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Abstract. In this paper, we study doxastic attitudes that emerge on the
basis of argumentational reasoning. In order for an agent’s beliefs to be
called ‘rational’, they ought to be well-grounded in strong arguments that
are constructed by combining her available evidence in a specific way. A
study of how these rational and grounded beliefs emerge requires a new
logical setting. The language of the logical system in this paper serves this
purpose: it is expressive enough to reason about concepts such as factive
combined evidence, correctly grounded belief, and infallible knowledge,
which are the building blocks on which our notions of argument and
grounded belief can be defined. Building further on previous work, we use
a topological semantics to represent the structure of an agent’s collection
of evidence, and we use input from abstract argumentation theory to
single out the relevant sets of evidence to construct the agent’s beliefs.
Our paper provides a sound and complete axiom system for the presented
logical language, which can describe the given models in full detail, and
we show how this setting can be used to explore more intricate epistemic
notions.
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1 Introduction

Propositional attitudes such as knowledge and belief are extensively studied in
a number of areas, ranging from artificial intelligence (in particular in multi-
agent systems) and computer science (in the study of distributed systems) to
philosophy (in epistemology). In these studies we encounter the need to find
a mechanism for distinguishing between different attitudes, ranging from weak
and stronger forms of belief to infallible knowledge. In order to answer this ques-
tion, philosophers have proposed a number of additional ingredients (including
justifications, evidence, arguments) as well as principles (e.g. safety or stability)
on the basis of which one can conduct this comparison and ultimately decide
when an item of belief is strong enough to qualify as a piece of knowledge. The
topic of this paper relates directly to this discussion on distinguishing different
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propositional attitudes. Our starting point is based on making explicit the rea-
sons (e.g., evidence, arguments, justifications) on which beliefs are grounded. In
this way, our work contributes to the different representations of beliefs in the
literature, which includes not only purely qualitative structures (e.g., the KD45
approach in doxastic logic [1]; the plausibility models of [2,3]), but also quantita-
tive frameworks (e.g., ranking-based plausibility representations [4]; conditional
probabilistic spaces [5,6]). Yet, while the mentioned representations are useful
for discussing the properties of belief, they cannot capture the support the agent
has for such beliefs, i.e. her available evidence and the way she combines it to
build arguments for and against a given proposition, and how such arguments
may yield justifications to adopt certain beliefs.1

In order to explicitly represent the reasons on which beliefs are based, this
paper brings together two different formal frameworks. On the one hand we
use input from abstract argumentation theory [9] and relate our work to the
use of abstract argumentation within modal logic. As such our work relates
to [10–12]. On the other hand we contribute to the semantic approaches for
representing evidence-based reasoning; this stands in contrast to the syntactic
approach of e.g. justification logic [13]. The semantic approach traces back to
[14,15], representing evidence as a set of possible worlds (in terms of so-called
evidence models) and defining beliefs in terms of the maximally consistent ways
in which evidence can be combined. The work in [16] follows the latter direction,
adding a topological structure to describe how combined evidence is generated,
then using topological notions to single out relevant sets of combined pieces of
evidence. Note that the two mentioned semantic proposals, using the agent’s
available evidence to define her beliefs, consider all pieces of combined evidence
equally important. This simplifies some definitions, as contradictory evidence is
kept separated, yet it also means that in the presence of contradicting evidence,
the agent will not make a choice. As such the existing work on evidence-based
beliefs doesn’t capture one important aspect: the argumentative stage in which
the agent weighs her (possibly contradicting) evidence in order to make sense of
it. Indeed, in [9]’s words (p. 323),

[. . . ] a statement is believable if it can be argued successfully against attack-
ing arguments. In other words, whether or not a rational agent believes
in a statement depends on whether or not [an] argument supporting this
statement can be successfully defended against the counterarguments.

The work in this paper explicitly incorporates argumentational reasoning. We
build on the investigation that was first initiated in [17], by equipping our models
with an extra argumentative layer over the topological setting of [16]. This allows
us to single out (even in the presence of conflict) a meaningful family of combined
pieces of evidence (i.e., arguments) on which grounded beliefs can be defined. The
combination of a topological semantics with abstract argumentation theory gives

1 An exception are the so called truth maintenance systems [7,8], which keep track of
natural-deduction-style syntactic justifications.
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raise to a wide spectrum of epistemic notions, including not only known concepts
such as evidence, argument, justified belief and infallible knowledge, but also new
ones, such as (correctly) grounded belief and full support belief.

On the syntactic side, our formal language differs from the logic in [17] as
it has the expressive power to reason explicitly about concepts such as factive
combined evidence, correctly grounded belief, and infallible knowledge, which are
the building blocks for our notions of argument and grounded belief. Even more:
the main technical result of this paper, a sound and complete axiom system for
this new language with respect to the given structures, is useful in two impor-
tant ways. First, it characterises the basic properties of the language’s primitive
concepts (e.g., grounded beliefs are mutually consistent) as well as the essential
relationship between them (e.g., justified beliefs are grounded beliefs), which
allow us to find further connections. Second, the axiomatisation can be used as
a tool for exploring more intricate epistemic notions and their relationship with
grounded belief and justified belief.

The paper starts with Sect. 2 recalling the frameworks on which this proposal
is based; then Sect. 3 introduces a topological argumentation model and a formal
language to describe it, together with a sound and complete axiom system.
Sect. 4 uses the axiomatisation to explore further epistemic notions, and Sect. 5
summarises the proposal, outlining some directions for further work.

2 Preliminaries

Evidence-Based Belief. Let At be a countable set of atomic propositions.

Definition 1 (Evidence model [14]). A (uniform) evidence model is a tuple
M = (W, E0, V ) where (i) W �= ∅ is a set of possible worlds; (ii) E0 ⊆ 2W −{∅}
is a family of non-empty subsets of W (with W ∈ E0) called the collection of
pieces of basic evidence; (iii) V : At → 2W is a valuation function.

Intuitively, E0 contains the pieces of evidence the agent has acquired. The
requirements over E0 state that a contradiction cannot be taken as evidence
(∅ �∈ E0) and that, if knowledge is defined as truth in all possible worlds, the
agent knows what is the full range of possibilities (W ∈ E0).

Note that some pieces of basic evidence can contradict each other: there may
be P,Q ∈ E0 with P ∩ Q = ∅. However, this does not mean that the agent
accepts contradictions. Collecting evidence is not the end of the story: the agent
should be able to combine her basic evidence in a meaningful way, and thus
the agent’s beliefs should ideally not be taken directly from her basic pieces of
evidence. The strategy in [14] is that beliefs arise from the maximal consistent
ways these basic pieces of evidence can be combined.

Definition 2 (Body of evidence). Let M = (W, E0, V ) be an evidence model.

• A family U ⊆ 2W has the finite intersection property iff the intersection of
every finite subset of U is non-empty.
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• A body of evidence is a subfamily F ⊆ E0 satisfying the finite intersection
property.

• A body of evidence is maximal iff it cannot be properly extended.

By combining her available evidence in this way, the agent gets a set

MC := {
⋂

F ⊆ W | F is a maximal body of evidence}

with all its elements in conflict with each other. It is precisely this set which
will define the agent’s beliefs, yet there are different ways in which this can be
done. The choice in [14] is, in some sense, conservative: the agent will believe
only what is supported by all the elements of MC.

Definition 3 (Evidence-based belief [14]). Let M = (W, E0, V ) be an evi-
dence model. The agent believes a proposition P ⊆ W (notation: Be P ) if and
only if the combination of every maximal body of evidence supports P , i.e.,

Be P iff def E ⊆ P for all E ∈ MC

Justified Belief. Even though the agent’s beliefs are given by the combination
of maximally consistent pieces of evidence, contradictions may occur.

Example 1 ([18]). Consider the evidence model (N, E0 = {[n,+∞) | n ∈ N}, ∅).
Note how E0 itself is a body of evidence and, moreover, is the unique maximal
one. But

⋂
E0 = ∅, and thus the agent believes ∅.

The reason for this is that maximal bodies of evidence F are only finitely
consistent. However, in order to determine whether they support a given propo-
sition, the agent uses arbitrary intersections (

⋂
F in the definition of MC). In

order to reconcile this discrepancy, [16] uses a different strategy; it uses the
topology generated by E0.2

Definition 4 (Topological evidence model [16]). A topological evidence
model M = (W, E0, τE0 , V ) extends an evidence model (W, E0, V ) (Definition 1)
with τE0 , the topology over W generated by E0.3

Arguments. Open sets in τ are unions of finite intersections of elements of E0, and
can be seen as the agent’s logical manipulation of her basic evidence. Following
[16], non-empty open sets in τ are called arguments ([19, Subsect. 5.2.2] justifies
the use of this term). Note how not every maximal body of evidence defines an
argument, as even if all finite intersections of its elements are non-empty, arbi-
trary intersections might not (Example 1). Thus, the definition of beliefs changes
in [16]: instead of asking for all maximal bodies of evidence to support P , it is
required that all arguments (i.e., finite bodies of evidence) can be strengthened
(i.e., combined with further evidence) to yield an argument supporting P .
2 A topology over a non-empty domain X is a family τ ⊆ 2X containing both X and

∅, and is closed under both finite intersections and arbitrary unions. The elements
of a topology are called open sets. The topology generated by a given Y ⊆ 2X is the
smallest topology τY over X such that Y ⊆ τY .

3 When no confusion arises, τE0 will be denoted simply by τ .
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Definition 5 (Justified belief [16]). Let M = (W, E0, τ, V ) be a topological
evidence model. The agent has a justified belief of a proposition P ⊆ W (nota-
tion: Bj P ) if and only if every argument T can be strengthened to an argument
T ′ that supports P , that is,

Bj P iff def for all T ∈ τ \ {∅} there is T ′ ∈ τ \ {∅} s.t. T ′ ⊆ T and T ′ ⊆P

Given a topology τ over a set X, an open T ∈ τ is dense if and only if it has
a non-empty intersection with all the other non-empty opens. Then, as stated
in [16, Proposition 2].

Proposition 1. Let M = (W, E0, τ, V ) be a topological evidence model. Then,
Bj P holds in M if and only if there is a dense open T ∈ τ such that T ⊆ P .

Hence from Definition 5 and Proposition 1 it follows that the agent justifiably
believes P if and only if P is supported by an argument that is consistent with
any other argument. In this setting, every argument is equally important when
deciding what to believe. In order for an agent to weigh her arguments differently
we bring in argumentational reasoning in the next section.

3 Belief, Evidence, Argumentation, and Their Logic

The proposal of [17] extends the topological evidence model of [16] with a further
semantic component coming from the abstract argumentation framework of [9]
to elaborate on relations between arguments.

Definition 6 (Topological argumentation model [17]). A topological argu-
mentation (TA) model M = (W, E0, τ,�, V ) extends a topological evidence
model (W, E0, τ, V ) (Definition 4) with a relation � ⊆ (τ × τ), the attack rela-
tion on τ (where T1 � T2 reads as “T2 attacks T1 ”), required to satisfy the
following:

1. for every T1, T2 ∈ τ : T1 ∩ T2 = ∅ if and only if T1 � T2 or T2 � T1;
2. for every T, T1, T

′
1 ∈ τ : if T1 � T and T ′

1 ⊆ T1, then T ′
1 � T ;

3. for every T ∈ τ \ {∅}: ∅ � T and T �� ∅.

The first condition states (right to left) that attack implies conflict (i.e.,
empty intersection), but also (left to right) that, while conflict implies attack,
the attack does not need to be mutual. The second asks that, if T attacks T1,
then it should also attack any stronger T ′

1. The last establishes that, while the
empty set is attacked by all non-empty opens, it does not attack any of them.4

In a TA model, the topology τ represents the arguments the agent has in
her mind, and the attack relation � can be understood as inducing a form
of preference over conflicting combined evidence. Together, τ and � form the
basis of the agent’s argumentation framework. Yet how can the agent use this
framework to form her beliefs? Abstract argumentation theory [9] provides useful
tools; here are the required notions.
4 In fact, as the first condition implies, it only attacks itself.
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Definition 7 (Characteristic (defense) function). Let M = (W, E0, τ,�
, V ) be a TA model, with Aτ = (τ,�) its argumentation framework. A subset
T ⊆ τ is said to defend T ∈ τ iff any open T ′ attacking T (i.e., for all T ′ ∈ τ with
T � T ′) is attacked by some open in T (i.e., there is T ′′ ∈ T with T ′ � T ′′).
Then, the characteristic function of Aτ , denoted by dτ , also called the defense
function, receives a set of opens T ⊆ τ and returns the set of opens it defends:

dτ (T ) := {T ∈ τ | T is defended by T }

The characteristic function dτ is monotonic [9, Lemma 19], so it has a least
fixed point LFPτ ⊆ τ (i.e., LFPτ is the smallest subset of τ satisfying LFPτ =
dτ (LFPτ ) [20,21]). Since LFPτ can defend all (⊆) and only (⊇) its members
against any attack, and it is also conflict-free (i.e., there are no T, T ′ ∈ LFPτ

such that T � T ′), it provides a reasonable definition for the relevant family
of open sets in τ over which beliefs will be defined. This set LFPτ , called the
grounded extension in abstract argumentation, is never empty in this setting, as
W is never attacked (it is in conflict only with the empty set, which does not
attack anybody) and therefore it is always in LFPτ .

Definition 8 (Grounded belief [17]). Let M = (W, E0, τ,�, V ) be a TA
model. The agent believes a proposition P ⊆ W (notation: Bg P ) iff there is an
open set in LFPτ supporting P , that is

Bg P iff def there exists F ∈ LFPτ such that F ⊆ P.

Grounded belief is a fully introspective and mutually consistent notion, closed
under conjunction elimination, but not under conjunction introduction [17].

To illustrate grounded belief’s failure of conjunction introduction while also
showing how a TA model can be used to model ‘real life’ scenarios, we recall
Example 3.1 of [17].

Example 2. The zoo in Tom’s town bought a new animal and will show it soon
to the public. Tom is curious about what species the animal is, so he asks his
colleagues. However, he gets different answers. Some tell him that the animal is
a penguin ({1}), some tell him that the animal is a pterosaur ({2}) and some
tell him that the animal is a bat ({3}). Moreover, two other colleagues, who
he really trusts, tell him that the animal can fly ({2, 3}) and the animal is not
a mammal ({1, 2}). After receiving all these pieces of information, Tom is very
puzzled. Although “the animal can fly” and “the animal is not a mammal” imply
that the animal is a neither a penguin nor a bat, it is still hard to imagine that
there can be a pterosaur living in the world. Intuitively, in such a situation,
Tom comes to believe that the animal can fly and the animal is not a mammal.
However, it seems that his evidence is not strong enough to support the claim
that the animal is a pterosaur.

Let At = {p, t, b} be a set of atomic propositions (p: “the animal is a penguin”;
t: “the animal is a pterosaur”; b: “the animal is a bat”). The following TA model
M describes Tom’s evidence, arguments and doxastic situation.

M = (W = {1, 2, 3}, E0 = {{1}, {2}, {3}, {1, 2}, {2, 3}}, τ = 2W ,�, V ) (1)
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Fig. 1. Grounded beliefs are not closed under conjunction.

with V = {(p, {1}), (t, {2}), (b, {3})} and � given by the union of (i)singletons
attacking one another, (ii) {∅ � T | T ∈ τ} and (iii) {{3} � {1, 2}, {1} �
{2, 3}, {2} � {1, 3}, {1, 3} � {2}}, as shown in Fig. 1.5 According to the defini-
tion, LFPτ = {{1, 2}, {2, 3}, {1, 2, 3}} (a set that is not closed under intersection);
together with the definition of grounded belief, this confirms the intuition that
Tom can come to believe that the animal can fly ({2, 3} ∈ LFPτ ) and that the
animal is not a mammal ({1, 2} ∈ LFPτ ), but he does not come to believe that
the animal is a pterosaur (no subset of {2} is in LFPτ ).

3.1 The Logic of Belief, Evidence and Argumentation

In order to reveal the relationship between evidence, arguments, and grounded
beliefs, this paper introduces a richer language to describe TA models compared
to the logic studied in [17]. It relies on the notions of infallible knowledge, factive
combined evidence and correctly grounded belief, from which notions as argument
and grounded belief can be defined. This language can be used not only for
providing a more detailed description of the models; it can be also used to explore
more intricate epistemic notions and their interrelationship, as in Sect. 4.

Definition 9 (Language L�,K,T). The language L�,K,T is generated by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | � ϕ | Kϕ | Tϕ

with atoms p ∈ At (define �ϕ := ¬� ¬ϕ, K̂ ϕ := ¬K ¬ϕ, and T̂ϕ := ¬T¬ϕ).
For its semantics, given a TA model M , atoms and Boolean operators are inter-
preted as usual. For cases involving operators, we first define Fc, the set con-
taining the combination of finite bodies of evidence:

Fc := {
⋂

F ⊆ W | F is a finite body of evidence}.

M,w |= � ϕ iff def there exists E ∈ Fc such that w ∈ E and E ⊆ �ϕ�
M,w |= K ϕ iff def W ⊆ �ϕ�
M,w |= Tϕ iff def there exists F ∈ LFPτ such that w ∈ F and F ⊆ �ϕ�

5 Attack edges involving the empty set are not drawn.
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The modality K can be understood as describing the agent’s infallible knowl-
edge. The operator � indicates the existence of combined evidence (E ∈ Fc) that
is factive (w ∈ E) [16], so � ϕ denotes “the agent has factive combined evidence
for ϕ”. Note the following equivalence.

Proposition 2. Given a TA model M and any world w in it,

M,w |= � ϕ iff there is an argument T ∈ τ\{∅} such that w ∈ T ⊆ �ϕ�.

Hence, � ϕ also expresses that “the agent has a correct argument for ϕ ”.
Finally, to understand the interpretation of the operator T, compare it to the
operator for grounded belief Bg in Definition 8. The difference is that, while
the truth condition of Tϕ requires that there is a correct argument F in LFPτ

(w ∈ F ), the truth condition of Bg ϕ does not require correctness. Thus, Tϕ is
read as “the agent has correctly grounded belief of ϕ”, from which the operator
for grounded belief can be defined as

Bg ϕ := K̂Tϕ.

Choosing T instead of Bg as a basic operator in the language is only a matter
of technical convenience. There is no difference between the two choices, as

Proposition 3. |= Tϕ ↔ (Bg ϕ ∧ �ϕ).

This equivalence also shows that correctly grounded belief Tϕ is different
from grounded true belief, which can be expressed in the language as Bg ϕ ∧ ϕ.
While the latter only requires the belief to be true, a correctly grounded belief
requires a correct argument in LFP supporting the belief.

Axiom System. It has been proved [16, Theorem 4] that the validities of L�,K

with respect to topological evidence models (Definition 4) are characterised by
(i) propositional tautologies and Modus Ponens, (ii) the S4 axioms and rules
for �; (iii) the S5 axioms and rules for K, (iv) Kϕ → � ϕ. The challenge here
is to find a proper axiom system characterising the validities of L�,K,T (which
extends L�,K with T) over TA models (which extend topological evidence models
with an attack relation on τ); Table 1 shows our proposal.

Axioms and rules in the upper block of Table 1 are self-explanatory, with
exception of the last two, describing the interaction between T and K. For the
first, recall that K̂T is the operator for grounded belief; then, K̂Tϕ → ¬ K̂T¬ϕ
states that grounded beliefs are mutually consistent. The second, (Tϕ∧K ψ) →
T(ϕ ∧ Kψ), is the ‘pullout’ axiom6 for T, and states that a correctly grounded
belief of ϕ and infallible knowledge of ψ give the agent a correctly grounded belief
of the conjunction of ϕ and her infallible knowledge of ψ. The axiom can be used
to derive easier-to-read validities describing the interaction between T and K.
An example is the following one, a variation of the famous K axiom, indicating
that infallible knowledge of an implication and a correctly grounded belief of the
antecedent gives the agent a correctly grounded belief of the consequent.
6 The ‘pullout’ axiom is from [14], where it is used with the operator for evidence �.
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Table 1. Axiom system L�,K,T, for L�,K,T w.r.t. topological argumentation models.

Proposition 4. � K(ϕ → ψ) → (Tϕ → Tψ).

Proof
(1) � (Tϕ ∧ K(ϕ → ψ)) → T(ϕ ∧ K(ϕ → ψ)) Instance of the ‘pullout’ axiom
(2) � (ϕ ∧ K(ϕ → ψ)) → ψ Axioms T for K, T; Modus Ponens
(3) � T(ϕ ∧ K(ϕ → ψ)) → Tψ (2) and rule for T
(4) � K(ϕ → ψ) → (Tϕ → Tψ) (1), (3) and Modus Ponens

The four axioms in the lower block of Table 1 describe the relationship
between different modalities. Axiom Tϕ → �ϕ, tells us that a correctly
grounded belief of ϕ implies that the agent has a correct argument for ϕ. The
axiom, Tϕ → K(� ϕ → Tϕ), states that if the agent has a correctly grounded
belief of ϕ then she infallibly knows that a correct argument for ϕ implies a
correctly grounded belief of ϕ; it describes a form of strong (K) introspection of
grounded arguments (T) in the presence of ‘normal’ arguments (�).

To understand axiom K� � ϕ → K̂Tϕ, recall first that K̂T characterises
grounded belief. Then, note that justified belief (Definition 5) is characterised by
K� � [16, Proposition 2], that is, Bj ϕ := K � �ϕ. Hence, the axiom indicates
that justified belief implies grounded belief. Finally, the fourth axiom,

(
K̂Tϕ ∧

¬ K̂Tψ ∧ K((ϕ ∧ ψ) → �(ϕ ∧ ψ))
)

→ K̂ �(ϕ ∧ ¬ψ), states that if the agent has
a grounded belief of ϕ but not of ψ, and she at the same time has argument
�ϕ ∧ ψ�,7 then the agent must have an argument for ϕ ∧ ¬ψ.

The soundness of the axiom system is proved by verifying that the axioms
are valid and the rules are validity-preserving. Most of the cases are relatively
simple; here we focus on the last three axioms, to give the reader a better grasp
of the modalities’ semantic interpretation.

Proposition 5. |= Tϕ → K(� ϕ → Tϕ).

7 Note that “the agent has argument �ϕ�” is different from “the agent has an argument
for �ϕ�”. The former is expressed by K(ϕ → � ϕ), semantically stating that there

is an argument T such that T = �ϕ�; the latter corresponds to ̂K � ϕ, semantically
stating that there is an argument T such that T ⊆ �ϕ�.
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Proof. Let M = (W, E0, τ,�, V ) be a TA model; take w ∈ W , and suppose
M,w |= Tϕ. Then, there exists F ∈ LFPτ such that w ∈ F and F ⊆ �ϕ�, that
is, there is F ∈ LFPτ such that F ⊆ �ϕ�. Now, take any u ∈ W : if there is
Tu ∈ Fc such that both u ∈ Tu and Tu ⊆ �ϕ�, then F ∪ Tu is not only a factive
(at u, as u ∈ (F ∪Tu)) argument supporting ϕ (clearly, (F ∪Tu) ⊆ �ϕ�); it is also
in LFPτ , as F ∈ LFPτ and [17, Proposition 3.1] indicates that, for all T, T ′ ∈ τ ,
if T ⊆ T ′ and T ∈ LFPτ then T ′ ∈ LFPτ . Therefore, M,u |= Tϕ.

Proposition 6. |= K �� ϕ → K̂Tϕ.

Proof. By Proposition 1, justified belief of ϕ, K � �ϕ, implies the existence of a
dense open T supporting ϕ. But dense opens intersect with all non-empty opens,
so they are not attacked at all; hence, T must be in LFPτ .

Proposition 7. |=
(
K̂Tϕ∧¬ K̂Tψ∧K((ϕ∧ψ) → �(ϕ∧ψ))

)
→ K̂�(ϕ∧¬ψ).

Proof. Let M = (W, E0, τ,�, V ) be a TA model; take w ∈ W . Suppose

M,w |= K̂Tϕ ∧ ¬ K̂Tψ ∧ K((ϕ ∧ ψ) → �(ϕ ∧ ψ))

From the first conjunct, there is F ∈ LFPτ such that F ⊆ �ϕ�. But, from the
second, no F ′ ∈ LFPτ is such that F ′ ⊆ �ψ�; in particular, �ϕ ∧ ψ� �∈ LFP.
However, by the third conjunct, �ϕ ∧ ψ� ∈ τ . So there must be an argument
keeping �ϕ ∧ ψ� out of LFP, that is, there is a non-empty T ∈ τ such that
�ϕ ∧ ψ� � T and T intersects with all arguments in LFPτ , with the former
implying that T ⊆ W\�ϕ∧ψ� and the latter implying that T ∩F �= ∅. Moreover,
F ⊆ �ϕ�, so T ∩ F ⊆ (W\�ϕ ∧ ψ�) ∩ �ϕ� = �ϕ ∧ ¬ψ�; together with T ∩ F �= ∅,
T ∩ F ∈ τ , and Proposition 2, it implies that M,w |= K̂�(ϕ ∧ ¬ψ).

As for the completeness of the system, the reader can find (for space reasons,
an abridged version of) the proof in the AppendixA.

Theorem 1. The axiom system of Table 1 is sound and strongly complete for
the language L�,K,T w.r.t. topological argumentation models.

4 Further Epistemic Notions

We have seen in Sect. 3 that the language L�,K,T can express several epistemic
notions, such as arguments (K̂ �), grounded belief (K̂T) and justified belief
(K � �ϕ). This section applies the logic of belief, evidence and argumentation
to explore further epistemic notions and the way they relate to each other.

Recall the result on the definability of justified belief and grounded belief:
Bj ϕ := K� � ϕ and Bg ϕ := K̂Tϕ. Thus, while justified belief is defined by
infallible knowledge and factive combined evidence, grounded belief is defined
by infallible knowledge and correctly grounded belief.
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From these definitions, one may wonder about the relationship of the given
concepts with the ones given by

K T̂ Tϕ and K̂T� �ϕ

The first substitutes T̂ T for � � in K� � ϕ; it can be intuitively read as “the
agent knows that it is consistent with her correctly grounded beliefs that she has
a correctly grounded belief of ϕ”. The second substitutes �� ϕ for ϕ in K̂Tϕ;
it can be read as “the agent has a grounded belief of the possibility of having a
correct argument for ϕ”.

Now, do these two formulas describe epistemic notions different from justified
belief and grounded belief? The axiom system shows us that the answer is no:
they are just two alternative ways of characterising grounded belief:

Proposition 8. � K T̂ Tϕ ↔ K̂Tϕ and � K̂T� � ϕ ↔ K̂Tϕ.

Proof. For space reasons, here we only prove the first.

(1) � ̂TTϕ → ̂KTϕ (1) � ̂KTϕ → ̂KTTϕ

(2) � K ̂TTϕ → K ̂KTϕ (2) � ̂KTTϕ → ¬ ̂KT¬Tϕ

(3) � K ̂KTϕ → ̂KTϕ (3) � ¬ ̂KT¬Tϕ → K ̂TTϕ

(4) � K ̂TTϕ → ̂KTϕ (4) � ̂KTϕ → K ̂TTϕ

We close this section with a new epistemic notion, obtained on the basis of
a semantic argument:

Definition 10 (Full-support belief). Let M = (W, E0, τ,�, V ) be a topo-
logical argumentation model. The agent has full-support belief of a proposition
P ⊆ W (notation: Bf P ) if and only if every argument in LFPτ can be strength-
ened to an argument in LFPτ which supports P .

Compare the definition of full-support belief with the definition of justified
belief (Definition 5): the only difference is that all the arguments involved in
defining full-support belief need to be members of LFPτ . On one hand, the
similarities between the definitions of these two concepts suggest that they may
share the same properties, and indeed this is the case: within TA models, full-
support belief Bf is a KD45 operator. Here we only prove that it is closed under
conjunction introduction.

Proposition 9. Given a TA model, for any P,Q ⊆ W we have that.

(Bf P ∧ Bf Q) → Bf (P ∧ Q)

Proof. Given a topological argumentation model, assume that, for all F ∈ LFPτ ,
not only there is F ′ ⊆ F such that F ′ ∈ LFPτ and F ′ ⊆ P , but also there is
F ′′ ⊆ F such that F ′′ ∈ LFPτ and F ′′ ⊆ Q.

Take an arbitrary T ∈ LFPτ . By the assumption, there is T ′ ⊆ T such that
T ′ ∈ LFPτ and T ′ ⊆ P . By the assumption again, from T ′ ∈ LFPτ it follows that
there is T ′′ ⊆ T ′ such that T ′′ ∈ LFPτ and T ′′ ⊆ Q. But T ′′ ⊆ T ′ and T ′ ⊆ P
imply T ′′ ⊆ P . Hence, T ′′ ⊆ P ∧ Q, Thus, for all F ∈ LFPτ , we can find an
argument F ′ ⊆ F such that F ′ ∈ LFPτ and F ′ ⊆ P ∧ Q.
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On the other hand, the similarity between the semantic definition of full-
support belief (Definition 10) and the semantic definition of justified belief (Def-
inition 5) seems to suggest that because the latter can be expressed as K � � ϕ,
also the former can be written as K T̂ Tϕ. However, this is not the case. By
Proposition 8, K T̂ Tϕ is a syntactical definition of grounded belief. Full-support
belief Bf and grounded belief Bg are different, as the latter is not closed under
conjunction [17] while the former is (Proposition 9). So full-support belief cannot
be syntactically defined by K T̂ Tϕ. Why is there such a discrepancy? It is due to
the lack of closure under finite intersection in LFPτ , as the following proposition
shows.

Proposition 10. Given a TA model, Bf P ↔ Bg P holds for any P ⊆ W if
and only if LFPτ is closed under finite intersections.

Proof. From left to right: if grounded belief and full-support belief are equivalent
in the given model, then grounded beliefs should be closed under conjunction:
for any P,Q ⊆ W , if Bg P ∧ Bg Q holds then Bg(P ∧ Q) also holds. Now, if
LFPτ is not closed under finite intersection, it is easy to find P and Q such that
the above fact fails. Thus, LFPτ has to be closed under finite intersection.

From right to left: by Proposition 8, we only need to prove that Bf P ↔
K T̂ Tϕ holds when LFPτ is closed under finite intersection. For the first direc-
tion, assume Bf P ; then, for all F ∈ LFPτ there is F ′ ∈ LFPτ such that F ′ ⊆ F
and F ′ ⊆ P . Now take an arbitrary w ∈ W and an arbitrary F ∈ LFPτ with
w ∈ F ; then there is F ′ ∈ LFPτ such that F ′ ⊆ F and F ′ ⊆ P . But ∅ /∈ LFPτ

so F ′ �= ∅; there is v ∈ F ′ with F ′ ∈ LFPτ and F ′ ⊆ P . Hence, for all w ∈ W
and all F ∈ LFPτ such that w ∈ F , we can find a v ∈ F ′ such that TP holds
on v; then, K T̂ TP holds in the model. Note how we did not use LFPτ ’s closure
under finite intersections.

For the second direction, assume K T̂ TP ; then, for all w ∈ W and all F ∈
LFPτ with w ∈ F , there is v ∈ F such that there is an argument F ′ ∈ LFPτ such
that v ∈ F ′ and F ′ ⊆ P . Note that F ′ is not required to be a subset of F ; still,
LFPτ is closed under finite intersections, so F ∩ F ′ is also in LFPτ , which gives
us an argument in LFPτ that is a subset of F (F ∩ F ′ ∈ LFPτ ) and supports P
(F ∩ F ′ ⊆ P ). So, for all F ∈ LFPτ , we can find an F ′ ∈ LFPτ such that F ′ ⊆ F
and F ′ ⊆ P , which implies that Bf P holds in the model.

A more detailed study of the relationship between grounded, justified and
full-support belief will be provided in this paper’s full-version, where we can show
that Bj implies Bf , which in turn implies Bg, but not the other way around.

5 Conclusion and Future Work

Continuing the series of works [14,16,17] on models providing an explicit repre-
sentation of the ‘reasons’ supporting an agent’s beliefs, this paper focuses explic-
itly on the concepts of evidence and argumentation. On the first, it relies on the
topological extension [16] of the so-called evidence models [14,15], representing
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a piece of evidence as a set of possible worlds. With respect to ‘argumentation’,
we use tools from abstract argumentation theory [9] to single out arguments on
which a notion of grounded belief is defined. This combination of topological
semantics with abstract argumentation theory gives raise to a wide spectrum
of epistemic notions, including not only known concepts as evidence, argument,
justified belief and infallible knowledge, but also new ones, such as (correctly)
grounded belief and full support belief.

The main technical contribution of this paper is the logic of belief, evidence
and argumentation, via which the semantic analysis on grounded belief and its
relationship with justified belief of [17] is fully characterized. The logic is use-
ful not only for characterising the relationship between the mentioned epistemic
notions; it also helps to find new epistemic concepts, deepening our understand-
ing of the notion of grounded belief that is central to this work.

The presented setting opens several interesting alternatives for further
research. An immediate one follows from the fact that full-support belief has
been semantically characterized but not syntactically defined in L�,K,T. Further
research on its syntactic definability is necessary and may as well require an
extension of the language. Moreover, other interesting notions of belief may arise
by using further tools from abstract argumentation theory. Indeed, grounded
belief relies on the grounded extension of the argumentation framework, but
other extensions might be considered, as preferred extension, stable extension
and so on. They would give raise to further types of belief that can be compared
with the ones studied here.

Equally interesting is a move to a multi-agent scenario, with different agents
considering possibly different attack relations. This would give rise to a more
‘real’ argumentation setting, with argumentation taking place not only within
an agent’s mind, but also between different agents. In turn, this emphasises the
importance of a further dynamic layer, exploring the different epistemic actions
that might affect the agent’s epistemic state. In line with other work on evidence-
dynamics in [14], the emergence of new evidence is interesting (as is the dismissal
of existing ones); our setting also allows for changes in an agent’s attack relation
(arising, e.g., from her interaction with others). By providing the formal tools
to study such scenarios, one will be able to truly understand how interaction in
multi-agent argumentation affects the epistemic state of the involved agents.

A Completeness for L�,K,T

The proof shows that any L�,K,T-consistent set of L�,K,T-formulas is satisfiable.
Satisfiability will be proved in an Alexandroff qTA models (see below), which is
L�,K,T-equivalent to its corresponding TA model.8 Here are the details.

Definition 11 (qTA model). A quasi-topological argumentation model (qTA)
is a tuple M = (W, E0,�,�, V ) in which (W, E0, τ,�, V ) is a TA model (with

8 A similar strategy is used in [16]: show that any consistent set of formulas is satisfiable
in a quasi-model, then turn it into a modally-equivalent topological evidence model.



302 C. Shi et al.

τ generated by E0, as before) and � ⊆ (W × W ) a preorder such that, for every
E ∈ E0, if u ∈ E and u � v, then v ∈ E.

Formulas in L�,K,T are interpreted in qTA models just as in TA models. The
only difference is �, which becomes a normal universal modality for �. More
precisely, M, w |= �ϕ iff for all v ∈ W , if w � v then M, w |= � ϕ. Now, two
topological definitions, a refined qTA model, and the connection.

Definition 12 (Specification preorder). Let (X, τ) be a topological space. Its
specification preorder τ ⊆ (X × X) is defined, for any x, y ∈ X, as x τ y iff
for all T ∈ τ , x ∈ T implies y ∈ T .

Definition 13 (Alexandroff space). A topological space (X, τ) is Alexandroff
iff τ is closed under arbitrary intersections (i.e.,

⋂
T ∈ τ for any T ⊆ τ).

Definition 14 (Alexandroff qTA model). A qTA-model M = (W, E0,�,�,
V ) is called Alexandroff iff (i) (W, τE0) is Alexandroff, and (ii) � = τ .

Proposition 11. Given an Alexandroff qTA model M = (W, E0,�,�, V ), take
M = (W, E0, τ,�, V ). Then, �ϕ�M = �ϕ�M for every ϕ ∈ L�,K,T.

Proof. Exactly as that of [19, Proposition 5.6.14] for topological evidence models
and L�,K, as T has the same truth condition in qTA and TA models.

For notation, define Γ© = {ϕ ∈ L�,K,T | ©ϕ ∈ Γ} for Γ ⊆ L�,K,T and © ∈
{�,K,T}. For the proof, let Φ0 be a L�,K,T-consistent set of L�,K,T-formulas. A
slightly modified version of Lindenbaum Lemma shows that it can be extended
to a maximal consistent one. Let MCS be the family of all maximally L�,K,T-
consistent sets of L�,K,T-formulas; let Φ be an element of MCS extending Φ0.

Definition 15 (Canonical qTA model). The canonical qTA model for Φ,
MΦ = (WΦ, EΦ

0 ,�Φ,�Φ, V Φ), is defined as follows.

• W Φ := {Γ ∈ MCS | ΓK = ΦK} and V Φ(p) := {Γ ∈ W Φ | p ∈ Γ}.
• For Γ, Δ ∈ W Φ, Γ �Φ Δ iff def for any ϕ ∈ L�,K,T, � ϕ ∈ Γ implies ϕ ∈ Δ.

• For any Γ ∈ W Φ, define the set �Φ[Γ ] := {Ω ∈ W Φ | Γ �Φ Ω}. Then, let
EΦ
0 := {⋃

Γ∈U �Φ[Γ ] | U ⊆ W Φ} \ {∅}.

While �Φ and V Φ are standard (recall: � is a normal universal modality for �), each
E ∈ EΦ

0 is a non-empty union of the �Φ-upwards closure of the elements of some subset
of W Φ. The last component, the attack relation �Φ, is the novel one in this model,
and it requires more care. First, define {|ϕ|}M := {Γ ∈ W Φ | ϕ ∈ Γ}. Then, by taking
τΦ to be the topology generated by EΦ

0 define, for any T, T ′ ∈ τΦ,

• T �Φ T ′ iff def

⎧

⎨

⎩

T = ∅ if T ′ = ∅

T ∩ T ′ = ∅ and there is no ϕ ∈ L�,K,T s.t. otherwise

both {|Tϕ|} ⊆ T and ̂KTϕ ∈ Φ

In the rest, and when no confusion arises, the superscript Φ will be omitted.
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Note how MΦ is indeed a qTA model (Definition 11). First, it is clear that ∅ /∈
E0 and W ∈ E0. Moreover, � is indeed a preorder (see its axioms) satisfying the
extra condition. Finally, it can be proved that � satisfies the three conditions.

Lemma 1. Let MΦ = (W, E0,�,�, V ) be the model of Definition 15. Then,

1. for every T1, T2 ∈ τ : T1 ∩ T2 = ∅ if and only if T1 � T2 or T2 � T1;
2. for every T, T1, T

′
1 ∈ τ : if T1 � T and T ′

1 ⊆ T1, then T ′
1 � T ;

3. for every T ∈ τ \ {∅}: ∅ � T and T �� ∅.

Thus, MΦ is a qTA model. The next proposition (standard proof) provides
existence lemmas for the standard modality � and the global modality K̂.

Proposition 12. For any ϕ ∈ L�,K,T and any Γ ∈ W :

• � ϕ ∈ Γ iff there is Δ ∈ W s.t. Γ � Δ and ϕ ∈ Δ.
• ̂K ϕ ∈ Γ iff there is Δ ∈ W s.t. ϕ ∈ Δ.

Now, tools to prove a similar result for the operator T, whose truth clause
relies on LFP, given by �. First, some useful properties of the model.

Fact 1. (1) τ = E0 ∪{∅}. (2)If K̂� ϕ ∈ Φ, then {|� ϕ|} ∈ τ . (3) If K̂Tϕ ∈ Φ,
then {|Tϕ|} ∈ τ . (4) For any T ∈ τ and any ϕ ∈ L�,K,T: if T ⊆ {|ϕ|}, then
T ⊆ {|� ϕ|}.

Here are the first steps towards locating LFP.

Definition 16 (Semi-acceptable and Acceptable). Define C1 as

C1 = {T ∈ τ | there exists ϕ ∈ L�,K,T such that {|Tϕ|} ⊆ T and ̂KTϕ ∈ Φ}

• An open T ∈ τ is semi-acceptable if and only if, for any ψ ∈ L�,K,T with T ⊆
{| � ψ|}, there is ξ ∈ L�,K,T such that {|T ξ|} ⊆ {| � ψ|} and ̂KT ξ ∈ Φ.

• An open T ∈ τ is acceptable if and only if T is semi-acceptable and there is no

T ′ ∈ τ such that T ∩ T ′ = ∅ and T ′ ∩ T ′′ �= ∅ for all T ′′ ∈ C1.

Define C2 as C2 = {T ∈ τ \ C1 | T is acceptable}.

Note that no element of C1 is attacked by elements of τ . Moreover,

Fact 2. (i) For any T ∈ τ , if T ∈ C1, then T is acceptable. (ii) If T ∈ τ is
semi-acceptable, then T ∩ T ′ �= ∅ for all T ′ ∈ C1.

Lemma 2. Let C = C1 ∪ C2. Then, LFP = C.

Proof. (⊇) The proof of this direction can be fulfilled by checking two cases (i)
T ∈ C1 and (ii) T ∈ C2, which is relatively simple, so we turn to the details of
the other direction’s proof.

(⊆) Take now T ∈ τ such that T /∈ C; it will be shown that T /∈ LFP. The
case with T = ∅ is immediate, as ∅ � ∅. Thus, suppose T �= ∅.

From T /∈ C it follows that T /∈ C1, so there is no φ ∈ L�,K,T such that
{|Tφ|} ⊆ T and K̂Tφ ∈ Φ; hence, from �’s definition, every T ′ ∈ τ with
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T ∩ T ′ = ∅ is such that T � T ′. It can be proved by using axiom K� � ϕ →
K̂Tϕ that there is at least one T ′ ∈ τ with T ∩ T ′ = ∅. Thus, the rest of the
proof is divided into two cases: either there is T ′ ∈ τ with T ∩T ′ = ∅ and T ′ ∈ C
(at least one T ′ contradicting T is in C), or else for any T ′ ∈ τ with T ∩ T ′ = ∅,
T ′ /∈ C (no T ′ contradicting T is in C). In the first case, take any T ′ ∈ τ such
that T ∩ T ′ = ∅ and T ′ ∈ C. Then, as it has been argued, T � T ′; moreover, as
it has been proved, C ⊆ LFP. Thus, T /∈ LFP, as LFP has to be conflict-free.

In the second case, it follows that C ∈ C implies T ∩ C �= ∅. Now, consider
the following two sub-cases: either T is semi-acceptable, or it is not. Next, we
prove that in both two cases, T /∈ d(C). The case where T is semi-acceptable is
relatively easy, so we focus on the case where T is not semi-acceptable.

If T is not semi-acceptable, there is ϕT ∈ L�,K,T such that T ⊆ {|� ϕT |}
and there is no ψ ∈ L�,K,T such that both {|Tψ|} ⊆ {|� ϕT |} and K̂Tψ ∈ Φ.
In particular, ϕT itself cannot be such ψ, so either {|TϕT |} �⊆ {|� ϕT |} or else
K̂TϕT �∈ Φ. But axiom Tϕ → � ϕ implies {|TϕT |} ⊆ {|� ϕT |}, so K̂TϕT /∈ Φ.
Now, take any C ∈ C1; let ϕC ∈ L�,K,T be one of the formulas satisfying both
{|TϕC |} ⊆ C and K̂TϕC ∈ Φ (by C’s definition, there is at least one). From
theorem Tϕ → �Tϕ, it follows that (� ϕT ∧ TϕC) → (� ϕT ∧ �TϕC) is a
theorem too, and thus so are (� ϕT ∧ TϕC) → (� � ϕT ∧ �TϕC) (by axiom
� ϕ → � �ϕ) and (� ϕT ∧ TϕC) → �(� ϕT ∧ TϕC) (axiom K for �). Hence,
by Proposition 12, K

(
(� ϕT ∧ TϕC) → �(� ϕT ∧ TϕC)

)
∈ Φ.

So far we have K̂TϕT /∈ Φ and, for every C ∈ C1, not only K̂TϕC ∈ Φ
but also K

(
(� ϕT ∧ TϕC) → �(� ϕT ∧ TϕC)

)
∈ Φ. The first and theorem

Tϕ ↔ T�ϕ imply K̂T�ϕT /∈ Φ; the second and axiom Tϕ → TTϕ imply
K̂TTϕC ∈ Φ. These two, the third, and axiom

(
K̂Tϕ ∧ ¬ K̂Tψ ∧ K((ϕ ∧ ψ) →

�(ϕ ∧ ψ))
)

→ K̂�(ϕ ∧ ¬ψ) imply K̂ �(TϕC ∧ ¬� ϕT ) ∈ Φ. For the final part,
take the union of {|�(TϕC ∧ ¬� ϕT )|} for all C ∈ C1, i.e.

S =
⋃

C∈C1
{| �(TϕC ∧ ¬ � ϕT )|}

The following two facts about S (whose proof we omit here) are key to what we
want to prove (T /∈ d(C)): (i) S ∩ T = ∅. (ii) For any C ′ ∈ C, C ′ ∩ S �= ∅.
Since S ∩ T = ∅ and T is not semi-acceptable (so there is no ϕ ∈ L�,K,T s.t.
both {|Tϕ|} ⊆ T and K̂Tϕ ∈ Φ), we have found an open S in τ with T � S,
according to the definition of �. But S ∩ C �= ∅ for all C ∈ C, so S �� C for all
C ∈ C: no open in C attacks S. Hence, T /∈ d(C).

Therefore, regardless of whether T is semi-acceptable or not, we have T /∈
d(C). Since d is monotonic and C ⊆ LFP (as it has been shown), it follows that
d(C) ⊆ d(LFP) = LFP, which implies T /∈ LFP.

Thus, in both cases T /∈ C implies T /∈ LFP. This completes the proof.

Proposition 13 (Truth lemma). For any ϕ ∈ L�,K,T and any Γ ∈ W ,

Γ ∈ {|ϕ|}MΦ if and only if Γ ∈ �ϕ�MΦ
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Proof. The proof proceeds by induction, with the cases for atomic propositions
and Boolean connectives being routine, and those for and � and K relying on
Proposition 12. Here we focus on the case for T.

From left to right, suppose Γ ∈ {|Tϕ|}. Then, Tϕ ∈ Γ so, by Proposition 12,
K̂Tϕ ∈ Φ which, by item 3 of Fact 1, implies {|Tϕ|} ∈ τ . Now, let T = {|Tϕ|}.
Then,(i) from {|Tϕ|} ⊆ T and K̂Tϕ ∈ Φ, it follows that T ∈ C1 which, by
Lemma 2, implies T ∈ LFP; (ii) Γ ∈ T , as Γ ∈ {|Tϕ|}; (iii) from axiom
Tϕ → ϕ it follows that T ⊆ {|ϕ|} which, by inductive hypothesis {|ϕ|} = �ϕ�,
implies T ⊆ �ϕ�. Hence, by T’s truth condition, Γ ∈ �Tϕ�.

From right to left, suppose Γ ∈ �Tϕ�. Then, by T’s truth condition, there is
T ∈ LFP with Γ ∈ T and T ⊆ �ϕ�. But, from LFP’s definition, Γ ∈ T implies
�[Γ ] ⊆ T ; hence, by �’s truth condition, T ⊆ �� ϕ�. The inductive hypothesis
implies �� ϕ� = {|� ϕ|}, so then we have Γ ∈ T and T ⊆ {|� ϕ|}.

By Lemma 2, LFP = C1 ∪ C2; thus, T ∈ C1 ∪ C2. Suppose T ∈ C1; then there
is ψ ∈ L�,K,T with {|Tψ|} ⊆ T and K̂Tψ ∈ Φ. Thus, {|Tψ|} ⊆ T ⊆ {|� ϕ|},
so K(Tψ → � ϕ) ∈ Φ. Now, take any Δ ∈ {|Tψ|}; then, K(Tψ → �ϕ) ∈ Δ.
This, together with theorem K(ϕ → ψ) → (Tϕ → Tψ) (Proposition 4), implies
TTψ → T� ϕ ∈ Δ. Moreover: Δ ∈ {|Tψ|} implies Δ ∈ {|TTψ|}, so Δ ∈
{|T�ϕ|}, that is, T� ϕ ∈ Δ. The latter, together with theorem Tϕ ↔ T� ϕ
and axiom Tϕ → K(� ϕ → Tϕ), imply K(� ϕ → Tϕ) ∈ Δ, and thus K(� ϕ →
Tϕ) ∈ Φ. Hence, {|� ϕ|} ⊆ {|Tϕ|} and thus, since Γ ∈ T and T ⊆ {|� ϕ|},
we have Γ ∈ {|Tϕ|}. Otherwise, T ∈ C2, and hence for any ψ ∈ L�,K,T with
T ⊆ {|� ψ|} there is ξ ∈ L�,K,T with {|T ξ|} ⊆ {|� ψ|} and K̂T ξ ∈ Φ. Thus, since
ϕ is such that T ⊆ {|� ϕ|}, there is η ∈ L�,K,T such that {|T η|} ⊆ {|� ϕ|} and
K̂T η ∈ Φ. From here we can repeat the argument used in the case of T ∈ C1 in
order to get Γ ∈ {|Tϕ|} again. Thus, in both cases, Γ ∈ {|Tϕ|}, which completes
the proof.

Lemma 3. MΦ is Alexandroff.

Proof. Whether MΦ is Alexandroff has nothing to do with �; thus, we can
apply Proposition 5.6.15 in [19], which states that if τ = {

⋃
Γ∈U �[Γ ] | U ⊆ W}

then MΦ is Alexandroff. But item 1 of Fact 1 and the definition of E0 imply the
required condition; then, MΦ is Alexandroff.

Since MΦ is Alexandroff, Proposition 11 tells us it has a modally equivalent
topological argumentation model. Hence, the L�,K,T-consistent set of L�,K,T-
formulas Φ0 is satisfiable in a topological argumentation model.
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