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Abstract. In this work, we explore proof theoretical connections
between sequent, nested and labelled calculi. In particular, we show
a semantical characterisation of intuitionistic, normal and non-normal
modal logics for all these systems, via a case-by-case translation between
labelled nested to labelled sequent systems.

1 Introduction

The quest of finding analytic proof systems for different logics has been the
main research topic for proof theorists since Gentzen’s seminal work [5]. One
of the best known formalisms for proposing analytic proof systems is Gentzen’s
sequent calculus. While its simplicity makes it an ideal tool for proving meta-
logical properties, sequent calculus is not expressive enough for constructing
analytic calculi for many logics of interest. The case of modal logic is particularly
problematic, since sequent systems for such logics are usually not modular, and
they mostly lack relevant properties such as separate left and right introduction
rules for the modalities. These problems are often connected to the fact that the
modal rules in such calculi usually introduce more than one connective at a time,
e.g. as in the rule k for modal logic K:

B1, . . . , Bn � A

�B1, . . . ,�Bn � �A
k

One way of solving this problem is by considering extensions of the sequent
framework that are expressive enough for capturing these modalities using sepa-
rate left and right introduction rules. This is possible e.g. in labelled sequents [18]
or in nested sequents [1]. In the labelled sequent framework, usually the seman-
tical characterisation is explicitly added to sequents. In the nested framework in
contrast, a single sequent is replaced with a tree of sequents, where successors of
a sequent (nestings) are interpreted under a given modality. The nesting rules
of these calculi govern the transfer of formulae between the different sequents,
and they are local, in the sense that it is sufficient to transfer only one formula
at a time. As an example, the labelled and nested versions for the necessity right
rule (�R) are
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R, xRy,X � Y, y :A
R,X � Y, x :�A

�l
R

Γ � Δ, [· � A]
Γ � Δ,�A

�n
R

where y is a fresh variable in the �l
R rule. Reading bottom up, while the labelled

system creates a new variable y related to x via a relation R and changes the label
of A to y, in �n

R a new nesting is created, and A is moved there. It seems clear
that nestings and semantical structures are somehow related. Indeed, a direct
translation between proofs in labelled and nested systems for the modal logic
of provability (a.k.a. the Gödel-Löb provability logic) is presented in [6], while
in [4] it is shown how to relate nestings with Kripke structures for intuitionistic
logic (via indexed tableaux systems). In this work, we show this relationship
for intuitionistic logic and some normal modal logics, using only sequent based
systems.

Since nested systems have been also proposed for other modalities, such as
the non-normal ones [2], an interesting question is whether this semantical inter-
pretation can be generalised to other systems as well. In [15] a labelled approach
was used for setting the grounds for proof theory of some non-normal modal
systems based on neighbourhood semantics. In parallel, we have proposed [10]
modular systems based on nestings for several non-normal modal logics. We
will relate these two approaches for the logics M and E, hence clarifying the
nesting-semantics relationship for such logics.

Finally, in [11], we showed that a class of nested systems can be transformed
into sequent systems via a linearisation procedure, where sequent rules can be
seen as nested macro-rules. By relating nested and sequent systems, we are able
to extend the semantical interpretation also to the sequent case, hence closing the
relationship between systems and shedding light on the semantical interpretation
of several sequent based systems.

Organisation and Contributions. Section 2 presents the basic notation for
sequent systems; Sect. 3 presents nested systems and summarizes the results for
their sequentialisation; Sect. 4 presents the basic notation for labelled systems;
Sects. 5, 6 and 7 show the results under the particular views of intuitionistic,
normal and non-normal logics; Sect. 8 concludes the paper.

2 Sequent Systems

Contemporary proof theory started with Gentzen’s work [5], and it has had a
continuous development with the proposal of several proof systems for many
logics.

Definition 1. A sequent is an expression of the form Γ � Δ where Γ (the
antecedent) and Δ (the succedent) are finite sets of formulae. A sequent calculus
(SC) consists of a set of rule schemas, of the form

S1 · · · Sk

S
r
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Fig. 1. Multi-conclusion intuitionistic calculus SCmLJ.

where the sequent S is the conclusion inferred from the premise sequents
S1, . . . , Sk in the rule r. If the set of premises is empty, then r is an axiom.
An instance of a rule is a rule application.

A derivation is a finite directed tree with nodes labelled by sequents and a
single root, axioms at the top nodes, and where each node is connected with the
(immediate) successor nodes (if any) according to the application of rules. The
height of a derivation is the greatest number of successive applications of rules
in it, where an axiom has height 0.

In this work we will consider only fully structural sequent systems, i.e. allowing
freely applications of the schemas init and W bellow

Γ, P � P,Δ
init

Γ � Δ
Γ,Γ ′ � Δ,Δ′ W

where P is atomic.
As an example, Fig. 1 presents SCmLJ [12], a multiple conclusion sequent

system for propositional intuitionistic logic. The rules are exactly the same as in
classical logic, except for the implication right rule, that forces all formulae in the
succedent of the conclusion sequent to be previously weakened. This guarantees
that, on applying the (→R) rule on A → B, the formula B should be proved
assuming only the pre-existent antecedent context extended with the formula A,
creating an interdependency between A and B.

3 Nested Systems

Nested systems [1,16] are extensions of the sequent framework where a single
sequent is replaced with a tree of sequents.

Definition 2. A nested sequent is defined inductively as follows:

(i) if Γ � Δ is a sequent, then it is a nested sequent;
(ii) if Γ � Δ is a sequent and G1, . . . , Gk are nested sequents, then Γ �

Δ, [G1], . . . , [Gk] is a nested sequent.

A nested system (NS) consists of a set of inference rules acting on nested
sequents.

For readability, we will denote by Γ,Δ sequent contexts and by Λ sets of nestings.
In this way, every nested sequent has the shape Γ � Δ,Λ where elements of Λ
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Fig. 2. Nested system NSmLJ.

have the shape [Γ ′ � Δ′, Λ′] and so on. We will denote by Υ an arbitrary nested
sequent.

Application of rules and schemas in nested systems will be represented using
holed contexts.

Definition 3. A nested-holed context is a nested sequent that contains a hole
of the form { } in place of nestings. We represent such a context as S { }. Given
a holed context and a nested sequent Υ , we write S {Υ} to stand for the nested
sequent where the hole { } has been replaced by [Υ ], assuming that the hole is
removed if Υ is empty and if S is empty then S {Υ} = Υ . The depth of S { },
denoted by dp (S { }), is the number of nodes on a branch of the nesting tree of
S { } of maximal length.

For example, (Γ � Δ, { }){Γ ′ � Δ′} = Γ � Δ, [Γ ′ � Δ′] while { }{Γ ′ �
Δ′} = Γ ′ � Δ′.

The definition of application of nested rules and derivations in a NS are
natural extensions of the one for SC, only replacing sequents by nested sequents.
In this work we will assume that nested systems are fully structural, i.e., including
the following nested versions for the initial axiom and weakening1

S {Γ, P � Δ,P,Λ} initn
S {Γ � Δ,Λ}

S {Γ, Γ ′ � Δ,Δ′, Λ, Λ′} Wn

Figure 2 presents the NSmLJ [4], a nested system for mLJ.

3.1 Sequentialising Nested Systems

In [11] we identified general conditions under which a nested calculus can be
transformed into a sequent calculus by restructuring the nested sequent deriva-
tion (proof) and shedding extraneous information to obtain a derivation of the
same formula in the sequent calculus. These results were formulated generally
1 All over this text, we will use n as a superscript, etc for indicating “nested”. Hence
e.g., →n

R will be the designation of the implication right rule in the nesting frame-
work.
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so that they apply to calculi for intuitionistic, normal and non-normal modal
logics. Here we will briefly explain the main ideas in that work.

First of all, we restrict our attention to shallow directed nested systems, in
with rules are restricted so to falling in one of the following mutually exclusive
schemas:

i. sequent-like rules
S {Γ1 � Δ1} · · · S {Γk � Δk}

S {Γ � Δ}
ii nested-like rules

ii.a creation rules S {Γ � Δ, [Γ1 � Δ1]}
S {Γ � Δ}

ii.b upgrade rules
S {Γ ′ � Δ′, [Γ ′

1 � Δ′
1]}

S {Γ � Δ, [Γ1 � Δ1]}
The nesting in the premise of a creation rule is called the auxiliary nesting.

The following extends the definition of permutability to the nested setting.

Definition 4. Let NS be shallow directed, r1, r2 be applications rules and Υ be a
nested sequent. We say that r2 permutes down r1 (r2 ↓ r1) if, for every derivation
in which r1 operates on Υ and r2 operates on one or more of r1’s premises (but
not on auxiliary formulae/nesting of r1), there exists another derivation of Υ in
which r2 operates on Υ and r1 operates on zero or more of r2’s premises (but
not on auxiliary formulae/nesting of r2). If r2 ↓ r1 and r1 ↓ r2 we will say that
r1, r2 are permutable, denoted by r1 � r2. Finally, NS is said fully permutable
if r1 � r2 for any pair of rules.

Finally, the next result shows that fully permutable, shallow directed systems
can be sequentialised.

Theorem 5. Let NS be fully permutable, shallow and directed. There is a nor-
malisation procedure of proofs in NS transforming maximal blocks of applications
of nested-like rules into sequent rules.

Next an example of such procedure.

Example 6. In NSmLJ, a nested block containing the creation rule →n
R and the

upgrade rule liftn has the shape

S {Γ ′ � Δ′, [Γ,A � B]}
S {Γ, Γ ′ � Δ′, [A � B]} liftn

S {Γ, Γ ′ � Δ′, A → B} →n
R
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Observe that liftn maps a left formula into itself and there are no context
relations on right formulae. Hence the corresponding sequent rule is

Γ,A � B

Γ � A → B
→R

which is the implication right rule for mLJ. That is, sequentialising the nested
system NSmLJ (Fig. 2) results in the sequent system mLJ (Fig. 1).

4 Labelled Proof Systems

While it is widely accepted that nested systems carry the Kripke structure on
nestings for intuitionistic and normal modal logics, it is not clear what is the rela-
tionship between nestings and semantics for other systems. For example, in [9]
we presented a linear nested system [8] for linear logic, but the interpretation of
nestings for this case is still an open problem.

In this work we will relate labelled nested systems [6] with labelled sys-
tems [18]. While the results for intuitionistic and some normal modal logics are
not new [4,6], we give a complete different approach for these results, and present
the first semantical interpretation for nestings in non-normal modal logics. In
this section we shall recall some of the terminology for labelled systems.

Labelled Nested Systems. Let SV a countable infinite set of state variables
(denoted by x, y, z, . . .), disjoint from the set of propositional variables. A labelled
formula has the form x : A where x ∈ SV and A is a formula. If Γ = {A1, . . . , Ak}
is a set of formulae, then x : Γ denotes the set {x : A1, . . . , x : Ak} of labelled for-
mulae. A (possibly empty) set of relation terms (i.e. terms of the form xRy, where
x, y ∈ SV) is called a relation set. For a relation set R, the frame Fr(R) defined
by R is given by (|R|,R) where |R| = {x | xRy ∈ R or yRx ∈ R for some y ∈ SV}.
We say that a relation set R is treelike if the frame defined by R is a tree or R is
empty.

Definition 7. A labelled nested sequent LbNS is a labelled sequent R,X � Y
where

1. R is treelike;
2. if R = ∅ then X has the form x : A1, . . . , x : Ak and Y has the form x :

B1, . . . , x :Bm for some x ∈ SV;
3. if R �= ∅ then every state variable y that occurs in either X or Y also occurs

in R.
A labelled nested sequent calculus is a labelled calculus whose initial sequents
and inference rules are constructed from LbNS.

As in [6], labelled nested systems can be automatically generated from nested
systems.
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Definition 8. Given Γ � Δ and Γ ′ � Δ′ sequents, we define (Γ � Δ)⊗(Γ ′ � Δ′)
to be Γ, Γ ′ � Δ,Δ′. For a state variable x, define the mapping TLx from NS to
LbLNS as follows

TLx(Γ � Δ, [Υ1] , . . . , [Υn]) = xRx1, . . . , xRxn, (x :Γ � x :Δ) ⊗
TLx1(Υ1) ⊗ . . . ⊗ TLxn

(Υn)
TLx([Γ � Δ]) = x :Γ � x :Δ

with all state variables pairwise distinct.

For the sake of readability, when the state variable is not important, we will
suppress the subscript, writing TL instead of TLx. We will shortly illustrate the
procedure of constructing labelled nestings using the mapping TL. Consider the
following application of the rule →R of Fig. 2:

S {Γ � Δ,Λ, [A � B]}
S {Γ � Δ,A → B,Λ} →n

R

Applying TL to the conclusion we obtain R,X � Y, x :A → B where the variable
x label formulae in two components of the NS, and X,Y are sets of labelled
formulae. Applying TL to the premise we obtain R, xRy,X, y :A � Y, y :B where
y is a fresh variable (i.e. different from x and not occurring in X,Y ). We thus
obtain an application of the LbLNS rule

R, xRy,X, y :A � Y, y :B
R,X � Y, x :A → B

TL(→n
R)

Some rules of the labelled nested system LbNSmLJ are depicted in Fig. 3.
The following result follows readily by transforming derivations bottom-up [6].

Theorem 9. The mapping TLx preserves open derivations, that is, there is a
1-1 correspondence between derivations in a nested sequent system NS and in its
labelled translation LbNS.

Labelled Sequent Systems. In the labelled sequent framework, a semantical
characterisation of a logic is explicitly added to sequents via the labelling of
formulae [3,13–15,18]. In the case of world based semantics, the forcing relation
x � A is represented as the labelled formula x : A and sequents have the form
R,X � Y , where R is a relation set and X,Y are multisets of labelled formulae.

The rules of the labelled calculus G3I are obtained from the inductive defi-
nition of validity in a Kripke frame (Fig. 4a), together with the rules describing
a partial order, presented in Fig. 4b. Note that the anti-symmetry rule does not
need to be stated directly since, for any x, the formula x = x is equivalent to
true and hence can be erased from the left side of a sequent.
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Fig. 3. Labelled nested system LbNSmLJ.

Fig. 4. Some rules of the labelled system G3I

5 Intuitionistic Logic

In this section we will relate various proof systems for intuitionistic logic by
applying the results presented in the last sections.

Theorem 10. All rules in NSmLJ are height-preserving invertible and NSmLJ is
fully permutable.

Proof. The proofs of invertibility are by induction on the depth of the derivation,
distinguishing cases according to the last applied rule. Permutability of rules is
proven by a case-by-case analysis, using the invertibility results. 
�

The results in the previous sections entail the following.

Theorem 11. Systems NSmLJ, mLJ and LbNSmLJ are equivalent.

Observe that the proof uses syntactical arguments only, differently from e.g. [4,8].
For establishing a comparison between labels in G3I and LbNSmLJ, first

observe that applications of rule Trans in G3I can be restricted to the leaves
(i.e. just before an instance of the initial axiom). Also, since weakening is admis-
sible in G3I and the monotonicity property: x � A and x ≤ y implies y � A is
derivable in G3I (Lemma 4.1 in [3]), the next result follows.

Lemma 12. The following rules are derivable in G3I up to weakening.

R,X, x :A → B � x :A, Y R,X, x :B � Y

R,X, x :A → B � Y
→L′ R,X, x :P � Y, x :P init′
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Moreover, the rule

R, x ≤ y,X, y :A � Y

R, x ≤ y,X, x :A � Y lift′

is admissible in G3I.

Proof. For the derivable rules, just note that

R,X, x ≤ x, x :A → B � Y, x :A R,X, x ≤ x, x :B � Y

R,X, x ≤ x, x :A → B � Y
→t

L

R,X, x :A → B � Y
Ref

and

R, x ≤ x,X, x :P � Y, x :P initt

R,X, x :P,� Y, x :P Ref


�
Using an argument similar to the one in [6], it is easy to see that, in the

presence of the primed rules shown above, the relational rules are admissible.
Moreover, labels are preserved.

Theorem 13. G3I is label-preserving equivalent to LbNSmLJ.

That is, nestings in NSmLJ and LNSmLJ correspond to worlds in the Kripke struc-
ture where the sequent is valid and this is the semantical interpretation of the
nested system for intuitionistic logic [4].

Observe that, since mLJ derivations are equivalent to normal NSmLJ deriva-
tions, the semantical analysis for LNSmLJ also hold for mLJ, that is, an application
of the →R rule over Γ � A → B in mLJ corresponds to creating a new world
w in the Kripke structure and setting the forcing relation to A, B and all the
formulae in Γ .

In what follows, we will show how this approach on different proof systems
can be smoothly extended to normal as well as non-normal modalities, using
propositional classical logic as the base logic.

6 Normal Modal Logics

The next natural step on investigating the relationship between frame semantics
and nested sequent systems is to consider modal systems.

The normal modal logic K is obtained from classical propositional logic by
adding the unary modal connective � to the set of classical connectives, together
with the necessitation rule and the K axiom (see Fig. 5 for the Hilbert-style axiom
schemata) to the set of axioms for propositional classical logic.
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Fig. 5. Modal axiom K, necessitation rule nec and extensions D,T, 4.

Fig. 6. Nested system NSK. The rules →n
L, ∧n

R, ∧n
L, ∨n

R, ∨n
L and ⊥n

L are the same as in
Fig. 2.

The nested framework provides an elegant way of formulating modal systems,
since no context restriction is imposed on rules. Figure 6 presents the modal rules
for the nested sequent calculus NSK for the modal logic K [1,16].

Observe that there are two rules for handling the box operator (�L and �R),
which allows the treatment of one formula at a time. Being able to separate
the left/right behaviour of the modal connectives is the key to modularity for
nested calculi [8,17]. Indeed, K can be modularly extended by adding to NSK
the nested corresponding to other modal axioms. In this paper, we will consider
the axioms D,T and 4 (Fig. 5). Figure 7 shows the modal nested rules for such
extensions: for a logic KA with A ⊆ {D,T, 4} the calculus NSKA extends NSK
with the corresponding nested modal rules.

Note that rule tn is actually a sequent-like rule. On the other hand, �n
R and

dn are creation rules while �n
L and 4n are upgrade rules. It is straightforward to

verify that NSKA is shallow directed and fully permutable. Moreover, a nested
block containing the application of one of the creation rules and possible several
applications of the upgrade rules has one of the following shapes

S {Γ ′ � Δ′, [�Γ4, ΓK � A]}
S {�Γ4,�ΓK, Γ ′ � Δ′, [� A]} �n

L, 4n

S {�Γ4,�ΓK, Γ ′ � Δ′,�A} �n
R

S {Γ ′ � Δ′, [�Γ4, ΓK, A �]}
S {�Γ4,�ΓK, Γ ′ � Δ′, [A �]} �n

L, 4n

S {�Γ4,�ΓK,�A,Γ ′ � Δ′} dn

where �n
L acted in the context ΓK and 4n in the context Γ4. Observe that 4n maps

a boxed left formula into itself, �n
L maps left formulae into the boxed versions

and there are no context relations on right formulae. Hence sequentialising the
nested system NSKA (Fig. 7) results in the sequent system SCKA (shown as rule
schemas in Fig. 8).

Finally, Definition 8 of Sect. 4 can be extended to the normal modal case in
a trivial way, resulting in the labelled nested system LbNSKA (Fig. 9).

Theorem 14. Systems NSKA, SCKA and LbNSKA are equivalent.

Figures 10a and b present the modal and relational rules of G3KA [14], a
sound and complete labelled sequent system for KA.

The next results follow the same lines as the ones in Sect. 5.

Lemma 15. The rules TL(dn),TL(tn),TL(4n) are derivable in G3KA.
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Fig. 7. Nested sequent rules for extensions of K.

Fig. 8. Modal sequent rules for normal modal logics SCKA, for A ⊆ {T,D, 4}.

Proof. The proof is straightforward. For example, for KD

R,X, xRy, y : A � Y

R,X, xRy, x : �A � Y
�t

L

R,X, x : �A � Y
Ser


�
Theorem 16. G3KA is label-preserving equivalent to LbNSKA.

Proof. That every provable sequent in LbNSKA is provable in G3KA is a direct
consequence of Lemma 15. For the other direction, observe that rule relational
rules can be restricted so to be applied just before a �t

L rule. 
�
This means that labels in NSKA represent worlds in a Kripke-frame, and this
extends the results in [6] for modal logic of provability to normal modal logics
KA.

7 Non-normal Modal Systems

We now move our attention to non-normal modal logics, i.e., modal logics that
are not extensions of K. In this work, we will consider the classical modal logic
E and the monotone modal logic M. Although our approach is general enough
for considering nested, linear nested and sequent systems for several extensions
of such logics (such as the classical cube or the modal tesseract – see [10]), there
are no satisfactory labelled sequent calculi in the literature for such extensions.

For constructing nested calculi for these logics, the sequent rules should be
decomposed into their different components. However, there are two complica-
tions compared to the case of normal modal logics: the need for (1) a mechanism
for capturing the fact that exactly one boxed formula is introduced on the left
hand side; and (2) a way of handling multiple premises of rules. The first prob-
lem is solved by introducing the indexed nesting [·]e to capture a state where a
sequent rule has been partly processed; the second problem is solved by making
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Fig. 9. Modal rules for labelled indexed nested system LbNSKA.

Fig. 10. Some rules of the labelled system G3KA.

the nesting operator [·]e binary, which permits the storage of more information
about the premises. Figure 11 presents a unified nested system for logics NSE
and NSM.

NSE and NSM are fully permutable but, since the nested-like rule �en
L has

two premises, it does not fall into the definitions of shallowness/directedness.
However, since propositional rules cannot be applied inside the indexed nestings,
the modal rules naturally occur in blocks. Hence the nested rules correspond to
macro-rules equivalent to the sequent rules in Fig. 12 for SCE and SCM.

Finally, using the labelling method in Sect. 4, the rules in Fig. 11 correspond
to the rules in Fig. 13, where xNy and xNe(y1, y2) are relation terms capturing
the behaviour of the nestings [·] and [·]e respectively.

The semantical interpretation of non-normal modalities E,M can be given via
neighbourhood semantics, that smoothly extends the concept of Kripke frames
in the sense that accessibility relations are substituted by a family of neighbour-
hoods.

Definition 17. A neighbourhood frame is a pair F = (W,N) consisting of a set
W of worlds and a neighbourhood function N : W → ℘(℘W ). A neighbourhood
model is a pair M = (F ,V), where V is a valuation. We will drop the model
symbol when it is clear from the context.

The truth description for the box modality in the neighbourhood framework is

w � �A iff ∃X ∈ N(w).[(X �∀ A) ∧ (A � X)] (1)

where X �∀ A is ∀x ∈ X.x � A and A � X is ∀y.[(y � A) → y ∈ X]. The
rules for �∀ and � are obtained using the geometric rule approach [15] and are
depicted in Fig. 14.
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Fig. 11. Modal rules for systems NSE and NSM.

Fig. 12. Modal sequent rules for non-normal modal logics SCE and SCM.

If the neighbourhood frame is monotonic (i.e. ∀X ⊆ W , if X ∈ N(w) and
X ⊆ Y ⊆ W then Y ∈ N(w)), it is easy to see [15] that (1) is equivalent to

w � �A iff ∃X ∈ N(w).X �∀ A. (2)

This yields the set of labelled rules presented in Fig. 15, where the rules are
adapted from [15] by collapsing invertible proof steps. Intuitively, while the box
left rules create a fresh neighbourhood to x, the box right rules create a fresh
world in this new neighbourhood and move the formula to it.

Theorem 18. G3E (resp. G3M) is label-preserving equivalent to LbNSE (resp.
LbNSM).

Proof. Let π be a normal proof of N ,X � Y in LbNSE. An instance of the
blocked derivation

π1

N , xNy1, X, y1 : A, y2 : B � Y, y1 : B N , xNy2, X, y2 : B � Y, y1 : B, y2 : A

N , xNe(y1, y2), X, x : �A, y2 : B � Y, y1 : B
TL(�en

L )

N , X, x : �A � Y, x : �B
TL(�en

R )

is transformed into the labelled derivation

π′
y1 : A, X � Y, y1 : B

y1 ∈ a, a �∀ A, X � Y, y1 : B
�∀

π′
2

y2 : B, X � Y, y2 : A y2 ∈ a, X � Y, y2 ∈ a
init

y2 : B, A � a, X � Y, y2 ∈ a
�

a ∈ N(x), a �∀ A, A � a, X � Y, x : �B
�et

R

X, x : �A � Y, x : �B
�et

L

Observe that, in π1, the label y2 will no longer be active, hence the formula y2 : B
can be weakened. The same with y1 in π2. Hence π1/π2 corresponds to π′

1/π′
2 and

the “only if” part holds. The “if” part uses similar proof theoretical arguments
as in the intuitionistic or normal modal case, observing that applications of the
forcing rules can be restricted so to be applied immediately after the modal
rules. 
�
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Fig. 13. Modal rules for LbNSE and LbNSM with y1, y2 fresh in �e
R.

Fig. 14. Forcing rules, with z arbitrary in �L.

Fig. 15. Labelled systems G3E and G3M. a fresh in �e
L, �m

L and y, z fresh in �e
R, �m

R.

Observe that the neighbourhood information is “hidden” in the nested approach.
That is, creating of a nesting has a two-step interpretation: one of creating a
neighbourhood and another of creating a world in it. These steps are separated in
Negri’s labelled systems, but the nesting information becomes superfluous after
the creation of the related world. This indicates that the nesting approach is more
efficient proof theoretically speaking when compared to labelled systems. Also,
it is curious to note that this “two-step” interpretation makes the nested system
external, in the sense that nestings cannot be interpreted inside the syntax of
the logic. In fact, it makes use of the 〈 ] modality [2].

8 Conclusion and Future Work

In this work we showed a semantical characterisation of intuitionistic, normal
and non-normal modal systems, via a case-by-case translation between labelled
nested to labelled sequent systems. In this way, we closed the cycle of syn-
tax/semantic characterisation for a class of logical systems.

While some of the presented results are expected (or even not new as the
semantical interpretation of nestings in intuitionistic logic), our approach is,
as far as we know, the first done entirely using proof theoretical arguments.
Indeed, the soundness and completeness results are left to the case of labelled
systems, that carry within the syntax the semantic information explicitly. Using
the results in [11], we were able to extend all the semantic discussion to the
sequent case.



A Semantical View of Proof Systems 75

This work can be extended in a number of ways. First, it seems possible
to propose nested and labelled systems for some paraconsistent systems and
systems with negative modalities [7]. Our approach, both for sequentialising
nested systems and for relating the so-called internal and external calculi could
then be applied in such cases.

Another natural direction to follow is to complete this syntactical/semantical
analysis for the classical cube [10]. This is specially interesting since MNC = K,
that is, we should be able to smoothly collapse the neighbourhood approach
into the relational one. We observe that nestings play an important role in these
transformations, since it enables to modularly building proof systems.

Finally, it would be interesting to analyse to what extent the methodology
of the present paper might be applied to shed light on the problem of finding
intuitive semantics for substructural logics, like linear logic and its modal exten-
sions [9].
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