
Handling Verb Phrase Anaphora
with Dependent Types and Events

Daniyar Itegulov1,2(B) and Ekaterina Lebedeva1

1 Australian National University, Canberra, Australia
{daniyar.itegulov,ekaterina.lebedeva}@anu.edu.au

2 ITMO University, St. Petersburg, Russia

Abstract. This paper studies how dependent typed events can be
used to treat verb phrase anaphora. We introduce a framework that
extends Dependent Type Semantics (DTS) with a new atomic type for
neo-Davidsonian events and an extended @-operator that can return
new events that share properties of events referenced by verb phrase
anaphora.

The proposed framework, along with illustrative examples of its use,
are presented after a brief overview of the necessary background and of
the major challenges posed by verb phrase anaphora.

1 Introduction

Davidson [3] observed that some verbs can imply the existence of an “action”.
For example, the sentence “John eats.” represents an action of eating. This
action can be anaphorically referred from a following sentence (e.g.: “The food
is yummy.”). Therefore, it is desirable for framework of natural language seman-
tics to encompass the notion of action and a mechanism for action reference.
Davidson proposed to equip interpretations of verbs with an additional argu-
ment for events. Thus, the sentence “John eats.” is interpreted according to
Davidson as ∃e.eats(e, j), instead of eats(j).

Parsons [9] and Taylor [14] argued that the approach of event semantics
captures the notion of adverbs better than approaches based on higher-order
predicates, such as [15], and is easier to work with. For example, adverbial mod-
ifiers usually affect only the event and not the entity, as the following example
illustrates:

(1)
a. John buttered the toast slowly, deliberately, in the bathroom, with a

knife, at midnight.
b. ∃e.butter(e, j, t) ∧ slowly(e) ∧ deliberately(e) ∧ in(e,b) ∧ ∃k.with(e, k) ∧

at(e,m)

D. Itegulov—This work is supported by ANU Ph.D. (International) Scholarship
and HDR Fee Remission Merit Scholarship provided by the Australian National
University.
E. Lebedeva—We thank Bruno Woltzenlogel Paleo and Florrie Verity for numerous
helpful discussions and the anonymous reviewers for the constructive feedback.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
L. S. Moss et al. (Eds.): WoLLIC 2018, LNCS 10944, pp. 210–222, 2018.
https://doi.org/10.1007/978-3-662-57669-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57669-4_12&domain=pdf


Handling Verb Phrase Anaphora with Dependent Types and Events 211

Sentence (1a) contains adverbs that modify the event of buttering the toast.
The corresponding interpretation in events semantics is shown in (1b).

Additionally to adverbial modifiers, Parsons [9] described two more reasons
for introducing events as a new atomic type: perception verbs and reference to
events.

Parsons [9], furthermore, proposed a framework based on Davidson’s event
theory, called neo-Davidsonian event semantics, that extends it as follows:

– event participants are introduced via thematic roles
– state verbs, in addition to action verbs, are handled with an abstract variable
– two concepts, event holding and event culmination, are added
– events are decomposed into subevents.

The differences between Davidsonian and neo-Davidsonian approaches can
be seen by comparing interpretations (1b) and (2) of Sentence (1a).

(2) ∃e.butter(e)∧agent(e, j)∧patient(e, t)∧slowly(e)∧deliberately(e)∧in(e,b)∧
∃k.with(e, k) ∧ at(e,m)

This paper proposes a framework for solving verb phrase anaphora (also
known as verb phrase ellipsis) based on the neo-Davidsonian event semantics
and on dependent types; and to adapt the existing techniques of handling the
propositional anaphora to Dependent Type Semantics (DTS) framework. Depen-
dent types are already used to express pronominal anaphora in [1].

In Sect. 2, we briefly recall Dependent Type Semantics, which is a theoretical
foundation for our framework. In Sect. 3, we discuss major challenges of inter-
preting verb phrase anaphora. The main contribution of this paper is presented
in Sect. 4, which describes an extension of the Dependent Type Semantics, and in
Sect. 5, which discusses an application of subtyping in the proposed framework.

2 Recalling Dependent Type Semantics

Dynamic type semantics (DTS) proposed by Bekki in [1] is a framework of
discourse semantics based on dependent type theory (Martin-Löf [7]). DTS fol-
lows the constructive proof-theoretic approach to semantics established by Sund-
holm [13], who introduced Sundholmian semantics, and by Ranta [12], who intro-
duced Type Theoretical Grammar.

Definition 1 (Dependent function). For any (s1, s2) ∈ {(type, type), (type,
kind), (kind, type), (kind, kind)}, s ∈ {type, kind}:

A : s1

x : A

.

.

.

B : s2

(x : A) → B : s2

A : s

x : A

.

..

M : B

λx.M : (x : A) → B

M : (x : A) → B N : A

MN : B[N/x]



212 D. Itegulov and E. Lebedeva

Definition 2 (Dependent pair). For any (s1, s2) ∈ {(type, type), (type,
kind), (kind, kind)}:

A : s1

x : A

...
B : s2[

x : A
B

]
: s2

M : A N : B[M/x]

(M, N) :

[
x : A

B

] M :

[
x : A

B

]

π1M : A

M :

[
x : A

B

]

π2M : B[π1M/x]

DTS employs two kinds of dependent types (in addition to simply-typed
lambda calculus): dependent pair type or Σ-type (notation (x : A) → B(x)) and
dependent function type or Π-type (notation (x : A)×B(x)). A dependent pair is
a generalization of an ordinary pair. By Curry-Howard correspondence between
types and propositions, the type (x : A) × B(x) corresponds to an existentially
quantified formula ∃xA.B and to an ordinary conjunction A ∧ B when x �∈
fv(B).1 A dependent function is a generalization of an ordinary function; the
type (x : A) → B(x) corresponds to ∀xA.B and to A → B when x �∈ fv(B).
Formal definitions are given through inference rules in Definitions 1 and 2.

A comparison between the traditional notation for dependent types and the
notation used in DTS can be seen in Fig. 1.

Π-type Σ-type
Initial notation (Πx : A)B(x) (Σx : A)B(x)

DTS notation (x : A) → B(x) (x : A) × B(x),
[
x : A
B(x)

]

Initial notation, x �∈ fv(B) A → B A ∧ B

DTS notation, x �∈ fv(B) A → B

[
A
B

]

Fig. 1. Notation in DTS

The main atomic type in DTS is entity, which represents all entities in
a discourse. With the employment of dependent type constructors, the entity
type can be combined with additional properties. For example, (Σu : (Σx :
entity) × man(x)) × enter(π1(u)) is a valid DTS interpretation of “A man
entered”. Therefore, in contrast to traditional approaches to semantical inter-
pretation where entities are not distinguished by their types, each entity has its
own type in DTS.

In the traditional Montague model-theoretic semantics [8], a proposition
denotes a truth value (often defined as an o-type). However, DTS does not
follow this convention and instead the meaning of a sentence is represented by
1 fv(x) denotes all free variables in x.



Handling Verb Phrase Anaphora with Dependent Types and Events 213

a type. Types in DTS are defined by the inference rules, as shown in Defini-
tions 1 and 2. The rules specify how a dependent type (as a proposition) can be
proved under a given context. Thus, the meaning of a sentence in proof-theoretic
semantics lies in its verification condition similar to the philosophy of language
by Dummett [4,5] and Prawitz [10].

To handle anaphora resolution, DTS distinguishes two kinds of propositions:
static and dynamic. A static proposition P is called true if it is inhabited, i.e.
there exists a term of type P . A dynamic proposition is a function mapping
context-proof (a static proposition that is an interpretation of the previous dis-
course) to a static proposition.

In order to represent anaphoric references and presupposition triggers, Bekki
introduced a @-operator. The operator takes the left context of dynamic propo-
sitions in which it occurs. For example, Sentence (3a) can be interpreted as (3b)
in DTS. The @-operators in (3b) take a context as an argument and try to find
a female (due to the interpretation of the word “herself”) entity in the context
passed to them.

@-operators have a single introduction rule @F (Fig. 2):

A : type A true

(@i : A) : A

Fig. 2. @F introduction rule

Different @-operators can take contexts of different types. Therefore, they
can be of different types and are distinguished with a numerical subscript. The
full type of the @i-operator can look like this: @i : γi → entity.

(3)
a. She loves herself.

b. λc.loves(π1(@1c :
[
x : entity
female(x)

]
), π1(@2c :

[
x : entity
female(x)

]
))

The felicity condition states that in order to be felicitous, an instance of a
syntactic category S (i.e. a sentence) has to be of sort γ → type for some new
variable γ. To check the felicity condition of a sentence, a type checking algorithm
must be evoked. Consider that the interpretation of the sentence “Mary lives in
London” is passed to (3b) as the left context. The result is shown in (4).

(4)

⎡
⎢⎢⎢⎢⎣

v :

⎡
⎣u :

[
m : entity
female(m)

]

lives in(π1(u), l)

⎤
⎦

λc.loves(π1(@1c :
[
x : entity
female(x)

]
), π1(@2c :

[
x : entity
female(x)

]
))

⎤
⎥⎥⎥⎥⎦

However, before type-checking this sentence, @-operators should be built
using the @F introduction rule. The rule requires the existence of a proof term
inhabiting the type of the @-operator. In case of Sentence (4), both @1 and @2



214 D. Itegulov and E. Lebedeva

operators are inhabited by the proof term λc.π1(c). In particular, Mary (the first
element of the dependent pair in the context) is a valid entity having the property
of being female for both pronouns “she” and “herself”. Hence, the anaphora
resolution process involves proof search and can be done using theorem provers.

3 Verb Phrase Anaphora

Verb phrase anaphora [11] are anaphora with an intentional omission of part of a
full-fledged verb phrase when the ellipsed part can be implicitly derived from the
context. For example, verb phrase anaphora can be observed in (5a) and (5b):

(5)
a. John left before Mary did.
b. John left. Mary did too.

In (5a), the word “did” refers to an action John did before Mary. In (5b),
the “did too” clause refers to an action which John and Mary both did. These
sentences can be interpreted in event semantics as the following logical expres-
sions:

(6)
a. ∃e.agent(e, j) ∧ left(e) ∧ ∃e′.agent(e′,m) ∧ left(e′) ∧ before(e, e′)
b. ∃e.agent(e, j) ∧ left(e) ∧ ¬∃e′.agent(e′,m) ∧ left(e′)

Furthermore, an anaphoric verb phrase can “inherit” some properties from
its referent. Consider Example (7a) where “did too” not only refers to the event
of eating performed by John, but also to properties such as “quietly” and “last
night”. Expression (7b) is the interpretation of this sentence in event semantics.

(7)
a. John quietly ate the cake last night. Mary did too.
b. ∃e.(agent(e, j) ∧ patient(e, c) ∧ ate(e) ∧ quietly(e) ∧ at(e, ln)) ∧

∃e′.(agent(e′,m) ∧ patient(e′, c) ∧ ate(e′) ∧ quietly(e′) ∧ at(e′, ln))

A verb phrase anaphor may have an additional property that can ease the
choice of a correct anaphoric referent-event from the context. This phenomenon
is exemplified in (8a), where it is explicit that “too” refers to an action connected
with eating.

(8) a. John ate pasta and did not feel well. Mary ate too, but nothing happened
to her.

An ambiguity between strict and sloppy identity readings of verb phrase
anaphora described by Prüst [11] is another intriguing phenomenon. Example (9)
illustrates this:

(9) a. John likes his hat. Fred does too.
b. ∃x.hat(x) ∧ owner(x, j) ∧ ∃e.like(e) ∧ agent(e, j) ∧ patient(e, x) ∧

∃e′.like(e′) ∧ agent(e′, f) ∧ patient(e′, x)



Handling Verb Phrase Anaphora with Dependent Types and Events 215

c. ∃x.hat(x) ∧ owner(x, j) ∧ ∃e.like(e) ∧ agent(e, j) ∧ patient(e, x) ∧
∃y.hat(y) ∧ owner(y, f) ∧ ∃e′.like(e′) ∧ agent(e′, f) ∧ patient(e′, y)

The anaphoric clause in the second sentence of (9a) can be interpreted as
“Fred likes John’s hat” (the sloppy identity interpretation (9b)) or as “Fred
likes Fred’s hat” (the strict interpretation (9c)). A desirable framework should
be able to provide both interpretations.

4 Events with Dependent Types

To tackle phenomena discussed in Sect. 3, we propose to extend DTS with a new
atomic type event for interpreting events. Then, given its left context c, DTS’s
@-operator can be employed for retrieving a variable of type event analogously
to its original use for retrieving a referent of type entity.

As was shown by Parsons [9], event semantics can be employed to represent
propositional anaphora. An example of propositional anaphora is shown in (10a),
where “this” refers to the whole proposition expressed in the first sentence.
Formula (10b) is an interpretation of (10a).

(10)
a. John loved Mary. But Mary did not believe this.
b. ∃e.agent(e, j)∧patient(e,m)∧ loved(e)∧∃e′.believed(e′)∧agent(e′,m)∧

patient(e′, e)

Dependent typed events allow us to handle more complex types of proposi-
tional anaphora. Similar to entities, events can have various properties provided
by their description. Assume the following three sentences appear in the same
discourse, possibly remotely from each other, but with preservation of the order:

(11)
a. Canberra was hit by a flood on Sunday.
b. The fair was held in London.
c. What happened in Canberra is surprising.

Here the anaphoric clause in Sentence (11c) refers to an event discussed ear-
lier. There are however (at least) two potential events for the reference: one given
by (11a) and another given by (11b). Since the anaphoric clause in (11c) specifies
that it refers to an event happened in Canberra, the anaphor disambiguates to
the event in (11a).

The interpretation of verb phrase anaphora is more challenging, however,
than the interpretation of propositional anaphora: an anaphoric clause in a verb
phrase usually talks about a new event that inherits properties of another event.
For example, “John left. Bob did too.” conveys two events: one is about John
leaving and the second one is about Bob leaving. In cases of pronominal and
propositional anaphora, however, there is just a reference to an entity or an
event in the context. For example in “John walks. He is slow.”, pronoun “he” in
the second sentence just refers to the entity “John” from the first sentence.



216 D. Itegulov and E. Lebedeva

To handle verb phrase anaphora correctly, it is not enough to just fetch a
referenced variable from the left context; instead a new variable of type event
should be introduced. This new variable copies properties from the referred
event. Furthermore, the agent of the referred event should be changed to the
current agent in the new event. This can be seen in interpretation (7b) of (7a),
where the agent John is replaced with Mary.

Although @i-operator has type γi → entity in DTS for handling pronom-
inal anaphora, according to DTS syntax for raw terms the operator can be of
any type. We therefore suggest a new type of @-operator that guarantees that
the returned event has a proper agent, necessary for interpreting verb phrase
anaphora:

(12) @i : (c : γi) → (x : entity) →
[

e : event
agent(e, x)

]

Formula (13a) is an interpretation of discourse (5b). The @1-operator in (13b)
is applied to its left context c (of type γ0) and an entity, and returns a new event
of type event with the same properties (apart from the agent property) of the
referenced event. Crucially, the event returned by @1-operator in (13b) is not
an event that was in the context previously. It is a new event with the same
properties (e.g. location, time) as a referenced event from the context, but with
a replaced agent.

(13)

a. λc.

⎡
⎣ e : event[

left(e)
agent(e, j

]
)

⎤
⎦

b. λc.(@1c : (x : entity) →
[

e : event
agent(e, x)

]
)(m)

Note that the entity accepted by the @-operator defined in (12) is the agent
in the new event. For instance, in Example (7a), the interpretation of “did too”
using (12) would have the agent “John” of the referenced event replaced by
“Mary”, but the patient (i.e. the cake) would remain. On the other hand, there
exist cases of verb phrase anaphora where the patient in the referenced event
should be replaced. This usually depends on the voice (active or passive) of an
anaphoric clause, as can be seen from examples in (14).

(14)
a. Mary is loved by John. So is Ann.
b. John loves Mary. So does Bob.

c.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u :

⎡
⎢⎢⎣

e : event⎡
⎣ agent(e, j)[

patient(e,m)
loved(e)

]
⎤
⎦

⎤
⎥⎥⎦

⎡
⎢⎢⎣

e′ : event⎡
⎣ agent(e′, j)[

patient(e′,a)
loved(e′)

]
⎤
⎦

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u :

⎡
⎢⎢⎣

e : event⎡
⎣ agent(e, j)[

patient(e,m)
loved(e)

]
⎤
⎦

⎤
⎥⎥⎦

⎡
⎢⎢⎣

e′ : event⎡
⎣ agent(e′,b)[

patient(e′′′′,m)
loved(e′)

]
⎤
⎦

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Handling Verb Phrase Anaphora with Dependent Types and Events 217

The first sentences in (14a) and (14b) have the same semantics and hence
the interpretations given to them in (14c) and (14d) coincide. However, despite
the fact that both second sentences are written in the same voice as their first
sentences, the second sentences are interpreted differently. Naturally, the second
sentence in (14a) means “Ann is loved by John”, while the second sentence in
(14b) means “Bob loves Mary”. Note that they have replaced different partici-
pants of the first sentences: in (14a) Mary (patient) was replaced by Ann and in
(14b) John (agent) was replaced by Bob.

Furthermore, the interpretation of a sentence may require both the agent and
the patient to be replaced, as for example in the sloppy reading of (9c). These
possible cases of anaphora resolution can be tackled with the judgements (16)
assuming they occur in a global context K.

Another important notion in DTS is the felicity condition. The anaphora res-
olution for @i operator is launched by type checking of the following judgement:
K, γi : type � @i : γi → type. It means that the semantical interpretation of a
sentence must be of the sort type assuming that the left context is of type γi.
A requirement of a success of the launching the type checker is called felicity
condition.

In order to preserve the original DTS invariants, we should show how the
felicity condition is being fulfilled in the extended DTS. An example of a felicity-
judgement generated by verb phrase anaphora is shown in example (15). It is
different from the felicity condition from original DTS notion since the new
@-operator has a new type as shown in (12).

(15) K, γi : type � @i : γi → (x : entity) →
[

e : event
agent(e, x)

]

Assume that the global context K contains the judgements from (16). Then
one should be able to type check judgements generated by verb phrase anaphora.

(16)
a. replaceA : (p : entity → (e : event) → type) →

(original : entity) → (new : entity) →

(u :
[

e′ : event
p original e′

]
) → (v :

[
e′′ : event
p new e′′

]
)

b. replaceP : (p : entity → (e : event) → type) →
(original : entity) → (new : entity) →

(u :
[

e′ : event
p original e′

]
) → (v :

[
e′′ : event
p new e′′

]
)

c. replaceAP : (p : entity → entity → (e : event) → type) →
(oagent : entity) → (nagent : entity) →
(opatient : entity) → (npatient : entity) →

(u :
[

e′ : event
p oagent opatient e′

]
)→(v :

[
e′′ : event

p nagent npatient e′′

]
)

d. j : entity



218 D. Itegulov and E. Lebedeva

Functions replaceA, replaceP , replaceAP construct a new event v from an
existing event u. To express the inheritance of properties and the change of the
agent in replaceA (or patient in replaceP ), properties are expressed as a function
that accepts two arguments: an agent-entity (or patient-entity in replaceP ) and
an event; and returns a logical expression describing the event using the entity.
Function replaceAP accounts for cases where both an agent and a patient are
replaced.

We can now construct term @1 of type (12), to fulfill the felicity condition
of form (15), as shown in (17):

(17) K, γ0 : type � @1 : γ0 → (x : entity) →
[

e : event
agent(e, x)

]
=

λc.λx.replaceA (λy.λe.

[
left(e)

agent(e, y)

]
) j x π1π2(c)

A substitution of @1 in (13b) with its term defined in (17) leads to the
following semantical interpretation:

(18)

⎡
⎣ e′′ : event[

left(e′′)
agent(e′′,m)

]
⎤
⎦

Since anaphora in DTS are resolved using the type checking procedure,
verb phrase anaphora, just like pronominal anaphora, can be resolved in var-
ious ways. A type checking algorithm can find different terms which conform to
the specified (by felicity condition) type. For example, in order to handle the
ambiguity between strict and sloppy identity readings, which were discussed in
Example (9), our framework can provide both possible interpretations for Sen-
tence (9a). Term (19) shows a generic interpretation of (9a) in the proposed
framework.

(19) λc.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v :

⎡
⎣ x : entity[

hat(x)
owner(x, j)

]
⎤
⎦

⎡
⎢⎢⎣

e : event⎡
⎣ like(e)[

agent(e, j)
patient(e, π1(v))

]
⎤
⎦

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

@1(c, u)f :
[

e′ : event
agent(e′, f)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In (19), “Fred does too.” is interpreted as the term @1(c, u)f, where u stands
for the interpretation of the preceding sentence “John likes his hat.”. Recall from
Example (9) that the latter sentence has an ambiguous meaning. (20) defines
two alternative terms for @0, one for each of the possible meanings. Note that
the type of these terms for @0 conforms with the felicity condition.



Handling Verb Phrase Anaphora with Dependent Types and Events 219

(20)
a. K �@1 : γ0 → (x : entity) →

[
e′ : event

agent(e′, x)

]
=

λc.λf.replaceA (λy.λe.

⎡
⎣ like(e)[

agent(e, y)
patient(e, x)

]
⎤
⎦) j f π1π2π2(c)

b. K �@1 : γ0 → (x : entity) →
[

e′ : event
agent(e′, x)

]
=

let p = λy.λz.λe.

⎡
⎣ like(e)[

agent(e, y)
patient(e, z)

]
⎤
⎦

in λc.λf.

⎡
⎣ u :

[
y : entity

hat(y) ∧ owner(y, f)

]

replaceAP p j f π1π1π2(c) π1(u) π1π2π2(c)

⎤
⎦

Both terms are valid substitutions for @1-operator in (19) and they represent
strict and sloppy anaphora readings respectively. In (20b) let-in structure is used
only as a syntactical sugar for readability and is not actually a part of DTS term
syntax.

In line with the original approach of Bekki [1], the verb phrase anaphora
resolution for @-operator involves proof search and can be done using a theorem
prover.

5 Subtyping

The equation in (17) (i.e. an anaphora resolution solution: a proof of existence
of a term with the required type under the global context K) is not sound: the
type of the right side of the equation is

γ0 → (x : entity) →
⎡
⎣ e′′ : entity[

left(e′′)
agent(e′′, x)

]
⎤
⎦

while the type required by the left side is

γ0 → (x : entity) →
[

e : entity
agent(e, x)

]

The former type is more specific than the latter type because it has the additional
property “left”.

This is not a problem, as events have a natural subtyping relationship
between them. As described by Luo and Soloviev in [6], an event whose agent is a
and patient is p, is an event with agent a. Despite a different theory underneath,
the techniques described there can be reused for subtyping events in DTS. This
leads to the following subtyping relations in event semantics:



220 D. Itegulov and E. Lebedeva

(21)
a. EvtAP (a, p) <: EvtA(a) <: Event ←→⎡

⎣ e : event[
agent(e, a)

patient(e, p)

]
⎤
⎦ <:

[
e : event

agent(e, a)

]
<:

[
e : event

()

]

b. EvtAP (a, p) <: EvtP (p) <: Event ←→⎡
⎣ e : event[

agent(e, a)
patient(e, p)

]
⎤
⎦ <:

[
e : event

patient(e, p)

]
<:

[
e : event

()

]

Subtyping relations of events can also depend on other properties (e.g. a loud
event performed by John is also an event performed by John). We employ Luo
and Soloviev’s notation to define a new type EventNA(n, a), which is the type
of events with agent a and nature n. Nature is a main predicate for each event
in neo-Davidsonian semantics (e.g. “left(e)” for an event of leaving, “ate(e)” for
an event of eating).

The following transformation shows how the dependent event types in DTS
notation from (17) can be converted into dependent event types in the notation
of Luo and Soloviev:

(22)

a.

⎡
⎣ e′′ : event[

left(e′′)
agent(e′′, x)

]
⎤
⎦ ←→ e′′ : EventDA(left, x)

b.
[

e : entity
agent(e, x)

]
←→ e : EventA(x)

A subtyping relationship between these types can be constructed (assum-
ing the appropriate subtyping rules have been added along with type
EventDA(d, a)).

left : Description x : Agent

EventDA(left, x) <: EventA(x)

The discussed subtyping relationship allows us to obtain (17).

6 Comparison with Previous Approaches

The approach presented here shares the goal of interpreting elliptical construc-
tions, verb phrase ellipses in particular, with the work of Dalrymple et al. [2].
However, there are crucial conceptual differences.

The method of Dalrymple, Shieber and Pereira relies on the parallel structure
of sentences involved in verb phrase anaphora (e.g.: “John loves golf” and “Bob
does too” are parallel in the sense that the second sentence can be used as a verb
phrase anaphoric clause referring to the first sentence). They rely on a black-box
mechanism to determine the parallel structures.



Handling Verb Phrase Anaphora with Dependent Types and Events 221

Here we rely on a theorem prover to find a proof term for @-operators. In this
way we leverage the advances in the extensively researched field of automated
theorem proving.

Our approach, furthermore, avoids some problems described in [2]. For exam-
ple, it supports semantic parallelism, i.e. parallelism between a “logical subject”
and an anaphoric clause. Consider Sentence (23), which is a slightly simplified
version of sentence (59) from [2].

(23) The material can be presented in an accessible fashion, and often I do.

We interpret the subject in the first part of the sentence as an existentially
quantified variable of type entity. This variable can be accessed from the second
sentence. In other words, our approach introduces a logical subject that can be
used for interpreting an anaphoric clause that follows.

7 Conclusion

This paper introduces dependent event types for resolving verb phrase anaphora
with DTS as the underlying framework. To tackle verb phrase anaphora, we
extend DTS’s @-operator, which was originally introduced for handling pronom-
inal anaphora. The paper also addresses strict and sloppy readings of verb phrase
anaphora and shows that each of them can be achieved solely by manipulating
the interpretation of the @-operator. The previous approaches to handling the
propositional anaphora were also adapted to DTS framework.

Techniques described in this paper could be applied to handle other cases of
anaphora, such as adjectival anaphora, modal and “do so” anaphora. Another
interesting topic would be to study specific behaviours of various thematic roles,
such as experiencer, theme and source.

References

1. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev,
S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43742-1 2

2. Dalrymple, M., Shieber, S.M., Pereira, F.C.N.: Ellipsis and higher-order unifica-
tion. Linguist. Philos. 14(4), 399–452 (1991)

3. Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic
of Decision and Action. University of Pittsburgh Press, Pittsburgh (1967)

4. Dummett, M.: What is a theory of meaning? (II). In: Evans, G., McDowell, J.
(eds.) Truth and Meaning: Essays in Semantics. Clarendon Press, Oxford (1976)

5. Dummett, M.A.E.: What is a theory of meaning? In: Guttenplan, S. (ed.) Mind
and Language. Oxford University Press, Oxford (1975)

6. Luo, Z., Soloviev, S.: Dependent event types. In: Kennedy, J., de Queiroz, R.J.G.B.
(eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 216–228. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-55386-2 15

7. Martin-Löf, P., Sambin, G.: Intuitionistic Type Theory. Studies in Proof Theory.
Bibliopolis, Berkeley (1984)

https://doi.org/10.1007/978-3-662-43742-1_2
https://doi.org/10.1007/978-3-662-55386-2_15


222 D. Itegulov and E. Lebedeva

8. Montague, R.: Formal Philosophy; Selected Papers of Richard Montague. Yale
University Press, New Haven (1974)

9. Parsons, T.: Events in the Semantics of English: A Study in Subatomic Semantics.
MIT Press, Cambridge (1990)

10. Prawitz, D.: Intuitionistic logic: a philosophical challenge. In: Von Wright, G.H.
(ed.) Logic and Philosophy/Logique et Philosophie, vol. 5, pp. 1–10. Springer,
Dordrecht (1980). https://doi.org/10.1007/978-94-009-8820-0 1

11. Prüst, H., Scha, R., van den Berg, M.: Discourse grammar and verb phrase
anaphora. Linguist. Philos. 17(3), 261–327 (1994)

12. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1994)
13. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic: Volume III: Alternatives in Classical Logic.
SYLI, vol. 166, pp. 471–506. Springer, Dordrecht (1986). https://doi.org/10.1007/
978-94-009-5203-4 8

14. Taylor, B.: Modes of occurence, verbs, adverbs and events. Revue Philosophique
de la France Et de l’Etranger 176(3), 406–407 (1986)

15. Verkuyl, H.J.: On the Compositional Nature of the Aspects. D. Reidel Publishing
Company, Dordrecht (1972)

https://doi.org/10.1007/978-94-009-8820-0_1
https://doi.org/10.1007/978-94-009-5203-4_8
https://doi.org/10.1007/978-94-009-5203-4_8

	Handling Verb Phrase Anaphora with Dependent Types and Events
	1 Introduction
	2 Recalling Dependent Type Semantics
	3 Verb Phrase Anaphora
	4 Events with Dependent Types
	5 Subtyping
	6 Comparison with Previous Approaches
	7 Conclusion
	References




