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Abstract. We introduce Arbitrary Public Announcement Logic with
Memory (APALM), obtained by adding to the models a ‘memory’ of the
initial states, representing the information before any communication
took place (“the prior”), and adding to the syntax operators that can
access this memory. We show that APALM is recursively axiomatizable
(in contrast to the original Arbitrary Public Announcement Logic, for
which the corresponding question is still open). We present a complete
recursive axiomatization, that uses a natural finitary rule, we study this
logic’s expressivity and the appropriate notion of bisimulation.

1 Introduction

Arbitrary Public Announcement Logic (APAL) and its relatives are natural
extensions of Public Announcements Logic (PAL), involving the addition of
operators ��ϕ and ♦ϕ, quantifying over public announcements [θ]ϕ of some given
type. These logics are of great interest both philosophically and from the point
of view of applications. Motivations range from supporting an analysis of Fitch’s
paradox [16] by modeling notions of ‘knowability’ (expressible as ♦Kϕ), to deter-
mining the existence of communication protocols that achieve certain goals (cf.
the famous Russian Card problem, given at a mathematical Olympiad [17]), and
more generally to epistemic planning [9], and to inductive learnability in empir-
ical science [5]. Many such extensions have been investigated, starting with the
original APAL [2], and continuing with its variants GAL (Group Announcement
Logic) [1], Future Event Logic [20], FAPAL (Fully Arbitrary Public Announce-
ment Logic) [24], APAL+ (Positive Arbitrary Announcement Logic) [19], BAPAL
(Boolean Arbitrary Public Announcement Logic) [18], etc.

One problem with the above formalisms, with the exception of BAPAL1, is
that they all use infinitary axiomatizations. It is therefore not guaranteed that
the validities of these logics are recursively enumerable.2 The seminal paper

1 BAPAL is a very weak version, allowing ��ϕ to quantify over only purely propositional
announcements - no epistemic formulas.

2 APAL+ is known to be decidable, hence its validities must be r.e., but no recur-
sive axiomatization is known. Also, note that APAL+ is still very weak, in that
it quantifies only over positive epistemic announcements, thus not allowing pub-
lic announcements of ignorance, which are precisely the ones driving the solution
process in puzzles such as the Muddy Children.
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on APAL [2] proved completeness using an infinitary rule, and then went on to
claim that in theorem-proving3 this rule can be replaced by the following finitary
rule: from χ → [θ][p]ϕ, infer χ → [θ]��ϕ, as long as the propositional variable p is
“fresh”. This is a natural ��-introduction rule, similar to the introduction rule for
universal quantifier in FOL, and it is based on the intuition that variables that
do not occur in a formula are irrelevant for its truth value, and thus can be taken
to stand for any “arbitrary” formula (via some appropriate change of valuation).
However, the soundness of this rule was later disproved via a counterexample
by Kuijer [11]. Thus, a long-standing open question concerns finding a ‘strong’
version of APAL for which there exists a recursive axiomatization.4

In this paper, we solve this open question. Our diagnosis of Kuijer’s coun-
terexample is that it makes an essential use of a known undesirable feature of
PAL and APAL, namely their lack of memory : the updated models “forget” the
initial states. As a consequence, the expressivity of the APAL ��-modality reduces
after any update. This is what invalidates the above rule. We fix this problem
by adding to the models a memory of the initial epistemic situation W 0, repre-
senting the information before any non-trivial communication took place (“the
prior”). Since communication - gaining more information - deletes possibilities,
the set W of currently possible states is a (possibly proper) subset of the set
W 0 of initial states. On the syntactic side, we add an operator ϕ0 saying that
“ϕ was initially the case” (before all communication). To mark the initial states,
we also need a constant 0, stating that “no non-trivial communication has taken
place yet”. Therefore, 0 will be true only in the initial epistemic situation. It is
convenient, though maybe not absolutely necessary, to add a universal modality
Uϕ that quantifies over all currently possible states.5 In the resulting Arbitrary
Public Announcement Logic with Memory (APALM), the arbitrary announce-
ment operator �� quantifies over updates (not only of epistemic formulas but) of
arbitrary formulas that do not contain the operator �� itself.6 As a result, the
range of �� is wider than in standard APAL, covering announcements that may

3 This means that from any proof of a theorem from the axioms that uses the infinitary
rule we can obtain a finitary proof of the same theorem, by using the finitary rule
instead.

4 Here, by ‘strong’ version we mean one that allows quantification over a sufficiently
wide range of announcements (sufficiently wide to avoid Liar-like circles) as intended
by a similar restriction in the original APAL or in its group-restricted version GAL.

5 From an epistemic point of view, it would be more natural to replace U by an
operator Ck that describes current common knowledge and quantifies only over
currently possible states that are accessible by epistemic chains from the actual
state. We chose to stick with U for simplicity and leave the addition of Ck to APAL
for future work.

6 This restriction is necessary to produce a well-defined semantics that avoids Liar-
like vicious circles. In standard APAL, the restriction is w.r.t. inductive construct
♦ϕ. Thus, formulas of the form 〈♦p〉ϕ are allowed in original APAL. APAL and
APALM expressivities seem to be incomparable, and that would still be the case if
we dropped the above restriction.
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refer to the initial situation (by the use of the operators 0 and ϕ0) or to all
currently possible states (by the use of Uϕ).

We show that the original finitary rule proposed in [2] is sound for APALM
and, moreover, it forms the basis of a complete recursive axiomatization.7 Besides
its technical advantages, APALM is valuable in its own respect. Maintaining a
record of the initial situation in our models helps us to formalize updates that
refer to the ‘epistemic past’ such as “what you said, I knew already” [15]. This
may be useful in treating certain epistemic puzzles involving reference to past
information states, e.g. “What you said did not surprise me” [12]. The more
recent Cheryl’s Birthday problem also contains an announcement of the form
“At first I didn’t know when Cheryl’s birthday is, but now I know” (although in
this particular puzzle the past-tense announcement is redundant and plays no
role in the solution).8 See [15] for more examples.

Note though that the ‘memory’ of APALM is of a very specific kind. Our
models do not remember the whole history of communication, but only the initial
epistemic situation (before any communication). Correspondingly, in the syntax
we do not have a ‘yesterday’ operator Y ϕ, referring to the previous state just
before the last announcement as in [14], but only the operator ϕ0 referring to
the initial state. We think of this ‘economy’ of memory as a (positive) “feature,
not a bug” of our logic: a detailed record of all history is simply not necessary
for solving the problem at hand. In fact, keeping all the history and adding a Y ϕ
operator would greatly complicate our task by invalidating some of the standard
nice properties of PAL (e.g. the composition axiom, stating that any sequence
of announcements is equivalent to a single announcement).9

So we opt for simplicity, enriching the models and language just enough to
recover the full expressivity of �� after updates, and thus establish the soundness
of the ��-introduction rule. The minimalistic-memory character of our semantics
is rather natural and it is similar to the one encountered in Bayesian models10,

7 We use a slightly different version of this rule, which is easily seen to be equivalent
to the original version in the presence of the usual PAL reduction axioms.

8 Cheryl’s Birthday problem was part of the 2015 Singapore and Asian Schools Math
Olympiad, and became viral after it was posted on Facebook by Singapore TV
presenter Kenneth Kong.

9 As a consequence, having such a rich memory of history would destroy some of the
appealing features of the APAL operator (e.g. its S4 character: ��ϕ → ����ϕ), and
would force us to distinguish between “knowability via one communication step”
♦K versus “knowability via a finite communication sequence” ♦∗K, leading to an
unnecessarily complex logic.

10 In such models, only the ‘prior’ and the ‘posterior’ information states are taken to
be relevant, while all the intermediary steps are forgotten. As a consequence, all the
evidence gathered in between the initial and the current state can be compressed into
one set E, called “the evidence” (rather than keeping a growing tail-sequence of all
past evidence sets). Similarly, in our logic, all the past communication is compressed
in its end-result, namely in the set W of current possibilities, which plays the same
role as the evidence set E in Bayesian models.
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with their distinction between ‘prior’ and ‘posterior’ (aka current)
probabilities.11

On the technical side, our completeness proof involves an essential detour into
an alternative semantics for APALM (‘pseudo-models’), in the style of Subset
Space Logics (SSL) [10,13]. This reveals deep connections between apparently
very different formalisms. Moreover, this alternative semantics is of independent
interest, giving us a more general setting for modeling knowability and learn-
ability (see, e.g., [5,7,8]). Various combinations of PAL or APAL with subset
space semantics have been investigated in the literature [4–7,21,22,25,26]. Fol-
lowing SSL-style, our pseudo-models come with a given family of admissible sets
of worlds, which in our context represent “publicly announceable” (or commu-
nicable) propositions.12 We interpret �� in pseudo-models as the so-called ‘effort’
modality of SSL, which quantifies over updates with announceable propositions
(regardless of whether they are syntactically definable or not). The finitary ��-
introduction rule is obviously sound for the effort modality, because of its more
‘semantic’ character. This observation, together with the fact that APALM mod-
els (unlike original APAL models) can be seen as a special case of pseudo-models,
lie at the core of our soundness and completeness proof.

Due to the page limit, we skipped some of the proofs. Readers interested to
see all the relevant proofs, as well as a other related results, may consult the
extended online version of this paper at https://analuciavsblog.wordpress.com/
page/.

2 Syntax, Semantics, and Axiomatization

Let Prop be a countable set of propositional variables and AG = {1, . . . ,n} be a
finite set of agents. The language L of APALM (Arbitrary Public Announcement
Logic with Memory) is recursively defined by the grammar:

ϕ ::= � | p | 0 | ϕ0 | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Uϕ | 〈θ〉ϕ | ♦ϕ,

with p ∈ Prop, i ∈ AG, and θ ∈ L−♦ is a formula in the sublanguage L−♦
obtained from L by removing the ♦ operator. Given a formula ϕ ∈ L, we

11 Moreover, this limited form of memory is enough to ‘simulate’ the yesterday operator
Y ϕ by using context-dependent formulas. For instance, the dialogue in Cheryl’s
birthday puzzle (Albert: “I don’t know when Cheryl’s birthday is, but I know that
Bernard doesn’t know it either”; Bernard: “At first I didn’t know when Cheryl’s
birthday is, but I know now”; Albert: “Now I also know”), can be simulated by
the following sequence of announcements: first, the formula 0 ∧ ¬Kac ∧ Ka¬Kbc
is announced (where 0 marks the fact that this is the first announcement), then
(¬Kbc)

0 ∧ Kbc is announced, and finally Kac is announced. (Here, we encode e.g.
‘Albert knows Cheryl’s birthday’ as Kac =

∨{Ka(d ∧ m) : d ∈ D, m ∈ M}, where
D is the set of possible days and M is the set of possible months.).

12 In SSL, the set of admissible sets is sometimes, but not always, taken to be a topology.
Here, it will be a Boolean algebra with epistemic operators.

https://analuciavsblog.wordpress.com/page/
https://analuciavsblog.wordpress.com/page/
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denote by Pϕ the set of all propositional variables occurring in ϕ. We employ
the usual abbreviations for ⊥ and the propositional connectives ∨,→,↔. The
dual modalities are defined as K̂iϕ := ¬Ki¬ϕ, Eϕ := ¬U¬ϕ, ��ϕ := ¬♦¬ϕ, and
[θ]ϕ := ¬〈θ〉¬ϕ.13

We read Kiϕ as “ϕ is known by agent i”; 〈θ〉ϕ as “θ can be truthfully
announced, and after this public announcement ϕ is true”. U and E are the
global universal and existential modalities quantifying over all current possibil-
ities: Uϕ says that “ϕ is true in all current alternatives of the actual state”.
♦ϕ and ��ϕ are the (existential and universal) arbitrary announcement oper-
ators, quantifying over updates with formulas in L−♦. We can read ��ϕ as
“ϕ is stably true (under public announcements)”: i.e., ϕ stays true no mat-
ter what (true) announcements are made. The constant 0, meaning that “no
(non-trivial) announcements took place yet”, holds only at the initial time.
Similarly, the formula ϕ0 means that “initially (prior to all communication),
ϕ was true”.

Definition 1 (Model, Initial Model, and Relativized Model)

– A model is a tuple M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖), where W ⊆ W 0 are
non-empty sets of states, ∼i⊆ W 0 × W 0 are equivalence relations labeled by
‘agents’ i ∈ AG, and ‖ · ‖ : Prop → P(W 0) is a valuation function that
maps every propositional atom p ∈ Prop to a set of states ‖p‖ ⊆ W 0. W 0 is
the initial domain, representing the initial informational situation before any
communication took place; its elements are called initial states. In contrast, W
is the current domain, representing the current information, and its elements
are called current states.

– For every model M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖), we define its initial model
M0 = (W 0,W 0,∼1, . . . ,∼n, ‖·‖), whose current and initial domains are both
given by the initial domain of the original model M.

– Given a model M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖) and a set A ⊆ W , we define
the relativized model M|A = (W 0,A,∼1, . . . ,∼n, ‖ · ‖).

For states w ∈ W and agents i, we will use the notation wi := {s ∈ W : w ∼i s}
to denote the restriction to W of w’s equivalence class modulo ∼i.

Definition 2 (Semantics). Given a model M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖),
we define a truth set [[ϕ]]M for every formula ϕ. When the current model M is
understood, we skip the subscript and simply write [[ϕ]]. The definition of [[ϕ]] is
by recursion on ϕ:

13 The update operator 〈θ〉ϕ is often denoted by 〈!θ〉ϕ in Public Announcement Logic
literature; we skip the exclamation sign, but we will use the notation 〈!〉 for this
modality and [!] for its dual when we do not want to specify the announcement
formula θ (so that ! functions as a placeholder for the content of the announcement).
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[[�]] = W

[[p]] = ‖p‖ ∩ W

[[0]] =

{
W 0 if W = W 0

∅ otherwise

[[ϕ0]] = [[ϕ]]M0 ∩ W

[[¬ϕ]] = W − [[ϕ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[Kiϕ]] = {w ∈ W : wi ⊆ [[ϕ]]}

[[Uϕ]] =

{
W if [[ϕ]] = W

∅ otherwise

[[〈θ〉ϕ]] = [[ϕ]]M|[[θ]]

[[♦ϕ]] =
⋃

{[[〈θ〉ϕ]] : θ ∈ L−♦}

Observation 1. Note that we have

w ∈ [[��ϕ]] iff w ∈ [[[θ]ϕ]] for every θ ∈ L−♦.

In some of our inductive proofs, we will need a complexity measure on for-
mulas different from the standard one14:

Lemma 1. There exists a well-founded strict partial order < on L, such that:

1. if ϕ is a subformula of ψ,
then ϕ < ψ,

2. 〈θ〉ϕ < ♦ϕ, for all θ ∈ L−♦.

Proposition 1. We have [[ϕ]] ⊆ W , for all formulas ϕ ∈ L.

(The proof, in the online version, is by induction on the complexity < from
Lemma 1.)

Definition 3 (APALM Models and Validity). An APALM model is a tuple
M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖) such that W = [[θ]]M0 for some θ ∈ L−♦; i.e.
M can be obtained by updating its initial model M0 with some formula in L−♦.
A formula ϕ is valid on APALM models if it is true in all current states s ∈ W
(i.e. [[ϕ]]M = W ) for every APALM model M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖).

APALM models are our intended models, in which the current information range
comes from updating the initial range with some public announcement.

We arrive now at the main result of our paper.

Theorem 1. (Soundness and Completeness) APALM validities are recursively
enumerable. Indeed, the following axiom system APALM (given in Table 1,
where recall that Pϕ is the set of propositional variables in ϕ) is sound and
complete wrt APALM models:

Intuitive Reading of the Axioms. Parts (I) and (II) should be obvious. The
axiom R[�] says that updating with tautologies is redundant. The reduction laws
14 The standard notion requires only that formulas are more complex than their sub-

formulas, while we also need that ♦ϕ is more complex than 〈θ〉ϕ. To the best of
our knowledge, such a complexity measure was first introduced in [3] for the original
APAL language from [2]. Similar measures have later been introduced for topological
versions of APAL in [22,23].
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Table 1. The axiomatization APALM. (Here, ϕ, ψ, χ ∈ L, while θ, ρ ∈ L−♦.)

that do not contain 0, U or 0 are well-known PAL axioms. RU is the natural
reduction law for the universal modality. The axiom R0 says that the truth value
of ϕ0 formulas stays the same in time (because the superscript 0 serves as a time
stamp), so they can be treated similarly to atoms. Ax0 says that 0 was initially
the case, and R0 says that at any later stage (after any update) 0 can only be true
if it was already true before the update and the update was trivial (universally
true). Together, these two say that the constant 0 characterizes states where no
non-trivial communication has occurred. Axiom 0-U is a sychronicity constraint:
if no non-trivial communication has taken place yet, then this is the case in all
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the currently possible states. Axiom 0-eq says that initially, ϕ is equivalent to
its initial correspondent ϕ0. The Equivalences with 0 express that 0 distributes
over negation and over conjunction. Imp0�� says that if initially ϕ was stably true
(under any further announcements), then ϕ is the case now. Taken together,
the elimination axiom [!]��-elim and introduction rule [!]��-intro say that ϕ is a
stable truth after an announcement θ iff ϕ stays true after any more informative
announcement (of the form θ ∧ ρ).15

Proposition 2. The following schemas and inference rules are derivable in
APALM, where ϕ,ψ,χ ∈ L and θ ∈ L−♦:

1. from � ϕ ↔ ψ, infer � [θ]ϕ ↔ [θ]ψ
2. � 〈θ〉0 ↔ (0 ∧ Uθ)
3. � 〈θ〉ψ ↔ (θ ∧ [θ]ψ)
4. � ��ϕ → [θ]ϕ
5. from � χ → [p]ϕ, infer � χ → ��ϕ

(p �∈ Pχ ∪ Pϕ)
6. � (ϕ → ψ)0 ↔ (ϕ0 → ψ0)
7. � ϕ00 ↔ ϕ0

8. � ��ϕ0 ↔ ϕ0, and � ♦ϕ0 ↔ ϕ0

9. � (��ϕ)0 → ��ϕ0

10. � (0 ∧ ♦ϕ0) → ϕ

11. � ϕ → (0 ∧ ♦ϕ)0

12. � ϕ → ψ0 if and only if
� (0 ∧ ♦ϕ) → ψ

13. � [θ](ψ ∧ ϕ) ↔ ([θ]ψ ∧ [θ]ϕ)
14. � [θ][p]ψ ↔ [θ ∧ p]ψ
15. � [θ]⊥ ↔ ¬θ

Proposition 3. All S4 axioms and inference rules for �� are derivable in
APALM.

3 An Analysis of Kuijer’s Counterexample

To understand Kuijer’s counterexample [11] to the soundness of the finitary ��-
elimination rule for the original APAL, recall that in the APAL �� quantifies only
over updates with epistemic formulas. More precisely, the APAL semantics of ��
is given by

w ∈ [[��ϕ]] iff w ∈ [[[θ]ϕ]] for every θ ∈ Lepi,

where Lepi is the sublanguage generated from propositional atoms p ∈ Prop
using only the Boolean connectives ¬ϕ and ϕ ∧ ψ and the epistemic operators
Kiϕ.

Kuijer takes the formula γ := p ∧ K̂b¬p ∧ K̂aKbp, and shows that

[K̂bp]��¬γ → [q]¬γ.

is valid on APAL models. (In fact, it is also valid on APALM models!) But then,
by the [!]��-intro rule (or rather, by its weaker consequence in Proposition 2(5)),
the formula

[K̂bp]��¬γ → ��¬γ

15 The “freshness” of the variable p ∈ P in the rule [!]��-intro ensures that it represents
any ‘generic’ announcement.
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should also be valid. But this is contradicted by the model M in Fig. 1. The
premise [K̂bp]��¬γ is true at w in M, since ��¬γ holds at w in M|[[K̂bp]]: indeed,
the only way to falsify it would be by deleting the lower-right node from Fig. 2a
while keeping (all other nodes, and in particular) the upper-right node. But
in M|[[K̂bp]] the upper and lower right nodes can’t be separated by epistemic
sentences: they are bisimilar.

Fig. 1. An initial model M. Worlds are nodes in the graph, valuation is given by
labeling the node with the true atoms, and epistemic relations are given by labeled
arrows.

Fig. 2. Two updates of M.

In contrast, the conclusion ��¬γ is false at w in M, since in that original
model the two mentioned nodes could be separated. Indeed, we could perform
an alternative update with the formula p ∨ K̂ar, yielding the epistemic model
M|[[p ∨ K̂ar]] shown in Fig. 2b, in which γ is true at w (contrary to the assertion
that ��¬γ was true in M).

To see that the counterexample does not apply to APALM, notice that
APALM models keep track of the initial states, so technically speaking the
updated model M|[[K̂bp]] consists now of the initial structure in Fig. 1 together
with current set of worlds W in Fig. 2a. But in this model, ��¬γ is no longer true
at w (and so the premise [K̂bp]��¬γ was not true in M when considered as an
APALM model!). Indeed, we can perform a new update of M|[[K̂bp]] with the
formula (p ∨ K̂ar)0, which yields an updated model whose current set of worlds
is given in Fig. 3:
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Fig. 3. The current worlds resulting from updating M|[[K̂bp]] with (p ∨ K̂ar)0.

Note that, in this new model, γ is the case at w (-thus showing that ��¬γ
was not true at w in M|[[K̂bp]]). So the counterexample simply does not work
for APALM.

Moreover, we can see that the un-soundness of [!]��-intro rule for APAL has
to do with its lack of memory, which leads to information loss after updates:
while initially (in M) there were epistemic sentences (e.g. p ∨ K̂ar) that could
separate the two nodes mentioned above, there are no such sentences after the
update.

APALM solves this by keeping track of the initial states, and referring back
to them, as in (p ∨ K̂ar)0.

4 Soundness, via Pseudo-model Semantics

To start with, note that the even the soundness of our axiomatic system is not
a trivial matter. As we saw from Kuijer’s counterexample, the analogue of our
finitary ��-introduction rule was not sound for APAL. To prove its soundness on
APALM models, we need a detour into an equivalent semantics, in the style of
Subset Space Logics (SSL) [10,13]: pseudo-models.16

We first introduce an auxiliary notion: ‘pre-models’ are just SSL models, com-
ing with a given family A of “admissible sets” of worlds (which can be thought
of as the communicable propositions). We interpret �� in these structures as the
so-called “effort modality” of SSL, which quantifies over updates with admissible
propositions in A. Our ‘pseudo-models’ are pre-models with additional closure
conditions (saying that the family of admissible sets includes the valuations and
is closed under complement, intersection and epistemic operators). These con-
ditions imply that every set definable by ♦-free formulas is admissible, and this
16 A more direct soundness proof on APALM models is in principle possible, but would

require at least as much work as our detour. Unlike in standard EL, PAL or DEL,
the meaning of an APALM formula depends, not only on the valuation of the atoms
occurring in it, but also on the family A of all sets definable by L−♦-formulas. The
move from models to pseudo-models makes explicit this dependence on the family
A, while also relaxing the demands on A (which is no longer required to be exactly
the family of L−♦-definable sets), and thus makes the soundness proof both simpler
and more transparent. Since we will need pseudo-models for our completeness proof
anyway, we see no added value in trying to give a more direct proof.
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ensures the soundness of our ��-elimination axiom on pseudo-models. As for the
soundness of the long-problematic ��-introduction rule on (both pre- and) pseudo-
models, this is due to the fact that the effort modality has a more ‘robust’ range
than the arbitrary announcement operator: it quantifies over admissible sets,
regardless of whether these sets are syntactically definable or not. Soundness
with respect to our intended (APALM) models then follows from the observa-
tion that they (in contrast to the original APAL models) are in fact equivalent
to a special case of pseudo-models: the “standard” ones (in which the admissible
sets in A are exactly the sets definable by ♦-free formulas).

Definition 4 (Pre-model). A pre-model is a tuple M = (W 0,A,∼1, . . . ,∼n

, ‖ · ‖), where W 0 is the prior domain, ∼i are equivalence relations on W 0,
‖ · ‖ : Prop → P(W 0) is a valuation map, and A ⊆ P(W 0) is a family of subsets
of the initial domain, called admissible sets (representing the propositions that
can be publicly announced).

Given a set A ⊆ W 0 and a state w ∈ A, we use the notation wA
i := {s ∈ A :

w ∼i s} to denote the restriction to A of w’s equivalence class modulo ∼i.

Definition 5 (Pre-model Semantics). Given a pre-model M = (W 0,A,∼1

, . . . ,∼n, ‖ · ‖), we recursively define a truth set [[ϕ]]A for every formula ϕ and
subset A ⊆ W 0:

[[�]]A = A

[[p]]A = ‖p‖ ∩ A

[[0]]A =

{
A if A = W 0

∅ otherwise

[[ϕ0]]A = [[ϕ]]W 0 ∩ A

[[¬ϕ]]A = A − [[ϕ]]A

[[ϕ ∧ ψ]]A = [[ϕ]]A ∩ [[ψ]]A
[[Kiϕ]]A = {w ∈ A : wA

i ⊆ [[ϕ]]A}

[[Uϕ]]A =

{
A if [[ϕ]]A = A

∅ otherwise

[[〈θ〉ϕ]]A = [[ϕ]][[θ]]A

[[♦ϕ]]A =
⋃

{[[ϕ]]B : B∈A,B⊆A}

Observation 2. Note that, for all w ∈ A, we have

w ∈ [[��ϕ]]A iff ∀B ∈ A(w ∈ B ⊆ A ⇒ w ∈ [[ϕ]]B),

which fits with the semantics of the ‘effort’ modality in SSL [10,13]. Moreover,
it is easy to see that [[ϕ]]A ⊆ A for all A ∈ A and ϕ ∈ L.

Definition 6 (Pseudo-models and Validity). A pseudo-model is a pre-
model M = (W 0,A,∼1, . . . ,∼n, ‖·‖), satisfying the following closure conditions:

1. ‖p‖ ∈ A, for all p ∈ Prop,
2. W 0 ∈ A,
3. if A ∈ A then (W 0 − A) ∈ A,

4. if A,B ∈ A then (A ∩ B) ∈ A,
5. if A ∈ A then KiA ∈ A, where KiA :=

{w ∈ W 0 :∀s ∈ W 0(w ∼i s⇒s ∈ A)}.

A formula ϕ ∈ L is valid on pseudo-models if it is true in all admissible sets
A ∈ A of every pseudo-model M, i.e, [[ϕ]]A = A for all A ∈ A and all M.
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Proposition 4. Given a pseudo-model (W 0,A,∼1, . . . ,∼n, ‖ · ‖), A ∈ A and
θ ∈ L−♦, we have [[θ]]A ∈ A.

Proof. The proof is by subformula induction on θ, where we denote by IH the
induction hypothesis. The base cases and the inductive cases for the Booleans
are immediate (using the conditions in Definition 6).

Case θ := ψ0. By the semantics, [[ψ0]]A = [[ψ]]W 0 ∩ A ∈ A, since [[ψ]]W 0 ∈ A
(by the fact that W 0 ∈ A and IH), A ∈ A (by assumption), and A is closed
under intersection.

Case θ := Kiψ.

[[Kiψ]]A = {w ∈ A : wA
i ⊆ [[ϕ]]A}

= A ∩ {w ∈ W 0 : wA
i ⊆ [[ϕ]]A}

= A ∩ {w ∈ W 0 : ∀s ∈ W 0((s ∈ A and w ∼i s) ⇒ s ∈ [[ϕ]]A)}
= A ∩ {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ (s ∈ A ⇒ s ∈ [[ϕ]]A))}
= A ∩ {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ (s ∈ (X − A) or s ∈ [[ϕ]]A))}
= A ∩ {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ s ∈ ((X − A) ∪ [[ϕ]]A)}
= A ∩ Ki((X − A) ∪ [[ϕ]]A)

(by Definition 6(3−5), since A ∈ A and [[ϕ]]A ∈ A(by IH).)

Case θ := Uψ. By definition, [[Uψ]]A ∈ {∅,A} ⊆ A.
Case θ := 〈ϕ〉ψ. Since A ∈ A, we have [[ϕ]]A ∈ A (by IH), and hence

[[〈ϕ〉ψ]]A = [[ψ]][[ϕ]]A ∈ A (by the semantics and IH again).

Proposition 5. The system APALM is sound wrt pseudo-models.

To prove Proposition 5, we need the following:

Lemma 2. Let M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) and M′ = (W 0,A,∼1, . . . ,∼n,
‖ · ‖′) be two pseudo-models and ϕ ∈ L such that M and M′ differ only in the
valuation of some p �∈ Pϕ. Then, for all A ∈ A, we have [[ϕ]]MA = [[ϕ]]M

′
A .

Proof. The proof follows by subformula induction on ϕ. Let M = (W 0,A,∼1

, . . . ,∼n, ‖ · ‖) and M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖′) be two pseudo-models such
that M and M′ differ only in the valuation of some p �∈ Pϕ and let A ∈ A. We
want to show that [[ϕ]]MA = [[ϕ]]M

′
A . The base cases ϕ := q, ϕ := �, ϕ := 0, and

the inductive cases for Booleans are immediate.
Case ϕ := ψ0. Note that Pψ0 = Pψ. Then, by IH, we have that [[ψ]]M

′
A = [[ψ]]MA

for every A ∈ A, in particular for W 0 ∈ A. Thus [[ψ]]M
′

W 0 = [[ψ]]MW 0 . Then,
[[ψ]]M

′
W 0 ∩ A = [[ψ]]MW 0 ∩ A for all A ∈ A. By the semantics of the initial operator

on pseudo-models, we obtain [[ψ0]]M
′

A = [[ψ0]]MA .
Case ϕ := Kiψ. Note that PKiψ = Pψ. Then, by IH, we have that

[[ψ]]MA = [[ψ]]M
′

A . Observe that [[Kiψ]]MA = {w ∈ A : wA
i ⊆ [[ψ]]MA } and, sim-

ilarly, [[Kiψ]]M
′

A = {w ∈ A : wA
i ⊆ [[ψ]]M

′
A }. Then, since [[ψ]]MA = [[ψ]]M

′
A , we

obtain [[Kiψ]]MA = [[Kiψ]]M
′

A .
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Case ϕ := Uψ. Note that PUψ = Pψ. Then, by IH, we have that [[ψ]]M
′

A =
[[ψ]]MA for every A ∈ A. We have two case: (1) If [[ψ]]M

′
A = [[ψ]]MA = A, then

[[Uψ]]M
′

A = A = [[Uψ]]MA . (2) If [[ψ]]M
′

A = [[ψ]]MA �= A, then [[Uψ]]M
′

A = [[Uψ]]MA = ∅.
Case ϕ := 〈θ〉ψ. Note that P〈θ〉ψ = Pθ ∪ Pψ. By IH, we have [[θ]]M

′
A = [[θ]]MA

and [[ψ]]M
′

A = [[ψ]]MA for every A ∈ A. By Proposition 4, we know that [[θ]]MA =
[[θ]]M

′
A ∈ A. Therefore, in particular, we have [[ψ]]M

′

[[θ]]M′
A

= [[ψ]]M
[[θ]]MA

. Therefore, by

the semantics of 〈!〉 on pseudo-models, we obtain [[〈θ〉ψ]]M
′

A = [[〈θ〉ψ]]MA .
Case ϕ := ♦ψ. Note that P♦ψ = Pψ. Since the same family of sets A is

carried by both models M and M′ and since (by IH) [[ψ]]M
′

A = [[ψ]]MA for all
A ∈ A, we get:

[[♦ψ]]M
′

A =
⋃

{[[ψ]]M
′

B : B ∈ A,B ⊆ A} =
⋃

{[[ψ]]MB : B ∈ A,B ⊆ A} = [[♦ψ]]MA .

Proof of Proposition 5. The soundness of most of the axioms follows simply
by spelling out the semantics. We present here only the soundness of the rule
[!]��-intro:

Suppose |= χ → [θ ∧ p]ϕ and �|= χ → [θ]��ϕ, where p /∈ Pχ ∪ Pθ ∪ Pϕ. The
latter means that there exists a pseudo model M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖)
such that for some A ∈ A and some w ∈ A, w /∈ [[χ → [θ]��ϕ]]MA . Therefore w ∈
[[χ∧¬[θ]��ϕ]]MA . Thus we have (1) w ∈ [[χ]]MA and (2) w ∈ [[¬[θ]��ϕ]]MA . Because of
(2), w ∈ [[〈θ〉♦¬ϕ]]MA , and, by the semantics, w ∈ [[♦¬ϕ]]M

[[θ]]MA
. Therefore, applying

the semantics, we obtain (3) there exists B ∈ A s.t. w ∈ B ⊆ [[θ]]MA ⊆ A and
w ∈ [[¬ϕ]]MB .

Now consider the pre-model M′ = (W 0,A,∼1, . . . ,∼n, ‖ · ‖′) such that
‖p‖′ := B and ‖q‖′ = ‖q‖ for any q �= p ∈ Prop. In order to use Lemma 2 we must
show that M′ is a pseudo-model. For this we only need to verify that M′ satisfies
the closure conditions given in Definition 6. First note that ‖p‖′ := B ∈ A by the
construction of M′, so ‖p‖′ ∈ A. For every q �= p, since ‖q‖′ = ‖q‖ and ‖q‖ ∈ A
we have ‖q‖′ ∈ A. Since A is the same for both M and M′, and M is a pseudo
model, the rest of the closure conditions are already satisfied for M′. Therefore
M′ is a pseudo model. Now continuing with our soundness proof, note that by
Lemma 2 and since p /∈ Pχ∪Pθ∪Pϕ we obtain [[χ]]M

′
A = [[χ]]MA , [[θ]]M

′
A = [[θ]]MA and

[[¬ϕ]]M
′

A = [[¬ϕ]]MA . Since ‖p‖′ = B ⊆ [[θ]]M
′

A ⊆ A we have ‖p‖′ = [[p]]M
′

A . Because
of (3) we have that w ∈ [[θ]]M

′
A and w ∈ [[¬ϕ]]M

′
B = [[¬ϕ]]M

′

[[p]]M′
A

= [[〈p〉¬ϕ]]M
′

A .

Thus w ∈ [[p]]M
′

A , so w ∈ [[θ ∧ p]]M
′

A = [[θ]]M
′

A ∩ [[p]]M
′

A = [[p]]M
′

A simply because
[[p]]M

′
A ⊆ [[θ]]M

′
A . Since w ∈ [[¬ϕ]]M

′

[[p]]M′
A

we obtain w ∈ [[¬ϕ]]M
′

[[θ∧p]]M′
A

. Putting

everything together, w ∈ [[θ ∧ p]]M
′

A and w ∈ [[¬ϕ]]M
′

[[θ∧p]]M′
A

, we obtain that

w ∈ [[〈θ ∧ p〉¬ϕ]]M
′

A and w ∈ [[χ]]M
′

A . Therefore M′,w |= χ ∧ 〈θ ∧ p〉¬ϕ, which
contradicts the validity of χ → [θ ∧ p]ϕ.

Definition 7 (Standard Pre-model). A pre-model M = (W 0,A,∼1, . . . ,∼n,
‖ · ‖) is standard if and only if A = {[[θ]]W 0 : θ ∈ L−♦}.
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Proposition 6. Every standard pre-model is a pseudo-model.

Proof. Let M = (W 0,A,∼1, . . . ,∼n, ‖·‖) be a standard pre-model. This implies
that A = {[[θ]]W 0 : θ ∈ L−♦}. We need to show that M satisfies the closure
conditions given in Definition 6. Conditions (1) and (2) are immediate.

For (3): let A ∈ A. Since M is a standard pre-model, we know that A = [[θ]]W 0

for some θ ∈ L−♦. Since θ ∈ L−♦, we have ¬θ ∈ L−♦, thus, [[¬θ]]W 0 ∈ A. Observe
that [[¬θ]]W 0 = W 0 − [[θ]]W 0 , thus, we obtain W 0 − A ∈ A.

For (4): let A,B ∈ A. Since M is a standard pre-model, A = [[θ1]]W 0 and
B = [[θ2]]W 0 for some θ1, θ2 ∈ L−♦. Since θ1, θ2 ∈ L−♦, we have θ1 ∧ θ2 ∈ L−♦,
thus, [[θ1 ∧ θ2]]W 0 ∈ A. Observe that [[θ1 ∧ θ2]]W 0 = [[θ1]]W 0 ∩ [[θ2]]W 0 = A ∩ B,
thus, we obtain A ∩ B ∈ A.

For (5): let A ∈ A. Since M is a standard pre-model, A = [[θ]]W 0 for some
θ ∈ L−♦. Since θ ∈ L−♦, we have Kiθ ∈ L−♦, thus, [[Kiθ]]W 0 ∈ A. Observe that
[[Kiθ]]W 0 = {w ∈ W 0 : ∀s ∈ W 0(w ∼i s ⇒ s ∈ [[θ]]W 0)} = Ki[[θ]]W 0 , thus, we
obtain KiA ∈ A.

Equivalence Between the Standard Pseudo-models and APALM Mod-
els. For Proposition 7 only, we use the notation [[ϕ]]PS

A to refer to pseudo-model
semantics (as in Definition 5) and use [[ϕ]]M to refer to APALM semantics (as in
Definition 1).

Proposition 7

1. For every standard pseudo-model M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) and every
set A ∈ A, we denote by MA the model MA = (W 0,A,∼1, . . . ,∼n, ‖ · ‖).
Then:
(a) For every ϕ ∈ L, we have [[ϕ]]MA

= [[ϕ]]PS
A for all A ∈ A.

(b) MA is an APALM model, for all A ∈ A.
2. For every APALM model M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖), we denote by M′

the pre-model M′ = (W 0,A,∼1, . . . ,∼n, ‖·‖), where A = {[[θ]]M0 : θ ∈ L−♦}.
Then
(a) M′ is a standard pseudo-model.
(b) For every ϕ ∈ L, we have [[ϕ]]M = [[ϕ]]PS

W .

The proof of Proposition 7 needs the following lemma.

Lemma 3. Let M = (W 0,A,∼1, . . . ,∼n, ‖·‖) a standard pseudo-model, A ∈ A
and ϕ ∈ L, then the following holds: [[♦ϕ]]A =

⋃{[[〈θ〉ϕ]]A : θ ∈ L−♦}.
Proof. For (⊆): Let w ∈ [[♦ϕ]]A. Then, by the semantics of ♦ in pseudo-models.
there exists some B ∈ A such that w ∈ B ⊆ A and w ∈ [[ϕ]]B . Since M is
standard, we know that A = [[ψ]]W 0 and B = [[χ]]W 0 for some ψ,χ ∈ L−♦.
Moreover, since B = [[χ]]W 0 ⊆ A = [[ψ]]W 0 , we have B = [[χ]]W 0 ∩ [[ψ]]W 0 =
[[χ0]][[ψ]]W0 = [[χ0]]A, and so w ∈ [[ϕ]]B = [[ϕ]][[χ0]]A = [[〈χ0〉ϕ]]A ⊆ ⋃{[[〈θ〉ϕ]]A : θ ∈
L−♦}. For (⊇): Let w ∈ ⋃{[[〈θ〉ϕ]]A : θ ∈ L−♦}. Then we have w ∈ [[〈θ〉ϕ]]A =
[[ϕ]][[θ]]A , for some θ ∈ L−♦, and since [[θ]]A ∈ A (by Proposition 4) and [[θ]]A ⊆ A
(by Observation 2), it follows that w ∈ [[♦ϕ]]A (by the semantics of ♦ in pseudo-
models).
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Proof of Proposition 7

1. Let M = (W 0,A,∼1, . . . ,∼n, ‖ · ‖) be a standard pseudo-model. A ∈ A
implies A = [[θ]]PS

W 0 ⊆ W for some θ, hence MA = (W 0,A,∼1, . . . ,∼n, ‖ · ‖)
is a model.
(a) The proof is by induction on the complexity measure < from Lemma 1.

The base cases and the inductive cases for Booleans are straightforward.
Case θ := ψ0. We have [[ψ]]PS

A = [[ψ]]PS
W 0 ∩ A = [[ψ]]M0

A
∩ A = [[ψ0]]MA

(by
Definition 5, IH, and Definition 2).
Case θ := Kiψ. We have [[Kiψ]]PS

A = {w ∈ A : wA
i ⊆ [[ψ]]PS

A = {w ∈ A :
wi ⊆ [[ψ]]MA

} = [[Kiψ]]MA
(by Definition 5, IH, and Definition 2).

Case θ := Uψ. By Definitions 2 and 5, we have:

[[Uψ]]MA
=

{
W if [[ψ]]MA

= A

∅ otherwise [[Uψ]]PS
A =

{
A if [[ψ]]PS

A = A

∅ otherwise

By IH, [[ψ]]PS
A = [[ψ]]MA

, therefore, [[Uψ]]PS
A = [[Uψ]]MA

.
Case ϕ := 〈ψ〉χ. By Definition 2, we know that [[〈ψ〉χ]]MA

=
[[χ]]MA|[[ψ]]MA

. Now consider the relativized model MA|[[ψ]]MA
=

(W 0, [[ψ]]MA
,∼1, . . . ,∼n, ‖·‖). By Lemma 1(1) and IH, we have [[ψ]]MA

=
[[ψ]]PS

A . Moreover, by the definition of standard pseudo-models, we know
that A = [[θ]]PS

W 0 for some θ ∈ L−♦. Therefore, [[ψ]]MA
= [[ψ]]PS

A =
[[ψ]]PS

[[θ]]P S
W0

= [[〈θ〉ψ]]PS
W 0 . Therefore, [[ψ]]MA

∈ A. We then have

[[〈ψ〉χ]]MA
= [[χ]]M[[ψ]]MA

= [[χ]]M[[ψ]]P S
A

= [[χ]]PS
[[ψ]]P S

A
= [[〈ψ〉χ]]PS

A ,

by the semantics and IH on ψ and on χ (since [[ψ]]PS
A ∈ A).

Case ϕ := ♦ψ. We have:

[[♦ψ]]MA
=

⋃
{[[〈χ〉ψ]]MA

: χ ∈ L−♦} (Defn.2)

=
⋃

{[[〈χ〉ψ]]PS
W : χ ∈ L−♦} (Lemma 1.2, IH)

= [[♦ψ]]PS
A (Lemma 3, since M is a standard pseudo model)

(b) By part (a), [[ϕ]]M0
A

= [[ϕ]]MW0 = [[ϕ]]PS
W 0 for all ϕ. Since M is standard,

we have A = [[θ]]PS
W 0 = [[θ]]M0

A
for some θ ∈ L−♦, so MA is an APALM

model.
2. Let M = (W 0,W ,∼1, . . . ,∼n, ‖·‖) be an APALM model. Since A = {[[θ]]M0 :

θ ∈ L−♦} ⊆ P(W 0), the model M′ = (W 0,A,∼1, . . . ,∼n, ‖·‖) is a pre-model.
Therefore, the semantics given in Definition 5 is defined on M′ = (W 0,A,∼1

, . . . ,∼n, ‖ · ‖).
(a) By Proposition 6, it suffices to prove that the pre-model M′ = (W 0,A,∼1

, . . . ,∼n, ‖ · ‖) is standard, i.e. that {[[θ]]M0 : θ ∈ L−♦} = {[[θ]]PS
W 0 : θ ∈

L−♦}. For this, we need to show that for every APALM model M =
(W 0,W ,∼1, . . . ,∼n, ‖ · ‖), we have [[θ]]M = [[θ]]PS

W for all θ ∈ L−♦.
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We prove this by subformula induction on θ. The base cases and the
inductive cases for Booleans are straightforward.
Case θ := ψ0. Then [[ψ0]]M = [[ψ]]M0 ∩ W = [[ψ]]PS

W 0 ∩ W = [[ψ]]PS
W (by

Definition 2, IH, and Definition 5).
Case θ := Kiψ. We have [[Kiψ]]M = {w ∈ W : wi ⊆ [[ψ]]M} = {w ∈ W :
wW

i ⊆ [[ψ]]PS
W } = [[Kiψ]]PS

W (by Definition 2, IH, and Definition 5).
Case θ := Uψ. By Definitions 2 and 5, we have:

[[Uψ]]M =

{
W if [[ψ]]M = W

∅ otherwise [[Uψ]]PS
W =

{
W if [[ψ]]PS

W = W

∅ otherwise

By IH, [[ψ]]PS
W = [[ψ]]M, therefore, [[Uψ]]PS

W = [[Uψ]]M.
Case θ := 〈ψ〉χ. By Definition 2, we know that [[〈ψ〉χ]]M = [[χ]]M|[[ψ]]M .
Now consider the relativized model M|[[ψ]]M = (W 0, [[ψ]]MA

,∼1, . . . ,∼n,
‖ · ‖). By Lemma 1(1) and IH on ψ, we have [[ψ]]M = [[ψ]]PS

W . Moreover,
by the definition of APALM models, we know that W = [[θ]]M0 for some
θ ∈ L−♦. Therefore, [[ψ]]M = [[ψ]]M0|[[θ]]M0 = [[〈θ〉ψ]]M0 . Therefore, since
〈θ〉ψ ∈ L−♦, the model M|[[ψ]]M is also an APALM model obtained by
updating the initial model M0. We then have

[[〈ψ〉χ]]M = [[χ]]M|[[ψ]]M (Defn.2)
= [[χ]]M|[[ψ]]P S

W
(IH on ψ)

= [[χ]]PS
[[ψ]]P S

W
(IH on χ since M|[[ψ]]M is an APALM model)

= [[〈ψ〉χ]]PS
W (Defn.5)

(b) The proof of this part follows by <-induction on ϕ (where < is as in
Lemma 1). All the inductive cases are similar to ones in the above proof,
except for the case ϕ := ♦ψ, shown below:

[[♦ψ]]M =
⋃

{[[〈χ〉ψ]]M : χ ∈ L−♦} (Defn.2)

=
⋃

{[[〈χ〉ψ]]PS
W : χ ∈ L−♦} (Lemma 1.2, IH)

= [[♦ψ]]PS
W (Lemma 3, since M′ is a standard pseudo model)

Corollary 1. Validity on standard pseudo-models coincides with APALM
validity.

Proof. This is a straightforward consequence of Proposition 7.

Corollary 2. The system APALM is sound wrt APALM models.

This follows immediately from Proposition 5 and Corollary 1.
It is important to note that the equivalence between standard pseudo-models

and APALM models (given by Proposition 7 above, and underlying our sound-
ness result) is not trivial. It relies in particular on the equivalence between the
effort modality and the arbitrary announcement operator �� on standard pseudo-
models, which holds only because our models and language retain the memory
of the initial situation (see Lemma 3). Hence, a similar equivalence fails for the
original APAL.
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5 Completeness

In this section we prove the completeness of APALM. First, we show com-
pleteness with respect to pseudo-models, via an innovative modification of the
standard canonical model construction. This is based on a method previously
used in [6], that makes an essential use of the finitary ��-introduction rule, by
requiring our canonical theories T to be (not only maximally consistent, but also)
“witnessed”. Roughly speaking, a theory T is witnessed if every ♦ϕ occurring in
every “existential context” in T is witnessed by some atomic formula p, meaning
that 〈p〉ϕ occurs in the same existential context in T . Our canonical pre-model
will consist of all initial, maximally consistent, witnessed theories (where a the-
ory is ‘initial’ if it contains the formula 0). A Truth Lemma is proved, as usual.
Completeness for (both pseudo-models and) APALM models follows from the
observation that our canonical pre-model is standard, hence it is (a standard
pseudo-model, and thus) equivalent to a genuine APALM model.

We now proceed with the details. The appropriate notion of “existential
context” is represented by possibility forms, in the following sense.

Definition 8 (Necessity forms and possibility forms). For any finite
string s ∈ ({•0}∪{ϕ→ | ϕ ∈ L}∪{Ki : i ∈ A}∪{U}∪{ρ | ρ ∈ L−♦})∗ = NFL,
we define pseudo-modalities [s] and 〈s〉. These pseudo-modalities are functions
mapping any formula ϕ ∈ L to another formula [s]ϕ ∈ L (necessity form),
respectively 〈s〉ϕ ∈ L (possibility form). The necessity forms are defined recur-
sively as [ε]ϕ = ϕ, [s, •0]ϕ = [s]ϕ0, [s,ϕ→]ϕ = [s](ϕ → ϕ), [s,Ki]ϕ = [s]Kiϕ,
[s,U ]ϕ = [s]Uϕ, [s, ρ]ϕ = [s][ρ]ϕ, where ε is the empty string. For possibility
forms, we set 〈s〉ϕ := ¬[s]¬ϕ.

Example: [Ki, •0,♦p→, 0,U ] is a necessity form s.t. [Ki, •0,♦p→, 0,U ]ϕ =
Ki(♦p → [0]Uϕ)0.

Definition 9 (Theories: witnessed, initial, maximal). Let LP be the lan-
guage of APALM based only on some countable set P of propositional vari-
ables. Similarly, let NFP denote the corresponding set of strings defined based
on LP . A P -theory is a consistent set of formulas in LP (where “consistent”
means consistent with respect to the axiomatization of APALM formulated for
LP ). A maximal P -theory is a P -theory Γ that is maximal with respect to ⊆
among all P -theories; in other words, Γ cannot be extended to another P -theory.
A P -witnessed theory is a P -theory Γ such that, for every s ∈ NFP and ϕ ∈ LP ,
if 〈s〉♦ϕ is consistent with Γ then there is p ∈ P such that 〈s〉〈p〉ϕ is consis-
tent with Γ (or equivalently: if Γ � [s][p]¬ϕ for all p ∈ P , then Γ � [s]��¬ϕ).
A P -theory Γ is called initial if 0 ∈ Γ . A maximal P -witnessed theory Γ is
a P -witnessed theory that is not a proper subset of any P -witnessed theory. A
maximal P -witnessed initial theory Γ is a maximal P -witnessed theory such that
0 ∈ Γ .

The proofs of the following lemmas are in the online version.



APAL with Memory Is Better 123

Lemma 4. For every necessity form [s], there exist formulas θ ∈ L−♦ and ψ ∈ L
such that for all ϕ ∈ L, we have

� [s]ϕ iff � ψ → [θ]ϕ.

Lemma 5. The following rule is admissible in APALM:

if � [s][p]ϕ then � [s]��ϕ, where p �∈ Ps ∪ Pϕ.

Lemma 6. For every maximal P -witnessed theory Γ , and every formula ϕ,ψ ∈
LP :

1. Γ � ϕ iff ϕ ∈ Γ

2. ϕ �∈ Γ iff ¬ϕ ∈ Γ ,

3. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ ,

4. ϕ ∈ Γ and ϕ → ψ ∈ Γ implies
ψ ∈ Γ .

5. APALMP ⊆ Γ , where APALMP

is APALM formulated for LP .

Lemma 7. For every Γ ⊆ LP , if Γ is a P -theory and Γ �� ¬ϕ for some ϕ ∈ LP ,
then Γ ∪ {ϕ} is a P -theory. Moreover, if Γ is P -witnessed, then Γ ∪ {ϕ} is also
P -witnessed.

Lemma 8. If {Γi}i∈N is an increasing chain of P -theories such that Γi ⊆ Γi+1,
then

⋃
n∈N

Γn is a P -theory.

Lemma 9. For every maximal P -witnessed theory T , both {θ ∈ LP : Kiθ ∈ T}
and {θ ∈ LP : Uθ ∈ T} are P -witnessed theories.

Lemma 10 (Lindenbaum’s Lemma). Every P -witnessed theory Γ can be
extended to a maximal P -witnessed theory TΓ .

Lemma 11 (Extension Lemma). Let P be a countable set of propositional
variables and P ′ be a countable set of fresh propositional variables, i.e., P ∩P ′ =

∅. Let
∼
P = P ∪ P ′. Then, every initial P -theory Γ can be extended to an initial

∼
P -witnessed theory

∼
Γ ⊇ Γ , and hence to a maximal

∼
P -witnessed initial theory

TΓ ⊇ Γ .

To define our canonical pseudo-model, we first put, for all maximal P -
witnessed theories T ,S:

T ∼U S iff ∀ϕ ∈ LP (Uϕ ∈ T implies ϕ ∈ S) .

Definition 10 (Canonical Pre-Model). Given a maximal P -witnessed initial
theory T0, the canonical pre-model for T0 is a tuple Mc = (W c,Ac,∼c

1, . . . ,∼c
n,

‖ · ‖c) such that:

– W c = {T : T is a maximal P -witnessed theory such that T0 ∼U T},
– Ac = {θ̂ : θ ∈ LP

−♦} where ϕ̂ = {T ∈ W c : ϕ ∈ T} for any ϕ ∈ LP ,



124 A. Baltag et al.

– for every T ,S ∈ W c and i ∈ AG we define:

T ∼c
i S iff ∀ϕ ∈ LP (Kiϕ ∈ T implies ϕ ∈ S) .

– ‖p‖c = {T ∈ W c : p ∈ T} = p̂.

As usual, it is easy to see (given the S5 axioms for Ki and for U) that ∼U and
∼c

i are equivalence relations.
The proofs of the first three results below are online.

Lemma 12 (Existence Lemma for Ki). Let T be a maximal P -witnessed
theory, α ∈ LP

−♦, and ϕ ∈ LP such that α ∈ T and Ki[α]ϕ �∈ T . Then, there is
a maximal P -witnessed theory S such that T ∼i S, α ∈ S and [α]ϕ �∈ S.

Lemma 13 (Existence Lemma for U). Let T be a maximal P -witnessed the-
ory, α ∈ LP

−♦, and ϕ ∈ LP such that α ∈ T and U [α]ϕ �∈ T . Then, there is a
maximal P -witnessed theory S such that T ∼U S, α ∈ S and [α]ϕ �∈ S.

Corollary 3. For ϕ ∈ L, we have Ûϕ = W c if ϕ̂ = W c, and Ûϕ = ∅ otherwise.

Lemma 14. Every element T ∈ W c is an initial theory (i.e. 0 ∈ T ).

Proof. Let T ∈ W c. By the construction of W c, we have T0 ∼U T . Since 0 → U0
is an axiom and T0 is maximal, (0 → U0) ∈ T0. Thus, since 0 ∈ T0, we obtain
U0 ∈ T0 (by Lemma 6(4)). Therefore, by the definition of ∼U and since T0 ∼U T ,
we have that 0 ∈ T .

Corollary 4. For all ϕ ∈ LP , we have ϕ̂ = ϕ̂0.

Proof. Since 0 ∈ T for all T ∈ W c, we obtain by axiom (0-eq) that ϕ ↔ ϕ0 ∈ T

for all T ∈ W c. Therefore, ϕ̂ = ϕ̂0.

Lemma 15 (Truth Lemma). Let Mc = (W c,Ac,∼c
1, . . . ,∼c

n,V c) be the
canonical pre-model for some T0 and ϕ ∈ LP . Then, for all α ∈ LP

−♦, we have

[[ϕ]]α̂ = ̂〈α〉ϕ.

Proof. The proof is by <-induction on ϕ, using the following induction hypothesis
(IH): for all ψ < ϕ, we have [[ψ]]α̂ = 〈α〉ψ

∧

for all α ∈ L−♦. The cases for the
Boolean connectives are straightforward. The cases for Ki and U are standard,
using � 〈α〉Kiψ ↔ α∧Ki[α]ψ and Lemma 12 for Ki, and � 〈α〉Uψ ↔ α∧U [α]ψ
and Lemma 13 for U .

Base case ϕ := �. Then [[�]]α̂ = α̂ = 〈α〉�
∧

, by Definition 5 and the fact that
� α ↔ 〈α〉�.

Base case ϕ := p. Then [[p]]α̂ = ‖p‖c ∩ α̂ = p̂ ∩ α̂ = p ∧ α
∧

= 〈α〉p
∧

, by
Definition 5, the defn. of ‖ · ‖c, Rp, and Proposition 2(3).

Base case ϕ := 0. Then [[0]]α̂ = W c if α̂ = W c, and [[0]]α̂ = ∅ otherwise. Also,
〈α〉0
∧

= 0 ∧ Uα
∧

= 0̂ ∩ Uα
∧

= 0̂ ∩ Uα
∧

= Uα
∧

(by Propositions 2(2) and Lemma14).
By Corollary 3, Uα

∧

= W c if α̂ = W c, and Uα
∧

= ∅ otherwise. So [[0]]α̂ = 〈α〉0
∧

.
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Case ϕ := ψ0. Follows easily from �̂ = W c and R[�], Corollary 4, and R0.
Case ϕ := 〈χ〉ψ. Straightforward, using the fact that � 〈α〉〈χ〉ψ ↔ 〈〈α〉χ〉ψ

(by R[!]).
Case ϕ := ♦ψ.
(⇒) Suppose T ∈ [[♦ψ]]α̂. This means, by Definition 5, that α ∈ T and there

exists B ∈ Ac such that T ∈ B ⊆ α̂ and T ∈ [[ψ]]B (see Observation 2). By the
construction of Ac, we know that B = θ̂ for some θ ∈ LP

−♦. Therefore, T ∈ [[ψ]]B
means that T ∈ [[ψ]]

̂θ. Moreover, since θ̂ ⊆ α̂ and, thus, θ̂ = α̂ ∩ θ̂ = α ∧ θ
∧

, we
obtain T ∈ [[ψ]]

α ∧ θ
∧. By Lemma 1(1), we have ψ < ��ψ. Therefore, by IH, we

obtain T ∈ 〈α ∧ θ〉ψ
∧

. Then, by axiom ([!]��-elim) and the fact that T is maximal,
we conclude that T ∈ 〈α〉♦ψ

∧

.
(⇐) Suppose T ∈ 〈α〉♦ψ

∧

, i.e., 〈α〉♦ψ ∈ T . Then, since T is a maximal P -
witnessed theory, there is p ∈ P such that 〈α〉〈p〉ψ ∈ T . By Lemma 1(2), we know
that 〈p〉ψ < ♦ψ. Thus, by IH on 〈p〉ψ, we obtain that T ∈ [[〈p〉ψ]]α̂. This means,
by Definition 5 and Observation 2, that T ∈ [[ψ]][[p]]α̂ ⊆ [[p]]α̂. Since p < ♦ψ, by IH
on p, we obtain that [[p]]α̂ = 〈α〉p

∧

⊆ α̂. By the construction of Ac, we moreover
have 〈α〉p

∧

∈ Ac. Therefore, as T ∈ [[ψ]]〈α〉p
∧ and 〈α〉p

∧

⊆ α̂, by Definition 5, we
conclude that T ∈ [[♦ψ]]α̂.

Corollary 5. The canonical pre-model Mc is standard (and hence a pseudo-
model).

Proof. Ac = {θ̂ : θ ∈ LP
−♦} = {̂〈�〉θ : θ ∈ LP

−♦} = {[[θ]]
̂
 : θ ∈ LP

−♦} = {[[θ]]W c :
θ ∈ LP

−♦}.

Lemma 16. For every ϕ ∈ LP , if ϕ is consistent then {0,♦ϕ} is an initial
Pϕ-theory.

Proof. Let ϕ ∈ LP s.t. ϕ �� ⊥. By the Equivalences with 0 in Table 1, we have
� ⊥0 ↔ (p ∧ ¬p)0 ↔ (p0 ∧ ¬p0) ↔ (p ∧ ¬p) ↔ ⊥. Therefore, � ψ → ⊥0 iff
� ψ → ⊥ for all ψ ∈ LP . Then, by Proposition 2(12), we obtain � ϕ → ⊥ iff
� (0 ∧ ♦ϕ) → ⊥. Since ϕ �� ⊥, we have 0 ∧ ♦ϕ �� ⊥, i.e., {0,♦ϕ} is a Pϕ-theory.
By definition, it is an initial one.

Corollary 6. APALM is complete with respect to standard pseudo models.

Proof. Let ϕ be a consistent formula. By Lemma 16, {0,♦ϕ} is an initial Pϕ-
theory. By Extension and Lindenbaum Lemmas, we can extend Pϕ to some
P ⊇ Pϕ, and extend {0,♦ϕ} to some maximal P -witnessed theory T0 such that
(0∧♦ϕ) ∈ T0. So T0 is initial, and we can construct the canonical pseudo-model
Mc for T0. Since ♦ϕ ∈ T0 and T0 is P -witnessed, there exists p ∈ P such that
〈p〉ϕ ∈ T0. By Truth Lemma (applied to α := p), we get T0 ∈ [[ϕ]]p̂. Hence, ϕ is
satisfied at T0 in the set p̂ ∈ Ac.

Corollary 7. APALM is complete with respect to APALM models.

This follows immediately from Corollaries 1 and 6.
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6 Expressivity

To compare APALM and its fragments with basic epistemic logic (and its
extension with the universal modality), consider the static fragment L−♦,〈!〉,
obtained from L by removing both the ♦ operator and the dynamic modality
〈ϕ〉ψ; as well as the present-only fragment L−♦,〈!〉,0,ϕ0 , obtained by removing
the operators 0 and ϕ0 from L−♦,〈!〉; and finally the epistemic fragment Lepi,
obtained by further removing the universal modality U from L−♦,〈!〉,0,ϕ0 . For
every APALM model M = (W 0,W ,∼1, . . . ,∼n, ‖ · ‖), consider its initial epis-
temic model Minitial = (W 0,∼1, . . . ,∼n, ‖ · ‖) and its current epistemic model
Mcurrent = (W ,∼1 ∩W × W , . . . ,∼n ∩W × W , ‖ · ‖ ∩ W ).

Proposition 8. The fragment L−♦ is co-expressive with the static fragment
L−♦,〈!〉. In fact, every formula ϕ ∈ L−♦ is provably equivalent with some formula
ψ ∈ L−♦,〈!〉 (by using APALM reduction laws to eliminate dynamic modalities,
as in standard PAL).

Proposition 9. The static fragment L−♦,〈!〉 (and hence, also L−♦) is strictly
more expressive than the present-only fragment L−♦,〈!〉,0,ϕ0 , which in turn is
more expressive than the epistemic fragment Lepi. In fact, each of the operators
0 and ϕ0 independently increase the logic’s expressivity.

Kuijer’s counterexample shows that the standard epistemic bisimulation is
not appropriate for APALM, so we now define a new such notion:

Definition 11 (APALM Bisimulation). An APALM bisimulation between
APALM models M1 = (W 0

1 ,W1,∼1, . . . ,∼n, ‖ · ‖) and M2 = (W 0
2 ,W2,∼1

, . . . ,∼n, ‖ · ‖) is a total bisimulation B (in the usual sense)17 between the corre-
sponding initial epistemic models Minitial

1 and Minitial
2 , with the property that:

if s1Bs2, then s1 ∈ W1 holds iff s2 ∈ W2 holds. Two current states s1 ∈ W1 and
s2 ∈ W2 are APALM-bisimilar if there exists an APAL bisimulation B between
the underlying APALM models such that s1Bs2.

Since APALM models are always of the form M = (M0)|θ for some θ ∈ L−♦,
we have a characterization of APALM-bisimulation only in terms of the initial
models:

Proposition 10. Let M1 = (W 0
1 ,W1,∼1, . . . ,∼n, ‖·‖) and M2 = (W 0

2 ,W2,∼1

, . . . ,∼n, ‖ · ‖) be APALM models, and let B ⊆ W 0
1 × W 0

2 . The following are
equivalent:

17 A total bisimulation between epistemic models (W , ∼1, . . . , ∼n, ‖ · ‖) and (W ′, ∼′
1

, . . . , ∼′
n, ‖ · ‖′) is an epistemic bisimulation relation (satisfying the usual valuation

and back-and-forth conditions from Modal Logic) B ⊆ W ×W ′, such that: for every
s ∈ W there exists some s′ ∈ W ′ with sBs′; and dually, for every s′ ∈ W ′ there
exists some s ∈ W with sBs′.
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1. B is an APALM bisimulation between M1 and M2;
2. B is a total bisimulation between Minitial

1 and Minitial
2 (or equivalently, an

APALM bisimulation between M0
1 and M0

2), and M1 = (M0
1)|θ, M2 =

(M0
2)|θ for some common formula θ ∈ L−♦.

So, to check for APALM-bisimilarity, it is enough to check for total bisimilarity
between the initial models and for both models being updates with the same
formula.

Proposition 11. APALM formulas are invariant under APALM-bisimulation:
if s1Bs2 for some APALM-bisimulation relation between APALM models M1 =
(W 0

1 ,W1,∼1, . . . ,∼n, ‖ · ‖) and M2 = (W 0
2 ,W2,∼1, . . . ,∼n, ‖ · ‖), then: s1 ∈

[[ϕ]]M1 iff s2 ∈ [[ϕ]]M2 . The (Hennessy-Milner) converse holds for finite models:
if M1 = (W 0

1 ,W1,∼1, . . . ,∼n, ‖ · ‖) and M2 = (W 0
2 ,W2,∼1, . . . ,∼n, ‖ · ‖) are

APALM models with W 0
1 ,W 0

2 finite, then s1 ∈ W1 and s2 ∈ W2 satisfy the same
APALM formulas iff they are APALM-bisimilar.

7 Conclusions and Future Work

This paper solves the open question of finding a strong variant of APAL that
is recursively axiomatizable. Our system APALM is inspired by our analysis
of Kuijer’s counterexample [11], which lead us to add to APAL a ‘memory’ of
the initial situation. The soundness and completeness proofs crucially rely on a
Subset Space-like semantics and on the equivalence between the effort modality
and the arbitrary announcement modality, thus revealing the strong link between
these two formalisms.

It seems clear that our method works for other versions of APAL, and in on-
going work we are looking at a recursive axiomatization GALM for a memory-
enhanced variant of GAL (Group Announcement Logic) [1]. As in GAL, the
�� operator quantifies only over announcements that are known by some of the
agents, so GALM seems better fit than APALM for treating puzzles involving
epistemic dialogues.

Acknowledgments. We thank the anonymous WOLLIC referees for their extremely
valuable comments on a previous draft of this paper.
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