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Abstract. This paper presents a formalization of the proof of the unde-
cidability of the halting problem for a functional programming language.
The computational model consists of a simple first-order functional lan-
guage called PVS0 whose operational semantics is specified in the Pro-
totype Verification System (PVS). The formalization is part of a termi-
nation analysis library in PVS that includes the specification and equiv-
alence proofs of several notions of termination. The proof of the unde-
cidability of the halting problem required classical constructions such as
mappings between naturals and PVS0 programs and inputs. These con-
structs are used to disprove the existence of a PVS0 program that decides
termination of other programs, which gives rise to a contradiction.

1 Introduction

In computer science, program termination is the quintessential example of a
property that is undecidable, a fact that is well-known as the undecidability
of the halting problem [12]. This undecidability implies that it is not possible
to build a compiler that would verify whether a program terminates for any
given input. Despite this undecidability, it is possible to construct algorithms
that partially decide termination, i.e., they correctly answer whether an input
program “terminates or not”, but may also answer “do not know”. Termination
analysis of programs is an active area of research. Indeed, substantial progress in
this area is regularly presented in meetings such as the International Workshop
on Termination and the Annual International Termination Competition.

To formally verify correctness of termination analysis algorithms, it is often
necessary to specify and prove equivalence among multiple notions of termina-
tion. Given a formal model of computation, one natural notion of termination is
specified as for all inputs there exists an output provided under the operational
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semantics of the model. Another notion of termination could be specified con-
sidering whether or not the depth of the expansion tree of computation steps for
all inputs is finite. These two notions rely on the semantics of the computational
model. A more syntactic approach, attributed to Turing [13], is to verify that
the actual arguments decrease in any repeating control structure, e.g., recursion,
unbounded loop, fix-point, etc., of the program according to some well-founded
relation. This notion is used in the majority of proof assistants, where the user
must provide the well-founded relation.

The main contribution of this work is the formalization in the Prototype
Verification System (PVS) [10] of the theorem of undecidability of the halting
problem for a model of computation given by a functional language called PVS0.
The formal development includes the definition of PVS0, its operational seman-
tics, and the specification and proof of several concepts used in termination
analysis of PVS0 programs. For the undecidability proof of the halting problem,
only the semantic notions of termination are used. Turing termination for the
language PVS0 is also discussed to show how semantic and syntactic termina-
tion criteria are related. The formalization is available as part of the NASA PVS
Library under the directory PVS0.1 All lemmas and theorems presented in this
paper were formalized and verified in PVS.

2 Semantic Termination

The PVS0 language is a simple functional language whose expressions are
described by the following grammar.

expr ::= cnst | vr | op1(expr) | op2(expr , expr) | rec(expr) | ite(expr , expr , expr)
The grammar above is specified in PVS through the abstract data type:

PVS0Expr[T:TYPE+] : DATATYPE
BEGIN

cnst(get_val:T) : cnst?
vr : vr?
op1(get op:nat,get arg:PVS0Expr) : op1?
op2(get op:nat,get arg1,get arg2:PVS0Expr) : op2?
rec(get arg:PVS0Expr) : rec?
ite(get cond,get if,get else:PVS0Expr) : ite?

END PVS0Expr

A PVS specification of an abstract data type includes the constructors, e.g., ite,
the accessors, e.g., get cond, and the recognizers, e.g., ite?. In this data type,
T is a parametric nonempty type that represents the type of values that serve as
inputs and outputs of PVS0 programs. Furthermore, cnst is the constructor of
constant values of type T, vr is the unique variable constructor, op1 and op2 are
constructors of unary and binary operators, respectively, rec is the constructor
1 https://github.com/nasa/pvslib.
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of recursion, and ite is the constructor of conditional “if-then-else” expressions.
The first parameter of the constructors op1 and op2 is an index representing
built-in unary and binary operators, respectively.

The uninterpreted type T and uninterpreted unary and binary operators
enable the encoding of arbitrary first-order PVS functions as programs in PVS0.
Indeed, the operational semantics of PVS0Expr is given in terms of a non-empty
set Val , which interprets the type T. The type PVS0[Val ] of PVS0 programs with
values in Val consists of all 4-tuples of the form (O1, O2,⊥, expr), such that

– O1 is a list of PVS functions of type Val → Val , where O1(i), i.e., the i-th
element of the list O1, interprets the index i in the constructor op1,

– O2 is a list of PVS functions of type Val × Val → Val , where O2(i), i.e., the
i-th element of the list O2, interprets the index i in the constructor op2,

– ⊥ is a constant of type Val representing the Boolean value false in the con-
ditional construction ite, and

– expr is a PVS0Expr[Val ], which is the syntactic representation of the program
itself.

Henceforth, |O1| and |O2| represent the length of the lists O1 and O2, respec-
tively. The choice of lists of functions for interpreting unary and binary operators
helps in the enumeration of PVS0 programs, which is necessary in the undecid-
ability proof.

Given a program (O1, O2,⊥, ef ) of type PVS0[Val ], the semantic evaluation of
an expression e of type PVS0Expr[Val ] is given by the curried inductive relation
ε of type PVS0[Val ] → (PVS0Expr[Val ] × Val × Val) → bool defined as follows.

Intuitively, the relation ε(O1, O2,⊥, ef )(e, vi, vo) defined below holds when
given a program (O1, O2,⊥, ef ) the evaluation of the expression e on the input
value vi is the value vo.

ε(O1, O2,⊥, ef )(e, vi, vo) := CASES e OF
cnst(v) : vo = v;

vr : vo = vi;
op1(j, e1) : j < |O1| ∧ ∃ v′ ∈ Val :

ε(O1, O2,⊥, ef )(e1, vi, v
′) ∧ vo = O1(j)(v′);

op2(j, e1, e2) : j < |O2| ∧ ∃ v′, v′′ ∈ Val :
ε(O1, O2,⊥, ef )(e1, vi, v

′) ∧
ε(O1, O2,⊥, ef )(e2, vi, v

′′) ∧
vo = O2(j)(v′, v′′);

rec(e1) : ∃ v′ ∈ Val : ε(O1, O2,⊥, ef )(e1, vi, v
′) ∧

ε(O1, O2,⊥, ef )(ef , v′, vo)
ite(e1, e2, e3) : ∃ v′ : ε(O1, O2,⊥, ef )(e1, vi, v

′) ∧
IF v′ �= ⊥ THEN ε(O1, O2,⊥, ef )(e2, vi, vo)
ELSE ε(O1, O2,⊥, ef )(e3, vi, vo).

In the definition of ε, the parameters ef and e are needed since the evaluation
of a program (O1, O2,⊥, ef ) leads to evaluation of sub expressions e of ef and,
when a recursive call is evaluated, the whole expression ef should be considered
again (see the recursive case rec(e1) above).



Formalization of the Undecidability of the Halting Problem 199

For example, consider below a PVS0 program that computes the Ackermann
function.

Example 1. Let Val be the set N × N of pairs of natural numbers, � = (1, 0),
⊥ = (0, 0), and a be the PVS0 program (O1, O2,⊥, ea), where

O1(0)(m,n) := IF m = 0 THEN � ELSE ⊥,
O1(1)(m,n) := IF n = 0 THEN � ELSE ⊥,
O1(2)(m,n) := (n + 1, 0),
O1(3)(m,n) := IF m > 0 THEN (m − 1, 1) ELSE ⊥,
O1(4)(m,n) := IF n > 0 THEN (m,n − 1) ELSE ⊥,
O2(0)((m,n), (i, j)) := IF m > 0 THEN (m − 1, i) ELSE ⊥,
ea := ite(op1(0, vr), op1(2, vr),

ite(op1(1, vr), rec(op1(3, vr)),
rec(op2(0, vr, rec(op1(4, vr)))))).

It is proved in PVS that a computes the Ackermann function, i.e., for any
n,m, k ∈ N, ackermann(m,n) = k if and only if ε(a)(ea, (n,m), (k, i)), for some
i, where ackermann is the recursive function defined in PVS as

ackermann(m,n) := IF m = 0 THEN n + 1
ELSIF n = 0 THEN ackermann(m − 1, 1)
ELSE ackermann(m − 1, ackermann(m,n − 1)).

In the definition of a, the type Val encodes the two inputs of the Ackermann
function, but also the output of the function, which is given by the first entry of
the second pair.

The proof of one of the implications in the statement of Example 1 pro-
ceeds by induction using a lexicographic order on (m,n). The other implication
is proved using the induction schema generated for the inductive relation ε.
Although it is not logically deep, this proof is tedious and long. However, it
is mechanizable assuming that the PVS function and the PVS0 program share
the same syntactical structure. As part of the work presented in this paper,
a PVS strategy that automatically discharges equivalences between PVS func-
tions and PVS0 programs was developed. This strategy is convenient since one
of the objectives of this work is to reason about computational aspects of PVS
functions through their embeddings in PVS0.

Example 1 also illustrates the use of built-in operators in PVS0. Despite
its simplicity, this language is not minimal from a fundamental point of view.
Indeed, since the type T is generic, any PVS function can be used as a building
block in the construction of a PVS0 program. This feature is justified since all
PVS functions are total. Therefore, they can be considered as atomic built-in
operators. However, in contrast to proof assistants based on constructive logic,
PVS allows for the definition of non-computable functions. The consequences of
these features will be clear in the undecidability proof of the halting problem.
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The following lemma states that the semantic evaluation relation ε is deter-
ministic.

Lemma 1. Let pvso be a program of type PVS0[Val ]. For any expression e of
type PVS0Expr[Val ] and all values vi, v

′
o, v

′′
o ∈ Val,

ε(pvso)(e, vi, v
′
o) and ε(pvso)(e, vi, v

′′
o ) implies v′

o = v′′
o .

The proof of this lemma uses the induction schema generated for the inductive
relation ε.

The relation ε is functional but not total, i.e., there are programs pvso and
values vi, for which there is no value vo that satisfies ε(pvso)(pvsoe, vi, vo), where
pvsoe is the program expression in pvso. This suggests the following definition
of the semantic termination predicate.

Tε(pvso, vi) := ∃ vo ∈ Val : ε(pvso)(pvsoe, vi, vo).

This predicate states that for a given program pvso and input vi, the evaluation
of the program’s expression pvsoe on the value vi terminates with the output
value vo. The program pvso is total with respect to ε if it satisfies the following
predicate.2

Tε(pvso) := ∀ v ∈ Val : Tε(pvso, v).

Semantic termination can also be specified by a function χ of type
PVS0[Val ] → (PVS0Expr[Val ] × Val × N → Val ∪ {♦}) defined as follows.

χ(O1, O2,⊥, ef )(e, vi, n) := IF n = 0 THEN ♦ ELSE CASES e OF
cnst(v) : v;

vr : vi;
op1(j, e1) : IF j < |O1| THEN

LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n) IN
IF v′ = ♦ THEN ♦ ELSE O1(j)(v′)

ELSE ♦;
op2(j, e1, e2) : IF j < |O2|THEN

LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n),
v′′ = χ(O1, O2,⊥, ef )(e2, vi, n) IN

IF v′ = ♦ ∨ v′′ = ♦ THEN ♦ ELSE O2(j)(v′, v′′)
ELSE ♦;

rec(e1) : LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n) IN
IF v′ = ♦ THEN ♦ ELSE χ(O1, O2,⊥, ef )(ef , v′, n − 1);

ite(e1, e2, e3) : LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n) IN
IF v′ = ♦ THEN ♦
ELSIF v′ �= ⊥ THEN χ(O1, O2,⊥, ef )(e2, vi, n)
ELSE χ(O1, O2,⊥, ef )(e3, vi, n).

2 Polymorphism in PVS allow for the use of the same function or predicate name with
different types.
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In the definition of χ, n is the maximum number of nested recursive calls that
are allowed in the evaluation of the recursive program for a given input. If this
limit is reached during an evaluation, the function χ returns the symbol ♦, which
represents a “none” value. This function can be used to define an alternative
predicate for semantic termination as follows.

Tχ(pvso, v) := ∃n ∈ N : χ(pvso)(pvsoe, v, n) �= ♦.

The program pvso is total with respect to χ if it satisfies the following predicate.

Tχ(pvso) := ∀ v ∈ Val : Tχ(pvso, v).

The following theorem states that Tε and Tχ captures the same notion of
termination.

Theorem 1. Let pvso be a PVS0 program of type PVS0[Val ]. The following
conditions hold:

1. For any vi ∈ Val and e of type PVS0Expr[Val ], ε(pvso)(e, vi, vo) if and only
if vo = χ(pvso)(e, vi, n), for some n, where vo �= ♦.

2. For any v ∈ Val, Tε(pvso, v) if and only if Tχ(pvso, v).
3. Tε(pvso) if and only if Tχ(pvso).

In Theorem 1, Statement 2 and Statement 3 are consequences of Statement 1.
Assuming Tχ(pvso, v), the proof of the Statement 1 requires the construction of
the number μ(pvso, v) ∈ N

+ as follows.

μ(pvso, v) := min({n : N |χ(pvso)(pvsoe, v, n) �= ♦}).

This number satisfies the following property.

Lemma 2. Let pvso be a program of type PVS0[Val ] and v ∈ Val such that
Tχ(pvso, v). For any n ≥ μ(pvso, v), χ(pvso)(pvsoe, v, n) �= ♦.

A PVS0 program pvso that satisfies Tχ(pvso) (or equivalently, Tε(pvso))
is said to be terminating. The following lemma shows that there are non-
terminating PVS0 programs.

Lemma 3. Let Δ = (O1, O2,⊥, rec(vr)). For any v ∈ Val, ¬Tχ(Δ, v).

The proof proceeds by showing that if χ(Δ)(Δe, v, n) �= ♦ for some v, where
n = μ(Δ, v), then it is also the case that χ(Δ)(Δe, v, n − 1) �= ♦. By definition
of μ, this is a contradiction.

Proving that a PVS0 program terminates using the semantic predicates
Tε(pvso) and Tχ(pvso) is not very convenient. Indeed, these notions rely on
actual computations of the program on a potentially infinite set of inputs. A
syntactic criterion here called Turing termination relies on the existence of a
well-founded relation < over a type A and measure function M of type Val → A
on the parameters of the recursive function such that M strictly decreases on
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every recursive call. This notion is adopted as the meta-theoretical definition
of termination in several proof assistants. In PVS, this notion is implemented
through the generation of the so called termination TCCs (Type Correctness
Conditions), where the measure function and the well-founded relation are pro-
vided by the user. This notion is formalized by defining, in PVS, an algorithm
that generates termination TCCs for PVS0 programs. It has been proved that
this Turing termination is equivalent to Tε(pvso) and, therefore, to Tχ(pvso).
The formal infrastructure that is needed for defining Turing termination of PVS0
programs is out of the scope of the present work.

For a PVS0 program (O1, O2,⊥, ef ) and two values vi and vr, the definition
of vi → vr is given by:

vi → vr := ε(O1, O2,⊥, ef )(ef , vi, vr) ∧ M(vr) < M(vi)

The definition above relates an input value vi of a PVS0 program and the
argument vr of a recursive call such that M(vr) < M(vi). A key construction
that is needed in the equivalence proof between the syntactic and the semantic
termination criteria is the definition of the number Ω(v), where v ∈ V al, as
follows.

Ω(v) := min({n : N+ | ∀ v′ ∈ V : ¬(v →n v′)}).

Intuitively, Ω(v) is the length of the longest path downwards starting from v.
The following lemma states a relation between μ and Ω.

Lemma 4. Let pvso be a PVS0 program that satisfies Turing termination
for a well-founded relation < over A and a measure function M. For any value
v ∈ Val, μ(pvso, v) ≤ Ω(v).

3 Partial Recursive Functions

By design, the PVS0 language can directly encode any PVS function f of type
T → T , where T is an arbitrary PVS type. This feature enables the use of PVS
functions as built-in operators in PVS0 program. The following lemma states
that any PVS function can be embedded in a terminating PVS0 program.

Lemma 5. Let f be a PVS function of type T → T . The program mk pvs0 (f) =
(O1, O2,⊥, ef ) of type PVS0, where ef = op1(0, vr) and O1(0)(t) = f(t), satisfies
the following properties:

– mk pvs0 (f) is terminating, i.e., Tε(mk pvs0 (f)).
– For any t ∈ T , ε(mk pvs0 (f))(ef , t, f(t)).

The converse of Lemma 5 is not true in general as illustrated by the following
theorem.
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Lemma 6. There is no PVS function f of type T → T such that for any t ∈ T ,
ε(Δ)(rec(vr), t, f(t)), where Δ is the function defined in Lemma 3.

However, any PVS0 program, even non-terminating ones, can be encoded as a
PVS function of type T → T ∪ {♦}, as stated in the following lemma.

Lemma 7. Let pvso be a, possibly non-terminating, program of type PVS0 and
pvsoe the PVS0 expression of pvso. The PVS function

f(t) := IF Tχ(pvso, t) THEN χ(pvso)(pvsoe, t, μ(pvso, t)) ELSE ♦
satisfies the following property for any t ∈ T .

Tε(pvso, t) if and only if ε(pvso)(pvsoe, t, f(t)).

The proofs of the previous lemmas are straightforward applications of the defi-
nitions of Tε, ε, Tχ, and χ.

A consequence of Lemmas 5 and 7 is that is possible to define an oracle
of type PVS0[Val ], where Val = PVS0, that decides if a program of type PVS0
is terminating or not. The existence of that oracle is stated in the following
theorem.

Theorem 2. The program Oracle = (O1, O2,⊥, ef ) of type PVS0[Val ], where
Val = PVS0, ef = mk pvs0 (LAMBDA(pvso : PVS0) : IF Tε(pvso) THEN � ELSE ⊥),
and � �= ⊥, has the following properties.

– Oracle is a terminating PVS0[Val ] program, i.e., Tε(Oracle).
– Oracle decides termination of any PVS0 program, i.e., for any pvso of type

PVS0,

χ(Oracle)(Oraclee, pvso, μ(Oracle, pvso)) = � if and only if Tε(pvso).

This counterintuitive result is possible because PVS, in contrast to proof
assistants based on constructive logic, allows for the definition of total func-
tions that are non-computable, e.g., LAMBDA(pvso : PVS0) : IF Tε(pvso) THEN �
ELSE ⊥. These non-computable functions can be used in the construction of
terminating PVS0 programs through the built-in operators. Therefore, in order
to formalize the notion of partial recursive functions in PVS0, it is necessary to
restrict the way in which programs are built.

First, the basic type T is set to N, i.e., Val = N, where the number 0 rep-
resents the value false, i.e., ⊥ = 0. Any value different from 0 represents a
true value, in particular � = 1. Second, the built-in operators used in the con-
struction of programs are restricted by a hierarchy of levels: the operators in
the first level can only be defined using projections (Π1(x, y : N) := x and
Π2(x, y : N) := y), successor (succ(x : N) : x + 1), and greater or equal than
(ge(x, y : N) : IF x ≥ y THEN � ELSE ⊥) functions. Operators in higher levels
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can only be constructed using programs from the previous level. This idea is
formalized by the predicate pvs0 level : N → PVS0[N] → bool as shown below.

pvs0 level(n)(O1, O2,⊥, ef ) :=
IF n = 0 THEN O1 = 〈succ〉 ∧ O2 = 〈Π1,Π2, ge〉
ELSE ( ∃p′ ∈ PVS0[N] : pvs0 level(n − 1)(p′) ∧

LET (O1
′, O2

′,⊥′, ef
′) = p′, l′1 = |O1

′| IN
|O1| = l′1 + 1 ∧
( ∀i ∈ N : i < l′1 ⇒ O1(i) = O1

′(i) ) ∧
( ∀v ∈ N : ε(p′)(ef

′, v, O1(l′1)(v)) ) ) ∧
( ∃p′ ∈ PVS0[N] : pvs0 level(n − 1)(p′) ∧

LET (O1
′, O2

′,⊥′, ef
′) = p′, l′2 = |O2

′| IN
|O2| = l′2 + 1 ∧
( ∀i ∈ N : i < l′2 ⇒ O2(i) = O2

′(i) ) ∧
( ∀v1, v2 ∈ N : ε(p′)(ef

′, κ2 (v1, v2), O2(l′2)(v1, v2)) ) ),

where the function κ2 is an encoding of pairs of natural numbers onto natural
numbers defined as κ2 (m,n) := (m + n + 1) × (m + n)/2 + n.

The type PartialRecursive is defined to be a subtype of PVS0[N] containing
all the programs pvso such that there is a natural n for which pvs0 level(n)(pvso)
holds. Additionally, Computable is a subtype of PartialRecursive containing
those elements that are also terminating according to the aforementioned defi-
nitions.

The following theorem states that PartialRecursive, and thus Computable,
are enumerable types.

Theorem 3. There exists a PVS function of type N → PartialRecursive that
is surjective.

As a corollary of this theorem, the inverse of this surjective function, denoted as
κP is an injective function of type PartialRecursive → N.

The proof of Theorem 3 is technically involved. The proof proceeds by show-
ing that each level is enumerable. Therefore, the function κP exists since the
countable union of countable sets is also countable. A similar work is presented
in [4] by Foster an Smolka. They encode a lambda term into another lambda term
such that it represents a natural number using the Scott numbers codification
and use that encoding to formalize in Coq the Rice’s Theorem.

The function κP is used in the proof of the undecidability of the halting prob-
lem for PVS0 to encode PartialRecursive programs as inputs of a Computable
program. This function is a key element in the construction of the self-reference
argument used in the diagonalization approach of the undecidability proof.

4 Undecidability of the Halting Problem

The classical formalization of the undecidability of the halting problem starts
by assuming the existence of an oracle capable of deciding whether a program
halts for any input. A Gödelization function transforms the tuple of program
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and input into a single input to the oracle. After that, using the oracle, another
program is created such that if the encoded program halts it enters into an
infinite loop. Otherwise, it produces an answer and halts. Passing this program
as an input to itself results in the expected contradiction.

Here, the undecidability of the halting problem was formalized using the
notions of termination for PVS0 defined in the previous section and the Cantor’s
diagonalization technique.

Theorem 4 (Undecidability of the Halting Problem for PVS0). There
is no program oracle = (O1, O2,⊥, eo) of type Computable such that for all
pvso = (O1

′, O2
′,⊥, ef ) of type PartialRecursive and for all n ∈ N,

Tε(pvso, n) if and only if ¬ε(oracle)(eo, κ2 (κP (pvso), n),⊥).

Proof. The proof proceeds by assuming the existence of an oracle to derive a
contradiction. Suppose there exists a program oracle = (O1, O2,⊥, eo) of type
Computable such as the one presented in the statement of the theorem. Then, a
PVS0[N] program pvso = (O1

′, O2
′,⊥, ef ) can be defined, where O′

1(k) = O1(k),
for k < |O1|, O′

2(k) = O2(k), for k < |O2|, and

– O1
′(|O1|)(i) = choose({a : N | ε(oracle)(eo, i, a)}),

– O2
′(|O2|)(i, j) = choose({a : N | ε(oracle)(eo, κ2 (i, j), a)}), and

– ef = ite(op2(|O2|, vr, vr), rec(vr), vr).
The PVS function choose returns an arbitrary element from a non-empty set.
The sets used in the definitions of O′

1 and O′
2 are non-empty since oracle is

Computable and, therefore, terminating. The program pvso is built in such a
way that it belongs to the next level from the level of oracle.

Let n be the natural number κP (pvso). The rest of the proof proceeds by
case analysis.

• Case1: ε(oracle)(eo, κ2 (n, n),⊥). This case holds if and only if ¬Tε(pvso, n).
Expanding Tε one obtains

¬∃(v : N) : ∃(vo : N) : ε(pvso)(op2(|O2|, vr, vr), n, vo) ∧
IF vo �= ⊥
THEN ε(pvso)(rec(vr), n, v)
ELSE ε(pvso)(vr, n, v).

(1)

Expanding ε in ε(pvso)(op2(|O2|, vr, vr), n, vo) yields

choose({a : N | ε(oracle)(eo, κ2 (n, n), a)}) = vo.

Since ε(oracle)(eo, κ2 (n, n),⊥) holds, ⊥ = vo. Therefore, Formula (1) is
equivalent to

¬∃(v : N) : ε(pvso)(vr, n, v). (2)

The predicate ε(pvso)(vr, n, v) holds if and only if n = v. Hence, Formula (2)
states that ¬∃(v : N) : n = v, where n is a natural number. This is a contra-
diction.
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• Case2: ¬ε(oracle)(eo, κ2 (n, n),⊥). This case holds if and only if Tε(pvso, n).
From Theorem 1, Tχ(pvso, n). If the proof starts directly from Tε(pvso, n),
after expanding and simplifying it, Tε(pvso, n) is obtained once again, which
implies that there is not such an n, giving a contradiction. However, since
PVS does not accept the definition of a function that enters into such an
infinite loop, the solution is to apply the equivalence Theorem 1. Expanding
the definition of Tχ yields

∃m ∈ N : χ(pvso)(ite(op2(|O2|, vr, vr), rec(vr), vr), n,m) �= ♦.

If there exists such m, it can be chosen as the minimal natural that makes
the above proposition hold. Expanding the definition of χ yields

⎛
⎜⎜⎜⎜⎝

IF χ(pvso)(op2(|O2|, vr, vr), n,m) �= ♦ THEN
IF χ(pvso)(op2(|O2|, vr, vr), n,m) �= ⊥ THEN
χ(pvso)(rec(vr), n,m)
ELSE χ(pvso)(vr, n,m)

ELSE ♦

⎞
⎟⎟⎟⎟⎠

�= ♦. (3)

If the condition of the first if-then-else were false, then Formula (3) reduces
to ♦ �= ♦, which is a contradiction. Therefore, this condition must be true.
After expanding and simplifying χ, χ(pvso)(op2(|O2|, vr, vr), n,m) reduces
to

choose({a : N | ε(oracle)(eo, κ2 (n, n), a)}).

Let v = choose({a : N | ε(oracle)(eo, κ2 (n, n), a)}). If v = ⊥, then

ε(oracle)(eo, κ2 (n, n),⊥).

This is a contradiction since n = κP (pvso).
Thus, χ(pvso)(op2(|O2|, vr, vr), n,m) �= ⊥. Then, Formula (3) can be simpli-
fied to

χ(pvso)(rec(vr), n,m) �= ♦.

Finally, expanding χ results in χ(pvso)(ef , n,m − 1) �= ♦. This contradicts
the minimality of m, completing the proof. ��

5 Related Work

Formalization of models of computation is not a novelty. In recent work, Foster
and Smolka [4] formalized, in Coq, Rice’s Theorem, which states that non-trivial
semantic properties of procedures are undecidable. This theorem is a variant of
Post’s Theorem, which states that a class of procedures is decidable if it is
recognizable, co-recognizable, and logically decidable, and the fact that the class
of total procedures is not recognizable. This work was done for a model of a
functional language presented as a weak call-by-value lambda-calculus in which
β-reduction can be applied only if the redex is not below an abstraction and if
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the argument is an abstraction. Results are adaptable for call-by-value functional
languages and Turing-complete models formalized in Coq. Larchey-Wendling [6]
gave a formalization that “the Coq type natk → nat contains every recursive
function of arity k which can be proved total in Coq.” There, nat is the Coq type
for Peano naturals. This is a class of functions between the primitive functions
N

k → N and the partial recursive functions N
k ⇁ N. Proving that the former

class of functions is a set of terms of Coq type N
k → N is simple since Coq

includes all required recursive schemes (basic functions plus composition and
recursion). The paper advances into characterizing the type N

k ⇁ N, which is
not straightforward and is related to the class of terminating functions.

Highly relevant related papers include [9] in which Norrish presented a for-
malization in HOL4 of several results of computability theory using as models
recursive functions and the λ-calculus. The mechanizations include proofs of the
equivalence of the computational power of both models, undecidability of the
halting problem, existence of universal machines, and Rice’s Theorem in the λ-
calculus. In addition, in [14] Xu et al. presented a formalization of computability
theorems in Isabelle/HOL using as models Turing machines, abacus machines
(a kind of register machines) and recursive functions. Formalized results include
also undecidability of the halting problem and existence of universal Turing
machines.

In contrast to those approaches, this paper deals with a computational model
that is specified as a concrete functional programing language, namely PVS0. For
this language, all the elements required in a classic-style proof of undecidability of
termination, such as Gödelization of programs and inputs, are developed. Having
a concrete programming language such as PVS0 enables the formalization and
comparison of different termination analysis techniques for this language. In fact,
the current formalization is part of a larger library that relates different termina-
tion criteria such as semantic termination, Turing termination [13], dependency
pairs [1,2,15], and techniques based on the size change principle [5,7,11] such as
calling context graphs [8] and matrix-weighted graphs [3].

6 Conclusion and Future Work

This paper presents the formalization of the undecidability of the halting prob-
lem for a simple functional language called PVS0. This formalization required
the definition of several notions of termination, which are all proven to be equiv-
alent. Since PVS0 generally allows for the encoding of non-computable functions
through the use built-in operators, the undecidability proof is done on a restric-
tion of PVS0 programs. First, the input type is restricted to natural numbers.
Then, PartialRecursive and Computable programs are constructed using a
layered approach where programs at level n + 1 can only depend on programs
at level n or below. The existence of a surjective mapping from natural numbers
to PVS0 programs constructed using this layered approach is formally verified.
This mapping enables the definition of a Gödelization function for the type of
programs PartialRecursive, which is crucial in the undecidability proof of the
halting problem.
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PVS0 is used to study termination and totality properties of PVS func-
tions with the objective of automating the generation of measure functions in
PVS recursive definitions. As part of this study, termination analysis techniques
for PVS0 programs have been formalized and verified. Furthermore, strategies
that automatically prove the equivalence between PVS recursive functions and
PVS0 programs and that discharge termination TCCs of PVS recursive func-
tions through their PVS0 counterpart have been developed. Future work includes
extending the syntax of the PVS0 minimal language to support constructs such
as let-in expressions and extending the proposed framework to support higher-
order functions.

Finally, it is conjectured that the PVS0 language is Turing-complete. The
proof of this property, which is work in progress, is not conceptually difficult but
is technically involved. For simplicity, the PVS0 language only allows for the def-
inition of one recursive function. Composition could be encoded using the lists
of built-in operators. However, by definition, built-in operators are terminating.
Therefore, to enable composition of (possibly) non-terminating programs, it is
necessary to encode it in PVS0 itself using, among other things, the Gödelization
of programs. This encoding increases the complexity of the proof of this conjec-
ture.
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