
The Epistemology of Nondeterminism

Adam Bjorndahl(B)

Carnegie Mellon University, Pittsburgh, USA
abjorn@andrew.cmu.edu

Abstract. This paper proposes new semantics for propositional
dynamic logic (PDL), replacing the standard relational semantics. Under
these new semantics, program execution is represented as fundamentally
deterministic (i.e., functional), while nondeterminism emerges as an epis-
temic relationship between the agent and the system: intuitively, the non-
deterministic outcomes of a given process are precisely those that cannot
be ruled out in advance. We formalize these notions using topology and
the framework of dynamic topological logic (DTL) [1]. We show that
DTL can be used to interpret the language of PDL in a manner that
captures the intuition above, and moreover that continuous functions
in this setting correspond exactly to deterministic processes. We also
prove that certain axiomatizations of PDL remain sound and complete
with respect to the corresponding classes of dynamic topological models.
Finally, we extend the framework to incorporate knowledge using the
machinery of subset space logic [2], and show that the topological inter-
pretation of public announcements as given in [3] coincides exactly with
a natural interpretation of test programs.

1 Introduction

Propositional dynamic logic (PDL) is a framework for reasoning about the effects
of nondeterministic programs (or, more generally, nondeterministic actions).1

The standard models for PDL are relational structures interpreted as state tran-
sition diagrams: each program π is associated with a binary relation Rπ on the
state space, and xRπy means that state y is one possible result of executing π
in x.

What is the sense of “possibility” at play here? This paper explores an epis-
temic account. The standard models for PDL treat nondeterminism as a primi-
tive, unanalyzed notion: effectively, for each state x, π is interpreted as nonde-
terministic at x just in case |{y : xRπy}| > 1. But one might hope for a logic
that provides some insight into the nature and source of nondeterminism, rather
than simply stipulating its existence.

We investigate a richer class of models for nondeterministic program exe-
cution which differ from the standard models in two key respects: (1) states
1 Mathematical treatments of nondeterminism have a long history in computer science

(see, e.g., [4–7]), though this paper focuses specifically on the semantics of PDL. See
[8] for an overview and brief history of this branch of modal logic.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
L. S. Moss et al. (Eds.): WoLLIC 2018, LNCS 10944, pp. 145–162, 2018.
https://doi.org/10.1007/978-3-662-57669-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57669-4_8&domain=pdf

146 A. Bjorndahl

completely determine the effects of actions, and (2) nondeterminism emerges,
loosely speaking, as a kind of epistemic relationship between a given agent (or
collection of agents) and the program (or action) in question. As we argue in the
next section, to make this relationship precise we need structures rich enough to
represent potential observations; for this we make use of topology. The resulting
framework is very closely related to dynamic topological logic (DTL) as developed
by Kremer and Mints [1]; roughly speaking, we show that DTL embeds a faith-
ful interpretation of PDL. Furthermore, we demonstrate that continuity in this
setting coincides exactly with the notion of determinism: that is, determinism is
continuity in the observation topology.

The rest of the paper is organized as follows. In Sect. 2 we review the basics of
PDL and present the intuitions that motivate the development of our new models
and the importance of “potential observations” in the epistemic interpretation
of nondeterminism. In Sect. 3 we motivate and review the use of topology for
this purpose, and connect it to dynamic topological logic. This provides the tools
we need to formalize our epistemic conception of nondeterminism and establish
the correspondence between determinism and continuity mentioned above. In
Sect. 4 we transform PDL models into DTL models in a manner that preserves
the truth value of all PDL formulas, and use this to prove that certain standard
PDL axiomatizations are also sound and complete with respect to corresponding
classes of DTL models. In Sect. 5 we enrich our semantics using the machinery
of subset space logic [2] in order to reason simultaneously about both knowledge
and knowability in the context of nondeterministic program execution; further-
more, we show how public announcements [9], appropriately generalized to the
topological setting [3], can be captured using test programs. Section 6 concludes
with a brief discussion of ongoing work. Proofs and other details are collected in
AppendixA.

2 Review and Motivation

Fix a countable set of primitive propositions prop and a countable set of pro-
grams Π. The language of PDL, denoted LPDL, is given by

ϕ:: = p | ¬ϕ |ϕ ∧ ψ | 〈π〉ϕ,

where p ∈ prop, π ∈ Π, and 〈π〉ϕ is read, “after some execution of π, ϕ is
true”. Often Π is constructed from a set of more “basic” programs by closing
under certain operations, but for the moment we will take it for granted as a
structureless set. A (standard) PDL model is a relational frame (X, (Rπ)π∈Π)
together with a valuation v : prop → 2X ; Boolean formulas are interpreted in
the usual way, while 〈π〉 is interpreted as existential quantification over the Rπ-
accessible states:

x |= p iff x ∈ v(p)
x |= ¬ϕ iff x �|= ϕ

x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ

x |= 〈π〉ϕ iff (∃y)(xRπy and y |= ϕ).

The Epistemology of Nondeterminism 147

Thus, 〈π〉ϕ is true at a state x just in case some possible execution of π at x
results in a ϕ-state.

Following standard conventions, we write [π] as an abbreviation for ¬〈π〉¬,
so we have

x |= [π]ϕ iff (∀y)(xRπy implies y |= ϕ).

We also treat Rπ as a set-valued function when convenient, with Rπ(x) = {y ∈
X : xRπy}.

It is easy to adjust the standard models for PDL so that each state completely
determines the outcome of each action: simply replace the relations Rπ with
functions fπ : X → X. To emphasize this shift we introduce modalities �π into
the language, reading �πϕ as “after execution of π, ϕ holds”; these modalities
are interpreted using the functions fπ in the natural way:

x |= �πϕ iff fπ(x) |= ϕ.

Perhaps the most direct attempt to formalize nondeterminism as an epistemic
notion in this setting is to interpret the “nondeterministic outcomes” of π to be
precisely those outcomes that the agent considers possible.

Somewhat more formally, supposing we have access to a knowledge modality
K with corresponding dual K̂ (so K̂ϕ is read “the agent considers ϕ possible”),
we might define

〈π〉ϕ ≡ K̂�πϕ.

Crucially, however, this seems to miss the essence of nondeterminism. For
instance, according to this definition, when the agent in question happens to be
very uncertain about π, we are forced to interpret π as having a great many
possible nondeterministic outcomes. But there is a clear conceptual distinction
between those outcomes of π that are possible as far as some agent knows—
perhaps an agent with very poor information—as opposed to those outcomes that
would remain possible even with good information. And it seems to be the latter
concept that aligns more closely with our intuitions regarding nondeterminism.

For a simple example, imagine running a random number generator. This
seems like a canonical example of a nondeterministic process. Note that what
is important here is not merely that you do not, in fact, know what number
will be generated in advance, but also that you are unable in principle to deter-
mine this in advance.2 By contrast, imagine running a program that queries a
2 To be sure, if you had access to a more advanced set of tools than are standardly

available, perhaps you could make such a determination. And in this case, thinking
of the random number generator as a nondeterministic process loses much of its
intuitive appeal. Indeed, any nondeterministic process whatsoever might be viewed
as deterministic relative to a sufficiently powerful set of tools (e.g., from God’s
perspective). Thus, nondeterminism can be naturally construed as a relative notion
that depends on a fixed background set of “feasible measurements”. We make this
precise below.

148 A. Bjorndahl

given database and prints the result; we would not want to call this program
nondeterministic even if you happened to be ignorant about the contents of the
database.

This is a distinction we want to respect. The relevant epistemic notion, then,
is not what any given agent currently happens to know, but what they could come
to know. This is where topology comes in: the notion of “potential knowledge”
or “knowability” is naturally represented in topological spaces.

3 Topology, Dynamics, and Determinism

3.1 Topological Spaces and Models

A topological space is a set X together with a collection T ⊆ 2X of subsets
of X such that ∅,X ∈ T and T is closed under unions and finite intersections.
Elements of T are called open and T is called the topology.

There are various intuitions that help to make sense of this definition, most
of which tap into the notion of topology as the mathematics of physical space
and proximity.3 Here, though, we focus instead on epistemic intuitions, through
which topology is naturally interpreted as a formalization of evidence and poten-
tial observations. In fact, these two intuitions overlap in cases where the relevant
observations are measurements about locations in space.

Informally, if we think of X as a set of possible worlds encoding the potential
uncertainties one may have, then we can think of open sets U ∈ T as the results of
measurements or observations. More precisely, we can understand U to represent
the observation that rules out precisely those worlds x /∈ U . On this view, each
U ∈ T corresponds to a possible state of knowledge, and the topology T itself
can be conceptualized as the set of available observations.4

A core notion in topology is that of the interior of a set A ⊆ X, defined by:

int(A) = {x ∈ A : (∃U ∈ T)(x ∈ U ⊆ A)}.

The interior of A therefore consists of those points x that are “robustly” inside
A, in the sense that there is some “witness” U ∈ T to x’s membership in A. When
we interpret elements of T as the results of possible measurements, the notion
of interior takes on a natural epistemic interpretation: x lies in the interior of A
just in case there is some measurement one could potentially take that would

3 For a standard introduction to topological notions, we refer the reader to [10].
4 Suppose, for a simple example, that you measure your height and obtain a reading of

180 ± 2 cm. If we represent the space of your possible heights using the positive real
numbers, R+, then it is natural to identify this measurement with the open interval
(178, 182). And with this measurement in hand, you can safely deduce that you are,
for instance, less than 183 cm tall, while remaining uncertain about whether you are,
say, taller than 179 cm.

The Epistemology of Nondeterminism 149

entail A. In other words, the worlds in the interior of A are precisely the worlds
where A could come to be known.5

The dual of the interior operator is called closure:

cl(A) = X int(X A)
= {x ∈ X : (∀U ∈ T)(x ∈ U ⇒ U ∩ A �= ∅)}.

Thus, epistemically speaking, worlds in the closure of A are precisely those
worlds in which A is compatible with every possible measurement. The closure
operator therefore offers a mathematical realization of our intuition about non-
determinism: namely, that a nondeterministic outcome of a program is one that
remains possible no matter how good the agent’s state of information.

A topological model M is a topological space (X,T) together with a valu-
ation v : prop → 2X . In such models we interpret the basic modal language L�
defined by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |�ϕ,

where p ∈ prop, via the usual recursive clauses for the Boolean connectives
together with the following addition:

x |= �ϕ iff x ∈ int([[ϕ]]),

where [[ϕ]] = {x ∈ X : x |= ϕ}. We also make use of the dual modality �, defined
by

x |= �ϕ iff x ∈ cl([[ϕ]]).

Following the discussion above, we read �ϕ as “ϕ is knowable” or “ϕ can be
ascertained” and �ϕ as “ϕ is unfalsifiable” or “ϕ cannot be ruled out”.

3.2 Dynamic Topological Models

Kremer and Mints [1] introduce the notion of a dynamic topological model, which
is simply a topological model equipped with a continuous function f : X → X.
Since we wish to capture the execution of a multitude of programs, we generalize
this notion slightly to topological models equipped with a family of functions,
one for each program π ∈ Π. Moreover, continuity is not something we will want
to take for granted; we therefore drop this requirement as well.

5 One might wonder about the closure conditions on topologies. Finite intersections
can perhaps be accounted for by identifying them with sequences of measurements,
but what about unions? One intuition comes by observing that for any set A,
int(A) =

⋃{U ∈ T : U ⊆ A}, so int(A) is the information state that arises from
learning that A is true without learning what particular measurement was taken to
ascertain this fact. This idea is formalized in [3] using public announcements; we
direct the reader to this work for a more detailed discussion of this point.

150 A. Bjorndahl

A dynamic topological model is a tuple (X,T, {fπ}π∈Π, v) where (X,T, v)
is a topological model and each fπ is a function (not necessarily continuous) from
X to X. In such models we can interpret the language L�,� defined by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |�ϕ |�πϕ,

where p ∈ prop and π ∈ Π, via the additional semantic clause:

x |= �πϕ iff fπ(x) |= ϕ.

This provides the final tool we need to formalize the re-interpretation of nonde-
terministic program execution sketched in Sect. 2:

〈π〉ϕ ≡ ��πϕ.

Semantically:

x |= 〈π〉ϕ iff x |= ��πϕ

iff x ∈ cl(f−1
π ([[ϕ]])).

So: ϕ is a nondeterministic outcome of π (at x) just in case it cannot be ruled out
(at x) that ϕ will hold after π is executed. Topologically: every measurement at x
(i.e., every open neighbourhood of x) is compatible with a state where ϕ results
from executing π. Call this the epistemic interpretation of nondeterminism.

3.3 Determinism as Continuity

The epistemic interpretation of nondeterminism accords with our earlier intu-
itions about random number generators and database queries. Consider a process
rand that randomly displays either a 0 or a 1, and an agent who (we presume) is
unable to measure in advance the relevant quantities that determine the output
of this process. This means that both �rand0 and �rand1 are compatible with
every measurement the agent can take (in advance of running the process), so��rand0 and ��rand1 both hold, i.e., 〈rand〉0∧〈rand〉1.6 By contrast, consider
a process query that outputs the next entry in a given database and an agent
who can look up that entry in advance (which is, say, 0). This means there is a
measurement that guarantees �query0, so ��query0 holds, which yields [query]0.

What exactly is (non)determinism in this setting? It is tempting to describe
a (non)deterministic process as one in which the output state can(not) be deter-
mined in advance. But this is far too liberal: in principle, states may encode
many details that are far beyond the ability of the agent to measure precisely,
6 Of course, once the process rand has been called, presumably the agent can ascer-

tain its output (e.g., by looking at the screen). In particular, if (say) the number
displayed is 1, then this knowable, and therefore it is not the case that �rand�0
holds. This shows that the order of the two modalities is crucial in establishing the
proper correspondence with nondeterminism. Thanks to an anonymous reviewer for
suggesting this clarification.

The Epistemology of Nondeterminism 151

which would then trivially render every process nondeterministic. For instance,
if the state description encodes the current temperature of some internal compo-
nents of the system (e.g., as a seed value for the rand process), then even after
executing a simple program like query the user will not be in a position to know
the true state.

The correct notion is more subtle. Consider again the rand process: the
crucial feature of this program is not that it produces a state that cannot be
determined in advance, but that it produces a measurable quantity—namely, the
number displayed—that cannot be determined in advance.

To make the same point slightly more formally: it may be that no measure-
ment at x rules out all the other states (indeed, this will be the case whenever
{x} is not open). This is necessary but not sufficient for nondeterminism because
it may still be possible to learn (in advance) everything there is to know about
the effects of executing π (as describable in the language).

This suggests the following refined account of determinism: a deterministic
process is one in which everything one could learn about the state of the system
after the program is executed one can also determine in advance of the program
execution.

This account aligns perfectly with the topological notion of continuity. Intu-
itively: a function is continuous if small changes in the input produce small
changes in the output. Topologically: f is continuous at x if, for every open
neighbourhood V of f(x), there exists an open neighbourhood U of x such that
f(U) ⊆ V . And, finally, epistemically: f is continuous at x if every measurement
V compatible with the output state f(x) can be guaranteed in advance by some
measurement U compatible with the input state x. So the definition of continu-
ity corresponds exactly to our refined account of determinism. In other words:
determinism is continuity in the observation topology.

Continuity of fπ can be defined in the object language L�,� by the formula7

�π�ϕ → ��πϕ.

Unsurprisingly, this is precisely the scheme that Kremer and Mints call “the
axiom of continuity” in their axiomatization of the class of (continuous) dynamic
topological models [1]. It reads: “If, after executing π, ϕ is (not only true, but
also) measurably true, then it is possible to take a measurement before executing
π that guarantees that ϕ will be true after executing π.” So this scheme expresses
the idea that one need not actually execute π in order to determine whatever
could be determined after its execution: all the measurable effects of π can be
determined in advance. Again, this is determinism. Continuity is determinism.

4 Axiomatization and Model Transformation

We restrict our attention in this section to serial PDL models, in which each Rπ is
serial: (∀x)(∃y)(xRπy). Thus, we rule out the possibility of a program π produc-
ing no output at all in some states (intuitively, “crashing”), which corresponds
7 This claim is made precise and proved in Appendix A.1.

152 A. Bjorndahl

to the fact that the functions in dynamic topological models are assumed to be
total (i.e., everywhere defined). This allows for a cleaner translation between the
two paradigms; in Sect. 5 we consider a framework that drops this assumption.

Table 1. Axioms and rules of inference for SPDL0

(CPL) All propositional tautologies Classical propositional logic

(Kπ) [π](ϕ → ψ) → ([π]ϕ → [π]ψ) Distribution

(Dπ) [π]ϕ → 〈π〉ϕ Seriality

(MP) From ϕ and ϕ → ψ deduce ψ Modus ponens

(Necπ) From ϕ deduce [π]ϕ Necessitation

The most basic version of serial PDL (without any operations on programs)
is axiomatized by the axioms and rules of inference given in Table 1. Call this
system SPDL0.

Theorem 1. SPDL0 is a sound and complete axiomatization of the language
LPDL with respect to the class of all serial PDL models.8

Using the epistemic interpretation of nondeterminism given in Sect. 3.2, we
can also interpret the language LPDL directly in dynamic topological models:

x |= 〈π〉ϕ iff x ∈ cl(f−1
π ([[ϕ]])).

And, dually:

x |= [π]ϕ iff x ∈ int(f−1
π ([[ϕ]])).

This puts us in a position to evaluate our re-interpretation in a precise way.
Namely, we can ask: are all the properties of nondeterministic program execution
that are captured by standard (serial) PDL models preserved under this new
interpretation? And we can answer in the affirmative:

Theorem 2. SPDL0 is a sound and complete axiomatization of the language
LPDL with respect to the class of all dynamic topological models.

Proof. Soundness of (CPL) and (MP) is immediate. Soundness of (Necπ) follows
from the fact that f−1

π (X) = X and int(X) = X, and soundness of (Dπ) follows
from the fact that, for all A ⊆ X, int(A) ⊆ cl(A). Finally, to see that (Kπ) is
sound, observe that

int(f−1
π ([[ϕ → ψ]])) ∩ int(f−1

π ([[ϕ]])) = int(f−1
π ([[ϕ → ψ]]) ∩ f−1

π ([[ϕ]]))
⊆ int(f−1

π ([[ψ]])).

8 This can be proved using very standard techniques; see, e.g., [11].

The Epistemology of Nondeterminism 153

The proof of completeness proceeds by way of a model-transformation construc-
tion we provide in AppendixA.2: specifically, we show that every serial PDL
model can be transformed into a dynamic topological model in a manner that
preserves the truth of all formulas in LPDL (Proposition 2). By Theorem 1, every
non-theorem of SPDL0 is refuted on some serial PDL model, so our transfor-
mation produces a dynamic topological model that refutes the same formula,
thereby establishing completeness. ��

Typically one works with richer versions of PDL in which the set of programs
Π is equipped with one or more operations corresponding, intuitively, to ways
of building new programs from old programs. Standard examples include:

– Sequencing : π1;π2 executes π1 followed immediately by π2.
– Nondeterministic union: π1∪π2 nondeterministically chooses to execute either

π1 or π2.
– Iteration: π∗ repeatedly executes π some nondeterministic finite number of

times.

Can we make sense of these operations in our enriched epistemic setting? The lat-
ter two transform deterministic programs into nondeterministic programs, and
for this reason they are difficult to interpret in a setting where program execu-
tion is fundamentally deterministic (i.e., interpreted by functions). We return to
discuss this point in Sect. 6. Sequencing, on the other hand, does not have this
issue; one might guess that it is straightforwardly captured by the condition

fπ1;π2 = fπ2 ◦ fπ1 .

While function composition certainly seems like the natural way to interpret
sequential program execution, there is a wrinkle in the axiomatization. PDL with
sequencing is axiomatized by including the following axiom scheme:

(Seq) 〈π1;π2〉ϕ ↔ 〈π1〉〈π2〉ϕ.

Interestingly, this scheme is not valid in arbitrary dynamic topological models.
This is because

[[〈π1;π2〉ϕ]] = cl(f−1
π1;π2

([[ϕ]])) = cl(f−1
π1

(f−1
π2

([[ϕ]]))),

whereas
[[〈π1〉〈π2〉ϕ]] = cl(f−1

π1
(cl(f−1

π2
([[ϕ]]))));

the extra closure operator means we have

[[〈π1;π2〉ϕ]] ⊆ [[〈π1〉〈π2〉ϕ]]

but not, in general, equality.9

9 For instance, consider the set X = {a, b} equipped with the topology T = {∅, {b}, X},
and the function fπ defined by fπ(a) = b and fπ(b) = a. Let v(p) = {a}. Then, since
fπ ◦fπ = id, we have cl(f−1

π;π([[p]])) = cl({a}) = {a}, whereas cl(f−1
π (cl(f−1

π ([[p]])))) =
cl(f−1

π (cl({b}))) = cl(f−1
π (X)) = X.

154 A. Bjorndahl

A function f : X → Y is called open if for every open subset U ⊆ X, the set
f(U) is open in Y . It turns out that when the function fπ1 is open, the mismatch
above vanishes (all of the following claims are proved in AppendixA.3):

Lemma 1. Let (X,T, {fπ}π∈Π, v) be a dynamic topological model. If fπ1 is open,
then

[[〈π1;π2〉ϕ]] = [[〈π1〉〈π2〉ϕ]].

Say that a dynamic topological model is open if each fπ is open.

Theorem 3. SPDL0 + (Seq) is a sound and complete axiomatization of the
language LPDL with respect to the class of all open dynamic topological models.

Like continuity, openness of the function fπ can be defined in the object
language; in fact, it is defined by the converse of the scheme defining continuity:

��πϕ → �π�ϕ.

Roughly speaking, this says that whatever you can (in principle) predict about
executing π beforehand you could also come to know afterward. This has a
“perfect recall” type flavour, except the relevant epistemic notion is not what is
actually known but what could come to be known. Besides serving to validate the
standard sequencing axiom, this principle also plays a crucial role in the next
section, where we extend the present framework to incorporate knowledge.

5 Knowledge and Learning

To study the epistemology of nondeterministic program execution, we want to be
able to reason not only about what can be known, but also about what is known.
To do so we need a richer semantic setting, for which we turn to topological subset
models [2]; essentially, these use an additional parameter to keep track of the
current state of information, through which a standard knowledge modality can
be interpreted.

Topological subset models have experienced renewed interest in recent years
[3,12–14], beginning with the work in [3] studying public announcements in the
topological setting. Standard semantics for public announcement logic take the
precondition of an announcement of ϕ to be the truth of ϕ; in the topological
setting, this precondition is strengthened to the knowability of ϕ. As we will
see, this interpretation of public announcements is recapitulated in the present
framework via a natural interpretation of test programs.

5.1 Incorporating Knowledge

A topological subset model just is a topological model (X,T, v); the differ-
ence lies in the semantic clauses for truth, which are defined with respect to pairs
of the form (x,U), where x ∈ U ∈ T; such pairs are called epistemic scenarios.
Intuitively, x represents the actual world, while U captures the agent’s current

The Epistemology of Nondeterminism 155

information and thus what they know. Formally, we interpret the language LK,�
given by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |Kϕ |�ϕ,

where p ∈ prop, as follows:

(x,U) |= p iff x ∈ v(p)
(x,U) |= ¬ϕ iff (x,U) �|= ϕ

(x,U) |= ϕ ∧ ψ iff (x,U) |= ϕand(x,U) |= ψ

(x,U) |= Kϕ iff U ⊆ [[ϕ]]U

(x,U) |= �ϕ iff x ∈ int([[ϕ]]U),

where [[ϕ]]U = {x ∈ U : (x,U) |= ϕ}. So the agent knows ϕ in the epistemic
scenario (x,U) just in case it is guaranteed by their current information U .

We next define dynamic topological subset models by incorporating functions
fπ as above. Of course, we need subset-style semantics for the dynamic modal-
ities. Perhaps the most natural way to define the updated epistemic scenario is
as follows:

(x,U) |= �πϕ iff (fπ(x), fπ(U)) |= ϕ.

This definition raises two issues, one technical and the other conceptual.
First, as a technical matter, the definition only makes sense if fπ(U) is open—
otherwise (fπ(x), fπ(U)) is not an epistemic scenario. So we have here another
reason to restrict our attention to open functions fπ.

Second, conceptually, in a sense this framework does not permit learning.
True, an agent’s state of knowledge changes in accordance with program execu-
tion, but every “live” possibility y ∈ U is preserved as the corresponding state
fπ(y) in the updated information set fπ(U). Intuitively, then, the agent can
never truly eliminate possibilities.

Dynamic epistemic logic [15] is a modern and vibrant area of research con-
cerned exactly with this issue of how to capture the dynamics of information
update. But rather than explicitly importing machinery from this paradigm
(e.g., announcements) to represent learning in the present context, we can take
advantage of a mechanic that PDL already has available: crashing. In Sect. 4 we
restricted attention to standard PDL models that were serial, corresponding in
our framework to total functions. We now drop this assumption to allow partial
functions fπ:X ⇀ X that are undefined at some points in X. This allows the
corresponding updates to effectively delete states and thus capture information
update in much the same way that, e.g., public announcements do.

A dynamic topological subset model (over Π) is a topological subset
model together with a family of partial, open functions10 fπ : X ⇀ X, π ∈ Π.

10 Typically the concept of openness is applied to total functions, but the definition
makes sense for partial functions as well: f is open provided, for all open U , f(U) =
{y ∈ X : (∃x ∈ U)(f(x) = y)} is open.

156 A. Bjorndahl

Formulas of the language LK,�,� given by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |Kϕ |�ϕ |�πϕ,

are interpreted at epistemic scenarios via the semantic clauses introduced above,
taking care to note that the righthand side of the clause defining �π now carries
the implicit assumption that fπ(x) is actually defined:

(x,U) |= �πϕ iff fπ(x) is defined and (fπ(x), fπ(U)) |= ϕ.

We provide a sound and complete axiomatization of this logic in AppendixA.4.

5.2 Test Programs and Public Announcements

A standard enrichment of PDL expands the set of programs Π to include test
programs. Unlike other program constructions, test programs are not built from
existing programs but instead from formulas in the language: given a formula ϕ,
the program ϕ? is introduced to be interpreted by the relation Rϕ? defined by

xRϕ?y iff x = y and x |= ϕ.

Intuitively, the program ϕ? crashes at states where ϕ is false, and otherwise does
nothing.

Test programs are deterministic, so can be represented just as easily by func-
tions:

fϕ?(x) =
{

x if x |= ϕ
undefined otherwise.

But to make sense of this definition in dynamic topological subset models, two
issues must be addressed. First, the relation x |= ϕ is not actually defined in
subset models—formulas are evaluated with respect to epistemic scenarios, not
individual states. However, it is easy to see that when ϕ belongs to the fragment
L�,�, its truth in an epistemic scenario (x,U) is independent of U ; in this case,
we can simply declare that x |= ϕ iff (x,U) |= ϕ for some (equivalently, all)
open sets U containing x. We therefore restrict the formation of test programs
to ϕ ∈ L�,�.

Second, fϕ? may not be open. Indeed, fϕ? is open just in case [[ϕ]] = {x : x |=
ϕ} is open. If [[ϕ]] is not open then it contains at least one state x ∈ [[ϕ]] int([[ϕ]]),
that is, a state at which ϕ is true but not measurably true. Intuitively, at such
states the test program ϕ? should crash, since it must fail to determine that ϕ
is true. This motivates the following revised definition of fϕ?:

fϕ?(x) =
{

x if x ∈ int([[ϕ]])
undefined otherwise.

These functions are open. Moreover, under these revised semantics, we have:

(x,U) |= �ϕ?ψ iff fϕ?(x) is defined and (fϕ?(x), fϕ?(U)) |= ψ

iff x ∈ int([[ϕ]]) and (x,U ∩ int([[ϕ]])) |= ψ,

The Epistemology of Nondeterminism 157

which coincides exactly with the topological definition of a public announcement
of ϕ as given in [3].11

6 Future Work

We have formalized a relatively simple idea: namely, that the nondeterminis-
tic outcomes of a process are precisely those that the agent cannot rule out in
advance. Using the tools of topology to represent potential observations, we have
demonstrated a striking connection between deterministic processes and contin-
uous functions, proved that certain axiomatizations of PDL remain sound and
complete when reinterpreted in this enriched setting, and established a natural
identity between test programs and public announcements.

Many questions remain, both conceptual and technical. What is the relation-
ship between the (probabilistic) notion of chance and the topological construal
of nondeterminism presented here? Is there a way to import “nondeterministic”
operations on programs, such as nondeterministic union or iteration, into this
setting? Or is it perhaps better to focus on deterministic analogues of these
program constructions, such as, “If ϕ do π1, else do π2”, or, “Do π until ϕ”?
How much of dynamic epistemic logic can be recovered as program execution in
dynamic topological subset models? For instance, can we make sense of test pro-
grams based on epistemic formulas (i.e., formulas that include the K modality),
as we can with public announcements? And how can we extend the axiomatiza-
tion of dynamic topological subset models given in AppendixA.4 to include test
programs? These questions and more are the subject of ongoing research.

A Proofs and Details

A.1 Characterizing Continuity

A dynamic topological frame (over Π) is a tuple F = (X,T, {fπ}π∈Π) where
(X,T) is a topological space and each fπ : X → X. In other words, a frame is
simply a dynamic topological model without a valuation function. A frame F is
said to validate a formula ϕ just in case ϕ is true at every point of every model
of the form (F, v).

Proposition 1. The formula scheme �π�ϕ → ��πϕ defines the class of
dynamic topological frames in which fπ is continuous: that is, for every dynamic
topological frame F , F validates every instance of �π�ϕ → ��πϕ iff fπ is
continuous.

Proof. First suppose that M is a dynamic topological model in which fπ is
continuous, and let x be a point in this model satisfying �π�ϕ. Then fπ(x) ∈

11 Or, rather, it coincides with the dual of the definition given in [3], but this is not an
important difference.

158 A. Bjorndahl

int([[ϕ]]). By continuity, the set U = f−1
π (int([[ϕ]])) is open. Moreover, it is easy

to see that x ∈ U and U ⊆ [[�πϕ]], from which it follows that x |= ��πϕ.
Conversely, suppose that F is a dynamic topological frame in which fπ is

not continuous. Let U be an open subset of X such that A = f−1
π (U) is not

open, and let x ∈ A int(A); consider a valuation v such that v(p) = U . In the
resulting model, since fπ(x) ∈ U = int(U), we have x |= �π�p. On the other
hand, since by definition x /∈ int(f−1

π (U)), we have x �|= ��πp. ��

A.2 Model Transformation

Our task in this section is to transform an arbitrary serial PDL model into
a dynamic topological model in a truth-preserving manner. The intuition for
this transformation is fairly straightforward: in a serial PDL model, each state
may be nondeterministically compatible with many possible execution paths
corresponding to all the possible ways of successively traversing Rπ-edges. In
a dynamic topological model, by contrast, all such execution paths must be
differentiated by state—roughly speaking, this means we need to create a new
state for each possible execution path in the standard model. Then, to preserve
the original notion of nondeterminism, we overlay a topological structure that
“remembers” which new states originated from the same state in the standard
model by rendering them topologically indistinguishable.

Let M = (X, (Rπ)π∈Π, v) be a serial PDL model. Let Π∗ denote the set of
all finite sequences from Π. A map α : Π∗ → X is called a network (through
M) provided (∀π ∈ Π∗)(∀π ∈ Π)(α(π)Rπα(π, π)). In other words, a network
α must respect Rπ-edges in the sense that it associates with each sequence
(π1, . . . , πn) a path (x1, . . . , xn+1) through X such that, for each i, xiRπi

xi+1.12

Networks through M constitute the points of the dynamic topological model we
are building:

X̃ = {α : α is a network through M.}.

The topology we equip X̃ with is particularly simple: for each x ∈ X, let
Ux = {α ∈ X̃ : α(∅) = x}. Clearly the sets Ux partition X and so form a
topological basis; let T be the topology they generate.

Next we define the functions fπ : X̃ → X̃. Intuitively, α ∈ X̃ is a complete
record of what paths will be traversed in the original state space X for every
sequence of program executions. Therefore, after executing π, the updated record
fπ(α) should simply consist in those paths determined by α that start with an
execution of π:

fπ(α)(π) = α(π,π).

Finally, define ṽ : prop → 2X̃ by

ṽ(p) = {α ∈ X̃ : α(∅) ∈ v(p)}.

Let M̃ = (X̃,T, (fπ)π∈Π, ṽ).

12 Specifically, x1 = α(∅) and (∀i ≥ 2)(xi = α(x1, . . . , xi−1)).

The Epistemology of Nondeterminism 159

Proposition 2. For every ϕ ∈ LPDL, for every α ∈ X̃, (M̃, α) |=
ϕ iff (M,α(∅)) |= ϕ.

Proof. We proceed by induction on the structure of ϕ. The base case when
ϕ = p ∈ prop follows directly from the definition of ṽ:

(M̃, α) |= p iff α ∈ ṽ(p)
iff α(∅) ∈ v(p)
iff (M,α(∅)) |= p.

The inductive steps for the Boolean connectives are straightforward. So suppose
inductively that the result holds for ϕ; we wish to show it holds for 〈π〉ϕ.

Let α ∈ X̃ and x = α(∅). By definition, (M̃, α) |= 〈π〉ϕ iff α ∈ cl(f−1
π ([[ϕ]]M̃)).

Since the topology is generated by a partition, we know that Ux is a minimal
neighbourhood of α, and therefore the preceding condition is equivalent to:

Ux ∩ f−1
π ([[ϕ]]M̃) �= ∅.

This intersection is nonempty just in case there exists an α′ ∈ X̃ such that
α′(∅) = x and fπ(α′) ∈ [[ϕ]]M̃ . By the induction hypothesis,

fπ(α′) ∈ [[ϕ]]M̃ iff (M̃, fπ(α′)) |= ϕ

iff (M,fπ(α′)(∅)) |= ϕ

iff (M,α′(π)) |= ϕ.

So to summarize, we have shown that (M̃, α) |= 〈π〉ϕ iff there exists an α′ ∈ X̃
such that α′(∅) = x and (M,α′(π)) |= ϕ. Since we know that α′(∅)Rπα′(π), this
is in turn equivalent to (M,x) |= 〈π〉ϕ, which completes the induction. ��

A.3 Sequencing

Lemma 1. Let (X,T, {fπ}π∈Π, v) be a dynamic topological model. If fπ1 is open,
then

〈π1;π2〉ϕ = [[〈π1〉〈π2〉ϕ]].

Proof. It suffices to show that [[〈π1;π2〉ϕ]] ⊇ [[〈π1〉〈π2〉ϕ]]. So let

x ∈ [[〈π1〉〈π2〉ϕ]] = cl(f−1
π1

(cl(f−1
π2

([[ϕ]]))));

then for every open neighbourhood U containing x, we know that U ∩
f−1

π1
(cl(f−1

π2
([[ϕ]]))) �= ∅. This implies that fπ1(U)∩cl(f−1

π2
([[ϕ]])) �= ∅; since fπ1(U)

is open, it follows that fπ1(U) ∩ f−1
π2

([[ϕ]]) �= ∅ as well. This then implies that
U ∩ f−1

π1
(f−1

π2
([[ϕ]])) �= ∅, and therefore

x ∈ cl(f−1
π1

(f−1
π2

([[ϕ]]))) = [[〈π1;π2〉ϕ]],

as desired. ��

160 A. Bjorndahl

Say that a dynamic topological model is open if each fπ is open.

Theorem 3. SPDL0 + (Seq) is a sound and complete axiomatization of the
language LPDL with respect to the class of all open dynamic topological models.

Proof. Lemma 1 shows that (Seq) is valid in the class of all open dynamic topo-
logical models. For completeness, it suffices to observe that the dynamic topolog-
ical model M̃ constructed in AppendixA.2 is itself open: indeed, for each basic
open Ux, we have

fπ(Ux) = {α ∈ X̃ : xRπα(∅)}
=

⋃
y∈R(x)

Uy,

which of course is open. ��
Proposition 3. The formula scheme ��πϕ → �π�ϕ defines the class of
dynamic topological frames in which fπ is open: that is, for every dynamic topo-
logical frame F , F validates every instance of ��πϕ → �π�ϕ iff fπ is open.

Proof. First suppose that M is a dynamic topological model in which fπ is open,
and let x be a point in this model satisfying ��πϕ. Then x ∈ int(f−1

π ([[ϕ]])). By
openness, the set V = f(int(f−1

π ([[ϕ]]))) is open. Moreover, it is easy to see that
fπ(x) ∈ V and V ⊆ [[ϕ]], from which it follows that x |= �π�ϕ.

Conversely, suppose that F is a dynamic topological frame in which fπ is not
open. Let U be an open subset of X such that A = fπ(U) is not open, and let
x ∈ U be such that fπ(x) ∈ A int(A); consider a valuation v such that v(p) = A.
In the resulting model, since x ∈ U and fπ(U) ⊆ [[p]], we have x |= ��πp. On
the other hand, since by definition fπ(x) /∈ int([[p]]), we have x �|= �π�p. ��

A.4 Dynamic Topological Epistemic Logic

We provide a sound and complete axiomatization of the language LK,�,� with
respect to the class of all dynamic topological subset models.

Let CPL denote the axioms and rules of classical propositional logic, let S5K

denote the S5 axioms and rules for the K modality, and let S4� denote the S4
axioms and rules for the � modality (see, e.g., [11]). Let (KI) denote the axiom
scheme Kϕ → �ϕ, and set

ELK,� := CPL + S5K + S4� + (KI).

Theorem 4 ([3, Theorem 1]). ELK,� is a sound and complete axiomatization
of LK,� with respect to the class of all dynamic topological subset models.

Let DTEL denote the axiom system ELK,� together with the axiom schemes
and rules of inference given in Table 2.

Theorem 5. DTEL is a sound and complete axiomatization of LK,�,� with
respect to the class of all dynamic topological subset models.

The Epistemology of Nondeterminism 161

Table 2. Additional axioms and rules of inference for DTEL

(¬-PCπ) �π¬ϕ ↔ (¬�πϕ ∧ �π�) Partial commutativity of ¬
(∧-Cπ) �π(ϕ ∧ ψ) ↔ (�πϕ ∧ �πψ) Commutativity of ∧
(K-PCπ) �π� → (�πKϕ ↔ K(�π� → �πϕ)) Partial commutativity of K

(Oπ) (�¬�πϕ ∧ �π�) → �π�¬ϕ Openness

(Monπ) From ϕ → ψ deduce �πϕ → �πψ Monotonicity

Proof. Soundness of ELK,� follows as in the proof given in [3, Theorem 1], while
soundness of the additions presented in Table 2 is easy to check. The presence of�π� in (¬-PCπ) accounts for the fact that fπ can be partial (since both ¬�πϕ
and ¬�π¬ϕ are true at states where fπ is undefined), and plays an analogous
role in (K-PCπ) and (Oπ). Similarly, the usual “necessitation” rule for �π is not
valid, since even if ϕ is a theorem, �πϕ still fails at states where fπ is undefined.

Completeness is proved by a canonical model construction. Let X denote the
set of all maximal DTEL-consistent subsets of LK,�,�. Define a binary relation
∼ on X by

x ∼ y ⇔ (∀ϕ ∈ LK,�,�)(Kϕ ∈ x ⇔ Kϕ ∈ y).

Clearly ∼ is an equivalence relation; let [x] denote the equivalence class of x
under ∼. For each x ∈ X, define

R(x) = {y ∈ X : (∀ϕ ∈ LK,�,�)(�ϕ ∈ x ⇒ ϕ ∈ y)}.

Let B = {R(x) : x ∈ X}, and let T be the topology generated by B. It is easy to
check that B is a basis for T, and each R(x) is a minimal neighbourhood about
x (see, e.g., [16]). Given x ∈ X, define

fπ(x) =
{{ϕ : �πϕ ∈ x} if �π� ∈ x

undefined otherwise.

Lemma 2. Each fπ is a partial, open function X ⇀ X.

For each p ∈ prop, set v(p) := {x ∈ X : p ∈ x}. Let X = (X,T, {fπ}π∈Π, v).
Clearly X is a dynamic topological subset model.

Lemma 3 (Truth Lemma). For every ϕ ∈ LK,�,�, for all x ∈ X, ϕ ∈ x iff
(X, x, [x]) |= ϕ.

Completeness is an easy consequence: if ϕ is not a theorem of DTEL, then
{¬ϕ} is consistent and so can be extended by Lindenbaum’s lemma to some
x ∈ X; by Lemma 3, we have (X, x, [x]) �|= ϕ. ��

162 A. Bjorndahl

References

1. Kremer, P., Mints, G.: Dynamic topological logic. Ann. Pure Appl. Logic 131,
133–158 (2005)

2. Dabrowski, A., Moss, L., Parikh, R.: Topological reasoning and the logic of knowl-
edge. Ann. Pure Appl. Logic 78, 73–110 (1996)

3. Bjorndahl, A.: Topological subset space models for public announcements. In:
van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game-
Theoretical Semantics. OCL, vol. 12, pp. 165–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-62864-6 6

4. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
3(2), 115–125 (1959)

5. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

6. Francez, N., Hoare, C.A.R., Lehmann, D.J., de Roever, W.P.: Semantics of non-
determinism, concurrency, and communication. J. Comput. Syst. Sci. 19, 290–308
(1979)

7. Søndergaard, H., Sestoft, P.: Non-determinism in functional langauges. Comput.
J. 35(5), 514–523 (1992)

8. Troquard, N., Balbiani, P.: Propositional dynamic logic. The Stanford Encyclope-
dia of Philosophy ((Spring 2015 Edition)) Zalta, E.N. (ed.). https://plato.stanford.
edu/archives/spr2015/entries/logic-dynamic/

9. Plaza, J.: Logics of public communications. Synthese 158, 165–179 (2007)
10. Munkres, J.: Topology, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)
11. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-

retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
12. van Ditmarsch, H., Knight, S., Özgün, A.: Announcement as effort on topological

spaces. In: Proceedings of the 15th conference on Theoretical Aspects of Rationality
and Knowledge (TARK), pp. 95–102 (2015)

13. Baltag, A., Özgün, A., Vargas Sandoval, A.L.: Topo-logic as a dynamic-epistemic
logic. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol.
10455, pp. 330–346. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-55665-8 23

14. Bjorndahl, A., Özgün, A.: Logic and topology for knowledge, knowability, and
belief. In: Lang, J. (ed.) Proceedings of the 16th conference on Theoretical Aspects
of Rationality and Knowledge (TARK) (2017)

15. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-5839-4

16. Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: the modal
way. J. Logic Comput. 13(6), 889–920 (2003)

https://doi.org/10.1007/978-3-319-62864-6_6
https://doi.org/10.1007/978-3-319-62864-6_6
https://plato.stanford.edu/archives/spr2015/entries/logic-dynamic/
https://plato.stanford.edu/archives/spr2015/entries/logic-dynamic/
https://doi.org/10.1007/978-3-662-55665-8_23
https://doi.org/10.1007/978-3-662-55665-8_23
https://doi.org/10.1007/978-1-4020-5839-4

	The Epistemology of Nondeterminism
	1 Introduction
	2 Review and Motivation
	3 Topology, Dynamics, and Determinism
	3.1 Topological Spaces and Models
	3.2 Dynamic Topological Models
	3.3 Determinism as Continuity

	4 Axiomatization and Model Transformation
	5 Knowledge and Learning
	5.1 Incorporating Knowledge
	5.2 Test Programs and Public Announcements

	6 Future Work
	A Proofs and Details
	A.1 Characterizing Continuity
	A.2 Model Transformation
	A.3 Sequencing
	A.4 Dynamic Topological Epistemic Logic

	References

