for Lb presented
in our earlier paper [5].

Despite the Lambek calculus being NP-hard [22], Pentus [21] noticed that
the complexity essentially comes from complicated types used in the lexicon. He
presented a polynomial-time parsing algorithm [21] for Lambek grammars where
complexity of all types in the lexicon is bounded. More precisely, the running
time of Pentus’ algorithm is a polynomial of n and 2d, where n is the length of
the input and d is a complexity measure of types. For simplicity, one can think
of d as just the maximal size of a type in the lexicon. Pentus’ algorithm is based
on proof nets and dynamic programming.

In [5], using the method of Pentus [21], we have presented an algorithm for
checking derivability in the Lambek calculus with brackets2. However, unlike
Pentus’ algorithm, our algorithm in [5] is only a theorem-prover, not a parser.
That is, the algorithm from [5] does not account for lexical ambiguity, where sev-
eral types are assigned to one word. Adding this extra level of non-determinism
could make running time exponential.

Another, more serious issue is connected with the deep nesting of brackets.
The time complexity estimation in [5] is a polynomial of n, 2d, and nb, where
n is the input length, d is the complexity measure of types in the lexicon, and
b is the maximum depth of nested brackets. Thus, the algorithm would run in
polynomial time only if both d and b are bound by constants. Unfortunately, in
linguistic practice this holds for d, but not for b.

The counter-examples come from well-known phrases with nested dependent
clauses, like “the dog that worried the cat that killed the rat that ate the malt
that lay in the house that Jack built.” The natural bracketing here is as follows
(dependent clauses form strong islands, and the subject ‘Jack’ is a weak one):
“the dog [[ that worried the cat [[ that killed the rat [[ that ate the malt [[ that
lay in the house [[ that [Jack] built ]] ]] ]] ]] ]].” Here b is linear w.r.t. input length
(b = αn for some constant α), which yields exponential (≥nαn) running time for
the algorithm from [5].

There also exists a shallow bracketing for this phrase: “. . . the cat [[ that
killed the rat ]] [[ that ate the malt ]] . . . ” Parsing with this shallow bracketing,
however, yields another reading: “the cat ate the malt” rather than the more

2 In contrast to the present paper, the calculus in [5] allows empty antecedents, but
imposing the Lambek’s restriction there is quite straightforward.
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natural “the rat ate the malt.” Thus, if we restrict our algorithm by imposing a
constant bound on the value of b, we can still justify the phrase as grammatically
correct, but we lose some of its readings, which is undesired.

The b parameter being linear w.r.t. n, the algorithm from [5] runs exponen-
tially, as does the algorithm presented in the present paper. The advantage of
this latter is that it does not require bracketing to be passed as an input along
with the sentence itself.

The question whether there exists an algorithm for Lb with the running time
being a polynomial of n and 2d (without nb in the complexity estimation) is an
open problem.

7 Future Work

In order to make the presentation as clear as possible, in this paper we have
discussed bracket induction on a very small fragment of type-logical grammar,
based on the pure Lambek calculus augmented with brackets and bracket modal-
ities. In the future we are planning to extend this approach to broader cal-
culi, including additive connectives [4], discontinuous operations [16,19], and
the (sub)exponential modality for medial and parasitic extraction [17]. For the
latter, the whole calculus is undecidable [7], so proof search is possible only in a
restricted fragment [7,17]. Moreover, we are planning to optimise parsing with
bracket induction using count invariant heuristics [2,8,23] and focusing tech-
niques [1,6,10,18], with necessary modifications for the BI calculi.

Implementing bracket induction in CatLog would allow the system to pro-
cess raw sentences in natural language, not asking the user for extra structural
information (bracketing). Being almost as effective as standard proof search, the
proof search procedure with bracket induction would not slow down the parsing
workflow. Unfortunately, the running time is still exponential. In the previous
section we have discussed why the pseudo-polynomial algorithm for the Lambek
calculus with brackets presented in [5] is still not enough to build a polynomial-
time version of CatLog. The interesting open question here is whether there is
an algorithm for parsing in Lb with polynomial runtime for bounded type com-
plexity but unbounded bracket nesting depth, or there is NP-hardness arising
from deeply nested brackets even with shallow types.
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Abstract. This paper discusses a common variety of ellipsis phenomena
in English called Stripping, with particular focus on the observation of so-
called anomalous scope of negation and auxiliaries in Stripping sentences,
and the difficulties that this data poses for existing analyses of Stripping.
I then propose an extension to a recent Hybrid Type-Logical Categorical
Grammar account of Gapping that adequately covers Stripping while
straightforwardly accounting for the scope anomalies. This anomalous
scope is a fascinating formal problem on the syntax-semantics interface
that has been thus far overlooked in the stripping literature.
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1 Introduction

Stripping is common variety of ellipsis in English. Analyses of this kind of con-
struction, have been stymied by Stripping’s uncertain relationship with Gapping,
and the semantic puzzle of anomalous scope. I investigate these problems through
the use of a categorical framework with a flexible Syntax-Semantics interface,
and present an analytical fragment to make steps towards addressing these issues
in tandem.

This paper is organized as follows. Section 2 introduces the main phenom-
ena discussed in this paper, Stripping and Anomalous Scope, in the context of
the problem of Ellipsis and existing work on Gapping. Section 3 demonstrates
why Stripping cannot just be analyzed as a simpler base-case of Gapping, but
is a rather different phenomenon altogether. Section 4 discusses Low-VP Coor-
dination, the main alternative analysis that accounts for Anomalous Scope in
Gapping, and outlines how that analysis could be extended to cover Stripping.
Section 5 outlines the theoretical shortcomings of such an extension, and the
problems that still remain for a satisfactory account of Stripping and Anoma-
lous scope. Section 6 introduces the HTLCG framework as required for the cur-
rent analytical fragment. Section 7 introduces the analysis of English stripping
in terms of HTLCG. It is also demonstrates how the wide and distributed scope
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readings of modals and auxiliaries obtain. Finally, Sect. 8 provides a discussion
of the larger problem of Anomalous scope in English beyond Stripping and Gap-
ping, and its extensions to other scope-taking modals and auxiliaries than simply
negation.

2 Stripping, Gapping, and Anomalous Scope

The problem of ellipsis can be informally defined as cases where the following
four facts hold:

(1) a. Something is uttered that doesn’t look (by itself) to be a “fully
formed” sentence.

b. The utterance is nonetheless taken to have a “fully-formed” meaning.
c. The meaning of the utterance is highly dependent on the context in

which it is uttered.
d. Speakers, given the same context, generally agree on the exact “fully

formed” meaning of the utterance.

It is fairly uncontroversial that (2-a) and (2-b) below are indistinguishable in
terms of their truth conditional content.1 (2-a) is simply an example of sentential
coordination. (2-b), on the other hand, is an example of what is commonly
referred to in the literature as Stripping [4,5,22].

(2) a. John ate a burger, and Mary ate a burger (too).
b. John ate a burger, and Mary (too).

The following sentences also mean roughly the same thing. Example (3-a)
is also again simply sentence coordination, while (3-b) is an example of what is
commonly referred to as Gapping [7–9,17,18,20].

(3) a. John ate a burger, and Mary ate a sub.
b. John ate a burger, and Mary a sub.

While (2-b) and (3-b) may appear very similar, a survey of linguistic data
reveals that there are generally four main parts of these kinds of construc-
tions, and that these components behave in predictably different ways. In both
(2-b) and (3-b), there are two conjuncts. In both cases, the first conjunct, John
ate a burger, could be a fully satisfactory standalone sentence, while the second
conjunct, Mary (too) or Mary a sub, couldn’t, because there is stuff in the first
conjunct that is missing from the second one. I refer to this ‘missing’ material
that is only present in the first conjunct as the continuation. The parts of the
two conjuncts that aren’t missing parallel each other. I call this overt material
in the non-sentential conjunct the associate, while I call its counterpart in the
more full antecedent conjunct the focus. The bits left over connecting the first
1 Assuming we aim for the reading of (2-b) in which Mary is an eater, which is a

case of subject-stripping, rather than the reading in which John is a cannibal, which
would be object-stripping.
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and second conjuncts together I shall call the functor. Thus in the following
Stripping and Gapping examples, the focus and associate are in small caps,
the continuation is underlined, and the functor is in bold. (4-a) and (4-b) are
both examples of Stripping, while (4-c) and (4-d) are parallel Gapping examples.

(4) a. Either John applied for the job, or Sandy.
b. Mary told John about the job, and Sandy, (too).
c. Either John applied for the job, or Sandy the grant.
d. Mary told John about the job, and Sandy the grant.

These examples make it plain to see one descriptive generalization that we
can use to pretheoretically distinguish between Stripping and Gapping sentences.
In the case of Gapping, the focus , “John ... the job” is a non-contiguous
string. In the case of Stripping however, the focus , here “John,” is a con-
tiguous string. This observation turns out to be a simple and effective way of
distinguishing Stripping constructions from Gapping ones without having to
appeal to theoretically-motivated assumptions.

One thing that both Stripping and Gapping (among other constructions)
exhibit is a peculiar semantic phenomenon whereby negation that appears inside
of one disjunct can scope widely over the entire disjunction ([17,21]). Just as
bizarre is the observation that in the same sentence, if the reading is forced
where negation doesn’t have wide scope, it does not have narrow scope just in
the first disjunct where it physically appears, but rather is distributed to both
disjuncts. Thus, for a sentence such as (5) below, we can obtain readings for
wide scope negation as in (5-a), or distributed negation as in (5-b), but the
narrow scope negation reading in (5-c) is unavailable. While the distributed
reading is expected, the wide scope reading in (5-a) where negation scopes over
disjunction is what is referred to as anomalous scope. It is important to note
that this effect is not limited to negation, however, but occurs for a range of
modals and auxiliaries.

(5) John can’t sleep, or Mary.
a. Wide-Scope Negation ¬�(sleep(j) ∨ sleep(m))

(i) John can’t sleep and Mary can’t sleep.
b. Distributed Negation ¬(�sleep(j)) ∨ ¬(�sleep(m))

(i) It’s not the case that (both) John can sleep and Mary can sleep.
c. Narrow-scope Negation ¬(�sleep(j)) ∨ �sleep(m)

(i) It’s the case that John can’t sleep, or Mary can sleep (or both).

3 Stripping Isn’t Just Simple Gapping

Before moving on to analyses of stripping, it is worth taking stock of where we
are at the moment, and what the empirical facts of Stripping tell us. Section 2
demonstrated a fairly simple way of telling Stripping and Gapping apart, that
being that in the case of Stripping, the focus is a single contiguous string, while
the focus in a Gapping sentence can be noncontiguous. It is tempting to thus
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think of Stripping as simply the simplest possible kind of Gapping, as a sort of
contiguous base-case. But even a casual survey of the facts demonstrates that
Stripping and Gapping act in very different ways, which reflect the fact that
they are surprisingly distinct phenomena, and thus my treatment of Stripping
functions very differently than the account of Gapping from which it originates.

One important difference between Stripping and Gapping is that the set of
functors that can be felicitously used in Stripping constructions only partially
overlaps with the set of functors in Gapping sentences. This can be seen below
where (6)a, c, and e are perfectly fine Stripping constructions, but don’t work
as Gapping constructions.

(6) a. John went to the store before Mary.
b. *John went to the store before Mary the beach.
c. John went to the store, then Mary.
d. *John went to the store, then Mary the beach.
e. John went to the store, but not Mary.
f. *John went to the store, but not Mary the beach.

In addition, it is widely recognized that Gapping does not allow extraction
from embedded clauses. [22,29] While Stripping is not as free as Pseudogapping,
for instance, it can extract from embedded clauses, especially when there is no
overt complementizer, such as that. Examples such as these also prevent one
from being able to treat cases of object stripping as simply NP coordination
with unusual prosody.

(7) a. John would go to the movies with Linda, but I very much doubt
anyone else/Charlie.

b. *John would go to the movies with Linda, but I very much doubt Bill
Charlie.

The foregoing facts make clear that there are important differences between
Stripping and Gapping, which contraindicate any simple assimilation of the for-
mer into the latter.

4 Alternative Approach: Stripping as Low-VP
Coordination

While to my knowledge there have been no analyses proposed for Stripping that
account for the anomalous scope problem described above, such proposals have
been made for Gapping. One such line of analysis, first proposed in [7], is the
Low VP-Coordination analysis.

It is well accepted in the mainstream generative literature [22,29] that Strip-
ping is not a movement-based phenomenon like fronting or scrambling, and so
most contemporary analyses in that syntactic framework treat Stripping as some
sort of coordination and ellipsis. Thus, an alternative analysis to my proposal
is to move everything but the remnants out of the conjoined phrase, and either
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deleting or merging together what’s left to obtain the correct surface string.
Johnson [7], along with updated versions in [9,10] takes just this tack, and gives
the main alternative analysis of Gapping that simultaneously has some success
accounting for the scope anomalies of Gapping and Stripping discussed in Sect. 2.

Under Johnson’s analysis, what appears to be clausal coordination is actually
VP coordination where the subject is removed from the conjuncts via Across-
The-Board (ATB) movement, that is symmetrically, and into a position higher
in the syntactic tree that scopes over the whole coordinate VP phrase. The
second thing that happens is that there is a second special, non-ATB movement
whereby the subject of the first conjunct is moved to the Spec position of the
matrix AgrP, which preserves the surface word order of Subject1-Verb-VP1-
Conj-subject2-VP2, without having the verb trapped within the first conjunct,
by similarly allowing the subject of the first conjunct to trivially scope over the
entire sentence. His analysis is demonstrated in (8-b) below, where the verb play
is ATB moved out of both conjuncts to scope over them, and then the subject
Kim is non-ATB moved to Spec ArgP. This last move is semantically vacuous,
and not uncontroversial within Johnson’s own research program, but is essential
to his analysis of Gapping.

(8) a. Kim didn’t play Bingo, or Sandy Chess.
b. [AgrP Kimi [Agr didn’t [TP playj [VP [VP [DP Kimi] [VP playj

Bingo ] or [VP [DP Sandy ] [VP playj Chess] ] ] ] ] ]

This analysis is straightforward to adapt to Stripping cases, with two tweaks.
First I consider subject Strips, cases where the focus and associate are
subjects. For subject Strips, the analysis requires that the entire VP (the
continuation) be moved symmetrically out of both conjuncts to a wide scope
position instead of just the V node as in (8-b) above.

(9) a. Kim didn’t play bingo on Saturday, or Sandy.
b. [AgrP Kimi [Agr didn’t [TP [VP play bingo on Saturdayj ] [VP [VP

[DP Kimi ] [VP play bingo on Saturdayj ] ] or [VP [DP Sandy] [VP
play bingo on Saturdayj ] ] ] ] ] ]

But Stripping sentences, like Gapping sentences, come in more than one
variety. If the focus and associate are objects, rather than subjects, the Low-
VP coordination analysis requires a slightly different change. Because now there
is asymmetric movement required of the object instead of the subject, we can’t
simply ATB move the entire VP. However, there is nothing stopping us from ATB
moving each part of the VP aside from the Object, as indicated by the traces
in (10-b). The three bold movements in (10-b) clearly show how the change of
the location of the focus between (9-b) and (10-b) is reflected in the analysis in
the form of the asymmetric movement of a DP, while the same component can
be ATB moved in the other case.
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(10) a. Kim didn’t play bingo on Saturday, or chess.
b. [AgrP Kimi [Agr didn’t [TP [VP [VP [V playj ] [DP bingok ] ]

[PP on Saturdayl ] ] [VP [VP [DP Kimi] [VP [VP [V playj ] [DP
bingok ] ] [PP on Saturdayl ] ] ] or [VP [DP Kimi] [VP [VP [V
playj ] [DP chess ] ] [PP on Saturdayl ] ] ] ] ] ] ]

5 Contraindicators to Low-VP Coordination

As we can see, the crux of the Low-VP coordination account is the movement
of what we call the continuation and focus by a mixture of symmetrical ATB
and asymmetrical means to get the word order to work out correctly, thereby
allowing the negative auxiliary to obtain wide scope over the disjunction.

The main problem here is a lack of any independently motivated mechanism
to determine how the multiple elements can be moved and dealt with, while pre-
serving word order. While this problem was noted in [17] for Gapping, it is more
complicated for Stripping. First, this is a problem in the case of a wide-scope
auxiliary such as the modal negation in (10-b), where ‘play,’ ‘bingo,’ and ‘on
Saturday’ must be individually moved out of one or both conjuncts, to somehow
end up back in the same order. This problem only gets worse if we need to get
distributed-scope negation in the semantics, because the negation must originate
in the conjuncts, and then be ATB moved out to its surface position above the
coordinate phrase.

As shown in (11) below, even without the extra complexity introduced by
Johnson’s split scope analysis of negative auxiliaries, there are already 24 (4!)
different possible ways that ‘didn’t,’ ‘kim,’ ‘play,’ and ‘bingo’ could be ordered,
But there is no mention of any mechanism for ensuring that these elements end
up in the correct surface ordering.

In addition, given that the movement required in Johnson’s account is A′-
movement, there has to be an XP head to move these parts into. But even
in a theory with Larsonian shells, such XPs would be part of the conjuncts
themselves, not the new matrix clause scoping over them. The problem is worse
than just not being able to order the evacuated constituents correctly, there’s
no independently-motivated place for them to go! This problem is unchanged
in a movement-and-deletion style analysis where, due to deletion being required
to apply to whole XPs, the idea is to evacuate th surviving constituents out of
the XP, while whatever remains ends up deleted. [6,23] This remains a problem
even there as the initial movement is still problematic.

Thus, even if we were to take solace in the fact that Stripping does not
introduce the vexing problem of a discontinuous focus and associate in the
same way that Gapping does, this analysis would still hit a dead end in precisely
the same manner as described in Kubota and Levine’s [17] rebuttal of this kind
of analysis for Gapping. In short, despite the fact that Stripping only allows
a single contiguous focus , this Low-VP Coordination analysis is still equally
unable to account for the required readings of wide and distributed scope.
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(11) Kim didn’t play bingo or chess.
Distributed reading: ¬(play(bingo)(k)) ∨ ¬(play(chess)(k))

6 Hybrid Type-Logical Categorial Grammar

My analysis of English Stripping and the associated scope anomaly discussed ear-
lier are presented using the Hybrid Type-Logical Categorial Grammar (HTLCG)
framework. This section contains the minimum description needed to explain the
layout of HTLCG and how it works. The reader is referred to Kubota & Levine,
Hybrid Type Logical Categorial Grammar (ms., http://ling.auf.net/lingbuzz/
002313) for a full formulation of the framework.

HTLCG is based on the Lambek Calculus [19], with one additional non-
directional mode of implication, and developed in Kubota [11,15], and Kubota
and Levine [12–14,16,17]. The flexible syntax-semantics interface of this sys-
tem is useful for studying linguistic phenomena that have implications in both
domains, such as coordination, scope, and ellipsis. Readers familiar with HTLCG
may wish to skip straight to Sect. 7.1.

Linguistics expressions in HTLCG are represented as tuples 〈φ; σ; κ〉 where φ
is the phonological string, σ is the semantic term, and κ is the syntactic type. In
this framework, syntactic type is synonymous with syntactic category. Examples
(12-a,b) below are NPs, (12-c) is a one-place predicate, and (12-d) is a two-place
predicate.

(12) Sample Lexicon:
a. John; j; NP
b. bingo; b; NP
c. sleeps; sleep; NP\S
d. eats; eat; (NP\S)/NP

http://ling.auf.net/lingbuzz/002313
http://ling.auf.net/lingbuzz/002313
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The / and \ are the normal mode of Lambek directional implication where
the argument falls under the slash and the functor is above. Thus A/B is an
expression looking for an argument of type B on its right, while A\B denotes
an expression looking for an argument of type A on it’s left. In HTLCG there is
one additional mode of implication, �, which is a directionless mode of implica-
tion similar to � in Curryesque categorial grammars. While both / and \ are
directional modes of implication that are looking for adjacent peripheral argu-
ments, � is able to take arguments from anywhere, and is often used to denote
continuations, an expression missing an argument from a medial position within
itself, and other discontinuous linguistic expressions.

(13) HTLCG Elimination rules

a; F; A/B b; G; B
/E

a·b; F(G); A
b; G; B a; F; B\A \E

b·a; F(G); A

a; F; A�B b; G; B �E
a(b); F(G); A

The elimination rules are different modes of modus ponens. The /E rule
allows a functor to take an argument on its right periphery, while the \E rule
allows the same but on the left periphery. the �E rule allows the functor to take
an appropriately typed argument from anywhere. While this may seem overly
powerful, phonological string ordering is still maintained via functional prosody.2

The · connective is for phonological string concatenation, and is associative in
both directions.

2 One reviewer points out a potential problem with the underlying logic of the � con-
nective. As discussed in [25], it can allow for undesired overgeneration, particularly
in cases such as determiner gapping and stripping. The problem is that the �E rule
only requires that the syntactic categories match, and is insensitive to the end linear
order resulting from prosodic function-application. This means that it does not nec-
essarily require the end result of prosodic function-application to match the order of
the hypothetical expressions used in the �I rule to derive the original continuation
in the first place.

However, the author does not consider this criticism to be an existential threat
to the present analysis for several reasons. First, while it is clear that the current for-
mulation of the �, coupled with its use in some lexical entries, is problematic, further
research is required to determine if this issue can be solved through minor tweaks to
the system or if it will require wholesale revisions of the underlying logic. Secondly,
the present analysis, though couched HTLCG, is readily adaptable into other CG
and TLG frameworks, such as the Displacement Type-Logical Grammar of [24], as
noted by Morrill and Valentin in [25]. Thus, even if this observation proves a major
obstacle for HTLCG as a framework in its current form, it would not necessarily
invalidate the results of the current analysis.
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(14) HTLCG Introduction Rules

[φ; x; A]n

...
...

...
b·φ; F; B

/In
b; λx[F]; B/A

[φ; x; A]n

...
...

...
φ·b; F; B \In

b; λx[F]; A\B

[φ; x; A]n

...
...

...
b; F; B �In

λφ[b]; λx[F]; B�A

The introduction rules enable hypothetical reasoning, and are typically con-
sidered more abstract and harder to intuit, but play an equally important role
in the overall logic of the deductive system. For the purposes of the present
analysis, the introduction rules are often used when type-raising and lowering
linguistic expressions, and when deriving the signs corresponding to noncon-
tiguous constituents, such as the aptly named continuation from (4-b) above,
Mary told...about the job. To derive that expression, we could hypothesize an
NP, for example, [φ; x; NP]i, where the superscript i is tracking the index of
the hypothesized element. After using the elimination rules to derive the string
Mary·told·φ·about·the·job of type S, we could use the �I rule to discharge our
hypothesized NP and obtain the type of our continuation in (15), which denotes
a discontiguous expression that would be an S, if it had a medial NP argument.

(15) λφ[Mary·told·φ·about·the·job]; λx[told(about job)(x)(m)]; S�NP

There is a transparent syntax-semantics mapping from syntactic categories
to semantic types in HTLCG. As issues related to the intensionality or exten-
sionality of our semantics are not directly related to the problem of stripping,
this analysis employs a fragment of standard extensional Montagovian model-
theoretic semantics in the current analysis as described in Kubota and Levine
[2014] and [2015a]:

(16) a. e and t are semantics types
b. if α and β are semantic types, then so is α → β
c. Nothing else is a semantic type

Syntactic categories are can be mapped to semantic types by a function SEM,
defined below.

(17) a. SEM(NP) = e
b. SEM(S) = t
c. SEM(Sbse) = t
d. SEM(W) = t
e. For any categories A and B:
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(i). SEM(A/B) = SEM(B)→ SEM(A)
(ii). SEM(A\B) = SEM(A)→ SEM(B)
(iii). SEM(A�B) = SEM(B)→ SEM(A)

In addition, for the phonological string, we can define a function SAY to map
the syntactic category to a phonological type.

(18) a. For any atomic syntactic type A:
(i) SAY(A) = string

b. For any categories A and B:
(i) SAY(A/B) = string
(ii) SAY(A\B) = string
(iii) SAY(A�B) = SAY(B)→ SAY(A)

In the sections and analytical fragment that follows, I make use of the fol-
lowing variables in (19).

(19) a. Prosodic variables:
(i) φ, ψ - string
(ii) σ - string → string

b. Semantic Variables:
(i) x, y, z - e
(ii) P, Q - e → t
(iii) R - (e → t) → (e → t)

In addition to the normal prosodic and semantic variables, HTLCG also
includes metavariable over syntactic categories, as a kind of type schema. This
allows HTLCG to capture certain empirical facts about language more effi-
ciently by generalizing lexical entries. For instance, the category of conjunction
in English is typically taken to be X\X/X. That is, something that, for any
category X, returns an expression of type X if there is an expression of type
X on its right and its left. Importantly, however, when such a lexical entry is
introduced as part of a proof, all instances of the same metavariable receive the
same category assignment. Thus the X\X/X entry for conjunction above could
be realized in a proof as NP\NP/NP, S\S/S, or even (NP\N)\(NP\N)/(NP\N).
However, NP\(NP\N)/(NP\N) would not be a legal type assignment, because
it would require X to simultaneously be of type NP in one instance, and type
NP\S in another.

We will use the following primitive syntactic categories for this fragment.
NP is the syntactic category of Noun Phrases such as John and bingo. S is the
syntactic category of tensed clauses, which are acceptable final outputs of the
grammar. Sbse is the type of base or untensed clauses. Finally we have W, a so-
called “poltergeist category.” W is a type that can be legally used in the course
of a derivation, but there are no lexical constants of type W, so it a useful, albeit
uninhabited type, in the spirit of [26], though the actual implementation here is
different from the original version in GPSP. W is a category that corresponds
to Troelstra’s 0 in intuitionist linear logic, representing multiplicative False in
the syntax in HTLCG. [28] The grammar does not generate any signs of just
category W in the lexicon, and the tecto logic of categories cannot prove W. In
effect, a derivation that results in a W indicates ungrammaticality.
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7 HTLCG Analysis of Stripping

7.1 Basic Stripping

The following proof demonstrates how compositional meaning of a very simple
Stripping sentence, John slept, and Mary too can be derived, and introduces the
Stripping operator in (21) below. First the associate and focus are fed to the
Stripping operator, which in its current version is baked into the main functor.
Then we feed the continuation to the functor, and β-reduce to distribute the
semantics of the continuation to the two conjuncts.

In the phonological tuple, the Stripping operator in (20-d) takes in the
associate before taking in the focus and passing that string along to the
continuation. In the semantics, the operator similarly takes both the associate
and focus, but in this case it passes both arguments along to the continuation,
slept, in the final step of the derivation. In this way the operator obtains the
desired surface string and semantic denotation of Stripping by distributing the
meaning of the continuation to both conjuncts, without a corresponding sym-
metric appearance of the phonological string.

(20) John slept, and Mary, too.
a. John; j; NP
b. Mary; m; NP
c. slept; sleep; NP\S from which we can freely derive 3:

(i) λφ[φ·slept]; λy[sleep(y)]; S�NP
d. λφλψλσ[σ(ψ)·and·φ·too]; λyλxλP[P(x)∧P(y)]; Y�(Y�X)�X�X

(21)
John;

j;
NP

λφλψλσ[σ(ψ) ·and·φ·too];
λyλxλP[P(x)∧P(y)];
S�(S�NP)�NP�NP

Mary;
m;
NP

�E
λψλσ[σ(ψ) ·and·Mary·too];

λxλP[P(x)∧P(m)];
S�(S�NP)�NP �E

λσ·[σ(John)·and·Mary·too];
λP[P(j)∧P(m)];

S�(S�NP)

λφ[φ·slept];
λy[sleep(y)];

S�NP
�E

John·slept·and·Mary ·too; sleep(j)∧sleep(m); S

We now turn to negation Stripping, as in (22) below. As in the case of con-
junction Stripping, this kind of Stripping sentence can also be compositionally
derived in a straightforward manner with only minor changes to the phonologi-
cal and semantic tuples of the Stripping operator’s lexical entry. Similarly to the
conjunction Stripping derivation, we first feed the associate and focus to the
operator built into the main functor, before feeding in the continuation,
and then β-reducing to obtain our final sentence.
3 This vertically-slashed version of slept can be derived simply via hypothetical rea-

soning:

[φ; y; NP]i slept; sleep; NP\S

φ·slept; sleep(y); S
�Ii

λφ[φ·slept]; λy[sleep(y)]; S�NP
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(22) John slept, not Mary.
a. λφλψλσ[σ(ψ)·not·φ]; λyλxλP[P(x)∧¬P(y)]; Y�(Y�X)�X�X

John; j; NP

λφλψλσ[σ(ψ)·not·φ];
λyλxλP[P(x)∧¬P(y)];

S�(S�NP)�NP�NP
Mary; m; NP

�E
λψλσ[σ(ψ) ·not·Mary];
λxλP[P(x)∧¬P(m)];

S�(S�NP)�NP �E
λσ·[σ(John)·not·Mary]; λP[P(j)∧¬P(m)]; S�(S�NP)

λφ[φ·slept];
λy[sleep(y)];

S�NP �E
John·slept·not·Mary]; sleep(j)∧¬sleep(m); S

Similarly to the two above examples, other kinds of basic Stripping construc-
tions such as those below in (23) can be derived with only minor tweaks to the
Stripping operator.

(23) a. John slept, and Mary.
b. John slept, or Mary.
c. Either John slept, or Mary.
d. Neither John slept, nor Mary.
e. John slept, then Mary.

This analysis for stripping also obtains for object and medial stripping,
as demonstrated below for medial object stripping, which cannot otherwise
be straightforwardly captured by a coordination analysis. First, we derive the
continuation, Mary edited φ in the park. Then we feed the associate and focus
to the Stripping operator as before, and finally combine to derive an S.

(24) Mary edited the paper in the park, and the journal, too.

(25) Mary;
m;
NP

edited; edit;
(NP\S)/NP

[φ; x; NP]i

/E
edited·φ;

edit(x); NP\S
in·the·park; inpark;

(NP\S)\(NP\S) \E
edited·φ·in·the·park;
inpark(edit(x)); NP\S \E

Mary·edited·φ·in·the·park; inpark(edit(x)(m)); S
�Ii

λφ[Mary·edited·φ·in·the·park]; λx[inpark(edit(x)(m))]; S�NP

(26) the·paper;
paper;

NP

λφλψλσ[σ(ψ)·and·φ·too];
λyλxλP[P(x)∧P(y)];
S�(S�NP)�NP�NP

the·journal;
journal;

NP
�E

λψλσ[σ(ψ)·and·the·journal·too];
λxλP[P(x)∧P(journal)];

S�(S�NP)�NP �E
λσ[σ(the·paper)·and·the·journal·too];

λP[P(paper)∧P(journal)];
S�(S�NP)
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(27)

λφ[Mary·edited·φ·in·the·park];
λx[inpark(edit(x)(m))];

S�NP

λσ[σ(the·paper)·and·the·journal·too];
λP[P(paper)∧P(journal)];

S�(S�NP)
Mary·edited·the·paper·in·the·park·and·the·journal·too;

inpark(edit(paper)(m))∧inpark(edit(journal)(m));
S

7.2 Wide Scope of Negation

This section briefly presents derivations of the following sentences in (28) to
build up to a proper analysis of Stripping sentences with wide scope negation
under disjunction.

Derivations are provided below for the following examples in order of increas-
ing complexity.

(28) a. John didn’t sleep.
b. John didn’t sleep, or Mary.

We then consider wide-scope negation under disjunction demonstrating an
approach to negation, which is applicable more generally than in (22) above,
where negation was built into the functor. To this end, we adopt an analysis
of negation similar to the prior analyses of modal auxiliaries as VP/VP opera-
tors along the lines of [17], and [27], in the tradition of Bach [1–3], yielding a
straightforward integration of modals into the current analysis. To demonstrate
this consider the derivation below of the sentence in (28-a).

(29) Lexical entry for Auxiliaries:
λσ[σ(didn’t)]; λF[¬F(λP[P])]; S�(W�((NP\W)/(NP\Sbse)))

Example (29) above is our lexical entry for the auxiliary didn’t. As men-
tioned previously, if one is not concerned with agreement, it’s possible for the
purposes of this analysis to think of W as a funny looking Sbse, in which
case the syntactic type of the above auxiliary resembles the more familiar
S�((Sbse�(NP\Sbse)/(NP\Sbse))), an expression that returns an S if given some-
thing that would be an Sbse but is missing a (NP\Sbse)/(NP\Sbse) modifier in
some medial position. In the proof of (28-a) below, we can see how this auxiliary
can be used in a normal sentence without stripping or other ellipsis. We first
posit φ, a hypothetical Verb Phrase modifier, and combine it with sleep and
John, before we then discharge that hypothesis via �I to obtain a continuation
λφ[John·φ·sleep]. This expression is then taken as an argument by the higher
order auxiliary. An alternative proof strategy is, rather than type-raising John...
sleep, to instead lower didn’t into a lower-order (ie Lambek-slashed) category as
demonstrated later on in (36).
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(30) Derivation of (28-A) John didn’t sleep.

λσ[σ(didn’t)];

λF[¬F(λP[P])];

S�(W�((NP\W)/(NP\Sbse)))

John;
j;
NP

[φ;

R;

(NP\W)/(NP\Sbse)]
a

sleep;
sleep;

(NP\Sbse)
/E

φ·sleep; R(sleep); (NP\W)
\E

John·φ·sleep; R(sleep(j)); W
�Ia

λφ[John·φ·sleep]; λR[R(sleep(j))]; W�((NP\W)/(NP\Sbse))

�E
John·didn’t·sleep; ¬(sleep(j)); S

All necessary elements are now available to derive a proof of (28-b) John
didn’t sleep or Mary using a disjunction version of the Stripping operator from
Sect. 1 above:

(31) λφλψλσ[σ(ψ)·or·φ]; λyλxλP[P(x)∨ P(y)]; Y�(Y�X)�X�X
Since we are Stripping again now, we need a vertically-slashed type predi-

cate with the appropriate arguments to be saturated later on via hypothetical
reasoning.

(32)
[ψ;
x;

NP]b

[φ;
R;

(NP\W)/(NP\Sbse)]a

sleep;
sleep;

(NP\Sbse) /E
φ·sleep; R(sleep); (NP\W)

\E
ψ·φ·sleep; R(sleep)(ψ); W

�Ib
λψ[ψ·φ·sleep]; λx[R(sleep(x))]; W�NP

We supply signs corresponding to the focus and associate to the Stripping
operator, and then pick up the W�NP-typed predicate to yield John φ sleep
or Mary. We then need to discharge the other assumed (NP\W)/(NP\Sbse)
expression to obtain a syntactic type that didn’t is looking for.

(33)
λψ[ψ·φ·sleep];

λx[R(sleep(x))];
W�NP

John;
j;
NP

Mary;
m;
NP

λφλψλσ[σ(ψ)·or·φ];
λyλxλP[P(x)∨ P(y)];
W�(W�NP)�NP�NP �E

λψλσ[σ(ψ)·or·Mary];
λxλP[P(x)∨ P(m)];
W�(W�NP)�NP �E

λσ[σ(John)·or·Mary];
λP[P(j)∨ P(m)];

W�(W�NP)
John·φ·sleep·or·Mary; R(sleep(j))∨ R(sleep(m)) W �Ia

λφ[John·φ·sleep·or·Mary]; λR[R(sleep(j))∨ R(sleep(m))]; W�((NP\W)/(NP\Sbse))

The VP operator didn’t then combines with the sign derived in (33), yielding
the correct semantics for (28-b).

(34)

λσ[σ(didn’t)];
λF[¬F(λP[P])];

S�(W�((NP\W)/(NP\Sbse)))

λφ[John·φ·sleep·or·Mary];
λR[R(sleep)(j)∨ R(sleep)(m)];

W�((NP\W)/(NP\Sbse))
John·didn’t·sleep·or·Mary;

¬(sleep(j)∨ sleep(m));
S
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Finally, suppose we wanted to derive the other version of (28-b), but with
the distributed-scope negation reading, as in (35-b) below:

(35) a. John didn’t sleep or Mary.
b. ¬sleep(j) ∨ ¬sleep(m)

This is not a problem for my analysis, and falls out naturally from the lexicon
and fragment presented thus far. We are simply required to derive a lower-order
version of the auxiliary.

Deriving Lower-Order Auxiliaries. In HTLCG, we can derive a lower-order
version of our (by default) higher-order VP/VP auxiliaries by hypothesizing
the needed arguments, and then discharging those hypotheses on the periphery.
Kubota and Levine [2016] contains an identical derivation in their appendices,
demonstrating how to lower the modal auxiliary. I repeat it here for convenience.

HTLCG assumes that modal auxiliaries are higher-order Verb Phrase modi-
fiers. As demonstrated in Sect. 6.2, this higher-order entry yields the wide-scope
modal and negation semantics and partially solves the problem of anomalous
scope. But oftentimes a lower-order version of these same modals are required,
such as in cases of distributed scope. However, this does not require HTLCG to
have two different entries for auxiliaries. Rather, the lower-order version can be
derived as a theorem from the higher-order entry via hypothetical reasoning.

In the place of john and sleep in (36), we posit variables to derive an expres-
sion of type W�((NP\W)/(NP\Sbse)) which then combines with our higher-order
auxiliary to yield an S. Then, by directional slash elimination, we derive an
expression of type NP\S. finally, with one more directional slash introduction,
we obtain (NP\S)/(NP\Sbse), the type of lower-order auxiliary.

(36)

λσ[σ(didn’t)];

λF[¬F(λP[P])];

S�(W�((NP\W)/(NP\Sbse)))

[φ;
x;
NP

]a

[φ;

R;

(NP\W)/(NP\Sbse)
]b

[φ;

Q;

(NP\Sbse)
]c

φb·φc; R(Q); (NP\W)

φa·φb·φc; R(Q)(x); W
�Ib

λφb[φa·φb·φc]; λR[R(Q)(x)]; W�((NP\W)/(NP\Sbse))

λφb[φa·φb·φc] (didn’t); ¬λR[R(Q)(x)](λP[P]); S
β ⇒

φa·didn’t·φc; ¬λP[P](Q)(x); S
β ⇒

φa·didn’t·φc; ¬Q(x); S \Ia
didn’t·φc; λx[¬Q(x)]; NP\S

/Ic
didn’t; λQλx[¬Q(x)]; (NP\S)/(NP\Sbse)

With the lower-order auxiliary in hand as a theorem of the higher-order
lexical entry and the inference rules of HTLCG, we straightforwardly obtain the
distributed reading of negation and modals in Stripping.

First we once again derive the vertically-slashed type of sleep, but this time
our hypothetical auxiliary is (NP\S)/(NP\Sbse) rather than (NP\W)/(NP\Sbse):
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(37) [ψ; x; NP]b
[φ; R; (NP\S)/(NP\Sbse)]a sleep; sleep; (NP\Sbse)

φ·sleep; R(sleep); NP\S
ψ·φ·sleep; R(sleep)(x); S

�Ib
λψ[ψ·φ·sleep]; λx[R(sleep)(x)]; S�NP

We then feed our focus, associate, and verb to the Stripping operator,
and β-reduce, exactly the same as in (33) above.

(38)

λψ[ψ·φ·sleep];
λx[R(sleep)(x)];

S�NP

John; j; NP

Mary, m, NP

λφλψλσ[σ(ψ)·or·φ];
λyλxλP[P(x)∨ P(y)];

S�(S�NP)�NP�NP

λψλσ[σ(ψ)·or·Mary]; λxλP[P(x)∨ P(m)]; S�(S�NP)�NP

λσ[σ(John)·or·Mary]; λP[P(j)∨ P(m)]; S�(S�NP)

λψ[ψ·φ·sleep](John)·or·Mary; λx[R(sleep)(x)](j)∨ λx[R(sleep)(x)](m); S
β ⇒

John·φ·sleep·or·Mary; R(sleep)(j)∨ R(sleep)(m); S
�Ia

λφ[John·φ·sleep·or·Mary]; λR[R(sleep)(j)∨ R(sleep)(m)]; S�((NP\S)/(NP\Sbse))

Now we simply combine our continuation with the regular VP/VP auxiliary,
to get the distributed-scope negation reading.

(39)

didn’t;
λQλx[¬Q(x)];

((NP\S)/(NP\Sbse))

λφ[John·φ·sleep·or·Mary];
λR[R(sleep)(j)∨ R(sleep)(m)];

S�((NP\S)/(NP\Sbse))
John·didn’t·sleep·or·Mary; ¬sleep(j)∨ ¬sleep(m)]; S

7.3 Strip-Gapping

One prediction of this analysis is that there is nothing stopping one from Gapping
with a Stripping sentence functioning as one of the conjuncts, and indeed this
kind of sentence does appear to exist, as in (40) below. Robin drinks vodka, and
scotch too can be treated as a straightforward Strip, the likes of which we have
already seen before. Robin drinks vodka, and Leslie, gin also looks like a normal
Gapping sentence. We know how to handle those too. The trick is to derive the
Stripping sentence such that it ends up as something of type S�((NP\S)/NP),
or in other words, something that would be a sentence if its gap for a medial
transitive verb were filled.

The way to do this is relatively simple. Just Strip as normal, but with the
exception of using a dummy hypothetical transitive verb instead of “drinks” for
the time being. Lambda abstract out the dummy verb at the end of the Stripping
operation to obtain the requisite expression of type S�((NP\S)/NP). Secondly,
derive Leslie...gin as usual in the Gapping analysis put forth in Kubota and
Levine 2016, to also obtain an expression of type S�((NP\S)/NP). Then, those
two expressions are combined using the Gapping operator from Kubota and
Levine 2016. Finally, feed in the transitive verb “drink”, resolve the generalized
conjunction, and β-reduce.
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(40) Robin drinks vodka, and scotch too, and Leslie, gin.

drinks;
drink;

(NP\S)/NP

Robin;
r;
NP

[φ6;
P ;

(NP\S)/NP]
j

[x;
x;
NP]

i

/E
φ6·x;
P(x);
NP\S \E

Robin·φ6·x;
P(x)(r);

S �Ii
λx[Robin·φ6·x];

λx[P(x)(r)];
S�NP

vodka;
vodka;
NP

λφ1λψλσ0[σ0(ψ)·and·φ1·too];
λyλxλP[P(x)∧P(y)];
S�(S�NP)�NP�NP

scotch;
scotch;
NP

�E
λψλσ0[λσ0(ψ)·and·scotch·too];

λxλP[P(x)∧P(scotch)];
S�(S�NP)�NP �E

λσ0[λσ0(vodka)·and·scotch·too];
λP[P(vodka)∧P(scotch)];

S�(S�NP) �E
λσ0[λσ0(vodka)·and·scotch·too](λx[Robin·φ6·x]);

λP [P(vodka)∧P(scotch)](λx[P(x)(r)]);
S

β ⇒
Robin·φ6·vodka·and·scotch·too;
P(vodka)(r)∧P(scotch)(r);

S �Ij
λφ6[Robin·φ6·vodka·and·scotch·too];

λP [P(vodka)(r)∧P(scotch)(r)];
S�((NP\S)/NP)

λσ2λσ1λφ2[σ1(φ2)·and·σ2(ε)];
λW λV [V�W ];

(S�((NP\S)/NP))�(S�((NP\S)/NP))�(S�((NP\S)/NP))

Leslie;
l;
NP

[φ4;
Q ;

(NP\S)/NP
]k

gin;
gin;
NP

/E
φ4·gin;
Q(gin);
NP\S \E

Leslie·φ4·gin;
Q(gin)(l);

S �Ik
λφ4[Leslie·φ4·gin];

λQ [Q(gin)(l)];
S�((NP\S)/NP) �E

λσ1λφ2[σ1(φ2)·and·λφ4[Leslie·φ4·gin](ε)];
λV [V�λQ [Q(gin)(l)]];

(S�((NP\S)/NP))�(S�((NP\S)/NP))
β ⇒

λσ1λφ2[σ1(φ2)·and·Leslie·ε·gin];
λV [V�λQ [Q(gin)(l)]];

(S�((NP\S)/NP))�(S�((NP\S)/NP)) �E
λφ2[λφ6[Robin·φ6·vodka·and·scotch·too](φ2)·and·Leslie·ε·gin];

λP [P(vodka)(r)∧P(scotch)(r)]�λQ [Q(gin)(l)];
S�((NP\S)/NP)

β ⇒
λφ2[Robin·φ2·vodka·and·scotch·too·and·Leslie·ε·gin];

λP[P(vodka)(r)∧P(scotch)(r)]�λQ [Q(gin)(l)];
S�((NP\S)/NP) �E

Robin·drinks·vodka·and·scotch·too·and·Leslie·ε·gin;
drink(vodka)(r)∧drink(scotch)(r)∧drink(gin)(l);

S

8 Conclusion and Discussion

The analysis presented here extends the analysis of Kubota and Levine’s analy-
sis of Gapping in [17] to cover many common forms of stripping, another kind
of ellipsis, and shows backwards-compatibility by also obtaining proofs for com-
bined strip-gap sentences. Interestingly, this approach also makes obvious the
fact that stripping parallels gapping with respect to the availability of anoma-
lous scope, where certain semantic operators can scope out of their conjunct
to take scope over the entire conjunction or disjunction. While this paper can-
not give a full account of this phenomenon, evidence from Stripping gives us a
larger empirical space in which investigate this fascinating conundrum. In clos-
ing, however, there are several minor observations to make about the problem
of anomalous scope at this point.

First, as mentioned before, this phenomenon is not restricted to stripping.
Example (41-a) demonstrates that similar cases are found in Gapping sentences,
a discussion of which can be found in Kubota and Levine [2016]. Example (41-
b) is a non-ellipsis example of a raising-to-subject predicate, which also exhibits
this behavior.

(41) a. John can’t eat pizza, or Charlie fish.
(i) ¬�(eat(pizza)(john)∨ (eat(fish)(charlie)))

b. A donkey probably brayed.
(i) probably(brayed(donkey))

Similarly, the fact that most examples in this paper have dealt with negation
scoping wide over disjunction should not be taken to mean that is the sole case
of the phenomenon. In contrast, (42-a) and (42-b) demonstrate that aside from
negation, other modal auxiliaries also demonstrate the same anomalous scoping
behavior. Similarly, (42-c) shows that negation can scope wide over conjunction
as well as disjunction.
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(42) a. Kim should mow the lawn, or Sandy. - Wide scope necessity
b. Kim probably mowed the lawn, or Sandy. - Wide scope possibility
c. The Republican can’t win the special election and the Democrat too.

- Wide scope possibility over conjunction4

In addition, there is still plenty of work to be done in relation to the Stripping
as well, such as generalizing the Stripping operator, which will involve a formal
analysis of the set of possible main functors, a set that only partially overlaps
with the possible functors in Gapping. Similarly, a comprehensive analysis of
stripping would have to account for the existance of intersentential Stripping,
Sprouting, and stripping of embedded subjects, as in (43-a), (43-b), and (43-c)
below, respectively.

(43) a. A: Who went to the store? B: Not John! - Inter-sentential Stripping
b. I have traveled extensively in my time, but not to Bali. - Sprouting
c. John would go to the movies with Linda, but I very much doubt anyone

else. - Sprouting from Embedded Context
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Abstract. Phrasal comparatives can be analyzed as either involving
covert structures or as being directly licensed depending on whether they
exhibit clausal properties. In this paper, I show on the basis of Lithuanian
phrasal comparatives that clausal-like effects can be enforced without
invoking covert structures. I provide an empirically motivated analysis
of Lithuanian phrasal comparatives in Hybrid Type-Logical Categorial
Grammar. Under this analysis, the clausal-like properties of Lithuanian
phrasal comparatives emerge as simple effects of phrasal comparative
operators.
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HTLCG

1 Introduction

This paper explores whether it is possible to provide an analysis of a syntactic
construction if it has propositional semantics and clausal-like properties with-
out invoking covert syntactic structures. The question is addressed on the basis
of phrasal comparative constructions in Lithuanian (a Balto-Slavic language).
Phrasal comparatives in Lithuanian are signaled by the morpheme of už ‘than’.
In (1), the comparison is drawn between the nominative subject Jonas ‘John’,
the associate, and the accusative case-marked Tomą ‘Tom’, the standard of com-
parison. The complement of už ‘than’ must be a single accusative case-marked
nominal phrase.

(1) Jonas
John.nom

bėga
run.prst.3

greičiau
faster

už
than

Tomą
Tom.acc

(*bėga).
run.prst.3

‘John runs faster than Tom (*runs).’

From a generative perspective, phrasal comparatives can be derived via two
routes. Phrasal comparatives can be derived from clausal sources through some
reduction operation of the relevant part of the sentence (e.g. Bresnan 1973;
Lechner 2001, 2004; Merchant 2009). The underlying sentential structure of
the sentence in (1) under such an approach is shown in (2a). Alternatively,
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direct approaches assume that phrasal comparatives are base-generated PPs
(e.g. Hankamer 1973, Heim 1985, Merchant 2012), i.e. no unpronounced syntac-
tic structures are posited as shown in (2b).

(2) a. Jonas bėga greičiau už [CP Tomą (bėga). ]
b. Jonas bėga greičiau už [NP Tomą. ]

The goal of this paper is to give an empirically adequate treatment of Lithua-
nian phrasal comparatives that is explicit about the syntax and semantics of
Lithuanian phrasal comparatives, as well as word order. Previously, Lithuanian
phrasal comparatives have been argued to be underlyingly clausal (Grinsell 2012)
based on claims of apparent island sensitivity. Grinsell suggests that Merchant’s
2009 clausal analysis of phrasal comparatives in Modern Greek can be extended
to Lithuanian. I argue against an ellipsis-based analysis of Lithuanian phrasal
comparatives as the analysis does not capture the relevant empirical generaliza-
tions. I offer a direct analysis of Lithuanian phrasal comparatives that I choose
to implement in categorial grammar in the form of Hybrid Type-Logical Catego-
rial Grammar (HTLCG, Kubota 2010, 2015; Kubota and Levine 2016), though a
direct analysis can also be implemented in the Minimalist Program (Vaikšnoraitė
2017). I argue that it is possible to account for clausal-like properties of phrasal
comparatives without appealing to covert structure. The analysis proposed in
this paper shows that (i) direct licensing of phrasal comparatives straightfor-
wardly captures all empirical generalizations about Lithuanian phrasal compar-
atives; (ii) the empirical generalizations and clausal-like properties of phrasal
comparatives emerge as simple effects of lexical specifications of comparative
operators.

2 The Empirical Domain: Lithuanian Phrasal
Comparatives

This section reviews three empirical generalizations about phrasal compara-
tives in Lithuanian that have been previously discussed in the literature (e.g.
Ambrazas 2016; Grinsell 2012) and introduces a novel empirical generalization.
Lithuanian has several comparative morphemes that combine with different lexi-
cal categories to produce comparative meanings. These comparative morphemes
are compatible with phrasal comparatives as the examples in (3) show. In (3a),
the suffix -esn- ‘-er’ attaches to the adjective greitas ‘fast’. In (3b), the suffix -iau
‘-er’ is attached to the adverb greitai ‘fast’. Nominal comparatives are formed by
adding daugiau ‘more’ in front of the nominal knygų ‘books’ as shown in (3c) (for
more information about the morphology of comparatives, see Ambrazas 2016):

(3) a. Jonas
John.nom

greit-esn-is
fast-er-m.sg.nom

už
than

Tomą.
Tom.acc

‘John is faster than Tom.’ (Adjectival comparative)
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b. Jonas
John.nom

bėga
run.prs.3

greič-iau
fast-er

už
than

Tomą.
Tom.acc

‘John runs faster than Tom.’ (Adverbial comparative)
c. Jonas

John
perskaitė
read.pst.3

daugiau
more

knygų
book.pl.gen

už
than

Tomą.
Tom.acc

‘John read more books than Tom.’ (Nominal comparative)

Now we review some empirical generalizations about Lithuanian phrasal com-
paratives that were discussed in Grinsell (2012), and introduce a new empirical
generalization. We already observed the first empirical generalization in connec-
tion with (3), namely that the complement of už ‘than’ is a single accusative-case
marked noun phrase. Furthermore, adjectival phrasal comparatives are ungram-
matical with measure phrases even if the case-marking requirement is met as the
examples in (4) show.

(4) a. * Jonas
John.nom

aukštesnis
tall.m.sg.nom

už
than

du
two.acc

metrus.
meter.pl.acc

‘John is taller than two meters.’
b. * Jonas

John.nom
bėga
run.prst.3

greičiau
faster

už
than

devynis
nine.acc

kilomterus
kilometers.acc

per
per

valandą.
hour.acc
‘John runs faster than 9 km/h.’

Furthermore, nominal phrasal comparatives are ungrammatical with ‘more
NP subjects’ as exemplified in (5a). Lithuanian shares this restriction with many
other Balto-Slavic languages (e.g. Polish, Serbo-Croatian, and Bulgarian, see
Pancheva 2009 for more details).

(5) a. * Daugiau
more

vyrų
men.gen

valgo
eat.prs.3

obuolius
apple.pl.acc

už
than

moteris.
women.acc

‘More men eat apples than women.’
b. Vyrai

men.nom
valgo
eat.prs.3

daugiau
more

obuolių
apple.pl.gen

už
than

moteris.
women.acc

‘Men eat more apples than women.’

The sentence in (5a) is ungrammatical because the associate, vyrų ‘men’, is
the subject of the sentence is preceded by the comparative morpheme daugiau
‘more’. When the object of the sentence is preceded by the comparative mor-
pheme, the sentence is grammatical as shown in (5b). To express the meaning
of (5a), a clausal comparative must be used as shown in (6).

(6) Daugiau
more

vyrų
men.gen

valgo
eat.prs.3

obuolius
apple.pl.acc

negu
than

moterų.
women.gen

‘More men ate apples than women.’
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A novel contribution of this paper is a description of a previously unnoticed
empirical generalization. Phrasal comparatives in Lithuanian are only acceptable
if the associate is the subject (which in Lithuanian is marked by nominative
case) as shown in (7).1 The sentence in (7a) contrasts the nominative case-
marked subject of the sentence, Jonas ‘John’ and the standard of comparison,
Tomą ‘Tom’. In (7b), the associate is spurgų ‘doughnuts’, a genitive-case marked
object.

(7) a. Jonas
John.nom

suvalgė
eat.pst.3

daugiau
more

spurgų
doughnut.pl.gen

už
than

Tomą.
Tom.acc

‘John ate more doughnuts than Tom.’
b. * Jonas

John.nom
suvalgė
eat.pst.3

daugiau
more

spurgų
doughnut.pl.gen

už
than

sausainius.
cookie.pl.acc

Intended meaning: ‘John ate more doughnuts than cookies.’

This empirical generalization is further exemplified in (8). The examples show
that the sentence with a ditransitive verb padovanoti ‘to gift’ is licensed in a
context in which the associate is the subject of the sentence Jonas ‘John’. The
same sentence is ruled out if the associate is the dative object Marijai ‘Maria’.

(8) a. Context: It is Maria’s birthday. John and Tom were both invited to
the party. John brought three gifts for Maria, and Tom brought two.

Jonas
John.nom

padovanojo
gift.pst.3

daugiau
more

dovanų
present.pl.gen

Marijai
Maria.dat

už
than

Tomą.
Tom.acc
‘John gave more presents to Maria than Tom (did).’

b. Context: Tom and Maria have a joint birthday party. John brought
three gifts for Maria, and two for Tom.
# Jonas

John.nom
padovanojo
gift.pst.3

daugiau
more

dovanų
present.pl.gen

Marijai
Maria.dat

už
than

Tomą.
Tom.acc
‘John gave more presents to Maria than (he did to) Tom.’

In sum, all Lithuanian phrasal comparatives share the following restrictions:
(i) the standard of comparison must be a single accusative case-marked NP,

1 A small set of verbs (e.g. mylėti ‘to love’, nekęsti ‘to hate’, mėgti ‘to like’) do not
follow this pattern and allow the object to function as the associate:

(i) Jonas myli Agnę labiau už viską.
John.nom love.prs.3 Agne.acc more than everything.acc
‘John loves Agnes more than anything else.’

Further research is necessary to determine why and under which conditions an
object can serve as the associate with these verbs.
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(ii) a measure phrase cannot function as the standard of comparison, (iii) the
associate must be the subject of the sentence. Furthermore, nominal compar-
atives are ungrammatical with ‘more’ NP subjects. Any adequate analysis of
phrasal comparatives needs to account for these empirical generalizations.

3 Grinsell’s (2012) Analysis of Lithuanian Phrasal
Comparatives

The previous analysis of Lithuanian phrasal comparatives is couched within the
Minimalist Program. Grinsell (2012) advocates for a clausal analysis of Lithua-
nian phrasal comparatives by adopting Merchant’s 2009 analysis of Modern
Greek phrasal comparatives. Grinsell, following Merchant (2009), provides an
analysis roughly along the following lines: the complement of už ‘than’ underly-
ingly is a full clause. The surface form of a phrasal comparative is obtained via
TP-ellipsis as shown in (9, the ellipsis site is indicated by angled brackets).

(9) Jonas
John.nom

bėga
run.prst.3

greičiau
faster

už
than

Tomą
Tom.acc

<bėga>.
run.prst.3

‘John runs faster than Tom.’

The derivation of a phrasal comparative proceeds as follows: first, standard of
comparison moves out its base position in the TP to a clause external position,
SpecFP, to escape ellipsis. The standard of comparison then moves again to
SpecPP, which leads to phrasal-like effects, e.g. case-marking. The preposition
už ‘than’ under this analysis is assumed to be embedded in a pP shell (following
Matsubara 2000), and the preposition itself moves from P to p. This analysis is
exemplified in (10), whereby the standard of comparison, Tomas ‘Tom’, moves
to Spec,PP via SpecFP leaving an unelided trace, t1, in Spec,FP.

(10) Jonas bėga greičiau
[pP už2 [PP [DP1 Tomą [t2 [CP [FP t1 <[TP t1 bėga ]]]]]]]

The main reason that Grinsell proposes that phrasal comparatives have a
covert syntactic structure is that phrasal comparatives seem to exhibit island sen-
sitivities in Lithuanian. He suggests that the phrasal comparative in (11) is ruled
out on the basis of relative clause island violation (the example is adapted from
Grinsell 2012: 40).2 The standard of comparison in (11), Medvedevą ‘Medvedev’,
2 The example in (10) is corrected for some grammatical and lexical errors and is

written in standard Lithuanian orthography. The original sentence with the phrasal
comparative that appeared in Grinsell (2012: 40) is provided below:

(ii) * Daugiau žmonių kas gyvena valstijoje, kurią valdo Obama už
More people who live in.the.state which governs Obama.nom than Medvedeva.
Medvedev.acc
‘More people live in the state that Obama governs than in the state that Medvedev
governs.’

.
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contrasts with an nominal phrase that is internal to a relative clause, Obama
‘Obama’.

(11) * Daugiau
more

žmonių
people.gen

gyvena
live.prs.3

valstybėje,
country.loc

kurią
that.acc

valdo
govern.prs.3

Obama
Obama.nom

už
than

Medvedevą.
Medvedev.acc

‘More people live in the country that Obama governs than in the
country that Medvedev governs.’

Island sensitivities would be unexpected under a direct analysis as under such
an analysis there is no covert syntactic structure and consequently no syntactic
movement. Grinsell (2012) thus concludes Lithuanian phrasal comparatives must
be underlyingly clausal.

Under this view, the ungrammaticality of (11) results from a prohibition
against unelided island-violating traces. Essentially, when Medvedevą ‘Medvedev’
moves to SpecPP from SpecFP, it leaves an island-violating trace above the
elided TP as shown. The island-violating trace makes the sentence uninter-
pretable at the PF as is schematically shown in (12):

(12) [pP už2 [PP [DP1 Medvedevą [t2 [CP [FP *t1 <[TP gyvena valstybėje,
kurią valdo t1]>]]]]]]

However, (11) does not constitute evidence for island effects. Recall from
Sect. 2 that Lithuanian phrasal comparatives are ungrammatical with ‘more’
NP subjects. Given that empirical generalization (which Grinsell was also aware
of), (11) is independently predicted to be unacceptable because it has a ‘more’
NP subject. Thus, (11) is not empirical evidence for island effects in Lithuanian
phrasal comparatives.

In (13), I present a phrasal comparative that does not violate any of the
empirical generalizations laid out in Sect. 2. The phrasal comparative is presented
in two minimally different contexts that illustrate that the subject of the main
clause, Jonas ‘John’, can serve as the associate, while the subject of the relative
clause, Agnė ‘Agne’, cannot. One could attribute this effect to island sensitivity,
since Agnė ‘Agne’ is a nominal phrase that is internal to a relative clause. I will
suggest in Sect. 4 that these apparent island effects are an epiphenomenon of
lexical specifications of comparative operators.

(13) a. Context: Agne baked a dozen cookies. John ate four of the cookies,
while Tom ate two.

Jonas
John.nom

suvalgė
eat.pst.3

daugiau
more

sausainių,
cookie.pl.gen

kuriuos
which.acc

Agnė
bake.pst.3

ǐskepė
Agne.nom

už
than

Tomą.
Tom.acc

‘John ate more cookies that Agne baked than Tom ate.’
b. Context: Agne and Tom each baked a dozen of cookies for a party.

John ate five cookies baked by Agne, and one cookie baked by Tom.
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# Jonas
John.nom

suvalgė
eat.pst.3

daugiau
more

sausainių,
cookie.pl.gen

kuriuos
which.acc

Agnė
bake.pst.3

ǐskepė
Agne.nom

už
than

Tomą.
Tom.acc

‘John ate more cookies that Agne baked than the cookies that
Tom baked.’

Grinsell’s analysis correctly predicts that the reading in (13b) would be
unavailable, which is explained as a relative island violation, since the move-
ment of Tomą ‘Tom’ would leave an unelided island-violating trace (cf. 12).

While the clausal analysis captures the island effects, it does not deal well
with the empirical generalizations outlined in Sect. 2. Grinsell suggests (2012: 39)
that the reduced clause analysis sketched out above may account for the ‘more’
NP restriction as such sentences would be ruled because of an unelided island-
violating trace. The claim however is not presented in more explicit detail. The
sentence in (14) is a simple phrasal comparative that does not involve extrac-
tion from an island and thus would wrongly be predicted to be grammatical by
Grinsell. The analysis he advocates for thus offers no explanation for why ‘more’
NP subjects are ungrammatical in Lithuanian.

(14) * Daugiau
more

vyrų
man.pl.gen

atvyko
arrive.pst.3

už
than

moteris.
woman.pl.acc

‘More men arrived than women.’

Furthermore, the analysis cannot capture the empirical generalization that
phrasal comparatives are incompatible with measure phrases, a fact that Grinsell
acknowledges and leaves for future research. Given that the clausal analysis does
not capture any of the empirical generalizations listed in Sect. 2, an empirically
motivated and formally explicit analysis of Lithuanian phrasal comparatives is
necessary.

4 Phrasal Comparatives and Hybrid TLCG

In this section, I develop an analysis of Lithuanian phrasal comparatives within
Hybrid Type-Logical Categorial Grammar (Hybrid TLCG), a framework with a
flexible mapping between the syntax, semantics and the surface string. I show
that the empirical generalizations about phrasal comparatives in Lithuanian
can be straightforwardly captured by an analysis that does not assume covert
syntactic structures. Under the analysis in HTLCG, the empirical generalizations
emerge as simple effects of lexical specifications.

4.1 Hybrid TLCG

In this subsection, I introduce Hybrid Type-Logical Categorial Grammar
(Hybrid TLCG). Due to space limitations I will only introduce the most impor-
tant tenets and assumptions of Hybrid TLCG; see Kubota (2010, 2015), Kubota
and Levine (2015, 2016) for a detailed introduction.
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In HTLCG, there are at least three atomic syntactic categories: NP, S, and
N. Other syntactic categories are recursively built out of these atomic categories
via syntactic connectives. There are two directional connectives in HTLCG (for-
ward slash / and backward slash \). Lexical entries consist of tuples: a prosodic
component, a semantic component, and a syntactic component. A sample lexi-
con of Lithuanian is provided in (15). Since Lithuanian is a highly inflectional
language, I assume a restricted set of syntactic features (possibly formally rep-
resented in terms of subtypes of the underspecified type NP) that I will mark as
subscripts of syntactic categories.

(15) Jonas; john; NPnom

Tomą; tom; NPacc

bėga; run; S\NPnom

mato; see; (NPnom\S)/NPacc

The intransitive verb bėga ‘run’ takes a nominative NP to its left and returns
a declarative sentence S. The transitive verb mato ‘see’ takes two arguments:
an accusative NP to its right, and a nominative NP to its left. The difference
between directional slashes hence corresponds to the surface word order of the
arguments as shown in (16, where ◦ denotes the concatenation operator mapping
a pair of string terms to a string).

(16) Forward slash elimination

a; F ; A/B b; G; B
a ◦ b; F(G); A

Backward slash elimination

a; F ; B b; G; B\ A
b ◦ a; F(G); A

A sample proof of a simple transitive sentence is provided in (17). The tran-
sitive verb mato ‘see’ takes two NP arguments to derive a sentence. By applying
the two rules for directional connectives in (16), we obtain the correct surface
word order and semantics.

(17) jonas; john; NPnom

tomą; tom; NPacc mato; see; (NPnom\S)/NPacc
/E

mato◦tomą; see(t); NPnom\S
\E

jonas◦mato◦tomą; see(t)(j); S

The key feature of HTLCG is that it exploits directional slashes as well as a
non-directional (vertical) slash. The non-directional slash as the name suggests
is not sensitive to the order of arguments in the syntactic component. The word
order is kept track of in the prosodic component via λ-binding. The proof theory
of HTLCG, with this syncretic set of implicational connectives, represents a
fusion of the type logics proposed in Lambek 1958 (essentially following the
formulation in Morrill 1994) and Oehrle (1994), with the further development of
the latter in de Groote (2001) and Muskens (2003). The proof theory of HTLCG
appears to correspond closely to the intuitionistic non-commutative linear logic
outlined in Polakow and Pfenning (1999), with which it shares the right, left and
linear implication (here, vertical slash) connectives. The elimination rule for the
vertical slash is presented in (18).
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(18) Vertical slash elimination

a; F ; B b; G; B|A
b(a); F(G); B

A sample proof of the same transitive sentence is provided in (19). The
transitive verb mato ‘see’ takes two NP arguments to derive a sentence. The
only difference this time is that word order is explicitly kept track of in the
prosodic component via λ-binding of variables over strings that are indicated as
subscripted φs in (19), while the syntactic connective is not sensitive to direc-
tionality. A vertical slash can be converted to a forward or a backward slash via
slanting (see Kubota and Levine 2015 for more information about slanting),

(19) jonas; john; NPnom

tomą; tom; NPacc λφ1λφ2.φ2◦matoφ1; see; (S|NPnom)|NPacc |E
λφ2.φ2◦mato◦tomą; see(t); S|NPnom |E

jonas◦mato◦tomą; see(t)(j); S

In the analysis proposed in the next subsection, I will employ the directional
implication rules in (16) and the non-directional implication in (18).

4.2 Analyzing Lithuanian Phrasal Comparatives in HTLCG

In generative analyses of comparatives, adjectival, adverbial, and nominal com-
paratives are given a uniform analysis, i.e. essentially they have the same deriva-
tion. This means that in the nominal comparatives the cardinality of a set of
individuals has to be assimilated to the supremum of a set of degrees (see e.g.
Bresnan 1973). This is achieved by positing a phonologically null operator many
which is a function that binds a degree argument to the cardinality of individuals
(Hackl 2000). Here I propose that the three types of comparatives are derived
through district comparative operators instead, while this results in an expanded
lexicon, we do not have to posit phonologically null operator. I will now introduce
each comparative operator in turn.

Adjectival Comparative. I propose that predicative adjectival comparatives are
constructed with a three place operator in (20). The operator combines with a
gradable predicative adjective ((NPnom\S)| Deg)), and two noun phrases. In the
prosodic component, subscripted φs are variables over strings, while σ is a vari-
able over string to string function. The first argument of the gradable adjective is
a degree (Deg), which is phonologically null (ε) as per standard assumptions (see
e.g. von Stechow 1984). In the semantic component, inequality relation is estab-
lished between two gradable predicates, where max is a function that returns a
maximum degree to which a property holds. The semantic component thus can
be paraphrased as ‘the maximum degree to which x is P exceeds the maximum
degree to which y is P.’

(20) Adjectival comparative operator:
λσλφ1λφ2.φ1 ◦ σ(ε)◦už◦φ2;
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λPλxλy.max(λd.P(d)(x)) > max(λd’.P(d’)(x));
S|NPacc|NPnom|((NPnom\ S)|Deg)

A sample derivation of an adjectival comparative is provided in (21):

(21) Jonas
John.nom

aukštesnis
taller

už
than

Tomą.
Tom.acc

‘John is taller than Tom.’

NPacc

t;
tomą;

NPnom

j;
jonas;

(NPnom\ S)|Deg

λd1.tall(d1);
λφ1.φ1◦aukštas;

S|NPacc|NPnom|((NPnom\ S)|Deg)

λPλxλy.max(λd.P(d)(x)) > max(λd’.P(d’)(y));

λσ1λφ1λφ2.φ1 ◦ σ(ε)◦už◦φ2;

|E

S|NPacc|NPnom

λxλy.max(λd.tall(d)(x)) > max(λd’.tall(d’)(y));
λφ2λφ3.φ2◦aukštesnis◦už◦φ3;

|E

S|NPacc

λy.max(λd.tall(d)(j)) > max(λd’.tall(d’)(y);
λφ3.jonas◦aukštesnis◦už◦φ3;

|E

S
max(λd.tall(d)(j)) > max(λd’.tall(d’)(t));

jonas◦aukštesnis◦už◦tomą;

Since the lexical entry in (20) specifies that the operator takes an accusative
case-marked NP as its first argument, which is interpreted as the standard of
comparison, the first empirical generalization, that the standard of comparison
is an accusative-marked NP, has been captured.

The analysis also captures the second empirical generalization. Recall that
phrasal comparatives are incompatible with measure phrases like du metrai ‘two
meters’ when they are used as the standard of comparison. Semantically, measure
phrases have been proposed to be either of type 〈d〉 in which case they are seen as
points on a scale, or as predicates over scale intervals 〈d, t〉 (see e.g. Schwarzschild
2005 for discussion). Whether Lithuanian measure phrases are 〈d〉 or 〈d, t〉 has no
bearing on the current analysis, as either way they would be of a wrong semantic
type to combine with the comparative operator since it expects an argument
of type 〈e〉. The third empirical generalization that the associate must be the
subject is also captured under this analysis, since the gradable predicate that
combines with the comparative operator is of syntactic type ((NPnom\S)|Deg,
i.e. it is a predicate that lacks a subject.

Adverbial Comparative. The adverbial comparative in (22) is a four place opera-
tor: it combines with a gradable adverb ((NP\S)\(NP\S))|Deg (for which I will
use the shorthand notation (VP\VP)|Deg), a predicate NPnom\S and two noun
phrases.

(22) Adverbial comparative operator
λσλφ1λφ2λφ3.φ2 ◦ φ1 ◦ σ(ε)◦už◦φ3;
λf λPλxλy.max(λd.f(P(d))(x))>max(λd’.f(P(d’)(y));
S|NPacc|NPnom|(NPnom\S)|((VP\VP)|Deg)
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A sample derivation of an adverbial comparative is provided in (23):

(23) Jonas
John.nom

bėga
run.prs.3

greičiau
faster

už
than

Tomą.
Tom.acc

‘John runs faster than Tom.’

NPacc

t;

tomą;

NPnom

j;

jonas;

NPnom\S
run;

bėga;

(VP\ VP)|Deg

λd1.fast(d1);

λφ.φ◦greitai

S|NPacc|NPnom|(NPnom\S)|((VP\VP)|Deg)

λf λPλxλy.max(λd.f(P(d)(x))>max(λd’.f(P(d’)(y));

λσλφ1λφ2λφ3.φ2 ◦ φ1 ◦ σ(ε)◦už◦φ3;

|E

S|NPacc|NPnom|(NPnom\S)
λPλxλy.max(λd.fast(P(d)(x))>max(λd’.fast(P(d’)(y));

λφ1λφ2λφ3.φ2 ◦ φ1◦greičiau◦už◦φ3;

|E

S|NPacc|NPnom

λxλy.max(λd.fast(run(d)(x)>max(λd’.fast(run(d’)(y));

λφ2λφ3.φ2◦bėga◦greičiau◦už◦φ3;

|E

S|NPacc

λy.max(λd.fast(run(d)(j)>max(λd’.fast(run(d’)(y));

λφ3.jonas◦bėga◦greičiau◦už◦φ3;

|E
jonas◦bėga◦greičiau◦už◦tomą; max(λd.fast(run(d)(j))>max(λd’.fast(run(d’)(t)); S

The analysis correctly predicts that the subject of the transitive verb must be
the associate, to the exclusion of the object. The syntactic category of the verb
must be NPnom\S, i.e. a verb that lacks only a single nominative argument to
its left. This means that if we have transitive verb like suvalgė ‘ate’ of syntactic
type (NP\ S)/NP, it must first combine with an accusative object. This predicts
that (24a) is a well formed sentence with the nominative case-marked subject
serving as the associate. Crucially however, it also predicts that the minimally
different sentence in (24b) is ruled out as it would predict that obuolius ‘apples’
is interpreted as the subject of suvalgė ‘ate.’

(24) a. Jonas
John.nom

suvalgė
eat.pst.3

sausainius
cookie.pl.acc

greičiau
faster

už
than

Tomą
Tom.acc

‘John ate cookies faster than Tom.’
b. # Jonas

John.nom
suvalgė
eat.pst.3

sausainius
cookie.pl.acc

greičiau
faster

už
than

obuolius.
apple.pl.acc

Intended meaning ‘John ate cookies faster than (he did) apples.’
Predicted meaning ‘John ate cookies faster than apples (did).’

Equivalent to the adjectival comparative operator in (20), the lexical entry for
the adverbial operator specifies that the accusative case-marked NP argument
is interpreted as the standard of comparison. Thus the empirical generalization
that the standard of comparison must be a accusative case-marked NP has been
captured. The fact that the standard of comparison cannot be a measure phrase
is also captured, since it is of a wrong semantic type to combine with the com-
parative operator.

The Nominal Comparative. The nominal comparative operator in (25) combines
with four arguments, two noun phrases, a noun, and an expression of syntactic
category (S\ NP)/NP (abbreviated as TV for transitive verb). The nominal
comparative differs from the other two operators proposed in this section in
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that the comparison relation is not expressed in terms of degrees, instead the
comparison is drawn between cardinality of sets.

(25) Nominal comparative operator
λφ1λφ2λφ3λφ4.φ3 ◦ φ2daugiau◦φ1◦už◦φ4;
λPλQλkλz|λx.P(x)∧Q(x)(k)| > |λx.P(x)∧Q(x)(z)|;
S|NPacc|NPnom|TV|Ngen

A sample proof for a nominal comparative is provided in (26).

(26) Jonas
John.nom

suvalgė
eat.pst.3

daugiau
more

saldainių
candies.gen

už
than

Tomą.
Tom.acc

‘John ate more candies than Tom.’

NPacc

t;
tomas;

NPnom

j;
jonas;

(NP\ S)/NP
eat;

suvalgė;

Ngen

candy;
saldainių;

S|NPacc|NPnom|TV|Ngen

λPλQλkλz|λx.P(x)∧Q(x)(k)| > |λx.P(x)∧Q(x)(z)|
λφ1,2,3,4.φ3 ◦ φ2◦daugiau◦φ1◦už◦φ4;

|E

S|NPacc|NPnom|TV

λQλkλz|λx.candy(x)∧Q(x)(k)| > |λx.candy(x)∧Q(x)(z)|
λφ2,3,4.φ3 ◦ φ2◦daugiau◦saldainių◦už◦φ4;

|E

S|NPacc|NPnom

λkλz|λx.candy(x)∧eat(x)(k)| > |λx.candy(x)∧eat(x)(z)|
λφ3,4.φ3◦suvalgė◦daugiau◦saldainių◦už◦φ4;

|E

S|NPacc

λz|λx.candy(x)∧eat(x)(j)| > |λx.candy(x)∧eat(x)(z)|
λφ4.jonas◦suvalgė◦daugiau◦saldainių◦už◦φ4;

|E

S
|λx.candy(x)∧eat(x)(j)| > |λx.candy(x)∧eat(x)(t)|

jonas◦suvalgė◦daugiau◦saldainių◦už◦tomą;

To paraphrase, the meaning of (26) is ‘there are more x that are candies that
John ate than there x that are candies that Tom ate.’ Since the genitive argu-
ment of the operator is repeated in the semantic component of both conjuncts,
it ensures that the two conjuncts can only differ in their respective subjects.
This captures the empirical generalization in Lithuanian that the associate must
be the subject. Consequently, sentences like (27) are ruled out on the grounds
of being infelicitous. The predicted meaning of (27) would be ‘John ate more
candies than cookies ate candies’, which is infelicitous given that cookies are
inanimate.

(27) # Jonas
John.nom

suvalgė
eat.pst.3

daugiau
more

saldainių
candies.gen

už
than

sausainius.
cookies.acc

‘John ate more candies than cookies.’

The proposed operator in (25) also accounts for the empirical generaliza-
tion that nominal comparatives are unacceptable with ‘more’ NP subjects. This
generalization is captured quite straightforwardly as in such sentences there are
simply not enough NPs to saturate all the expected arguments of the nominal
operator. Consequently, the sentence in (28) is deemed ungrammatical.
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(28) * Daugiau
more

vyrų
men.pl.gen

atvyko
arrive.pst.3

už
than

moteris.
women.pl.acc

‘More men arrived than women.’

Furthermore, a welcome consequence of adopting the operator in (25) is that
we predict that certain meanings will never arise with phrasal comparatives. For
instance, we correctly predict that the sentence in (29, repeated from 13) has
only one possible reading, where the associate is Jonas ‘John’.

(29) Jonas
John.nom

suvalgė
eat.pst.3

daugiau
more

sausainių,
cookie.pl.gen

kuriuos
which.acc

Agnė
bake.pst.3

ǐskepė
Agne.nom

už
than

Tomą.
Tom.acc

‘John ate more cookies that Agne baked than Tom ate.’
# ‘John ate more cookies that Agne baked than the cookies that Tom
baked.’

The semantics of the unavailable reading is presented in (30), this semantics
simply cannot be derived given the operator in (25).

(30) |λx.cookie(x)∧bake(x)(Agne)∧eat(x)(John)| >
|λx.cookie(x)∧bake(x)(Tom)∧eat(x)(John)|

The reason for the unavailability of this reading is that the first argument to
nominal comparative operator is a noun, N, the semantics of which is inserted in
the semantic component of both conjuncts simultaneously. The consequence of
which is that the two conjuncts can only differ in the respective subjects of the
verb in the main clause, as shown in the partial proof in (31). Under this analysis,
the apparent island effects are just an epiphenomenon of lexical specification of
comparative operators.

(31) Ngen

λx.cookie(x)∧bake(x)(A);

sausainių◦kuriuos◦Agnė◦ǐskepė;

S|NPacc|NPnom|TV|Ngen

λPλQλkλz|λx.P(x)∧Q(x)(k)| > |λx.P(x)∧Q(x)(z)|
λφ1,2,3,4.φ3 ◦ φ2◦daugiau◦φ1◦už◦φ4;

|E

S|NPacc|NPnom|TV

λQλkλz|λx.cookie(x)∧bake(x)(A)∧Q(x)(k)| > |λx.cookie(x)∧bake(x)(A)∧Q(x)(z)|
λφ2,3,4.φ3 ◦ φ2◦daugiau◦sausainių◦kuriuos◦Agnė◦ǐskepė◦už◦φ4;

In sum, this section showed that by virtue of adopting Hybrid TLCG we easily
account for all the empirical generalizations of Lithuanian phrasal comparatives,
as well as predict apparent island effects.

5 Conclusions

There is a long-standing debate in the literature on phrasal comparatives about
whether they are derived from clausal sources or whether they are directly
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licensed. Most recently it has been suggested that both strategies are instan-
tiated languages with phrasal comparatives (see e.g. Beck et al. 2004; Pancheva
2006, 2009; Bhatt and Takahashi 2007, 2011; Merchant 2009, 2012; Lechner
2015). Different diagnostics have been proposed to help adjudicate between direct
and clausal analyses for different languages; essentially if a phrasal compara-
tive exhibits clausal-like properties it should be given a reduced clause analysis.
Lithuanian phrasal comparatives have been previously argued to contain covert
syntactic structures on account that they exhibit island effects. In this paper,
I have shown that while the previous analysis accounts for island effects, it
does not capture all empirical generalizations. In this paper, I have developed a
direct analysis of Lithuanian phrasal comparatives formalized in HTLCG. Under
the analysis proposed here, the three kinds of phrasal comparatives in Lithua-
nian (i.e. adjectival, adverbial, and nominal comparatives) are derived through
distinct comparative operators. The empirical generalizations about Lithuanian
phrasal comparatives are captured without the assumption of covert syntactic
structures. The analysis indicates that it is possible to account for the appar-
ent clausal properties of phrasal comparatives (i.e. propositional semantics and
apparent island sensitivity) without appealing to complex unpronounced struc-
tures.
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