
Chapter 6
Phenomenological Modeling for
Large-Signal Behavior of Ferroelectric
Materials

As already discussed in Chap. 3, the electromechanical coupling within piezoelectric
materials can be attributed to intrinsic and extrinsic effects. If piezoelectric materials
show extrinsic effects, they will be frequently named ferroelectric materials. While
intrinsic effects determine the small-signal behavior, extrinsic effects dominate the
large-signal behavior of those materials. The small-signal behavior can simply be
described through the material law of linear piezoelectricity (see linearization in
Fig. 6.1 and Sect. 3.3). In contrast, the large-signal behavior of ferroelectric materi-
als calls for special modeling treatments since it originates from altered geometric
alignments of unit cells. Such altered geometric alignments will cause nonlinear as
well as hysteretic material behavior (i.e., hysteresis curves) when sufficiently large
electrical and/or mechanical loads are applied. Note that this fact is of utmost impor-
tance for ferroelectric actuators, which are utilized, e.g., in high-precision positioning
systems (cf. Chap. 10).

Ferroelectric actuators usually operate far below their mechanical resonance fre-
quencies. It will, therefore, be reasonable to assume a uniform mechanical displace-
ment along their surfaces if the bottom and top surface are completely covered with
electrodes (cf Fig. 4.20 on p. 121). Without limiting the generality, we exclusively
consider hereafter electrical and mechanical quantities in the thickness direction (3-
direction) of ferroelectric materials. Due to this fact, components in 1-direction and
2-direction as well as indices for 3-direction of the relevant physical quantities can be
omitted. Figure 6.1 exemplarily depicts symmetrical hysteresis curves of a ferroelec-
tric material for both the electric polarization P(E) and the mechanical strain S(E)

in case of electrical excitation with the electric field intensity E . Mainly, one can
distinguish between three different working areas detailed below.

• Bipolar working area: The ferroelectric material is alternately driven in positive
as well as negative saturation leading to P±

sat for the electric polarization and S±
sat

for the mechanical strain, respectively. The resulting hysteresis curves P(E)
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Fig. 6.1 Symmetrical hysteresis curves of ferroelectric materials for electric polarization P(E) and
mechanical strain S(E) versus applied electric field intensity E in different working areas; electric
polarization P±

sat and mechanical strain S±
sat in positive as well as negative saturation, respectively;

coercive field intensity E±
c ; linearization relates to small-signal behavior of ferroelectric materials

and S(E) (thick lines in Fig. 6.1) are known as major loops. According to its
shape, S(E) is also called butterfly curve.

• Unipolar working area: The ferroelectric material operates with positive or neg-
ative electric field intensities, i.e., E ≥ 0 or E ≤ 0. Hence, the material can be
driven either in positive or negative saturation. Compared to the bipolar working
area, mechanical strains and, consequently, mechanical displacements of a ferro-
electric actuator get reduced remarkably. The resulting hysteresis curves P(E)

and S(E) are referred to as minor loops (thin lines in Fig. 6.1).
• Semi-bipolar working area: In contrast to the unipolar working area, the fer-
roelectric material operates with a larger range of electric field intensities in
the semi-bipolar working area. Thereby, one of the conditions E−

c < E ≤ E+
sat

or E−
sat ≤ E < E+

c (coercive field intensity Ec) has to be fulfilled. As a result,
the achievable mechanical strains increase but stay below values of the bipolar
working area. The hysteresis curves P(E) and S(E) are again referred to as minor
loops.

This chapter primarily deals with Preisach hysteresis modeling, which represents
a phenomenological modeling approach for the large-signal behavior of ferroelectric
materials in the mentioned working areas. Before we study in Sect. 6.3 alternative
phenomenological modeling approaches that also focus on the macroscopic trans-
fer behavior of ferroelectric materials, hysteresis will be mathematically defined.
Moreover, an overview of material models on different length scales (e.g., atomistic
scale) is given in Sect. 6.2. Contrary to phenomenological modeling approaches,
those material models aim at describing the physical behavior of ferroelectric
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materials as accurate as possible. In Sect. 6.4, wewill introduce the classical Preisach
hysteresis operator HP, which comprises weighted elementary switching operators.
Section 6.5 details different weighting procedures for the elementary switching oper-
ators. Because the classical Preisach hysteresis operator is only suitable to a limited
extent for predicting hysteretic behavior of ferroelectric actuators in practical appli-
cations, a so-called generalized Preisach hysteresis model (operator HG) will be
introduced in Sect. 6.6. This extended Preisach hysteresis model enables, e.g., the
consideration of asymmetric behavior in hysteresis curves. After that, a parameter
identification strategy is presented which allows reliable predictions of electrical
and mechanical quantities through Preisach hysteresis modeling. To apply Preisach
hysteresis modeling in practical applications of ferroelectric actuators (e.g., in high-
precision positioning systems), it is of utmost importance to invert the Preisach hys-
teresis operator. Owing to this fact, Sect. 6.8 finally addresses an iterative inversion
procedure, which enables efficient determinations of the aimed electrical excitation
signals in a reasonable time. Throughout thewhole chapter, piezoceramic disksmade
of the ferroelectrically soft materials PIC255 (manufacturer PI Ceramic GmbH [71])
as well as Pz27 and the ferroelectrically hard material Pz26 (manufacturer Meggitt
Sensing Systems [65]) serve as test objects.

6.1 Mathematical Definition of Hysteresis

There exist various meanings and definitions for the term hysteresis in technical
areas (e.g., [61, 64]). However, several similarities can be found in these definitions.
Here, we especially concentrate on a transmission system with one input x(t) and
one output y(t), both depending on time t . When the system exhibits hysteresis1 in
its transmission behavior, three properties will apply to such a system [64, 94]:

1. The output y(t) is clearly defined by the progression of x(t) and the initial state
of the transmission system.

2. We can mathematically link y(t) and x(t) with the aid of nonlinear relations
describing branches in the xy-plane (see, e.g., Fig. 6.7c). A change between
different branches may occur at extrema of the system input x(t).

3. The sequence of extrema in x(t) exclusively determines the progression of the sys-
tem output y(t). In contrast, values in between these extrema as well as the time
response of x(t) do notmodify the current output. For this reason, the transmission
behavior is rate-independent.

Due to the fact that there always occur creep processes in ferroelectric materials, the
third property is, strictly speaking, violated. Nevertheless, the superposition of a rate-
independent hysteresis model with an additional approach (e.g., viscoelastic model)

1Since the system owns one scalar input and one scalar output, the hysteresis is also named scalar
hysteresis.
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can be utilized to consider creeping. Two further properties apply to the large-signal
behavior of ferroelectric materials:

4. The current system output y(t) is only influenced by dominating extrema2 in x(t).
Past extrema of smaller magnitudes than the subsequent ones are deleted in the
system history and, thus, do not alter y(t).

5. Because of this deletion property, all hysteresis branches in the xy-plane are
located within an area, which is given by the last two dominating extrema.

Apart from the listed properties, one can in general distinguish between hysteresis
featuring local memories or nonlocal memories [64].

• Local memories: The upcoming path of y(t) solely depends on the current value
of x(t).

• Nonlocal memories: In addition to the current value of the system input, past
extrema of x(t) affect the upcoming progression of y(t).

Actually, the large-signal behavior of ferroelectric materials also depends on past
extrema. Thus, we have to deal with nonlocal memories.

6.2 Modeling Approaches on Different Length Scales

Aside from the objective, we may classify modeling approaches for ferroelectric
materials according to the considered length scale. Basically, five different length
scales are known: (i) Atomistic, (ii) mesoscopic, (iii) microscopic, (iv) macroscopic,
and (v) multiscale (see Fig. 6.2). In the following, let us briefly discuss selected
modeling approaches for ferroelectric materials on these length scales.

Atomistic Scale

At the level of the atomistic scale, one considers processes taking place in the crystal
lattice of amaterial. Thereby, common calculationmethods (e.g., ab initio and density
functional theory) from solid-state physics are frequently used. The methods yield
quantitative information for lattice spacing, elastic, and stiffness tensors as well as
for the spontaneous polarization within ferroelectric materials [16, 97]. Besides, so-
called core-shell models may be applied to simulate phase transitions and motions
of the domain walls [13, 25, 83]. Such models are based on electrostatic interactions
among elastically supported cores and shells. Further literature concerning modeling
approaches on the atomistic scale can be found in the review articles by Cohen [17]
and Sepliarsky et al. [83]. In general, these modeling approaches provide valuable
insight formaterial development.However, the required computational effort restricts
their application to small volumes and short time intervals.

2A maximum/minimum will be dominant if its value is smaller/larger than the previous maxi-
mum/minimum (see Sect. 6.4).
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Fig. 6.2 Classification of material models for ferroelectric materials into different length
scales [101]

Mesoscopic Scale

Modeling on the mesoscopic scale will be conducted if complex domain structures
or lattice defects within ferroelectric materials shall be investigated. Oftentimes, the
underlying modeling approaches are based on the Landau theory, which is under-
stood as an extension of thermodynamic potentials by an order parameter [53].
Through this order parameter, we can explain phase transitions within materials.
Note that such approaches are not only utilized on the mesoscopic scale but also
on the microscopic and macroscopic scale. A well-known approach on the meso-
scopic scale is the phase field model, where the (spontaneous) polarization serves
as order parameter [39, 96]. Another method for ferroelectric materials, the sharp
interface approach [80], is mainly based on two assumptions: (i) Each domain is a
homogeneous region and (ii) material properties may jump across domain interfaces.

Microscopic Scale

The microscopic scale is very similar to the mesoscopic scale. That is why there is
mostly no clear distinction between modeling approaches on these scales (e.g., [39]).
One of the first approaches concerning modeling of ferroelectric materials on the
microscopic scale was published by Hwang et al. [42]. They assume that the grains
within the material are randomly orientated in the initial state. Since each grain
has its own electric polarization, the global polarization state is neutral. By means
of energy-based switching criterion depending on both electrical and mechanical
excitations, the orientation of the grains is modified. Consequently, the global polar-
ization state as well as the geometric dimension of the investigated ferroelectric
material changes. Due to the simplification of equal excitations for every grain, there
is a lack of accuracy. However, this modeling approach served as a basis for several
further developments [39]. Huber et al. [40] suggest an alternative approach that uti-
lizes crystal plasticity theory instead of energy-based switching criterion. Modeling
approaches on the microscopic scale, which additionally consider rate-dependent
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behavior, can be found in [4, 9]. An overview of further computation methods is
given in the review article by Kamlah [50].

Macroscopic Scale

Modeling approaches on the macroscopic scale lead to a significant reduction in
computation time compared to those on the microscopic scale. Several macroscopic
modeling techniques are based on the Landau–Devonshire theory, which is thermo-
dynamicallymotivated and can be used to describe phase transitionswithin ferroelec-
tric materials [21]. The disadvantage of this rate-independent approach lies in the
restriction to monocrystalline materials and one-dimensional behavior. Bassiouny
et al. [8] presented another thermodynamically consistent approach considering fer-
roelectricity as well as ferroelasticity. They divided the electric polarization and
mechanical strain into a reversible and an irreversible part, respectively. Alternative
macroscopic modeling techniques that also exploit separate analysis of reversible
and irreversible parts were developed by Kamlah and colleagues [51, 52]. Their
approaches rely on phenomenological internal variables for electrical and mechan-
ical quantities. Because electromechanical couplings within ferroelectric materials
are considered in both directions, electrical and mechanical excitation can be taken
into account at the same time. Further modeling approaches on themacroscopic scale
are suggested by Landis [57] and Schröder et al. [81].

Multiscale Approaches

Apart from the approaches on the previously mentioned length scales, there exist
various techniques that exploit simultaneous modeling on different scales. These
so-called multiscale approaches aim to transfer effects on low abstraction levels to
higher ones at reasonable computation time, which is usually achieved by homoge-
nization methods within FE simulations. A multiscale approach on the atomistic and
the mesoscopic scale was published by Völker et al. [97]. While they use phase field
models on themesoscopic scale, the density functional theory aswell as the core-shell
model are applied on the atomistic scale. Multiscale approaches combining micro-
scopic and macroscopic scale with the aid of FE simulations can be found in [53, 56,
82, 96]. For instance, Keip [53] presented the FE Square method that is based on a
microscopic representative volume element (abbr. RVE). At each grid point on the
macroscopic scale, he deduces appropriate boundary conditions for the RVE. Aver-
aging methods yield effective material parameters on the microscopic scale that can
then be applied on themacroscopic scale. Contrary tomultiscale approaches based on
FE simulations, Smith et al. [84] developed the homogenized energy model, which
combines mesoscopic and macroscopic scale. Similar to the Landau–Devonshire
theory, they introduce a thermodynamically motivated switching criterion on the
mesoscopic scale. Stochastic homogenization provides low-order macroscopic mod-
els with effective parameters for ferroelectric materials. Ball et al. [7] published an
extension of this approach, which enables additional consideration of mechanical
stresses.
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Overall, the presented approaches on the different length scales aim to model
the behavior of ferroelectric materials (e.g., during poling) as accurate as possi-
ble. The resulting knowledge facilitates the research on and development of those
materials. However, due to the required computational effort, most of the modeling
approaches cannot be used to compensate nonlinearities of ferroelectric actuators
in practical applications, e.g., positioning. Moreover, the simulation of minor loops
poses a problem and the major loops are commonly of angular shape. For all these
reasons, we need alternative modeling approaches that allow a sufficiently precise
prediction of the actuator behavior in a reasonable computation time. The following
section deals with such models for ferroelectric materials.

6.3 Phenomenological Modeling Approaches

In contrast to the approaches in Sect. 6.2, we will discuss here techniques that do not
intend to model the real physical behavior of ferroelectric materials. The focus lies
exclusively on the scalar transfer behavior of the fabricated transducer (e.g., piezo-
ceramic actuator), i.e., input quantity as well as output quantity in predefined spatial
directions. This transfer behavior is simulated through efficient phenomenological
models on the macroscopic scale. Several approaches originate from plasticity the-
ory and the research on ferromagnetic materials. For ferroelectric materials, we can
classify appropriate phenomenological models into five groups [101]: (i) polynomial
description, (ii) rheological models, (iii) Duhem models, (iv) fractional derivatives,
and (v) switching operators. The basic principles of these groups are explained below.

Polynomial Description

There can be found many different approaches to simulate the transfer behavior of
ferroelectric actuators by means of appropriate polynomials. For instance, Chonan
et al. [15] describe branches in hysteresis curves of the mechanical displacement
with separately parameterized polynomials for increasing and decreasing input volt-
age, respectively. In [93], hysteresis loops of ferromagnetic materials are modeled
through piecewise linear approximations. Another technique utilizes ellipses to sim-
ulateminor loops in the transfer behavior of a piezoceramic actuator [33]. Altogether,
it can be stated that polynomial descriptions will yield excellent results for the pre-
dicted output if the cycles of the input quantity are well known in advance. However,
due to the fact that there is no memory of past inputs, these approaches do not meet
the requirements of hysteresis models, which should be valid for general inputs (see
Sect. 6.1).

Rheological Models

Basically, the term rheology refers to the analysis of mechanical constitutive proper-
ties formaterials through the construction of ideal bodies, named rheological models.
In doing so, we combine elementary rheological models in series and in parallel that
are given by rheological state equations. Visintin [94] suggests the application of
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several of those elementary rheological models representing the main mechanical
properties elasticity, viscosity, plasticity as well as strength. Similar to elementary
rheological models, one can take advantage of lumped circuit elements from electri-
cal engineering [58]. The parameters of the underlying state equations are derived by
comparing model outputs with measurements. Reiländer et al. [76] published such a
rheological model to predict the hysteretic behavior of a piezoceramic stack actuator.
Further rheological models for ferroelectric actuators can be found in [74, 77].

Duhem Models

The main idea of Duhemmodels lies in mathematically explaining hysteretic behav-
ior by means of differential equations and integral operators. These phenomenologi-
cal models are based on the fact that one can only switch between different branches
in the hysteresis curve when the derivative of the input changes its sign [61, 94].
A similar property may be attributed to rheological models. Hence, it is oftentimes
difficult to distinguish between Duhem and rheological models. Very well-known
representatives of generalized Duhemmodels are LuGre as well asDahl models [70,
107]. Although bothmodels can be implemented efficiently, they exhibit a number of
drawbacks with regard to applications for ferroelectric materials. For instance, nei-
ther asymmetric hysteresis curves nor saturation effects can be simulated. Moreover,
the fact that the input history is not considered may lead to physically impossible
outputs, e.g., crossing hysteresis curves. An extended version of Duhem models for
ferroelectric materials, the so-called Bouc-Wen model [100], is utilized for micro as
well as nanopositioning (e.g., [59]). Wang et al. [98] presented a modified Bouc-
Wen model to predict the hysteretic behavior of a piezoceramic stack actuator. The
Jiles–Atherton model is a further Duhem model for ferroelectric actuators, which
was originally developed for ferromagnetic materials [36, 45]. Also for this phe-
nomenological hysteresis model, one has to cope with physically impossible outputs
like unclosed hysteresis loops.

Fractional Derivatives

Another phenomenological approach for modeling hysteresis of ferroelectric materi-
als exploits fractional derivatives. According to models of dry friction in mechanical
processes, Guyomar and colleagues [34, 35] describe the electric polarization within
the material through an appropriate fractional derivate. They predict the polarization
for large electrical excitation with respect to excitation frequency, i.e., the dynamic
behavior of ferroelectric materials. In [24], one can find an extended version to addi-
tionally consider mechanical stresses in hysteresis curves of the electric polarization.
However, so far, there are not known any further approaches based on fractional
derivatives, which also allow simulating hysteresis of the mechanical displacement
for ferroelectric materials.

Switching Operators

Numerous phenomenological models to describe hysteretic behavior of ferromag-
netic and ferroelectric materials use a weighted superposition of elementary switch-
ing operators, which are commonly named hysterons. Preisach [73] developed such
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Fig. 6.3 Different elementary switching operators with input x and output y for phenomenological
hysteresis models: aRelay operator; b linear play operator (αp = −βp); c linear stop operator (αs =
−βs)

a model that was originally motivated by physical processes taking place within fer-
romagnetic materials during magnetization. With a view to applying the Preisach
hysteresis model to various physical issues, Krasnosel’skii and Pokrovskii [55] car-
ried out a purely mathematical examination of this approach. Moreover, they investi-
gated three different types of elementary switching operators (see Fig. 6.3): (i) Relay
operators that are used for Preisach hysteresis models as well as (ii) linear play
operators (backslash operators) and (iii) linear stop operators. The weighted super-
position of play and stop operators is commonly referred to as Prandtl–Ishlinskii
model3 [94].

In case of ferroelectric materials, Prandtl–Ishlinskii models are mostly based
on linear play operators (e.g., [43, 75]). Al Janaideh et al. [2] presented an exten-
sion of this model to incorporate the rate-dependent behavior of smart actuators.
Besides, they suggest a hyperbolic tangent function as generalized play operator,
which enables the consideration of saturation effects [3]. A major problem of the
play operator lies in the simulation of asymmetric hysteresis curves. Due to this fact,
Dong and Tan [23] developed an asymmetric play operator. As alternative approach,
Jiang et al. [44] applied especially for piezoelectric actuator systems two separate
operators, one for increasing and one for decreasing inputs, respectively.

To sum up, each of the five phenomenological approaches for modeling the hys-
teresis of ferroelectric materials exhibits advantages and drawbacks. Many of the
approaches (e.g., rheological models) have proved to be very efficient in calculation
but will yield inadequate results if a precise prediction of the hysteretic behavior
is required. Since both the polynomial description and the Duhem models do not
use internal variables, the predicted hysteresis curves may be physically impossible,
e.g., unclosed hysteresis loops as a result of the Jiles–Atherton approach. Moreover,
there are not known phenomenological approaches according to fractional deriva-
tives, which can be applied to simulate both electric polarizations and mechanical
displacements of ferroelectric actuators.

3Strictly speaking, Preisach models constitute a special case of Prandtl-Ishlinkii models.
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Phenomenological modeling approaches based on switching operators lead to
significantly improved results than the other ones. However, in general, the required
computational effort to calculate the model output for common implementations is
comparatively high. Regarding asymmetric hysteresis curves as well as saturation
effects, it can be stated that Preisach models are much more flexible than common
Prandtl–Ishlinskii models. Nevertheless, in contrast to Preisach models, we are able
to directly invert Prandtl–Ishlinskii models, which is decisive for hysteresis compen-
sation. Besides, Preisach models require more elementary switching operators (i.e.,
relay operators), but the amount of parameters per a single operator is lower than for
Prandtl–Ishlinskii models.

The focus in the present book lies on predicting the hysteretic behavior of fer-
roelectric actuators for various configurations and practical applications as precise
as possible. On account of that fact, we will exclusively discuss Preisach hysteresis
models in the following. This includes its efficient implementation (see Sect. 6.4.2)
as well as inversion (see Sect. 6.8).

6.4 Modeling of Preisach Hysteresis Operator

In the year 1935, Preisach published a hysteresis model that is commonly known
as classical Preisach hysteresis model [64, 73]. From the mathematical point of
view, this hysteresis model belongs to the phenomenological models. It is often
utilized to simulate magnetization of ferromagnetic materials as well as polarization
of ferroelectric materials. Owing to the fact that we solely consider scalar inputs and
outputs, the subsequent explanations refer to the scalar Preisach hysteresis model
and the scalar Preisach hysteresis operator.4 Extended versions concerning vector
quantities can be found in, e.g., [48, 68, 88].

6.4.1 Preisach Hysteresis Model

To study the Preisach hysteresis model, let us assume a transmission system with the
scalar input x(t) and the scalar output y(t), both normalized quantities depending
on time t (see Fig. 6.4a). The basic idea of the Preisach hysteresis model lies in
the weighted superposition of elementary switching operators γαβ . Each of them
features two defined output states, i.e., −1 as well as +1. The switching between
these two output states may occur when the operator input x(t) reaches one of the
changeover points α and β (see Fig. 6.4b). Mathematically, the current state of a
single elementary switching operator γαβ,n with the changeover points αn and βn is
defined as

4For compactness, the term scalar is omitted in the following.
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Fig. 6.4 a Preisach hysteresis operator HP with input x(t) and output y(t), both depending on
time t ; b elementary switching operator γαβ,n with changeover points αn and βn

γαβ,n[x](t) =
⎧
⎨

⎩

+1 : x(t) ≥ αn

γαβ,n[x]
(
t−

) : βn < x(t) < αn

−1 : x(t) ≤ βn .

(6.1)

The operator output will switch from −1 to +1 if the operator input x(t)
exceeds αn . When x(t) falls below βn , switching from +1 to −1 will take place.
Naturally, the operator will exclusively switch if the previous output does not coin-
cide with the current one. Because each switching operator γαβ,n retains its out-
put

(
i.e.,γαβ,n[x]

(
t−

))
for βn < x(t) < αn , we are able to simulate system behavior

with certain memory. Apart from that fact, the definition of the elementary switching
operators implies the condition αn ≥ βn for the changeover points.

According to the idea of Preisach hysteresis models, the weighted superposition
of all possible switching operators links the input x(t) to the output y(t) of the
transmission system. Therefore, y(t) is given by (see Fig. 6.5)

y(t) = HP[x](t) =
∫∫

α≥β

μH(α,β) γαβ[x](t) dα dβ . (6.2)

Here,HP[x](t) stands for the resulting Preisach hysteresis operator, which is applied
to the input x(t). The expression μH(α,β) individually weights the switching oper-
ators and, thus, is usually referred to as weighting distribution.

The value range of the changeover points αn and βn becomes

P ={
(αn,βn) ∈ R

2 : xmin ≤ βn ≤ x(t) ≤ αn ≤ xmax
}

(6.3)

with the minimum xmin and the maximum xmax of the input. Since α ≥ β has to be
fulfilled, we can display this value range as triangular in the two-dimensional space
with the axis α and β. Each point in this plane relates to exactly one elementary
switching operator. Figure 6.6a depicts the triangular as well as three elementary
switching operators. If the current outputs (−1 or+1) of the switching operators γαβ

are plotted in the triangular, one will obtain the so-called Preisach plane P(α,β).
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Fig. 6.5 Link of model input x(t) and output y(t) according to Preisach hysteresis model; elemen-
tary switching operators γαβ,n with changeover points αn and βn ; individual weights μH(αn,βn)
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Fig. 6.6 a Triangular comprising value range of changeover points αn and βn for elementary
switching operators γαβ,n ; b Preisach plane P(α,β) divided into P+ and P−, which indicate
current output value (+1 or −1) of elementary switching operators; dividing line L(t) containing
maxima and minima

Moreover, due to the fact that each elementary switching operator owns his unique
weighting μH(α,β), the Preisach plane can also be used to show the distribution of
weights.

As discussed above, the switching operators γαβ and, consequently, also the
Preisach hysteresis operator HP can only change their output if the input is altered,
i.e., ∂x/∂t �= 0. The two possibilities of differential changes in the input lead to
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A© : ∂x(t)

∂t
> 0 ⇒ −1 −→ +1 ∀ γαβ,n : αn ≤ x(t) (6.4)

B© : ∂x(t)

∂t
< 0 ⇒ +1 −→ −1 ∀ γαβ,n : βn ≥ x(t) , (6.5)

which means on the one hand that for increasing inputs, solely the changeover val-
ues αn of γαβ,n are decisive. On the other hand, decreasing inputs relate to the
changeover values βn . As a result, we obtain at any time two interrelated areas within
the Preisach plane P , namely P+ and P−, fulfilling the property P+ ∪ P− = P . In
those areas, the elementary switching operators take the output values (see Fig. 6.6b)

P+ ={
γαβ,n : γαβ,n = +1

}
and P− ={

γαβ,n : γαβ,n = −1
}

. (6.6)

The dividing line between P+ and P− is indicated with L(t). Commonly, this line
is a staircase-shaped curve. Depending on the current input x(t) and its history, L(t)
is modified, e.g., the amount of steps is altered.

With a view to explaining the fundamentals of the Preisach hysteresis operatorHP

inmore detail, it is convenient to performagraphical interpretation [36, 101]. In doing
so, we choose an input signal x(t) that enables us to discuss the most important
characteristics of HP. Figure 6.7a and b depict this input signal and the current
configuration of the Preisach plane P(α,β) for selected instants of time, namely
tA, . . . , tN. Furthermore, the operator output y(t) is plotted against the input until
the considered instant of time for unweighted elementary switching operators (i.e.,
μH(α,β) = 1; Fig. 6.7c) as well as for the weighted ones (Fig. 6.7d). Let us take a
look at the different instants of time, which are parameterized with A,…,N.

• A: The input signal x(t) is assumed to be zero at the beginning of the graphical
interpretation.Additionally, the areasP+ andP− should be equal. In case of a sym-
metricweighting distribution (i.e.,μH(α,β) = μH(−β,−α)),we obtain y(t) = 0
as operator output.

• B: According to (6.4), the operators γαβ will take the output value +1 when x(t)
exceeds their changeover points α. Therefore, the dividing line L(t) between P+
and P− moves upwards leading to an increase in y(t).

• C: After passing through the virgin curve, y(t) reaches its positive saturation. All
elementary switching operators exhibit then the output value +1, i.e., P = P+
and P− = ∅.

• D: Similar to B, the operators γαβ will take the output value −1 when x(t) falls
below their changeover points β. As a result, the dividing line L(t) between P+
and P− moves to the left yielding a decreasing output y(t).

• E…F: If the input x(t) stays constant (i.e., ∂x(t) /∂t = 0),L(t) and, consequently,
y(t) will remain unchanged.

• G…H: In case of inputs outside of the defined range xmin ≤ x(t) ≤ xmax, y(t) also
remains unchanged. Contrary to the positive saturation in C, the Preisach plane
becomes P = P− for negative saturation, i.e., P+ = ∅.
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(a) (b) (c) (d)

Fig. 6.7 Graphical interpretation of Preisach hysteresis operator HP [101]; a progression of input
signal x(t)with respect to time t ; b Preisach planeP = P+ ∪ P− for A,…,N at tA, . . . , tN; operator
output y versus input x for c unweighted (i.e., μH(α,β) = 1) and dweighted elementary switching
operators γαβ
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• I, J: Although the slope of x(t) differs for tI and tJ, the configuration of P(α,β)

stays constant, which leads to y(tI) = y(tJ). We are, therefore, not able to consider
a rate-dependent system behavior by means of the classical Preisach hysteresis
model.

• K: From tJ to tK, there occur several successive local extrema in x(t). If one of
these maxima/minima is smaller/larger than the previous extrema of the same
type, it will be called dominating extremum. Such extrema determine the corner
points ofL(t) inP(α,β) and, according to the definition of the Preisach hysteresis
operator, they affect the subsequent progression of y(t). Due to this fact, we can
state that these extrema represent the memory within the hysteresis model.

• L: Inputs that are higher in magnitude than the previous extremum cause move-
ments of L(t) in horizontal and vertical direction, respectively. Since the previous
extremum is deleted in P(α,β), the underlying principle is commonly referred to
as wiping-out rule or deletion rule of the Preisach hysteresis operator.

• M,N: If we do not know the history of x(t), the current configuration of the Preisach
plane will also be unknown which makes it impossible to compute subsequent
states of y(t). This can be avoided by driving the system into positive or negative
saturation. Therewith, a defined state of P(α,β) is achieved.

From the graphical interpretation, two additional key findings arise: (i) Since past
extrema of the input affect the current output ofHP, the classical Preisach hysteresis
model is applicable to describe hysteresis exhibiting nonlocal memories. (ii) The
comparison of unweighted andweighted elementary switching operators in Fig. 6.7c,
d reveals that the distribution of weights μH(α,β) has a major influence on the shape
of the hysteresis curve. It is, therefore, of utmost importance to identify an appropriate
distribution forμH(α,β) because only in this way, we can reliably predict the system
behavior.

6.4.2 Efficient Numerical Calculation

The Preisach hysteresis operatorHP and its inversion as well as the identification of
the weighting distribution μH(α,β) require a large number of individual computa-
tion steps. With regard to practical applications of the hysteresis operator, the effi-
cient numerical calculation is, thus, of utmost importance. For this purpose, a novel
approach was developed at the Chair of Sensor Technology (Friedrich-Alexander-
University Erlangen-Nuremberg) within the framework of the doctoral thesis by
Wolf [101]. The key points of the approach are explained in the following.

Discretization

The implementation of the Preisach hysteresis operator on a computer system
demands various discretizations, which are listed below.

• The continuous input x(t) is converted to a discrete-time and discrete-value ver-
sion by an analog-to-digital conversion since the subsequent signal processing is



210 6 Phenomenological Modeling for Large-Signal ...

computer-based. Similarly, the operator output y(t) is a discrete-time and discrete-
value signal. Let us assume equidistant sampling with sampling time ΔT . Hence,
the available input and output signal become x(tk = kΔT ) and y(tk = kΔT ),
whereas k ∈ N

+ denotes the index of the sampling point, respectively.5 More-
over, x(k) is normalized to its maximum, i.e.,

x(k) = X(k)

2 · max(|X(k)|) ⇒ x(k) ∈ [−0.5, 0.5] (6.7)

with X(k) representing the original discrete-time and discrete-value input. For
the changeover points α and β of the elementary switching operators γαβ , the
normalization leads to the condition −0.5 ≤ β ≤ α ≤ 0.5.

• According to the definition of the Preisach hysteresis operator HP in (6.2), the
output results from the input by analytically evaluating a double integral in the
two-dimensional space.However, there does not exist an analytical solution for this
integral. That is the reason why we have to perform a summation of the spatially
discretized triangular instead,which contains discretized values for the changeover
points α and β (see Fig. 6.8a). Without limiting the generality, the possible values
of both changeover points are discretized inM equally distributed intervals leading
to α(i = 1, . . . , M) and β( j = 1, . . . , M).

• Due to the discretization ofα andβ, the configuration of thePreisach planeP(α,β)

for time step k as well as the weighting distribution μH(α,β) can be written
as matrices, both featuring the dimension M × M . They are given by (matrix
elements Pi j (k) and μi j )

P(k) =[Pi j (k)
]

with Pi j ∈{−1, 1}
µ =[

μi j
]

with μi j ∈ R
+
0

}

∀(i, j) ∈ Λ . (6.8)

Λ represents the definition area of the spatially discretized Preisach plane, i.e.,Λ =
{(i, j) : i ≤ M + 1, j ≤ M + 1 − i}. Note that outside of this definition area, the
matrix elements Pi j (k) and μi j are zero, respectively.

The discretizationM ofα andβ determines the resulting discretization of the operator
output y(k). A finer discretization leads to a higher resolution of y(k). However, the
greater M , the longer the computation will take for common implementations of the
Preisach hysteresis operator. On this account, one has to find a compromise between
output resolution and computation time. The path toward an implementation enabling
both fine discretization and reasonable computation time is detailed below.

Numerical Calculation

As stated above, a weighted summation of the spatially discretized Preisach plane
P(k) is necessary to compute the operator output y(k) for time step k. The double
integral in (6.2) changes into the double summation (element μi j of the weighting

5To achieve a compact notation, we use the abbreviation x(kΔT ) =̂ x(k).
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(a) (b) x(k) > x(k − 1) (c) x(k) < x(k − 1)
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Fig. 6.8 a Spatially discretized Preisach planeP(k) for time step k; modification of Preisach plane
for b increasing and c decreasing input x(k) of Preisach hysteresis operator HP; ⊕ and 
 indicate
maxima and minima of dominating extrema, respectively

matrix µ)

y(k) =
imax∑

i=1

jmax∑

j=1

Pi j (k)μi j with

{
imax = M + 1 − j
jmax = M + 1 − i .

(6.9)

Note that Pi j (k) refers to the current state (i.e.,{−1, 1}) of the elementary switching
operator γαβ featuring the changeover points α(i) and β( j). Because this calcu-
lation is highly inefficient, a differential scheme should be applied instead, which
exclusively considers modifications within the Preisach plane P(k) for time step k.
The modifications lead to changes Δy(k) in the operator output that are equal to
the swept area in the Preisach plane (see Fig. 6.8b and c). A proper method to
determine Δy(k) is the so-called Everett function E [26]. Therewith, the current
output y(k) becomes [36]

y(k) = y(k − 1) + Δy(k)

= y(k − 1) + E(x(k − 1) , x(x)) (6.10)

= y(k − 1) + sign(x(k) − x(k − 1)) ·
∫∫

Δy(k)

μH(α,β) dα dβ .

The trapezoidal area Δy(k) results from the difference of partial areas within the
weighted Preisach plane, which are given by the successive inputs x(k − 1) and x(k).
Depending on the direction of change in the input, Δy(k) must be added to (see
Fig. 6.8b) or subtracted from (see Fig. 6.8c) the previous output y(k − 1). We take
this fact into account by the signum function sign(·).

In order to evaluate the Preisach hysteresis operator HP efficiently for each time
step k, it is useful to conduct as many calculation steps as possible in advance. The
optimized approach mainly comprises the three following substeps.
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1. Computation of the Everett Matrix

Since the distribution of the discretized weighting distribution μi j is time-
invariant, we can compute the swept areas in advance, i.e., the Everett function E .
The Everett matrix E =[Ei j

]
stands for the numerically integrated weighting

distribution and reads as

Ei j =
rmax∑

r=i

smax∑

s= j

μrs with

{
rmax = M + 1
smax = M + 1 − i .

(6.11)

Each component Ein jn refers to the sum over a triangular (i ≥ in and j ≥ jn) in
the weighting matrix µ.

2. Configuration of the Preisach Plane

Now, the Everett matrix E can be utilized to compute the operator output y(k).
In doing so, we require the current dominating extrema of the input history. The
extrema are located on the dividing lineL(k) betweenP+ andP−. Let us assume
m(k) dominating extrema at time step k named e1, . . . , em(k). The vectors ei(k)
and ej(k) of length m(k) indicate the location of those extrema in the spatially
discretized Preisach plane, i.e.,

ei(k) = [
i1(k) , . . . , in(k) , . . . , im(k)(k)

]t

ej(k) = [
j1(k) , . . . , jn(k) , . . . , jm(k)(k)

]t

}

with 1 ≤ n ≤ m(k) ≤ M .

(6.12)

As we have to distinguish whether the extremum represents a minimum or a
maximum (see Fig. 6.8a), an additional vector s(k) is necessary, which contains
the sign of each dominating extremum. This vector of length m(k) is defined as

s(k) =[
s1(k) , . . . , sn(k) , . . . , sm(k)(k)

]t
(6.13)

with

sn(k) =
{−1 : in = in−1 (minimum)

+1 : jn = jn−1 (maximum) .
(6.14)

For the subsequent time step k + 1, the vectors ei(k), ej(k) as well as s(k) of the
previous time step k need to be updated. Thereby, the following operations are
applied:

• When the operator input increases (i.e., x(k + 1) > x(k)), the current value
x(k + 1) will be compared to the changeover points α(ei(k)). In case of a
decreasing input (i.e., x(k + 1) < x(k)), the comparison is carried out with
respect to β

(
ej(k)

)
. According to the definition of i and j (cf. Fig. 6.8a),
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an increasing input yields im(k+1)(k + 1) < im(k)(k) and a decreasing one
jm(k+1)(k + 1) < jm(k)(k).

• A change of sign in the input slope leads to an additional dominating extremum,
i.e., m(k + 1) = m(k) + 1. Consequently, the length of ei(k), ej(k) and s(k)
increases by one, respectively.

• If x(k + 1) > αn(k) is fulfilled for increasing input signals, the vectors ei(k),
ej(k) ands(k)will be shortened to the lengthn − 1.The same applies to decreas-
ing inputs in case of x(k + 1) < βn(k). Then, the nth entry of the vectors con-
tains the location of the last dominating extremum in the spatially discretized
Preisach plane as well as the sign.

3. Calculation of the Operator Output

The operator output y(k) for time step k results from substep 1 and 2. We use the
vectors ei(k) and ej(k) to select for every dominating extremum of the input x(k)
one entry in the Everett matrix E . Furthermore, the selected entries are super-
imposed with respect to the signs of the dominating extrema, which are listed
in s(k). Altogether, y(k) computes as

y(k) = 1

2
Ei1(k) j1(k) · s1(k) +

m(k)∑

n=2

Ein(k) jn(k) · sn(k) . (6.15)

By means of this approach, the evaluation of the Preisach hysteresis operator is opti-
mized. Compared to the common implementation of the Everett function (6.10), we
can reduce the computation time by a factor of more than 100 [101]. Since the com-
mon implementation is mostly restricted to discretizations M < 100 of the Preisach
plane, additional interpolation algorithms are required to achieve a reasonable res-
olution of the operator output [36, 76]. In contrast, the presented approach allows
fine discretizations (e.g., M = 300) and, therefore, a high resolution without any
interpolation.

6.5 Weighting Procedures for Switching Operators

As has been shown in Fig. 6.7, the weighting distribution μH(α,β) remarkably
affects the output of the Preisach hysteresis operator HP and, therefore, the result-
ing hysteresis curve. That is the reason why one can find numerous publications
addressing identification as well as description of μH(α,β) for ferromagnetic and
ferroelectric materials.

Before we study suitable weighting procedures and identifications, let us deduce
physically motivated properties of μH(α,β). Switching processes taking place
within ferroelectric materials arise from complex interactions of mechanical and
electric fields onmesoscopic aswell asmicroscopic length scales.We do not consider
such interactions because the Preisach hysteresis operator represents a purely phe-
nomenological modeling approach. However, from the macroscopic point of view,
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there occurs a statistical accumulation of domains, which show a specific switching
property that is very well explained by selected elementary switching operators γαβ .
Consequently, the weights μH(α,β) for these elementary switching operators have
to possess high numerical values. In this context, four assumptions can be made for
simulating the large-signal behavior of ferroelectric materials by means of Preisach
hysteresis models:

1. Apositive change in the electric field intensity E(t)with time increases the electric
polarization P(t) of the ferroelectric material. In the same way, a negative change
reduces P(t). Therefore, the weight μH(α,β) for each elementary switching
operator has to be positive, i.e.,

μH(α,β) > 0 ∀ α,β : − 0.5 ≤ β ≤ α ≤ + 0.5 . (6.16)

2. The switching behavior of unloaded domains within ferroelectric materials is
assumed to be symmetrical. Elementary switching operators with the changeover
points α = −β emulate this behavior. As a consequence, we can expect that the
weights for those operators are rather large.

3. If ferroelectric materials are excited with a symmetric electrical signal regarding
its magnitude, the resulting magnitude of P(t) will be mostly symmetrical, too.
To consider such material behavior, the weighting distribution μH(α,β) should
be symmetrical about the axis α = −β, i.e., μH(α,β) = μH(−β,−α).

4. As hysteresis curves of the electric polarization indicate, the steepest slope is
reached close to the coercive field intensity E±

c . This implies that, statistically, the
majority of domains within ferroelectric materials will switch when the applied
electric field intensity is similar to E±

c . In the weighting distribution, the normal-
ized coercive field intensities e±

c are located at the axis α = −β. Hence, there
also arise the maximum values of the weights.

Principally, one can distinguish between two approaches to determine weighting
distributions μH(α,β) for the Preisach hysteresis model: (i) μH(α,β) is spatially
discretized in elements and (ii) μH(α,β) is defined through an analytical function.
We will study the main aspects of selected implementations for both approaches in
Sects. 6.5.1 and 6.5.2.

6.5.1 Spatially Discretized Weighting Distribution

Here, let us concentrate on two different implementations to obtain the spatially dis-
cretized weighting distributionµ =[

μi j
]
. While the first implementation is based on

first-order reversal curves (FORCs), the second one minimizes deviations between
appropriate measurements and simulations.



6.5 Weighting Procedures for Switching Operators 215
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Fig. 6.9 a Possible input signal E(t) to obtain FORCs (first-order reversal curves) for ferroelec-
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ter 10.0mm; thickness 2.0mm; material PIC255)

First-Order Reversal Curves

First-order reversal curves result from alternately loading the investigated material
with a particular sequence of increasing and decreasing input signals. In case of fer-
roelectric materials, such a sequence starts at the electric field intensity E−

sat, which
leads to the negative saturation P

(
E−
sat

)
of the electric polarization. The electric field

intensity is always increased up to positive saturation (i.e., E+
sat) and, then, reduced

again to a value slightly higher than the previous minimum (see Fig. 6.9a). Con-
sequently, the local minimum EF(t) (reversal field intensity) of the input increases
and its maximum remains constant with respect to time t . For the mentioned input
sequence, the FORCs are defined as part of the hysteresis curve ranging from local
minimum P(EF) to global maximum P

(
E+
sat

)
, respectively (see Fig. 6.9b).

Mayergoyz [62, 64] exploited FORCs to identify spatially discretized weighting
distributions for ferromagnetic materials. In doing so, he evaluated the second-order
partial derivative of the acquired FORCs and performed a special coordinate trans-
form. Some research groups (e.g., Stanco et al. [86] and Stoleriu et al. [87]) applied a
similar approach for characterizing ferroelectric materials. However, the identifica-
tion of the spatially discretized weighting distribution µ for those materials through
FORCs exhibits various drawbacks [101]. The main drawbacks are the following:

• The slope steepness in hysteresis curves for ferroelectric materials is usually much
larger than for ferromagneticmaterials. Since especially at the steepest slopes,most
switching processes of the unit cells take place within the ferroelectric materials,
one has to change the reversal field intensity EF(t) slowly (see Fig. 6.9a). For this
reason, the required measurement effort increases remarkably.

• To some extent, there occur negative entries in the identified µ for ferroelectric
materials, which result from creep effects during the extensive FORCs acquisition.
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Strictly speaking, such negative entries contradict the previously deducedAssump-
tion 1 (see p. 214) for the weighting distribution.

• With a view to measuring FORCs, the investigated ferroelectric material has to
reach its negative as well as positive saturation. It seems only natural that this is
not always possible in practical applications of actuators, which incorporate such
materials.

• The Preisach hysteresis model will be particularly well suited for predicting hys-
teretic behavior of materials if the input signals for identification are similar to
those in the application. However, FORCs result from a predefined input sequence
ranging from negative to positive saturation. Owing to this fact, we favor identifi-
cation procedures allowing a flexible choice of input sequences instead.

According to the listed drawbacks, alternative approaches (see, e.g., Sect. 6.5.2) are
required which yield weighting distributions for ferroelectric materials.

Adjustment of Simulations

Contrary to thepreviouslymentionedmethod for the identificationofµ,Kaltenbacher
and Kaltenbacher [49] suggest an approach that is based on comparing measure-
ments to outputs of the Preisach hysteresis operator HP. Hegewald [36, 37] firstly
applied this approach for ferroelectric materials. To distinguish the resulting spa-
tially discretized weighting distribution from the later ones, let us introduce the
notation µHEG =[

μHEG,i j
]
, which represents the aimed quantity. The principal idea

of the approach is minimizing the least squares error between normalized acquired
data for the electric polarization pmeas(k) and predicted model outputs, i.e., (time
step k = 1, . . . , kmax)

min
µHEG

kmax∑

k=1

⎡

⎣pmeas(k) −
imax∑

i=1

jmax∑

j=1

Pi j (k) · μHEG,i j

⎤

⎦

2

. (6.17)

Thereby, the matrix elements μHEG,i j are iteratively adjusted in a convenient way.
If the changeover points α and β of the elementary switching operators γαβ are
discretized in M intervals, respectively, µHEG will contain nHEG = (M2 + M)/2
independent entries.

In the following, we take a look at results for a piezoceramic disk (diame-
ter 10.0mm; thickness 2.0mm), which is made of the ferroelectrically soft material
Pz27. To experimentally determine the electric polarization P in thickness direction,
a Sawyer–Tower circuit [79] was utilized,6 i.e., an additional capacitor CST was con-
nected in series to the investigated piezoceramic disk. Note that CST has to feature a
high capacitance value as well as a high insulating resistance. Figure 6.10a depicts
both measured hysteresis curves Pmeas(E) and simulated ones Psim(E) with respect
to the applied electric field intensity E . The waveform of E(t) that was utilized for
exciting the piezoceramic disk is shown in Fig. 6.10e. This waveform also served as
input sequence to identify µHEG through minimizing the least squares error (6.17).

6The Sawyer–Tower circuit was applied for all measurements of P in this chapter.
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As the comparison in Fig. 6.10a reveals, Pmeas(E) and Psim(E) coincide very well.
The deviations between them can be mainly ascribed to creep processes, which we
do not considered in the classical Preisach hysteresis model. Even though the excita-
tion signal refers to a large operating range of the piezoceramic disk, the simulation
procedure yields promising results.

The identified spatially discretized weighting distributionµHEG forM = 67 inter-
vals (i.e., nHEG = 2278 entries) is given in Fig. 6.10c. µHEG exhibits a wide value
range and only for a few combinations of changeover points, the obtained weights
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are large. Actually, the majority of weights is rather small. This may lead to problems
when the dividing line L(t) (cf. Fig. 6.6b) crosses isolated regions of small weights
since the operator output will hardly change [101].Moreover,µHEG is strongly asym-
metric, which does not agree with the deduced Assumption 3 (see p. 214). Besides,
due to the fact that nHEG parameters have to be modified in each iteration step, the
minimizing procedure for the identification of µHEG limits M to small values. As a
consequence, the Preisach planeP is also roughly discretized. We require, therefore,
an additional interpolation method to handle operator inputs between the discretized
values of the changeover points α and β.

To summarize, one can state that the adjustment of simulations to measurements
is a much better option to determine spatially discretized weighting distributions for
ferroelectricmaterials than the approach based onFORCs. From the practical point of
view, the large amount of required parameters nHEG, however, may cause significant
problems, e.g., uniqueness as well as robustness of the identified parameters.

6.5.2 Analytical Weighting Distribution

Alternatively to determining the individual entries of the spatially discretizedweight-
ing distribution, we can describe μH(α,β) through analytical functions. Such an
analytical function is desired to fulfill three properties:

1. The analytical description of the weighting distribution should enable reliable
modeling for different working areas of ferroelectric actuators, i.e., unipolar,
semi-bipolar as well as bipolar working areas.

2. With a view to uniquely identifying the parameters of the analytical function,
each parameter should exclusively modify one property of the hysteresis curve,
e.g., slope steepness.

3. The analytical function for μH(α,β) should be defined by a small number of
parameters.

If an analytical function fulfills these properties, we will be able to describe and
to identify weighting distributions for Preisach hysteresis models in a rather simple
manner. Property 2 is especially useful to consider additional influencing factors (e.g.,
mechanical prestress) on hysteresis curves by means of generalized Preisach hys-
teresis models (see Sect. 6.6). Concerning property 3, it is essential to find a good
compromise between number of parameters and desired accuracy of the model out-
put. Although an increased number of parameters may lead to a better accuracy, the
uniqueness of the parameters is remarkably reduced.

Analytical functions for defining weighting distributions do not specify the spa-
tial discretization M of the Preisach plane P in advance. Consequently, the actual
weight μH(α,β) can be computed for each combination of changeover points with-
out performing any interpolation. Note that from the practical point of view, one also
has to carry out spatial discretization since this is required for efficient numerical
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evaluations of the Preisach hysteresis operatorHP (see Sect. 6.4.2). Nevertheless, M
for identifying the parameters of the analytical function and for utilizingHP in prac-
tical applications can differ.

DAT Function

As saturation curves are quite similar to an arctangent function, Sutor et al. [89]
suggest a special analytical function for describing μH(α,β), which is based on
the second-order derivative of the arctangent function. The second-order derivative
is attributable to the double integral within Preisach hysteresis models (see (6.2)).
For this reason, the underlying function is commonly named DAT (derivative arc
tangent) function and reads as

μDAT(α,β) = B

1 +{
[(α + β) σ]2 +[(α − β − h)σ]2

}η (6.18)

with four independent parameter (nDAT = 4) yielding the dimensionless parameter
vector p = [B, η, h,σ]t. Originally, the DAT function was intended for modeling
ferromagnetic materials. Wolf et al. (e.g., [104, 106]) utilized this analytical function
to predict the large-signal behavior of ferroelectric materials through the Preisach
hysteresis operator. In the following, let us concentrate on an extended version of the
DAT function [101], which is given by

μDAT(α,β) = B

1 +{
[(α + β + h1) σ1]

2 +[(α − β − h2) σ2]
2}η (6.19)

and, thus, contains six independent parameters, i.e., p = [B, η, h1, h2,σ1,σ2]t and
nDAT = 6. Compared to (6.18), the extended DAT function7 is more flexible but
exhibits two additional parameters. We arrive at the discretized weighting distri-
bution µDAT =[

μDAT,i j
]
by spatially discretizing the Preisach plane in M equally

distributed intervals for the changeover points α and β. Again, the discretized ver-
sion µDAT contains (M2 + M)/2 entries.

Figure 6.11 displays a particular weighting distribution μDAT(α,β) according
to the DAT function as three- and two-dimensional representation in the Preisach
plane P , respectively. The pronounced maximum is affected by the parameters of
the analytical function in a different manner. The individual impacts on the weighting
distribution and on the resulting hysteresis curve (see Fig. 6.12) are as follows:

• B exclusively scales μDAT(α,β) and, therefore, modifies the magnitude of hys-
teresis curves. We can utilize B to compensate unwanted changes in hysteresis
curves due to the parameters η, σ1, and σ2.

• η prevalently affects the shape of the maximum in μDAT(α,β). For instance, a
large value for η causes a steep decrease of this maximum. Consequently, the
slope steepness of hysteresis curves is specified.

7The extended version of the DAT function is hereinafter also called DAT function.
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Fig. 6.11 Influence of parameters B, η, h1, h2, σ1, and σ2 on weighting distribution μDAT(α,β)

in Preisach plane P; a three-dimensional and b two-dimensional representation

• h1 shifts the maximum of μDAT(α,β) in P along the axis α = β. This parameter
is especially important for modeling asymmetric hysteresis curves, which may be
caused by, e.g., a bias ebias in the normalized electric field intensity (see Sect. 6.6.2).

• h2 shifts the maximum of μDAT(α,β) in P along the axis α = −β. In case of fer-
roelectric materials, we are able to vary the normalized coercive field intensity e±

c
of hysteresis curves through h2.

• σ1 and σ2 modify the maximum’s width of μDAT(α,β) in direction of the axesα =
β andα = −β, respectively. As a result, one altersmagnitudes of hysteresis curves
as well as shapes of minor loops.

In summary, the DAT function is able to specifically influence decisive properties
of simulated hysteresis curves for ferroelectric materials, e.g., coercive field inten-
sity and slope steepness. As already discussed, this fact is especially important for
generalized hysteresis models based on the Preisach hysteresis operator.

Just as it is suggested by Hegewald [37] for identifying the entries of µHEG,
the parameters B, η, h1, h2, σ1, and σ2 of the DAT function result from iterative
adjustments of model outputs to appropriate measurements. In doing so, we have
to minimize deviations between simulated and measured signals. The underlying
optimization procedure represents an ill-posed problem (see Chap. 5). Hence, we
require an appropriate regularization approach, which is provided by the Levenberg–
Marquardt algorithm and the iteratively regularized Gauss–Newton algorithm. Both
algorithms yield the aimed parameters for the DAT function in reasonable compu-
tation time but demand a proper initial guess for the parameter vector p. Such an
initial guess can be figured out by manually adjusting simulations to measurements.
In [101], robustness as well as reliability of the entire parameter identification is
proven through different examples.

With a view to comparing the different weighting procedures µDAT and µHEG,
let us also apply the DAT function to the previously mentioned measurement data
for the piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material Pz27).
Figure 6.10d depicts the identified spatially discretized weighting distribution µDAT
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B η h1

h2 σ1 σ2

Fig. 6.12 Parameter study for DAT functionμDAT(α,β) to individually rate impacts of B, η, h1, h2,
σ1, and σ2 on hysteresis curves, e.g., P(E); parameters are varied in the range ±[10, 20, 30, 40]%;
dashed and solid lines refer to negative and positive parameter changes, respectively; arrows indicate
increasing parameter values [101]

for M = 67 intervals. In contrast to µHEG, µDAT is symmetrical about the axis α =
−β, which coincides with Assumption 3 (see p. 214). Furthermore, there do not arise
isolated regions in µDAT where the weights exhibit negligible values. This fact is a
consequence of the utilized analytical function.

As the comparisons of measurements Pmeas(E) and simulations Psim(E) for the
electric polarization in Fig. 6.10a and b reveal, µHEG and µDAT lead to prediction
results of similar quality. Even though the DAT function is defined by amuch smaller
amount of independent parameters (i.e., nDAT � nHEG), which also facilitates their
identification, the normalized relative deviations8 εr between Pmeas(E) and Psim(E)

forµDAT are only marginally higher than forµHEG (see Fig. 6.10f). It is, thus, reason-
able to assume that µDAT and µHEG feature identical performance. However, from
the physical point of view, the resulting weights µDAT are more reliable than µHEG.
Because of the aforementioned arguments, the DAT function should be generally
preferred to identify weighting distributions for Preisach hysteresis operators.

Gaussian Function and Lorentz Function

There exist several further analytical functions to describe the weighting distribu-
tion μH(α,β) for Preisach hysteresis models. Especially in case of ferromagnetic

8In this book, the normalized relative deviation εr usually indicates the absolute deviation related
to the difference between the considered maximum and minimum.
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B h1 h2

Fig. 6.13 Parameter study for Lorentz function μLOR(α,β) to individually rate impacts of B, h1
and h2 on hysteresis curves, e.g., P(E); parameters are varied in the range ±[10, 20, 30, 40]%;
dashed and solid lines refer to negative and positive parameter changes, respectively; arrows indicate
increasing parameter values [101]

materials, the analytical functions are oftentimes motivated by statistical accumula-
tions of switching processes taking place within thematerial. In order to consider this
fact, one can use two-dimensional Gaussian and Lorentz distributions for analytical
description (e.g., [5, 20, 27, 90]). As Azzerboni et al. [6] suggest in a similar manner,
the Gaussian and Lorentz function (distribution) are given by

μGAUSS(α,β) = B2 · exp
[

−1

2

(
α − β − 2h1

h1
σ1

)2

− 1

2

(
α + β

h2
σ2

)2
]

(6.20)

μLOR(α,β) = B

1 +
(

β + h1
h1

σ1

)2 · B

1 +
(

α − h2
h2

σ2

)2 , (6.21)

respectively. The impacts of the parameters B, h1, h2, σ1, and σ2 on the weight-
ing distribution approximately correspond to those of the DAT function. Again, B
exclusive scales the magnitude of μGAUSS(α,β) and μLOR(α,β), which is equal to
scaling hysteresis curves. Through the parameters σ1 and σ2, we alter slope steep-
ness in hysteresis curves. However, in distinction from the DAT function, h1 as well
as h2 do not allow an independent adjustment of the normalized coercive field inten-
sity e±

c (see Figs. 6.12 and 6.13). They also changemagnitudes of major loops, which
may cause problems during parameter identification. On account of these facts, both
the Gaussian function and the Lorentz function are not optimally suited for general-
ized Preisach hysteresis models.

Figure 6.14a shows measured and simulated major loops for the electric polar-
ization P(E) of a piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material
Pz27). The identified spatially discretized weighting distributions µDAT, µGAUSS as
well as µLOR are depicted in Fig. 6.14b–d; Table 6.1 contains the underlying param-
eters. In general, µDAT, µGAUSS as well as µLOR lead to reliable model outputs of the
Preisach hysteresis operator. A more detailed comparison, however, points out that
the deviations between measurements and simulations with the Gaussian function
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(a) comparison for major loop (b) log10(µDAT)

(c) log10(µGAUSS) (d) log10(µLOR)
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Table 6.1 Resulting parameters for DAT function μDAT(α,β), Gaussian function μGAUSS(α,β),
and Lorentz function μLOR(α,β); parameters a and b refer to reversible parts (see Sect. 6.6.1) in
hysteresis curve

B η h1 h2 σ1 σ2 a b

DAT 338.105 1.467 0.010 0.411 47.12 36.30 0.052 5.34

Gaussian 0.016 − 0.206 0.119 5.06 3.20 0.053 7.30

Lorentz 0.022 − 0.200 0.211 13.20 12.08 0.051 5.05

are significantly higher than those with the DAT function as well as Lorentz function.
Close to the reversal points of the applied electric field intensity E , measurements
and simulations withµGAUSS differ considerably. Hence, μDAT(α,β) and μLOR(α,β)

should be preferred as analytical function for predicting the large-signal behavior
of ferroelectric materials. Nevertheless, when we are also interested in generalized
Preisach hysteresis models, μDAT(α,β) will be currently the only known analyti-
cal function providing uniqueness, accuracy as well as flexibility of the weighting
distribution and, consequently, of the Preisach hysteresis operator [101].
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e(t)e(t)
P (t)

P (t)

S(t)
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f ;T

Fig. 6.15 Inputs as well as outputs of classical Preisach hysteresis operator HP and generalized
Preisach hysteresis operator HG; e(t) stands for normalized electric field intensity

6.6 Generalized Preisach Hysteresis Model

The classical Preisach hysteresis operator HP is only suitable to a limited extent
for predicting hysteretic behavior of ferroelectric materials. For this reason, it is
important to improve and modifyHP, which leads to so-called generalized Preisach
hysteresis models with the underlying operatorHG. Several types of model general-
izations were developed as well as implemented by Wolf and colleagues (e.g., [78,
104, 106]). Principally, those generalizations canbe divided into three categories. The
first category aims at increasing flexibility to consider reversible parts (Sect. 6.6.1)
and asymmetric behavior (Sect. 6.6.2), while the second one deals with the mechan-
ical large-signal behavior of ferroelectric materials (Sect. 6.6.3). The third category
addresses extensions of HP to take into account both the rate-dependent behav-
ior of the materials (Sect. 6.6.4) and the impact of applied uniaxial mechanical
stresses (Sect. 6.6.5). In contrast toHP, the resulting generalized Preisach hysteresis
operatorHG features an additional output S(t) for mechanical strains of ferroelectric
materials (see Fig. 6.15). Moreover,HG is equipped with two further inputs concern-
ing frequency f of the electrical excitation signal and mechanical stress T within
the material. Below, the model generalizations are studied separately.

6.6.1 Reversible Parts

Weighting distributions μH(α,β) of the Preisach hysteresis operator HP consist in
general of finite values. As a result, the gradient ∂y(k) /∂x(k) of discrete-timemodel
output y(k) = HP[x](k) with respect to discrete-time input x(k) is always zero at
the reversal points. This characteristic can be seen in Figs. 6.12 and 6.13. How-
ever, measured output quantities of ferroelectric materials exhibit certain saturation
trends. For instance, measured hysteresis curves P(E) for the electric polarization
show the property ∂P/∂E |E=Esat �= 0.Mainly, this is due to reversible effects (intrin-
sic effects; see Sect. 3.4.1) taking place within ferroelectric materials. Based on the
assumption that there also occurs saturation for such effects, they are oftentimes
modeled through an appropriate arctangent functions. Sutor et al. [89] suggest an
additional linear part c, which was primarily applied for describing the large-signal
behavior of ferromagnetic materials. Therewith, the entire discrete-time model out-



6.6 Generalized Preisach Hysteresis Model 225

put y(k) becomes

y(k) = HP[x](k) + yrev(x(k)) , (6.22)

whereas the added reversible part yrev is given by

yrev(x(k)) = a · arctan(b · x(k)) + c · x(k) . (6.23)

Let us utilize a slightly different approach for ferroelectricmaterials. Reversible parts
are again considered by means of an arctangent function. Instead of adding those
parts to y(k), we incorporate them directly in the weighting distribution μH(α,β).
This will offer particular advantages when the generalized Preisach hysteresis opera-
torHG has to be inverted (see Sect. 6.8). With a view to explaining the approach, it is
helpful to take a closer look at the weighting distribution in the Preisach planeP (see
Fig. 6.16a). The incorporation of reversible parts is performed through weights on
the axis δ = α = β [64, 69]. Due to the properties of the elementary switching oper-
ators γαβ , these weights will be cumulatively summed up if the operator input x(k)
increases. On the other hand, in case of a decreasing input, the weights are cumula-
tively subtracted. These cumulative operations represent the incorporated reversible
part yrev(k) of the modified Preisach hysteresis model. Hence, yrev(k) reads as

yrev(k) =
δ2∫

δ1

μH(δ, δ) γδδ[x](k) dδ (6.24)

in analytical formulation. Here, δ1 and δ2 stand for the lower and upper integration
limit, respectively. While δ1 is −0.5 for increasing inputs, decreasing inputs yield
δ1 = 0.5 (see Fig. 6.16b). Since (6.24) contains an integration, we have to differ-
entiate (6.23) with respect to x = δ, which leads to the reversible parts r(δ) in the
Preisach plane

r(δ) = r(x) = ab

M
[
1 + b2(x + h1/2)

2
] + c . (6.25)

Note that r(δ) exclusively defines the weights along the axis α = β, e.g., μH
(−0.3,−0.3) = r(−0.3). The function is composed of the dimensionless param-
eters a, b, c, and h1. By conducting a normalization to M in (6.25), the resulting
output yrev(k) is largely independent of the utilized spatial discretization.

As indicated in Fig. 6.16a, a, b, c, and h1 modify r(δ) in a distinct way, respec-
tively. The parameter a scales the maximum and b its extension. Through c, we
can add an offset on the axis α = β causing a linear part in the model output. In
accordance with the DAT function μDAT(α,β), h1 shifts the maximum of r(δ) along
the axis α = β. The reason for introducing the parameter h1 will be discussed in
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Fig. 6.16 aWeighting distributionμDAT(α,β) and reversible parts r(δ) in Preisach planeP; arrows
indicate increasing parameter values; b normalized version of function r(δ) and its integration for
increasing as well as decreasing model inputs, respectively; parameter values for r(δ) (see (6.25)):
a = 0.4, b = 15, c = 0 and h1 = 0.1 [101]

Sect. 6.6.2. On account of the fact that c can usually be omitted in (6.25), r(δ) and,
consequently, yrev(k) are described by the two additional parameters a and b [101].
Considering also the DAT function, the analytical weighting distribution for model-
ing the large-signal behavior as well as reversible parts comprises eight independent
parameters, i.e.,

p = [a, b, B, η, h1, h2,σ1,σ2]
t . (6.26)

At this point, it should be mentioned that the reversible parts have already been
applied in Figs. 6.10 and 6.14 to obtain the results by means of analytical weighting
distributions. Table 6.1 additionally contains the parameters a and b for μDAT(α,β),
μGAUSS(α,β) as well as μLOR(α,β).

6.6.2 Asymmetric Behavior

According to the assumptions in Sect. 6.5 (see Assumptions 2 and 3 on p. 214),
the switching behavior of unloaded domains inside ferroelectric materials is sym-
metrical to the applied electric field intensity. However, especially ferroelectrically
hard materials often exhibit asymmetric hysteresis curves. This fact can be mainly
ascribed to a restricted mobility of domain walls (see also Sect. 3.6.2). Such pinned
or clamped domain walls originate from defects and imperfections in the crystal
lattice [18]. As a result, a bias field intensity may arise which has to be compensated
by the applied electric field in order to initiate domain switching processes.

The bias field intensity Ebias (normalized value ebias) can be considered within the
generalized Preisach hysteresis model by shifting an originally symmetric weighting
distribution μH(α,β) along the axis α = β. For this purpose, we introduced in the
DAT function the parameter h1 that shifts themaximumofμDAT(α,β) (see Fig. 6.11b)
as well as of the reversible parts r(δ) (see Fig. 6.16a) in the Preisach plane P .
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(a) step-by-step procedure (b) comparison for major loop

(c) log10(µDAT) (d) reversible parts
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Fig. 6.17 a Step-by-step procedure to simulate asymmetric hysteresis curves through Preisach
hysteresis modeling; b comparison of measurements and simulations for a major loop of P(E); c
spatially discretized weighting distribution µDAT for M = 800; d reversible parts r(δ) according
to (6.25); piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material Pz26)

Apart from the asymmetric shape of a hysteresis curve y(x) with respect to the
applied input x , the output y itself can be asymmetric in addition leading tomax(y) �=
−min(y) (see, e.g., Fig. 6.17b). But if every elementary switching operator γαβ of
the Preisach hysteresis model takes the output value −1 (i.e., P = P−) or +1 (i.e.,
P = P+), y will be symmetrical, which means max(y) = −min(y). The Preisach
hysteresis operator is, thus, not sufficient to model asymmetric outputs ranging from
min(y) to max(y). In case of asymmetric hysteresis curves P(E) for ferroelectric
materials, we have to add an appropriate offset Poff to the electric polarization that
is determined through measurements [101].

To present the applicability of the generalized Preisach hysteresis operator HG,
let us investigate a piezoceramic disk (diameter 10.0mm; thickness 2.0mm) made
of the ferroelectrically hard material Pz26. Figure 6.17a illustrates the step-by-step
procedure to obtain an asymmetric hysteresis curve through Preisach modeling. As
the comparison of measurements and simulations for a major loop in Fig. 6.17b
reveals, HG yields reliable results. The asymmetric behavior with respect to E is
well described by the function parameter h1. Figure 6.17c and d depict the obtained
weighting distribution µDAT and r(δ) denoting reversible parts on the axis α = β.
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6.6.3 Mechanical Deformations

Until now, we have concentrated on Preisach modeling for the electrical behavior
(i.e., P(E)) of ferroelectric materials. In many practical applications (e.g., high-
precision positioning systems) of those materials, it is, however, of utmost impor-
tance to consider their mechanical behavior in addition. With a view to simulat-
ing the mechanical large-signal behavior of piezoceramic materials, let us briefly
repeat relevant physical processes on the atomistic as well as mesoscopic scale (see
Sect. 3.6.2). The spontaneous polarization pn of a unit cell points in direction of its
largest geometric dimension. Because each pn is almost perfectly aligned in parallel
to the applied electric field E in the saturation state of the piezoceramic material,
the macroscopic mechanical deformation also reaches the highest value in direction
of E . During changes from positive to negative saturation (and vice versa), several
domains switch to the ferroelastic intermediate stage at first, which causes a negative
mechanical deformation of the material [14]. When |E | exceeds thereupon the coer-
cive field intensity

∣
∣E±

c

∣
∣, the domainswill be aligned again in direction of E , i.e., 180◦

with respect to their original orientation. The macroscopic polarization state of the
piezoceramic material, thus, changes its sign, while the mechanical deformations are
equal for positive and negative saturation. In other words, electric polarization and
mechanical deformation differ significantly in terms of the underlying large-signal
behavior.

We can reasonably describe the mechanical deformation S(E) of ferroelectric
actuators through a generalized Preisach hysteresis model (e.g., [32, 38]) if they
operate in unipolar and semi-bipolar working areas (i.e., E > E−

c ). The function
parameter c (see (6.25))within the presented operatorHG provides shifts of simulated
deformations in vertical direction, which are possibly existing in theseworking areas.
On the contrary, butterfly curves resulting for bipolar working area demand further
extensions of the Preisach hysteresis operator. For this purpose, one can find two
different approaches in literature:

• Kadota and Morita [47] introduced a tristable hysteron to model the ferroelas-
tic intermediate stage of domains. As the name indicates, this hysteron features
three stable states, i.e., −1, 0 as well as +1. Since the approach requires a four-
dimensional weighting distribution, complexity of the underlying Preisach hys-
teresis models considerably increases.

• Due to the fact that mechanical deformations of ferroelectric materials are equal
for positive and negative saturation, we may rectify the output y = HP[x] of the
classical hysteresis operator (e.g., [36]).

Concerning practical applications of Preisach hysteresis models for ferroelectric
materials, the second approach should be preferred. That is why we will concentrate
exclusively on this approach for describingmechanical deformations. Hegewald [36]
conducted rectification of the operator output guided by the approximation S ∝ P2.
To model the large-signal behavior of mechanical deformations by means of the
Preisach hysteresis operator, he utilized the same weighting distribution as for the
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electric polarization, i.e., μHEG(α,β). Under certain circumstances, the approxima-
tion S ∝ P2 yields satisfactory results, but in general, the deviations between sim-
ulations and measurements of S(E) are rather high. The following findings can be
deduced for computingmechanical large-signal behavior through Preisach hysteresis
operators [101]:

• For several ferroelectric materials, the rectified electric polarization significantly
differs from the macroscopic mechanical deformation. It is, therefore, necessary
to identify individual weighting distributions for the polarization and the defor-
mation, which are parameterized by the vectors pP and pS , respectively.

• As mentioned above, domain switching processes by 180◦ within ferroelectric
materials alter the sign of the electric polarization but do notmodify their mechani-
cal deformation. Thus, it seems reasonable to rectify the operator output y through
computing its absolute value instead of squaring. In doing so, the function parame-
ters (e.g., B) of μDAT(α,β) influence hysteresis curves for polarization and defor-
mation in a similar manner (see p. 219).

• To account for asymmetric large-signal behavior of mechanical deformations, we
have to extend the generalized Preisach hysteresis operator HG.

An appropriate method to consider these findings for modeling mechanical defor-
mations of ferroelectric materials is given by (time step k; normalized electric field
intensity e)

S(k) ={c1 + |HG[e](k) + c2| + c3(e − 0.5)} · 100% . (6.27)

Hence, the three parameters c1, c2 and c3 are required in addition. Overall, Preisach
hysteresis modeling for mechanical deformations comprises 11 independent param-
eters, namely

pS = [a, b, B, c1, c2, c3, η, h1, h2,σ1,σ2]
t . (6.28)

Five parameters refer to the DAT function μDAT(α,β) and two parameters to
reversible parts in the large-signal behavior.

In order to demonstrate this modeling approach, let us investigate a ferroelectri-
cally hard piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material Pz26),
which usually features an asymmetric large-signal behavior for both polarization and
deformation. The mechanical deformations of the piezoceramic disk were acquired
with a linear variable differential transformer (abbr. LVDT [99]) that was optimized
formeasuring small displacements.9 Figure 6.18a shows the basic steps in simulating
a butterfly curve according to (6.27). Asymmetric behavior is incorporated in the gen-
eralizedPreisach hysteresis operatorHG through the parameter h1. Before computing
the absolute value, we add an offset c2 to themechanical deformation. Therewith, one
can model differences in maximum values of S, i.e., S−

max �= S+
max. Finally, the linear

equation c1 + c3(e − 0.5) is added to consider different slope stiffnesses as well as

9The LVDT was applied for all measurements of S in this chapter.
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the circumstance S−
min �= S+

min. To identify the parameter vector pS , simulations have
to be adjusted so that they match measurements best possible.

As Fig. 6.18b reveals, measured and simulated mechanical deformations of the
piezoceramic disk coincide very well. It can be stated that the presented Preisach
hysteresis model is ideally suited for predicting mechanical deformations of ferro-
electricmaterials. Figure 6.18c and d depict the resultingweighting distributionµDAT
and the reversible parts r(δ), respectively.

6.6.4 Rate-Dependent Behavior

Even though a piezoceramic material is macroscopically excited in a uniform man-
ner, domain switching processes inside the material do not take place simultane-
ously. Depending on the alteration rate of the excitation signal, this may remarkably
influence macroscopic quantities (e.g., mechanical strain) [46]. The macroscopic
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rate-dependent behavior of piezoceramic materials originates from their inhomoge-
neous inner structure, which yields locally different electric field intensities as well
as mechanical stresses for the domains. In a first approximation, we can assume
that a single domain switches quickly after its individual switching energy is locally
provided [72]. Such switching processes and reversible as well as irreversible ion dis-
placements alter the spatial distribution of both electric field intensity andmechanical
stress inside the piezoceramic material. As a result, a large number of domains do not
switch immediately but depending on previous switching processes of neighboring
domains and ion displacements within them. From the macroscopic point of view,
this leads to the creep behavior of electric polarization and mechanical strain (e.g.,
[109]).

Outputs y(t) of the classical Preisach hysteresis operator HP solely depend on
temporal succession of the input x(t) (see I and J in Fig. 6.7). Therefore, the alter-
ation rate of x(t) with respect to time (i.e., ∂x(t) /∂t) does not affect y(t). Since
macroscopic electric polarizations and macroscopic mechanical strains of ferroelec-
tric materials exhibit such a dependence, one has to extend HP, which results in
so-called dynamic or rate-dependent Preisach hysteresis models. Mayergoyz [63]
suggests a dynamic Preisach hysteresis model that is based on a varying weighting
distribution μH(α,β) according to the partial time derivative of y(t). Viswamurthy
et al. [95] applied this approach to describe dynamic hysteresis of piezoceramic
stack actuators. In several other research works (e.g., [67, 85]), the partial time
derivative of x(t) is used instead for modifying μH(α,β). As alternative to chang-
ing the weighting distribution, Bertotti [11] introduced time-dependent elementary
switching operators for dynamic Preisach modeling. In contrast to common relay
operators (see Fig. 6.3a), these operators can take continuous values between−1 and
1. Actually, their practical implementation is rather complicated and, thus, the oper-
ator output cannot be calculated efficiently. Füzi [31] developed a dynamic Preisach
hysteresis model through applying an appropriate time lag for x(t). Thereby, the
resulting hysteresis operator loses its physical meaning, which poses a significant
problem regarding generalization.

A different class of dynamic Preisach hysteresis models for ferroelectric materi-
als is based on so-called creep operators. Such an operator is connected in series to
the output of the classical Preisach hysteresis operator, i.e., y(t) = HP[x](t) repre-
sents the creep operator’s input. Hegewald [36] as well as Reiländer [76] utilized a
rheological modeling approach to achieve appropriate creep operators for ferroelec-
tric materials. This phenomenological approach is commonly named Kelvin–Voigt
model. A single elementary creep operator can be understood as a parallel connec-
tion of one spring and one damper element (cf. Fig. 5.20 on p. 168). By means of
individually weighting several of those elementary creep operators, we are able to
describe the creep behavior of ferroelectric materials in a reliable way (e.g., [36]).
Although elementary creep operators can be efficiently implemented, the amount
of necessary parameters for dynamic Preisach hysteresis models increases remark-
ably. Consequently, the uniqueness of the parameters might get lost during their
identification.
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With a view to practical applications of dynamic Preisach hysteresis models
for ferroelectric actuators, we are primarily interested in a modeling approach that
requires only a few additional parameters. Because ferroelectric actuators operate in
most applications in a limited frequency range, one may simply extend the classical
Preisach hysteresis operatorHP. As presented in [67, 85], let us also alter the weight-
ing distribution. For this purpose, a special procedure for piezoceramic actuators has
been developed at the Chair of Sensor Technology (Friedrich-Alexander-University
Erlangen-Nuremberg), which is based on the weighting distribution μDAT(α,β). In
short, the analytical function defining μDAT(α,β) is modified with respect to the
frequency f of the excitation signal [78, 101, 103, 104]. This leads to a dynamic
weighting distribution μDAT(α,β, f ) and, therefore, we obtain a dynamic Preisach
hysteresis model.

In the following, the developed procedure is illustrated on the example of a ferro-
electrically soft piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material
Pz27). Figure 6.19a shows resulting hysteresis curves for the acquired electric polar-
ization Pmeas(E, f )with respect to the excitation frequency f . Thereby, the electrical
excitation was chosen so that the hysteresis curves contain major loops as well as
first-order reversal curves for selected excitation frequencies. The frequencies range
from 0.01 to 5Hz and are almost logarithmically distributed in this range. While
the electric polarization P±

sat in the saturation state and the remanent polarization P±
r

stay nearly constant, the coercive field intensity E±
c exhibits a significant dependence

on f . If f increases,
∣
∣E±

c

∣
∣will also increase which, thus, widens the hysteresis curve.

To incorporate the measured behavior of the investigated piezoceramic material
in our Preisach hysteresis model, let us take a look at Fig. 6.12. The parameter study
reveals that the parameter h2 of the DAT function has a similar effect on hysteresis
curves as f . For this purpose, it makes sense to exclusively alter h2 with respect
to f in order to obtain a dynamic Preisach hysteresis model. It is recommended to
proceed as follows: (i) As a first step, one should identify the entire parameter set
of the Preisach hysteresis model at one excitation frequency; (ii) subsequently, the
dependence of h2 on f should be evaluated, i.e., the remaining parameters (e.g., B)
are not modified. In case of the investigated piezoceramic disk, the entire parameter
set pP for the electric polarization was identified through an appropriate adjustment
of simulations to measurements at f = 0.1Hz. Note that for the other excitation
frequencies, h2 was simply changed within pP . As the simulated hysteresis curves
of the electric polarization Psim(E, f ) in Fig. 6.19c point out, we can describe the
frequency dependent behavior of the piezoceramic disk very well with the suggested
dynamic Preisach hysteresis model. This does not only refer to the major loops but
also to the minor loops.

Figure 6.19e depicts the identified values for h2 with respect to f for the electric
polarization of the investigated disk, i.e., h2,P( f ). These values can serve as data
points of a smoothing function ψsmooth( f ) for h2,P( f ). Due to the progression of the
data points, logarithmic as well as exponential functions are appropriate smoothing
functions [101]. Here, let us utilize a special exponential function, which is given by
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(a) measured polarization (b) measured strain

(c) simulated polarization (d) simulated strain
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ψsmooth( f ) = ς1 + ς2 · f ς3 (6.29)

with the function parameters ς1, ς2, and ς3. Hence, one is able to estimate val-
ues h2,P( f ) for excitation frequencies even if measured data for that frequencies
are not available. Thereby, two additional parameters are required. Table 6.2 con-
tains the resulting parameters of the smoothing function ψsmooth( f ) for h2,P( f ).
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Table 6.2 Parameters ςi of smoothing functionψsmooth( f ) in (6.29) for dynamicPreisach hysteresis
model

ς1 ς2 ς3

Polarization h2,P ( f ) −0.2121 0.6703 0.0308

Strain h2,S( f ) 0.3819 0.0583 0.4206

BS( f ) 0.3315 0.1091 0.0995

Now, we concentrate on the dynamic large-signal behavior of the mechanical
strain. Figure 6.19b depicts resulting hysteresis curves for acquired mechanical
strains Smeas(E, f ) of the investigated piezoceramic disk with respect to the excita-
tion frequency f . The minima S±

min remain nearly constant, while the maxima S±
max

strongly depend on f . That is the reason why apart from h2, the parameter B of
the DAT function has to be modified. However, in order to predict the dynamic
large-signal behavior of the mechanical strain by means of a dynamic Preisach
hysteresis model, one can perform the same steps as for the electric polarization.
Again, the entire parameter set pS should be identified for a certain excitation fre-
quency f (here 0.1Hz) and after that the dependence of h2 as well as of B on f
should be evaluated. As the comparison of measurements Smeas(E, f ) and simu-
lations Ssim(E, f ) (see Fig. 6.19d) indicates, the presented dynamic Preisach hys-
teresis model is also applicable for the mechanical strain. Figure 6.19f shows the
identified values for h2,S( f ) and BS( f ) with respect to f as well as the smoothing
functionsψsmooth( f ) for both parameters according to (6.29). The underlying param-
eters ς1, ς2, and ς3 are listed in Table 6.2. In summary, dynamic Preisach hysteresis
modeling for the large-signal behavior of mechanical strains requires four additional
parameters.

6.6.5 Uniaxial Mechanical Stresses

In various practical applications, ferroelectric actuators are mechanically clamped or
loaded causing a certain mechanical prestress within the ferroelectric material. For
instance, piezoelectric stack actuators have to be mechanically prestressed in order
to prevent damage during operation (see Sect. 10.1). Mechanical stresses arising
within a ferroelectric material can, however, alter its electrical as well as mechani-
cal behavior significantly [106, 109, 110]. To demonstrate this fact, we consider the
large-signal behavior of a ferroelectrically soft piezoceramic disk (diameter 10.0mm;
thickness 2.0mm;material Pz27). Figures 6.20a and6.21a depict the acquired electric
polarization Pmeas(E, T ) and mechanical strain Smeas(E, T ) of the disk for varying
uniaxial mechanical prestresses T , respectively. The mechanical load was applied
in thickness directions (3-direction) of the disk through a tension-compression test-
ing machine. It can be clearly seen that both the electrical and mechanical behavior
strongly depend on the mechanical prestress inside the disk. The reason for this lies
in switching processes of domains and in the internal structure of piezoceramicmate-
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thickness 2.0mm; material Pz27)

rials. The polarization direction (spontaneous polarization) within the units cells is
preferably aligned in parallel to the applied electric field E . Against that due to the
connection of polarization direction and largest geometric dimension of the unit cells,
they are preferably aligned orthogonal to the applied mechanical stress T . Conse-
quently, macroscopic polarizations as well as mechanical strains will be decreased if
the directions of E and T coincide,which is the case for the investigated piezoceramic
disk. The greater T , the more domains will stay in the ferroelastic intermediate stage
during poling and can no longer be aligned in the direction of E [14]. Hence, coercive
field intensity

∣
∣E±

c

∣
∣, remanent polarization

∣
∣P±

r

∣
∣, polarization

∣
∣P±

sat

∣
∣ in the saturation

state as well as the maximum mechanical strain S±
max of the piezoceramic material

are reduced which yield smaller hysteresis curves (see Figs. 6.20a and 6.21a).
To utilize Preisach hysteresis modeling for the large-signal behavior of mechani-

cally prestressed ferroelectric materials, one may identify the entire parameter set of
the generalizedmodel for the current situation. That will be, however, only possible if
the mechanical prestress remains constant during operation. In case of time-varying
mechanical loads, it makes sense to consider the resulting mechanical prestress as
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additional input of a generalized Preisach hysteresis model HG (see Fig. 6.15).
For ferromagnetic materials, there can be found several publications concerning
the incorporation of mechanical prestresses in Preisach hysteresis models. Some of
the available methods are briefly described below. Adly et al. [1] suggest an approach
that is based on the superposition of two Preisach hysteresis operators. While the
magnetic field intensity serves as input for the first hysteresis operator, the mechani-
cal stress is the input for the second one. Since the weighting distribution of the first
hysteresis operator depends on stress and those of the second one on magnetic field
intensity, a mutual coupling of magnetic and mechanical quantities is achieved. The
particular problem here is the identification of appropriate weighting distributions.
Bergqvist and Engdahl [10] use a single Preisach hysteresis operator with one input,
which is given by combiningmagnetic field intensity andmechanical stress. Because
of the fact that each elementary switching operator γαβ requires an individual input
resulting from this combination, model complexity increases extensively. Enhance-
ments of both methods are mentioned in, e.g., [19, 60]. In contrast to ferromagnetic
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materials, the number of publications dealing with Preisach hysteresis models for
ferroelectric materials under additional consideration of mechanical prestress is cur-
rently very low. Hughes andWen [41] early recognized a need for Preisach hysteresis
models with two separate inputs for electrical excitation andmechanical prestress but
did not pursue this path toward a generalized approach. Freeman and Joshi [30] intro-
duced a hysteron depending on the applied mechanical prestress. However, they only
presented simulation results of the rate-independent approach and did not conduct
verifications through measurements on test samples.

Due to the lack of appropriate Preisach hysteresis models enabling consideration
of mechanical prestress within ferroelectric materials, an appropriate generalized
Preisachhysteresismodelwasdeveloped at theChair ofSensorTechnology (Friedrich-
Alexander-University Erlangen-Nuremberg) [101, 105, 106]. Let us explain the
underlying idea by the aforementioned large-signal behavior of the piezoceramic disk
in case of uniaxial mechanical prestress. During acquisition of the electric polariza-
tion Pmeas(E, T ), the mechanical prestress was increased starting from 0 to 100MPa
in steps of 5MPa. The curves in Fig. 6.20a refer to the steady state, which means that
mechanical creep processes taking place within a prestressed ferroelectric material
had already decayed [101]. Similar to the procedure for the rate-dependent behavior
of ferroelectric materials (see Sect. 6.6.4), one can modify the weighting distribu-
tion of a classical Preisach hysteresis model with respect to the applied mechanical
load. Here, we introduce the weighting distribution μDAT(α,β, T ), which is, thus,
also a function of the mechanical prestress T . As the comparison of Pmeas(E, T ) in
Fig. 6.20a and the parameter study in Fig. 6.12 reveals, the function parameters B, η
and h2 should be altered according to the applied mechanical load. This can be
ascribed to the fact that

∣
∣P±

sat

∣
∣,

∣
∣P±

r

∣
∣,

∣
∣E±

c

∣
∣ as well as the slope steepness nearby

∣
∣E±

c

∣
∣

change through T . Figure 6.20b displays simulated electric polarizations Psim(E, T )

for different values of T . The entire parameter set of the Preisach hysteresis opera-
tor was identified for the mechanically unloaded disk, i.e., T = 0. Note that in the
loaded case (i.e., T �= 0), we solely modified B, η as well as h2. Figure 6.22a–c con-
tain the resulting parameters BP(T ), ηP(T ) and h2,P(T ) with respect to T . Because
these parameters feature smooth progression, they can serve as data points of the
smoothing function ψsmooth(T )

ψsmooth(T ) = ς1 + ς2e
ς3·T/(1MPa) . (6.30)

Consequently, the generalized Preisach hysteresis operatorHG comprises nine addi-
tional function parameters. For the investigated piezoceramic disk, these function
parameters are listed in Table 6.3. Finally, the relative deviation εr(T ) between
measured and simulated electric polarization is shown for two cases. While in
Fig. 6.20c, the applied mechanical prestress was considered in Preisach modeling,
Fig. 6.20d depicts the results if we neglect this dependence. The comparison of the
figures emphasizes once again the necessity of incorporating mechanical prestress
in Preisach hysteresis models for ferroelectric materials.

As a next step, let us take a closer look at the mechanical behavior of the piezoce-
ramic disk. In Fig. 6.21a, one can see the acquired butterfly curves Smeas(E, T ) in the
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Fig. 6.22 Resulting parameter values a–c for electric polarization P (see Fig. 6.20) and d–g for
mechanical strain S (see Fig. 6.21) with respect to applied mechanical prestress T , respectively;
a–c contain smoothing functions ψsmooth(T ) according to (6.30)

Table 6.3 Parameters ςi of smoothing functionψsmooth(T ) in (6.30) to consider uniaxialmechanical
prestress T in generalized Preisach hysteresis model HG

ς1 ς2 ς3

BP (T ) 5.7139 255.8991 −0.0275

ηP (T ) 0.4657 0.7089 −0.0142

h2,P (T ) 0.2819 0.1102 −0.0118

steady state for differentmechanical prestresses,which range from10 to 95MPa (step
size 5MPa). It is interesting to note that the maximum mechanical strains S±

max of
the piezoceramic disk slightly increase for small values of T (see Fig. 6.21c). This is
mainly attributable to the increased mobility of domains within piezoceramic mate-
rials in the ferroelastic intermediate stage [101]. However, a further increase of the
mechanical load strongly reduces S±

max. To simulate the mechanical strain of the disk
by means of Preisach hysteresis modeling, we modify the weighting distribution
again with respect to the applied mechanical load, which leads to μDAT(α,β, T ). In
contrast to Pmeas(E, T ), parameter studies indicate that adjusting B, η, and h2 is not
sufficient to describe Smeas(E, T ) in a reliable way. The parameter c2 (see (6.27)) has
also to be varied with respect to the applied prestress. Such as for the electric polar-
ization, the entire parameter set of the Preisach hysteresis operator was identified
for the mechanically unloaded disk. In the loaded case, we only modified B, η, h2
and c2. Figure 6.21b depicts the simulated butterfly curves Ssim(E, T ) for the piezo-
ceramic disk in case of mechanical prestresses ranging from 10 MPa to 50 MPa.



6.6 Generalized Preisach Hysteresis Model 239

The underlying parameters BS(T ), ηS(T ), h2,S(T ) as well as c2,S(T ) are depicted in
Fig. 6.22d–g. Due to the fact that S±

max slightly increases at first, one has to utilize
more complicated smoothing functions than for the electric polarization. Within a
limited prestress range, it is, nevertheless, possible to conduct similar approxima-
tions as in (6.30). At the end, Fig. 6.21d displays normalized relative deviations εr(T )

betweenmeasured and simulatedmechanical strains of the piezoceramic disk for dif-
ferent mechanical prestresses. These deviations stay mostly far below 10%, which
confirms once more the applicability of the presented Preisach modeling approach.

6.7 Parameter Identification for Preisach Modeling

Classical as well as generalized Preisach hysteresis modeling for ferroelectric mate-
rials requires several parameters that have to be identified. For the electric polariza-
tion P and mechanical strain S, we collect these parameters in the vectors (cf. (6.26)
and (6.28))

pP =[
aP , bP , BP , ηP , h1,P , h2,P ,σ1,P ,σ2,P

]t
(6.31)

pS =[
aS, bS, BS, c1, c2, c3, ηS, h1,S, h2,S,σ1,S,σ2,S

]t
, (6.32)

respectively. In Sect. 6.7.1, a identification strategy is presented allowing reliable
simulations for the different working areas of ferroelectric actuators, i.e., bipolar,
unipolar as well as semi-bipolar working areas. The underlying approach is then
applied to a piezoceramic disk (Sect. 6.7.2), which is made of the ferroelectrically
soft material PIC255.

6.7.1 Identification Strategy for Model Parameters

Just as in Chap. 5, the parameter identification represents an ill-posed inverse prob-
lem. The desired parameter vectors pP as well as pS result from comparisons of
measurements and simulations, i.e., outputs of the Preisach hysteresis operator. Due
to this fact, one has to acquire adequate electrical andmechanical quantities. Through
iterative adjustments of the parameters, the deviations between simulations and mea-
surements get reduced until a sufficiently good match is found. The success of the
iterative adjustments mainly depends on two points: (i) The measurement signals

utilized for identification and (ii) the initial guess p
(0)
P;S of the parameter vectors.

For Preisach hysteresis modeling, it is recommended to apply measurement signals
that are close to the excitation signals actually occurring in practical applications. In
other words, we should select measurement signals with respect to the working area
of the ferroelectric actuator. Because Preisach hysteresis operators demand inputs in
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electric polarization andmechanical strain in different working areas of ferroelectric actuators [101]

the range [−0.5, 0.5], the raw data has to be normalized to its maximum (see (6.7)).
Such normalizations are necessary in each working area of the ferroelectric actuator.

The initial guess strongly affects convergence of the identification approach as
well as its duration. To find p

(0)
P;S for the working areas, a specific procedure is

indispensable. Figure 6.23 depicts an entire identification strategy that has proven to
be effective for piezoceramic materials [101]. The presented strategy can be divided
into two parts, which are discussed below. While the first part exclusively relates to
bipolar working areas, the second one deals with unipolar as well as semi-bipolar
working areas.

• Bipolar Working Area: An appropriate initial guess p(0)
P to predict P of piezo-

ceramic materials in the bipolar working area (i.e., saturation and major loops)
results from manually adjusting the parameters according to Fig. 6.12. After con-
ducting iterative parameter adjustment on basis of an optimization approach (e.g.,
Levenberg–Marquardt algorithm), one obtains the solution ps

P . This vector serves
as starting point for identifying the parameter vector ps

S , which yields reliable sim-
ulations for S(E) in the bipolar working area, i.e., butterfly curves. In particular,
with the exception of aP and BP , the components of ps

P can be used directly as
initial guess for pS . Due to our definition of the Preisach hysteresis operator, we
have to rescale asP and Bs

P to achieve
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Table 6.4 Resulting parameters (i.e., components of ps
P and ps

S) for Preisach hysteresis modeling
of electric polarization P and mechanical strain S in different working areas of the piezoceramic
disk; bold numbers indicate parameters excluded from identification

B η h1 h2 σ1 σ2

Pbipolar 1868.5 1.275 0.011 0.450 76.7 167.5

Punipolar 1868.5 0.920 0.011 0.450 337.7 181.6

Psemi−bipolar 1868.5 0.881 0.143 0.450 392.1 160.8

Sbipolar 4.432 1.157 0.009 0.434 34.2 137.6

Sunipolar 4.432 1.089 0.675 0.041 12.2 89.3

Ssemi−bipolar 4.432 0.420 0.090 0.434 5884.4 1045.2

a · 103 b c1 c2 · 103 c3 · 103
Pbipolar 53.8 4.624 – – –

Punipolar 59.6 1.718 – – –

Psemi−bipolar 70.5 1.563 – – –

Sbipolar 1.5 3.641 0 −0.096 0.273

Sunipolar 16.8 0.062 0 −0.096 0.273

Ssemi−bipolar 1.5 1.608 0 −0.096 0.273

a(0)
S = ς · asP
B(0)
S = ς · Bs

P

}

with ς = 2(Smax − Smin) · 1Cm−2

(Pmax − Pmin) · 100% . (6.33)

The initial guess for the further parameters c1, c2 as well as c3 results from geo-
metric considerations shown in Fig. 6.18a.

• Unipolar and Semi-bipolarWorking Areas: For these working areas, ps
P and ps

S
from the bipolar working area represent appropriate initial guesses. However,
with a view to ensuring convergence of the subsequent optimization approach, the
parameter B should be excluded from identification, i.e., Bs

P and Bs
S as identi-

fied for the bipolar working area are directly used. It might also be necessary to
exclude h1 and h2 during optimization, i.e., h1,P , h2,P , h1,S as well as h2,S . If S(E)

is simulated in unipolar and semi-bipolar working areas without the model exten-
sion in (6.27), we can utilize a rescaled version of ps

P as suitable initial guess.
Again, it is recommended to exclude BS from identification and maybe h1,S as
well as h2,S in addition.
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6.7.2 Application to Piezoceramic Disk

Now, let us apply the aforementioned identification strategy to a piezoceramic
disk (diameter 10.0mm; thickness 2.0mm), which is made of the ferroelectrically
soft material PIC255. Table 6.4 contains the resulting components of ps

P and ps
S in

the different working areas. As can be clearly seen, the identified parameters differ
considerably for both the working areas and the physical quantities (i.e., electric
polarization or mechanical strain). This emphasizes once again the importance of
determining individual parameter vectors.

Figures 6.24 and 6.25 depict various measurements as well as simulations for
the piezoceramic disk in unipolar and semi-bipolar working areas, respectively. The
left panels deal with electric polarizations P of the disk and the right panels show
the obtained mechanical strains S. Due to the fact that the initial polarization state
of the disk is, strictly speaking, unknown in both working areas, it is not possible
to determine absolute values for P and S. We exclusively quantify changes of the
quantities instead, which are denoted by ΔP and ΔS. As the comparisons in the
Figs. 6.24a, b and 6.25a, b reveal, Preisach hysteresis modeling yields reliable simu-
lations for ΔP(E) and ΔS(E). This can also be seen in the Figs. 6.24c, d and 6.25c,
d, which display the time signals utilized for identifying ps

P and ps
S (see Table 6.4).

With a view to demonstrating the applicability of Preisach hysteresis modeling for
piezoceramic actuators, additional comparisons were carried out by means of fur-
ther time signals (Figs. 6.24e, f and 6.25e, f). Although these time signals have not
been considered during parameter identification, simulations coincide very well with
measurements. This is confirmed by the normalized relative deviation εr of the sim-
ulation results as shown in the Figs. 6.24g, h and 6.25g, h. In the particular cases, |εr|
always stays below 6%. Summing up, it can be stated again that Preisach hysteresis
modeling represents an excellent approach to predict the large-signal behavior of
piezoceramic actuators, especially in unipolar and semi-bipolar working areas.

6.8 Inversion of Preisach Hysteresis Model

To conduct model-based compensation of hysteresis effects within ferroelectric actu-
ators, we have to determine that input quantity xinv(k) for time step k, which yields
the desired target output ytar(k). Under certain circumstances, it may be necessary to
consider also specific boundary conditions such as applied mechanical prestress T
and excitation frequency f . That is the reason why we define here input quanti-
ties xinv(k), target quantities ytar(k), and boundary conditions zbou as follows (exci-
tation voltage u(k); mechanical displacement d(k)):

• xinv(k) ∈ {E(k) , u(k)}
• ytar(k) ∈ {P(k) , S(k) , d(k)}
• zbou ∈ {T, f } .
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Fig. 6.24 a and b Comparison of measured and simulated hysteresis curves ΔP(E) and ΔS(E)

in unipolar working area of the piezoceramic disk; c and d time signals for identifying weighting
distributions; e and f time signals for validating Preisach hysteresis modeling; g and h resulting
normalized relative deviations |εr| (magnitude) for validation signals
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ytar(k)ytar(k) xinv(k)xinv(k)
H−1

P H−1
G

zbou

Fig. 6.26 Inverted (classical) Preisach hysteresis operator H−1
P and inverted generalized Preisach

hysteresis operator H−1
P

Generalized Preisach hysteresis modeling can be used to predict the hysteretic
behavior of electric polarizations P(k) and mechanical strains S(k) for ferroelectric
materials. Since these quantities represent target quantities, the underlying Preisach
hysteresis operator HP has to be inverted. In other words, the inverted general-
ized Preisach hysteresis operator H−1

G and, thus, the inverted Preisach hysteresis
operator H−1

P are required for model-based compensation of hysteresis effects (see
Fig. 6.26). However, owing to the fact that the elementary switching operators γαβ

exhibit discontinuities at the changeover pointsα and β, there does not exist a closed-
form solution for this task. Consequently, HP has to be inverted numerically.

One can find various approaches in literature to obtain an appropriate approxima-
tion of H−1

P . Several methods are based on iterative algorithms for locally inverting
discretized Preisach hysteresis models. For instance, Mittal and Menq [66] as well
as Tan and Baras [92] exploited such algorithms to compensate hysteresis of elec-
tromagnetic and magnetostrictive actuators. Viswamurthy and Ganguli [95] utilized
a locally inverted Preisach hysteresis model for controlling mechanical vibrations
through piezoelectric stack actuators. A different approach to achieve H−1

P results
from exchanging its input and output (e.g., [22, 91]). Thereby, the weighting distri-
bution μH(α,β) for γαβ has also to be inverted. With a view to ensuring positive
weighting distributions, Bi et al. [12] introduced an analytical weighting distribution
as well as an additional switching operator. They applied this approach for ferromag-
netic materials and present convincing results. Due to exchanging input and output
ofHP, the physical meaning, however, gets lost whichmay cause problems regarding
generalized Preisach hysteresis models.

Here, let us discuss an inverted Preisach hysteresis model that was developed by
Wolf and colleagues [101, 102]. Section 6.8.1 deals with the underlying iterative
inversion procedure, which is characterized in Sect. 6.8.2. Subsequently, the main
steps toward an inverted generalizedPreisach hysteresismodel are addressed. Finally,
model-based hysteresis compensation is applied to a piezoceramic disk.

6.8.1 Inversion Procedure

The computation of the sought-after input quantity xinv(k) yielding the target quan-
tity ytar(k) for time step k is performed incrementally. The target quantity has to be
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Fig. 6.27 Simplified flow
chart for incrementally
determining outputs of
inverted Preisach hysteresis
operator H−1

P ; ytar(k)
and xinv(k) = H−1

P [ytar](k)
represent desired target
quantity and sought-after
quantity for time step k,
respectively

computation of Δytar(k)

simplification of P(k)

extreme values’ location in E

detailed search in E

determination of xinv(k)

Δytar(k)

1

2

3

4

5

A B

Δytar(k) = 0

Δytar(k) > 0 Δytar(k) < 0

start: ytar(k), ytar(k − 1), Δyerr(k − 1)

end: xinv(k), Δyerr(k)

xinv(k) = xinv(k − 1)

two-stage
search

considered for the current as well as previous time step, i.e., ytar(k) and ytar(k − 1).
At each time step k, we analyze and simplify the current configuration of the Preisach
plane P(k). Thereby, the vectors ei(k), ej(k) and s(k) are used to indicate location
as well as sign of dominating extrema inP(k) (see (6.12) and (6.13)). The inversion
procedure is mainly based on a two-stage evaluation of the Everett matrix E =[Ei j

]
.

Figure 6.27 shows a simplified flow chart of the entire inversion procedure compris-
ing five steps, which are explained below.

1. Computation of the Increment Δytar(k)

In a first step, the increment Δytar(k) is computed which represents the change
of the target output ytar from time step k − 1 to time step k, i.e.,

Δytar(k) = ytar(k) − ytar(k − 1) (6.34)

If Δytar(k) = 0 is fulfilled, one can directly continue with the subsequent time
step k + 1. The resulting output of the inverted Preisach hysteresis model is
then given by xinv(k) = xinv(k − 1). This also holds for several further special
cases like saturation in the Preisach plane and an increment Δytar(k) that is
smaller than the discretization error Δyerr(k) from the previous iteration. How-
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ever, when Δytar(k) �= 0, we need to distinguish between two cases depending
on its sign (see (6.4) and (6.5)):

A© increasing ytar(k) , i.e., Δytar(k) > 0 ⇒ modification of α
B© decreasing ytar(k) , i.e., Δytar(k) < 0 ⇒ modification of β .

Hence, the dividing line L(k) in the Preisach plane P(k) is modified.

2. Simplification of the Preisach Plane P(k)

Actually, there exist various different configurations ofP(k), e.g., number of steps
in L(k) (see, e.g., Fig. 6.7). To standardize the subsequent inverting approach in
step 3 and 4, let us simplify the configurations by reducing them to two cases,
which are displayed in Fig. 6.28. For the particular configurations, the reduction
implies deleting the mth entry of the vectors ei(k), ej(k) and s(k). Consequently,
the output of the Preisach hysteresis operator changes byΔysimp(k) (hatched area
in Fig. 6.28), which has to be included in the current increment Δytar(k) of the
target output, i.e.,

Δy′
tar(k) = Δytar(k) + Δysimp(k) · sm(k)

= Δytar(k) + Eim jm · sm(k) . (6.35)

The following two steps deal with an iterative search in the Everett matrix E .
While the first one represents a coarse search, the second one is a detailed search.

3. Evaluation of Extreme Values’ Locations in the Everett Matrix E
The first iterative search steps exclusively considers dominating extrema inP(k)
that are specified through the vectors ei(k), ej(k), and s(k). If necessary, the
wiping-out rule of the Preisach hysteresis operator has to be applied in addition.
Principally, the first iterative search step consists of three substeps (see Fig. 6.29).

• The starting point is the dominating extremum (index m), which exhibits the
smallest magnitude. From this extremum, we readout the entries of E =[Ei j

]
in

descending order according to the components of ei(k) and ej(k). This procedure
is conducted until the condition

∣
∣
∣
∣

n+1∑

ν=m

Eiν jν · sν(k)

︸ ︷︷ ︸
Δyext(k)

∣
∣
∣
∣ <

∣
∣Δy′

tar(k)
∣
∣ <

∣
∣
∣
∣

n∑

ν=m

Eiν jν · sν(k)

∣
∣
∣
∣ (6.36)

is fulfilled.
• Now, the components m, . . . , n + 1 of ei(k), ej(k) and s(k) are used to adjust
the modified increment Δy′

tar(k) of the target function by means of Eiν jν , which
leads to
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Δy′′
tar(k) = Δy′

tar(k) + Δyext(k)

= Δy′
tar(k) +

n+1∑

ν=m

Eiν jν · sν(k) . (6.37)

• At the end of the first iterative search step, the components m, . . . , n + 1
of ei(k), ej(k) and s(k) are deleted.We store the indices (iν, jν) of the extremum
that was deleted at last.
As a result, one knows the two dominating extrema between which the sought-
after entry is located in the Everett matrix E . Besides, the configuration of the
Preisach plane is further simplified.

4. Detailed Search for Correct Entry in the Everett Matrix E
The second iterative search (detailed search) can be performed in a strongly
restricted region of E . For an increasing target output ytar(k) (i.e., case A©), the
search is done along column jm (see Fig. 6.30). In the other case (i.e., B©), one has
to search in row im . The procedure starts in both cases at the entry Eiν jν featuring
the indices (iν, jν) that were stored in step 3. It is desired to find the entry Eir js ,
which coincides with y′′

tar(k) best possible, i.e.,

min
(∣
∣Δy′′

tar(k) − Eir js
∣
∣
)

with

{
js = jm for A©
ir = im for B© .

(6.38)

An efficient method for this task is the divide and conquer search algorithm [54].
Even if a fine spatial discretization (e.g., M = 800) of the Preisach plane is uti-
lized, the inverting procedure will require reasonable computation time.

5. Determination of the sought-after Input xinv(k)

The indices (ir , js) from step 4 are used to update xinv(k − 1). Depending on the
progression of the target output ytar(k), i.e., whether it is rising or falling, we
choose one of the following equations (cf. Fig. 6.31)

xinv(k) = M − ir
M − 1

− 0.5 for A© (6.39)

xinv(k) = 0.5 − M − js
M − 1

for B© . (6.40)

Furthermore, the discretization error Δyerr(k) between the increments of actu-
ally computed target quantity Δyinv(k) and of desired target output Δytar(k) is
calculated, which is, therefore, given by

Δyerr(k) = Δyinv(k) − Δy′′
tar(k) = Eir js · sm(k) − Δy′′

tar(k) . (6.41)
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Fig. 6.28 Simplification of Preisach plane P(k)

Fig. 6.29 Coarse search based on evaluation of extreme values’ location in Everett matrixE =[Ei j
]

and further simplification of Preisach plane

Fig. 6.30 Detailed search to figure out entry Eir js in Everett matrix

Note that Δyerr(k) has to be considered in step 1. Finally, we update the vec-
tors ei(k), ej(k), and s(k) according to the current input quantity xinv(k). This
results in ei(k + 1), ej(k + 1) as well as s(k + 1).

At the end of the whole inverting procedure, information is available which is nec-
essary to determine xinv(k + 1) for the subsequent time step k + 1. In doing so, we
start again with step 1 by considering the quantities ytar(k), ytar(k + 1), andΔyerr(k).

6.8.2 Characterization of Inversion Procedure

To characterize the inversion procedure, let us check its functionality and rate its
efficiency in addition. These investigations are carried out through a serial connec-
tion of inverted Preisach hysteresis operator H−1

P and original one, i.e., HP (see
Fig. 6.32) [101, 102]. We assume a target quantity ytar(k) that represents the input
ofH−1

P . The resulting output xinv(k) = H−1
P [ytar](k) serves then again as input ofHP,
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Fig. 6.31 Calculation of sought-after quantity xinv(k) resulting from indices (ir , js); update of
Preisach plane P(k)

Fig. 6.32 Approach to check functionality and to rate efficiency of inversion procedure; compu-
tation time tinv(k) for inversion procedure; computation time tfor(k) for evaluating HP in forward
direction

which leads to the final output yinv(k) = HP[xinv](k). Hence, one is able to compare
the desired target quantity ytar(k) with the quantity yinv(k) actually determined.

Figure 6.33a displays the utilized discrete-time target signal consisting of an offset
and two superimposed sinewaves. The sinewaves feature different amplitudes aswell
as frequencies, respectively. For the evaluation ofHP andH−1

P , a spatial discretization
of M = 200 was applied in the Preisach plane. Figure 6.33b compares the desired
target quantity with the output of the serial connection in a small timewindow. As the
comparison reveals, yinv(k) coincides very well with ytar(k). Apart from deviations
due to the spatial discretization of the Preisach plane, there do not arise any further
deviations. It can, thus, be stated that the inversion procedure provides reliable results.

The computation time of the inversion procedure denotes a decisive criterion with
regard to practical applications. Strictly speaking, the maximum duration tinv,max that
is required for a single time step determines the maximum sampling rate finv,max =
1/tinv,max for inverting the target quantity ytar(k). If model-based hysteresis compen-
sation is applied in open- or closed-loop control, xinv(k) can be updated after the time
interval tinv,max, i.e., tk+1 − tk ≥ tinv,max. In Fig. 6.33c, one can see the duration tinv(k)
for time step k, which is required for inverting ytar(k) in the considered time win-
dow (cf. Fig. 6.33b). The calculations were conducted on a standard desktop PC.10

Interestingly, tinv(k) takes mainly two values. The lower value results from termina-
tion conditions in step 1 of the inversion procedure, whereas the higher value tinv,max

is a consequence of running through all steps (i.e., step 1 to step 5). Note that even if
the target quantity ytar exhibits an arbitrary progress, tinv,max will never be exceeded.

10Desktop PC: Intel Core i5 with 3.19GHz and 4 GB RAM.
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(a) discrete-time target signal (b) comparison of ytar(k) and yinv(k)

(c) computation time (d) maximum of tinv(k) and tfor(k)
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Fig. 6.33 Characterization of inversion procedure: a Discrete-time target signal ytar(k); b compar-
ison of ytar(k) and output yinv(k) (cf. Fig. 6.32) for spatial discretization M = 200; c computation
times for inversion procedure tinv(k) as well as forward calculation tfor(k); maximum computation
time tinv,max; d comparison of tinv,max and tfor,max with respect to M

As a result, tinv,max < 0.15ms is guaranteed for the spatial discretization M = 200,
which leads to the sampling rate finv,max = 6.67 kHz.

Figure 6.33d depicts maximum durations tinv,max of the inversion procedure for
different spatial discretizations M . Moreover, maximum durations tfor,max per time
step (cf. Fig. 6.32) are shown for evaluating the Preisach hysteresis operator HP

in forward direction. It is worth to emphasize that tinv,max stays almost constant in
the considered range of spatial discretizations. This behavior can be ascribed to the
efficient divide and conquer search algorithm in step 4 of the inversion procedure.
However, contrary to tinv,max, the duration tfor,max increases almost along a straight
line with rising M .

According to these findings, the presented inversion procedure is an efficient
method for inverting Preisach hysteresis operators. Since the underlying algorithm
allows time-efficient computation of the desired quantities, it can be exploited for
both open- and closed-loop control of actuators exhibiting hysteretic behavior. The
inversion procedure is not restricted to ferroelectric actuators but can also be used
for actuators containing ferromagnetic materials.
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6.8.3 Inverting Generalized Preisach Hysteresis Model

ThegeneralizedPreisachhysteresis operatorHG (seeSect. 6.6) for ferroelectricmate-
rials comprises reversible parts, asymmetric behavior, mechanical deformations as
well as consideration of rate-dependent behavior and applied uniaxial mechanical
stresses. If generalization is restricted to reversible parts and asymmetric behavior,
we can evaluate the inverted generalized Preisach hysteresis operatorH−1

G in the same
manner as given in Sect. 6.8.1. This can be ascribed to the fact that both generaliza-
tions directly alter the weighting distribution μH(α,β) for the Preisach hysteresis
model. However, in case of the remaining generalizations (e.g, mechanical defor-
mation), further important points arises during inverting HG, which are discussed
below.

Let us start with the inversion approach for mechanical deformations S and
mechanical displacements d of ferroelectric materials. In the bipolar working area,
there exist two solutions of these target quantities for positive and negative electrical
excitations. Thus, it is impossible to invert S and d uniquely. Ferroelectric actuators,
however, usually operate in unipolar and semi-bipolar working areas. Due to this fact,
we are able to describe the underlying large-signal behavior through a generalized
Preisach hysteresis operator HG that does not require the extension given in (6.27).
As a result, the sought-after input quantities electric field intensity E and excitation
voltage u of ferroelectric actuators can be determined according to the inversion
procedure in Sect. 6.8.1. For instance, the target quantity d(k) for time step k serves
as input of the inverted generalized Preisach hysteresis operator H−1

G , which leads
to the output u(k) = H−1

G [d](k).
To consider rate-dependent behavior and mechanical stresses for ferroelectric

materials by means of HG, one has to take additional inputs (i.e., zbou ∈ {T, f })
into account, respectively. The inputs modify the spatially discretized weighting
distribution µ and, consequently, the Everett matrix E (see Sects. 6.6.4 and 6.6.5). It
is of utmost importance to incorporate such modifications in the inversion procedure
since only by doing so, we are able to determine reliable outputs of H−1

G . For that
reason, µ(zbou) as well as E(zbou) should be calculated for different inputs zbou in
advance [101]. In practical applications of ferroelectric actuators, the task is to select
an appropriate spatially discretized weighting distribution and Everett matrix. The
selection depends, of course, on the boundary conditions zbou, which actually occur
during application.

6.8.4 Hysteresis Compensation for Piezoceramic Disk

Here, model-based compensation of hysteresis effects through an inverted general-
izedPreisachhysteresis operator is applied to a piezoceramic disk (diameter 10.0mm;
thickness 2.0mm), which is made of the ferroelectrically soft material PIC255.
Before the results are presented, let us discuss a particular hardware-based approach
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Fig. 6.34 Block diagram to achieve desiredmechanical strainsΔStar(t) of the piezoceramic disk for
a model-based hysteresis compensation and b uncompensated case (i.e., linearization); determined
quantities: Einv(t) and Elinear(t); measured quantities:ΔPmodel(t),ΔSmodel(t) as well asΔSlinear(t)
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Fig. 6.35 aComparison of desiredmechanical strainsΔStar(t) and achieved quantities with respect
to time t ; measured quantities: ΔSmodel(t) and ΔSlinear(t); computed quantity: ΔSpol(t); b normal-
ized relative deviations |εr| (magnitude) between resulting strains and desired ones; piezoceramic
disk (diameter 10.0mm; thickness 2.0mm; material PIC255)

for compensating nonlinearities of ferroelectric actuators. Contrary to model-based
compensation where we use electrical voltage as excitation signal, this hardware-
based approach directly relates to the electric polarization (e.g., [28, 29, 108]). To
influence the electric polarizationwithin the ferroelectricmaterial, electric charges Q
are impressed on the actuator electrodes by means of an appropriate charge drive
circuit. It is assumed that Q is directly proportional to the resulting mechanical
strain S of the ferroelectric actuator, i.e., Q ∝ S. Although a remarkable reduction of
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nonlinearities is achieved compared to open-loop configurations operating with volt-
age excitations, charge drive circuits usually exhibit substantial drawbacks. This
includes limited low-frequency performance, dependence of voltage gain on capac-
itance of the ferroelectric material as well as time-consuming tuning procedure.
Besides, when the ferroelectric actuator is driven into saturation (e.g., semi-bipolar
working area), the relation of electric charge and mechanical displacement will be
no longer linear [101]. As a result, the deviations of desired and actually achieved
displacements of the ferroelectric actuator increase.

To compare the different types of compensations, let us desire a triangular-shaped
time signal for the mechanical strain of the piezoceramic disk. The model-based
compensation exploits the inverted generalized Preisach hysteresis operator H−1

G
to obtain the electrical excitation signal Einv(t), which is then applied to the disk
sample for measurements (see Fig. 6.34a). Against that, we emulate mechanical
strains ΔSpol(t) of the hardware-based solution by rescaling the electric polariza-
tion Pmodel(t). The expression Pmodel(t) stands for the measured electric polariza-
tion actually occurring in the disk. Since the underlying rescaling does not exhibit
any dependencies on electronic components, it represents the best case for charge
drive circuits in open-loop configuration. Figure 6.35a depicts target strainsΔStar(t),
measured strains ΔSmodel(t) for model-based compensation of hysteresis effects
as well as those for hardware-based compensation ΔSpol(t). Moreover, measured
strains ΔSlinear(t) for the uncompensated case are given meaning that the electri-
cal excitation signal Elinear(t) is assumed to be directly proportional to the desired
mechanical strain ΔStar(t) (see Fig. 6.34b). The comparison of the different strain
curves clearly indicates thatΔSmodel(t) coincides bestwithΔStar(t). In contrast, there
occur normalized relative deviations of ΔSlinear(t) up to 25% (see Fig. 6.35b), which
emphasizes the importance of considering hysteresis effects in actuator applications.
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