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Abstract. The aim of this paper is to define an algorithm that produces
a combinatory inhabitant for an implicational theorem of intuitionistic
logic from a proof in a sequent calculus. The algorithm is applicable to
standard proofs, that exist for every theorem, moreover, non-standard
proofs can be straightforwardly transformed into standard ones. We
prove that the resulting combinator inhabits the simple type for which
it is generated.
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1 Introduction

A connection between implicational formulas and combinatory and λ-terms has
been well known for more than half a century. A link is usually established
between a natural deduction system and λ-terms, or axioms and combinators
(or λ-terms). Moreover, the natural deduction system is usually defined as a
type-assignment calculus.

Our interest is in sequent calculi, on one hand, and in combinatory terms,
on the other. A natural deduction type-assignment system with combinators
very closely resembles an axiomatic calculus. Neither of the latter two kinds of
proof systems is highly suitable for decidability proofs, nor they provide much
control over the shape of proofs. There have been certain attempts to use sequent
calculi in type assignment systems. However, we believe that no algorithm has
been defined so far for the extraction of combinatory inhabitants for intuitionistic
theorems from sequent calculus proofs thereof.1

The next section briefly overviews some other approaches that link λ-terms
and sequent calculi. Section 3 introduces a sequent calculus for JT

→. This sequent
calculus falls into the line of sequent calculi that were initiated by the non-
associative Lambek calculus. The bulk of the paper, Sect. 4 is devoted to the
description of the extraction algorithm, which has several stages, and then, to
the proof of its correctness. We conclude the paper with a few remarks.
1 The paper [9] deals with generating HRMn

n terms and combinatory inhabitants from
proofs of T→ theorems.
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2 Some Other Approaches

We should note that there have been earlier attempts to define a connection
between sequent calculus proofs and λ-terms. Girard’s idea—when he introduced
his sequent calculus LJT—was to add just a minimal amount of structure to
antecedents which are otherwise sets of formulas. A special location (the so-
called “stoup”) is reserved for a single formula, but it may be left empty. All the
rules of LJT , except the rule called “mid-cut,” affect a formula in the special
location of at least one premise. The effect of this focusing on a formula in most
of the proof steps is the exclusion of many proofs that could be constructed in
a more usual formulation of a sequent calculus for implicational intuitionistic
logic. Adding structure to sets is a step in the right direction in our view, but
LJT does not go far enough. (See [17] for a detailed presentation of LJT .)

Another approach is to define a type-assignment system in a sequent calcu-
lus form. Barendregt and Ghilezan in [2] introduced λL (and λLcf) to find a
correspondence between λ-terms and implicational intuitionistic theorems. It is
natural to start with λN in a horizontal presentation (which resembles sequent
calculus notation). Then the antecedent is a context (or a set of type-assignments
to variables) in which a certain type-assignment to a (possibly) complex λ-term
can be derived. The core question is how the left introduction rule for → should
look like. [2] combines substitution and residuation: given that M : A and x : B,
if there is a y : A → B, then yM can replace x. Combinators were originally
introduced by Schönfinkel in [20] to eliminate the need for substitution, which
is a complex operation in a system with variable binding operations (such as
λ or ∀). Thus reintroducing substitution seems to be a step backward. A more
serious complaint about λL is that the → introduction rule essentially requires
the λ operator. The λ could be replaced by the λ*, but the latter would have
to be deciphered on a case-by-case basis (i.e., by running a λ* algorithm on
every concrete term). In sum, this approach differs from ours in that it uses
type-assignments and λ’s.

Arguably, Girard’s as well as Barendregt and Ghilezan’s calculi are directly
motivated by a natural deduction calculus (such as NJ) for intuitionistic logic.
On the other hand, a connection between sequent calculus rules and combinators
was discovered by Curry; see, for instance, his [11]. It is easy to see that A →
B → A, the principal type schema of the combinator K cannot be proved without
some kind of thinning rule on the left. However, such informal observations about
rules and matching combinators cannot be made precise as long as sequents are
based on sequences or even sets of formulas, which is inherent both in [17] and
in [2].

3 A New Sequent Calculus for J→

Function application is not an associative operation—unlike conjunction and
disjunction are in intuitionistic logic. The analogy between combinators and
structural rules in a sequent calculus cannot be made precise without replacing
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the usual associative structural connective with a non-associative one. Of course,
the use of a structural connective that is not stipulated to be associative is by
no means new; Lambek’s [18] already includes such a connective. Combinators
have been explicitly incorporated into a sequent calculus by Meyer in [19].2

Taking the reduction patterns of combinators seriously helped to formu-
late sequent calculi for the relevance logic of positive ticket entailment, T+.
Giambrone’s calculi in [15,16] utilized insights concerning B, B′ and W in the
form of structural rules. Bimbó [3] defined sequent calculi for Tt

→ and T◦t
+

(among other logics), in which special rules involving t are added. It is easy
to show that t is a left identity for fusion (i.e., intensional conjunction) in T,
hence, a special instance of the thinning rule may be added in a sequent calcu-
lus. However, the latter rule is not the only one needed that involves t, if we
algebraize T◦t

+ with an equivalence relation defined from implicational theorems.
The introduction of additional structural rules specific to t, on the other hand,
requires us to refine the proof of the cut theorem, which could otherwise proceed
by double induction for a multicut rule or by triple induction for the single cut
rule.3

A connection between K, C and W, on one hand, and (left) structural rules,
on the other hand, was noted by Curry in [10,11], who is probably the first
to use combinators in the labels of the thinning, the permutation and the con-
traction rules. The operational rules of a sequent calculus leave their trace in
a sequent in the form of a formula with a matching connective or quantifier;
however, structural rules leave more subtle vestige behind. (This is not quite
true for the thinning rules, which add a formula into a sequent. However, the
formula is arbitrary, which means that there is no single kind of a formula that
indicates that an application of a thinning rule has taken place.) Structurally free
logics that were invented by Dunn and Meyer in [13] introduce a combinator.
The “formulas-as-types” slogan is often used to connect typable combinators
or λ-terms and (implicational) formulas. “Combinators-as-formulas” could be
a similar catchphrase for structurally free logics. To illustrate the idea, we use
contraction and the combinator M. The axiom for M is Mx � xx.4

A[B;B] � C
A[B] � C (M�)

A[B;B] � C
A[M;B] � C (M�)

The (M�) rule on the left is contraction (on structures), whereas the other
(M�) rule is the combinatory rule. For the latter, we could omit the label (M�),

2 This paper was known for a long time only to a select group of relevance logicians,
but nowadays, it is freely available online.

3 See [1] for information on relevance logics, in general. Dunn [12] introduced a sequent
calculus for R+, whereas [7,8] introduced and used a sequent calculus for Rt

→. See
also [6] for a comprehensive overview of a variety of sequent calculi.

4 In combinatory terms, parentheses are omitted by assuming association to the left;
for example, xz(yz) is a shorthand for ((xz)(yz)). For more on combinatory logic, see
for example [4]. Brackets in a sequent indicate a hole in a structure in the antecedent,
with the result of a replacement put into brackets in the lower sequent.
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because M appears in the sequent itself. Combinatory rules supplant structural
rules, hence, the label “structurally free.” The implicational types of typable
combinators are provable in structurally free logic—with an appropriately chosen
set of combinatory rules. The following is a pointer toward this (with some of
the more obvious steps omitted or compressed).5

D → A → B →
⋮

C;D;A;B � C
C; (D → A → B → C;D);B;A � C
B;C;D → A → B → C;D;B;A � C

B;C � (D → A → B → C) → (D → B → A → C)
� →’s

The combinators B and C are the standard ones with axioms Bxyz � x(yz)
and Cxyz � xzy. The principal (simple) type schema of BC is (A → B → C →
D) → A → C → B → D. In structurally free logics, other (than simple) types
can be considered; for instance, M � A → (A ◦ A) is easily seen to be provable,
when ◦ (fusion) is included with the usual rules. However, our aim is to find a
way to obtain a combinator that inhabits a simple type from a sequent calculus
proof—without making combinators into formulas and without introducing a
type assignment system.

There are several sequent calculi for intuitionistic logic including its various
fragments, but most often they use an associative comma in the antecedent (and
possibly in the succedent too).6 We define a new sequent calculus LJT

→ for the
implicational fragment of intuitionistic logic with the truth constant T .

Definition 1. The language of LJT
→ contains a denumerable sequence of propo-

sitional variables 〈pi〉i∈ω, the arrow connective → and T .
The set of well-formed formulas is inductively defined from the set of propo-

sitional variables with T added, by the clause: “If A and B are well-formed
formulas, then so is (A → B).”

The set of structures is inductively defined from the set of well-formed for-
mulas by the clause: “If A and B are structures, then so is (A;B).”

A sequent is a structure followed by �, and then, by a well-formed formula.

Remark 1. We will occasionally use some (notational) conventions. For exam-
ple, we might omit some parentheses as mentioned previously, or we might call
well-formed formulas simply formulas. Again, we will use [ ] for a context (or
hole) in a structure, as usual. The use of a semi-colon as the structural connec-
tive is motivated by our desire to consider the structural connective as an analog
of function application.

5 Parentheses in the antecedent of a sequent are restored as in combinatory terms, but
parentheses in simple types are restored by association to the right.

6 See [14] as well as [10,11] for such calculi.
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Remark 2. We already mentioned M, B and C together with their axioms.
Further combinators that we will use in this paper are I, B′, T, W, K and S.
Their axioms, respectively, are Ix � x, B′xyz � y(xz), Txy � yx, Wxy � xyy,
Kxy � x and Sxyz � xz(yz).

Definition 2. The sequent calculus LJT
→ comprises the axiom and the rules

listed below.

A � A ( I )

A � A B[B] � C
B[A → B;A] � C (→ �)

A;A � B
A � A → B (� →)

A[B; (C;D)] � A
A[(B;C);D] � A (B�)

A[C; (B;D)] � A
A[(B;C);D] � A (B′�)

A[(B;D);C] � A
A[(B;C);D] � A (C�)

A[C;B] � A
A[B;C] � A (T�)

A[(B;C);C] � A
A[B;C] � A (W�)

A[B;B] � A
A[B] � A (M�)

A[B] � A
A[B;C] � A (K�)

A[B] � A
A[T ;B] � A (T �)

Remark 3. The two rules (T�) and (T �) have a somewhat similar label,
but they are clearly different. Both combinators and sentential constants have
had their practically standard notation for many years, and so both T’s are
entrenched. From the point of view of structurally free logics, however, (T �)
is like (I�), a rule that simply inserts the identity combinator on the left of a
structure.

The rules may be grouped into operational and structural rules. The former
group consists of (→�), (�→) and (T �). The structural rules are all labeled with
combinators, that is, they are (B�), (B′ �), (C�), (T�), (W�), (M�) and (K�).

Remark 4. The structural rules clearly suffice for intuitionistic logic; indeed,
they all together constitute a redundant set of structural rules. The rules (T�),
(M�) and (K�) are permutation, contraction and thinning, moreover, they oper-
ate on structures, not formulas; thus, in a sense, they are more powerful than the
usual versions of these rules. (Of course, in a usual sequent calculus for intuition-
istic logic, the notion of a structure cannot be replicated. However, contraction,
permutation and thinning could affect a sequence of formulas at once, because
those versions of the rules are admissible.) The semi-colon is not associative, but
(B�) is the left-to-right direction of associativity. The other direction of asso-
ciativity can be obtained by several applications of (T�) and an application of
(B�). Finally, we note that each of the combinators that appear in the labels to
the rules are proper combinators (as it is understood in combinatory logic), and
they are definable from the combinatory base {S,K }.
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The notion of a proof is the usual one for sequent calculi. A is a theorem iff
T � A has a proof. The T cannot be omitted, because � A is not a sequent in
LJT

→, let alone it has a proof.
The set of rules is not minimal in the sense that some rules could be omitted,

because they are derivable from others. As an example, (T �) is easily seen to be
derivable by first applying (K�) with T in place of C, and then, applying (T�)
to permute T to the left of B. The abundance of rules facilitates shorter proofs
and finding shorter inhabitants.

J→ can be thought of as an “S–K calculus,” because the principal type
schemas of those combinators suffice as axioms (with detachment as a rule) for
an axiom system. Similarly, in a combinatory type-assignment system, starting
with type schemas assigned to S and K allows us to prove all the theorems of J→
with a combinator attached to each. A widely known theorem is that S and K
are sufficient to define any function—in the sense of combinatorial definability.

However, proofs in a sequent calculus are built differently than in an
axiomatic calculus, which is one of the advantages sequent calculi supply. Thus,
while we included a rule labeled (K�), there is no (S�) rule. The three left
structural rules in LJ emulate (to some extent) the effect of the combinators
K, C and W. In LJ , both (C �) (the left permutation rule) and (W �) (the left
contraction rule) would have to be used to prove the type of S. It is not possible
to define S from merely C and W, because neither has an associative effect.

Example 5. The principal type schema of S is (A → B → C) → (A → B) →
A → C. The following is a proof of this formula in LJT

→, which shows the
usefulness of some of the redundant structural rules—permitting several steps
to be collapsed into single steps.

A � A

A � A
B � B C � C
B → C;B � C → �

(A → B → C;A);B � C → �

(A → B → C;B);A � C C�

(A → B → C; (A → B;A));A � C
((A → B → C;A → B);A);A � C B�

(A → B → C;A → B);A � C W�

((T ;A → B → C);A → B);A � C T �

T � (A → B → C) → (A → B) → A → C � →’s

→ �

Remark 6. We can show easily that the (S�) rule is a derived rule of LJT
→.

A[B;D; (C;D)] � A
A[B;D; (D;C)] � A
A[B;D;D;C] � A
A[B;D;C] � A
A[B;C;D] � A (C�)

(W�)

(B�)

(T�)
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Our goal is to find combinatory inhabitants. We hasten to note that despite
the combinatory labels in the proof in Example 5 and in the derived (S�) rule,
we do not have a combinatory inhabitant on the horizon. WBC is a fancy (and
complex) ternary identity combinator, whereas CBW is not even a proper com-
binator. CWBT is a quaternary combinator that is often denoted by D, but it is
not a duplicator and has no permutative effect. TBWC �1 WBC, that is, TBWC
is an even longer ternary identity combinator. Of course, there are further com-
binatory terms that can be formed from one occurrence of each of W, B and
C, and S is definable from these three combinators. (For example, it is easy to
verify that B(BW)(BC(BB)) defines S.) However, we do not need to consider all
the combinators with exactly one W, B and C to see the point we are emphasiz-
ing here, namely, that we cannot simply convert the labels for the rules into a
combinatory inhabitant.

The lack of a direct match between a definition of S and the rules that are
used in the proof of the principal type schema of S is perhaps not very surprising,
because the (→ �) rule bears a slight resemblance to the affixing rule, which is
a composite of the suffixing and prefixing rules. The latter are connected to B′

and B, respectively.
The cut rule is of paramount interest in any sequent calculus. LJT

→ is a single
right-handed calculus, but it has structured antecedents; therefore, we formulate
the cut rule as follows.

A � C B[C] � B
B[A] � B cut

Theorem 3. The cut rule is admissible in LJT
→.

Proof. The proof is a standard multi-inductive proof. Here we take as the param-
eters of the induction the rank of the cut and the degree of the cut formula. We
include only some sample steps.
1. First, let us define a multi-cut rule. We will indicate one or more occurrences
of a structure C in the antecedent of the right premise by [C] · · · [C], with the
result of replacement indicated as before.

A � C B[C] · · · [C] � B
B[A] · · · [A] � B multi-cut

The multi-cut rule encompasses the cut rule by permitting a single occurrence of
C. On the other hand, multi-cut is a derived rule, because as many applications
of cut (with the same left premise) as the number of the selected occurrences of
C yields the lower sequent of multi-cut.7

2. The only connective is →, and if the rank of the cut formula is 2, then an
interesting case is when the premises are by the (→ �) and (� →) rules. The cut
is replaced by two cuts, each of lower degree; the latter justifies the change in the
7 The multi-cut rule is not the same rule as the mix rule, and its use in the proof of the

cut theorem is not necessary. It is possible to use triple induction with a parameter
called contraction measure as in [5], for example.
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proof. The given and the modified proofs are as follows. Due to the stipulation
about the rank, this case has a single occurrence of the cut formula in the right
premise.8

� →
A;A � B

A � A → B
B � A C[B] � C
C[A → B;B] � C → �

C[A;B] � C (cut)

(cut)
B � A A;A � B

A;B � B C[B] � C
C[A;B] � C (cut)

3. To illustrate the interaction of the cut and a structural rule, we detail the
situation when the right rank of the cut is >1, and the right premise is by (B′�).
It is important to note that the structural rules are applicable to structures.
For a quick example to show this, let B,C and D be formulas, and let C be an
occurrence of the cut formula C, in the proof below. If E were not an atomic
structure (which is possible), then the transformation of the proof would not
result in a proof, if the structural rule could not be applied to complex structures.

E � C
A[C; (B;D)][C] · · · [C] � A
A[B;C;D][C] · · · [C] � A (B′�)

A[B;C;D][E] · · · [E] � A (multi-cut)

E � C A[C; (B;D)][C] · · · [C] � A
A[C; (B;D)][E] · · · [E] � A
A[B;C;D][E] · · · [E] � A (B′�)

(multi-cut)

We do not include the other cases here in order to keep our paper focused. �

Remark 7. We mentioned that the (T �) rule is like the (I�) rule, which in
turn is like the (t�) rule. In some sequent calculi, especially, in sequent calculi
for various relevance logics, it should be considered what happens when the cut
formula is t. The clearest way to prove the cut theorem is to use a separate
induction to show that cuts on t are eliminable. In LJT

→, this problem does not
arise at all, because the (T �) rule is a special instance of the (K�) rule.

Theorem 4. If A is a theorem of J→, then A is a theorem of LJT
→.

Proof. The outline of the proof is as follows. A → B → A is easily shown to be a
theorem of LJT

→, and we have the proof in Example 5. If T � A and T � A → B
are provable sequents, then T � B is a theorem, because from T � A → B we
can obtain T ;A � B by cut, and then, by another cut, we have T ;T � B, and
by (M�), we get T � B. �

8 We omit ⋮ ’s from above the top sequents, which does not mean that the leaves are
instances of the axiom; some of them are obviously not.
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The converse of this claim is obviously false, simply because T is not in
the language of J→. However, in intuitionistic logic all theorems are provably
equivalent, because A → B → A is a theorem. Hence, we can define JT

→ by
adding a single axiom to J→ (after extending its language). (A3) says that T is
the top element of the word algebra of LJT

→.

(A3) A → T

Theorem 5. If A is a theorem of LJT
→, then A is a theorem of JT

→.

Proof. The proof is more elaborate than that of the previous theorem, but follows
the usual lines for such proofs. Our sequent calculus can be extended by ∧ with
the usual rules (which originated in Gentzen’s work). The resulting sequent
calculus, LJT

∧→
enjoys the admissibility of the cut rule. The proof of the cut

theorem allows us to conclude that LJT
∧→

is a conservative extension of LJT
→.

The axiomatic calculus can be extended with ∧ too, and that can be shown to
be conservative, for example, by relying on semantics for JT

∧→
and JT

→.
Once the framework is set up on both sides, we define a function that is

applicable to sequents in LJT
∧→

, and yields a formula in the common language
of these calculi. Lastly, we use an induction on the height of a proof in LJT

∧→
to

show that the axiom and the rules can be emulated in JT
∧→

. (The detailed proof
is quite lengthy, but straightforward; hence, we omit the details.) �

Remark 8. The constant T has a double role in LJT
→. First of all, it is an atomic

formula, which can be a subformula of a more complex formula. However, we
introduced this constant primarily to keep track of the structure of antecedents.
There is no difficulty in determining whether T does or does not occur in a
formula.

Corollary 6. A formula A, which contains no occurrences of T , is a theorem
of LJT

→ iff it is a theorem of J→.

This claim follows from the three previous theorems and their proofs. Most
importantly, the cut theorem guarantees that the subformula property holds.
That is, if A is a formula, which occurs in a sequent in the proof of A � B, then
A is a subformula of a formula in the sequent A � B. If T occurs in a proof of the
theorem A (and it does by the definition of a theorem), then it is a subformula
of a formula in T � A. By stipulation, A is T -free, therefore, the only occurrence
of T in T � A is T itself.

As a result, we can consider T -free theorems of JT
→ in LJT

→, without any
problems. All the occurrences of T will turn out to be ancestors of the T in the
root sequent.

4 Standard Proofs, Cafs and an Inhabitant

Sequent calculi maintain the premises at each step in a derivation. Derivations
in axiomatic calculi limit the manipulation of the premises to the addition of
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new premises. In natural deduction calculi, one can not only add new premises
to a derivation, but it is possible to decompose premises and it is also possible
to incorporate premises into more complex formulas (thereby eliminating them
from among the premises).

Sequent calculi offer the most flexibility and the strictest control over the
premises (as well as over the conclusions). Thinning on the left allows the addi-
tion of new premises, whereas the most typical way to eliminate a premise is
via the implication introduction rule on the right-hand side. The possibility to
tinker with the premises and carry them along from step to step while they are
not affected by an application of a rule is advantageous.

However, exactly the mentioned features of sequent calculi lead to certain
complications in the process of extracting combinatory inhabitants from proofs.
For example, in a sufficiently large sequent, we might be able to apply rules
to different formulas without interfering with the applicability of another rule.
The combinatory counterpart of this indeterminacy is when the inhabitant can-
not differentiate between proofs in which such pairs of applications of rules are
permuted. Of course, the permutability of certain rules is a phenomenon that
appears not only in LJT

→, but in other sequent calculi too. Still, with ; struc-
turing antecedents, permutability may be less expected than in sequent calculi
with flat sequents.

Another potential problem is that some theorems may have more than one
proof. If the two proofs become subproofs in a larger proof, for example, by appli-
cations of the (→ �) rule, then the (W�) or the (M�) rule may be applied to
contract two complex antecedents, which contain theorems that are (potentially)
inhabited by distinct combinators. Contraction may be thought of as identifica-
tion, but it is not possible to identify distinct combinators. There are ways to
deal with this problem; we mention two of them.

First, we can apply an abstraction algorithm to obtain terms of the form
Z1x1 . . . xn and Z2x1 . . . xn. It is straightforward to further obtain Z3x1 . . . xn,
which reduces to Z1x1 . . . xn(Z2x1 . . . xn). While the x’s are variables in the term
we started with, it well might be that that term is not of the form x1 . . . xn.
Intuitionistic logic has full permutation, that is, (A → B → C) → B → A → C
is a theorem. In combinatory logic, this means that there is a combinatory term
that is isomorphic to the starting term possibly except combinators appearing
in front of the variables. In other words, instead of an xi, there may be an
occurrence of Zixi. A nice aspect of this approach is that a larger class of proofs
can be subjected to the inhabitant extraction procedure. On the other hand, a
drawback is that it is less clear how to systematize the various abstraction steps.
It is clear from combinatory logic that Z1,Z2,Z3 as well as all the necessary
Zi’s exist, but it is less clear how to describe an algorithm that is applicable
independently of the shape of the starting term, and preferably, efficient too. Of
course, as a last resort, we could always use some variant of λ*.

Second, we can delineate the kind of proofs that we consider. In particular,
we can completely avoid the complication caused by contraction on structures
that correspond to distinct combinators if we exclude proofs in which (M�)
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or (W�) is applied to a complex structure. A careful reader may immediately
notice that even if contraction rules are applied to single formulas only, it may
happen that those formulas are inhabited by distinct combinators; hence, the
restriction seems not to be sufficient. However, as it will become clear later in
this section, we do not run into any problem with combinatory terms that are of
the form Z1x1(Z2x1). Of course, the limitation of proofs is acceptable, if it does
not exclude theorems of J→ from our consideration. We can apply the same
insight from combinatory logic as in the previous approach, however, now we
talk about the proofs themselves—before the inhabitant extraction is applied.

Given a proof in which (M�) or (W�) has been applied with a complex B or
C, respectively, we can apply (B�), (B′�), (T�) and (C�) together with (M�)
and (W�) restricted to single formulas and produce the same lower sequent that
resulted from the application of (M�) or (W�).

Lemma 7. If A is a theorem of J→, then there is a proof of A in LJT
→ in

which applications of (M�) and (W�) (if there are any) involve formulas in
place of B and C, respectively.

Proof. The proof is by induction on the structure of the antecedents, B in case
of (M�) and C in case of (W�).
1. If B in (M�) or C in (W�) is D, respectively, then the claim is true.
2. Let us assume that C is C1;C2.

A[B; (C1;C2); (C1;C2)] � A
A[C1; (B; (C1;C2));C2] � A
A[C1; (B;C1;C2);C2] � A
A[C1; (B;C1);C2;C2] � A

⋮

A[C1; (B;C1);C2] � A
A[B;C1;C1;C2] � A

⋮

A[B;C1;C2] � A
A[C2; (B;C1)] � A
A[C2; (C1;B)] � A
A[C1;C2;B] � A
A[B; (C1;C2)] � A (T�)

(B′�)

(T�)

(T�)

(B′�)

(B�)

(B�)

(B′�)

The thicker lines and ⋮ ’s indicate where the hypothesis of the induction is
applied. C1 and C2 are proper substructures of (C1;C2); hence, (W�) can be
applied. We note that the structure of the bottom sequent is exactly the desired
one, because the last four steps restore the association of C1 and C2.
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3. Let us assume that B is B1;B2.

A[B1;B2; (B1;B2)] � A
A[B1; (B1;B2);B2] � A
A[B1;B1;B2;B2] � A

⋮

A[B1;B2;B2] � A
⋮

A[B1;B2] � A

(B�)

(B′�)

Once again, the places where the inductive hypothesis is applied are indicated
by thick lines and ⋮ ’s. B1 and B2 are proper substructures of B1;B2; hence,
the piecewise contractions can be performed by (M�) and (W�). �

It is easy to see that an application of the (K�) rule, in which C is a compound
antecedent can be dissolved into successive applications of (K�) in each of which
C is a formula.

Note 9. If A is a theorem of J→, then A is of the form B1 → · · · Bn → p, for
some B1, . . . ,Bn and p.

We know that J→ is consistent, hence, no propositional variable is a theorem.
Then, a theorem A contains at least one implication, but the consequent of . . .
the consequent of . . . the consequent of the formula must be a propositional
variable, because there are finitely many →’s in A. We will refer to B1, . . . ,Bn

as the antecedents of A. Of course, a formula and a sequent are related but
different kinds of objects, and so there is no danger that the two usages of the
term “antecedent” become confusing.

In order to gain further control over the shape of proofs, we will use the
observation we have just stated together with the next lemma to narrow the set
of proofs that we will deal with.

Lemma 8. If B1 → · · · Bn → p is a theorem of J→, then there is a proof of
the sequent T � B1 → · · · Bn → p in which the last n steps are consecutive
applications of (� →).

Proof. We prove that if there is an application of a rule after (→ �), which intro-
duces one of the antecedents, then that can be permuted with the application
of the (→ �) rule. We do not (try to) prove, and it obviously does not hold in
general, that different applications of the (� →) rule can be permuted with each
other.9 (We only consider a couple of cases, and omit the rest of the details.)
1. Let us assume that (C�) follows (� →). The given and the modified proof
segments are as follows. (Again, we omit the ⋮ ’s to save some space.)

9 Bi is one of B1, . . . , Bn, whereas C is p (if Bi is Bn) or Bi+1 → · · · Bn → p (otherwise).
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A[B;D;C];Bi � C
A[B;D;C] � Bi → C (� →)

A[B;C;D] � Bi → C (C�)

A[B;D;C];Bi � C
A[B;C;D];Bi � C (C�)

A[B;C;D] � Bi → C (� →)

2. Let us suppose that the rule that is to be permuted upward is (T�).

A[C;B];Bi � C
A[C;B] � Bi → C (� →)

A[B;C] � Bi → C (T�)

A[C;B];Bi � C
A[B;C];Bi � C (T�)

A[B;C] � Bi → C (� →)

3. Now, let the rule be (M�).

A[B;B];Bi � C
A[B;B] � Bi → C (� →)

A[B] � Bi → C (M�)

A[B;B];Bi � C
A[B];Bi � C (M�)

A[B] � Bi → C (� →)

4. Let us assume that the rule after (� →) is (K�).

A[B];Bi � C
A[B] � Bi → C (� →)

A[B;C] � Bi → C (K�)

A[B];Bi � C
A[B;C];Bi � C (K�)

A[B;C] � Bi → C (� →) �

Remark 10. The proof of Lemma 7 relied on applications of some of the struc-
tural rules, and it did not involve the (� →) rule at all. Therefore, the two
restrictions on the set of proofs—based on Lemmas 7 and 8—are orthogonal.
That is, we know that every theorem of J→ has a proof that is both free of
contractions in which the contracted structures are complex and that ends with
the successive introduction of the antecedents of the theorem.

Definition 9. Let A be a theorem of J→. A proof P of A is standard iff P has
no applications of (M�) or (W�) or (K�) in which the subalterns in the rules are
complex, and P ends with n applications of (→ �), when A is B1 → · · · Bn → p.

Remark 11. Every theorem of J→ has a standard proof in LJT
→, however, not

every proof is standard. We should emphasize that standard proofs are normal
objects. Clearly, every theorem of J→ has a normal proof, furthermore, a proof
that is not normal can be transformed into a normal one. However, the existence
of standard proofs for theorems cannot be strengthened to a statement of unique
existence. For instance, the (T �) and (M�) rules can always embellish a proof,
and so can the (T�) rule.

The general form of standard proofs is as follows.

⋮

T ;B1;B2; . . . ;Bn � p

T ;B1 � B2 → · · · Bn → p
(� →)’s

T � B1 → B2 → · · · Bn → p
(� →)
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Definition 10. Given a standard proof of a theorem B1 → · · · Bn → p, we call
the sequent T ;B1; . . . ;Bn � p followed by (� →)’s the source sequent.

Given a standard proof, the part of the proof below the source sequent is
uniquely determined. Moreover, for our purposes, the applications of the (�→)
rule are not very important. Hence, we will mainly ignore the rest of a standard
proof below the source sequent; indeed, we will concentrate on the proof of the
source sequent itself.

The extraction of a combinatory inhabitant starts with a given standard
proof, and as a result of processing the standard proof, we will obtain one com-
binatory inhabitant.

Remark 12. It is always guaranteed that our procedure yields a combinatory
inhabitant that has the theorem as its type, however, the procedure does not
guarantee that the combinatory inhabitant has the theorem as its principal type.
In axiomatic calculi, there is a way to ensure that principal types are generated.
Starting with axioms (rather than axiom schemas), applications of condensed
detachment produce theorems in which no propositional variables are identified
unless that move is inevitable for the application of the detachment rule. There is
no similar mechanism built into sequent calculi, though it might be an interesting
question to ask what conditions would be sufficient to guarantee that the theorem
is the principal type schema of the combinatory inhabitant we generate.

For the sake of transparency, we divide the whole procedure into three parts.
First, we want to trace how formulas move around in a proof. This is especially
pivotal in LJT

→, because of the plenitude of structural rules. Second, we will
introduce a new sort of objects, that we call caf ’s. By using caf’s, we recuperate
combinators in accordance with the applications of the rules that bear combina-
tory labels. Third, we will apply a simple BB′I-abstraction algorithm, which will
produce the combinatory inhabitant from the caf’s that replace the formulas in
the source sequent.

4.1 Tracing Occurrences

Curry’s observation about a certain connection between structural rules and
combinators remained dormant for decades—until Dunn and Meyer in [13]
revived this idea. As we already mentioned, they not only established a pre-
cise link between structural rules and combinators, but they replaced all the
structural rules with combinatory rules. The latter kind of rules differ from rules
like the structural rules in LJT

→ by introducing a combinator as a formula into
the lower sequent of the rule. The formulation of LJT

→ drew some inspiration
from structurally free logics, but we retained the combinators in the labels of
the structural rules (instead of including combinators into the set of formulas).

Following Curry, it is customary to provide an analysis for a sequent calculus,
which is a classification of the formulas in the rules according to the role that
they play in a proof.10 We give only a partial analysis here, which focuses on
10 We would have included the analysis earlier, if we would have included all the details

of the proof of the cut theorem.
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occurrences of formulas that are passed down from the upper sequent to the
lower sequent in an application of a rule.

Definition 11. The notion of an ancestor of a formula that occurs in a lower
sequent of a rule is defined rule by rule as follows.
(1) (→ �): C (in the upper sequent) is the ancestor of C (in the lower sequent),
and any formula occurring in A or B in the upper sequent is the ancestor of its
copy in the lower sequent.
(2) (� →): A formula occurring in A in the upper sequent is an ancestor of its
copy within A in the lower sequent.
(3) (B�), (B′ �), (C�) and (T�): A in the upper sequent is the ancestor of A in
the lower sequent. A formula occurring in A, B, C or D in the upper sequent is
an ancestor of its copy in the identically labeled structure in the lower sequent.
(4) (W�): A is the ancestor of A, and a formula in A or B in the upper sequent
is an ancestor of the same formula occurring in the same structure in the lower
sequent. A formula occurring in either copy of C in the upper sequent is an
ancestor of the same formula occurring in C in the lower sequent.
(5) (M�): A is the ancestor of A, and a formula occurring in A in the upper
sequent is an ancestor of the same formula occurring in A in the lower sequent.
A formula occurring in either of the two B’s in the upper sequent is an ancestor
of the same formula occurring in the same position in the structure B in the
lower sequent.
(6) (K�): A is the ancestor of A, and any formula in A or B is the ancestor of
that formula in the identically labeled structure in the lower sequent.
(7) (T �): A is the ancestor of A, and a formula that occurs in the structure A or
B in the upper sequent is the ancestor of the formula that is of the same shape
and has the same location within A and B, respectively, in the lower sequent.

Remark 13. Certain formulas do not have ancestors at all, while some other
formulas have exactly one ancestor (even if the same formula has several occur-
rences in a sequent), and yet another formulas have exactly two ancestors. The
part of the analysis that we included here is completely oblivious to the emer-
gence of complex formulas from their immediate subformulas by applications of
the connective rules.

A sequent calculus proof—by definition—does not include a labeling of the
proof tree with codes for the rules that were applied. However, there is no diffi-
culty in decorating the proof tree, and in most cases, the decoration is unique.
The possibility of multiple labels arises in the case of some structural rules when
certain structures that we denoted by distinct letters turn out to be identical.
Nonetheless, the following is straightforward; hence, we do not provide a proof
for it.

Claim 12. Given a proof in LJT
→, it is decidable which rules could have been

applied at each proof step in the proof tree.

To put a very wide bound on how many decorations can be added at a step,
we can multiply the length of a sequent by the number of rules in LJT

→—still
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a finite number. This estimate is very much off target, because several pairs of
rules cannot be unified at all.

Definition 13. We define a preferred decoration of a proof tree by (1)–(6).

(1) If the rule applied is (→ �) or (� →), then the appropriate label is the
preferred decoration, which is attached to the step.11

(2) If the rule applied is either (B�) or (B′ �), that is, B is C, then the preferred
decoration is (B�).

(3) If the rule applied is either (W�) or (M�), that is, B is C, then the preferred
decoration is (M�).

(4) If the rule applied is either (K�) or (T �), that is, B and C are T , then the
preferred decoration is (K�).

(5) If the rule applied is either (C�) or (T�), that is, C and D are B, then the
preferred decoration is (T�).

(6) If there is a unique structural rule that is applied, then its label is the
preferred decoration.

If a sequent contains several formulas that are of the same shape, then an
ambiguity may arise as to where the rule was applied. For instance, if the upper
sequent is A;A; (A;A) � B, and it is identical to the lower sequent, then this
could be an application of (T�) in three different ways. In such a case, we assume
that the rule has been applied with the least possible scope, and at the leftmost
place.12

Based on the notion of an ancestor together with the notion of preferred dec-
oration we define an algorithm, which starts off the process of turning sequents
into pairs of combinatory terms.

Definition 14. Let a standard proof be given, with the root sequent being the
source sequent, which is of the shape T ;B1; . . . ;Bn � p. The formulas in the
source sequent, and iteratively, in the sequents above it, are represented and
replaced by variables according to (1)–(5).

(1) The source sequent becomes x0;x1; . . . ;xn � xn+1.
(2) The formulas (i.e., formula occurrences) in the (B�), (B′ �), (C�) and (T�)

rules are in one-one correspondence between the lower and upper sequents.
Thus, the formulas in the upper sequent are replaced by variables according
to this correspondence. In the (K�) and (T �) rules, the same is true, if C
and T are omitted. That is, the formulas in the upper sequent are ancestors
of formulas in the lower sequent, and they are replaced by the variables that
stand for them in the lower sequent.

11 No application of (→ �) and (� →) can be unified with an application of any other
rule, as it is easy to see.

12 Of course, this is a futile step to start with, and for instance, in a proof-search tree
we would prune proofs to forbid such happenings. However, our present definition
for a standard proof does not exclude proofs that contain identical sequents.
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(3) In the (W�) and (M�) rules, some formulas have two ancestors. The vari-
ables replace the formulas in the upper sequent according to the ancestor
relation.

(4) In the (�→) rule, the principal formula of the rule has no ancestor, but it is
also absent from the upper sequent. On the other hand, the subalterns are
new formulas, which means that they have to be replaced by new variables.
If m is the greatest index on a variable used up to this point, then the
subaltern, which is the consequent of the arrow formula, is replaced by xm+1.
The subaltern, which is the antecedent of the arrow formula, is replaced by
xm+2. All the other formulas are replaced by the variable that stands for
the formula of which they are an ancestor.

(5) In the (→ �) rule, the structures A and B are the same in the upper and
lower sequents, so are the C’s. Here the replacement is carried out according
to the one-one correspondence. The immediate subformulas of the arrow
formula are handled as in the previous case. The consequent formula is
replaced by a new variable with the index m + 1, if m is the highest index
on any variable so far. The antecedent formula is replaced by xm+2.

It is obvious that the definition of the ancestor relation together with the
above algorithm guarantees that all formulas are represented by an indexed
variable. The proof tree has now been transformed into a tree, in which only
x’s occur, however, there is an isomorphism between the two trees, and so we
continue to modify the new tree by assuming that we can use the information
contained in the proof tree itself.

4.2 Formulas Turned into Caf’s

As we already mentioned, structurally free logics include combinators into the
set of atomic formulas. We do not take combinators to be formulas, but we
want to augment the tree of variables with combinators. The variables stand for
formula occurrences, and we think of them as proxies for identifiable formulas.

Definition 15. The set of combinatorially augmented formulas (caf ’s, for short)
is inductively defined by (1)–(2).

(1) If X is a formula, then X is a caf.
(2) If X is a caf and Z is a combinator, then ZX is a caf.

The ;’s remained in the variable tree, and it is straightforward to define the
inductive set generated by ; from the set of x’s or from the set of caf’s. We
expand the range of objects that can instantiate the meta-variables A,B,C, . . .
to include the variables and the caf’s. Context always disambiguates what the
structures are composed of.

Using the indexed x’s in place of the formula occurrences, we can insert
combinators into the tree. However, we need some facts from combinatory logic
to make the procedure smooth and easily comprehensible. The following is well
known.
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Claim 16. Z(MN) is weakly equivalent to BZMN . In general, Z(M1 . . . Mn)
is weakly equivalent to B(. . . (B

︸ ︷︷ ︸

n

Z) . . .)M1 . . . Mn.

The impact of the first part of the claim is that compound caf’s can be
equivalently viewed as being of the form ZA, for some Z and the formula A
which is the atomic caf component of the compound caf. In other words, if we
want to add Z1 to a caf Z2x, then we can add Z2 and immediately move on to
BZ1Z2x.

Remark 14. The impact of the second part of this claim is that we can use
sufficiently many regular compositors to disassociate a complex combinatory
term and to position a combinator locally on a caf (rather than on a compound
structure), when the structures affected by a structural rule are complex. We
will summarily refer to the utilization of this observation by the label (Bs) (or
we will use it tacitly).

Now, we define an algorithm that inserts combinators into our tree. The
algorithm starts at the leaves of the tree and proceeds in a top-down fashion,
level by level. The highest level of the tree contains one or more leaves, each of
which is an instance of the axiom.

Remark 15. The ancestor relation is inherited by the caf’s in an obvious way.
Indeed, after the replacement of formula occurrences with indexed variables, the
ancestor relation is simpler to spot. If X is a caf in the upper sequent, which
is of the form Zxi, and xi is a variable in the lower sequent, then the formula
occurrence (represented by xi) in the upper sequent is an ancestor of the formula
occurrence xi. As a default step, we assume that the lower xi is changed to Zxi,
and then possibly, similar manipulations are performed on the other caf’s too.

We assume that we have the original proof tree with its preferred decoration
at hand.

Definition 17. Given a tree of variables, combinators are inserted according to
(1)–(10), after the default copying of caf’s from the upper to the lower sequents.

(1) If the rule applied is (T �), then no combinator is inserted.13

(2) If the rule applied is (K�), then K is added to B. If B is a complex
antecedent, then (Bs) is applied to attach K to the leftmost caf in B.

(3) If the rule applied is (W�), then we distinguish four subcases. (i) From
B;x;x we get WB;x. (ii) From B;Zx;x we get BW(B′Z)B;x. (iii) From
B;x;Zx we get BW(B(B′Z))B;x. (iv) From B;Z1x;Z2x we get BW(B(B′

Z2)(BB′Z1))B;x. If B is complex in any of the subcases, then (Bs)
is applied too in order to position the combinator on the leftmost caf
within B.

13 The variable that is introduced at this step cannot be anything else than x0, that
we will later on turn into I.



Inhabitants of Intuitionistic Implicational Theorems 19

(4) If the rule applied is (M�), then we distinguish four subcases. (i) From x;x
we get Mx. (ii) From Zx;x we get WZx. (iii) From x;Zx we get W(B′Z)x.
Lastly, (iv) from Z1x;Z2x we get W(B(B′Z2)Z1)x.

(5) If the rule applied is (C�), then C is added to B. Should it be necessary—
due to B’s being complex—(Bs) is applied to move C to the leftmost caf.

(6) If the rule applied is (T�), then T is added to B, possibly, with (Bs).
(7) If the rule applied is (B�), then B is added to B, with (Bs), if needed.
(8) If the rule applied is (B′�), then we proceed as in (7), but insert B′.
(9) If the rule applied is (� →), then we distinguish two subcases. (i) If the

caf standing in for the antecedent of the principal formula is x, then no
combinator is inserted. (ii) If the sequent is of the form A;Zxi � xj , then
B′Z is added to A (if atomic), or to its leftmost caf using (Bs) (if A is
complex).

(10) If the rule applied is (→ �), then there are two subcases to consider. (i)
The antecedent of the principal arrow formula is x, then no combinator is
introduced. (ii) If the caf standing in for the subaltern in the right premise
is Zx, then the caf Y representing the principal formula, is modified to BZY .

The algorithm is well-defined, because at each step there is exactly one
(sub)case that is applicable. Once the source sequent is reached, we have accumu-
lated the information about the combinatory inhabitant in a somewhat dispersed
form.

4.3 BB′I-Abstraction

The source sequent has the general form Z0x0;Z1x1; . . . ;Znxn � xn+1, where
any of the Z’s may be absent. We want to consider the antecedent as a combina-
tory term, namely, as Z0I(Z1x1) . . . (Znxn). The base {S,K } is combinatorially
complete, and so is the base {B,B′,C,T,W,M,K }. For instance, I is definable as
CKB′. That is, there is no problem with obtaining a Zn+1 such that Zn+1x1 . . . xn

is weakly equivalent to the previous combinatory term.
However, we want to utilize the insight that the term resulting from the

source sequent has a very special form. First, we note that if Z0 is empty, then
it is sufficient to consider Z1x1 . . . (Znxn). Our general idea is to move the Z’s
systematically to the front, and then to disassociate them from the rest of the
term. We achieve this by applying B′- and B-expansion steps.

Definition 18. Given the term Z0I(Z1x1) . . . (Znxn), the BB′I-abstraction is
defined by replacing the term with that in (1), and then with the term in (2).

(1) B′Zn(B′Zn−1 . . . (B′Z1(Z0I)x1) . . . xn−1)xn

(2) B(B . . .
︸ ︷︷ ︸

n−1

(B′Zn) . . .)(B(B . . .
︸ ︷︷ ︸

n−2

(B′Zn−1) . . .) . . .
(B(B′Z2)(B′Z1(Z0I))) . . .)x1x2 . . . xn−1xn

Remark 16. Of course, the term in (2) by itself is what we want, however,
moving through the term in (1), it becomes obvious that the BB′I-abstraction
yields a term that is weakly equivalent to the term obtained from the source
sequent.
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Before providing a justification for the whole procedure in the form of a
correctness theorem, we return to Example 5 from Sect. 3. It so happens that
that proof is a standard proof.

Example 17. We give here the tree of variables, which is isomorphic to the
proof tree—save that we completely omit the part of the tree below the source
sequent.

x3 � x6

x3 � x8

x5 � x10 x9 � x4

x7;x5 � x4
(→ �)

x1;x3;x5 � x4
(→ �)

x1;x5;x3 � x4
(C�)

x1; (x2;x3);x3 � x4

x1;x2;x3;x3 � x4
(B�)

x1;x2;x3 � x4
(W�)

x0;x1;x2;x3 � x4
(T �)

(→ �)

Next is the tree that results by the algorithm that inserts combinators into
the tree of variables.

x3 � x6

x3 � x8

x5 � x10 x9 � x4

x7;x5 � x4
(→ �)

x1;x3;x5 � x4
(→ �)

Cx1;x5;x3 � x4
(C�)

Cx1; (x2;x3);x3 � x4

BBCx1;x2;x3;x3 � x4
(B�)

B(BW)(BBC)x1;x2;x3 � x4
(W�)

x0;B(BW)(BBC)x1;x2;x3 � x4
(T �)

(→ �)

Despite the fact that there is no separate (S�) rule, we have a simple proof
of the principal type of S. Z0 is absent, hence, we get I(B(BW)(BBC)x1)x2x3 as
the combinatory term from the source sequent. This term immediately reduces
to B(BW)(BBC)x1x2x3, which is already in normal form with the combina-
tor disassociated from the variables.14 We omit the simple verification that
B(BW)(BBC) is weakly equival to S. Alternatively, one can easily check that
(A → B → C) → (A → B) → A → C is a type of B(BW)(BBC).

Remark 18. It may be noted that the term WBC was right in spirit. The three
atomic combinators in that term appear in the term that resulted (as we indicate
by underlining): B(BW)(BBC).

14 Incidentally, the combinator that we gave after Example 5 is different. It may be
an interesting question how to find sequent calculus proofs given a combinatory
inhabitant for a simple type.
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4.4 Correctness

The formulas-as-types slogan proved to be fruitful, but instead of the separation
and recombination of terms and types, we want to view formulas as terms.
Informally, it is probably clear at this point that the combinatory inhabitant
that we extracted from a standard proof has the theorem as its type. However,
we will prove the correctness of the whole procedure rigorously. First, we officially
turn structures comprising caf’s into combinatory terms. That is, we assume that
the x’s are proxies for certain formula occurrences, and then we reuse them as
real variables in combinatory terms.

Definition 19. The sharpening operation, denoted by #, is defined by (1)–(4)—
relative to a standard proof with caf’s in place of formulas.

(1) x#
0 , that is, T# is I.

(2) If i 	= 0, then x#
i , that is, A# is xi.

(3) If X is a compound caf Zxi, then X# is Z(xi)#, that is, Z(A)#.
(4) (A;B)# is (A#B#).

Remark 19. We have three trees, the proof tree we started with, the tree of
variables and the tree of caf’s. The variables stand for certain formula occur-
rences. The sharpening operation applied to the antecedent and the succedent
in the third tree yields a pair of combinatory terms.

It is easy to see that the following claim, which is important for the consis-
tency in the use of the variables, is true.

Claim 20. If xi occurs in the tree of variables that is obtained from the proof
tree of a standard proof, then xi represents occurrences of only one formula
throughout the tree.

In other words, it can happen that different occurrences of one formula turn
into different variables, but no variable stands for more than one formula.

Given a sharpened sequent A# � A#, we can determine which variables occur
in it; we focus on the left-hand side of the turnstile. The variables ensure that
we do not loose track of the formula occurrences across sequents, but otherwise,
they simply get as their type the formula for which they stand.

Definition 21. Given the sharpened sequent A# � A#, let the context Δ be
defined as Δ = {xi : B | xi ∈ fv(A#) ∧ B# = xi }. The interpretation of the
sequent is Δ � A# : A.

Example 20. The source sequent in our example is x0;B(BW)(BBC)x1;x2;x3 �
x4. If we display the formulas in the caf’s, then the source sequent looks like
the following: T ;B(BW)(BBC)A → B → C;A → B;A � C. The sharpening
operation turns the antecedent of the sequent into I(B(BW)(BBC)x1)x2x3. Then,
fv(A#) = {x1, x2, x3 } and Δ = {x1 : A → B → C, x2 : A → B, x3 : A}. Finally,
the interpretation of the source sequent is

{x1 : A → B → C, x2 : A → B, x3 : A} � I(B(BW)(BBC)x1)x2x3 : C.
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Remark 21. We hasten to point out that interpreting the sequents of caf’s
through statements that closely resemble type-assignment statements is merely
a convenience, and it could be completely avoided. However, we presume that it
helps to understand the correctness proof for our construction.

Lemma 22. Given a standard proof that has been transformed into a tree of
caf’s, the interpretation of each sequent A � A in the tree is correct in the sense
that if the combinators are replaced by suitable instances of their principal type
schemas, and the variables stand for the formulas as indicated in the context as
well as function application is detachment, then A# is A.

Proof. The proof of this lemma is rather lengthy, hence, we include only two
subcases here.
1. If the rule is (K�), then we have Δ � (A[B])# : A. B# is a subterm of
(A[B])#, hence, in Δ, it computes to a formula, let us say B. C may, in general,
introduce a new variable, that is, Δ is expanded to Δ′. (We have already pointed
out that all the Δ’s match one formula to an x.) In the context Δ′, C# is assigned
a formula, namely, C# : C ∈ Δ′—whether C# is new in Δ′ or not. If we choose
for K’s type B → C → B, then KB#C# gets the type B. Then, we have that
Δ′ � (A[B;C])# : A, as we had to show.
2. Let us consider the rule (C�). We suppose that Δ � (A[B;D;C])# : A.
There is no change in the context in an application of the (C�) rule, because
fv((A[B;D;C])#) = fv((A[B;C;D])#). The term (B;D;C)# is a subterm of
(A[B;D;C])#, and so it computes to a formula, let us say E . Similarly, B#, D#

and C# yield some formulas, respectively, D → C → E , D and C. The principal
type schema of C is (A → B → C) → B → A → C. Taking the instance where A
is D, B is C and C is E , we get that CB# is C → D → E . Then further, CB#C#

is D → E , and finally CB#C#D# is E . Placing back the term into the hole in
(A[])#, we obtain that Δ � (A[B;C;D])# : A. �

We have established that up to the BB′I-abstraction the combinators inserted
into the caf’s in the source sequent are correct. The next lemma provides the
last step in the proof of correctness.

Lemma 23. Let {x1 : A1, . . . , xn : An } � Z0I(Z1x1) . . . (Znxn) : An+1. Then,

{x1 : A1, . . . , xn : An } � B(B . . .
︸ ︷︷ ︸

n−1

(B′Zn) . . .)(B(B . . .
︸ ︷︷ ︸

n−2

(B′Zn−1) . . .) . . .

B(B′Z2)(B′Z1(Z0I))) . . .)x1x2 . . . xn−1xn : An+1.

Proof. The lemma is a special case of B- and B′-expansions, and their well-known
properties; hence, we omit the details. �

5 Conclusions

We have shown that there is a way to extend the Curry–Howard correspondence
to connect sequent calculus proofs of intuitionistic implicational theorems and



Inhabitants of Intuitionistic Implicational Theorems 23

combinatory inhabitants over the base {B,B′,C,T,W,M,K, I }. A similar app-
roach has been shown in [9] to be applicable to LT t

→, the implicational fragment
of ticket entailment, and we conjecture that the approach can be adapted to
other implicational logics that extend the relevance logic TW→.
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