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Abstract. Combining rewriting modulo an equational theory and SMT
solving introduces new challenges in the area of term rewriting. One
such challenge is unification of terms in the presence of equations and of
uninterpreted and interpreted function symbols. The interpreted function
symbols are part of a builtin model which can be reasoned about using
an SMT solver. In this article, we formalize this problem, that we call
unification modulo builtins. We show that under reasonable assumptions,
complete sets of unifiers for unification modulo builtins problems can be
effectively computed by reduction to usual E-unification problems and
by relying on an oracle for SMT solving.
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1 Introduction

A recent line of work [1,3,5–7,11,16,17,20] aims at combining rewriting modulo
E with SMT solving. The goal is to enable the modelling and analysis of sys-
tems beyond what is possible by rewriting modulo E or by SMT solving alone.
The unifying idea among the approaches above is that rewriting is constrained
by some logical formula and that it also involves elements like integers, reals,
bitvectors, arrays, etc. that are handled by the SMT solver. As an example, con-
sider the following constrained rewrite system computing the Collatz sequence:

n �→ N ⇒ cnt �→ 0, n �→ N if �,
n �→ 2 × N + 1, cnt �→ C ⇒ cnt �→ C + 1, n �→ 6 × N + 4 if N > 0,
n �→ 2 × N, cnt �→ C ⇒ cnt �→ C + 1, n �→ N if N > 0,
n �→ 1, cnt �→ C ⇒ result �→ C if �.

.

The rewrite system above reduces a state of the form n �→ N , where N is a
natural number, to a final state of the form result �→ C, where C is the number
of steps taken by N to reach 1 in the Collatz transformation. If the Collatz
conjecture is false, then n �→ N does not necessarily terminate.

The symbols appearing in the rewrite system are the following: 1. �→ (the
underscore denotes the place of an argument) is a two-argument free symbol,
and n, cnt, result are free constants; 2. , is an ACI symbol (making, e.g., cnt �→

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
L. S. Moss et al. (Eds.): WoLLIC 2018, LNCS 10944, pp. 179–195, 2018.
https://doi.org/10.1007/978-3-662-57669-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57669-4_10&domain=pdf
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0, n �→ N the same as n �→ N, cnt �→ 0); 3. N,C are integer variables and the
symbols ×,+, >, 0, 1, 2, . . . have their usual mathematical interpretation.

Unification modulo builtins is motivated by the computation of the possible
successors of a term with variables in a constrained rewrite system such as the one
above. Assuming that we are in a symbolic state of the form cnt �→ C ′ +N ′, n �→
N ′ +3, which of the four constrained rewrite rules above could be applied to this
state? To answer this question, we should first solve the following equations:

n �→ N = cnt �→ C ′ + N ′, n �→ N ′ + 3,

n �→ 2 × N + 1, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3,

n �→ 2 × N, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3,

n �→ 1, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3.

Solving such an equation is E-unification modulo builtins. Whereas usual
(E-)unification is solving an equation of the form t1 = t2 in the algebra of terms
(or in the quotient algebra of terms in the case of E-unification), E-unification
modulo builtins is solving an equation of the form t1 = t2 in an algebra combining
three types of symbols: 1. free symbols (such as �→ ), 2. symbols satisfying an
equational theory E (such as , , satisfying ACI) and 3. builtin symbols such as
integers, bitvectors, arrays or others (handled by an SMT solver).

Unlike regular syntactic unification problems (or E-unification problems),
where the solution to a unification problem is a unifier (or complete set of uni-
fiers), the solution to an E-unification modulo builtins problem is a logical con-
straint. We provide an algorithm that reduces E-unification modulo builtins to
usual E-unification. As an example, consider the third equation above:

n �→ 2 × N, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3.

As the symbol , is commutative, the equation reduces to solving the builtin
constraint 2 × N = N ′ + 3 ∧ C = C ′ + N ′ (for example, by relying on the SMT
solver). We show that any E-unification modulo builtins problem reduces to a
set of logical constraints involving only builtin symbols, plus some substitutions
in the range of which there are only non-builtin symbols. Our approach works
for any set of builtins, not just integers.

Contributions. 1. We formalize the problem of E-unification modulo builtins,
which appears naturally in the context of combining rewriting and SMT solving;
2. We define the notions of E-unifier modulo builtins, which generalizes the
usual notion of E-unifier, and of complete set of E-unifiers; 3. We propose an
algorithm for the problem of E-unification modulo builtins, which works by
reduction to regular E-unification problems, given an oracle for SMT solving;
4. The algorithm not only decides E-unification modulo builtins, but it can
also construct a complete set of E-unifiers modulo builtins; 5. We prove that the
algorithm is correct and we also implement the algorithm as a Maude prototype.
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Related Work. Our algorithm relies on abstractions of terms, various forms of
which have been known for a long time and used, for example, in algorithms for
combining decision procedures for theories in [15]. The abstractions of terms used
here were defined and used for the first time in [2] for automatically obtaining a
symbolic execution framework for a given program language definition. In par-
allel, abstractions were used in [17] for rewriting modulo SMT, where a builtin
equational theory is used instead of the data sub-signature and its model. Both
approaches use an SMT solver to check satisfiability of the constraints. In [1],
Aguirre et al. introduce narrowing for proving reachability in rewriting logic
enriched with SMT capabilities. In [20], Skeirik et al. extend the idea from [14]
and show how Reachability Logic (defined in [8]) can be generalized to rewrite
theories with SMT solving and how safety properties can be encoded as reach-
ability properties. In [17], Rocha et al. were the first to combine rewriting and
SMT solving in order to model and analyze an open system; they solve a partic-
ular case of the problem of E-unification modulo builtins that can be reduced to
matching. In [5], Bae and Rocha introduce guarded terms, which generalize con-
strained terms. Logically constrained term rewriting systems (LCTRSs), which
combine term rewriting and SMT constraints are introduced in [11,13]. LCTRSs
generalize previous formalisms like TRSs enriched with numbers and Presburger
constraints (e.g., as in [10]) by allowing arbitrary theories that can be handled
by SMT solvers. Early ideas on adding constraints to deduction rules in general
and unification in particular date back to the 1990s, with articles such as [9,12].
Mixed terms, defined in [9], are similar to our terms that mix free symbols with
builtins, except that in [9] builtins are treated as constants. Constrained unifica-
tion, introduced in [9] as a particular type of constrained deduction, can be seen
as a sound and complete (but not necessarily terminating) proof system for a
special case of E-unification modulo builtins, where the equational theory E is
empty. Additionally, in both [9] and [12], it is assumed that constraints always
have a solved form, assumption that is critical in order to present the deduc-
tion rules. As we do not make this assumption, and only rely on off-the-shelf
SMT solvers, our approach is more general from this point of view. Our work
can be seen in the abstract as a combination of E-unification and SMT solving,
similar to combinations of unification algorithms for (disjoint) theories (e.g., as
in [4,19]).

Organization. In Sect. 2 we formalize constrained terms, which occur naturally
in rewriting modulo builtins. Section 3 introduces the concept of E-unification
modulo builtins and the notion of (complete set of) E-unifiers. In Sect. 4 we
present an algorithm for solving E-unification modulo builtins by reduction to
usual E-unification. Section 5 concludes the paper and provides possible direc-
tions for future work.
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2 Constrained Terms

We first formalize builtins, which represent the parts of the model handled by an
SMT solver. This section extends our formalism introduced in [6] by the presence
of an equational theory E and by the introduction of defined operations.

Definition 1 (Builtin Signature). A builtin signature Σb � (Sb, F b) is any
many-sorted signature that includes the following distinguished objects: 1. a sort
Bool, together with two constants � and ⊥ of sort Bool; 2. the propositional
operation symbols ¬ : Bool → Bool, ∧,∨,→ : Bool × Bool → Bool and 3. an
equality predicate symbol = : s × s → Bool for each sort s ∈ Sb.

Example 1. We consider the builtin signature ΣINT = (SINT , F INT ), where
SINT = {Bool , Int ,Arr , Id} and F INT includes, in addition to the required sym-
bols (boolean connectives ¬,∧,∨, boolean constants � and ⊥ and the equality
predicates for Bool and Int), the following function symbols:

cnt, result, n, . . . : → Id + : Int × Int → Int ;
× : Int × Int → Int; mod : Int × Int → Int ;
≤ : Int × Int → Bool ; get : Arr × Int → Int ;
put : Arr × Int × Int → Arr ; 0, 1, 2, . . . : → Int.

When working over this builtin signature, we take the liberty to write terms
using infix notation for function symbols, so that x + y is a term of sort Int and
x + y ≤ z is a term of sort Bool whenever x, y and z are of sort Int . We also use
infix notation for the boolean operations: ¬b, a ∧ b, a ∨ b, a → b.

Definition 2 (Builtin Model). A builtin model Mb is a model of a builtin
signature Σb, where the interpretation of the distinguished objects of the builtin
signature is fixed as follows: Mb

Bool = {�,⊥},Mb
� = �, Mb

⊥ = ⊥,Mb
=(a, b) = �

iff a = b, Mb
¬(�) = ⊥,Mb

¬(⊥) = �, Mb
∧(�, b) = Mb

∧(b,�) = b, Mb
∧(⊥, b) =

Mb
∧(b,⊥) = ⊥, and so on.

Example 2. Continuing Example 1, we consider the builtin model M INT that
interprets Bool as required in Definition 2, the sort Int as the set of integers:
M INT

Int = Z, the sort Id as the set of identifiers (strings) and the sort Arr
as the set of arrays, where both the indices and the values are integers. The
builtin model M INT also interprets +,×,mod and ≤ as expected: integer addi-
tion, integer multiplication, remainder (defined arbitrarily when the divisor is 0)
and respectively the less-than-or-equal relation on integers. The symbol get is
interpreted as the selection of an array element from a given index, and put is
interpreted as the update of an array on a given index with a new given element.
First-order logical constraints over this model can be solved by an SMT solver
implementing the theories of integers, booleans and arrays.

Next, we introduce a formalization of terms extended with builtins.
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Definition 3 (Signature Modulo a Builtin Model). A signature modulo
a builtin model is a tuple Σ � (S,≤, F,Mb) consisting of 1. an order-sorted
signature (S,≤, F ), and 2. a builtin Σb-model Mb, where Σb � (Sb, F b) is a
builtin subsignature of (S,≤, F ), and 3. the set F \ F b is partitioned into two
subsignatures: constructors F c and defined operations F d such that F c

w,s = ∅
for each s ∈ Sb.

We further assume that the only builtin constant symbols in Σ are the ele-
ments of the builtin model, i.e., F b

ε,s = Mb
s . Σb is called the builtin subsignature

of Σ and Σc = (S,≤, F c ∪
⋃

s∈Sb F b
ε,s) the constructor subsignature of Σ.

Terms over only one of the builtin subsignature and respectively constructor
subsignature are pure. Terms mixing both constructors and builtins have the
builtins as alien terms. Due to the restrictions on builtins, we cannot arbitrary
nest of builtins and constructors, as is the case when combining arbitrary disjoint
signatures (in our case, constructors cannot occur under builtins).

Example 3. We consider the signature Σ = (S,≤, F,M INT ), where the set
of sorts S = {Id , Int ,Bool ,Arr ,Val ,State} consists of the four builtin sorts
Int ,Bool , Id and Arr , together with the additional sorts State and Val , where
the subsorting relation ≤ = {Int ≤ Val ,Arr ≤ Val} ⊆ S × S, and where the set
of function symbols F includes, in addition to the builtin symbols in F INT , the
following function symbols:

emp : → State, �→ : Id × Val → State,

, : State × State → State, keyOcc : Id × State → Int .

The set F c of constructor symbols consists of the symbols defined by the first
three declarations above and the set of defined symbols is F d = {keyOcc}.

Note that a ground term t defined on the constructor subsignature has the
property that any of its builtin subterms is an element of Σb

ε,s = Mb
s . In the rest

of this section, Σ = (S,≤, F,Mb) denotes a signature modulo a builtin model.

Definition 4 (Model MΣ Generated by a Signature Modulo a Builtin
Model). Let Σ � (S,≤, F,Mb) be a signature modulo a builtin model. The
model Mb is extended to a (S,≤, F )-model MΣ, defined as follows: 1. MΣ

s =
TΣc,s for each s ∈ S \ Sb, i.e. MΣ

s includes the constructor terms; 2. MΣ
f = Mb

f

for each f ∈ F b; 3. MΣ
f is the term constructor MΣ

f (t1, . . . , tn) = f(t1, . . . , tn)
for each f ∈ F c; 4. MΣ

f is a function MΣ
f : MΣ

s1
× · · · × MΣ

sn
→ MΣ

s for each
f ∈ F d

s1...sn,s.

Note that elements of the carrier sets of MΣ are ground terms of the appro-
priate sort over the signature Σ (as mentioned earlier, builtin elements are con-
stants in Σ). We make the standard assumption that Ms �= ∅ for any s ∈ S.
Since the defined function symbols can be interpreted in various ways, it follows
that MΣ is not uniquely defined, but its carrier sets are uniquely defined by the
builtin model and the constructors.
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Example 4. Continuing Example 3, we consider the model MΣ obtained by
extending M INT . We have that MΣ

Val = MΣ
Int ∪ MΣ

Arr ,MState is the set of finite
sets of the form {x1 �→ v1, . . . , xn �→ vn} with n > 0, xi ∈ MΣ

Id and vi ∈ MΣ
Val

for i = 1, . . . , n,MΣ
�→ (X,Y ) is the singleton set {X �→ Y }, and MΣ

, (S1, S2) is
the union of the sets S1 and S2.

The defined function MΣ
keyOcc is recursively defined as follows:

MΣ
keyOcc(X, emp) = 0, MΣ

keyOcc(X, (Y �→ V )) = δX,Y ,

MΣ
keyOcc(X, (S1, S2)) = MΣ

+ (MΣ
keyOcc(X,S1),MΣ

keyOcc(X,S2)),

where δ is the Kronecker delta. We consider a set E of identities such as associa-
tivity, commutativity or idempotence for certain function symbols in Σ. We let
∼= to be the equivalence relation induced by E on MΣ . We make the assumption
that ∼= is a congruence on MΣ , i.e., that it is compatible with the functions,
including the defined ones. We define MΣ∼= � MΣ/∼= to be the quotient algebra
induced by the congruence ∼= on MΣ .

Example 5. Continuing Example 4, we consider the model MΣ . Let E consist of
the ACI identities for the operation , . We have that the equivalence relation ∼=
induced by E on MΣ is a congruence.

Definition 5 (Constraint Formulas). The set CF(Σ,X ) of constraint for-
mulas over variables X is inductively defined as follows:

φ ::= b | t1 = t2 | ∃x.φ′ | ¬φ′ | φ1 ∧ φ2,

where b ranges over TΣ,Bool(X ), ti over TΣ,si
(X ).

That is, the constraints are the usual formulas in first-order logic with equal-
ity. The only non-standard feature, which does not restrict generality, is that
we use terms of sort Bool as atomic formulas. The role of predicates is played
by functions returning Bool . As usual, we may also use the following formulas
defined as sugar syntax: 1. t1 �= t2 for ¬(t1 = t2), 2. ∀x.φ for ¬∃x.¬φ, 3. ∀X.φ for
∀x1. . . . .∀xn.φ, where X = {x1, . . . , xn}, 4. φ1 ∨φ2 for ¬(¬φ1 ∧¬φ2), 5. φ1 → φ2

for ¬φ1 ∨ φ2. We denote by var(φ) the set of variables freely occurring in φ.

Example 6. The following formulas are in CF(Σ,X ):

φ1 � ∀I.0 ≤ I ∧ I < N → get(A, I) ≥ 0,

φ2 � ∀X.keyOcc(X,S) ≤ 1,

φ3 � ∃U.(U > 1 ∧ U < N ∧ mod(N,U) = 0).

We have var(φ1) = {N,A}, var(φ2) = {S} and var(φ3) = {N}, assuming that
{I, U, V,N} ⊆ XInt , A ∈ XArr , and X ∈ XId .

Definition 6 (Semantics of Constraint Formulas). The satisfaction rela-
tion � is inductively defined over the model MΣ∼= , valuations α : X → MΣ∼= , and
formulas φ ∈ CF(Σ,X ), as follows:
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1. MΣ∼= , α � b iff α(b) = �, where b ∈ TΣ,Bool(X );
2. MΣ∼= , α � t1 = t2 iff α(t1) = α(t2);
3. MΣ∼= , α � ∃x.φ iff ∃a ∈ Ms (where x ∈ Xs) such that MΣ∼= , α[x �→ a] � φ;
4. MΣ∼= , α � ¬φ iff MΣ∼= , α �� φ;
5. MΣ∼= , α � φ1 ∧ φ2 iff MΣ∼= , α � φ1 and MΣ∼= , α � φ2,

where α[x �→ a] denotes the valuation α′ defined by α′(y) = α(y), for all y �= x,
and α′(x) = a.

Example 7. Continuing the previous example, the formula φ3 is satisfied by the
model MΣ∼= defined in Example 5 and any valuation α such that α(N) is a com-
posite number.

Definition 7 (Builtin Constraint Formulas). The set CFb(Σ,X ) of builtin
constraint formulas over the variables X is the subset of CF(Σ,X ) defined induc-
tively as follows:

φ ::= b | t1 = t2 | ∃x.φ′ | ¬φ′ | φ1 ∧ φ2,

where b ranges over TΣb,Bool(X ), ti over TΣ,s(X ) such that s is a builtin sort,
and x ranges over all variables of builtin sort.

Note that in builtin constraint formulas, no symbol that is not builtin is
allowed. The constraint formulas φ1, φ3 in the previous example are builtin.

Definition 8 (Constrained Terms). A constrained term ϕ of sort s ∈ S is a
pair 〈t | φ〉 with t ∈ TΣ,s(X ) and φ ∈ CF(Σ,X ).

Let CT(Σ,X ) denote the set of constrained terms defined over the signature
Σ and the variables X .

Example 8. In the context of the previous examples, we have the following con-
strained terms in CT(Σ,X ): 1. arrays with N nonnegative values: 〈A | φ1〉 2.
legal states, where an Id is bound to at most one value: 〈S | φ2〉 3. states where
the Id n is bound to a composite integer: 〈n �→ N,S | φ3〉.

Definition 9 (Valuation Semantics of Constraints). The valuation
semantics of a constraint φ is the set of valuations ��φ�� � {α : X → MΣ∼= |
MΣ∼= , α � φ}.

Definition 10 (Semantics of Constrained Terms). The semantics of a
constrained term 〈t | φ〉 is defined by

[[〈t | φ〉]] � {α(t) | α ∈ ��φ��}.

Note that the semantics of constrained terms cannot distinguish between
constrained terms with different sets of free variables.
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3 E-Unification Modulo Builtins

We discuss as an example the four E-unification modulo builtin problems in the
Introduction:

1. n �→ N = cnt �→ C ′ + N ′, n �→ N ′ + 3
Even if the , symbol is ACI, there are no values of N,N ′,′ that make the
lhs equal to the rhs (even if C ′ + N ′ = N ′ + 3, the atoms cnt �→ C ′ + N ′

and respectively n �→ N ′ + 3 cannot be identified by the idempotence axiom
because n and cnt are two different Identifiers). Therefore, the solution to this
E-unification problem is ⊥ (false), i.e., there is no solution.

2. n �→ 2 × N + 1, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3
There are values for N,C,N ′, C ′ that make the terms above equal. In par-
ticular, any values that satisfy C ′ + N ′ = C ∧ N ′ + 3 = 2 × N + 1 make the
terms equal. Therefore, the constraint C ′ + N ′ = C ∧ N ′ + 3 = 2 × N + 1 is
the solution of the E-unification problem.

3. n �→ 2 × N, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3
Similar to the case above, the solution is C ′ + N ′ = C ∧ N ′ + 3 = 2 × N .

4. n �→ 1, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3
The constraint N ′ + 3 = 1 ∧ C ′ + N ′ = C makes the two terms equal and is
the solution to the E-unification problem.

It is helpful to split the solution to a E-unification modulo builtins problem
into two parts: a substitution and a logical constraint:

Definition 11 (E-Unifiers Modulo Builtins). An E-unifier modulo builtins
(E-umb) of two terms t1, t2 is a pair u = (σ, φ), where σ is a substitution and φ
is a builtin constraint, such that

MΣ∼= � φ → σ(t1) = σ(t2).

Note that we require φ to be a builtin constraint (see Definition 7), not just
a constraint. In particular, φ is not allowed to contain any non-builtin symbols.
This requirement allows to handle φ by using an SMT solver. If φ is unsatisfiable,
then (σ, φ) is vacuously an E-unifier of any two terms.

Definition 12 (Complete Set of E-Unifiers Modulo Builtins). A set C
of pairs of substitutions and builtin logical constraints is called a complete set of
E -unifiers of t1 and t2 if:

1. each pair (σ, φ) ∈ C is an E-umb of t1 and t2: MΣ∼= � φ → σ(t1) = σ(t2);
2. for any partial valuation α : var(t1, t2) → MΣ∼= such that α(t1) = α(t2), there

is an E-unifier (σ, φ) ∈ C and a valuation αr such that MΣ∼= , αr � φ and
α = (αr ◦ σ)|var(t1,t2).

Example 9. Consider the E-unification modulo builtins problem n �→ 1, cnt �→
C = cnt �→ C ′, n �→ N ′. A complete set of E-unifiers modulo builtins is the
singleton set {(id, C = C ′ ∧1 = N ′)}, where id denotes the identity substitution.
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Example 10. Consider the E-unification modulo builtins problem

(n �→ 1, cnt �→ C) = (I �→ C ′, J �→ N ′).

A complete set of E-unifiers modulo builtins is

{(id, I = cnt ∧ J = n ∧ C = C ′ ∧ 1 = N ′),
(id, I = n ∧ J = cnt ∧ 1 = C ′ ∧ C = N ′)}.

Example 11. Consider the E-unification modulo builtins problem

n �→ 1, cnt �→ 42 = M, n �→ 1.

A complete set of E-unifiers modulo builtins is the singleton set

{(σ, I = cnt ∧ N = 42},

where dom(σ) = {M} and σ(M) = I �→ N .

4 An Algorithm for E-Unification Modulo Builtins

We propose an algorithm that computes, given two terms t1 and t2 without
any defined operation symbols, a finite and complete set of E-unifiers modulo
builtins of t1 and t2, assuming that a finitary E-unification algorithm exists.
The algorithm critically relies on the notion of abstraction. In order to formally
introduce abstractions, we first require a technical helper definition:

Definition 13 (Substitutions as Formulas). Each substitution σ : X →
TΣ(X ) defines a constraint formula φσ =

∧
x∈dom(σ) x = σ(x).

Intuitively, an abstraction of a term t is a pair (s, σ) such that t = σ(s), where
all subterms of builtin sorts have been “moved” from s into the substitution σ,
and where the domain of σ consists of fresh variables. Formally:

Definition 14 (Abstractions). An abstraction of a term t ∈ TΣ\Σd(X ) w.r.t.
Y , where var(t) ⊆ Y , is a constrained term

〈
t◦

∣
∣ φσ◦〉

, where the pair (t◦, σ◦)
is inductively defined as follows: – if t ∈ TΣb(X ) (i.e., t is a builtin subterm),
then t◦ is a fresh variable w.r.t. Y and σ◦(t◦) = t; – if t = f(t1, . . . , tn) and
f ∈ Σ \ Σb, then t◦ = f(t◦1, . . . , t

◦
n) and σ◦ = σ◦

1 � · · · � σ◦
n, where

〈
t◦i

∣
∣ φσ◦

i

〉
is

the abstraction of ti w.r.t. Y ∪
⋃

j<i var(
〈
t◦j

∣
∣
∣ φσ◦

j

〉
) (i.e. each argument ti has

its own fresh variables).

In Definition 14, we assume for simplicity that any occurrence of a builtin term
is replaced by a fresh variable. Therefore, two different occurrences of the same
builtin term are abstracted by two different variables. However, this is not critical
to the soundness of our approach: all results in the paper hold, even if the same
abstracting variable is used for several occurrences of the same builtin term.
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Algorithm 1. Algorithm for E-Unification Modulo Builtins
1: function unification(t1, t2)
2: � returns: a complete set of E-unifiers modulo builtins of t1 and t2
3: compute 〈s1 | φσ1〉, an abstraction of t1
4: compute 〈s2 | φσ2〉, an abstraction of t2
5: compute {τ1, . . . , τn}, a complete set of E-unifiers of s1 and s2
6: for i ∈ {1, . . . , n} do
7: τ ′

i ← τi|X\X b

8: φ′
i ← φσ1 ∧ φσ2 ∧ ∧

x∈dom(τi)∩X b τi(x) = x

9: return {(τ ′
1, φ

′
1), . . . , (τ

′
n, φ′

n)}

Algorithm 1 computes a complete set of E-unifiers. Note that, if x ∈ X b is a
builtin variable, then τi(x) can only be a builtin variable (by the construction of
the abstraction). Due to our assumptions on the builtin sorts, any builtin variable
can only be unified with another builtin variable. Therefore builtin variables are
treated by the E-unification algorithm used on Line 5 of Algorithm1 as real
variables, and not as free constants. As an optimization of the algorithm, any
pair (τ ′

i , φ
′
i) can be dropped (without losing completeness) if φ′

i is unsatisfiable.
Algorithm 1 produces a complete set of E-unifiers modulo builtins. By Def-

inition 11, any satisfiable instance α(φ′
i) of a constraint φ′

i induces the concrete
E-umb α(τ ′

i) of t1 and t2. Therefore, two terms are E-unifiable modulo builtins
iff at least one of the constraints φ′

i in the result of Algorithm 1 is satisfiable.

Example 12. Consider the E-unification modulo builtins problem

(n �→ 1, cnt �→ 42) = (Z, n �→ 1).

Let t1 = n �→ 1, cnt �→ 42 and t2 = Z, n �→ 1. Let (s1, σ1) be an abstraction of
t1 defined as follows: s1 = I �→ N, J �→ M and σ1(I) = n, σ1(N) = 1, σ1(J) =
cnt, σ1(M) = 42. Let (s2, σ2) be an abstraction of t2 defined as follows: s2 =
Z,K �→ L and σ2(K) = n and σ2(L) = 1. A complete set of ACI-unifiers of s1
and s2 is the set {τ1, τ2}, where:

1. dom(τ1) = {Z,K,L} and τ1(Z) = I �→ N , τ1(K) = J, τ1(L) = M (the first
mapping in s1 is identified to the first mapping in s2 and the second mapping
in s1 to the second mapping in s2);

2. dom(τ2) = {Z,K,L} and τ2(Z) = J �→ M , τ2(K) = I, τ2(L) = N (the
first mapping in s1 is identified to the second mapping in s2 and the second
mapping in s1 to the first mapping in s2);

The case where all four mappings are identified is subsumed by any of the
two cases. For this example, the algorithm computes (τ ′

i , φ
′
i) as follows:

1. dom(τ ′
1) = {Z}, τ ′

1(Z) = I �→ N and φ′
1 is

I = n ∧ N = 1 ∧ J = cnt ∧ M = 42︸ ︷︷ ︸
φσ1

∧K = n ∧ L = 1︸ ︷︷ ︸
φσ2

∧K = J ∧ L = M︸ ︷︷ ︸
builtins from τ1

;
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2. dom(τ ′
2) = {Z}, τ ′

2(Z) = J �→ M and φ′
2 is

I = n ∧ N = 1 ∧ J = cnt ∧ M = 42︸ ︷︷ ︸
φσ1

∧K = n ∧ L = 1︸ ︷︷ ︸
φσ2

∧ K = I ∧ L = N︸ ︷︷ ︸
builtins from τ2

;

The algorithm returns the complete set {(τ ′
1, φ

′
1), (τ

′
2, φ

′
2)} of E-unifiers mod-

ulo builtins of the terms t1 = n �→ 1, cnt �→ 42 and t2 = Z, n �→ 1. As φ′
1 is

unsatisfiable, the first unifier can be pruned away and therefore {(τ ′
2, φ

′
2)} is also

a complete set of unifiers of t1 = n �→ 1, cnt �→ 42 and t2 = Z, n �→ 1.

The next result shows that Algorithm 1 is correct:

Theorem 1. The set {(τ ′
1, φ

′
1), . . . , (τ

′
n, φ′

n)} computed by Algorithm1 is a com-
plete set of E-unifiers modulo builtins of t1 and t2.

Proof (Sketch). Let t1 and t2 be two terms without defined function symbols.
Let 〈s1 | φσ1〉 be an abstraction of t1.
Let 〈s2 | φσ2〉 be an abstraction of t2.
Let {τ1, . . . , τn} be a complete set of E-unifiers of s1 and s2.
Let τ ′

i = τi|X\Xb . Let φ′
i = φσ1 ∧ φσ2 ∧

∧
x∈dom(τi)∩X b τi(x) = x.

We show that the set {(τ ′
1, φ

′
1), . . . , (τ

′
n, φ′

n)} is a complete set of unifiers
modulo builtins of t1 and t2. Firstly, we have to show soundness: that each pair
(τ ′

1, φ
′
1) is indeed a unifier of t1 and t2 (easy).

Secondly, we show completeness. Let α : var(t1, t2) → MΣ∼= be a partial
valuation such that α(t1) = α(t2). We will work with the analogous approach,
with α : var(t1, t2) → MΣ such that α(t1) ∼= α(t2). Note that, by our definition
of the model generated by a signature modulo builtins, MΣ = TΣc(∅), and
therefore valuations such as α can also be seen as substitutions.

Let α′ : var(s1, s2) → TΣc(∅) be defined as follows:

α′(x) =

⎧
⎨

⎩

α(x) if x ∈ var(t1, t2) \ (dom(σ1) ∪ dom(σ2));
α(σ1(x)) if x ∈ dom(σ1);
α(σ2(x)) if x ∈ dom(σ2).

We have α′(s1) ∼= α′(s2). By construction, we also have: 1. α′|var(s1) = α◦σ1;
2. α′|var(s2) = α ◦ σ2. As α′ is a substitution unifying s1 and s2 modulo E
(recall that ∼= is generated by E), it follows that there exists a unifier τi ∈
{τ1, . . . , τn} of s1 and s2 and a substitution αc such that: 1. τi(s1) ∼= τi(s2); 2.
α′ = (αc ◦ τi)|var(t1,t2). Note that, as α′|var(sj) = α◦σj (1 ≤ j ≤ 2), we also have
that(αc ◦ τi)|var(s1) = α ◦ σ1 and (αc ◦ τi)|var(s2) = α ◦ σ2.

Let τ ′
i = τi|X\Xb . Let αr : var(t1, t2, φ) → TΣc(∅) be defined as follows:

αr(x) =

⎧
⎨

⎩

α′(x) if x ∈ var(s1, s2)
α(x) if x ∈ var(t1, t2) \ var(s1, s2)
αc(y) otherwise, where y is such that τi(x) = y

The substitution αr defined above satisfies all conditions in Definition 12:
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1. α = (αr ◦ τ ′
i)|var(t1,t2):

Let x ∈ var(t1, t2). We distinguish two cases: – if x ∈ Xb, then we have
αr(τ ′

i(x)) = αr(x) = α(x); – if x �∈ Xb, then αr(τ ′
i(x)) = αr(τi(x)) =

αc(τi(x)) = α′(x) = α(x);
2. MΣ∼= , αr � φ′

i:
(a) MΣ∼= , αr � φσ1 , since: – if x �∈ dom(σ1), then σ1(x) = x and therefore triv-

ially αr(σ1(x)) = αr(x); – if x ∈ dom(σ1), then αr(σ1(x)) = α(σ1(x)) =
α′(x) = αr(x);

(b) MΣ∼= , αr � φσ2 , analogously;
(c) MΣ∼= , αr � τi(x) = x for all x ∈ dom(τi)∩Xb trivially, by the third branch

in the definition of αr.

We have shown that for any α that unifies modulo builtins t1 and t2, there
is an E-umb (τ ′

i , φ
′
i) and a substitution αr with the properties required in Defi-

nition 12, and therefore this proves the completeness of the algorithm.

Complexity. Algorithm 1, which reduces E-unification modulo builtins to E-
unification, has a linear-time overhead and therefore the running time is dom-
inated by the algorithm for E-unification and, optionally, by some calls to the
SMT solver. Lines 3 and 4 are linear in the size of the input. The running time
of Line 5 is determined by the E-unification algorithm. The postprocessing step
in lines 6–8 is linear in the size n of the output of the E-unification algorithm.
Additionally, if we want to check the satisfiability of the constraints φ′

i on Line
9, there will be n calls to the SMT solver. In summary, the running time of the
algorithm is dominated by one call to the E-unification algorithm, and, option-
ally, n calls to the SMT solver, where n is the number of unifiers returned by
the E-unification algorithm.

5 Conclusion and Future Work

We introduced the problem of E-unification modulo builtins. While regular (E)-
unification is about solving an equation in the algebra of terms (or the algebra
of terms modulo E), E-unification modulo builtins is solving an equation in an
algebra combining terms (modulo E) with builtin elements such as booleans,
integers, arrays, or any other elements that can be handled by an SMT solver.

Our main contribution is to formalize the problem of E-unification mod-
ulo builtins and to provide an algorithm for it that is based on the notion of
abstraction of a term. The algorithm reduces E-unification modulo builtins to
regular E-unification. This allows to lift all existing E-unification algorithms to
E-unification modulo builtins.

Unlike regular E-unification algorithms, which produce (sets of) substitu-
tion(s) as their output, algorithms for E-unification modulo builtins produce sets
of pairs of substitutions and logical constraints. The equation being solved holds
when instantiated by one of the substitutions, in the cases where the attached
logical constraint holds. We show how to produce logical constraints that only
contain builtins, which means that they can be fully handled by an SMT solver.



Unification Modulo Builtins 191

We implement our approach as a Maude prototype1 at the meta-level. Given two
terms, the prototype computes a complete set of E-unifiers modulo builtins as
described in Algorithm 1. As an optimization, it filters out the E-unifiers mod-
ulo builtins that have an unsatisfiable constraint, by using the integrated SMT
solver. We describe the prototype in AppendixA. Our result answers in part an
open question in [18], namely of finding elements that match two matching logic
patterns, which is essential in developing a matching-logic prover.

The main question that needs to be answered in future work is what kind of
new applications are enabled by the combination of rewrite and SMT solving.
On the theoretical side, all known results in rewriting (confluence, etc.) also need
to be developed in the new framework. Another open question is how to perform
E-unification modulo builtins in the presence of defined operations.

Acknowledgments. We thank the anonymous reviewers for their valuable sugges-
tions. This work was supported by a grant of the Romanian National Authority for
Scientific Research and Innovation, CNCS/CCCDI - UEFISICDI, project number PN-
III-P2-2.1-BG-2016-0394, within PNCDI III.

A Maude Prototype

Since the algorithm needs to manipulate terms (for instance, to compute the
abstractions) we use the metalevel capabilities of Maude to implement the fol-
lowing functionalities:

– For a given meta-representation of a term, getAbstraction returns the
abstraction of a term w.r.t. the set of builtins sorts, which need to be provided
explicitly. When computing abstractions, fresh variables are generated;

– The E-unifiers of the abstractions are computed by unifyAbstractions;
– The unsatisfiable formulas are filtered out by filterUnsatUMBs;
– The E-unification modulo builtins algorithm that we propose is implemented

by completeSetOfUMBs, which gets as input the meta-representations of two
terms and returns the unifiers modulo builtins in two steps: it first gen-
erates the substitution-formula pairs with completeSetOfUMBsUnfiltered,
and then it eliminates the unsatisfiable solutions using the aforementioned
filterUnsatUMBs.

We show how to use our prototype to find the E-unifiers modulo builtins
of the E-unification modulo builtins problem n �→ 1, cnt �→ 42 = Z, n �→ 1,
introduced in Example 12. First, Maude finds a complete set of ACI-unifiers for
the abstractions of the two terms. Then, from these unifiers we generate the
pairs {(τ ′

1, φ
′
1), (τ

′
2, φ

′
2)}, as shown in Example 12):

reduce in UNIFICATION-MODULO-BUILTINS :
completeSetOfUMBsUnfiltered(upTerm(n |-> 1,count |-> 42),

1 The prototype is available at: https://github.com/andreiarusoaie/unification-modu
lo-builtins.

https://github.com/andreiarusoaie/unification-modulo-builtins
https://github.com/andreiarusoaie/unification-modulo-builtins
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upTerm(Z,n |-> 1), ’STATE) .
rewrites: 2023 in 5ms cpu (6ms real) (338464 rewrites/second)
result UnificationResults:
[
’Z --> %1 |-> %2 |
abs0 #== n /\ (abs1 #== 1 /\ (abs2 #== count /\ abs3 #== 42)) /\
(abs4 #== n /\ abs5 #== 1) /\ (abs0 #== %1 /\ (abs1 #== %2 /\

(abs2 #== %3 /\ (abs3 #== %4 /\ (abs4 #== %3 /\ abs5 #== %4)))))
],,
[
’Z --> \%1 |-> \%2 |
abs0 #== n /\ (abs1 #== 1 /\ (abs2 #== count /\ abs3 #== 42)) /\
(abs4 #== n /\ abs5 #== 1) /\ (abs0 #== %3 /\ (abs1 #== %4 /\

(abs2 #== %1 /\ (abs3 #== %2 /\ (abs4 #== %3 /\ abs5 #== %4)))))
]

The variables abs0, abs1, . . . , are generated during the abstraction process,
while %1, %2, . . . are generated by the Maude’s variant unifier.

Finally, completeSetOfUMBs – the main function in our prototype – filters out
the first unifier, which has an unsatisfiable constraint. Because the interaction
between Maude and the SMT solver only supports integers and booleans, we
have encoded identifiers (of sort Id) into integers before sending the formula to
the SMT solver. The solution is:

reduce in UNIFICATION-MODULO-BUILTINS :
completeSetOfUMBs(upTerm(n |-> 1,count |-> 42),

upTerm(Z,n |-> 1), ’STATE) .
rewrites: 3883 in 17ms cpu (18ms real) (227355 rewrites/second)
result UnificationResults:
[
’Z --> %1 |-> %2 |
abs0 #== n /\ (abs1 #== 1 /\ (abs2 #== count /\ abs3 #== 42)) /\
(abs4 #== n /\ abs5 #== 1.Integer) /\ (abs0 #== %3 /\ (abs1 #== %4
/\(abs2 #== %1 /\ (abs3 #== %2 /\ (abs4 #== %3 /\ abs5 #== %4)))))
]

The result is essentially that the variable Z must be cnt �→ 42, since %1 =
abs2:Id = count and %2 = abs3:Id = 42.

We now show how our prototype solves the four E-unification modulo builtins
problems discussed in the Introduction:

1. n �→ N = cnt �→ C ′ + N ′, n �→ N ′ + 3
2. n �→ 2 × N + 1, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3
3. n �→ 2 × N, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3
4. n �→ 1, cnt �→ C = cnt �→ C ′ + N ′, n �→ N ′ + 3
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The set of unifiers modulo builtins is computed by our Maude prototype for
each case as shown below:

reduce in UNIFICATION-MODULO-BUILTINS :
completeSetOfUMBs(upTerm(n |-> N),

upTerm(n |-> N’ #+ 3,count |-> N’ #+ C’), ’STATE) .
rewrites: 571 in 3ms cpu (3ms real) (148119 rewrites/second)
result UnificationResults: noUMBResults
==========================================
reduce in UNIFICATION-MODULO-BUILTINS :
completeSetOfUMBs(upTerm(n |-> 2 #* N #+ 1,count |-> C),

upTerm(n |-> N’ #+ 3,count |-> N’ #+ C’), ’STATE) .
rewrites: 4574 in 15ms cpu (15ms real) (302413 rewrites/second)
result UnificationResults:
[
identity |
abs0 #== n /\ (abs1 #== 2 #* N #+ 1 /\ abs2 #== count) /\
(abs3 #== n /\ (abs4 #== N’ #+ 3 /\ (abs5 #== count /\
abs6 #== N’ #+ C’))) /\ (C #== %4 /\ (abs0 #== %1 /\
(abs1 #== %2 /\ (abs2 #== %3 /\ (abs3 #== %1 /\
(abs4 #== %2 /\ (abs5 #== %3 /\ abs6 #== %4)))))))
]
==========================================
reduce in UNIFICATION-MODULO-BUILTINS :
completeSetOfUMBs(upTerm(n |-> 2 #* N, count |-> C),

upTerm(n |-> N’ #+ 3,count |-> N’ #+ C’), ’STATE) .
rewrites: 4528 in 15ms cpu (16ms real) (298385 rewrites/second)
result UnificationResults:
[
identity |
abs0 #== n /\ (abs1 #== 2 #* N /\ abs2 #== count) /\
(abs3 #== n /\ (abs4 #== N’ #+ 3 /\ (abs5 #== count /\
abs6 #== N’ #+ C’))) /\ (C #== %4 /\ (abs0 #== %1 /\
(abs1 #== %2 /\ (abs2 #== %3 /\ (abs3 #== %1 /\
(abs4 #== %2 /\ (abs5 #== %3 /\ abs6 #== %4)))))))
]
==========================================
reduce in UNIFICATION-MODULO-BUILTINS :
completeSetOfUMBs(upTerm(n |-> 1,count |-> C),

upTerm(n |-> N’ #+ 3,count |-> N’ #+ C’), ’STATE) .
rewrites: 4625 in 15ms cpu (16ms real) (297141 rewrites/second)
result UnificationResults:
[
identity |
abs0 #== n /\ (abs1 #== 1 /\ abs2 #== count) /\
(abs3 #== n /\ (abs4 #== N’ #+ 3 /\ (abs5 #== count /\
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abs6 #== N’ #+ C’))) /\ (C #== %4 /\ (abs0 #== %1 /\
(abs1 #== %2 /\ (abs2 #== %3 /\ (abs3 #==%1 /\
(abs4 #== %2 /\ (abs5 #== %3 /\ abs6 #== %4)))))))
]

For the first E-umb problem, the tool returns noUMBResults, which means
that it does not have any solution. For the other examples, the prototype finds
the unifiers, as expected.
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