
Parameterized Complexity for Uniform
Operators on Multidimensional Analytic

Functions and ODE Solving

Akitoshi Kawamura1, Florian Steinberg2, and Holger Thies3(B)

1 Kyushu University, Fukuoka, Japan
2 Inria, Rocquencourt, France

3 University of Tokyo, Tokyo, Japan
info@holgerthies.com

Abstract. Real complexity theory is a resource-bounded refinement of
computable analysis and provides a realistic notion of running time of
computations over real numbers, sequences, and functions by relying on
Turing machines to handle approximations of arbitrary but guaranteed
absolute error. Classical results in real complexity show that important
numerical operators can map polynomial time computable functions to
functions that are hard for some higher complexity class like NP or #P.
Restricted to analytic functions, however, those operators map polyno-
mial time computable functions again to polynomial time computable
functions. Recent work by Kawamura, Müller, Rösnick and Ziegler dis-
cusses how to extend this to uniform algorithms on one-dimensional
analytic functions over simple compact domains using second-order and
parameterized complexity. In this paper, we extend some of their results
to the case of multidimensional analytic functions. We further use this to
show that the operator mapping an analytic ordinary differential equa-
tions to its solution is computable in parameterized polynomial time.
Finally, we discuss how the theory can be used as a basis for verified
exact numerical computation with analytic functions and provide a pro-
totypical implementation in the iRRAM C++ framework for exact real
arithmetic.

1 Introduction

Computable analysis gives a formal model for reliable computations involving
real numbers and other continuous structures. Its origins reach back to Alan
Turing and computability theory itself [22]. Later it was extended by complexity
considerations [14,15], also known as real complexity theory. The main idea
is that real numbers are encoded as functions that give approximations up to
any finite precision. Computing a real function f means to approximate the
result f(x) up to any desired precision while having acces to arbitrary exact
approximations to x. Over compact sets, complexity can be measured as the
resources needed to produce approximations to any return value in dependence
on their accuracy.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
L. S. Moss et al. (Eds.): WoLLIC 2018, LNCS 10944, pp. 223–236, 2018.
https://doi.org/10.1007/978-3-662-57669-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57669-4_13&domain=pdf

224 A. Kawamura et al.

Typical problems over real functions involve computing operators such as
maximization, integration or derivatives. However, classical results in real com-
plexity theory imply that computing some of the most common operators can
already be computationally hard. For example, parametric maximization relates
to the P vs. NP problem [15] and integration to the stronger FP vs. #P problem
in the sense that the complexity classes are equal if those operators map poly-
nomial time computable functions to polynomial time computable functions [6].
The statement remains true even when restricted to smooth functions, implying
that finding efficient algorithms even for basic operators is most likely impossible.

A possible solution is to look at more restrictive classes of functions. Indeed,
it is known that the situation improves drastically for analytic functions: Many
important operations are known to preserve polynomial time computability in
this case [21]. However, these results are typically stated in a non-uniform way,
that is, they are of the form “If f is a polynomial time computable function then
the function G(f) the operator G returns is also a polynomial time computable
function”. While for hardness results a non-uniform formulation is particularly
strong, for the opposite goal to show that a problem is feasible such a result is
not satisfying as the algorithm for G (and therefore also its time complexity)
depends in some unspecified ways on the function f .

A uniform algorithm on the other hand transforms a description of f to a
description of G(f) and therefore requires a full specification of what information
about f is needed to compute G(f). The notion of computing with such descrip-
tions and the underlying complexity can be made formal in the framework of
representations. We introduce some basic concepts in Sect. 2.

In recent work, Kawamura et al. [12] discuss how to compute uniformly
with one-dimensional (complex) analytic functions and analyze the complex-
ity of some important operators in terms of natural discrete parameters of the
function. For many applications, however, being able to manipulate also multi-
dimensional functions is required. We therefore extend some of their notions to
the multidimensional case and show that similar complexity bounds still hold.
We follow their approach to first analyze computations with single power series
(Sect. 3.1) and then extend to functions analytic on a simple compact subset of
the reals (Sect. 3.2).

The main motivation for the multidimensional extension is the problem of
solving initial value problems (IVPs) for ordinary differential equations of the
form ẏ(t) = f(y(t)), y(0) = y0 for f : R

d → R
d and y0 ∈ R

d for some d ≥
2. It has been proved that, unless P = PSPACE, the solution y may not be
polynomial time computable even if the right-hand side function f is polynomial
time computable and Lipschitz continuous [10,13]. If, on the other hand, the
right-hand side function is a polynomial time computable analytic function, it
is well known that y also is a polynomial time computable real function (see
e.g. [17]). However, as the actual algorithm can differ for each right-hand side
function f and initial value y0 this statement is very different from saying that
there is an efficient ODE solving algorithm on analytic functions. In Sect. 4 we
define a uniform ODE solver on top of our definition, analyze its complexity
and show that it runs in parameterized polynomial time in terms of parameters
defined in Sect. 3.

Parameterized Complexity for Uniform Operators 225

Computable analysis aims to be a realistic model in the sense that the theory
can be a basis for actual exact computations with real numbers (sometimes called
exact real arithmetic [1,7]). The ideas in this paper can be used as a basis for
data-types for analytic functions and ODE solving in exact real arithmetic. To
show that such an implementation is indeed feasible, we provide a prototypical
implementation based on iRRAM [20], a C++-library for exact real arithmetic. We
discuss some possible optimizations for practical purposes and briefly describe
the implementation in Sect. 5.

2 Computability and Complexity in Analysis

Computable analysis combines methods from theoretical computer science, real
analysis and numerical analysis to provide a framework for computational prob-
lems over real numbers and more general continuous structures. We present some
basic notions needed for our purpose here and refer the reader to the extensive
literature (e.g. [3,11,14,23]) for deeper understanding.

We fix the finite alphabet Σ = {0, 1} and denote by Σ∗ the set of finite
strings over Σ. We assume the reader to be familiar with the general notion
of computability for functions Σ∗ → Σ∗, e.g., by Turing machines. As discrete
structures like natural numbers, rational numbers or graphs can be encoded by
finite strings, computability over such structures can be defined as computability
on their encodings. Objects from uncountable spaces (such as the real numbers),
on the other hand, cannot be encoded in such a way. Instead, we encode them by
functions that provide partial information to the object when asked. The idea of
such an encoding is formalized by the notion of a represented space. We denote
by B = (Σ∗)Σ∗

the Baire space of all string functions Σ∗ → Σ∗.

Definition 1. A represented space is a pair (X, ξX) of a set X and a partial
surjective function ξX : B → X. An element ϕ ∈ B such that ξX(ϕ) = x is called
a ξX -name of x ∈ X. An element of a represented space is called(ξX -)computable
if it has a computable (ξX-)name.

Let (X, ξX), (Y, ξY) be represented spaces and f : X → Y a function. A function
F : B → B mapping names of elements x ∈ X to names of f(x), i.e., such that
ξY (F (ϕ)) = f(ξX(ϕ)) for all ϕ ∈ dom(ξX), is called a realizer for f (Fig. 1).
Computability on Baire space is typically defined by oracle machines. A function
F : B → B is computable if there is an oracle machine M s.t. for all ϕ ∈ dom(F)
and q ∈ Σ∗ the machine with input q and oracle ϕ outputs F (ϕ)(q) (Fig. 2).
We now define some standard representations that we need later. For n ∈ N we
denote by bin(n) ∈ Σ∗ the binary encoding of the integer n and by 0n and 1n the
string consisting of n repetitions of 0 and 1, respectively. We use the following
representation for real numbers: A ξR-name for a real number x is a function
ϕ : Σ∗ → Σ∗ such that ϕ(0n) = bin(an) is a binary encoding of some integer an

with
∣
∣x − an

2n

∣
∣ ≤ 2−nfor all n ∈ N.

We also have to work with sequences of real numbers. For this we choose
the following representation ξRω : A name of a sequence (ai)i∈N ∈ R

ω of reals is

226 A. Kawamura et al.

Fig. 1. Computing a function f between
represented spaces (X, ξX) and (Y, ξY).
The function F : B → B is called a real-
izer for the function f : X → Y .

Oracle ϕ

r ϕ(r)

F

q F (ϕ)(q)

Fig. 2. Computing a function F : B → B
with an oracle Turing machine.

a function ψ : Σ∗ → Σ∗ such that for each i, n ∈ N it holds that ψ(0i10n) =
bin(bi,n) is the binary encoding of some integer bi,n with

∣
∣
∣ai − bi,n

2n

∣
∣
∣ ≤ 2−n.

Let 〈·, ·〉 denote a bijective, polynomial time computable pairing function for
finite strings that has polynomial time computable projections. For represented
spaces (X, ξX) and (Y, ξY) we can combine their representations to get a repre-
sentation ξX×Y for their product X × Y by using the pairing function on the
names [23, Sect. 3.3]. We thus use the standard representations ξRd := (ξR)d for
R

d, ξCd := (ξR)2d for C
d and ξd

Cω := (ξRω)2d for complex multi-sequences.

2.1 Complexity Theory

As elements of represented spaces are computed by ordinary Turing machines,
the usual definitions for time-complexity from discrete complexity theory can
be applied. For functions, on the other hand, defining complexity becomes more
subtle. While it is still possible to define complexity independently from the
oracle for real functions restricted to a fixed compact domain, for operators
there is no reasonable way to do this and the oracle has to be accounted for.
Recently, Kawamura and Cook provided the tools needed to reason about uni-
form complexity of operators by introducing a framework for doing complexity
theory for functions between represented spaces and an appropriate represen-
tation for the space of continuous functions [11]. To obtain a reasonable com-
plexity theory it is necessary to restrict to length-monotone string functions,
i.e., functions ϕ ∈ B such that for all a, b ∈ Σ∗ it holds that |ϕ(a)| ≤ |ϕ(b)|
whenever |a| ≤ |b|. The length of a length-monotone ϕ ∈ B is the function
|ϕ| : N → N defined by |ϕ| (|a|) = |ϕ(a)| for all a ∈ Σ∗. A representation where all
names are length-monotone is called second-order representation. Most represen-
tations and in particular those introduced above can be turned into second-order

Parameterized Complexity for Uniform Operators 227

representations by padding names. In the rest of the paper we assume all repre-
sentations to be second-order representations.

To bound the running time of an oracle machine both in the size of the input
and the size of the oracle, we need the following definition.

Definition 2. The class of second-order polynomials is the class of functions
N

N × N → N defined inductively by

– the functions (L, n) �→ c for any constant c ∈ N and the function (L, n) �→ n
are second-order polynomials,

– for second-order polynomials P and Q, the functions (L, n) �→ P (L, n) +
Q(L, n) and (L, n) �→ P (L, n) · Q(L, n) are second-order polynomials, and

– for a second-order polynomial P , the function (L, n) �→ L(P (L, n)) is a
second-order polynomial.

We can now define when an oracle machine runs in polynomial time.

Definition 3. An oracle machine M? runs in polynomial time if there is a
second-order polynomial P such that for any length-monotone ϕ ∈ B and any
q ∈ Σ∗, Mϕ(q) halts after at most P (|ϕ| , |q|) steps.

A function F : X → Y between represented spaces is called polynomial time
computable if there is a polynomial time computable realizer.

For our purpose we do not need the full framework of second order com-
plexity. We only consider representations that encode a second-order argument
together with some discrete information. For this purpose definitions similar to
the following are used in [12]. For any ψ ∈ B and string w ∈ Σ∗ let 〈w,ψ〉 ∈ B
denote the function defined by 〈w,ψ〉(q) = 〈w,ψ(q)〉 for all q ∈ Σ∗.

Definition 4. For each x ∈ X let L(x) ⊆ Σ∗ be some non-empty set of finite
strings. For a second-order representation ξ : B → X, a parameterized represen-
tation with parameters from L is defined as follows: ϕ ∈ B is a name for x ∈ X
if ϕ = 〈w,ψ〉 for a ξ-name ψ for x and some w ∈ L(x). We say a parameter-
ized representation has polynomial length if there is a (first-order) polynomial
p : N → N such that for all names 〈w,ψ〉 ∈ B and strings q ∈ Σ∗ we have
|ψ(q)| ≤ p(|q| + |w|).
A parameterized representation enriches a name of x ∈ X with some discrete
information from L(x). For operators between spaces with polynomial-length
parameterized representations, it suffices to bound the running time in a (first-
order) polynomial in terms of the input length and the length of the parameter
to show polynomial time computability.

3 Uniform Computations on Analytic Functions

An analytic function is a function which is locally given by a power series. For
our application we are interested in multivariate complex functions f : Cd → C.
We use multi-index notation to denote d-tuples β = (β1, . . . , βd) ∈ N

d. For multi-
indices α, β ∈ N

d, tuples of complex numbers z ∈ C
d and function f : Cd → C we

228 A. Kawamura et al.

further use the conventions α + β = (α1 + β1, . . . , αd + βd), zα = zα1
1 zα2

2 · · · zαd

d ,

α! = α1!α2! · · · αd!, |α| = α1 + α2 + · · · + αd and Dαf = ∂|α|f
∂x

α1
1 ···∂x

αd
d

.

Definition 5. Let D ⊆ C
d be a subset. A function f : D → C is called ana-

lytic, if for any t ∈ D there is a complex multi-sequence (aβ)β∈Nd ⊆ C and a
neighborhood U of t such that for all x ∈ U ∩ D we have

f(x) =
∑

β∈Nd
aβ(x − t)β .

We call (aβ)β∈Nd the power series and the coefficients aβ the Taylor coefficients
of f around t and denote the class of analytic functions on a set D by Cω(D).

An important fact about analytic functions that we will use several times is
Cauchy’s integral formula.

Theorem 1. If f : D → C is analytic and U(ζ) ⊆ D is some polydisc U(ζ) =
∏d

i=0 Bri
(ζi) around ζ = (ζ1, . . . , ζd) ∈ D with radius R = (r1, . . . , rd), then

f(z) =
1

(2πi)d

∫

∂U1

· · ·
∫

∂Ud

f(ξ1, . . . , ξd)
(ξ1 − z1) . . . (ξd − zd)

dξ1 · · · dξn.

In particular, if |f | ≤ M for all z ∈ U(z0), then
∣
∣Dβf(ζ)

∣
∣ ≤ β! M

Rβ for all β ∈ N
d.

The reason why we are interested in analytic functions stems from real complex-
ity theory: An analytic function f : K → R for K ⊆ R compact and connected
(containing more than one point) is polynomial time computable if and only if
the sequence of Taylor coefficients around some point x0 ∈ K ∩Q is polynomial
time computable [16,18]. It follows that for a polynomial time computable ana-
lytic function f , for example, the derivative function f ′ is again polynomial time
computable. Similarly, the result of many other operators can be shown to be
a polynomial time computable function, while in the case of general polynomial
time real functions hardness results are known that make efficient algorithms
unlikely to exist.

3.1 Representing Power Series

For simplicity we first consider the one-dimensional case and discuss which infor-
mation has to be encoded. Let Cω(Br(z0)) denote the space of complex analytic
functions on a neighborhood of the closed disc Br(z0) ⊆ C with radius r > 0
around z0 ∈ C. For f ∈ Cω(Br(z0)) let (am) denote the series expansion at the
point z0. Consider the operator mapping a power series (am)m∈N and a complex
number z to

∑∞
m=0 am(z − z0)m. Any algorithm computing this sum can only

read a finite number of coefficients. However, having no further information, it
is not possible to determine the number of coefficients necessary to get a good
enough approximation of the sum in a computable way [18]. Thus, not even
evaluation of a function is uniformly computable if the only information the
name provides is the power series. Therefore, additional information similar to

Parameterized Complexity for Uniform Operators 229

the following is often considered in real complexity theory [19]. Let q,B ∈ R be
such that q > r and |am| ≤ B

qm for all m ∈ N. Then for all z ∈ Br(0) it holds
that

∣
∣
∣

∑∞
m=M

amzm
∣
∣
∣ ≤ B

1 − |z|
q

(|z|
q

)M

(1)

Thus B, and q can be used to make a tail estimate on how many coefficients
are needed to make the error arbitrarily small. While we could encode those
reals directly in our representation, using a parameterization by integers allows
a simpler characterization of the complexity.

Let us now give a multidimensional extension of the representations for ana-
lytic functions in [12]. Note that we always assume the dimension d to be (a
small) constant and it is thus not part of our complexity analysis. The time
needed by most algorithms presented below is exponential in the dimension. As
they manipulate multidimensional power series, this seems inevitable already for
combinatorial reasons.

For uniform computations we now fix the domain. Let Cω(B1(0)
d
) denote

the space of analytic functions on the closed unit polydisc B1(0)
d

around 0. We
define a parameterized representation according to Definition 4 as follows:

Definition 6. A name for an f ∈ Cω(B1(0)
d
) is a ξd

Cω -name for the d-
dimensional power series (aβ)β∈Nd of f around 0 together with a string

1k0bin(A) for integers A, k ∈ N such that |aβ | ≤ A2− |β|
k for all β ∈ N

d.

A Cω(B1(0)
d
)-name thus enriches the standard representation for multidimen-

sional complex sequences by integer constants A encoded in binary and k encoded
in unary. Note that the length of the parameter is given by k + log(A). As the
absolute value of each coefficient is bounded by A, it is easy to see that this
parameterized representation has polynomial length and thus second-order poly-
nomial time computability corresponds to the existence of a realizer with time
bounded in a first-order polynomial in terms of the input size, k and log A.

Using the bound (1) one can approximate a one dimensional analytic function
by a partial sum and by that define a polynomial time realizer for the operation
EVAL :⊆ Cω(B1(0)) × B1(0) → C, EVAL(f, z) = f(z) mapping a one-dimensional
function and a point in the domain to the function value at that point. Instead
of directly extending this to the multidimensional case we first introduce some
operators that reduce the dimension.

Theorem 2. Let d ≥ 1. The following operators are polynomial time com-
putable:

1. The operator πd
1 : Cω(B1(0)

d+1
) × N → Cω(B1(0)

d
) that maps a (d + 1)-

dimensional analytic function with power series (ai1,...,id+1) and an index j
(encoded in unary) to the d-dimensional function with power series (bi1,...,id

)
where the first index is fixed to j, i.e., bi1,...,id

= aj,i1,...,id
.

2. The operator πd
• : Cω(B1(0)

d+1
) × N

d → Cω(B1(0)) that fixes all but the first
index of the power series.

230 A. Kawamura et al.

3. The operator σd: Cω(B1(0)
d+1

)×B1(0) → Cω(B1(0)
d
) whose values are given

by σ(f, z)(z1, . . . , zd) = f(z, z1, . . . , zd).

Proof. For πd
1 and πd

• it is obvious how to get the coefficients of the power-series.

Let A, k ∈ N be the parameters encoded in a name for f ∈ Cω(B1(0)
d+1

). It
easy to see that k′ = k and A′ = A can be chosen both for πd

1(f) and πd
•(f).

For σd note that the coefficient with index (i1, . . . , id) of the power series
of σ(f, z) is given by bi1,...,id

=
∑∞

j=0 aj,i1,...,id
zj = EVAL(Π•(f, i1, . . . , id), z).

Thus it can be computed by polynomial time operators defined earlier. Choosing
k′ = k and A′ = 2Ak fulfills the necessary bounds.

Using the substitution operator iteratively gives an algorithm for evaluating d-
dimensional analytic functions.

Extending the above framework by further operations is easy: We just have
to specify how to compute the power series and the integer constants for the
resulting function. It is therefore straight-forward to generalize the results in [12]
to show that e.g. addition, multiplication or computing derivatives is polynomial
time computable and we omit the details.

3.2 Representing Analytic Functions

We can use the result in the previous section to compute with functions complex
analytic on a (possibly very small) ball around some z0 ∈ C

d: Assume f is
analytic on the ball Br(z0) with r < 1. Then g(z) := f(z0 + rz

2) is analytic on

B2(0)
d
. A simple transformation thus reduces to the above case and allows, e.g.,

efficient evaluation on z ∈ C with |z| ≤ r
2 .

However, usually we are interested in slightly more complicated domains,
such as simple compact subsets of R

d. We therefore next consider the case of
functions analytic on the domain [0, 1]d ⊆ R

d. Let Cω([0, 1]d) be the set of func-
tions complex analytic on some neighborhood of [0, 1]d. We define two different
representations for this set, one directly allowing point-wise evaluation of the
function and one allowing manipulating power series. They are multidimensional
generalizations of those found in Sect. 3.2 of [12].

The first representation just gives a cover of the hypercube [0, 1]d with power
series with a uniform bound on the radius of convergence. For l ∈ N let RL :=
{x + iy : y ∈ [− 1

L , 1
L] and x ∈ [− 1

L , 1 + 1
L]}. For any f ∈ Cω([0, 1]d) there is

an l ∈ N such that f ∈ Cω(Rl
d
). We define a (polynomial-length) parameterized

representation for Cω([0, 1]d) as follows:

Definition 7. A series name of an f ∈ Cω([0, 1]d) is given by a ξ2d
Cω -name for

a sequence (am,β)m,β∈Nd and a string 1k0bin(A) for integers k,A ∈ N such
that for all mi ∈ {0, . . . , 2k} and β ∈ N

d it holds |am1,...,md,β | ≤ Ak|β| and
Dβf(m1

2k , . . . , md

2k) = am1,...,md,ββ!.

A series name thus encodes a covering of the domain [0, 1]d with (2k+1)d power
series with radius of convergence at least 1

k . The series are overlapping so that

Parameterized Complexity for Uniform Operators 231

for any x ∈ [0, 1]d we can easily select one such that x has at most distance 1
2k

to the boundary and get a Cω(B1(0)
d
)-name for the (scaled) series.

Instead of encoding the power series it is often more practical to encode
function evaluation directly:

Definition 8. A function name for f ∈ Cω([0, 1]d) is defined by the following:

1. A function φ ∈ B that approximates f(q) with arbitrary precision on dyadic
rationals q ∈ [0, 1]d. Formally, whenever w ∈ Σ∗ is the binary encoding of d

natural number n1, . . . , nd ∈ N then
∣
∣
∣

φ(w)
2|w|+1 − f(n1

2|w|+1 , . . . , nd

2|w|+1)
∣
∣
∣ ≤ 2−|w|.

2. A string 1l0bin(B) for integers B, l ∈ N such that f ∈ Cω(Rl) and B is an
upper bound for |f | on Rl.

As the parameters bound the length of the integer part of the approximation
function, the above defines a polynomial-length parameterized representation
where the second-order part is given by the approximation function.

The following Lemma can be derived from Cauchy’s integral formula.

Lemma 1. If B, l ∈ N are constants as in Definition 8 for some f ∈ Cω([0, 1]d)
then for all β ∈ N

d and x ∈ [0, 1]d it holds
∣
∣f (β)(x)

∣
∣ ≤ β!Blβ. Further, f is

Lipschitz-continuous on R2l with Lipschitz constant L = 2
√

dBl.

We show that both representations are polynomial time equivalent, i.e., given
a name of one representation it is possible to compute a name of the other in
polynomial time. Given a series name and some z ∈ R4k we can choose a power
series with index (m1, . . . , md) that converges for z and it holds

∣
∣
∣
∣

∑

β∈Nd
am1,...,md,β

(

z1 − m1

2k

)β1 · · ·
(

zd − md

2k

)βd

∣
∣
∣
∣
≤

∑

β∈Nd
Akβ(2k)−β = 2dA.

Thus a function name with constants B = 2dA and l = 4k can be computed
from a series name. For the other way round note that the power series around
any point in [0, 1]d can be computed in polynomial time from the information
in a function name (see e.g. [19]). Further by Lemma 1 we can choose k = l and
A = B as constants.

To show that an operator is polynomial time computable we can therefore
use either of the representations or even a combination of both.

Theorem 3. The following operators on multidimensional analytic functions
are polynomial time computable:

1. Evaluation EVAL: Cω([0, 1]d) × [0, 1] → R, (f, x) �→ f(x),
2. Addition and Multiplication +,× : Cω([0, 1]d) × Cω([0, 1]d) → Cω([0, 1]d),
3. Partial derivatives D : Cω([0, 1]d) × N

d → Cω([0, 1]d), (f, α) �→ Dαf where
α1, . . . , αd are given in unary.

Proof. We only show the third part as for the other operators a multidimensional
generalization of results in [12] is straightforward. Assume we are given a series

232 A. Kawamura et al.

name. Let (am,β)β∈Nd be the power series with index m ∈ N
d. Then bm,β :=

(α+β)!
β! am,α+β gives the Taylor coefficient of Dαf around zm = m

2k . Since for all

a, b ∈ N it is ab ≤ (2b)b(43)a it is (α+β)!
β! ≤ (α + β)α ≤ (2α)α

(
4
3

)|α+β|. Thus

|bm,β | ≤ (3 |α| k)|α| (4
3k

)|β| holds. This can be used to approximate Dαf(q) for
all q ∈ [0, 1]d with ‖q − zm‖∞ ≤ 1

2k with precision 2−n in time polynomial in
n+k+log A yielding the approximation function for the function name. Similarly,
for all z ∈ R4k it is |Dαf(z)| ≤ 3d (3 |α|)|α|

A. Thus B′ = 3d (3 |α|)|α|
A and

l′ = 4k are constants for a function name for the derivative.

4 Ordinary Differential Equations

In this section we show how to use the above representations to define a solver
for initial value problems of the form

ẏ = F (y), y(0) = y0 (2)

for analytic F : Rd → R
d and y0 ∈ R

d. Non-autonomous ODEs where the the
right-hand side function F explicitly depends on the time t can be expressed in
this form by increasing the dimension by 1 (this is one reason why we are mostly
interested in multidimensional functions).

We first show how to compute a solution corresponding to a single power
series, i.e., F = (F1, . . . , Fd) with Fi ∈ Cω(B1(0)

d
) and y0 ∈ B0(1)

d
. In this case

the solution is of the form y = (y1, . . . , yd) with yi : R → R analytic but not
necessarily defined on all of B0(1). We first show that it is possible to compute
some local solution defined on a possibly very small radius in polynomial time. To
fit in our framework we scale the solution to get a name according to Definition 6.
That is, for i = 1, . . . , d consider the operator LSolvei : Cω(B1(0)

d
) × B1(0)

d →
Cω(B1(0))×R that maps a function F ∈ Cω(B1(0)

d
) and initial value y0 ∈ B1(0)

d

to a function yi and a real number r ∈ R such that the function yi defined by
yi(z) = yi(2z

r) is a solution to the IVP (2).

Theorem 4. LSolvei is polynomial time computable for i = 1, . . . , d.

Proof. Let us first show how to compute the Taylor coefficients for each yi. We
can use the power series method [5]: For i = 1, . . . , d we inductively define the
functions fi,m : Cd → C for k ∈ N by letting fi,0(z) = zi and

fi,m+1(z) =
1

m + 1

(
∑d

j=1

∂fi,m

∂yj
Fj(z)

)

. (3)

We can use fi,m to express the mth derivative of yi as y
(m)
i (t) = m!fi,m(y(t))

holds. Thus, for the mth Taylor coefficient ai,m of yi around 0 it holds ai,m =
fi,m(y0). Each of the functions given by (3) is analytic and can be computed using
polynomial time computable operators defined in the previous section. Therefore
the operator mapping f, y0, i and m to ai,m is polynomial time computable.

Parameterized Complexity for Uniform Operators 233

Let A and k be the constants from the name. From the Picard-Lindelöf the-
orem it follows that the solution is valid on a radius of at least r =

k√2−1
(d+1)A . Thus

scaling the solution function accordingly yields a polynomial time computable
operator.

The function given by the LSolve operator can be used to evaluate the solution
efficiently (i.e. approximate up to precision 2−n in time polynomial in n + k +
log A) on z ∈ C with |z| ≤ r

2 . Note that the radius r depends on the constants of
the name and is usually very small. We therefore also call this the local solution.

Let us now show how to extend the local solution. The idea is to iteratively
use the local solution operator to compute new initial values and thereby step-
wise increase the time. Of course this only works as long as the solution takes
values in the domain of F . Thus, let us now assume that F ∈ Cω([0, 1]d) and for
y0 ∈ [0, 1] the solution y(t) exists for t ∈ [0, 1] and only takes values in [0, 1]d.

Theorem 5. Let y ∈ Cω([0, 1]) be the solution to the IVP (2) for F ∈ Cω([0, 1])
and y0 ∈ [0, 1]. Given a series name of F with parameters A and k and ξRd-
names of y0, t ∈ [0, 1] the solution y(t) can be approximated up to precision 2−n

in time poly(n + A + k) for each n ∈ N.

Proof. Given some y0 ∈ [0, 1]d and a series name with constants A and k for
F we can select a power series centered around a point with distance at most
1
2k from y0. Combining this with the above solution operator can be used to
approximate a local solution y(t) for t ≤ 1

2(d+1)kA up to error 2−m for any
m ∈ N in time polynomial in m + k + log(A). Let us fix some m ∈ N and let z0
be a 2−m approximation of y0 and zi+1 a 2−m approximation of Solvei(F, zi)
evaluated at t := (1

2(d+1)kA). Thus after at most 2(d + 1)kA steps we reach any
time t ∈ [0, 1].

It remains to show that it suffies to choose m polynomial in n + k + A. Let
ti := i

2(d+1)kA . Using the Lipschitz-bound from Lemma1 and the well known
Grönwall Lemma it can be shown that if zi differs by at most ε from the correct
solution y(ti) then zi+1 differs by at most 2ε from y(ti+1) (see e.g. [2]). As we
need at most 2(d + 1)Ak steps, the total error is bounded by 22(d+1)Ak+1−m.
Thus choosing m > n + 2(d + 1)Ak + 1 suffices to guarantee precision 2−n.

The above can be easily extended to an operator mapping F and y0 to the func-
tion y ∈ Cω([0, 1]). Note, that the algorithm already needs linearly in A many
steps and is therefore not polynomial time computable by the strict definition
that requires the complexity in A to be logarithmic. In general, however, we can
not expect to get a better algorithm as the solution to the ODE can already
take values with magnitude exponentially large in A.

5 Practical Considerations

The ideas of Sect. 3 can be easily translated to an implementation in an
object oriented programming language. We provide a very simple, prototypical

234 A. Kawamura et al.

implementation of our ideas based on the iRRAM C++ library1. iRRAM already
has a class REAL for exact computations with real numbers and many standard
operations that we could built on. Our library extends iRRAM by a class for
real analytic functions of arbitrary dimension and operators for, e.g., evaluation,
addition, subtraction, multiplication, partial derivatives and composition of ana-
lytic functions. It also contains an ODE solver using the ideas of the step-wise
solver described in Sect. 4. All operations are performed in exact real arithmetic,
making it possible to evaluate functions or compute series coefficients with any
desired precision and guaranteed correctness.

Currently, our implementation only covers functions given by single power
series, similarly to the definitions in Sect. 3.1. However, we made a few adjust-
ments to make our implementation more useable for practical applications. First,
we do not fix domain in advance, i.e., we consider power series of arbitrary radius
r > 0 of type REAL around some point x0 ∈ R

d and let r be part of the descrip-
tion. Further instead of a single integer we encode the maximum of the function
on each ball of radius r′ < r as a function M : REAL → REAL. While this does not
allow a simple parameterized complexity characterization it removes the restric-
tion to the unit ball which seems artificial for practical purposes and also allows
to consider total functions.

Further, in the previous sections our goal was to make the representations
as simple as possible to guarantee polynomial complexity bounds. However, for
a practical implementation it can be helpful to encode more than this minimal
information. For many special functions, for example, many more efficient eval-
uation algorithms than evaluating the power series exist. Therefore, our imple-
mentation also allows to provide an alternative evaluation algorithm. This makes
it possible to have very efficient implementations of standard functions while still
allowing to define general functions only by specifying how to compute the min-
imal information.

As heuristics as the above provide information that is redundant from a com-
plexity theoretic viewpoint and do not always lead to better results, it is hard to
quantify their usefulness. Instead of a formal analysis an experimental approach
choosing an appropriate set of benchmark functions seems more feasible.

6 Conclusion

We have shown how to extend some basic representations for analytic functions
on simple domains to the multidimensional case and applied that to define a
uniform solution operator for ordinary differential equations that computes the
solution of an initial value problem in (parameterized) polynomial time. We
further discussed how the ideas can be refined for an actual implementation for
a library for computations on multidimensional analytic functions and gave a
prototypical implementation of such a library in iRRAM. As the main purpose of
1 The complete source code for our implementation including some test func-

tions is publicly available on GitHub: https://www.github.com/holgerthies/iRRAM-
analytic.

https://www.github.com/holgerthies/iRRAM-analytic
https://www.github.com/holgerthies/iRRAM-analytic

Parameterized Complexity for Uniform Operators 235

the considered results was showing polynomial time computability, it is obvious
that most algorithms can be improved in terms of efficiency. An important detail
we omitted in our analysis is how to actually perform the operations on the
power series coefficients as for polynomial time computability the most simple
and well known classical algorithms already suffice. There are of course much
more efficient algorithms on power series (see e.g. [4,8,9]) and for a practical
implementation this can make a crucial difference.

In future work we plan to analyze the complexity of our algorithms in more
detail in terms of bit-complexity and improve them by using more sophisti-
cated approaches. Further we plan to systematically evaluate the running time
of our algorithms for a set of benchmark functions and compare them to similar
approaches in numerics and interval analysis.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
JP18H03203 and JP18J10407 and by the Japan Society for the Promotion of Science
(JSPS), Core-to-Core Program (A. Advanced Research Networks).

References

1. Boehm, H.J., Cartwright, R., Riggle, M., O’Donnell, M.J.: Exact real arithmetic:
a case study in higher order programming. In: Proceedings of the 1986 ACM Con-
ference on LISP and Functional Programming, pp. 162–173. ACM (1986)

2. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value prob-
lems. In: ISSAC 2012-Proceedings of the 37th International Symposium on Sym-
bolic and Algebraic Computation, pp. 115–121. ACM, New York (2012). https://
doi.org/10.1145/2442829.2442849

3. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing
Conceptions of What is Computable, pp. 425–491. Springer, New York (2008).
https://doi.org/10.1007/978-0-387-68546-5 18

4. Brent, R.P., Kung, H.T.: Fast algorithms for manipulating formal power series. J.
ACM (JACM) 25(4), 581–595 (1978)

5. Chang, Y., Corliss, G.: ATOMFT: solving ODEs and DAEs using Taylor series.
Comput. Math. Appl. 28(10–12), 209–233 (1994)

6. Friedman, H.: The computational complexity of maximization and integration.
Adv. Math. 53(1), 80–98 (1984)

7. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and
exact real numbers. Math. Struct. Comput. Sci. 17(1), 3–36 (2007)

8. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symb. Comput. 34(6), 479–542
(2002)

9. van der Hoeven, J.: On effective analytic continuation. Math. Comput. Sci. 1,
111–175 (2007)

10. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-
space complete. Comput. Complex. 19(2), 305–332 (2010)

11. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans.
Comput. Theory 4(2), 5:1–5:24 (2012)

12. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of
smoothness: parameterized bit-complexity of numerical operators on analytic func-
tions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)

https://doi.org/10.1145/2442829.2442849
https://doi.org/10.1145/2442829.2442849
https://doi.org/10.1007/978-0-387-68546-5_18

236 A. Kawamura et al.

13. Ko, K.I.: On the computational complexity of ordinary differential equations. Inf.
Control 58(1–3), 157–194 (1983)

14. Ko, K.I.: Complexity theory of real functions: Progress in Theoretical Computer
Science. Birkhäuser Boston Inc., Boston (1991)

15. Ko, K.I., Friedman, H.: Computational complexity of real functions. Theor. Com-
put. Sci. 20(3), 323–352 (1982)

16. Ko, K.I., Friedman, H.: Computing power series in polynomial time. Adv. Appl.
Math. 9(1), 40–50 (1988)

17. Moiske, B., Müller, N.: Solving initial value problems in polynomial time. In: Pro-
ceedings of the 22th JAIIO-PANEL, vol. 93, pp. 283–293 (1993)

18. Müller, N.T.: Uniform computational complexity of Taylor series. In: Ottmann,
T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-18088-5 37

19. Müller, N.T.: Constructive aspects of analytic functions. In: Proceedings of Work-
shop on Computability and Complexity in Analysis, InformatikBerichte, vol. 190,
pp. 105–114. FernUniversität Hagen (1995)

20. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

21. Pour-El, M.B., Richards, J.I.: Computability in analysis and physics: Perspectives
in Mathematical Logic. Springer-Verlag, Berlin (1989)

22. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 2(42), 230–265 (1936). https://doi.org/
10.1112/plms/s2-42.1.230

23. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.
org/10.1007/978-3-642-56999-9

https://doi.org/10.1007/3-540-18088-5_37
https://doi.org/10.1007/3-540-45335-0_14
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

	Parameterized Complexity for Uniform Operators on Multidimensional Analytic Functions and ODE Solving
	1 Introduction
	2 Computability and Complexity in Analysis
	2.1 Complexity Theory

	3 Uniform Computations on Analytic Functions
	3.1 Representing Power Series
	3.2 Representing Analytic Functions

	4 Ordinary Differential Equations
	5 Practical Considerations
	6 Conclusion
	References

