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Preface

Piezoelectric devices play a major role in our everyday lives. The reason for this lies
in the fact that piezoelectric materials enable an efficient conversion from mechanical
energy into electrical energy and vice versa. Piezoelectric sensors and actuators
represent an important subgroup of piezoelectric devices. Nowadays, the application
areas of piezoelectric sensors and actuators range from process measurement tech-
nology and nondestructive testing to medicine and consumer electronics.

This book addresses students, researchers as well as industry professionals in the
fields of engineering sciences, material sciences, and physics. The author aims at
providing information that is important to obtain a deep understanding of piezo-
electric sensors and actuators. The book additionally contains selected applications
and recent developments (e.g., simulation-based material characterization), which
are of great interest to science and industry.

At the beginning, we will study fundamentals of piezoelectric sensors and
actuators. The fundamentals include physical basics, the principle of the piezo-
electric effect and piezoelectric materials. One focus of the book relates to reliable
characterization of sensor and actuator materials by combining numerical simula-
tions with appropriate measurements. Moreover, an efficient phenomenological
modeling approach for the large-signal behavior of ferroelectric materials will be
presented which facilitates the operation of piezoelectric actuators. A further focus
lies on piezoelectric ultrasonic transducers because they are most commonly used in
applications like ultrasonic imaging and parking sensors. In this context, a nonre-
active measurement approach will be detailed that allows sound field characteri-
zation in various media.

The book also deals with piezoelectric sensors and transducers in the large
application area of process measurement technology. For example, we will discuss
conventional piezoelectric sensors for mechanical quantities (e.g., force) as well as
sensor devices for fluid flow measurements. The final part of the book concentrates
on piezoelectric positioning systems and motors.

Erlangen, Germany Stefan Johann Rupitsch
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Chapter 1
Introduction

Piezoelectric devices play a major role in our everyday lives. Currently, the global
demand for piezoelectric devices is valued at approximately 20 billion euros per year.
Piezoelectric sensors and actuators make a substantial contribution in this respect.
At the beginning of the opening chapter, we will discuss the fundamentals of sensors
and actuators. Section1.2 addresses the history of piezoelectricity and piezoelectric
materials. In Sect. 1.3, application areas as well as application examples of piezo-
electricity are listed. The chapter ends with a brief chapter overview of the book.

1.1 Fundamentals of Sensors and Actuators

Sensors and actuators play an important role in various practical applications. Let us
start with the fundamentals of sensors. In general, sensors convert measurands into
appropriate measurement values. From the system point of view, measurands serve
as inputs and measurement values as outputs of sensors. In this book, sensors will be
limited to devices that convert mechanical quantities into electrical quantities. The
mechanical quantities denote, thus, measurands, while the electrical quantities repre-
sent measurement values. Figure1.1 depicts possible measurands (e.g., mechanical
force) and measurement values (e.g., electric voltage).

In contrast to sensors, (electromechanical) actuators convert electrical quanti-
ties (e.g., electric voltage) intomechanical quantities (e.g., mechanical force). Hence,
actuators operate in opposite direction as sensors (see Fig. 1.1). From the systempoint
of view, electrical quantities serve as inputs, whereas mechanical quantities represent
outputs of actuators.

There exist several principles to convert mechanical into electrical quantities and
electrical into mechanical quantities. Some conversion principles work in both direc-
tions, i.e., it is possible to convert mechanical into electrical quantities and vice versa.
Due to this fact, such conversion principles can be exploited for sensors and actu-
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sensor −→
←− actuatormechanical

quantity, e.g.,

distance
velocity
force
torque

acceleration
pressure
fluid flow

electrical
quantity, e.g.,

voltage
current

impedance
charge

conversion
principle, e.g.,

electrostatic
electrodynamic
magnetostrictive
piezoelectric

Fig. 1.1 Typical conversion principles aswell as input and output quantities of sensors and actuators

ators. The most common bidirectional conversion principles are listed in Fig. 1.1.
If a conversion principle allows both working directions, sensors and actuators will
often be called transducers. As the book title implies, we will focus on the piezo-
electric conversion principle. Therefore, the book deals with piezoelectric sensors
and piezoelectric actuators, i.e., with piezoelectric transducers.

Apart from the conversion principle, sensors and actuators can be classified
according to other aspects. Especially for sensors, one can find several classifica-
tions like active/passive sensors. Because piezoelectric sensors do not necessarily
need an auxiliary energy, they belong to the group of active sensors.

1.2 History of Piezoelectricity and Piezoelectric Materials

The word piezoelectricity originates from the Greek language and means electricity
due to pressure. Piezoelectricity was firstly discovered by the Curie brothers in 1880.
They recognized that electric chargeswill arisewhenmechanical forces are applied to
materials like tourmaline, quartz, topaz, and Rochelle salt. This effect is referred to as
direct piezoelectric effect. In 1881, Lippmann deduced the inverse piezoelectric effect
from the mathematical point of view. The Curie brothers immediately confirmed the
existence of the inverse piezoelectric effect.

The first practical application of piezoelectricity was the sonar, which has been
developed during the FirstWorldWar by Langevin. Themain component of the sonar
consisted of a thin quartz crystal that was glued between two steel plates. In 1921,
Cady invented an electrical oscillator, which was stabilized by a quartz crystal. A few
years later, such oscillators were used in all high-frequency radio transmitters. Quartz
crystal controlled oscillators are nowadays still the secondary standard for timing and
frequency control. The success of sonar and quartz crystal controlled oscillators was
responsible that new piezoelectric materials and new applications were explored
over the next decades after the First World War. For example, the development of
piezoelectric ultrasonic transducers enabled viscosity measurements in fluids and the
detection of flaws inside of solids.

During the Second World War, several independent research groups discovered
a new class of synthetic materials, which offers piezoelectric constants many times
higher than natural materials such as quartz. The synthetically produced polycrys-
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talline ceramic materials were named ferroelectrics and piezoceramic materials.
Barium titanate and lead zirconate titanate (PZT) represent two well-known solid
solutions that belong to the class of these materials. In 1946, it was demonstrated
that barium titanate features pronounced piezoelectric properties after an appropriate
poling process. The first commercial use of barium titanate was in phonograph pick-
ups. The strong piezoelectric coupling in PZT was discovered in 1954. The intense
research in the following decades revealed that the piezoelectric properties of PZT
could be controlled by means of doping. In doing so, it is possible to produce fer-
roelectrically soft and ferroelectrically hard materials. While ferroelectrically soft
materials are well suited for piezoelectric actuators and ultrasonic transducers, fer-
roelectrically hard materials provide an outstanding stability for high power and
filter applications. On these grounds, PZT is most commonly used in conventional
piezoelectric devices, nowadays.

Even though piezoceramicmaterials such as PZT feature comparatively high elec-
tromechanical coupling factors and can be manufactured in arbitrary shape, quartz
crystals still play an important role in practical applications, e.g., for piezoelectric
force sensors. There are several reasons for this. For instance, special cuts of quartz
crystals lead to material properties that are stable over a wide temperature range as
well as almost free of hysteresis. Moreover, quartz crystals can also be synthetically
manufactured by the so-called hydrothermal method, which was firstly applied to
artificially grow quartz in the 1940s. Aside from quartz, lithium niobate and lithium
tantalate are well-known representatives of piezoelectric single crystals. Both mate-
rials play a key role in modern telecommunication systems because they often serve
as piezoelectric material for surface acoustic wave (SAW) devices.

Over the past decades, the research in the field of piezoelectric materials has
concentrated on various topics. Many research groups work on lead-free piezoce-
ramic materials (e.g., sodium potassium niobate) that provide a similar performance
as PZT. A further research topic concerns relaxor-based single crystals since the
piezoelectric constants of such piezoelectric materials can take values, which greatly
exceed those of PZT. Because microelectromechanical systems (MEMS) gain in
importance, much research and development are also conducted in the fabrication of
thick and thin piezoelectric films. As a last example of research topics, let us mention
piezoelectric polymers like polyvinylidene fluoride (PVDF) and cellular polypropy-
lene. If the piezoelectric polymers are produced as thin films, they can be exploited
for mechanically flexible sensors and actuators.

1.3 Practical Applications of Piezoelectricity

The application areas of piezoelectricity range from process measurement tech-
nology, nondestructive testing and medicine to consumer electronics and sports.
Depending on the particular application, one exploits the direct piezoelectric effect,
the inverse piezoelectric effect or a combination of both. The following list contains
selected applications (e.g., parking sensors) in different application areas.
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• process measurement technology and condition monitoring

– sensors for, e.g., force, torque, acceleration, viscosity
– measurement of temperature and geometric distance

• automotive industry

– parking sensors
– injection systems in diesel engines

• production technology

– ultrasonic welding
– ultrasonic cleaning

• nondestructive testing

– flaw detection
– material and device characterization

• medicine

– diagnostics, e.g., pregnancy examinations
– therapy, e.g., kidney stone fragmentation (lithotripsy)

• consumer electronics

– loudspeakers
– inkjet printers
– lens settings in cameras

• smart materials and structures

– active noise control
– structural health monitoring

• sports, e.g., reduction of mechanical vibrations in tennis rackets
• musics, e.g., pickup for guitars
• energy harvesting for local energy supply
• transformers

Even though this list of applications seems to be very long, it could be extended
almost indefinitely.

1.4 Chapter Overview

As the title suggests, the book deals with fundamentals and applications of piezo-
electric sensors and actuators. According to the list in the previous section, there
exists a wide variety of applications of piezoelectricity. In this book, we will concen-
trate on some selected examples. Many topics refer to research activities, which have
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been conducted at the Chair of Sensor Technology (Friedrich-Alexander-University
Erlangen-Nuremberg) during the last ten years. Apart from the opening chapter, the
book is divided into nine chapters.

Chapter2 addresses the physical basics that are important for piezoelectric sensors
and actuators. This includes fundamentals, characteristic quantities as well as basic
equations of electromagnetics, continuum mechanics, and acoustics. In Chap.3, we
will study the fundamentals of piezoelectricity. The chapter starts with the principle
of the direct and inverse piezoelectric effect. After thermodynamical considerations,
thematerial lawof linear piezoelectricitywill be derived. Furthermore, the electrome-
chanical coupling inside piezoelectric materials will be classified and quantitatively
rated. The chapter ends with a comprehensive overview of piezoelectric materi-
als (e.g., polycrystalline ceramic materials), which are used in practical applications.

Chapter4 deals with the fundamentals of finite element (FE) simulations since
such numerical simulations are nowadays the standard tool for the design and opti-
mization of piezoelectric sensors and actuators. We will start with the basic steps of
the FEmethod. Afterward, the FEmethodwill be applied to the electrostatic field, the
mechanical field, and the acoustic field. Due to the fact that piezoelectricity refers
to coupling of mechanical and electric quantities, we study the simulation-based
coupling of the underlying fields. This also includes the coupling of mechanical and
acoustic fields, which is important for piezoelectric ultrasonic transducers.

In Chap.5, we will discuss the characterization of sensor and actuator materials.
The material characterization represents an essential step in the design and optimiza-
tion because reliable numerical simulations demand precisematerial parameters. The
chapter starts with standard approaches for material characterization. In doing so,
a clear distinction between active and passive materials is carried out. Piezoelectric
materials are active materials, whereas other materials (e.g., plastics) within piezo-
electric sensors and actuators belong to the group of passive materials. The main
focus of the chapter lies on the so-called inverse method, which has been devel-
oped at the Chair of Sensor Technology. Basically, the inverse method combines FE
simulations with measurements. By reducing the deviations between simulation and
measurement results, the material parameters get iteratively adjusted in a convenient
way. The inverse method is exploited to identify material parameters and properties
of selected active and passive materials.

Piezoceramicmaterialswill showapronouncedhysteretic behavior if large electri-
cal excitation signals are used during operation.Chapter 6 details a phenomenological
modeling approach, which allows the reliable description of this large-signal behav-
ior. Before the so-called Preisach hysteresis operator is introduced, we will briefly
study various modeling approaches on different length scales. Since the Preisach
hysteresis operator consists of weighted elementary switching operators, two differ-
ent weighting procedures are given. The chapter also addressed generalized Preisach
hysteresismodels, which have been developed at theChair of Sensor Technology. For
instance, the generalization enables the consideration of mechanical stresses that are
applied to a piezoceramic material. Finally, we discuss the inversion of the Preisach
hysteresis model. The inversion will be of utmost importance when the Preisach
hysteresis operator is used for hysteresis compensation.
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Chapter7 treats ultrasonic transducers that exploit piezoelectric materials. The
chapter starts with a semi-analytical approach for calculating sound fields and trans-
ducer outputs. The approach is based on the so-called spatial impulse response (SIR)
of the considered ultrasonic transducer, e.g., a piston-type transducer. Among other
things, the SIR is utilized to determine the spatial resolution of spherically focused
transducers. Afterward, we will study the general structure and fundamental oper-
ation modes of single-element transducers, transducer arrays, and composite trans-
ducers. A further section concerns a simple one-dimensional modeling approach
that allows analytical description of basic physical relations under consideration of
the internal transducer structure. At the end of the chapter, several examples for
piezoelectric ultrasonic transducers will be presented.

Practical applications of ultrasonic transducers often demand the characterization
of the resulting sound fields. That is the reason why Chap.8 deals with appropriate
measurement principles. The chapter starts with conventional measurement princi-
ples such as hydrophones and Schlieren optical methods. The subsequent sections
exclusively concentrate on the so-called light refractive tomography (abbr. LRT),
which has been realized at the Chair of Sensor Technology. This optical measurement
principle enables nonreactive and spatially as well as temporally resolved investiga-
tions of sound fields that are generated by piezoelectric ultrasonic transducers, e.g., a
cylindrically focused transducer. Exemplary results for sound pressure fields in water
and air will be shown. Moreover, LRT is applied to study the wave propagation of
mechanical waves in an optically transparent solid.

Piezoelectric sensors are frequently employed for the measurement of physi-
cal quantities. In Chap.9, we will study typical setups of such sensors and their
application in the process measurement technology. At the beginning, piezoelec-
tric sensors for the quantities force, torque, pressure, and acceleration are detailed.
This includes commonly used readout electronics such as charge amplifiers. Subse-
quently, a method will be presented which enables the simultaneous determination of
thickness and speed of sound for solid plates. The underlying measurement principle
is based on ultrasonic waves and has been developed at the Chair of Sensor Tech-
nology. The chapter also addresses fluid flow measurements that exploit ultrasonic
transducers.Wewill discuss typicalmeasurement principles aswell as a recently sug-
gested modeling approach, which allows efficient estimation of transducer outputs
for clamp-on ultrasonic flow meters. At the end, a mechanically flexible cavitation
sensor is presented that has been developed at the Chair of Sensor Technology.

The last chapter addresses piezoelectric positioning systems and piezoelectric
motors. We will start with piezoelectric stack actuators, which provide much larger
strokes than piezoelectric single elements. Because the large strokes call for large
electrical excitation signals, Preisach hysteresis modeling from Chap.6 is applied
for a mechanically prestressed stack actuator. The subsequent section details an
amplified piezoelectric actuator that was built up at the Chair of Sensor Technology.
Wewill also studymodel-based hysteresis compensation for a piezoelectric trimorph
actuator, which can be used for positioning tasks. The end of the chapter concerns
linear and rotary piezoelectric motors.



Chapter 2
Physical Basics

Piezoelectric sensors and actuators connect different physical fields (e.g., electro-
static and mechanical field). With a view to studying the behavior of piezoelectric
devices, the fundamentals of those physical fields are indispensable. Therefore, this
chapter addresses the physical principles that are important for piezoelectric sensors
and actuators. Section2.1 deals with electromagnetics, especially with the electric
field. In Sects. 2.2 and 2.3, the basics of continuum mechanics and acoustics are
described, respectively.

2.1 Electromagnetics

In this section, the so-called Maxwell’s equations as well as the relevant constitutive
equations are introduced allowing the complete description of electromagnetic fields.
We will discuss the electrostatic field, which represents a special case of electromag-
netic fields. Section2.1.3 details interface conditions for the electric field between
two media exhibiting different material properties. Finally, the lumped circuit ele-
ment approach is explained that can be exploited to efficiently solve electromagnetic
field problems. Further literature concerning the electromagnetic field can be found
in [1, 8, 9, 17].

2.1.1 Maxwell’s Equations

James ClerkMaxwell published for the first time the full system of partial differential
equations, which describe the physical relations in the electromagnetic field [13, 14].
His work relies on previous research performed by Ampère, Gauss, and Faraday. The
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Table 2.1 Expressions utilized in Maxwell’s equations (2.1)–(2.4)

Notation Description Unit

H Magnetic field intensity; vector Am−1

E Electric field intensity; vector Vm−1

B Magnetic flux density (magnetic induction); vector Vsm−2 ; T

D Electric flux density (electric induction); vector Asm−2 ; Cm−2

qe Volume charge density; scalar Asm−3 ; Cm−3

J Electric current density; vector Am−2

M Magnetization; vector Vsm−2 ; T

P Electric polarization; vector Asm−2 ; Cm−2

four Maxwell’s equations1 in differential form are given by (time t ; Nabla operator
∇ = [∂/∂x, ∂/∂y, ∂/∂z]t)

Law of Ampère: ∇ × H = J + ∂D
∂t

(2.1)

Law of Faraday: ∇ × E = −∂B
∂t

(2.2)

Law of Gauss: ∇ · D = qe (2.3)

∇ · B = 0 (2.4)

with the expressions listed in Table2.1. The general form of Maxwell’s equations
contains the displacement current(∂D/∂t) in (2.1) and is, therefore, also applicable in
the high-frequency domain of electromagnetic fields.However, for the low-frequency
domain (quasi-static case), the wavelength λ of the resulting electromagnetic waves
is large compared to the dimensions of conventional electromagnetic devices. That
is the reason why (2.1) can be simplified to ∇ × H = J.

Several properties of electromagnetic fields can be deduced fromMaxwell’s equa-
tions. The most important findings are listed below.

• Law of Ampère: An electric current density J generates a magnetic field. The
directions of the magnetic field lines relate to the direction of J according to the
so-called right-hand rule (see Fig. 2.1a).

• Law of Faraday: A magnetic flux density B that is changing with respect to time
induces an electric voltage in a conductive loop (see Fig. 2.1b).

• Law of Gauss: Electric charges are the source of the electric field (see Fig. 2.1c).
• FourthMaxwell’s equation: Themagnetic field (B,H) is solenoidal and, therefore,
the magnetic field lines are closed (see Fig. 2.1d). Furthermore, magnetic charges
do not exist.

1To achieve a compact form of the subsequent equations, the arguments for both position r and
time t (i.e., •(r, t)) are mostly omitted. Note that this is also done for continuum mechanics as well
as for acoustics.
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+

(a) (b) (c) (d)J

B;H

∂B
∂t

= 0

uind B;H

conductor

qe

D;E

Fig. 2.1 Basic interpretations for a Law of Ampère, b Law of Faraday (induced electrical voltage
uind), c Law of Gauss (qe > 0), d fourth Maxwell’s equation

Table 2.2 Expressions utilized in constitutive equations (2.5)–(2.7)

Notation Description Unit

γ Electric conductivity; scalar �−1 m−1

v Velocity of the volume charges qe; vector ms−1

μ Magnetic permeability; scalar VsA−1 m−1

μ0 Magnetic permeability of vacuum
(
4π · 10−7

)
; scalar VsA−1 m−1

μr Relative magnetic permeability; scalar −
ε Electric permittivity; scalar AsV−1 m−1

ε0 Electric permittivity of vacuum
(
8.854 · 10−12

)
; scalar AsV−1 m−1

εr Relative electric permittivity; scalar −

In addition to Maxwell’s equations, the modeling of media in the electromag-
netic field requires constitutive equations, which cover the materials’ behavior. For
a homogeneous and isotropic material, the constitutive equations read as

J = γ(E + v × B) (2.5)

B = μH = μ0H + M = μ0μrH (2.6)

D = εE = ε0E + P = ε0εrE (2.7)

with the expressions listed in Table2.2. Note that for anisotropic materials, such
as piezoceramics, the electric and magnetic material properties (e.g., ε) cannot be
completely assigned by single scalar quantities but demand tensors of rank ≥ 2.
Table2.3 contains the electric conductivity γ, the relative magnetic permeability μr

as well as the relative electric permittivity εr of selected media.

2.1.2 Electrostatic Field

In the static case, both electric andmagnetic quantities do not depend on time. Electric
charges do not move and energy is neither transported nor converted. As a result,
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Table 2.3 Electric conductivity γ, relative magnetic permeability μr , and relative electric permit-
tivity εr of selected media

Media γ in �−1 m−1 μr εr

Copper 59 · 106 1 −
Iron 10 · 106 >300 −
Tungsten 18 · 106 1 −
PVDF∗ 10−11 1 6

Polyethylene 10−13 1 2.4

Water 5 · 10−3 1 80
∗ Polyvinylidene fluoride

Maxwell’s equations and the constitutive equations can be divided into an electric
and a magnetic subsystem. For the so-called electrostatic field (electric subsystem),
the relations between the electric quantities can be described with

∇ × E = 0 (2.8)

∇ · D = qe (2.9)

D = εE . (2.10)

Since the electric field intensity E is irrotational (see (2.8)), it can be expressed by
the so-called electric scalar potential Ve

E = −∇Ve . (2.11)

Note that (2.8)–(2.11) will also be appropriate for quasi-static electric fields if the
resultingmagnetic quantities are still negligible. This is the case formaterials exhibit-
ing small relative magnetic permeabilities μr.

2.1.3 Interface Conditions for Electric Field

At an interface of different media, the quantities of electric and/or magnetic fields
may be altered. To study this for the electric field, we assume an interface between
two isotropic homogeneous materials showing different electric permittivities (ε1
and ε2; Fig. 2.2a). The starting point to derive the interface conditions is Maxwell’s
equations. The third Maxwell’s equation (Law of Gauss; (2.3)) in integral form is
given as (volume Ω , surface Γ , surface vector �)

∫

Ω

(∇ · D) dΩ =
∮

Γ

D · d� =
∫

Ω

qedΩ (2.12)
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Fig. 2.2 Interface of different media: a continuity of electric flux densityD; b continuity of electric
field intensity E

where the divergence theorem has been applied. Using the relation dΩ = b dΓ and
the assumption b → 0 results in

lim
b→0

∫

Ω

qedΩ =
∫

Γ

σedΓ . (2.13)

Here, σe denotes the surface charge. Furthermore, (2.12) can be rewritten to

lim
b→0

∮

Γ

D · d� −→ D1 · n1 + D2 · n2 = n1(D1 − D2) = D1n − D2n (2.14)

with the normal vectors n1 and n2 at the material interface. The expressions D1n

and D2n indicate the normal components ofD1 andD2, respectively. The combination
of (2.13) and (2.14) yields the continuity relation for the electric flux density D =
[Dn, Dt]t

D1n = D2n + σe . (2.15)

Assuming a negligible magnetic field, the second Maxwell’s equation (Law of
Faraday; (2.2)) in integral form becomes (closed contour C)

∫

Γ

(∇ × E) · d� =
∮

C
E · ds = 0 (2.16)

where Stoke’s theorem has been applied. For thematerial interface shown in Fig. 2.2b
and b → 0, we can simplify (2.16) to

lim
b→0

∮

C
E · ds −→ E1 · s − E2 · s = st ·(E1 − E2) = E1t − E2t = 0 . (2.17)
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Consequently, the tangential component Et of the electric field intensity E =
[En, Et]t is continuous at the interface of two materials.

By performing similar steps, the continuity relations at a material interface for
the magnetic quantities (B,H) and for the electric current density J can be deduced.

2.1.4 Lumped Circuit Elements

As previously discussed, we will be able to simplify Maxwell’s equations when the
device dimensions are much smaller than the wavelength of electromagnetic waves.
A further simplification can be performed if either the electric or the magnetic field
dominates. The application of the resulting equations is, however, oftentimes still
too complicated for various practical situations. Therefore, an alternative approach
is commonly utilized yielding reliable approximations of electromagnetic fields. The
approach is based on three lumped circuit elements2: (i) resistor R, (ii) inductor L , and
(iii) capacitor C (graphic symbols in Table2.4) [1]. While the inductor relates to the
magnetic field, the capacitor belongs to the electric field. The inductor and capacitor
measure the ability to store magnetic energy and electric charges, respectively. By
means of the resistor, we can describe conversions of electromagnetic energy into
energy in other physical fields, e.g., kinetic energy in the mechanical field.

The relation between the physical field quantities (E; D; B; J) of electromagnetic
fields and the lumped circuit elements (R; L; C) is defined as

R =
∫ r2
r1

E · ds
∫
A J · dA = U

I
unit � (2.18)

L =
∫
A B · dA

∫
A J · dA = Φ

I
unit H (2.19)

C =
∮
S D · dA

∫ r2
r1

E · ds = Q

U
unit F . (2.20)

Here, U , I , Φ as well as Q stand for scalar quantities that are frequently applied
in conjunction with lumped circuit elements in electrical engineering. The electric
current I = ∫

A J · dA (unit A) relates to electric charges flowing through the area A.
The expressionU = ∫ r2

r1
E · ds (unitV) denotes the electric potential difference (elec-

tric voltage) from position r2 and r1. Φ = ∫
A B · dA (unit Vs) is the magnetic flux

through the area A and Q = ∮
S D · dA (unitAs) the electric charge enclosed by the

2Usually, these lumped circuit elements are time-invariant. Exceptions are configurations changing
their geometry with respect to time.
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d

A
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Fig. 2.3 a Electric conductor (length l; area A) with homogeneous conductivity γcond; b toroidal
core coil (number of winding Nwind; inner radius rI; outer radius rO; height h) with relativemagnetic
permeability μtor; c plate capacitor (plate distance d; area A) containing dielectric medium with
relative permittivity εplate

surface S. Equation (2.18) represents the so-called Ohm’s law, which is one of the
most famous equations in electrical engineering.

For simple configurations such as a conductor, a toroidal core coil (number of
windings Nwind), and a plate capacitor (see Fig. 2.3), we can approximate the lumped
circuit elements with

conductor: Rcond = l

γcondA
(2.21)

toroidal core coil: L tor = N 2
wind

μ0μtorh

2π
ln

(
rO
rI

)
(2.22)

plate capacitor: Cplate = εplateε0A

d
. (2.23)

The expressions l, A, h, rO, rI, and d are geometric dimensions of the components.
γcond, μtor, and εplate refer to the decisive material properties. For several configura-
tions of complex geometries, similar approximations can be found.

In contrast to the simplified Maxwell’s equations describing purely electric or
purely magnetic fields, the lumped elements approach is also applicable in case of
spatially separated components of these fields, e.g., a coil in combination with a
capacitor. To efficiently investigate the behavior of such combinations with respect
to time, an electric circuit containing the lumped elements and sources of electric
energy (voltage source and/or current source) is analyzed. For such electric circuits,
Kirchhoff’s current law and Kirchhoff’s voltage law have to be fulfilled at any time

Kirchhoff’s current law:
n∑

k=1

Ik = 0 (2.24)

Kirchhoff’s voltage law:
n∑

k=1

Uk = 0 . (2.25)



14 2 Physical Basics

Table 2.4 Fundamental relations and common graphic symbols for lumped elements resistor R,
inductor L , and capacitor C

resistor inductor capacitor

R

iR(t)

uR(t)

L

iL(t)

uL(t)

C

iC(t)

uC(t)

ux(t) = f(ix(t) , x) for x ∈{R; L; C}:

iR(t) · R L
diL(t)

dt

1
C

t

t0

iC(t) dt + uC(t0)

ix(t) = f(ux(t) , x) for x ∈{R; L; C}:

uR(t)
R

1
L

t

t0

uL(t) dt + iL(t0) C
duC(t)

dt

complex impedance Xx(ω) of x ∈{R; L; C}:
(imaginary unit j =

√−1; angular frequency ω = 2πf)

XR = R XL(ω) = jωL XC(ω) =
1

jωC

impedance Xx(s) of x ∈{R; L; C} in the Laplace domain
(complex frequency variable s = σ + jω)

XR(s) = R XL(s) = sL XC(s) =
1

sC

Kirchhoff’s current law states that at any node of an electric circuit, the sum of the
electric currents flowing into the node is equal to the sum of electric currents flowing
out of the node. Kirchhoff’s voltage law states that the directed sum of the electric
voltages Uk around any closed network is zero.

The relation between the time-dependent quantities electric voltage u(t) and elec-
tric current i(t) also plays a crucial role in performing circuit analysis. Table2.4
contains these relations for the different lumped elements. In addition to differential
and integral equations in the time domain, the complex impedances Xx (ω) of the
lumped circuit elements in the frequency domain aswell as those Xx (s) in theLaplace
domain are listed. Complex impedances in the frequency domain facilitate the anal-
ysis of electric circuits for sinusoidal excitations of frequency f = ω/2π, while the
approach based on the Laplace domain can also be utilized for certain transient exci-
tation signals [11]. In doing so, the excitation signals have to be transformed into the
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frequency domain or Laplace domain, respectively.When the (complex) impedances
of the components are known, we will then be able to study electric circuits com-
prising various lumped elements with similar approaches as for resistor networks.
However, to obtain electric voltages as well as electric currents with respect to time,
appropriate inverse transforms are indispensable, i.e., transform from the Laplace
domain to the time domain [4].

At this point, it should be mentioned that a real device cannot be described com-
pletely by means of a single lumped element. Reliable modeling requires, strictly
speaking, superposition of several lumped elements. Nevertheless, in a certain fre-
quency range, we can approximate the device behavior by a distinct combination of
a few lumped elements.

2.2 Continuum Mechanics

Piezoelectric materials are able into convert mechanical into electrical energy and
vice versa. Because the mechanical deformations in such solids are mostly rather
small during operation, we can describe the mechanical field by linear relations.
In this section, the fundamental equations for linear continuum mechanics as well
as essential quantities (e.g., mechanical strain) for the mechanical field are detailed.
Thereby, a deformable solid body (elastic body) is considered.We start with Navier’s
equation linking the mechanical stress to both, inner volume forces and time-
dependent body displacements. The mechanical strain and the constitutive equations
for a deformable solid body will be explained in Sect. 2.2.2 and in Sect. 2.2.3, respec-
tively. At last, we discuss different elastic wave types, which might occur in solid
bodies. Further literature concerning continuum mechanics can be found in [2, 3,
18, 20].

2.2.1 Navier’s Equation

Navier’s equation is a fundamental equation in continuum mechanics. In order to
derive this equation, we assume a deformable solid body of arbitrary shape at rest
with prescribed volume forces fV (given body force per unit of volume; unit Nm−3;
e.g., gravity forces) and a support at equilibrium. Hence, the sum of all mechanical
forces as well as of all mechanical torques equals zero. If a small part is cut out of
the deformable solid body, forces will have to be applied to the cutting planes to still
guarantee equilibrium (Euler–Cauchy stress principle). These forces correspond to
the inner forces of the deformable solid body. Due to the fact that the applied forces
are distributed across the cutting planes, it is reasonable to introduce mechanical
stresses, which are defined as force per unit area.

In a first step, we cut out a cubical-shaped small part with cutting planes aligned
in parallel to the Cartesian coordinate system (see Fig. 2.4a). The expressionsTx,Ty,
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(a) (b)

x y

z

Txx

Txy

Txz

Tx

Tyx

Tyy

Tyz

Ty

Tzx

Tzy

Tzz

Tz

Tα

dΓx

dΓy

dΓz
dΓα

Tx

Ty

Tz

Fig. 2.4 a Mechanical stresses applied to cutting planes of a cubical-shaped part of deformable
solid body; b mechanical stresses applied to tetrahedral element exhibiting oblique surface

and Tz denote the mechanical stresses (vector quantity; unit Nm−2) on the cutting
planes, with the index referring to the direction of their normal vector, respectively.

The stress vectors can be split up into scalar components that relate to theCartesian
coordinate system. In doing so, the stress vectors read as

Tx = Txxex + Txyey + Txzez (2.26)

Ty = Tyxex + Tyyey + Tyzez (2.27)

Tz = Tzxex + Tzyey + Tzzez (2.28)

with the unit vector ei pointing in direction i . For the scalar components Ti j , index i
refers to normal vector’s direction of the cutting plane and j stands for the direction
in which the stress acts. According to this notation, Txx, Tyy as well as Tzz are normal
stresses and Txy, Txz, Tyx, Tyz, Tzx as well as Tzy stand for shear stresses.

In a second step, we consider an infinitely small deformable body of tetrahedral
shape with three surfaces (dΓx, dΓy, and dΓz) orientated in parallel to the Cartesian
coordinate plane (see Fig. 2.4b). If amechanical force is applied to the oblique surface
dΓα, the equilibrium state will require forces acting on the remaining surfaces

dΓxTx + dΓyTy + dΓzTz − dΓαTα = 0 . (2.29)

Since the unity normal vector eα of the oblique surface can be defined as (Cartesian
components ni )

eα = nxex + nyey + nzez , (2.30)

the surface elements dΓx, dΓy, and dΓz can be written as

dΓx = dΓαnx dΓy = dΓαny dΓz = dΓαnz . (2.31)
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Combining this with (2.29) and subsequently with (2.26)–(2.28) yields

Tα = Txnx + Tyny + Tznz (2.32)

= (
Txxnx + Txyny + Txznz

)
ex +(

Tyxnx + Tyyny + Tyznz
)
ey

+(
Tzxnx + Tzyny + Tzznz

)
ez .

It is possible to achieve a compact form by exploiting the so-called Cauchy stress
tensor [T] of rank two

[T] =
⎡

⎣
Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

⎤

⎦ . (2.33)

The mechanical stress acting on the oblique surface dΓα of the tetrahedral can then
be expressed by (transpose t)

Tα = [T]t eα . (2.34)

As already mentioned, in case of the equilibrium state, the sums of both mechanical
forces and mechanical torques for the deformable solid body at rest are zero. Thus,
the equation for translation (surface Γ ; surface vector �; volume Ω of the body)

∮

Γ

[T]t d� +
∫

Ω

fVdΩ = 0 (2.35)

and the equation for rotation (position vector r of a point in the body)

∮

Γ

(r ×[T]) d� +
∫

Ω

(r × fV) dΩ = 0 (2.36)

have to be fulfilled. From these two equations, it follows that the equation describing
the equilibrium state for an infinitely small part of the deformable solid body at rest
is given by

∇[T] + fV = 0 . (2.37)

The entries of the Cauchy stress tensor[T] feature the properties

Txy = Tyx Txz = Tzx Tyz = Tzy . (2.38)

Consequently, [T] is symmetric and the nine tensor entries can be reduced to six
entries. According to Voigt notation, it is convenient to introduce the stress vector T
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T =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Txx
Tyy
Tzz
Tyz
Txz
Txy

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

T11
T22
T33
T23
T13
T12

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

T1
T2
T3
T4
T5
T6

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(2.39)

comprising six components instead of utilizing the tensor notation[T]. Note that T
does not represent a physical stress vector but contains the independent components
of the Cauchy stress tensor. If the differential operator B is introduced in addition

B =

⎡

⎢⎢
⎣

∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎤

⎥⎥
⎦

t

, (2.40)

we can rewrite (2.37) in Voigt notation to

BtT + fV = 0 (2.41)

for the equilibrium of an infinitely small body part. As in the dynamic case, the
right-hand side of (2.41) is not zero anymore but has to be the inertia force acting on
the body. We finally obtain

BtT + fV = 
0
∂2u
∂t2

(2.42)

where 
0 stands for the material density of the infinitely small body part for equi-
librium. The expression ∂2u/∂t2 denotes the second-order derivate of the body dis-
placement u =[

ux, uy, uz
]t
(unit m)with respect to time and, thus, the acceleration of

the body. Equation (2.42) is the so-called Navier’s equation explaining the dynamic
behavior of a solid deformable body, strictly speaking of an infinitely small part.

2.2.2 Mechanical Strain

A solid deformable body can be displaced and rotated. Moreover, such a body can be
deformed leading to a certain change of its shape. In order to study this deformation
for the linear case (i.e., small deformations), let us consider an infinitely small rect-
angular area (side lengths dx and dy) of a solid body in the two-dimensional space.
Due to a mechanical load, the body is displaced and/or rotated and/or deformed.
Figure2.5 depicts the rectangular area for the initial state and resulting from the
mechanical load, the parallelogram which is in the following referred to as deformed
state. The expressions ux(x, y) and uy(x, y) stand for displacements in x- and y-
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direction of the edge point P0(x, y), respectively. α and β denote the angles of the
parallelogram in the deformed state. Under the assumption of a small angle α, the
side length dx for the initial state changes to

dx + ux(x + dx, y) − ux(x, y)

cos(α)
≈ dx + ux(x + dx, y) − ux(x, y) . (2.43)

To further simplify this expression, we expand ux(x + dx, y) in a Taylor series
(remainder term O(n))

ux(x + dx, y) = ux(x, y) + ∂ux(x, y)

∂x
dx + O(n) . (2.44)

Inserting (2.44) in (2.43) and neglecting higher order terms finally leads to

dx + ux(x + dx, y) − ux(x, y)

cos(α)
≈ dx + ∂ux(x, y)

∂x
dx (2.45)

for the approximated side length of the parallelogram in x-direction. Analogously,
the side length in y-direction for the deformed state can be computed. When the
differences of the side lengths between deformed and initial state are related to the
initial state, we will obtain

Sxx = ∂ux(x, y)

∂x
and Syy = ∂uy(x, y)

∂y
(2.46)

representing the relative change of dx and dy in x- and y-direction, respectively. Sxx
and Syy are commonly called normal strains.

In addition to the normal strains yielding elongations, the solid body may be
sheared in the deformed state. For the investigated infinitely small rectangle, this
shearing is measured by the angles α and β of the parallelogram (see Fig. 2.5). With
the displacements and the side length dx , one can deduce the relation

tan(α) = uy(x + dx, y) − uy(x, y)

dx + ux(x + dx, y) − ux(x, y)
. (2.47)

By expanding the displacement expressions uy(x + dx, y) and ux(x + dx, y) in Tay-
lor series up to the linear term, (2.47) becomes

tan(α) =
∂uy(x,y)

∂x

1 + ∂ux(x,y)
∂y

. (2.48)

Since small deformations of the rectangle are assumed, ∂uy(x, y) /∂x and
∂ux(x, y) /∂y as well as α are small compared to 1. Therewith, (2.48) is simpli-
fied to
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α

β

x

y

x x + dx

y

y + dy

ux(x, y)

ux(x, y + dy)

ux(x + dx, y)

u y
(x

,y
)

u y
(x

+
dx

,y
)u y

(x
,y

+
d y

)

P0(x, y)

P (x, y)

Fig. 2.5 Infinite small rectangle (side lengths dx and dy) in initial state (left) and deformed state
(right)

α = ∂uy(x, y)

∂x
. (2.49)

The same procedure can be utilized to approximate the angle β. To measure the total
shearing of the rectangle, we calculate the sum of α and β

α + β = ∂uy(x, y)

∂x
+ ∂ux(x, y)

∂y
= 2Sxy = 2Syx . (2.50)

Sxy and Syx are so-called shear strains that are equal due to the mentioned definition
of total shearing.

For the three-dimensional space, overall nine strains exist in the linear case. Sxx,
Syy as well as Szz denote normal strains and Sxy, Syx, Sxz, Szx, Syz, Szy are shear
strains. Similar to the mechanical stress in (2.33), it is appropriate to define the strain
tensor[S] of rank two

[S] =
⎡

⎣
Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

⎤

⎦ . (2.51)

The strain tensor comprises overall six independent entries because

Sxy = Syx Sxz = Szx Syz = Szy (2.52)

holds. Thus, we can reduce the strain tensor to a vector S containing six components
(Voigt notation)
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S =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Sxx
Syy
Szz
2Syz
2Sxz
2Sxy

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

S11
S22
S33
2S23
2S13
2S12

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

S1
S2
S3
S4
S5
S6

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(2.53)

Again, S does not represent a physical strain vector. By applying the differential
operator B from (2.40), the relation between the mechanical strain vector and the
displacement vector u =[

ux, uy, uz
]t
of an arbitrary point within the deformed solid

body takes the form

S = Bu . (2.54)

The mechanical strain is, therefore, uniquely represented through the displacement
of the body.

2.2.3 Constitutive Equations and Material Behavior

For the linear case, the relation betweenmechanical stress and strain for a deformable
solid body is known as Hooke’s law, also called the linear law of elasticity. Hooke’s
law reads as

[T] = [c][S] (2.55)

and alternatively as

[S] = [s][T] (2.56)

with the elastic stiffness tensor (elasticity tensor)[c] and the elastic compliance tensor
[s] = [c]−1 covering the mechanical behavior of the body. Since both[S] and[T] are
tensors of rank two, [c] as well as [s] are tensors of rank four containing 81 entries.
Utilizing Einstein summation convention,3 (2.55) and (2.56) become

Ti j = ci jkl Skl {i, j, k, l} ={x, y, z} (2.57)

Si j = si jkl Tkl (2.58)

with the components Ti j , Skl , ci jkl , and si jkl of the tensors. As already mentioned,[S]
and[T] comprise only six independent entries, respectively. On account of this fact
and due to additional symmetry properties, the components of[c] and[s] feature the

3Einstein summation convention: ci jkl Skl = ∑

k,l
ci jkl Skl .
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properties

ci jkl = c jikl ci jkl = ci jlk ci jkl = ckli j (2.59)

si jkl = s jikl si jkl = si jlk si jkl = skli j (2.60)

yielding a matrix with 36 entries (6 × 6), which contains overall 21 independent
components.

Now, let us assume a deformable solid body of isotropic and homogeneous mate-
rial. For such body, the relations between the mechanical stresses and strains are
given by (trace of the tensor tr)

normal stresses Tii = 2G

(
Sii + νP

1 − 2νP
tr[S]

)
(2.61)

shear stresses Ti j = 2GSi j i �= j (2.62)

where νP denotes the so-called Poisson’s ratio that measures the ratio of the resulting
strain perpendicular to the applied mechanical load to the one in load direction. G
stands for the shear modulus (unit Nm−2) and relates shear stresses to shear strains.
Aside from the scalar quantities Poisson’s ratio and shear modulus, an important
quantity for an isotropic solid body is the Young’s modulus (tensile modulus; unit
Nm−2) EM measuring the stiffness of a material. EM can be calculated from νP and
G with

EM = 2G(1 + νP) . (2.63)

Note that apart from the density 
0, two of the three quantities νP, G and EM are
sufficient to fully describe the mechanical material properties of the body. These
quantities are also used to deduce other essential quantities of continuummechanics,
e.g., the so-called Lamé parameters λL and μL

λL = 2νPG

1 − 2νP
= νPEM

(1 + νP)(1 − 2νP)
(2.64)

μL = G = EM

2(1 + νP)
. (2.65)

If the symmetry properties of the stiffness tensor[c] and the material behavior of the
isotropic as well as homogeneous solid body are considered, we can rewrite (2.55) to

⎡

⎢⎢⎢
⎢⎢⎢
⎣

Txx
Tyy
Tzz
Tyz
Txz
Txy

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

λL + 2μL λL λL 0 0 0
λL λL + 2μL λL 0 0 0
λL λL λL + 2μL 0 0 0
0 0 0 μL 0 0
0 0 0 0 μL 0
0 0 0 0 0 μL

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢
⎣

Sxx
Syy
Szz
2Syz
2Sxz
2Sxy

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (2.66)
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Moreover, in an isotropic and homogeneous solid body, Navier’s equation (2.42)
incorporating the linear material behavior as well as the previously studied relation
between mechanical strain and displacement becomes

μL∇ · ∇u +(λL + μL)∇(∇ · u) + fV = 
0
∂2u
∂t2

. (2.67)

However, for a general solid body that may be inhomogeneous as well as anisotropic,
we are not able to define quantities like the Lamé parameters. By combining (2.42),
(2.54) and Hooke’s law, Navier’s equations can also be expressed as

Bt[c]Bu + fV = 
0
∂2u
∂t2

, (2.68)

which is valid for the linear case, i.e., small mechanical deformations. Therein, the
expression [c] represents a matrix of dimension 6 × 6 instead of a tensor quantity
comprising 81 entries. This matrix is always referred to as stiffness tensor in the
following equations and explanations.

2.2.4 Elastic Waves in Solids

Let us regard a deformable body of infinite extension to discuss different wave types
in solids. The wave propagation causes displacements of the infinitely small body
fractions depending on both space and time. As it is possible for almost all vector
fields, we decompose the displacement vector u in an irrotational part uirr and a
solenoidal part usol, for which the following relations are fulfilled

irrotational part: ∇ × uirr = 0 (2.69)

solenoidal part: ∇ · usol = 0 . (2.70)

According to the so-called Helmholtz decomposition, we additionally introduce the
scalar potential ϕ and the vector potential A. Therewith, the displacement vector
becomes

u = ∇ϕ︸︷︷︸
uirr

+∇ × A︸ ︷︷ ︸
usol

. (2.71)

Substitution of u in the Navier’s equation (2.67) by this expression and neglecting
the prescribed volume forces fV results in
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μL∇ · ∇(∇ϕ + ∇ × A) +(λL + μL) ∇
[
∇ ·(∇ϕ) + ∇ ·(∇ × A)

]

= 
0
∂2(∇ϕ + ∇ × A)

∂t2
, (2.72)

which can be simplified and rearranged to the form

∇
[
(λL + 2μL)∇ · ∇ϕ − 
0

∂2ϕ

∂t2

]
+ ∇ ×

[
μL∇ · ∇A − 
0

∂2A
∂t2

]
= 0 . (2.73)

From (2.73), one equation for ϕ and A can be deduced, respectively, that has to be
satisfied

∂2ϕ

∂t2
= λL + 2μL


0
∇ · ∇ϕ (2.74)

∂2A
∂t2

= μL


0
∇ · ∇A . (2.75)

To analyze (2.74) and (2.75), appropriate ansatz functions for the scalar and vector
potential are required. Here, we choose

ϕ = f (ζ) = f (k · x − ωt) (2.76)

A = F(ζ) = F(k · x − ωt) (2.77)

representing elastic waves propagating with the velocity c within the solid body in
(positive) direction of the wave vector k =[

kx , ky, kz
]t
. The expressions x and ω

denote the position of the infinitely small volume fraction within the body and the
angular frequency, respectively.

Let us investigate in a first step the equation for the scalar potential ϕ. From the
ansatz function (2.76), the following relations can be derived (ki component of k; xi
component of x = [x, y, z]t)

∂2ϕ

∂t2
= ∂

∂t

(
∂ϕ

∂ζ

∂ζ

∂t

)
= ω2 ∂2ϕ

∂ζ2
and

∂2ϕ

∂x2i
= ∂

∂xi

(
∂ϕ

∂ζ

∂ζ

∂xi

)
= k2i

∂2ϕ

∂ζ2
.

By means of these relations, (2.74) results in

ω2 ∂2ϕ

∂ζ2
= λL + μL


0

(
k2x + k2y + k2z

)

︸ ︷︷ ︸
‖k‖22

(2.78)

where ‖k‖2 = k stands for the magnitude of the wave vector that is also named wave
number k. Because ω = c ‖k‖2 has to be fulfilled for a propagating wave, we can
deduce
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cl =
√

λL + 2μL


0
=

√
EM(1 − νP)


0(1 − 2νP)(1 + νP)
=

√
2G(1 − νP)


0(1 − 2νP)
(2.79)

representing the wave propagation velocity of the irrotational displacements uirr .
Moreover, (2.71) leads to

uirr = ∇ϕ = ∂ϕ

∂x
ex + ∂ϕ

∂y
ey + ∂ϕ

∂z
ez

= ∂ϕ

∂ζ

∂ζ

∂x︸︷︷︸
kx

ex + ∂ϕ

∂ζ

∂ζ

∂y
︸︷︷︸
ky

ey + ∂ϕ

∂ζ

∂ζ

∂z︸︷︷︸
kz

ez = k
∂ϕ

∂ζ
, (2.80)

which shows that the irrotational part of the displacements is pointing in the direction
of wave propagation; i.e., the extension of the volume fractions gets exclusively
altered in this direction (see Fig. 2.6a). Against that, the volume fractions remain
completely unchanged perpendicular to k. The resulting elastic waves propagating
with the velocity cl (see (2.79)) are usually referred to as longitudinal or compression
waves.

If a similar procedure is applied to the vector potentialA in (2.75) with the ansatz
function (2.77), we will obtain for the wave propagation velocity

ct =
√

μL


0
=

√
EM

2(1 + νP) 
0
. (2.81)

Furthermore, inserting the ansatz function (2.77) in (2.71) yields for the solenoidal
part usol of the displacement

usol = ∇ × A = k × ∂A
∂ζ

. (2.82)

Hence, usol is exclusively perpendicular to the direction k of wave propagation (see
Fig. 2.6b). Such elastic waves propagating with the velocity ct (see (2.81)) are called
transverse or shear waves. The ratio of the propagation velocities for the different
waves types, i.e., longitudinal and transverse waves, results in

cl
ct

=
√

λL + 2μL

μL
=

√
2(1 − νP)

1 − 2νP
, (2.83)

which leads to the inequality cl >
√
2ct . Owing to this fact, it can be stated that the

propagation velocity for longitudinal waves in a homogeneous and isotropic solid is
always larger than for transverse waves.

Pure longitudinal as well as pure transverse waves can only exist in a solid body
of infinite extension. In reality, there always occurs a superposition of these wave
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(a) (b)λl
λt

kk

Fig. 2.6 Change of infinitely small fractions of solid body for a longitudinal waves and b transverse
waves; direction of wave propagation k; wavelengths of elastic waves λl and λt

Table 2.5 Typical material parameters for solids in continuum mechanics; equilibrium density 
0;
Young’s modulus EM; Poisson’s ratio νP; Lamé parameters λL and μL; wave propagation velocity
cl and ct for longitudinal and transverse elastic waves, respectively

Material 
0
kgm−3

EM
1010 Nm−2

νP λL
1010 Nm−2

μL
1010 Nm−2

cl
ms−1

ct
ms−1

Acrylic glass 1190 0.44 0.39 0.56 0.16 2720 1150

Aluminum 2700 6.76 0.36 6.40 2.49 6490 3030

Cooper 8930 12.62 0.37 13.11 4.61 5000 2270

Iron 7690 20.34 0.29 10.89 7.88 5890 3200

Polyethylene 900 0.08 0.46 0.32 0.03 2030 550

Silver 10600 7.47 0.38 8.57 2.71 3630 1600

Tungsten 19400 41.58 0.27 19.26 16.41 5180 2910

types resulting, for instance, in waves traveling on the surface of a solid, the so-called
Rayleighwaves. However, for several practical situations, we are able to approximate
the wave propagation in solids by the dominating wave type, i.e., longitudinal or
transverse waves.

Table2.5 contains the most important parameters in continuum mechanics for
various solids. Note that the listed values refer to typical parameters, which can be
found in literature. Actually, the parameters of a material specimen can strongly
deviate from the given values. This mainly stems from differences and uncertainties
in the manufacturing process.

2.3 Acoustics

While solid materials work against both, changes of volume and of shape, gases as
well as (nonviscous) liquids solely react to changes of volume. This arises from the
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fact that gases and such liquids are not able to transmit shear forces. Consequently,
transverse waves do not propagate. In the following section, the basics of acoustics,
i.e., thewave propagation in gases and liquids, will be introducedwhich are important
to understand and to model the behavior of piezoelectric ultrasound transducers.
At the beginning, the fundamental quantities (e.g., sound pressure) and the wave
theory of sound are discussed. We will subsequently deduce the linear acoustic
wave equation, which results from the conservation of mass, the conservation of
momentum, and the state equation covering the properties of media. Diffraction and
reflection effects at interfaces of different media are studied in Sect. 2.3.4. Finally,
we will briefly explain energy absorption mechanisms taking place during the sound
propagation in gases and liquids. Further literature concerning acoustics can be found
in [5, 10, 12, 16].

2.3.1 Fundamental Quantities

The propagation of sound waves in gases as well as in liquids is accompanied by
local and temporal changes of three state variables: (i) density 
 of the propagation
medium; (ii) pressure p (force per area) acting inside the medium, and (iii) velocity v
of the particles, i.e., the volume fractions of themedium. In general, the state variables
can be decomposed into (position r within the medium)

density: 
(r, t) = 
0 + 
∼(r, t) (2.84)

pressure: p(r, t) = p0 + p∼(r, t) (2.85)

veloctiy: v(r, t) = v0 + v∼(r, t) (2.86)

where 
0 (scalar; unit kgm−3), p0 (scalar; unit Nm−2 and Pa), and v0 (vector; unit
ms−1) represent the density, pressure, and particle velocity for the equilibrium state
of the medium, respectively. The expressions 
∼, p∼, and v∼ denote fluctuations,
which are induced from the propagating sound wave. That is the reason why these
quantities are commonly referred to as acoustic density, sound pressure, and acoustic
particle velocity. One of them is sufficient to completely specify sound fields and,
therefore, 
∼, p∼ as well as v∼ are called sound field quantities. Depending on the
frequency f (unit s−1 or Hz) of the fluctuations, we classify acoustics in

• Infrasound: f ≤ 16Hz.
• Audible sound: 16 Hz < f ≤ 20 kHz.
• Ultrasound: 20 kHz < f ≤ 1GHz.
• Hypersound: f > 1GHz.

Apart from
∼, p∼, andv∼, the acoustic intensity and the acoustic power are important
quantities in acoustics. The vectorial acoustic intensity Iac is defined by

Iac(r, t) = p∼(r, t) · v∼(r, t) unit: Wm−2 . (2.87)
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Table 2.6 Typical values of averaged sound pressure p∼ and sound pressure level Lp for different
sound events; static air pressure p0 = 105 Pa

Sound event p∼ in Pa Lp in dB

Threshold of hearing 20 · 10−6 0

Conversational speech < 2 · 10−2 60

Street noise in a city 5 · 10−2 68

Orchestral music 5 108

Noise of a jackhammer 50 128

It measures at position r the time-dependent sound energy. From the acoustic inten-
sity, we can compute the acoustic power Pac(t) of a sound source

Pac(t) =
∮

A
Iac(r, t) · dA unit: W (2.88)

with the enveloping surface A, which encloses the sound source.
Due to the large range of the mentioned acoustic quantities (see Table2.6), it is

convenient to introduce normalized logarithmic scaling in Decibel (dB). To obtain
meaningful values, p∼, Iac as well as Pac have to be averaged over a certain time
duration yielding p∼, I ac, and Pac. The logarithmic scaling is commonly calculated
with (‖Iac‖2 = Iac)

sound pressure level: Lp = 20 log10

(
p∼
pref

)
; pref = 2 · 10−5 Pa (2.89)

sound intensity level: L I = 10 log10

(
I ac
Iref

)

; Iref = 10−12 Wm−2 (2.90)

sound power level: LP = 10 log10

(
Pac

Pref

)

; Pref = 10−12 W . (2.91)

pref , Iref , and Pref represent the values at the threshold of human hearing for sinusoidal
sound waves with a frequency of 1kHz. For example, a sound pressure level of Lp =
0 dB in air means that the averaged sound pressure p∼ is equal to 20µPa. Note that
in liquids, other values are chosen for normalization, e.g., pref = 1µPa in water.

2.3.2 Wave Theory of Sound

The wave theory of sound is directly linked to the conservation of mass, the conser-
vation of momentum, and the state equation.
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Conservation of Mass

As already discussed, sound propagation is accompanied by local density variations
of the propagation medium. According to the mass conservation, a density varia-
tion changes the mass of a spatially fixed volume fraction. The mass change has to
be compensated by a certain mass flow through the surface enclosing the volume
fraction. In order to give a detailed description, let us consider an arbitrary volume
fractionΩ of themedium (see Fig. 2.7a). Themassm of the volume fraction results in

m(t) =
∫

Ω


(r, t) dΩ (2.92)

where 
(r, t) is the density depending on both space and time. A positive mass flow
through the volume surface Γ during the time interval dt will decrease the mass
within the volume fraction. Hence, one can state

∮

Γ


(r, t) v(r, t) dt · d�
︸ ︷︷ ︸

mass flow

= −
∫

Ω

[

(r, t + dt) − 
(r, t)

]
dΩ

︸ ︷︷ ︸
change of mass

. (2.93)

The expression 
(r, t + dt) can be approximated by the first-order Taylor series


(r, t + dt) ≈ 
(r, t) + ∂
(r, t)
∂t

dt . (2.94)

By additionally applying the divergence theorem, (2.93) becomes

∫

Ω

∇ ·
[

(r, t) v(r, t)

]
dΩ = −

∫

Ω

∂
(r, t)
∂t

dΩ . (2.95)

Since this relation has to be fulfilled for each volume fraction within the propagation
medium, we are able to rewrite (2.95) in differential form

∇ ·
[

(r, t) v(r, t)

]
= −∂
(r, t)

∂t
, (2.96)

which is usually referred to as continuity equation.

Conservation of Momentum

To study the conservation of momentum for sound propagation, we consider at posi-
tion r = [x, y, z]t an infinitely small volume dΩ = dxdydz of cubic shape (see
Fig. 2.7b) that moves with the medium. In case of a gas or a nonviscous fluid,
pressure changes within the propagation medium cause repulsive forces F(r, t) =
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(a)
(b)

x y

z

Γ

Ω

dr = vdt

dxdy

dz

r

p x + dx
2 , y, z, t

p x − dx
2 , y, z, t

Fig. 2.7 aConsidered arbitrary volume fractionΩ (surfaceΓ ) for derivation of continuity equation;
b infinitely small volume dΩ = dxdydz of cubic shape, which is considered to deduce Euler’s
equation

[
Fx(r, t) , Fy(r, t) , Fz(r, t)

]t
acting on this volume. For the considered configura-

tion, the equilibrium of forces in x-direction becomes

dFx(x, y, z, t) +
[
p

(
x + dx

2
, y, z, t

)
− p

(
x − dx

2
, y, z, t

)]
dy dz = 0 .

(2.97)

By applying Taylor series expansion up the linear term for p(x ± dx/2, y, z, t)

p

(
x ± dx

2
, y, z, t

)
≈ p(x, y, z, t) ± ∂ p(x, y, z, t)

∂x

dx

2
, (2.98)

(2.97) simplifies to

dFx(x, y, z, t) = −∂ p(x, y, z, t)

∂x
dΩ . (2.99)

If the same procedure is performed for y- and z-direction, we will obtain

dF(r, t) = −∇ p(r, t) dΩ (2.100)

representing in compact form the equilibrium of forces for the infinitely small vol-
ume. Additionally, for the considered volume exhibiting the mass dm = 
(r, t) dΩ ,
Newton’s law has to be fulfilled which reads as

dF(r, t) = 
(r, t) a(r, t) dΩ . (2.101)
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The expressions a and dF stand for the acceleration of the mass and the (repulsive)
force acting on the infinitely small volume, respectively. Because the infinitely small
volume dΩ alters its position r with respect to time t , its acceleration a can be
calculated from the particle velocity v by (total derivative d/dt)4

a = dv
dt

= ∂v
∂t

+ ∂v
∂x

∂x

∂t
+ ∂v

∂y

∂y

∂t
+ ∂v

∂z

∂z

∂t
= ∂v

∂t
+(v · ∇) v. (2.102)

Utilizing this relation as well as (2.100) and (2.101) finally leads to




[
∂v
∂t

+(v · ∇) v
]

= −∇ p , (2.103)

which is the so-called Euler’s equation in differential form. The expression
(v · ∇) v (convective acceleration) accounts for effects of time-independent accel-
erations in a fluid with respect to space.

State Equation

The state variables (
, p, and v) for the description of propagating sound waves are
not independent from each other. Actually, the relation between them depends on the
properties of the propagation medium. In liquids and gases, pressure is a function of
both the density of the medium and its temperature ϑ

p = p(
,ϑ) . (2.104)

As sound propagation is accompanied by fast local changes within the propaga-
tion medium, heat transfer between neighboring volume fractions is in a first step
negligible. We can, therefore, assume constant medium temperature during sound
propagation as well as adiabatic state changes. Consequently, pressure is exclusively
a function of the medium density, i.e., p = p(
). Beyond that, we are able to connect
the fluctuations p∼ and 
∼, which are induced by the propagating sound wave. If the
sound pressure is expanded in a Taylor series around the equilibrium state 
0, one
will arrive at

p∼ = A

1!

(

∼

0

)
+ B

2!

(

∼

0

)2

+ O(n) (2.105)

with

A = 
0

(
∂ p∼
∂
∼

)∣∣
∣∣

=
0

≡ 
0c
2
0 and B = 
20

(
∂2 p∼
∂
2∼

)∣∣
∣∣

=
0

. (2.106)

4For compactness, arguments position r and time t are omitted.
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The term c0 denotes the sound velocity (speed of sound; wave propagation velocity)
in the medium. For sound waves exhibiting small fluctuations compared to equilib-
rium, A is sufficient to describe the relation between sound quantities. This leads to

p∼ = c20
∼ , (2.107)

which is a fundamental equation in acoustics. However, in case of large fluctuations,
nonlinear effects (e.g., progressive distortion) occur during sound propagation. Such
effects can be modeled by additional consideration of B. The temperature-dependent
ratio B/A has become a common expression in nonlinear acoustics and is listed for
various liquids and gases in literature [6].

In the following,we assume small values for p∼ and
∼ allowing linearization; i.e.,
only the linear term A of the Taylor series in (2.105) is considered. The linearization
is applied to both gases and liquids. For ideal gases, the adiabatic state equation reads
as

p0 + p∼
p0

=
(


0 + 
∼

0

)κ

(2.108)

where κ = Cp/CV denotes the adiabatic exponent given by the ratio of specific
heat Cp at constant pressure and specific heat CV at constant volume. By means of
linear Taylor approximation, (2.108) can be rewritten to

p∼ = κ
p0

0


∼ . (2.109)

Combining this with (2.106) yields for the sound velocity in a gas

c0 =
√(

∂ p∼
∂
∼

)∣∣
∣∣

=
0

=
√

κ
p0

0

. (2.110)

Since an ideal gas fulfills the relation p∼ = 
∼Rgasϑ (specific gas constant Rgas),
(2.110) takes the form

c0 =
√

κRgasϑ , (2.111)

which shows that the sound velocity in gases strongly depends on temperature. In a
liquid, (2.109) has to be replaced by

p∼ = Kliquid

∼
p0

(2.112)

where Kliquid is the adiabatic bulk modulus
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Table 2.7 Typical sound velocities c0 in m s−1 of various liquids and gases for selected
temperatures

Acetone Air Argon Benzol Diesel

1174 at 25 ◦C 344 at 20 ◦C 319 at 0 ◦C 1330 at 25 ◦C 1250 at 25 ◦C
386 at 100 ◦C
553 at 500 ◦C

Gallium Glycerin Helium Hydrogen Water

2870 at 30 ◦C 1904 at 25 ◦C 965 at 0 ◦C 1284 at 0 ◦C 1480 at 20 ◦C
1509 at 30 ◦C
1550 at 60 ◦C

Kliquid = 
0

(
∂ p∼
∂
∼

)∣∣∣∣

=
0

. (2.113)

Therewith, the sound velocity c0 in liquids computes as

c0 =
√

Kliquid


0
. (2.114)

Table2.7 contains sound velocities of various liquids and gases.

2.3.3 Linear Acoustic Wave Equation

With a view to deriving the linear acoustic wave equation, we assume small fluctua-
tions of pressure and density during sound propagation in the propagation medium,
i.e.,


∼(r, t) � 
0 and p∼(r, t) � p0 . (2.115)

By utilizing this assumption and the fact that the equilibrium quantities 
0, p0, and v0
depend neither on position r nor on time t , the continuity equation (2.96) simplifies
to


0∇ · v∼(r, t) = −∂
∼(r, t)
∂t

. (2.116)

Besides, soundwaves of small amplitudes donot cause vortex in gases andnonviscous
liquids, which results in an irrotational wave propagation, i.e., pure longitudinal
waves. The convective accelerations (v · ∇)v can, thus, be neglected. Together with
the assumption of small fluctuations (2.115), Euler’s equation (2.103) becomes
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0
∂v∼(r, t)

∂t
= −∇ p∼(r, t) . (2.117)

If the curl operator is applied to (2.117), one will obtain

∇ × v∼(r, t) = 0 (2.118)

pointing out again that the particle velocity v∼ and, consequently, the wave propaga-
tion are irrotational. Now, let us apply an additional time derivative ∂/∂t to (2.116)


0∇ · ∂v∼(r, t)
∂t

= −∂2
∼(r, t)
∂t2

. (2.119)

Substitution of the expression ∂v∼/∂t from (2.117) in (2.119) yields then

∇ · ∇ p∼(r, t) = ∂2
∼(r, t)
∂t2

. (2.120)

By means of the fundamental relation between sound pressure p∼ and acoustic
density 
∼ (see (2.107)), we end up with (Laplace operator � = ∇ · ∇)

�p∼(r, t) = 1

c20

∂2 p∼(r, t)
∂t2

(2.121)

representing the linear acoustic wave equation for sound pressure p∼.
According to the Helmholtz decomposition, we can express the particle veloc-

ity v∼ by a combination of scalar and vector potential. Since the particle velocity is
irrotational (2.118), the decomposition requires only a scalar potential, the so-called
acoustic velocity potential Ψ

v∼(r, t) = −∇Ψ (r, t) . (2.122)

This relation can be inserted in the modified Euler’s equation (2.117) leading to

p∼(r, t) = 
0
∂Ψ (r, t)

∂t
. (2.123)

The acoustic velocity potential Ψ can, therefore, be easily connected to both quanti-
ties: the particle velocity and the sound pressure. Furthermore, if (2.123) is inserted
in (2.121), we will obtain

�Ψ∼(r, t) = 1

c20

∂2Ψ∼(r, t)
∂t2

, (2.124)

which is the linear acoustic wave equation for the acoustic velocity potential taking
the same form as (2.121).
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The linear wave equation is restricted to small fluctuations of p∼ and 
∼ dur-
ing sound propagation. To consider large fluctuations of those quantities, we need
alternative equations that incorporate nonlinear effects, e.g., the KZK (Khokhlov–
Zabolotskaya–Kuznetsov) equation [6].

2.3.4 Reflection and Refraction of Sound

So far, we have described propagation of sound waves in homogeneous media.When
sound waves impinge on an interface of two media exhibiting different material
properties (e.g., density), reflection as well as refraction of the waves may occur. Let
us study these effects by regarding plane waves. Such waves feature equal current
state quantities (e.g., sound pressure) in each plane aligned perpendicular to the
propagation direction (see Fig. 2.8a). For sinusoidal plane waves of frequency f , the
geometric distance between identical current states corresponds to the wavelength λ,
which is given by fundamental relations in wave propagation (angular frequency ω;
wave number k)

λ = c0
f

= 2πc0
ω

= 2π

k
. (2.125)

Aside from the acoustic quantities discussed in Sect. 2.3.1, the acoustic impedance
Zaco is an essential quantity characterizing the behavior of media with respect to
propagating soundwaves. In case of a plane soundwave, the acoustic impedance (unit
Nsm−3) of the propagation medium becomes

Zaco = p̂∼
v̂∼

= 
0c0 (2.126)

where p̂∼ and v̂∼ stand for the amplitudes of sound pressure and particle velocity,
respectively. Although sound waves represent longitudinal waves and exclusively
refer to liquids and gases, the definition of the acoustic impedance Zaco = 
0c0 is
oftentimes used for solids, which are able to transmit transverse waves in addition.
According to the literature in acoustics, we will therefore indicate elastic waves (see
Sect. 2.2.4) in solids also as sound waves. Owing to considerably high densities
as well as sound velocities of solids, their acoustic impedances (e.g., Zaco ≈ 50 ·
106 N sm−3 for iron) are usually many times greater than those of gases and liquids.

Now, let us assume an interface between twodifferent homogeneousmaterials (see
Fig. 2.8b), medium 1 and medium 2, exhibiting the equilibrium densities 
1 and 
2
as well as the sound velocities c1 and c2, respectively. A sound wave shall impinge
in medium 1 on this interface. Because the interface is located in the yz-plane and
the plane sound waves are supposed to propagate in the xy-plane, it is sufficient to
discuss the configuration in the two-dimensional space, i.e., in the xy-plane. The
sinusoidal incident wave pI∼ depending on both position and time can be written



36 2 Physical Basics

(a) (b)

p∼(x0, t)

p∼(x0 + λ, t)

p∼(x0 + 2λ, t)

propagation
in x-direction

medium 1 medium 2

1; c1 2; c2

x

y

pI∼

pR∼ pT∼

ΘI

ΘT
ΘR

Fig. 2.8 a Plane pressure wave propagating in x-direction; gray planes depict areas of equal current
state; b reflection and transmission of plane pressure wave impinging on interface of different media

as (real part �{·}; imaginary unit j = √−1)

pI∼(x, y, t) = �
{
p̂
I∼e

jk1[x cosΘI+y sinΘI]e jωt
}

. (2.127)

ΘI stands for the incident angle with respect to the normal direction of the interface
and k1 is the wave number of the incident pressure wave in medium 1. The complex-
valued amplitude p̂

I∼ = p̂I∼e jφI comprises the amplitude p̂I∼ of the wave as well as
its phase angle φI for t = 0. To achieve compact formulations for plane waves, they
are further given as complex-valued representation. In doing so, (2.127) becomes

p
I∼(x, y) = p̂

I∼e
jk1[x cosΘI+y sinΘI] . (2.128)

For the reflected wave pR∼ propagating in medium 1 and the transmitted wave pT∼
propagating in medium 2, the complex-valued representation leads to (complex-
valued amplitudes p̂

R∼ and p̂
T∼)

p
R∼(x, y) = p̂

R∼e
jk1[−x cosΘR+y sinΘR] (2.129)

p
T∼(x, y) = p̂

T∼e
jk2[x cosΘT+y sinΘT] (2.130)

where k2 is the wave number in medium 2. ΘR and ΘT are the angles of the reflected
and transmitted waves (see Fig. 2.8b), respectively. At the material interface, the
summed current pressure values of incident and reflected wave coincide with the
transmitted wave, i.e.,

p
I∼(x = 0, y) + p

R∼(x = 0, y) = p
T∼(x = 0, y) (2.131)
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has to be fulfilled. Since (2.131) holds for each y-position on the interface, we can
deduce with (2.128)–(2.130) the relations

k1 sinΘI = −k1 sinΘR (2.132)

k1 sinΘI = k2 sinΘT . (2.133)

The angles of incident waves ΘI and reflected waves ΘR are, thus, equal which is
commonly referred to as law of reflection for acoustics. Due to the fact that the
frequency f and, consequently, the angular frequency ω of the propagating pressure
waves coincide in both media, we may rewrite (2.133) by utilizing (2.125) to

sinΘI

c1
= sinΘT

c2
. (2.134)

This fundamental equation is called the law of refraction for acoustics, which is
especially familiar in optics as Snell’s law [7]. In case of material combinations
featuring the properties c2 > c1, an incident angle

ΘI > arcsin

(
c1
c2

)
(2.135)

causes total reflection at the interface. Instead of the propagating pressure wave pT,
the pressure distribution decreases exponentially in medium 2 for such material
combination.

Neither the law of reflection nor the law of refraction provides information about
the pressure amplitudes of the reflected and transmitted wave with respect to the
incident one. To compute the ratio of the amplitudes, we take a closer look at the
particle velocities on the material interface. From the physical point of view, the
velocities of the soundwaves have to be equal at the interface, e.g., the x-components
of the particle velocities v∼ =[

vx∼, vy∼, vz∼
]
. Therefore, we obtain by additionally

using the acoustic impedances Zaco1 and Zaco2 of medium 1 and medium 2 (see
(2.126))

p
I∼

Zaco1
cosΘI

︸ ︷︷ ︸
vI,x∼

− p
R∼

Zaco1
cosΘR

︸ ︷︷ ︸
vR,x∼

= p
T∼

Zaco2
cosΘT

︸ ︷︷ ︸
vT,x∼

. (2.136)

Inserting of (2.131) in (2.136) yields

rp = p
R∼
p
I∼

= Zaco2 cosΘI − Zaco1 cosΘT

Zaco1 cosΘT + Zaco2 cosΘI
(2.137)

tp = p
T∼
p
I∼

= 2Zaco2 cosΘI

Zaco1 cosΘT + Zaco2 cosΘI
. (2.138)
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The expressions rp and tp denote the reflection coefficient and transmission coeffi-
cient for the incident pressure waves, respectively. In case of plane pressure waves
impinging perpendicular to thematerial interface, i.e.,ΘI = ΘR = ΘT = 0◦, (2.137)
and (2.138) simplify to

rp = Zaco2 − Zaco1

Zaco1 + Zaco2
and tp = 2Zaco2

Zaco1 + Zaco2
. (2.139)

Equation (2.139) states that a great difference in the acoustic impedances results in a
high reflection coefficient rp ≈ 1 and, thus, in a small transmission coefficient tp ≈ 0.
Such great differences occur for the combination solid/gas. If medium 1 is a solid
and medium 2 a gas (Zaco1 � Zaco2), almost the complete impinging pressure wave
will be reflected at the interface. For the alternative configuration, i.e., medium 1
is a gas and medium 2 a solid (Zaco1 � Zaco2), the impinging wave is also almost
completely reflected. The first material configuration poses a so-called acoustically
soft interface, while the second configuration refers to an acoustically hard interface.

At the end of this subsection, a special case of reflection and refraction at mate-
rial interfaces should be pointed out in addition. As discussed in Sect. 2.2.4, both
longitudinal and transverse waves can propagate in solids. Hence, at interfaces of
different solids aswell as liquids and solids, thewave typesmay change. For instance,
a longitudinal plane wave impinging on a liquid/solid interface can generate both
wave types (i.e., longitudinal and transverse) for the transmitted waves propagating
in the solid. The angles for reflection and transmission of longitudinal and transverse
waves result from (2.134) by applying the sound velocities of the wave types.

2.3.5 Sound Absorption

Sound propagation is always accompanied by absorption mechanisms, whereby
sound energy is predominately converted into heat energy. This conversion leads to
attenuation (damping) of acoustic quantities for increasing propagation paths. Espe-
cially in gases and liquids, which are, strictly speaking, viscous, attenuation strongly
alters amplitudes and even waveforms of propagating sound waves. For example,
a sinusoidal plane wave of frequency f = ω/2π propagating in x-direction is then
given as

p∼(x, t) = �{
p̂∼ · e−αatx · e j[kx−ωt]

} = p̂∼ · e−αatx cos(kx − ωt) . (2.140)

p∼(x, t) is the current sound pressure at position x and p̂∼ stands for the pressure
amplitude at position x = 0. By means of the expression e−αatx , the attenuation of
the pressure wave is modeled. Since the attenuation coefficient αat is positive, the
sound pressure amplitude decreases exponentially for increasing distances.

Sound absorption mechanisms in liquids as well as in gases are commonly subdi-
vided into the so-called classical absorption andmolecular absorption.Moreover, the
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classical absorption is subdivided into effects arising from inner friction and thermal
conductance. These three sound absorption mechanisms are briefly discussed below.

• Absorption due to inner friction: Contrary to the assumption in Sect. 2.3.2, liq-
uids as well as gases are capable to act against deformation to a small extent. This
can be ascribed to inner friction. A quantity that measures inner friction within
liquids and gases is the dynamic viscosity ηL (unit Nsm−2). The attenuation coef-
ficient αη attributed to the inner friction computes as

αη = 2ηL
3
0

ω2

c30
. (2.141)

Thus, αη highly depends on both the frequency of the pressure wave and the sound
velocity.

• Absorption due to thermal conductance: Up to now, we neglected the thermal
conductance in liquids and gases for deriving the fundamental relations in acous-
tics. Actually, the differing compression of neighboring volume fractions during
sound propagation causes local variations in temperature. Since liquids and gases
exhibit nonzero thermal conductance, a certain thermal flow occurs. This ther-
mal flow reduces the energy of the sound wave. The attenuation coefficient αth

originating from thermal conductance can be calculated with

αth = κ − 1

κ

νth


0CV

ω2

c30
. (2.142)

Here, νth denotes the thermal conductivity (unitWK−1 m−1) of themedium.Again,
the attenuation coefficient strongly depends on both the frequency of the pressure
wave and the sound velocity.

• Molecular absorption: Sound absorption due to inner friction and thermal con-
ductance (i.e., classical absorption mechanism) is sufficient to account for the
attenuation in monoatomic liquids and gases. However, most liquids and gases
comprise polyatomic molecules featuring complicate structures. A propagating
sound wave generates oscillations (e.g., rotation) of molecules’ atoms leading to
heating of propagation medium as well as attenuation of sound energy. This effect
is referred to as thermal relaxation. Besides thermal relaxation, other molecular
absorption mechanisms such as structure and chemical relaxation processes take
place during sound propagation in polyatomic liquids and gases.

The attenuation coefficient αat, which measures sound absorption during propaga-
tion, results from the sum

αat = αη + αth︸ ︷︷ ︸
αcl

+αmol . (2.143)
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Table 2.8 Attenuation factors Dat (see (2.144)) in dBm−1 for sound waves propagating in water
and air in case of varying frequencies f ; temperature of water and air 20 ◦C; relative air humidity
40%

1kHz 10kHz 100kHz 1MHz 10MHz

water 2 × 10−7 2 × 10−5 0.002 0.22 22

air 0.004 0.18 3.3 160 −

Thereby, αcl and αmol are the attenuation coefficients arising from classical and
molecular absorption, respectively. From (2.141) and (2.142), we can deduce that
αη and αth increase quadratically with the frequency of the sound waves. Below the
relaxation frequencies, this is also approximately valid for the molecular attenuation
coefficient αmol of various media.

Sound absorption causes remarkable distortions of broadband ultrasound pulses,
which are propagating over a long distance. Table2.8 contains attenuation fac-
tors Dat (unit dBm−1) defined as

Dat = 20 · log10
(

p̂∼
∣∣
x=0m

p̂∼
∣∣
x=1m

)

= 20 · αat · log10(e) ≈ 8.69 · αat (2.144)

for sound waves propagating in water as well as in air. It can be clearly seen that
the attenuation in both media heavily increases with frequency. Moreover, the sound
attenuation in air is much higher than in water.

Similar pulse distortions like those resulting from sound absorption may occur if
sound propagation is accompanied by velocity dispersion. In this context, velocity
dispersion means that the sound velocity c0 depends on the frequency f of the sound
waves, i.e., c0 = c0( f ). Note that velocity dispersion is here assumed to be linear and
does not belong to effects in nonlinear acoustics where high-pressure amplitudes lead
to different sound velocities. However, according to the Kramers–Kronig relations,5

velocity dispersion will not occur if αat increases quadratically with frequency [15,
19]. Because αd of water mostly features this behavior (i.e., αat ∝ f 2) over a wide
frequency range, dispersion is not present yielding a constant sound velocity c0. In
the sound propagation medium air, the relation between attenuation coefficient αat

and sound frequency f strongly depends on temperature, ambient pressure as well as
humidity. That is the reason why velocity dispersion in air is much more important
for technical applications than in water.
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Chapter 3
Piezoelectricity

In this chapter, wewill discuss the physical effect of piezoelectricity, which describes
the interconnection of mechanical and electrical quantities within materials. Sect. 3.1
details the principle of the piezoelectric effect. Thereby, a clear distinction is made
between the direct and the inverse piezoelectric effect. Since different couplingmech-
anisms take place within piezoelectric materials, we will conduct in Sect. 3.2 thermo-
dynamical considerations allowing a distinct separation of the couplingmechanisms.
Subsequently, the material law for linear piezoelectricity will be derived that is given
by the constitutive equations for piezoelectricity. By means of these equations, one
is able to connect mechanical and electrical quantities. In Sect. 3.4, the electrome-
chanical coupling within piezoelectric materials is classified. This includes intrinsic
and extrinsic effects as well as different modes of piezoelectricity. Afterward, we
introduce electromechanical coupling factors, which rate the efficiency of energy
conversion within piezoelectric materials, i.e., from mechanical to electrical energy
and vice versa. Section3.6 finally concentrates on the internal structure of various
piezoelectric materials (e.g., piezoceramic materials), the underlying manufacturing
process as well as typical material parameters. Further literature concerning piezo-
electricity can be found in [14, 15, 17, 28, 40, 42].

3.1 Principle of Piezoelectric Effect

Basically, the piezoelectric effect is understood as the linear interaction between
mechanical and electrical quantities. Materials offering a pronounced interaction are
usually referred to as piezoelectric materials. A mechanical deformation of such
material due to an applied mechanical load results in a macroscopic change of the
electric polarization. In case of appropriate electrodes covering the material, we can
measure electric voltages or electric charges that are directly related to themechanical
deformation. On the other hand, an electric voltage applied to the electrodes yields

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
S. J. Rupitsch, Piezoelectric Sensors and Actuators, Topics in Mining, Metallurgy
and Materials Engineering, https://doi.org/10.1007/978-3-662-57534-5_3
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Fig. 3.1 Simplified inner structure of quartz crystal SiO2 covered with electrodes at top and bottom
surface; a original state of crystal without any mechanical loads; b longitudinal and c transverse
mode of direct piezoelectric effect due to mechanical forces F ; electric polarization P = ‖P‖2
pointing from center CQ− of negative charges to center CQ+ of positive ones; bottom panels illustrate
locations of CQ+ and CQ− within structure for the three states, respectively

a mechanical deformation of the piezoelectric material. Both conversion directions
are, therefore, possible, i.e., frommechanical input to electrical output and from elec-
trical input to mechanical output, respectively. Strictly speaking, the conversion from
mechanical to electrical quantities is given by the direct piezoelectric effect, while
the inverse piezoelectric effect1 describes the conversion from electrical to mechani-
cal quantities. Because the direct and inverse piezoelectric effect require changes of
electric polarization, piezoelectric materials do not contain any free electric charges
and, thus, these materials are electrical insulators.

With a view to studying the principles of the (direct) piezoelectric effect in more
detail, let us consider as piezoelectric material the naturally occurring quartz crystal
SiO2 consisting of the chemical elements silicon Si and oxygen O. Figure 3.1 depicts
a simplified setup of the quartz crystal in different states. The quartz crystal is covered
with electrodes at the top and bottom surface. There is no force acting on the material
in the original state (see Fig. 3.1a), while the quartz crystal is mechanically loaded
with the force F in the deformed state (see Fig. 3.1b and c) in different directions.
These forces lead to certain mechanical deformations of the material.

In the original state, the center CQ+ of positive charges (silicon ions) geometri-
cally coincides with the center CQ− of negative charges (oxygen ions). As a result,

1Sometimes, the inverse piezoelectric effect is named reverse or converse piezoelectric effect.
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the material is electrically neutral to the outside. In contrast, the mechanical defor-
mations in Fig. 3.1b and c imply that the centers of charges do not coincide anymore.
Consequently, electric dipole moments arise pointing from CQ− to CQ+. The dipole
moment is characterized by the electric polarization P. The greater the geometric
distance between CQ− and CQ+, the higher the magnitude ‖P‖2 of the electric polar-
ization will be. To compensate the electric polarization within the material, which
represents an electric imbalance, charges are electrostatically induced on the elec-
trodes. According to the origin, this effect is also referred to as displacement polariza-
tion. If the electrodes are electrically short-circuited, there will occur a charge flow,
i.e., an electric current. Alternatively, one can measure an electric voltage between
the electrically unloaded electrodes.

For the inverse piezoelectric effect, the same processes take place within the
piezoelectric material but in reverse direction. If an electric voltage is applied to
the electrodes, charges will be electrostatically induced on them. These charges
constitute an electric imbalance that is compensated by a dipole moment within the
material. Hence, the centers of positive and negative charges (CQ+ and CQ−) have
to differ geometrically, which implies a mechanical deformation of the piezoelectric
material.

Depending on the directions of the applied mechanical force and the resulting
electric polarization, we can distinguish between different modes of piezoelectricity
(see Sect. 3.4.3). For instance, Fig. 3.1b shows the longitudinal mode and Fig. 3.1c
the transverse mode. The same will hold for the inverse piezoelectric effect when
the applied electric voltage is related to the direction of the resulting mechanical
deformation.

3.2 Thermodynamical Considerations

According to the first lawof thermodynamics, the change dU (per unit volume2) of the
internal energy in a closed system results from the work dW (per unit volume) done
on the system and the heat energy dQ (per unit volume) added to the system. In case
of piezoelectric systems, the work W can be split up into mechanical energy Wmech

and electrical energy Welec. Therewith, the first law of thermodynamics reads as

dU = dW + dQ = dWmech + dWelec + dQ . (3.1)

Now, let us introduce state variables describing the energy of the physical fields,
respectively. These quantities are listed below.

• Mechanical energy: Mechanical stress Si j and mechanical strain Ti j ; both compo-
nents of tensors (rank 2).

• Electrical energy: Electric field intensity Em and electric flux density Dm ; both
components of vectors.

2Energy per unit volume is equivalent to energy density.
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• Heat energy: The second law of thermodynamics states that the change dQ of
heat energy is given by the temperature ϑ and the change ds of entropy per unit
volume; both scalar quantities.

Under the assumption of small changes, the superposition of the state variables in
(3.1) yields3

dU = EmdDm + Ti jdSi j + ϑds . (3.2)

Thus, dU results from the changes of Dm , Si j and s, which represent extensive state
variables. However, in practical applications of piezoelectric materials, the intensive
state variables Em , Ti j , and ϑ are prescribed. That is the reason why we use a special
thermodynamical potential, the so-called Gibbs free energy G

G = U − EmDm − Ti j Si j − ϑs (3.3)

instead.When the independent quantities Em , Ti j , and ϑ are specified, the closed sys-
tem will arrive at the thermodynamic equilibrium in such a way that G is minimized.
Therefore, the total derivative of G has to be zero, i.e.,

dG ≡ 0 = −DmdEm − Si jdTi j − sdϑ . (3.4)

From this relation, we can compute the resulting extensive state variables by fixing
selected intensive state variables, which leads to

Dm = − ∂G
∂Em

∣
∣
∣
∣
T,ϑ

, Si j = − ∂G
∂Ti j

∣
∣
∣
∣
E,ϑ

, s = − ∂G
∂ϑ

∣
∣
∣
∣
T,E

. (3.5)

For instance, Ti j as well as ϑ are fixed to calculate Dm . But strictly speaking, each
extensive state variable depends on all intensive ones. Nevertheless, small changes
are assumed and, consequently, we are able to terminate the Taylor series expansion
after the linear part. In doing so, one ends up with linearized state equations for the
extensive state variables Dm , Si j , and s

dDm =

dielectric material law
︷ ︸︸ ︷

∂Dm

∂En

∣
∣
∣
∣
T,ϑ

︸ ︷︷ ︸

εT,ϑ
mn

dEn +

direct piezoelectric effect
︷ ︸︸ ︷

∂Dm

∂Tkl

∣
∣
∣
∣
E,ϑ

︸ ︷︷ ︸

dE,ϑ
mkl

dTkl +

pyroelectric effect
︷ ︸︸ ︷

∂Dm

∂ϑ

∣
∣
∣
∣
E,T

︸ ︷︷ ︸

ρE,T
m

dϑ (3.6)

3In accordance with the relevant literature, the space directions are denoted by {1, 2, 3} instead
of {x, y, z}; {i, j, k, l,m, n} = {1, 2, 3}; Einstein summation convention, i.e., Ti j Si j = ∑

i, j
Ti j Si j .
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dSi j =

inverse piezoelectric effect
︷ ︸︸ ︷

∂Si j
∂En

∣
∣
∣
∣
T,ϑ

︸ ︷︷ ︸

dT,ϑ
i jn

dEn +

Hooke’s law
︷ ︸︸ ︷

∂Si j
∂Tkl

∣
∣
∣
∣
E,ϑ

︸ ︷︷ ︸

sE,ϑ
i jkl

dTkl +

thermal expansion
︷ ︸︸ ︷

∂Si j
∂ϑ

∣
∣
∣
∣
E,T

︸ ︷︷ ︸

αE,T
i j

dϑ (3.7)

ds =

electrocaloric effect
︷ ︸︸ ︷

∂s

∂En

∣
∣
∣
∣
T,ϑ

︸ ︷︷ ︸

ρT,ϑ
n

dEn +

piezocaloric effect
︷ ︸︸ ︷

∂s

∂Tkl

∣
∣
∣
∣
E,ϑ

︸ ︷︷ ︸

αE,ϑ
kl

dTkl +

specific heat
︷ ︸︸ ︷

∂s

∂ϑ

∣
∣
∣
∣
E,T

︸ ︷︷ ︸

CE,T

dϑ . (3.8)

These three equations contain the connections between electrical, mechanical, and
thermal quantities within piezoelectric materials. Each partial derivative represents
a material parameter characterizing a specific linearized coupling mechanism. The
coupling mechanisms are named in (3.6)–(3.8), and the utilized notation is summa-
rized in Table3.1.

Table 3.1 Expressions used in (3.6)–(3.8) and for Heckmann diagram Fig. 3.2

Notation Description Unit

Intensive state variables

En electric field intensity; vector Vm−1

Tkl mechanical stress; tensor rank 2 Nm−2

ϑ temperatur; scalar K; ◦C
Extensive state variables

Dm electric flux density; vector Cm−2

Skl mechanical strain; tensor rank 2 −
s entropy per unit volume; scalar Jm−3 K−1

Material parameters

εT,ϑ
mn electric permittivities; tensor rank 2 AsV−1 m−1; Fm−1

sE,ϑ
i jkl elastic compliance constants; tensor rank 4 m2 N−1

CE,T heat per unit volume; scalar Jm−3 N−1

dT,ϑ
i jn ; dE,ϑ

mkl piezoelectric strain constants; tensor rank 3 mV−1; CN−1

eϑ
nkl ; e

ϑ
mi j piezoelectric stress constants; tensor rank 3 Cm−2; NV−1 m−1

ρT,ϑ
n ; ρE,T

m pyroelectric coefficients; vector Cm−2 K−1

πT
n ; πT

m pyroelectric coefficients; vector Vm−1 K−1

αE,ϑ
kl ; αE,T

i j thermal expansion coefficients; tensor rank 2 K−1

τ E
i j ; τ

E
kl thermal stress coefficients; tensor rank 2 Nm−2 K−1



48 3 Piezoelectricity

The superscripts of the material parameters point out which physical quantities
are presumed to stay constant in the framework of parameter identification. This
is particularly crucial as only in that way, different coupling mechanisms can be
separated. For each material parameter, there are two state variables listed, e.g., T
and ϑ for εT,ϑ

mn . However, to some extent, the amount of constant quantities can be
reduced from two to one. Let us conduct the reduction for the direct piezoelectric
effect (material parameter dE,ϑ

mkl ) and the inverse piezoelectric effect (material param-
eter dT,ϑ

i jn ). If both, the electric flux density Dm in (3.6) and the mechanical strain Si j
in (3.7) are replaced by the Gibbs free energy G according to (3.5), we will obtain

∂Dn

∂Tkl

∣
∣
∣
∣
E,ϑ

︸ ︷︷ ︸

dE,ϑ
nkl

= − ∂2G
∂En∂Tkl

∣
∣
∣
∣
E,ϑ

= − ∂2G
∂Tkl∂En

∣
∣
∣
∣
T,ϑ

= ∂Skl
∂En

∣
∣
∣
∣
T,ϑ

︸ ︷︷ ︸

dT,ϑ
kln

=̂ dϑ
nkl . (3.9)

Hence, the piezoelectric strain constants dϑ
nkl depend neither on the electric field

intensity En nor on the mechanical stress Tkl . The same procedure can be applied
for the pyroelectric and electrocaloric effect as well as for thermal expansion and the
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Fig. 3.2 Heckmann diagram demonstrating coupling mechanisms within piezoelectric materials;
intensive and extensive state variables at conners of outer and inner triangle, respectively; utilized
notation is given in Table3.1
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piezocaloric effect.Moreover, (3.9) demonstrates that there exist several symmetries,
which we can utilize to reduce tensors to matrices by means of Voigt notation.

The so-calledHeckmann diagram (Fig. 3.2) is a descriptive representation of cou-
pling mechanisms taking place within piezoelectric materials (notation in Table3.1).
The diagram is composed of an outer and an inner triangle. While the corners of the
outer triangle contain intensive state variables, the extensive state variables are placed
at the corners of the inner triangle. As Eqs. (3.6)–(3.8), the Heckmann diagram shows
the different couplingmechanisms, which can be categorized into electromechanical,
thermoelastic, and thermoelectric interconnections.

3.3 Material Law for Linear Piezoelectricity

To derive the material law for linear piezoelectricity that is given by the constitutive
equations for piezoelectricity, we start with the linearized state Eqs. (3.6) and (3.7)
for the electric flux density Dm and the mechanical strain Si j

dDm = εT,ϑ
mn dEn + dϑ

mkldTkl + ρT
mdϑ (3.10)

dSi j = dϑ
i jndEn + sE,ϑ

i jkl dTkl + αE
i jdϑ . (3.11)

If temperature changes dϑ are neglected (i.e., isothermal change in state), the lin-
earized state equations will become

dDm = εTmndEn + dmkldTkl (3.12)

dSi j = di jndEn + sEi jkldTkl (3.13)

with the electric permittivities εTmn for constant mechanical stress, the elastic com-
pliance constants sEi jkl for constant electric field intensity and the piezoelectric strain
constants dmkl . Under the assumption that Dm , En , Si j as well as Tkl are zero in the
initial state, (3.12) and (3.13) can be written as

Dm = εTmnEn + dmklTkl (3.14)

Si j = di jn En + sEi jkl Tkl , (3.15)

which represents the d-form (strain-charge form) of the material law for linear piezo-
electricity. In contrast, the so-called e-form (stress-charge form) reads as

Dm = εSmn En + emkl Skl (3.16)

Ti j = −ei jn En + cEi jkl Skl (3.17)

with the electric permittivities εSmn for constant mechanical strain, the elastic stiff-
ness constants cEi jkl for constant electric field intensity and the piezoelectric stress
constants emkl . Alternatively to the constitutive equations in d-form and e-form,
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the g-form

Em = βT
mnDn − gmklTkl (3.18)

Si j = gi jn Dn + sDi jkl Tkl (3.19)

and h-form

Em = βS
mnDn − hmkl Skl (3.20)

Ti j = −hi jn Dn + cDi jkl Skl . (3.21)

can be sometimes found in the relevant literature. Here, gmkl denotes
piezoelectric voltage constants (unit VmN−1; m2 C−1) and hmkl the piezoelectric
h constants (unit Vm−1; NC−1). The expression βT,S

i j indicates electric impermittiv-
ities (unit VmA−1 s−1; mF−1) for constant stress and constant strain, respectively.
The Eqs. (3.14), (3.16), (3.18), and (3.20) relate to the direct piezoelectric effect,
whereas the inverse piezoelectric effect is explained by means of Eqs. (3.15), (3.17),
(3.19), and (3.21).

Due to symmetries within the tensors of rank four for the mechanical field (si jkl ,
ci jkl) as well as within the tensors of rank three for piezoelectric coupling (dmkl ,
emkl , gmkl , and hmkl), the number of independent components in (3.14)–(3.21) is
reduced significantly. We are, therefore, able to transform the tensor equations to
matrix equations. In Voigt notation, the constitutive equations for piezoelectricity
become (transpose t)

d-form D =[

εT
]

E +[d]T (3.22)

S = [d]t E +[

sE
]

T (3.23)

e-form D =[

εS
]

E +[e] S (3.24)

T = −[e]t E +[

cE
]

S (3.25)

g-form E =[

βT ]

D −[

g
]

T (3.26)

S =[

g
]t
D +[

sD
]

T (3.27)

h-form E =[

βS]D −[h]S (3.28)

T = −[h]t D +[

cD
]

S . (3.29)

While the vectors for the electrical field (D, E) contain three components, those for
the mechanical field (T, S) consist of six independent components (cf. Sects. 2.1 and
2.2). The reduced tensors describingmechanical properties ([s],[c]) and piezoelectric
coupling ([d],[e],

[

g
]

and[h]) exhibit the dimensions 6 × 6 and3 × 6, respectively.On
the contrary, the tensors for electrical properties ([ε],[β]) are of dimension 3 × 3. In
d-form, the reduced set of constitutive equations for piezoelectricity is in component
notation given by
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x=1
Ex=E1
Dx=D1

y=2
Ey=E2
Dy=D2

z=3
Ez=E3
Dz=D3

T1

T6

T5

T6

T2

T4

T5

T4

T3

Fig. 3.3 Common notation in constitutive equations (reduced set) for piezoelectricity with respect
to Cartesian coordinate system xyz in three-dimensional space (cf. Fig. 2.4 in Sect. 2.2)
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(3.31)

Figure3.3 depicts the utilized notations for the electric field intensity Ei , the elec-
tric flux density Di , and the mechanical stress Tp. The notation for the mechanical
strain Sp is given in Sect 2.2.2. Note that in the remaining part of this book, all
constitutive equations for piezoelectricity refer to this reduced notation of the ten-
sor relations.

There exist further symmetries within piezoelectric materials, which are accom-
panied by a remarkable reduction of independent components in addition. Besides,
several entries of the reduced tensors are zero. For instance, the component notation
in d-form for a piezoelectric material of crystal class 6mm results in
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and, thus, contains only 10 independent quantities. Nevertheless, we are confronted
with an anisotropicmaterial behavior that is for crystal class 6mmprevalently referred
to as transversely isotropic behavior. In case of such transversely isotropic behavior,
a plane within the material can be found in which the material parameters are iden-
tical for all directions. As a consequence, five parameters are required to describe
the mechanical properties instead of two parameters for an isotropic material (cf.
Sect. 2.2.3).

If the material parameters of a single set of constitutive equations (e.g., in d-
form) are known, one will be able to determine the parameters for all other forms.
The underlying parameter conversion between the forms reads as

cEpr s
E
qr = δpq cDpr s

D
qr = δpq

βS
ikε

S
jk = δi j βT

ikε
T
jk = δi j

cDpq = cEpq + ekphkq sDpq = sEpq − dkpgkq

εTi j = εSi j + diqe jq βT
i j = βS

i j − giqh jq

eip = diqcEqp dip = εTikgkp
gi p = βT

ikdkp hip = giqcDqp

(3.33)

with {i, j, k} = {1, 2, 3} and {p, q, r} = {1, 2, 3, 4, 5, 6}. Figure3.4 shows the inter-
connections of the state variables within the constitutive equations in the different
forms. However, since both the g-form and the h-form are extremely rare, we restrict
the following explanations to the d-form and e-form.

At the end of this section, let us take a closer look at the superscripts (T , S, E
and D) in the constitutive equations. Especially in the context of parameter identi-
fication, these superscripts are of utmost importance. The superscript T states that
the material parameters (e.g., εTi j ) have to be identified for the case of free mechan-
ical vibrations, i.e., the piezoelectric sample must not be clamped. In contrast, the
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Fig. 3.4 Interconnections of
state variables within
constitutive equations for
piezoelectricity (Voigt
notation); {i, j} = {1, 2, 3};
{p, q} = {1, 2, 3, 4, 5, 6}
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superscript S refers to clamped arrangements and, consequently, mechanical vibra-
tions have to be prohibited during parameter identification. It seems only natural
that the latter condition can hardly be fulfilled. For the mechanical parameters (e.g.,
sEpq ), the superscripts E and D occur in the constitutive equations. Parameters with
superscript E result from electrically short-circuited piezoelectric samples and those
with D for samples, which are electrically unloaded.

3.4 Classification of Electromechanical Coupling

The electromechanical coupling within piezoelectric materials can be attributed to
different effects. In particular, we distinguish between intrinsic and extrinsic effects,
which will be discussed in Sects. 3.4.1 and 3.4.2, respectively. Thereby, the piezo-
electric material is assumed to consist of many identical areas, the so-called unit
cells, featuring defined polarization states. The possible modes of piezoelectricity
are shown in Sect. 3.4.3.

3.4.1 Intrinsic Effects

Basically, intrinsic effects of electromechanical coupling take place on the atomistic
level. If sufficiently small mechanical or electrical loads are applied, the structure
of the piezoelectric material and, therefore, the geometric arrangement of the unit
cells within the material will remain unchanged. However, the positions of atoms
within the unit cells are altered, which also yields changes of the centers of positive
and negative charges, i.e., electric polarization (see Sect. 3.1). The direct and inverse
piezoelectric effect capture this material behavior. For that reason, both effects are
intrinsic effects. We are able to describe them with the aid of the material law for
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linear piezoelectricity. By utilizing (2.7, p. 9) and (3.22), the electric polarizationPrev

becomes

Prev = D − ε0E = [d]T +[

εT
]

E − ε0E

= [d]T + ε0
( [

εT
r

] − 1
)

︸ ︷︷ ︸
[

χT
e

]

E (3.34)

with the tensor
[

εT
r

]

(matrix of dimension 3 × 3) of the relative permittivities for
constant mechanical stress. Since the displacement polarization will return to zero if
there is neither a mechanical load nor an electrical load, the variable P is equipped
with the superscript rev standing for reversible. The expression

[

χT
e

]

in (3.34) is the
electric susceptibility (matrix of dimension 3 × 3), which rates the polarizability of
a dielectric medium in response to an applied electric field intensity E.

In case of the direct piezoelectric effect, we can deduce from (3.23) and (3.34)
the relations S ∝ T as well as Prev ∝ T. Consequently, the mechanical strain S of the
piezoelectric material and the electric polarization Prev within linearly depend on the
applied mechanical stress T. For the inverse piezoelectric effect, one obtains S ∝ E
andPrev ∝ E, whichmeans that both quantities linearly depend on the applied electric
field intensity.

Apart from the direct and inverse piezoelectric effect, there exists a further intrinsic
effect of electromechanical coupling, the so-called electrostriction. This effect arises
in every material featuring dielectric properties. When we apply an electric field to
such amaterial, the opposite sides of the unit cells will be differently charged causing
attraction forces. As a result, the material thickness is reduced in the direction of
the applied electric field. Due to the fact that an electric field pointing in opposite
direction reducesmaterial thickness in the samemanner, electrostriction is a quadratic
effect, i.e.,S ∝ E2.With the exception of relaxor ferroelectrics (e.g., leadmagnesium
niobate), electrostriction is always weakly pronounced in dielectric materials. Note
that the piezoelectric coupling normally will dominate electrostriction if a material
offers piezoelectric properties.

Because intrinsic effects commonly occur for small inputs, the underlying linear
material behavior is referred to as small-signal behavior. These effects will become
particularly important when a piezoelectric system is excited resonantly, which is
the case in various sensor and actuator applications.

3.4.2 Extrinsic Effects

When we apply large mechanical loads or large electrical loads to a piezoelectric
material, extrinsic effects may additionally arise within the material. Contrarily
to intrinsic effects, the geometric arrangement of the unit cells within the mate-
rial is modified which macroscopically leads to the so-called remanent electric
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polarization.4 Extrinsic effects are irreversible since these modifications will remain
approximately the same if the material is mechanically and electrically unloaded.
However, by applying sufficiently large mechanical or electrical loads, we are able
to alter the geometric arrangement of the unit cells again and, therefore, the remanent
electric polarization. In accordancewith ferromagnetism as amagnetic phenomenon,
piezoelectric materials showing extrinsic effects are frequently named ferroelectric
materials (e.g., piezoceramics). The behavior of such materials is known as ferro-
electric behavior.

To describe the impact of extrinsic effects mathematically in ferroelectric materi-
als, let us take a look at the constitutive equations for piezoelectricity (see Sect. 3.3).
Strictly speaking, the constitutive equations in their original form exclusively cover
the direct and inverse piezoelectric effect, i.e., intrinsic effects. Nevertheless, we can
consider extrinsic effects in those equations by appropriate extensions. In particu-
lar, the aimed state variables (e.g., D and S in d-form) are divided into reversible
and irreversible parts. The reversible parts (superscript rev) characterize intrinsic
effects of electromechanical coupling, whereas the irreversible parts (superscript irr)
account for extrinsic effects. Therewith, thed-formof the constitutive equations reads
as [19, 20]

D = Drev + Dirr =[

εT
(

Pirr
)]

E +[

d
(

Pirr
)]

T + Pirr (3.35)

S = Srev + Sirr =[

d
(

Pirr)]t E +[

sE
(

Pirr)]T + Sirr . (3.36)

Here, Pirr stands for the remanent electric polarization and Sirr for the mechanical
strain that is resulting from the modified geometric arrangement of the unit cells.
Depending on the remanent electric polarization, the properties of the ferroelectric
material change. This fact is considered in (3.35) and (3.36) by the argument Pirr of
the material tensors

[

sE
]

,
[

εT
]

, and[d], respectively.
On the basis that extrinsic effects are mainly arising in case of large inputs,

the resulting material behavior is known as large-signal behavior. The large-signal
behavior usually goes hand in hand with nonlinear responses of ferroelectric materi-
als such as hysteresis curves, which is decisive for several actuator applications (see
Chap.10). At this point, it should be mentioned again that ferroelectric materials
belong to the group of piezoelectric materials. Therefore, ferroelectric materials
also show intrinsic effects of electromechanical coupling, i.e., the direct and inverse
piezoelectric effect.

3.4.3 Modes of Piezoelectric Effect

According to the constitutive equations for piezoelectricity (3.22)–(3.29), there exist
18 possibilities in total (e.g., d11, . . . , d36) to couple the components of electrical and

4The remanent electric polarization is also known as orientation polarization.
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Fig. 3.5 Examples for longitudinal (L), transverse (T), longitudinal shear (SL), and transverse
shear modes (ST) of piezoelectricity within cubical-shaped piezoelectric material; macroscopic
change ΔP of electric polarization

Table 3.2 Assignment of piezoelectric strain constants dip to four modes of piezoelectricity; L,
T, SL, and ST refer to longitudinal, transverse, longitudinal shear, and transverse shear modes,
respectively

T1 T2 T3 T4 T5 T6

D1 d11 d12 d13 d14 d15 d16
L T T SL ST ST

D2 d21 d22 d23 d24 d25 d26
T L T ST SL ST

D3 d31 d32 d33 d34 d35 d36
T T L ST ST SL

mechanical fields within piezoelectric materials. Each possibility belongs to one out
of four specific modes of piezoelectric coupling. These modes are named longitudi-
nal, transverse, longitudinal shear, and transverse shear mode. In the following, the
different modes are discussed for the direct piezoelectric effect, i.e., a mechanical
input is converted into an electrical output. In particular, we consider the piezoelec-
tric strain constants dip that link components of the mechanical stress Tp to those
of the electric flux density Di . The mechanical stress yields an electric flux density
causing a certainmacroscopic changeΔP of the electric polarization in an individual
direction. Figure3.5 illustrates on basis of a cubical-shaped piezoelectric material the
four modes of the piezoelectric effect, which are described below in detail (summary
in Table3.2).

• Longitudinal mode L: d11, d22, and d33
A normal stress (e.g., T3 in Fig. 3.5) is accompanied by a change of electric
polarization in the same direction.

• Transverse mode T: d12, d13, d21, d23, d31, and d32
In contrast to the longitudinal mode, the change of electric polarization occurs
perpendicular to the applied mechanical load.

• Longitudinal shear mode SL: d14, d25, and d36
If a shear stress (e.g., T5 in Fig. 3.5) is applied, the polarization will change
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perpendicular to the plane (e.g., 13-plane in Fig. 3.5) in which the piezoelectric
material is sheared.

• Transverse shear mode ST: d15, d16, d24, d26, d34, and d35
Contrary to the longitudinal shear mode, the electric polarization changes in the
plane in which the piezoelectric material is sheared.

This classification of modes also holds for the inverse piezoelectric effect as well as
for all other forms of the constitutive equations for piezoelectricity.

3.5 Electromechanical Coupling Factors

Asmentioned in Sect. 3.3, we can fully describe the linearized behavior of piezoelec-
tric materials by means of appropriate constitutive equations. Thereby, the material
parameters have to be known, e.g., sEpq , εTi j , and dip in d-form. Nevertheless, so-
called electromechanical coupling factors k are oftentimes introduced in addition
rating the efficiency of energy conversion within piezoelectric materials. This con-
cerns the conversion of mechanical into electrical energy as well as of electrical into
mechanical energy, which are here given by (1 ≤ i ≤ 3; 1 ≤ p ≤ 6)

mechanical energy per unit volume: Wmech = SpTp

2
(3.37)

electrical energy per unit volume: W elec = DiTi
2

. (3.38)

To obtain a dimensionless measure for k, the converted energy is related to the
input energy. If mechanical energy acts as input on the piezoelectric material, the
electromechanical coupling factor k (strictly speaking k2) will result from

k2 = mechanical energy converted into electrical energy

mechanical input energy
(3.39)

and in the case of electrical input energy from

k2 = electrical energy converted into mechanical energy

electrical input energy
. (3.40)

Actually, the conversion of mechanical into electrical energy and vice versa is always
incomplete. Therefore, k2 as well as k are smaller than 1. In the following two
subsections, we will study both coupling directions separately by means of a lossless
piezoelectric cylinder (base area AS; thickness lS) covered with electrodes at the
bottom and top surface. The cylinder features piezoelectric properties in thickness
direction, which coincide with the 3-direction.
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3.5.1 Conversion from Mechanical into Electrical Energy

In order to quantify the conversion frommechanical into electrical energy within the
piezoelectric cylinder, let us consider a single conversion cycle consisting of three
subsequent states A, B, and C. Figure 3.6 shows a sketch of the arrangement for
the three states as well as diagrams for the relevant mechanical and electrical state
variables, i.e., S3, T3, D3, and E3. In state A, the piezoelectric material is neither
mechanically nor electrically loaded. As a result, the state variables in 3-direction
are zero, i.e., S3 = T3 = D3 = E3 = 0.

• A ⇒ B: From state A to state B, the piezoelectric cylinder is electrically short-
circuited (i.e., E3 = 0) and mechanically loaded in negative 3-direction with the
force F . Due to this force, mechanical stresses T3 occur in the cylinder, which are
accompanied by a negative deformation of the cylinder in thickness direction. At
state B, the force reaches its highest value Fmax. By utilizing the d-form of the
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Fig. 3.6 Conversion from mechanical into electrical energy within piezoelectric materials demon-
strated by cylinder [14]; A, B, and C represent three defined states during conversion cycle; S3, T3,
D3 as well as E3 denote decisive state variables
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constitutive equations, the state variables become

S3 = Smax = sE33Tmax T3 = Tmax

D3 = Dmax = d33Tmax E3 = 0 .

The expression Tmax = −Fmax/AS denotes the peak value of themechanical stress.
Overall, themechanical energy (per unit volume) done on the piezoelectric cylinder
computes as

Wmech
AB = S3T3

2
= sE33T

2
max

2
. (3.41)

• B ⇒ C: During this state change, the piezoelectric cylinder gets electrically
unloaded. The applied mechanical force is, moreover, reduced to zero. There-
fore, the electric flux density D3 remains constant. At state C, the state variables
take the form

S3 = d2
33Tmax

εT33
T3 = 0

D3 = Dmax = d33Tmax E3 = Emax = d33Tmax

εT33
.

Although there do not occur mechanical stresses in 3-direction, the cylinder thick-
ness changes (i.e., S3 �= 0) with respect to state A, which is a consequence of
piezoelectric coupling. The mechanical energy per unit volume released from the
cylinder is given by

Wmech
BC = S3T3

2
= ΔS3Tmax

2
= Tmax

2
Tmax

[

sE33 − d2
33

εT33

]

︸ ︷︷ ︸

ΔS3

(3.42)

with the deformation change ΔS3 from state B to state C. We can simplify this
relation by using the parameter conversion sD33 = sE33 − d2

33/ε
T
33 (see (3.33)) to

Wmech
BC = sD33T

2
max

2
. (3.43)

• C⇒ A: Finally, we return to the initial state A of the conversion cycle. In doing so,
the piezoelectric cylinder is electrically loaded with a resistor R and mechanically
unloaded (i.e., T3 = 0). At state A, the state variables become

S3 = 0 T3 = 0

D3 = 0 E3 = 0 .

From state C to state A, the cylinder releases electrical energy per unit volume to
the resistor, which computes as
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W elec
CA = E3D3

2
= d2

33T
2
max

2εT33
. (3.44)

Let us now take a look at the energy balance for the entire conversion cycle. From
state A to state B, the piezoelectric cylinder is mechanically loaded with Wmech

AB and
from state B to state C, the cylinder releases Wmech

BC . Thus, the stored energy in the
cylinder is given by

Wmech
AB − Wmech

BC = T 2
max

2

(

sE33 − sD33
)

. (3.45)

In accordance with the conservation of energy, the stored energy has to correspond
to the released electrical energy W elec

CA from state C to the initial state A. This is also
reflected in the parameter conversion sE33 − sD33 = d2

33/ε
T
33. The electromechanical

coupling factor k33 for the conversion from mechanical into electrical energy results
in

k233 = W elec
CA

Wmech
AB

= Wmech
AB − Wmech

BC

Wmech
AB

= sE33 − sD33
sE33

= d2
33

εT33s
E
33

. (3.46)

The indices of kpq refer to the direction of the applied mechanical loads and that of
the electrical quantities, respectively.

3.5.2 Conversion from Electrical into Mechanical Energy

As for the previous conversion direction, we consider a single conversion cycle
consisting of three subsequent states A, B, and C (see Fig. 3.7). Again, the piezo-
electric material is neither mechanically nor electrically loaded in state A, i.e.,
S3 = T3 = D3 = E3 = 0.

• A ⇒ B: From state A to state B, the piezoelectric cylinder is mechanically
unloaded (i.e., T3 = 0) and electrically loaded in negative 3-direction with the
electrical voltage U . This voltage causes an electric field intensity E3, which is
due to piezoelectric coupling responsible for a certain deformation of the cylinder.
At stateB, the voltage reaches its highest valueUmax. The d-formof the constitutive
equations for piezoelectricity yields the state variables

S3 = Smax = d33Emax T3 = 0
D3 = Dmax= ε33Emax E3 = Emax

with the peak value Emax = −Umax/ lS of electric field intensity. The electrical
energy per unit volume stored in the cylinder at state B computes as

W elec
AB = E3D3

2
= εT33E

2
max

2
. (3.47)
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Fig. 3.7 Conversion from electrical to mechanical energy within piezoelectric materials demon-
strated by cylinder; A, B, and C represent three defined states during conversion cycle; S3, T3, D3
as well as E3 denote decisive state variables

• B ⇒ C: During this state change, the piezoelectric cylinder is electrically loaded
with a resistor R. Besides, we prohibit mechanical movements in thickness direc-
tions, which can be arranged by an appropriate clamping of the cylinder. Conse-
quently, S3 stays constant and the mechanical stress T3 changes. At state C, the
state variables are given by

S3 = Smax = d33Emax T3 = Tmax = d33Emax

sE33
D3 = Dmax= d33Tmax E3 = 0 .

Since stresses occur in the cylinder, there is a remaining flux density (i.e., D3 �= 0)
on the electrodes at state C. The electrical energy (per unit volume) released by
the resistor results in

W elec
BC = E3D3

2
= EmaxΔD3

2
= Emax

2
Emax

[

εT33 − d2
33

sE33

]

︸ ︷︷ ︸

ΔD3

(3.48)
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with flux density change ΔD3 from state B to state C. Similar to the previous
conversion direction, we are able to simplify this relation by using the parameter
conversion εS33 = εT33 − d2

33/s
E
33 (see (3.33)) to

W elec
BC = εS33E

2
max

2
. (3.49)

• C ⇒ A: At the end of the conversion cycle, we return to state A by removing
the mechanical clamping. Furthermore, the piezoelectric cylinder is electrically
unloaded. Finally, the state variables become

S3 = 0 T3 = 0

D3 = 0 E3 = 0 .

During this state change, the mechanical energy per unit volume that is released
from the cylinder computes as

Wmech
CA = S3T3

2
= d2

33E
2
max

2sE33
. (3.50)

Again, we take into account the energy balance for the entire conversion cycle.
The piezoelectric cylinder is electrically loaded from state A to state B with W elec

AB .
Subsequently, the cylinder releasesW elec

BC from state B to state C leading to the stored
energy

W elec
AB − W elec

BC = E2
max

2

(

εT33 − εS33
)

, (3.51)

which has to correspond to the released mechanical energy Wmech
CA from state C into

state A. This can also be seen from the parameter equation εT33 − εS33 = d2
33/s

E
33. The

electromechanical coupling factor k33 characterizing the conversion from electrical
into mechanical energy reads as

k233 = Wmech
CA

W elec
AB

= W elec
AB − W elec

BC

W elec
AB

= εT33 − εS33
εT33

= d2
33

εT33s
E
33

. (3.52)

As the comparison of (3.46) and (3.52) reveals, k33 is identical for both directions
of energy conversion. In other words, it does not matter for conversion efficiency if
mechanical energy is converted into electrical energy or vice versa. Note that this is
an essential property of the piezoelectric coupling mechanism.

Apart from k33, we can deduce various other electromechanical coupling factors
for piezoelectric materials. For the crystal class 6mm, k31 and k15 are such factors that
relate to the transverse and transverse shear mode of piezoelectricity, respectively.
These electromechanical coupling factors are given by (sE44 = sE55)
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k231 = d2
31

εT33s
E
11

and k215 = d2
15

εT11s
E
55

. (3.53)

Depending on the piezoelectric material, the electromechanical coupling factors dif-
fer significantly. For instance, several piezoceramicmaterials offer remarkable values
for k33, k31, and k15. On the other hand, certain materials (e.g., cellular polymers)
provide large values for k33 but only a small coupling factor k31.

3.6 Piezoelectric Materials

Piezoelectric materials exhibit either a crystal structure or, at least, areas with a
crystal-like structure. In general, a crystal is characterized by a periodic repetition of
the atomic lattice structure in all directions of space. The smallest repetitive part of
the crystal is termed unit cell. Depending on the symmetry properties of the unit cell,
we can distinguish between 32 crystal classes that are also termed crystallographic
point groups (see Fig. 3.8) [28, 42]. Piezoelectric properties will only arise when the
structure of the unit cell is asymmetric. 21 out of the 32 crystal classes fulfill this
property because they are noncentrosymmetric which means that they do not have a
center of symmetry. 20 out of these 21 crystal classes show piezoelectricity.While 10
crystal classes are pyroelectric, the remaining 10 crystal classes are nonpyroelectric.
The 20 piezoelectric crystal classes can be grouped into the seven crystal systems:
triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic
crystal system. Table 3.3 contains the abbreviations of the 20 piezoelectric crystal
classes according to the Hermann–Mauguin notation. As a matter of course, the
material tensors (e.g., [d],

[

εT
]

and
[

sE
]

in d-form) of piezoelectric materials differ
for the crystal classes regarding the number of independent material parameters as
well as the entries being nonzero.

32 crystal classes

11 centrosymmetric 21 noncentrosymmetric

20 piezoelectric 1 nonpiezoelectric

10 pyroelectric 10 nonpyroelectric

Fig. 3.8 Classification of the 32 crystal classes (crystallographic point groups)
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Table 3.3 Abbreviations of
piezoelectric crystal classes
according to
Hermann–Mauguin notation;
crystal classes grouped into
seven crystal systems

Crystal system Abbreviations of crystal
classes

Triclinic 1

Monoclinic 2 and m

Orthorhombic 222 and mm2

Tetragonal 4, 4, 422, 4mm and 42m

Rhombohedral (trigonal) 3, 32 and 3m

Hexagonal 6, 6, 622, 6mm and 6m2

Cubic 23 and 43m

The choice of the used piezoelectric material always depends on the applica-
tions. Several piezoelectric sensors and actuators call for materials that provide high
piezoelectric strain constants dip and high electromechanical coupling factors. A
wide variety of applications demand piezoelectric materials that are free from hys-
teretic behavior and offer high mechanical stiffness, i.e., small values for the elastic
compliance constants sEpq . On the other hand, there also exist applications requir-
ing mechanically flexible materials with piezoelectric properties. It is, therefore,
impossible to find a piezoelectric material that is most appropriate for all kinds of
piezoelectric sensors and actuators. However, for each application, one can define
a specific figure of merit, which comprises selected material parameters. In the fol-
lowing, we will study different piezoelectric materials, their main properties, and the
manufacturing process. This includes single crystals such as quartz (see Sect. 3.6.1),
polycrystalline ceramic materials such as lead zirconate titanate (see Sect. 3.6.2) and
polymers such as PVDF (see Sect. 3.6.3).

3.6.1 Single Crystals

There exists a large number of piezoelectric single crystals. In general, they can
be divided into naturally occurring (e.g., quartz) and synthetically produced materi-
als (e.g., lithium niobate). Table3.4 lists well-known representatives for both groups
including chemical formulas as well as crystal classes. Below, we will concentrate
on quartz because this piezoelectric single crystal plays still an importance role in
practical applications like piezoelectric sensors. The reason for its importance is not
least due to the possibility that quartz can be manufactured synthetically by artificial
growth. Furthermore, lithium niobate will be briefly discussed since such piezoelec-
tric single crystals are often utilized in surface acoustic wave (SAW) devices. At the
end, a short introduction to relaxor-based single crystals is given.

Quartz

Quartz crystals at room temperature are commonly named α-quartz. At the temper-
ature of 573 ◦C, a structural phase transition takes place inside the quartz crystal,
which is stable in the temperature range from 573 ◦C to 870 ◦C. The resulting crystal
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Table 3.4 Chemical formula and crystal class of selected naturally occurring and synthetically
produced piezoelectric single crystals

Material Group Chemical formula Crystal class

α-quartz Natural SiO2 32

β-quartz Natural SiO2 622

Tourmaline Natural (Na,Ca)(Mg,Fe)3B3Al6
Si6(O,OH,F)31

3m

CGG Synthetic Ca3Ga2Ge4O14 32

Lithium niobate Synthetic LiNbO3 3m

Lithium tantalate Synthetic LiTaO3 3m

is named β-quartz and differs considerably from the α-quartz [14, 42]. This does not
only refer to the material parameters but also to the crystal class. α- and β-quartzes
belong to crystal class 32 and 622, respectively. Since the temperatures in most of
the practical applications are below 500 ◦C, let us study α-quartzes in more detail.
In the d-form, the material tensors of the crystal class 32 feature the structure

[

sE
] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

sE11 sE12 sE13 sE14 0 0
sE12 sE11 sE13 −sE14 0 0
sE13 sE13 sE33 0 0 0
sE14 −sE14 0 sE44 0 0
0 0 0 0 sE44 2sE14
0 0 0 0 2sE14 2

(

sE11 − sE12
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.54)

[

εS
] =

⎡

⎣

εT11 0 0
0 εT11 0
0 0 εT33

⎤

⎦ , [d] =
⎡

⎣

d11 −d11 0 d14 0 0
0 0 0 0 −d14 −d11
0 0 0 0 0 0

⎤

⎦ (3.55)

and, thus, contain altogether 10 independent entries.
α-quartz exists in two crystal shapes, namely the left-handed and right-handed α-

quartz. The naming originates from the rotation of linearly polarized light that prop-
agates through the quartz crystal along its optical axis. While right-handed quartzes
rotate the polarization plane clockwise, left-handed quartzes perform a counterclock-
wise rotation. The difference of both shapes also appears in the sign of the material
parameters, e.g., d14 is positive for a left-handed α-quartz and negative for a left-
handed α-quartz. Figure3.9 illustrates the fundamental structure of a left-handed α-
quartz, whereby the z-axis coincides with the optical axis of the crystal.

It seems only natural that α-quartzes in the original structure as shown in Fig. 3.9
cannot be used in piezoelectric devices. Owing to this fact, one has to cut out
parts such as thin slices. The most well-known cuts are listed hereinafter [14, 28].
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Fig. 3.9 Fundamental
structure of left-handed
α-quartz

x

y

z

• X-cut: plate perpendicular to x-axis.
• Y-cut: plate perpendicular to y-axis.
• Z-cut: plate perpendicular to z-axis.
• Rotated Y-cuts: plate perpendicular to yz-plane.

By means of these cuts, it is possible to create piezoelectric elements, which offer
distinctmodes of piezoelectricity. For example, theX-cut will lead to the longitudinal
mode if the cutted plate is covered with electrodes at the top and bottom surface.

Even though quartz is one of themost frequentminerals on earth, the great demand
for quartz crystals in desired size and quality makes synthetic production indispens-
able. Synthetic quartz crystal can be artificially grown by the so-called hydrothermal
method [21, 24]. Thereby, the crystal growth is conducted in a thick-walled auto-
clave at very high pressure up to 200MPa and temperatures of ≈400 ◦C. Water with
a small amount of sodium carbonate (chemical formula Na2CO3) or sodium hydrox-
ide (chemical formula NaOH) serves as a solvent. The synthetic production of quartz
crystals weighting more than 1 kg takes several weeks.

Quartz crystals are often used as piezoelectric elements in practical applica-
tions (e.g., for force and torque sensors; see Sect. 9.1) because such single crystals
offer a high mechanical rigidity as well as a high electric insulation resistance. They
are almost free of hysteresis and allow an outstanding linearity in practical use.
Moreover, there exist temperature-compensated cuts that exhibit constant material
parameters over a wide temperature range. Compared to other piezoelectric material
like piezoceramic materials, quartz crystals provide, however, only small piezoelec-
tric strain constants dip. This is a big disadvantage regarding efficient piezoelectric
actuators. Besides, piezoelectric elements cannot be cut out from quartz crystals
in any shape. The main material parameters of a left-handed α-quartz are listed in
Table3.5.
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Table 3.5 Decisive material parameters of selected piezoelectric materials; material density �0
in 103 kgm−3; elastic compliance constants sEpq in 10

−12 mN−2; relative permittivity εTii/ε0; piezo-

electric strain constants dip in 10−12 mV−1; table entries ‘−’ irrelevant; given data represent aver-
aged values from literature and manufacturer [5, 10, 14, 30, 35, 42]

Material �0 sE11 sE12 sE13 sE14 sE33 sE44 εT11/ε0 εT33/ε0

Quartz 2.65 12.8 −1.8 −1.2 4.5 9.7 20.0 4.5 4.6

Lithium niobate 4.63 5.8 −1.0 −1.5 −1.0 5.0 17.0 84 30

PZT-5A (soft) 7.75 16.4 −5.7 −7.2 − 18.8 47.5 1730 1700

PZT-5H (soft) 7.50 16.5 −4.8 −8.5 − 20.7 43.5 3130 3400

PIC155 (soft) 7.76 16.2 −4.8 −7.1 − 17.8 52.4 1500 1350

PIC255 (soft) 7.80 15.9 −5.7 −7.4 − 21.0 44.9 1650 1750

Pz29 (soft) 7.45 17.0 −5.8 −8.8 − 22.9 54.1 2440 2870

PIC181 (hard) 7.85 11.8 −4.1 −5.0 − 14.1 35.3 1220 1140

PIC300 (hard) 7.78 11.1 −4.8 −3.7 − 11.8 28.2 960 1030

Pz24 (hard) 7.70 10.4 −3.0 −7.6 − 23.4 23.0 810 407

Material d11 d14 d15 d22 d31 d33 k15 k31 k33

Quartz 2.3 0.7 − − − − ∗ ∗∗ ∗ ∗ ∗
Lithium niobate − − 26 8.5 −3.0 9.2 0.23 0.08 0.25

PZT-5A (soft) − − 584 − −171 374 0.68 0.34 0.75

PZT-5H (soft) − − 741 − −274 593 0.68 0.39 0.75

PIC155 (soft) − − 539 − −154 307 0.65 0.35 0.66

PIC255 (soft) − − 534 − −174 393 0.66 0.35 0.69

Pz29 (soft) − − 724 − −243 574 0.67 0.37 0.75

PIC181 (hard) − − 389 − −108 253 0.63 0.32 0.66

PIC300 (hard) − − 155 − −82 154 0.32 0.26 0.46

Pz24 (hard) − − 151 − −58 194 0.37 0.30 0.67

* k11 = 0.09 for X-cut; ** k66 = 0.14 for Y-cut; *** k44 = 0.03 for Z-cut

Lithium Niobate

Lithium niobate is a well-known synthetically produced piezoelectric single crystal,
which exhibits a high Curie temperature ϑC of 1210 ◦C. That is the reason why this
piezoelectric single crystal ismainly used for high-temperature sensors andultrasonic
transducers [2, 42]. Lithium niobate belongs to the crystal class 3m. In the d-form,
the material tensors of this crystal class are given by

[

sE
] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sE11 sE12 sE13 sE14 0 0

sE12 sE11 sE13 −sE14 0 0

sE13 sE13 sE33 0 0 0

sE14 −sE14 0 sE44 0 0

0 0 0 0 sE44 2sE14
0 0 0 0 2sE14 2

(

sE11 − sE12
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.56)
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[

εS
] =

⎡

⎣

εT11 0 0
0 εT11 0
0 0 εT33

⎤

⎦ , [d] =
⎡

⎣

0 0 0 0 d14 −2d22
−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

⎤

⎦ (3.57)

and, thus, contain altogether 13 independent entries.
Single crystals of lithium niobate can be artificially grown with the aid of the

so-called Czochralski process [8]. This manufacturing process starts with the molten
state of the desired material (i.e., here lithium niobate), which is placed in a melting
pot. In a next step, a slowly rotating metal rod with a seed crystal at its lower end gets
immersed from above into the melt. If the seed crystal is immersed in the right way,
a homogeneous boundary layer will develop between the melt and the crystal’s solid
part. Subsequently, the rotating combination of metal rod and seed crystal has to be
slowly pulled upwards. During this step, the melt solidifies at the boundary layer,
which leads to crystal growth. By varying the rate of pulling and rotation, one can
extract long single crystals that are commonly named ingots. The resulting single
crystals of lithium niobate are finally brought into the desired shape through suitable
crystal cuts, e.g., X-cut.

In comparison with quartz crystals, lithium niobate crystals provide significantly
higher piezoelectric strain constants dip. Typical material parameters are listed in
Table3.5.

Relaxor-Based Single Crystals

As mentioned in Sect. 3.4.1, relaxor ferroelectrics offer pronounced electrostriction.
Relaxor-based single crystals are based on suchmaterials. Nowadays, solid solutions
of lead magnesium niobate and lead titanate (PMN-PT) as well as solid solutions of
lead zinc niobate and lead titanate (PZN-PT) represent the most widely studiedmate-
rial compositions for relaxor-based single crystals [33, 48]. The chemical formulas
of both material compositions read as

• PMN-PT: (1-x)Pb(Mg1/3Nb2/3)O3 – xPbTiO3 and
• PZN-PT: (1-x)Pb(Zn1/3Nb2/3)O3 – xPbTiO3,

whereby x ranges from 0 to 1. In principle, these material compositions can be used
for polycrystalline ceramic materials (see Sect. 3.6.2). The resulting piezoceramic
materials show excellent piezoelectric properties like high piezoelectric strain con-
stants dip. However, by growing single crystals, the available properties are improved
significantly. Crystal growth of PMN-PT and PZN-PT is often conducted by the high-
temperature flux technique and the Bridgman growth technique [23, 25, 26]. After
growing, the single crystals have to be polarized in an appropriate direction.

The electromechanical coupling factor k33 of PMN-PT and PZN-PT single
crystals usually exceeds 0.9. In case of special material compositions and addi-
tional doping, one can reach extremely high electric permittivities as well as d33-
values > 2000 pmV−1. These outstanding properties are responsible for the great
interest in PMN-PT and PZN-PT single crystals for practical applications [6, 18],
e.g., they should be ideal candidates for efficient piezoelectric components in ultra-
sonic transducers.
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3.6.2 Polycrystalline Ceramic Materials

Polycrystalline ceramic materials are the most important piezoelectric materials for
practical applications because they offer outstanding piezoelectric properties. More-
over, several of these so-called piezoceramic materials can be manufactured in a
cost-effective manner. Barium titanate and lead zirconate titanate (PZT) represent
two well-known solid solutions that belong to the group of piezoceramic materials.
Hereafter, we will discuss the manufacturing process, the basic molecular structure,
the poling process, and the hysteretic behavior of piezoceramic materials. The focus
lies on PZT since it is frequently used in practical applications. At the end, a brief
introduction to lead-free piezoceramic materials will be given.

Manufacturing Process

The manufacturing process of piezoceramic materials mostly comprises six succes-
sive main steps, namely (i) mixing, (ii) calcination, (iii) forming, (iv) sintering, (v)
applying of electrodes, and (vi) poling [12, 17]. At the beginning, powders of the
rawmaterials (e.g., zirconium) are mixed. The powder mixture gets then heated up to
temperatures between 800 and 900 ◦C during calcination. Thereby, the rawmaterials
react chemically with each other. The resulting polycrystalline substance is ground
and mixed with binder. Depending on the desired geometry of the piezoelectric ele-
ment, there exist various processes for forming. The most widely used process is
cold pressing. During the subsequent sintering, the so-called green body gets bound
as well as compressed at temperatures of ≈1200 ◦C. To achieve a higher material
density, sintering is commonly carried out in an oxygen atmosphere. The sintered
blanks are, sometimes, cut and polished. In the fifth step, the blanks get equippedwith
electrodes. This can be done by either screen printing or sputtering. The obtained
materials are usually referred to as unpolarized ceramics. The poling as final process
step yields the piezoceramic material, i.e., a ceramic material featuring piezoelectric
properties. Poling is usually carried out by applying strong electric fields in the range
of 2–8 k Vmm−1 in a heated oil bath. Alternatively, one can use corona discharge
for poling.

It is possible to produce various shapes of piezoceramic elements by means of the
common manufacturing process. Piezoceramic disks, rings, plates, bars as well as
cylinders are standard shapes of piezoceramic elements. However, slightly modified
manufacturing processes additionally allow the production of other shapes like thin
piezoceramic fibers that can be used for piezoelectric composite transducers (see
Sect. 7.4.3). With the aid of screen printing, physical vapor deposition (e.g., sput-
tering), chemical vapor deposition (e.g., metal-organic CVD) as well as chemical
solution deposition (e.g., solution-gelation), one can also generate films of piezoce-
ramic materials [4, 16, 31, 43].

Molecular Structure

Piezoceramic materials such as barium titanate and PZT consist of countless crys-
talline unit cells, which exhibit the so-called perovskite structure, being named after
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Fig. 3.10 Unit cell of perovskite structure ABO3 in a cubic phase, b tetragonal phase, c orthorhom-
bic phase, and d rhombohedral phase; spontaneous electric polarization pn ; edge lengths aU, bU
and cU of unit cell

the mineral perovskite [17]. In general, piezoceramic materials featuring this struc-
ture can be described by the chemical formula ABO3. While A and B are two
cations (i.e., positive ions) of different size, O3 is an anion (i.e., negative ion) that
bonds to both. The large cations A are located on the corners of the unit cell and the
oxygen anions O3 in the center of the faces, respectively. Depending on the state of
the unit cell, the small cation B is located in or close to the center. The edge lengths
of a unit cell amounts a few angstroms Å (1Å =̂ 0.1 nm).

The unit cells of many piezoceramic materials take predominantly one of four
phases, namely (i) the cubic, (ii) the tetragonal, (iii) the orthorhombic, or (iv) the
rhombohedral phase (see Fig. 3.10). In the cubic phase, the center CQ+ of pos-
itive charges (cations) geometrically coincides with the center CQ− of negative
charges (anions). A single unit cell behaves, thus, electrically neutral. Note that
this paraelectric phase of the unit cells only exists above the Curie temperature ϑC.
When the temperature falls below ϑC, the cubic unit cell will undergo a phase tran-
sition from cubic to another phase, i.e., to the tetragonal, the orthorhombic, or the
rhombohedral phase. Thereby, the unit cell gets deformed. For example, the defor-
mation from the cubic to the tetragonal phase is ΔlU in a single direction. In any
case, the small cation B leaves the center of the unit cell. Consequently, CQ+ does
not geometrically coincide with CQ− anymore. That is the reason why there arises
a dipole moment, which is termed spontaneous electric polarization pn . If the pos-
itive charges amount overall qn and the distance from CQ− to CQ+ is defined by the
vector rn , the spontaneous polarization of a single unit cell will become pn = qnrn .

The direction of the spontaneous electric polarization pn inside a unit cell dif-
fers for the individual phases. With regard to the local coordinate system of a unit
cell, pn exhibits different proportions in x-, y- and z-direction. The so-calledMiller
index [hkl] describes the direction of pn in the local coordinate system [28, 42].
For the tetragonal, the orthorhombic and the rhombohedral phase, the Miller index
takes the form [001], [011], and [111], respectively. During the phase transition from
the cubic to the tetragonal phase, the central cation B can move into six directions.
This is accompanied by 6 possible directions of pn in a global coordinate system.
In contrast, there exist 8 possible directions for the rhombohedral phase and 12 pos-
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sible directions for the orthorhombic phase. The total electric polarization P of a
piezoceramic element containing N unit cells results from the vectorial sum of all
spontaneous electric polarizations related to the element’s volume V , i.e.,

P = 1

V

N
∑

n=1

pn = 1

V

N
∑

n=1

qnrn . (3.58)

Here, the individual polarizations pn of the unit cells have to be regarded in a global
coordinate system.

Phase diagrams represent an appropriate way to illustrate the phases of piezo-
ceramic materials with respect to both temperature ϑ and material composition.
Figure 3.11 illustrates the phase diagram of PZT, which features the chemical for-
mula Pb(TixZr1−x)O3 [17, 40]. The abscissa starts with pure PbZrO3 and ends with
pure PbTiO3. In between, the molar amount x of PbTiO3 increases linearly. Since
the cubic phase is dominating above the Curie temperature ϑC, PZT does not behave
like a piezoelectric material for temperatures ϑ > ϑC. It can also be seen that ϑC

increases with increasing x. According to Fig. 3.11, there exist three stable phases of
the unit cells belowϑC. The tetragonal phase and rhombohedral phase of PZT are also
named ferroelectric phases, while the orthorhombic phase that dominates for high
contents of zirconium is referred to as antiferroelectric phase. The phase boundary
between the rhombohedral and tetragonal phase is of great practical importance. In
the vicinity of this phase boundary, which is termed morphotropic phase boundary,
a PZT element contains roughly the same number of unit cells in rhombohedral and
tetragonal phase. The almost equal distribution of both phases is frequently assumed
to be the origin for the outstanding properties of PZT like high electromechanical
coupling factors. At room temperature, the morphotropic phase boundary is located
at x = 48, i.e., the chemical formula reads as Pb(Ti48Zr52)O3. A further advantage of
PZT lies in the relatively low temperature dependence, which stems from the vertical
progression of the morphotropic phase boundary.

Poling Process and Hysteresis

As already mentioned, piezoceramic materials consist of countless unit cells. Now,
let us take a closer look at the internal structure of such materials, which is also
illustrated in Fig. 3.12. Neighboring unit cells that exhibit the same directions of
spontaneous electric polarization pn form a so-called domain [14, 17]. Several of
those domains form a single grain, which represents the smallest interrelated part
of a piezoceramic material. The boundaries between neighboring grains are named
grain boundaries, whereas the boundaries between neighboring domains inside a
grain are termed domain walls. In the tetragonal phase, the directions of pn between
two neighboring domains can be differ by either 90 or 180◦. By contrast, this angle
can take the values 71, 109, or 180◦ in case of the rhombohedral phase of PZT.

It is not surprising that apart from the material composition, the current domain
configuration determines the properties of a piezoceramic material. When such a
material is cooled down below the Curie temperature (e.g., after sintering), the unit
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cells will undergo a phase transition from the cubic phase to another one. This goes
hand in handwith a spontaneous electric polarization andmechanical deformations of
the unit cells yielding mechanical stresses. Owing to the fact that each closed system
wants to minimize its free energy (see Sect. 3.2), the unit cells align themselves
in a way that both the electrical and the mechanical energy take a minimum. The
resulting characteristic domain configuration (cf. Fig. 3.12) leads, thus, to a vanishing
total electric polarization P. That is the reason why the material, the unpolarized
ceramics, does not offer piezoelectric properties in this state from the macroscopic
point of view.

To activate the piezoelectric coupling which means ‖P‖2 �= 0, we have to appro-
priately align the unit cells and, therefore, the domains within the unpolarized ceram-
ics. The underlying activation process is known as poling [12, 14, 17]. The alignment
is mostly conducted by applying strong electric fields to the unpolarized ceramics.
In doing so, the spontaneous electric polarizations pn of the unit cells get aligned
along the crystal axis that is nearest to the direction of the electrical field lines. The
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number of neighboring unit cells exhibiting the same direction of pn increases which
reduces the number of domains inside a single grain. This implies a growth of the
still existing domains as well as a movement of the domain walls. Apart from that,
the alignment of the unit cells causes a deformation of the grains, which becomes
visible as mechanical strain of the piezoceramic element.

In the following, we will regard a mechanically unloaded thin piezoceramic disk,
which is completely coveredwith electrodes at the top and bottom surface. Therefore,
it is possible to reduce the vectors of electric polarization P and mechanical strain S
to scalars, i.e., to P and S. Figure3.13a and b depict P(E) and S(E) of the disk as
a function of the applied electric field intensity E , respectively. Exemplary domain
configurations for the states A to G are shown in Fig. 3.13c. These states are also
marked in P(E) as well as S(E). In the initial state A (e.g., after sintering), the
disk shall be unpolarized which means P = 0. Without limiting the generality, the
mechanical strain is assumed to be zero, i.e., S = 0. The domains will get aligned
when a strong positive electric field is applied. While doing so, the so-called virgin
curve is passed through until the positive saturation of the electric polarization P+

sat
and the mechanical strain S+

sat is reached at state B. In this state, the spontaneous
electric polarizations of the unit cells are almost perfectly aligned, which can also
be seen in high values of P+

sat and S+
sat. A further increase of E does not considerably

increase both values because the intrinsic effects of electromechanical coupling (see
Sect. 3.4.1) are dominating then. In contrast, steep gradients in P(E) and S(E)

indicate extrinsic effects (see Sect. 3.4.2).
If E is reduced to zero (state C), the majority of unit cells will stay aligned, i.e.,

the domain configuration barely changes. Only a few unit cells belonging to unstable
domains switch back to the original state, whereby P aswell as S get slightly reduced.
The resulting positive values at E = 0 are termed remanent electric polarization P+

r
and remanent mechanical strain S+

r , respectively.
5 When E is reduced to negative

values, state D will be passed through. At this state, the electric polarization of the
disks equals zero, which is arranged by the negative coercive field intensity E−

c . A
further reduction of E leads to the negative saturation of the electric polarization P−

sat
and the mechanical strain S−

sat at state E. Thereby, the domains get aligned in the
opposite direction to that in case of positive saturation (cf. Fig. 3.13c). The elec-
tric polarization takes, thus, the negative value of P+

sat. In contrast, S−
sat coincides

with S+
sat because it does not make a difference for the mechanical deformation of a

unit cell whether pn points in positive or negative direction. The remaining parts of
the curves P(E) and S(E) describe the same material behavior as the previous ones.
State F refers to the negative remanent electric polarization P−

r = −P+
r and rema-

nent mechanical strain S+
r = S−

r , while state G with the positive coercive field E+
c

corresponds to state D. Note that the initial domain configuration of state A can be
retrieved by heating up the piezoceramic material above the Curie temperature.

As can be seen in Fig. 3.13, piezoceramic materials exhibit a strongly pronounced
hysteretic behavior, which is commonly termed ferroelectric behavior. For high
electrical excitation signals, the electric polarization and mechanical strain differ,

5Pr and Sr coincide with ‖Pirr‖2 and ‖Sirr‖2 from (3.35) and (3.36).
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c
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Fig. 3.13 Hysteresis curves of a electric polarization P(E) and b mechanical strain S(E) of
piezoceramic disk; linearization refers to small-signal behavior; c exemplary domain configurations
for states A to G [46]

therefore, considerably for increasing and decreasing inputs, respectively. The phe-
nomenological modeling of this large-signal behavior will be addressed in Chap.6.
Besides the ferroelectric behavior, piezoceramic materials also show ferroelastic
behavior. This means for a piezoceramic disk that both the mechanical strain S
and the electric polarization P are altered by the mechanical stress T . Figure3.14a
depicts exemplary curves P(T ) and S(T ) of the resulting hysteretic behavior.

It seems only natural that the material composition remarkably affects the ferro-
electric behavior of piezoceramic materials. By means of doping, one can change
properties of piezoceramic materials such as electromechanical coupling factors in a
specific manner [14, 17, 41]. A general distinction is made between acceptor doping
anddonor doping. In case of acceptor doping, the remanent electric polarization

∣
∣P±

r

∣
∣,

the electromechanical coupling factors and the elastic compliance constants sEpq get
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Fig. 3.14 a Ferroelastic behavior of electric polarization P(T ) and mechanical strain S(T );
mechanical stress T ; b hysteresis curve of P(E) for ferroelectrically hard and soft piezoceramic
materials, respectively

reduced, while the coercive field intensity
∣
∣E±

c

∣
∣ increases. The opposite behavior

results from donor doping of the piezoceramic material, i.e.,
∣
∣P±

r

∣
∣, the electrome-

chanical coupling factors and spq are reduced, while
∣
∣E±

c

∣
∣ decreases. In accordance

with the behavior of ferromagnetic materials, acceptor and donor doping of piezo-
ceramic materials leads to ferroelectrically hard and ferroelectrically soft materials,
respectively. Figure 3.14b demonstrates the basic difference of both material types in
the hysteresis curve P(E). The largerwidth of the hysteresis curve of ferroelectrically
hard materials stems from the lower domain wall mobility compared to ferroelec-
trically soft materials. Because the area within the hysteresis curve rates thermal
losses, ferroelectrically hard materials usually take in piezoelectric actuators lower
temperatures during operation than ferroelectrically soft materials.

Piezoelectric sensors and actuators that contain piezoceramicmaterials aremainly
operated in the polarized state, i.e., state C in Fig. 3.13a and b. The small-signal
behavior refers to the linearization.We can describe the linearized behavior of almost
any piezoceramic material by the constitutive equations for piezoelectric materials
of crystal class 6mm (see (3.32)). Consequently, the three material tensors contain
altogether 10 independent entries. The identification of these entries is detailed in
Chap.5. Typicalmaterial parameters of piezoceramicmaterials are listed in Table3.5.
It can be clearly seen that the piezoelectric strain constants aremuch higher than those
of α-quartz.

Lead-Free Materials

Most of the practically used piezoceramic materials like PZT contain a considerable
amount of lead, which belongs to hazardous substances. However, the European
Union has adopted the directivesWasteElectrical andElectronicEquipment (WEEE)
andRestrictionof the use of certainHazardous Substances in electrical and electronic
equipment (RoHS) in 2003 [13]. These directives aim at protecting human health and
environment by substitution of hazardous substances through safe or safer materials.
Similar directives were also adopted in other countries. Some defined applications
containing hazardous substances are exempt from the directives because the elimina-
tion is technically impracticable. The list of exempted applications,which is reviewed



76 3 Piezoelectricity

at least every four years, includes the use of lead in electronic ceramic parts such as
piezoelectric devices. Nevertheless, the use will be prohibited as soon as there exists
a suitable substitution for lead-based materials.

During the last two decades, there has been a lot of research to find lead-free
piezoceramic materials, which provide similar performance as lead-based piezoce-
ramic materials in practical applications. The most important lead-free piezoceramic
materials are nowadays based on sodium potassium niobate, bismuth sodium titanate
and bismuth potassium titanate [11, 38, 39, 47]. The chemical formula of sodium
potassium niobate takes the form K1−xNaxNbO3 (KNN or NKN). With the aid of
appropriate doping andmodifications ofmaterial composition, the sintering of KNN-
based piezoceramic materials is facilitated. To some extent, KNN-based materials
offer a piezoelectric strain constant d33 > 200 pmV−1, which is comparable to PZT.
This also refers to the electromechanical coupling factors.

The chemical formula of bismuth sodium titanate and bismuth potassium titanate
reads as Bi0.5Na0.5TiO3 (BNT) and Bi0.5K0.5TiO3 (BKT), respectively. Pure BNT-
based and BKT-based piezoceramic materials are difficult to sinter and exhibit high
coercive field intensities

∣
∣E±

c

∣
∣ of more than 5 kVmm−1, which implies a compli-

cated poling process [38]. Furthermore, they show comparatively low piezoelectric
properties. Just as in case of KNN-based materials, one can modify BNT-based and
BKT-based piezoceramicmaterials in away that sintering is facilitated and piezoelec-
tric properties get improved. The binary Bi-based material compositions BNT-BT,
BKT-BT, and BNT-BKT as well as the ternary material compositions BNT-BT-BKT
and BNT-BT-KNN represent well-known modifications. Here, BT stands for barium
titanate, i.e., BaTiO3.

Although the progress in competitive KNN-based, BNT-based, and BKT-based
piezoceramic materials is promising, the great breakthrough has not been made yet.
This mainly stems from the costlymanufacturing process and the worse piezoelectric
properties comparedwith lead-basedmaterials. PZT is, therefore, still dominating the
market. However, lead-free piezoceramic materials are already commercially avail-
able, e.g., theBNT-basedmaterial PIC700 from the companyPICeramicGmbH [35].

Apart from piezoelectric single crystals (e.g., quartz) and the justmentionedmate-
rials (e.g., KNN), there exists a variety of other lead-freematerials, which offer piezo-
electric properties. Aluminum nitride (AlN) and zinc oxide (ZnO) are prominent rep-
resentatives for such lead-freematerials. Both show a hexagonal crystal structure and
belong to the group of wurtzite-structured materials [40]. The polarization direction
of AlN and ZnO is set by the crystal orientation. Regardless of whether these mate-
rials are used as single crystals or oriented polycrystalline ceramic, the polarization
direction cannot be altered after the manufacturing process. That is the reason why
bothmaterials do not belong to ferroelectric materials. Compared to other lead-based
piezoceramic materials, the achieved electromechanical coupling is much less pro-
nounced. The piezoelectric strain constant d33 of AlN and ZnO amounts ≈5 pmV−1

and ≈10 pmV−1, respectively [34]. Nevertheless, by modified material composi-
tions like scandium aluminum nitride (chemical formula ScxAl1−xN), d33 reaches
values >20 pmV−1 [1, 29]. AlN and its modifications can be sputter-deposited on
silicon substrates at moderate temperatures [27]. Because this procedures allows the
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Fig. 3.15 a Chain molecules CH2 and CF2 of PVDF; b arrangement of chain molecules within
PVDF material [22]; dipole moments inside lamellar crystal-like structures point in same direction

fabrication of thin piezoelectric films with thicknesses less than 100 nm, AlN-based
materials are often utilized in micro electromechanical systems (MEMS).

3.6.3 Polymers

There exist some polymers, which show piezoelectric properties after activation. If
such polymers are produced in thin foils, they can be used as mechanically flexible
piezoelectric sensors and actuators. Below, we will concentrate on two piezoelectric
polymers, namely polyvinylidene fluoride (PVDF) and cellular polypropylene.

PVDF

PVDF materials consist of long-chain molecules (see Fig. 3.15a) that are alternately
composed ofmethylene (chemical formulaCH2) andfluorocarbon (chemical formula
CF2) [36, 44]. Partly, the chain molecules are arranged in thin lamellar crystal-like
structures (see Fig. 3.15b). The remaining chain molecules are irregularly arranged
which leads to amorphous regions. PVDF belongs, therefore, to the group of semi-
crystalline piezoelectric polymers. Inside a single lamellar crystal-like structure,
the dipole moments of the molecules point in the same direction. However, since
the lamellar crystal-like structures are orientated randomly, PVDF does not offer
piezoelectric properties in the initial state.

PVDF can be synthesized from the gaseous vinylidene fluoride via a free-radical
polymerization [9]. The polymerization process takes place in suspensions and emul-
sions at temperatures from 10–150 ◦C and pressures up to 30MPa. Melt casting,
solution casting, and spin coating represent typical subsequent process steps. The
result of the manufacturing process is usually a PVDF film with a thickness in the
range of a few microns up to more than 100µm.

Just as in case of polycrystalline ceramic materials, one has to activate the
electromechanical coupling of PVDF films with the aid of an appropriate poling
process [14, 36]. The basic idea of poling lies in aligning the lamellar crystal-like



78 3 Piezoelectricity

structures and, thus, in aligning the dipolemoments.When the PVDFfilm is equipped
with electrodes, this can be conducted by applying high electric field intensities up
to 100 kVmm−1. The process should be carried out in a heated vacuum chamber
or inside an electrically insulating fluid to avoid electrical breakdowns. Poling of
PVDF materials is also possible by exploiting corona discharge. In the course of
this, the film does not have to be equipped with electrodes. Regardless of the used
process, mechanical stretching of PVDF during poling enhances the alignment of the
lamellar crystal-like structures and, therefore, the piezoelectric properties get
improved. Similar to polycrystalline ceramic materials, PVDF exhibits a certain hys-
teretic large-signal behavior of the total electric polarization and mechanical strain.
That is the reason why PVDF is a ferroelectric polymer.

The piezoelectric properties of PVDF materials are less pronounced than of
piezoceramic materials like PZT. Typically, uniaxially stretched PVDF films pro-
vide the piezoelectric strain constants d33 ≈ −20 pmV−1 and d31 ≈ 15 pmV−1 [14].
Note that the signs of d33 and d31 differ from those of other piezoelectric materi-
als (see Table3.5). The relative electric permittivity and the electromechanical cou-
pling factors of PVDF films amount εr = 12, k33 ≈ 0.3 and k31 ≈ 0.1 [36]. Copoly-
mers of PVDF with trifluoroethylene (P(VDF-TrFE)) offer slightly higher

∣
∣dip

∣
∣-

values and better electromechanical coupling factors. The comparatively large
piezoelectric voltage constant g33 ≈ 0.2VmN−1 and low acoustic impedance6 of
Zaco ≈ 4 · 106 N sm−3 make PVDF films interesting as broadband piezoelectric
components for hydrophones and ultrasonic transducers (see, e.g., Sect. 8.1.1).

Cellular Polypropylene

Cellular polypropylene (PP) is currently the best-known representative of the so-
called cellular ferroelectrets, which are also termed cellular piezoelectrets and voided
charged polymers [3, 36]. It features piezoelectric properties after an appropriate
activation procedure. The conventional manufacturing process of cellular PP films
starts with inclusions such as air or small grains of sand, which are blown into PP
in the molten state. During the following cooling, spherical cavities with approx-
imately 10µm in diameter emerge around the inclusions. The modified PP mate-
rial is, subsequently, heated up and extruded in films of 70–100µm thickness by
means of two-dimensional shaking motions below atmospheric pressure. In doing
so, the spherical cavities get deformed to lenticular voids with diameters ranging
from 10µm up to 100µm and heights in the range of 2–10µm (see Fig. 3.16a).
The surface roughness of the PP film is minimized by sealing both the top and
bottom surface with homogeneous PP. The geometric dimensions of the lenticular
voids (especially their height) are often additionally increased by exposing the PP
film to a remarkable overpressure (e.g., 2MPa) for several hours [45, 49]. When the
overpressure is rapidly reduced, the size of the voids will increase permanently.

To activate electromechanical coupling in the resulting PP film, corona discharge
is usually applied for poling. This procedure leads to permanent electric charges
arising at the interfaces of lenticular voids and surrounding PP (see Fig. 3.16b).

6The acoustic impedance of piezoceramic materials exceeds 20 · 106 N sm−3.
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Fig. 3.16 a Scanning electron micrograph of PP film; b charge distribution inside PP film at
interface of lenticular voids and surrounding PP [37]

Since the electric charges exhibit opposite signs at the top and bottom surface of
the interfaces, an electric field is generated inside the voids. The electric field yields
an electrostatic force, which reduces the void heights. The film thickness gets, thus,
slightly reduced during poling. In the final step of the manufacturing process, the top
and bottom surface of the PP film is metallized with thin layers (e.g., aluminum) that
serve as electrodes. The reason for the piezoelectric properties of polarized PP films
lies in the fact that each charged lenticular void represents a dipole with a certain
dipole moment. Just as several other piezoelectric materials, PP films also show a
hysteretic large-signal behavior.

A well-established cellular PP film for piezoelectric transducers is the electrome-
chanical film (EMFi) material, which is produced by the company Emfit Ltd [7,
32]. The piezoelectric strain constant d33 of PP films can reach values of more
than 600 pmV−1, which is comparable to piezoceramic materials (see Table3.5). In
contrast, d31 takes extremely low values. Both the relative electric permittivity and
the electromechanical coupling factor k33 ≈ 0.1 of PP films are much smaller than
that of piezoceramic materials and PVDF. Nevertheless, PP films are well suited for
airborne ultrasonic transducers (see Sect. 7.6.1). Besides the high d33-value, this can
be ascribed to the outstanding piezoelectric voltage constant g33 ≈ 30VmN−1 and
the extremely small acoustic impedance Zaco ≈ 3 · 104 N sm−3 of cellular PP. The
main problem of conventional PP films in practical applications lies in the strongly
pronounced temperature sensitivity because temperatures higher than 60 ◦C cause
an irreversible change of the piezoelectric properties. However, it is possible to
relocate this change to higher temperatures by using cellular ferroelectrets that are
based on layered structures of polytetrafluoroethylene (PTFE) and fluoroethylene-
propylene (FEP) [50]. The resulting cellular fluorocarbon film shows d33-values of
almost 600 pmV−1 at a temperature of 120 ◦C.
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Chapter 4
Simulation of Piezoelectric Sensor and
Actuator Devices

Nowadays, computer simulations play a key role in the design, optimization, and
characterization of piezoelectric sensor and actuator devices. The primary reason for
this lies in the fact that simulations as an important step in computer-aided engi-
neering (CAE) allow to predict the device behavior without fabricating expensive
prototypes. Consequently, we can accelerate the device design, which goes hand in
hand with reduced development costs and a reduced time to market. Simulations
allow, furthermore, to determine quantities (e.g., inside a material), which cannot be
measured at reasonable expense.

There exist various approaches for simulations of technical devices. The most
important are finite difference methods [17], finite element methods [27], boundary
element methods [4] as well as approaches that are based on lumped circuit ele-
ments (see Sect. 7.5) [15]. Hereafter, we will exclusively concentrate on the finite
element (FE) method because this method is very well suited for numerical simu-
lation of piezoelectric sensor and actuator devices. The main advantages of the FE
method are listed below [14].

• Numerical efficiency: The FE method yields sparsely populated and symmetric
matrices for the resulting algebraic system of equations. Hence, the storage and
solution of the algebraic system of equations can be conducted in an efficient way.

• Complex geometry:We are able to discretize complex two-dimensional and three-
dimensional computational domains with the aid of appropriate finite elements,
e.g., triangles and tetrahedron elements.

• Analysis possibilities: The FE method can be used for static, transient, harmonic,
and eigenfrequency analysis of the investigated problem.

However, the FE method also exhibits certain disadvantages. For instance, the FE
methodmay lead to a considerable discretization effort, especially for large computa-
tional domains.Another inherent disadvantage is that each computational domain has
to be spatially bounded. If an open domain is required for the numerical simulation
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(e.g., free-field radiation of an ultrasonic transducer), wewill need special techniques
such as absorbing boundary conditions.

One can choose from a large number of FE software packages (FE solvers),
which are commercially available. The software packages ANSYS [1], COMSOL
Multiphysics [6], NACS [22], and PZFlex [19] are somewell-known representatives.
They differ in the supported physical fields as well as in the coupling of these fields.

In this chapter, we will study the fundamentals of the FE method, which are
important for simulating the behavior of piezoelectric sensors and actuators. The
focus lies on linear FE simulations. Section4.1 deals with the basic steps of the
FE method, e.g., Galerkin’s method. Subsequently, the FE method will be applied
to electrostatics (see Sect. 4.2), the mechanical field (see Sect. 4.3), and the acoustic
field (seeSect. 4.4).At the end,wewill discuss the couplingof different physical fields
because this represents a decisive step for reliable FE simulations of piezoelectric
sensors and actuators. For a better understanding, the chapter also contains several
simulation examples. Further literature concerning the FEmethod can be found in [3,
12, 14, 20, 23, 27].

4.1 Basic Steps of Finite Element Method

Figure4.1 illustrates the basic steps of the FE method. The starting point are always
partial differential equations (PDEs) for the physical fields within the investigated
technical problem, e.g., the physical fields that are involved in the piezoelectric
sensor and actuator. In a next step, this so-called strong formulation of the PDE
gets multiplied by an appropriate test function, which yields a variational form.
After partial integration (integration by parts) of the resulting product over the whole
computational domain, we obtain the so-called weak formulation of the PDE. In the
final step, we applyGalerkin’s method by approximating both the aimed quantity and
the test function with finite elements. This leads to an algebraic system of equations.

In the following subsection, we will detail the basic steps of the FE method for
a one-dimensional PDE. Section4.1.2 treats spatial discretization of computational
domains and efficient computation. In Sect. 4.1.3, the difference between Lagrange
andLegendre ansatz functionswill be discussed. Finally, we introduce an appropriate
scheme for time discretization, which is important for transient FE simulations.

strong formulation
of PDE

weak form
of PDE

algebraic system
of equations

partial
integration

Galerkin’s
method

Fig. 4.1 Basic step of FE method
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4.1.1 Finite Element Method for a One-Dimensional Problem

In order to demonstrate the idea of the FE method, let us consider a one-dimensional
(1-D) hyperbolic partial differential equation. Such partial different equation com-
monly occurs for mechanical problems. It comprises derivations with respect to time
as well as to space. The starting point of the FE method is the strong formulation of
the PDE

−∂2u(x, t)

∂x2
+ c

∂2u(x, t)

∂t2
= f (x, t) . (4.1)

Here, the expression u(x, t) represents the aimed quantity (e.g., mechanical dis-
placement) depending on both space x and time t . The term c stands for a constant,
and f (x, t) is a known excitation (source) term that varies with space and time. In
addition to (4.1), boundary and initial conditions are required to uniquely solve the
hyperbolic PDE. For the spatial computational domain x ∈ [a, b] and the investigated
time interval t ∈ [0, T ], appropriate conditions are

boundary conditions: u(a, t) = ua and u(b, t) = ub

initial conditions: u(x, 0) = u0(x) and
∂u(x, t)

∂t

∣
∣
∣
∣
t=0

= u̇0(x)

and
∂2u(x, t)

∂t2

∣
∣
∣
∣
t=0

= ü0(x) .

ua and ub refer to constant boundary conditions for the aimed quantity u(x, t), which
have to be fulfilled at any time. Oftentimes, these conditions are called Dirichlet
boundary conditions. In case of ua = 0, we have a homogeneous and, otherwise, i.e.,
ua �= 0, an inhomogeneous Dirichlet boundary conditions. Apart from such bound-
ary conditions, homogeneous or inhomogeneous Neumann boundary conditions can
be specified defining the first-order derivative ∂u/∂x with respect to space at the
boundary of the spatial computational domain. The initial conditions u0(x), u̇0(x),
and ü0(x) indicate u(x, t), its first-order and second-order derivate with respect to
time at t = 0 in the spatial computational domain x ∈ [a, b].

To achieve a clearly arranged form of partial differential equations in strong for-
mulation including boundary conditions (BC) as well as initial conditions (IC), we
introduce a compact scheme, which is also used later on. For the 1-D hyperbolic
PDE, this scheme reads as

PDE − ∂2u(x, t)

∂x2
+ c

∂2u(x, t)

∂t2
= f (x, t)

x ∈ [a, b] ; [a, b] ⊂ R

t ∈ [0, T ] ; [0, T ] ⊂ R
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Given f : [a, b] × [0, T ] → R

c = const.

BC u(a, t) = ua on a × [0, T ]
u(b, t) = ub on b × [0, T ]

IC u(x, 0) = u0(x) ∀x ∈ [a, b]
u̇(x, 0) = u̇0(x) ∀x ∈ [a, b]
ü(x, 0) = ü0(x) ∀x ∈ [a, b]

Find u(x, t) : (a, b) × (0, T ] → R .

Weak Formulation of the PDE

A fundamental step of the FE method is to transform the PDE from its strong for-
mulation into the weak formulation. Thereby, we multiply the original PDE with
an arbitrary test function w(x) and integrate the resulting product over the whole
spatial computational domain. The test function has to fulfill only two criteria: (i)
w(x) vanishes at Dirichlet boundaries and (ii) the first-order derivative of w(x) with
respect to space exists in the weak sense. For the hyperbolic PDE in (4.1), the mul-
tiplication by the test function w(x) and integration over the spatial computational
domain x ∈ [a, b] results in

b∫

a

w(x)

[

−∂2u(x, t)

∂x2
+ c

∂2u(x, t)

∂t2
− f (x, t)

]

dx = 0 . (4.2)

The first term can be simplified by means of partial integration, which has to be
replaced for higher dimensional PDEs with Green’s first integration theorem

b∫

a

w(x)
∂2u(x, t)

∂x2
dx =

[

w(x)
∂u(x, t)

∂x

]∣
∣
∣
∣

b

a

−
b∫

a

∂w(x)

∂x

∂u(x, t)

∂x
dx . (4.3)

Since the test function w(x) vanishes at Dirichlet boundaries (i.e., w(a) = w(b) =
0), the weak formulation of (4.1) finally becomes

b∫

a

[
∂w(x)

∂x

∂u(x, t)

∂x
+ cw(x)

∂2u(x, t)

∂t2

]

dx =
b∫

a

w(x) f (x) dx . (4.4)

In contrast to the strong formulation, the dimension of the spatial derivative of the
aimed quantity u(x, t) has been reduced by one. As the weak formulation incorpo-
rates Neumann boundary conditions ∂u(x, t) /∂x , they are called natural conditions.
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Dirichlet boundary conditions demand additional consideration in further steps of
the FE method and are, therefore, frequently referred to as essential conditions.

Galerkin’s Method

Within Galerkin’sMethod, the spatial computational domain is subdivided into cells,
the so-called finite elements. In case of the studied 1-D hyperbolic PDE, we divide
the domain[a, b] into M sufficiently small intervals

[

xi−1, xi
] ∀ i = 1, . . . , M where

each interval border xi is a node. The chosen intervals have to satisfy the properties:

• Ascending order of node positions, i.e., xi−1 < xi ∀ i = 1, . . . , M .

• Computational domain is completely covered, i.e.,[a, b] =
M⋃

i=1

[

xi−1, xi
]

.

• No intersection of intervals, i.e.,
[

xi−1, xi
] ∩[x j−1, x j

] = 0 ∀ i �= j .

Without limiting the generality, the 1-D computational domain can be equidistantly
discretized yielding the node positions (interval width h)

xi = a + ih ∀ i = 0, . . . , M with h = b − a

M
. (4.5)

Based on the spatial discretization of the computational domain, we subsequently
approximate both the aimed quantity u(x, t) and the test function w(x). Since, here,
only the spatial properties of u(x, t) are investigated, the dependency on time t is
omitted.

Spatial approximation in the FEmethod is conducted with a linear combination of
ansatz functions1 featuring local support. For the 1-D problem, each of these ansatz
functions is just different from zero in the interval

[

xi−1, xi+1
]

. Due to the fact that
the weak formulation contains solely spatial derivatives up to one, several types of
ansatz functions are suitable. For the sake of simplicity, let us choose piecewise linear
hat functions Ni (x) defined as (see Fig. 4.2)

Ni (x) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for x0 ≤ x ≤ xi−1
x − xi−1

h
for xi−1 < x ≤ xi

xi+1 − x

h
for xi < x ≤ xi+1

0 for xi+1 < x ≤ xM

(4.6)

for i = 1, . . . , M − 1. The functions N0(x) and NM(x) at the boundary of the com-
putational domain are defined in a similar manner.

The linear hat functions fulfill the required properties Ni
(

x j
) = 1 ∀ i = j

and Ni
(

x j
) = 0 ∀ i �= j . By means of these functions, the approximations u(x)

and w(x) of u(x) and w(x), respectively, are given by

1Ansatz functions are also called shape, basis, interpolation, or finite functions.
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x

1

0

Ni(x)

x0 x1 x2 xj−1 xj xj+1 xM−1 xM

N0 N1 Nj NM

Fig. 4.2 Piecewise linear hat functions Ni (x) utilized to approximate aimed quantity of considered
1-D hyperbolic PDE (x0 = a and xM = b)

u(x) ≈ u(x) =
M−1
∑

i=1

Ni (x) ui + N0(x) ua + NM(x) ub (4.7)

w(x) ≈ w(x) =
M−1
∑

i=1

Ni (x)wi (4.8)

where ui = u(xi ) and wi = w(xi ) represent approximated values at node xi . Note
that between two neighboring nodes, the approximation of u(x) and w(x) depends
on the chosen ansatz functions. In the particular case, the interim values are evaluated
according to linear equations. However, becausewe are able to apply ansatz functions
of higher order (see Sect. 4.1.3), the approximation can be performedmore precisely.

Inserting (4.7) and (4.8) in the weak formulation (4.4) of the PDE leads to the
terms (argument x omitted)

b∫

a

∂w

∂x

∂u

∂x
dx =

b∫

a

∂

∂x

[
M−1
∑

i=1

Niwi

]

∂

∂x

⎡

⎣

M−1
∑

j=1

N ju j + N0ua + NMub

⎤

⎦ dx

=
M−1
∑

i=1

wi

⎧

⎨

⎩

M−1
∑

j=1

u j

b∫

a

∂Ni

∂x

∂N j

∂x
dx

+
b∫

a

∂Ni

∂x

[
∂N0

∂x
ua + ∂NM

∂x
ub

]

dx

⎫

⎬

⎭
(4.9)

b∫

a

cw
∂2u

∂t2
dx =

b∫

a

c

[
M−1
∑

i=1

Niwi

]⎡

⎣

M−1
∑

j=1

N j
∂2u j

∂t2

⎤

⎦ dx
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=
M−1
∑

i=1

wi

⎧

⎨

⎩

M−1
∑

j=1

∂2u j

∂t2

b∫

a

cNi N jdx

⎫

⎬

⎭
(4.10)

b∫

a

w f dx =
b∫

a

[
M−1
∑

i=1

Niwi

]

f dx =
M−1
∑

i=1

wi

⎧

⎨

⎩

b∫

a

Ni f dx

⎫

⎬

⎭
. (4.11)

Thereby, integrals and sums were interchanged which is possible since u j and wi

are constants and, therefore, do not depend on space. We may also omit sums over
the approximated test function (i.e.,

∑M−1
i=1 wi ) due to the fact that w(x) can be

chosen almost arbitrarily and these sums appear identical in all terms. As a result, the
expressions in the bracket{•} exclusively remain from (4.9)–(4.11). By additionally
introducing the matrix and vector components

Mi j =
b∫

a

cNi (x) N j (x) dx (4.12)

Ki j =
b∫

a

∂Ni (x)

∂x

∂N j (x)

∂x
dx (4.13)

fi =
b∫

a

Ni (x) f dx −
b∫

a

∂Ni (x)

∂x

[
∂N0(x)

∂x
ua + ∂NM(x)

∂x
ub

]

dx , (4.14)

one is able to rewrite the resulting algebraic system of equations in matrix form
(second-order time derivative ü = ∂2u/∂t2)

Mü + Ku = f , (4.15)

which is still continuous in time. Herein, M and K, both of dimension (M − 1) ×
(M − 1), stand for themassmatrix and stiffnessmatrix, respectively. Since the ansatz
functions feature local support, thematrices are sparsely populated. The vector fwith
lengthM − 1 is the right-hand side of the algebraic system of equations. The solution
of (4.15) provides the vector u =[u1,u2, . . . ,uM−1

]t
with length M − 1 containing

approximated results of the aimed quantity u(xi ) for every node xi .

4.1.2 Spatial Discretization and Efficient Computation

Usually, one has to deal with two-dimensional (2-D) and three-dimensional (3-D)
problems in practice, e.g., numerical simulations for sensors and actuators. Thus, the
spatial computational domainΩ cannot be subdivided into line intervals but demands
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(a)

(b)

(c)

(d)

(e)

Fig. 4.3 Finite elements to spatially discretize 2-D and 3-D computational domainsΩ: a triangular
element forR2; b quadrilateral element forR2; c tetrahedron element forR3; d hexahedron element
forR3; e spatial discretization (also denoted as mesh or computational grid) of a 2-D computational
domain by means of triangles

alternative finite elements in R
2 and R

3. In the same manner as the line intervals
for 1-D problems, the finite elements have to satisfy the properties (i) complete
covering of the computational domain and (ii) no intersection of elements. Figure4.3
shows appropriate finite elements for 2-D (triangular and quadrilateral elements)
and 3-D (tetrahedron and hexahedron elements) spaces. Due to local support of the
ansatz functions on the nodes within the elements, they are frequently referred to as
nodal (Lagrangian) finite elements.2

With a view to assembling f,M, andK of the algebraic system of equations (4.15),
we have to calculate spatial derivatives of the ansatz functions and integrals over the
subdomain of a finite element (see, e.g., (4.12)). Especially for fine spatial discretiza-
tions in 3-D problems, this procedure provokes remarkable computational effort. To
optimize the assembly, the so-called parent elements are introduced which exhibit
uniform geometric dimensions. The parent elements are defined in a local coordinate
system (see Fig. 4.4). For such elements, we are able to efficiently evaluate both, spa-
tial derivatives of ansatz functions and their numerical integrations. By means of a
unique transform, the parent element defined in local coordinates gets subsequently
transformed into global coordinates of the spatial computational domain Ω . After
assembling the equations for all finite elements to global system matrices, the result-
ing algebraic system of equations in (4.15) can finally be efficiently solved with
problem-specific algebraic methods, e.g., multigrid methods [5, 14].

2For 3-D electromagnetic problems, edge (Nédélec) finite elements are often applied instead of
nodal (Lagrangian) elements.



4.1 Basic Steps of Finite Element Method 91

4.1.3 Ansatz Functions

As a matter of principle, FE simulations require ansatz functions featuring local
support. This means that each ansatz function has to be just different from zero in the
considered finite element and in the immediately neighboring ones. Lagrange and
Legendre ansatz functions provide local support, and therefore, they are applicable
for the FE method [2, 11, 14]. In the following, let us take a closer look at these most
important categories of ansatz functions.

Lagrange Ansatz Functions

Lagrange ansatz functions are widely utilized for FE simulations in all sectors of
engineering. The underlying procedure is commonly referred to as h-version of the
FE method or in abbreviated form h-FEM. For the 1-D case (see Sect. 4.1.1), the
Lagrange ansatz function N pd

i (ξ) for node i is defined as

N pd
i (ξ) =

pd+1
∏

j=1
j �=i

ξ − ξ j

ξi − ξ j
(4.16)

leading to N pd
i (ξi ) = 1. Here, pd stands for the order (i.e., polynomial degree) of the

Lagrange polynomial and ξi is the position of the i th node within the finite element.
As (4.16) shows, each node has its own ansatz function. If we assume 1-D parent
elements (see Fig. 4.4a) ranging from −1 to 1 and nodes that are equally distributed,
the node positions will result in

ξi = −1 + 2(i − 1)

pd
i = 1, . . . , pd + 1 . (4.17)

Thus, the number of nodes nnodes = pd + 1 within a single finite element increases
for increasing order of the Lagrange polynomial. Moreover, the relation

pd+1
∑

i=1

N pd
i (ξ) = 1 ∀ ξ ∈ [−1, 1] . (4.18)

(a)
(b)

unique
transform

xi xi+1
x

−1 1
ξ (x1, y1) (x2, y2)

(x3, y3)
(x4, y4)

x

y

(−1,−1) (1,−1)

(1, 1)(−1, 1)

ξ

η

Fig. 4.4 a Original finite element and parent element for 1-D; global coordinate x ; local coor-
dinate ξ; b original quadrilateral finite element and parent element for 2-D; global coordinate
system(x, y); local coordinate system(ξ, η)
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Table 4.1 Lagrange ansatz functions N pd
i (ξ) and node positions ξi for polynomial degree 1 and 2

in case of 1-D parents elements, i.e., ξ ∈ [−1, 1]

N pd
1 (ξ) N pd

2 (ξ) N pd
3 (ξ) Node positions ξi

pd = 1
1 − ξ

2

1 + ξ

2
[−1; 1]

pd = 2
ξ(ξ − 1)

2
(1 − ξ)(1 + ξ)

ξ(ξ + 1)

2
[−1; 0; 1]

pd = 1

pd = 1

pd = 1

pd = 2

pd = 2

pd = 3

pd = 3

N
pd
1 (ξ)

N
pd
1 (ξ)

N
pd
2 (ξ)

N
pd
2 (ξ)

N
pd
3 (ξ)

N
pd
3 (ξ)

N
pd
4 (ξ)

N
pd
4 (ξ)

Lagrange ansatz functions
h-FEM

Legendre ansatz functions
p-FEM

-1

-1

-1-1-1-1

-1-1

-1

-1

-1

-1-1-1

-1-1

-1

-1

1

1

1111

11

1

1

11

111

11

1

1

0 00

-1⁄3-1⁄3-1⁄3-1⁄3 1⁄31⁄31⁄31⁄3

0

0

0

0

0
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1

1

1

1
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1

Fig. 4.5 Lagrange and Legendre ansatz functions N pd
i (ξ) for 1-D up to polynomial degree pd = 3

and node positions ξi within parent element ξ ∈ [−1, 1]

holds which means, in other words, that the complete set of ansatz functions is
needed to compute the aimed quantity between the nodes. Table4.1 contains the
resulting Lagrange ansatz functions N pd

i (ξ) and the node positions ξi for pd = 1 as
well as pd = 2. Figure4.5 displays the ansatz function up to pd = 3.
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By means of increasing order pd in h-FEM, we can choose coarser spatial dis-
cretization for the computational domain without losing precision in simulations. In
doing so, the total number of finite elements nelem is reduced and one would expect
remarkably reduced computational effort. However, due to additional nodes within
the finite elements for pd > 1, the number of unknown quantities for each element
becomes larger which has to be considered in the view of computation time.

Legendre Ansatz Functions

FE simulations utilizing Legendre ansatz functions are oftentimes called p-version
of the FE method (p-FEM). The Legendre ansatz functions N pd

i (ξ) for a parent
element (ξ ∈ [−1, 1]; see Fig. 4.4) are defined as

N pd
1 (ξ) = 1 − ξ

2
N pd
2 (ξ) = 1 + ξ

2
(4.19)

N pd
i (ξ) = φi−1(ξ) ∀ i = 3, . . . , pd + 1 . (4.20)

The expression φi (ξ) represents the integrated Legendre polynomial Li and results
from

φi (ξ) =
ξ∫

−1

Li−1(x) dx (4.21)

Li (x) = 1

2i !
∂i

∂xi
(

x2 − 1
)i

. (4.22)

Similar to Lagrange ansatz functions, the amount of Legendre ansatz functions rises
for increasing polynomial degree pd. The ansatz functions of lower order remain,
however, unchanged which means that the set of ansatz functions for pd + 1 includes
all ansatz functions of order pd. On account of this fact, they are also named hierar-
chical ansatz functions.

There are various benefits of p-FEM over h-FEM. For instance, we can use differ-
ent orders of ansatz functions in p-FEM for neighboring finite elements. Besides, the
polynomial degree pd may be altered in different spatial directions for 2-D and 3-D
simulations, which is especially useful to avoid the so-called locking effects in FE
simulations for thin mechanical structures (e.g., cantilevers). In case of equal poly-
nomial degrees in different spatial directions, the simulation procedure is referred to
as isotropic p-FEM and otherwise anisotropic p-FEM.

The accuracy of numerical simulations in p-FEM is basically achieved by increas-
ing pd instead of choosing a finer computational grid. As a result, p-FEM requires a
less amount of nodes to spatially discretize the computational domain than h-FEM.
Nevertheless, we have to handle an increasing number of unknowns for the nodes
since each ansatz function is weighted individually. Furthermore, p-FEM will only
make sense if the investigated geometry allows a coarse computational grid. Despite
these shortcomings, the targeted use of p-FEM leads to strongly reduced calculation
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times for smooth and high-frequency problems, e.g., numerical simulation of high-
frequency fields in simply shaped mechanical structures.

4.1.4 Time Discretization

Up to now, we have treated solely the dependence on space for the FE method.
However, one is mainly concerned with physical processes depending also on time.
In order to incorporate time in the FE procedure, an appropriate time discretization is
required. Let us discuss the fundamentals of timediscretization for the 1-Dhyperbolic
PDE (4.1). Similar to 1-D space discretization, the investigated time interval [0, T ]
is subdivided into N sufficiently small subintervals (time step ti )

[0, T ] =
N
⋃

i=1

[

ti−1, ti
]

with 0 < t1 < t2 < . . . < tN−1 < tN = T . (4.23)

Without limiting the generality, we may assume equidistant time sampling, i.e., a
constant time step size Δt given by

Δt = ti − ti−1 = T

N
. (4.24)

The evaluation of the time discretization within the FE method is prevalently per-
formed according to the so-called Newmark scheme [12, 14]. For the spatially dis-
cretized hyperbolic PDE in matrix form (4.15), the Newmark scheme contains three
substeps, which are briefly explained below. To achieve compact expressions, we
use the nomenclature

u(ti ) =[u1(ti ) , . . . ,uM−1(ti )
]t = u(i) =

[

u(i)
1 , . . . ,u(i)

M−1

]t
. (4.25)

1. Compute predictor step: Starting from the known quantities u(i), u̇(i), and ü(i)

for time step ti , the predicted values result from

ũ = u(i) + Δt u̇(i) + (Δt)2

2
(1 − 2βN) ü(i) (4.26)

˜̇u = u̇(i) +(1 − γN)Δt ü(i)
. (4.27)

2. Solve algebraic system of equations: The predicted value ũ is then utilized to
pose an algebraic system of equations

M�ü(i+1) = f(i+1) − Kũ (4.28)

M� = M + βN(Δt)2 K . (4.29)
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Here,M� represents the effectivemassmatrix.3 The solution of (4.28) yields ü(i+1)

for the subsequent time step ti+1.
3. Perform corrector step: By means of ü(i+1), we are able to correct the predicted

values ũ and ˜̇u

u(i+1) = ũ + βN(Δt)2 ü(i+1) (4.30)

u̇(i+1) = ˜̇u + γNΔt ü(i+1)
. (4.31)

As a result, u(i+1), u̇(i+1) as well as ü(i+1) are now known and the predicted values
can be calculated for time step ti+2.

The parameters βN and γN determine the type of integration with respect to time
and, moreover, the stability of the integration procedure. For example, βN = 0 and
γN = 0.5 yield an explicit time integration. βN = 0.25 and γN = 0.5 result in an
implicit time integration, which is unconditionally stable (A-stable) for all choices
of time step sizesΔt . Note that stability of the integration procedure is necessary but
not sufficient for precise simulation results. In case of a rough time discretization, one
is concerned with numerical dispersion yielding, e.g., distorted pulses for transient
simulations. To avoid such numerical dispersions, the time step size has to be cho-
sen sufficiently small. In summary, FE simulations incorporating time discretization
provide an approximation of the aimed quantity with respect to both space and time.

4.2 Electrostatics

In order to apply the FE method to quasi-static electric or electrostatic fields (see
Sect. 2.1.2), an appropriate PDE is required which results from the combination of
(2.9, p. 10)–(2.11). The PDE reads as

−∇ · ε∇Ve = qe (4.32)

where ε is the electric permittivity, Ve the electric scalar potential, and qe the volume
charge density, respectively. In compact form, the strong formulation of the PDE in
3-D becomes (computational domain Ω)4

PDE − ∇ · ε∇Ve = qe

Ω ⊂ R
3

Given qe : Ω → R

ε : Ω → R

3Alternatively to the effective massmatrixM�, the Newmark scheme can be defined for the effective
stiffness matrix K�.
4The argument for the position r is mostly omitted in the following.
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BC
∂Ve

∂n
= 0 on ∂Ω

Find Ve : Ω → R .

The term n indicates the normal vector with respect to the boundary ∂Ω of Ω . Due
to the fact that electrostatic fields do not depend on time, initial conditions are useless
here. This also holds for quasi-static electric fields.

According to the first basic step of the FE method, the strong form (4.32) is
transformed into weak form with a scalar test function w(r). After applying Green’s
first integration theorem, the weak form results in

∫

Ω

ε∇w · ∇VedΩ −
∫

Ω

wqedΩ = 0 . (4.33)

Spatial discretization (Galerkin’smethod) ofw(r) and Ve(r) yields then the algebraic
system of equations

KVeve = fVe . (4.34)

If we utilize Lagrange ansatz functions, the vector ve will contain the approximated
values of Ve at the nodes of the spatially discretized computational domain Ω . The
stiffnessmatrixKVe and the right-hand side fVe of (4.34) are given by (ansatz functions
Ni )

KVe =
nelem∧

l=1

Kl ; Kl =[kli j
] ; kli j =

∫

Ω l

ε(∇Ni )
t ∇N jdΩ (4.35)

fVe =
nelem∧

l=1

fl ; fl =[fli
] ; fli =

∫

Ω l

∇NiqedΩ . (4.36)

nelem stands for the number of finite elements (e.g., hexahedra inR3) used to spatially
discretize Ω . For each finite element (index l), the element matrix Kl is composed
of the components kli j , which result from the integral over the element domain Ω l .
The same procedure is carried out to calculate the right-hand side fl . At this point,
it should be emphasized that the dependence of ε as well as of qe on space has to be
considered. Finally, Kl and fl are fully assembled (assembling operator

∧
) for all

elements leading to KVe and fVe , respectively.

Example

As a practical example for electrostatics, let us study a plate capacitor with two
identical electrodes of rectangular shape, which are assumed to be infinitely thin. The
dielectric medium between the electrodes exhibits the relative permittivity εplate =
20. Figure4.6 displays the geometric arrangement in two views. By means of the
plate length lplate = 10mm, the plate width wplate = 5mm, and the plate distance
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Fig. 4.6 Two views showing geometric arrangement of rectangular plate capacitor with dielectric
material between electrodes (relative permittivity εr); drawings are not in scale

d = 1mm, we can analytically approximate the capacity value Cplate with (2.23,
p. 13), which leads to

Cplate = εplate ε0 lplate wplate

d
= 8.854 pF . (4.37)

If one applies this simple analytical approximation, stray fields outside the elec-
trodes will be neglected. Consequently, the approximated Cplate is too small. The
impact of these stray fields on Cplate can be determined with the aid of the FE
method for the 3-D case. In doing so, the computational domain Ω has to con-
tain a certain border area surrounding the plate capacitor (see Fig. 4.6) because the
boundary condition ∂Ve/∂n implies field lines that are in parallel to the bound-
ary ∂Ω . The border area is assumed to be air. Stray fields will not be formed
in the simulation results when we do not use such border area. Without limiting
the generality, the computational domain of the plate capacitor is extended by the
margin lmarg on each side and in each spatial direction. The overall computational
domain comprising plate capacitor as well as border area features, thus, the geomet-
ric dimensions (lplate + 2lmarg) × (wplate + 2lmarg) × (d + 2lmarg). The following FE
simulations were performed with quadratic Lagrange ansatz functions, i.e., h-FEM
with pd = 2.

Figure4.7 shows the simulation result for the electric scalar potential Ve(x, z) in
the xz-plane. Thereby, the margin was set to lmarg = 5mm. The bottom electrode
was set to ground (i.e., 0 V), whereas the electric potential of the top electrode
amounts+10V. It can be clearly seen that there arise considerable electric potentials
in the border area of the plate capacitor. Owing to this fact, the stray fields in the
border area are not negligible.

The obtained simulation result also enables the calculation of Cplate. The calcula-
tion is based on the energy densitywelec of the electric field, which is with the electric
field intensity E = −∇Ve and the electric flux density D given by

welec = 1

2
E · D = 1

2
εrε0E · E = 1

2
εrε0 ‖E‖2 = 1

2
εrε0 ‖∇Ve‖2 . (4.38)
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Fig. 4.7 Simulated electric
potential Ve(x, z) in
xz-plane (i.e., y = 0mm) of
plate capacitor; margin
lmarg = 5mm; 3-D
computational gird
comprises 161693
tetrahedron elements
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Table 4.2 Resulting capacity value Cplate from FE simulation with respect to considered mar-
gin lmarg of plate capacitor (see Fig. 4.6)

lmarg in mm 0.1 0.5 1 5 10

Cplate in pF 8.880 8.950 8.989 9.055 9.070

Since the total electric energy Welec depends on Cplate and the potential differenceU
between top and bottom electrodes, we can exploit welec to determine Cplate. The
underlying relations read as

Welec = 1

2
CplateU

2 −→ Cplate = 2Welec

U 2
. (4.39)

Welec results from summing the energy Wi
elec of all finite elements within Ω , i.e.,

Welec =
nelem∑

i=1

Wi
elec with Wi

elec = 1

2

∫

Ω i

εrε0 ‖∇Ve‖2 dΩ . (4.40)

Table4.2 lists calculated capacity values for different margins. If the margin is
small (e.g., lmarg = 0.1mm), Cplate will be close to the approximation in (4.37). This
follows from the neglected stray fields. As expected, Cplate increases for increas-
ing lmarg. For the considered configuration, margins greater than 10mm cause only
a slight increase in Cplate. In general, the computation time of the FE simulation
drastically increases for increasing lmarg because the number of finite elements nelem
grows rapidly.

4.3 Mechanical Field

The PDE in linear continuum mechanics describing the mechanical field of a solid
deformable body in an infinitely small fraction at position5 r is defined as (see2.68,
p. 23 in Sect. 2.2.3)

5For the sake of clarity, the arguments for both space and time are mostly omitted in the following
equations of this chapter.
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Bt[c]Bu + fV = 	0ü (4.41)

with the displacement vector u(r, t), the differential operator B (2.40, p. 18), the
stiffness tensor [c], the prescribed volume force fV, and the material density 	0,
respectively. In the 3-D case, the compact form of (4.41) for the computational
domain Ω reads as (boundary ∂Ω of Ω)

PDE Bt[c]Bu + fV = 	0ü

Ω ⊂ R
3

t ∈ [0, T ] ; [0, T ] ⊂ R

Given ci j : Ω → R

	0 : Ω → R

fV : Ω × [0, T ] → R
3

BC u = ue on Γe × [0, T ]
[T]t n = Tn on Γn × [0, T ]
Γe ∪ Γn = ∂Ω

IC u(r, 0) = u0(r) ∀r ∈ Ω

u̇(r, 0) = u̇0(r) ∀r ∈ Ω

ü(r, 0) = ü0(r) ∀r ∈ Ω

Find u(r, t) : Ω × (0, T ] → R
3 .

Ω represents the computational domain without its Dirichlet boundary. The expres-
sion n denotes the normal vector with respect to the boundary Γn of Ω and Tn the
resulting mechanical stress perpendicular to this boundary. EitherTn or ue have to be
assigned as boundary condition to obtain a unique solution of the PDE. Without lim-
iting the generality, we set both boundary conditions to zero, i.e.,Tn = 0 and ue = 0.
Hence, the weak form of (4.41) after utilizing Green’s first integration theorem is
given by

∫

Ω

	0w · ü dΩ +
∫

Ω

(Bw)t[c]Bu dΩ =
∫

Ω

w · fV dΩ (4.42)

where w(r) is an appropriate test function. Since the displacement u is a vector
quantity, w has also to be a vector quantity. Moreover, in contrast to the elec-
trostatic field, the ansatz functions Ni for spatial discretization of Ω need to be
applied for each component within Galerkin’s method. For Lagrange ansatz func-
tions, the approximation u of the displacement vector in 3-D (space dimensions
nd = 3; {1, 2, 3} =̂ {x, y, z}) computes as
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u(r) ≈ u(r) =
nd∑

j=1

nnodes∑

i=1

Ni (r) ui, j e j with ui, j = u(ri ) · e j (4.43)

or alternatively by introducing the approximatedvectorui =[ui,x , ui,y, ui,z
]t = u(ri )

at node i as

u(r) =
nnodes∑

i=1

Ni (r)ui ; Ni (r) =
⎡

⎣

Ni (r) 0 0
0 Ni (r) 0
0 0 Ni (r)

⎤

⎦ . (4.44)

e j stands for the unit vector pointing in direction j and nnodes is the total amount of
all nodes within the nelem finite elements, which are used to spatially discretize the
computational domain Ω . Finally, the algebraic system of equations in matrix form
becomes

Muü + Kuu = fu . (4.45)

ThemassmatrixMu, stiffnessmatrixKu and right-hand side fu are assembled accord-
ing to

Mu =
nelem∧

l=1

Ml ; Ml =[ml
i j

] ; ml
i j =

∫

Ω l

	0N
t
iN jdΩ (4.46)

Ku =
nelem∧

l=1

Kl ; Kl =
[

kl
i j

]

; kl
i j =

∫

Ω l

Bt
i [c]B jdΩ (4.47)

fu =
nelem∧

l=1

fl ; fl =[fli
] ; fli =

∫

Ω l

Nt
i fVdΩ (4.48)

with

Bi =
⎡

⎢
⎣

∂Ni
∂x 0 0 0 ∂Ni

∂z
∂Ni
∂y

0 ∂Ni
∂y 0 ∂Ni

∂z 0 ∂Ni
∂x

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

⎤

⎥
⎦

t

. (4.49)

The assembling procedure is similar to the previously discussed FE method for
electrostatics. Note that here, the vector u of unknowns takes the form

u =[u1,x , u1,y, u1,z, u2,x , . . . , unnodes,x , unnodes,y, unnodes,z
]t

(4.50)

and, thus, contains three times as much components as in case of scalar quantities.
In many practical situations, the FE method for mechanical problems can be

considerably simplified. The (i) plane strain state, the (ii) plane stress state, and the
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(iii) axisymmetric stress–strain relations are three fundamental simplifications in
continuum mechanics.

• Plane strain state: Let us assume an elastic body, which is large in one direc-
tion (e.g., z-direction) and features equal cross sections (e.g., in xy-plane) perpen-
dicular to this dimension. If the boundary conditions and forces acting on the body
are identical for each cross section, the dependence of the displacements (e.g., uz)
and strains (e.g., Syz) on the dominating body dimension can be neglected.

• Plane stress state:Wewill be able to utilize this state if, for instance, the considered
elastic body represents a thin plate (e.g., in xy-plane) made of homogeneous
isotropic material, which is loaded by forces acting within the plate plane. For
such configurations, several components of the stress tensor (e.g., Tzz) and the
strain tensor (e.g., Syz) can be set to zero.

• Axisymmetric stress–strain relation: This simplification can be applied when the
investigated geometry and thematerial arrangement are axisymmetric. In that case,
a cylindrical-coordinate system (radius r , height z, angle Θ) can be introduced,
where both, displacements (e.g., uΘ ) and strains (e.g., SrΘ ), do not depend on Θ .

As a result of the three fundamental simplifications, the original mechanical problem
in 3-D changes to a 2-D problem. The required mesh to spatially discretize the com-
putational domain is substantially reduced yielding a smaller number of nodes nnodes
and, thus, an algebraic system of equations with less unknown quantities.

4.3.1 Types of Analysis

Several different types of analysis are commonly utilized in numerical simulations
based on the FE method. To discuss the basic types of analysis, we start with an
extended version of (4.45) for the algebraic system of equations in mechanics

Muü + Duu̇ + Kuu = fu . (4.51)

Here, the (damping)matrixDu accounts for attenuationwithin the investigated elastic
body.

Static Analysis

In case of static analysis, we presume that the aimed quantity (i.e., u), the boundary
conditions as well as the right-hand side fu do not depend on time t . Hence, one can
state ü = u̇ = 0 and, therewith (4.51), takes the form

Kuu = fu . (4.52)

So, the mass matrix Mu and damping matrix Du have no influence on the result.
As for the electrostatic field in Sect. 4.2, initial conditions are useless for the static
analysis.
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Transient Analysis

Both the external loads and the aimed quantityumay varywith respect to time in case
of a transient analysis. Therefore, we are not able to simplify (4.51). In addition to
the spatial computational domain, the investigated time interval[0, T ] is discretized.
For each time step ti ,

Muü
(i) + Duu̇

(i) + Kuu(i) = f(i)u (4.53)

has to be fulfilled. According to the Newmark scheme (see Sect. 4.1.4), the solu-
tion u(i+1) for the subsequent time step ti+1 results from three computation substeps.

1. Compute predictor step:

ũ = u(i) + Δt u̇(i) + (Δt)2

2
(1 − 2βN) ü(i) (4.54)

˜̇u = u̇(i) +(1 − γN)Δt ü(i)
. (4.55)

2. Solve algebraic system of equations:

M�
uü

(i+1) = f(i+1)
u − Du

˜̇u − Kuũ (4.56)

M�
u = Mu + γNΔt Du + βN(Δt)2 Ku . (4.57)

3. Perform corrector step:

u(i+1) = ũ + βN(Δt)2 ü(i+1) (4.58)

u̇(i+1) = ˜̇u + γNΔt ü(i+1)
. (4.59)

The parameters βN and γN determine the type of integration, i.e., explicit or implicit
integration.

It seems only natural that the transient analysis needs much more computational
effort than the static analysis. Especially for large computational grids and long
periods of time, this may lead to numerical simulations, which cannot be solved in
a reasonable amount of time anymore.

Harmonic Analysis

If the behavior of a system in case of harmonic excitation with frequency f has
to be figured out, we can perform a transient analysis with an appropriate excita-
tion signal. However, to achieve the steady state of the system, a sufficiently long
period of time[0, T ] is required for the simulation, which is usually accompanied by
an unacceptable computational effort. On account of this fact, a harmonic analysis
should be carried out instead. In doing so, the algebraic system of equations (4.53) in
time domain is transformed into the complex frequency domain. The time-dependent
expressions fu andu aswell as the time derivatives are replaced by (angular frequency
ω = 2π f )
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fu −→ f̂u · e jωt ; u −→ û · e jϕu · e jωt (4.60)

∂

∂t
−→ jω ; ∂2

∂t2
−→ −ω2 (4.61)

f̂u and û stand for the amplitudes of both the right-hand side fu and the mechanical
displacements u at the nodes of the spatially discretized computational domain,
respectively. ϕu is a vector containing the phase for the displacement components
at each node.6 So, the vectors û and ϕu feature the same length. The combination
of (4.51), (4.60), and (4.61) leads to

(−ω2Mu + jωDu + Ku
)

û · e jϕu = f̂u , (4.62)

which is in contrast to (4.51) a complex-valued algebraic system of equations. The
solution of this system of equations provides for each node both the amplitude and
the phase of the displacement components at frequency f .

Eigenfrequency Analysis

To predict the resonance behavior of a system by means of harmonic analysis, one
has to investigate a certain frequency range in which resonance is expected. This
procedure may take very long computation time. A time-efficient alternative to
the harmonic analysis is the eigenfrequency analysis. Thereby, the system behav-
ior is studied without considering the damping matrix Du and the right-hand side fu
of (4.51). As for the harmonic analysis, we perform a transform into the complex
frequency domain yielding the eigenvalue equation

[−(2π f )2 Mu + Ku
]

û · e jϕu = 0 . (4.63)

The solution of this equation is a pairwise combination of the so-called eigenfrequen-
cies f(i) representing the eigenvalues and eigenvectors û(i)e jϕu,(i) . In other words, for
each eigenfrequency, one obtains amplitude and phase for the aimed quantity at the
nodes of the computational domain. Each eigenvector indicates an eigenmode of the
mechanical system.

From the physical point of view, excitations at the eigenfrequency result in a
system behavior according to the eigenvectors. In case of an undamped mechani-
cal systems (i.e., Du = 0), the displacements and, consequently, vibrations at this
frequency might be rather high. Note that for such a system, the eigenfrequencies
coincide with the resonance frequencies of the system.

6Alternatively to the approach with amplitude and phase, the complex frequency domain can be
represented by real and imaginary parts.
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4.3.2 Attenuation within Mechanical Systems

Each mechanical system is subject to a certain attenuation, which arises due to
inner friction. For example, when a one-sided clamped beam is excited by a pulse,
the resulting mechanical vibrations will decay. To incorporate attenuation within
the FE method, we often add an expression that is proportional to the mechanical
velocity u̇ of the mechanical system. The so-called damping matrix Du represents
the proportionality factor. The resulting algebraic system of equation was already
shown in (4.51).

It seems only natural that attenuation can only be considered in a realistic man-
ner if an appropriate damping matrix Du is used. Many FE formulations exploit the
Rayleigh damping model to determineDu. The idea of this dampingmodel lies in lin-
early combiningmassmatrixMu and stiffnessmatrixKu of the system. Therefore,Du

is given by

Du = αMMu + αKKu (4.64)

with the mass proportional damping coefficient αM and the stiffness proportional
damping coefficient αK. According to [3], a mode superposition analysis including
attenuation yields (i th eigenfrequency f(i))

αM + αK
[

2π f(i)
]2 = 4π f(i)ξd,i . (4.65)

The expression ξd,i denotes the modal damping ratio for the i th eigenmode (i.e., at
the i th eigenfrequency) and computes as

ξd,i = αM + αK
[

2π f(i)
]2

4π f(i)
. (4.66)

The frequency-dependent damping ratio ξd( f ) results from the same formula by
replacing f(i) with f . ξd( f ) takes a minimum at f(i) and increases exponentially
for f < f(i) and linearly for f > f(i).

The Rayleigh damping model is applicable for transient as well as harmonic
analysis based on FE method. However, strictly speaking, the frequency-dependent
damping ratio ξd( f )will only lead to a good approximation of attenuation if the con-
sidered frequency is close to a eigenfrequency. That is the reason why other damping
models are applied instead. A common damping model assumes constant attenua-
tion; i.e., ξd does not depend on frequency. We can achieve a constant value of ξd by
means of αM = 0 and αK = αd/(2π f ) (see (4.65)) with the damping coefficient αd.
By inserting this in (4.64), the damping matrix results in Du = αdKu/(2π f ). For
harmonic FE simulations (4.62), the influence of attenuation remains, thus, constant
because the frequency f cancels out in the expression jωDu. Therefore, attenuation
exclusively depends on the product αdKu.
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Instead of directly introducing a dampingmatrixDu in theFEmethod, it is possible
to consider attenuation for harmonic simulations by using complex-valued material
parameters. In case of a mechanical system, this means that the stiffness tensor
changes to the complex-valued version

[

cE
] =[cE] + j

[

cE
]

� =[cE]
[

1 + jαd
]

. (4.67)

While the real part
[

cE
]

 coincides with the original material parameters, the imag-
inary part

[

cE
]

� rates attenuation. The damping coefficient αd in (4.67) corresponds
to the previous definition with Du since the imaginary part yields again the expres-
sion αdKu in the algebraic system of equations.

4.3.3 Example

Let us study the mechanical behavior of a one-sided clamped copper beam by means
of the FE method. The decisive material parameters density, Young’s modulus, and
Poisson’s ratio were set to 	0 = 8930 kgm−3, EM = 126.2GPa, and νP = 0.37,
respectively (see Table2.5 on p.26). Figure4.8a shows the geometric setup for this
cantilever beam (length lbeam = 10mm; height hbeam = 0.5mm) in the xy-plane. For
the sake of simplicity, we assume that the geometric dimension in z-direction is very
large compared to hbeam as well as lbeam. Moreover, the boundary conditions and
external forces acting on the structure are supposed to be equal for each cross section
in parallel to the xy-plane. Themechanical problem can, therefore, be treated as plane
strain state; i.e., it is sufficient to apply the FEmethod for the 2-D case (see Fig. 4.8b).
The clamping on the left hand side implies that there both the displacements ux in x-
direction and the displacements uy in y-direction equal zero. At the right upper
end, the beam is loaded with an external static force of F = 10N in negative y-
direction. The following FE simulations were performed with quadratic Lagrange
ansatz functions, i.e., h-FEM with pd = 2.

Since the quantities do not depend on time, we can conduct a static analysis
according to (4.52). Figure4.9 displays the computedbending line uy(x),which refers

(a)

(b)

lbeam

hbeam

F

x

y

Ω

Fig. 4.8 a Geometric setup of cantilever beam with length lbeam = 10mm and height hbeam =
0.5mm in xy-plane; b 2-D computational grid comprising 1208 triangles
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Fig. 4.9 Simulation result
for bending line uy(x) of
beam’s centerline
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to the centerline of the cantilever beam, i.e., at y = 0. As expected, the beam deflects
in negative y-direction. The deflection at the right beam end amounts 2.18µm.

For such a simple arrangement, the beam deflection can also be approximated in
an analytical manner. The simplest approximation for the bending line results from
the Euler–Bernoulli beam theory, which supposes small mechanical deformations,
negligible shear deformations as well as plane cross sections of the beam that are
always perpendicular to the beam’s centerline during deformation [24, 26]. Accord-
ing to the Euler–Bernoulli beam theory, the deflection uy(x = lbeam) of the right beam
end computes as

uy(x = lbeam) = 4Fl3beam
EMh3beam

(4.68)

for the plane strain state. This leads to the approximated deflection of 2.54µm. The
deviation from the FE simulation stems from the simplifications in the course of the
Euler–Bernoulli beam theory.

In Fig. 4.10a and b, one can see the simulated displacement ux(x, y) in x-direction
and the simulated displacement uy(x, y) in y-direction along the cantilever beam
for F = 10N. Not surprisingly, the maximum of |ux(x, y)| is much smaller than
of
∣
∣uy(x, y)

∣
∣. Figure4.10c depicts the simulated von Mises stress Tmis(x, y), which

is here defined as (arguments x and y omitted)

Tmis =
√
(

Txx + Tyy
)2(

ν2
P − νP + 1

)+ TxxTyy
(

2ν2
P − 2νP − 1

)+ 3T 2
xy (4.69)

with the normal stresses Txx and Tyy and the shear stress Txy. Especially close to the
clamping (i.e., the left beam end), Tmis(x, y) takes high values at the top and bottom
sides of the beam.

Finally, we regard an eigenfrequency analysis (see (4.63)). Figure4.11 shows the
simulated first five eigenmodes and eigenfrequencies f(i) for transverse vibrations of
the cantilever beam. As expected, higher eigenfrequencies are accompanied by an
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(a) displacement ux(x, y) in nm

(b) displacement uy(x, y) in m

(c) Mises stress Tmis(x, y) in Nmm−2
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Fig. 4.10 Simulation result for a displacement ux(x, y) in x-direction, b displacement uy(x, y)
in y-direction, and c von Mises stress Tmis(x, y) along cantilever beam; color bars relate directly
to figure above
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Fig. 4.11 Simulated normalized eigenmodes uy(x) along cantilever beam and eigenfrequencies f(i)
for first five eigenmodes

increasing amount of local minima and maxima along the beam. The eigenfrequen-
cies for transverse vibrations can also be analytically approximated by [24]

f(i) = λ2
(i)

2πl2beam

√

EMh2beam
12	0

. (4.70)
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For the first five eigenmodes, the expression λ(i) equals

λ(i) = {1.875; 4.694; 7.855; 10.996; 14.137} , (4.71)

which yields the eigenfrequencies

f(i) = {3036; 19028; 53284; 104417; 172591}Hz . (4.72)

Again, the deviations between the simulation results and the analytical approxi-
mations stem from simplifications that are performed for the approximation. If the
Poisson’s ratio νP is set to zero for the FE simulations, the obtained eigenfrequencies
will coincide much better with the approximations in (4.72).

4.4 Acoustic Field

In Sect. 2.3.3, we derived the linear acoustic wave equation for the sound pressure p∼
and the acoustic velocity potential Ψ . For the sound pressure, the wave equation at
position r reads as

1

c20
p̈∼ − Δp∼ = f p (4.73)

with the sound velocity c0 and the excitation function f p generating acoustic waves
in the medium. The compact form of (4.73) for the 3-D computational domain Ω

including boundary as well as initial conditions becomes

PDE
1

c20
p̈∼ − Δp∼ = f p

Ω ⊂ R
3

t ∈ [0, T ] ; [0, T ] ⊂ R

Given c0 : Ω → R

f p : Ω × [0, T ] → R

BC p∼ = pe on Γe × [0, T ]
∂ p∼
∂n

= pn on Γn × [0, T ]
Γe ∪ Γn = ∂Ω

IC p∼(r, 0) = p0(r) ∀r ∈ Ω

ṗ∼(r, 0) = ṗ0(r) ∀r ∈ Ω

p̈∼(r, 0) = p̈0(r) ∀r ∈ Ω

Find p∼(r, t) : Ω × (0, T ] → R .
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Similar to the FE method for the mechanical field (see Sect. 4.3), either pe or pn
have to be prescribed as boundary condition of the PDE. To simplify the following
expressions, we set these boundary conditions to zero. Therewith, the weak form
after applying Green’s first integration theorem results in (scalar test function w(r))

∫

Ω

1

c20
w p̈∼dΩ +

∫

Ω

∇w · ∇ p∼dΩ −
∫

Ω

w f dΩ = 0 . (4.74)

The subsequent spatial discretization of w(r) and p∼(r) according to Galerkin’s
method leads to the algebraic system of equations in matrix form

Mpp̈ + Kpp = fp . (4.75)

For Lagrange ansatz functions, the vector p contains approximated values of the
sound pressure p∼ at the nodes of the spatially discretized computational domainΩ .
The mass matrixMp, stiffness matrix Kp, and right-hand side fp are given by (num-
ber nelem of finite elements; ansatz function Ni )

Mp =
nelem∧

l=1

Ml ; Ml =[ml
i j

] ; ml
i j =

∫

Ω l

1

c20
Ni N jdΩ (4.76)

Kp =
nelem∧

l=1

Kl ; Kl =[kli j
] ; kli j =

∫

Ω l

(∇Ni )
t ∇N jdΩ (4.77)

fp =
nelem∧

l=1

fl ; fl =[fli
] ; fli =

∫

Ω l

Ni f pdΩ . (4.78)

To account for attenuation during the wave propagation, an appropriate damping
matrix Dp has to be introduced in addition.

Again, different types of analysis can be performed. In contrast to the mechanical
field, the static analysis makes no sense because sound pressure is an alternating
quantity. For the transient analysis, we subdivide the investigated time interval [0, T ]
into sufficiently small subintervals and apply the Newmark scheme according to
Sect. 4.1.4. In case of harmonic and eigenfrequency analysis, the algebraic system
of equations (4.75) in matrix form has to be transformed into the complex frequency
domain.

Alternatively to the sound pressure p∼, one is able to conduct the FE method
for the acoustic field by means of the acoustic velocity potential Ψ . The decision
if p∼ or Ψ is utilized primarily depends on the prescribed boundary conditions of
the investigated acoustic problem. Principally, we distinguish between three different
cases.

• Pressure as boundary condition, i.e., p∼ = pe on∂Ω: The acoustic problem should
be studied with the PDE for p∼.
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• Normal component of the particle velocity as boundary condition, i.e., n · v∼ =
vn on ∂Ω: Since there is a unique and simple relation between particle velocity and
acoustic velocity potential (2.122, p. 34), the acoustic field should be calculated
with the PDE for Ψ . The sound pressure results from (2.123).

• Mixed boundary conditions, i.e., p∼ = pe on Γe and n · v∼ = vn on Γn: Both
quantities are appropriate to solve the acoustic problem. However, we have to
convert the boundary conditions into the used quantity.

4.4.1 Open Domain Problems

When the acoustic field of a sound source is studied, we will be mostly interested
in the free-field radiation. Actually, the computational domain for numerical simu-
lations based on FE is always limited. On account of this fact, boundary conditions
or methods mimicking the so-called open domain are indispensable. The previously
discussed boundary conditions cause, however, reflections of the impinging acoustic
waves. Consequently, they are not appropriate for free-field simulations. To obtain an
open computational domain, several techniques have been developed. In the follow-
ing, we briefly discuss two famous approaches, namely (i) the absorbing boundary
condition (ABC) and (ii) the perfectly matched layer (PML).

Absorbing Boundary Conditions

Let us consider a sinusoidal 1-D pressure wave propagating in x-direction with
the sound velocity c0. The acoustic wave may travel in both positive x-direction and
negative x-direction. In the complex domain, the solution of the linear wave equation
for these waves is given by

p+
∼(x, t) = p̂∼e j(ωt−kx) (4.79)

p−
∼(x, t) = p̂∼e j(ωt+kx) (4.80)

with the sound pressure amplitude p̂∼, the angular frequency ω, and the wave
number k = ω/c0, respectively. Furthermore, we assume at xbound a virtual bound-
ary Γbound where the relation

(
∂

∂t
+ c0

∂

∂x

)

= 0 (4.81)

has to be fulfilled. Inserting (4.79) and (4.80) in (4.81) reveals that the relation is only
satisfied for waves traveling in positive x-direction, i.e., p+

∼. Hence, these waves can
pass the boundary (see Fig. 4.12). In contrast, waves traveling in negative x-direction
are totally reflected at the boundary.

If (4.81) is applied to the FE method at the boundary ∂Ω of the computational
domain Ω , one will achieve an open computational domain. We are, thus, able to
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p∼(x, t)

p̂∼

x
0

Γbound

xbound

p+∼ will pass Γbound p−∼ will be reflected

Fig. 4.12 According to ABC, acoustic waves p+∼ traveling in positive x-direction will pass virtual
boundary Γbound at xbound and waves p−∼ traveling in negative x-direction will be totally reflected
there

simulate free-field radiation of an acoustic source. Since this procedure solely affects
entries in the damping matrix Dp, which refer to ∂Ω , the relation (4.81) is usually
named absorbing boundary condition.

It is important to mention that an ABCwill only work perfectly when the pressure
waves impinge perpendicularly onto the boundary. However, in many practical situ-
ations, it is impossible to choose a boundary geometry ensuring perpendicular sound
incidence for each excitation signal. That is why alternative methods are oftentimes
demanded to mimic an open computational domain, e.g., the perfectly matched layer
technique.

Perfectly Matched Layer

With a view to explaining the basic idea of the PML technique, we assume a plane
acoustic wave propagating in positive x-direction. The wave impinges perpendic-
ularly onto an interface at x = 0 of two media (medium 1 and medium 2; see
Fig. 4.13a), which feature different acoustic properties. For this configuration, the
reflection coefficient rpres for the incident pressure wave becomes (see (2.139, p. 38))

rpres = Zaco2 − Zaco1

Zaco1 + Zaco2
(4.82)

with the acoustic impedances Zaco1 and Zaco2 of medium 1 and medium 2, respec-
tively. The acoustic impedances for plane waves are defined as

Zaco1 = 	1c1 and Zaco2 = 	2c2 . (4.83)

From (4.82), it can be easily deduced that there will not occur any reflection at the
interface if Zaco1 = Zaco2 holds.We can fulfill this condition by choosing appropriate
combinations of sound velocities and densities for the two media. Without limiting
the generality, let us consider the following combination

	2 = 	1
(

1 − jαξx
)

(4.84)

c2 = c1
1 − jαξx

(4.85)
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where αξx is an arbitrary positive number. Therewith, the (complex-valued) wave
number k2 in medium 2 results in (k1 = ω/c1)

k2 = ω

c2
= k1

(

1 − jαξx
)

. (4.86)

Replacing k2 in the solution of the linear wave equation for sound pressure waves in
medium 2, which travel in positive x-direction (cf. (4.79)), with (4.86) yields

p+
∼(x, t) = p̂∼e j(ωt−k2x) = p̂∼e j(ωt−k1x) e−αξx x

︸ ︷︷ ︸

damping

. (4.87)

The expression e−αξx x causes attenuation due to the fact that αξx (attenuation coef-
ficient) was assumed to be a positive number. As a result, the amplitude of the
propagating pressure wave gets exponentially reduced in medium 2 (see Fig. 4.13a).

To utilize this principle in the FE method for 2-D as well as 3-D acoustic prob-
lems, the original computational domain Ωorig has to be surrounded by an additional
computational region ΩPML, the so-called perfectly matched layer (see Fig. 4.13c).
In this layer, propagating acoustic waves are attenuated until they are reflected at
the outer boundary ∂ΩPML of ΩPML. During the propagation of the reflected waves
back to the interface ∂Ωorig of ΩPML and Ωorig, further attenuation is present. The
intensity of the reflected acoustic wave will, therefore, be negligible if a sufficient
thickness of the PML as well as a proper attenuation coefficient is chosen.

Note that the PML technique does not only require acoustic impedances matching
of Ωorig and ΩPML for sound pressure waves impinging perpendicular onto their

(a)

(b)

(c)

x

y

p+∼

interface

interface

medium 1 medium 2

Ωorig ΩPML

1; c1

1; c1

2; c2

2; c2

v∼
v∼x

v∼y

αξx = 0
αξy = 0

αξx = 0
αξy = 0

αξx = 0
αξy = 0

computational
domain Ωorig

interface ∂Ωorig

outer boundary ∂ΩPML

Fig. 4.13 a Sound pressure wave p∼(x, t) propagating in x-direction and impinging perpendic-
ularly onto interface of medium 1 and medium 2; b refraction at interface of Ωorig and ΩPML;
particle velocity v∼; c setting of attenuation coefficients αξx and αξy in 2-D within PML layer that
surrounds Ωorig
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interface ∂Ωorig but also for oblique incident sound. In order to arrange impedance
matching, we locally split the incident wave p∼ into plane waves p∼x , p∼y and p∼z

propagating in x-, y-, and z-direction, respectively, i.e.,

p∼ = p∼x + p∼y + p∼z . (4.88)

The splitting is conducted according to the components of the particle veloc-
ity v∼ =[v∼x , v∼y, v∼z

]t
at the interface in the PML layer (see Fig. 4.13b).Moreover,

individual attenuation coefficients αξx , αξy , and αξz are applied in the different spa-
tial directions (see Fig. 4.13c). By means of this technique, reflections of oblique
incident pressure waves are avoided at the interface ∂Ωorig, which leads to an open
computational domain. It is possible to incorporate the PML technique in the FE
method for analysis in the complex frequency domain (i.e., harmonic and eigenfre-
quency) and inmodified form also for transient analysis [13]. However, the additional
region ΩPML implies increasing computational effort.

4.4.2 Example

As a practical example for acoustics, let us study the sound field, which is generated
by a piston-type ultrasonic transducer featuring a circular active surface (radius RT =
10mm) and a uniform surface normal velocity. The ultrasonic transducer operates
in water with a sound velocity of c0 = 1500ms−1. Owing to the symmetry of the
transducer, we can restrict the computational domain Ω to a rotationally symmet-
ric configuration. Figure4.14 illustrates the considered 2-D geometric arrangement,
whereby the rotation axis coincides with the z-axis. Ω is a quarter circle with
radius RΩ = 100mm.

Fig. 4.14 Rotationally
symmetric configuration of
computational domain Ω

with radius RΩ = 100mm
for piston-type ultrasonic
transducer; circular active
surface with radius
RT = 10mm;
amplitude v̂n = 1mm s−1 of
surface normal velocity;
absorbing boundary
conditions at ΓABC

ρ

z

ro
ta
ti
on

ax
is
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water
Ω
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(a) fex = 50 kHz (b) fex = 100 kHz

(c) fex = 500 kHz (d) fex = 1MHz
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Fig. 4.15 Simulated normalized sound pressure distribution p̂∼(ρ, z) for excitation frequency fex
a 50 kHz, b 100 kHz, c 500 kHz, and d 1MHz; normalization with respect to maximum ampli-
tude p̂∼max

The active surface of the piston-type transducer gets emulated by a line of radial
dimension RT that oscillates sinusoidally with the velocity amplitude v̂n = 1mm s−1

at the frequency fex. Therefore, we have to prescribe v̂n along RT. The remaining
part Γn of the lower limit of Ω was assumed to be acoustically hard, i.e., v̂n = 0.
Due to the rotationally symmetric configuration, this also refers to the z-axis. With
a view to simulating free-field radiation, absorbing boundary conditions were used
at the boundary ΓABC. The following FE simulations were performed with quadratic
Lagrange ansatz functions, i.e., h-FEM with pd = 2.

Figure4.15 contains simulation results for the normalized sound pressure distri-
bution7 p̂∼(ρ, z), whichwere obtained by a harmonic FE analysis. The excitation fre-
quency fex was varied from 50 kHz up to 1MHz. Not surprisingly, p̂∼(ρ, z) strongly
depends on fex. The underlying causes will be thoroughly investigated in Sect. 7.2.

Note that the required computation time of the harmonic FE simulation varies
widely for the considered values of fex. This originates from the size of the used
computational grid because reliable FE simulations call for a sufficiently fine grid. In
the present case, one wavelength λaco = c0/ fex of the sound wave was discretized by

7The sound pressure distribution corresponds to the spatially resolved sound pressure magnitudes.
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triangular elements with side lengths smaller than λaco/10. As a result, Ω comprises
2469 triangles for fex = 50 kHz and 977043 triangles for f = 1MHz, respectively. It
seems only natural that such an increasing amount of finite elements has a significant
impact on the required computation time. Especially when a transient FE analysis is
desired, this fact may lead to an unacceptable computational effort.

4.5 Coupled Fields

If numerical simulations are carried out for piezoelectric sensors and actuators, one
will always be concerned with the coupling of different physical fields. The (quasi-
static) electric field is coupled to themechanical field inside the piezoelectricmaterial.
For ultrasonic transducers, we have to additionally regard the coupling ofmechanical
and acoustic fields. In the following, the relevant coupling conditions as well as their
incorporation into the FE method will be discussed.

4.5.1 Piezoelectricity

As for single physical fields (e.g., mechanical field), the numerical simulation of
piezoelectricity demands appropriate PDEs. These equations are obtained by com-
bining the material law of piezoelectricity with fundamental relations of mechanical
and (quasi-static) electric fields. To account for the coupling of electric and mechan-
ical quantities inside the piezoelectric material, let us utilize the material law for
linear piezoelectricity in e-form and Voigt notation (see Sect. 3.3)

T =[cE] S −[e]t E (4.89)

D = [e] S +[εS
]

E (4.90)

with the mechanical stressT, the mechanical strain S, the electric flux densityD, and
the electric field intensityE. The tensors

[

cE
]

,[e], and
[

εS
]

contain the elastic stiffness
constants for constant electric field intensity, the piezoelectric stress constants and
the electric permittivities for constant mechanical strain, respectively. In the next
step, we insert this material law into Navier’s equation (see (2.42, p. 18))

	0ü − BtT = fV (4.91)

as well as into the Law of Gauss (see (2.9, p. 10))

∇ · D = qe . (4.92)

Here, u, 	0, fV, and qe stand for the mechanical displacement, the material density,
the volume force, and the volume charge density, respectively. Since piezoelectric
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Fig. 4.16 Plate-shaped
piezoelectric material
covered with infinitely thin
electrodes on bottom
area ΓG and top area ΓL

piezoelectric
material; Ω

grounded
electrode; ΓG

loaded electrode; ΓL

ΓS

materials are electrically insulating, they do not contain any free volume charges,
i.e., qe = 0. Under consideration of this fact and by applying the relations

S = Bu and E = −∇Ve , (4.93)

we arrive at coupled partial differential equations for u and the electric potential Ve

	0ü − Bt
([

cE
]Bu +[e]t ∇Ve

) = fV (4.94)

∇ ·([e]Bu −[εS
]∇Ve

) = 0 , (4.95)

which are applicable for FE simulations of piezoelectric materials. The consideration
of distinct boundary conditions for the mechanical field as well as for the electric
field requires the fundamental equations (4.91) and (4.92) in addition.

FE Method for Piezoelectric Coupling

Each PDE in (4.94) and (4.95) contains both aimed quantities, i.e., u and Ve. There-
fore, one has to handle a coupled problem within the FE method for piezoelectricity.
Let us show the basic steps bymeans of a plate-shaped piezoelectricmaterial,which is
shown in Fig. 4.16. The top area (loaded electrode;ΓL) and the bottom area (grounded
electrode; ΓG) of the plate are completely covered with electrodes that are assumed
to be infinitely thin. Due to the electrodes, the electric potential Ve is equal on ΓL

as well as on ΓG, respectively. With a view to simplifying the FE procedure, we set
the boundary conditions for the electric and the mechanical fields to (boundary ∂Ω

of Ω)
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BC Ve = V0 on ΓL × [0, T ]
Ve = 0 on ΓG × [0, T ]
n · D = 0 on ΓS × [0, T ]
u = 0 on ΓG × [0, T ]
[T]t n = 0 on ΓL × [0, T ]
[T]t n = 0 on ΓS × [0, T ]
ΓL ∪ ΓS ∪ ΓG = ∂Ω .

Thus, the electrodes feature prescribed electric potentials, the mechanical dis-
placements at ΓG are fixed, and the piezoelectric material is not mechanically
clamped. Moreover, gravity forces within the body are neglected, i.e., fV = 0. By
applying w(r) (vector quantity) as test function for the displacement u and w(r)
(scalar quantity) for the electric potential Ve, the weak form of (4.94) results in

∫

Ω

	0w · ü dΩ +
∫

Ω

(Bw)t
[

cE
]Bu dΩ +

∫

Ω

(Bw)t[e]t ∇Ve dΩ = 0 (4.96)

∫

Ω

(∇w)t[e]Bu dΩ −
∫

Ω

(∇w)t
[

εS
]∇Ve dΩ = 0 . (4.97)

In the next step, we introduce Lagrange ansatz functions for u, w, Ve, and w (see
Sects. 4.2 and 4.3). Finally, this procedure leads to the algebraic system of equations
in matrix form

[

Mu 0
0 0

][

ü
v̈e

]

+
[

Ku KuVe

Kt
uVe

−KVe

][

u
ve

]

=
[

0
0

]

(4.98)

with the vectors u and ve representing approximated values for u and Ve at the
nodes of the computational domain Ω , respectively. The matrices Mu, Ku and KVe

as well as the right-hand side fVe are assembled according to Sects. 4.2 and 4.3.
The additional matrixKuVe is a consequence of piezoelectric coupling and computes
as (number nelem of elements within Ω)

KuVe =
nelem∧

l=1

Kl ; Kl =
[

kl
i j

]

; kl
i j =

∫

Ω l

Bt
i [e]

t B̃ jdΩ (4.99)

with

B̃ j =
[
∂N j

∂x
,
∂N j

∂y
,
∂N j

∂z

]t

. (4.100)

The FEmethod also enables for piezoelectric coupling different types of analysis, i.e.,
static, transient, harmonic as well as eigenfrequency analysis. For the static analysis,
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derivatives with respect to time are omitted in the algebraic system of equations. In
the same manner as for mechanical and acoustic fields, (4.98) has to be transformed
into the complex frequency domain in case of harmonic and eigenfrequency analysis.
To conduct a transient analysis, one can apply the Newmark scheme (see Sect. 4.1.4).

At this point, it should be mentioned that the coupled algebraic system of equa-
tions in (4.98) does not contain any attenuation. In fact, attenuation occurs in every
real system and, thus, has also to be regarded here. We can easily incorporate atten-
uation in the FE method for piezoelectricity if complex-valued material parameters
are used (see Sect. 4.3.2).

There exist extended versions of the conventional FE method for piezoelectric-
ity since piezoelectric devices demand external electronic components for electrical
excitation or readout. This does not only refer to piezoelectric sensors and actuators
but also to vibration-based energy harvesting devices that exploit piezoelectric mate-
rials. For such energy harvesting devices, we mostly need a special electric matching
network, which converts AC voltage to DC voltage [7, 9]. Due to piezoelectric cou-
pling, the electric matching network has a certain retroactive effect on the harvesting
devices, which changes the output of the entire system. One can realistically analyze
the behavior of the entire system if the mutual coupling between energy harvest-
ing device and electric matching network is considered in the FE method. Possible
work-arounds and solutions for this task can be found in [8, 10, 25].

Example

Various piezoelectric sensors and actuators are based on piezoceramic disks. On
this account, let us study the behavior of such a piezoceramic disk by means of
the FE method. The considered disk (diameter dS = 30mm; thickness tS = 2mm)
is made of the piezoceramic material PZT-5A and polarized in thickness direction.
The decisive material parameters can be found in Table3.5 on p.67. Both the top
and bottom surfaces of the disk are completely covered by infinitely thin electrodes.
Furthermore, we assume free mechanical vibrations, which means that the disk is
not clamped and there do not act external forces.

Due to the symmetry of the disk, it makes sense to restrict the computational
domain Ω to a rotationally symmetric configuration. Figure4.17a shows the 2-D
geometric arrangement of the utilized FEmodel. Along the rotation axis (z-axis), the
mechanical displacements uρ in radial direction have to be zero. At the remaining
boundaries of Ω (i.e., ΓG, ΓS, and ΓL), the normal component of the mechanical
stresses was set to zero because of free mechanical vibrations. Figure4.17b displays
the used structured computational grid, which consists of 480 square elements with
an edge length of 0.25mm.Again, the FE simulationswere performedwith quadratic
Lagrange functions, i.e., h-FEM with pd = 2.

At the beginning, we will take a look at the complex-valued electrical impedance
ZT( f ) of the piezoceramic disk since this frequency-resolved quantity is often essen-
tial for practical applications. In the complex domain, ZT( f ) reads as (frequency f )
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Fig. 4.17 a Rotationally
symmetric configuration of
computational domain Ω for
piezoceramic disk with
diameter dS = 30mm and
thickness tS = 2mm; bottom
electrode ΓG; top electrode
ΓL; b 2-D computational
grid comprising 480 squares
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(b)
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ZT( f ) = uT( f )

iT( f )
= ûT · e j (2π f t+ϕu)

îT · e j (2π f t+ϕi )
= ûT

îT
e j (ϕu−ϕi ) (4.101)

with the complex representations of the electric potential uT between top and bot-
tom electrodes and the electric current iT. The expressions ûT and îT stand for the
amplitudes of both quantities, whereas ϕu and ϕi indicate the phase angles. One way
to calculate ZT( f ) is based on prescribing uT( f ) = V e( f ) at the top electrode ΓL,
while the bottom electrode ΓG is set to ground. In doing so, we require the electric
current iT( f ), which results from the electric charge Q

T
( f ) on ΓL through

iT( f ) = j2π f Q
T
( f ) = j2π f

∫

ΓL

D( f ) · n dΓ

= j2π f
∫

ΓL

{

[e]Bu( f ) −[εS
]∇V e( f )

}

dΓ . (4.102)

Here, the electric flux density D has been replaced by the term in the brackets
of (4.95). u( f ) and V e( f ) denote complex representations of the mechanical dis-
placement u and electric potential Ve, respectively. By evaluating (4.101), we are,
thus, able to compute ZT( f ). For FE simulations, this means that one has to sum
the resulting electric charges along ΓL. It is recommended to perform a harmonic FE
analysis for reasons of efficiency. Alternatively to prescribing the electric potential,
one can prescribe the charge on the top electrode. The electric impedance results
then from determining the electric potential on ΓL.

Figure4.18 depicts the calculated magnitude
∣
∣ZT( f )

∣
∣ of the frequency-resolved

electrical impedance for the considered piezoceramic disk. It can be clearly seen
that the impedance curve contains pronounced local extrema. While local minima
in
∣
∣ZT( f )

∣
∣ indicate resonances of mechanical vibrations, local maxima are related to

antiresonances. The reason that resonances as well as antiresonances of mechanical
vibrations become visible in the impedance curve lies in piezoelectric coupling. The
combination of local minimum and maximum in the frequency range 60–90 kHz
refers to mechanical vibrations in radial direction of the disk. At higher frequencies,
there exist further combinations, which arise due to the overtones of these vibrations.
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Fig. 4.18 Frequency-resolved electrical impedance
∣
∣ZT( f )

∣
∣ (magnitude) of considered piezoce-

ramic disk with diameter dS = 30mm and thickness tS = 2mm; piezoceramic material PZT-5A

However, the pronounced combination in the frequency range 800 kHz–1.3MHz
refers to mechanical vibrations in thickness direction. In Chap.5, we will address
the significance of impedance curves for material characterization.

Now, let us discuss the mechanical displacement u of the piezoceramic disk as
a further simulation result. As a matter of principle, the FE method provides this
quantity in each point of the computational domain. Figure4.19 shows the normal-
ized displacement amplitudes ûρ(ρ, z) and ûz(ρ, z) in radial and thickness direc-
tion, respectively. Thereby, three different excitation frequencies f were selected,
namely 10 kHz, 70 kHz, and 1MHz. The frequency 70 kHz lies in the range of the
vibration resonance in radial direction, whereas 1MHz is close to the vibration
resonance in thickness direction. For low excitation frequencies, the disk seems to
vibrate uniformly in both directions. In contrast, high excitation frequencies cause a
superposition of different vibration modes, which becomes apparent in strong local
variations of ûρ(ρ, z) and ûz(ρ, z).

Figure4.20 depicts ûz(ρ) at the top surface ΓL of the piezoceramic disk for differ-
ent excitation frequencies. The displacement amplitude values were normalized to
the amplitude V̂e of the applied excitation voltage. In accordancewith Fig. 4.19, ûz(ρ)

remains almost constant at low frequencies and varies strongly at high frequencies.
Besides, Fig. 4.20 reveals that electric excitations close to the vibration resonance
in thickness direction generate extremely high values of ûz(ρ). The maximum value
for 1MHz is more than ten times greater than that for 10 kHz. Because large dis-
placements at high frequencies imply high surface velocities, ultrasonic transducers,
which are based on thickness vibrations of piezoceramic disks, should be operated
close to resonance.
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Fig. 4.19 Normalized displacement amplitudes of piezoceramic disk for different excitation fre-
quencies f ; (left) displacement amplitudes ûρ(ρ, z) in radial direction; (right) displacement ampli-
tudes ûz(ρ, z) in thickness direction; bright and dark colors indicate large and small amplitude
values, respectively
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Fig. 4.20 Displacement amplitudes ûz(ρ) at top surface ΓL of piezoceramic disk for different
excitation frequencies; normalization with respect to amplitude V̂e of excitation voltage
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Ωfluid

Ωsolid Γint

n

v∼

vmech

n

v∼

vmech

Fig. 4.21 Interface Γint between solid and fluid; normal components of mechanical velocity vmech
and acoustic particle velocity v∼ coincide at Γint

4.5.2 Mechanical–Acoustic Coupling

The coupling of mechanical and acoustic fields in the FE method is decisive to study
sound radiation of sources and sound reception of receivers, e.g., ultrasonic trans-
ducers. In general, we can distinguish between weak coupling and strong coupling.

• Weak coupling: In this situation, the mechanical field serves as source for the
acoustic field. Thereby, the acoustic field is assumed to have no influence on the
mechanical field. Weak coupling is convenient to calculate the sound radiation
pattern of an ultrasonic transducer in air.

• Strong coupling: The mechanical field couples to the acoustic field and vice versa,
i.e., coupling in both directions. As a result, the acoustic field alters the mechanical
field. Strong coupling has to be considered for ultrasonic transducers operating in
water.

Solid–Fluid Interface

To study mechanical–acoustic coupling, let us take a look at an interface Γint of a
solid (elastic body) and a fluid (nonviscous liquid or gas), which is shown in Fig. 4.21.
At each point of this interface, the normal components of both the mechanical veloc-
ity vmech in the solid and the acoustic particle velocity v∼ in the fluid have to coincide.
With the normal vector n, this continuity relation is given by

condition I: n ·(vmech − v∼) = 0 . (4.103)

Moreover, the fluid causes a certain pressure load on the solid at the interface Γint.
This pressure load fΓ corresponds to the mechanical stress Tn acting perpendicular
to the surface of the solid and, consequently, computes as

condition II: fΓ = Tn = −np∼ . (4.104)

Note that both conditions have to be applied for strong coupling. In contrast, weak
coupling is solely based on condition I.

By using the basic relations for linear continuum mechanics and acoustics
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Table 4.3 Coupling conditions (condition I and II) at the solid–fluid interface Γint for pressure and
potential formulation; fluid density 	0f in the equilibrium state

Pressure formulation Potential formulation

Condition I n · ∂2u
∂t2

= − 1

	0f

∂ p∼
∂n

n · ∂u
∂t

= −∂Ψ

∂n

Condition II Tn = −np∼ Tn = −n	0f
∂Ψ

∂t

vmech = ∂u
∂t

, v∼ = −∇Ψ and p∼ = 	0f
∂Ψ

∂t
, (4.105)

we can derive the two coupling conditions (condition I and II) at the solid–fluid inter-
face for the acoustic pressure p∼ and the acoustic velocity potential Ψ , respectively.
Table4.3 contains the resulting equations for the different formulations.

FE Method for Mechanical–Acoustic Coupling

The numerical simulation of coupled mechanical–acoustic problems demands con-
sideration of the coupling conditions at the interfaceΓint . In doing so, these conditions
are incorporated as appropriate boundary conditions in the PDEs. Without limiting
the generality, let us assume that deformations of the mechanical system are the
only source for the acoustic field and the boundary conditions at the outer bound-
ary of Ωfluid are zero. Then, the weak forms for the mechanical domain Ωsolid and
acoustic domain Ωfluid in potential formulation become (density 	0s of the solid)

∫

Ωsolid

	0sw · ü dΩ +
∫

Ωsolid

(Bw)t[c]Bu dΩ −
∫

Γint

w · Tn dΓ =
∫

Ωsolid

w · fV dΩ (4.106)

∫

Ωfluid

1

c20
w Ψ̈ dΩ +

∫

Ωfluid

∇w · ∇Ψ dΩ +
∫

Γint

w n · ∇Ψ dΓ = 0 (4.107)

with the test functionw(r) (vector quantity) for the mechanical field andw(r) (scalar
quantity) for the acoustic field. While for strong coupling, the interface integrals

∫

Γint

are required for both fields, weak coupling is solely based on the interface integral
in (4.107).

Now, we can insert in (4.106) and (4.107) the coupling conditions from Table4.3,
which yields

∫

Ωsolid

	0sw · ü dΩ +
∫

Ωsolid

(Bw)t[c]Bu dΩ +
∫

Γint

	0fw · n∂Ψ

∂t
dΓ =

∫

Ωsolid

w · fV dΩ (4.108)

∫

Ωfluid

1

c20
w Ψ̈ dΩ +

∫

Ωfluid

∇w · ∇Ψ dΩ −
∫

Γint

w n · ∂u
∂t

dΓ = 0 . (4.109)
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Subsequently to introducing Lagrange ansatz functions for u, w, Ψ , and w (see
Sects. 4.3 and 4.4), we end up with a symmetric algebraic system of equations in
matrix form
[

Mu 0
0 −	0fMΨ

][

ü
Ψ̈

]

+
[

0 CuΨ

Ct
uΨ 0

]

︸ ︷︷ ︸

coupling

[

u̇
Ψ̇

]

+
[

Ku 0
0 −	0fKΨ

][

u
Ψ

]

=
[

fu
0

]

.

(4.110)

The vector u contains approximated values of the mechanical displacement at
the nodes of Ωsolid and Ψ those of the acoustic velocity potential in Ωfluid. The
matrices Mu, MΨ , Ku, KΨ , and the right-hand side fu are assembled as discussed
in Sects. 4.3 and 4.4. By means of the matrix CuΨ , we perform the coupling of the
mechanical and acoustic fields. CuΨ is composed as

CuΨ =
nint∑

l=1

Cl
uΨ ; Cl

uΨ =[cli j
] ; cli j =

∫

Γe

	0f
(

Ni N j
) · n dΓ (4.111)

with the partΓe ofΓint and the number nint of finite elements along the interface. Note
that in case of weak coupling, CuΨ is omitted in the first line of (4.110). Therefore,
the mechanical system can be computed directly without considering the acoustic
field. The calculation of the acoustic field demands mechanical quantities at the
interface Γint of Ωsolid and Ωfluid.

Alternatively to the potential formulation, one is able to investigate mechanical–
acoustic couplingwith thepressure formulation.However, the resulting algebraic sys-
tem of equations inmatrix form is not symmetric anymore, which involves increasing
computational effort.

As for the mechanical and acoustic fields, different types of analysis are possible
here. A static analysis makes no sense because the acoustic field is based on alternat-
ing quantities. For the harmonic and eigenfrequency analysis, we transform (4.110)
into the complex frequency domain. The transient analysis can be carried out again
according to the Newmark scheme (see Sect. 4.1.4).

Although CuΨ refers to the first derivative with respect to time, it should not be
confused with attenuation. In order to take attenuation into account within the cou-
pled mechanical–acoustic system, we can use appropriate complex-valued material
parameters.

The conventional mechanical–acoustic coupling demands computational grids
that coincide at the interface Γint of mechanical domain Ωsolid and acoustic domain
Ωfluid. However, in many practical situations, we want to conduct independent spatial
discretizations in both domains. This is especially important because the mechanical
domain often calls for a finer computational grid (e.g., due to complicated structures)
than the acoustic domain. An approach to get rid of the limitation at Γint is called
nonconforming grids [14]. The idea of this approach lies in appropriately modifying
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the coupling matrixCuΨ in (4.111). Note that similar approaches also exist for other
fields, e.g., electromagnetics.

In many cases, the acoustic domain Ωfluid in mechanical–acoustic coupling is
rather large. Owing to the comparatively low sound velocities of fluids (e.g., air),
the acoustic wavelength takes small values, which implies a fine computational grid.
Even thoughΩfluid is homogeneous, the required computational grid causes an exces-
sive computational effort, especially for transient FE analysis. A potential remedy for
the calculation of the pulse-echo behavior of ultrasonic transducers was suggested
by Lerch et al. [16]. They model the piezoelectric ultrasonic transducer as well as a
thin fluid layer with the FEmethod. The wave propagation inside the remaining fluid
is described by the Helmholtz integral. Close to the transducer, the FE method gets
coupled to the Helmholtz integral. A similar approach was recently presented in [18,
21]. Instead of the Helmholtz integral, the wave propagation in the fluid is described
by the so-called spatial impulse response (SIR; see Sect. 7.1.2) of the ultrasonic trans-
ducer. Since there exist piecewise continuous solutions of the SIR for some shapes
of the active transducer surface (e.g., piston-type transducer), this approach enables
a highly efficient calculation of the sound field in the fluid. The method was suc-
cessfully exploited to determine transient output signals of an acoustic microscope,
which is based on a high-frequency ultrasonic transducer.
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Chapter 5
Characterization of Sensor and Actuator
Materials

The design, comparison, and optimization of piezoelectric sensor as well as actuator
devices demand reliable information (i.e., material data) about the materials that are
used in the devices. For example, such information will be especially important if
we want to predict the behavior of piezoelectric ultrasonic transducers by means
of numerical simulations. Apart from the electrical control elements and read-out
units, one can subdivide the decisive components of piezoelectric sensor and actuator
devices into (i) active and (ii) passive materials:

• Active materials denote piezoelectric materials such as piezoceramics, which pro-
vide a pronounced mutual coupling of mechanical and electrical quantities.

• Passive materials refer to the remaining components of the devices, e.g., matching
layers, damping elements, and housing in case of piezoelectric ultrasonic trans-
ducers.

In this chapter, the focus lies on characterizing the small-signal behavior of both
active and passive materials. We are interested in precise material parameters, which
are required in linearized mathematical relations like the material law for linear
piezoelectricity (see Sect. 3.3) to describe the underlying material behavior. Because
standard approaches for characterizing active and passive materials exhibit several
disadvantages and inherent problems, various alternative characterization approaches
have been suggested in the literature. Here, we will present a simulation-based
approach, which is named inverse method. This approach has been mainly developed
in the framework of the Collaborative Research Center TRR39: Production Tech-
nologies for Light Metal and Fiber-Reinforced Composite-based Components with
Integrated Piezoceramic Sensors and Actuators (PT-PIESA) [10] and the Research
Unit FOR 894: Fundamental Flow Analysis of the Human Voice [49]. Both projects
were supported by the German Research Foundation DFG. The achieved research
results have been recently published in the doctoral theses of Weiß [68] and Ilg [18]
as well as in many further publications, e.g., [52, 56, 57, 69].
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The chapter starts with standard approaches for characterizing active and passive
materials. The fundamentals of the inverse method regarding material characteriza-
tion are detailed in Sect. 5.2. In Sects. 5.3 and 5.4, the inverse method will be used to
identify the complete data set of piezoceramic materials and the dynamic mechanical
behavior of homogenous passive materials such as thermoplastics.

5.1 Standard Approaches for Characterization

In this section, we will discuss standard approaches for characterizing linearized
properties of piezoelectric materials (e.g., piezoceramics) and passive materials like
metals as well as plastics. At first, the IEEE/CENELEC Standard on Piezoelectricity
is outlined which allows determining the entire data set of a piezoceramic material.
Section 5.1.2 deals with standard characterization approaches for passive materials,
e.g., tensile and compression tests.

5.1.1 IEEE/CENELEC Standard on Piezoelectricity

Both the IEEE Standard on Piezoelectricity 176–1987 [21] and the CENELEC
European Standard EN 50324-2 [13] suggest similar approaches for characteriz-
ing piezoelectric properties of ceramic materials and components. Here, we will
address the underlying idea to determine the complete parameter set for describing
the small-signal behavior of piezoceramic materials. This does not only include the
identification procedure but also disadvantages and inherent problems of the standard
approaches.1

Principle

Basically, the IEEE/CENELEC Standard exploits fundamental modes of mechan-
ical vibrations within various test samples. Due to the electromechanical coupling
of piezoelectric materials, the fundamental vibration modes also become visible in
the frequency-resolved electrical impedance ZT( f ) (impedance curve) of the test
samples.2 In order to demonstrate this fact, let us consider a piezoceramic test sam-
ple of cylindrical shape (diameter dS = 6mm; length lS = 30mm) that is polarized
in longitudinal direction and covered with electrodes on top as well as bottom sur-
face. Figure 5.1 depicts results of a FE simulation for both magnitude

∣
∣ZT( f )

∣
∣ and

phase arg
{

ZT(f)
}

of the frequency-resolved impedance between the electrodes. The
impedance curve contains the fundamental vibration mode at ≈40kHz as well as

1The standard approaches for characterizing piezoceramic materials are abbreviated as
IEEE/CENELEC Standard.
2The underscore denotes a complex-valued quantity, which is represented either by real and imag-
inary part or by magnitude and phase (see Chap. 2).
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Fig. 5.1 a Magnitude and b phase of simulated frequency-resolved electrical impedance ZT( f );
test sample of cylindrical shape (dS = 6mm, lS = 30mm; piezoceramicmaterial PIC255); material
parameters from manufacturer (see Table 5.3)

its overtones, e.g., the first one at ≈160kHz. Each vibration mode consists of a
resonance–antiresonance pair, respectively. While resonance features a small value
of

∣
∣ZT( f )

∣
∣, the impedance is comparatively large for antiresonance. These modes

relate to mechanical vibrations in longitudinal direction of the cylindrical test sam-
ple. Besides, we can, however, observe further modes that originate frommechanical
vibrations in radial direction.

The idea of the IEEE/CENELEC Standard lies in separating the fundamental
vibration mode from other vibration modes within the investigated test samples. For
the cylindrical sample, thismeans that its length should bemuch greater than its diam-
eter, i.e., lS � dS. In such a case, we may assume monomodal mechanical vibrations
for the fundamental mode. The dominating mechanical waves inside the sample can
then be approximated by rather simple one-dimensional analytical relations depend-
ing solely on the coordinate in longitudinal direction. On the one hand, the analytical
relations lead to the frequencies for resonance and antiresonance of the fundamental
vibration mode. When these frequencies as well as the sample dimension lS and
material density �0 are known, it will be possible, on the other hand, to determine
several material parameters of the piezoelectric material. For demonstration purpose,
let us vary selected material parameters, namely the elastic compliance constant sE33,
the electric permittivity εT33, the piezoelectric strain constant d33, and the damping
coefficientαd. As can be clearly seen in Fig. 5.2, each of these parameters remarkably
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sE33 εT33 d33 αd

Fig. 5.2 Effect of distinct parameter variations on impedance curve
∣
∣ZT( f )

∣
∣ (magnitude) of fun-

damental vibration mode; test sample of cylindrical shape (dS = 6mm, lS = 30mm; piezoceramic
material PIC255); initial data set (solid black lines) refers to manufacturer’s data (see Table 5.3);
dashed and solid lines in gray relate to negative and positive parameter changes, respectively; arrows
indicate increasing parameter values

alters the frequency-resolved electrical impedance ZT( f ) for the fundamental vibra-
tion mode of the cylindrical sample. However, numerous parameters (e.g., sE11) do
not have a significant impact on the impedance curve. That is why we are not able
to determine the complete parameter set through the fundamental vibration mode
of the cylindrical sample. In other words, additional test samples are required for
identifying further material parameters.

Identification Procedure

In the following, we will detail the application of the IEEE/CENELEC Standard
for characterizing piezoceramic materials of crystal class 6mm. For such materials,
the three material tensors in d-form

[

sE
]

,
[

εT
]

, and [d] consist altogether of ten
independent parameters (see (3.32, p. 52)), i.e.,

• Elastic compliance constants: sE11, s
E
12, s

E
13, s

E
33, s

E
44.• Electric permittivities: εT11, ε

T
33.• Piezoelectric strain constants: d31, d33, d15.

To identify these material parameters by means of standard approaches, one has
to analyze the frequency-resolved electrical impedance of at least four test samples
offering five individual fundamental vibrationmodes. Apart from the (a) longitudinal
lengthmodeof a cylindrical test sample, the fundamental vibrationmodes relate to the
(b) transverse length mode of a bar, the (c) radial as well as (d) thickness extensional
mode of a disk, and the (e) thickness shear mode of a bar (see Fig. 5.3). The four
test samples have to exhibit specific proportions of their geometric dimensions and
distinct directions of electric polarization. The impedance measurements should be
performed at low electrical excitation signals (e.g.,< 1Vpp) without any mechanical
load; i.e., the test samples can vibrate freely.

The parameter identification requires the geometric samples dimensions as well
as material density, but also characteristic frequencies at which resonance and
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Fig. 5.3 Fundamental vibration modes of piezoceramic test samples (i.e., cylinder, bar, and disk)
utilized within IEEE/CENELEC Standard; electrodes with area AS on top and bottom surface of
test samples; P specifies direction of electric polarization; red arrows show dominating vibrations;
aspect ratios (e.g., lS > 2.5dS) on right-hand side indicate recommended requirements for geometric
sample dimensions

antiresonance occur, e.g., fr. The characteristic frequencies correspond to local min-
ima and maxima in the frequency-resolved impedance ZT( f ) and admittance Y T( f )
= 1/ZT( f ), which are given by

ZT( f ) = RT( f ) + jXT( f ) (5.1)

Y T( f ) = GT( f ) + jBT( f ) (5.2)
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with RT, XT, GT, and BT being resistance, reactance, conductance, and susceptance,
respectively. Before the parameter identification procedure is presented, let us define
the relevant frequencies, namely (cf. Fig. 5.4c)

• Antiresonance frequency fa: XT = 0 and Y T is small.
• Parallel resonance frequency fp: maximum of RT.
• Resonance frequency fr: XT = 0 and ZT is small.
• Motional (series) resonance frequency fs: maximum of GT.

In addition to these frequencies, we need the capacity values CT of the test samples
at a frequency of ≈1kHz. When all information is available (i.e., characteristic
frequencies, geometric sample dimensions, CT and �0), the complete parameter set
for a piezoceramic material of crystal class 6mm can be determined through the
following mathematical formulas.

(a) Longitudinal length mode (see Fig. 5.3a)

εT33 = CT lS
AS

(5.3)

sD33 =
[

4 �0 f 2p l2S
]−1

(5.4)

k233 = π

2

fr
fa
cot

(
π

2

fr
fa

)

(5.5)

sE33 = sD33
[

1 − k233
]−1

(5.6)

d33 = k33

√

εT33 s
E
33 (5.7)

resulting parameters: εT33, s
E
33, d33 (s

D
33, k33)

(b) Transverse length mode (see Fig. 5.3b)

εT33 = CT tS
AS

(5.8)

sE11 =[

4 �0 f 2s l2S
]−1

(5.9)

k231 = π

2

fa
fr

[
π

2

fa
fr

− tan

(
π

2

fa
fr

)]−1

(5.10)

d31 = k31

√

εT33 s
E
11 (5.11)

resulting parameters: εT33, s
E
11, d31 (k31)
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(c) Radial mode (see Fig. 5.3c) required quantities: sE11, k31

εT33 = CT tS
AS

(5.12)

kp =
√

Jmod(ζ1) + ν
p
P − 1

Jmod(ζ1) − 2
(5.13)

The expression Jmod(ζ1) = ζ1 J0(ζ1) /J1(ζ1) stands for themodified Bessel func-
tion of first order.3 The so-called planar Poisson’s ratio ν

p
P and the argument ζ1

are given by

ν
p
P = − sE12

sE11
= 1 − 2k231

k2p
and ζ1 = η1

fp
fs

(5.14)

with η1 being the solution to a transcendental equation.
resulting parameters: εT33, s

E
12 (kp)

(d) Thickness extensional mode (Fig. 5.3d) required quantities: sE11, s
E
12, s

E
33

cD33 = 4 �0 f 2p t2S (5.15)

k2t = π

2

fr
fa
cot

(
π

2

fr
fa

)

(5.16)

cE33 = cD33
(

1 − k2t
)

(5.17)

sE13 =
√

1

2

[

sE33
(

sE11 + sE12
) − sE11 + sE12

cE33

]

(5.18)

resulting parameters: sE13 (c
D
33, kt , c

E
33)

(e) Thickness shear mode (see Fig. 5.3e)

εT11 = CT tS
AS

(5.19)

sD55 =
[

4 �0 f 2p t2S
]−1

(5.20)

k215 = π

2

fr
fa
cot

(
π

2

fr
fa

)

(5.21)

sE55 = sD55
[

1 − k215
]−1

(5.22)

d15 = k15

√

εT11 s
E
55 (5.23)

resulting parameters: εT11, s
E
55 = sE44, d15 (s

D
55, k15)

3Bessel function J0(ζ1) of first kind and zero order; Bessel function J1(ζ1) of first kind and first
order.
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From the underlying characterization procedure, one can draw the following conclu-
sions:

• Besides the ten decisive material parameters for crystal class 6mm, the standard
procedure provides other useful quantities such as the electromechanical coupling
factors kpq (e.g., k31), the so-called planar coupling factor kp and thickness coupling
factor kt .

• The material parameter εT33 results from various test samples and, therefore, can
be verified in several ways.

• Parameter computations in case of the fundamental vibration modes (a), (b), and
(e) are carried out separately, while calculations for the (c) radial mode as well as
(d) thickness extensional mode of the disk require parameters from other modes.
It seems only natural that this fact may lead to strong errors in the final material
parameter set if there exist already deviations for the required parameters, e.g., sE11.

Relevant Frequencies of Fundamental Vibration Modes

The characterization according to the IEEE/CENELEC Standard is based on the
knowledge of various frequencies concerning resonance and antiresonance of fun-
damental vibration modes within appropriate test samples. To study the relevant
frequencies in more detail, let us introduce a simple equivalent electrical cir-
cuit (Butterworth–VanDyke equivalent circuit) that consists only of a few lumped ele-
ments, namely the series resonant circuit R1L1C1 and the parallel capacitanceC0 (see
Fig. 5.4a) [66]. Because this can be done for each fundamental vibrationmode aswell
as its overtones, such equivalent electrical circuits are oftentimes used for describing
the electrical behavior of piezoelectric materials. Figure 5.4b shows a characteristic
curve for the frequency-resolved impedance magnitude

∣
∣ZRC( f )

∣
∣ of the electrical

circuit with the minimum impedance value Zm at frequency fm and the maximum
impedance value Zn at fn. In Fig. 5.4c, one can see the corresponding Nyquist plot
with the axes �{ZRC

}

and �{ZRC

}

. Contrary to the curve
∣
∣ZRC( f )

∣
∣, the Nyquist

plot does not only provide information about fm and fn but also includes the relevant
frequencies fa, fp, fr as well as fs that are utilized during parameter identification.

By simply approximating and adjusting the component values (i.e., R1, L1, C1,
and C0) of the equivalent electrical circuit, we can emulate the electrical behavior in
Fig. 5.1 for the fundamental vibration mode of the cylindrical test sample. Figure 5.5
illustrates the resulting frequency-resolved magnitudes of both impedance ZRC( f )
and admittance YRC( f ) as well as their phases. From these curves, one can now
determine the relevant frequencies for resonance and antiresonance, which take the
values

• Resonance: fr = 42.98 kHz, fs = 42.96 kHz, fm = 42.94 kHz.
• Antiresonance: fa = 56.80 kHz, fp = 56.83 kHz, fn = 56.85 kHz.

It is obvious that the different relevant frequencies for resonance and antiresonance
coincide very well, respectively. We may, thus, perform parameter identification
through the IEEE/CENELECStandard by exclusively considering the frequencies fm
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Fig. 5.4 a Simple equivalent electrical circuit to emulate electrical behavior for fundamental
vibration mode of test samples; b impedance curve

∣
∣ZRC( f )

∣
∣ of equivalent circuit with mini-

mum and maximum values at fm and fn, respectively; c Nyquist plot showing real and imaginary
part of ZRC( f ) simultaneously as a function of f ; frequencies fs, fr , fa as well as fp represent
important quantities for parameter identification

and fn, which can be easily figured out from
∣
∣ZRC( f )

∣
∣. Nevertheless, in case of piezo-

ceramic materials with large attenuation, the relevant frequencies differ remarkably
and, consequently, this simplification implies significant deviations in the resulting
material parameters.

Disadvantages and Inherent Problems

The application of the IEEE/CENELEC Standard for characterizing piezoceramic
materials is accompanied by certain disadvantages and inherent problems. There are
two main points that need to be discussed. Firstly, one requires various test samples
of the piezoceramic material differing in geometric shape, i.e., cylinder, bar, and
disk. As already stated, the test samples have to exhibit specific proportions of their
geometric dimensions aswell as distinct directions of electric polarization. Therefore,
the underlying identification procedure goes hand in hand with a time-consuming
and expensive sample preparation.

Secondly, we have to assume monomodal mechanical vibrations within the test
samples for the fundamental modes. This assumption will be, strictly speaking, only
permitted if the test samples possess extreme aspect ratios [7], e.g., a very long cylin-
der with small diameter. Let us explain this inherent problem by means of the thick-
ness extensional mode of a piezoceramic disk (diameter dS, thickness tS = 3mm;
see Fig. 5.3d), which is employed to determine the material parameter sE13. Figure 5.6
displays simulation results for the frequency-resolved electrical impedance

∣
∣ZT( f )

∣
∣

of the disk with respect to the aspect ratio dS/tS by varying dS. To enhance compara-
bility,

∣
∣ZT( f )

∣
∣ was multiplied by the disk area AS = d2

Sπ/4. In case of dS = 5tS, we
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Fig. 5.5 Result of emulating fundamental vibration mode of cylindrical test sample in electri-
cal behavior (see Fig. 5.1) through equivalent electrical circuit (see Fig. 5.4); a and b mag-
nitude and phase of frequency-resolved impedance ZRC( f ); c and d magnitude and phase of
frequency-resolved admittance YRC( f ); component values: R1 = 15.0 k�, L1 = 2.1H, C1 =
6.4 pF, and C0 = 8.6 pF

are not able to figure out the relevant frequencies fr ≈ fm and fa ≈ fn (see (5.16))
since overtones of the radial mode strongly couple to the thickness extensional
mode. Even though the disk’s aspect ratio (e.g., dS = 20tS) complies the require-
ment dS > 10tS of the IEEE/CENELEC Standard, this coupling may still be well
pronounced. Consequently, fm as well as fn get shifted and the resulting material
parameter sE13 will be wrongly calculated. Due to decreasing magnitudes for increas-
ing order of overtones and attenuation within the piezoceramicmaterial, the coupling
effects almost disappear for greater aspect ratios, e.g., dS = 50tS. It is, however,
impossible to fabricate such a disk from the practical point of view.

5.1.2 Characterization Approaches for Passive Materials

As a matter of principle, most approaches for characterizing passive materials (e.g.,
plastics) are based on introducing defined mechanical excitations into a test sam-
ple. The mechanical response of the test sample to these external excitations natu-
rally depends on both the geometric sample dimensions and the decisive mechanical
material properties. In case of well-known sample dimensions, a test sample can be
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Fig. 5.6 Simulated
influence of radial mode of
disk (piezoceramic material
PIC255; thickness
tS = 3mm) on its electrical
behavior

∣
∣ZT( f )

∣
∣ for

thickness extensional mode;
variation of aspect
ratio dS/tS by altering dS;
disk area AS
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Fig. 5.7 Linear system for
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output
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treated as a system with mechanical excitation and response denoting input xin and
output xout, respectively (see Fig. 5.7). When xin as well as xout are sufficiently small,
one will be able to additionally linearize the system by its transfer behavior g(t,p),
which exclusively depends on time t and the material parameters p [48]. Mechanical
stresses T and mechanical strains S represent possible input and output quantities of
the system, i.e.,

Tin(t) , Sin(t)
g(t,p)−→ Tout(t) , Sout(t) . (5.24)

Apart from the time domain, the transfer behavior of the test sample can also be
described in the frequency domain. The corresponding transfer function G( f,p) of
the system depends on frequency f and the material parameters p again. Especially
for harmonic mechanical excitations (i.e., Tin( f )), the frequency domain usually
facilitates analyzing system behavior and, thus, should be preferred over the time
domain.

Here, we will focus exclusively on two fundamental mechanical properties in the
linear case (i.e., small-signal behavior), namely Young’s modulus EM and Poisson’s
ratio νP. Figure 5.8 shows common characterization approaches for passivematerials.
In the following, a brief explanation of these approaches is given.



138 5 Characterization of Sensor and Actuator Materials

xin

xout

xin

xout

xin

xout

xin

xout

xin

xout

xin

xout

(a) tensile/compression (b) bend (c) impulse excitation

(d) time-of-flight (e) torsion (f) indentation hardness

Fig. 5.8 Common characterization approaches for passivematerials [18]; a tensile and compression
test; b bend testing; c impulse excitation; d time-of-flight measurement; e torsion test; f indentation
hardness test

Tensile and Compression Tests

Tensile and compression tests are the most common approaches for characterizing
mechanical properties of materials [11]. The tests can be categorized in approaches
for double-sided clamped test samples such as the classical tensile test and approaches
for one-sided clamped samples that get dynamically excited. For a thin test sam-
ple (e.g., long cylinder) that is double-sided clamped, Hooke’s law (see Sect. 2.2.3)
yields Young’s modulus through EM = Tin/Sout. Thereby, Tin stands for the mechan-
ical stress within the test sample and Sout indicates its resulting deformation due to an
appliedmechanical force in longitudinal direction.However, in case ofmore complex
geometries, such simple mathematical relation may not exist and we need numer-
ical simulations as well as additional measurement variables to figure out relevant
material parameters (e.g., [72]).

Amajor advantageof the tensile and compression test lies in the simple experimen-
tal setup. Furthermore, it is possible to perform dynamic material characterization
up to 1 kHz or even more by means of applying alternating forces.

Bend Testing

Many characterization approaches are based on harmonic or impulse excitations of
a beam-shaped test sample (see ASTM Standard E1876 [1]), which lead to mechan-
ical vibrations of the beam. While harmonic excitations cause enforced vibrations,
impulse excitations yield free vibrations of the test sample. The resulting bending
does not only depend on the geometric sample dimensions but also on the material
parameters. Through a comparison of measured bending resonances4 to analytical

4Bending resonance means that the beam deflection is high at a certain frequency, which represents
the so-called bending resonance frequency.
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relations, it is possible to determine the Young’s modulus of the investigated mate-
rial. Primarily, we can find two theories for deducing appropriate relations: (i) the
Euler–Bernoulli beam theory and (ii) the Timoshenko beam theory [43, 75]. The
Euler–Bernoulli beam theory assumes that there arise exclusively tensile and com-
pressive stresses above and below the neutral axis of the beam. This assumption
is reasonable for thin beams, but in case of thicker beams, the computed bending
will exhibit large deviations from reality. In contrast to the Euler–Bernoulli beam
theory, the Timoshenko beam theory additionally considers shear stresses, which are
especially important for higher vibrations modes of the beam.

In general, bend testing is able to provide frequency-dependent values for Young’s
modulus since one can determine EM for each bending resonance of a beam, i.e.,
also for the overtones. However, due to the required beams of low thickness as well
as low width, the number of suitable sample shapes is very limited.

Impulse Excitation

Besides the previously mentioned determination of Young’s modulus, impulse exci-
tation of a beam is oftentimes utilized to characterize attenuation behavior of a
material, i.e., the damping ratio ξd [76]. This can be done by evaluating the decay
of the time-dependent bending amplitude x̂ for natural mechanical vibrations after
impulse excitation. The damping ratio results from

ξd =
√

D2
d

D2
d + 4π2

with Dd = ln

(
x̂i+1

x̂i

)

. (5.25)

Dd stands for the logarithmic decrement of two timely subsequent amplitudes x̂i
and x̂i+1. Strictly speaking, impulse excitation provides a damping ratio that is only
valid for the first bending resonance of the beam. Therefore, we will have to alter the
geometric sample dimensions if the frequency-dependent behavior of ξd is needed.

Time-of-flight Measurements

Another widely used characterization approach is the so-called time-of-flight mea-
surement (see ASTM Standard E1875 [2]), which exploits the difference in propaga-
tion velocities of longitudinal and transverse waves within solid media. Commonly,
such waves are excited and received by appropriate piezoelectric ultrasonic trans-
ducers (see Chap. 7) that have to be attached to the test sample. If the length of
the propagation path lw as well as the time-of-flight Tw for both wave types are
known, we can easily determine the corresponding wave propagation velocities cl
and ct with c = lw/Tw. Because the wave propagation velocities are also given by
the relations (material density �0; cf. (2.79) and (2.81), p. 25)

cl =
√

EM(1 − νP)

�0(1 − 2νP)(1 + νP)
and ct =

√

EM

2(1 + νP) �0
, (5.26)
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it is possible to determine Young’s modulus EM and Poisson’s ratio νP of the inves-
tigated material.

The coupling of ultrasonic transducers to the test sample is a crucial point for
time-of-flight measurements. Glycerin can be used for transmitting longitudinal
waves between transducer and test sample, while honey is well suited for trans-
mitting transverse waves. However, when a test sample exhibits small dimensions
in wave propagation direction, the thickness of the coupling layers may remarkably
influence the obtained results for EM and νP since these layers are usually not consid-
ered in calculation. Moreover, a strongly attenuating material may damp and distort
incoming waves at the receiving transducer in a manner that evaluation of time-
of-flight gets impossible. Finally, the identified material parameters relate solely to
the frequency f of propagating waves. If one is interested in frequency-dependent
values for EM and νP, f need to be changed which will demand several ultrasonic
transducers.

Torsion and Indentation Hardness Tests

Torsion tests are particularly applied for very soft solids as well as biological tis-
sue. This test can be carried out by a so-called rotational rheometer, which deliv-
ers frequency-dependent material parameters [36]. In order to introduce torsion, the
investigatedmaterial sample is clamped in between two plates that are twisted against
each other. Even though such rheometer can be used over a wide frequency range, it
is oftentimes difficult to ensure perfect adhesion of material sample and plates. As a
result, the obtained material parameters may show rather large deviations.

The indentation hardness test also represents a common approach to identify
material parameters of soft as well as hard solids [11]. Thereby, a tip of defined
shape is indented into the surface of a material sample. The applied tip force and
resulting penetration depth or remaining impression yield characteristic parameters
of the investigated material. However, indentation hardness tests are hardly suitable
for dynamic characterization tasks.

Summing up, it can be stated that the standard approaches for characterizing
linearized properties of piezoceramic materials and passive materials are accom-
panied by significant drawbacks and limitations. On the one hand, the standard
approaches sometimes exploit improper simplifications (e.g., monomodal mechan-
ical vibrations) that may lead to remarkable deviations in the identified data set.
Several standard approaches do not allow determination of the aimed properties like
frequency-dependent mechanical parameters of passive materials, on the other hand.
Moreover, the approaches are in many cases very sophisticated regarding measure-
ment setup and require a considerable amount of test samples. For these reasons,
there exists a great demand for alternative characterization techniques. The inverse
method offers many advantages over standard approaches and, thus, represents such
an alternative characterization technique.
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5.2 Fundamentals of Inverse Method

Before the so-called inverse method is applied for material characterization, let us
discuss fundamentals of this method. Because the inverse method usually implies an
ill-posed inverse problem, we will start with the mathematical definition of inverse
problems as well as ill-posedness. Subsequently, the idea of the inverse method
concerning material characterization is outlined. In Sect. 5.2.3, a special regulariza-
tion approach will be shown that allows stabilization of ill-posed inverse problems.
Finally, we introduce the iteratively regularized Gauss–Newton method, which is
exploited in Sects. 5.3 and 5.4 to figure out a unique solution for the aimed parame-
ter set.

5.2.1 Definition of Inverse Problems

A direct problem means that causes determined effects, whereas an inverse problem
will arise when we have to identify causes from effects. That is the reason why
direct and inverse problems are sometimes referred to as forward and backward
calculations, respectively. From the mathematical point of view, one can formulate
direct and inverse problems according to the following definition [50].

Definition 1 Let us assume a mathematical model A : X → Y , which maps the set
of causes X to the set of effects Y . In case of a direct problem, the effect y ∈ Y is
calculated from the cause, i.e., y = Ax for x ∈ X . In case of an inverse problem,
the cause results from the effect, i.e., for the effect y ∈ Y , one has to determine the
cause x ∈ X that fulfills Ax = y.

Various technical issues in engineering science such as tomographic imaging, system
characterization, and parameter identification imply inverse problems (e.g., [22,
25, 53]). Usually, the resulting inverse problems are ill-posed, which represents the
opposite of well-posed. Hadamard [16] introduced the term well-posed problems in
1923 by means of the definition given below.

Definition 2 Let A : X → Y be amapping between the topological spaces X and Y .
A problem (A, X,Y ) will be called well-posed if three conditions are fulfilled:

(a) For any y ∈ Y , there exists a solution x ∈ X satisfying Ax = y.
(b) The solution x ∈ X is unique.
(c) The inverse mapping A−1 : Y → X is continuous; i.e., small changes in y ∈ Y

result in small changes in x ∈ X .

When at least one of these conditions is violated, the underlying mathematical prob-
lem will be named ill-posed.

Both the existence of a solution (Definition 2a) and its uniqueness (Definition 2b) are
commonly fulfilled for inverse problems in practical situations. However, because
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Fig. 5.9 Main steps and procedure of inverse method for material characterization [51]

inverse problems oftentimes lack stability (Definition 2c) due to certain data errors,
we are faced with ill-posed inverse problems [25, 50]. In case of simulation-based
material characterization, such data errors originate from imperfections in numerical
modeling of the considered physical fields as well as from noisy measurements.
To handle the missing stability, special regularization techniques are applied which
transform the original ill-posed inverse problem into a well-posed problem (see
Sect. 5.2.3).

5.2.2 Inverse Method for Material Characterization

The so-called inverse method for material characterization usually represents an ill-
posed inverse problem. Basically, the idea of the inverse method lies in combining
finite element (FE) simulationswithmeasurements [33, 54, 57]. Figure 5.9 illustrates
the main steps as well as the procedure of the method, which will be explained below.

Since the aim is determining decisive parameters of a material (e.g., piezoceram-
ics), we have to investigate at least one or more test samples that are made of the
investigatedmaterial. In a first step, appropriate FEmodels (i.e., computational grids)
are required enabling precise FE simulations for the test sample(s). The numerical
simulations demand an initial guess p(0) for the desired parameter vector. Besides
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FE simulations, the inverse method calls for measurements of physical quantities
on the test sample(s) like the frequency-resolved electrical impedance. During the
inverse method, deviations between measurements and simulations get iteratively
reduced by adjusting the parameter vector p(i) (iteration index i) on basis of these
deviations. Starting from iteration step i , the adjusted parameter vector p(i+1) is used
to perform improved FE simulations at the subsequent iteration step i + 1, which
are then compared again to measurements. This iterative procedure is repeated until
one of the predefined abort criteria is fulfilled; e.g., the deviation between measure-
ments and simulations falls below a certain limit. As a result of the inversemethod,we
obtain the parameter vector ps containing characteristic quantities of the investigated
material. Note that such quantities can be either explicit values for material proper-
ties or coefficients of mathematical relations, which rate the influence of additional
quantities (e.g., excitation frequency) on material parameters [56, 69].

The choice of both the employed test sample(s) and the considered quantities
for comparing measurements with simulations represents a crucial point for the
inverse method. Actually, special attention should be paid to possible and available
measurement quantities of the test sample(s). For example, if a desired material
parameter does not affect any measured values, we will not be able to identify this
parameter through the inverse method. Moreover, when variations of two material
parameters cause similar or even identical changes in all measurement quantities,
it will be impossible to identify those parameters uniquely. To avoid the mentioned
problems, one should conduct parameter studies for the test sample(s) in advance [19,
52, 56]. Such parameter studies substantially support the design of appropriate test
sample(s) concerning their shape and geometric dimensions. They can also provide
quantitative information about parameter tolerances due to uncertainties of sample
dimensions and geometrical variations of the utilized measuring points [18].

In the following two subsections, we will detail the mathematical background for
iteratively adjusting the parameter vector.

5.2.3 Tikhonov Regularization

Let us assume that the simulated and measured quantities are collected in the vec-
tors qsim(p) and qmeas of dimension NI, respectively. In the course of the inverse
method, it is advisable to minimize the quadratic deviation5 between qsim(p)

and qmeas with respect to the parameter vector p containing Np entries. This so-
called least squares method [26] yields the least squares functional �L(p), which
has to be minimized, i.e.,

min
p

�L(p) = min
p

∥
∥qsim(p) − qmeas

∥
∥
2
2 . (5.27)

5The quadratic deviation corresponds to the squared L2 norm of the deviation.
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However, in case of ill-posed inverse problems, the least squares method will be
accompanied by an unrealistic solution ps because stability is mostly violated dur-
ing minimizing �L(p) due to data errors, e.g., noisy measurements. To get rid of
such problems, one should apply special regularization approaches like Tikhonov
regularization [12, 25, 53]. In doing so, the original ill-posed problem gets replaced
by a neighboring but well-posed regularized problem. The resulting Tikhonov func-
tional �T(p) that need to be minimized reads as

min
p

�T(p) = min
p

{∥
∥qsim(p) − qmeas

∥
∥
2
2 + ζR‖p − p(0)‖22

}

= min
p

{[

qsim(p) − qmeas

]t[qsim(p) − qmeas

]

+ ζR
(

p − p(0)
)t(

p − p(0)
)}

(5.28)

with the so-called regularization parameter ζR being a positive number and the
initial guess p(0) of the aimed parameter vector. The combination of ζR and the
expression ‖p − p(0)‖ leads to a certain penalization of unwanted oscillations in p.
That is the reason why the additional expression in (5.28) is oftentimes referred to as
penalty term. In general, ζR determines the compromise between approximating the
original ill-posed problem and stability of the regularized problem. Small values of ζR
result in good approximations at the cost of decreased stability, while the regularized
problemmay be far away from the original one in case of large ζR-values. Therefore,
the key in regularization is to choose this value appropriately.

The minimum of the Tikhonov functional �T(p) follows from the first-order
derivative of �T(p) with respect to the parameter vector p. At the point ps, the
derivative becomes

∂�T(p)

∂p

∣
∣
∣
∣
p=ps

=
[

∂qsim(p)

∂p

∣
∣
∣
∣
p=ps

]t
[

qsim(ps) − qmeas

]

(5.29)

+[

qsim(ps) − qmeas

]t

[

∂qsim(p)

∂p

∣
∣
∣
∣
p=ps

]

+ 2ζR
([p]s − p(0)

)

.

If ps corresponds to the aimed solution and, thus, to the minimum of �T(p), this
derivative will be zero, i.e.,

[

∂qsim(p)

∂p

∣
∣
∣
∣
p=ps

]t
[

qsim(ps) − qmeas

] + ζR
(

ps − p(0)
) = 0 (5.30)

has to be fulfilled. To checkwhetherps relates to a localminimumor a localmaximum
also satisfying (5.30), evaluation of the second-order derivative would be required
in addition. Since we will apply an iteratively regularized Gauss–Newton method,
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whichminimizes�T(p) in each iteration step, it is, however, impossible that ps leads
to a local maximum of �T(p).

5.2.4 Iteratively Regularized Gauss–Newton Method

With a view to explaining the iteratively regularized Gauss–Newton method, let us
consider a mathematical function �(p) depending on the parameter vector p. For
this function, we seek the solution ps that fulfills the equation

�(ps) ≡ 0 , (5.31)

which can be interpreted as an optimization problem. If �(p) denotes a nonlinear
function, Newton’s method [8] will represent a common approach to solve (5.31).
Thereby, the nonlinear function gets iteratively approximated through a series of
linear functions. In the following, the starting point of Newton’s method shall be the
parameter vectorp(i) for the i th iteration step. To compute the parameter vectorp(i+1)

for the subsequent iteration step, one has to perform aTaylor series expansion of�(p)

at the point p(i), which takes the form

�(p(i)) + ∂�(p)

∂p

∣
∣
∣
∣
p=p(i)

·(p(i+1) − p(i)
) = 0 . (5.32)

Rearranging (5.32) yields then the updated solution

p(i+1) = p(i) −
[

∂�(p)

∂p

∣
∣
∣
∣
p=p(i)

]−1

�(p(i)) (5.33)

to the nonlinear problem. Newton’s method provides approximations that converge
quadratically (i.e., quite fast) to the aimed solution ps. Because this method exhibits,
however, only local convergence, the initial guess p(0) of the parameter vector needs
to be sufficiently close to ps. Otherwise, Newton’s method will end up at a local
minimum, which might be far away from the global minimum, i.e., from ps.

As mentioned in the previous subsection, the aimed solution has to satisfy (5.30).
We are, thus, able to interpret this equation as a nonlinear function�(p(i)) for iteration
index i , i.e.,

�(p(i)) =
[

∂qsim(p)

∂p

∣
∣
∣
∣
p=p(i)

]t
[

qsim(p(i)) − qmeas

] + ζR
(

p(i) − p(0)
)

. (5.34)

According to (5.33), Newton’s method demands the first-order derivative ∂�(p)/∂p
at p(i), which becomes
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∂�(p)

∂p

∣
∣
∣
∣
p=p(i)

=
[

∂2qsim(p)

∂p2

∣
∣
∣
∣
p=p(i)

]t

︸ ︷︷ ︸

Hessian matrix

[

qsim(p(i)) − qmeas

]

(5.35)

+
[

∂qsim(p)

∂p

∣
∣
∣
∣
p=p(i)

]t[

∂qsim(p)

∂p

∣
∣
∣
∣
p=p(i)

]

+ ζRI

with the identity matrix I of dimension NI × NI. In contrast to Newton’s method, the
second-order derivative of qsim(p) with respect to p (Hessian matrix) is neglected
within the framework of the so-called Gauss–Newton method. In doing so, (5.35)
reads as

∂�(p)

∂p

∣
∣
∣
∣
p=p(i)

≈
[

∂qsim(p)

∂p

∣
∣
∣
∣
p=p(i)

]t[

∂qsim(p)

∂p

∣
∣
∣
∣
p=p(i)

]

+ ζRI . (5.36)

This simplification is permitted since the deviationqsim(p(i)) − qmeas getsminimized
during iterative parameter identification, whereby the influence of the Hessianmatrix
also decreases. When (5.34) and (5.36) are inserted in (5.33), we can calculate the
corrected parameter vector p(i+1).

Up to now, the question concerning the optimal choice of the regularization param-
eter ζR still remains open. Without knowledge of the solution ps, it is hardly possible
to explicitly determine ζR in advance. Therefore, ζR should be adjusted iteratively dur-
ing parameter identification. The iteratively regularized Gauss–Newton method [3,
6] pursued exactly that strategy by sequentially reducing ζR from one iteration step
to the next, i.e., ζR tends to zero. Strong reductions of ζR accelerate the identification
procedure but may cause instabilities in the obtained parameter vectors. As stabil-
ity constitutes the prime objective of the identification procedure, slight reductions
of ζR (e.g., ζR(i+1) = 0.8ζR(i)) should, thus, be favored against strong ones.

To achieve a compact form of the iteratively regularized Gauss–Newton method,
let us introduce abbreviations for the deviation of simulations and measurements

dI(p
(i)) = qsim(p(i)) − qmeas (5.37)

as well as for the first-order derivative ∂qsim(p)/∂p

J(p(i)) = ∂qsim(p)

∂p

∣
∣
∣
∣
p=p(i)

= ∂dI(p)

∂p

∣
∣
∣
∣
p=p(i)

(5.38)

that is usually named Jacobian matrix (dimension NI × NI). The correction vec-
tor c(i) (dimension Np) to update the parameter vector by means of

p(i+1) = p(i) + c(i) (5.39)
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results then in

c(i) = −[

J(p(i))t J(p(i)) + ζR
(i)I

]−1

·[J(p(i))t · dI(p
(i)) + ζR

(i)
(

p(i) − p(0)
)]

. (5.40)

Finally, we have to answer the question when the iteration procedure should be
terminated, i.e., at which iteration index i . For this task, Morozov [39] suggested the
so-called discrepancy principle, which states that one should continue iteration until
the L2 norm of dI(p

(i)) is greater than the data errors due to modeling imperfections
as well as noisy measurements. Both error sources are, however, extremely difficult
to be quantified in practical situations. On account of this fact, it is recommended to
apply an empirical abort criterion instead. In case of the presented characterization
of piezoceramic materials (see Sect. 5.3) and passive materials (see Sect. 5.4), a
converging parameter vector p turned out to be such a criterion (e.g., [52, 56]).

There exist various other approaches, which allow solving nonlinear and ill-posed
inverse problems. For example, the nonlinear Landweber iteration, the Levenberg–
Marquardtmethod aswell as the steepest descent andminimal errormethod represent
such approaches [25, 32]. Generally speaking, the approaches mainly differ in the
applied regularization and the resulting convergence rates. We exclusively exploit
the iteratively regularized Gauss–Newton method for material characterizations pre-
sented hereinafter. Nevertheless, the other approaches can be used in a similarmanner
for this task.

5.3 Inverse Method for Piezoceramic Materials

Thematerial parameters of piezoceramicmaterials are commonly identifiedbymeans
of the IEEE/CENELEC Standard (see Sect. 5.1.1). Thereby, the frequency-resolved
electrical impedances of various test samples (e.g., disk and bar) need to be acquired.
Practical test samples commonly do not, however, meet the requirements of the
IEEE/CENELEC Standard resulting in a certain coupling of different mechanical
vibrationmodes.Consequently, the assumption ofmonomodalmechanical vibrations
does not hold anymore and the identified material parameters are not appropriate
for precise numerical simulations. That was the reason why several research groups
have developed alternative approaches concerning characterization of piezoceramics,
e.g., [24, 31, 33, 42]. Let us discuss some of the alternative approaches in more
detail.

Sherrit et al. [61] presented in 2011 an experimental procedure that provides the
complete data set including damping factors. In a first step, they evaluate the elec-
trical impedance for radial and thickness extensional mode of a single piezoceramic
disk. Subsequently, a piezoceramic bar is cut from the disk and analyzed accord-
ing to the IEEE/CENELEC Standard. Pérez et al. [44] and in similar form Jonsson
et al. [23] suggested identification approaches allowing precise FE simulations of
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piezoceramic disks. Their approaches are based on adjustments of FE simulations to
measured impedance curves for the investigated disk. The complete set of material
parameters including attenuation is determined by considering significant vibration
modes (i.e., radial, edge, and thickness extension) as well as overtones. For valida-
tion purpose, the wave propagation velocity of longitudinal waves is measured and
compared with analytical results. In [35], impedance measurements and acquired
propagation velocities of longitudinal as well as shear waves are combined with
FE simulations to completely characterize piezoceramics. Cappon and Keesman [9]
described in 2012 a procedure that is also based on comparisons of FE simulations
and measurements for the electrical impedance. They analyze a piezoceramic plate
and restrict characterization to those parameters, which are not provided by the man-
ufacturer. Recently, Kulshreshtha et al. [30] published a simulation-based procedure
exploiting ring-shaped electrodes on a piezoceramic disk. The special electrode struc-
tures increase sensitivity of several material parameters on the frequency-resolved
electrical impedance, and therefore, facilitate parameter identification.

It can be concluded that there exist various approaches addressing parameter
identification for piezoceramic materials. Several characterization techniques aim at
highly precise simulations for a particular sample shape and, thus, do not consider the
applicability of the identified data set for different shapes. In contrast, various other
approaches enable the complete characterization of piezoceramics by conducting
extensive measurements and/or sample preparations. But only to some extent, these
approaches are feasible to determine temperature-dependent material parameters,
which might be especially important concerning piezoceramics in sensor and actua-
tor devices. Because of the just mentioned reasons, there is a need for a characteriza-
tion procedure that mainly copes with three aspects [52]: (i) Only a few test samples
and measurements are required, (ii) the entire data set of the piezoceramic material
is provided with respect to temperature, and (iii) the identified data set is applica-
ble for sufficiently precise FE simulations of various sample shapes and configu-
rations.

Here, let us exploit the inverse method to identify the complete parameter set of
piezoceramic materials. In particular, the identification will be applied to charac-
terize two ferroelectrically soft materials of crystal class 6mm, namely PIC255 and
PIC155 from the company PI Ceramic GmbH [45]. Without limiting the generality,
the inverse method is carried out for the e-form. In Sect. 5.3.1, we will introduce a
simple phenomenological approach to account for attenuation within piezoceramic
materials. Section 5.3.2 deals with measurable quantities (e.g., electrical impedance)
that can serve as input for the inverse method. Afterward, an explanation of the two
different block-shaped test samples including their numerical modeling is given.
Moreover, we will justify the necessity of both test samples for parameter identifi-
cation. Section 5.3.4 briefly addresses the underlying mathematical procedure and
contains various approaches to figure out a proper initial guess for parameter iden-
tification of piezoceramics. Before temperature-dependent material parameters and
coupling factors for PIC255 and PIC155 are presented in Sect. 5.3.6, a strategy to
efficiently conduct the inverse method will be shown.



5.3 Inverse Method for Piezoceramic Materials 149

5.3.1 Material Parameters and Modeling of Attenuation

Basically, onemay conduct the inversemethod for characterizing piezoceramicmate-
rials in each form of the material law for linear piezoelectricity, e.g., d-form. Since
the e-form can be, however, directly implemented in FE simulations of piezoceramic
materials (see Sect. 4.5.1), let us utilize this form in the framework of the inverse
method. For the crystal class 6mm, the tensors of elastic stiffness constants

[

cE
]

, of
electric permittivities

[

εS
]

, and of piezoelectric stress constants[e] become (cf. (3.32,
p. 52))
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[

εS
] =

⎡

⎣

εS11 0 0
0 εS11 0
0 0 εS33

⎤

⎦ , [e] =
⎡

⎣

0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤

⎦ . (5.42)

The three tensors contain altogether ten independent entries, namely

• cE11, c
E
12, c

E
13, c

E
33, c

E
44• εS11, ε

S
33• e31, e33, e15.

Just as for the IEEE/CENELEC Standard, the material parameters are supposed to
exhibit a negligible dependence on frequency for typical operating frequencies f of
piezoceramic sensors and actuators, i.e., f < 10MHz.

To account for attenuation within piezoceramic materials in case of harmonic
excitation, it is common to introduce appropriate damping coefficients resulting in
imaginary parts of the material tensors. The damping coefficients might show a
complicated frequency dependence, but for phenomenological modeling of attenua-
tion, they are usually assumed to be constant (e.g., [17, 60]). Strictly speaking, each
material parameter has its individual damping coefficient due to different physical
mechanisms. As a consequence, one has to characterize 10 parameters in addition,
which leads to 20 sought-after quantities. It seems only natural that the identification
of such an amount of parameters may cause certain problems; e.g., the resulting data
set is not unique anymore. This can be mainly ascribed to the small impact of several
parameters on the measured quantity. To get rid of such problems, let us apply a
highly simplified phenomenological damping model instead [52, 55]. We consider
attenuation within piezoceramics by a single damping coefficient αd, which relates
the imaginary values (index �) to the real parts (index �) of the tensors (cf. (4.67,
p. 105))
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[

cE
] =[

cE
]

� + j
[

cE
]

� =[

cE
]

�
[

1 + jαd
]

(5.43)
[

εS
] =[

εS
]

� + j
[

εS
]

� =[

εS
]

�
[

1 + jαd
]

(5.44)
[

e
] = [e]� + j[e]� = [e]�

[

1 + jαd
]

. (5.45)

Therewith, attenuation is assumed to be equal for the tensors, and, moreover, does
not depend on excitation frequency. Although a rather simple damping model is
applied, the experimental results in Sect. 5.3.6 clearly point out that a single damping
coefficient yields precise FE simulations for various piezoceramic sample shapes.

5.3.2 Feasible Input Quantities

To identify the material parameters of piezoceramic materials, one has to compare
simulated quantities with measured quantities. Both the electrical impedance and
the surface normal velocity of the piezoceramic test samples are feasible quanti-
ties for this comparison (see Fig. 5.10). While velocities provide spatially as well
as frequency-resolved information, impedance curves6 capture only the frequency-
resolved global behavior of the samples [54, 57]. Hence, velocities contain more
information, which can be especially useful for parameter identification purpose.
The acquisition of the spatially resolved surface normal velocity requires, how-
ever, an expensive measurement setup (e.g., laser scanning vibrometer Polytec PSV-
300 [46]) that is rarely available in production facilities of piezoceramics. Moreover,
the acquisition is an error-prone procedure as mainly small velocities arise outside
the resonance frequency of the piezoceramic sample. With a view to achieving mea-
surable velocity magnitudes, the electrical excitation voltage has to be remarkably
increased. In doing so, the piezoceramic material may be heated up, which alters its
behavior and, consequently, the material parameters [52]. Comparisons of simula-
tions and measurements in the course of parameter identification should, therefore,
be conducted exclusively with the frequency-resolved impedance that can be easily
measured by an impedance analyzer, e.g., Keysight 4194A [27].

5.3.3 Test Samples

For completely characterizing piezoceramic materials through the inverse method, it
is recommended to employ twodifferent block-shaped test samples (T1 andT2) of the
material [52, 55, 58]. In the following, the main specifications of these test samples
are mentioned. The top and bottom area of the samples should be covered with thin-
film electrodes, e.g., CuNi alloy of 1µm thickness. Both test samples should exhibit
identical geometric dimensions lS × wS × tS but different directions of electric

6An impedance curve corresponds to the frequency-resolved electrical impedance.
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(a) electrical impedance (b) surface normal velocity
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Fig. 5.10 a Measurement of frequency-resolved electrical impedance
∣
∣ZT( f )

∣
∣ of test samples

with impedance analyzer; bmeasurement of spatially as well as frequency-resolved surface normal
velocity v̂n(x, f ) of electrically excited test samples with laser scanning vibrometer; piezoceramic
test samples can vibrate freely in both measurements;

∣
∣ZT( f )

∣
∣ and v̂n(x, f ) indicate magnitudes

polarization P. While test sample T1 is polarized in tS-direction, the electric polar-
ization of T2 points in wS-direction. Thus, T1 is prevalently efficient for mechanical
vibrations in thickness direction, and T2 mainly vibrates in thickness shear mode.
Figure 5.11 schematically depicts the four significant vibration modes (T1-L, T1-
W, T1-T, and T2) of the block-shaped test samples. Depending on the geometric
dimensions, there always occur certain superpositions of different vibration modes
within the test samples that can be observed in the impedance curve (see, e.g., T1-W;
Fig. 5.12a). Such superpositions are considered in the framework of FE simulations
for the test samples. Below, we will discuss an approach toward efficient FE simu-
lations and present results of a parameter study for the utilized test samples.

Numerical Simulation

The presented characterization of piezoceramic materials is based on an iterative
matching of numerical simulations to measurements. It is obvious that the accu-
racy of FE simulations always greatly depends on the spatial discretization of the
computational domain. Consequently, the precision of the identified material param-
eters also depends on the spatial discretization of the FE model for the test sam-
ples T1 and T2. However, the finer the spatial discretization, the longer numerical
simulations will take. Because the inverse method is an iterative approach requiring
a considerable amount of simulation steps, the time consumption of a single step
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T1-L T1-W T1-T T2

PPP
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Fig. 5.11 Block-shaped test samples T1 and T2 (geometric dimensions lS × wS × tS) for charac-
terizing piezoceramic materials [51, 52]; T1 polarized in tS-direction; T2 polarized inwS-direction;
T1-L, T1-W, T1-T as well as T2 refer to significant vibration modes; top and bottom area (lS × wS)
completely covered with thin-film electrodes

actually determines applicability of the identification procedure. On account of this
fact, time-efficient numerical simulations for both test samples are indispensable [52].

If the condition lS � wS � tS for the geometric dimension of the utilized test
samples is fulfilled, FE simulations can be remarkably accelerated in case of crystal
class 6mm. Instead of solving a 3-D problem for the whole investigated frequency
range, we are able to divide the FE simulations of the test samples into a 3-D and
a 2-D part (see Fig. 5.12). This can be done as there occur clear separations of cer-
tain resonance–antiresonance pairs in the frequency-resolved impedance resulting
from mechanical vibrations in different directions. To compute impedance curves
for mechanical vibrations in x- and y-direction of T1 (i.e., T1-L and T1-W), we have
to perform 3-D simulations, which, however, require only a rough spatial discretiza-
tion of the sample thickness. Model reduction is achieved by considering solely a
quarter of the block-shaped samples. The simulation model of T1 features, thus,
the dimensions lS/2 × wS/2 × tS. For the vibration modes in z-direction (i.e., T1-
T, and T2), a 2-D model with the dimensions wS × tS is sufficient to calculate the
impedance curves. Nevertheless, in general, one should conduct comparative cal-
culations of original 3-D problem and reduced 2-D problem to verify whether the
model reduction is reasonable or not.

Compared with the geometric dimensions of typical test samples, the thickness
of the thin-film electrodes is negligible. Therefore, the electrodes simply determine
boundary conditions but do not contribute to the computational grid in the FEmodel.
Table 5.1 contains appropriate spatial discretizations for quadratic Lagrange ansatz
functions (polynomial degree pd = 2; see Table 4.1) and the sample dimension lS ×
wS × tS = 30mm × 10mm × 2mm.

Parameter Study

To answer the question why two block-shaped test samples should be utilized for
characterization purpose, let us now take a closer look at the electrical behavior
of those samples. Figure 5.13 depicts simulation results of the frequency-resolved
impedance for distinct parameter variations in the range ±10% for cExy and ±50%
for εSxx as well as exy . The panels refer to dominating vibration modes (i.e., T1-L,
T1-W, T1-T and T2) of the test samples, respectively. Note that each horizontal line
represents the impedance curve for a defined parameter configuration. While one
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Fig. 5.12 FEsimulations (3-Dand2-D) for frequency-resolvedelectrical impedance
∣
∣ZT( f )
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∣ (mag-

nitude) of a test sample T1 and b test sample T2 (lS = 30mm, wS = 10mm, tS = 2mm; PIC255);
material parameters from manufacturer (see Table 5.3); spatial discretization with quadratic ansatz
functions (see Table 5.1); black parts of impedance curves represent frequency bands of dominating
vibration modes considered within identification procedure

Table 5.1 Frequency bands and spatial discretizations (quadratic ansatz functions) used within
inverse method for vibration modes of T1 and T2

Vibration mode fstart in kHz fstop in kHz Dimension Spatial
discretization

T1-L 30 70 3-D (quarter) 15 × 5 × 1

T1-W 100 300 3-D (quarter) 15 × 5 × 1

T1-T 800 1500 2-D 50 × 10

T2 200 1000 2-D 60 × 20

parameter was modified, the others remain constant. The most important findings of
the parameter study are listed below [52].

• cE11, c
E
12, ε

S
33, e31 as well as e33 considerably alter the impedance curves for T1 but

hardly influence the electrical behavior of T2.
• cE13 and cE33 cause significant variations of the impedance curves for both test
samples.

• Compared with T1, the impedance curve of T2 strongly depends on cE44, ε
S
11, and

e15.
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Owing to these findings, it seems only natural that the reliable determination of
the complete parameter set demands the consideration of both block-shaped test
samples within the inverse method. In case of a piezoelectric material of another
crystal class, the tensors

[

cE
]

,
[

εS
]

, and [e] as well as the amount of independent
material parameters may differ. For instance, crystal class 4mm requires the elas-
tic stiffness constant cE66 in addition. Through various parameter studies and further
investigations (e.g., robustness analysis) for the most relevant crystal classes show-
ing piezoelectric coupling, the general applicability of the inverse method could be
proven if we utilized both block-shaped test samples.

5.3.4 Mathematical Procedure

Overall, 11 parameters have to be identified for piezoceramic materials of crystal
class 6mm. These parameters are collected in the parameter vector p, which is for
the e-form given by

p =[

cE11, c
E
12, c

E
13, c

E
33, c

E
44, ε

S
11, ε

S
33, e31, e33, e15,αd

]t
. (5.46)

During the identification approach, p is updated iteratively. The update is based
on the comparison of numerical simulations with measurements for the frequency-
resolved electrical impedance, in particular its magnitude

∣
∣ZT( f )

∣
∣. Let us assume

that
∣
∣ZT( f )

∣
∣ for each vibration mode of a piezoceramic specimen is logarithmically

sampled at NI discrete frequencies ( f1, f2, . . . , fNI ) in case of measurements and
simulations, respectively. Therewith, the vector ZT of sampled impedance values
becomes

ZT =[∣
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∣
∣ ,
∣
∣ZT( f2)

∣
∣ , . . . ,

∣
∣ZT

(

fNI

)∣
∣
]t

. (5.47)

Combining the impedance vectors for the significant vibrations mode (i.e., T1-L,
T1-W, T1-T, and T2) of both block-shaped test samples leads to

qmeas =[

Zt
T1−L,Z

t
T1−W,Zt

T1−W,Zt
T2

]t
, (5.48)

which includes all relevantmeasured quantities and, thus, features the dimension 4NI.
The vector qsim(p) containing the simulated impedance values for the parameter
vector p is composed in the same way. So, the deviation dI(p) of simulations from
measurements to be minimized takes the form (cf. (5.37))

dI(p) = qsim(p) − qmeas . (5.49)

Since we have to estimate numerous parameters, the resulting minimization con-
stitutes an ill-posed optimization problem yielding unstable solutions that are not
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unique in addition. The iteratively regularized Gauss–Newton method represents an
outstanding approach to solve such ill-posed problemefficiently. Thus, itmakes sense
to apply exactly this approach for identifying material parameters of piezoceramics.
According to the iteratively regularized Gauss–Newton method, the correction vec-
tor c(i) to update the parameter vector p(i) (i.e., p(i+1) = p(i) + c(i)) for iteration
index i results in (cf. (5.40))

c(i) = −[

J(p(i))t J(p(i)) + ζR
(i)I

]−1

·[J(p(i))t · dI(p
(i)) + ζR

(i)
(

p(i) − p(0)
)]

(5.50)

with the Jacobian matrix J(p(i)) of dimension 4NI × 11, the identity matrix I of
dimension 11 × 11, and the regularization parameter ζR

(i), respectively.
Actually, inverse methods always require an appropriate initial guess p(0) for the

aimed parameters (see Sect. 5.2). Ifp(0) is too far away from the solution, the iteration
procedure may converge to a local minimum, which is accompanied by unrealistic
material parameters. One can distinguish between four approaches to figure out an
appropriate p(0) for characterizing piezoceramic materials [52]:

• The data set (if available) provided from the manufacturer serves as initial guess
for the inverse method.

• Wemay exploit the identified parameters of a known piezoceramic material. Espe-
cially when test samples made of the known and unknown material feature similar
electrical behavior (e.g., resonance frequency for a vibration mode), respectively,
this will be an excellent approach to obtain p(0).

• The desired material parameters represent input quantities of numerical simu-
lations. In case of a completely unknown piezoceramic material, one should try
common parameter values in a first step. These values need to bemanually adjusted
so that simulations roughly coincide with measurements for the test samples. It
is recommended to proceed in the following order: manual adjustment of (i) εSxx ,
(ii) cExy , and (iii) exy . The adjusted parameter set can then serve as initial guess.

• As alternative to the previous approaches, one may apply the IEEE/CENELEC
Standard to identify p(0). However, this approach requires considerable work (see
Sect. 5.1.1) and should, therefore, be avoided.

Another important aspect for characterizing piezoceramic materials through the
inverse method concerns the value range of the desired material parameters since
the individual parameters differ in several orders of magnitude (cf. Table 5.3). While
elastic stiffness constants cExy are in the range 1010 Nm−2, electric permittivities εSxx
exhibit values of ≈10−8 Fm−1. This may cause problems regarding the matrix inver-
sion in (5.50). That is the reason why one should normalize the original parameter
vector p to the initial guess p(0) during identification. Consequently, the inverse
method starts with a modified parameter vector, which exclusively contains entries
of value 1. Besides this normalization, the L2 norm of the deviation dI(p

(i)) should
be normalized to that of the initial guess, i.e., dI(p

(0)).
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Table 5.2 Relative deviations |Δ| (magnitude) in per mil of identified material parameters for
different amounts of frequency points NI, which are used to discretize impedance curves of each
vibration mode; deviations refer to solution for NI = 500 frequency points

cE11 cE12 cE13 cE33 cE44 εS11 εS33 e31 e33 e15 αd

NI = 70 12.1 19.5 13.3 1.6 3.1 9.2 2.7 25.4 0.5 3.8 80.3

NI = 100 0.6 0.6 1.0 0.6 3.2 5.0 1.0 0.3 0.9 2.5 11.3

NI = 200 0.9 1.4 0.9 0.1 0.5 0.3 0.1 1.0 0.2 0.5 0.7

5.3.5 Efficient Implementation

A decisive point toward a competitive identification procedure is the time-efficient
numerical simulation for the test samples [52, 55]. As discussed in Sect. 5.3.3, this
can be arranged by exploiting symmetries within the samples and rough spatial dis-
cretization. Nevertheless, several further points are crucial to obtain reliable material
parameters in an acceptable time. For instance, the inverse method requires the Jaco-
bian matrix J(p(i)) at each iteration step to update the parameter vector p(i). Because
we are commonly not able to calculate J(p(i)) in analytical manner, the matrix
columns have to be computed numerically, e.g., by evaluating forward difference
quotients.

Instead of considering the whole impedance curve of the test samples, it is rea-
sonable to limit the identification procedure to small frequency bands comprising
resonance–antiresonance pairs of the dominating vibration modes, respectively (see
Table 5.1). The amount of frequency points NI that are used to discretize each fre-
quency band has a direct influence on the duration of parameter identification. The
more frequency points, the longer the identification will take. However, if NI is
chosen too small, the determined parameters might exhibit large deviations because
essential properties of the impedance curves are not captured. Table 5.2 contains the
relative deviations Δ of the estimated parameters with respect to NI after MI = 50
iteration steps. The deviations relate to the solution for NI = 500 frequency points.
Such a fine frequency resolution enables the consideration of all relevant details in
the impedance curves. Therefore, one obtains the reference solution of the inverse
method. It can be clearly seen that for NI = 200, the maximum parameter deviations
are much smaller than 1%, which is in any case a sufficient accuracy for material
parameters.

Similar to NI, the amount of iteration steps MI directly affects the computation
time of the identification procedure. Hence, a fast as well as robust convergence of
the aimed parameter vector is desired. This is achieved by a proper choice of the
regularization parameter ζR

(0). In case of normalizing parameter vector p(i) as well
as dI(p

(i)) to the initial guess p(0), ζR(0) = 103 and a decrement of 0.5 (i.e., ζR(i+1) =
0.5ζR(i)) turned out to be a good choice. The inverse method converges after ten
iterations to a solution, as shown in Fig. 5.14. By altering p(0) up to ±15%, it could
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Fig. 5.14 Progress of material parameters during iterative identification (iteration index i) for
PIC255; p(0) refers to manufacturer’s data

also be proven that the implemented identification procedure is robust and does not
converge to a local minimum.

Besides those arrangements, the identification procedure can be accelerated if
one is able to parallelize FE simulations. Especially for the determination of the
Jacobian matrix J(p(i)), the parallelization constitutes a remarkable advantage since
each column can be computed separately. By applying all the considered points, the
identification of the entire parameter set takes less than two hours on the computing
server Fujitsu Celsius R920 Power with 16 cores.

5.3.6 Results for Selected Piezoceramic Materials

Now, the identified material parameters for two ferroelectrically soft materials
(PIC255 and PIC155 from the company PI Ceramic GmbH [45]) of crystal class
6mm are given as well as verified. This also includes temperature dependences of
both the material parameters and the resulting electromechanical coupling factors.

Before we will discuss the obtained results, let us briefly summarize the three
main steps of the inverse method for piezoceramic materials:

• One has to acquire the frequency-resolved electrical impedances of the block-
shaped test samples T1 and T2 for the dominating vibration modes, i.e., T1-L,
T1-W, T1-T, and T2. For the investigated piezoceramic materials and geomet-
ric sample dimensions lS × wS × tS = 30.0mm × 10.0mm × 2.0mm, this was
done in the frequency bands according to Table 5.1. When another piezoceramic
material should be characterized and/or the geometric sample dimensions differ,
these frequency bands might require modifications.

• In addition to the measurements, appropriate FE models of T1 and T2 in the
previously defined frequency bands are necessary. The FE models should enable
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reliable as well as time-efficient numerical simulations of the frequency-resolved
electrical impedances for all dominating vibration modes.

• By means of the iteratively regularized Gauss–Newton method, the parameter
vector p (see (5.46)) is iteratively corrected so that simulations of the frequency-
resolved electrical impedances match measurements as well as possible.

Material Parameters at Room Temperature

Table 5.3 contains both the data set provided by the manufacturer and the results of
the inverse method at room temperature, i.e., ϑ = 25 ◦C. Note that the manufacturer
exploited the IEEE/CENELEC Standard for determining the material parameters,
which is currently the conventional as well as the only standardized method to com-
pletely characterize piezoceramicmaterials. Thematerial parameters sExy , ε

T
xx , and dxy

in d-form were computed by (cf. (3.33, p. 52))

[

sE
] =[

cE
]−1

(5.51)

[d] = [e]
[

cE
]−1

(5.52)
[

εT
] =[

εS
] +[d][e]t . (5.53)

To some extent, there occur deviations up to more than 25% between the different
data sets for PIC255 and PIC155. On the one hand, this is a consequence of assuming
monomodal mechanical vibrations within the IEEE/CENELEC Standard, which will
be, strictly speaking, only fulfilled if the utilized test samples significantly exceed the
geometric requirements (cf. Fig. 5.6). On the other hand, certain parameters seem to
be easily identifiable by the IEEE/CENELEC Standard, e.g., εT33. However, because
such parameters partly exhibit rather large deviations, there is reason to suspect that
the manufacturer analyzed test samples, which slightly differ from T1 as well as T2
in their polarization state and/or material composition.

Figure 5.15 shows a comparison of measurements and FE simulations for the
frequency-resolved impedance of the test samples that were utilized to characterize
PIC255. As can be clearly noticed, there will be a better match of simulations and
measurements if the identified data set is used instead of material parameters pro-
vided by manufacturer. Especially for the thickness extensional mode T1-T of test
sample T1 (see Fig. 5.15c), the manufacturer’s data leads to remarkable deviations
in the electrical behavior. Such deviations pose a problem in the simulation-assisted
development of ultrasonic transducers, e.g., the precise prediction of generated sound
fields.
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Fig. 5.15 Comparison of measurements and FE simulations for frequency-resolved
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tS = 2.0mm; PIC255); panels show dominating vibration modes of test samples; FE simulations
performed with material parameters from manufacturer (MF) and from inverse method (IM),
respectively

Verification of Identified Parameters

With a view to verifying the results of the inverse method, various experiments
are conceivable, e.g., numerical simulations for different sample geometries. Let
us detail two experimental verifications [52]. First, the frequency-resolved electri-
cal impedance ZT( f ) and spatially resolved surface normal vn(ρ) of a disk sam-
ple (diameter dS = 30.0mm; thickness tS = 3.0mm; PIC255) were analyzed by
measurements as well as FE simulations. The velocity measurements were carried
out with the laser scanning vibrometer Polytec PSV-300, which provides velocity
amplitudes v̂n(ρ)with respect to the radial position ρ on the disk surface. Figure 5.16
depicts measurements as well as simulations in the frequency range of the thickness
extensional mode. As the comparison demonstrates, the manufacturer’s data yields
unrealistic simulation results. This data set is, thus, not applicable to predict the
behavior of sensor as well as actuator devices containing such piezoceramic mate-
rial. In particular, the resonance frequency is shifted down remarkably. Even though
neither the electrical nor mechanical behavior of the disk was considered within the
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ity v̂n(ρ) at f = 660 kHz of a piezoceramic disk (dS = 30.0mm, tS = 3.0mm; PIC255); FE simu-
lations performedwithmaterial parameters frommanufacturer (MF) and from inverse method (IM),
respectively

inverse method, simulations based on the identified data set coincide very well with
measurements.

In a second experiment, the impedance curves of 5 test samples T1 and of 5 test
samples T2 were acquired for PIC255 and for PIC155, respectively. Because the
frequency-resolved electrical impedance of one of each test sample is used for the
identification procedure, 25 different combinations exist. The inverse method was
applied for each combination separately leading to 25 sets of material parameters.
From this data, we are able to calculate mean value and standard deviation for the
11 desired parameters. Apart from the damping coefficient αd, the relative standard
deviation stays for all material parameters below 1.5%. The damping coefficient
exhibits a relative standard deviation of ≈5% for PIC255 and PIC155. According to
the additional verification experiments, it is reasonable to conclude that the inverse
method provides appropriate material parameters and the fabrication process of the
investigated piezoceramic samples is reliable.

Temperature Dependence of Parameters

Regarding practical applications of piezoceramic materials, it is of utmost impor-
tance to know temperature dependences of the material behavior. To obtain such
information, the piezoceramic test samples T1 and T2 were placed in a climatic
chamber. The temperature ϑwithin the climatic chamber was altered stepwise. After
achieving the defined temperature and an additional holding time of 15min, which
ensures uniform temperature of the test samples [20], their frequency-resolved elec-
trical impedances were acquired with the impedance analyzer. This procedure was
repeated for at least five temperature loops in the range −35 ◦C to +145 ◦C for
PIC255 and −35 ◦C to +130 ◦C for PIC155, respectively. Note that the following
results always refer to the last temperature loop.
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As Fig. 5.17 reveals, temperature highly influences the impedance curves of T1
and T2 in case of PIC255, which also holds for PIC155. It therefore stands to rea-
son that the decisive material parameters possess considerable temperature depen-
dences [52, 58]. To quantify these dependences, let us apply the inverse method
for the investigated piezoceramic materials. Figure 5.18 depicts selected material
parameters of PIC255 and PIC155 versus temperature, respectively. For better com-
parison, the parameters have been normalized to the values at room temperature,
i.e., p(ϑ) /p(25 ◦C). Additionally, Table 5.4 lists the relative deviations of all param-
eters at lowest as well as highest temperature. The elastic stiffness constants cExy are
mostly independent of ϑ, whereas the electric permittivities εSxx exhibit a rather large
temperature dependence. This fact has to be considered in the design of appropri-
ate electronics for piezoceramic sensors and actuators. Figure 5.18 and Table 5.4
also demonstrate that PIC155 shows stronger temperature dependence than PIC255,
which coincides with the rough information provided by the manufacturer. Further-
more, a certain hysteresis behavior arises that is particularly pronounced for PIC155.
In other words, there occur great differences of several material parameters (e.g., εS11;
Fig. 5.6b) for increasing and decreasing temperatures. A possible explanation for this
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Fig. 5.18 Selected material parameters p(ϑ) of a PIC255 and b PIC155 versus temperature ϑ;
parameters relate to values at ϑ = 25 ◦C

Table 5.4 Relative variations in % of material parameters for piezoceramic materials PIC255 and
PIC155 at lowest and highest temperature; variations relate to values at ϑ = 25 ◦C

PIC255 PIC155

ϑ = −35 ◦C ϑ = +145 ◦C ϑ = −35 ◦C ϑ = +130 ◦C
ΔcE11 −0.7 3.7 5.0 −0.7

ΔcE12 −0.2 1.6 1.8 0.2

ΔcE13 −0.9 0.4 0.4 −1.7

ΔcE33 −1.1 2.3 0.8 0.0

ΔcE44 −1.0 7.6 3.9 10.2

ΔεS11 −15.3 45.3 −20.0 49.5

ΔεS33 −16.4 35.6 −28.6 79.6

Δe31 −14.1 4.6 −23.4 14.8

Δe33 −9.7 16.2 −15.0 40.0

Δe15 −7.9 19.0 −9.0 18.8

Δαd 12.5 −17.6 30.9 2.8

behavior lies in intrinsic processes taking place within piezoceramic materials. Such
processes may differ considerably for heating and cooling of the material.

By means of the basic relations for piezoelectricity (see Sects. 3.5 and 5.1.1)

k233 = d2
33

sE33ε
T
33

, k231 = d2
31

sE11ε
T
33

, k215 = d2
15

sE44ε
T
11

, (5.54)

one is able to compute the coupling factors kpq between electrical and mechanical
energy within a piezoceramic material of crystal class 6mm. Figure 5.19 displays the
resulting electromechanical coupling factors for PIC255 and PIC155 with respect
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Fig. 5.19 Electromechanical coupling factors k33, k31 as well as k15 of a PIC255 and b PIC155
versus temperature ϑ

to ϑ. Although the material parameters of both materials remarkably depend on
temperature, k33, k31 as well as k15 remain nearly constant. Thus, we can state that
in the considered temperature range, the energy conversion of these piezoceramic
materials is not significantly affected by the ambient temperature.

To summarize, the inverse method for piezoceramic materials provides the com-
plete set of material parameters by analyzing the frequency-resolved electrical
impedance of two block-shaped test samples. One can use the identified data set
to predict both electric and mechanical small-signal behavior of arbitrarily shaped
piezoceramics in a reliable way. Besides classic materials like PIC255, the inverse
method was successfully applied for lead-free piezoceramics [41, 74]. Finally, it
should be emphasized that the presented characterizing approach is not restricted
to piezoelectric materials of crystal class 6mm. Several further numerical investiga-
tions revealed its general applicability for other crystal classes showing piezoelectric
coupling, e.g., crystal class 4mm.

5.4 Inverse Method for Passive Materials

Section 5.1.2 addressed standard approaches for characterizing linearized mechani-
cal properties (e.g., Young’s modulus) of passive materials. As detailed, the standard
approaches are accompanied by significant drawbacks and limitations. Owing to this
fact, various alternative approaches have been developed which allow characteriz-
ing dynamic behavior of passive materials like viscoelastic solids. Several of the
approaches are based on the combination of measurements and numerical simula-
tions, e.g., [5, 28, 37, 38, 62].
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Just as for piezoceramic materials, we will apply the simulation-based inverse
method for identifying characteristic mechanical properties of isotropic as well as
homogeneous passive materials. The focus lies on a simple and reliable method
to deduce functional relations for frequency-dependent material parameters
[56, 69]. Such functional relations are particularly important for precisely simu-
lating the mechanical behavior of viscoelastic solids like plastics. In principle, the
inverse method for passive materials is based on harmonically exciting an appropri-
ate test sample by mechanical vibrations [18, 19, 68]. The resulting response (e.g.,
tip displacement) of the test sample depends on both its geometric dimensions and
mechanical material properties. By adjusting simulated to measured responses, we
are able to determine dynamic material parameters, i.e., Young’s modulus as well as
damping ratio.

The section starts with models for viscoelastic solids and an approach to take into
account attenuation within such materials. This includes common models as well as
a tailored material model. Subsequently, we briefly discuss feasible input quantities
for the inverse method. In Sect. 5.4.3, the choice of test samples will be explained
and justified by means of measurements as well as numerical simulations. Moreover,
a detailed description of the experimental arrangement will be given. Section 5.4.4
shows the main steps toward an efficient implementation of the inverse method for
passive materials. At the end, identified parameters for selected materials are listed
and verified.

5.4.1 Material Model and Modeling of Attenuation

Various solid materials (e.g., plastics) show a pronounced viscoelastic behavior due
to internal losses within the material. Viscoelasticity means that the relation between
mechanical stresses and mechanical strains depends on time t and, consequently, on
frequency f in the frequency domain. We can observe three effects for a viscoelastic
material, namely (i) stress relaxation, (ii) creep, and (iii) hysteresis [4]. While stress
relaxation refers to a decreasing mechanical stress within the material for an applied
constant strain, creep indicates an increasingmechanical strain for an applied constant
stress. In the context of viscoelastic materials, hysteresis occurs in the stress–strain
curve because the material behavior differs for loading and unloading cycles.

Now, let us assume linear viscoelasticity, which is permitted in case of small
input quantities, i.e., small mechanical strains as well as small mechanical stresses.
To consider linear viscoelastic behavior of passive materials in numerical simula-
tions, one can use frequency-dependent values for the decisive material parameters
such as Young’s modulus EM and Poisson’s ratio νP. In complex representation, the
dynamic (i.e., frequency-dependent) Young’s modulus EM(ω) takes the form (angu-
lar frequency ω = 2π f ) [56, 73]

EM(ω) = E�(ω) + jE�(ω) . (5.55)
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The real part E�(ω) measures energy stored and recovered per cycle. Against that,
the imaginary part E�(ω) characterizes energy dissipation within the viscoelastic
material by internal damping. These quantities lead to the so-called loss factor tan δd
and damping ratio ξd(ω), which are defined as

tan δd = 2ξd(ω) = E�(ω)

E�(ω)
. (5.56)

Of course, one can also introduce a dynamic Poisson’s ratio νP(ω) for viscoelastic
solids [48]. In a wide frequency range, Poisson’s ratio mostly exhibits, however, a
much less pronounced frequency dependence than Young’s modulus [18, 67]. That
is why we will concentrate exclusively on the dynamic Young’s modulus EM(ω)

instead of considering both quantities with respect to frequency. To incorporate the
frequency dependence of Young’s modulus within harmonic FE simulations, the
entries of the elastic stiffness tensor[c] (see Sect. 2.2.3) need to be altered.

In the following, let us study commonmaterialmodels (e.g., Kelvin–Voigtmodel),
which are applied for describing viscoelasticity. Themodelswill be examined regard-
ing the significant system property causality. Finally, a tailored frequency-dependent
model is presented that allows reliable emulation of viscoelastic behavior for real
solid materials.

Common Material Models

The linear viscoelastic behavior of solid materials is oftentimes modeled by means
of mechanical analogies. In doing so, one emulates the material behavior as a linear
combination of elastic springs and mechanical dashpots (see Fig. 5.20). Springs with
spring rates (elastic modulus) κS represent the elastic part of the linear viscoelastic
behavior, while the viscous part is described through dashpots with viscosities ηD.
Typically, three models are listed in the literature for viscoelastic materials (e.g., [4,
34]), namely (i) theMaxwellmodel, (ii) theKelvin–Voigtmodel, and (iii) the standard
linear solid (SLS) model. Below, let us discuss the main properties of the basic
models. To facilitate model comparison, the time-dependent step responses for the
inputs mechanical strain S(t) and mechanical stress T (t) are shown in Fig. 5.21,
respectively. In case of a strain input, the step responses can be interpreted as stress
relaxation, whereas the step response to a stress input explains the underlying creep
behavior.

• Maxwell model: A single spring is connected in series with a single dashpot (see
Fig. 5.20a). Because spring and dashpot are subject to the same mechanical
stress T , the model is also known as isostress model. The differential equation
for this configuration becomes

T (t)

ηD
+ 1

κS

dT (t)

dt
= dS(t)

dt
. (5.57)

As Fig. 5.21 depicts, the step response T (t) for a strain input decays exponentially
with time, which coincides with the behavior of many materials, e.g., polymers.
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(a) Maxwell model (b) Kelvin-Voigt model (c) SLS model

spring dashpot

κS ηD

κS

ηD

κS2

ηD κS1

Fig. 5.20 Schematic representation of aMaxwell model, bKelvin–Voigt model, and c SLS model

However, the step response S(t) increases linearly with time without any bound
for a stress input. Such material behavior is, of course, impossible.

• Kelvin–Voigt model: Thismodel is based on a parallel connection of a single spring
and a single dashpot (see Fig. 5.20b). Since both elements are subject to the same
mechanical strain S, the model is also known as isostrain model. The differential
equation for this configuration is given by

T (t) = κSS(t) + ηD
dS(t)

dt
. (5.58)

According to the step response S(t) for a stress input (see Fig. 5.21), the Kelvin–
Voigt model is able to cover creep behavior of viscoelastic materials. The step
response T (t) for a strain input, on the other hand, does not feature the character-
istic stress relaxation of such materials.

• Standard linear solid (SLS) model: The SLS model, which is also called Zener
model, consists of one dashpot and two springs (see Fig. 5.20c). The differential
equation for this configuration takes the form

T (t) + τε
dT (t)

dt
= κS2

[

S(t) + τT
dS(t)

dt

]

(5.59)

with

τε = ηD

κS1
and τT = ηD

κS1 + κS2

κS1κS2
. (5.60)

In contrast to theMaxwell and Kelvin–Voigt model, the SLSmodel offers realistic
step responses for strain and stress inputs. Therefore, it can be stated that thismodel
is accurate for predicting both stress relaxation and creep.

Besides the mentioned basic models, there exist various other models (e.g., the
fractional Zener model [47]) for modeling linear viscoelastic material behavior of
solids. The models differ in complexity and may enable a highly precise imitation
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Fig. 5.21 Step responses of basic material models, i.e., Maxwell, Kelvin–Voigt as well as SLS
model [4]; (left) stress relaxation T (t) for strain input; (right) creep S(t) for stress input

of the real material behavior. This fact implies, however, a considerable amount of
model parameters that need to be identified.

Consideration of Causality

From the system point of view, causality means that current outputs of a system
depend solely on its current and past inputs; i.e., an input at time t affects the system
output at the earliest at time t [48]. In other words, a system cannot look to the future,
which is the case for each system occurring in nature. Let us study the consequence of
this fundamental system property for characterizing dynamic mechanical properties
of passive materials. According to Sect. 5.1.2, we are able to treat a test sample as a
linear system. If the system is excited by a mechanical strain T (t), there will arise a
certain mechanical stress S(t) within the test sample that can be exploited to deter-
mine Young’s modulus EM. In the frequency domain, the underlying mathematical
relation reads as (angular frequency ω)

EM(ω) = T (ω)

S(ω)
(5.61)

with the dynamic Young’s modulus consisting of real part E�(ω) and imaginary
part E�(ω). Due to the fact that a linear system has to fulfill causality, E�(ω)

and E�(ω) interrelate. The connection of both quantities results from the so-called
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Kramers–Kronig relations [29], which represent a special case of the Hilbert trans-
form. For the dynamic Young’s modulus, these relations take the form

E�(ω) = E0 + 2ω2

π
CH

∞∫

0

E�(y)

y
(

ω2 − y2
)dy (5.62)

E�(ω) = −2ω

π
CH

∞∫

0

E�(y)

ω2 − y2
dy . (5.63)

The expression E0 (=̂ EM(ω = 0) = E�(ω = 0)) denotes the static Young’s modu-
lus, and CH stands for the Cauchy principal value7 of the integral. Since there exists
a distinct connection between real part and imaginary part of the dynamic Young’s
modulus, it is obvious that the frequency-dependent damping ratio ξd(ω) cannot take
arbitrary values in case of causal systems (cf. (5.56)). In principle, EM(ω) and ξd(ω)

have to meet four criteria:

1. The damping ratio needs to vanish in the static case, i.e., ξd(ω = 0) = 0. This
implies automatically the conditions E�(ω = 0) = 0 and E�(ω = 0) = E0 �= 0.

2. The static Young’s modulus E0 has to feature a finite value.
3. Because ξd(ω) of a real system is always greater than zero, E�(ω) ≥ 0 has to be

fulfilled. From this fact and (5.62),we can follow immediately that E�(ω) needs to
increase monotonically with rising angular frequency ω, i.e., E�(ω1) < E�(ω2)

for ω1 < ω2.
4. The step response of a real system is always bounded. As a step (Heaviside

step function) contains all frequencies, E�(ω → ∞) = E∞ has to take finite
values. In connection with (5.63), this also implies E�(ω → ∞) = 0 as well
as ξd(ω → ∞) = 0.

At this point, the question arises whether the three basic models for viscoelastic
materials (i.e., Maxwell, Kelvin–Voigt, and SLS model) satisfy those criteria. To
answer the question, let us take a look at E�(ω) and E�(ω) in Table 5.5, which result
from the underlying differential equations [4]. While the Maxwell model violates
criterion 1 because E0 = 0, the Kelvin–Voigt model violates criterion 3 as well as 4
due to the fact that E�(ω) remains constant and E�(ω) increases linearlywithω. Note
that violations of the criteria go hand in hand with the unrealistic step responses in
Fig. 5.21. In contrast to theMaxwell and Kelvin–Voigt model, the SLSmodel fulfills
all criteria and, thus, reflects the causal behavior of a real system.

Tailored Material Model

As discussed above, the SLS model represents the only common model for vis-
coelastic materials that fulfills all criteria concerning causal systems. However, the
less amount of parameters adjustable in this model prevents oftentimes an accurate

7The Cauchy principal value allows solving improper integrals, which would otherwise be unde-
fined [8].
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Table 5.5 Frequency-dependent real part E�(ω) and imaginary part E�(ω) of dynamic Young’s
modulus EM(ω) for typical viscoelastic material models; amount of adjustable model parameters

Model E�(ω) E�(ω) Parameters

Maxwell
κS(ηDω)2

κ2
S +(ηDω)2

κ2
SηDω

κ2
S +(ηDω)2

2 (κS and ηD)

Kelvin–Voigt κS ηDω 2 (κS and ηD)

SLS
κS2

(

1 + τT τεω
2
)

1 +(τεω)2
κS2(τT − τε)ω

1 +(τεω)2
3 (κS2, τT and τε)

emulation of the dynamic material behavior. That is the reason why one requires
alternative models to describe viscoelastic materials. In [19, 56], a special model
for the real part E�( f ) of the dynamic Young’s modulus has been suggested which
consists of a constant part, a linear part, and a logarithmic part. The tailored material
model is motivated by the logarithmically rising E�( f )with increasing frequency f
in case of various isotropic plastics and reads as

E�( f ) = E0

[

1 + α1 · f + α2 · log10
(

f + 1Hz

Hz

)]

. (5.64)

When both α1 and α2 feature positive values, E�( f ) will rise monotonically with f
and, therefore, meets criterion 3 of a causal system. Moreover, (5.64) demands a
static Young’s modulus E0 by which criterion 2 is automatically fulfilled. In order to
determine the frequency-dependent imaginary part E�( f ) of EM( f ) as well as the
damping ratio ξd( f ), let us introduce the approximation [40]

E�(ω) ≈ −π

2
ω
dE�(ω)

dω
, (5.65)

which yields (ω = 2π f )

E�( f ) = π

2
E0

[

α1 · f + α2

ln 10

f

f + 1Hz

]

. (5.66)

Therewith, ξd( f ) results in

ξd( f ) = E�( f )

2E�( f )
= βd

π

(

α1 · f + α2

ln 10

f

f + 1Hz

)

4E0
[

1 + α1 · f + α2 · log10( f + 1Hz)
] (5.67)

where βd denotes an additional scaling factor enabling adjustments of the damping
ratio. This factor may be useful regarding general applications of the material model
for soft and hard solids.
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Aside from criterion 2 and 3, the tailored model also satisfies criterion 1. Owing
to the fact that E�( f ) rises without any bound and E�( f → ∞) �= 0 as well
as ξd( f → ∞) �= 0, themodel does not meet criterion 4 of causal systems. Although
the model contains overall only four parameters (i.e., E0, α1, α2, and βd) and crite-
rion 4 is violated, an appropriate choice of the parameters allows reliable emulations
of the viscoelastic material behavior in a wide frequency range (e.g., [18]). The clear
separation of E�( f ) into constant part, linear part, and logarithmic part facilitates,
furthermore, parameter identification. Because of the just mentioned reasons, this
material model is particularly suited for characterizing dynamic behavior of passive
materials.

5.4.2 Feasible Input Quantities

With a view to identifying characteristic parameters, we need both measurements
and simulations of significant quantities that serve as input for the inverse method.
The focus lies on the dynamic mechanical behavior of passive materials, which
are assumed to feature viscoelastic properties. Therefore, it seems only natural that
frequency-dependent measurements and simulations of mechanical quantities are
required. A proper method to obtain significant as well as measurable quantities
results from mechanically exciting a test sample at the desired frequency, i.e., a
harmonic mechanical excitation. The response of the test sample to this excitation
depends on its geometric dimension but also reflects mechanical material properties
at the excitation frequency.

Now, let us consider a solid disk (cf. Fig. 5.22a) that gets mechanically excited
at its bottom area by a sinusoidal displacement u1(t) in thickness direction. The
harmonic excitation shall be defined as (time t)

u1(t) = �{u1(t)
} = �{û1e j2π f t

} = û1 cos(2π f t) (5.68)

with the displacement amplitude û1 and the excitation frequency f . Under the
assumption of linear material behavior, the top area of the disk oscillates at the
same frequency yielding the sinusoidal displacement u2(t), which becomes

u2(t) = �{u2(t)
} = �{û2e j2π f t− jϕ

} = û2 cos(2π f t − ϕ) . (5.69)

The ratio û2/û1 of the displacement amplitudes and the phase angle ϕ depends on
excitation frequency, disk geometry as well as material properties. From there, it
appears possible to deduce material properties when the ratio û2/û1, the disk geome-
try, and the excitation frequency are known. In the linear case, the ratio can, thus, be
interpreted as characteristic transfer behavior HT( f ) of the considered test sample
for displacement amplitudes. Since both the velocity v(t) and the acceleration a(t)
directly result from the displacement u(t) = û cos(2π f t) through
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v(t) = du(t)

dt
= −

v̂
︷ ︸︸ ︷

2π f û sin(2π f t) (5.70)

a(t) = d2u(t)

dt2
= −(2π f )2 û

︸ ︷︷ ︸

â

cos(2π f t) , (5.71)

HT( f ) will be also equal if those quantities are used, i.e.,

HT( f ) = û2
û1

∣
∣
∣
∣
f

= v̂2

v̂1

∣
∣
∣
∣
f

= â2
â1

∣
∣
∣
∣
f

. (5.72)

In other words, it does not matter which quantities are exploited for determin-
ing HT( f ). This fact can be especially important with regard to available measure-
ment equipment, e.g., optical triangulation position sensor.

5.4.3 Test Samples

According to the above considerations, identification of dynamic material properties
calls for varying frequencies f of the mechanical excitation that is applied to the
test samples. Here, we will answer the question concerning appropriate test samples.
In general, there does not exist a single sample shape, which allows determination
of dynamic mechanical properties for soft and hard materials. By means of various
investigations (e.g., [18, 56, 69]), it has become apparent that cylindrical sample
shapes are feasible for soft materials, while hard materials can be characterized with
the aid of beam-shaped test samples.

Soft materials demand a special sample design, which avoids mechanical defor-
mations due to the net weight of the test sample. A flat cylinder (i.e., disk-shaped)
represents such a sample shape (see Fig. 5.22a). Because mechanical clamping will
cause disturbing sample deformation, it is recommended to glue the test sample
on a stiff carrier plate, which is connected to the source of mechanical vibrations,
e.g., an electrodynamic vibration exciter. In case of hard materials, one may utilize
a long cylindrical rod (see Fig. 5.22b). Owing to the fact that hard materials are
dimensionally stable, the rod can be mechanically clamped nearby its bottom area.
Beam-shaped test samples allow, however, an additional direction of mechanical
loading. This might be particularly important for characterizing dynamic material
properties of passive materials.

Figure 5.23 depicts three different clamps (i.e., clamp C1, C2, and C3), which
have proven to be effective for beam-shaped test samples [18]. Through these clamps,
we can apply three individual directions of mechanical loading and, therefore, all
directions that are possible for linear motion of single-sided clamped beam. Clamp
C1 and C2 enable the generation of bending modes within the beam, whereas a
compression–tension load is applied by means of clamp C3. In case of clamp C1
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(a) flat cylinder (b) cylindrical rod
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Fig. 5.22 a Flat cylinder serving as test sample for soft materials; cylinder is glued on carrier plate;
b mechanically clamped cylindrical rod serving as test sample for hard materials; measurement of
acceleration a1 or velocity v1 and velocity v2 [18]
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Fig. 5.23 Three different clamps for beam-shaped test samples [18]; a clamp C1 for bending; b
clamp C2 for bending; c clamp C3 for compression–tension load; measurement of acceleration a1
or velocity v1 and velocity v2

and C2, the test sample introduces an asymmetric load for the source of mechanical
vibrations. To compensate the asymmetric load, one should add an identical beam
that serves as balance weight.

In the following, we will discuss decisive points regarding the experimental pro-
cedure for parameter identification. This includes the mechanical excitation of the
test samples as well as appropriate measuring equipment, which is required to deter-
mine the characteristic transfer function. Besides,wewill studymodeling approaches
enabling efficient FE simulations for the test samples. Finally, a simulation-based
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parameter study is presented that provides useful information for parameter identi-
fication.

Mechanical Excitation of Test Samples

The identification of dynamic material properties is based on the characteristic trans-
fer function HT( f ) of an appropriate test sample for mechanical vibrations that can
be provided by an electrodynamic vibration exciter or a piezoelectric stack actuator.
Electrodynamic vibration exciters offer large displacements in the low-frequency
region (i.e., f < 100Hz), but they are usually not suitable for operating frequen-
cies f > 10 kHz. In contrast, piezoelectric stack actuators (see Sect. 10.1) allow
much higher operating frequencies. The achieved displacements of such actuators
are, however, comparatively small which may lead to problems concerning deter-
mination of HT( f ). Thus, one has to select the vibration source with respect to the
desired frequency range of the dynamic material properties.

At this point, it should be noted that high excitation frequencies ( f > 10 kHz) are
naturally accompanied by resonance phenomena within the clamping devices. The
consideration of such phenomena during parameter identification actually poses a
challenging task. For that reason, let us concentrate hereafter on determining dynamic
material parameters up to 5 kHz, whereby the electrodynamic vibration exciter TIRA
S 5220-120 [64] serves as source of mechanical vibrations. Nevertheless, by modi-
fying and optimizing the clamping devices, much higher frequencies can be attained
through piezoelectric stack actuators.

Measuring Equipment

In order to determine HT( f ) experimentally, one has to acquire either displace-
ments u, velocities v or accelerations a (see (5.72)) at two different positions along
the test sample, e.g., at the bottom and top area of a disk. Time-dependent accel-
erations a(t) can be easily measured by piezoelectric acceleration sensors (see
Sect. 9.1.4). For example, such sensor is applicable for directlymeasuringmechanical
excitation signals a1(t) at the carrier plate of soft cylindrical samples (see Fig. 5.22)
or at the clamps of beam-shaped test samples (see Fig. 5.23). However, due to its
net weight, an acceleration sensor is not suitable to acquire a2(t) since the transfer
behavior HT( f ) of the test sample will be strongly influenced. That is the reason
why one should prefer a nonreactive measurement principle for this task.

Both optical triangulation position sensors and laser Doppler vibrometers8 allow
nonreactive as well as time-resolved measurements of mechanical movements [15,
65]. Consequently, it is possible to determine displacements, velocities as well as
accelerations in a nonreactive way. Even though optical triangulation position sen-
sors are comparatively inexpensive and can be utilized for static as well as dynamic
measurements, their fixed working distance and limited displacement resolutionmay
constitute a certain disadvantage. In contrast, laser Doppler vibrometers are rather
expensive but provide outstanding displacement and velocity resolutions. Mainly,

8Laser Doppler vibrometers are also known as laser Doppler velocimeters.
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Fig. 5.24 Experimental
setup for mechanical
exciting beam-shaped test
samples on basis of clamp
C2 [18]; velocity v1
measured with out-of-plane
laser Doppler vibrometer;
velocity v2 measured with
in-plane laser Doppler
vibrometer; electrodynamic
vibration exciter serves as
vibration source

vibration
exciter

out-of-plane
vibrometer

in-plane
vibrometer

v1

v2

one distinguishes between out-of-plane and in-plane vibrometer. While an out-of-
plane vibrometer (e.g., Polytec OFV-303 [46]) measures reflector movements along
the emitted laser beam, an in-plane vibrometer (e.g., Polytec LSV-065 [46]) pro-
vides information about reflector movements perpendicular to the sensor head. Both
vibrometer types will, however, work only if the test sample sufficiently reflects the
incoming laser beam at themeasuring points, which can be ensured by special reflect-
ing foils. The presented experimental results for HT( f )were predominantly obtained
by employing such vibrometers for measuring the velocities v1(t) and v2(t). As an
example, Fig. 5.24 displays the experimental setup for a beam-shaped test sample
that gets analyzed with the aid of clamp C2.

Representative Characteristic Transfer Functions

Figure 5.25 shows selected characteristic transfer functions HT( f ), which were
achieved with the mentioned experimental arrangements. Thereby, Fig. 5.25a and b
refer to test samples of cylindrical shape and a beam-shaped test sample, respectively.
The three cylindrical test samples (diameter dS = 50.0mm; height tS = 10.0mm)
were made of a three component addition-cure silicone from the company Smooth-
On, Inc. [63]. The mechanically soft compounds contain a two-part (A+B) Ecoflex
0030 silicon rubber and a single-part silicone thinner (T). With a view to varying
mechanical stiffness of the specimen, different amounts of silicone thinner were
used [19, 56, 70]. A smaller amount of thinner results in an increasing Young’s
modulus EM. Each fabricated test sample consists of one part of both the compo-
nent A and B, while the amount of thinner varies from zero to four parts. After the
cylindrical compound has cured, it was glued on a carrier plate (cf. Fig. 5.22). As
expected, HT( f ) differs remarkably for the three compounds (see Fig. 5.25a); e.g.,
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Fig. 5.25 Measured characteristic transfer functions HT( f ) for different test samples; a cylindrical
test samples of diameter dS = 50.0mm and height tS = 10.0mm differing in amount of silicone
thinner, i.e., 1-1-0 and 1-1-4 mean zero and four parts silicone thinner, respectively; b beam-shaped
PVC test sample (wS × lS × tS = 40.0mm × 150.0mm × 4.0mm) analyzed with clamp C1, C2
as well as C3 (see Fig. 5.23)

there occur considerable shifts of the maxima indicating resonances of mechani-
cal vibration within the cylindrical test samples. For such mechanically very soft
materials, this is an immediate consequence of Young’s modulus, which takes differ-
ent values for the test samples. However, it is impossible to find a constant material
parameter set (i.e., independent of excitation frequency f ) that describes the dynamic
sample behavior in an appropriate way. The identification of frequency-dependent
mechanical properties is, thus, indispensable.

In Fig. 5.25b, one can see the characteristic transfer functions HT( f ) of a beam-
shaped test sample that was investigated by means of the three different clamps
C1, C2, and C3 (cf. Fig. 5.23). The beam was made of polyvinyl chloride (PVC)
and featured the geometric dimensions wS × lS × tS = 40.0mm × 150.0mm ×
4.0mm (cf. Fig. 5.26c). Similar to the cylindrical sample shape, resonances of
mechanical vibrations are clearly visibly in HT( f ) for the three clamps. Although
the same beam was investigated, the vibration resonances arise at completely dif-
ferent frequencies; e.g., the first resonance for clamp C1 and C3 is at fr ≈ 60Hz
and fr ≈ 3.1 kHz, respectively. This fact follows from the type of mechanical exci-
tation, which differs fundamentally for the clamps. In other words, each clamp
excites other modes of mechanical vibrations within the beam. A slightly asym-
metric mechanical behavior of the vibration source may, however, cause unexpected
sample vibrations. For example, HT( f ) for clamp C2 contains an additional peak
at 3.1 kHz that originates from sample vibrations, which should, strictly speaking,
exist only for clamp C3. To avoid misinterpretation and problems during parameter
identification, it is, therefore, recommended to analyze the vibration behavior of the
investigated beam by means of all clamps, i.e., C1, C2 as well as C3.
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Fig. 5.26 Axisymmetric model for FE simulations of a glued cylinder and b clamped cylinder
with diameter dS and height tS; c 3-D model for FE simulations of clamped beam with length lS,
width wS, and height tS; fixed regions indicate Dirichlet boundaries; clamping length kS

Numerical Modeling

Apart frommeasurements, the inverse method for characterizing dynamic properties
of passive materials demands harmonic FE simulations for the test samples. Just
as in case of piezoceramic materials, the simulations should spend as little time
as possible since parameter identification is based on iterative adjustments of FE
simulations tomeasurements. For the characterization of passivematerials, we utilize
either cylindrical or beam-shaped test samples (see Figs. 5.22 and 5.23). Let us
concentrate on efficient modeling approaches for these test samples, whereas the
remaining parts (e.g., glue and clamps) of the experimental setup are not considered
further.

The mechanical behavior of cylindrical test samples can be simulated efficiently
by an axisymmetricmodel and quadratic Lagrange ansatz functions, i.e., h-FEM[56].
With a view to finding a feasible spatial discretization for the investigated cylindrical
test sample, it is recommended to conduct mesh studies. The mechanical excita-
tion v1 at the bottom area �bot of the cylinder represents an inhomogeneous Dirichlet
boundary in z-direction (see Fig. 5.26a and b). Depending on the experimental con-
figuration (i.e., glued or clamped samples), one has to apply additional boundary
conditions in the FE model [19, 70]. For instance, homogeneous Dirichlet bound-
aries prevent mechanical displacements in radial directions for a glued cylinder. To
obtain the characteristic transfer function HT( f ) of the cylindrical test samples, we
finally require a resulting velocity v2 in z-direction. According to the experimental
arrangement, this velocity refers to the center of the top area �top or to a point along
the cylinder shell �shell, which has to be part of the computational grid.

In general, modeling of beam-shaped test samples is more complex than model-
ing of cylinders. Although we can exploit certain symmetries within a beam, reliable
simulations of its mechanical behavior need 3-D models instead of simplified 2-D
models (e.g., Kirchhoff plate) that are restricted to specific geometric ratios as well
as mechanical excitations. However, conventional FE simulations for such a 3-D
model may yield unrealistic results because of locking effects, especially in case of
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very thin beams. A potential remedy to avoid locking is the application of Legendre
ansatz functions, i.e., p-FEM. As mentioned in Sect. 4.1.3, it is possible to vary the
polynomial degrees for p-FEM in the different directions in space. This so-called
anisotropic p-FEM allows a rough computational grid and, therefore, a less amount
of finite elements for a beam-shaped test sample. An essential point toward the time-
efficient application of anisotropic p-FEM is the reasonable choice of both the spatial
discretization for the investigated beam and the polynomial degrees pd in the differ-
ent directions. It is recommended again to conduct mesh studies in advance before
exploiting this special kind of FE simulations for iterative parameter identification.

Figure 5.26c depicts a typical computational grid, which turned out to be
well suited for beams of geometric dimensionswS × lS × tS = 40mm × 150mm ×
2mm. Various numerical studies revealed that one should apply the highest poly-
nomial degree (e.g., pd = 5) in the direction of mechanical excitation [18], i.e.,
in z-direction for clamp C1. In the remaining directions, pd can be reduced signif-
icantly. Similar to cylindrical test samples, the mechanical excitation and sample
clamping are modeled by inhomogeneous and homogeneous Dirichlet boundaries
at the clamping area of the beam, respectively. This area of length kS features a
comparatively fine mesh. In any case, the computational grid should cover the mea-
suring points for the velocities v1 as well as v2 that are used in the experiments to
determine HT( f ).

Parameter Study

Now, let us take a look at simulation-based parameter studies for isotropic passive
materials featuring the employed sample shapes, i.e., cylinders and beams. The focus
lies on changes in the characteristic transfer behavior HT( f ) due to two material
parameters: (i) real part E� of Young’s modulus as well as (ii) Poisson’s ratio νP.
Both parameters are here assumed to be constant with respect to excitation fre-
quency f of the test sample. Since the damping ratio ξd primarily alters the height of
resonance peaks in HT( f ) but hardly affects resonance frequencies, this parameter
is not considered within the parameter studies.

Figure 5.27 displays simulation results of the parameter study for a cylindrical test
sample (diameter dS = 50mm; height tS = 70mm), which was uniformly excited at
its bottom (cf. Fig. 5.22a). Each horizontal line in the graphs refers to the progress
of HT( f ) for a distinct parameter set. While one material parameter (e.g., E� in
Fig. 5.27a) is varied in the range ±20%, the other parameter (e.g., νP) remains
constant. As expected from analytical relations, the parameter study clearly demon-
strates that an increasing E� shifts resonances in HT( f ) to higher values. Such
distinct behavior cannot, however, be observed for variations of νP. Nevertheless,
the significantly different modifications in HT( f ) through E� and νP indicate that
it should be possible to identify these parameters uniquely by means of appropriate
cylindrical test samples.

In case of beam-shaped test samples, E� as well as νP were varied again in the
range ±20%. The considered beam exhibits the geometric dimensions wS × lS ×
tS = 40mm × 150mm × 2mm. Figure 5.28 contains the results of the parameter
studies for the three different clamps C1, C2, and C3, which were available in the
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Fig. 5.27 Influence of distinct variations of a Young’s modulus E� and b Poisson’s ratio νP on
characteristic transfer function HT( f ) of cylindrical test sample (dS = 50mm; tS = 70mm); initial
values: � = 1150 kgm−3, E� = 4MPa, νP = 0.4, and ξd = 0.025; bright and dark colors indicate
large and small values, respectively

experiments (see Fig. 5.23). Obviously, identical relative changes in E� and νP
will cause similar modifications of HT( f ) if the beam is investigated by means of
clamp C1. Against that, such changes alter the resonance frequencies in HT( f ) in
opposite directions for clamp C2 as well as clamp C3. From there, we can conclude
that a single clamp may not be sufficient for reliable identification of both Young’s
modulus and Poisson’s ratio through the inverse method. It is, thus, advisable to
combine the characteristic transfer function HT( f ) of the beam-shaped test sample
for clampC1with one for the other clamps, i.e., HT( f ) for clampC2 or for clampC3.
However, several investigations for real material samples revealed that the exclusive
consideration of clamp C1 oftentimes leads to an accurate parameter set [18, 69].

5.4.4 Efficient Implementation

The tailoredmodel for the dynamicYoung’smodulus E�( f ) and damping ratio ξd( f )
of viscoelastic materials contains four independent parameters, namely E0, α1, α2,
and the additional scaling factor βd (see (5.64) and (5.67)). Including Poisson’s
ratio νP, we will have to identify five parameters when the material density �0 is
known. Consequently, the parameter vector p of the inverse method takes the form

p = [E0,α1,α2, νP,βd]
t . (5.73)

The entries of this vector get identified iteratively by comparing FE simulations and
measurement results for the characteristic transfer function HT( f ) of the utilized
test sample. In accordance with piezoceramic materials, let us suppose that HT( f ) is
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Fig. 5.28 Influence of distinct variations of Young’s modulus E� and Poisson’s ratio νP on charac-
teristic transfer function HT( f ) of beam-shaped test sample (wS × lS × tS = 40mm × 150mm ×
2mm) for clamp C1, C2, and C3; initial values: � = 1270 kgm−3, E� = 10MPa, νP = 0.4, and
ξd = 0.01; bright and dark colors indicate large and small values, respectively

sampled at NI discrete frequencies ( f1, f2, . . . , fNI). The vectors of sampled mea-
surements qmeas and sampled simulations qsim(p) are then given by

qmeas
qsim(p)

}

=[

HT( f1) , HT( f2) , . . . , HT
(

fNI

)]t
. (5.74)

To update the parameter vector p(i) for iteration index i through the iteratively regu-
larized Gauss–Newton method (see Sect. 5.2.4), one needs the correction vector c(i)

that results from the numerically evaluated Jacobian matrix J(p(i)).
As it is always the case for inverse methods, we require an appropriate initial

guess p(0) for the parameter vector. Although the tailored material model offers a
clear separation into constant part, linear part as well as logarithmic part, the deter-
mination of such an initial guess is a challenging task. Hereafter, an implementation
will be presented that is able to cope with this problem and enables, moreover, effi-
cient parameter identification. The underlying approach consists of three steps (see
Fig. 5.29): (i) coarse adjustment through eigenfrequencies, (ii) adjustment for indi-
vidual resonances, and (iii) determination of functional relations [18].

Step 1: Coarse Adjustment through Eigenfrequencies

This step will be especially useful if one does not know anything about the mechan-
ical properties of the investigated material. Briefly, we exploit the fact that Young’s
modulus E� (real part) significantly affects resonances in the dynamic transfer behav-
ior HT( f ) of the considered test samples. Poisson’s ratio νP also causes certain
changes in HT( f ), but during step 1, these changes are not taken into account and νP
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Fig. 5.29 Approach consisting of three steps to efficiently identify parameter vector p (see (5.73))
for tailored material model [18]; step 1: coarse adjustment through eigenfrequencies; step 2: adjust-
ment for individual resonances; step 3: determination of function relations

should be set to a common value, e.g., νP = 0.35. From there, it might be pos-
sible, on the one hand, to estimate E� for each resonance separately by utilizing
simple analytical relations (e.g., according to Euler–Bernoulli beam theory) for the
test samples. Such an estimation approach is, however, only reasonable for specific
test samples as well as mechanical excitations. On the other hand, we can approxi-
mate resonances in HT( f ) and, consequently, E� for each resonance by conducting
an eigenfrequency analysis based on FE simulations (see Sect. 4.3.1). The second
approach is restricted neither to a particular sample shape nor mechanical excitation.
That is why one should choose the eigenfrequency analysis based on FE simulations
to estimate E� for each resonance separately.

Figure 5.30 illustrates the idea of coarse adjusting E� for a single resonance
in HT( f ) through eigenfrequency analysis. We start with a rough estimate Eest,1

of the dynamic Young’s modulus at the selected resonance and perform an eigen-
frequency analysis based on FE simulations for the test sample. As a result, one
obtains the eigenfrequency fest,1. Subsequently, Eest,1 is altered by a distinct portion
to Eest,2, which leads to the corresponding eigenfrequency fest,2 of the test sam-
ple. By comparing both eigenfrequencies (i.e., fest,1 and fest,2) to the measured
resonance frequency fmeas and conducting linear extrapolation, it is possible to
estimate E�( fmeas) for the regarded resonance. Although this procedure requires
solely two FE simulations for each resonance, we end up with a proper initial guess
for the next step.
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Fig. 5.30 Resonance frequencies fest,1 and fest,2 of test sample result from eigenfrequency analysis
for Young’s modulus Eest,1 and Eest,2, respectively; estimate E�( fmeas) at measured resonance
frequency fmeas is obtained from linear extrapolation

Step 2: Adjustment for Individual Resonances

Step 2 is based on the assumption that the relevant material parameters (i.e., E�, νP,
and ξd) stay almost constant in a small frequency range [19]. This also applies to small
frequency bands around the resonances in the characteristic transfer function HT( f )
of the test samples. With a view to identifying constant material parameters in such a
frequency band, we can utilize the iteratively regularizedGauss–Newtonmethod (see
Sect. 5.2.4) for each resonance separately. In case of cylindrical test samples, the
parameter vector for a single resonance becomespr = [E�, νP, ξd]

t. As demonstrated
inFig. 5.28, the real part E� ofYoung’smodulus andPoisson’s ratioνP modify HT( f )
of beam-shaped test samples in a similar manner. Therefore, the parameter vector
for beam-shaped test samples should be limited to pr = [E�, ξd]

t.
Step 1 provides an appropriate initial guess E�(0) for each resonance. Cylindrical

test samples additionally demand an initial guess νP
(0) for Poisson’s ratio, which can

be found in the literature (e.g., [59]) or may be determined by a common tensile test.
Contrary to E�(0) and νP

(0), the initial guess ξd
(0) for the damping ratio is not crucial

because it only scales resonance peaks in HT( f ).
Due to the fact that the material parameters exhibit an enormous value range,

they should be normalized to the initial guess as it was already recommended for
piezoceramic materials. Finally, the questions arise how many frequency points NI

per resonance are required and which bandwidth around a single resonance needs to
be considered within the inverse method. Various studies revealed that the bandwidth
should cover most of the measured resonance peak and NI > 10 has to be fulfilled.

After performing iterative identification, we know estimates for the decisivemate-
rial parameter at the resonances fr in HT( f ) of the utilized test sample. Depending
on the sample shape, this corresponds to a specific parameter combination

cylindrical pr =[

E�,r, νP,r, ξd,r
]t

(5.75)

beam-shaped pr =[

E�,r, ξd,r
]t

(5.76)

for each resonance frequency fr , respectively.
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Step 3: Determination of Functional Relations

The aim of the last step lies in identifying the entire parameter setp (see (5.73)) of the
tailoredmodel that enables describing dynamicmechanical properties of viscoelastic
materials. Instead of considering small frequency bands around the resonances, step 3
relates to the total available characteristic transfer function HT( f ) of the test sample.
To obtain a proper initial guess p(0) for this final identification procedure, one should
exploit the results from step 2. In doing so, the parameter E�,r for each resonance
in HT( f ) serves as supporting point of the underlying material model for E�( f ).
By conducting a least squares fit, it is possible to compute E0

(0), α1
(0), and α2

(0).
Alternatively, the static Young’s modulus E0 can be determined through a tensile test
and, thus, we may exclude E0 from the identification procedure [19, 56]. While for
cylindrical test samples, νP(0) follows from the mean value of νP,r at the considered
resonances, step 1 and step 2 do not provide useful information for νP in case of
beam-shaped test samples. Hence, we have to set νP

(0) to a common value. The
comparison of the supporting points ξd,r with ξd( f ) in (5.67), which results from the
initial parameter set (i.e., E0

(0), α1
(0), and α2

(0)), yields an initial guess βd
(0) for the

additional scaling factor.
It is recommended to normalize the parameter vector p(i) during identification to

its initial guess p(0) (cf. Sect. 5.3.4). This normalization facilitates both convergence
of the identification procedure and choice of a suitable regularization parameter ζR,
which is required for the iteratively regularized Gauss–Newton method. As a matter
of principle, we also have to choose the amount of frequency points NI that are taken
into account for parameter identification. Characteristic transfer functions HT( f )
containing only a few resonance peaks can be treated by a less amount of frequency
points, e.g., NI = 100. In contrast, a broadband transfer function will demand much
more frequency points (e.g., NI > 1000) because each resonance peak in HT( f )
needs to be covered by a sufficient amount of points.

5.4.5 Identified Parameters for Selected Materials

The presented simulation-based identification approach for passive materials is
applicable for various material classes. It can be used to characterize the
frequency-dependent mechanical behavior of both soft materials (e.g., elastomers
and thermoplastics) and hard materials like metals as well as glass [18, 56, 68].
Here, results of selected passive materials will be detailed and verified. This is not
just limited to the dynamic material behavior but also includes temperature depen-
dence of the parameters.

Similar to piezoceramic materials, let us briefly repeat the three main steps of the
inverse method for passive materials in advance:

• One has to acquire the characteristic transfer function HT( f ) for an appropriate test
sample that features several resonances ofmechanical vibrations in the investigated
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Table 5.6 Material density �0 and components of identified parameter vector p for selected mate-
rials; materials sorted by �0; polypropylene PP; poly(methyl methacrylate) PMMA; polyvinyl chlo-
ride PVC; polytetrafluoroethylene PTFE

Material �0
kgm−3

E0
Nm−2

α1
Hz−1

α2 νP βd

PP 912 1.75 · 109 9.10 · 10−6 1.39 · 10−1 0.42 1.43

Silicone 1135 6.41 · 106 6.70 · 10−6 1.16 · 10−1 0.49 1.34

PMMA 1183 3.85 · 109 1.09 · 10−6 7.67 · 10−2 0.41 1.13

PVC 1450 2.96 · 109 8.52 · 10−6 8.64 · 10−2 0.37 0.68

PTFE 2181 1.33 · 109 1.00 · 10−8 4.61 · 10−2 0.47 1.52

Aluminum 2701 6.46 · 1010 8.71 · 10−6 1.31 · 10−5 0.43 0.11

frequency range. Cylinders turned out to be well suited for soft materials (e.g.,
silicone), whereas beam-shaped test samples should be used for hard materials.

• Since the inverse method is an iterative procedure, the FE model of the considered
test sample should enable reliable as well as time-efficient simulations of HT( f ).

• After determining a suitable initial guess p(0) according to Sect. 5.4.4, the iter-
atively regularized Gauss–Newton method leads to the aimed parameter vec-
tor p (see (5.73)). This vector contains components that directly relate to the
decisive material quantities such as the dynamic Young’s modulus.

Material Behavior at Room Temperature

Table 5.6 shows the obtained parameters for several materials, which were analyzed
at room temperature. The table entries are sorted by the material density �0 that
was experimentally determined. As expected, many entries differ remarkably from
each other. For instance, the static Young’s modulus E0 of aluminum exceeds that
of silicone by four orders of magnitude. Besides, the dynamic mechanical behavior
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Fig. 5.31 Resulting real parts E�( f ) of dynamic Young’s modulus with respect to frequency f
for materials listed in Table 5.6; curves normalized to static Young’s modulus E0
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Fig. 5.32 Measured and simulated characteristic transfer functions HT( f ) for beam-shaped test
samples (40.0mm × 150.0mm × 2.0mm) that were excited through clamp C1; a PP beam; b PVC
beam; FE simulations performed with typical frequency-independent material parameters from the
literature and data set identified by inverse method (IM, see Table 5.6), respectively; c resulting real
part E�( f ) of dynamic Young’s modulus; d resulting dynamic damping ratio ξd( f )

of the materials is quite different; e.g., the linear part α1 seems to be dominating for
aluminum, while the logarithmic part α2 primarily determines the behavior of the
other materials. This fact is confirmed in Fig. 5.31, which displays the normalized
real part E�( f ) of Young’s modulus in the frequency range from 0Hz to 4 kHz.
According to the curve progressions, there is also a reason to assume that thematerial
density strongly influences the development of dynamic material behavior.

Figure 5.32a and b depict the characteristic transfer function HT( f ) of beam-
shaped test samples, which were made of PP and PVC, respectively. The beams of
geometric dimensions 40.0mm × 150.0mm × 2.0mm were harmonically excited
through clamp C1. It can be clearly observed that the identified dynamic mate-
rial properties (see Fig. 5.32c and d) yield realistic simulation results. Contrary to
that, constant material parameters (i.e., frequency-independent) from the literature
cause substantial deviations between measurements and FE simulations, especially
at higher frequencies. If frequency-independent parameters are applied for numer-
ical simulations, we will not be able to precisely predict the dynamic behavior of
devices (e.g., sensors and actuators) containing such passive materials.
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Verification

Several experiments were conducted to verify the identified dynamic behavior of
passive materials. For example, the material parameters of silicones have been ver-
ified on basis of sample shapes that were not utilized during characterization [56].
Moreover, the resulting parameters for test samples of different geometric dimen-
sions have been compared [18]. In the following, we will discuss a verification
concerning active as well as passive materials. Figure 5.33 shows the investi-
gated specimen, which consists of both a PMMA or PVC beam acting as pas-
sive material and a piezoceramic block made of PIC255 representing the active
material. The beam of geometric dimensions 40.0mm × 150.0mm × 2.0mm was
clamped at one side along the clamping length kS = 20.0mm. The piezoceramic
block (10.0mm × 30.0mm × 2.0mm) was polarized in thickness direction (see test
sample T1 in Fig. 5.11) and glued onto the beam by means of a conductive adhe-
sive. By applying an electrical excitation between the electrodes of the piezoelectric
material, the block gets deformed and, consequently, a bending moment is intro-
duced into the beam. This bending moment causes deflections of the beam, which
were measured at its free end with a laser Doppler vibrometer.

Figure 5.34a and b illustratemeasurement aswell as simulation results for the aris-
ing tip displacements ûtip( f ) (amplitude) normalized to the applied electric voltage
in case of the PMMA and PVC beam, respectively. Thereby, the FE simulations were
carried out with three different sets of material parameters, namely (i) frequency-
independent data for beam material (PMMA or PVC) and manufacturer data for
PIC255, (ii) frequency-independent data for beam material and identified data set
for PIC255, and (iii) identified dynamic behavior for passive material and identi-
fied data set for PIC255. The identified material parameters p for PMMA, PVC,
and PIC255 at room temperature can be found in Tables 5.6 and 5.3. Not surpris-
ingly, the simulation results for case (i) remarkably deviate from the measured tip
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Fig. 5.34 Measured and simulated tip displacement ûtip( f ) against excitation frequency f of beam
equippedwith piezoceramic block (see Fig. 5.33); a PMMAbeam; bPVCbeam; ûtip( f ) normalized
to applied excitation voltage of piezoceramic block; FE simulationswith typicalmaterial parameters
from the literature and data set identified by inverse method (IM), respectively

displacements. In contrast, simulations will coincide very well with measurements
for both beam materials when the data set of case (iii) is exploited. The remaining
deviations between simulations and measurements stem from irregularities in the
thin adhesive layer (e.g., air pockets) between beam and piezoceramic block, which
can hardly be taken into account within the FE simulation.

Apart from the just mentioned findings, Fig. 5.34a and b reveal that the deviations
between simulation results for case (i) and (ii) are negligible. In other words, the
material parameters of PIC255 apparently do not alter FE simulations of the ana-
lyzed beam-shaped structure. This is a consequence of the strongly differing geo-
metric dimensions andmaterial properties of beam and piezoceramic block. Because
the investigated frequency range contains exclusively resonances of the beam, the
resonances of the piezoceramic block (cf. Fig. 5.12a) do not influence resonances in
the tip displacement of the whole structure, i.e., beam equipped with piezoceramic
block. When the frequency range approaches resonances of the block, the data set
of the piezoceramic material will, however, become increasingly important for the
overall behavior of the beam-shaped structure. Nevertheless, the studied example
reveals again the significance of dynamic material properties for passive materials
in order to obtain reliable simulation results.

Temperature Dependence of Material Behavior

As amatter of course, the dynamicmechanical behavior of passivematerials depends
on temperature ϑ. With a view to quantifying this dependence, the investigated
test samples were placed in a climatic chamber. In Fig. 5.35, one can see the char-
acteristic transfer function HT( f ) of a PP beam (geometric dimensions 40.0mm ×
150.0mm × 2.0mm; clamp C1) for three different temperatures ϑ, namely−60 ◦C,
+20 ◦C, and +100 ◦C. Since HT( f ) greatly changes with ϑ, it seems only natural
that the decisive parameters of a passive material also have to exhibit a certain tem-
perature dependence. Figure 5.36a and b display the identified real part E�( f ) of
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Fig. 5.35 Characteristic
transfer function HT( f ) of
beam for three
temperatures ϑ; PP beam of
geometric dimensions
40.0mm × 150.0mm ×
2.0mm excited through
clamp C1
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Fig. 5.36 Identified real part E�( f ) of dynamic Young’s modulus with respect to temperature ϑ
for a PP and b PMMA

the dynamic Young’s modulus with respect to ϑ for PP and PMMA, respectively.
Not surprisingly, there occurs a remarkable temperature dependence of E�( f ) for
both materials. If piezoelectric sensor and actuator devices are exposed to varying
temperature, reliable numerical simulations for practical applications will demand
the consideration of the temperature-dependent material behavior. This refers to the
piezoelectric as well as passive materials within the device.

Note that there exists a unique connection between frequency dependence and
temperature dependence of the mechanical material behavior, especially for vis-
coelastic materials such as several polymers. The underlying nonlinear mathematical
relation is the so-called Williams–Landel–Ferry equation (WLF equation), which
stands for an empirical formula associated with the time–temperature superposi-
tion [14, 71]. In the framework of the dynamicmechanical thermal analysis (DMTA),
the mechanical material properties of a test sample are characterized in a narrow
frequency band (e.g., 0.3–30Hz) over a large temperature range [72]. The WLF
equation is then exploited to specify the dynamic mechanical properties over a rather
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wide frequency range. As just demonstrated, the combination of simulation-based
inverse method and utilized experimental arrangement enables characterizing pas-
sive materials with respect to both frequency f and temperature ϑ. Therefore, we
can also extend the frequency range for the mechanical material parameters through
theWLF equation. In doing so, the experimental setup concerning geometric sample
dimensions, sample clamping as well as mechanical excitation does not need to be
modified.

In summary, it can be stated that the inverse method yields parameters describing
the linearizedmechanical behavior of passivematerialswith respect to frequency.The
comparison of numerical simulations and measurements is performed on basis of the
transfer function for mechanical vibrations within an appropriate test sample. As the
presented results demonstrate, the characterization approach is applicable for various
homogeneous solids (e.g., PVC) that feature isotropic material behavior. According
to Ilg [18], the approach can be extended for analyzing transversely isotropic passive
materials like fiber-reinforced plastics. For this purpose, one requires, however, at
least two test samples, which differ in the orientation of the plane of symmetry, e.g.,
in the orientation of the fibers.
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Chapter 6
Phenomenological Modeling for
Large-Signal Behavior of Ferroelectric
Materials

As already discussed in Chap. 3, the electromechanical coupling within piezoelectric
materials can be attributed to intrinsic and extrinsic effects. If piezoelectric materials
show extrinsic effects, they will be frequently named ferroelectric materials. While
intrinsic effects determine the small-signal behavior, extrinsic effects dominate the
large-signal behavior of those materials. The small-signal behavior can simply be
described through the material law of linear piezoelectricity (see linearization in
Fig. 6.1 and Sect. 3.3). In contrast, the large-signal behavior of ferroelectric materi-
als calls for special modeling treatments since it originates from altered geometric
alignments of unit cells. Such altered geometric alignments will cause nonlinear as
well as hysteretic material behavior (i.e., hysteresis curves) when sufficiently large
electrical and/or mechanical loads are applied. Note that this fact is of utmost impor-
tance for ferroelectric actuators, which are utilized, e.g., in high-precision positioning
systems (cf. Chap. 10).

Ferroelectric actuators usually operate far below their mechanical resonance fre-
quencies. It will, therefore, be reasonable to assume a uniform mechanical displace-
ment along their surfaces if the bottom and top surface are completely covered with
electrodes (cf Fig. 4.20 on p. 121). Without limiting the generality, we exclusively
consider hereafter electrical and mechanical quantities in the thickness direction (3-
direction) of ferroelectric materials. Due to this fact, components in 1-direction and
2-direction as well as indices for 3-direction of the relevant physical quantities can be
omitted. Figure 6.1 exemplarily depicts symmetrical hysteresis curves of a ferroelec-
tric material for both the electric polarization P(E) and the mechanical strain S(E)

in case of electrical excitation with the electric field intensity E . Mainly, one can
distinguish between three different working areas detailed below.

• Bipolar working area: The ferroelectric material is alternately driven in positive
as well as negative saturation leading to P±

sat for the electric polarization and S±
sat

for the mechanical strain, respectively. The resulting hysteresis curves P(E)
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Fig. 6.1 Symmetrical hysteresis curves of ferroelectric materials for electric polarization P(E) and
mechanical strain S(E) versus applied electric field intensity E in different working areas; electric
polarization P±

sat and mechanical strain S±
sat in positive as well as negative saturation, respectively;

coercive field intensity E±
c ; linearization relates to small-signal behavior of ferroelectric materials

and S(E) (thick lines in Fig. 6.1) are known as major loops. According to its
shape, S(E) is also called butterfly curve.

• Unipolar working area: The ferroelectric material operates with positive or neg-
ative electric field intensities, i.e., E ≥ 0 or E ≤ 0. Hence, the material can be
driven either in positive or negative saturation. Compared to the bipolar working
area, mechanical strains and, consequently, mechanical displacements of a ferro-
electric actuator get reduced remarkably. The resulting hysteresis curves P(E)

and S(E) are referred to as minor loops (thin lines in Fig. 6.1).
• Semi-bipolar working area: In contrast to the unipolar working area, the fer-
roelectric material operates with a larger range of electric field intensities in
the semi-bipolar working area. Thereby, one of the conditions E−

c < E ≤ E+
sat

or E−
sat ≤ E < E+

c (coercive field intensity Ec) has to be fulfilled. As a result,
the achievable mechanical strains increase but stay below values of the bipolar
working area. The hysteresis curves P(E) and S(E) are again referred to as minor
loops.

This chapter primarily deals with Preisach hysteresis modeling, which represents
a phenomenological modeling approach for the large-signal behavior of ferroelectric
materials in the mentioned working areas. Before we study in Sect. 6.3 alternative
phenomenological modeling approaches that also focus on the macroscopic trans-
fer behavior of ferroelectric materials, hysteresis will be mathematically defined.
Moreover, an overview of material models on different length scales (e.g., atomistic
scale) is given in Sect. 6.2. Contrary to phenomenological modeling approaches,
those material models aim at describing the physical behavior of ferroelectric
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materials as accurate as possible. In Sect. 6.4, wewill introduce the classical Preisach
hysteresis operator HP, which comprises weighted elementary switching operators.
Section 6.5 details different weighting procedures for the elementary switching oper-
ators. Because the classical Preisach hysteresis operator is only suitable to a limited
extent for predicting hysteretic behavior of ferroelectric actuators in practical appli-
cations, a so-called generalized Preisach hysteresis model (operator HG) will be
introduced in Sect. 6.6. This extended Preisach hysteresis model enables, e.g., the
consideration of asymmetric behavior in hysteresis curves. After that, a parameter
identification strategy is presented which allows reliable predictions of electrical
and mechanical quantities through Preisach hysteresis modeling. To apply Preisach
hysteresis modeling in practical applications of ferroelectric actuators (e.g., in high-
precision positioning systems), it is of utmost importance to invert the Preisach hys-
teresis operator. Owing to this fact, Sect. 6.8 finally addresses an iterative inversion
procedure, which enables efficient determinations of the aimed electrical excitation
signals in a reasonable time. Throughout thewhole chapter, piezoceramic disksmade
of the ferroelectrically soft materials PIC255 (manufacturer PI Ceramic GmbH [71])
as well as Pz27 and the ferroelectrically hard material Pz26 (manufacturer Meggitt
Sensing Systems [65]) serve as test objects.

6.1 Mathematical Definition of Hysteresis

There exist various meanings and definitions for the term hysteresis in technical
areas (e.g., [61, 64]). However, several similarities can be found in these definitions.
Here, we especially concentrate on a transmission system with one input x(t) and
one output y(t), both depending on time t . When the system exhibits hysteresis1 in
its transmission behavior, three properties will apply to such a system [64, 94]:

1. The output y(t) is clearly defined by the progression of x(t) and the initial state
of the transmission system.

2. We can mathematically link y(t) and x(t) with the aid of nonlinear relations
describing branches in the xy-plane (see, e.g., Fig. 6.7c). A change between
different branches may occur at extrema of the system input x(t).

3. The sequence of extrema in x(t) exclusively determines the progression of the sys-
tem output y(t). In contrast, values in between these extrema as well as the time
response of x(t) do notmodify the current output. For this reason, the transmission
behavior is rate-independent.

Due to the fact that there always occur creep processes in ferroelectric materials, the
third property is, strictly speaking, violated. Nevertheless, the superposition of a rate-
independent hysteresis model with an additional approach (e.g., viscoelastic model)

1Since the system owns one scalar input and one scalar output, the hysteresis is also named scalar
hysteresis.
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can be utilized to consider creeping. Two further properties apply to the large-signal
behavior of ferroelectric materials:

4. The current system output y(t) is only influenced by dominating extrema2 in x(t).
Past extrema of smaller magnitudes than the subsequent ones are deleted in the
system history and, thus, do not alter y(t).

5. Because of this deletion property, all hysteresis branches in the xy-plane are
located within an area, which is given by the last two dominating extrema.

Apart from the listed properties, one can in general distinguish between hysteresis
featuring local memories or nonlocal memories [64].

• Local memories: The upcoming path of y(t) solely depends on the current value
of x(t).

• Nonlocal memories: In addition to the current value of the system input, past
extrema of x(t) affect the upcoming progression of y(t).

Actually, the large-signal behavior of ferroelectric materials also depends on past
extrema. Thus, we have to deal with nonlocal memories.

6.2 Modeling Approaches on Different Length Scales

Aside from the objective, we may classify modeling approaches for ferroelectric
materials according to the considered length scale. Basically, five different length
scales are known: (i) Atomistic, (ii) mesoscopic, (iii) microscopic, (iv) macroscopic,
and (v) multiscale (see Fig. 6.2). In the following, let us briefly discuss selected
modeling approaches for ferroelectric materials on these length scales.

Atomistic Scale

At the level of the atomistic scale, one considers processes taking place in the crystal
lattice of amaterial. Thereby, common calculationmethods (e.g., ab initio and density
functional theory) from solid-state physics are frequently used. The methods yield
quantitative information for lattice spacing, elastic, and stiffness tensors as well as
for the spontaneous polarization within ferroelectric materials [16, 97]. Besides, so-
called core-shell models may be applied to simulate phase transitions and motions
of the domain walls [13, 25, 83]. Such models are based on electrostatic interactions
among elastically supported cores and shells. Further literature concerning modeling
approaches on the atomistic scale can be found in the review articles by Cohen [17]
and Sepliarsky et al. [83]. In general, these modeling approaches provide valuable
insight formaterial development.However, the required computational effort restricts
their application to small volumes and short time intervals.

2A maximum/minimum will be dominant if its value is smaller/larger than the previous maxi-
mum/minimum (see Sect. 6.4).
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material models for
ferroelectric materials

atomistic mesoscopic microscopic macroscopic multiscale

crystal lattice domains grains
piezoceramic

actuator

pn

Fig. 6.2 Classification of material models for ferroelectric materials into different length
scales [101]

Mesoscopic Scale

Modeling on the mesoscopic scale will be conducted if complex domain structures
or lattice defects within ferroelectric materials shall be investigated. Oftentimes, the
underlying modeling approaches are based on the Landau theory, which is under-
stood as an extension of thermodynamic potentials by an order parameter [53].
Through this order parameter, we can explain phase transitions within materials.
Note that such approaches are not only utilized on the mesoscopic scale but also
on the microscopic and macroscopic scale. A well-known approach on the meso-
scopic scale is the phase field model, where the (spontaneous) polarization serves
as order parameter [39, 96]. Another method for ferroelectric materials, the sharp
interface approach [80], is mainly based on two assumptions: (i) Each domain is a
homogeneous region and (ii) material properties may jump across domain interfaces.

Microscopic Scale

The microscopic scale is very similar to the mesoscopic scale. That is why there is
mostly no clear distinction between modeling approaches on these scales (e.g., [39]).
One of the first approaches concerning modeling of ferroelectric materials on the
microscopic scale was published by Hwang et al. [42]. They assume that the grains
within the material are randomly orientated in the initial state. Since each grain
has its own electric polarization, the global polarization state is neutral. By means
of energy-based switching criterion depending on both electrical and mechanical
excitations, the orientation of the grains is modified. Consequently, the global polar-
ization state as well as the geometric dimension of the investigated ferroelectric
material changes. Due to the simplification of equal excitations for every grain, there
is a lack of accuracy. However, this modeling approach served as a basis for several
further developments [39]. Huber et al. [40] suggest an alternative approach that uti-
lizes crystal plasticity theory instead of energy-based switching criterion. Modeling
approaches on the microscopic scale, which additionally consider rate-dependent
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behavior, can be found in [4, 9]. An overview of further computation methods is
given in the review article by Kamlah [50].

Macroscopic Scale

Modeling approaches on the macroscopic scale lead to a significant reduction in
computation time compared to those on the microscopic scale. Several macroscopic
modeling techniques are based on the Landau–Devonshire theory, which is thermo-
dynamicallymotivated and can be used to describe phase transitionswithin ferroelec-
tric materials [21]. The disadvantage of this rate-independent approach lies in the
restriction to monocrystalline materials and one-dimensional behavior. Bassiouny
et al. [8] presented another thermodynamically consistent approach considering fer-
roelectricity as well as ferroelasticity. They divided the electric polarization and
mechanical strain into a reversible and an irreversible part, respectively. Alternative
macroscopic modeling techniques that also exploit separate analysis of reversible
and irreversible parts were developed by Kamlah and colleagues [51, 52]. Their
approaches rely on phenomenological internal variables for electrical and mechan-
ical quantities. Because electromechanical couplings within ferroelectric materials
are considered in both directions, electrical and mechanical excitation can be taken
into account at the same time. Further modeling approaches on themacroscopic scale
are suggested by Landis [57] and Schröder et al. [81].

Multiscale Approaches

Apart from the approaches on the previously mentioned length scales, there exist
various techniques that exploit simultaneous modeling on different scales. These
so-called multiscale approaches aim to transfer effects on low abstraction levels to
higher ones at reasonable computation time, which is usually achieved by homoge-
nization methods within FE simulations. A multiscale approach on the atomistic and
the mesoscopic scale was published by Völker et al. [97]. While they use phase field
models on themesoscopic scale, the density functional theory aswell as the core-shell
model are applied on the atomistic scale. Multiscale approaches combining micro-
scopic and macroscopic scale with the aid of FE simulations can be found in [53, 56,
82, 96]. For instance, Keip [53] presented the FE Square method that is based on a
microscopic representative volume element (abbr. RVE). At each grid point on the
macroscopic scale, he deduces appropriate boundary conditions for the RVE. Aver-
aging methods yield effective material parameters on the microscopic scale that can
then be applied on themacroscopic scale. Contrary tomultiscale approaches based on
FE simulations, Smith et al. [84] developed the homogenized energy model, which
combines mesoscopic and macroscopic scale. Similar to the Landau–Devonshire
theory, they introduce a thermodynamically motivated switching criterion on the
mesoscopic scale. Stochastic homogenization provides low-order macroscopic mod-
els with effective parameters for ferroelectric materials. Ball et al. [7] published an
extension of this approach, which enables additional consideration of mechanical
stresses.
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Overall, the presented approaches on the different length scales aim to model
the behavior of ferroelectric materials (e.g., during poling) as accurate as possi-
ble. The resulting knowledge facilitates the research on and development of those
materials. However, due to the required computational effort, most of the modeling
approaches cannot be used to compensate nonlinearities of ferroelectric actuators
in practical applications, e.g., positioning. Moreover, the simulation of minor loops
poses a problem and the major loops are commonly of angular shape. For all these
reasons, we need alternative modeling approaches that allow a sufficiently precise
prediction of the actuator behavior in a reasonable computation time. The following
section deals with such models for ferroelectric materials.

6.3 Phenomenological Modeling Approaches

In contrast to the approaches in Sect. 6.2, we will discuss here techniques that do not
intend to model the real physical behavior of ferroelectric materials. The focus lies
exclusively on the scalar transfer behavior of the fabricated transducer (e.g., piezo-
ceramic actuator), i.e., input quantity as well as output quantity in predefined spatial
directions. This transfer behavior is simulated through efficient phenomenological
models on the macroscopic scale. Several approaches originate from plasticity the-
ory and the research on ferromagnetic materials. For ferroelectric materials, we can
classify appropriate phenomenological models into five groups [101]: (i) polynomial
description, (ii) rheological models, (iii) Duhem models, (iv) fractional derivatives,
and (v) switching operators. The basic principles of these groups are explained below.

Polynomial Description

There can be found many different approaches to simulate the transfer behavior of
ferroelectric actuators by means of appropriate polynomials. For instance, Chonan
et al. [15] describe branches in hysteresis curves of the mechanical displacement
with separately parameterized polynomials for increasing and decreasing input volt-
age, respectively. In [93], hysteresis loops of ferromagnetic materials are modeled
through piecewise linear approximations. Another technique utilizes ellipses to sim-
ulateminor loops in the transfer behavior of a piezoceramic actuator [33]. Altogether,
it can be stated that polynomial descriptions will yield excellent results for the pre-
dicted output if the cycles of the input quantity are well known in advance. However,
due to the fact that there is no memory of past inputs, these approaches do not meet
the requirements of hysteresis models, which should be valid for general inputs (see
Sect. 6.1).

Rheological Models

Basically, the term rheology refers to the analysis of mechanical constitutive proper-
ties formaterials through the construction of ideal bodies, named rheological models.
In doing so, we combine elementary rheological models in series and in parallel that
are given by rheological state equations. Visintin [94] suggests the application of
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several of those elementary rheological models representing the main mechanical
properties elasticity, viscosity, plasticity as well as strength. Similar to elementary
rheological models, one can take advantage of lumped circuit elements from electri-
cal engineering [58]. The parameters of the underlying state equations are derived by
comparing model outputs with measurements. Reiländer et al. [76] published such a
rheological model to predict the hysteretic behavior of a piezoceramic stack actuator.
Further rheological models for ferroelectric actuators can be found in [74, 77].

Duhem Models

The main idea of Duhemmodels lies in mathematically explaining hysteretic behav-
ior by means of differential equations and integral operators. These phenomenologi-
cal models are based on the fact that one can only switch between different branches
in the hysteresis curve when the derivative of the input changes its sign [61, 94].
A similar property may be attributed to rheological models. Hence, it is oftentimes
difficult to distinguish between Duhem and rheological models. Very well-known
representatives of generalized Duhemmodels are LuGre as well asDahl models [70,
107]. Although bothmodels can be implemented efficiently, they exhibit a number of
drawbacks with regard to applications for ferroelectric materials. For instance, nei-
ther asymmetric hysteresis curves nor saturation effects can be simulated. Moreover,
the fact that the input history is not considered may lead to physically impossible
outputs, e.g., crossing hysteresis curves. An extended version of Duhem models for
ferroelectric materials, the so-called Bouc-Wen model [100], is utilized for micro as
well as nanopositioning (e.g., [59]). Wang et al. [98] presented a modified Bouc-
Wen model to predict the hysteretic behavior of a piezoceramic stack actuator. The
Jiles–Atherton model is a further Duhem model for ferroelectric actuators, which
was originally developed for ferromagnetic materials [36, 45]. Also for this phe-
nomenological hysteresis model, one has to cope with physically impossible outputs
like unclosed hysteresis loops.

Fractional Derivatives

Another phenomenological approach for modeling hysteresis of ferroelectric materi-
als exploits fractional derivatives. According to models of dry friction in mechanical
processes, Guyomar and colleagues [34, 35] describe the electric polarization within
the material through an appropriate fractional derivate. They predict the polarization
for large electrical excitation with respect to excitation frequency, i.e., the dynamic
behavior of ferroelectric materials. In [24], one can find an extended version to addi-
tionally consider mechanical stresses in hysteresis curves of the electric polarization.
However, so far, there are not known any further approaches based on fractional
derivatives, which also allow simulating hysteresis of the mechanical displacement
for ferroelectric materials.

Switching Operators

Numerous phenomenological models to describe hysteretic behavior of ferromag-
netic and ferroelectric materials use a weighted superposition of elementary switch-
ing operators, which are commonly named hysterons. Preisach [73] developed such
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Fig. 6.3 Different elementary switching operators with input x and output y for phenomenological
hysteresis models: aRelay operator; b linear play operator (αp = −βp); c linear stop operator (αs =
−βs)

a model that was originally motivated by physical processes taking place within fer-
romagnetic materials during magnetization. With a view to applying the Preisach
hysteresis model to various physical issues, Krasnosel’skii and Pokrovskii [55] car-
ried out a purely mathematical examination of this approach. Moreover, they investi-
gated three different types of elementary switching operators (see Fig. 6.3): (i) Relay
operators that are used for Preisach hysteresis models as well as (ii) linear play
operators (backslash operators) and (iii) linear stop operators. The weighted super-
position of play and stop operators is commonly referred to as Prandtl–Ishlinskii
model3 [94].

In case of ferroelectric materials, Prandtl–Ishlinskii models are mostly based
on linear play operators (e.g., [43, 75]). Al Janaideh et al. [2] presented an exten-
sion of this model to incorporate the rate-dependent behavior of smart actuators.
Besides, they suggest a hyperbolic tangent function as generalized play operator,
which enables the consideration of saturation effects [3]. A major problem of the
play operator lies in the simulation of asymmetric hysteresis curves. Due to this fact,
Dong and Tan [23] developed an asymmetric play operator. As alternative approach,
Jiang et al. [44] applied especially for piezoelectric actuator systems two separate
operators, one for increasing and one for decreasing inputs, respectively.

To sum up, each of the five phenomenological approaches for modeling the hys-
teresis of ferroelectric materials exhibits advantages and drawbacks. Many of the
approaches (e.g., rheological models) have proved to be very efficient in calculation
but will yield inadequate results if a precise prediction of the hysteretic behavior
is required. Since both the polynomial description and the Duhem models do not
use internal variables, the predicted hysteresis curves may be physically impossible,
e.g., unclosed hysteresis loops as a result of the Jiles–Atherton approach. Moreover,
there are not known phenomenological approaches according to fractional deriva-
tives, which can be applied to simulate both electric polarizations and mechanical
displacements of ferroelectric actuators.

3Strictly speaking, Preisach models constitute a special case of Prandtl-Ishlinkii models.
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Phenomenological modeling approaches based on switching operators lead to
significantly improved results than the other ones. However, in general, the required
computational effort to calculate the model output for common implementations is
comparatively high. Regarding asymmetric hysteresis curves as well as saturation
effects, it can be stated that Preisach models are much more flexible than common
Prandtl–Ishlinskii models. Nevertheless, in contrast to Preisach models, we are able
to directly invert Prandtl–Ishlinskii models, which is decisive for hysteresis compen-
sation. Besides, Preisach models require more elementary switching operators (i.e.,
relay operators), but the amount of parameters per a single operator is lower than for
Prandtl–Ishlinskii models.

The focus in the present book lies on predicting the hysteretic behavior of fer-
roelectric actuators for various configurations and practical applications as precise
as possible. On account of that fact, we will exclusively discuss Preisach hysteresis
models in the following. This includes its efficient implementation (see Sect. 6.4.2)
as well as inversion (see Sect. 6.8).

6.4 Modeling of Preisach Hysteresis Operator

In the year 1935, Preisach published a hysteresis model that is commonly known
as classical Preisach hysteresis model [64, 73]. From the mathematical point of
view, this hysteresis model belongs to the phenomenological models. It is often
utilized to simulate magnetization of ferromagnetic materials as well as polarization
of ferroelectric materials. Owing to the fact that we solely consider scalar inputs and
outputs, the subsequent explanations refer to the scalar Preisach hysteresis model
and the scalar Preisach hysteresis operator.4 Extended versions concerning vector
quantities can be found in, e.g., [48, 68, 88].

6.4.1 Preisach Hysteresis Model

To study the Preisach hysteresis model, let us assume a transmission system with the
scalar input x(t) and the scalar output y(t), both normalized quantities depending
on time t (see Fig. 6.4a). The basic idea of the Preisach hysteresis model lies in
the weighted superposition of elementary switching operators γαβ . Each of them
features two defined output states, i.e., −1 as well as +1. The switching between
these two output states may occur when the operator input x(t) reaches one of the
changeover points α and β (see Fig. 6.4b). Mathematically, the current state of a
single elementary switching operator γαβ,n with the changeover points αn and βn is
defined as

4For compactness, the term scalar is omitted in the following.
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Fig. 6.4 a Preisach hysteresis operator HP with input x(t) and output y(t), both depending on
time t ; b elementary switching operator γαβ,n with changeover points αn and βn

γαβ,n[x](t) =
⎧
⎨

⎩

+1 : x(t) ≥ αn

γαβ,n[x]
(
t−

) : βn < x(t) < αn

−1 : x(t) ≤ βn .

(6.1)

The operator output will switch from −1 to +1 if the operator input x(t)
exceeds αn . When x(t) falls below βn , switching from +1 to −1 will take place.
Naturally, the operator will exclusively switch if the previous output does not coin-
cide with the current one. Because each switching operator γαβ,n retains its out-
put

(
i.e.,γαβ,n[x]

(
t−

))
for βn < x(t) < αn , we are able to simulate system behavior

with certain memory. Apart from that fact, the definition of the elementary switching
operators implies the condition αn ≥ βn for the changeover points.

According to the idea of Preisach hysteresis models, the weighted superposition
of all possible switching operators links the input x(t) to the output y(t) of the
transmission system. Therefore, y(t) is given by (see Fig. 6.5)

y(t) = HP[x](t) =
∫∫

α≥β

μH(α,β) γαβ[x](t) dα dβ . (6.2)

Here,HP[x](t) stands for the resulting Preisach hysteresis operator, which is applied
to the input x(t). The expression μH(α,β) individually weights the switching oper-
ators and, thus, is usually referred to as weighting distribution.

The value range of the changeover points αn and βn becomes

P ={
(αn,βn) ∈ R

2 : xmin ≤ βn ≤ x(t) ≤ αn ≤ xmax
}

(6.3)

with the minimum xmin and the maximum xmax of the input. Since α ≥ β has to be
fulfilled, we can display this value range as triangular in the two-dimensional space
with the axis α and β. Each point in this plane relates to exactly one elementary
switching operator. Figure 6.6a depicts the triangular as well as three elementary
switching operators. If the current outputs (−1 or+1) of the switching operators γαβ

are plotted in the triangular, one will obtain the so-called Preisach plane P(α,β).
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Fig. 6.5 Link of model input x(t) and output y(t) according to Preisach hysteresis model; elemen-
tary switching operators γαβ,n with changeover points αn and βn ; individual weights μH(αn,βn)

of elementary switching operators
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Fig. 6.6 a Triangular comprising value range of changeover points αn and βn for elementary
switching operators γαβ,n ; b Preisach plane P(α,β) divided into P+ and P−, which indicate
current output value (+1 or −1) of elementary switching operators; dividing line L(t) containing
maxima and minima

Moreover, due to the fact that each elementary switching operator owns his unique
weighting μH(α,β), the Preisach plane can also be used to show the distribution of
weights.

As discussed above, the switching operators γαβ and, consequently, also the
Preisach hysteresis operator HP can only change their output if the input is altered,
i.e., ∂x/∂t �= 0. The two possibilities of differential changes in the input lead to
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A© : ∂x(t)

∂t
> 0 ⇒ −1 −→ +1 ∀ γαβ,n : αn ≤ x(t) (6.4)

B© : ∂x(t)

∂t
< 0 ⇒ +1 −→ −1 ∀ γαβ,n : βn ≥ x(t) , (6.5)

which means on the one hand that for increasing inputs, solely the changeover val-
ues αn of γαβ,n are decisive. On the other hand, decreasing inputs relate to the
changeover values βn . As a result, we obtain at any time two interrelated areas within
the Preisach plane P , namely P+ and P−, fulfilling the property P+ ∪ P− = P . In
those areas, the elementary switching operators take the output values (see Fig. 6.6b)

P+ ={
γαβ,n : γαβ,n = +1

}
and P− ={

γαβ,n : γαβ,n = −1
}

. (6.6)

The dividing line between P+ and P− is indicated with L(t). Commonly, this line
is a staircase-shaped curve. Depending on the current input x(t) and its history, L(t)
is modified, e.g., the amount of steps is altered.

With a view to explaining the fundamentals of the Preisach hysteresis operatorHP

inmore detail, it is convenient to performagraphical interpretation [36, 101]. In doing
so, we choose an input signal x(t) that enables us to discuss the most important
characteristics of HP. Figure 6.7a and b depict this input signal and the current
configuration of the Preisach plane P(α,β) for selected instants of time, namely
tA, . . . , tN. Furthermore, the operator output y(t) is plotted against the input until
the considered instant of time for unweighted elementary switching operators (i.e.,
μH(α,β) = 1; Fig. 6.7c) as well as for the weighted ones (Fig. 6.7d). Let us take a
look at the different instants of time, which are parameterized with A,…,N.

• A: The input signal x(t) is assumed to be zero at the beginning of the graphical
interpretation.Additionally, the areasP+ andP− should be equal. In case of a sym-
metricweighting distribution (i.e.,μH(α,β) = μH(−β,−α)),we obtain y(t) = 0
as operator output.

• B: According to (6.4), the operators γαβ will take the output value +1 when x(t)
exceeds their changeover points α. Therefore, the dividing line L(t) between P+
and P− moves upwards leading to an increase in y(t).

• C: After passing through the virgin curve, y(t) reaches its positive saturation. All
elementary switching operators exhibit then the output value +1, i.e., P = P+
and P− = ∅.

• D: Similar to B, the operators γαβ will take the output value −1 when x(t) falls
below their changeover points β. As a result, the dividing line L(t) between P+
and P− moves to the left yielding a decreasing output y(t).

• E…F: If the input x(t) stays constant (i.e., ∂x(t) /∂t = 0),L(t) and, consequently,
y(t) will remain unchanged.

• G…H: In case of inputs outside of the defined range xmin ≤ x(t) ≤ xmax, y(t) also
remains unchanged. Contrary to the positive saturation in C, the Preisach plane
becomes P = P− for negative saturation, i.e., P+ = ∅.
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(a) (b) (c) (d)

Fig. 6.7 Graphical interpretation of Preisach hysteresis operator HP [101]; a progression of input
signal x(t)with respect to time t ; b Preisach planeP = P+ ∪ P− for A,…,N at tA, . . . , tN; operator
output y versus input x for c unweighted (i.e., μH(α,β) = 1) and dweighted elementary switching
operators γαβ
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• I, J: Although the slope of x(t) differs for tI and tJ, the configuration of P(α,β)

stays constant, which leads to y(tI) = y(tJ). We are, therefore, not able to consider
a rate-dependent system behavior by means of the classical Preisach hysteresis
model.

• K: From tJ to tK, there occur several successive local extrema in x(t). If one of
these maxima/minima is smaller/larger than the previous extrema of the same
type, it will be called dominating extremum. Such extrema determine the corner
points ofL(t) inP(α,β) and, according to the definition of the Preisach hysteresis
operator, they affect the subsequent progression of y(t). Due to this fact, we can
state that these extrema represent the memory within the hysteresis model.

• L: Inputs that are higher in magnitude than the previous extremum cause move-
ments of L(t) in horizontal and vertical direction, respectively. Since the previous
extremum is deleted in P(α,β), the underlying principle is commonly referred to
as wiping-out rule or deletion rule of the Preisach hysteresis operator.

• M,N: If we do not know the history of x(t), the current configuration of the Preisach
plane will also be unknown which makes it impossible to compute subsequent
states of y(t). This can be avoided by driving the system into positive or negative
saturation. Therewith, a defined state of P(α,β) is achieved.

From the graphical interpretation, two additional key findings arise: (i) Since past
extrema of the input affect the current output ofHP, the classical Preisach hysteresis
model is applicable to describe hysteresis exhibiting nonlocal memories. (ii) The
comparison of unweighted andweighted elementary switching operators in Fig. 6.7c,
d reveals that the distribution of weights μH(α,β) has a major influence on the shape
of the hysteresis curve. It is, therefore, of utmost importance to identify an appropriate
distribution forμH(α,β) because only in this way, we can reliably predict the system
behavior.

6.4.2 Efficient Numerical Calculation

The Preisach hysteresis operatorHP and its inversion as well as the identification of
the weighting distribution μH(α,β) require a large number of individual computa-
tion steps. With regard to practical applications of the hysteresis operator, the effi-
cient numerical calculation is, thus, of utmost importance. For this purpose, a novel
approach was developed at the Chair of Sensor Technology (Friedrich-Alexander-
University Erlangen-Nuremberg) within the framework of the doctoral thesis by
Wolf [101]. The key points of the approach are explained in the following.

Discretization

The implementation of the Preisach hysteresis operator on a computer system
demands various discretizations, which are listed below.

• The continuous input x(t) is converted to a discrete-time and discrete-value ver-
sion by an analog-to-digital conversion since the subsequent signal processing is
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computer-based. Similarly, the operator output y(t) is a discrete-time and discrete-
value signal. Let us assume equidistant sampling with sampling time ΔT . Hence,
the available input and output signal become x(tk = kΔT ) and y(tk = kΔT ),
whereas k ∈ N

+ denotes the index of the sampling point, respectively.5 More-
over, x(k) is normalized to its maximum, i.e.,

x(k) = X(k)

2 · max(|X(k)|) ⇒ x(k) ∈ [−0.5, 0.5] (6.7)

with X(k) representing the original discrete-time and discrete-value input. For
the changeover points α and β of the elementary switching operators γαβ , the
normalization leads to the condition −0.5 ≤ β ≤ α ≤ 0.5.

• According to the definition of the Preisach hysteresis operator HP in (6.2), the
output results from the input by analytically evaluating a double integral in the
two-dimensional space.However, there does not exist an analytical solution for this
integral. That is the reason why we have to perform a summation of the spatially
discretized triangular instead,which contains discretized values for the changeover
points α and β (see Fig. 6.8a). Without limiting the generality, the possible values
of both changeover points are discretized inM equally distributed intervals leading
to α(i = 1, . . . , M) and β( j = 1, . . . , M).

• Due to the discretization ofα andβ, the configuration of thePreisach planeP(α,β)

for time step k as well as the weighting distribution μH(α,β) can be written
as matrices, both featuring the dimension M × M . They are given by (matrix
elements Pi j (k) and μi j )

P(k) =[Pi j (k)
]

with Pi j ∈{−1, 1}
µ =[

μi j
]

with μi j ∈ R
+
0

}

∀(i, j) ∈ Λ . (6.8)

Λ represents the definition area of the spatially discretized Preisach plane, i.e.,Λ =
{(i, j) : i ≤ M + 1, j ≤ M + 1 − i}. Note that outside of this definition area, the
matrix elements Pi j (k) and μi j are zero, respectively.

The discretizationM ofα andβ determines the resulting discretization of the operator
output y(k). A finer discretization leads to a higher resolution of y(k). However, the
greater M , the longer the computation will take for common implementations of the
Preisach hysteresis operator. On this account, one has to find a compromise between
output resolution and computation time. The path toward an implementation enabling
both fine discretization and reasonable computation time is detailed below.

Numerical Calculation

As stated above, a weighted summation of the spatially discretized Preisach plane
P(k) is necessary to compute the operator output y(k) for time step k. The double
integral in (6.2) changes into the double summation (element μi j of the weighting

5To achieve a compact notation, we use the abbreviation x(kΔT ) =̂ x(k).



6.4 Modeling of Preisach Hysteresis Operator 211

(a) (b) x(k) > x(k − 1) (c) x(k) < x(k − 1)
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Fig. 6.8 a Spatially discretized Preisach planeP(k) for time step k; modification of Preisach plane
for b increasing and c decreasing input x(k) of Preisach hysteresis operator HP; ⊕ and  indicate
maxima and minima of dominating extrema, respectively

matrix µ)

y(k) =
imax∑

i=1

jmax∑

j=1

Pi j (k)μi j with

{
imax = M + 1 − j
jmax = M + 1 − i .

(6.9)

Note that Pi j (k) refers to the current state (i.e.,{−1, 1}) of the elementary switching
operator γαβ featuring the changeover points α(i) and β( j). Because this calcu-
lation is highly inefficient, a differential scheme should be applied instead, which
exclusively considers modifications within the Preisach plane P(k) for time step k.
The modifications lead to changes Δy(k) in the operator output that are equal to
the swept area in the Preisach plane (see Fig. 6.8b and c). A proper method to
determine Δy(k) is the so-called Everett function E [26]. Therewith, the current
output y(k) becomes [36]

y(k) = y(k − 1) + Δy(k)

= y(k − 1) + E(x(k − 1) , x(x)) (6.10)

= y(k − 1) + sign(x(k) − x(k − 1)) ·
∫∫

Δy(k)

μH(α,β) dα dβ .

The trapezoidal area Δy(k) results from the difference of partial areas within the
weighted Preisach plane, which are given by the successive inputs x(k − 1) and x(k).
Depending on the direction of change in the input, Δy(k) must be added to (see
Fig. 6.8b) or subtracted from (see Fig. 6.8c) the previous output y(k − 1). We take
this fact into account by the signum function sign(·).

In order to evaluate the Preisach hysteresis operator HP efficiently for each time
step k, it is useful to conduct as many calculation steps as possible in advance. The
optimized approach mainly comprises the three following substeps.



212 6 Phenomenological Modeling for Large-Signal ...

1. Computation of the Everett Matrix

Since the distribution of the discretized weighting distribution μi j is time-
invariant, we can compute the swept areas in advance, i.e., the Everett function E .
The Everett matrix E =[Ei j

]
stands for the numerically integrated weighting

distribution and reads as

Ei j =
rmax∑

r=i

smax∑

s= j

μrs with

{
rmax = M + 1
smax = M + 1 − i .

(6.11)

Each component Ein jn refers to the sum over a triangular (i ≥ in and j ≥ jn) in
the weighting matrix µ.

2. Configuration of the Preisach Plane

Now, the Everett matrix E can be utilized to compute the operator output y(k).
In doing so, we require the current dominating extrema of the input history. The
extrema are located on the dividing lineL(k) betweenP+ andP−. Let us assume
m(k) dominating extrema at time step k named e1, . . . , em(k). The vectors ei(k)
and ej(k) of length m(k) indicate the location of those extrema in the spatially
discretized Preisach plane, i.e.,

ei(k) = [
i1(k) , . . . , in(k) , . . . , im(k)(k)

]t

ej(k) = [
j1(k) , . . . , jn(k) , . . . , jm(k)(k)

]t

}

with 1 ≤ n ≤ m(k) ≤ M .

(6.12)

As we have to distinguish whether the extremum represents a minimum or a
maximum (see Fig. 6.8a), an additional vector s(k) is necessary, which contains
the sign of each dominating extremum. This vector of length m(k) is defined as

s(k) =[
s1(k) , . . . , sn(k) , . . . , sm(k)(k)

]t
(6.13)

with

sn(k) =
{−1 : in = in−1 (minimum)

+1 : jn = jn−1 (maximum) .
(6.14)

For the subsequent time step k + 1, the vectors ei(k), ej(k) as well as s(k) of the
previous time step k need to be updated. Thereby, the following operations are
applied:

• When the operator input increases (i.e., x(k + 1) > x(k)), the current value
x(k + 1) will be compared to the changeover points α(ei(k)). In case of a
decreasing input (i.e., x(k + 1) < x(k)), the comparison is carried out with
respect to β

(
ej(k)

)
. According to the definition of i and j (cf. Fig. 6.8a),
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an increasing input yields im(k+1)(k + 1) < im(k)(k) and a decreasing one
jm(k+1)(k + 1) < jm(k)(k).

• A change of sign in the input slope leads to an additional dominating extremum,
i.e., m(k + 1) = m(k) + 1. Consequently, the length of ei(k), ej(k) and s(k)
increases by one, respectively.

• If x(k + 1) > αn(k) is fulfilled for increasing input signals, the vectors ei(k),
ej(k) ands(k)will be shortened to the lengthn − 1.The same applies to decreas-
ing inputs in case of x(k + 1) < βn(k). Then, the nth entry of the vectors con-
tains the location of the last dominating extremum in the spatially discretized
Preisach plane as well as the sign.

3. Calculation of the Operator Output

The operator output y(k) for time step k results from substep 1 and 2. We use the
vectors ei(k) and ej(k) to select for every dominating extremum of the input x(k)
one entry in the Everett matrix E . Furthermore, the selected entries are super-
imposed with respect to the signs of the dominating extrema, which are listed
in s(k). Altogether, y(k) computes as

y(k) = 1

2
Ei1(k) j1(k) · s1(k) +

m(k)∑

n=2

Ein(k) jn(k) · sn(k) . (6.15)

By means of this approach, the evaluation of the Preisach hysteresis operator is opti-
mized. Compared to the common implementation of the Everett function (6.10), we
can reduce the computation time by a factor of more than 100 [101]. Since the com-
mon implementation is mostly restricted to discretizations M < 100 of the Preisach
plane, additional interpolation algorithms are required to achieve a reasonable res-
olution of the operator output [36, 76]. In contrast, the presented approach allows
fine discretizations (e.g., M = 300) and, therefore, a high resolution without any
interpolation.

6.5 Weighting Procedures for Switching Operators

As has been shown in Fig. 6.7, the weighting distribution μH(α,β) remarkably
affects the output of the Preisach hysteresis operator HP and, therefore, the result-
ing hysteresis curve. That is the reason why one can find numerous publications
addressing identification as well as description of μH(α,β) for ferromagnetic and
ferroelectric materials.

Before we study suitable weighting procedures and identifications, let us deduce
physically motivated properties of μH(α,β). Switching processes taking place
within ferroelectric materials arise from complex interactions of mechanical and
electric fields onmesoscopic aswell asmicroscopic length scales.We do not consider
such interactions because the Preisach hysteresis operator represents a purely phe-
nomenological modeling approach. However, from the macroscopic point of view,
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there occurs a statistical accumulation of domains, which show a specific switching
property that is very well explained by selected elementary switching operators γαβ .
Consequently, the weights μH(α,β) for these elementary switching operators have
to possess high numerical values. In this context, four assumptions can be made for
simulating the large-signal behavior of ferroelectric materials by means of Preisach
hysteresis models:

1. Apositive change in the electric field intensity E(t)with time increases the electric
polarization P(t) of the ferroelectric material. In the same way, a negative change
reduces P(t). Therefore, the weight μH(α,β) for each elementary switching
operator has to be positive, i.e.,

μH(α,β) > 0 ∀ α,β : − 0.5 ≤ β ≤ α ≤ + 0.5 . (6.16)

2. The switching behavior of unloaded domains within ferroelectric materials is
assumed to be symmetrical. Elementary switching operators with the changeover
points α = −β emulate this behavior. As a consequence, we can expect that the
weights for those operators are rather large.

3. If ferroelectric materials are excited with a symmetric electrical signal regarding
its magnitude, the resulting magnitude of P(t) will be mostly symmetrical, too.
To consider such material behavior, the weighting distribution μH(α,β) should
be symmetrical about the axis α = −β, i.e., μH(α,β) = μH(−β,−α).

4. As hysteresis curves of the electric polarization indicate, the steepest slope is
reached close to the coercive field intensity E±

c . This implies that, statistically, the
majority of domains within ferroelectric materials will switch when the applied
electric field intensity is similar to E±

c . In the weighting distribution, the normal-
ized coercive field intensities e±

c are located at the axis α = −β. Hence, there
also arise the maximum values of the weights.

Principally, one can distinguish between two approaches to determine weighting
distributions μH(α,β) for the Preisach hysteresis model: (i) μH(α,β) is spatially
discretized in elements and (ii) μH(α,β) is defined through an analytical function.
We will study the main aspects of selected implementations for both approaches in
Sects. 6.5.1 and 6.5.2.

6.5.1 Spatially Discretized Weighting Distribution

Here, let us concentrate on two different implementations to obtain the spatially dis-
cretized weighting distributionµ =[

μi j
]
. While the first implementation is based on

first-order reversal curves (FORCs), the second one minimizes deviations between
appropriate measurements and simulations.
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(a) electric excitation field (b) FORCs
E
(t
)
in

kV
m
m

−
1

t in s

EF(t)

P
( E

)
in

C
m

−
2

E in kVmm−1
4

4

2

2

-2

-2

-4
-4

0

0

0

0 10 20 30 40 50

0.5

0.25

-0.25

-0.5

Fig. 6.9 a Possible input signal E(t) to obtain FORCs (first-order reversal curves) for ferroelec-
tric materials; reversal field intensity EF(t); b resulting FORCs for piezoceramic disk (diame-
ter 10.0mm; thickness 2.0mm; material PIC255)

First-Order Reversal Curves

First-order reversal curves result from alternately loading the investigated material
with a particular sequence of increasing and decreasing input signals. In case of fer-
roelectric materials, such a sequence starts at the electric field intensity E−

sat, which
leads to the negative saturation P

(
E−
sat

)
of the electric polarization. The electric field

intensity is always increased up to positive saturation (i.e., E+
sat) and, then, reduced

again to a value slightly higher than the previous minimum (see Fig. 6.9a). Con-
sequently, the local minimum EF(t) (reversal field intensity) of the input increases
and its maximum remains constant with respect to time t . For the mentioned input
sequence, the FORCs are defined as part of the hysteresis curve ranging from local
minimum P(EF) to global maximum P

(
E+
sat

)
, respectively (see Fig. 6.9b).

Mayergoyz [62, 64] exploited FORCs to identify spatially discretized weighting
distributions for ferromagnetic materials. In doing so, he evaluated the second-order
partial derivative of the acquired FORCs and performed a special coordinate trans-
form. Some research groups (e.g., Stanco et al. [86] and Stoleriu et al. [87]) applied a
similar approach for characterizing ferroelectric materials. However, the identifica-
tion of the spatially discretized weighting distribution µ for those materials through
FORCs exhibits various drawbacks [101]. The main drawbacks are the following:

• The slope steepness in hysteresis curves for ferroelectric materials is usually much
larger than for ferromagneticmaterials. Since especially at the steepest slopes,most
switching processes of the unit cells take place within the ferroelectric materials,
one has to change the reversal field intensity EF(t) slowly (see Fig. 6.9a). For this
reason, the required measurement effort increases remarkably.

• To some extent, there occur negative entries in the identified µ for ferroelectric
materials, which result from creep effects during the extensive FORCs acquisition.
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Strictly speaking, such negative entries contradict the previously deducedAssump-
tion 1 (see p. 214) for the weighting distribution.

• With a view to measuring FORCs, the investigated ferroelectric material has to
reach its negative as well as positive saturation. It seems only natural that this is
not always possible in practical applications of actuators, which incorporate such
materials.

• The Preisach hysteresis model will be particularly well suited for predicting hys-
teretic behavior of materials if the input signals for identification are similar to
those in the application. However, FORCs result from a predefined input sequence
ranging from negative to positive saturation. Owing to this fact, we favor identifi-
cation procedures allowing a flexible choice of input sequences instead.

According to the listed drawbacks, alternative approaches (see, e.g., Sect. 6.5.2) are
required which yield weighting distributions for ferroelectric materials.

Adjustment of Simulations

Contrary to thepreviouslymentionedmethod for the identificationofµ,Kaltenbacher
and Kaltenbacher [49] suggest an approach that is based on comparing measure-
ments to outputs of the Preisach hysteresis operator HP. Hegewald [36, 37] firstly
applied this approach for ferroelectric materials. To distinguish the resulting spa-
tially discretized weighting distribution from the later ones, let us introduce the
notation µHEG =[

μHEG,i j
]
, which represents the aimed quantity. The principal idea

of the approach is minimizing the least squares error between normalized acquired
data for the electric polarization pmeas(k) and predicted model outputs, i.e., (time
step k = 1, . . . , kmax)

min
µHEG

kmax∑

k=1

⎡

⎣pmeas(k) −
imax∑

i=1

jmax∑

j=1

Pi j (k) · μHEG,i j

⎤

⎦

2

. (6.17)

Thereby, the matrix elements μHEG,i j are iteratively adjusted in a convenient way.
If the changeover points α and β of the elementary switching operators γαβ are
discretized in M intervals, respectively, µHEG will contain nHEG = (M2 + M)/2
independent entries.

In the following, we take a look at results for a piezoceramic disk (diame-
ter 10.0mm; thickness 2.0mm), which is made of the ferroelectrically soft material
Pz27. To experimentally determine the electric polarization P in thickness direction,
a Sawyer–Tower circuit [79] was utilized,6 i.e., an additional capacitor CST was con-
nected in series to the investigated piezoceramic disk. Note that CST has to feature a
high capacitance value as well as a high insulating resistance. Figure 6.10a depicts
both measured hysteresis curves Pmeas(E) and simulated ones Psim(E) with respect
to the applied electric field intensity E . The waveform of E(t) that was utilized for
exciting the piezoceramic disk is shown in Fig. 6.10e. This waveform also served as
input sequence to identify µHEG through minimizing the least squares error (6.17).

6The Sawyer–Tower circuit was applied for all measurements of P in this chapter.
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As the comparison in Fig. 6.10a reveals, Pmeas(E) and Psim(E) coincide very well.
The deviations between them can be mainly ascribed to creep processes, which we
do not considered in the classical Preisach hysteresis model. Even though the excita-
tion signal refers to a large operating range of the piezoceramic disk, the simulation
procedure yields promising results.

The identified spatially discretized weighting distributionµHEG forM = 67 inter-
vals (i.e., nHEG = 2278 entries) is given in Fig. 6.10c. µHEG exhibits a wide value
range and only for a few combinations of changeover points, the obtained weights
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are large. Actually, the majority of weights is rather small. This may lead to problems
when the dividing line L(t) (cf. Fig. 6.6b) crosses isolated regions of small weights
since the operator output will hardly change [101].Moreover,µHEG is strongly asym-
metric, which does not agree with the deduced Assumption 3 (see p. 214). Besides,
due to the fact that nHEG parameters have to be modified in each iteration step, the
minimizing procedure for the identification of µHEG limits M to small values. As a
consequence, the Preisach planeP is also roughly discretized. We require, therefore,
an additional interpolation method to handle operator inputs between the discretized
values of the changeover points α and β.

To summarize, one can state that the adjustment of simulations to measurements
is a much better option to determine spatially discretized weighting distributions for
ferroelectricmaterials than the approach based onFORCs. From the practical point of
view, the large amount of required parameters nHEG, however, may cause significant
problems, e.g., uniqueness as well as robustness of the identified parameters.

6.5.2 Analytical Weighting Distribution

Alternatively to determining the individual entries of the spatially discretizedweight-
ing distribution, we can describe μH(α,β) through analytical functions. Such an
analytical function is desired to fulfill three properties:

1. The analytical description of the weighting distribution should enable reliable
modeling for different working areas of ferroelectric actuators, i.e., unipolar,
semi-bipolar as well as bipolar working areas.

2. With a view to uniquely identifying the parameters of the analytical function,
each parameter should exclusively modify one property of the hysteresis curve,
e.g., slope steepness.

3. The analytical function for μH(α,β) should be defined by a small number of
parameters.

If an analytical function fulfills these properties, we will be able to describe and
to identify weighting distributions for Preisach hysteresis models in a rather simple
manner. Property 2 is especially useful to consider additional influencing factors (e.g.,
mechanical prestress) on hysteresis curves by means of generalized Preisach hys-
teresis models (see Sect. 6.6). Concerning property 3, it is essential to find a good
compromise between number of parameters and desired accuracy of the model out-
put. Although an increased number of parameters may lead to a better accuracy, the
uniqueness of the parameters is remarkably reduced.

Analytical functions for defining weighting distributions do not specify the spa-
tial discretization M of the Preisach plane P in advance. Consequently, the actual
weight μH(α,β) can be computed for each combination of changeover points with-
out performing any interpolation. Note that from the practical point of view, one also
has to carry out spatial discretization since this is required for efficient numerical
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evaluations of the Preisach hysteresis operatorHP (see Sect. 6.4.2). Nevertheless, M
for identifying the parameters of the analytical function and for utilizingHP in prac-
tical applications can differ.

DAT Function

As saturation curves are quite similar to an arctangent function, Sutor et al. [89]
suggest a special analytical function for describing μH(α,β), which is based on
the second-order derivative of the arctangent function. The second-order derivative
is attributable to the double integral within Preisach hysteresis models (see (6.2)).
For this reason, the underlying function is commonly named DAT (derivative arc
tangent) function and reads as

μDAT(α,β) = B

1 +{
[(α + β) σ]2 +[(α − β − h)σ]2

}η (6.18)

with four independent parameter (nDAT = 4) yielding the dimensionless parameter
vector p = [B, η, h,σ]t. Originally, the DAT function was intended for modeling
ferromagnetic materials. Wolf et al. (e.g., [104, 106]) utilized this analytical function
to predict the large-signal behavior of ferroelectric materials through the Preisach
hysteresis operator. In the following, let us concentrate on an extended version of the
DAT function [101], which is given by

μDAT(α,β) = B

1 +{
[(α + β + h1) σ1]

2 +[(α − β − h2) σ2]
2}η (6.19)

and, thus, contains six independent parameters, i.e., p = [B, η, h1, h2,σ1,σ2]t and
nDAT = 6. Compared to (6.18), the extended DAT function7 is more flexible but
exhibits two additional parameters. We arrive at the discretized weighting distri-
bution µDAT =[

μDAT,i j
]
by spatially discretizing the Preisach plane in M equally

distributed intervals for the changeover points α and β. Again, the discretized ver-
sion µDAT contains (M2 + M)/2 entries.

Figure 6.11 displays a particular weighting distribution μDAT(α,β) according
to the DAT function as three- and two-dimensional representation in the Preisach
plane P , respectively. The pronounced maximum is affected by the parameters of
the analytical function in a different manner. The individual impacts on the weighting
distribution and on the resulting hysteresis curve (see Fig. 6.12) are as follows:

• B exclusively scales μDAT(α,β) and, therefore, modifies the magnitude of hys-
teresis curves. We can utilize B to compensate unwanted changes in hysteresis
curves due to the parameters η, σ1, and σ2.

• η prevalently affects the shape of the maximum in μDAT(α,β). For instance, a
large value for η causes a steep decrease of this maximum. Consequently, the
slope steepness of hysteresis curves is specified.

7The extended version of the DAT function is hereinafter also called DAT function.
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Fig. 6.11 Influence of parameters B, η, h1, h2, σ1, and σ2 on weighting distribution μDAT(α,β)

in Preisach plane P; a three-dimensional and b two-dimensional representation

• h1 shifts the maximum of μDAT(α,β) in P along the axis α = β. This parameter
is especially important for modeling asymmetric hysteresis curves, which may be
caused by, e.g., a bias ebias in the normalized electric field intensity (see Sect. 6.6.2).

• h2 shifts the maximum of μDAT(α,β) in P along the axis α = −β. In case of fer-
roelectric materials, we are able to vary the normalized coercive field intensity e±

c
of hysteresis curves through h2.

• σ1 and σ2 modify the maximum’s width of μDAT(α,β) in direction of the axesα =
β andα = −β, respectively. As a result, one altersmagnitudes of hysteresis curves
as well as shapes of minor loops.

In summary, the DAT function is able to specifically influence decisive properties
of simulated hysteresis curves for ferroelectric materials, e.g., coercive field inten-
sity and slope steepness. As already discussed, this fact is especially important for
generalized hysteresis models based on the Preisach hysteresis operator.

Just as it is suggested by Hegewald [37] for identifying the entries of µHEG,
the parameters B, η, h1, h2, σ1, and σ2 of the DAT function result from iterative
adjustments of model outputs to appropriate measurements. In doing so, we have
to minimize deviations between simulated and measured signals. The underlying
optimization procedure represents an ill-posed problem (see Chap. 5). Hence, we
require an appropriate regularization approach, which is provided by the Levenberg–
Marquardt algorithm and the iteratively regularized Gauss–Newton algorithm. Both
algorithms yield the aimed parameters for the DAT function in reasonable compu-
tation time but demand a proper initial guess for the parameter vector p. Such an
initial guess can be figured out by manually adjusting simulations to measurements.
In [101], robustness as well as reliability of the entire parameter identification is
proven through different examples.

With a view to comparing the different weighting procedures µDAT and µHEG,
let us also apply the DAT function to the previously mentioned measurement data
for the piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material Pz27).
Figure 6.10d depicts the identified spatially discretized weighting distribution µDAT
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Fig. 6.12 Parameter study for DAT functionμDAT(α,β) to individually rate impacts of B, η, h1, h2,
σ1, and σ2 on hysteresis curves, e.g., P(E); parameters are varied in the range ±[10, 20, 30, 40]%;
dashed and solid lines refer to negative and positive parameter changes, respectively; arrows indicate
increasing parameter values [101]

for M = 67 intervals. In contrast to µHEG, µDAT is symmetrical about the axis α =
−β, which coincides with Assumption 3 (see p. 214). Furthermore, there do not arise
isolated regions in µDAT where the weights exhibit negligible values. This fact is a
consequence of the utilized analytical function.

As the comparisons of measurements Pmeas(E) and simulations Psim(E) for the
electric polarization in Fig. 6.10a and b reveal, µHEG and µDAT lead to prediction
results of similar quality. Even though the DAT function is defined by amuch smaller
amount of independent parameters (i.e., nDAT � nHEG), which also facilitates their
identification, the normalized relative deviations8 εr between Pmeas(E) and Psim(E)

forµDAT are only marginally higher than forµHEG (see Fig. 6.10f). It is, thus, reason-
able to assume that µDAT and µHEG feature identical performance. However, from
the physical point of view, the resulting weights µDAT are more reliable than µHEG.
Because of the aforementioned arguments, the DAT function should be generally
preferred to identify weighting distributions for Preisach hysteresis operators.

Gaussian Function and Lorentz Function

There exist several further analytical functions to describe the weighting distribu-
tion μH(α,β) for Preisach hysteresis models. Especially in case of ferromagnetic

8In this book, the normalized relative deviation εr usually indicates the absolute deviation related
to the difference between the considered maximum and minimum.
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B h1 h2

Fig. 6.13 Parameter study for Lorentz function μLOR(α,β) to individually rate impacts of B, h1
and h2 on hysteresis curves, e.g., P(E); parameters are varied in the range ±[10, 20, 30, 40]%;
dashed and solid lines refer to negative and positive parameter changes, respectively; arrows indicate
increasing parameter values [101]

materials, the analytical functions are oftentimes motivated by statistical accumula-
tions of switching processes taking place within thematerial. In order to consider this
fact, one can use two-dimensional Gaussian and Lorentz distributions for analytical
description (e.g., [5, 20, 27, 90]). As Azzerboni et al. [6] suggest in a similar manner,
the Gaussian and Lorentz function (distribution) are given by

μGAUSS(α,β) = B2 · exp
[

−1

2

(
α − β − 2h1

h1
σ1

)2

− 1

2

(
α + β

h2
σ2

)2
]

(6.20)

μLOR(α,β) = B

1 +
(

β + h1
h1

σ1

)2 · B

1 +
(

α − h2
h2

σ2

)2 , (6.21)

respectively. The impacts of the parameters B, h1, h2, σ1, and σ2 on the weight-
ing distribution approximately correspond to those of the DAT function. Again, B
exclusive scales the magnitude of μGAUSS(α,β) and μLOR(α,β), which is equal to
scaling hysteresis curves. Through the parameters σ1 and σ2, we alter slope steep-
ness in hysteresis curves. However, in distinction from the DAT function, h1 as well
as h2 do not allow an independent adjustment of the normalized coercive field inten-
sity e±

c (see Figs. 6.12 and 6.13). They also changemagnitudes of major loops, which
may cause problems during parameter identification. On account of these facts, both
the Gaussian function and the Lorentz function are not optimally suited for general-
ized Preisach hysteresis models.

Figure 6.14a shows measured and simulated major loops for the electric polar-
ization P(E) of a piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material
Pz27). The identified spatially discretized weighting distributions µDAT, µGAUSS as
well as µLOR are depicted in Fig. 6.14b–d; Table 6.1 contains the underlying param-
eters. In general, µDAT, µGAUSS as well as µLOR lead to reliable model outputs of the
Preisach hysteresis operator. A more detailed comparison, however, points out that
the deviations between measurements and simulations with the Gaussian function
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(a) comparison for major loop (b) log10(µDAT)

(c) log10(µGAUSS) (d) log10(µLOR)
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Table 6.1 Resulting parameters for DAT function μDAT(α,β), Gaussian function μGAUSS(α,β),
and Lorentz function μLOR(α,β); parameters a and b refer to reversible parts (see Sect. 6.6.1) in
hysteresis curve

B η h1 h2 σ1 σ2 a b

DAT 338.105 1.467 0.010 0.411 47.12 36.30 0.052 5.34

Gaussian 0.016 − 0.206 0.119 5.06 3.20 0.053 7.30

Lorentz 0.022 − 0.200 0.211 13.20 12.08 0.051 5.05

are significantly higher than those with the DAT function as well as Lorentz function.
Close to the reversal points of the applied electric field intensity E , measurements
and simulations withµGAUSS differ considerably. Hence, μDAT(α,β) and μLOR(α,β)

should be preferred as analytical function for predicting the large-signal behavior
of ferroelectric materials. Nevertheless, when we are also interested in generalized
Preisach hysteresis models, μDAT(α,β) will be currently the only known analyti-
cal function providing uniqueness, accuracy as well as flexibility of the weighting
distribution and, consequently, of the Preisach hysteresis operator [101].
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Fig. 6.15 Inputs as well as outputs of classical Preisach hysteresis operator HP and generalized
Preisach hysteresis operator HG; e(t) stands for normalized electric field intensity

6.6 Generalized Preisach Hysteresis Model

The classical Preisach hysteresis operator HP is only suitable to a limited extent
for predicting hysteretic behavior of ferroelectric materials. For this reason, it is
important to improve and modifyHP, which leads to so-called generalized Preisach
hysteresis models with the underlying operatorHG. Several types of model general-
izations were developed as well as implemented by Wolf and colleagues (e.g., [78,
104, 106]). Principally, those generalizations canbe divided into three categories. The
first category aims at increasing flexibility to consider reversible parts (Sect. 6.6.1)
and asymmetric behavior (Sect. 6.6.2), while the second one deals with the mechan-
ical large-signal behavior of ferroelectric materials (Sect. 6.6.3). The third category
addresses extensions of HP to take into account both the rate-dependent behav-
ior of the materials (Sect. 6.6.4) and the impact of applied uniaxial mechanical
stresses (Sect. 6.6.5). In contrast toHP, the resulting generalized Preisach hysteresis
operatorHG features an additional output S(t) for mechanical strains of ferroelectric
materials (see Fig. 6.15). Moreover,HG is equipped with two further inputs concern-
ing frequency f of the electrical excitation signal and mechanical stress T within
the material. Below, the model generalizations are studied separately.

6.6.1 Reversible Parts

Weighting distributions μH(α,β) of the Preisach hysteresis operator HP consist in
general of finite values. As a result, the gradient ∂y(k) /∂x(k) of discrete-timemodel
output y(k) = HP[x](k) with respect to discrete-time input x(k) is always zero at
the reversal points. This characteristic can be seen in Figs. 6.12 and 6.13. How-
ever, measured output quantities of ferroelectric materials exhibit certain saturation
trends. For instance, measured hysteresis curves P(E) for the electric polarization
show the property ∂P/∂E |E=Esat �= 0.Mainly, this is due to reversible effects (intrin-
sic effects; see Sect. 3.4.1) taking place within ferroelectric materials. Based on the
assumption that there also occurs saturation for such effects, they are oftentimes
modeled through an appropriate arctangent functions. Sutor et al. [89] suggest an
additional linear part c, which was primarily applied for describing the large-signal
behavior of ferromagnetic materials. Therewith, the entire discrete-time model out-
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put y(k) becomes

y(k) = HP[x](k) + yrev(x(k)) , (6.22)

whereas the added reversible part yrev is given by

yrev(x(k)) = a · arctan(b · x(k)) + c · x(k) . (6.23)

Let us utilize a slightly different approach for ferroelectricmaterials. Reversible parts
are again considered by means of an arctangent function. Instead of adding those
parts to y(k), we incorporate them directly in the weighting distribution μH(α,β).
This will offer particular advantages when the generalized Preisach hysteresis opera-
torHG has to be inverted (see Sect. 6.8). With a view to explaining the approach, it is
helpful to take a closer look at the weighting distribution in the Preisach planeP (see
Fig. 6.16a). The incorporation of reversible parts is performed through weights on
the axis δ = α = β [64, 69]. Due to the properties of the elementary switching oper-
ators γαβ , these weights will be cumulatively summed up if the operator input x(k)
increases. On the other hand, in case of a decreasing input, the weights are cumula-
tively subtracted. These cumulative operations represent the incorporated reversible
part yrev(k) of the modified Preisach hysteresis model. Hence, yrev(k) reads as

yrev(k) =
δ2∫

δ1

μH(δ, δ) γδδ[x](k) dδ (6.24)

in analytical formulation. Here, δ1 and δ2 stand for the lower and upper integration
limit, respectively. While δ1 is −0.5 for increasing inputs, decreasing inputs yield
δ1 = 0.5 (see Fig. 6.16b). Since (6.24) contains an integration, we have to differ-
entiate (6.23) with respect to x = δ, which leads to the reversible parts r(δ) in the
Preisach plane

r(δ) = r(x) = ab

M
[
1 + b2(x + h1/2)

2
] + c . (6.25)

Note that r(δ) exclusively defines the weights along the axis α = β, e.g., μH
(−0.3,−0.3) = r(−0.3). The function is composed of the dimensionless param-
eters a, b, c, and h1. By conducting a normalization to M in (6.25), the resulting
output yrev(k) is largely independent of the utilized spatial discretization.

As indicated in Fig. 6.16a, a, b, c, and h1 modify r(δ) in a distinct way, respec-
tively. The parameter a scales the maximum and b its extension. Through c, we
can add an offset on the axis α = β causing a linear part in the model output. In
accordance with the DAT function μDAT(α,β), h1 shifts the maximum of r(δ) along
the axis α = β. The reason for introducing the parameter h1 will be discussed in
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Fig. 6.16 aWeighting distributionμDAT(α,β) and reversible parts r(δ) in Preisach planeP; arrows
indicate increasing parameter values; b normalized version of function r(δ) and its integration for
increasing as well as decreasing model inputs, respectively; parameter values for r(δ) (see (6.25)):
a = 0.4, b = 15, c = 0 and h1 = 0.1 [101]

Sect. 6.6.2. On account of the fact that c can usually be omitted in (6.25), r(δ) and,
consequently, yrev(k) are described by the two additional parameters a and b [101].
Considering also the DAT function, the analytical weighting distribution for model-
ing the large-signal behavior as well as reversible parts comprises eight independent
parameters, i.e.,

p = [a, b, B, η, h1, h2,σ1,σ2]
t . (6.26)

At this point, it should be mentioned that the reversible parts have already been
applied in Figs. 6.10 and 6.14 to obtain the results by means of analytical weighting
distributions. Table 6.1 additionally contains the parameters a and b for μDAT(α,β),
μGAUSS(α,β) as well as μLOR(α,β).

6.6.2 Asymmetric Behavior

According to the assumptions in Sect. 6.5 (see Assumptions 2 and 3 on p. 214),
the switching behavior of unloaded domains inside ferroelectric materials is sym-
metrical to the applied electric field intensity. However, especially ferroelectrically
hard materials often exhibit asymmetric hysteresis curves. This fact can be mainly
ascribed to a restricted mobility of domain walls (see also Sect. 3.6.2). Such pinned
or clamped domain walls originate from defects and imperfections in the crystal
lattice [18]. As a result, a bias field intensity may arise which has to be compensated
by the applied electric field in order to initiate domain switching processes.

The bias field intensity Ebias (normalized value ebias) can be considered within the
generalized Preisach hysteresis model by shifting an originally symmetric weighting
distribution μH(α,β) along the axis α = β. For this purpose, we introduced in the
DAT function the parameter h1 that shifts themaximumofμDAT(α,β) (see Fig. 6.11b)
as well as of the reversible parts r(δ) (see Fig. 6.16a) in the Preisach plane P .
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Fig. 6.17 a Step-by-step procedure to simulate asymmetric hysteresis curves through Preisach
hysteresis modeling; b comparison of measurements and simulations for a major loop of P(E); c
spatially discretized weighting distribution µDAT for M = 800; d reversible parts r(δ) according
to (6.25); piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material Pz26)

Apart from the asymmetric shape of a hysteresis curve y(x) with respect to the
applied input x , the output y itself can be asymmetric in addition leading tomax(y) �=
−min(y) (see, e.g., Fig. 6.17b). But if every elementary switching operator γαβ of
the Preisach hysteresis model takes the output value −1 (i.e., P = P−) or +1 (i.e.,
P = P+), y will be symmetrical, which means max(y) = −min(y). The Preisach
hysteresis operator is, thus, not sufficient to model asymmetric outputs ranging from
min(y) to max(y). In case of asymmetric hysteresis curves P(E) for ferroelectric
materials, we have to add an appropriate offset Poff to the electric polarization that
is determined through measurements [101].

To present the applicability of the generalized Preisach hysteresis operator HG,
let us investigate a piezoceramic disk (diameter 10.0mm; thickness 2.0mm) made
of the ferroelectrically hard material Pz26. Figure 6.17a illustrates the step-by-step
procedure to obtain an asymmetric hysteresis curve through Preisach modeling. As
the comparison of measurements and simulations for a major loop in Fig. 6.17b
reveals, HG yields reliable results. The asymmetric behavior with respect to E is
well described by the function parameter h1. Figure 6.17c and d depict the obtained
weighting distribution µDAT and r(δ) denoting reversible parts on the axis α = β.
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6.6.3 Mechanical Deformations

Until now, we have concentrated on Preisach modeling for the electrical behavior
(i.e., P(E)) of ferroelectric materials. In many practical applications (e.g., high-
precision positioning systems) of those materials, it is, however, of utmost impor-
tance to consider their mechanical behavior in addition. With a view to simulat-
ing the mechanical large-signal behavior of piezoceramic materials, let us briefly
repeat relevant physical processes on the atomistic as well as mesoscopic scale (see
Sect. 3.6.2). The spontaneous polarization pn of a unit cell points in direction of its
largest geometric dimension. Because each pn is almost perfectly aligned in parallel
to the applied electric field E in the saturation state of the piezoceramic material,
the macroscopic mechanical deformation also reaches the highest value in direction
of E . During changes from positive to negative saturation (and vice versa), several
domains switch to the ferroelastic intermediate stage at first, which causes a negative
mechanical deformation of the material [14]. When |E | exceeds thereupon the coer-
cive field intensity

∣
∣E±

c

∣
∣, the domainswill be aligned again in direction of E , i.e., 180◦

with respect to their original orientation. The macroscopic polarization state of the
piezoceramic material, thus, changes its sign, while the mechanical deformations are
equal for positive and negative saturation. In other words, electric polarization and
mechanical deformation differ significantly in terms of the underlying large-signal
behavior.

We can reasonably describe the mechanical deformation S(E) of ferroelectric
actuators through a generalized Preisach hysteresis model (e.g., [32, 38]) if they
operate in unipolar and semi-bipolar working areas (i.e., E > E−

c ). The function
parameter c (see (6.25))within the presented operatorHG provides shifts of simulated
deformations in vertical direction, which are possibly existing in theseworking areas.
On the contrary, butterfly curves resulting for bipolar working area demand further
extensions of the Preisach hysteresis operator. For this purpose, one can find two
different approaches in literature:

• Kadota and Morita [47] introduced a tristable hysteron to model the ferroelas-
tic intermediate stage of domains. As the name indicates, this hysteron features
three stable states, i.e., −1, 0 as well as +1. Since the approach requires a four-
dimensional weighting distribution, complexity of the underlying Preisach hys-
teresis models considerably increases.

• Due to the fact that mechanical deformations of ferroelectric materials are equal
for positive and negative saturation, we may rectify the output y = HP[x] of the
classical hysteresis operator (e.g., [36]).

Concerning practical applications of Preisach hysteresis models for ferroelectric
materials, the second approach should be preferred. That is why we will concentrate
exclusively on this approach for describingmechanical deformations. Hegewald [36]
conducted rectification of the operator output guided by the approximation S ∝ P2.
To model the large-signal behavior of mechanical deformations by means of the
Preisach hysteresis operator, he utilized the same weighting distribution as for the
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electric polarization, i.e., μHEG(α,β). Under certain circumstances, the approxima-
tion S ∝ P2 yields satisfactory results, but in general, the deviations between sim-
ulations and measurements of S(E) are rather high. The following findings can be
deduced for computingmechanical large-signal behavior through Preisach hysteresis
operators [101]:

• For several ferroelectric materials, the rectified electric polarization significantly
differs from the macroscopic mechanical deformation. It is, therefore, necessary
to identify individual weighting distributions for the polarization and the defor-
mation, which are parameterized by the vectors pP and pS , respectively.

• As mentioned above, domain switching processes by 180◦ within ferroelectric
materials alter the sign of the electric polarization but do notmodify their mechani-
cal deformation. Thus, it seems reasonable to rectify the operator output y through
computing its absolute value instead of squaring. In doing so, the function parame-
ters (e.g., B) of μDAT(α,β) influence hysteresis curves for polarization and defor-
mation in a similar manner (see p. 219).

• To account for asymmetric large-signal behavior of mechanical deformations, we
have to extend the generalized Preisach hysteresis operator HG.

An appropriate method to consider these findings for modeling mechanical defor-
mations of ferroelectric materials is given by (time step k; normalized electric field
intensity e)

S(k) ={c1 + |HG[e](k) + c2| + c3(e − 0.5)} · 100% . (6.27)

Hence, the three parameters c1, c2 and c3 are required in addition. Overall, Preisach
hysteresis modeling for mechanical deformations comprises 11 independent param-
eters, namely

pS = [a, b, B, c1, c2, c3, η, h1, h2,σ1,σ2]
t . (6.28)

Five parameters refer to the DAT function μDAT(α,β) and two parameters to
reversible parts in the large-signal behavior.

In order to demonstrate this modeling approach, let us investigate a ferroelectri-
cally hard piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material Pz26),
which usually features an asymmetric large-signal behavior for both polarization and
deformation. The mechanical deformations of the piezoceramic disk were acquired
with a linear variable differential transformer (abbr. LVDT [99]) that was optimized
formeasuring small displacements.9 Figure 6.18a shows the basic steps in simulating
a butterfly curve according to (6.27). Asymmetric behavior is incorporated in the gen-
eralizedPreisach hysteresis operatorHG through the parameter h1. Before computing
the absolute value, we add an offset c2 to themechanical deformation. Therewith, one
can model differences in maximum values of S, i.e., S−

max �= S+
max. Finally, the linear

equation c1 + c3(e − 0.5) is added to consider different slope stiffnesses as well as

9The LVDT was applied for all measurements of S in this chapter.
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Fig. 6.18 a Step-by-step procedure to simulate mechanical deformations of ferroelectric materials
through Preisach hysteresis modeling; b comparison of measured and simulated major loop (but-
terfly curve) S(E); c spatially discretized weighting distribution µDAT for M = 800; d reversible
parts r(δ) according to (6.25); piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material
Pz26)

the circumstance S−
min �= S+

min. To identify the parameter vector pS , simulations have
to be adjusted so that they match measurements best possible.

As Fig. 6.18b reveals, measured and simulated mechanical deformations of the
piezoceramic disk coincide very well. It can be stated that the presented Preisach
hysteresis model is ideally suited for predicting mechanical deformations of ferro-
electricmaterials. Figure 6.18c and d depict the resultingweighting distributionµDAT
and the reversible parts r(δ), respectively.

6.6.4 Rate-Dependent Behavior

Even though a piezoceramic material is macroscopically excited in a uniform man-
ner, domain switching processes inside the material do not take place simultane-
ously. Depending on the alteration rate of the excitation signal, this may remarkably
influence macroscopic quantities (e.g., mechanical strain) [46]. The macroscopic
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rate-dependent behavior of piezoceramic materials originates from their inhomoge-
neous inner structure, which yields locally different electric field intensities as well
as mechanical stresses for the domains. In a first approximation, we can assume
that a single domain switches quickly after its individual switching energy is locally
provided [72]. Such switching processes and reversible as well as irreversible ion dis-
placements alter the spatial distribution of both electric field intensity andmechanical
stress inside the piezoceramic material. As a result, a large number of domains do not
switch immediately but depending on previous switching processes of neighboring
domains and ion displacements within them. From the macroscopic point of view,
this leads to the creep behavior of electric polarization and mechanical strain (e.g.,
[109]).

Outputs y(t) of the classical Preisach hysteresis operator HP solely depend on
temporal succession of the input x(t) (see I and J in Fig. 6.7). Therefore, the alter-
ation rate of x(t) with respect to time (i.e., ∂x(t) /∂t) does not affect y(t). Since
macroscopic electric polarizations and macroscopic mechanical strains of ferroelec-
tric materials exhibit such a dependence, one has to extend HP, which results in
so-called dynamic or rate-dependent Preisach hysteresis models. Mayergoyz [63]
suggests a dynamic Preisach hysteresis model that is based on a varying weighting
distribution μH(α,β) according to the partial time derivative of y(t). Viswamurthy
et al. [95] applied this approach to describe dynamic hysteresis of piezoceramic
stack actuators. In several other research works (e.g., [67, 85]), the partial time
derivative of x(t) is used instead for modifying μH(α,β). As alternative to chang-
ing the weighting distribution, Bertotti [11] introduced time-dependent elementary
switching operators for dynamic Preisach modeling. In contrast to common relay
operators (see Fig. 6.3a), these operators can take continuous values between−1 and
1. Actually, their practical implementation is rather complicated and, thus, the oper-
ator output cannot be calculated efficiently. Füzi [31] developed a dynamic Preisach
hysteresis model through applying an appropriate time lag for x(t). Thereby, the
resulting hysteresis operator loses its physical meaning, which poses a significant
problem regarding generalization.

A different class of dynamic Preisach hysteresis models for ferroelectric materi-
als is based on so-called creep operators. Such an operator is connected in series to
the output of the classical Preisach hysteresis operator, i.e., y(t) = HP[x](t) repre-
sents the creep operator’s input. Hegewald [36] as well as Reiländer [76] utilized a
rheological modeling approach to achieve appropriate creep operators for ferroelec-
tric materials. This phenomenological approach is commonly named Kelvin–Voigt
model. A single elementary creep operator can be understood as a parallel connec-
tion of one spring and one damper element (cf. Fig. 5.20 on p. 168). By means of
individually weighting several of those elementary creep operators, we are able to
describe the creep behavior of ferroelectric materials in a reliable way (e.g., [36]).
Although elementary creep operators can be efficiently implemented, the amount
of necessary parameters for dynamic Preisach hysteresis models increases remark-
ably. Consequently, the uniqueness of the parameters might get lost during their
identification.
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With a view to practical applications of dynamic Preisach hysteresis models
for ferroelectric actuators, we are primarily interested in a modeling approach that
requires only a few additional parameters. Because ferroelectric actuators operate in
most applications in a limited frequency range, one may simply extend the classical
Preisach hysteresis operatorHP. As presented in [67, 85], let us also alter the weight-
ing distribution. For this purpose, a special procedure for piezoceramic actuators has
been developed at the Chair of Sensor Technology (Friedrich-Alexander-University
Erlangen-Nuremberg), which is based on the weighting distribution μDAT(α,β). In
short, the analytical function defining μDAT(α,β) is modified with respect to the
frequency f of the excitation signal [78, 101, 103, 104]. This leads to a dynamic
weighting distribution μDAT(α,β, f ) and, therefore, we obtain a dynamic Preisach
hysteresis model.

In the following, the developed procedure is illustrated on the example of a ferro-
electrically soft piezoceramic disk (diameter 10.0mm; thickness 2.0mm; material
Pz27). Figure 6.19a shows resulting hysteresis curves for the acquired electric polar-
ization Pmeas(E, f )with respect to the excitation frequency f . Thereby, the electrical
excitation was chosen so that the hysteresis curves contain major loops as well as
first-order reversal curves for selected excitation frequencies. The frequencies range
from 0.01 to 5Hz and are almost logarithmically distributed in this range. While
the electric polarization P±

sat in the saturation state and the remanent polarization P±
r

stay nearly constant, the coercive field intensity E±
c exhibits a significant dependence

on f . If f increases,
∣
∣E±

c

∣
∣will also increase which, thus, widens the hysteresis curve.

To incorporate the measured behavior of the investigated piezoceramic material
in our Preisach hysteresis model, let us take a look at Fig. 6.12. The parameter study
reveals that the parameter h2 of the DAT function has a similar effect on hysteresis
curves as f . For this purpose, it makes sense to exclusively alter h2 with respect
to f in order to obtain a dynamic Preisach hysteresis model. It is recommended to
proceed as follows: (i) As a first step, one should identify the entire parameter set
of the Preisach hysteresis model at one excitation frequency; (ii) subsequently, the
dependence of h2 on f should be evaluated, i.e., the remaining parameters (e.g., B)
are not modified. In case of the investigated piezoceramic disk, the entire parameter
set pP for the electric polarization was identified through an appropriate adjustment
of simulations to measurements at f = 0.1Hz. Note that for the other excitation
frequencies, h2 was simply changed within pP . As the simulated hysteresis curves
of the electric polarization Psim(E, f ) in Fig. 6.19c point out, we can describe the
frequency dependent behavior of the piezoceramic disk very well with the suggested
dynamic Preisach hysteresis model. This does not only refer to the major loops but
also to the minor loops.

Figure 6.19e depicts the identified values for h2 with respect to f for the electric
polarization of the investigated disk, i.e., h2,P( f ). These values can serve as data
points of a smoothing function ψsmooth( f ) for h2,P( f ). Due to the progression of the
data points, logarithmic as well as exponential functions are appropriate smoothing
functions [101]. Here, let us utilize a special exponential function, which is given by
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(a) measured polarization (b) measured strain
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Fig. 6.19 a and b Measured electric polarization Pmeas(E, f ) and mechanical strain
Smeas(E, f ) with respect to excitation frequency f ; c and d simulated curves Psim(E, f )
and Ssim(E, f ) through Preisach hysteresis modeling; e and f resulting parameter values
as well as smoothing function ψsmooth( f ) according to (6.29); excitation frequencies f ∈
{0.01, 0.02.0.05, 0.1, 0.5, 1, 2, 5}Hz; piezoceramic disk (diameter 10.0mm; thickness 2.0mm;
material Pz27)

ψsmooth( f ) = ς1 + ς2 · f ς3 (6.29)

with the function parameters ς1, ς2, and ς3. Hence, one is able to estimate val-
ues h2,P( f ) for excitation frequencies even if measured data for that frequencies
are not available. Thereby, two additional parameters are required. Table 6.2 con-
tains the resulting parameters of the smoothing function ψsmooth( f ) for h2,P( f ).
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Table 6.2 Parameters ςi of smoothing functionψsmooth( f ) in (6.29) for dynamicPreisach hysteresis
model

ς1 ς2 ς3

Polarization h2,P ( f ) −0.2121 0.6703 0.0308

Strain h2,S( f ) 0.3819 0.0583 0.4206

BS( f ) 0.3315 0.1091 0.0995

Now, we concentrate on the dynamic large-signal behavior of the mechanical
strain. Figure 6.19b depicts resulting hysteresis curves for acquired mechanical
strains Smeas(E, f ) of the investigated piezoceramic disk with respect to the excita-
tion frequency f . The minima S±

min remain nearly constant, while the maxima S±
max

strongly depend on f . That is the reason why apart from h2, the parameter B of
the DAT function has to be modified. However, in order to predict the dynamic
large-signal behavior of the mechanical strain by means of a dynamic Preisach
hysteresis model, one can perform the same steps as for the electric polarization.
Again, the entire parameter set pS should be identified for a certain excitation fre-
quency f (here 0.1Hz) and after that the dependence of h2 as well as of B on f
should be evaluated. As the comparison of measurements Smeas(E, f ) and simu-
lations Ssim(E, f ) (see Fig. 6.19d) indicates, the presented dynamic Preisach hys-
teresis model is also applicable for the mechanical strain. Figure 6.19f shows the
identified values for h2,S( f ) and BS( f ) with respect to f as well as the smoothing
functionsψsmooth( f ) for both parameters according to (6.29). The underlying param-
eters ς1, ς2, and ς3 are listed in Table 6.2. In summary, dynamic Preisach hysteresis
modeling for the large-signal behavior of mechanical strains requires four additional
parameters.

6.6.5 Uniaxial Mechanical Stresses

In various practical applications, ferroelectric actuators are mechanically clamped or
loaded causing a certain mechanical prestress within the ferroelectric material. For
instance, piezoelectric stack actuators have to be mechanically prestressed in order
to prevent damage during operation (see Sect. 10.1). Mechanical stresses arising
within a ferroelectric material can, however, alter its electrical as well as mechani-
cal behavior significantly [106, 109, 110]. To demonstrate this fact, we consider the
large-signal behavior of a ferroelectrically soft piezoceramic disk (diameter 10.0mm;
thickness 2.0mm;material Pz27). Figures 6.20a and6.21a depict the acquired electric
polarization Pmeas(E, T ) and mechanical strain Smeas(E, T ) of the disk for varying
uniaxial mechanical prestresses T , respectively. The mechanical load was applied
in thickness directions (3-direction) of the disk through a tension-compression test-
ing machine. It can be clearly seen that both the electrical and mechanical behavior
strongly depend on the mechanical prestress inside the disk. The reason for this lies
in switching processes of domains and in the internal structure of piezoceramicmate-
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rials. The polarization direction (spontaneous polarization) within the units cells is
preferably aligned in parallel to the applied electric field E . Against that due to the
connection of polarization direction and largest geometric dimension of the unit cells,
they are preferably aligned orthogonal to the applied mechanical stress T . Conse-
quently, macroscopic polarizations as well as mechanical strains will be decreased if
the directions of E and T coincide,which is the case for the investigated piezoceramic
disk. The greater T , the more domains will stay in the ferroelastic intermediate stage
during poling and can no longer be aligned in the direction of E [14]. Hence, coercive
field intensity
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∣
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state as well as the maximum mechanical strain S±
max of the piezoceramic material

are reduced which yield smaller hysteresis curves (see Figs. 6.20a and 6.21a).
To utilize Preisach hysteresis modeling for the large-signal behavior of mechani-

cally prestressed ferroelectric materials, one may identify the entire parameter set of
the generalizedmodel for the current situation. That will be, however, only possible if
the mechanical prestress remains constant during operation. In case of time-varying
mechanical loads, it makes sense to consider the resulting mechanical prestress as
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additional input of a generalized Preisach hysteresis model HG (see Fig. 6.15).
For ferromagnetic materials, there can be found several publications concerning
the incorporation of mechanical prestresses in Preisach hysteresis models. Some of
the available methods are briefly described below. Adly et al. [1] suggest an approach
that is based on the superposition of two Preisach hysteresis operators. While the
magnetic field intensity serves as input for the first hysteresis operator, the mechani-
cal stress is the input for the second one. Since the weighting distribution of the first
hysteresis operator depends on stress and those of the second one on magnetic field
intensity, a mutual coupling of magnetic and mechanical quantities is achieved. The
particular problem here is the identification of appropriate weighting distributions.
Bergqvist and Engdahl [10] use a single Preisach hysteresis operator with one input,
which is given by combiningmagnetic field intensity andmechanical stress. Because
of the fact that each elementary switching operator γαβ requires an individual input
resulting from this combination, model complexity increases extensively. Enhance-
ments of both methods are mentioned in, e.g., [19, 60]. In contrast to ferromagnetic
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materials, the number of publications dealing with Preisach hysteresis models for
ferroelectric materials under additional consideration of mechanical prestress is cur-
rently very low. Hughes andWen [41] early recognized a need for Preisach hysteresis
models with two separate inputs for electrical excitation andmechanical prestress but
did not pursue this path toward a generalized approach. Freeman and Joshi [30] intro-
duced a hysteron depending on the applied mechanical prestress. However, they only
presented simulation results of the rate-independent approach and did not conduct
verifications through measurements on test samples.

Due to the lack of appropriate Preisach hysteresis models enabling consideration
of mechanical prestress within ferroelectric materials, an appropriate generalized
Preisachhysteresismodelwasdeveloped at theChair ofSensorTechnology (Friedrich-
Alexander-University Erlangen-Nuremberg) [101, 105, 106]. Let us explain the
underlying idea by the aforementioned large-signal behavior of the piezoceramic disk
in case of uniaxial mechanical prestress. During acquisition of the electric polariza-
tion Pmeas(E, T ), the mechanical prestress was increased starting from 0 to 100MPa
in steps of 5MPa. The curves in Fig. 6.20a refer to the steady state, which means that
mechanical creep processes taking place within a prestressed ferroelectric material
had already decayed [101]. Similar to the procedure for the rate-dependent behavior
of ferroelectric materials (see Sect. 6.6.4), one can modify the weighting distribu-
tion of a classical Preisach hysteresis model with respect to the applied mechanical
load. Here, we introduce the weighting distribution μDAT(α,β, T ), which is, thus,
also a function of the mechanical prestress T . As the comparison of Pmeas(E, T ) in
Fig. 6.20a and the parameter study in Fig. 6.12 reveals, the function parameters B, η
and h2 should be altered according to the applied mechanical load. This can be
ascribed to the fact that

∣
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∣
∣E±

c

∣
∣ as well as the slope steepness nearby

∣
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c

∣
∣

change through T . Figure 6.20b displays simulated electric polarizations Psim(E, T )

for different values of T . The entire parameter set of the Preisach hysteresis opera-
tor was identified for the mechanically unloaded disk, i.e., T = 0. Note that in the
loaded case (i.e., T �= 0), we solely modified B, η as well as h2. Figure 6.22a–c con-
tain the resulting parameters BP(T ), ηP(T ) and h2,P(T ) with respect to T . Because
these parameters feature smooth progression, they can serve as data points of the
smoothing function ψsmooth(T )

ψsmooth(T ) = ς1 + ς2e
ς3·T/(1MPa) . (6.30)

Consequently, the generalized Preisach hysteresis operatorHG comprises nine addi-
tional function parameters. For the investigated piezoceramic disk, these function
parameters are listed in Table 6.3. Finally, the relative deviation εr(T ) between
measured and simulated electric polarization is shown for two cases. While in
Fig. 6.20c, the applied mechanical prestress was considered in Preisach modeling,
Fig. 6.20d depicts the results if we neglect this dependence. The comparison of the
figures emphasizes once again the necessity of incorporating mechanical prestress
in Preisach hysteresis models for ferroelectric materials.

As a next step, let us take a closer look at the mechanical behavior of the piezoce-
ramic disk. In Fig. 6.21a, one can see the acquired butterfly curves Smeas(E, T ) in the
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Fig. 6.22 Resulting parameter values a–c for electric polarization P (see Fig. 6.20) and d–g for
mechanical strain S (see Fig. 6.21) with respect to applied mechanical prestress T , respectively;
a–c contain smoothing functions ψsmooth(T ) according to (6.30)

Table 6.3 Parameters ςi of smoothing functionψsmooth(T ) in (6.30) to consider uniaxialmechanical
prestress T in generalized Preisach hysteresis model HG

ς1 ς2 ς3

BP (T ) 5.7139 255.8991 −0.0275

ηP (T ) 0.4657 0.7089 −0.0142

h2,P (T ) 0.2819 0.1102 −0.0118

steady state for differentmechanical prestresses,which range from10 to 95MPa (step
size 5MPa). It is interesting to note that the maximum mechanical strains S±

max of
the piezoceramic disk slightly increase for small values of T (see Fig. 6.21c). This is
mainly attributable to the increased mobility of domains within piezoceramic mate-
rials in the ferroelastic intermediate stage [101]. However, a further increase of the
mechanical load strongly reduces S±

max. To simulate the mechanical strain of the disk
by means of Preisach hysteresis modeling, we modify the weighting distribution
again with respect to the applied mechanical load, which leads to μDAT(α,β, T ). In
contrast to Pmeas(E, T ), parameter studies indicate that adjusting B, η, and h2 is not
sufficient to describe Smeas(E, T ) in a reliable way. The parameter c2 (see (6.27)) has
also to be varied with respect to the applied prestress. Such as for the electric polar-
ization, the entire parameter set of the Preisach hysteresis operator was identified
for the mechanically unloaded disk. In the loaded case, we only modified B, η, h2
and c2. Figure 6.21b depicts the simulated butterfly curves Ssim(E, T ) for the piezo-
ceramic disk in case of mechanical prestresses ranging from 10 MPa to 50 MPa.
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The underlying parameters BS(T ), ηS(T ), h2,S(T ) as well as c2,S(T ) are depicted in
Fig. 6.22d–g. Due to the fact that S±

max slightly increases at first, one has to utilize
more complicated smoothing functions than for the electric polarization. Within a
limited prestress range, it is, nevertheless, possible to conduct similar approxima-
tions as in (6.30). At the end, Fig. 6.21d displays normalized relative deviations εr(T )

betweenmeasured and simulatedmechanical strains of the piezoceramic disk for dif-
ferent mechanical prestresses. These deviations stay mostly far below 10%, which
confirms once more the applicability of the presented Preisach modeling approach.

6.7 Parameter Identification for Preisach Modeling

Classical as well as generalized Preisach hysteresis modeling for ferroelectric mate-
rials requires several parameters that have to be identified. For the electric polariza-
tion P and mechanical strain S, we collect these parameters in the vectors (cf. (6.26)
and (6.28))

pP =[
aP , bP , BP , ηP , h1,P , h2,P ,σ1,P ,σ2,P

]t
(6.31)

pS =[
aS, bS, BS, c1, c2, c3, ηS, h1,S, h2,S,σ1,S,σ2,S

]t
, (6.32)

respectively. In Sect. 6.7.1, a identification strategy is presented allowing reliable
simulations for the different working areas of ferroelectric actuators, i.e., bipolar,
unipolar as well as semi-bipolar working areas. The underlying approach is then
applied to a piezoceramic disk (Sect. 6.7.2), which is made of the ferroelectrically
soft material PIC255.

6.7.1 Identification Strategy for Model Parameters

Just as in Chap. 5, the parameter identification represents an ill-posed inverse prob-
lem. The desired parameter vectors pP as well as pS result from comparisons of
measurements and simulations, i.e., outputs of the Preisach hysteresis operator. Due
to this fact, one has to acquire adequate electrical andmechanical quantities. Through
iterative adjustments of the parameters, the deviations between simulations and mea-
surements get reduced until a sufficiently good match is found. The success of the
iterative adjustments mainly depends on two points: (i) The measurement signals

utilized for identification and (ii) the initial guess p
(0)
P;S of the parameter vectors.

For Preisach hysteresis modeling, it is recommended to apply measurement signals
that are close to the excitation signals actually occurring in practical applications. In
other words, we should select measurement signals with respect to the working area
of the ferroelectric actuator. Because Preisach hysteresis operators demand inputs in
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electric polarization andmechanical strain in different working areas of ferroelectric actuators [101]

the range [−0.5, 0.5], the raw data has to be normalized to its maximum (see (6.7)).
Such normalizations are necessary in each working area of the ferroelectric actuator.

The initial guess strongly affects convergence of the identification approach as
well as its duration. To find p

(0)
P;S for the working areas, a specific procedure is

indispensable. Figure 6.23 depicts an entire identification strategy that has proven to
be effective for piezoceramic materials [101]. The presented strategy can be divided
into two parts, which are discussed below. While the first part exclusively relates to
bipolar working areas, the second one deals with unipolar as well as semi-bipolar
working areas.

• Bipolar Working Area: An appropriate initial guess p(0)
P to predict P of piezo-

ceramic materials in the bipolar working area (i.e., saturation and major loops)
results from manually adjusting the parameters according to Fig. 6.12. After con-
ducting iterative parameter adjustment on basis of an optimization approach (e.g.,
Levenberg–Marquardt algorithm), one obtains the solution ps

P . This vector serves
as starting point for identifying the parameter vector ps

S , which yields reliable sim-
ulations for S(E) in the bipolar working area, i.e., butterfly curves. In particular,
with the exception of aP and BP , the components of ps

P can be used directly as
initial guess for pS . Due to our definition of the Preisach hysteresis operator, we
have to rescale asP and Bs

P to achieve
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Table 6.4 Resulting parameters (i.e., components of ps
P and ps

S) for Preisach hysteresis modeling
of electric polarization P and mechanical strain S in different working areas of the piezoceramic
disk; bold numbers indicate parameters excluded from identification

B η h1 h2 σ1 σ2

Pbipolar 1868.5 1.275 0.011 0.450 76.7 167.5

Punipolar 1868.5 0.920 0.011 0.450 337.7 181.6

Psemi−bipolar 1868.5 0.881 0.143 0.450 392.1 160.8

Sbipolar 4.432 1.157 0.009 0.434 34.2 137.6

Sunipolar 4.432 1.089 0.675 0.041 12.2 89.3

Ssemi−bipolar 4.432 0.420 0.090 0.434 5884.4 1045.2

a · 103 b c1 c2 · 103 c3 · 103
Pbipolar 53.8 4.624 – – –

Punipolar 59.6 1.718 – – –

Psemi−bipolar 70.5 1.563 – – –

Sbipolar 1.5 3.641 0 −0.096 0.273

Sunipolar 16.8 0.062 0 −0.096 0.273

Ssemi−bipolar 1.5 1.608 0 −0.096 0.273

a(0)
S = ς · asP
B(0)
S = ς · Bs

P

}

with ς = 2(Smax − Smin) · 1Cm−2

(Pmax − Pmin) · 100% . (6.33)

The initial guess for the further parameters c1, c2 as well as c3 results from geo-
metric considerations shown in Fig. 6.18a.

• Unipolar and Semi-bipolarWorking Areas: For these working areas, ps
P and ps

S
from the bipolar working area represent appropriate initial guesses. However,
with a view to ensuring convergence of the subsequent optimization approach, the
parameter B should be excluded from identification, i.e., Bs

P and Bs
S as identi-

fied for the bipolar working area are directly used. It might also be necessary to
exclude h1 and h2 during optimization, i.e., h1,P , h2,P , h1,S as well as h2,S . If S(E)

is simulated in unipolar and semi-bipolar working areas without the model exten-
sion in (6.27), we can utilize a rescaled version of ps

P as suitable initial guess.
Again, it is recommended to exclude BS from identification and maybe h1,S as
well as h2,S in addition.
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6.7.2 Application to Piezoceramic Disk

Now, let us apply the aforementioned identification strategy to a piezoceramic
disk (diameter 10.0mm; thickness 2.0mm), which is made of the ferroelectrically
soft material PIC255. Table 6.4 contains the resulting components of ps

P and ps
S in

the different working areas. As can be clearly seen, the identified parameters differ
considerably for both the working areas and the physical quantities (i.e., electric
polarization or mechanical strain). This emphasizes once again the importance of
determining individual parameter vectors.

Figures 6.24 and 6.25 depict various measurements as well as simulations for
the piezoceramic disk in unipolar and semi-bipolar working areas, respectively. The
left panels deal with electric polarizations P of the disk and the right panels show
the obtained mechanical strains S. Due to the fact that the initial polarization state
of the disk is, strictly speaking, unknown in both working areas, it is not possible
to determine absolute values for P and S. We exclusively quantify changes of the
quantities instead, which are denoted by ΔP and ΔS. As the comparisons in the
Figs. 6.24a, b and 6.25a, b reveal, Preisach hysteresis modeling yields reliable simu-
lations for ΔP(E) and ΔS(E). This can also be seen in the Figs. 6.24c, d and 6.25c,
d, which display the time signals utilized for identifying ps

P and ps
S (see Table 6.4).

With a view to demonstrating the applicability of Preisach hysteresis modeling for
piezoceramic actuators, additional comparisons were carried out by means of fur-
ther time signals (Figs. 6.24e, f and 6.25e, f). Although these time signals have not
been considered during parameter identification, simulations coincide very well with
measurements. This is confirmed by the normalized relative deviation εr of the sim-
ulation results as shown in the Figs. 6.24g, h and 6.25g, h. In the particular cases, |εr|
always stays below 6%. Summing up, it can be stated again that Preisach hysteresis
modeling represents an excellent approach to predict the large-signal behavior of
piezoceramic actuators, especially in unipolar and semi-bipolar working areas.

6.8 Inversion of Preisach Hysteresis Model

To conduct model-based compensation of hysteresis effects within ferroelectric actu-
ators, we have to determine that input quantity xinv(k) for time step k, which yields
the desired target output ytar(k). Under certain circumstances, it may be necessary to
consider also specific boundary conditions such as applied mechanical prestress T
and excitation frequency f . That is the reason why we define here input quanti-
ties xinv(k), target quantities ytar(k), and boundary conditions zbou as follows (exci-
tation voltage u(k); mechanical displacement d(k)):

• xinv(k) ∈ {E(k) , u(k)}
• ytar(k) ∈ {P(k) , S(k) , d(k)}
• zbou ∈ {T, f } .
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Fig. 6.24 a and b Comparison of measured and simulated hysteresis curves ΔP(E) and ΔS(E)

in unipolar working area of the piezoceramic disk; c and d time signals for identifying weighting
distributions; e and f time signals for validating Preisach hysteresis modeling; g and h resulting
normalized relative deviations |εr| (magnitude) for validation signals
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ytar(k)ytar(k) xinv(k)xinv(k)
H−1

P H−1
G

zbou

Fig. 6.26 Inverted (classical) Preisach hysteresis operator H−1
P and inverted generalized Preisach

hysteresis operator H−1
P

Generalized Preisach hysteresis modeling can be used to predict the hysteretic
behavior of electric polarizations P(k) and mechanical strains S(k) for ferroelectric
materials. Since these quantities represent target quantities, the underlying Preisach
hysteresis operator HP has to be inverted. In other words, the inverted general-
ized Preisach hysteresis operator H−1

G and, thus, the inverted Preisach hysteresis
operator H−1

P are required for model-based compensation of hysteresis effects (see
Fig. 6.26). However, owing to the fact that the elementary switching operators γαβ

exhibit discontinuities at the changeover pointsα and β, there does not exist a closed-
form solution for this task. Consequently, HP has to be inverted numerically.

One can find various approaches in literature to obtain an appropriate approxima-
tion of H−1

P . Several methods are based on iterative algorithms for locally inverting
discretized Preisach hysteresis models. For instance, Mittal and Menq [66] as well
as Tan and Baras [92] exploited such algorithms to compensate hysteresis of elec-
tromagnetic and magnetostrictive actuators. Viswamurthy and Ganguli [95] utilized
a locally inverted Preisach hysteresis model for controlling mechanical vibrations
through piezoelectric stack actuators. A different approach to achieve H−1

P results
from exchanging its input and output (e.g., [22, 91]). Thereby, the weighting distri-
bution μH(α,β) for γαβ has also to be inverted. With a view to ensuring positive
weighting distributions, Bi et al. [12] introduced an analytical weighting distribution
as well as an additional switching operator. They applied this approach for ferromag-
netic materials and present convincing results. Due to exchanging input and output
ofHP, the physical meaning, however, gets lost whichmay cause problems regarding
generalized Preisach hysteresis models.

Here, let us discuss an inverted Preisach hysteresis model that was developed by
Wolf and colleagues [101, 102]. Section 6.8.1 deals with the underlying iterative
inversion procedure, which is characterized in Sect. 6.8.2. Subsequently, the main
steps toward an inverted generalizedPreisach hysteresismodel are addressed. Finally,
model-based hysteresis compensation is applied to a piezoceramic disk.

6.8.1 Inversion Procedure

The computation of the sought-after input quantity xinv(k) yielding the target quan-
tity ytar(k) for time step k is performed incrementally. The target quantity has to be
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Fig. 6.27 Simplified flow
chart for incrementally
determining outputs of
inverted Preisach hysteresis
operator H−1

P ; ytar(k)
and xinv(k) = H−1

P [ytar](k)
represent desired target
quantity and sought-after
quantity for time step k,
respectively
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considered for the current as well as previous time step, i.e., ytar(k) and ytar(k − 1).
At each time step k, we analyze and simplify the current configuration of the Preisach
plane P(k). Thereby, the vectors ei(k), ej(k) and s(k) are used to indicate location
as well as sign of dominating extrema inP(k) (see (6.12) and (6.13)). The inversion
procedure is mainly based on a two-stage evaluation of the Everett matrix E =[Ei j

]
.

Figure 6.27 shows a simplified flow chart of the entire inversion procedure compris-
ing five steps, which are explained below.

1. Computation of the Increment Δytar(k)

In a first step, the increment Δytar(k) is computed which represents the change
of the target output ytar from time step k − 1 to time step k, i.e.,

Δytar(k) = ytar(k) − ytar(k − 1) (6.34)

If Δytar(k) = 0 is fulfilled, one can directly continue with the subsequent time
step k + 1. The resulting output of the inverted Preisach hysteresis model is
then given by xinv(k) = xinv(k − 1). This also holds for several further special
cases like saturation in the Preisach plane and an increment Δytar(k) that is
smaller than the discretization error Δyerr(k) from the previous iteration. How-
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ever, when Δytar(k) �= 0, we need to distinguish between two cases depending
on its sign (see (6.4) and (6.5)):

A© increasing ytar(k) , i.e., Δytar(k) > 0 ⇒ modification of α
B© decreasing ytar(k) , i.e., Δytar(k) < 0 ⇒ modification of β .

Hence, the dividing line L(k) in the Preisach plane P(k) is modified.

2. Simplification of the Preisach Plane P(k)

Actually, there exist various different configurations ofP(k), e.g., number of steps
in L(k) (see, e.g., Fig. 6.7). To standardize the subsequent inverting approach in
step 3 and 4, let us simplify the configurations by reducing them to two cases,
which are displayed in Fig. 6.28. For the particular configurations, the reduction
implies deleting the mth entry of the vectors ei(k), ej(k) and s(k). Consequently,
the output of the Preisach hysteresis operator changes byΔysimp(k) (hatched area
in Fig. 6.28), which has to be included in the current increment Δytar(k) of the
target output, i.e.,

Δy′
tar(k) = Δytar(k) + Δysimp(k) · sm(k)

= Δytar(k) + Eim jm · sm(k) . (6.35)

The following two steps deal with an iterative search in the Everett matrix E .
While the first one represents a coarse search, the second one is a detailed search.

3. Evaluation of Extreme Values’ Locations in the Everett Matrix E
The first iterative search steps exclusively considers dominating extrema inP(k)
that are specified through the vectors ei(k), ej(k), and s(k). If necessary, the
wiping-out rule of the Preisach hysteresis operator has to be applied in addition.
Principally, the first iterative search step consists of three substeps (see Fig. 6.29).

• The starting point is the dominating extremum (index m), which exhibits the
smallest magnitude. From this extremum, we readout the entries of E =[Ei j

]
in

descending order according to the components of ei(k) and ej(k). This procedure
is conducted until the condition

∣
∣
∣
∣

n+1∑

ν=m

Eiν jν · sν(k)

︸ ︷︷ ︸
Δyext(k)

∣
∣
∣
∣ <

∣
∣Δy′

tar(k)
∣
∣ <

∣
∣
∣
∣

n∑

ν=m

Eiν jν · sν(k)

∣
∣
∣
∣ (6.36)

is fulfilled.
• Now, the components m, . . . , n + 1 of ei(k), ej(k) and s(k) are used to adjust
the modified increment Δy′

tar(k) of the target function by means of Eiν jν , which
leads to



248 6 Phenomenological Modeling for Large-Signal ...

Δy′′
tar(k) = Δy′

tar(k) + Δyext(k)

= Δy′
tar(k) +

n+1∑

ν=m

Eiν jν · sν(k) . (6.37)

• At the end of the first iterative search step, the components m, . . . , n + 1
of ei(k), ej(k) and s(k) are deleted.We store the indices (iν, jν) of the extremum
that was deleted at last.
As a result, one knows the two dominating extrema between which the sought-
after entry is located in the Everett matrix E . Besides, the configuration of the
Preisach plane is further simplified.

4. Detailed Search for Correct Entry in the Everett Matrix E
The second iterative search (detailed search) can be performed in a strongly
restricted region of E . For an increasing target output ytar(k) (i.e., case A©), the
search is done along column jm (see Fig. 6.30). In the other case (i.e., B©), one has
to search in row im . The procedure starts in both cases at the entry Eiν jν featuring
the indices (iν, jν) that were stored in step 3. It is desired to find the entry Eir js ,
which coincides with y′′

tar(k) best possible, i.e.,

min
(∣
∣Δy′′

tar(k) − Eir js
∣
∣
)

with

{
js = jm for A©
ir = im for B© .

(6.38)

An efficient method for this task is the divide and conquer search algorithm [54].
Even if a fine spatial discretization (e.g., M = 800) of the Preisach plane is uti-
lized, the inverting procedure will require reasonable computation time.

5. Determination of the sought-after Input xinv(k)

The indices (ir , js) from step 4 are used to update xinv(k − 1). Depending on the
progression of the target output ytar(k), i.e., whether it is rising or falling, we
choose one of the following equations (cf. Fig. 6.31)

xinv(k) = M − ir
M − 1

− 0.5 for A© (6.39)

xinv(k) = 0.5 − M − js
M − 1

for B© . (6.40)

Furthermore, the discretization error Δyerr(k) between the increments of actu-
ally computed target quantity Δyinv(k) and of desired target output Δytar(k) is
calculated, which is, therefore, given by

Δyerr(k) = Δyinv(k) − Δy′′
tar(k) = Eir js · sm(k) − Δy′′

tar(k) . (6.41)
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Fig. 6.28 Simplification of Preisach plane P(k)

Fig. 6.29 Coarse search based on evaluation of extreme values’ location in Everett matrixE =[Ei j
]

and further simplification of Preisach plane

Fig. 6.30 Detailed search to figure out entry Eir js in Everett matrix

Note that Δyerr(k) has to be considered in step 1. Finally, we update the vec-
tors ei(k), ej(k), and s(k) according to the current input quantity xinv(k). This
results in ei(k + 1), ej(k + 1) as well as s(k + 1).

At the end of the whole inverting procedure, information is available which is nec-
essary to determine xinv(k + 1) for the subsequent time step k + 1. In doing so, we
start again with step 1 by considering the quantities ytar(k), ytar(k + 1), andΔyerr(k).

6.8.2 Characterization of Inversion Procedure

To characterize the inversion procedure, let us check its functionality and rate its
efficiency in addition. These investigations are carried out through a serial connec-
tion of inverted Preisach hysteresis operator H−1

P and original one, i.e., HP (see
Fig. 6.32) [101, 102]. We assume a target quantity ytar(k) that represents the input
ofH−1

P . The resulting output xinv(k) = H−1
P [ytar](k) serves then again as input ofHP,
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Fig. 6.31 Calculation of sought-after quantity xinv(k) resulting from indices (ir , js); update of
Preisach plane P(k)

Fig. 6.32 Approach to check functionality and to rate efficiency of inversion procedure; compu-
tation time tinv(k) for inversion procedure; computation time tfor(k) for evaluating HP in forward
direction

which leads to the final output yinv(k) = HP[xinv](k). Hence, one is able to compare
the desired target quantity ytar(k) with the quantity yinv(k) actually determined.

Figure 6.33a displays the utilized discrete-time target signal consisting of an offset
and two superimposed sinewaves. The sinewaves feature different amplitudes aswell
as frequencies, respectively. For the evaluation ofHP andH−1

P , a spatial discretization
of M = 200 was applied in the Preisach plane. Figure 6.33b compares the desired
target quantity with the output of the serial connection in a small timewindow. As the
comparison reveals, yinv(k) coincides very well with ytar(k). Apart from deviations
due to the spatial discretization of the Preisach plane, there do not arise any further
deviations. It can, thus, be stated that the inversion procedure provides reliable results.

The computation time of the inversion procedure denotes a decisive criterion with
regard to practical applications. Strictly speaking, the maximum duration tinv,max that
is required for a single time step determines the maximum sampling rate finv,max =
1/tinv,max for inverting the target quantity ytar(k). If model-based hysteresis compen-
sation is applied in open- or closed-loop control, xinv(k) can be updated after the time
interval tinv,max, i.e., tk+1 − tk ≥ tinv,max. In Fig. 6.33c, one can see the duration tinv(k)
for time step k, which is required for inverting ytar(k) in the considered time win-
dow (cf. Fig. 6.33b). The calculations were conducted on a standard desktop PC.10

Interestingly, tinv(k) takes mainly two values. The lower value results from termina-
tion conditions in step 1 of the inversion procedure, whereas the higher value tinv,max

is a consequence of running through all steps (i.e., step 1 to step 5). Note that even if
the target quantity ytar exhibits an arbitrary progress, tinv,max will never be exceeded.

10Desktop PC: Intel Core i5 with 3.19GHz and 4 GB RAM.
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(a) discrete-time target signal (b) comparison of ytar(k) and yinv(k)

(c) computation time (d) maximum of tinv(k) and tfor(k)
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Fig. 6.33 Characterization of inversion procedure: a Discrete-time target signal ytar(k); b compar-
ison of ytar(k) and output yinv(k) (cf. Fig. 6.32) for spatial discretization M = 200; c computation
times for inversion procedure tinv(k) as well as forward calculation tfor(k); maximum computation
time tinv,max; d comparison of tinv,max and tfor,max with respect to M

As a result, tinv,max < 0.15ms is guaranteed for the spatial discretization M = 200,
which leads to the sampling rate finv,max = 6.67 kHz.

Figure 6.33d depicts maximum durations tinv,max of the inversion procedure for
different spatial discretizations M . Moreover, maximum durations tfor,max per time
step (cf. Fig. 6.32) are shown for evaluating the Preisach hysteresis operator HP

in forward direction. It is worth to emphasize that tinv,max stays almost constant in
the considered range of spatial discretizations. This behavior can be ascribed to the
efficient divide and conquer search algorithm in step 4 of the inversion procedure.
However, contrary to tinv,max, the duration tfor,max increases almost along a straight
line with rising M .

According to these findings, the presented inversion procedure is an efficient
method for inverting Preisach hysteresis operators. Since the underlying algorithm
allows time-efficient computation of the desired quantities, it can be exploited for
both open- and closed-loop control of actuators exhibiting hysteretic behavior. The
inversion procedure is not restricted to ferroelectric actuators but can also be used
for actuators containing ferromagnetic materials.
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6.8.3 Inverting Generalized Preisach Hysteresis Model

ThegeneralizedPreisachhysteresis operatorHG (seeSect. 6.6) for ferroelectricmate-
rials comprises reversible parts, asymmetric behavior, mechanical deformations as
well as consideration of rate-dependent behavior and applied uniaxial mechanical
stresses. If generalization is restricted to reversible parts and asymmetric behavior,
we can evaluate the inverted generalized Preisach hysteresis operatorH−1

G in the same
manner as given in Sect. 6.8.1. This can be ascribed to the fact that both generaliza-
tions directly alter the weighting distribution μH(α,β) for the Preisach hysteresis
model. However, in case of the remaining generalizations (e.g, mechanical defor-
mation), further important points arises during inverting HG, which are discussed
below.

Let us start with the inversion approach for mechanical deformations S and
mechanical displacements d of ferroelectric materials. In the bipolar working area,
there exist two solutions of these target quantities for positive and negative electrical
excitations. Thus, it is impossible to invert S and d uniquely. Ferroelectric actuators,
however, usually operate in unipolar and semi-bipolar working areas. Due to this fact,
we are able to describe the underlying large-signal behavior through a generalized
Preisach hysteresis operator HG that does not require the extension given in (6.27).
As a result, the sought-after input quantities electric field intensity E and excitation
voltage u of ferroelectric actuators can be determined according to the inversion
procedure in Sect. 6.8.1. For instance, the target quantity d(k) for time step k serves
as input of the inverted generalized Preisach hysteresis operator H−1

G , which leads
to the output u(k) = H−1

G [d](k).
To consider rate-dependent behavior and mechanical stresses for ferroelectric

materials by means of HG, one has to take additional inputs (i.e., zbou ∈ {T, f })
into account, respectively. The inputs modify the spatially discretized weighting
distribution µ and, consequently, the Everett matrix E (see Sects. 6.6.4 and 6.6.5). It
is of utmost importance to incorporate such modifications in the inversion procedure
since only by doing so, we are able to determine reliable outputs of H−1

G . For that
reason, µ(zbou) as well as E(zbou) should be calculated for different inputs zbou in
advance [101]. In practical applications of ferroelectric actuators, the task is to select
an appropriate spatially discretized weighting distribution and Everett matrix. The
selection depends, of course, on the boundary conditions zbou, which actually occur
during application.

6.8.4 Hysteresis Compensation for Piezoceramic Disk

Here, model-based compensation of hysteresis effects through an inverted general-
izedPreisachhysteresis operator is applied to a piezoceramic disk (diameter 10.0mm;
thickness 2.0mm), which is made of the ferroelectrically soft material PIC255.
Before the results are presented, let us discuss a particular hardware-based approach
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(a)

(b)

ΔStar(t) Einv(t)

ΔStar(t) Elinear(t)

ΔPmodel(t)

ΔSmodel(t)

ΔSlinear(t)
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G

Fig. 6.34 Block diagram to achieve desiredmechanical strainsΔStar(t) of the piezoceramic disk for
a model-based hysteresis compensation and b uncompensated case (i.e., linearization); determined
quantities: Einv(t) and Elinear(t); measured quantities:ΔPmodel(t),ΔSmodel(t) as well asΔSlinear(t)

(a) comparison of mechanical strains

(b) relative deviations from desired mechanical strains ΔStar(t)

Δ
S
(t
)
in

%
| r

|i
n
%

t in s

ΔStar
ΔSmodel
ΔSlinear
ΔSpol

ΔSmodel
ΔSlinear
ΔSpol

5

5

5

0
0

0

0

10

10

10

15

15

15

20

20

20

25

25

25

30

30

35

35

40

40

0.15

-0.05
-0.1

0.1

0.2

0.05

Fig. 6.35 aComparison of desiredmechanical strainsΔStar(t) and achieved quantities with respect
to time t ; measured quantities: ΔSmodel(t) and ΔSlinear(t); computed quantity: ΔSpol(t); b normal-
ized relative deviations |εr| (magnitude) between resulting strains and desired ones; piezoceramic
disk (diameter 10.0mm; thickness 2.0mm; material PIC255)

for compensating nonlinearities of ferroelectric actuators. Contrary to model-based
compensation where we use electrical voltage as excitation signal, this hardware-
based approach directly relates to the electric polarization (e.g., [28, 29, 108]). To
influence the electric polarizationwithin the ferroelectricmaterial, electric charges Q
are impressed on the actuator electrodes by means of an appropriate charge drive
circuit. It is assumed that Q is directly proportional to the resulting mechanical
strain S of the ferroelectric actuator, i.e., Q ∝ S. Although a remarkable reduction of
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nonlinearities is achieved compared to open-loop configurations operating with volt-
age excitations, charge drive circuits usually exhibit substantial drawbacks. This
includes limited low-frequency performance, dependence of voltage gain on capac-
itance of the ferroelectric material as well as time-consuming tuning procedure.
Besides, when the ferroelectric actuator is driven into saturation (e.g., semi-bipolar
working area), the relation of electric charge and mechanical displacement will be
no longer linear [101]. As a result, the deviations of desired and actually achieved
displacements of the ferroelectric actuator increase.

To compare the different types of compensations, let us desire a triangular-shaped
time signal for the mechanical strain of the piezoceramic disk. The model-based
compensation exploits the inverted generalized Preisach hysteresis operator H−1

G
to obtain the electrical excitation signal Einv(t), which is then applied to the disk
sample for measurements (see Fig. 6.34a). Against that, we emulate mechanical
strains ΔSpol(t) of the hardware-based solution by rescaling the electric polariza-
tion Pmodel(t). The expression Pmodel(t) stands for the measured electric polariza-
tion actually occurring in the disk. Since the underlying rescaling does not exhibit
any dependencies on electronic components, it represents the best case for charge
drive circuits in open-loop configuration. Figure 6.35a depicts target strainsΔStar(t),
measured strains ΔSmodel(t) for model-based compensation of hysteresis effects
as well as those for hardware-based compensation ΔSpol(t). Moreover, measured
strains ΔSlinear(t) for the uncompensated case are given meaning that the electri-
cal excitation signal Elinear(t) is assumed to be directly proportional to the desired
mechanical strain ΔStar(t) (see Fig. 6.34b). The comparison of the different strain
curves clearly indicates thatΔSmodel(t) coincides bestwithΔStar(t). In contrast, there
occur normalized relative deviations of ΔSlinear(t) up to 25% (see Fig. 6.35b), which
emphasizes the importance of considering hysteresis effects in actuator applications.
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Chapter 7
Piezoelectric Ultrasonic Transducers

An ultrasonic transducer is a device, which generates acoustic waves above audible
frequencies (i.e., f > 20 kHz) from electrical inputs and provides electrical outputs
for incident ultrasonic waves. Such transducers are used in various applications like
medical diagnostics, parking assistance systems as well as nondestructive testing.
Mostly, ultrasonic transducers are based on piezoelectricity. They contain piezoelec-
tric materials (e.g., piezoceramics) allowing efficient conversions of electrical quan-
tities into acoustic waves and vice versa. The resulting devices are usually called
piezoelectric ultrasonic transducers.

In principle, we distinguish between two fundamental operation modes of ultra-
sonic transducers containing a single piezoelectric element, namely the (i) pulse-
echo mode and the (ii) pitch-catch mode (see Fig. 7.1) [4]. The pulse-echo mode is
based on one transducer, which enables both emitting ultrasonic waves and receiving
reflections from a target. Thereby, the transducer emits ultrasonic waves due to the
electrical excitation uI and, subsequently, converts reflected waves into the electrical
output uO. By contrast, the pitch-catch mode requires two ultrasonic transducers.
The first transducer exclusively emits ultrasonic waves, while the second transducer
receives reflected, refracted, or transmitted waves. That is the reason why the first
and second transducers are commonly also referred to as transmitter and receiver,
respectively.

There exist various piezoelectric ultrasonic transducers, whereby their internal
structure strongly depends on the propagation medium of ultrasonic waves. For
instance, one can exploit so-called interdigital transducers for generating waves that
travel along the surface of a solid, i.e., for generating surface acoustic waves (SAW;
cf. Fig. 9.1 on p.408) also known as Rayleigh waves. Interdigital transducers con-
sist of interlocking comb-shaped arrays of metallic electrodes on the surface of a
piezoelectric substrate. Such devices, which are oftentimes termed surface acoustic
wave sensors, can be applied to determine chemical conditions, temperature, and
mechanical quantities (e.g., [4, 42, 58]).

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
S. J. Rupitsch, Piezoelectric Sensors and Actuators, Topics in Mining, Metallurgy
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(a) (b)

transducer transmitter

receivertarget

uI
uO uI uO

Fig. 7.1 Fundamental operation modes of piezoelectric ultrasonic transducers containing single
piezoelectric element; a pulse-echo mode; b pitch-catch mode; transmitter and receiver correspond
to transducer that exclusively generates and receives ultrasonic waves, respectively

This chapter addresses piezoelectric ultrasonic transducers that are specially
designed to generate and receive sound waves in fluid media, i.e., air or water. More-
over, we will also discuss ultrasonic transducers for medical diagnostics. Section7.1
deals with a semi-analytical approach to calculate sound fields and electrical trans-
ducer outputs for common transducer shapes, e.g., piston-type transducers. In doing
so, the complex structure of a piezoelectric ultrasonic transducer is reduced to an
active surface, which can generate and receive sound pressure waves. The semi-
analytical approachwill be used in Sect. 7.2 to determine sound fields aswell as direc-
tional characteristics of common transducers. Section7.3 details the axial and lateral
spatial resolution of spherically focused transducers operating in pulse-echomode. In
Sect. 7.4, we will study the general structure of piezoelectric ultrasonic transducers.
This includes single-element transducers, transducer arrays as well as piezoelectric
composite transducers. Afterward, a simple one-dimensional modeling approach is
shown that allows analytical description of basic physical relationships for piezoelec-
tric transducers under consideration of their internal structure. Section7.6 contains
selected examples for piezoelectric ultrasonic transducers. Finally, a brief introduc-
tion to the fundamental imaging modes of ultrasonic imaging will be given which is
an important application of piezoelectric ultrasonic transducers.

7.1 Calculation of Sound Fields and Electrical Transducer
Outputs

The cost-effective development and optimization of ultrasonic transducers demand
the prediction of the generated sound fields. Moreover, it will be very helpful to pre-
dict electrical transducer outputs if an ultrasonic transducer is utilized for receiving
sound pressure waves. For both tasks, one can apply finite element (FE) simula-
tions because such simulations allow the consideration of the whole configuration
including the piezoelectric material (see Chap. 4). Although coupled FE simulations
yield the desired quantities (e.g., generated sound pressure) directly from electrical
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transducer

ST

vn(t)
P

rT rP

uI(t) uO(rP, t)

x y

z

hEA(t) hAE(t)

Fig. 7.2 Active surface ST of transducer parameterized by rT oscillateswith surface normal velocity
vn(t); ideal point-like target P at rP [63]; electrical transducer input uI(t) and output uO(rP, t);
electroacoustical impulse response hEA(t); acousto-electrical impulse response hAE(t)

transducer inputs, the required spatial and temporal discretizations are oftentimes
accompanied by a remarkable computational effort. Especially in case of large con-
figurations, which additionally call for a three-dimensionalmodel, this problemgains
in importance. Therefore, let us present here a semi-analytical approach that enables
time-efficient calculations of generated sound fields and electrical transducer out-
puts. Before the so-called spatial impulse response of a transducer is introduced in
Sect. 7.1.2, we will discuss the underlying approach on the basis of sound diffraction
at an ideal point-like target, which is located in a fluid propagation medium. Sec-
tions7.1.3 and 7.1.4 deal with piecewise analytical solutions of the spatial impulse
response for piston-type transducers and spherically focused transducers, respec-
tively.

7.1.1 Diffraction at Point-Like Target

Let us consider an ultrasonic transducer being located in a rigid baffle [41, 59,
63]. The active surface ST of the transducer1 is parameterized by the vector rT (see
Fig. 7.2). It generates in and receives acoustic waves from a nonviscous as well as
lossless fluid medium that features the sound velocity (speed of sound) c0 and the
equilibrium density �0. The fluid propagation medium contains an ideal point-like
target at position rP. This point-like target can be interpreted as a rigid sphere, which
is small compared to the wavelength λ of generated acoustic waves and exhibits the
reflection coefficient rp = 1 for incident acoustic waves. In a first step, the transducer
is excited by the time-dependent electrical input uI(t). We suppose that uI(t) causes
exclusively deformations of the active transducer surface in direction of its normal
vectors. By means of the electroacoustical impulse response hEA(t), the surface
normal velocity vn(t) can be expressed as (time t ; temporal convolution ∗)

1Following technical optics, the active transducer surface ST is also referred to as aperture.
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vn(t) = hEA(t) ∗ uI(t) . (7.1)

Note that this equation will only hold if the normal velocity over the active surface is
assumed to be uniform; i.e., each element has the same instantaneous velocity. Togen-
eralize (7.1), it is possible to insert a location-dependent weighting function wE(rT)
for generating sound waves, which leads to the surface normal velocity

Vn(rT, t) = wE(rT) · vn(t) (7.2)

depending on both position on ST and time. When wE(rT) is real-valued and ful-
fills wE(rT) ≥ 0, the whole active transducer surface will move in phase.

According to the Huygens–Fresnel principle, wemaymodel ST as combination of
point sources that emit spherical waves in the half space (e.g., [20, 26]). The resulting
Rayleigh surface integral for the acoustic velocity potential ΨT(rP, t) at position rP
takes the form

ΨT(rP, t) =
∫
ST

Vn

(
rT, t − |rP−rT|

c0

)

2π |rP − rT| dST(rT) . (7.3)

The sound pressure pI∼(rP, t) at this position directly follows from (cf. (2.123), p. 34)

pI∼(rP, t) = �0
∂ΨT(rP, t)

∂t
. (7.4)

Using the properties of the Dirac delta distribution δ(·) as well as inserting (7.2)
and (7.3) into (7.4) then yields

pI∼(rP, t) = �0vn(t) ∗ ∂

∂t

⎡
⎣

∫
ST

wE(rT)
δ
(
t − |rP−rT|

c0

)

2π |rP − rT| dST(rT)

⎤
⎦ . (7.5)

As mentioned above, we consider a rigid sphere at rP serving as ideal point-like
target, which perfectly reflects the incident sound pressure waves. Of course, one can
treat such target as a point source that emits spherical waves. The acoustic velocity
potential ΨP(r, t) originating from this point source becomes

ΨP(r, t) ≈
sPvP

(
rP, t − |r−rP|

c0

)

4π |r − rP| with vP(rP, t) ≈ pI∼(rP, t)
�0c0

(7.6)

at the position r. The expressions sP and vP stand for the surface and the velocity of
the sphere’s surface, respectively. Strictly speaking, the relations (7.6) solely repre-
sent approximations because the sphere surface is not excited cophasally from the
incident sound pressure wave. However, when the diameter of the sphere is much
smaller than λ, the phase deviations will be negligible. Just like in (7.4), the sound
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pressure pR∼(r, t) of the reflected sound wave at r results from the time derivative
of (7.6). By additionally using δ(·), pR∼(r, t) reads as

pR∼(r, t) = sP
2c0

∂

∂t

⎡
⎣pI∼(rP, t) ∗

δ
(
t − |r−rP|

c0

)

2π |r − rP|

⎤
⎦ . (7.7)

The considered ultrasonic transducer serves as transmitter and receiver of acoustic
waves. Similar to emitting soundwaves, each point of the active transducer surface ST
is assumed to be able to receive pressurewaves from the entire half space. To compute
the resulting electrical output uO(rP, t) of the transducer due to the point-like target,
one has to evaluate the sound pressure at ST. The averaged sound pressure pT∼(rP, t)
along ST is given by (surface area |ST|)

pT∼(rP, t) = 1

|ST|
∫
ST

wR(rT) pR∼(rT, t) dST(rT) . (7.8)

Here, wR(rT) denotes a location-dependent weighting function for receiving sound
waves. If (7.5) and (7.7) are inserted into (7.8), one will obtain

pT∼(rP, t) = sP�0vn(t)

2c0 |ST| ∗ ∂

∂t

⎡
⎣

∫
ST

wE(rT)
δ
(
t − |rP−rT|

c0

)

2π |rP − rT| dST(rT)

⎤
⎦

∗ ∂

∂t

⎡
⎣

∫
ST

wR(rT)
δ
(
t − |rT−rP|

c0

)

2π |rT − rP| dST(rT)

⎤
⎦ . (7.9)

The acousto-electrical impulse response hAE(t) finally leads to the electrical output
of the ultrasonic transducer

uO(rP, t) = hAE(t) ∗ pT∼(rP, t) . (7.10)

7.1.2 Spatial Impulse Response (SIR)

In order to achieve a compact formulation of the previous equations, let us introduce
the spatial impulse response (SIR) of the ultrasonic transducer. Without limiting the
generality, we suppose that the location-dependent weighting functions for gener-
ating and receiving sound waves are identical, i.e., wER(rT) = wE(rT) = wR(rT)
along ST [41, 59, 63]. Therewith, the spatial impulse response hSIR(r, t) of the
ultrasonic transducer for the generated velocity potential ΨT(r, t) at position r
becomes (cf. (7.3))
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hSIR(r, t) =
∫
ST

wER(rT)
δ
(
t − |r−rT|

c0

)

2π |r − rT| dST(rT) . (7.11)

It can be clearly seen that the scalar quantity hSIR(r, t) with unit ms−1 depends on
both space and time, which justifies the naming. The temporal convolution of the
SIR and the time-dependent normal velocity vn(t) of the active transducer surface ST
yields ΨT(rP, t) at the position rP of the point-like target, i.e.,

ΨT(rP, t) = vn(t) ∗ hSIR(rP, t) . (7.12)

Owing to the mathematical relation (7.4), hSIR(rP, t) can also be utilized for calcu-
lating the incident sound pressure pI∼(rP, t)

pI∼(rP, t) = �0vn(t) ∗ ∂hSIR(rP, t)
∂t

(7.13)

at this position. Moreover, it is possible to directly exploit hSIR(rP, t) in (7.9), which
yields

pT∼(rP, t) = sP�0vn(t)

2c0 |ST| ∗ ∂hSIR(rP, t)
∂t

∗ ∂hSIR(rP, t)
∂t

(7.14)

for the averaged sound pressure along ST due to sound reflections at the ideal point-
like target. By inserting (7.1) and (7.14) into (7.10), we end up with

uO(rP, t) = sP�0
2c0 |ST|hEA(t) ∗ hAE(t)

∗ ∂hSIR(rP, t)
∂t

∗ ∂hSIR(rP, t)
∂t

∗ uI(t) . (7.15)

The SIR of an ultrasonic transducer allows, thus, the calculation of the generated
sound pressure pI∼(r, t) at an arbitrary point in a homogeneous propagationmedium.
Furthermore, we achieve a compact description of the resulting electrical transducer
output uO(rP, t) for an ideal point-like target that is located within the propagation
medium. In both cases, one can start from the electrical excitation signal uI(t) of the
transducer since according to (7.1), the normal velocity vn(t) of ST is directly linked
to uI(t). The underlying computations of pI∼(r, t) as well as uO(rP, t) are highly
efficient, especially when there exist analytical solutions for hSIR. Such solutions
can be found in the literature for some shapes of the active transducer surface ST,
e.g., piston-type transducers [26, 74], spherically focused transducers [1, 53], and
for transducers with rectangular-shaped active surfaces [68]. Besides, Jensen and
Svendsen [33] suggest dividing the active surface into small pieces in order to apply
the SIR for arbitrarily shaped ultrasonic transducers. In Sects. 7.1.3 and 7.1.4, we
will address analytical formulations for the spatial impulse responses of piston-type
and spherically focused transducers, respectively.
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As a matter of fact, the SIR of an ultrasonic transducer is not restricted to a single
point-like target but also enables compact descriptions of the electrical transducer
output for a finite-sized solid structure that is immersed in a homogeneous fluid
propagation medium. In doing so, one should divide the structure’s surface into a
sufficient amount of single elements [34, 61, 63]. By evaluating hSIR(r, t) for these
elements separately (cf. (7.15)) and superimposing the individual results, we are
able to compute uO(t) due to the surface part, which is facing the transducer. Strictly
speaking, this procedure will make only sense if we are exclusively interested in
transducer outputs originating from the structure’s surface. Reflections from inho-
mogeneities (e.g., flaws) and mode conversions within the solid structure cannot be
taken into account because the SIR in its classical form supposes a homogeneous
propagation medium. Note that this assumption is already violated at an interface of
homogeneous fluid and homogeneous solid. When we want to study reflections as
well as mode conversions within the solid structure, alternative approaches like the
FE method (see Chap. 4) or hybrid simulations such as the so-called SIRFEM [48,
62] will be indispensable.

7.1.3 SIR of Piston-Type Transducer

Many ultrasonic transducers in practical applications (e.g., parking sensors) have a
circular active surface ST. Since this planar aperture often oscillates like a piston,
let us detail the analytical solution of the SIR for so-called piston-type transducers.
Stepanishen [74] and Harris [26] deduced a piecewise continuous solution of the SIR
for piston-type transducers, which are assumed to oscillate and receive uniformly,
i.e., wER(rT) = 1 along ST. Consequently, one can treat the piston-type transducer
as a rotationally symmetric configuration. Moreover, each point P in the sound
propagation medium is completely described by means of the two coordinates ρ
and z (see Fig. 7.3). While ρ refers to the off-axis distance with respect to the center
of ST, z stands for the on-axis distance of the point P .

Fig. 7.3 Configuration and
geometrical variables to
compute piecewise
continuous spatial impulse
response hSIR(ρ, z, t) for
piston-type transducer at
point P (coordinates ρ and
z); radius RT of active
transducer area ST

z

ρ

RT

ST

R1 = z

R2

R3

c0t

P
(ρ, z)

intersection
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The piecewise continuous solution of the SIR hSIR(ρ, z, t) results from the inter-
section of a sphere surface (radius c0t ; origin P) with ST. For a circular active surface
of radius RT, hSIR(ρ, z, t) in P reads as (sound velocity c0)

hSIR(ρ, z, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ t1
c0 for t1 < t ≤ t2
c0
π

arccos

[
(c0t)

2 − z2 + ρ2 − R2
T

2ρ
√
(c0t)

2 − z2

]
for t2 < t ≤ t3

0 for t3 < t

(7.16)

if ρ ≤ RT and otherwise (i.e., ρ > RT)

hSIR(ρ, z, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for t ≤ t2
c0
π

arccos

[
(c0t)

2 − z2 + ρ2 − R2
T

2ρ
√
(c0t)

2 − z2

]
for t2 < t ≤ t3

0 for t3 < t

. (7.17)

The instants of time ti are given by (see Fig. 7.3)

t1 = R1

c0
= z

c0

t2 = R2

c0
=

√
z2 +(ρ − RT)

2

c0

t3 = R3

c0
=

√
z2 +(ρ + RT)

2

c0
.

Figure7.4 depicts normalized spatial impulse responses hSIR(ρ, z, t) /c0 for a piston-
type transducer, which generates sound pressure waves in a fluid propagation
medium. In Fig. 7.4a and b, the observer point P is located at the on-axis dis-
tance z = RT and z = 6RT, respectively. The off-axis distances ρ of P were selected
from the values 0, 2RT/3, and 4RT/3. The curves clearly demonstrate the piece-
wise continuous solution of hSIR(ρ, z, t) with respect to time. If hSIR(ρ, z, t) �= 0 is
fulfilled, hSIR(ρ, z, t) = c0 at on-axis points, and thus, the SIR will be constant. At
points being located off-axis, hSIR(ρ, z, t) also takes values according to the partial
solution containing the arccosine function.

The analytical solution of hSIR(ρ, z, t) in (7.16) is, however, only valid for uni-
formly oscillating and receiving piston-type transducers. Harris [27] extended this
solution with a view to considering an arbitrary location-dependent weighting func-
tion wER(rT) along ST. The resulting generalized formulation will provide again a
piecewise continuous solution of the SIR when wER(rT) is rotationally symmetric
with respect to the center of ST. Moreover, wER(rT) has to be defined by a specific
mathematical function, e.g., a Gaussian function. Alternatively, one may divide ST



7.1 Calculation of Sound Fields and Electrical Transducer Outputs 269
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Fig. 7.4 Normalized spatial impulse responses hSIR(ρ, z, t) /c0 for piston-type transducer of
radius RT at selected points P; a P at on-axis distance z = RT; b P at on-axis distance z = 6RT;
off-axis distance ρ ∈{0, 2RT/3, 4RT/3}; insets assign colors of hSIR(ρ, z, t) and explain positions
of P with respect to ST

of the piston-type transducer into concentric annuli that possess individual weights,
respectively [1, 63]. The SIR hSIR,a(ρ, z, t) for a single annulus with inner radius Ri

and outer radius Ro follows from

hSIR,a(ρ, z, t) = hSIR(ρ, z, t)|RT=Ro
− hSIR(ρ, z, t)|RT=Ri

. (7.18)

In doing so, it is possible to spatially discretize the weighting function wER(rT)
along ST.

7.1.4 SIR of Spherically Focused Transducer

Besides piston-type ultrasonic transducers, spherically focused transducers are fre-
quently utilized in practical applications because such transducers concentrate the
sound energy in a small region that is named focal volume. This fact is especially
desirable for imaging systems, which are based on acoustic waves (e.g., acoustic
microscopes [43, 60, 82]). Spherically focused transducers feature a concave active
surface ST, which can be interpreted as a section of a sphere surface (see Fig. 7.5).
The section is parameterized by its radial size RT and its radius FT of curvature
representing the geometrical focus of the configuration. That is the reason why FT
is commonly termed as geometrical focal length of a spherically focused transducer.
The depth HT of ST is given by

HT = FT −
√
F2
T − R2

T . (7.19)



270 7 Piezoelectric Ultrasonic Transducers

z

ρ

ST
HT

FT

P
(0, FT)

RT

ϕSIR

σSIR

ηSIR

c0t

r
α

intersection

Fig. 7.5 Configuration and geometrical variables to compute piecewise continuous spatial impulse
response hSIR(ρ, z, t) for spherically focused transducer at point P (coordinates ρ and z) [53]; radial
size RT of active transducer area ST; geometrical focal length FT
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Fig. 7.6 Geometrical variables for calculating hSIR(ρ, z, t); point P (except geometrical focus)
within propagation medium lies in one of three regions; hatched area indicates region

Penttinen and Luukkala [53] and Arditi et al. [1] deduced a piecewise continuous
solution of the SIR for gently curved spherically focused transducers. Let us detail
their solution hereinafter. Just as for piston-type transducers, it is supposed that each
point of ST oscillates and receives uniformly, i.e., wER(rT) = 1. Therefore, ST of
the spherically focused transducer is rotationally symmetric. Two coordinates (i.e.,
off-axis distance ρ as well as on-axis distance z) are sufficient again to completely
describe the position of a point P in the sound propagation medium. Contrary to
piston-type transducers, we are, however, not able to determine piecewise continu-
ous solutions of the SIR hSIR(ρ, z, t) for ρ ≤ RT and ρ > RT, respectively. With the
exception of the geometrical focus at (ρ, z) = (0, FT), one has to divide the prop-
agation medium into three regions (see Fig. 7.6). Nevertheless, hSIR(ρ, z, t) always
results from the intersection of a sphere surface (radius c0t ; origin P) with ST and
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Table 7.1 Piecewise continuous solution for angle ϕSIR(t) with respect to region and time t

ϕSIR(t) Region I Region II Region III

= 0 t ≤ t1 t ≤ t2 t ≤ t2
= π t1 < t ≤ t2 t3 ≤ t < t4 —

= arccos

[
ηSIR(t)

σSIR(t)

]
t2 < t < t3 t2 < t < t3 t2 < t < t3

= 0 t3 ≤ t t4 ≤ t t3 ≤ t

takes the form

hSIR(ρ, z, t) = c0FT

π
√

ρ2 +(FT − z)2
ϕSIR(t) . (7.20)

Table7.1 contains for each region the piecewise continuous solution for the angle
ϕSIR(t) between adjacent ηSIR(t) and hypotenuse σSIR(t) of the right-angled triangle,
which is shown in Fig. 7.5. These quantities and the distance r become

ηSIR(t) =FT

[
FT − HT

FT sinα
− F2

T + r2 −(c0t)
2

2FTr tanα

]
(7.21)

σSIR(t) =FT

√
1 −

[
F2
T + r2 −(c0t)

2

2FTr

]2

(7.22)

r =
√

ρ2 +(FT − z)2 (7.23)

with the angle α (see Fig. 7.5)

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ≤ t1

arctan

(
ρ

FT − z

)
for z < FT

π − arctan

(
ρ

z − FT

)
for z > FT

π

2
else

.

The required instants of time ti in Table7.1 follow from (see Fig. 7.6)

t1 = R1

c0
= FT −

√
ρ2 +(FT − z)2

c0

t1 = R2

c0
=

√
(RT − ρ)2 +(z − HT)

2

c0
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t3 = R3

c0
=

√
(RT + ρ)2 +(z − HT)

2

c0

t4 = R4

c0
= FT +

√
ρ2 +(FT − z)2

c0
.

When the coordinates ρ and z of P satisfy the condition

ρ

|FT − z| <
RT√

F2
T − R2

T

, (7.24)

P will lie either in region I if z < FT or in region II if z > FT is fulfilled. Otherwise, P
is located in region III. At the geometrical focus of ST, the SIR is defined as

hSIR(0, FT, t) = HTδ

(
t − FT

c0

)
. (7.25)

Figure7.7 displays normalized spatial impulse responses hSIR(ρ, z, t) /c0 for a spher-
ically focused transducer featuring radial size RT = 5mm and geometrical focal
length FT = 20mm. Due to the chosen normalization, the curve progression solely
depends on the ratio RT/FT, which takes here the value 1/4. In Fig. 7.7a and b,
the observer point P in the fluid propagation medium is located at the on-axis dis-
tance z = FT/3 and z = 7FT/3, respectively. The off-axis distances ρ of P were
selected from the values 0, RT/2, and RT. Basically, the SIR hSIR(ρ, z, t) of the spher-
ically focused transducer behaves similar to that of the piston-type transducer (cf.
Fig. 7.4). When hSIR(ρ, z, t) �= 0, the focusing property of ST will cause, however,
varying values of hSIR(ρ, z, t) at points P being located on-axis, i.e., ρ = 0.

Guided by [27], Verhoef et al. [79] extended the piecewise analytical solution
of hSIR(ρ, z, t) for spherically focused transducers to take into account an arbitrary
location-dependent weightingwER(rT) along ST. They describe the rotationally sym-
metric progressionofwER(rT) through apolynomial beingdefinedbyeven-numbered
exponents. To become more flexible, one can also divide ST into concentric annuli
that possesses individual weights (cf. (7.18)).

7.2 Sound Fields and Directional Characteristics

The generated sound field and directional characteristic represent decisive quantities
of ultrasonic transducers concerning practical applications like medical diagnostics.
Below, we will concentrate on calculated quantities for piston-type (see Sect. 7.2.1)
as well as spherically focused transducers (see Sect. 7.2.2) since it is possible to
demonstrate essential facts through those specific transducer shapes. This includes
distributions of sound pressure and acoustic intensity in space as well as the resulting
directivity pattern of ultrasonic transducers.
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Fig. 7.7 Normalized spatial impulse responses hSIR(ρ, z, t) /c0 for spherically focused transducer
of radial size RT = 5mm and geometric focal length FT = 20mm at selected points P; a P at on-
axis distance z = FT/3; b P at on-axis distance z = 7FT/3; off-axis distance ρ ∈{0, RT/2, RT};
insets assign colors of hSIR(ρ, z, t) and explain positions of P with respect to ST

For the following calculations, let us assume that the whole active surface ST
of the transducer oscillates sinusoidally at frequency f , uniformly and in phase,
i.e., wE(rT) = 1 along ST. The resulting normal velocity vn(t) can then be written as

vn(t) = v̂n cos(ωt) = v̂n	
{
e jωt

}
(7.26)

with v̂n and ω = 2π f denoting velocity amplitude and angular frequency, respec-
tively. By exploiting the spatial impulse response hSIR(r, t) of the considered
transducer, we can compute the generated sound pressure p∼(r, t) at position r
from (7.13), which leads to

p∼(r, t) = �0v̂n	
{
e jωt ∗ ∂hSIR(r, t)

∂t

}

= ω�0v̂n	
{
je jωt ∗ hSIR(r, t)

}
. (7.27)

The complex representation p∼(r, t) of the generated sound pressure takes the form

p∼(r, t) = jω�0v̂ne
jωt ∗ hSIR(r, t) . (7.28)

Owing to the arccosine functions in the piecewise continuous solutions for the
SIR (e.g., (7.16)), there does, however, not exist an analytical solution to (7.27)
at each position r. Nevertheless, the smooth progression of hSIR allows a simple
numerical evaluation of the temporal convolution by discretizing the relevant time
interval, e.g., [t2, t3] in (7.16).
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Fig. 7.8 Directivity pattern
p̂∼(θ) of ultrasonic
transducer results from sound
pressure amplitudes along
circumference of circle with
radius Rdir; rotationally
symmetric config-
uration (e.g., piston-type
transducer): ρ = Rdir sin θ
and z = Rdir cos θ

z
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ST
θ

Rdir

Rdir cos θ
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The computed sound pressure distribution and directivity pattern of a transducer
result from variations of r. In case of rotationally symmetric piston-type and spher-
ically focused transducers, this means that one has to vary both off-axis distance ρ
and on-axis distance z in hSIR(ρ, z, t) accordingly. Usually, the sound pressure dis-
tribution relates to the sound pressure amplitudes p̂∼ = |p∼| in a prescribed plane,
e.g., p̂∼(x, z) in the xz-plane. In contrast, the directivity pattern of an ultrasonic
transducer is typically defined as the sound pressure amplitudes p̂∼(θ) along the
circumference of a circle, whose center is located in the middle of ST. The position
onto this circle with radius Rdir is parameterized by the angle θ (see Fig. 7.8).

Besides calculations that are based on the SIR, we will additionally discuss com-
mon approximations for on-axis sound fields and off-axis sound fields of piston-type
as well as spherically focused transducers.

7.2.1 Piston-Type Transducer

Figure7.9 depicts normalized sound pressure distributions p̂∼(x, z) for piston-type
transducers. The panels differ in the product of wave number k = ω/c0 = 2π/λaco

and radius RT of the active transducer surface ST, i.e., kRT. Due to the chosen
normalization of x- and z-axis, the sound pressure distributions exclusively depend
on this product. Small values for kRT (e.g., 1 and 2) indicate that the wavelength λaco

of the emitted sound waves is large compared to the geometric dimensions of ST.
In such cases, the piston-type transducer emits almost spherical sound waves and,
thus, behaves like a point source (cf. Fig. 7.10). Larger values for kRT (e.g., 10 and
20) cause, however, focused sound fields, even though we are considering a planar
piston-type transducer.Moreover, there arise several localminima aswell asmaxima,
especially close to ST. Both the focusing behavior and the formation of such local
extrema are an immediate consequence of themodel assumption that each point of ST
emits spherical waves, which get superimposed in the sound propagation medium.
Depending on the position (x, z), those superimpositions can be accompanied by
destructive and constructive interferences that becomevisible in sound pressure fields
through local minima and maxima, respectively. The greater kRT, the larger RT will
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Fig. 7.9 Normalized sound pressure distribution p̂∼(x, z) in xz-plane of piston-type transducer
for various products kRT; normalization with respect to maximum amplitude p̂∼max of directivity
pattern

be compared to λaco, and therefore, the number of destructive as well as constructive
interferences increases because the amount of wave trains per unit length (=̂k) also
increases.

In Fig. 7.10, one can see normalized directivity patterns p̂∼(θ) of a piston-type
transducer, which were determined along the circumference of a circle in the trans-
ducer’s far field, i.e., Rdir 
 RT. We can draw the same conclusions as for the sound
pressure distributions in Fig. 7.9. While the piston-type transducer will act as point
source when the product kRT takes small values, the directivity is strongly pro-
nounced for large values of this product. Additionally, it becomes apparent that there
will arise certain side lobes if kRT 
 1, which also exist far away from the trans-
ducer. A greater value of kRT entails more side lobes in the directivity pattern.

On-Axis Sound Field

Now, let us take a closer look at the generated sound pressure amplitudes p̂∼(z)
on the symmetry axis (i.e., z-axis) of a piston-type transducer. For such so-called
on-axis sound field, one can find simple approximations in the literature (e.g., [35,
40]), which will be deduced in the following. The starting point here is the acoustic
velocity potential Ψ T(z, t) in complex representation

Ψ (z, t) =
∫
ST

e jωt
v̂ne− jkr

2πr︸ ︷︷ ︸
G(r)

dST (7.29)
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Fig. 7.10 Normalized directivity pattern 20 · log10
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)
in far field of piston-type trans-

ducer for various products kRT; normalization with respect to maximum amplitude p̂∼max

with Green’s function G(r). The expression r = √
ρ2 + z2 stands for the distance

between an element dST of the active transducer surface ST and the considered on-
axis point P (see Fig. 7.11). Since e jωt accounts for the time dependence, this term
will often be omitted in the literaturewhen the physical quantity (e.g., sound pressure)
features sinusoidal progression. The reduced version of (7.29) reads then as

Ψ (z) = 1

2π

∫
ST

v̂ne− jkr

r
dST (7.30)

and will be absolutely sufficient if we are only interested in the amplitude Ψ̂ (z) =∣∣Ψ (z)
∣∣. For a piston-type transducer that behaves rotationally symmetric, (7.30)

simplifies to

Ψ (z) = v̂n

2π

∫ 2π

0
dϕ

∫ RT

0

e− jr

r
ρ dρ

= v̂n

jk

(
e− jkz − e− jk

√
R2
T+z2

)
. (7.31)

It is possible to interpret the expression inside the bracket as follows: While the first
term describes a plane wave, which propagates perpendicular to ST, the second one
stems fromwaves arising at the edge of ST. Both waves are superimposed resulting in
various local minima and maxima along the z-axis, i.e., destructive and constructive
interference, respectively. By means of the mathematical identity

e jα − e jβ = 2j sin

(
α − β

2

)
e j (α+β)/2 ,

(7.31) takes the form
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Fig. 7.11 Configuration and
geometrical variables to
compute the on-axis sound
field (i.e., along z-axis) of
piston-type transducer with
active surface ST

z

ρ

ST

dST r

P
ϕ

Ψ (z) = 2v̂n
k

sin

[
k

2

(√
R2
T + z2 − z

)]
e
− j k

2

(√
R2
T+z2+z

)
. (7.32)

The relationΨ (z, t) = 	{
Ψ (z) e jωt

}
leads finally to the time-dependent sound pres-

sure values p∼(z, t)

p∼(z, t) = �0
∂Ψ (z, t)

∂t
(7.33)

= 2�0ωv̂n

k
sin

[
k

2

(√
R2
T + z2 − z

)]
	
{
je jωte

− j k
2

(√
R2
T+z2+z

)}

and with k = ω/c0 to the sound pressure amplitude p̂∼(z)

p̂∼(z) = 2�0c0v̂n

∣∣∣∣sin
[
k

2

(√
R2
T + z2 − z

)]∣∣∣∣ (7.34)

along the z-axis. Note that the spatial impulse response hSIR(ρ, z, t) of the piston-type
transducer will, of course, yield the same results for p∼(z, t) and p̂∼(z) [59].

Figure7.12 depicts normalized values for the sound pressure amplitudes p̂∼(z)
along the z-axis in case of different values kRT (cf. Fig. 7.9). According to (7.34),
the curves will exhibit local minima at zmin if

k

2

(√
R2
T + z2min − zmin

)
= nπ ∀ n ∈ N+ (7.35)

and local maxima at zmax if

k

2

(√
R2
T + z2max − zmax

)
= 2n − 1

2
π ∀ n ∈ N+ (7.36)

is fulfilled. Consequently, zmin and zmax are given by
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Fig. 7.12 Normalized sound
pressure amplitudes p̂∼(z)
along z-axis (i.e., on-axis) of
piston-type transducer for
various products kRT; exact
and approximated curves
from (7.34) and (7.40),
respectively
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zmax = 1

2k(2n − 1) π

[
(kRT)

2 − (2n − 1)2π2
]

. (7.38)

On this account, there will exist at least one local minimum along the z-axis
when kRT > 2π and at least one local maximum when kRT > π is satisfied.

From (7.38), we can deduce with k = 2π/λaco that the last maximum (i.e., n = 1)
of p̂∼(z) along the z-axis arises at

Nnear = 1

2kπ

[
(kRT)

2 − π2] = (2RT)
2 − λ2

aco

4λaco
≈ R2

T

λaco
, (7.39)

which is usually known as near-field length or natural focal length of a piston-type
transducer. The region z < Nnear in the propagation medium is called near field or,
alternatively, Fresnel zone. Beyond the near field, there occur neither local minima
nor local maxima, and thus, the acoustic quantities (e.g., sound pressure) decrease
monotonically. If z 
 RT additionally holds, we can exploit the Taylor approxi-
mation

√
1 + x = 1 + x

2 to estimate the sound pressure amplitude (see (7.34)) on
the z-axis by

p̂∼(z) ≈ 2�0c0v̂n

∣∣∣∣sin
(
kR2

T

4z

)∣∣∣∣ (7.40)

and the averaged acoustic intensity2 I aco(z) = ∥∥Iaco(z)∥∥2 by

I aco(z) ≈ 4I aco(0)

[
sin

(
kR2

T

4z

)]2

. (7.41)

2Averaging refers to one sine period in the time domain (see Sect. 2.3.1).
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Fig. 7.13 Configuration and
geometrical variables to
compute the off-axis sound
field in transducer’s far field;
active surface ST of
piston-type transducer z

ρ

ST

dSTψ r

r
P

θ

Here, I aco(0) ≈ Zacov̂
2
n/2 stands for the averaged acoustic intensity at ST, whereas

Zaco = �0c0 is the acoustic impedanceof thepropagationmedium.Figure7.12 clearly
illustrates that these approximations seem to be reasonable for the entire on-axis
sound field. Both approximations can be simplified further to

p̂∼(z) ≈ �0c0v̂n
kR2

T

2z
and I aco(z) ≈ I aco(0)

(
kR2

T

2z

)2

(7.42)

when z 
 Nnear is also fulfilled which relates to the far field of the piston-type
transducer. As a result, the sound pressure amplitude is inversely proportional to the
on-axis distance z, while the averaged acoustic intensity decreases quadratically with
increasing z.

Off-Axis Sound Field in Far Field

Contrary to on-axis sound fields, we cannot deduce an analytical solution for off-
axis sound fields of piston-type transducers due to the complicated sound pressure
distribution, which is especially present in the near field (cf. Fig. 7.9). However, it
is possible to conduct a reliable approximation for the off-axis sound field in the far
field (i.e., z 
 Nnear) of the transducer. The approximation follows from the acoustic
velocity potential Ψ (r, θ) (reduced version; cf. (7.30))

Ψ (r, θ) = 1

2π

∫
ST

v̂ne− jkr ′

r ′ dST = 1

2π

RT∫

ρ=0

2π∫

ψ=0

v̂ne− jkr ′

r ′ ρ dψ dρ (7.43)

with the geometric distance (see Fig. 7.13)

r ′2 = r2 + ρ2 − 2rρ sin θ cosψ . (7.44)

In case of large distances r from the active transducer surface ST (i.e., r 
 RT

and r 
 ρ), which is satisfied in the far field of a piston-type transducer, (7.44) can
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be simplified through Taylor approximation to

r ′ = r

√
1 +

(ρ

r

)2 − 2ρ

r
sin θ cosψ

≈ r − ρ sin θ cosψ . (7.45)

By replacing 1/r ′ with 1/r and inserting the approximation for r ′ into (7.43), one
obtains the relation

Ψ (r, θ) ≈ v̂ne− jkr

2πr

RT∫

ρ=0

2π∫

ψ=0

e jkρ sin θ cosψρ dψ dρ (7.46)

that is integrable in closed form. After some mathematical treatment [24], we end
up with

Ψ (r, θ) ≈ v̂nR2
Te

− jkr

r

J1(kRT sin θ)

kRT sin θ
(7.47)

for the reduced version of the acoustic velocity potential. The time derivative of (7.47)
finally yields the time-dependent sound pressure values p∼(r, θ, t)

p∼(r, θ, t) ≈ ω�0v̂nR2
T

r

J1(kRT sin θ)

kRT sin θ
	{

je jωte− jkr
}

(7.48)

and the sound pressure amplitude p̂∼(r, θ)

p̂∼(r, θ) ≈ ω�0v̂nR2
T

r

∣∣∣∣ J1(kRT sin θ)

kRT sin θ

∣∣∣∣ (7.49)

= k�0c0v̂nR2
T

r

∣∣∣∣ J1(kRT sin θ)

kRT sin θ

∣∣∣∣ .

The approximation of the averaged acoustic intensity I aco(r, θ) becomes

I aco(r, θ) ≈ I aco(0)

(
kR2

T

r

)2[
J1(kRT sin θ)

kRT sin θ

]2

(7.50)

with I aco(0) ≈ Zacov̂
2
n/2. For θ = 0◦ (i.e., on-axis r = z), these results coincide

with (7.42). The additional expression J1(kRT sin θ) /(kRT sin θ) containing the
Bessel function J1(·) of the first kind and order 1 represents a directionality fac-
tor that causes side lobes in the directivity patterns of a piston-type transducer (cf.
Fig. 7.10). For small values of kRT, the directionality factor is negligible, and there-
fore, the transducer behaves in the far field like a point source.
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Fig. 7.14 Normalized sound pressure amplitudes p̂∼(r, θ) in far field of piston-type transducer
at r = 10RT; a product kRT = 6; b product kRT = 20; exact and approximated curves from (7.28)
and (7.49), respectively

Figure7.14 displays exact and approximated sound pressure amplitude p̂∼(r, θ)
for two piston-type transducers differing in the product kRT. The distance r between
the center of ST and the observer point equals 10RT, which is beyond the near-
field length Nnear. As already mentioned, there does not exist an analytical solution
for p̂∼(r, θ), but if (7.28) is numerically evaluatedbyfine timediscretization (e.g., 100
time steps), the obtained results can be considered as exact solution. The comparison
of the curves clearly reveals that (7.49) yields precise estimations of the sound pres-
sure amplitudes. For greater values of r , the approximation converges to the exact
solution since the applied simplifications (e.g., replacing 1/r ′ with 1/r ) cause less
errors. Apart from the excellent match of approximation and exact solution in the far
field, Fig. 7.14 demonstrates that the maximum of the first side lobe emerging at

θ = arcsin

(
5.14

kRT

)
(7.51)

always exhibits the relative value p̂∼(r, θ) / p̂∼max = 0.1323, which corresponds
to −17.6 dB. This fact will be discussed in more detail for spherically focused trans-
ducers.

7.2.2 Spherically Focused Transducer

In Fig. 7.15, one can see normalized sound pressure distributions p̂∼(x, z) for spher-
ically focused transducers, which differ in the product kRT. The top panels refer to
the ratio FT/RT = 4 of geometrical focal length FT and radial size RT of the active
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Fig. 7.15 Normalized soundpressure distribution p̂∼(x, z) in xz-plane of spherically focused trans-
ducer for various products kRT; top panels for ratio FT/RT = 4; bottompanels for ratio FT/RT = 2;
normalization with respect to maximum amplitude p̂∼max

transducer area ST, whereas the results for FT/RT = 2 are depicted in the bottom
panels. Due to the chosen normalization, the sound pressure amplitudes exclusively
depend on the product kRT and this ratio. Just like piston-type transducers (cf.
Fig. 7.9), spherically focused transducers will emit spherical sound waves if kRT

takes small values. For larger values of kRT (i.e., 20 and 100), focusing becomes
effective, and therefore, the sound energy is concentrated within a small area, the
so-called focal volume. The greater the product kRT and the smaller the ratio FT/RT,
the more pronounced focusing will be. Furthermore, there arise several local minima
and maxima between ST and the focal volume.

According to the directivity pattern in Fig. 7.16, a spherically focused transducer
does not offer significant focusing properties in the far field, even when the prod-
uct kRT takes large values. This behavior is completely different from that of a
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piston-type transducer and originates from the focusing property of a spherically
focused transducer. Its focal volume can be interpreted as source of sound waves.
Especially if kRT is large and FT/RT is small, the focal volume will become small
and, consequently, approaches a point source, which emits almost spherical sound
waves. Hence, it is not surprising that a spherically focused transducer appears in the
far field as source of unfocused sound waves.

Before we will detail generated on-axis sound fields as well as sound fields in
the geometrical focal plane, let us introduce two dimensionless quantities, which are
inspired by technical optics (e.g., [8, 28]) and can also be found in the context of
spherically focused ultrasonic transducers. The first quantity, the so-called Fresnel
parameter SF, is defined as

SF = FTλaco

R2
T

= 2πFT

kR2
T

(7.52)

and rates the focusing behavior of a transducer. In accordance with the definition,
a small value of SF indicates a strong focus. For instance, the upper left and lower
right panels in Fig. 7.15 refer to SF = 25.1 and SF = 0.1, respectively. The second
quantity, the so-called f-number f # = FT/(2RT), solely depends on the geometric
dimensions of the active transducer surface ST. Therefore, this quantity does not take
into account the emitted sound waves, i.e., their wavelength λaco or frequency.

On-Axis Sound Field

By exploiting the spatial impulse response hSIR(0, z, t), one can derive an analyti-
cal relation for the time-dependent sound pressure values p∼(z, t) on the symmetry
axis (i.e., z-axis) of a spherically focused transducer [59]. In complex representa-
tion, (7.28) leads to
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p∼(z, t) =
⎧⎨
⎩

�0c0FTv̂n

FT − z

[
e jω(t−τ1) − e jω(t−τ2)

]
for z �= FT

�0v̂nHTωe jω(t−FT/c0) for z = FT

(7.53)

with the depth HT of ST (see (7.19)), τ1 = z/c0 and

τ2 =
√
R2
T + z2 − 2zHT + H 2

T

c0
. (7.54)

Similar to piston-type transducers (cf. (7.31)), we can draw the following conclusion:
The first expression e jω(t−τ1) inside the bracket indicates a plane wave and the second
one e jω(t−τ2) a wave arising at the edge of ST. Both waves are superimposed resulting
in various local minima and local maxima along the z-axis.

Figure7.17 illustrates normalized sound pressure amplitudes p̂∼(z) = |p∼(z, t) |
for two ratios FT/RT and various products kRT. As expected fromFig. 7.15, the num-
ber of local minima and maxima along the z-axis increases remarkably with rising
values kRT. Even though total constructive interference only exists at the geometri-
cal focus FT of the spherically focused transducer, the maximum p̂max of the sound
pressure amplitudes always occurs between ST and FT. For increasing kRT, this true
focus moves toward FT because of the smaller region for constructive interference
close to the geometrical focus.

The curve progressions in Fig. 7.17 also clearly reveal that an increasing ratio
FT/RT and product kRT is accompanied by a smaller extension of the main lobe.
The larger kRT for a fixed ratio FT/RT, the smaller the Fresnel parameter SF will
be, and consequently, the focusing behavior is more pronounced. Thus, the emitted
sound energy is concentrated in a smaller area, whereby p̂max has to rise because of
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focusing. This fact is confirmed by Fig. 7.18, which shows the normalized maximum
of sound pressure amplitude along the z-axis of spherically focused transducers.
Already starting from small values of kRT, p̂max grows linearly with kRT. It is not
surprising that the increase of p̂max will be stronger for a decreasing ratio FT/RT,
i.e., for a lower f-number f #.

Just as for piston-type transducers, one can find approximations for the on-axis
sound field of spherically focused transducers (e.g., [35]). The starting point for
those approximations is the transformation of the uniform surface normal veloc-
ity vn(t) along the active transducer surface ST to a planar surface being flush with
the surrounding rigid baffle (see Fig. 7.19). Therefore, the axial distance between
the origin of ST and the planar surface corresponds to the depth HT. By supposing
acoustic beams, which propagate perpendicular to ST, the velocity amplitudes v̂z(θ)
in z-direction at this surface can be estimated through

v̂z(θ) ≈ v̂n
FT

FT − R1
cos θ . (7.55)

Since the so-called aperture angle θ0 of a spherically focused transducer yields the
trigonometrical relation FT − HT = FT cos θ0 and FT − R1 = (FT − HT)/ cos θ has
to be satisfied, (7.55) becomes

v̂z(θ) ≈ v̂n
cos2 θ

cos θ0
. (7.56)

The expression v̂z(θ) can be assumed to serve as nonuniform surface normal veloc-
ity of a planar piston-type transducer, which is located at z = HT and features the
radius RT. It is, therefore, possible to conduct similar steps to approximate sound
quantities for spherically focused transducers as for piston-type transducers. Owing
to this fact, let us detail solely essential results. If z2 
 R2

T is fulfilled, the curve
progression of the normalized sound pressure amplitude p̂∼(z) along the z-axis can
be estimated as



286 7 Piezoelectric Ultrasonic Transducers

Fig. 7.19 Configuration and
geometrical variables to
estimate on-axis sound
field (i.e., along z-axis) and
sound field at geometrical
focal plane (i.e., z = FT) of
spherically focused
transducer with active
surface ST [35]
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whereby sinc(x) = sin(πx) /(πx) stands for the sinc function. As Fig. 7.17 points
out, this approximation coincides verywellwith the exact solution, especially close to
the maximum of p̂∼(z). When FT � R2

T/λaco (i.e., SF � 1) holds in addition, (7.57)
will simplify to

p̂∼(z)

p̂∼max
≈

∣∣∣∣sinc
(
z − FT

2SFFT

)∣∣∣∣ . (7.58)

The approximation of the averaged acoustic intensity I aco(z = FT) at the geometrical
focus FT of the spherically focused transducers reads as

I aco(FT) ≈ I aco(0)

[
πR2

T

FTλaco

]2

= I aco(0)

[
π

SF

]2

(7.59)

with the averaged acoustic intensity I aco(0) at ST. Hence, the acoustic intensity is
much higher at FT than at ST for strongly focusing transducers, i.e., SF � 1.

Now, let us derive the so-called depth of focus dz(−3 dB) representing the geo-
metric distance between the two points along the z-axis at which the sound pressure
amplitude p̂∼(z) takes the value p̂∼max/

√
2. In order to deduce a simplemathematical

relation for dz(−3 dB), one should use (7.58). This approximation leads to

dz(−3 dB) ≈ 1.772 · SFFT = 7.089 · λaco
(
f #

)2
(7.60)

for the depth of focus of a spherically focused transducer, which satisfies the condi-
tion SF � 1. Accordingly, dz(−3 dB)will be rather short if the transducer is focusing
sound waves strongly.



7.2 Sound Fields and Directional Characteristics 287

Sound Field in Geometrical Focal Plane

In contrast to on-axis sound fields, there does not exist an analytical relation for
sound fields in the geometrical focal plane (i.e., z = FT; see Fig. 7.19) of spherically
focusing transducers. As it is the case for the far field of piston-type transducers, we
can, however, numerically evaluate (7.28). By a sufficiently fine time discretization,
this procedure provides again an exact solution for the time-dependent sound pressure
values p∼(ρ, t) = p∼(ρ, FT, t). Apart from the numerical evaluation, it is possible
to estimate such sound fields through the velocity amplitudes v̂z(θ) (cf. (7.55)) of a
planar surface being flush with the surrounding rigid baffle. After conducting several
simplifications that were already shown for piston-type transducers, one ends upwith
the approximations

p̂∼(ρ) ≈ p̂∼max

∣∣∣∣ J1(ν)

ν

∣∣∣∣ (7.61)

I aco(ρ, FT) ≈ I aco(0)

[
πR2

T

FTλaco

]2[
J1(ν)

ν

]2

(7.62)

ν = ρkRT

FT
= 2πρRT

λacoFT
(7.63)

for the sound pressure amplitude p̂∼(ρ) and averaged acoustic intensity I aco(ρ, FT)

in the geometrical focal plane, respectively. The expression p̂∼max = p̂∼(0, FT) is the
maximum sound pressure amplitude in the geometrical focal plane, which always
arises at ρ = 0 and I aco(0) stands for the averaged acoustic intensity at ST. The
comparison of these approximations with (7.49) and (7.50) makes clear that the
sound quantities exhibit identical curve progressions in the far field of piston-type
transducers and in the geometrical focal plane of spherically focused transducers.

Figure7.20 depicts exact as well as approximated sound pressure amplitudes
p̂∼(ρ) in the geometrical focal plane of two spherically focused transducers, which
differ in the ratio FT/RT. The deviations between both curve progressions are
extremely small in a wide range of products kRT. It can, therefore, be stated that
the approximations (7.61) and (7.62) lead to reliable results. On this account, let us
utilize the approximations to deduce simple mathematical formulas for important
quantities, e.g., the lateral beam width dρ(−3 dB).

As Fig. 7.20 demonstrates, the radial extension of the main lobe in the geo-
metrical focal plane decreases for increasing products kRT as well as decreasing
ratios FT/RT. From (7.61) and (7.62), it follows that the zeros and local maxima
of p̂∼(ρ) and I aco(ρ, FT) occur at the radial positions

ρzero = {3.83; 7.02; 10.17; 13.32; . . .} · FT

kRT

ρmax = {5.14; 8.42; 11.62; 14.80; . . .} · FT

kRT
.
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Fig. 7.20 Normalized sound pressure amplitudes p̂∼(ρ) in geometrical focal plane of spherically
focused transducer for various products kRT; a ratio FT/RT = 4; b ratio FT/RT = 2; exact and
approximated curves from (7.28) and (7.61), respectively

Related to the global maximum p̂∼max in the geometrical focal plane, the first four
local maxima of p̂∼(ρ) take the values

p̂∼(ρmax)

p̂∼max
= {0.1323; 0.0645; 0.040; 0.028}
=̂ {−17.6 dB;−23.8 dB;−28.0 dB;−31.1 dB}

and, thus, depend neither on kRT nor on FT/RT. This fact naturally applies to all
subsequent local maxima in the geometrical focal plane of a spherically focused
transducer.

Finally, let us define the so-called lateral beam width (beam diameter) dρ(−3 dB)

denoting the geometric distance between the two points in the geometrical focal
plane at which the sound pressure amplitude p̂∼(ρ) equals p̂∼max/

√
2. By exploiting

the approximation (7.61), this distance will result from

dρ(−3 dB) ≈ 0.515 · SFRT = 1.029 · λaco f
# (7.64)

when SF � 1 holds. Just as the depth of focus dz(−3 dB), the lateral beam width
dρ(−3 dB) will be rather small if the transducer is focusing sound waves strongly. In
any case, dz(−3 dB) is much greater than dρ(−3 dB). The depth of focus and lateral
beam width are linked through (see (7.60) and (7.64))

dz(−3 dB) ≈ 3.5
FT

RT
dρ(−3 dB) . (7.65)

Both distances can be interpreted as doubled semi-principal axes of a prolate
ellipsoid representing the focal volume of the spherically focused transducer (see
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Fig. 7.21 Prolate ellipsoid
representing focal volume of
spherically focused
transducer; depth of focus
dz(−3 dB) and lateral beam
width dρ(−3 dB) denote
doubled semi-principal axes;
local coordinate system
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Fig. 7.21). Within this prolate ellipsoid, the sound pressure amplitudes always
exceed p̂∼max/

√
2.

7.3 Spatial Resolution in Pulse-Echo Mode

In the previous section, we concentrated on generated sound fields of piston-type and
spherically focused ultrasonic transducers, which are excited by a pure sinusoidal
electrical input uI(t). Concerning practical applications, ultrasonic transducers are,
however, commonly operated in pulse-echo mode. Thereby, the transducer serves
as transmitter and receiver of sound waves (cf. Fig. 7.1). The time-of-flight of the
reflected sound waves (i.e., echo) and their intensity deliver information about the
sound reflector like its geometric distance from the transducer or the geometrical
structure of the reflector.Not surprisingly, the achievable spatial resolution constitutes
a decisive quantity for these so-called pulse-echo measurements. The spatial resolu-
tion of an imaging system measures basically the closest geometric distance of two
point-like targets, which still allows separating them in the recorded image (e.g., [9,
35, 43]).

Below, we will discuss the influence of the transducer excitation on both the
generated sound fields and the resulting electrical outputs from the theoretical point
of view. Afterward, Sects. 7.3.2 and 7.3.3 detail axial as well as lateral resolutions of
piston-type and spherically focused transducers being operated in pulse-echo mode.

7.3.1 Transducer Excitation and Resulting Output

Owing to the fact that it is impossible to emit soundwaves and analyze reflected sound
waves simultaneously through a single transducer, we have to use several transducers
or alternative electrical inputs instead of a pure sinusoidal excitation. For instance,
short pulses as well as a finite number of sine periods represent such alternative
electrical excitation signals for a single transducer. In contrast to a pure sinusoidal
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|S(f)| = |F{s(t)} |
Smax

Smax√
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f
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s

Fig. 7.22 Spectral magnitude (amplitude response; frequency response)
∣∣S( f )

∣∣ of time signal
s(t); maximum spectral magnitude Smax = ∣∣S( fmax)

∣∣; lower cutoff frequency fl and upper cutoff
frequency fu; bandwidth B−3 dB

s = fu − fl; center frequency fc does not necessarily coincide with
frequency fmax

signal consisting of only one frequency, those alternative excitation signals feature
a certain bandwidth B−3 dB

s in the frequency domain because of their limited signal
duration Ts. The bandwidth of a band-limited time signal s(t) corresponds prevalently
to the frequency range between lower and upper cutoff frequency, in which the
signal’s spectral magnitude3

∣∣S( f )
∣∣ = |F{s(t)} | stays above Smax/

√
2 (=̂ − 3 dB),

whereby Smax stands for the maximum signal’s spectral magnitude (see Fig. 7.22).
Regarding signal energy, B−3 dB

s also indicates the frequency range, in which the
signal’s spectral energy is more than half of its maximum. Generally speaking, a
signal of short duration Ts (e.g., short pulse) offers a large bandwidth. Against that,
the bandwidth equals zero for a pure sine wave since it is of infinite duration.

The spatial resolution of an ultrasonic transducer that operates in pulse-echomode
relates to the resulting electrical output uO(t) for a given surface normal velocity vn(t)
of the active transducer area ST. According to (7.15), the transducer output due to
sound reflections at an ideal point-like target at position r depends on the transducer’s
spatial impulse response hSIR(r, t). The essential part of the underlying formula reads
as

uO(r, t) ∝ vn(t) ∗ ∂hSIR(r, t)
∂t

∗ ∂hSIR(r, t)
∂t

(7.66)

and is, therefore, very similar to those for the generated sound pressure at r (see
(7.13)). The main difference lies in the additional temporal convolution with
∂hSIR(r, t) /∂t . Obviously, this expression is the only one in (7.13) as well as (7.15)
relating to the position r. The spatial impulse response hSIR(r, t) can, thus, be inter-
preted as spatial filter, which is applied once for the generated sound pressure and
twice for the electrical transducer output in pulse-echo mode, respectively [59]. The
amplitude ûO of the transducer output will be, consequently, reduced to half of
its maximum ûO;max (=̂ − 6 dB) at points, where the sound pressure amplitude p̂∼
takes the value p̂∼max/

√
2. Strictly speaking, this holds solely for pure sinusoidal

3The spectral magnitude results from the Fourier transform (operator F{·}).
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transducer excitation, which does not make sense in case of pulse-echo mode. If we
utilize the center frequency fc of vn(t) for estimating characteristic quantities (e.g.,
dimensions of focal volume), it will be, nevertheless, possible to exploit the same
approximations for the transducer outputs as for the generated sound fields. The
center frequency of a band-limited signal is defined as geometric mean

fc = √
fl · fu (7.67)

of its lower cutoff frequency fl and upper cutoff frequency fu (see Fig. 7.22). When
the bandwidth B−3 dB

s = fu − fl is small compared to the center frequency, one can
use the arithmetic mean fc ≈ ( fl + fu)/2 instead.

Finally, let us address an important point concerning the center frequency fc
of the transducer’s surface normal velocity vn(t). Even though fc yields reliable
approximations for characteristic transducer quantities, fc is not sufficient to deduce
unambiguous sound pressure distributions of ultrasonic transducers. This is attributed
to the fact that both a pure sinusoidal and a pulse-shaped signal may feature identical
values for fc. Contrary to a pure sinusoidal signal for vn(t), a short pulse will,
however, only cause slight destructive and constructive interferences in the sound
pressure distribution because of its limited duration Ts. Hence, we always have to
consider the time behavior of vn(t) or its spectral compositionwith a view to precisely
predicting generated sound pressure distributions as well as electrical transducer
outputs.

7.3.2 Axial Resolution

As initially mentioned, the spatial resolution indicates the closest geometric dis-
tance of two point-like targets, which still enables separation of those targets in
the recorded data. In the context of piston-type and spherically focused ultrasonic
transducers being operated in pulse-echo mode, axial resolution refers to the closest
on-axis distance of two ideal point-like targets along the z-axis. Without any signal
processing, the axial resolution dax for such transducers can be defined as [57]

dax = c0τp(−20 dB)

2
(7.68)

if a short pulse serves as electrical excitation uI(t). The expression τp(−20 dB) stands
for the time difference between the two instants of time, at which the envelope of
the electrical transducer output uO(t) for a single point-like target takes the value
uev;max/10 (=̂ − 20 dB). Here, uev;max represents the maximum of the envelope. A
very efficient way to determine the envelope uev(t) of uO(t) is based on the so-called
Hilbert transform [49, 51]. By means of the Hilbert operator H{·} that provides
the corresponding imaginary part of a real-valued part, the envelope of the electrical
transducer output is calculated from
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Fig. 7.23 a Time behavior of electrical transducer output uO(t) and its envelope uev(t) for single
point-like target; normalizationwith respect tomaximum uev;max of envelope; b normalized spectral
magnitude

∣∣UO( f )
∣∣ = |F{uO(t)} | of surface normal velocity; characteristic data from curves:

τp(−20 dB) = 474 ns, fl = 3.24MHz, fu = 6.77MHz, B−6 dB
s = fu − fl = 3.53MHz, fmax =

5.00MHz, fc = 4.68MHz

uev(t) = |uO(t) + jH{uO(t)}| . (7.69)

Let us continue with a short example. Figure7.23a and b show a typical time behav-
ior of uO(t) and its spectral magnitude

∣∣UO( f )
∣∣ for pulse-like transducer excitation.

From the resulting envelope uev(t), we can deduce the characteristic time differ-
ence τp(−20 dB) = 474 ns. Assuming the sound velocity c0 = 1500ms−1 of the
propagation medium, (7.68) leads then to the axial resolution dax = 355µm of the
ultrasonic transducer in pulse-echo mode.

It seems only natural that we have to reduce the signal duration Ts of uO(t) for
a single point-like target and, therefore, τp(−20 dB) when the axial resolution of
a transducer should be improved. However, owing to the available bandwidth of
transducer, electrical excitation as well as read-out electronics, such reduction is
possible only to a limited extent. If an ultrasonic transducer is forced to oscillate
with frequencies far away from its center frequency, the generated sound pressure
waves and electrical outputs will be rather small. As a result, one has to manage
output signals exhibiting a low signal-to-noise ratio.

7.3.3 Lateral Resolution

Besides the axial resolution dax, the lateral resolution dlat represents a decisive
quantity concerning pulse-echo measurements in ultrasound-based imaging sys-
tems (e.g., [9, 43]). Since such imaging systems typically utilize focused transducer
devices, let us show the lateral resolution in the focal plane, i.e., in the plane where
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the best lateral resolution can be achieved. For spherically focused transducers fea-
turing a low f-number f # as well as a low Fresnel parameter (i.e., SF � 1), the true
focus nearly coincides with the geometric focus at (ρ, z) = (0, FT). The resulting
electrical output signal uΣ(x, t) due to two ideal point-like targets being located in
the geometrical focal plane at (x, y, z) = (±dlat/2, 0, FT) reads as

uΣ(x, t) = uO(x + dlat/2, FT, t) + uO(x − dlat/2, FT, t) (7.70)

with the lateral distance dlat between both targets. If we suppose an excitation pulse
yielding also a pulse-like electrical output uO(x ± dlat/2, FT, t) for a single point-like
target, the magnitude ûΣ(x) of the sum signal can be approximated by

ûΣ(x) = ûO(x + dlat/2, FT)︸ ︷︷ ︸
ûO;1

+ ûO(x − dlat/2, FT)︸ ︷︷ ︸
ûO;2

(7.71)

and, therefore, by the sum of the signal magnitudes originating from the individ-
ual targets. Without limiting the generality, it is, moreover, possible to describe
the pulse-like time signals in the frequency domain. Because we are hereinafter
interested solely in normalized magnitudes, let us substitute the broadband sig-
nals uO(x ± dlat/2, FT, t) by their center frequency fc. The magnitude for a single
point-like target results from the approximations (7.61) and (7.62) through the rela-
tion ûO ∝ p̂2∼ ∝ I aco, which is, strictly speaking, only satisfied for pure sinusoidal
signals. According to these simplifications, the normalized curve progression ûΣ(x)
for a spherically focused transducer becomes

ûΣ(x) ∝
∣∣∣∣ J1(ν1)ν1

∣∣∣∣
2

+
∣∣∣∣ J1(ν2)ν2

∣∣∣∣
2

(7.72)

with

ν1 = 2π(x + dlat/2) RT

λacoFT
, ν2 = 2π(x − dlat/2) RT

λacoFT
and λaco = c0

fc
.

Just as the axial resolution, the lateral resolution indicates the closest geometric
distance of two ideal point-like targets, which still enables their separation. One can
find two different definitions for the lateral resolution in the literature, namely the (i)
Rayleigh two-point definition and the (ii) Sparrow two-point definition [28, 35]. The
Rayleigh two-point definition states that it will be possible to separate two point-like
targets when the maximum response of one target arises at the position, where the
response of the other target equals zero (cf. Fig. 7.24a). In the geometrical focal plane
of a spherically focused transducer, the Rayleigh two-point definition leads to the
lateral resolution

dlat(Rayleigh) = 1.22 · λaco f
# , (7.73)
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which follows from the first zero ρzero = 3.83 · FT/(kRT) of J1(·).
If the lateral distance dlat between both ideal point-like targets is reduced further,

the local minimum in the sum signal ûΣ(x) will disappear at x = 0. The Sparrow
two-point definition refers to the lateral distance at which the second-order deriva-
tive of ûΣ(x) with respect to x equals zero for the first time. Therefore, ûΣ(x)
offers a broad maximum (cf. Fig. 7.24b). By numerically evaluating (7.72), we
obtain

dlat(Sparrow) = 0.95 · λaco f
# (7.74)

for the lateral resolution in the geometrical focal plane according to the Sparrow
two-point definition. As the comparison of (7.73) and (7.74) reveals, the Sparrow
two-point definition always yields smaller values than the Rayleigh two-point def-
inition. Instead of applying one of those definitions, the lateral resolution dlat of
a spherically focused transducer is oftentimes approximated by the lateral beam
width dρ(−3 dB) in the focal plane (see (7.64)) [52, 57]. We can state that the
lateral beam width lies between both two-point definitions, i.e., dlat(Sparrow) <

dρ(−3 dB) < dlat(Rayleigh). In any case, the lateral resolution of a spherically
focused transducer will be improved when the lateral dimension of its focal vol-
ume decreases. This implies that one has to reduce the f-number f # of the trans-
ducer and/or to increase the center frequency fc of the generated pulse-like sound
wave.

Finally, we will compute the lateral resolution of a spherically focused transducer,
which has the ratio FT/RT = 2 of geometrical focal length FT and radial size RT,
i.e., f # = 1. As discussed above, the simple relations for the Rayleigh as well as
Sparrow two-point definition are based on the center frequency fc. When the elec-
trical outputs of a transducer are utilized for evaluating its center frequency, the
lower and upper cutoff frequency should be defined at

∣∣UO( f )
∣∣ /Umax = 0.5 instead

of
∣∣UO( f )

∣∣ /Umax = 1/
√
2. This is justified by the fact that the transducer charac-

teristic is included twice in pulse-echo mode, i.e., once for transmitting and receiv-
ing, respectively. For the signal shown in Fig. 7.23, the maximum spectral magni-
tudeUmax arises at fmax = 5.00MHz,while the center frequency fc equals 4.68MHz.
Figure7.24a and b depict the resulting normalized output magnitudes ûO due to the
individual point-like target as well as the sum signal ûΣ for both two-point defini-
tions. At the center of the two targets (i.e., x = 0), the Rayleigh two-point definition
yields a local minimum of ûΣ that is reduced by 26.5% in comparison with the
global maximum. The Sparrow two-point definition leads to a broad global maxi-
mum without a local minimum at x = 0. Assuming again the sound velocity c0 =
1500ms−1 of the propagation medium (i.e., λaco = c0/ fc = 321µm), the lateral res-
olutions amount to dlat(Rayleigh) = 391µm and dlat(Sparrow) = 305µm, respec-
tively.
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ûΣûΣ

Fig. 7.24 Normalized magnitudes of transducer outputs for ideal point-like targets being located in
focal plane of spherically focused transducer (RT = 5mm; FT = 10mm) according to a Rayleigh
two-point definition and b Sparrow two-point definition; ûO(x) due to individual point-like targets
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Fig. 7.25 Thin piezoelectric element operating in a thickness extensional mode and b transverse
length mode; bottom and top surface completely covered with electrodes; red arrow shows direction
of mechanical vibrations; P refers to electrical polarization, e.g., for piezoceramic materials

7.4 General Structure

Ultrasonic transducers that are based on piezoelectric materials usually exploit either
the thickness extensional mode or the transverse length mode (see Fig. 7.25). If the
piezoelectric material is thin compared to its lateral dimensions, we can simplify the
material law for linear piezoelectricity remarkably because various quantities become
negligible. For the thickness extensional mode, this means in the assumed coordinate
system that it is possible to omit the electrical and mechanical quantities in x- and y-
direction, e.g., E1 and S2. By contrast, one can omit the electrical quantities in x-
and y-direction as well as the mechanical quantities in y- and z-direction for the
transverse length mode. Thus, the relevant constitutive equations in d-form read
as (cf. (3.30), p. 51)
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D3 = εT33E3 + d33T3 (7.75)

S3 = d33E3 + sE33T3 (7.76)

for the thickness extensional mode and

D3 = εT33E3 + d31T1 (7.77)

S1 = d31E3 + sE11T1 (7.78)

for the transverse length mode, respectively. The listed variables indicate the follow-
ing physical quantities (see Sect. 3.3):

• Electric field intensity Ei .
• Electric flux density Di .
• Mechanical stress Tp.
• Mechanical strain Sp.
• Electric permittivity εTii for constant mechanical stress.
• Elastic compliance constant sEpq for constant electric field intensity.
• Piezoelectric strain constant dip.

Hereinafter, we will discuss the general structure and setup of single-element trans-
ducers as well as the idea behind transducer arrays and piezoelectric composite
transducers.

7.4.1 Single-Element Transducers

A single-element transducer contains only one piezoelectric element, which is used
to generate and receive sound pressure waves. Let us explain the setup of single-
element-based ultrasonic transducers that exploit either the thickness extensional
mode or transverse length mode of piezoelectric materials.

Thickness Extensional Mode

The thickness extensional mode of piezoelectric materials is applied for many ultra-
sonic transducers, especially if a transducer should be used in liquid media such
as water (e.g., [35, 65]). It makes sense to operate the transducer at frequencies
nearby the resonance of the thickness extensional mode since the resulting ampli-
tudes of both the surface normal velocity v̂n and the generated sound pressure p̂∼ (cf.,
e.g., (7.34)) will be comparatively large for such frequencies. Not surprisingly, the
electrical output signal of the transducer will be large too when the incident sound
pressurewaves are of similar frequency.According to the fundamentals of continuum
mechanics (see Sect. 2.2), the resonance frequency fr of the thickness extensional
mode of a thin piezoelectric element (e.g., disk) is given by
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fr = cP
λP

= cP
2tS

. (7.79)

The variables cP, λP, and tS stand for the wave propagation velocity within the piezo-
electric material, the corresponding wavelength, and the material thickness, respec-
tively. In otherwords, the resonance ofmechanical vibrationswithin the piezoelectric
element will arise when tS equals λP/2.

Besides, one has to consider the fact that common piezoelectric materials (e.g.,
piezoceramics) and typical sound propagation media exhibit great differences in the
acoustic impedance Zaco. For instance, Zaco of water and common piezoceramic
materials take approximately the values 1.5 · 106 and 30 · 106 Nsm−3, respectively.
Because the majority of incident waves will be, therefore, reflected at the interface
of piezoelectric element/wave propagation medium (see Sect. 2.3.4), an ultrasonic
transducer consisting exclusively of the piezoelectric element cannot be applied for
efficient radiation and reception of sound pressure waves. That is the reason why we
need additional components being placed between piezoelectric element and wave
propagation media. These components are usually referred to asmatching layers (cf.
Fig. 7.26) since they should enable matching of different acoustic properties [3,
40]. Mainly, the matching layers have to satisfy two conditions. The first condition
specifies the layer thickness, whereas the second condition refers to its acoustic
impedance. Just as for transmission lines in electrical engineering, the layers should
be of thickness tM = λM/4 = cM/(4 f ), whereby λM and cM denote the wavelength
and wave propagation velocity of longitudinal mechanical waves within a layer.4

There can be found a limited set of design criteria in the literature for the second
condition, i.e., the acoustic impedance of the matching layers [15, 35]. If a single
matching layer is utilized, its optimal acoustic impedance Zaco;M will compute as

Zaco;M = √
Zaco;P Zaco;W (7.80)

with the acoustic impedances Zaco;P and Zaco;W of the piezoelectric material and the
sound propagation medium. In case of two matching layers, the optimal acoustic
impedances results in

Zaco;M1 = Zaco;P3/4 Zaco;W1/4 (7.81)

Zaco;M2 = Zaco;P1/4 Zaco;W3/4 . (7.82)

While Zaco;M1 indicates the acoustic impedance of the matching layer close to the
piezoelectric element, Zaco;M2 is the one for the matching layer being placed close
to the sound propagation medium. Both design criteria follow directly from the
maximum power transfer theorem in electrical engineering. Alternatively, Desilets
et al. [15] suggested the acoustic impedance

4In accordance with electrical engineering, layers of thickness λM/4 are oftentimes termed λ/4
transformer.
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Zaco;M = Zaco;P1/3 Zaco;W2/3 (7.83)

for a single matching layer and

Zaco;M1 = Zaco;P4/7 Zaco;W3/7 (7.84)

Zaco;M2 = Zaco;P1/7 Zaco;W6/7 (7.85)

when two matching layers are utilized for the ultrasonic transducer. Even though
the alternative design criteria for the matching layer(s) do not lead to maximum
sound pressures and electrical transducer outputs, those criteria offer advantages for
generation and reception of broadband (i.e., short) ultrasonic pulses.

Matching layers at the front of the piezoelectric element permit an efficient energy
transfer between piezoelectric material and sound propagation medium. However,
the back of the piezoelectric element also plays an important role regarding the
performance of the ultrasonic transducer. Owing to the location, components at the
back of the piezoelectric element are usually called backing (cf. Fig. 7.26) [3, 65]. In
practical situations, we can distinguish two limits for the acoustic impedance Zaco;B
of this backing, namely (i) Zaco;B � Zaco;P and (ii) Zaco;B ≈ Zaco;P. The first limit
will arise if there is not any solid material at the back of the piezoelectric element;
i.e., the element is terminated by air. Consequently, the incident waves get almost
fully reflected at the interface piezoelectric element/air, which leads to additional
waves propagating to the front of the piezoelectric element. The additional waves
increase the generated sound pressure values as well as electric transducer outputs
but reduce the effective bandwidth of the ultrasonic transducer.

Because the acoustic impedances of both piezoelectric element and backing
approximately coincide for the second limit (i.e., Zaco;B ≈ Zaco;P), the incident
waves are almost completely transmitted through the interface piezoelectric ele-
ment/backing. Hence, waves will be hardly reflected at this interface. If the backing
material provides, moreover, a great attenuation along its thickness tB for propagat-
ing mechanical waves, the intensity of waves being reflected at the rear end of the
backing will be negligible when reaching again the interface backing/piezoelectric
element [47]. Thismeans that there does not occur a further pulse for pulse-like trans-
ducer excitation. The effective bandwidth of the ultrasonic transducer is, therefore,
rather large, but the generated sound pressure values and electric transducer outputs
will be lower than without backing. On these grounds, one has to design the back-
ing with respect to the practical application of the ultrasonic transducer. While air
should be used for high sound pressure values and transducer outputs, the increased
bandwidth in case of a matched backing yields a larger transducer bandwidth, which
can be advantageous for ultrasonic imaging systems [11, 35].

Figure7.26 illustrates the typical structure of an ultrasonic transducer that is based
on the thickness extensionalmode of a piezoelectricmaterial. The piezoelectricmate-
rial (e.g., piezoceramic) is covered with electrodes on front and back. Following the
above explanations, we need an appropriate matching layer at the front and, depend-
ing on the application, a backing material at the back of the piezoelectric element.
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Fig. 7.26 Typical structure of piezoelectric ultrasonic transducer consisting of piezoceramic ele-
ment coveredwith electrodes,matching layer(s), backing and protective layer incorporating acoustic
lens

In addition to these components, ultrasonic transducers are often equipped with a
further layer that should protect the piezoelectric element against the sound prop-
agation medium and can be, moreover, exploited to achieve a focused ultrasonic
transducer [11, 40]. Both the curvature radius of such a protective layer serving as
acoustic lens and the acoustic properties of the involvedmedia (i.e., layermaterial and
sound propagation medium) affect the resulting focal length. As a matter of course,
ultrasonic transducers will only perform well if the additional components (i.e.,
matching layer, backing material, and protective layer) are carefully joined with the
piezoelectric element during the manufacturing process.

Transverse Length Mode

A piezoelectric element will feature relatively high displacements as well as veloci-
ties when the element is operated close to its resonance frequency fr of mechanical
vibrations. As already explained, this means for the thickness extensional mode that
the piezoelectric element should be of thickness tS ≈ λP/2. Because small ultrasonic
frequencies imply large wavelengths λP, we will need rather thick elements. Espe-
cially when the application calls for a large active area, thick elements would be
rather expensive due to the required quantity of piezoelectric material.

Instead of the thickness extensional mode, one can use the transverse length
mode of a piezoelectric element for generation and reception of sound pressure
waves. To explain the fundamental idea behind the transverse length mode, let us
consider a thin circular membrane that is mechanically clamped at its edge. The
first eigenfrequency fr1 (corresponding to the first resonance frequency) of bending
waves within such a membrane computes as [55]
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Fig. 7.27 aPiezoelectric unimorph transducer;bpiezoelectric parallel bimorph transducer; c piezo-
electric serial bimorph transducer; d functional principle of piezoelectric bimorph transducers;
electrical excitation u(t); polarization P of piezoceramic material

fr1 = 10.216

2πR2
mem

√
EM t2mem

12(1 − ν2
P)�0

. (7.86)

The expressions Rmem, tmem, �0, EM, μP denote the membrane radius and thickness,
its density, Young’s modulus, and Poisson’s ratio, respectively. For an aluminum
membrane5 of radius Rmem = 5mm and thickness tmem = 0.5mm, the first reso-
nance frequency fr1 takes the value 51 kHz, which represents a typical ultrasonic
frequency in airborne ultrasound. It is possible to excite bendingwaveswithin amem-
brane through an appropriate piezoelectric element (e.g., thin disk) that is attached
to the membrane. The mechanical deformations of the piezoelectric element due to
its transverse length mode induce bending torques, which lead to deflections of a
clamped membrane. By a time-varying electrical excitation of the piezoelectric ele-
ment, we can, therefore, produce periodic membrane oscillations yielding a sound
field in the wave propagation medium. Owing to their simple structure and little
amount of piezoelectric material, these so-called piezoelectric unimorph transduc-
ers (see Fig. 7.27a) are often utilized in practical applications, especially for airborne
ultrasound [18, 40]. Piezoelectric unimorph transducers are not restricted to sound
field generation but can, moreover, serve as receiver of sound pressure waves; i.e.,
such a transducer is applicable for pulse-echo mode.

Figure7.27b and c display alternative structures for ultrasonic transducers, which
also exploit the transverse lengthmode of piezoelectricmaterials. Because both struc-
tures consist of two piezoelectric elements that have to be mechanically connected,

5Material data of aluminum for (7.86): �0 = 2700 kgm−3, EM = 67.6 kNmm−2, and νP =
0.36 (cf. Table2.5 on p.26).
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these transducers are commonly referred to as piezoelectric bimorph transducers [40,
67]. In contrast to piezoelectric unimorph transducers, bimorph transducers do not
contain an additional membrane. Guided from the direction of polarization and
electrical wiring in case of a piezoceramic material, the first transducer type (see
Fig. 7.27b) is also called parallel bimorph and the second one (see Fig. 7.27c) serial
bimorph. The electric polarizations P of both piezoceramic materials are aligned in
the same direction for parallel bimorphs, whereas P points in opposite directions
for serial bimorphs. Figure7.27d demonstrates the functional principle of a piezo-
electric serial bimorph transducer that gets electrically excited by the voltage u(t).
When an electric voltage is applied to the bimorph, one piezoelectric element will
expand, while the other onewill contract in lateral direction. Due to the extension and
shortening of the single elements, the piezoelectric bimorph undergoes a bending,
which results in a certain deflection. Just as it is the case for piezoelectric unimorph
transducers, we can use this functional principle for ultrasonic transducers operating
in pulse-echo mode.

Finally, it should be stressed that flexural transducers such as piezoelectric uni-
morph and bimorph transducers are not limited to the ultrasonic range. By means of
a suitable transducer design (i.e., in particular the geometric dimensions), they can
also be employed within the audible range, i.e., for frequencies f < 20 kHz [23].

7.4.2 Transducer Arrays

By combining several single-element transducers, one obtains a transducer array.
When it is possible to electrically excite and read out these single-element transduc-
ers separately, the resulting array will be commonly called phased array6 (e.g., [29,
77]). Figure7.28 displays fundamental operation modes of a phased array consisting
of seven elements, which are arranged in a straight line. Apart from the pulse-echo
and pitch-catch mode (cf. Fig. 7.1), we can basically distinguish between four fun-
damental operation modes, namely (i) synchronous beam, (ii) beam steering, (iii)
focused beam, and (iv) steering and focusing. The mode synchronous beam relates
to simultaneous excitation and readout of all array elements or a subgroup, while
the other operation modes demand appropriate time delays Δti . These time delays
directly follow from the sound velocity c0 in the propagation medium. For instance,
the time shift of the excitation signals between two neighboring elements has to
be constant for the mode beam steering in order to generate a tilted wave front. In
contrast, the operation modes focused beam as well as steering and focusing require
different time shifts between two neighboring elements.We have to consider the indi-
vidual time delays during array excitation and readout if the operationmodes (ii)–(iv)
should be applied for sound field generation and evaluation, respectively.

Besides the time delays Δti for the array elements, one can additionally vary the
amplitudes of electrical excitation as well as the contribution to the summed receive

6The name phased array originates from the fact that time delays correspond to phase shifts.
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Fig. 7.28 Fundamental operation modes of phased arrays (transducer arrays) for generating ultra-
sonic pulses; linear array consisting of seven single elements, i.e., i = 1, . . . , 7; time delay Δti for
array element i

signal individually. This so-called apodization allows modifying both the transmit
and the receive behavior of phased arrays [12, 77]. In doing so, we are able, for
example, to generate a Gaussian ultrasonic beam by means of linear phased arrays.
The combination of individual time delays and apodization during sound emission
is also termed beam shaping, whereas it is frequently referred to as beam forming
during sound reception.

Phased arrays are especially helpful for ultrasonic imaging systems,which operate
in pulse-echo mode, e.g., as in case of medical diagnostics. Contrary to focused
single-element transducers, one does not have to mechanically move such arrays
across the entire object area that should be imaged but can apply the fundamental
operation modes (e.g., steering and focusing) instead. Thereby, the examination time
is reduced remarkably.

There exist various possibilities for the arrangement and geometrical shape of the
single-element transducers within ultrasonic phased arrays. Figure7.29 shows the
three most well-known types of arrays, which are based on the thickness extensional
mode of single-element transducers: (i) annular arrays, (ii) linear arrays, and (iii)
two-dimensional arrays [29, 40]. Below, we will discuss these types of ultrasonic
phased arrays.
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Fig. 7.29 a Annular array; b linear array (linear phased array) equipped with acoustic lens exhibit-
ing fixed focus in y-direction; c two-dimensional phased array; arrays consist of single-element
transducers (operating in thickness extensional mode) with appropriate filling between; backing and
matching omitted; dashed parts of Cartesian coordinate system at focal volume require mechanical
movements of array; solid parts allow electronic focusing; electrodes at bottom and top surface,
matching layer(s) as well as backing omitted

Annular Arrays

An ultrasonic annular array consists of several rings that are concentrically arranged
and mostly made of piezoceramic materials (see Fig. 7.29a). With the aid of annular
arrays, one can imitate piston-type and spherically focused transducers operating in
pulse-echomode [4, 65]. If a piston-type transducer should be imitated, the individual
rings have to be excited as well as read out simultaneously. However, a spherically
focused annular array demands varying time delays Δti for the individual rings (cf.
Fig. 7.28), which have to be applied for both pulse generation and reception. The
inner rings of the annular array get electrically excited as well as read out later than
the outer ones. In doing so, the different time-of-flights through the acoustic lens of
a spherically focused single-element transducer are emulated. The time delays Δti
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along with the sound velocity c0 determine the depth (i.e., z-position) of the focal
volume. The greater Δti , the smaller the z-position of the focal volume will be,
and thus, the axial distance from the annular array decreases. While the time delays
clearly specify the position of the focal volume for sound generation, it is possible to
vary them independently for the reception mode. This follows from the fact that the
evaluation of reflected ultrasonic waves can be performed offline for different Δti .
As a result, we are able to dynamically focus at different z-positions in the reception
mode for a single emitted ultrasonic pulse [29].

Due to the possibility of electronic focusing in z-direction and without any further
signal processing (e.g., synthetic aperture focusing technique), the investigation of
an object bymeans of an annular array takes less time than with a spherically focused
transducer. Nevertheless, we still have to mechanically move the array at least in one
further direction (here x- and y-direction) during imaging because annular arrays
do not allow steering. Such mechanically movements usually implicate long exam-
ination times, which constitutes a problem for practical applications like medical
diagnostics. That is the reason why ultrasonic annular arrays are nowadays only
employed for special applications such as simultaneous determination of thickness
and sound velocities of layered structures [38].

Linear Arrays

Figure7.29b depicts the typical setup of an ultrasonic linear array. To some extent,
linear arrays comprise up to a few hundred single-element transducersmade of piezo-
ceramicmaterials,which are arranged along a straight line [29].As already discussed,
such linear phased arrays will enable various fundamental operation modes (cf.
Fig. 7.28) when we can excite and read out each single element separately. The
fundamental operation modes are often not executed with all single elements at the
same time but only with a subgroup. This means, for example, that the first ten ele-
ments of the linear array (i.e., i = 1, . . . , 10) are used to generate a focused beam
and to evaluate the resulting reflections. Afterward, the same procedure is conducted
with the ten array elements starting from the second element, i.e., i = 2, . . . , 11. By
means of these parallel scans (see Fig. 7.30a), one can investigate a rather large cross
section of an object by the ultrasonic linear array without any mechanical move-
ments and, thus, in a short time. Parallel scans require, however, a sufficient acoustic
coupling to the object along the whole linear array, which is almost impossible, e.g.,
if a large body area should be examined in medical diagnostics. Owing to this fact,
the single elements are frequently arranged along a curved line yielding a convex
sonic head, also called curved phased array (see Fig. 7.30b) [40, 77]. Compared to a
conventional ultrasonic linear array, a curved phased array needs a rather small cou-
pling area and is, therefore, particularly suited for examining the abdominal cavity
in medical diagnostics.

Alternatively to conventional linear arrays and curved phased arrays, we can use
special linear arrays, so-called sector phased arrays (see Fig. 7.30c), that demand
only a small coupling area but consist of up to a few hundred single-element trans-
ducers [29]. Because parallel scans do not make sense for such short linear arrays,
ultrasonic imaging has to be based on the fundamental operation mode steering and
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Fig. 7.30 a Parallel scans of conventional linear array and scanning areas of b curved phased array
as well as c sector phased array

focusing. That is the reason why the resulting B-mode images (see Sect. 7.7) take the
form of a circle segment and are commonly termed sector scans. Steering and focus-
ing will only be possible if each array element offers almost a spherical directivity
pattern, which limits their lateral element size to λaco/2 (is satisfied for kRT ≤ π; cf.
Fig. 7.10). From the practical point of view, array elements of small size imply a small
sensitivity in pulse-echo images yielding a low signal-to-noise ratio. Furthermore,
to avoid grating lobes in the directivity pattern of the whole phased array, which
may cause ambiguities in the resulting images, the spacing between two neighboring
array elements (i.e., from center to center) is also limited to λaco/2 [72]. When the
spacing takes larger values, one will have to cope with a reduced scanning area [81].
In other words, the possible angles θ (cf. Fig. 7.8) for steering and focusing of the
phased array will be much smaller than 90◦. According to these basic requirements,
the small array elements have to be densely arranged, which may lead to disturb-
ing electrical as well as mechanical crosstalks between neighboring elements. Even
though sector phased arrays pose great challenges for the manufacturing process,
the advantages such as small coupling area and short examination times outweigh
both the production expenditure and the mandatory production accuracy. Hence, it
is not surprising that sector phased arrays are oftentimes used, especially in medical
diagnostics.

While linear phased array enables electronic focusing in x-direction, focusing in y-
direction is usually achieved by an acoustic lens exhibiting a fixed focal length (see
Fig. 7.29b). Pulse-echo images may, therefore, appear blurred since mechanical
focusing is just ideal in a certain depth, i.e., z-position. Moreover, three-dimensional
investigations of objects still demand mechanical movements of the linear array in
one direction, here the y-direction.

Two-Dimensional Phased Arrays

For several practical applications of ultrasonic imaging such as real-time imaging
in medical diagnostics, it is desirable to have the possibility of three-dimensional (3-
D) investigations without any mechanical movements of the array. Annular arrays
and linear phased arrays can, however, not be used for this task because one has
to move them mechanically. In principle, two-dimensional (2-D) phased arrays (see
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Fig. 7.29c) enable electronic focusing and steering in all spatial directions [40, 77].
Such arrays should, therefore, be applicable for 3-D ultrasound-based investigations
of objects.

As a matter of course, 2-D phased arrays pose similar challenges for the manu-
facturing process as sector phased arrays. The great difference lies in the fact that
we have to handle the challenges in two directions in space for 2-D phased arrays.
Furthermore, the number of single-element transducers will increase drastically if
the 2-D phased array should exhibit a reasonable number of elements in both direc-
tions, i.e., x- and y-direction. For instance, 128 elements in each direction of the array
result altogether in 128 × 128 = 16384 single elements that should operate indepen-
dently regarding the fundamental operation modes of phased arrays. A large number
of single elements also goes hand in hand with considerable challenges for signal
processing and conditioning. In addition, we need independent control and read-out
electronics for the array elements, which can be managed through multiplexers and
demultiplexers being located directly within the transducer head. On these grounds,
there is much research and development ongoing in the field of 2-D phased arrays
for ultrasonic imaging during the last years. Currently, piezoelectric micromachined
ultrasonic transducers (pMUTs) represent an interesting and promising approach for
2-D phased arrays that exploit piezoelectricity [14, 45, 80].

7.4.3 Piezoelectric Composite Transducers

The piezoelectrically active part of so-called piezoelectric composite transducers is
not a piezoelectric element in the classical sense (e.g., a piezoceramic disk) but con-
tains small or thin piezoelectric elements that are embedded in a passive material
matrix such as epoxy. Piezoelectric composite transducers are frequently utilized
in practical applications as an alternative to common transducers consisting of bulk
piezoelectric ceramics (e.g., [25, 70]). The reason for this lies in the following advan-
tages of piezoelectric composite materials over conventional piezoceramics [65]:

• Altogether, the acoustic impedance Zaco of piezoelectric composites is smaller than
of piezoceramics since the passive material matrix offers comparably low values
for Zaco. This fact facilitates acoustic matching of the piezoelectrically active part
to the wave propagation medium, e.g., water or human body.

• To some extent, ultrasonic transducers based on piezoelectric composite materials
provide higher efficiency of electromechanical coupling, which is rather important
for emitting as well as receiving of ultrasonic waves.

• The passivematerial can reduce unwanted coupling ofmechanical vibrationmodes
within piezoelectric composites. For example, the radial modes of an appropriately
designed piezoelectric composite disk hardly influence its thickness extensional
mode.
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0-3 1-3 2-2

passive matrix piezoceramics

Fig. 7.31 Typical structures of piezoelectric composite materials featuring connectivity patterns
0-3, 1-3, and 2-2; composites consist of passive matrix material and piezoceramic material serving
as active part; electrodes at top and bottom surface as well as partially passive materials omitted for
better illustration

• Due to the soft passive material matrix, the resulting piezoelectric composites are
mechanically flexible and it is,moreover,much easier to fabricate curved ultrasonic
transducers.

In general, there exist various configurations for piezoelectric composite materials.
With a view to uniquely defining the different configurations, Newnham et al. [46]
introduced the so-called connectivity pattern for piezoelectric composites.According
to this definition, we distinguish between ten connectivity patterns of piezoelectric
composites that contain two different materials, i.e., a piezoelectric material serving
as active material and a passive material. Each material can be continuous (self-
connected) in zero, one, two, or three directions in space within the composite.
When a material is continuous in one direction, the material can only move along
this direction without affecting the other material. Hence, the number of directions in
space referring to continuity of a material also corresponds to the degrees of freedom
for mechanical movements.

It is common to specify connectivity patterns of piezoelectric composites in the
form i- j with {i, j} = {1, 2, 3}, which yields ten possibilities, namely 0-0, 0-1, 0-2,
0-3, 1-1, 1-3, 2-1, 2-2, 2-3 as well as 3-3 [46, 66]. The first digit (i.e., i) indicates
the degrees of freedom in space of the piezoelectric material, whereas the second
digit (i.e., j) denotes the degrees of freedom of the passive material. Figure7.31
displays typical structures of the three connectivity patterns 0-3, 1-3, and 2-2 that
are frequently used for piezoelectric composite materials in ultrasonic transducers.
Especially, 1-3 composites being based on piezoceramic fibers represent an outstand-
ing candidate for ultrasonic transducers because of the cost-efficient manufacturing
process [21, 65, 73]. The resulting behavior of such piezoelectric composite (usually
termed 1-3 fiber composite) mainly depends on three points: (i) material properties
of fibers and passive material, (ii) geometric dimensions and arrangement (evenly or
unevenly distributed), and (iii) volume fraction of the piezoceramic fibers within the
composite.

As the comparison of Figs. 7.29 and 7.31 reveals, the general structure of trans-
ducer arrays and piezoelectric composite transducers is very similar, e.g., 2-D phased
array and 1-3 composite. The main difference lies, however, in the electrical contact-
ing of the individual piezoelectric elements. While the piezoelectric elements within
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composite materials can be contacted in common, transducer arrays require separate
contacting and, therefore, electrically isolated electrodes.

7.5 Analytical Modeling

With a view to predicting the behavior of piezoelectric ultrasonic transducers, one
can exploit finite element (FE) simulations as shown in Chap. 4. Thereby, it is of
utmost importance to couple different physical fields (e.g., mechanical and acoustic
fields) at the surface of the piezoelectric material as well as within the material. In
the following, we will apply a simplified one-dimensional modeling approach in
the frequency domain instead, which allows analytical description of basic physical
relationships for piezoelectric ultrasonic transducers. Contrary to FE simulations, this
one-dimensionalmodeling does not provide, however, spatially distributed quantities
in all three directions but is restricted to one direction in space.

Let us regard a thin piezoelectric disk being polarized in z-direction (i.e., thickness
direction) and completely covered with electrodes at its front as well as back (see
Fig. 7.32a). The disk with base area AS and thickness tS is assumed to vibrate exclu-
sively in the direction of polarization, whichmeans that we can neglect dependencies
of physical quantities in the other directions in space, i.e., in x- and y-direction. At the
front and back, the disk is loadedwith themechanical forces FF and FB in z-direction,
respectively. The velocities of the disk at front and back are termed vF and vB. In the
frequency domain, the complex representation of these boundary conditions reads
as

FB = AST 3(−tS/2) ; FF = −AST 3(tS/2) (7.87)

vB = v3(−tS/2) ; vF = −v3(tS/2) ,

(a) (b)
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iP
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ZB ZF
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y
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electrical port

mechanical
port I

mechanical
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piezoelectric
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Fig. 7.32 a Regarded thin piezoelectric disk (thickness tS; polarized in z-direction) with electrodes
at its front and back; b representation of piezoelectric material as three-port network
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whereby T 3(z) represents the mechanical stress within the disk and v3(z) the veloc-
ity, both quantities pointing in positive z-direction. From the physical basics about
continuum mechanics (see Sect. 2.2), we can deduce

∂T 3

∂z
= jω�Pv3 and

∂v3

∂z
= jωS3 (7.88)

with the angular frequency ω = 2π f , the material density �P, and the mechanical
strain S3(z) within the piezoelectric element. The physical basics about electromag-
netics in Sect. 2.1 lead to

iP = jωASD3 and uP =
tS/2∫

−tS/2

E3dz (7.89)

for the complex representations of the electric current iP flowing through and the
electric voltage uP across the piezoelectric element. According to the constitutive
equations for linear piezoelectricity (see (3.21), p. 50), the relevant part of the h-
form for vibrations in thickness direction becomes

T 3 = cD33S3 − h33D3 (7.90)

with the elastic stiffness constant cD33 for constant electric flux density D. The
expression h33 denotes a so-called piezoelectric h constant, which is also termed
transmitting constants. Because piezoelectric materials do not contain free electric
charges, the electric flux density D3 stays constant with respect to the z-position,
i.e., ∂D3/∂z = 0. This fact and (7.88) and (7.90) yield the differential equation [35]

∂2v3

∂z2
+ ω2�P

cD33
v3 = 0 (7.91)

that can be solved by the ansatz (wave number k = ω
√

�P/cD33)

v3(z) = v+
3 · e− jkz︸ ︷︷ ︸
forward

+ v−
3 · e jkz︸ ︷︷ ︸
backward

(7.92)

consisting of a forward and a backward wave. Now, it is possible to combine all these
equations with the boundary conditions (7.87). After some mathematical treatment,
we arrive at the matrix system7 [3, 39]

7Hyperbolic cosecant csch(x) ≡ 1/ sinh(x).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

FB

FF

uP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ZP coth(ktS) ZPcsch(ktS)
h33
jω

ZPcsch(ktS) ZP coth(ktS)
h33
jω

h33
jω

h33
jω

1

jωC0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vB

vF

iP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7.93)

Here, ZP = Zaco;PAS (unit Nsm−1) indicates the radiation impedance8 with the

acoustic impedance Zaco;P =
√

�PcD33 of the piezoelectricmaterial. Its clamped capac-
itance C0 (electric permittivity εS33 for constant mechanical strain S) is given by

C0 = εS33AS

tS
. (7.94)

The upper left 2 × 2 submatrix of (7.93) describes the transmission of mechan-
ical waves within the piezoelectric disk that propagate with the phase velocity

cP =
√
cD33/�P. By contrast, the terms containing the h constant h33 rate the elec-

tromechanical coupling.
In the current form, the matrix system does not consider losses within the piezo-

electric material. To approximate such losses, one has to replace the radiation
impedance ZP, the wave number k as well as C0 by

ZP =
√

�PcD33

(
1 + j

2QP

)
AS

k = ω

√
�P

cD33

(
1

2QP
+ j

)
(7.95)

C0 = εS33AS(1 − tan δd)

tS

with the mechanical quality factor QP and the loss factor tan δd (cf. (5.56), p. 167)
of the piezoelectric material [39]. For piezoelectric materials like piezoceramics, it
is advisable to exploit the fundamental connection

tan δd = 1

QP
= αd (7.96)

between these factors and the damping coefficient αd. We are able to identify the
material-specific quantity αd through the inverse method (see Sect. 5.3). The remain-
ing expressions ZP and k in (7.95) stand for complex-valued versions of ZP and k,
respectively.

8The radiation impedance is also known as mechanical impedance.
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From the system point of view, (7.93) can be interpreted as three-port network
consisting of twomechanical (acoustic) ports and one electrical port. Themechanical
ports relate to mechanical forces and velocities, while the electric port links elec-
tric voltage and electric current (see Fig. 7.32b). Since forces correspond to voltages
and velocities to currents, the chosen analogy of mechanical systems and electri-
cal networks is the so-called force–voltage analogy that is also named impedance
analogy [40].

Below, we will discuss two well-known electrical networks, which exactly reflect
the matrix system (7.93). Section7.5.2 explains the calculation procedure to predict
decisive information about piezoelectric ultrasonic transducers in advance, e.g., time
response of generated sound pressure. Finally, exemplary computation results will
be shown.

7.5.1 Equivalent Electrical Circuits

Through the mentioned force–voltage analogy, one can define equivalent electri-
cal circuits for piezoelectric ultrasonic transducers. These equivalent circuits aim to
exactly emulate the transducer behavior at the mechanical and electrical ports by
means of lumped elements of electrical networks. Let us briefly discuss two equiva-
lent circuits, which are widely used for simulations, design as well as optimization of
piezoelectric ultrasonic transducers operating in thickness extensional mode, namely
(i) Mason’s and (ii) KLM equivalent circuits.

Mason’s Equivalent Circuit

Figure7.33 illustrates Mason’s equivalent circuit for piezoelectric elements [6, 44].
It consists of a T-network that represents the propagation of mechanical waves within
the piezoelectric material. Moreover, the equivalent circuit contains an ideal trans-
former, which exhibits the constant transmission ratio NP = h33C0. Together with
the negative capacitance−C0, this ideal transformer accounts for the coupling of the
mechanical ports and the electrical port.

KLM Equivalent Circuit

Krimholtz, Leedom, and Matthaei [37] proposed the so-called KLM equivalent cir-
cuit (see Fig. 7.34) in 1970. The wave propagation of mechanical waves within the
piezoelectric element is modeled by a mechanical transmission line of length tS.
Again, the electrical and mechanical ports get coupled through a transformer that is
connected to the center of this transmission line. In contrast to Mason’s equivalent
circuit, the transmission ratio ΦP(ω) of the transformer being defined as

ΦP(ω) = ωZP

2h33
csc

(
ktS
2

)
(7.97)
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Fig. 7.33 Mason’s equivalent circuit for piezoelectric element operating in thickness extensional
mode
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Fig. 7.34 KLMequivalent circuit for piezoelectric element operating in thickness extensionalmode

is not constant but depends on the considered frequency.
Both equivalent circuits entirely correspond to thematrix system (7.93). However,

their different structure facilitates understanding and describing specific behavior
of piezoelectric ultrasonic transducers [3, 39]. Since the electrical port in Mason’s
equivalent circuit is equippedwith the clamped capacitanceC0 in parallel, it enables a
better representationof the electrical behavior.On theother hand, theKLMequivalent
circuit simplifies consideration of additional components (e.g., matching layers) at
the front and back of the piezoelectric element because this circuit version is based
on mechanical transmission lines.

7.5.2 Calculation Procedure

Apart from geometric dimensions and properties of the piezoelectric material, the
analyticalmodelingof anultrasonic transducer demands the radiation impedances ZB
and ZF at both mechanical ports (see Fig. 7.32b). For the presumed arrow directions
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of forces FB;F and velocities vB;F, these radiation impedances are given by

ZB = − FB

vB
as well as ZF = − FF

vF
. (7.98)

We can also take an additional electrical circuit at the electrical port into account if
the electrical input impedance Z ic of the circuit is known.

Themajor interest inmany applications of piezoelectric ultrasonic transducers lies
in the electrical impedance as well as the transmission behavior from the electrical
port to a mechanical port and vice versa. In order to derive such quantities, let us
start from the matrix system (7.93), which reads as

⎡
⎣ FB

FF

uP

⎤
⎦ =

⎡
⎣ z11 z12 z13
z21 z22 z23
z31 z32 z33

⎤
⎦
⎡
⎣ vB

vF

iP

⎤
⎦ = Z

⎡
⎣ vB

vF

iP

⎤
⎦ (7.99)

in compact form with the 3 × 3 impedance matrix Z (components zi j ) of the piezo-
electric element. Without limiting the generality, let us, furthermore, assume that the
element’s front (i.e., mechanical port II) is used for emitting and receiving sound
pressure waves. By introducing the radiation impedance ZB = −FB/vB (see (7.98))
at the element’s back, one can reduce the three-port network to a two-port network
exclusively consisting of mechanical port I and the electrical port. The matrix system
for this two-port network results in

⎡
⎢⎢⎢⎣
FF

uP

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
z22 − z12z21

ZB + z11
z23 − z13z21

ZB + z11

z32 − z12z31
ZB + z11

z33 − z13z31
ZB + z11

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

vF

iP

⎤
⎥⎥⎥⎦ (7.100)

or in compact form with the 2 × 2 impedance matrix Z̃ (components z̃i j )

[
FF

uP

]
=

[
z̃11 z̃12
z̃21 z̃22

][
vF

iP

]
= Z̃

[
vF

iP

]
. (7.101)

For determining electrical impedance and transmission behavior of a piezoelectric
element, it is recommended to convert Z̃ into the 2 × 2 inverse chain matrixB (com-
ponents bi j ). The matrix system with mechanical and electrical quantities serving as
input and output, respectively, becomes then [7]

[
uP

iP

]
= 1

z̃12

[
z̃22 det Z̃
1 z̃11

][
FF

−vF

]
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=
[
b11 b12
b21 b22

][
FF

−vF

]
= B

[
FF

−vF

]
. (7.102)

For the further computation steps, one has to additionally know the radiation
impedance at the front. By inserting ZF = −FF/vF from (7.98), the matrix sys-
tem (7.102) takes the form

[
uP
iP

]
=

[
b11 b12
b21 b22

][−ZF

−1

]
vF =

[−ZFb11 − b12
−ZFb21 − b22

]
vF . (7.103)

This matrix system leads directly to the electrical impedance Z el of the piezoelectric
element. Dividing the first by the second line yields [35]

Z el = uP
iP

(7.104)

= 1

jωC0

{
1 + k2t

ktS

j
[
ZB + ZF

]
ZP sin

(
ktS

) − 2Z2
P

[
1 − cos

(
ktS

)]
[
Z2
P + ZBZF

]
sin

(
ktS

) − j
[
ZB + ZF

]
ZP cos

(
ktS

)
}

.

Here, losseswithin the piezoelectricmaterial have been considered. The expression kt
stands for the electromechanical coupling factor in thickness direction of a thin
piezoelectric material like a disk (cf. (5.16), p. 133). When both mechanical ports are
short-circuited (i.e., FB = FF = 0), the radiation impedances ZB and ZF will equal
zero. As a result, (7.104) simplifies to

Z el = 1

jωC0

[
1 − k2t

tan
(
ktS/2

)
ktS/2

]
. (7.105)

The term 1/( jωC0) in (7.104) and (7.105) relates to the capacitive behavior of
the piezoelectric element, while the second term in the brackets originates from
electromechanical couplings within piezoelectric materials. Because the radiation
impedance of air is much smaller than of common piezoelectric materials, (7.105)
represents the electrical impedance of a piezoelectric element operating in air. From
the practical point of view, this means that neither front nor back of the piezoelectric
element are loaded with a material.

To evaluate the transmission behavior of a piezoelectric element for emitting and
receiving sound pressure waves, the inverse chain matrix B from (7.102) should be
converted to the hybrid matrix H (components hi j ). In doing so, we arrive at [7]

[
FF

iP

]
= 1

b11

[
b12 1

− detB b21

][
vF

uP

]
= H

[
vF

uP

]
. (7.106)
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By inserting vF = −FF/ZF in the first line and utilizing the connection FF = p∼AS

between mechanical force and sound pressure p∼, it is possible to compute the
aimed transmission behavior. The transfer function Me of a piezoelectric transducer
for emitting sound pressure waves reads as

Me = p∼
uP

= h12

AS
(
1 + h11/ZF

) . (7.107)

The transfer function for receiving sound pressure waves can be determined in a
similar manner [39].

As stated in Sect. 7.4, piezoelectric elements of ultrasonic transducers operat-
ing in thickness extensional mode are usually located between a backing material
and appropriate matching as well as protective layers. We can directly incorpo-
rate the backing of thickness tB in the analytical modeling by simply replacing ZB
with Z aco;BAS. This step is permitted since wave reflections arising at the rear end of
the backing are negligible because of the great attenuation along the backing mate-
rial. However, the wave propagation within matching and protective layers calls for
special treatment. For the sake of simplicity, let us regard an ultrasonic transducer that
is only equipped with a single matching layer of thickness tM between piezoelectric
element and sound propagation medium. To take into account this matching layer
during analytical modeling, one should describe the underlying wave propagation
by a transmission line for mechanical waves. From the upper left 2 × 2 submatrix
of (7.93), it is possible to deduce the matrix system (chain matrix AM) [39]

[
FF

−vF

]
=

[
cosh

(
kMtM

)
ZM sinh

(
kMtM

)
1
ZM

sinh
(
kMtM

)
cosh

(
kMtM

)
][

FW

vW

]
= AM

[
FW

vW

]
(7.108)

for the lossy transfer behavior of a transmission line, which represents a two-port
network (see Fig. 7.35). The expressions ZM = Z aco;MAS and kM stand for the radi-
ation impedance of the matching layer and the complex-valued wave number within
this layer. While the left port [FF,−vF] of the transmission line is connected to the
front of the piezoelectric element, the right port [FW, vW] is followed by the sound
propagation medium featuring the radiation impedance ZW = Z aco;WAS. Insert-
ing ZW = −FW/vW and dividing the first line of (7.108) by the second line leads
to

ZF = − FF

vF
= ZM

tanh
(
kMtM

) − ZW
ZM

1 − ZW
ZM

tanh
(
kMtM

) (7.109)

for the resulting radiation impedance ZF at the element’s front. If ZF in (7.104)
is substituted by this relation, one can calculate the electrical impedance Z el of
a piezoelectric element that is equipped with backing as well as matching layer
under consideration of the sound propagation medium. For determining the transfer
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Fig. 7.35 Equivalent circuit
for matching layer followed
by propagation medium;
matching layer modeled as
transmission line

FF

−vF

FW

vWZM; tM

ZWZF

function Me for such arrangement, we have to perform the matrix multiplication

[
uP
iP

]
= BAM︸ ︷︷ ︸

BM

[
FW

vW

]
(7.110)

in a first step. The matrices B and AM stem from (7.102) and (7.108), respec-
tively. After converting the matrix product BM into the hybrid matrix HM accord-
ing to (7.106), Me results again from (7.107) by replacing ZF with the radiation
impedance ZW of the sound propagation medium. In this way, the calculated trans-
fer function of a piezoelectric ultrasonic transducer for emitting sound pressurewaves
directly relates to the sound propagation medium.

7.5.3 Exemplary Results

At the end of the section, let us take a look at exemplary computation results of the
analytical modeling approach for piezoelectric ultrasonic transducers. The regarded
disk-shaped piezoelectric element (radius RT = 15mm; thickness tS = 2mm) is
made of the piezoceramic material PIC255 and operates exclusively in thickness
extensional mode. Table5.3 on p.160 contains the material parameters in e-form
and d-form, which were identified through the inverse method. The parameter
conversion from (3.33, p. 52) leads to the required piezoelectric h constant h33 =
2.36 · 109 Vm−1 and elastic stiffness constant cD33 = 1.59 · 1011 Nm−2. Furthermore,
the analytical modeling demands material density �P = 7.8 · 103 kgm−3 and damp-
ing coefficient αd = 0.0129 of the piezoelectric material. Inserting these parameters
in (7.95) yields

ZP = (2.49 · 104 + j1.60 · 102)Nsm−1

k = (1.43 · 10−6 + j2.22 · 10−4)m−1

C0 = 2.38 nF

for the radiation impedance ZP, the complex-valuedwave number k, and the clamped
capacitance C0 of the piezoelectric disk. The calculated resonance frequency fr for
the thickness extensional mode equals ≈1MHz.
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Table 7.2 Decisive parameters for analytical modeling of regarded piezoelectric ultrasonic trans-
ducer; entries “−” not required for calculation procedure

Damping Radiation impedance Propagation Thickness

coefficient αi 	{
Zi

} �{
Zi

}
velocity ci ti

103 Nsm−1 ms−1 mm

Backing 1/QB = 0.3 24.9 3.7 − −
Matching 1/QM = 0.1 5.1 0.3 2000 0.44

Water − 1.1 0 − −

Apart from the piezoelectric element, the simulated ultrasonic transducer consists
of a backing material and a single matching layer. The wave propagation medium
waterwas assumed to be lossless, i.e.,�{

ZW

} = 0. Table7.2 lists the decisive param-
eters of the individual components. Note that the real parts of the radiation impedance
of matching layer as well as backing were chosen according to the real part of ZP.

For optimal matching and backing, this means 	{
ZM

} =
√

	{
ZP

}
ZW (cf. (7.80))

and	{
ZB

} = 	{
ZP

}
. The thickness tM of thematching layer results from the condi-

tion cM/(4 fr), whereby cM stands for the assumed wave propagation velocity within
the matching layer (see Sect. 7.4.1).

The following simulation results refer to four different configurations of the piezo-
electric ultrasonic transducer:

1. Without backing material (i.e., solely air) and without matching layer.
2. Without backing material (i.e., solely air) and with matching layer.
3. With backing material and without matching layer.
4. With backing material and with matching layer.

For each configuration, water serves as sound propagation medium. Figure7.36a and
b display magnitude

∣∣Z el( f )
∣∣ and phase arg{Z el( f )

}
of the frequency-resolved elec-

trical impedance, which was simulated through the analytical modeling approach.
One can clearly see that configuration 1 exhibits strongly pronounced resonance–
antiresonance pairs in Z el( f ) for the fundamental vibration mode as well as its over-
tones. Contrary to that, the resonance–antiresonance pairs get remarkably attenuated
for the remaining configurations. This behavior is a consequence of the additional
material layers being attached to the piezoelectric disk. Owing to reduced wave
reflections at the disk’s back and front in case of appropriate backing and matching,
the vibration behavior of the piezoelectric disk changes which gets also visible in
the electrical impedance.

Figure7.36c depicts normalized magnitudes
∣∣Me( f )

∣∣with respect to frequency f
of the simulated transfer function for emitting sound pressure waves into water. As
expected from the considerations in Sect. 7.4.1, configuration 1 features the highest
maximum but smallest bandwidth of

∣∣Me( f )
∣∣. By attaching the backing material to

the piezoelectric disk (i.e., configuration 3), we are able to substantially improve
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(a) magnitude of impedance (b) phase of impedance
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Fig. 7.36 a Magnitude
∣∣Z el( f )

∣∣ and b phase arg
{
Z el( f )

}
of frequency-resolved electrical

impedances; c normalized transfer function
∣∣Me( f )

∣∣ (magnitude) for emitting sound pressure
waves; d resulting impulse responseme(t); calculations for different configurations of piezoelectric
ultrasonic transducer as mentioned in text

the −3 dB bandwidth B−3 dB
s from 49 to 767 kHz. Even though B−3dB

s slightly
decreases to 762 kHz in case of the matching layer at disk’s front (i.e., configura-
tion 4), themaximumof

∣∣Me( f )
∣∣ increases by 4.5 dB,which constitutes an advantage

concerning efficient piezoelectric ultrasonic transducer.
The observed behavior in

∣∣Me( f )
∣∣ is also confirmed by the impulse

response me(t) (see Fig. 7.36d) that follows from the inverse Fourier transform
of Me( f ), i.e., me(t) = F−1

{
Me( f )

}
. Since f ∈ [0, 2 fr] covers the working area

of conventional piezoelectric ultrasonic transducers, the inverse Fourier transform
was restricted to this frequency range. Compared to configuration 1, the matching
layer in configuration 2 leads to higher magnitudes of me(t). The impulse responses
for configuration 1 and 2 show, however, remarkable post-pulse oscillations, while
the resulting curves demonstrate the pulse-like characteristic for configuration 3
and 4. In accordance with the transfer functions

∣∣Me( f )
∣∣ from Fig. 7.36c, the mag-

nitude of me(t) is larger for configuration 4 than for configuration 3. To sum up, it
can, thus, be stated that the presented simulation results definitely prove the impor-
tance of both backing material and matching layers for piezoelectric ultrasonic trans-
ducers.
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7.6 Examples for Piezoelectric Ultrasonic Transducers

Hereafter, let us show selected piezoelectric ultrasonic transducers as well as their
internal structure and exemplary measurement results. We concentrate on ultrasonic
transducers for fluid wave propagation media and the human body. Section7.6.1
deals with ultrasonic transducers (e.g., parking sensors) for airborne ultrasound. In
Sects. 7.6.2 and 7.6.3, ultrasonic transducers for underwater use and medical diag-
nostics will be detailed, respectively.

7.6.1 Airborne Ultrasound

Airborne ultrasound is utilized in various technical and industrial applications, e.g.,
liquid level meters. Below, we will study a few examples of piezoelectric ultrasonic
transducers for such applications. This includes conventional air-coupled piezoelec-
tric transducers for emitting and receiving ultrasonic waves in air, parking sensors
in motor vehicles as well as broadband ultrasonic transducers that are based on the
EMFi material.

Conventional Piezoelectric Transducers

Figure7.37a depicts a conventional air-coupled piezoelectric transducer that allows
emitting ultrasonic waves in air with center frequencies of fc ≈ 40 kHz. This low-
cost ultrasonic transmitter is placed within an aluminum case and exploits the trans-
verse length mode of a piezoceramic disk.9 Because this disk is glued on a metallic
membrane featuring a larger diameter (see Fig. 7.37b and c), the resulting transducer
represents a piezoelectric unimorph (cf. Fig. 7.27a). In order to generate high sound
pressure levels up to 100 dB, the air-coupled ultrasonic transmitter is additionally
equipped with a horn facilitating sound radiation in air [4, 40]. The stainless steel
mesh at the front should protect horn, membrane as well as piezoceramic disk against
damage and dirt. Section8.5.3 contains selected experimental results for the gener-
ated sound pressure amplitudes p̂∼ of a conventional piezoelectric transmitter for
airborne ultrasound.

Togetherwith a corresponding air-coupled ultrasonic receiver, which is identically
constructed but differs in the electrical input impedance, such transmitter can be
applied for burglar alarm systems, liquid level meters, and anticollision devices.
In former times, the transmitter–receiver combination was also utilized in remote
controls for television sets.

9The transverse length mode of a disk corresponds to the radial mode (cf. Fig. 5.3 on p.131).
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(a) (b) (c)

housing

steel mesh

membrane
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horn

piezoceramic
disk
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Fig. 7.37 a Conventional piezoelectric ultrasonic transmitter Sanwa SCS-401T for generating
airborne ultrasound; b, c images without housing show piezoelectric unimorph consisting of piezo-
ceramic disk and metallic membrane

Parking Sensors

Parking assistance systems in motor vehicles are usually based on airborne ultra-
sound. By evaluating the simple relation z = c0t/2 of geometric distance z, sound
velocity c0, and time-of-flight t of sound waves for pulse-echo mode, the driver can
be informed about the current geometric distance between car and obstacles. Fur-
thermore, such parking assistance systems will enable automatic parking if a car is
equipped with several parking sensors. The utilized parking sensors are commonly
located in the back and front bumper of a car (see Fig. 7.38a). Figure7.38b shows a
typical parking sensor of cylindrical shape that exploits again the transverse length
mode (i.e., radialmode) of a single piezoceramic disk for emitting and receiving ultra-
sonic waves. As the cross-sectional views in Fig. 7.38c and d demonstrate, the disk
is glued to the bottom of the cylindrical pot, which serves as membrane. Depending
on both the desired directivity pattern and the operating range of these piezoelectric
unimorph transducers (cf. Fig. 7.27a), the center frequencies of the ultrasonic waves
currently can reach values up to 68 kHz. Such center frequencies lead to awavelength
of λaco ≈ 5mm in air.

EMFi Material

As already mentioned in Sect. 3.6.3, ferroelectrets like the so-called electromechan-
ical film (EMFi) material offer a rather high piezoelectric strain constant d33 and
piezoelectric voltage constant g33. Due to the cellular structure, ferroelectret materi-
als are, furthermore, mechanically flexible and feature a low mechanical stiffness as
well as material density, which leads to a small acoustic impedance Zaco. According
to the considerations in Sects. 7.4 and 7.5, small values of Zaco can be a major advan-
tage regarding acoustic matching of piezoelectric materials with wave propagation
media such as air. Ultrasonic transducers based on ferroelectrets should, therefore,
provide a large bandwidth (see, e.g., [5, 17]).

Figure7.39a shows displacement amplitudes ûz in thickness direction of an EMFi
foil (thickness 70µm; d33 ≈ 200 pCN−1) with respect to both excitation voltage and
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(a) (b)

(c) (d)

parking sensors

cylindrical potcylindrical pot

cylindrical pot

damping material piezoceramic disk

5 mm
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5 mm

Fig. 7.38 a Parking sensors in back bumper of car; b typical ultrasound-based parking sensor from
automotive supplier Valeo [78]; c cross-sectional view of parking sensor from b; d cross-sectional
view without damping material; piezoceramic disk is glued to bottom of cylindrical pot

excitation frequency f . The displacements were acquired with the laser scanning
vibrometer Polytec PSV-300 [56] and represent the arithmetic mean over the sur-
face of the EMFi foil. For a given excitation voltage, the displacements stay nearly
constant in the frequency range from 20 to 200 kHz and are in phase. Above the
resonance frequency fr ≈ 300 kHz for the thickness extensional mode, there occur,
however, remarkable differences in the amplitudes as well as phase angles, which can
be ascribed to the inhomogeneous structure of ferroelectrets [64, 75]. The behavior in
the lower frequency band should allow both emitting and receiving of short ultrasonic
pulses in air. To prove this statement, let us take a look at the generated sound pressure
level Lp of a disk-shaped EMFi foil with radius RT = 10mm. Figure7.39b depicts
the measured Lp at an axial distance of Rdir = 0.5m (i.e., far field) with respect to
excitation frequency f . Thereby, an excitation voltage of 640VPP was chosen. The
sound pressure values were recorded in an anechoic roomwith a 1/8-inch condenser
microphone from the company Brüel &Kjær [10]. As themeasurement curve clearly
reveals, one can generate high and constant sound pressure levels over a wide fre-
quency range with a single foil. The resulting normalized directivity pattern p̂∼(θ)
for three different excitation frequencies is shown in Fig. 7.40. In accordance with
the findings from Sect. 7.2.1, the directivity of the disk-shaped transducer will be
pronounced stronger if f increases (cf. Fig. 7.10). The main lobes of the measured
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(a) displacement amplitudes (b) sound pressure level
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Fig. 7.39 a Measured amplitudes of averaged displacements ûz in thickness direction of EMFi
foil with respect to excitation voltage and excitation frequency f ; b measured sound pressure
level Lp at axial distance Rdir = 0.5m of single and two stacked disk-shaped EMFi foils with
radius RT = 10mm; excitation voltage 640VPP
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Fig. 7.40 Measured and approximated directivity pattern 20 · log10
(
p̂∼(θ) / p̂∼max

)
at dis-

tance Rdir = 0.5m of EMFi foil with radius RT = 10mm for three different excitation frequen-
cies f ; approximations from (7.49); normalization with respect to maximum amplitude p̂∼max

directivity patterns coincideverywellwith the corresponding approximations from(7.49).
It is also possible to exploit the large bandwidth of ferroelectret materials for

receiving ultrasonic waves [64, 75]. By utilizing a preamplifier circuit, EMFi
materials provide sensitivities of a few mVPa−1 in a wide frequency range, e.g.,
from 20 kHz up to 200 kHz. An appropriate preamplifier circuit consists of an
impedance matching circuit followed by voltage amplification.

Even though thematerial parameters d33 and g33 are rather high, the smallmechan-
ical stiffness of ferroelectrets usually yields low electromechanical coupling factors,
e.g., k33 ≈ 0.1 for EMFi materials. This fact constitutes problems, especially when
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Fig. 7.41 Artificial bat head
containing three EMFi-based
ultrasonic transducers, i.e.,
one transmitter of radius
RT = 7.5mm as well as two
receivers of radius
RT = 5.0mm; pinnas and
receivers can be rotated by
means of electric motors [64]

pinna

receivers

transmitter

10 mm

such a material should be used as ultrasonic emitter because high excitation voltages
are required. However, by stacking single EMFi foils and connecting them electri-
cally in parallel, we can reduce the excitation voltage of a transmitter and increase
the receiver sensitivity [30, 64]. As Fig. 7.39b demonstrates, the generated sound
pressure level Lp will rise remarkably if two stacked EMFi foils are used instead of
a single foil. Although one would expect that Lp increases by 6 dB for two stacked
EMFi foils, there arise differences of more than 20 dB, which is a consequence of
the reduced resonance frequency fr < 150 kHz for the two stacked EMFi foils. The
reduction directly follows from the greater mass of stacked foils compared to a single
foil. Since the resulting displacements uz are relatively high nearby fr, the generated
sound pressure level will also take high values. Hence, the difference in Lp between
stacked EMFi foils and a single foil can exceed 6 dB in the considered frequency
range.

The provided broadband characteristic of EMFi materials makes them particu-
larly suited for generation and reception of airborne ultrasound. That was the reason
why EMFi foils were exploited to build up an artificial bat head in the course of the
project Chiroptera Inspired Robotic Cephaloid (CIRCE), which aimed at functional
reproduction of the biosonar system found in bats [75, 76]. Figure7.41 illustrates
the realized setup of the artificial bat head mainly consisting of one ultrasonic trans-
mitter (RT = 7.5mm) as well as two ultrasonic receivers (RT = 5.0mm). Each of
those transducers was fabricated of a single EMFi foil. For concentrating reflected
sound waves, the artificial bat head is additionally equipped with two pinnas, which
can be rotated by electric motors.

Recently, Álvarez-Arenas [2] suggested a promising design for an air-coupled
ultrasonic transducer that combines the advantages of both piezoceramic and fer-
roelectret materials. From the inside out, the transducer is composed of three main
components: (i) piezoelectric disk made of 1-3 composite, (ii) appropriate matching
layers, and (iii) ferroelectret foil. Generally speaking, this special transducer design
enables several different operation modes, which are listed below:
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• The conventional pulse-echo mode is executed with either the piezoelectric com-
posite disk or the ferroelectret foil; i.e., one of these components serves as both
transmitter and receiver. When the piezoelectric composite is used as active ele-
ment, the ferroelectret foil will represent a further passive matching layer of the
ultrasonic transducer.

• The pitch-catch mode can be accomplished in two different ways, i.e., either the
piezoelectric composite disk or the ferroelectret foil serves as transmitter, while
the other component acts as receiver.

• Both the piezoelectric composite disk and ferroelectret foil are operated simultane-
ously as transmitter and receiver. Therewith, it is possible to increase the generated
sound pressure and the bandwidth of the air-coupled ultrasonic transducer.

7.6.2 Underwater Ultrasound

Nondestructive testing, material characterization and acoustic microscopy are often
based on underwater ultrasound because water allows contactless and low-loss trans-
mission of ultrasonic waves between transducer and specimen. Hereinafter, we will
show various examples for piezoelectric ultrasonic transducers (so-called immersion
transducers) that are specifically designed for underwater use. This includes con-
ventional transducer structures as well as special transducers being equipped with
a delay line. Moreover, measurement results for the pulse-echo characteristic of a
spherically focused immersion transducer are presented.

Conventional Immersion Transducers

Figure7.42 illustrates seven different immersion transducers that are commercially
available and contain a single piezoelectric element operating in thickness exten-
sional mode. These transducers do not only differ in geometric dimension as well
as provided center frequency for emitting and receiving ultrasonic waves but also
in the focusing behavior and internal structure. Transducer 1–5 represents conven-
tional immersion transducers. While transducer 1 and 5 offer a spherically focused
characteristic, transducer 2 and 4 are piston-type transducers due to the planar active
surface. In contrast, transducer 3 features a cylindrically focused behavior; i.e., this
immersion transducer generates nonsymmetric sound pressure fields (cf. Fig. 8.21 on
p.377). Table7.3 lists the focusing behavior, the diameter 2RT of the active surface,
the actual focal length FT,act as well as the center frequency fc for all immersion
transducers from Fig. 7.42.

The internal structure of a typical piston-type transducer (e.g., transducer 2 from
Fig. 7.42) is displayed in Fig. 7.43a. Besides the piezoceramic disk and a waterproof
housing, the transducer is equipped with a backing material and a single match-
ing layer at the disk’s front. According to Sect. 7.4.1, the backing material should
increase the bandwidth of both emitted and receivable ultrasonic waves. The thin
matching layer allows impedance matching of the piezoceramic material and the
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Fig. 7.42 Different commercially available immersion transducers based on piezoelectric single
elements; manufacturer Olympus [50] and Krautkramer [22]; transducer 6 and 7 are equipped with
fused silica delay line; Table7.3 lists focusing behavior and contains characteristic parameters of
these ultrasonic transducers

Table 7.3 Focusing behavior and decisive parameters of piezoelectric ultrasonic transducers from
Fig. 7.42; diameter 2RT of active surface; actual focal length FT,act; center frequency fc for emitting
and receiving ultrasonic waves

Transducer
number

Focusing
behavior

2RT
mm

FT,act
mm

fc
MHz

1 Spherically
focused

38.1 88.9 2.25

2 Piston-type 12.7 − 2.25

3 Cylindrically
focused

12.7 25.4 2.25

4 Piston-type 9.5 − 5

5 Spherically
focused

12.7 88.9 10

6 Spherically
focused

6.4 19.1 20

7 Spherically
focused

6.4 12.7 50

sound propagation medium water. On the other hand, the matching material also
serves as protective layer for the piezoceramic disk that is covered with electrodes.

Immersion Transducers with Delay Lines

As stated above, the seven immersion transducers in Fig. 7.42 also differ in their
internal structure. This particularly refers to transducer 6 and 7, which are equipped
with a fused silica delay line between piezoelectric disk and sound propagation
medium (see Fig. 7.43b). One reason for the application of fused silica delay lines
lies in inspections of specimens being placed close to the active transducer surface. If
a conventional immersion transducer (i.e., without delay line) is employed for such
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Fig. 7.43 a Cross-sectional view of internal structure of typical piston-type immersion trans-
ducer (cf. transducer 2 from Fig. 7.42); b spherically focused immersion transducer equipped with
delay line between piezoelectric disk and sound propagation medium; virtual lens emulates piezo-
electric disk and delay line; geometrical focus FT of spherical recess; actual focal length FT,act
representing radius of virtual lens

inspections, it might happen that information-bearing sound reflections arrive at the
transducer although the emitted pulse has not decayed. Consequently, we are not able
to recognize those reflections in a reliable way. By means of an appropriate delay
line, this problem does not arise because the sound waves have to propagate twice
through the delay line in pulse-echo mode. As a further advantage, a delay line of
sufficient length ensures that the actual wave propagation medium (here water) and,
therefore, the investigated specimen are located in the far field of the piezoelectric
disk representing a simple piston-type transducer. Contrary to the near field, the far
field of a piston-type transducer does not contain local minima and maxima (see
Sect. 7.2.1), which can be a great benefit for ultrasonic imaging systems. However,
one has to keep in mind that there always occur reflections of incident sound waves
at the interface delay line/water. Such reflections significantly reduce the electrical
transducer outputs in pulse-echo mode and, thus, lower the available signal-to-noise
ratio.

When the fused silica delay line features a spherical recess (radius FT; see
Fig. 7.43b) at the front end, the emitted and received ultrasonicwaveswill be focused;
i.e., the immersion transducer shows spherically focusing behavior. The great dif-
ference in the sound velocities of delay line and water causes substantial deviations
between geometrical focal length FT and actual focal length FT,act. The deviations
have two reasons, namely (i) different axial distances between the piezoelectric disk
and points along the surface of the spherical recess aswell as (ii) refraction of incident
sound pressure waves at the interface delay line/water. We can consider both reasons
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Fig. 7.44 Procedure to
acquire 2-D pulse-echo
characteristic of immersion
transducer by means of wire
target; wire diameter Dwire;
position (x, z) of wire with
respect to active transducer
surface; wire orientated in
parallel to y-axis

x

z
Dwire

transducer

for semi-analytical calculation approaches (see, e.g., Sect. 7.1) of sound fields and
electrical transducer outputs by introducing a virtual lens of radius FT,act for the
ultrasonic transducer [54, 59]. This virtual lens corresponds then to the combina-
tion of piezoelectric disk and delay line (see Fig. 7.43b). Note that deviations of FT

and FT,act will also emerge for conventional focused immersion transducers with-
out fused silica delay line whenever the curvature of both piezoelectric element and
active transducer surface differ.

Pulse-Echo Characteristic

Since 3-D sound field measurements of immersion transducers require expensive
equipment (e.g., hydrophones, see Chap.8) and are, furthermore, hardly feasible
in case of high center frequencies, it makes sense to acquire the pulse-echo char-
acteristic. In doing so, we measure electrical transducer outputs uO(t) for a defined
target instead of sound pressure values p∼. The pulse-echo characteristic results then
from collecting the maximum uev;max of the output’s envelope at different distances
between transducer and specimen. When an immersion transducer is exploited for
an ultrasonic imaging system, this procedure will provide the advantage that one
obtains information about the imaging properties, which also includes the utilized
read-out electronics. Principally, the pulse-echo characteristic of an immersion trans-
ducer can be acquired by means of various specimens, e.g., spheres, plate targets as
well as wire targets [57, 59]. To achieve quantitative data for a spherically focused
transducer in a short time, it is recommended to use a wire target. By altering both
on-axis and off-axis distances between transducer and wire (see Fig. 7.44), we can
create a 2-D image for the pulse-echo characteristic. This data will also allow us to
draw conclusions regarding generated sound fields if the wire diameter Dwire is much
smaller than the wavelength λaco in the surrounding wave propagation medium.

Figure7.45 displays the acquired pulse-echo characteristic uev;max(x, z) of the
spherically focused immersion transducer Olympus V311-SU [50], which was oper-
ated in a water tank by the pulser/receiver Olympus PR5900 [50]. A tungsten wire
with diameter Dwire = 50µm served as specimen for this measurement. The pulse-
echo characteristic in Fig. 7.45a clearly indicates the focal volume of the spherically
focused transducer. Moreover, it is noticeable that the transducer slightly squints
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(a) pulse-echo characteristic uev;max(x, z) (b) on-axis

(c) focal plane
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Fig. 7.45 a Normalized 2-D pulse-echo characteristic uev;max(x, z) for wire target at (x, z); b
pulse-echo characteristic on-axis, i.e., uev;max(x = 0, z); c pulse-echo characteristic in focal plane,
i.e., uev;max

(
x, z = Ft,act

)
; maximum of uev;max(x, z) at x = 0; spherically focused immersion

transducer Olympus V311-SU

which stems from production-related asymmetries. The maximum of uev;max(x, z)
representing the true focus arises at the axial distance FT,act = 77.0mm from the
active transducer surface.

Alternatively to a wire target, one can measure the pulse-echo signal uO(t) of
the spherically focused transducer for a plane plate target that is placed in the
focal plane, i.e., at the axial distance of the true focus. Figure7.46a and b illustrate
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(a) time behavior (b) spectral magnitude
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Fig. 7.46 a Time behavior of electrical transducer output uO(t) and its envelope uev(t) for
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∣∣UO( f )
∣∣ = |F{uO(t)} |; characteristic data from

curves: τp(−20 dB) = 495 ns, fl = 6.60MHz, fu = 11.51MHz, B−6 dB
s = fu − fl = 4.91MHz,

fmax = 9.66MHz, fc = 8.72MHz; spherically focused immersion transducer Olympus V311-SU

the acquired timebehavior ofuO(t) and its spectralmagnitude
∣∣UO( f )

∣∣ = |F{uO(t)} |,
respectively. From the curves, we are able to deduce quantities like time differ-
ence τp(−20 dB) = 495 ns and center frequency fc = 8.72MHz. Together with
FT,act, the transducer radius RT = 6.5mm, and the sound velocity c0 =
1483ms−1 of water, these quantities yield the wavelength λaco = 0.17mm as well as
the dimensionlessFresnel parameter SF = 0.31and thedimensionless f-number f # =
5.9 of the immersion transducer. Furthermore, one can estimate the achievable
spatial resolution of the spherically focused transducer in axial and lateral direc-
tion through (7.68), (7.73), and (7.74). The axial resolution takes the value dax =
0.37mm, whereas the lateral resolution equals dlat(Rayleigh) = 1.23mm and
dlat(Sparrow) = 0.96mm according to the Rayleigh and Sparrow two-point defi-
nition, respectively.

By evaluating the pulse-echo characteristic on-axis (see Fig. 7.45b) and in the focal
plane (seeFig. 7.45c),we can deduce quantities like depth of focusdz and lateral beam
width dρ. As explained in Sect. 7.2.2, these geometric distances refer to reductions
of sound pressure values by 3 dB. Owing to the fact that the pulse-echo characteris-
tic uev;max(x, z) contains the transducer behavior twice, a reduction by 6 dB has to
be considered instead. Therefore, dz(−3 dB) and dρ(−3 dB) in the generated sound
field correspond to dz(−6 dB) and dρ(−6 dB) in uev;max(x, z), respectively. Table7.4
contains dz and dρ resulting from the pulse-echo characteristic as well as those,
which are derived from the approximations (7.60) and (7.64). As the comparison
of the entries clearly points out, measured values and approximations coincide very
well.
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Table 7.4 Results of measurements and approximations for depth of focus dz and lateral beam
width dρ of spherically focused immersion transducer Olympus V311-SU

Depth of focus dz in mm Lateral beam width dρ in mm

Measurement 42.1 1.00

Approximation 42.3 1.04

linear phased array

curved phased array

sector phased array 10 mm

Fig. 7.47 Different ultrasonic linear arrays based on piezoceramic materials for medical diagnos-
tics; curved phased arrays differ in curvature radius

7.6.3 Medical Diagnostics

Figure7.47 shows four conventional piezoelectric transducer arrays formedical diag-
nostics. Such transducer arrays are utilized for checking internal organs, pregnancy
examinations as well as detecting kidney stones or gallstones (e.g., [12, 29, 77]).
The linear phased array and both curved phased arrays contain more than a hun-
dred single-element transducers made of piezoceramics, which are either partially
operated in parallel or can be excited and read out separately. By contrast, the sector
phased array consists only of 64 single-element transducers that have to be operated
separately for 2-D examinations (cf. Sect. 7.4.2). While the linear and both curved
phased arrays offer the center frequency fc = 3.5MHz for emitting and receiving
ultrasonic waves, the sector phased array is limited to fc = 2.25MHz. The curvature
radius of the left and right curved phased array equals 70mm and 40mm, respec-
tively.

In Fig. 7.48, one can see a cross-sectional view of the curved phased array fea-
turing the curvature radius 70mm. Just as typical single-element transducers (see
Sect. 7.6.2), the array elements operating in thickness extensional mode are equipped
with a backing material to increase the transducer bandwidth. A thin matching layer
at the element’s front enables again matching of acoustic impedances, and a protec-
tive layer serves as acoustic lens for emitted as well as received ultrasonic waves.
Since the sound velocity in the protective layer is smaller than in the human body, the
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Fig. 7.48 Cross-sectional
view of curved phased array
with curvature radius 70mm
from Fig. 7.47

backing

matching
layer

protective layer
and acoustic lens

array
elements

5 mm

acoustic lens exhibits a concave shape. The efficient acoustic coupling of protective
layer and human body demands an additional liquid coupling gel to avoid disturbing
air between them.

7.7 Ultrasonic Imaging

Ultrasonic imaging represents a very important application area of piezoelectric
ultrasonic transducers. It is often conducted in noninvasive medical diagnostics and
in nondestructive testing. For such applications, the ultrasonic transducers are com-
monly operated in the pulse-echo mode. When there exist inhomogeneities of the
acoustic impedance Zaco along the propagation path, the incident ultrasonic waves
will become reflected (cf. Sect. 2.3.4). The time-of-flight of these reflections and their
magnitudes can be exploited to deduce certain information about the internal struc-
ture of the investigated area. For example, wewill be able to localize inhomogeneities
such as flaws inside of solids if the sound velocity is known.

Apart from pregnancy examinations, ultrasonic imaging in medical diagnostics10

can be found in anesthesiology, cardiology, gastroenterology, neurology, and urol-
ogy [16, 40, 77]. Compared to other imaging techniques (e.g., radiography and mag-
netic resonance imaging), ultrasonic imaging is very cheap regarding equipment costs
and examination costs. Since the utilized acoustic intensities in medical diagnostics
stay below 100mWcm−2, ultrasonic imaging does not pose a threat to the examined
patient. The center frequencies of the used piezoelectric ultrasonic transducers (e.g.,
phased arrays; cf. Fig. 7.47) typically range from 1MHz up to 15MHz.

As mentioned above, a further important application area of ultrasonic imaging
is nondestructive testing11 (NDT). If nondestructive testing is based on ultrasonic
waves, it will also be called ultrasonic testing. The applications of ultrasonic testing

10Ultrasonic imaging inmedical diagnostics is also known asmedical ultrasound, diagnostic sonog-
raphy, and ultrasonography.
11Nondestructive testing is also called nondestructive evaluation (NDE).
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(a) A-mode and M-mode (b) B-mode (c) C-mode

single-element
transducer

object surface

x

y
z

Fig. 7.49 Scan lines and scan positions on object surface for a A-mode and M-mode imaging, b
B-mode imaging, and c C-mode imaging with single-element ultrasonic transducer

range from weld inspection over material characterization to detection and local-
ization of small flaws [19, 36]. Ultrasonic testing makes it possible to investigate
areas below the object surface. Just as in case of ultrasound-based medical diag-
nostics, the major advantage of ultrasonic testing lies in the low examination costs.
Ultrasonic testing devices are often portable and enable highly automated operation.
The typical range of the transducer’s center frequencies is comparable to that in
medical diagnostics. However, acoustic microscopy as a special application of NDT
requires piezoelectric ultrasonic transducers with center frequencies much higher
than 10MHz [9, 43]. For instance, some acoustic microscopes operate with 1GHz,
which leads to the wavelength λ ≈ 1.5µm in water.

The acoustic coupling of ultrasonic transducer and investigated object is decisive
for ultrasonic imaging and depends on the application. While acoustic microscopy
commonly exploits water for coupling, a special gel serves as coupling medium in
noninvasive medical diagnostics (cf. Sect. 7.6.3). Air pockets between transducer
and investigated object may distort the resulting image or even impede ultrasonic
imaging.

Below, let us briefly discuss the most important imaging modes that are applied
in ultrasonic imaging, namely A-mode and M-mode, B-mode as well as C-mode
imaging. Figure7.49 illustrates typical transducermovements,whichwill be required
for the four imaging modes if a single-element transducer is used to investigate a
specimen. Especially in medical diagnostics, there exist further imaging modes like
continuous wave (CW) Doppler and pulsed wave (PW) Doppler imaging for blood
flow measurements [32, 71].

7.7.1 A-Mode and M-Mode Imaging

The name A-mode imaging originates from the word amplitude. For this imaging
mode, the ultrasonic transducer stays at the same position with respect to the sur-
face of the investigated object (see Fig. 7.49a). A single A-mode line represents the
envelope uev(t) of the received echo signal uO(t) (i.e., electrical transducer output)
due to reflected ultrasonic waves. The envelope can be calculated with the aid of the
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Fig. 7.50 Amplified
transducer output uO(t) and
envelope uev(t) representing
single A-mode line; surface
of plate reflector made of
acrylic glass located at
z = 12.7mm; spherically
focused immersion
transducer Olympus
VU390-SU/RM
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Hilbert transform (cf. (7.69)). Figure7.50 depicts an amplified output uO(t) and the
resulting envelope uev(t) of the spherically focused immersion transducer Olympus
VU390-SU/RM (see transducer number 7 in Fig. 7.42 [50]), which was operated in
a water tank by the pulser/receiver Olympus PR5900 [50]. Thereby, the surface of a
plate reflector made of acrylic glass was placed in the transducer’s focal plane, i.e.,
at the axial distance z = 12.7mm from the active transducer surface.

By arranging several A-mode lines from subsequent instants of time column by
column, one obtains a M-mode image, whereby the letter M stands for motion. The
current A-mode line is either brightness-coded or color-coded in theM-mode image.
Mostly, high amplitude values are assigned to bright colors, while low values are
visualized by dark colors. When there arise changes in the internal structure of the
object, the A-mode lines and, consequently, the resulting M-mode image will be
altered. Temporal changes in the A-mode lines were already used in the 1950s to
detect heart motions [77].

7.7.2 B-Mode Imaging

B-mode imaging is the most commonly used mode in ultrasonic imaging. The name
originates from the word brightness. In contrast to A-mode and M-mode imag-
ing, the single-element transducer has to be mechanically moved along a line for
B-mode imaging (see Fig. 7.49b). The B-mode image results then from arranging
the A-mode lines at subsequent transducer positions column by column. Similar to
M-mode images, the A-mode lines are either brightness-coded or color-coded in
B-mode images. A B-mode image can be interpreted as cross-sectional view of the
investigated object along the prescribed line, which is also called scan line. The
image will provide information about the internal structure if the sound velocities
are known.

The movement of a single-element transducer does not constitute a problem for
NDT because the investigated specimen remains unchanged and the examination
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time is often not critical. However, since the movement is a time-consuming proce-
dure, single-element transducers are not utilized inmedical diagnostics for generating
B-mode images. Nowadays, the required real-time capability in medical diagnostics
is usually achieved with phased arrays [31, 77]. As mentioned in Sect. 7.4.2, trans-
ducer arrays allow steering and focusing,which lead to a reasonable spatial resolution
in the whole B-mode image.

In the majority of cases, acoustic microscopes use spherically focused single-
element transducers [9, 43, 82]. This is a consequence of the fact that the desired
spatial resolution demands ultrasonic frequencies considerably higher than 10MHz.
Transducer arrays operating at such high frequencies still pose a great challenge
for research and transducer manufacturer (cf. Sect. 7.4.2). Owing to the limitation
to spherically focused single-element transducers, the spatial resolution of acous-
tic microscopes is only ideal in the focal zone. To improve the spatial resolution
outside the focal zone, one can apply the so-called synthetic aperture focusing tech-
nique (SAFT) [52, 60, 69]. The underlying idea of this technique lies in coher-
ently summing the transducer output signals at different transducer positions. From
the theoretical point of view, the SAFT yields depth-independent spatial resolu-
tions in B-mode images of homogeneous wave propagation media. The applica-
tion of the SAFT to inhomogeneous specimens (e.g., layered structures) is sub-
ject to ongoing research at the Chair of Sensor Technology (Friedrich-Alexander-
University Erlangen-Nuremberg) in the framework of the Collaborative Research
Center TRR39 [13].

As a simple example, let us study a B-mode image of a thin wire reflector being
aligned in parallel to y-axis at x = 0mm and at the axial distance z ≈ 9.5mm from
the active transducer surface. Since the used spherically focused immersion trans-
ducer Olympus VU390-SU/RM features the focal length FT,act = 12.7mm, the wire
reflector is located in the negative defocus region. Figure7.51a shows the amplified
transducer outputs uO(t) and the resulting A-mode lines uev(t) at two different lat-
eral transducer positions. One can clearly see that both the temporal position and the
height of the maximum in uO(t) and uev(t) strongly depend on the lateral transducer
position x . Apart from the main reflection, the A-mode lines contain signal compo-
nents stemming frommultiple reflections. The resulting B-mode image in Fig. 7.51b
shows sickle-shaped reflections, which are characteristic for small reflectors being
located outside the transducer’s focal plane. The time axis from the A-mode line was
rescaled by z = c0t/2 with the sound velocity c0 in water.

7.7.3 C-Mode Imaging

The name C-mode imaging originates from the word complex. For recording a
C-mode image, the single-element ultrasonic transducer has to be moved along the
xy-plane over the surface of the investigated object (see Fig. 7.49c). The C-mode
image results from evaluating the maximum of the A-mode line at each transducer
position. Brightness coding or color coding finally leads to the C-mode image.When
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(a) output signals (b) B-mode image
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Fig. 7.51 a Amplified transducer output uO(t) and uev(t) (representing A-mode line) for two
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Fig. 7.52 a Picture of joined acrylic glass plateswith geometric dimensions 20.0mm × 20.0mm ×
4.75mm; b normalized C-mode image of adhesive layer; bright areas mark delaminations; spheri-
cally focused immersion transducer Olympus VU390-SU/RM

the evaluation of the maximum is limited to a short time window, we will obtain a
cross-sectional view of the investigated object in a certain depth z with respect to the
active transducer surface. Thus, one can generate depth-dependent information about
the object by altering the short time window. That is the reason why C-mode imaging
is often used in acoustic microscopy. Just as in case of B-mode imaging, the spatial
resolution in the C-mode images will only be ideal if the selected cross-sectional
view is close to the transducer’s focal plane. Again, the SAFT can be applied to
enhance spatial resolution outside the focal plane.
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To demonstrate C-mode imaging in acoustic microscopy, let us investigate the
adhesive area of two optically transparent acrylic glass plates with the geometric
dimensions 20.0mm × 20.0mm × 4.75mm. The acrylic glass plates were joined
with an optically transparent plastic glue. The thickness of the adhesive layer equals≈
0.25mm. As the pictures in Fig. 7.52a indicates, there exist discontinuous areas of
the adhesive layer, which are usually accompanied by trapped air. These areas can
be interpreted as delamination of the joined plates.

Ultrasonic imaging was again conducted with the spherically focused immersion
transducer OlympusVU390-SU/RM. For C-mode imaging, the considered timewin-
dowwas set to the depth of the adhesive layer. TheC-mode image in Fig. 7.52b clearly
reveals the delaminations. The reason for this lies in the acoustic impedance Zaco. In
contrast to the plastic glue, the acoustic impedance of air strongly differs from that
of acrylic glass. Therefore, the incident ultrasonic waves become almost completely
reflected at delaminations, whereas the reflections are rather small at areas of good
plate joint. The large reflections appear as large peaks of the A-mode lines in the
considered time window.
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Chapter 8
Characterization of Sound Fields
Generated by Ultrasonic Transducers

The metrological characterization of sound fields represents an important step in the
design and optimization of ultrasonic transducers. In this chapter, wewill concentrate
on the so-called light refractive tomography (LRT), which is an optical-based mea-
surement principle. It allows noninvasive, spatially as well as temporally resolved
acquisition of both, sound fields in fluids and mechanical waves in optical transpar-
ent solids. Before the history and fundamentals (e.g., tomographic reconstruction)
of LRT are studied in Sects. 8.2 and 8.3, we will discuss conventional measurement
principles (e.g., hydrophones) for such measuring tasks. Section 8.4 addresses the
application of LRT for investigating sound fields in water. For instance, the disturbed
sound field due to a capsule hydrophone will be quantified. In Sect. 8.5, LRT results
for airborne ultrasound are shown and verified through microphone measurements.
Finally, LRT will be exploited to quantitatively acquire the propagation of mechani-
cal waves in optically transparent solids, which is currently impossible by means of
conventional measurement principles.

8.1 Conventional Measurement Principles

In this section, let us brieflydescribe conventionalmeasurement principles for analyz-
ing sound fields in fluids as well as mechanical waves in optically transparent solids.
The measurements principles are categorized into five groups: (i) hydrophones,
(ii) microphones, (iii) pellicle-based optical interferometry, (iv) Schlieren optical
method, and (v) light diffraction tomography. At the end, the different measurement
principles are compared regarding important requirements (e.g., spatially resolved
results) in practical applications.
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8.1.1 Hydrophones

Sound fields in water and water-like liquids are frequently analyzed by means of
so-called hydrophones [2, 26]. Since this measurement device has always to be
immersed in the liquid, the incident soundwaveswill be reflected aswell as diffracted
at the hydrophone body. Therefore, the underlying measurement principle is inva-
sive (see Sect. 8.4.4 and [21]). Hydrophones are usually based on piezoelectric mate-
rials such as thin piezoceramics or PVDF (polyvinylidene fluoride) foils. Piezoce-
ramic materials provide higher coupling factors for converting mechanical into elec-
trical energy, but due to its low acoustic impedance, PVDF is much better suited
for water (see Sect. 3.6.3). Consequently, PVDF does not require a λaco/4 layer for
matching acoustic impedances of piezoelectric material andwater. As a result, PVDF
hydrophones feature higher measurement bandwidths than those exploiting piezoce-
ramics and, thus, PVDF hydrophones are more often used in practical applications.

In general, we can distinguish between three different types of piezoelectric
hydrophones, namely (i) needle, (ii) capsule, and (iii) membrane hydrophones. As
the name already suggests, needle hydrophones have the form of a needle. A piezo-
electric material with a typical effective diameter of � 1mm is directly located
on the needle tip. Depending on the utilized piezoelectric material and without a
preamplifier, these hydrophones offer currently nominal sensitivities ranging from12
to 1200 nV Pa−1 (i.e., −278 to −238 dB re 1VµPa−1) and provide measurement
bandwidths of 1−20MHz [30]. A larger effective diameter of the piezoelectric mate-
rial yields a better hydrophone sensitivity but reduces the acceptance angle for inci-
dent sound pressure waves. For example, a needle hydrophone with the nominal
sensitivity 1200 nV Pa−1 exhibits only an acceptance angle of 15◦ at the sound fre-
quency 5MHz. Besides, a large effective diameter is crucial because sound pressure
values are averaged over the hydrophone’s active area. Note that this fact refers
to all three types of piezoelectric hydrophones and may pose especially problems
in the near field of ultrasonic transducers, where sound fields exhibit high spatial
frequencies (cf. Fig. 8.10).

The second type of hydrophones, so-called capsule hydrophones, looks like a
projectile and uses PVDF as piezoelectric material (see Fig. 8.1a). The designs as
well as specifications of capsule and needle hydrophones are quite similar, but the
sensitivity of capsule hydrophones does not depend so strongly on sound frequency.
Although its special geometry allows a solid construction even for small PVDF
diameters, there occur only minor reflections as well as diffractions of the incident
sound waves at the hydrophone body.

Membrane hydrophones (see Fig. 8.1b), which represent the last hydrophone
type, consist of an acoustically transparent PVDF membrane (thickness of a single
PVDF foil <30µm; diameter 100mm). Each side of the membrane is covered by
electrodes in a manner that a small area at the membrane’s center with a typical
diameter <1mm gets piezoelectric after poling [3, 50]. In doing so, this area can
be used to convert incident sound pressures waves into corresponding electrical
output signals. Compared to the other two types, membrane hydrophones provide
a larger measurement bandwidth ranging from 1 up to 50MHz and more. For this
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Fig. 8.1 Illustration of a capsule hydrophone and b membrane hydrophone [2]

reason, such hydrophones are perfectly suited for undistorted acquisition of pulse-
shaped ultrasonic waves in water. Continuous sound waves may, however, lead to
standing mechanical waves inside the thin membrane that distort sound field as well
as electrical output signals [21]. Membrane hydrophones are also rather sensitive to
the angle of incident sound pressure waves, which results in a small acceptance angle
of typically <30◦. Apart from piezoelectric hydrophones, fiber-optic hydrophones
are sometimes utilized for characterizing sound fields in water since they enable
sound pressure measurements far above 10MPa [45].

8.1.2 Microphones

Devices for acquiring sound fields in air are called microphones. For precise as
well as accurate measurements of sound pressure values and levels, one com-
monly utilizes electrostatic capacitor-basedmicrophones such as condenser and elec-
tret microphones [26]. While condenser microphones require an external voltage
supply Ubias for polarization, electret microphones exploit a permanently charged
material. Depending on the condenser microphone, the values for Ubias lie in the
range 20−200V. Figure 8.2a depicts the schematic structure of a condenser micro-
phone. Amoveable aswell asmechanically prestressed circularmembrane that oscil-
lateswith the incident soundwaves serves as oneplate of the capacitor. Themembrane
is commonly made of nickel or duraluminum of≈10µm thickness. For special mea-
surement applications, a metallized polymer foil of less thickness is used instead.
The air gap between membrane and backing electrode equals typically 30µm. To
increase the amplitude of membrane oscillations, the backing electrode oftentimes
contains small holes, which increase the air volumewithin themicrophone but barely
alter its capacitance Cmic. For the air gap s0 in equilibrium state (i.e., without sound
pressure wave) and the active area Amic of the microphone, Cmic becomes

Cmic(s∼) = ε0Amic

s0 + s∼
, (8.1)
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Fig. 8.2 Illustration of a condensermicrophone andb electretmicrophone; air gap s = s0 + s∼ [26]

whereby ε0 stands for the electric permittivity of air and s∼ represents the mem-
brane deflection1 due to incident sound pressure waves. If the input resistance R
of the preamplifier (see Fig. 8.2a) fulfills the condition R � (2π f Cmic)

−1 (sound
frequency f ), the electric charges Q0 on the capacitor plates will remain constant.
Under additional assumption of small membrane deflections (i.e., s∼ � s0), the elec-
tric output voltage umic(s∼) of the condenser microphones simplifies to

umic(s∼) = Q0

Cmic(s∼)
−Ubias = Q0 (s0 + s∼)

ε0Amic
− Q0s0

ε0Amic
︸ ︷︷ ︸

Ubias

≈ E0s∼ (8.2)

with the (constant) electric field intensity E0 = Q0(ε0Amic)
−1 in the air gap. There-

fore, umic(s∼) depends on the incident sound pressure wave.
In 1962, Sessler and West [42] invented the so-called electret microphones. Con-

trary to condenser microphones, the electric field within the air gap results from a
permanently charged dielectric foil (electret) that is located between circular mem-
brane and backing electrode. The dielectric foil is a fluoropolymer (e.g., PVDF)
of dfoil = 6 to 25µm thickness, which is metallized at one side. By means of corona
discharge, the fluoropolymer gets negatively charged at the other side. Figure 8.2b
shows an embodiment of an electret microphone for the electret being located at the
backing electrode. In the equilibrium state, the electric field intensity E0 in the air
gap of thickness s0 computes as

E0 = σcor dfoil
ε0(dfoil + εrs0)

. (8.3)

Here, σcor expresses the electric surface charge on the electret and εr its relative
electric permittivity, respectively. Just as for condenser microphones, the electric

1For the sake of simplicity, the membrane deflection s∼ is assumed to be uniform over the active
microphone surface.
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Fig. 8.3 Illustration of
pellicle-based optical
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transducer UT
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output signals of electret microphones due to incident sound pressure waves can be
approximated by the simple relation umic(s∼) ≈ E0s∼. Although such microphones
do not need an external voltage supply, their performance (e.g., sensitivity) is compa-
rable or even better than that of conventional condenser microphones. Under normal
operating conditions, the permanently charged fluoropolymer almost entirely retains
its electric surface charge [41]. The sensitivity of electret microphones to incident
sound pressure waves is only reduced by less than 1 dB per year.

For measurement applications, condenser and electret microphones are commer-
cially available in different sizes of the circular membrane. The membrane diameter
commonly ranges from 1/8 inch to 1 inch. In fact, large membranes provide high
microphone sensitivities for incident sound pressure waves, but they are not suitable
for the acquisition of ultrasonic waves. Similar to hydrophones, this can be ascribed
to the fact that the electric microphone output relates to the averaged deflection of the
membrane. When the wavelength λaco of the sound waves is close to the membrane
diameter, averaging over the membrane surface will lead to remarkable deviations
between acquired and actually occurring sound pressure values. The membrane size
affects, moreover, the acceptance angle for incident sound pressure waves. If the
membrane size is large compared to λaco, the acceptance angle will be small. Those
are the reasons why one has to carefully select the utilized microphone. While 1 inch
condenser microphones offer currently sensitivities up to 100mVPa−1 and can be
used in the frequency range 10Hz−10 kHz, 1/8 inch versions provide only sensi-
tivities of 1mVPa−1 [9]. Due to its small size, a 1/8 inch condenser microphone is,
however, suitable for reliable sound pressure measurements up to 140 kHz.

8.1.3 Pellicle-Based Optical Interferometry

The pellicle-based optical interferometry exploits particle displacements that are
caused by propagating sound pressure waves. In 1988, Bacon [4] suggested this
measurement approach for primary calibration of hydrophones. He utilized a thin
gold-coated pellicle of 3µm thickness, which was immersed in water. Owing to its
low thickness, the pellicle is acoustically transparent but optically opaque. It should,
therefore, be able to follow sound pressure waves passing through. If the pellicle
movement is acquired by an appropriate device such as a Michelson interferome-
ter (see Fig. 8.3), one can deduce sound pressure values with respect to time. In the
presented implementation, the measurement uncertainty varies from 2.3 to 6.6% for
the frequency range 0.5−15MHz of the investigated sound field.
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Koch and Molkenstruck [25] enhanced the experimental arrangement by mount-
ing the pellicle on the water surface to extend the upper frequency limit to 70MHz.
Because of its high accuracy, this enhanced pellicle-based optical interferometry has
become the standard for primary calibration of hydrophones in several countries,
e.g., Germany [24]. Nevertheless, the measurement approach exhibits several limita-
tions. Even though the thin pellicle is nearly nonperturbing, it has to be immersed in
the sound propagation medium and, thus, the approach is, strictly speaking, invasive.
Moreover, the output of the interferometer strongly depends on the incidence angle
of the sound pressure waves on the pellicle. When the sound waves do not impinge
perpendicular to the pellicle surface, the determined sound pressure amplitudes seem
to be smaller than they actually are. On these grounds, pellicle-based optical inter-
ferometry should be only applied for primary calibration of hydrophones.

8.1.4 Schlieren Optical Methods

Schlieren optical methods exploit interactions between electromagnetic waves and
acoustic waves in a sound field that is present in an optically transparent medium,
i.e., fluid or solid [43, 54]. As illustrated in Fig. 8.4, a collimated electromagnetic
wave (e.g., laser beam) propagates through the investigated sound field. Since sound
pressurewaves cause local variations of the density in the soundpropagationmedium,
its optical refractive index also varies locally. This fact leads to a phase grating for the
electromagnetic waves, which, therefore, get diffracted into different orders. In other
words, the diffracted electromagnetic waves contain information about the sound
field. After passing the sound propagation medium, the electromagnetic waves are
focused by a lens.With a view to isolating the high-order diffractions of those waves,
the zeroth diffraction order is removed by placing an optical stop as spatial filter at
the focal plane of the lens. For instance, the necessary spatial filtering can be realized
through a digital micromirror device, which allows applying different filters (e.g.,
knife-edge or low-pass filter) sequentially [49]. The remaining part (i.e., high-order
diffractions) of the electromagnetic waves that contains sound field information is
finally captured with an appropriate camera (Fig. 8.4).
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undiffracted
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diffracted
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Fig. 8.4 Illustration of Schlieren optical method [43]; ultrasonic transducer UT
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Compared to hydrophones in water and microphones in air, Schlieren optical
methods are noninvasive and provide two-dimensional sound field information in real
time. Each pixel in a Schlieren image is, however, proportional to the integration of
the acoustic intensity along the path of the corresponding electromagneticwaves [39].
As a result, Schlieren optical methods do not yield spatially resolved sound pres-
sure values even if one applies tomographic imaging in addition. Instead, sound
power distributions and normalized sound pressure values are commonly recon-
structed (e.g., [28, 53]). To sum up, it can be stated that Schlieren optical methods
are excellently suited for visualizing sound fields in optically transparent media, but
those methods currently do not deliver absolute values for the sound pressure.

8.1.5 Light Diffraction Tomography

In 1984, Reibold and Molkenstruck [37] presented the so-called light diffraction
tomography, which also exploits interactions between electromagnetic waves and
acoustic waves. Contrary to Schlieren optical methods, this noninvasive measure-
ment approach provides absolute values for the sound pressure. Figure 8.5 depicts
the experimental setup of light diffraction tomography that mainly differs in two
points from setups of Schlieren optical methods: (i) The optical stop is replaced
by a slit aperture and (ii) the camera is replaced by a combination of pinhole and
photodiode. With the aid of an appropriately shaped slit aperture, the zeroth and
first positive or negative diffraction orders are only allowed to pass through. Their
spatial intensity and phase distributions are acquired by moving pinhole and pho-
todiode in parallel to the xy-plane. By repeating these measurements for different
projection angles (e.g., through rotating sound source), tomographic reconstruction
leads to spatially resolved information about the sound field. Enhanced experimental
setups enable sound pressure measurements up to sound frequencies of 10MHzwith
uncertainties<10% [1]. However, light diffraction tomography does not deliver tem-
porally resolved results and, therefore, can be utilized solely in case of continuous
harmonic or standing sound pressure waves [36, 37].
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Fig. 8.5 Illustration of light diffraction tomography [1]; ultrasonic transducer UT
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Table 8.1 Comparison of conventional measurement principles for analyzing sound fields in fluids
and mechanical waves in solids

Property Hydrophones
microphones

Pellicle-based
interferometry

Schlieren
methods

Light diffraction

Noninvasive No No Yes Yes

Temporally
resolved

Yes Yes Yes No

Spatially resolved Yes Yes No Yes

Absolute values Yes Yes No Yes

Solid medium No No Yes Unknown

Omnidirectional No No Yes Yes

Accuracy High Very high Unknown High

8.1.6 Comparison

Finally, let us compare the mentioned measurement principles with regard to impor-
tant requirements in practical applications (see Table 8.1). Actually, we desire a
highly precise measurement approach that is noninvasive and provides temporally as
well as spatially resolved absolute values of sound pressure. The utilized approach
should not be limited to measurements in fluids but should also enable investigations
of mechanical waves in solids. Moreover, since waves may propagate in different
directions (e.g., reflections), the measurement approach is desired to be omnidirec-
tional, i.e., equal sensitivity in all directions.

Even though each of those conventional measurement principles offers significant
benefits, none of them fulfills all requirements in Table 8.1. Consequently, there
is a great demand for alternative measurement approaches that can cope with the
listed requirements. The remaining part of this chapter is dedicated to light refractive
tomography, which represents such an approach.

8.2 History of Light Refractive Tomography

Just as Schlieren optical methods and light diffraction tomography (see Sects. 8.1.4
and 8.1.5), LRT exploits interactions between electromagnetic waves and acoustic
waves, i.e., sound waves. Jia et al. [22] firstly measured variations of the optical
refractive index in water and in air due to propagating sound waves. They utilized a
heterodyne interferometer, whose output signal is directly proportional to the integral
of these variations along the emitted laser beam. By assuming plane soundwaves, the
solution of the underlying integral equation is considerably simplified. In doing so,
one can directly relate the interferometer output to sound pressure values. To get rid of
this assumption, Matar et al. [27] additionally applied tomographic imaging, which
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enables spatially resolved reconstruction of the investigated sound field. Harvey and
Gachagan [18] replaced the heterodyne interferometer with a commercial single-
point laser Doppler vibrometer and, thus, reduced complexity of the experimental
setup. Zipser and Franke [55] used a scanning vibrometer instead to lower measuring
time. However, they exclusively concentrated on visualization of sound propagation
in various practical applications but did not intend quantitative reconstruction of
spatially resolved sound pressure. In summary, several researchers developed and
utilized LRT for analyzing sound fields in water and in air. Nevertheless, one can
barely find quantitative verifications of LRT results through conventional measure-
ment principles such as hydrophones and microphones.

In 2006, Bahr started to research on LRT at the Chair of Sensor Technol-
ogy (Friedrich-Alexander-University Erlangen-Nuremberg). Together with Lerch,
he figured out that the filtered back projection algorithm provides the most reliable
results for reconstructing spatially resolved sound fields [5]. They acquired sound
fields of rotationally symmetric ultrasonic transducers operating in water and visual-
ized mechanical waves in a PMMA block. Chen et al. (e.g., [12–14]) extended both
the experimental setup and the reconstruction approach to investigate sound fields
of arbitrarily shaped ultrasonic transducers as well as mechanical waves in optically
transparent solids. In the following, fundamentals of LRT and important steps toward
the extended version will be detailed.

8.3 Fundamentals of Light Refractive Tomography

In this section, the most important fundamentals of LRT will be given. We start with
the underlying measurement principle and specify physical quantities (e.g., sound
pressure) that can be determined in sound propagation media, i.e., fluids and solids.
Section 8.3.2 details tomographic imaging, which allows spatially as well as tempo-
rally resolved reconstruction of the physical quantities through LRT measurements.
In Sect. 8.3.3, the measurement procedure will be explained. Furthermore, the mea-
surement setup will be presented that was realized at the Chair of Sensor Technology.
Afterward, decisive parameters (e.g., number of projections) for LRT measurements
are theoretically determined as well as optimized. Section 8.3.5 deals with sources
for measurement deviations such as placement errors. Finally, we will discuss the
range of sound frequencies, which can be acquired by means of LRT.

8.3.1 Measurement Principle

As stated above, LRT exploits interactions between electromagnetic waves and
sound waves. Such interactions arise in each optically transparent medium (e.g.,
water) through which sound waves propagate [43]. A sound pressure wave causes
changes of the density �(x, y, z, t) in the propagation medium that depend on both
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Fig. 8.6 Schematic
representation of LRT
principle; laser beam of laser
sources (e.g., laser Doppler
vibrometer) propagates in
y-direction through sound
field of ultrasound source;
laser beam is reflected back
to laser source by optical
reflector
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space (coordinates x , y and z) and time t . Owing to those changes, the optical refrac-
tive index n(x, y, z, t) of the propagation medium also varies with respect to space
and time. In a homogeneous medium, this fact leads to the deviation Δn(x, y, z, t)
of the optical refractive index from its value n0 in the equilibrium state, i.e., with-
out sound wave. Generally speaking, n(x, y, z, t) will rise when the sound pres-
sure p∼(x, y, z, t) and, consequently, �(x, y, z, t) increase.

Let us consider a laser beam propagating in y-direction through the sound field
of an ultrasound source (see Fig. 8.6). In case of LRT, the laser beam is usually
reflected back to the laser source by means of an optical reflector (e.g., [5, 14]).
Since n(x, y, z, t) varies along the laser beam due to the sound waves, the optical
path length changes. Under the assumption that electromagnetic waves propagate
much faster than sound waves (i.e., wave propagation velocity cem � caco), which is
always fulfilled, the optical path difference ΔL along the laser beam becomes

ΔL(x, z, t) = 2
∫

Δn(x, y, z, t) dy . (8.4)

Therefore, the optical reflector undergoes the virtual displacement ΔL(x, z, t) in y-
direction although laser source and reflector exhibit a constant geometric distance.
If ΔL(x, z, t) is acquired with an appropriate measurement device (e.g., laser
Doppler vibrometer) and tomographic imaging (see Sect. 8.3.2) is applied in addi-
tion, one can reconstruct spatially as well as temporally resolved refractive index
changes Δn(x, y, z, t).

Sound Pressure in Fluids

The refractive index change Δn(x, y, z, t) can be utilized to calculate the sound
pressure p∼(x, y, z, t) in optically transparent fluids, i.e., gases and liquids. Accord-
ing to the so-called piezo-optic effect [48], Δn(x, y, z, t) is directly proportional
to p∼(x, y, z, t), which is demonstrated by the relation
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Δn(x, y, z, t) =
(

∂n

∂ p

)

S

· p∼(x, y, z, t) (8.5)

with the piezo-optic coefficient (∂n/∂ p)S (index S for adiabatic conditions). For the
sound pressure amplitudes p̂∼ commonly occurring in acoustic wave propagation,
this coefficient remains nearly constant [40, 51]. We are able to reconstruct the
spatially as well as temporally resolved sound pressure p∼(x, y, z, t) with the aid of
LRT.

Dilatation in Solids

While solely longitudinal waves propagate in nonviscous fluids, there additionally
exist mechanical transverse waves in solid media (see Sect. 2.2). That is why the
full description of propagating mechanical waves in solids demands tensor quan-
tities (e.g., mechanical strain S), which cannot be uniquely reconstructed from the
scalar quantity refractive index change Δn(x, y, z, t). Nevertheless, we are able
to determine density changes Δ�(x, y, z, t) in a homogenous optically transparent
solid from Δn(x, y, z, t). By assuming constant electric polarizability of atoms or
molecules within the medium, Maxwell’s equations yield the so-called Lorentz–
Lorenz equation [7]

RLL = n2(x, y, z, t) − 1

n2(x, y, z, t) + 2
· 1

�(x, y, z, t)
= const. (8.6)

with
{

n(x, y, z, t) = n0 + Δn(x, y, z, t)

�(x, y, z, t) = �0 + Δ�(x, y, z, t)
.

Here,n0 and�0 stand for optical refractive index anddensity of the solid in the equilib-
rium state, respectively. The expression RLL is the Lorentz–Lorenz specific refraction
of the medium changing only by <1% even under extreme variations of temperature
and pressure [6]. One may utilize Δ�(x, y, z, t) of the solid to additionally calculate
its relative volume change ΔV/V0, which is referred to as dilatation δdil [26]. Since
propagation of mechanical waves in solids is commonly accompanied by extremely
small relative volume changes (i.e., V0 � ΔV ), δdil takes the form

δdil = ΔV

V0
≈ ΔV

V0 + ΔV
= −Δ�

�0
. (8.7)

Therefore, Δn(x, y, z, t) leads to the spatially as well as temporally resolved dilata-
tion δdil(x, y, z, t) in an optically transparent isotropic solid (e.g., [11, 12]). Note that
only longitudinal waves alter the medium volume and, consequently, the dilatation,
which is also shown in (normal strains Sii )

δdil = Sxx + Syy + Szz . (8.8)
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For this reason, LRT is restricted to the acquisition of mechanical longitudinal waves
in optically transparent solids.

8.3.2 Tomographic Imaging

To reconstruct spatially resolved refractive index changes Δn(x, y, z, t) from the
optical path differences ΔL(x, z, t), tomographic imaging has to be applied. The
basis for tomographic imaging is the so-called Radon transform published by Radon
in 1917 [35]. He suggested a mathematical formulation enabling reconstruction of a
function from its projections. The filtered back projection (FBP) represents the best-
known reconstruction approach in tomographic imaging and is oftentimes utilized in
medical examinations aswell as nondestructive testing (e.g., [10, 20, 23]). Below, the
fundamentals of tomographic imaging are briefly outlined. This includes the Fourier
slice theorem and the reconstruction procedure for parallel projections through FBP
algorithms.

Fourier Slice Theorem

The Fourier slice theorem is a fundamental principle in tomographic imaging because
it links object projections in the spatial domain and distributions in the spatial
frequency domain. Figure 8.7 illustrates a graphical interpretation of this theo-
rem. In order to explain the mathematical background, let us introduce the two-
dimensional (2-D) object function f (x, y) defined by the Cartesian coordinates xy
and its 2-D Fourier transform F(u, v) in the spatial frequency domain

F(u, v) =
+∞
∫

−∞

+∞
∫

−∞
f (x, y) e− j 2π(ux+vy)dxdy . (8.9)

Here, the arguments u and v stand for spatial frequencies, respectively. The projec-
tion2 oΘ(x) of f (x, y) at x along the y-axis results in

o(x) =
+∞
∫

−∞
f (x, y) dy . (8.10)

Without limiting the generality, we are able to transform the object function to the
coordinate system (ξ, η), which should represent a rotated version of (x, y) with the
rotation angle Θ; i.e., the underlying coordinate transform reads as

[

ξ
η

]

=
[

cosΘ sinΘ

− sinΘ cosΘ

][

x
y

]

. (8.11)

2Such projections are also named Radon-transformed of f (x, y).
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Fig. 8.7 Graphical representation of Fourier slice theorem for 2-D object function f (x, y) and
its 2-D Fourier transform F(u, v); 1-D Fourier transform OΘ(ν) of projections oΘ(ξ) in spatial
domain is equal to distribution along corresponding radial lines in spatial frequency domain; step
size Δξ in ξ-direction

For the rotated coordinate system, the projection oΘ(ξ) at ξ along the η-axis
becomes (see Fig. 8.7)

oΘ(ξ) =
+∞
∫

−∞
f (ξ, η) dη (8.12)

with its one-dimensional (1-D) Fourier transform

OΘ(ν) =
+∞
∫

−∞
oΘ(ξ) e− j 2πνξdξ

=
+∞
∫

−∞

⎡

⎣

+∞
∫

−∞
f (ξ, η) dη

⎤

⎦ e− j 2πνξdξ

=
+∞
∫

−∞

+∞
∫

−∞
f (ξ, η) e− j 2πνξdηdξ . (8.13)

The expression ν denotes the spatial frequency and is a rotated version of u. Now,
one can apply the coordinate transform (8.11) leading to the mathematical relation
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OΘ(ν) =
+∞
∫

−∞

+∞
∫

−∞
f (x, y) e− j 2π(xν cosΘ+yν sinΘ)dxdy

= F(ν cosΘ, ν sinΘ) . (8.14)

Because u = ν cosΘ and v = ν sinΘ , the 1-D Fourier transform OΘ(ν) of the
projection oΘ(ξ) at angle Θ is equal to the linear intersection of the 2-D Fourier
transform F(u, v) at angle Θ , which results from the object function f (x, y). This
fact is commonly named Fourier slice theorem [10, 23].

Reconstruction for Parallel Projections

The general aim of tomographic imaging is to reconstruct object functions
f (x, y) from object projections. In LRT measurements, the refractive index change
Δn(x, y, z, t) represents the object function and the optical path difference
ΔL(x, z, t) its projection. Due to the fact that ΔL(x, z, t) is acquired solely in
y-direction (see Fig. 8.6), let us concentrate hereafter on parallel projections;
i.e., f (x, y) should be projected under different angles Θ in parallel yielding the
projections oΘ(ξ) (see (8.12)). According to the aforementioned Fourier slice the-
orem, one can determine the object information F(u, v) in the whole spatial fre-
quency domain if such projections are available for a sufficient number of projection
angels Θ . By performing the 2-D inverse Fourier transform

f (x, y) =
+∞
∫

−∞

+∞
∫

−∞
F(u, v) e j2π(ux+vy)dudv , (8.15)

we finally obtain the desired quantity f (x, y). However, regarding data acquisition
in practical applications (e.g., LRT measurements), the object information in the
spatial frequency domain is given rather in polar coordinates (ν,Θ) than in spa-
tial frequencies (u, v). It makes, therefore, sense to rewrite F(u, v) as F(ν,Θ) ≡
F(ν cosΘ, ν sinΘ) through conducting the substitutions

u = ν cosΘ and v = ν sinΘ . (8.16)

In doing so, (8.15) takes the form

f (x, y) =
2π

∫

0

+∞
∫

0

F(ν,Θ) e j2πν(x cosΘ+y sinΘ)νdνdΘ

=
π

∫

0

+∞
∫

−∞
F(ν,Θ) e j2πν(x cosΘ+y sinΘ) |ν| dνdΘ . (8.17)
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Since F(ν,Θ) represents the linear intersection of F(u, v) at angle Θ , F(ν,Θ)

can be replaced by the 1-D Fourier transformOΘ(ν) of the projection oΘ(ξ), which
leads to

f (x, y) =
π

∫

0

TΘ(x cosΘ + y sinΘ) dΘ (8.18)

with

TΘ(r) =
+∞
∫

−∞
OΘ(ν) |ν| e j2πνrdν . (8.19)

As a result, we will be able to reconstruct f (x, y) if oΘ(ξ) and, consequently,OΘ(ν)

are known. This forms the basis for FBP algorithms [10, 23].

In practical applications of tomographic imaging, spatial and temporal sampling
rates are actually limited due to data acquisition andmeasuring time. One has to cope
with a limited number of spatial sampling points in both ξ-direction andΘ-direction
for FBPmeaning that discrete formulations of (8.18) and (8.19) are indispensable. To
explain the discrete formulations, we consider Nproj projections of f (x, y) exhibiting
the angular increment ΔΘ = π/Nproj. Each projection is assumed to comprise Nray

sampling points in ξ-direction with equidistant step size Δξ (see Fig. 8.7). Under
these assumptions, (8.18) gets modified to

f (x, y) = π

Nproj

Nproj
∑

i=1

TΘi (x cosΘi + y sinΘi ) (8.20)

with

Θi = (i − 1) π

Nproj
∀ i = 1, . . . , Nproj

and (8.19) becomes

TΘi (mΔξ) =Δξ · IDFT
{

DFT
{

oΘi (mΔξ)
} · DFT{

hck(mΔξ)
} · window

}

∀ m = −Nray

2
, . . . ,

Nray

2
− 1 . (8.21)

Here, mΔξ denotes the mth sampling point in ξ-direction and Θi is the angle of
the i th projection. The operators DFT{·} and IDFT{·} in (8.21) stand for the 1-D
discrete Fourier transform and 1-D inverse discrete Fourier transform, respectively.
Instead of |ν| in (8.19), we use the 1-D discrete Fourier transform of an appropriate
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convolution kernel hck(mΔξ) that should serve as an additional filter to suppress
noise in measurement data. For the implemented LRT setup, the so-called Ram-
Lak kernel turned out to be a good choice because it is rather simple and provides
excellent reconstruction results (e.g., [5, 11]). TheRam-Lak kernel ismathematically
defined as

hck(mΔξ) =

⎧

⎪
⎨

⎪
⎩

(2Δξ)−2 for m = 0

0 for m is even

−(mπΔξ)−2 for m is odd

. (8.22)

Besides, (8.21) contains a window function, which is not necessarily required for
reconstruction purpose but can significantly improve the imaging quality.

8.3.3 Measurement Procedure and Realized Setup

According to the previous subsections, one has to project the investigated sound
field under different angles Θ to reconstruct spatially and temporally resolved field
quantities by means of LRT. Basically, there exist two possibilities for this task,
namely (i) simultaneous rotation of laser source as well as optical reflector and (ii)
rotation of ultrasound source.3 The first possibility is oftentimes applied for tomo-
graphic imaging principles in medical examinations and nondestructive testing (e.g.,
X-ray computed tomography [10]). While the investigated object retains its position
and orientation, the measuring components rotate around the object. However, in
case of LRT, the simultaneous rotation of laser source and optical reflector consti-
tutes various problems. For example, it imposes high technical demands to precisely
rotate both devices around a water tank that is necessary for acquiring sound fields in
water. Besides, an additional optical path difference along the laser beam may occur
during rotation due to optical refraction at the interfaces of different media (e.g.,
water tank and water) when the laser beam does not impinge orthogonal to those
interfaces. The second possibility (i.e., rotation of ultrasound source) should, thus,
be preferred for practical implementation of LRT.

Figure 8.8 illustrates an appropriate measurement procedure for LRT in order to
obtain the spatially and temporally resolved refractive index change Δn(x, y, z, t)
in a single xy-plane. Note that the procedure will only work if the ultrasound source
is periodically excited with the same signal. Taking into account the reconstruction
of Δn(x, y, z, t), the entire measurement process consists of three main steps:

1. The laser Doppler vibrometer (LDV), which emits a laser beam in y-direction, is
moved in parallel to the x-axis with step size Δξ. Hence, the z-distance between
ultrasound source and LDV remains constant. The optical reflector being aligned

3LRT is applicable for ultrasonic waves and audible sound waves. Without limiting the generality,
we will concentrate on sound fields generated by ultrasound sources.
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Fig. 8.8 Measurement
procedure for LRT to obtain
refractive index change
Δn(x, y, z, t) in
xy-plane (cf. Fig. 8.6);
1: scanning of laser Doppler
vibrometer (LDV) along
x-direction with step size
Δξ; 2: rotation of ultrasound
source around its axis (i.e.,
parallel to z-axis) by angle
increment ΔΘ

x

y

z

1

2

Δξ

ΔΘ

LDV

in parallel to the xz-plane reflects the laser beam back to the LDV. At each LDV
position, the optical path difference ΔL(x, z, t) arising from the sound field is
acquired and transferred to an evaluation unit.

2. In step 2, the ultrasound source is rotated around an axis parallel to the z-axis by the
angle increment ΔΘ . Afterward, step 1 is conducted again, i.e., LDV signals are
acquired and transferred at each LDV position. The sequence of step 1 and step 2
is repeated until the angular range [0, 180◦ − ΔΘ] is completely covered. At this
point, it should be mentioned that further angular steps (e.g., 180◦ and 180◦ +
ΔΘ) do not provide extra information because ΔL(x, z, t) is independent of the
direction in which the laser beam passes the sound field.

3. The stored LDV signals represent projections of the sound field under different
angles. By combining these signals through FBP, one can finally reconstruct the
refractive index change Δn(x, y, z, t) in the investigated xy-plane.

When three-dimensional (3-D) information of the sound field is desired, several xy-
planes will be required which means that the z-distance between ultrasound source
and LDV needs to be altered. As a matter of course, step 1 to step 3 have to be
performed for each xy-plane. In doing so, we are able to analyze sound fields of
nearly arbitrarily shaped ultrasound sources in three spatial dimensions with respect
to time.

In Fig. 8.9, one can see the experimental arrangement of LRT that was estab-
lished at the Chair of Sensor Technology [11]. A differential LDV (Polytec OFV
512 [32]) containing two sensor heads serves as instrument to measure the optical
path difference ΔL(x, z, t) along the laser beam. One of its fiber-optic sensor heads
is mounted on a linear positioning system comprising three translation axes (Physik
Instrumente M-531.DG [31]), which enable precise movements in xyz-direction.
The other sensor head is mirrored and, therefore, does not contribute to the mea-
surement procedure. To optimally reflect the laser beam back to the LDV, the optical
reflector (glass plate coated with chrome) is placed onto an adjustable base. The
analog output signal of the LDV is, depending on the applied decoder, either directly
proportional to ΔL(x, z, t) or to the resulting velocity. With a view to rotating the
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investigated ultrasonic transducer that represents the ultrasound source, a rotation
unit (Physik Instrumente M-037.DG [31]) is connected to a gear via a timing belt.
The gear directly rotates a cylindrical mount in which the ultrasonic transducer is
fixed.

A single substep of the LRT setup in Fig. 8.9 including LDV movement, waiting
time as well as data acquisition and data transfer takes approximately 0.7 s. Let us
assume that one xy-plane requires 5000 substeps. Therewith, the entire measure-
ment procedure (step 1 and step 2) takes approximately one hour. In contrast, the
reconstruction of the spatially as well as temporally resolved refractive index change
through the FBP algorithm in step 3 takes only a few minutes on a commercial PC.

8.3.4 Decisive Parameters for LRT Measurements

Below, the decisive parameters (e.g., number of projections) for LRT measurements
are determined from the theoretical point of view. Subsequently, we will optimize
these parameters with regard to a short measuring time as well as reasonable recon-
struction results. Finally, an appropriate window function is given which helps to
filter images during the reconstruction stage.

Theoretical Determination of Measurement Parameters

For reliable investigations of sound fields by means of LRT, we have to fulfill the
Nyquist sampling theorem in time domain and spatial domain [11, 14]. The sampling
rate in both domains needs, thus, to bemore than twice as fast as the highest frequency
components of the signals. In the time domain, this can be simply guaranteed with
conventional digital storage oscilloscopes (e.g., Tektronix TDS 3054 [46]). However,
since most time in LRT measurements is spent for positioning tasks, let us take a
closer look at the spatial domain. This domain is defined by the scanning area of the
LDV as well as the number of sampling points Nray along a single projection and the
number of projections Nproj.

In order to theoretically determine the scanning area, Nray and Nproj, we con-
sider the sound field of a piston-type ultrasonic transducer in water (sound veloc-
ity caco = 1480m s−1). The active circular area of the transducer featuring the
radius RT = 6.35mm is assumed to oscillate uniformly at a frequencyof f = 1MHz.
The axisymmetric sound pressure field p∼(x, z, t)was calculated through FE simula-
tions,whereby absorbing boundary conditions suppressed unwanted reflections at the
boundaries of the computational domain (see Sect. 4.4). Due to the fact that measure-
ments are always affected by noise, white Gaussian noise was added to the simulated
sound pressure field so that the signal-to-noise ratio (SNR) amounts 30 dB. SuchSNR
value can be easily reached in practical experiments by performing signal averaging.
Figure 8.10a shows the resulting sound pressure distribution p∼(x, z) normalized to
its maximum |p∼(x, z)|max and at an arbitrary instant of time. As can be clearly seen,
the sound field in the computational domain concentrates within a small area, whose
geometric distance from the rotation axis (i.e., z-axis) corresponds approximately
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Fig. 8.10 a Snapshot of simulated sound pressure field p∼(x, z) in spatial domain of piston-
type transducer (radius RT = 6.35mm; excitation frequency f = 1MHz) located at z = 0mm;
normalized to maximum |p∼(x, z)|max; b resulting normalized distribution of each horizontal line
from a in spatial frequency domain with spatial frequency ν

to RT. It seems only natural that in regions of low sound pressure amplitudes, the
optical path difference ΔL(x, z, t) caused by the propagating acoustic wave is also
small. Hence, one can restrict the acquisition of LDV signals to areas, where remark-
able sound energy arises. For the considered piston-type ultrasonic transducer, let
us take into account ΔL(x, z, t) up to a distance of 20mm from the z-axis, which
is ≈ 3RT. Consequently, the LDV has to be moved for each projection along a line
of 40mm in x-direction representing the scanning area.

In a next step, the necessary number of sampling points Nray in the previously
identified scanning area will be determined. The excitation frequency f = 1MHz
leads to the wavelength λaco = caco/ f = 1.48mm and, thus, to the spatial fre-
quency νmax = λ−1

aco = 676m−1, which represents the highest spatial frequency that
is possible. This can also be observed in Fig. 8.10b depicting the actual distribution
of spatial frequencies ν in x-direction for the simulated sound field. Thereby, each
horizontal line denotes the 1-D Fourier transform of the corresponding horizontal
line in Fig. 8.10a. According to Nyquist sampling theorem for the spatial domain,
the minimum spatial sampling rate νsamp in radial direction becomes

νsamp > 2νmax = 2λ−1
aco = 1351m−1 (8.23)

meaning that Δξ < 0.74mm (=̂1/2νmax) has to be fulfilled for the distance of two
neighboring LDV positions. As a result, the scanning area of 40mm requires at
least Nray = 55 sampling points for each projection.

A further decisive parameter in LRT measurements is the number of projec-
tions Nproj. Just as for the radial direction, the sound field of ultrasonic transducers
may also exhibit in tangential direction spatial frequencies up to νmax. The sampling
rate in tangential direction should therefore be equal to the sampling rate in radial
direction. Although this constitutes the worst-case scenario that does commonly not



8.3 Fundamentals of Light Refractive Tomography 361

occur, we will determine Nproj for such case. Without limiting the generality, the
projections are assumed to be evenly distributed with the angular increment ΔΘ ,
which yields [11, 23]

νmaxΔΘ = νmax
π

Nproj
. (8.24)

Because themaximum spatial frequency νmax also influences the number of sampling
points Nray in radial direction, one can deduce from ΔΘ ≈ 2/Nray the relation

Nproj ≈ π

2
Nray , (8.25)

which links the sampling points in both directions. For the considered sound field of
the piston-type transducer, this results in Nproj = 86 projections.

Optimization of Measurement Parameters

As the previous theoretical determination suggests, a sampling interval of Δξ =
0.7mm in radial direction should be sufficient to reconstruct the aimed values in
a xy-plane unambiguously. However, in real measurements, Δξ has to be much
smaller than the Nyquist rate. This can be attributed to the following facts:

• Eachmeasurement is contaminatedwith noise. In order to avoid aliasing effects,Δξ
has, therefore, to be remarkably reduced.

• Within the framework of tomographic reconstruction, an appropriatewindow func-
tion (see (8.21)) is commonly applied for filtering images. Such filters are difficult
to be implemented if Δξ is close to the Nyquist rate.

• Sampling intervals, which should be theoretically sufficient, result in visually
rough images. Smoothing can be achieved by means of various interpolation algo-
rithms but may, on the other hand, hide important information in the reconstruc-
tions.

For these reasons, the sampling interval Δξ has to be significantly reduced. A value
of Δξ = 0.2mm turned out to be excellent choice in case of the considered sound
field since it leads to a good compromise between measuring time and accuracy of
measurements [11]. Consequently, the number of sampling points in radial direc-
tions increases to Nray = 201, which almost quadruples the entire measuring time
compared to Nray = 55.

Now, let us apply the specified scanning area (i.e., 40mm) as well as the deter-
mined values Nray = 201 and Nproj = 86 to emulate LRT measurements for the
modeled ultrasonic transducer. In doing so, the optical path difference ΔL(x, z, t)
from the sound pressure field in Fig. 8.10a is calculated through (8.4) and (8.5).
Figure 8.11a and b show original normalized sound pressure curves with respect to x
as well as reconstructed ones for the xy-planes at the axial distances z = 7.5mm
and z = 25.0mm, respectively. As the results illustrate, the reconstructed values
coincide very well with the original sound pressure curves. The normalized relative
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Fig. 8.11 a and b Comparison of original sound pressure distribution p∼(x, z) and reconstruc-
tion with respect to x-position at axial distances z = 7.5mm and z = 25.0mm, respectively (see
Fig. 8.10a); normalized to maximum |p∼(x, z)|max; c and d normalized relative deviations |εr|
between reconstruction results and originals

deviation |εr| (magnitude) of the reconstruction is always smaller than 1.5% in
both xy-planes (see Fig. 8.11c and d).

Even though the selected scanning area and sampling parameters lead to convinc-
ing reconstruction results, it is desired to reduce measuring time in LRT measure-
ments. Actually, this will constitute a crucial point especially when many xy-planes
of the sound field should be investigated. While a decrease of the scanning area is not
recommended, one is able to reduce Nray as well as Nproj. Let us start with the idea
behind reducing Nray. Owing to the high concentration of ultrasonic energy nearby
the rotation axis of the ultrasonic transducer (see Fig. 8.10a), nonequidistant sampling
seems to be a properway for decreasing Nray [11, 15]. Regions of high energy demand
fine sampling, butwe can reduce the sampling rate outside such regions, whichmeans
skipping of sampling points. The skipped sampling points have to be filled up through
suitable interpolation approaches like cubic spline interpolation [47]. For the consid-
ered sound field, the sampling intervals Δξ = 0.2mm for x ≤ 6.4mm (i.e., ≈RT)
andΔξ = 0.8mmbeyond in the region6.4 < x ≤ 20.0mmare a good choice. There-
with, the number of sampling points Nray in radial direction decreases from 201 to 99
and, thus, measuring time will be halved.
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Fig. 8.12 Normalized relative deviations |εr| between reconstruction results and original sound
pressure field (see Fig. 8.10a) for a equidistant sampling and b nonequidistant sampling in x-
direction

To compare equidistant sampling and nonequidistant sampling, the simulated
sound field was completely reconstructed in the region x × z = [0, 20mm] ×
[0, 33mm] by individually computing sound pressure curves in each xy-plane.
Figure 8.12a and b depict the normalized relative deviations |εr| (magnitude) between
reconstruction results and original sound pressure field. Although |εr| slightly
increases in the peripheral (i.e., x > 6.4mm) for nonequidistant sampling, the maxi-
mum relative deviation for both sampling methods stays below 5%. On this account,
nonequidistant sampling is a great opportunity to reduce measuring time in LRT
measurements, particularly if the main emphasis lies on central areas of sound fields.

Besides the parameter Nray, we may also reduce the number of projections Nproj

in LRT measurements. To optimize Nproj, let us take a closer at the influence of that
number on reconstruction results. For this task, LRT measurements were emulated
again on the basis of simulated sound field (see Fig. 8.10a). The tomographic recon-
struction was conducted with different amounts of projections Nproj ranging from 5
to 200 projections in steps of 5. Figure 8.13a and b display maximum relative devi-
ations and mean relative deviations as function of Nproj for the entire reconstruction
result, i.e., in the region x × z = [0, 20mm] × [0, 33mm]. Both deviations drop
quickly at the beginning for increasing number of projections, while they remain
almost constant for Nproj ≥ 45. Hence, it is reasonable to choose 50 projections in
LRTmeasurements instead of Nproj = 86. Apart from that, if one is exclusively inter-
ested in the central area of the sound field (here x < 6.4mm), a much lower number
of projections might be sufficient. This follows from the sampling point density,
which is always higher close to the xy-plane’s center than in its periphery [10]. For
the considered sound field, Nproj = 15 already yields reconstruction results, whose
maximum andmean relative deviations are in the range of 6% and 1% (see Fig. 8.13a
and b), respectively. In other words, when rough information is desired only in LRT
measurements, we can utilize a rather small number of projections and, therefore,
get rid of long measuring times.
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Fig. 8.13 a and bMaximum and mean of normalized relative deviations |εr| (magnitude) between
reconstruction results and originals with respect to number of projections Nproj for entire sound
pressure field (see Fig. 8.10a) and within central area (i.e., x < 6.4mm)

Window Function for Tomographic Imaging

One can suppress noise in tomographic imaging by means of an appropriate win-
dow function (see (8.21)). For example, the Hann window is oftentimes used in
X-ray computed tomography because the spatial frequency components of the target
spread in a large spatial frequency range [23]. However, this window may either
damp wanted signals or insufficiently removes noise in LRT measurements. That
is why we apply the so-called Turkey window, which combines rectangular and
Hann window: Signal components with spatial frequencies < νmax (=̂λ−1

aco) are not
altered due to the rectangular window, while high-frequency components can be
strongly damped through the Hann window [11, 14]. In doing so, we protect sig-
nals featuring a reasonable SNR and remove high-frequency noise without raising
unwanted ringing effects in the spatial domain. Numerical studies revealed the tran-
sition band [νmax, 3νmax] connecting passband and stopband as a proper choice for
the Turkey window. Indeed, such transition band requires oversampling in the spa-
tial domain; i.e., νsamp > 6νmax has to be fulfilled. For the considered sound field,
the minimum sampling rate results in νsamp > 4054m−1, which yields the sampling
interval Δξ < 0.25mm. Note that the Turkey window was already applied in the
previous reconstruction procedures (see Figs. 8.11, 8.12 and 8.13).

8.3.5 Sources for Measurement Deviations

For reconstructing spatially as well as temporally resolved quantities by means of
LRT, projections from different angles have to be combined. All projections con-
tribute to the final results. Owing to this fact, the result quality actually depends
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on the measurement accuracy over the whole cross section. Minor imperfections in
the realized LRT setup accumulate and may cause substantial measurement devia-
tions followed by completely distorted images. That is why we need to take care
about potential sources for such measurement deviations. Here, two different types
of sources are discussed in detail: (i) placement errors arising from misalignments
of LRT components and (ii) optical errors originating from the nonideal laser beam
of the LDV.

Placement Errors

The reliable reconstruction in LRTmeasurements demands specific knowledge of the
sampling positions along a single projection and the projections angles. Therefore,
one should utilize precise linear positioning systems as well as rotation units. Such
components do not, however, ensure highly accurate reconstruction results because
their geometric alignment is a further decisive point in LRT measurements. In order
to study effects of misalignments, let us take a look at the geometric orientation of a
LDV scanning plane relative to the cylindrical mount, which contains the ultrasound
source. The Cartesian coordinate system xyz belongs to the scanning plane, whereas
the front surface of the cylindrical mount represents the origin of the Cartesian coor-
dinate system xcyczc (see Fig. 8.14). If all components of the LRT setup are perfectly
aligned, the z-axes (i.e., symmetry axes) of both coordinate systems will coincide.
In practical setups, there always arise deviations that can be understood as geometric
uncertainties and cause systematic errors inmeasurements. For the sake of simplicity,
the laser beam of the LDV is here assumed to propagate in y-direction, which can
be easily achieved in the realized setup. We then have to consider only three param-
eters defining relevant deviations of both coordinate systems in LRT measurements.
Guided by nautical terms, the three parameters are named (i) sway distance, (ii) yaw
angle, and (iii) pitch angle. Under the assumption that the coordinate system xyz of
the scanning plane is spatially fixed, they can be interpreted as follows (see Fig. 8.14):

• The sway distance Δxc stands for the horizontal distance between supposed and
actual symmetry axes of the cylindrical mount.

• The yaw angle Φc indicates the angle around yc by which the front surface of the
cylindrical mount is rotated away from the xy-plane.

• The pitch angle Θc indicates the angle around xc by which the front surface of the
cylindrical mount is rotated away from the xy-plane.

To rate the impacts of these parameters on LRT measurements, the simulated sound
pressure field of Fig. 8.10a was used. Depending on the parameter and its value, the
original sound field has to be slightly shifted and rotated [14]. On the basis of the
modified sound pressure field, LDV signals were emulated in the scanning planes
leading to distorted projections, which served as input for the FBP algorithm. The
reconstruction results can subsequently be compared to the original sound field.
Table 8.2 contains maxima of the normalized relative deviations |εr| (magnitude)
between reconstruction results and original sound pressure curves at the axial dis-
tances z = 3.0mm, z = 7.5mm as well as z = 25.0mm. The parameters Δxc, Φc,
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Fig. 8.14 Illustration of
sway distance Δxc, yaw
angle Φc, and pitch angle Θc
representing geometric
uncertainties in LRT
setups [14]; Cartesian
coordinate system xcyczc of
cylindrical mount; Cartesian
coordinate system xyz of
scanning plane
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Table 8.2 Maxima of normalized relative deviations |εr| (magnitude) between reconstruction
results and original sound pressure field (see Fig. 8.10a) at three xy-planes with different axial
distances from transducer surface; Δxc, Φc as well as Θc represent geometric uncertainties in LRT
setups

Parameter Value Max. of |εr| in %
z = 3.0mm

Max. of |εr| in %
z = 7.5mm

Max. of |εr| in %
z = 25.0mm

SwaydistanceΔxc 0.02mm 0.9 0.7 0.2

0.10mm 3.4 3.1 1.0

0.50mm 18.9 19.5 5.4

Yaw angle Φc 0.02◦ 0.5 0.4 0.2

0.10◦ 1.1 1.1 1.4

0.50◦ 7.4 5.3 6.6

Pitch angle Θc 0.40◦ 0.9 0.9 0.7

0.80◦ 4.0 3.6 2.9

1.60◦ 10.6 7.5 8.4

and Θc were varied separately. As the table entries demonstrate, small sway dis-
tances xc induce large deviations between reconstruction results and original sound
pressure curves, especially in the near field of the transducer (i.e., z = 3.0mm). This
is due to the geometric shift of the projections against each other, which have to be
combined in the reconstruction stage and, therefore, yield blurred images. Although
the maxima of |εr| exhibit for the chosen yaw anglesΦc and pitch anglesΘc the same
value range as forΔxc, both parameters are actually not that critical for tomographic
reconstruction. Instead of shifting projections against each other, Φc and Θc exclu-
sively tilt the cylindrical mount. Consequently, a slightly different cross section of
the sound field is projected and reconstructed in LRT measurements. Nevertheless,
depending on the sound field, this may also cause high values for |εr| because the
projected cross section does not coincide with the supposed one.

The previous investigations demonstrated that theLRTcomponents need to be pre-
cisely adjusted. For the dedicated LRT setup (see Fig. 8.9), the alignment procedure
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was based on the intensity of the reflected LDV laser beam [11]. When the emitted
laser beam is partially blocked, the intensity of the reflectedbeamwill be decreased. In
this way, one can detect edges of the cylindrical mount by moving the LDV in the xz-
plane. Through corrections of component alignment and intensity measurements, it
is possible to guarantee a sway distance |Δxc| < 0.01mm, a yaw angle |Φc| < 0.02◦,
and a pitch angle |Θc| < 0.40◦. The remaining uncertainties in geometric component
alignment induce only small deviations between reconstruction results and original
sound pressure curves for the considered sound field (cf. Table 8.2).

Optical Errors

Besides placement errors, the nonzero spot size of the laser beam is a crucial point
in LRT measurements. The helium–neon laser of the utilized LDV (Polytec OFV
512 [32]) emits a laser beam, whose beam profile is very close to an ideal Gaussian
beam [44]. In order to describe beam properties (e.g., divergence) of the LDV, we
can, therefore, apply fundamental relations that are valid for ideal Gaussian beams.
For such a Gaussian beam, the spot size wem(ζ) at which the beam intensity has
decreased to 1/e2 times its value at the center becomes (see Fig. 8.15) [34, 48]

wem(ζ) = w0

√

1 +
(

ζ

ζ0

)2

. (8.26)

The expression ζ stands for the axial position along the laser beam, and ζ0 is the
so-called Rayleigh range that computes as

ζ0 = w2
0π

λem
. (8.27)

The minimum spot size w0 of the laser beam, which is named beam waist, appears
at ζ = 0.While a helium–neon laser emits in air laser beams at awavelength ofλem =
632.8 nm, the wavelength changes to 475.8 nm in water since its optical refractive
index is n0 = 1.33.

Actually,wem(ζ) should be in LRTmeasurements as small as possible throughout
the entire sound field of the ultrasound source. A low divergence of the laser beam
is, however, accompanied by a large value of w0 (cf. (8.26)). Hence, one has to
find a compromise between beam waist extension and divergence so that the spot
size wem(ζ) of the laser beam stays sufficiently small in the investigated sound field.
For the realized LRT setup, a small beamwaist extension of the LDV turned out to be
a good choice. As the laser beam propagates through the sound field twice, it makes
sense to position the beam waist directly onto the surface of the optical reflector. The
ultrasound source should be nearby the reflector in LRT measurements to achieve a
tight laser beam in the sound field. However, when the reflector is located too close to
the ultrasound source, the sound field will be strongly disturbed by the reflector. It is
for this reason rather important to consider the investigated sound field for selecting
an appropriate distance between ultrasound source and optical reflector.
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Fig. 8.15 Increase of spot
size wem(ζ) of laser beam
along axial distance ζ from
beam waist w0 at ζ = 0;
Rayleigh range ζ0
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Now, let us evaluate optical errors arising in case of the dedicated LRT setup if
we measure the sound field of Fig. 8.10a. In doing so, the spot size wem(ζ) of the
laser beam and its normalized transverse energy distribution are required. Because
the sound pressure almost completely vanishes at x = 30mm, this distance repre-
sents a good choice for the y-spacing of ultrasound source and optical reflector.
Related to the symmetry axis of cylindrical mount and, consequently, to the sound
field distribution, the distance needs to be considered once more, which yields the
range ζ = [0, 60mm] for relevant axial positions along the laser beam. Taking into
account the beam waist w0 = 94µm of the emitted laser beam as well as its wave-
length λem = 475.8 nm in water, wem(ζ) exhibits the extrema (see (8.26))

wem(ζ) =
{

94µm at ζ = 0mm

135µm at ζ = 60mm
. (8.28)

The normalized transverse distribution En(x) of the electric field magnitude for a
Gaussian laser beam is given by [19]

En(x) = e−x2(2σ2
em)

−1

. (8.29)

As wem(ζ) specifies the distance at which the beam intensity (∝ E2
n ) has decreased

to 1/e2 times itsmaximum, a single unknown remains in (8.29) that can be determined
according to

E2
n(wem) = e−2w2

em(2σ2
em)

−1 ≡ E2
n(0) · e−2 = e−2

⇒ σem = wem√
2

. (8.30)

Thus, it is possible to calculate En(x) for both spot sizes (8.28) of the laser beam and
the normalized spatial Fourier transform An(ν) ∝ F{En(x)} (1-D; spatial frequency
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Fig. 8.16 Magnitude of
Fourier transform An(ν) in
spatial frequency domain;
best case wem = 94µm and
worst case wem = 135µm
refer to LDV beam profiles
for realized LRT setup;
hydrophone (RHY =
0.2mm) is assumed to be
uniformly sensitive across its
active surface
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ν), respectively. The beamwaist represents the best case, whilewem(ζ) at ζ = 60mm
is the worst case. The resulting relations for the beam profiles read as4

En,best(x) = e−x2·1.13·108 m−2

En,worst(x) = e−x2·5.50·107 m−2

}

F−→
{

An,best(ν) = e−ν2·8.72·10−8 m2

An,worst(ν) = e−ν2·1.79·10−7 m2
.

In the spatial frequency domain, LRTmeasurements can be understood asmultiplica-
tion of ideal projectionsOΘ(ν) (see (8.13)) with the beam profile An(ν). It becomes
clear from Fig. 8.16 depicting An(ν) for the best and worst cases that the nonzero
spot size of the laser beam corresponds to a spatial low-pass filter. The larger the spot
size wem(ζ), the lower will be the spatial cutoff frequency νlp of the low-pass filter
and, therefore, ideal projections will be more strongly affected. For the considered
sound field and realized setup, the maximum spatial frequency νmax = 676m−1 is
attenuated by ≈8% (worst case) in LRT measurements.

At this point, it should be mentioned that one is concerned with similar effects
in microphone and hydrophone measurements. The capsule hydrophone Onda
HGL-400, which is used for comparative measurements in Sect. 8.4, features the
radius RHY = 0.2mm. Under the assumption of uniform sensitivity across the
hydrophone’s active surface, the normalized sensitivity aHY(x) in the spatial domain
takes the form

aHY(x) =
{

1 for |x | ≤ RHY

0 elsewhere
(8.31)

yielding the normalized Fourier transform [8]

An(ν) = sin(2πνRHY)

2πνRHY
= sinc(2πνRHY) = sinc

(

ν · 1.26 · 10−3 m
)

(8.32)

4Function f (x) = e−αx2 ; Fourier transform F(ν) = √
π/α · e−(πν)2/α [8].
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in the spatial frequency domain. Figure 8.16 reveals that high-frequency components
are more attenuated in hydrophone measurements due to averaging over the active
surface than inLRTmeasurements, even for theworst case of the laser beamprofile. In
the far field of ultrasound sources, spatial frequencies in radial direction are, however,
much lower than in propagation direction, i.e., axial direction. That is the reason why
we are able to characterize also high-frequency sound fields through hydrophones,
e.g., up to 20MHz (i.e., νmax = 1.35 · 104 m−1) with the capsule hydrophone Onda
HGL-400. Despite this fact, measurement data provided by typical hydrophones in
transducer near fields is only useful to a limited extent.

8.3.6 Measurable Sound Frequency Range

Similar to conventional measurement principles (e.g., hydrophones) for sound field
analysis, LRT has certain limits concerningmeasurable sound frequencies. Themax-
imum measurable sound frequency fmax is mainly determined by the laser beam
profile, whereas the spatial extension of the optical reflector defines the minimum
measurable sound frequency fmin. Below, a theoretical analysis for both frequency
limits is conducted.

Maximum Measurable Sound Frequency

As discussed in Sect. 8.3.5, the nonzero spatial extension of the LDV laser beam
leads to a low-pass filter in LRTmeasurements. When its spatial cutoff frequency νlp
is below decisive frequency components of the investigated sound field, those com-
ponents will be attenuated and the measured sound pressure amplitude seems then to
be decreased. On account of this fact, the spot sizewem(ζ) of the laser beam through-
out the sound field determines the maximum measurable frequency fmax of sound.
In the case that an attenuation of 3 dB is acceptable in LRT measurements, fmax

directly relates to νlp. For the dedicated LRT setup and an assumed radial field exten-
sion of 30mm, the largest laser spot size wem(ζ = 60mm) = 135µm (worst case in
Fig. 8.16) yields

fmax = caco · νlp = 1480m s−1 · 1390m−1 = 2.1MHz (8.33)

representing themaximummeasurable frequency inwater. To increase fmax, onemay
think about reducing wem(ζ) throughout the sound field by raising the frequency of
the laser light, which means reducing its wavelength λem. Major changes of λem are,
however, hardly possible since commercial laser Doppler vibrometers (e.g., from the
company Polytec GmbH [32]) usually work at fixed wavelengths within the visible
range. Nevertheless, if an ultrasound source emits a strongly focused field, we may
reliably analyze higher frequencies of sound with LRT. In such situation, the z-
spacing between ultrasound source and optical reflector can be reduced. Owing to
the small radial extension of the sound field, the beam waist w0 can be decreased by
increasing beam divergence. Anyway, LRT should not be used for investigations of
sound fields in water with frequencies fmax > 5MHz.
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Fig. 8.17 Geometric
quantities for piston-type
transducer (radius RT) to
compute sound pressure
amplitude p̂∼(r, θ) at
arbitrary position given by
distance r and angle θ;
r sin θ = z tan θ
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In tomographic imaging, it is of utmost importance to acquire projections of the
whole object under test. The object has, thus, to exhibit spatial extensions, which
can be completely covered by the projections. Due to the fact that there do not exist
clear boundaries for sound fields, an alternative criterion is needed for determining
the scanning area (i.e., in x-direction) in LRT measurements. The directivity pattern
of sound fields contains a dominant main lobe and several side lobes. With a view
to achieving reliable LRT results, it must be ensured that at least the main lobe is
entirely inside the scanning area [11]. Consequently, we are able to estimate for an
ultrasound source the minimum scanning area, which should be exceeded in LRT
measurements.

Let us take a look at the directivity pattern of a piston-type ultrasonic transducer
with the radius RT. In case of a harmonically excitation, the sound pressure ampli-
tude p̂∼(r, θ) at an arbitrary position in the far field is proportional to (wave number k;
cf. (7.49, p. 280))

p̂∼(r, θ) ∝ J1(kRT sin θ)

kRT sin θ
. (8.34)

Here, r stands for the geometric distance from transducer center and Θ is the angle
between connecting line and z-axis (see Fig. 8.17). J1(·) represents the Bessel func-
tion of the first kind and order 1. According to (8.34), p̂∼(r, θ) will be zero if

J1(kRT sin θ)

kRT sin θ
= 0 , (8.35)

which is fulfilled for the first time at kRT sin θ = 3.83 rad. Because this zero point
defines the main lobe, one can calculate its diameter Dmain at a given z-position in
the far field through

Dmain(z) = 2z tanϕ = 2z tan

[

arcsin

(

3.83 rad

kRT

)]

. (8.36)

The scanning area in LRT measurements should cover at least the spatial extension
of the main lobe, i.e., Dmain. Note that this fact does not only refer to the linear
positioning system but also to the optical reflector, which features an edge length
of lopt = 100mm in the realized LRT setup. The condition Dmain ≤ lopt and (8.36)
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lead to the minimum wave number kmin, which can be just measured by means
of LRT. For instance, at an axial distance z = 50mm of a harmonically excited
ultrasonic transducer (piston-type; radius RT = 6.35mm) that operates in water, one
obtains kmin = 853 rad m−1. The minimum sound frequency fmin then results from

fmin = kmincaco
2π

= 853 rad m−1 · 1480m s−1

2π
= 201 kHz . (8.37)

When lower sound frequencies should be acquired, the reflector position would need
to be changed during measurements or, alternatively, a larger optical reflector has to
be used.

Additionally, there exists another frequency limitation that exclusively refers
to the ultrasound source. The arcsin(·) function in (8.36) demands an argument
fulfilling kRT ≥ 3.83 rad. However, if this requirement is not fulfilled, the ultra-
sound source will not generate a sound field with pronounced side lobes. Instead, a
wide main lobe will be emitted whose spatial extension is, strictly speaking, not
limited. It is, therefore, complicated to analyze such sound fields through LRT.
For the considered piston-type ultrasonic transducer operating in water, the crit-
ical wave number becomes k = 603 rad m−1 yielding the minimum sound fre-
quency fmin = 142 kHz (see (8.37)) that can be measured in a reliable way.

8.4 Sound Fields in Water

In Sect. 8.3, we have studied the fundamentals of LRT including measurement prin-
ciple, tomographic reconstruction, realized experimental setup as well as choosing
decisive measurement parameters. Now, these fundamentals are applied to actual
LRT measurements of sound fields in water, which is the most common propagation
medium for ultrasonic waves. The piezo-optic coefficient (∂n/∂ p)S is assumed to
be (e.g., [11, 15])

(

∂n

∂ p

)

S

= 1.473 · 10−10 Pa−1 (8.38)

for the wavelength λem = 475.8 nm of electromagnetic waves (i.e., laser beam of
LDV) in water and the water temperature 20 ◦C.

Firstly, the soundpressurefield of a piston-typeultrasonic transducer is analyzed in
selected cross sections (see Sect. 8.4.1). The reconstructed sound pressure amplitudes
will be compared to results of conventional hydrophone measurements. Afterward,
we perform the same comparison for a cylindrically focused ultrasonic transducer. In
Sect. 8.4.3, acceleration of the time-consumingmeasurement procedure is discussed.
Finally, the disturbance of the sound field due to an immersed hydrophone will
be quantified by means of LRT, which is hardly possible with other measurement
approaches.
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Fig. 8.18 Averaged
output (mean of 16 signals)
of LDV at position
(x, z) = (0, 32.8mm)

representing single point of
projection oΘ(ξ) for
tomographic reconstruction;
resulting SNR ≈ 34 dB;
piston-type ultrasonic
transducer Olympus
V306-SU; excitation
frequency f = 1MHz
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8.4.1 Piston-Type Ultrasonic Transducer

At the beginning, let us investigate the sound field of a piston-type ultrasonic
transducer (Olympus V306-SU [29]) that was immersed in water. The ultrasonic
transducer with a radius of RT = 6.35mm was excited by a sinusoidal burst sig-
nal of 40 cycles at f = 1MHz and fixed in the cylindrical mount of the realized
LRT setup (see Fig. 8.9). For the chosen transducer excitation, the near-field length
equals Nnear = 27mm. Several cross sections (i.e., in parallel to the xy-plane) of the
arising sound field were acquired at different axial distances z, whereby z = 0mm
relates to the transducer front [14]. Figure 8.18 depicts the averaged output signal
of the differential LDV at (x, z) = (0, 32.8mm), which represents data at a single
point of a projection oΘ(ξ) with respect to time t . By means of averaging 16 output
signals directly within the utilized digital storage oscilloscopes Tektronix TDS 3054,
the SNR exceeds 30 dB [11].

In Sect. 8.3.4, we determined decisive parameters for LRTmeasurements from the
theoretical point of view. Thereby, a piston-type transducer was considered featuring
the same radius RT and excitation frequency as the investigated one. Here, exactly
those parameters were applied to acquire sound pressure fields p∼(x, y, t) in the
cross sections z = 32.8mm (far field) as well as z = 8.4mm (near field). This refers
to the scanning area but also to the number of projections Nproj and nonequidistant
sampling between two neighboring LDV positions. Table 8.3 summarizes the most
important parameters for the conducted LRT measurements. After recording the
LDV output signals at the selected scanning positions, tomographic reconstruction
was performed for each instant of time individually.

Figure 8.19a and c show the reconstructed sound pressure amplitudes p̂∼(x, y) in
the cross sections5 at z = 32.8mm and z = 8.4mm, respectively. As expected from
piston-type ultrasonic transducers, the sound pressure amplitudes are rotationally
symmetric distributed in a cross section. Compared to the near field at z = 8.4mm,

5Geometric dimension of the plotted cross sections (in parallel to the xy-plane): x × y =
[−10mm, 10mm] × [−10mm, 10mm].
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(a) LRT; z = 32.8 mm (b) HYD; z = 32.8 mm

(c) LRT; z = 8.4 mm (d) HYD; z = 8.4 mm

x in mmx in mm

x in mmx in mm

y
in

m
m

y
in

m
m

y
in

m
m

y
in

m
m

p̂
∼

in
kP

a

p̂
∼

in
kP

a

p̂
∼

in
kP

a

p̂
∼

in
kP

a

-10
-10

-10
-10

-10
-10

-10
-10

-5

-5

-5

-5

-5

-5

-5

-5

0

0

0
0

0

0

0

0

0
0

0

0

22

44

5

5

5

5

5

5

5

5

5

5

66

88

10

10

10

10

10

10

1010

10

1010

10

1515

2020

Fig. 8.19 a and c LRT measurements for sound pressure amplitudes p̂∼(x, y) in cross sections
at z = 32.8mm and z = 8.4mm, respectively; b and d corresponding hydrophone (HYD) mea-
surements; piston-type ultrasonic transducer Olympus V306-SU; excitation frequency f = 1MHz

Table 8.3 Decisive parameters for LRTmeasurement of sound field arising from piston-type ultra-
sonic transducer

x-direction Δξ = 0.2mm for x ∈ [−6.4, 6.4]mm

Δξ = 0.8mm for x ∈ [−20.0,−6.4) ∪ (6.4, 20.0]mm

z-direction 32.8 and 8.4mm

Rotary direction ΔΘ = 1.8◦ per step

Temporal 100MHz (Δt = 10 ns between sampling points)

Measurement 2 h per cross section

Reconstruction 4min per cross section (5000 instants of time)

p̂∼(x, y) decreases in the far field at z = 32.8mm, which coincides with the theory
of sound propagation.

To verify the LRT results, hydrophone measurements were additionally carried
out for both cross sections. Guided by the spatial resolution in LRT measurements,
the utilized capsule hydrophone (Onda HGL-0400 [30]) was moved with the step
size 0.2mm in x- and y-direction. Because of the fine spatial resolution and a wait-
ing time of 2 s that is required for mechanical vibrations to settle down after each
hydrophone movement, such measurement takes approximately 12 h. Figure 8.19b
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Fig. 8.20 a and b Comparison of LRT and hydrophone (HYD) measurements for sound pressure
amplitudes p̂∼(x, y) along x-axis in cross sections at z = 32.8mm and z = 8.4mm, respectively; c
and d relative deviations |εr| (magnitude) along x-axis between LRT and hydrophonemeasurements
normalized to maximum of hydrophone output; piston-type ultrasonic transducer Olympus V306-
SU

and d display the obtained results p̂∼(x, y) from hydrophone measurements. As the
comparison clearly reveals, the results coincide verywellwith the correspondingLRT
measurements. This also becomes obvious if we take a look at the acquired sound
pressure amplitudes along the x-axis (seeFig. 8.20a andb) and thenormalized relative
deviations εr (see Fig. 8.20c and d) between the different measurement approaches.
While |εr| is always smaller than 5.4% in the far field (i.e., z = 32.8mm), there
occur, however, relative deviations up to 12.3% in the near field (i.e., z = 8.4mm).
The pronounced deviations between LRT and hydrophone measurements in the near
field can be mainly ascribed to three points. Firstly, the hydrophone is calibrated for
ultrasound measurements in the far field, where the spatial frequencies ν in x- and y-
direction are much smaller than in the near field (cf. Fig. 8.10b). As a second point,
one has to keep in mind that a perfect alignment of the system components does not
avoid spatial deviations of the coordinate systems for LRT and hydrophone mea-
surements. Therefore, we always compare slightly different cross sections, which
can be especially crucial in the near field of an ultrasonic transducer since sound
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fields are subject to strong fluctuations there. Lastly, hydrophone measurements are
invasive and, thus, affect the analyzed sound field due to reflections of propagating
soundwaves, which is again critical in the near field. Nevertheless, the comparison of
hydrophone and LRTmeasurements definitely proves that LRT is a reliable approach
for investigating rotationally symmetric sound fields in water.

8.4.2 Cylindrically Focused Ultrasonic Transducer

LRT measurements usually concentrate on the inspection of rotationally symmetric
sound fields (e.g., [5]). The dedicated LRT setup enables, however, the investigation
of sound fields arising from nearly arbitrarily shaped sound sources. With a view
to demonstrating this fact, a cylindrically focused ultrasonic transducer (Olympus
V306-SU-CF1.00N [29]) exhibiting the focal length 25.4mmwasutilized to generate
nonaxisymmetric sound fields in water [14]. Again, the transducer was excited by a
sinusoidal burst of 40 cycles at f = 1MHz. In contrast to the previous investigations,
fairly conservative measurement parameters were chosen here. The radial scanning
area was extended from 40 to 60mm (i.e., x ∈ [−30, 30]mm), and nonequidistant
sampling between two neighboring LDV positions was abandoned. Consequently,
the measuring time for a single cross section increases from 2 h to 6 h. Table 8.4
summarizes the most important parameters for the conducted LRT measurements.

Figure 8.21a depicts the reconstructed sound pressure amplitudes p̂∼(x, y) in
the cross section at z = 25.4mm representing the focal plane of the investigated
cylindrically focused transducer. While the sound field is strongly focused in one
direction, there hardly occurs focusing perpendicular to it, which is typical for such
transducer shape.

To verify the LRT results, hydrophone measurements were carried out in the
same cross section (see Fig. 8.21b),whereby the hydrophonewasmovedwith the step
size 0.2mmin x- and y-direction.Both images showa fairly good agreement andhave
many fine details in common. This fact is also demonstrated in the sound pressure
amplitudes along the x-axis (see Fig. 8.22a) and y-axis (see Fig. 8.22b), respectively.
As displayed in Fig. 8.22c and d, the normalized relative deviations |εr| (magnitude)
between LRT and hydrophone measurements along these axes are always smaller

Table 8.4 Decisive parameters for LRT measurement of sound field arising from cylindrically
focused ultrasonic transducer

x-direction Δξ = 0.2mm for x ∈ [−30, 30]mm

z-direction 25.4mm

Rotary direction ΔΘ = 1.8◦ per step

Temporal 100MHz (Δt = 10 ns between sampling points)

Measurement 6 h per cross section

Reconstruction 6min per cross section (5000 instants of time)
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than 3.4%.Hence,we can state that in addition to rotationally symmetric soundfields,
the presented LRT measurement approach is applicable for precise measurements of
nonaxisymmetric sound fields in water.

8.4.3 Acceleration of Measurement Process

So far, the sound fields of piston-type and cylindrically focused ultrasonic transduc-
ers were projected under 100 angles per cross section to reconstruct field informa-
tion (e.g., sound pressure amplitudes) through LRT measurements. The procedure
comprising measurement and reconstruction takes a few hours for a single cross
section. When sound propagation should be investigated with respect to space and
time, we would need sound information in numerous cross sections [14]. It is, there-
fore, of utmost importance to accelerate LRT measurements. In the following, we
will discuss two possibilities for acceleration: (i) reducing the number of projec-
tions and (ii) assumption-based reconstruction for rotationally symmetric ultrasonic
transducers.

Reduction of the Number of Projections

A proper way to lower measuring time in LRT is reducing the number of utilized pro-
jections Nproj. The theoretical investigations in Sect. 8.3.4 indicated that Nproj = 50
should be sufficient to obtain reliable reconstruction results. Let us verify this value
by means of LRT measurements for the piston-type ultrasonic transducer Olym-
pus V306-SU. As an example, the sound pressure amplitudes p̂∼(x, y) in the cross
section at z = 32.8mm are considered. Figure 8.19a depicts the reconstruction result
for Nproj = 100 acquired projections. Here, this value is reduced by picking out
every M th projection and ignoring the remaining ones for tomographic reconstruc-
tion. M was selected to be [2, 4, 5, 10, 20, 50] yielding Nproj ∈ [50, 25, 20, 10, 5, 2]
projections. In doing so, the reconstruction results for reduced numbers of projections
can be compared to the full reconstruction, which follows from Npro = 100.

Figure 8.23a and b illustrate maximum relative deviations and mean relative
deviations from full reconstruction as functions of Nproj. Both deviations decrease
with rising amount of projections for the considered cross section, i.e., x × y =
[−10mm, 10mm] × [−10mm, 10mm]. The same holds in the central area of the
sound field, which is here defined as |x, y| < 6.4mm. However, since the deviations
are smaller in the central area, reconstruction results in the periphery (i.e., |x, y| ≥
6.4mm) of the sound field suffer more from reducing Nproj. In accordance with the
theoretical investigations, Nproj = 50 leads in any case to precise LRT results and,
therefore, constitutes a good compromise between measuring time and measurement
accuracy. But, if solely information from the central area is desired, we will be able
to additionally reduce the number of projections, e.g., Nproj = 20 or even less.
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Fig. 8.23 a and b Maximum and mean of normalized relative deviations |εr| (magnitude)
between reconstruction results and full reconstruction (Nproj = 100; see Fig. 8.19a) versus num-
ber of projections Nproj for entire sound pressure field (i.e., |x, y| ≤ 10mm) and within central
area (i.e., |x, y| < 6.4mm), respectively

Axisymmetric Assumption

The realized LRT setup combined with tomographic reconstruction allows spatially
and temporally resolved acquisition of sound fields generated by nearly arbitrarily
shaped ultrasonic transducers. This is achieved by projecting the investigated sound
field under a sufficient number of angles through a LDV. Here, let us study recon-
struction results in cases where projections under different angles are not available;
i.e., there exists only one projection oΘ(ξ) of the sound field. For instance, such
situation will be present when the sound source cannot be rotated or measuring time
of LRT should be minimal. As a result, one has to reconstruct the entire sound field
from a single projection, which means that an axisymmetric field has to be assumed.
Such assumptionwill onlymake sense, however, if the sound source is of rotationally
symmetric shape, e.g., piston-type or spherically focused.

As a first example, the sound field generated by the piston-type ultrasonic trans-
ducer Olympus V306-SU is considered. Again, we take a look at the sound pres-
sure amplitudes p̂∼(x, y) in the cross sections z = 32.8mm (far field) and z =
8.4mm (near field), which are shown in Fig. 8.19a and c for full reconstruction,
i.e., Nproj = 100. To emulate the so-called assumption-based reconstruction that uses
only one acquired projection, a single projection was picked out and replicated hun-
dred times yielding Nproj = 100 projections. These identical projections served then
as input for tomographic reconstruction. Figure 8.24a and b display the results of
the assumption-based reconstruction at z = 32.8mm and z = 8.4mm, respectively.
By comparing assumption-based and full reconstructions (see Fig. 8.19a and c), it
becomes apparent that the spatial distributions of p̂∼(x, y) as well as their absolute
values agree very well, especially in the far field. This can be also seen from the
sound pressure amplitudes along the x-axis (see Fig. 8.24c and d) and the resulting
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Fig. 8.24 a and b LRT results for sound pressure amplitudes p̂∼(x, y) in cross sections at z =
32.8mm and z = 8.4mm for assumption-based reconstruction, respectively; c and d p̂∼(x, y)
along x-axis in cross sections at z = 32.8mm and z = 8.4mm for full and assumption-based recon-
struction; (e) and (f) normalized relative deviations |εr| (magnitude) between both reconstruction
approaches; piston-type ultrasonic transducerOlympusV306-SU; excitation frequency f = 1MHz

normalized relative deviations εr (see Fig. 8.24e and f) between the different recon-
struction approaches. Hence, the question arises why one should acquire projections
under different angles, which is indeed a time-consuming procedure.

In order to answer the aforementioned question, let us investigate the sound
field generated by the piston-type ultrasonic transducer Krautkramer Benchmark
ISS 3.5 [17]. The transducer was excited again by a sinusoidal burst of 40 cycles at
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Fig. 8.25 LRTmeasurement for sound pressure amplitudes p̂∼(x, y) in cross section at z = 6.5mm
for a full reconstruction and b assumption-based reconstruction; piston-type ultrasonic transducer
Krautkramer Benchmark ISS 3.5; excitation frequency f = 1MHz

f = 1MHz. Figure 8.25a depicts the resulting sound pressure amplitudes p̂∼(x, y)
at the cross section z = 6.5mm (near field) for full reconstruction; i.e., Nproj =
100 independent projections were acquired under 100 angles. Although the ultra-
sonic transducer features a rotationally symmetric shape, the spatial distribution
of p̂∼(x, y) is by no means axisymmetric, which can be attributed to partial damages
of the transducer’s matching layer. In a next step, assumption-based reconstruction
was performed for the same cross section by picking out a single projection and repli-
cating it so that Nproj = 100 identical projections are available. Not surprisingly, the
assumption-based reconstruction (see Fig. 8.25b) completely differs from full recon-
struction regarding spatial distribution as well as absolute values. It can, therefore,
be concluded that even though ultrasonic transducers are of rotationally symmetric
shape, assumption-based reconstruction may cause remarkable deviations in LRT
measurements of sound fields.

According to the previous discussions, we desire a simple criterion answering the
question whether assumption-based reconstruction provides reliable results in LRT
measurements. Such a criterion follows from a single sound field projection oΘ(ξ)
along a line, which is acquired by the LDV [11]. If that projection is symmetri-
cal with respect to the rotation axis (i.e., z-axis), assumption-based reconstruction
may be permitted. Figure 8.26 contains single projection magnitudes along the x-
axis for both piston-type transducers. In contrast to the Olympus transducer, the
projection for the Krautkramer transducer is completely asymmetrical around the
rotation axis, which gets also clear by comparing mirrored projections from the left
side (i.e., x ∈ [−20mm, 0]) with the original ones from the right side. It, thus, seems
only natural that we cannot apply assumption-based reconstruction in LRTmeasure-
ments for the Krautkramer transducer. However, the simple criterion is necessary but
not sufficient for achieving reliable results with assumption-based reconstruction
because the comparison of a single projection may lead to a wrong conclusion. For
this reason, full reconstruction should be preferred even for rotationally symmetric
transducer shapes, especially when precise information of the investigated sound
fields is demanded.
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(a) Olympus; z = 8.4 mm (b) Krautkramer; z = 6.5mm
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8.4.4 Disturbed Sound Field due to Hydrophones

To verify LRT results in water, we compared them so far to hydrophone measure-
ments, whereby the hydrophone had to be placed directly within the investigated
sound field. Due to the different acoustic properties of hydrophone and the surround-
ing water, there occur, of course, reflections as well as diffractions of incident sound
waves at the interface of water and hydrophone. Therefore, the sound field is influ-
enced by the presence of the hydrophone, which especially constitutes a problem
close to the transducer surface and medium boundaries. In the following, the dis-
turbed sound field should be quantified. The applied measurement approach has to
meet mainly three requirements:

• With a view to avoiding further disturbances of the sound field, the measurement
has to be noninvasive and nonreactive.

• Spatially and temporally resolved as well as absolute measurement results should
be provided.

• Themeasurement approach has to feature omnidirectional sensitivity because inci-
dent and reflected sound waves propagate in different directions.

In accordance with these requirements, LRT is an outstanding candidate for the
quantitative analysis of sound reflections and diffractions at the hydrophone surface
[11, 15].

Figure 8.27 shows the relevant part of the experimental setup comprising cylindri-
calmount, piston-type ultrasonic transducerOlympusV306-SU, optical reflector and
capsule hydrophone Onda HGL-0400 as well as its preamplifier Onda AH-2010. The
rotationally symmetric hydrophone was placed at the axial distance zH = 27.0mm
in front of the transducer. Since LRT measurements demand sound field projections
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Fig. 8.27 Relevant part of
realized LRT setup to
investigate disturbance of
sound field at capsule
hydrophone Onda
HGL-0400 [15]; ultrasonic
transducer UT
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Table 8.5 Decisive parameters for LRT measurement of disturbed sound field between transducer
front and hydrophone tip

x-direction Δξ = 0.2mm for x ∈ [−6.4, 6.4]mm

Δξ = 0.8mm for x ∈ [−20.0,−6.4) ∪ (6.4, 20.0]mm

z-direction Δz = 0.2mm for z ∈ [0.2, 26.8]mm

Rotary direction ΔΘ = 3.6◦ per step

Temporal 100MHz (Δt = 10 ns between sampling points)

Reconstruction 134 cross sections at 5000 instants of time

under different angles and the realized setup allows only transducer rotation, the
rotation axes of both cylindrical mount and hydrophone have to be aligned. The hor-
izontal hydrophone alignments in the xz-plane were based again on the intensity of
the reflected LDV laser beam (see Sect. 8.3.4). For vertical hydrophone alignments in
the yz-plane, we analyzed pictures from a SLR camera (Nikon D80; 10.2 megapix-
els) that was located about 5m away from the LRT setup [15]. In doing so, it is
possible to ensure geometrical deviations of both rotation axes<5µm in x-direction
and <50µm in y-direction, respectively.

The ultrasonic transducer was excited by a sinusoidal pulse of 8 cycles at f =
1MHz. With the aid of LRT, the transient sound field was acquired in 134 cross sec-
tions (i.e., xy-planes), which were equidistantly distributed between transducer front
and hydrophone tip (see Table 8.5 for measurement parameters). After measurement
and tomographic reconstruction, the entire sound field at a selected instant of time
follows from assembling sound pressure values of all cross sections for that instant.
Beyond the hydrophone tip (i.e., z ≥ 27.0mm), LRT does not provide, however,
absolute information about the sound field because the hydrophone blocks the LDV
laser beam and this data is then missing for tomographic reconstruction. Neverthe-
less, each point of a projection oΘ(ξ) is proportional to the integral of the sound
pressure along the laser beam and, consequently, contains certain information about
sound propagation. Instead of reconstructing spatially resolved sound pressure val-
ues for z ≥ 27.0mm, sound propagation was only visualized there through recording
a single projection in every cross section [55].
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Fig. 8.28 Sound pressure fields in xz-plane (i.e., y = 0) at four instants of time after starting
emitting sinusoidal burst (8 cycles at 1MHz); reconstruction results for z < 27.0mm; visualiza-
tions for z ≥ 27.0mm; a transducer finished emitting burst signal; b sound waves almost reached
hydrophone; c constructive interference of incident and reflected sound waves; d all wave fronts
passed hydrophone tip at zH = 27.0mm; piston-type ultrasonic transducer Olympus V306-SU

In Fig. 8.28, one can see the measured sound pressure fields in the
xz-plane (i.e., y = 0) at four representative instants of time after starting pulse
emission, namely 12.80, 19.92, 24.64, and 28.44µs. Thereby, reconstructions
between transducer front and hydrophone are combined with visualizations beyond
hydrophone tip. To achieve meaningful images, visualizations were rescaled so
that the absolute values of reconstructed sound pressure and visualized projec-
tions coincide nearby z = 27.0mm. At the first two instants of time t = 12.80
and t = 19.92µs (see Fig. 8.28a and b), the sound pressure waves have not reached
the hydrophone tip, which means that there do not emerge disturbances of the
sound field. The already existing constructive and destructive interference pat-
terns stem from the beam characteristic of the piston-type ultrasonic transducer.
In Fig. 8.28c, constructive interference of incident and reflected sound pressure
waves arises since exactly four wave fronts passed the hydrophone tip. At the last
instant of time t = 28.44µs, all wave fronts have passed the hydrophone tip and the
expected reflections propagate in negative z-direction toward to transducer.When the
hydrophone is placed close to the transducer surfaces or medium boundaries, exactly
such reflected waves can cause remarkably deviations in hydrophone measurements.
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Fig. 8.29 Binarized version
of sound pressure field at
t = 28.44µs (see
Fig. 8.28d); positive and
negative sound pressure
values in black and white
color; respectively
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For better interpretation, Fig. 8.29 depicts a binarized version of Fig. 8.28d; i.e.,
negative and positive sound pressure values are shown in black-and-white color,
respectively. It can be clearly observed that the reflected sound waves appear as eight
concentric white circular regions in front of the hydrophone tip (i.e, z < 27.0mm).
Besides, sound waves propagating in positive z-direction are still present for z <

27.0mm, which is a consequence of the transducer’s beam characteristic. At this
point, it should be mentioned again that the cross sections were individually recon-
structed between transducer front and hydrophone tip. The spatial continuity and
symmetry in the resulting images, thus, proves once more applicability of LRT even
for challenging measurement tasks.

In addition to the spatial investigations of the disturbed sound field, let us
now regard the reconstructed time-dependent values p∼(t) at selected positions
on the z-axis, i.e., (x, y) = (0, 0). Figure 8.30a displays p∼(t) at z = 24.6mm,
which means 2.4mm in front of the hydrophone tip. One can distinguish between
three time periods within the sound pressure curve: (i) exclusively waves propagat-
ing in positive z-direction; (ii) interference between waves propagating in positive
and negative z-direction; (iii) exclusively waves propagating in negative z-direction.
In Fig. 8.30a, the time periods (i), (ii), and (iii) cover approximately the intervals
[18, 22]µs, [22, 27]µs and [27, 31]µs, respectively. Figure 8.30b shows p∼(t) for
the axial position z = 26.6mm, i.e., very close to the hydrophone tip. Contrary
to z = 24.6mm where constructive interference is present in the sound pressure
curve, time period (ii) is dominating for z = 26.6mm and refers to destructive inter-
ference. For these reasons, it can be stated that sound pressure amplitudes in the
disturbed sound field vary greatly close to the hydrophone tip [15].

Finally, the hydrophone output is compared with the LRT result at the position
of the hydrophone tip (see Fig. 8.30c and d). Note that for the LRT measurement,
the hydrophone was removed from the water path and, consequently, there did not
exist sources for disturbing the sound field anymore. The acquired sound pressure
curves p∼(t) of both measurement approaches coincide very well regarding time
behavior and absolute values. Related to the hydrophone output, the relative devia-
tion εr of the amplitudes becomes
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(a) LRT; z = 24.6 mm (b) LRT; z = 26.6 mm

(c) HYD; zH = 27.0mm (d) LRT; z = 27.0 mm
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Fig. 8.30 Time-dependent sound pressure values p∼(t) at selected positions on z-axis; a partly
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εr = p̂L∼ − p̂H∼
p̂H∼

= 10.6 kPa − 9.9 kPa

9.9 kPa
= 7.1% . (8.39)

The expressions p̂H∼ and p̂L∼ stand for the determined values of hydrophone and
LRT measurements, respectively. Taking into account the uncertainty of 10.4% in
hydrophone measurements demonstrates once again the reliability of LRT results
[33].

From the presented results in Sect. 8.4, it can be concluded that LRT is an excel-
lent measurement approach providing spatially as well as temporally resolved data
for sound fields in water. This also applies to situations where other measurement
approaches fail, e.g., hydrophone for disturbed sound fields.
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8.5 Sound Fields in Air

Air serves in various applications as propagation medium for ultrasonic waves. For
example, airborne ultrasound is oftentimes employed in distance measurements such
as parking sensors (see Sect. 7.6.1). Here, we will prove the applicability of LRT
for quantitative measurements of airborne ultrasound. In Sect. 8.5.1, the piezo-optic
coefficient (∂n/∂ p)S in air is derived. Section 8.5.2 deals with the slightly mod-
ified LRT setup, which additionally contains foam to avoid disturbing reflections
of ultrasound. Finally, we discuss reconstructed sound pressure amplitudes for an
air-coupled ultrasonic transducer that operates at a frequency of f = 40 kHz. The
results are verified by microphone measurements.

8.5.1 Piezo-optic Coefficient in Air

With a view to reconstructing spatially as well as temporally resolved sound pressure
values for airborne ultrasound, LRT measurements require knowledge of the piezo-
optic coefficient (∂n/∂ p)S in air. Let us deduce this coefficient for an ideal gas,
which constitutes a good approximation of air. The adiabatic state equation for an
ideal gas is defined as (cf. (2.108, p. 32))

p0 + Δp

p0
=

(

�0 + Δ�

�0

)κ

(8.40)

with the pressure p0 and the density �0 in the equilibrium state, respectively. Δp
andΔ� stand for slight fluctuations around the equilibrium state, andκ is the adiabatic
exponent. By utilizing the so-called Gladstone–Dale relation for gases [55]

KG(�0 + Δ�)
︸ ︷︷ ︸

�

= n0 + Δn
︸ ︷︷ ︸

n

−1 (8.41)

where KG denotes the Gladstone–Dale constant, (8.40) becomes

Δp

p0
=

(

n0 + Δn − 1

n0 − 1

)κ

− 1 =
(

1 + Δn

n0 − 1

)κ

− 1 . (8.42)

Again, the expressions n0 and Δn represent the optical refractive index of the gas in
equilibrium state and its fluctuation, respectively. Owing to the fact that Δn � n0 is
usually fulfilled for airborne ultrasound, we can introduce the Taylor approximation
(1 + x)k ≈ 1 + kx . Therewith, (8.42) simplifies to

Δp

p0
≈ 1 + κ

Δn

n0 − 1
− 1 = κΔn

n0 − 1
. (8.43)
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Rewriting this equation finally yields the piezo-optic coefficient of an ideal gas

(

∂n

∂ p

)

S

= Δn

Δp
≈ n0 − 1

κp0
, (8.44)

which can be used to link refractive index changes Δn to sound pressure val-
ues p∼ (=̂Δp) when the quantities n0, p0 as well as κ are known.

InLRTmeasurements of airborne ultrasound,we suppose the following conditions
and parameters for air [11, 38]:

• wavelength of laser beam λem = 632.8 nm
• air temperature 20 ◦C
• adiabatic exponent κ = 1.4 at 20 ◦C
• static air pressure p0 = 101.325 kPa
• relative humidity 40%
• carbon dioxide content 0.045%.

According to the empirical formula in [16], these values lead to the optical refractive
index n0 = 1.000271 in the equilibrium state and, consequently, to the piezo-optic
coefficient

(

∂n

∂ p

)

S

≈ n0 − 1

κp0
= 1.000271 − 1

1.4 · 101325 Pa = 1.91 · 10−9 Pa−1 (8.45)

in air. Actually, this coefficient is subject to certain fluctuations in practical sit-
uations. For instance, if the air temperature increases by 1 ◦C, n0 will decrease
by 1.1 · 10−6 and (∂n/∂ p)S will be reduced by 0.4% (e.g., [52]). It can be stated, how-
ever, that under normal ambient conditions, the piezo-optic coefficient in air exhibits
a maximum uncertainty <20%. Compared to water, whose piezo-optic coefficient
amounts ≈ 10−10 Pa−1 (see (8.38)), the value in air is more than ten times larger.

8.5.2 Experimental Setup

The realized LRT setup for investigating airborne ultrasound is similar to the exper-
imental arrangement that we utilized in water. This refers to the differential LDV,
the linear positioning system, and rotation unit but also to the cylindrical mount as
well as optical reflector (see Fig. 8.31). In order to avoid disturbing reflections of
ultrasound, several components of the experimental setup have to be additionally
surrounded and lined by a foam, which absorbs sound waves and, therefore, reduces
echoes.
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Fig. 8.31 Relevant part of
realized LRT setup to
investigate airborne
ultrasound [38]; foam avoids
disturbing reflections of
sound waves; ultrasonic
transducer UT
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Fig. 8.32 Averaged
output (mean of 64 signals)
of LDV at position
(x, z) = (0, 20mm)

representing single point of
projection oΘ(ξ) for
tomographic reconstruction;
transducer excitation started
at 0.5ms; resulting
SNR ≈ 31 dB; piston-type
ultrasonic transducer Sanwa
SCS-401T; excitation
frequency f = 40 kHz
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In fact, there arise significant differences between sound propagation in water
and in air. On the one hand, attenuation of ultrasonic waves in air is much higher
than in water (cf. Table 2.8 on p. 40). The acoustic impedance Zaco of air is much
lower than that of water on the other hand. While the acoustic impedance of water
amounts 1.48 · 106 N s m−3, air exhibits a value of 413.5N s m−3 at 20 ◦C. For these
reasons, both the frequencies of airborne ultrasound and the resulting sound pressure
values are usually comparatively small. In the present case, the air-coupled ultrasonic
transducer Sanwa SCS-401T with a radius of RT = 6.5mm served as sound source.
The piston-type transducer was fixed again in the cylindrical mount. The transducer
was excited by a sinusoidal burst signal of 48 cycles at f = 40 kHz, which is a typical
frequency for airborne ultrasound in practical applications, e.g., parking sensors. To
achieve a satisfactory SNR in LRT measurements, the excitation voltage was chosen
to be 24Vpp (peak-to-peak). Figure 8.32 shows the averagedoutput signal (meanof 64
signals) of the differential LDV at (x, z) = (0, 20mm), which represents data at a
single point of a projection oΘ(ξ) with respect to time t . For such excitation voltage,
the SNR exceeds 30 dB and, thus, is sufficient for LRT measurements. However,
it should be noted that an appropriate microphone (e.g., 1/4 inch microphone from
Brüel & Kjær) usually provides considerably higher SNR values [11, 38].
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Table 8.6 Decisive parameters for LRT measurement of sound field in air arising from piston-type
ultrasonic transducer

x-direction Δξ = 1.0mm for x ∈ [−45, 45]mm

z-direction 5, 20 and 90mm

Rotary direction ΔΘ = 4.5◦ per step

Temporal 2.5MHz (Δt = 400 ns between sampling points)

Measurement 50min per cross section

Reconstruction 2min per cross section (5000 instants of time)

8.5.3 Results for Piston-Type Ultrasonic Transducer

By means of LRT, we acquired sound pressure fields p∼(x, y, t) of the air-coupled
transducer in three different cross sections. The cross sections were located at the
axial distances z = 5mm, z = 20mm and z = 90mm from the transducer front.
Compared to the LRT experiments in water, the scanning area in x-direction has been
extended because wavelength λaco of the sound waves and, consequently, the main
lobe’s diameter Dmain of the directivity pattern increases (see Sect. 8.3.6). Moreover,
the higher value of λaco enables increasing the sampling interval Δξ between two
neighboring LDV positions as well as reducing the number of projections Nproj,
which is necessary for tomographic reconstruction. Table 8.6 summarizes the most
important parameters for the conducted LRT measurements.

Figure 8.33a and c presents the reconstructed sound pressure amplitudes p̂∼(x, y)
of the piston-type transducer in the cross sections6 at z = 5mm and z = 20mm,
respectively. The sound pressure amplitudes are rotationally symmetric distributed
in both cross sections. For the chosen transducer excitation f = 40 kHz, the near-field
length equals Nnear = 2.8mm. Hence, the maximum of p̂∼(x, y) should be larger
at z = 5mm than at z = 20mm, which is also confirmed in the LRT measurements.

With a view to verifying LRT results, we performedmicrophone measurements in
addition [11, 38]. The utilized 1/4 inch condenser microphone (Brüel & Kjær; type
4939 [9]), whose output response to sound waves is almost constant up to 100 kHz,
was moved with the step size 1.0mm in x- and y-direction. Overall, this procedure
takes 2.5 h and, thus, much more time than corresponding LRT measurements (see
Table 8.6). In Fig. 8.33b and d, one can see the obtained amplitudes p̂∼(x, y) from
microphonemeasurements. The comparison reveals that LRTandmicrophone results
coincide very well in both cross sections. This is also demonstrated by the acquired
sound pressure amplitudes along the x-axis (see Fig. 8.34a and b) and the normal-
ized relative deviations εr (see Fig. 8.34c and d) between the different measurement
approaches. The results exhibit a maximum difference of 11.7 and 8.9% at z = 5mm
and z = 20mm, respectively. From there, LRT seems to be a suitable approach to

6Geometric dimension of the plotted cross sections (in parallel to the xy-plane): x × y =
[−25mm, 25mm] × [−25mm, 25mm].
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(a) LRT; z = 5mm (b) MIC; z = 5mm

(c) LRT; z = 20mm (d) MIC; z = 20 mm
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Fig. 8.33 a and c LRT measurements for sound pressure amplitudes p̂∼(x, y) in cross sections
at z = 5mm and z = 20mm, respectively; b and d corresponding microphone (MIC) measure-
ments; piston-type ultrasonic transducer Sanwa SCS-401T; excitation frequency f = 40 kHz

replace conventional microphone measurements, especially when we desire sound
pressure information in the whole cross section.

Apart from the axial distances 5 and 20mm, the sound field was investigated in
the cross section at z = 90mm. Figure 8.35a and b display the achieved LRT and
microphone results for the soundpressure amplitudes p̂∼(x, t). In contrast to the other
cross sections, there emerge enormous deviations between the differentmeasurement
approaches, which gets also obvious in the acquired values along the x-axis (see
Fig. 8.35c). The reason for the large deviations lies in the spatial main lobe extension
of the sound field. At the axial distance z = 90mm, the main lobe has a diameter
of Dmain = 244mm (see (8.36)), which, therefore, remarkably exceeds the geometric
dimensions lopt = 100mm of the utilized optical reflector. Due to this fact, the main
lobe cannot be completely covered by means of a single reflector position in LRT
measurements. The projections oΘ(ξ) for tomographic reconstruction may exhibit
relatively large values at the boundaries of the scanning area (i.e., x = ±45mm),
which is proven in Fig. 8.35d.

An insufficient scanning area has mainly two consequences for LRT results [11].
Firstly, nonzero projections at the scanning boundaries can be understood as spec-
tral leakage in the spatial frequency domain. Such spectral leakage leads to spatial
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(a) comparison at z = 5mm (b) comparison at z = 20 mm

(c) deviation at z = 5 mm (d) deviation at z = 20 mm
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Fig. 8.34 a and b Comparison of LRT and microphone (MIC) measurements for sound pressure
amplitudes p̂∼(x, y) along x-axis in cross sections at z = 5 and z = 20mm, respectively; c and
d relative deviations |εr| (magnitude) along x-axis between LRT and microphone measurements
normalized to maximum of microphone output; piston-type ultrasonic transducer Sanwa SCS-401T

oscillations in the reconstructed images (see, e.g., Fig. 8.35a). As a second conse-
quence, the energies of reconstructed and actual sound pressure field may differ in a
cross section. Let us explain this circumstance through Fig. 8.36, which illustrates an
insufficient scanning area in LRT measurements for a rotationally symmetric sound
field. Within the scanning area, the entire sound information along the LDV beam
contributes to the measurement. However, sound information is not available beyond
this scanning area and, thus, sound energy and sound pressure values are set to zero
there, regardless of their actual values. In other words, we are mixing up two situ-
ations differing in sound energy during tomographic reconstruction. It seems only
natural that in case of an insufficient scanning area, LRT measurements are then
accompanied by large deviations.

To sum up, LRT is also applicable for acquiring sound pressure values of airborne
ultrasound. Nevertheless, this technique should be restricted to applications where
sound pressure amplitudes allow a satisfactory SNR in the LDV outputs and the
spatial extension of the sound field can be completely covered.
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(a) LRT; z = 90mm (b) MIC; z = 90 mm
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LRT
MIC

x in mmx in mm

x in mmx in mm

y
in

m
m

y
in

m
m

p̂
∼

in
P
a

|o Θ
(x

)|
in

a.
u.

p̂
∼

in
P
a

p̂
∼

in
P
a

0.3

0.4

0.5

0.6

0.7

-40 -20-20

-20

-20

-20

-20

-10

-10

-10

-10

-10

00

0

0

0

0

10

10

10

10
10

10

10

1515

16

18

20

20

20

20

20

20

20

20

20

22

24

2525

40

Fig. 8.35 a and b LRT and microphone (MIC) measurements for sound pressure ampli-
tudes p̂∼(x, y) in cross section at z = 90mm, respectively; c comparison of p̂∼(x, y) along x-axis;
dmagnitude |oΘ(x)| of single projection; piston-type ultrasonic transducer Sanwa SCS-401T; exci-
tation frequency f = 40 kHz

Fig. 8.36 Insufficient
scanning area in LDV
measurements for
rotationally symmetric sound
field [38]; extension of actual
sound field remarkably
exceeds reconstructed one

extension of
actual field

extension of
reconstructed field

y

xscanning area



394 8 Characterization of Sound Fields Generated by Ultrasonic Transducers

8.6 Mechanical Waves in Optically Transparent Solids

So far, LRT was exclusively applied to analyze sound propagation in fluids such as
water and air. Apart from fluids, solid media are often involved in sound as well as
ultrasound applications (e.g., nondestructive testing). At the boundary of a fluid and
a solid, sound pressure waves propagating in the fluid get converted to mechanical
waves, which propagate in the solid. Conventional measurement approaches (see
Sect. 8.1) do not, however, allow quantitative investigations of mechanical waves
within the solid. For instance, the Schlieren opticalmethod can be utilized to visualize
mechanical waves in optically transparent solids, but this method does not provide
absolute information about physical quantities (e.g., mechanical stress) describing
the waves. In this section, we will prove the applicability of LRT to determine such
quantities in optically transparent solids with respect to both time and space.

As a starting point, the mechanical normal stress in an isotropic solid will be
deduced from dilatation. Section 8.6.2 deals with the experimental setup that was
used to excite mechanical waves in optically transparent solids. Finally, we present
selected LRT results, which will be verified by numerical simulations and character-
istic parameters (e.g., reflection coefficient).

8.6.1 Normal Stress in Isotropic Solids

As already discussed in Sect. 8.3.1, LRT enables acquisition of mechanical longitu-
dinal waves in optically transparent solids. In doing so, we reconstruct the spatially
as well as temporally resolved dilatation δdil, which corresponds to the sum of normal
strains Sii within the solid medium (cf. (8.8)). This quantity is, however, not common
for describing propagation ofmechanicalwaves.Besides, another physical quantity is
desired instead of dilatation to compare sound fields in fluids with mechanical waves
in solids. The mechanical stress tensor [T] seems to be such a quantity since it shares
the same physical unit of measurement as the sound pressure p∼, i.e., N m−2 =̂Pa.

Let us deduce a normal component Tii of the mechanical stress tensor from δdil.
For the propagatingmechanical waves, the normal stress Tzz in z-direction is assumed
to be dominant in the following. According to Hooke’s law (see Sect. 2.2.3), Tzz in
an isotropic and homogeneous solid is given by

Tzz = λL
(

Sxx + Syy + Szz
) + 2μLSzz (8.46)

with the Lamé parameters λL and μL. Expressing these parameters with Young’s
modulus EM as well as Poisson’s ratio νP and inserting (8.8) leads to

Tzz = EM

(1 + νP)(1 − 2νP)

[

νPSxx + νPSyy +(1 − νP) Szz
]

= EM(1 − νP)

(1 + νP)(1 − 2νP)
δdil + EM(2νP − 1)

(1 + νP)(1 − 2νP)

(

Sxx + Syy
)

. (8.47)
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Actually, LRT measurements in optically transparent solids provide exclusively val-
ues for δdil. In other words, information about the normal strains Sxx and Syy is not
available [11, 12]. Owing to this fact, we approximate Tzz by neglecting the second
term in (8.47), i.e.,

Tzz ≈ kmδdil with km = EM(1 − νP)

(1 + νP)(1 − 2νP)
. (8.48)

The expression km stands for a material-dependent constant of the solid. Therewith,
the relative deviation |εr| (magnitude) of the approximation becomes

|εr| =
∣

∣

∣

∣
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(8.49)

and, thus, strongly depends on Poisson’s ratio of the solid. As (8.49) indicates, one
can approximate a normal component of the stress tensor (e.g., Tzz) with kmδdil very
well when the normal strain in this direction dominates, e.g., Szz � Sxx + Syy. A
sound pressurewave impinging perpendicular to an interface of fluid and solid causes
such situation in the solid. By means of numerical simulations, this fact was proven
in [12]. Summing up, it can be stated that LRT measurements should be applicable
for reliably estimating normal stresses due to mechanical longitudinal waves, which
propagate in an optically transparent solid.

8.6.2 Experimental Setup

The realized LRT setup for analyzing mechanical waves in solids is identical to the
one, which was employed in water (cf. Fig. 8.9). As a sound source, we utilized
either the piston-type ultrasonic transducer V306-SU or the cylindrically focused
ultrasonic transducer V306-SU-CF1.00IN, both from the company Olympus Corpo-
ration [29] andoptimized for generating soundfields inwater.APMMA(poly(methyl
methacrylate)) block served as optically transparent solid in which the propagation
of mechanical longitudinal waves should be investigated through LRT. This PMMA
block with a geometric dimension of 160mm × 60mm × lB (block length lB in z-
direction) was placed directly onto the optical reflector at the axial distance zB from
the transducer front (see Fig. 8.37). Both the PMMA block and the cylindrical mount
containing the ultrasonic transducer were immersed in water.



396 8 Characterization of Sound Fields Generated by Ultrasonic Transducers

Fig. 8.37 Relevant part of
realized LRT setup to
investigate mechanical waves
in optically transparent
PMMA block [12];
geometric block dimension
160mm × 60mm × lB; axial
distance zB of block surface
from transducer front;
ultrasonic transducer UT
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To reconstruct spatially as well as temporally resolved quantities (e.g., δdil), LRT
measurements demand projections under different angles, which are acquired by the
LDV.Note that this fact does not only refer to soundfields in fluids but also tomechan-
ical waves in optically transparent solids. The dedicated experimental setup allows
solely rotations of the ultrasonic transducer. It is, therefore, of utmost importance
that such rotations do not alter sound fields as well as mechanical waves. Conse-
quently, the PMMA block has to be aligned with respect to the cylindrical mount
so that the block surface facing the transducer is in parallel to the scanning planes.
Again, this alignment was conducted by evaluating the intensity of the reflected LDV
beam (see Sect. 8.3.5). The PMMAblock can then be treated as axisymmetric in LRT
measurements.

8.6.3 Results for Different Ultrasonic Transducers

Two experiments will be presented in order to demonstrate applicability of LRT for
quantitative measurements in the optically transparent solids. While one experiment
exclusively deals with stress amplitudes in a cross section inside a PMMA block, the
second experiment concentrates on transient field quantities for a wave propagating
throughout water and PMMA [11, 12].

Mechanical Waves within a PMMA Block

In the first experiment, the mechanical longitudinal waves within a PMMA block
(length lB = 45mm) were investigated through LRT. The block was placed at
the axial distance zB = 11mm from the transducer front. The ultrasonic trans-
ducer (piston-type or cylindrically focused) was excited by a sinusoidal burst signal
of 12 cycles at f = 1MHz. At the interface water/PMMA, the generated sound
pressure waves in water get reflected as well as converted to mechanical waves in
the solid. Figure 8.38 depicts the averaged output signal (mean of 16 signals) of the
differential LDV at (x, z) = (0, 25.4mm), which represents data at a single point of
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Fig. 8.38 Averaged LDV output (mean of 16 signals) within PMMA block at position (x, z) =
(0, 25.4mm) representing single point of projection oΘ(ξ) for tomographic reconstruction; incident
mechanical waves as well as reflections at interface PMMA/water are present; resulting SNR ≈
37 dB; piston-type ultrasonic transducer Olympus V306-SU; excitation frequency f = 1MHz

a projection oΘ(ξ)with respect to time t . Note that this position is within the PMMA
block. In the acquired LDV signal, one can clearly see the incident mechanical waves
as well as the reflections due to the interface of PMMA andwater. Just as in water (cf.
Fig. 8.18), the SNR of the LDV signal in the PMMA block exceeds 30 dB.

LRT was used to reconstruct amplitudes T̂zz(x, y) of the mechanical stress in
a cross section at the axial distance z = 25.4mm, i.e., directly within the PMMA
block. The most important parameters for the conducted LRT measurements can be
found in Table 8.4. Figure 8.39a and b show the obtained results7 for the piston-
type and cylindrically focused transducer, respectively. The piston-type transducer
produces an axisymmetric distribution of T̂zz(x, y) in the PMMA block. In contrast,
the cylindrically focused transducer causes a distribution that is slightly focused
in one direction. However, compared to the distribution of sound pressure ampli-
tudes p̂∼(x, y) in water at z = 25.4mm (cf. Fig. 8.21), focusing is less pronounced
in the PMMA block. This can be ascribed to the fact that the cylindrically focused
transducer is designed for operating in water and, thus, the focal length 25.4mm also
relates to water.

Up to now, conventionalmeasurement approaches (e.g., Schlieren opticalmethod)
do not allow quantitative verification of the LRT results in PMMA. For this rea-
son, let us compare the LRT results for the piston-type transducer with FE sim-
ulations [12]. In doing so, the ultrasonic transducer was modeled as a circular
area of radius RT = 6.35mm oscillating uniformly with the applied excitation
signal in the experiments, i.e., 12 cycles at f = 1MHz. The decisive material
properties of the PMMA block were identified by measuring the wave propaga-
tion velocities of mechanical longitudinal and transverse waves in the block (see

7Geometric dimension of the plotted cross sections (in parallel to the xy-plane): x × y =
[−10, 10mm] × [−10, 10mm].
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(a) piston; z = 25.4mm (b) focused; z = 25.4mm
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Fig. 8.39 LRT results for stress amplitudes T̂zz within PMMA block in cross section at z =
25.4mm; a piston-type ultrasonic transducer Olympus V306-SU; b cylindrically focused ultra-
sonic transducer Olympus V306-SU-CF1.00IN; excitation frequency f = 1MHz

Sect. 5.1.2). Thesemeasurements lead toYoung’smodulus Em = 5.98GPa and Pois-
son’s ratio νP = 0.33.

Figure 8.40a compares measured (i.e., LRT results) and simulated amplitudes T̂zz
of the mechanical normal stress along the x-axis at z = 25.4mm. Thereby, the simu-
lation results have been scaled so that measured and simulated quantities feature the
same energywithin the PMMAblock. The distribution of both quantities along the x-
axis coincides very well, which is also demonstrated by their normalized relative
deviation |εr| (see Fig. 8.40b). Besides the mechanical normal stress T̂zz, Fig. 8.40a
contains the simulated dilatation δ̂dil;sim that was scaled with the material-dependent
constant km. As discussed above, LRT measurements within optically transparent
solids exploit the approximation of Tii by this quantity (see (8.48)). Because the
normalized relative deviation of T̂zz;sim and km δ̂dil;sim is always smaller than 2% (see
Fig. 8.40b), it can be stated that the applied approximation yields reliable LRT results
for the normal stress, which is caused by mechanical longitudinal waves.

Fields Throughout Water and PMMA

In the second experiment, wave propagation phenomena throughout water and
PMMA were analyzed by means of LRT. For this purpose, a PMMA block with
the length lB = 22mm was placed onto the optical reflector at the axial dis-
tance zB = 24.4mm from the transducer front (see Fig. 8.37). To avoid overlaps
of multiple reflections, the piston-type ultrasonic transducer Olympus V306-SU was
excited by a sinusoidal burst signal consisting only of 8 cycles. Since this experiment
required the acquisition of numerous cross sections in water as well as PMMA, we
applied nonequidistant sampling between two neighboring LDV positions. Table 8.7
summarizes the most important parameters for the conducted LRT measurements.

The temporally resolvedLRT results in the cross sectionswere assembled together
yielding transient as well as spatially resolved information about wave propagation
throughout water and PMMA.With a view to achieving visually continuous images,
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Table 8.7 Decisive parameters for LRT measurement of sound pressure waves in water and
mechanical waves in PMMA block

x-direction Δξ = 0.4mm for x ∈ [−8.0, 8.0]mm

Δξ = 0.8mm for x ∈ [−28.0,−8.0) ∪ (8.0, 28.0]mm

z-direction Δz = 0.4mm for z ∈ [9.4, 56.0]mm

Rotary direction ΔΘ = 3.6◦ per step

Temporal 100MHz (Δt = 10 ns between sampling points)

Measurement 1 h per cross section

Reconstruction 4min per cross section (5000 instants of time)

the spatial resolution in z-direction has been additionally doubled by cubic spline
interpolation, i.e., from Δz = 0.4mm to Δz = 0.2mm. Figures 8.41a–c display the
assembled data in the xz-plane (i.e., y = 0) for three different instants of time t after
starting pulse emission, namely 18.2, 25.4, and 32.0µs. Because sound pressure p∼
and mechanical stress Tzz have the same physical unit, they can be represented by a
single colormap in the images.Before discussing theLRT results, it should be pointed
out that there is information missing in several cross sections (z ∈ [24.4, 27.0] ∪
[43.6, 46.2]mm) at the left and right sides of the PMMA block. The reason for
this was the mechanical processing of the PMMA block. Cutting and milling alters
the material density near the surfaces of the block and, consequently, the optical
refractive index n changes permanently. Owing to these changes, the laser beam of
the LDV gets deflected and is not reflected back to its sensor head anymore. Hence,
projections are not available there and the field information cannot be reconstructed
in LRT measurements.
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at t = 32.0µs; piston-type ultrasonic transducer Olympus V306-SU

At t = 18.2µs (see Fig. 8.41a), the sound pressure waves in water have not
reached the PMMA block and, therefore, neither sound reflections at the inter-
face water/PMMA nor mechanical waves in the PMMA block arise. However, one
can observe constructive and destructive interference patterns, which stem from
the beam characteristic of the piston-type ultrasonic transducer (cf. Fig. 8.28). In
Fig. 8.41b (t = 25.4µs), almost the whole wave front has passed the block surface
facing the transducer. The reflected sound pressure waves propagate back to the
transducer, i.e., in negative z-direction. Besides, the first wave front of mechanical
waves resulting from converted sound pressure waves was about to reach the right
side of the PMMA block. As the comparison of sound pressure waves before the
block and longitudinal mechanical waves in PMMA reveals, the later ones exhibit a
greater wavelength. This is also expected from the theoretical point of view since the
wave propagation velocity in PMMA is higher than in water. Moreover, the energy of
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mechanical waves is distributed in a larger area in lateral direction, i.e., in x- and y-
direction. The same behavior can be seen in Fig. 8.41c (t = 32.0µs), where most
of the mechanical waves have reached the right block side and have been partially
reflected as well as converted back to sound pressure waves again.

For qualitative comparison, a transient FE simulation was carried out in addi-
tion. Therewith, it is possible to predict the sound pressure field in water and the
mechanical waves in PMMA. Figure 8.41d illustrates the normalized simulation
result at the instant of time t = 32.0µs (cf. Fig. 8.42c). Apart from the missing data
at the border area of the PMMA block, simulations and LRT results share many fine
details (e.g., waveforms), which demonstrates reliability of LRT measurements in
optically transparent solids.

Now, let us regard the reconstructed time-dependent variations p∼(t) as well
as Tzz(t) (see Fig. 8.42) at three selected positions on the z-axis, i.e., (x, y) = (0, 0).
The positions are located (i) in water at z = 15.4mm, i.e., between transducer
and PMMA block, (ii) in the PMMA block at z = 33.6mm, and (iii) in water
at z = 46.8mm, i.e., behind the PMMA block. In Fig. 8.42a, one can clearly observe
the emitted sound pressure wave (group 1), which was firstly reflected by the left
side of the PMMA block. Subsequently, these reflected waves got reflected by the
transducer front again leading to a sound pressure wave (group 2) propagating in pos-
itive z-direction toward the PMMA block. Furthermore, several other wave groups
are present that result from multiple reflections between medium boundaries. Both
wave group 1 and wave group 2 also exist in the PMMA block (see Fig. 8.42b),
i.e., in the time-dependent variation Tzz(t). However, because the second position is
further away from the transducer front than the first one, the dominant wave groups
are shifted in time. An additional shift occurs at z = 46.8mm (see Fig. 8.42c), which
is located in water behind the PMMA block. Overall, the wave groups at the three
positions are of similar shape with the exception that they appear upside-down at
the third position. Note that this is a consequence of the continuity condition at a
solid–fluid interface (see (4.104, p. 122)).

8.6.4 Verification of Experimental Results

Finally, the previous LRT results for the optically transparent PMMA block should
be quantitatively verified. For this purpose, we determine the reflection coefficient
at the interface water/PMMA as well as the amplitude ratio for dominating wave
groups.

Reflection Coefficient

According to the LRT results in Fig. 8.42a, the reflected sound pressure waves fea-
ture the amplitude p̂LRT(z = 15.4mm) = 3.84 kPa. Due to the fact that the PMMA
block is located at zB = 24.4mm, the reflected sound pressure waves propagate



402 8 Characterization of Sound Fields Generated by Ultrasonic Transducers

(a) water; z = 15.4mm

(b) PMMA; z = 33.6 mm

(c) water; z = 46.8mm

t in s

p
∼

(t
)

in
kP

a
p

∼
(t

)
in

kP
a

T
zz

(t
)

in
kP

a

-16

-8

-8

-8

-4

-4

0

0

0

0

0

0

4

4

8

8

8

10

10

10

16

20

20

20

30

30

30

40

40

40

50

50

50

60

60

60

70

70

70

3.84 kPa

11.10 kPa

2.60 kPa

5.28 kPa

1.18 kPa

reflection by left
side of block

reflection by
transducer front
(group 2)

reflection by
transducer front
(group 2)

reflection by
transducer front
(group 2)

group 1

group 1

group 1
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block at z = 33.6mm; c in water behind PMMA block at z = 46.8mm; wave group 1 emitted by
ultrasonic transducer; wave group 2 reflected by transducer front

altogether 33.4mm there8 (see Fig. 8.43). In the absence of PMMA block, a
hydrophonemeasurement yielded the soundpressure amplitude p̂HYD(z = 33.4mm) =
10.78 kPa at the axial distance z = 33.4mm from the transducer front.We can utilize
these two amplitudes to estimate the reflection coefficient rp for an incident sound
pressure wave at the interface water/PMMA, i.e.,

rp = p̂LRT(z = 15.4mm)

p̂HYD(z = 33.4mm)
= 3.84 kPa

10.78 kPa
= 0.356 . (8.50)

From the theoretical point of view, the reflection coefficient r ′
p in case of plane sound

waves results in (see (2.139, p. 38))

82 · 24.4−15.4mm = 33.4mm
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Fig. 8.43 Illustration of wave propagation throughout water and PMMA block; time-dependent
curves of sound pressure p∼(t) and mechanical stress Tzz(t) are shown in Fig. 8.42a–c

r ′
p = ZPMMA − Zwater

ZPMMA + Zwater

= 3.26 · 106 N s m−3 − 1.48 · 106 N s m−3

3.26 · 106 N s m−3 + 1.48 · 106 N s m−3 = 0.376 . (8.51)

The expressions ZPMMA and Zwater stand for the acoustic impedance of PMMA
and water, respectively. Although two completely different approaches were applied
to determine the reflection coefficient at the interface water/PMMA, both values
coincide very well and exhibit a relative deviation of only −5.1% (rel. to r ′

p).

Amplitude Ratio

As the time-dependent curves in Fig. 8.42 indicate, there exist two dominant wave
groups (group 1 and group 2), which originate from the emitted sinusoidal burst and
the reflection by the transducer front. Let us evaluate the amplitude ratios of the wave
groups in the PMMAblock as well as in water behind the block (see Fig. 8.43). In the
PMMA block at z = 33.6mm, the amplitude ratio αT is defined by the amplitudes
of the mechanical normal stress, i.e.,

αT = T̂zz;1 − T̂zz;2
T̂zz;1

= 11.10 kPa − 2.60 kPa

11.10 kPa
= 0.766 (8.52)

with T̂zz;1 and T̂zz;2 representing the stress amplitudes of incident and reflectedwaves,
respectively. In water at z = 46.8mm, the amplitude ratio α′

T of the corresponding
sound pressure waves results in

α′
T = p̂∼;1 − p̂∼;2

p̂∼;1
= 5.28 kPa − 1.18 kPa

5.28 kPa
= 0.777 . (8.53)

Since the relative deviation of the amplitude ratios is only −1.3% (rel. to α′
T ), it

can be stated once more that LRT measurements lead to reliable information about
waves, which propagate throughout water and PMMA.
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To sum up, LRT also enables spatially as well as temporally resolved measure-
ments of mechanical waves in optically transparent solids. In such media, mechan-
ical longitudinal waves locally alter the dilatation, which can be acquired through
LRT. By additionally introducing a material-dependent approximation, LRT mea-
surements provide absolute values for the mechanical normal stresses within the
solid.
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Chapter 9
Measurement of Physical Quantities and
Process Measurement Technology

Various physical and chemical quantities can be determined by piezoelectric sen-
sors. That is the reason why piezoelectric sensors are frequently used in the process
measurement technology. For example, they enable measuring

• force, torque, pressure, and acceleration (see Sect. 9.1),
• geometric distance and layer thickness (see Sect. 9.2),
• properties of liquids [1, 5],
• concentrations of substances in fluids [79],
• fluid flow (see Sect. 9.3),
• cavitation activity (see Sect. 9.4),
• temperature [44].

A large number of piezoelectric sensors exploit the impact of the aimed quantities on
mechanical quantities, which influence the electrical sensor characteristic due to the
direct piezoelectric effect. In case of a so-called quartz crystalmicrobalance (QCMor
QMB), one evaluates the resonance frequency fr of a specific vibrationmode inside a
disk-shaped quartz plate [96]. Since these sensors mostly operate in thickness shear
mode (i.e., transverse shear mode; see Fig. 9.1a) of piezoelectricity, they are also
referred to as thickness shear mode (TSM) resonators. When the quartz disk gets
mechanically loaded by a mass, fr will be shifted to lower values. The greater the
mass, the larger the frequency shift Δ fr will be. This fact allows determining the
thickness of a homogeneous material layer being located on the quartz disk. On the
other hand, we can measure the material density when the layer thickness is known.
If the quartz crystal is appropriately operated in a liquid, Δ fr will depend on the
liquid density and viscosity [46, 66]. By equipping the quartz disk with a sensitive
layer that changes its mass depending on the concentration of a substance in a fluid, a
QCM also enables to measure substance concentration. Such sensors are often used
for biological and chemical analyses, e.g., [79].
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Other piezoelectric sensor devices are based on the propagation of waves between
transducers, i.e., between piezoelectric transmitters and piezoelectric receivers. From
the time-of-flight of these waves, wewill be able to calculate the sound velocity in the
propagatingmediumwhen the geometric distance between transmitter and receiver is
known. The ratio of emitted and receivedwaves can be used to deduce further charac-
teristic parameters like liquid density and viscosity [1]. Apart from a setup consisting
of separated piezoelectric transducers, it is also possible to build up a compact sen-
sor device, which includes both transmitter and receiver [107]. The setup of such a
device commonly comprises either a thick plate of a piezoelectric material or a sili-
con substrate with an additional piezoelectric film, e.g., aluminum nitride (AlN) or
zinc oxide (ZnO). The piezoelectric transmitters and receivers are formed by appro-
priate interdigital electrode structures on the piezoelectric material [60]. Depending
on the type of waves that propagate inside the compact device, one can mainly differ
between surface acoustic wave (SAW) sensors, love wave (LW) sensors, flexural
plate wave (FPW) sensors as well as shear-horizontal acoustic plate mode (SH-
APM) sensors [2]. Figure 9.1 depicts the principle setup of these piezoelectric

top view front view vibration mode

(a) QCM

(b) SAW

(c) LW

(d) FPW

(e) SH-APM

guiding layer

substrate

piezoelectric material

electrode

Fig. 9.1 Principle setup of a quartz crystal microbalance (QCM) sensors, b surface acoustic
wave (SAW) sensors, c love wave (LW) sensors, d flexural plate wave (FPW) sensors, and e
shear-horizontal acoustic plate mode (SH-APM) sensors; schematic representation of propagating
waves in right panels; arrows indicate dominating directions of particle motion
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sensors and a schematic representation of the propagating waves. The wave propaga-
tion between transmitter and receiver is not only influenced by the sensor materials
but also by the surrounding medium. The time-of-flight (i.e., phase) and amplitude
of the incident waves at the receiver provide, thus, characteristic information about
the surrounding medium. If such a sensor is additionally equipped with a sensitive
layer between transmitter and receiver, one can conduct biological and chemical
analyses, too. Because all these sensors are based on wave propagation in solids,
they are commonly termed bulk acoustic wave (BAW) sensors. According to the
underlying operation principle and their geometric size, they are, moreover, referred
to as microacoustic resonators.

In this chapter, we will concentrate on a few selected physical quantities that
are important in process measurement technology. Section 9.1 deals with the typical
designs of piezoelectric sensors for the mechanical quantities force, torque, pressure,
and acceleration. Subsequently, an ultrasound-basedmethod will be described which
enables the simultaneous determination of plate thickness and speed of sound inside
the plate. Section 9.3 treats the metrological registration of fluid flow by means of
ultrasonic waves. At the end of the chapter, a piezoelectric device will be presented
that can be used as cavitation sensor in ultrasonic cleaning.

9.1 Force, Torque, Pressure, and Acceleration

Themechanical quantities force, torque, pressure, and acceleration represent decisive
process variables in a wide range of applications. Here, let us regard piezoelectric
sensors for measuring these quantities. We will start with the underlying principle
of such sensors. The basic designs as well as some selected special designs will be
detailed in the subsequent subsections. Finally, methods for reading out piezoelectric
sensors (e.g., charge amplifier) are described in Sect. 9.1.5.

9.1.1 Fundamentals

Generally speaking, a sensor contains both a transduction element for converting
one form of energy into another and a sensing element. In piezoelectric sensors, the
transduction element mostly corresponds to the sensing element, which is made of
a material featuring piezoelectric properties, e.g., quartz. Such sensors are always
based on the direct piezoelectric effect, i.e., conversion of mechanical inputs into
electrical outputs. Because piezoelectric sensors do not require an external power
supply to obtain an electrical output, they belong to the group of active sensors. The
high rigidity of piezoelectric materials leads, moreover, to small disturbances of the
measured quantity. It is, therefore, not surprising that piezoelectric sensors are often
employed in practical applications for measuring physical quantities like mechanical
forces.
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As already explained in Sect. 3.4.3, there can arise four specific modes of piezo-
electric coupling within a piezoelectric material, namely (i) the longitudinal mode,
(ii) the transverse mode, (iii) the longitudinal shear mode, and (iv) the transverse
shear mode. Depending on the actual implementation, piezoelectric sensors for mea-
suring force, torque, pressure, or acceleration exploit one or more of those modes for
converting mechanical quantities into electrical quantities. Note that torque, pressure
as well as accelerationmeasurements can be traced back to forcemeasurements since
there always occur mechanical forces, which act on the piezoelectric material.

To illustrate the underlying principle of piezoelectric sensors for the mentioned
quantities, let us take a closer look at two sensor elements in Fig. 9.2 that are based on
the longitudinal mode and transverse mode, respectively. The first element is disk-
shaped (diameter dS; thickness tS), while the second one is bar-shaped (length lS;
width wS; thickness tS). We suppose in both cases a piezoelectric material, whose
axis of piezoelectricity (i.e., electric polarization) points in positive 3-direction. The
bottom and top surfaces of the disk and bar are completely covered with elec-
trodes. Furthermore, a charge amplifier circuit (see Sect. 9.1.5) is utilized to read
out the resulting electric charges on the electrodes. In doing so, the piezoelectric
elements become electrically short-circuited which leads to E = 0, i.e., the electric
field intensity inside the element vanishes. If the disk gets loaded uniformly at its
top surface by a mechanical force Fz in negative z-direction, a mechanical stress T3
will arise inside the disk. Under the assumption of force-freeness in the other direc-
tions (i.e., T1 = T2 = T4 = T5 = T6 = 0), T3 computes as (base area AS of disk)

T3 = − Fz

AS
= − 4Fz

d2
Sπ

. (9.1)

This relation can now be inserted in the d-form of the material law for linear piezo-
electricity (see Sect. 3.3). Since E = 0 holds and force-freeness is supposed with the
exception of T3, we obtain from the piezoelectric strain constant d33

D3 = εT33E3
︸ ︷︷ ︸

=0

+d33T3 = d33T3 = −4Fzd33
d2
Sπ

(9.2)
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Fig. 9.2 aDisk-shaped piezoelectric element based on longitudinal mode; b bar-shaped piezoelec-
tric element based on transverse mode; mechanical forces Fz and Fx; axis of piezoelectricity (i.e.,
vector P) points in positive z-direction
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for the electric flux density D in z-direction. Irrespective of the fact that d13 and d23
are zero for the most important crystal classes of piezoelectric materials, the com-
ponents D1 as well as D2 do not generate electric charges on the electrodes of
the considered disk. This stems from the orthogonal orientation of electrodes and
these components. The resulting electric charge QS on the top electrode due to the
mechanical force is then given by

QS =
∫

AS

D · dA = D3AS = −Fzd33 . (9.3)

If Fz represents the aimed quantity, the so-called measurand, and subsequent ampli-
fier circuits are not taken into account, the ratio QS/Fz will denote the sensitivity
of the piezoelectric sensor. In view of various practical applications, the sensitivity
should be as large as possible. According to (9.3), the geometric dimensions of the
sensor element do not, however, influence its sensitivity. Consequently, a piezoelec-
tric disk with larger diameter and greater thickness would exhibit the same sensitiv-
ity. Its value is exclusively determined by the parameter d33 of the used piezoelectric
material.

In a next step, we will perform the same analysis for the bar-shaped piezoelec-
tric element, which gets loaded uniformly at the wStS surface by Fx in negative x-
direction (see Fig. 9.2b). This force produces the mechanical stress T1 inside the bar.
The assumption of force-freeness in the other directions leads to T1 = −Fx/(wStS)
and for the electric flux density D3 in z-direction to

D3 = εT33E3
︸ ︷︷ ︸

=0

+d31T1 = d31T1 = − Fxd31
wStS

(9.4)

with the piezoelectric strain constant d31. Again, the remaining components of
D (i.e., D1 and D2) are irrelevant. The resulting electric charge QS on the top elec-
trode of the piezoelectric bar computes as

QS = D3lSwS = − Fxd31lS
tS

(9.5)

and, therefore, d31 influences the sensitivity QS/Fx for the measurand Fx. In contrast
to the longitudinal mode, where the force direction coincides with both the axis of
piezoelectricity and the normal vector of the electrodes, the geometric dimensions of
the bar also alter QS/Fx in case of the transversemode.We are able to improve QS/Fx

by increasing the ratio lS/tS, which means that a long and thin bar provides a high
sensitivity.

These greatly simplified examples already demonstrate the significant role of
material parameters and, thus, of the selected piezoelectric material for the sensi-
tivity of piezoelectric sensors. However, in practical applications of such sensors,
one does not only have to take care about the demanded sensor sensitivity but also
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about measuring range, cross-sensitivities as well as temperature dependence. That
is the reason why there exist various designs of piezoelectric sensors. The subsec-
tions below will briefly explain popular implementations of piezoelectric sensors for
measuring force, torque, pressure, or acceleration.

9.1.2 Force and Torque

Figure 9.3 depicts the internal structure of two simple piezoelectric force sensors of
cylindrical shape for measuring forces in z-direction [33]. Both force sensors contain
themain components top plate, cylindrical housing, piezoelectric elements, and elec-
trical connector. The top plate and the cylindrical housing are made of electrically
conductive materials like steel. Piezoelectric disks that exploit the longitudinal mode
serve as transduction elements. By means of the top plate, the mechanical force Fz

gets transmitted to the piezoelectric disks. The cylindrical housing is hermetically
welded to the top plate and holds the piezoelectric disks under a certain mechanical
preload. This preload ensures that the sensor components are properly fixed together
and should eliminate gaps between contacting faces. In doing so, one can obtain a
good sensor linearity as well as a very high rigidity, which is necessary for achieving
high natural frequencies of the sensor.

The piezoelectric force sensors in Fig. 9.3 differ in the amount of piezoelectric
elements. While the left setup consists of one disk, the right setup contains two disks.
In both cases, the cylindrical housing exhibits the same electric potential as the top
plate and acts either as ground electrode of the piezoelectric disks or is directly
contacting one disk electrode. To avoid an electrical short-circuit across the disk, we
need for the setup in Fig. 9.3a an additional insulating layer between top plate and the
remaining electrode, i.e., the top electrode of the disk. This electrode is connected
to the center pin of the electrical connector.

(a) (b)
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Fig. 9.3 Internal structure of simple piezoelectric force sensors of cylindrical shape with a one
piezoelectric disk and b two piezoelectric disks [33]; 1 top plate; 2 cylindrical housing; 3 piezo-
electric disk; 4 electrode; 5 insulating layer; 6 electrical connector
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Instead of an insulating layer, the setup in Fig. 9.3b contains another disk whose
axis of piezoelectricity points in opposite direction to the bottom disk. Both disks
are subjected to the same mechanical force. Since they are electrically in parallel due
to the common electrode that is again connected to the center pin of the electrical
connector, the resulting electric charges of both disks are addedup. If the piezoelectric
disks feature equal material properties, the sensor sensitivity QS/Fz will double,
which constitutes a great advantage concerning practical applications. Moreover, the
second setup offers a higher sensor rigidity because common insulating materials
usually have a lower elasticity than piezoelectric materials.

From the theoretical point of view, piezoelectric materials and, thus, piezoelectric
force sensors should be applicable formeasuring both compressive and tension forces
without any preload. The brittleness of such materials and the difficulty to transmit
tension forces to them, however, make a mechanical preload necessary. Of course,
this preload has to exceed the applied tension forces because the piezoelectric force
sensormight be damaged otherwise.We can achieve appropriatemechanical preloads
either by a so-called dead weight or, more frequently, by a preloading bolt of high
elasticity that is connected to the structure to be analyzed [33].

An often used setup of piezoelectric force sensors is shown in Fig. 9.4. This
so-called load washer sensor (e.g., from Kistler Instrumente GmbH [49]) consists
of the same components as the simple setup in Fig. 9.3b, but all components are
ring-shaped. Again, the cylindrical housing is hermetically welded to the top plate
under a controlled mechanical preload in z-direction, which is especially important
when tension forces should be measured. If the load washer sensor is designed
accordingly, we can also measure mechanical forces in x- or in y-direction. For this
purpose, we need ring-shaped piezoelectric disks that are sensitive to the transverse
shear mode in a specific direction. It is, therefore, possible to build up a compact
triaxial piezoelectric force sensor consisting of six ring-shaped piezoelectric disks
grouped into the three directions in space. While two disks have to be sensitive to
the longitudinal mode, four disks have to be sensitive to the transverse shear mode,
whereby two disks in x-direction and and two disks in y-direction, respectively. Note
that such multiaxis force sensors will work correctly only if the mechanical preload
is sufficient to transmit shear forces between top plate and piezoelectric disks. When
friction between two subsequent sensor components is too small, shear forces will
be partly transmitted.

Fig. 9.4 Internal structure of
ring-shaped load washer
sensor [33]; 1 housing; 2 top
plate; 3 piezoelectric ring; 4
electrode; 5 electrical
connector
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Fig. 9.5 Arrangement of
piezoelectric force sensors to
measure torque Mz [33];
arrows indicate sensitive axis
of individual sensor

Mz

By a suitable arrangement of a few piezoelectric force sensors (e.g., load washer
sensors) being sensitive to shear forces, it is possible to measure torques [33, 106].
The individual piezoelectric elements have to be aligned with their sensitive axis
tangent to a circle (see Fig. 9.5). As a matter of fact, this arrangement requires a
certainmechanical preload of the sensors because the torque gets transmitted through
shear forces. If all sensors are connected electrically in parallel, the output voltage
of a charge amplifier will be directly proportional to the acting torque.

One can also build up piezoelectric sensor devices allowing the measurement
of three forces as well as three torques, i.e., Fx, Fy, Fz, Mx, My, and Mz. Such a
sensor device is often termed dynamometer and usually consists of three or four
individual multiaxis force sensors that are appropriately arranged between two rigid
steel plates [33, 49]. However, when all forces and torques are different to zero,
it will generally be impossible to determine the position of the force vector F =
[Fx, Fy, Fz]t in space. Besides, it should be noted thatF produces an additional torque
acting on the sensor device. This additional torque is, strictly speaking, independent
of the external torque vectorM = [Mx, My, Mz]t . A dynamometer, therefore, solely
provides the resulting torque vector including external torques as well as torques
stemming from F.

According to Sect. 9.1.1, the utilized piezoelectric material greatly influences the
sensitivity of piezoelectric force and torque sensors. Depending on the exploited
mode of piezoelectric coupling, the sensor sensitivity is closely linked to a specific
piezoelectric strain constant, e.g., d33 for the longitudinal mode. A high sensor sensi-
tivity would be, thus, achieved bymeans of piezoceramic materials like PZT because
these materials offer large values for di j . Another advantage of such materials would
lie in the fact that one can fabricate piezoelectric elements of arbitrary shape. Despite
the advantages of piezoceramic materials, piezoelectric force and torque sensors are
mostly based on piezoelectric single crystals like quartz and tourmaline. Especially
artificially grown quartz is often used since it has four key benefits over piezoceram-
ics (see Sect. 3.6):

• better sensor linearity,
• practically free of hysteresis,



9.1 Force, Torque, Pressure, and Acceleration 415

• better temperature behavior due to the comparatively weak pyroelectric effect of
quartz, and

• higher electrical insulation resistance, which is important for quasi-static measure-
ments.

A typical piezoelectric force sensor that exploits two quartz disks in longitudinal
mode as transduction elements features the sensitivity |QS/F | ≈ 4 pCN−1. The com-
panies Kistler Instrumente GmbH [49] and Hottinger Baldwin Messtechnik (HBM)
GmbH [42] are well-known manufacturers of piezoelectric force and torque sensors.
The upper limits of themeasuring range of commercially available piezoelectric force
sensors start from less than 1 kN and go up to 1MN. Piezoelectric torque sensors can
be bought with upper limits of the measuring range from 1 Nm to 1 M Nm.

9.1.3 Pressure

Sensors for measuring pressure in fluids (i.e., liquids and gases) are often based
on membranes being deflected due to pressure. Fundamentally, one can distinguish
between two types ofmembrane-based pressure sensors, namely (i) absolute pressure
sensors and (ii) differential pressure sensors (see Fig. 9.6a and b) [106]. Sensors for
measuring the absolute pressure pabs require a sealed chamber, which contains the
reference pressure pref . Owing to the fact that pabs always relates to pref = 0, the
sealed chamber needs to be vacuumed and the reference side of the membrane is only
exposed to vacuum. When a gas is filled into the sealed chamber, pref will naturally
differ from zero.

In contrast to absolute pressure sensors, differential pressure sensors do not mea-
sure pressure relative to vacuum but to a selected reference value pref . The mem-
branes of differential pressure sensors that measure the difference pin − pref between
the input pressure pin and pref have to withstand the fluid on both sides, which can
especially be a problem in case of aggressive or corrosive liquids. If the ambient baro-
metric pressure is used as pref (i.e., pref = 101.325 kPa =̂ 1.01325 bar), differential
pressure sensors will correspond to relative pressure sensors.

Irrespective of whether absolute pressure or differential pressure should be mea-
sured, various practical applications demand sensors that can measure statically.
However, this is impossible with piezoelectric pressure sensors because of the non-
ideal properties of subsequent readout components such as charge amplifier cir-
cuits (cf. Sect. 9.1.5). A constant pressure will, consequently, not imply a constant
output signal of these sensors. That is the reasonwhy it does notmake sense to clearly
distinguish between absolute and differential piezoelectric pressure sensors. The lat-
ter represent merely a special sensor design with two ports allowing measurements
of quasi-static and dynamic pressure differences. Even though quasi-static pressure
measurements can be performed if the charge amplifier is reset just before data
acquisition, piezoelectric pressure sensors are mostly applied for dynamic pressure
measurements, e.g., sound pressure measurements.
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Fig. 9.6 Principle of a absolute pressure sensor and b differential pressure sensor; c internal
structure ofmembrane-based piezoelectric pressure sensor [33]; 1 cylindrical housing; 2membrane;
3 transfer plate; 4 piezoelectric elements; 5 preloading sleeve; 6 helical-shaped spring; 7 electrical
connector

Figure 9.6c displays the internal structure of a typical membrane-based piezoelec-
tric pressure sensor of cylindrical shape containing the main components membrane,
preloading sleeve, transfer plates, piezoelectric elements, sensor housing, and elec-
trical connector [33]. Preloading sleeve and sensor housing are made of electrically
conductive materials like steel. The membrane with effective area A is hermeti-
cally welded under a light mechanical preload to the sensor housing. By means of
the membrane, the fluid pressure p is converted into a mechanical force F = pA,
which gets transmitted by the preloading sleeve onto the piezoelectric elements. Two
transfer plates equalize mechanical stresses on the elements’ end faces and should
compensate temperature effects. Contrary to the simple piezoelectric force sensors in
Fig. 9.3, these three to four piezoelectric elements exploit the transverse mode and,
consequently, carry electric charges at mechanically unloaded element surfaces. The
elements feature the shape of cylinder segments with a flattened inner surface, which
is completely covered by thin electrodes. The cylindrical outer surface does not
need to be coated with an electrode and is either directly contacting the preloading
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sleeve or through capacitive coupling. Therefore, this element surface exhibits the
same electric potential as the sensor housing. The inner electrode is connected to the
center of the electrical connector with the aid of a helical-shaped spring.

The metallic membranes of such piezoelectric pressure sensors are usually thin-
ner than 0.1mm. It is, thus, not surprising that the membrane represents a critical
sensor component. On the one hand, the membrane should prevent the fluid from
penetrating the sensor housing and should withstand aggressive substances as well
as temperature changes. On the other hand, the membrane should be ideally elastic to
ensure reliable sensor linearity over the entire measuring range. The necessary trade-
offs lead to a large variety of membrane-based piezoelectric pressure sensors, which
are commercially available. While low-pressure sensors require large membranes to
obtain a reasonable sensitivity, the membranes of high-pressure sensors are small to
avoid destruction. Since large membranes imply low eigenfrequencies, low-pressure
sensors commonly provide smaller cutoff frequencies than high-pressure sensors.

The sensor housing of membrane-based piezoelectric pressure sensors is often
equipped with a mounting thread for directly screwing them into objects. In case
of high ambient temperature, an additional water cooling is sometimes used [33].
However, water cooling increases the necessary space for the sensor housing and
may cause disturbing noise, which impairs the available measuring threshold. A
further important point in the application of piezoelectric pressure sensors lies in
their sensitivity to mechanical accelerations, especially if those accelerations are
very pronounced and in the same frequency range as the pressure signal. This is due
to the fact that all sensor components (e.g., membrane) in front of the piezoelectric
elements act as a seismic mass just as it is exploited in piezoelectric acceleration
sensors (see Sect. 9.1.4). If the pressure sensor is accelerated, a sensor output will
emerge which superimposes with the aimed sensor signal stemming from pressure.
By means of additional masses and piezoelectric elements exhibiting appropriate
axis of piezoelectricity, we can, however, compensate accelerations in the sensor
outputs.

Similar to piezoelectric force and torque sensors, the transduction elements in
membrane-based piezoelectric pressure sensors are often made of artificially grown
quartz. According to Sect. 9.1.1, the usage of the transverse length mode gives the
possibility to increase sensor sensitivity with the aid of long and thin piezoelectric
elements. Special quartz cuts as well as crystals of the CGG group enable, moreover,
the operation of high-temperature pressure sensors without water cooling. However,
the typical setup shown in Fig. 9.6c is not applicable for piezoelectric low-pressure
sensors, which are used in the audible range and, thus, have to provide measur-
ing thresholds far below 10µbar in air. Such sensors are also named piezoelectric
microphones [60]. Their setup corresponds to that of piezoelectric unimorph, piezo-
electric parallel bimorph, or piezoelectric serial bimorph transducers (see Fig. 7.27
on p. 300). Instead of artificially grown quartz, piezoelectric microphones are mostly
made of piezoceramic materials like PZT.

A hydrophone indicates a pressure sensor for underwater use. As the explana-
tions in Sect. 8.1.1 reveal, the setup of piezoelectric hydrophones (e.g., membrane
hydrophone) completely differs from Fig. 9.6c. Besides, piezoelectric hydrophones
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frequently utilize PVDF as transduction element since this piezoelectric material is
mechanically flexible and can be fabricated as a thin film.

The companies Brüel & Kjær GmbH [13], Kistler Instrumente GmbH [49], and
Onda Corporation [78] are well-known manufacturers of piezoelectric pressure sen-
sors. Depending on the specific application and the medium in which the pressure
should bemeasured, the commercially available sensors considerably differ in design,
measuring threshold, measuring range as well as frequency range.

9.1.4 Acceleration

The measurement of mechanical accelerations is very important for various appli-
cations because it provides essential information about mechanical oscillations,
vibrations and eigenfrequencies of the investigated structures. Accelerations are
frequently related to the standard acceleration due to gravity, which is defined
as gn = 9.80665m s−2. While a shock indicates an impulse-like acceleration that
can take values greater than 1000 gn, we often call periodical accelerations vibra-
tions.

Commonly, acceleration sensors correspond to force sensors, which are equipped
with an additional mass [106]. This so-called seismic mass with constant mass mS

will generate a mechanical force F acting on the sensor’s transduction element if the
sensor is exposed to an acceleration a. In case of a piezoelectric acceleration sensor,
at least one piezoelectric element serves as transduction element. By neglecting
the net weight of the piezoelectric elements, the resulting force on the elements
becomes F = mS · a.

Figure 9.7a shows a typical setup of a piezoelectric acceleration sensor. The
compression-type sensor of cylindrical shape consists of the main components seis-
micmass, preloading bolt, two piezoelectric rings, sensor housing, and electrical con-
nector [33]. Again, the sensor housing and the seismic mass are made of electrically
conductive materials like steel. They act as ground electrode for both piezoelectric
rings,which exploit the longitudinalmodeof piezoelectricity in opposite z-directions.
Their common electrode is connected to the center pin of the electrical connector.
The sensor housing should protect the sensor components from the environment
and contains a mounting thread, which enables a mechanical link to the investigated
structure.When the structure is accelerated by the value az in z-direction, the seismic
mass exerts the force Fz = mS · az on the piezoelectric disks.

Now, let us briefly study some fundamentals concerning the dynamic behavior of
piezoelectric acceleration sensors. In simplified terms, a piezoelectric acceleration
sensor can be interpreted as mechanical oscillator system with one degree of free-
dom (see Fig. 9.7b). The oscillator system comprises the seismic mass mS, a spring
with the spring rate κS describing the effective sensor rigidity, and a damper (dash-
pot) with the damping constant ηD. If we assume linear as well as time-invariant
properties, the displacement u(t) of the seismic mass has to fulfill the differential
equation [6]
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Fig. 9.7 a Internal structure of piezoelectric acceleration sensors of simple cylindrical shape [33];
1 cylindrical housing; 2 preloading bolt; 3 piezoelectric rings; 4 seismic mass mS; 5 electrical con-
nector; b mechanical oscillator system with one degree of freedom consisting of seismic mass mS,
spring with spring rate κS and dashpot with damping constant ηD

mS
d2u(t)

dt2
+ ηD

du(t)

dt
+ κSu(t) = Fz(t) (9.6)

with the external force Fz(t) acting on the system. In case of a simple piezo-
electric acceleration sensor as displayed in Fig. 9.7a, Fz(t) denotes the force that
is applied to the piezoelectric elements. The solution of this differential equation
yields u(t), which can be used to determine the velocity vz(t) = du(t) /dt and accel-
eration az(t) = d2u(t) /dt2 of mS. For a harmonic force Fz(t) = F̂0 sin(2π f t) with
the force amplitude F̂0 and excitation frequency f , the solution of (9.6) takes the
form

u(t) = û sin(2π f t − ϕ) . (9.7)

The frequency-dependent displacement amplitude û(ω) and phase angle ϕ(ω) com-
putes as (angular frequency ω = 2π f )

û(ω) = F̂0
√

(

κS − mSω2
)2 +(ηDω)2

(9.8)

ϕ(ω) = arctan

[

ηDω

κS − mSω2

]

. (9.9)

With a view to obtaining normalized results, it makes sense to introduce the dis-
placement u0 = F0/κS for a static force F0, the angular frequency ω0 = √

κS/mS

of the undamped system (i.e., ηD = 0), and the dimensionless damping ratio ξd =
ηD/(2mSω0). In doing so, the frequency-dependent ratio û(ω) /u0 of displacements
and ϕ(ω) become
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Fig. 9.8 a Ratio û(ω) /u0 of displacements and b phase angle ϕ(ω) of oscillator system (see
Fig. 9.7) with respect to normalized angular frequency ω/ω0 for different damping ratios ξd
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Figure 9.8 depicts both quantities with respect to the normalized angular fre-
quency ω/ω0 for different values of ξd. As can be clearly observed, û(ω) /u0
andϕ(ω) change remarkably close toω/ω0 = 1. Especially in case of small damping
ratios (e.g., ξd = 0.1), those changes are strongly pronounced. The global maximum
of û(ω) /u0 will, moreover, move toward lower frequencies if ξd is increasing. Hence,
we can state that piezoelectric acceleration sensors should always be operated far
below their resonance frequency because, otherwise, the sensor output will not reflect
actually existing accelerations. This does not only refer to the acceleration amplitude
but also to the phase angle. It should be noted in addition that a poor mechanical link
of investigated structure and piezoelectric acceleration sensor, e.g., due to inadequate
screwing, reduces the upper limit of the sensor’s operating frequency.

Besides the compression-type sensor in Fig. 9.7a, several further designs of piezo-
electric acceleration sensors are commercially available [33]. The internal structures
of selected designs are shown in Fig. 9.9. The disadvantage of compression-type
acceleration sensors lies in the fact that mechanical strains in the mounting surface
of the investigated structure get transmitted directly to the piezoelectric elements.
Owing to the transverse effect of piezoelectricity, such strains generate unwanted
sensor outputs. We can avoid strain transmission by means of the so-called hang-
ing design (see Fig. 9.9a) since the piezoelectric elements are preloaded against
the inner face of sensor housing’s top. Piezoelectric acceleration sensors in hanging
design oftentimes serve as reference in calibrating other acceleration sensors.
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Fig. 9.9 Internal structure of selected piezoelectric acceleration sensors [33]; a hanging design;
b acceleration sensor exploiting transverse shear mode of piezoelectricity; c acceleration sensor
exploiting transverse length mode of two piezoelectric beams; seismic mass mS

Figure 9.9b displays the internal structure of a piezoelectric acceleration sensor
that exploits the transverse shear mode of piezoelectricity. In this design, both the
piezoelectric transduction element and the seismicmass exhibit the shape of a hollow
cylinder. The seismicmass is heatedduring sensormanufacturing.Through its shrink-
age when cooling down, the piezoelectric cylinder gets radially preloaded against
the cylindrical central stud of the sensor housing. Alternatively, three piezoelectric
elements with three individual seismic masses are preloaded against a triangular-
shaped center stud. This special sensor design is usually termed DeltaShear design
and commercially distributed from the company Brüel & Kjær GmbH [13]. Com-
pared to acceleration sensors being based on longitudinal mode of piezoelectricity,
sensors exploiting the transverse shear mode offer a better thermal stability of the
sensor sensitivity because the pyroelectric effect is weakly pronounced.

A further design of piezoelectric acceleration sensors is illustrated in Fig. 9.9c.
Just as piezoelectric bimorph transducers (see Fig. 7.27 on p. 300), this kind of
acceleration sensors exploits the transverse length mode of two piezoelectric beams,
which are fixed at one end to the sensor housing. At the other end, the thin beams are
equippedwith the seismicmassmS. If an acceleration acts on the sensor,mS will exert
a mechanical force on the piezoelectric bimorph. The force leads to a certain bending
of the bimorph and, therefore, electric charges are electrostatically induced on the
beam electrodes. The so-called PiezoBeam from the company Kister Instrumente
GmbH [49] represents an alternative design, which does not need a seismic mass. In
this design, the piezoelectric bimorph is mounted in its center to the sensor housing.
PiezoBeam sensors measure exclusively accelerations orthogonal to the bimorph
since angular accelerations will cause bendings in opposite directions with respect
to the beam center. As a result, the electric charges on the beam electrodes cancel
each other out.

Apart from special applications like high operating temperatures and in contrast
to force as well as pressure sensors, piezoelectric acceleration sensors mostly exploit
piezoceramicmaterials as transduction elements. This can be ascribed to the dynamic
character of mechanical accelerations, e.g., harmonic vibrations. Consequently,
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we do not require quasi-static measurements. By means of piezoceramic materi-
als, one can build up small as well as low-cost acceleration sensors with seismic
masses mS < 1 g and comparatively high sensor sensitivities. A small seismic mass
goes hand in hand with high resonance frequencies, which constitutes a great advan-
tage concerning practical applications like modal analysis of structures. It is also
possible to build up compact triaxial piezoelectric acceleration sensors with piezo-
ceramic materials. Special designs of such triaxial sensors need only one seismic
mass.

The companies Brüel & Kjær GmbH [13], Kistler Instrumente GmbH [49], and
Meggitt Sensing Systems [28] are well-known manufacturers of piezoelectric accel-
eration sensors. The upper limit of the operating frequency of commercially available
sensors exceeds 10 kHz. To some extend, the sensor sensitivity QS/a is much greater
than 10 pCg−1

n . One can also purchase piezoelectric acceleration sensors with inte-
grated amplifier circuits (e.g., IEPE accelerometers fromKistler Instrumente GmbH)
leading to the advantage that further amplifiers are not needed anymore.

9.1.5 Readout of Piezoelectric Sensors

A piezoelectric element that is equipped with electrodes can be interpreted as an
electrical capacitance. If we apply a mechanical load (e.g., force) to the element,
the electrodes of the capacitance will carry electric charges. This is a consequence
of the changing polarization state inside the piezoelectric material (see Sect. 3.1).
The larger the mechanical load, the more electric charges will be on the electrodes.
Therefore, the amount of electric charges relates to the applied mechanical load,
which should be measured by the piezoelectric sensor.

Let us assign CS to the element’s capacitance and QS to the electric charge on the
electrodes. As it is the case for a capacitance, one can measure the electrical volt-
ageUS = QS/CS between the electrodes when the capacitance is charged, i.e., when
the piezoelectric element is mechanically loaded. Since US is directly proportional
to the applied mechanical load, it makes, thus, sense to measure this voltage. We can
conduct such measurement by a so-called electrometer amplifier.

Alternatively to measuring US, it is possible to directly determine the electric
charge by a so-called charge amplifier. In doing so, the electrodes of the piezoelec-
tric element become virtually short-circuited, whereby the charges remain on the
electrodes. In case of a real short-circuit, there will occur charge equalization, i.e.,
the electrodes do not carry electric charges anymore.

In the following, we will study both amplifier circuits (i.e., electrometer and
charge amplifier) for reading out piezoelectric sensors. This includes advantages and
disadvantages as well as commercially available products.

Electrometer Amplifier

An electrometer amplifier is an amplifier circuit featuring a very high insulation resis-
tance at its input. It is possible to either amplify electric voltages or convert electric
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Fig. 9.10 Electrometer amplifier based on operational amplifier for piezoelectric sensor; argument
time t omitted for compactness

charges into voltages.While in former times, such amplifiers were built up with elec-
trometer tubes, they consist of transistors and/or operational amplifiers (opamp or op-
amp) nowadays. In general, operational amplifiers comprise several transistors (e.g.,
field-effect transistors) and are used for measuring amplifiers [102]. Figure 9.10
shows the typical setup of electrometer amplifiers. Besides the operational amplifier
and the piezoelectric sensor (e.g., force sensor) with electrical capacitance CS, the
setup contains a so-called range capacitor CR and an electric switch to reset the mea-
surement. The component CC describes the capacitance of the cable, which connects
piezoelectric sensor and amplifier. The capacitance of a cable of length lC computes
as CC = C ′

C · lC with the capacitance C ′
C per unit length.

To analyze the electrometer amplifier in Fig. 9.10, let us assume ideal components
in a first step. Hence, CS, CC as well as CR should be ideal capacities with an
infinite resistor connected in parallel, i.e., the capacitances offer an infinite insulation
resistance each and do not exhibit resistive losses. For the considered circuit, an ideal
operational amplifier implies [59]:

• The input resistance between noninverting input (i.e., input +) and inverting
input (i.e., input −) of the operational amplifier is infinite, i.e., the input cur-
rents i+(t) and i−(t) are zero.

• Its output resistance is zero.
• The amplification GOL (open-loop voltage gain) of the differential input volt-
age uD(t) = u+(t) − u−(t), i.e., the potential difference between input + and
input −, is infinite. Because the amplifier output uO(t) takes always finite val-
ues, uD(t) = 0 holds in stable operation mode, which is also called negative feed-
back.

• The operational amplifier provides output voltages uO(t) between negative supply
voltage V− and positive supply voltage V+.

• The behavior of the operational amplifier does not depend on frequency f .

As mentioned previously, a piezoelectric sensor can be interpreted as a electrical
capacitance CS that carries the electric charge QS(t) at its electrodes. The electric
voltage uS(t) over CS becomes uS(t) = QS(t) /CS. This relation will be, however,
only valid if the setup does not contain further components, which is impossible since
we always require cables as well as analysis units like analog-to-digital converters.
In the present case, one has to consider both the cable capacitance CC and the range
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capacitor CR that are electrically connected in parallel to CS. Consequently, the
electric voltage u+(t) with respect to ground potential at the noninverting input of
the operational amplifier reads as

u+(t) = QS(t)

CS + CC + CR
. (9.12)

Due to uD(t) = 0 being valid for an ideal operational amplifier with negative feed-
back, the considered amplifier circuit exhibits the closed-loop voltage gain GCL =
uO(t) /u+(t) = 1. The output uO(t) of the electrometer amplifier, thus, corresponds
to u+(t), i.e.,

uO(t) = u+(t) = QS(t)

CS + CC + CR
. (9.13)

At this point, the question arises what (9.13) means for practical applications of the
combination piezoelectric sensor and electrometer amplifier. On the one hand, it is
possible to alter uO(t) for a given sensor charge QS(t) by selecting an appropriate
value of CR, which constitutes an advantage concerning optimal use of the ampli-
fier’s output voltage range such as ±10V. However, we can only determine QS(t)
from uO(t) if the capacity values of CS, CC, and CR are known. This fact is a prob-
lem of electrometer amplifiers since QS(t) directly relates to the aimed quantity,
e.g., mechanical force Fz ∝ QS in (9.3). Of course, the combination of piezoelec-
tric sensor and electrometer amplifier can also be calibrated by applying defined
mechanical loads to the piezoelectric sensor like weights to a force sensor. When
the configuration changes, e.g., due to a longer cable, the calibration result will not
be suitable anymore. The capacitance per unit length of a common coaxial cable
amounts C ′

C ≈ 100 pFm−1. A cable of lC = 10m can, therefore, exhibit a capacity
value in the range of CS. For instance, the capacity of a piezoceramic disk with
diameter dS = 5mm and thickness tS = 1mm equals CS ≈ 1 nF.

Even though the combination of piezoelectric sensor and electrometer amplifier
is perfectly calibrated, there exist further problems concerning quasi-static measure-
ments. This stems from the nonideal properties of the piezoelectric sensor element,
the connecting cable, the range capacitor as well as the operational amplifier. In real-
ity, each capacitance (i.e.,CS,CC, andCR) suffers from a finite insulation resistance.
Depending on the component quality, the insulation resistance can take values from
more than 10 T� down to a few G� [33]. The insulation resistance between input +
and − of the operational amplifier is also not infinite because of the nonzero leakage
currents of the transistors at its input stage [59, 102]. As a result, the electrometer
amplifier circuit including the piezoelectric sensor exhibits the total insulation resis-
tance Rtot, which follows from the parallel connection of the individual resistances.
The total capacitance Ctot = CS + CC + CR of the circuit gets discharged via Rtot;
i.e., both the charge QS(t) and the output voltage uO(t) decrease exponentially as
time goes by. The smaller Rtot, the larger the discharge current and the shorter the
discharge time will be.
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The time constant τS = RtotCtot specifies the time after which uO(t) has decreased
to 36.8% of its initial value. After the time 5τS,Ctot is almost completely discharged.
Besides quasi-static measurements with piezoelectric sensors, the parameter τS is
important for dynamic measurements because it also specifies the lower cutoff fre-
quency fl

fl = 1

2πτS
= 1

2πRtotCtot
(9.14)

of the combination sensor and electrometer amplifier. To avoid a noticeable influence
on measured amplitude and phase angle, fl should be much smaller than the lowest
frequency in the measurement signal. We can, of course, increase τS and decrease fl
by choosing a higher value for the range capacitor CR. However, in doing so, the
amplifier output uO(t) for a given measurand will be automatically reduced which
impairs the available signal-to-noise ratio.

Owing to the mentioned disadvantages, electrometer amplifiers are rarely used as
readout electronics for piezoelectric sensors. An important exception to this represent
piezoelectric acceleration sensors with integrated electrometer amplifiers likeDelta-
Tron fromBrüel&KjærGmbH [13],Piezotron fromKistler InstrumenteGmbH [49],
and ISOTRON fromMeggitt Sensing Systems [28]. Such sensor/amplifier assemblies
utilize the two-wire principle. They are usually powered by a constant electric current
of 4mA. The resulting resistance of the integrated electrometer amplifier varies with
respect to the acting acceleration.

Charge Amplifier

The underlying principle of so-called charge amplifiers was firstly introduced by
Kistler in 1950 [33]. Although the name charge amplifier suggests that electric
charges get amplified, they are converted into a directly proportional electric voltage
signal. Figure 9.11 displays the typical setup of charge amplifiers for piezoelectric
sensors. Just as in case of electrometer amplifiers, the main component is an opera-
tional amplifier in stable operation mode [59, 102]. The range capacitor CR serves a
negative feedback; i.e., the output voltage uO(t) is capacitively led back to the invert-
ing input of the operational amplifier. Moreover, the amplifier circuit contains the
capacitanceCS stemming from the piezoelectric sensor and the cable capacitanceCC.
These quantities are collected in Fig. 9.11 as total capacity Ctot = CS + CC at the
amplifier input. The electric switch in parallel to CR allows again to reset the mea-
surement.

With a view to analyzing the considered charge amplifier circuit, let us again
assume ideal components in a first step. This refers to the properties of both the
operational amplifier (e.g., i+ = i− = 0; see p. 423) and to the capacitances, which
offer, thus, infinite insulation resistances. Irrespective of the fact that the open-loop
voltage gain GOL of an ideal operational amplifier is infinite, we will treat this
amplification as finite number at the moment. The amplifier output uO(t) results
from the differential input voltage uD(t) through uO(t) = GOLuD(t). Therewith, the
voltage uC(t) over the range capacitor CR has to fulfill
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Fig. 9.11 Charge amplifier
for piezoelectric sensors;
total capacity Ctot includes
sensor capacitance CS and
cable capacitance CC;
argument time t omitted for
compactness
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Since the electric input currents of an ideal operational amplifier are zero, Kirchhoff’s
current law yields

iS(t) − iI(t) + iC(t) = 0 (9.16)

with the current iS(t) = dQS(t) /dt generated from the electric charge QS(t) on the
sensor’s electrodes. Due to the assumed directions in Fig. 9.11, the currents iI(t)
through Ctot and iC(t) through CR become with (9.15)

iI(t) = −Ctot
duD(t)

dt
= − 1

GOL
Ctot

duO(t)

dt
(9.17)

iC(t) = CR
duC(t)

dt
=
[

1 + 1

GOL

]

CR
duO(t)

dt
. (9.18)

By inserting both relations into (9.16), one obtains

iS(t) = dQS(t)

dt
= iI(t) − iC(t)

= − 1

GOL
Ctot

duO(t)

dt
−
[

1 + 1

GOL

]

CR
duO(t)

dt
. (9.19)

After integrating this equation and choosing the integration constant to be zero,which
is physically realized by resetting the amplifier circuit shortly before themeasurement
starts, the amplifier output uO(t) finally results in

uO(t) = − QS(t)
[

1 + 1

GOL

]

CR + 1

GOL
Ctot

. (9.20)
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It should be noted that the amplifier output exhibits the opposite sign of the sensor
charge QS(t), i.e., a positive QS(t) causes a negative uO(t). Because of this, the
piezoelectric elements need to be installed appropriately with a view to achieving
positive electrical outputs for positive mechanical inputs. For instance, in case of the
disk-shaped piezoelectric element in Fig. 9.2, the mechanical force Fz and the axis
of piezoelectricity have to point in opposite directions.

Ideal operational amplifiers satisfy GOL → ∞ and, therefore, (9.20) simplifies to

uO(t) = −QS(t)

CR
= uC(t) . (9.21)

According to (9.21), neither the sensor capacitance CS nor the cable capacitance CC

influence the amplifier output and the cable length lC plays no role anymore. The
connection between uO(t) and QS(t) is solely specified by the range capacitor CR,
which justifies its name. This originates from the fact that the differential input
voltage uD(t) equals zero for an ideal operational amplifier in stable operation
mode. Since uD(t) = −u−(t) = 0 also corresponds to the voltages over the capaci-
tances CS and CC, they are always discharged. The existing charges arise from the
electric polarization of the piezoelectric sensor in case of mechanical loads. The
property uD(t) = 0 additionally ensures that a finite insulation resistance Rtot (e.g.,
of CC) does not affect uO(t). As a result, iI(t) = 0 holds and iS(t) = −iC(t) follows
from (9.16), which means that the electric charge of CR and the piezoelectric sensor
are equal but of opposite polarity. A charge amplifier, thus, continuously compen-
sates charges on the sensor electrodes due to mechanical loads with equal charges in
the range capacitor.

From the theoretical point of view, a charge amplifier comprising ideal com-
ponents should enable true static measurements with piezoelectric sensors. We are,
however, always confrontedwith nonideal components in reality. Especially the prop-
erties of the range capacitorCR play a decisive role in this context. Its finite insulation
resistance RR discharges CR. Consequently, the voltage uC(t) and the amplifier out-
put uO(t) will change with respect to time if a constant mechanical load is applied
to the piezoelectric element. Just as for electrometer amplifiers, we can define the
time constant τS = RRCR and lower cutoff frequency fl = 1/(2πτS). By considering
only the nonideal range capacitor, uO(t) will be close to zero after 5τS for a constant
mechanical load. It is, therefore, not surprising that true static measurements call
for τS → ∞ and fl = 0. Nevertheless, an additional resistor Rf with resistance val-
ues much smaller than RR is sometimes switched in parallel to the range capacitor
for dynamic measurements [33]. In doing so, τS decreases and fl increases which
implies that signal components with frequencies � fl do not arise in uO(t). Mod-
ern commercially available charge amplifiers enable the selection between different
values of Rf .

Besides the nonideal range capacitor, the actual properties of the operational
amplifier affect the performance of the charge amplifier. In particular, we have to
consider three influencing factors, namely (i) the input current i−(t), (ii) the open-
loop voltage gainGOL, and (iii) the offset voltageUOS at the amplifier input [59, 102].
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The currents i+(t) and i−(t) originate from leakage currents of the transistors at the
input stage of operational amplifiers. Depending on the transistor type (i.e., bipolar
or field-effect transistors), these currents range from a few fA up to µA and strongly
vary with temperature. As a matter of fact, i−(t) changes the charge state of CR.
Because GOL takes finite values from 104 to 107, the differential input voltage uD(t)
is not zero. This causes a current iI(t) through the nonideal sensor capacitance CS

and the nonideal cable capacitanceCC. The resulting current changes the charge state
of CR equally to i−(t). The same applies toUOS, which is in the order of µV to mV,
since this voltage also generates currents through the finite isolation resistances
of CS and CC. Therefore, we can conclude that all three influencing factors change
the charge state of CR. Such change directly alters the amplifier output and becomes
visible as drift, which leads to positive or negative saturation of uO(t) after a certain
time. That is why one should reset charge amplifiers before starting measurements
with piezoelectric sensors and also after a long measuring time.

The application of charge amplifiers for piezoelectric sensors offers several advan-
tages over electrometer amplifiers:

• Since the voltage across sensor and cable is rather small, their capacitances as well
as insulation resistances have a comparatively little impact on the output of charge
amplifiers.

• The virtual short-circuit at the amplifier input prevents voltage peaks of the piezo-
electric elements due to sudden mechanical loads.

• For ideal components, the output voltage uO(t) is directly proportional to the
electric charge QS(t) on the sensor electrodes and, thus, to the measurand. Note
that this simple relation also represents a very good approximation for nonideal
components of the charge amplifier circuit.

• One can connect several piezoelectric sensors of equal sensitivity in parallel to a
single charge amplifier. In case of an electrometer amplifier, the parallel connection
of several sensors requires an extensive calibration procedure.

On these grounds, it seems only natural that charge amplifiers are widely used for
reading out piezoelectric sensors. The companies Brüel & Kjær GmbH [13] and
Kistler Instrumente GmbH [49] are well-known manufacturers of charge amplifiers.
To some extend, the sold charge amplifiers can be computer-controlled and include
analog-to-digital converters,which gives the possibility for further digital processing.

9.2 Determination of Plate Thickness and Speed of Sound

Ultrasonic waves and, thus, piezoelectric ultrasonic transducers are widely used for
nondestructive testing like acoustic microscopy [63, 94, 114], weld inspection [50]
as well as material characterization (see Sect. 5.1.2). Thereby, geometric dimensions
and material properties have to be known, e.g., sample thickness and speed of sound.
If either one of the parameters is unknown, this parameter can be identified by simple
time-of-flight measurements of ultrasound. Here, we will study a special ultrasonic
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measuring system enabling simultaneous determination of plate thickness and speed
of sound inside the plate. The underlying approachwas published byKiefer et al. [48]
and should demonstrate typical signal processing steps (e.g.,Wiener filtering) as well
as capabilities of ultrasonicmeasuring systems inmaterial characterization. Themea-
surement principle that is based on the through-transmission mode of longitudinal
waves will be detailed in Sect. 9.2.1. Afterward, we model the investigated plates
from the system point of view as a transmission line in the time and frequency
domain. Section 9.2.3 deals with coded excitation signals of the ultrasonic transduc-
ers as well as requirements to achieve the aimed spatial resolution. The long duration
of coded excitation signals demands pulse compression by appropriate filters, which
is explained in Sect. 9.2.4. Finally, we will discuss experimental results that were
obtained by a realized ultrasonic measuring system.

9.2.1 Measurement Principle

In the following, let us assume a homogenous as well as flat solid plate of thick-
ness dP in z-direction and of large extensions in the xy-plane. The plate material
shall feature the wave propagation velocity cP for longitudinal waves that is termed
speed of sound (SOS). As mentioned above, we can directly determine dP if cP is
known or cP if dP is known with the aid of time-of-flight (TOF) measurements of
ultrasonic waves. In doing so, it makes sense to place the investigated plate in an
appropriate coupling medium for ultrasonic waves, e.g., water. Because the acoustic
impedance Zaco of coupling medium and plate material differ, ultrasonic waves will
be reflected at their interfaces. When an immersion transducer emits an ultrasonic
wave propagating in z-direction toward the plate and is operated in pulse-echo mode,
we will be able to compute the plate thickness dP or the speed of sound cP from the
simple mathematical relation tR = 2dP/cP. The expression tR denotes the time dif-
ference between the reflected pulses from the front edge and rear edge of the plate.
However, by additionally exploiting multiple reflections (reveberations) inside the
plate, one can determine both parameters (i.e., dP as well as cP) simultaneously [43,
92]. The evaluation of these reflections is not only possible in pulse-echo mode but
also in through-transmissionmode, which represents a special case of the pitch-catch
mode requiring two axially aligned ultrasonic transducers (cf. Fig. 7.1 on p. 262).
Without limiting the generality, we will study the simultaneous determination of dP
and cP for this through-transmission mode. An alternative approach that exploits an
ultrasonic annular array is proposed in [55, 111].

Figure 9.12 depicts the considered configuration of the ultrasonic transducers.
While the left transducer serves as ultrasonic transmitter, the right one is used as a
receiver of ultrasonic waves. In principle, the simultaneous determination of plate
thickness and SOS in the plate is based on two different measurements. The first
measurement is conducted without plate between transmitter and receiver. From this
reference measurement, we can immediately deduce the SOS cW = l/tW inside the
coupling medium when both the geometric transducer distance l and the TOF tW
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Fig. 9.12 Considered configuration of ultrasonic transmitter and receiver for a reference measure-
ment and b platemeasurements [48, 92]; vertical components of ultrasonic rays indicate time delays
between sound pressure waves; argument t omitted for compactness

of the ultrasonic waves from transmitter to receiver are known. Alternatively, cW
also results from evaluating the difference of TOFs for two different geometric dis-
tances between transmitter and receiver, which can be arranged by a high-precision
positioning system.

For the second measurement, the investigated plate has to be placed between
transmitter and receiver (see Fig. 9.12b). In this case, there occurs a directly trans-
mitted ultrasonic wave as well as waves stemming from multiple reflections inside
the plate. At the receiver, the entire sound pressure wave p∼(t) follows from

p∼(t) =
∞
∑

i=0

p∼i (t) . (9.22)

The expressions p∼0(t) and p∼i (t) ∀i ∈ N+ stand for the directly transmitted wave
and the i th multiple reflection, respectively. p∼0(t) reaches the receiver after the
TOF t0, whereas the first multiple reflection p∼1(t) arrives after the TOF t1. The
TOFs t0 and t1 for plane wave propagation in z-direction are given by

t0 = l − dP
cW

+ dP
cP

(9.23)

t1 = l − dP
cW

+ 3dP
cP

. (9.24)

Hence, the time difference tR = t1 − t0 between the TOFs corresponds to 2dP/cP
since the ultrasonic waves have to additionally travel through the plate twice for
the first multiple reflection. This time difference, of course, also holds for suc-
cessive multiple reflections inside the plate, i.e., ti+1 − ti = tR. The combination
of (9.23) tW = l/cW and tR = 2dP/cP finally yields [92]
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dP = cW

[

tW − t0 + tR
2

]

(9.25)

cP = cW

[

1 + 2(tW − t0)

tR

]

(9.26)

for the plate thickness and the SOS in the plate. Consequently, it is possible to
determine both parameters simultaneously when the quantities cW, tW, t0, and tR
are known. Due to the fact that (9.25) as well as (9.26) exclusively contain time
differences, there do not arise measurement deviations from systematic time delays
within the ultrasonic transducers and additional electronic components.

9.2.2 Transmission Line Model for Plate

To obtain a deeper understanding of themeasurement principle and further important
points like the required spatial resolution, let us regard the investigated plate from the
system point of view. The plate between transmitter and receiver can be modeled as a
three-layer problem [9, 60]. The middle layer corresponds to the elastic plate, while
the outer layers represent the surrounding coupling medium. If ultrasonic waves
impinge perpendicular onto the interface coupling medium/plate, mechanical waves
will be generated inside the plate. At the rear interface plate/coupling medium, these
mechanical waves will be partially converted again to ultrasonic waves propagat-
ing toward the receiver. The directly transmitted waves and the resulting multiple
reflections exhibit a certain time difference. It makes sense to treat the three-layer
configuration as a transmission line. In doing so, we can neglect attenuation within
the couplingmedium and the plate because themeasurement principle is solely based
on TOFs. Below, the transmission line will be modeled in the time and frequency
domain.

Transmission Line in Time Domain

An incident wave gets partially transmitted as well as reflected at each interface of
coupling medium and plate. As already detailed, the incident wave is, thus, not only
directly transmitted through the plate but also after 2i reflections inside the plate.
If the directly transmitted ultrasonic wave p∼0(t) reaches the receiver at t0, the i th
multiple reflection p∼i (t) will arrive at the time

ti = t0 + i tR ∀ i ∈ N (9.27)

with the TOF tR = 2dP/cP that a mechanical wave needs to propagate back and forth
inside the plate. In the time domain, the resulting transmission line can be fully
characterized by the discrete impulse response

hP(t) =
∞
∑

i=0

ai δ(t − ti ) , (9.28)
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where δ(·) stands for the Dirac delta distribution. The expression

ai = qWP qPW r2iPW (9.29)

is the amplitude factor for directly transmitted waves (i.e., i = 0) and i th multiple
reflections. Here, qWP and qPW indicate the transmission coefficients at the interfaces
coupling medium/plate and plate/coupling medium, respectively.1 With the acoustic
impedances Zaco;W and Zaco;P of coupling medium and plate, these transmission
coefficients compute as (cf. (2.139, p. 38))

qWP = 2Zaco;P
Zaco;W + Zaco;P

(9.30)

qPW = 2Zaco;W
Zaco;W + Zaco;P

. (9.31)

The remaining variable rPW explains the reflection coefficient at the interface
plate/coupling medium and takes the form

rPW = Zaco;W − Zaco;P
Zaco;W + Zaco;P

. (9.32)

When the parameters cW and lW are known, it can be stated that the impulse
response hP(t) of the transmission line includes all information (i.e., t0 and tR),
which is required to simultaneously determine dP and cP.

Figure 9.13a depicts the calculated impulse response hP(t) of a steel plate
with thickness dP = 3mm that is immersed in water. Thereby, the wave prop-
agation velocities and acoustic impedances of water and steel were assumed to
take the values cW = 1485m s−1, cP = 5850m s−1, Zaco;W = 1.49 × 106 N sm−3,
and Zaco;P = 45.63 × 106 N sm−3. As expected, hP(t) decreases exponentially and
shows a spacing of tR between two successive Dirac impulses. The normalization of
the abscissa ensures that the curve progression only depends on the ratio dP/cP.

Transmission Line in Frequency Domain

Even though the impulse response hP(t) includes the entire information of the trans-
mission line (i.e., the plate), one should additionally take a closer look at its complex-
valued transfer function HP( f ) in the frequency domain. This is especially advisable
because HP( f ) reveals decisive aspects, which facilitate a reasonable choice of the
transmitter excitation. Before HP( f ) of the plate is deduced, let us consider a Dirac
comb III(t) (also known as impulse train) that will be quite similar to the impulse
response hP(t) of the plate if ai = 1 ∀ i ∈ N holds. In the time domain, the Dirac
comb reads as

III(t) =
∞
∑

i=−∞
δ(t − i tR) . (9.33)

1To avoid confusions with the time t , the transmission coefficients are named q.
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By applying the Fourier transform, the Dirac comb becomes (frequency f )

III( f ) = F{III(t)} = 1

tR

∞
∑

i=−∞
δ

(

f − i

tR

)

(9.34)

in the frequency domain and, therefore, remains a Dirac comb [110]. While the
periodic spacing between two successive Dirac impulses amounts tR in the time
domain, the periodic spacing in the frequency domain equals 1/tR. In contrast, the
complex-valued transfer function HP( f ) of the plate results in

HP( f ) = F{hP(t)} = qWP qPW e− j 2π f dP/cP
∞
∑

i=0

(

r2PW e− j 2π f 2dP/cP
)i

. (9.35)

Owing to the fact that
∣

∣r2PW
∣

∣ < 1 is always satisfied for a solid plate being immersed
in a liquid, the series converges and HP( f ) simplifies to [12]

HP( f ) = qWP qPW e− j 2π f dP/cP

1 − r2PW e− j 2π f 2dP/cP
= qWP qPW

ej2π f dP/cP − r2PW e− j 2π f dP/cP
, (9.36)

which is a periodic function in the frequency domain. Just as for the Dirac comb, the
spacing of the maxima in the magnitude

∣

∣HP( f )
∣

∣ equals 1/tR. Since hP(t) gradually
decreases, there do not, however, appear Dirac impulses in

∣

∣HP( f )
∣

∣. The resulting
maxima have a nonvanishing frequency width different to zero instead. This is also
demonstrated in Fig. 9.13b, which displays

∣

∣HP( f )
∣

∣ for the steel plate of thick-
ness dP = 3mm that was also considered for the impulse response hP(t). Due to the
normalization of the abscissa, the curve progression depends again on the ratio dP/cP.
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∣ (magnitude) of steel plate with
thickness dP = 3mm being immersed in water; x-axis normalized to tR = 1.026µs and 1/tR =
975 kHz, respectively
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9.2.3 Excitation Signal of Transmitter

The excitation signal uI(t) of the ultrasonic transmitter constitutes a decisive part of
the considered measuring system, which comprises transmitter, investigated plate,
receiver as well as an appropriate pulse compression approach (see Fig. 9.14).
Under the assumption of a linear system, we are able to combine the impulse
responses htrans(t) and hrec(t) of transmitter and receiver. The combined impulse
response hT(t) of the transducer pair is defined as (temporal convolution ∗)

hT(t) = htrans(t) ∗ hrec(t) . (9.37)

By using the impulse response hP(t) of the plate, the output uO(t) of the ultrasonic
receiver becomes then

uO(t) = uI(t) ∗ hT(t) ∗ hP(t) (9.38)

in the time domain and after applying the Fourier transform

UO( f ) = U I( f ) · HT( f ) · HP( f ) . (9.39)

The expressions U I( f ) and HT( f ) denote the frequency spectrum of the excitation
signal and the transfer function of the transducer pair, respectively. To facilitate the
following explanations, let us introduce the so-called interrogation signal gT(t) =
uI(t) ∗ hT(t) that is generated from the transducer pair and the excitation signal, i.e.,
without plate [48]. The receiver output for the plate being placed between transmitter
and receiver takes, thus, the form

uO(t) = gT(t) ∗ hP(t) F−→ UO( f ) = GT( f ) · HP( f ) (9.40)

htrans(t)

hP(t)

hP(t) hrec(t)

hPC(t)

hPC(t)

hT(t) = htrans(t) ∗ hrec(t)
uI(t)

uI(t)

ePC(t)

ePC(t)p∼(t)

uO(t)

uO(t)

gT(t)

transmitter

plate

plate receiver

pulse
compression

pulse
compression

transducer pair

Fig. 9.14 Two equivalent structural diagrams of considered ultrasonic measuring system [48];
impulse responses hi (t); excitation signal uI(t); incident sound pressure wave p∼(t) at receiver;
receiver output uO(t); output signal ePC(t) after pulse compression with hPC(t); interrogation
signal gT(t)
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with the frequency spectrum GT( f ) of the interrogation signal. Consequently, the
receiver output corresponds to a filtered version of the interrogation signal, whereby
the plate serves as filter. On the other hand, we can also state that the receiver
output represents a filtered version of the plate behavior, whereby the interrogation
signal serves as filter. Since the plate is the investigated object, it makes sense to
prefer the second view. This means that both the excitation signal and the transducer
behavior need to be appropriate if the desired information (i.e., plate thickness and
SOS) should be deduced from the receiver output. The typical bandpass behavior
of transmitter and receiver (cf. Fig. 7.46 on p. 329) is, however, specified by the
available ultrasonic transducers. Therefore, one has to concentrate on the excitation
signal of the transmitter.

Hereinafter, let us detail the requirements for the interrogation signal concerning
simultaneous determination of plate thickness and SOS. We will also study coded
transducer excitation as well as reasonable conditioning of the excitation signal to
enhance the system’s performance.

Requirements for Interrogation Signal

As mentioned above, we have to figure out the time difference tR for determining
plate thickness dP and SOS cP. In case of the considered ultrasonic measuring sys-
tem, this implies requirements for the interrogation signal gT(t), which refer to two
signal properties, namely its (i) bandwidth and (ii) energy. Let us start with the band-
width Bg of gT(t). It is well known from ultrasonic imaging and radar imaging that
the achievable spatial resolution is inversely proportional to Bg, e.g., [19, 67]. Hence,
a high spatial resolution calls for a large bandwidth. This also applies to the con-
sidered ultrasonic measuring system. As has been shown in Sect. 9.2.2, the plate’s
transfer function HP( f ) is periodic in frequency. The receiver output should contain
at least one entire period because, otherwise, we cannot identify 1/tR and, thus, the
quantity tR. That is the reason why the bandwidth of the interrogation signal has to
fulfill the condition

Bg ≥ 1

tR
−→ Bg ≥ cP

2dP
, (9.41)

which will be violated especially in the case of a thin plate exhibiting a high SOS.
Since the bandwidth of transmitter and receiver is always limited, one should choose
not only broadband transducers but also an excitation signal uI(t) that exploits the
available transducer bandwidth best possible.

The second requirement for gT(t) concerns its signal energy. Generally speaking,
a high energy of the excitation signal improves the SNR values that are obtained from
an ultrasonic measuring system [67]. Signal energy will rise if the amplitude ûI, the
duration Tu of uI(t), and/or its bandwidth Bu are increased. The same behavior, of
course, applies to the interrogation signal, i.e., to ĝT, Tg as well as Bg. Unfortunately,
an increased amplitude can lead to unwanted nonlinearities (e.g., in wave propaga-
tion) or may even damage the ultrasonic transmitter. It is, thus, recommended to
extend duration and/or bandwidth. The so-called time–bandwidth product TB rates
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the energy of a signal [16, 67]. Whereas the bandwidth of a sinusoidal signal van-
ishes, a pulse-shaped signal owns a short duration. In both cases, TB takes small
values, e.g., ≈ 1 for a pulse-shaped harmonic signal offering the property B ≈ 1/T .
The lower limit of TB arises for purely amplitude-modulated signals like a Gaus-
sian pulse [10]. To achieve a high time–bandwidth product, one has to use phase or
frequency modulation. The resulting excitation signals are commonly named coded
excitation signals since their long duration demands an appropriate decoding pro-
cess to achieve reasonable resolutions for TOF measurements [48]. Such decoding
processes are usually referred to as pulse compression (see Sect. 9.2.4).

Coded Excitation

Coded signals result from phase or frequency modulation of a signal that was origi-
nally of sinusoidal shape. In doing so, the phase or frequency of the original signal
is modified systematically. As a matter of fact, the choice of this modification deter-
mines the properties of the coded signal. Phase modulation can be based on code
sequences like Barker codes, Golay codes, and Gold codes [67, 80, 92]. Such binary
sequences always feature two defined states, e.g., 0 and 1 or −1 and 1. Due to
the fact that Gold codes provide outstanding correlation properties, they are often
exploited in telecommunication and satellite navigation. The autocorrelation of a
Gold sequence shows a distinct maximum, while the cross-correlation of two differ-
ing Gold sequences equals almost zero. That is the reason why Gold codes should
also be well suited for TOF measurements in ultrasonic measuring systems.

Now, let us detail a concrete example of phase modulation that is based on Gold
codes. The selected Gold sequence sGold of order 6 has a length of NGold = 63 ele-
ments. Depending on the value of the single sequence element, the phase of the
sinusoidal signal comprising Ms cycles gets altered. If sGold = −1, the phase will be
shifted by 180◦; otherwise, i.e., sGold = 1, the phase remains unchanged. Therewith,
we obtain a coded signal that contains NGold blocks with Ms sinusoidal cycles each.
Figure 9.15a depicts a cutout of both the Gold sequence sGold(t) and the resulting
coded signal sphase(t) for Ms = 1 and the frequency f = 2MHz. As expected and
demonstrated in Fig. 9.15b, the phase modulation has a remarkable impact on the
frequency spectrum Sphase( f ) of sphase(t). In contrast to a sinusoidal time signal,

the spectral magnitude
∣

∣

∣Sphase( f )
∣

∣

∣ of the coded signal becomes wide because of the

conducted phase modulation.
The second kind of coded signals originates from frequency modulation; i.e., a

variation of the instantaneous frequency fs(t) with respect to time. Such frequency
modulation can be conducted again with the aid of code sequences. A frequency
modulated signal will often be called chirp signal when fs(t) changes continuously
with time. Without limiting the generality, we will exclusively consider linear chirp
signals, which implies a linear variations of fs(t). One can distinguish between linear
up-chirp signals and linear down-chirp signals. For an up-chirp signal, fs(t) increases
from the lowest frequency fmin to the highest frequency fmax over time, whereas fs(t)
decreases from fmax to fmin for a down-chirp signal. In complex notation, a linear
chirp signal schirp(t) providing the bandwidth Bchirp is defined as [68]
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schirp(t) = e j2π( fct+Fchirpt2/2) for − Tchirp
2

≤ t ≤ Tchirp
2

(9.42)

with the center frequency fc, the so-called chirp rate Fchirp = ±Bchirp/Tchirp and the
duration Tchirp of the signal, respectively. Fchirp takes positive values for up-chirp
signals and negative values for down-chirp signals. The actual chirp signal schirp(t) is
given by the real part of schirp(t), i.e., schirp(t) = �{schirp(t)}. Figure 9.16a and b dis-
play the time behavior of a linear up-chirp signal and the corresponding instantaneous
frequency fs(t). The selected parameters amount fc = 2MHz, Bchirp = 3MHz,
and Tchirp = 6µs.
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For the considered ultrasonic measuring system, coded excitation means that we
apply either a phase modulated signal or a frequency modulated signal as transducer
excitation uI(t). This signal represents the coded excitation signal.

Conditioning of Excitation Signal

From the theoretical point of view, a Dirac impulse has a flat amplitude spectrum
and, therefore, contains all frequencies. We can exploit the entire bandwidth of an
ultrasonic transducer when such impulse is utilized as transducer excitation. How-
ever, if the spatial resolution of an ultrasonic measuring system is of concern, it
might be desirable to make better use of the transducer bandwidth by adjusting the
transducer excitation appropriately. The fundamental idea lies in compensating the
frequency-dependent transfer behavior of the ultrasonic transducers, i.e., of trans-
mitter and receiver [48]. This can be achieved by enhancing spectral components in
the excitation signal that are attenuated by the transducers. Consequently, the inter-
rogation signal will offer a higher bandwidth than a short pulse and, thus, one is able
to improve the spatial resolution of an ultrasonic measuring system. The underlying
signal conditioning comprises three steps, namely (i) defining a conditioning filter,
(ii) designing a conditioned transducer behavior, and (iii) deducing the required exci-
tation signal. Below, let us explain these three steps, which are mainly motivated by
the work of Oelze [74].

As a starting point, we assume a hypothetic transducer, the so-called conditioned
transducer, that features the desired bandwidth of the transducer pair. The condi-
tioned transducer with the impulse response hC(t) will generate the interrogation
signal gC(t) when excited by the excitation signal uI(t). Now, the question arises
which excitation signal will produce the same interrogation signal from the actually
existing transducer pair being specified by the impulse response hT(t). This condi-
tioned excitation signal uIC(t), of course, has to fulfill the convolution equivalence

uIC(t) ∗ hT(T )
!= uI(t) ∗ hC(T ) = gTC(t) (9.43)

in the time domain and

U IC( f ) · HT( f )
!= U I( f ) · HC( f ) = GTC( f ) (9.44)

in the frequency domain with the frequency spectraU I( f ) of uI(t), HC( f ) of hC(t),
and HT( f ) of hT(t). From there, we can directly solve for the frequency spec-
trum U IC( f ) of uIC(t) through

U IC( f ) = U I( f )
HC( f )

HT( f )
= U I( f ) · Ψ ( f ) . (9.45)

The expression 1/HT( f ) represents the so-called inverse filter in the frequency
domain and Ψ ( f ) describes a possible conditioning filter. Owing to the fact that
ultrasonic transducers typically exhibit bandpass behavior, 1/HT( f ) is unbounded
which causes problems in (9.45). To achieve a stable deconvolution, one should,
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therefore, apply aWienerfilter insteadof the inversefilter [59]. For the given situation,
the filter ΨW( f ) reads as

ΨW( f ) = HC( f ) · H∗
T( f )

∣

∣HT( f )
∣

∣
2 + βW

∣

∣HT( f )
∣

∣
−2 , (9.46)

where the noise-to-signal ratio NSR( f ) is assumed to be βW

∣

∣HT( f )
∣

∣
−2
. The fac-

tor βW is used to estimate the spectral energy density of the noise, and H∗
T( f ) stands

for the complex conjugate of HT( f ). Note that this conditioning filter tries to correct
the phase difference between HC( f ) and HT( f ). However, since the subsequently
applied pulse compression is very sensitive to phase mismatches, such correction
might degrade the quality of the coded excitation signal. By leaving the phase spec-
trum ofU I( f ) unchanged, we are, moreover, able to design pulse compression filters
on the basis of the original excitation signal uI(t). It is, thus, advisable to adapt the
complex-valued filter from (9.46) to the real-valued version

ΨW( f ) =
∣

∣HC( f ) · H∗
T( f )

∣

∣

∣

∣HT( f )
∣

∣
2 + βW

∣

∣HT( f )
∣

∣
−2 , (9.47)

which exclusively alters spectral magnitudes in U I( f ). Therewith, the frequency
spectrum U IC( f ) of the conditioned excitation signal results from

U IC( f ) = U I( f )

∣

∣HC( f ) · H∗
T( f )

∣

∣

∣

∣HT( f )
∣

∣
2 + βW

∣

∣HT( f )
∣

∣
−2 . (9.48)

The inverse Fourier transform finally leads to the conditioned excitation signal uIC(t)
in the time domain.

In a next step, let us take a closer look at the conditioned transducer. The
impulse response of an ultrasonic transducers equals approximately a Gaussian
pulse (cf. Fig. 7.23 on p. 292). On this account, one should also model the impulse
response hC(t) of the conditioned transducer by such a pulse, which mathematically
takes the form [10]

hC(t) = e−t2/(2σ2
C) cos(2π fct) (9.49)

with the carrier frequency fc and the parameter σC defining the duration of signal
envelope. While fc equals the center frequency of the transducer, σC determines the
transducer bandwidth. According to the modulation theorem, the frequency spec-
trum HC(t) of hC(t) will correspond to the frequency spectrum of its envelope

e−t2/(2σ2
C) when the envelope’s spectrum is shifted by fc. This means that we only

have to inspect the envelope’s spectrum
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F
{

e−t2/(2σ2
C)
}

= √
2πσCe

−2(π f σC)2 (9.50)

to figure out the −6 dB bandwidth B-6dB
C of HC(t). For the Gaussian pulse in (9.49),

B-6dB
C becomes

B-6dB
C =

√
2 ln 2

πσC
. (9.51)

Consequently, it is possible to modify the bandwidth of the conditioned transducer
by choosing σC appropriately.

With a view to determining a suitable excitation signal, one has to design the
conditioned transducer in advance, i.e., its impulse response hC(t). Guided by
the actually existing transducer pair in the experiments, the center frequency fc
equals 2.29MHz. Theoretically, the transducer bandwidth can be chosen arbi-
trarily between 0 and 2 fc. Here, let us set the bandwidth B-6dB

C to 1.1 fc, which
amounts 2.52MHz. This conditioned transducer was used to adapt a linear up-chirp
signal featuring the duration Tchirp = 150µs and the same center frequency as the
transducer pair. In order to obtain the lowest side lobe level for the conditioned
transducer after pulse compression (see Sect. 9.2.4), the chirp bandwidth was cho-
sen to be Bchirp = 1.14B-6dB

C = 2.87MHz [88]. The time–bandwidth product TB of
the linear up-chirp signal equals approximately 430. Figure 9.17a shows this chirp
signal, which is referred to as unconditioned excitation signal uI(t) in the following.
By applying the real-valued filter ΨW( f ) from (9.47) as conditioning filter with the
empirically determined parameter βW = 500, one obtains the conditioned excitation
signal uIC(t) in Fig. 9.17b. It is not surprising that the signal amplitudes of uIC(t)
take higher values at the beginning and the end because ΨW( f ) compensates the
transducer’s bandpass behavior.

Both the unconditioned excitation signal uI(t) and the conditioned excitation sig-
nal uIC(t) were convolved with the experimentally acquired impulse response hT(t)
of the transducer pair. To compare the resulting unconditioned interrogation sig-
nal gT(t) and conditioned interrogation signal gTC(t), let us regard the resulting spec-
tral magnitudes

∣

∣GT( f )
∣

∣ and
∣

∣GTC( f )
∣

∣ in Fig. 9.18a. We can clearly see that gTC(t)
owns a larger bandwidth than gT(t). Therefore, the spatial resolution of the ultrasonic
measuring system should be better in case of a conditioned transducer excitation.

9.2.4 Pulse Compression

Even though coded excitation signals provide a high time–bandwidth product, their
signal duration demands additional signal processing steps for the considered ultra-
sonic measuring system. This is demonstrated in Fig. 9.18b, which shows the mea-
sured receiver output uO(t) as well as its envelope for the conditioned excitation
signal uIC(t) and a steel plate of 3mm thickness. To determine plate thickness and
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(a) unconditioned excitation signal uI(t)

(b) conditioned excitation signal uIC(t)
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∣
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∣

∣ and
∣
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∣

∣of unconditioned interrogation signal gT(t)
and conditioned interrogation signal gTC(t); b measured receiver output uO(t) and envelope for
coded transmitter excitation (i.e., conditioned chirp signal) and steel plate of 3mm thickness

SOS simultaneously, we have to know the TOF tR between two subsequent multiple
reflections. Since tR is much smaller than the signal duration, the multiple reflections
cause a disturbing interference pattern in uO(t). However, by applying appropriate
decoding procedures that are commonly referred to as pulse compression, tR can be
figured out from uO(t). The main idea of pulse compression lies in eliminating the
phase spectrum of a frequency modulated or phase modulated signal [48]. In doing
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so, the receive signal gets compressed into a short impulse, which leads to the desired
spatial resolution of the ultrasonic measuring system. After compression of uO(t)
with the compression filter exhibiting the impulse response hPC(t), one obtains the
pulse compression waveform ePC(t) = uO(t) ∗ hPC(t) (see Fig. 9.14). The required
TOF tR can finally be identified through the envelope eev(t) of ePC(t) that results
from (cf. (7.69, p. 292))

eev(t) = |ePC(t) + jH{ePC(t)}| (9.52)

where H{·} stands for the Hilbert operator. The time signal eev(t) is termed com-
pression output hereafter.

For the considered ultrasonic measuring system, the compression outputs do not
only consist of amain peak, the so-calledmain lobe, at the signal arrival time (e.g., t0)
but also of undesired side lobes. These side lobes stem from the pulse compression
procedure and represent artifacts. Both the half-pulse width TP of the main lobe and
the ratio of highest side lobe to main lobe in dB, termed the side lobe level ( SLL),
are quality characteristics of the compression output. When TP < tR is not satisfied,
the main lobes of two subsequent multiple reflections will overlap in eev(t). On the
other hand, a high value of SLL (e.g., SLL = −15 dB) may yield an unusable com-
pression output because side lobes might be mistaken for main lobes. Each situation
is, therefore, accompanied by problems concerning the identification of tR. Owing
to this fact, we need sufficiently low values for both quantities (i.e., TP and SLL) to
determine plate thickness and SOS in a reliable way, especially if a thin plate with
high SOS should be analyzed.

Now, let us take a closer look at pulse compression that is well established in
radar imaging and ultrasonic imaging [19, 67]. There exist various filters for pulse
compression like matched filters, mismatched filters as well as Wiener filters. Not
surprisingly, the selected compression filter hPC(t) is decisive for the performance of
pulse compression and, thus, strongly depends on the particular application. When a
linear chirp signal is used as excitation signal, the fractional Fourier transform (FrFT)
may also be employed for pulse compression [20, 38]. However, for the considered
ultrasonic measuring system, this special kind of Fourier transform does not provide
higher spatial resolution and a lower SLL than conventional compression filters. That
is the reason why we will concentrate here on matched, mismatched, and Wiener
filters.Without limiting the generality, the transmitter input is thereby supposed to be
an unconditioned linear up-chirp signal. The same filters can be, of course, designed
for any kind of coded signal.

Matched Filter

Pulse compression is often conducted by means of matched filters, which are also
named correlation filters or conjugate filters. To explain the idea ofmatched filters, let
us assume an arbitrary time signal s(t) being transmitted through a channel with the
known impulse response h(t). For this signal, the matched filter becomes hMPC(t) =
s∗(−t) in the time domain and
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HM
PC( f ) = S∗( f ) = ∣

∣S( f )
∣

∣ e− j arg{S( f )} (9.53)

in the frequency domain with the frequency spectrum S( f ) of s(t) [75]. The opera-
tor arg{·} leads to the argument (phase) of a complex-valued quantity. If the channel
neither distorts nor delays s(t), the channel’s transfer function will be H( f ) = 1 for
all frequencies and, consequently, the channel output will coincide with the input.
Because the matched filter is the complex conjugate of S( f ), it eliminates then the
phase arg

{

S( f )
}

. Therefore, the frequency spectrum of the filter output takes the
form

S( f ) · H( f ) · HM
PC( f ) = ∣

∣S( f )
∣

∣
2

. (9.54)

In case of the considered ultrasonicmeasuring system, the channel’s transfer function
comprises the transfer behavior of both the transducer pair and the plate between
them, i.e., H( f ) = HT( f ) · HP( f ). When we apply the matched filter to the receive
signal UO = U I( f ) · H( f ) for pulse compression, the frequency spectrum EPC( f )
of the pulse compression waveform ePC(t) will result with HM

PC( f ) = U ∗
I ( f ) in

EPC( f ) = UO( f ) · HM
PC( f )

= U I( f ) · H( f ) · HM
PC( f )

= ∣

∣U I( f )
∣

∣
2 · ∣∣H( f )

∣

∣ e jarg{H( f )} . (9.55)

Accordingly, the phase characteristic of EPC( f ) is solely specified by H( f ). The
present channel consisting of transducer pair and plate introduces a time delay
between uI(t) and uO(t), which corresponds to a linear phase of H( f ). Since EPC( f )
contains arg

{

H( f )
}

, one is, thus, able to recover the time delay by means of the
matched filter. In other words, this kind of pulse compression should allow TOF
measurements. However, any other linear or nonlinear phase distortions of the entire
transmission systemwill also remain in the pulse compressionwaveform. Such phase
distortions are mainly generated by the ultrasonic transducers. To mitigate the result-
ing deviations in TOFmeasurements, it makes, therefore, sense to design thematched
filter on basis of the interrogation signal gT(t) of the ultrasonic measuring system,
i.e., hMPC(t) = g∗

T(−t). The pulse compression will then eliminate disturbing phase
distortions because they are included in gT(t). The problem herein lies in the fact that
we have to know gT(t) in advance. Both these options are used in practical scenarios.

Mismatched Filter

As previouslymentioned, the parameters TP and SLL are decisive quality characteris-
tics of the compression output eev(t) for the considered ultrasonic measuring system.
Generally speaking, if TP is reduced, the SLL will increase and vice versa. With a
view to illustrating this behavior, let us regard a rectangular function representing an
ideal bandpass in the frequency domain. A rectangular function with infinitely sharp
edges yields a sinc function in the time domain [12]. Whereas such a function offers
a small TP, its SLL equals≈ − 13 dB, i.e., a rather high value (see Fig. 9.19b). When
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the compression output coincides with a sinc function, the ultrasonic measuring sys-
tem will, consequently, feature an outstanding spatial resolution, but the separation
of two subsequent multiple reflections in eev(t) might be problematic due to side
lobes.

To reduce the SLL, we have to conduct smoothing of the band edges. In practice,
edge smoothing can be achieved either by applying an appropriate filter in the fre-
quency domain or by windowing, which means that a suitable window function is
used in the time domain [48]. Actually, there exist various time-limited, even as well
as real-valued window functions w(t) like the Hamming window (see Fig. 9.19),
whose frequency spectrumW ( f ) is also real-valued and exhibits narrow main lobes
as well as low side lobes [39]. Due to the duality of the Fourier transform (see
Fig. 9.20), the same holds for a frequency-limited, real-valued, and even window
functions w( f ) in the frequency domain. The resulting time signals W (t) exhibit
again narrow main lobes as well as low side lobes. Here, we are dealing with linear
chirp signals of a high time–bandwidth product (i.e., TB � 1) that have spectral
magnitudes with a shape of the signal’s envelope [68]. Edge smoothing can, thus, be
conducted either in the time or frequency domain by a suitable window. However,
it is usually more convenient for practical reasons (e.g., filter implementation) to
perform windowing in the time domain. Because the Dolph–Chebyshev window is
optimal to maintain spatial resolution while reducing the SLL, we will exploit this
window for the considered ultrasonic measuring system.

From the system point of view, windowing by w(t) can be applied to each part of
the transmission line, e.g., to the transducer excitation uI(t) before transmitting. If
the windowing is performed in the course of pulse compression that relates to uI(t),
the compression filter will change to
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Fig. 9.20 Duality of Fourier
transform; Fourier
transform F from time to
frequency domain; inverse
Fourier transform F−1 from
frequency to time domain
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hMM
PC (t) = u∗

I (−t) · w(t) (9.56)

in the time domain. The resulting filter with the impulse response hMM
PC (t) is com-

monly named mismatched filter. By additionally applying w(t) to uI(t) or gI(t), one
can reduce the SLL in the compression output eev(t) further.

Wiener Filter

As an alternative to matched and mismatched filters, pulse compression can be
carried out with deconvolution. The considered ultrasonic measuring system aims
at reconstructing the impulse response hP(t) of the investigated plate from the
receiver output uO(t) to determine plate thickness and SOS. By utilizing the
interrogation signal gT(t) = uI(t) ∗ hT(t), the receiver output is given by uO(t) =
gT(t) ∗ hP(t) (cf. (9.40)). For this situation, the conventional deconvolution that is
also named inverse filtering reads as

hP(t) = uO(t) ∗ g−1
T (t) F−→ HP( f ) = UO( f )

GT( f )
(9.57)

in the time and frequency domain, respectively. The expressions HP( f ), GT( f )
and UO( f ) stand again for the corresponding frequency spectra. According to
Sect. 9.2.3, ultrasonic transducers typically show bandpass characteristic, which also
arises in gT(t). The deconvolution by means of the inverse filter, therefore, becomes
unstable (cf. (9.45)). However, when a Wiener filter is exploited instead, we will
achieve a stable deconvolution with best possible noise suppression. The Wiener
filter for pulse compression takes the form (cf. (9.46))

HW
PC( f ) = G∗

T( f )
∣

∣GT( f )
∣

∣
2 + 1/SNR( f )

(9.58)

where SNR( f ) rates the frequency-dependent signal-to-noise ratio2 of GT( f ). As
requested for pulse compression, the numerator eliminates the phase spectrum of the
interrogation signal because GT( f ) · G∗

T( f ) = ∣

∣GT( f )
∣

∣
2
holds. The Wiener filter

2The signal-to-noise ratio SNR( f ) is the reciprocal of the noise-to-signal ratio NSR( f ),
i.e., SNR( f ) = 1/NSR( f ).
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behaves similar to the inverse filter for noiseless spectral components but like the
matched filter where signal energy is low. Consequently, the bandwidth of the filtered
signal increases as it is the case in inverse filtering. A well-designed Wiener filter,
therefore, improves the resolution of a imaging system compared to conventional
matched filtering.

The difficulty arising when implementing a Wiener filter lies in the fact that we
have to know 1/SNR( f ) = NSR( f ) or at least an appropriate estimate hereof. Since
the actual SNR( f ) is usually unknown, it is commonly supposed to be constant over
frequency. The relation

1/SNR0 = NSR0 = βW

∣

∣GT( f )
∣

∣
2
max (9.59)

with the factor βW = 10−2 and the maximum
∣

∣GT( f )
∣

∣

max of the spectral magnitudes
represents an estimate, which is often used in practical applications [41, 71]. For the
realized ultrasonicmeasuring system, 1/SNR0 = NSR0 was determined empirically.

The Wiener filter tends to produce a pulse compression waveform ePC(t) featur-
ing approximately a rectangular shape of the spectral magnitudes

∣

∣EPC( f )
∣

∣. Sharp
edges of

∣

∣EPC( f )
∣

∣will, however, be accompanied by a high SLLof the resulting com-
pression output eev(t), which leads to problems concerning separation of multiple
reflections. Hence, one should perform edge smoothingwith the aid of an appropriate
window functionw( f ) in the frequency domain [48]. For this purpose, it is advisable
to apply again a frequency-shifted as well as stretched Dolph–Chebyshev window
that overlaps exactly with the bandwidth of the excitation signal uI(t). The adapted
Wiener filter for pulse compression finally becomes

HWW
PC ( f ) = w( f ) · G∗

T( f )
∣

∣GT( f )
∣

∣
2 + NSR0

(9.60)

in the frequency domain. The window function leads to a band-limited as well as
stable deconvolution. Owing to this fact, we will be able to omit NSR0 in (9.60)
when w( f ), especially its bandwidth, is chosen appropriately. The resulting pulse
compression filter could then be interpreted as band-limited inverse filter.

9.2.5 Experiments

In this subsection, themain parts of the realizedmeasurement setupwill be explained.
We will, furthermore, discuss the resulting axial point spread functions of the real-
ized ultrasonic measuring system for different transmitter excitations and pulse com-
pression filters. At the end, measurement results (i.e., dP and cP) for various plate
thicknesses as well as plate materials are shown and compared to reference values.
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Fig. 9.21 Main parts of
measurement setup
consisting of piston-type
ultrasonic transmitter and
receiver (Olympus V306)
being immersed in water;
investigated plates were
fixed by special mount

transmitter receiver

plate with
mount

l ≈ 440mm

Measurement Setup

Figure 9.21 illustrates the main parts of the measurement setup, which was real-
ized at the Chair of Sensor Technology (Friedrich-Alexander-University Erlangen-
Nuremberg). Two identical piston-type transducers (Olympus V306 [77]) that were
immersed inwater served as ultrasonic transmitter and ultrasonic receiver. The piezo-
electric transducers with the active element diameter 2RT = 12.7mm have a nomi-
nal center frequency of fc = 2.25MHz and provide the −6 dB bandwidth B-6dB

s =
1.38MHz in pulse-echo mode, i.e., the fractional bandwidth equals 61.5%. In order
to avoid near field effects, the geometric distance l between both transducerswas cho-
sen to exceed the near field distance Nnear ≈ R2

T/λaco ≈ 60mm.Bymeans of a power
amplifier, the ultrasonic transmitter was excitedwith a signal amplitude ûI up to 50V.
After the generated sound pressurewaves have propagated throughwater path aswell
as investigated flat plate, they reach the ultrasonic receiver. The receiver output uO(t)
was acquired by a digital storage oscilloscope (Tektronix DPO 7104C [100]) at the
sampling frequency of 200MHz. Averaging of 50 recorded waveform ensured a
reasonable signal-to-noise ratio of uO(t).

As discussed in Sect. 9.2.1, the simultaneous determination of plate thickness dP
and SOS cP inside the plate requires a reference measurement without plate. The
reference measurement needs to be done only once before investigating plates and
yields the SOS cW in water as well as the TOF tW of ultrasonic waves propagating
from transmitter to receiver. For this purpose, the ultrasonic receiver was mounted
on a linear translation axes (Physik Instrumente M-531.DG [81]) that allows pre-
cise variation of the geometric distance l between both transducers. By evaluating
the time difference ΔtW for distinct changes Δl of l, one can measure the SOS
inside water with the aid of cW = Δl/ΔtW in a reliable manner. It is, of course,
convenient to apply the same excitation signals and signal processing steps for the
referencemeasurement as for the subsequent platemeasurements. In the present case,
the resulting quantities amounted cW = 1488m s−1 and tW = 294.5µs, which leads
to the geometric distance l ≈ 440mm of the ultrasonic transducers, i.e., l � Nnear

holds.

Axial Point Spread Function

The point spread function (PSF) denotes generally a decisive quantity of imaging
systems since it provides information about the achievable spatial resolution of the
system [14, 40, 99]. For the considered ultrasonic measuring system, the axial PSF
will equal the waveform resulting from signal processing when only the directly
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Fig. 9.22 Normalized axial
point spread functions for
pulse-shaped transmitter
excitation and for
conditioned chirp excitation
signal uIC(t) after pulse
compression with
mismatched filter (MM)
hMM
PC (t) = uI(−t) · w(t) and

adapted Wiener filter (WW)
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transmitted signal p0∼(t) arises at the receiver, i.e., without a plate between trans-
mitter and receiver. This corresponds to the compression output eev(t) of an infinitely
thin plate. Owing to the fact that the compression output does not contain any multi-
ple reflections, we can directly deduce both the achievable spatial resolution TP and
the SLL from eev(t).

Figure 9.22 shows three axial point spread functions of the realized measurement
setup. The first PSF refers to the envelope of the system’s impulse response hT(t) (i.e.,
the impulse response of the transducer pair) that results frompulse-shaped transmitter
excitation, which is conventionally exploited for ultrasonic measurements.While the
second PSF relates to pulse compression bymeans of themismatched filter hMM

PC (t) =
uI(−t) · w(t) (cf. (9.56)), the adaptedWiener filter HWW

PC ( f )was applied for the third
PSF (cf. (9.60)). In both cases, side lobe level reduction was conducted with the aid
of a Dolph–Chebyshev windoww(t) andw( f ) targeting SLL = −35 dB.Moreover,
the conditioned chirp signal uIC(t) served as transmitter excitation for the second
and third PSF. The comparison of the three PSFs reveals that the adapted Wiener
filter leads to the narrowest main lobe and, thus, to the best spatial resolution of the
ultrasonic measuring system. This result can be ascribed to the filter characteristic
of HWW

PC ( f ), which corresponds to an inverse filter within the bandwidth of the
excitation signal. Apart from that, the Wiener filter provides the lowest SLL due
to the utilized Dolph–Chebyshev window w( f ). In contrast to the mismatch filter
that was designed on basis of the unconditioned chirp signal uI(t), the resulting PSF
of the Wiener filter is symmetric because HWW

PC ( f ) was designed on basis of the
interrogation signal gT( f ).

Besides the mentioned combinations of excitation signal and pulse compression
filter for the realized ultrasonic measuring system, there exist various other combina-
tions that, of course, yield different PSFs and, consequently, different values for TP
and SLL. This follows from the performed conditioning of the transmitter exci-
tation (see Sect. 9.2.3). Since the real-valued conditioning filter ΨW( f ) (cf. (9.47))
exclusively modifies the spectral magnitudes of the unconditioned chirp signal, pulse
compression filters can be designed on basis of both conditioned and unconditioned
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Table 9.1 Comparison of spatial resolution TP and highest side lobe level SLL for different com-
binations of excitation signal (i.e., either unconditioned excitation uI(t) or conditioned excita-
tion uIC(t)) and pulse compression filter; values refer to measured PSFs

Excitation Compression filter TP/δP SLL in dB

Pulse − 1 −33.9

uI(t) Matched: hMPC(t) = uI(−t) 1.06 −28.0

Mismatched: hMM
PC (t) = uI(−t) · w(t) 1.32 −34.1

Adapted Wiener: HWW
PC ( f ) 0.80 −34.8

uIC(t) Matched: hMPC(t) = uIC(−t) 0.66 −7.5

Mismatched: hMM
PC (t) = uIC(−t) · w(t) 0.86 −14.5

Mismatched: hMM
PC (t) = uI(−t) 0.83 −14.5

Mismatched: hMM
PC (t) = uI(−t) · w(t) 1.09 −27.3

Mismatched: hMM
PC (t) = gT(−t) 0.95 −29.4

Mismatched: hMM
PC (t) = gT(−t) · w(t) 0.99 −30.6

Adapted Wiener: HWW
PC ( f ) 0.80 −34.8

excitation signal. Table 9.1 contains the measured values for selected combinations.
Note that the spatial resolutions TP have been normalized to δP = 0.59µs, which rep-
resents the spatial resolution achievable by pulse-shaped excitation of the employed
ultrasonic transducers.

In a first step, let us take a closer look at the expected spatial resolution in the mea-
sured PSFs. The unconditioned chirp signal uI(t) with the mismatched filter hMM

PC (t)
exhibits the worst spatial resolution, whereas the conditioned chirp signal uIC(t)with
the matched filter hMPC(t) enables the best resolution. From there, one could conclude
that the second combination should be optimal for the realized ultrasonic measur-
ing system. However, the very high SLL of −7.5 dB causes remarkable problems
in separating multiple reflections from directly transmitted signals, which is abso-
lutely necessary to determine plate thickness and SOS. It is, furthermore, noticeable
that uIC(t) in combination with mismatched filtering does not substantially improve
the spatial resolution although the obtained resolutions are always better than in case
of uI(t). Nevertheless, the SNR value of the compression output increases compared
with pulse-shaped excitation since the time–bandwidth product TB takes high val-
ues. The table entries also demonstrate that regardless of matched or mismatched
filtering, uI(t) always offers a better SLL in the PSF than uIC(t). This fact originates
from the opposite behavior of conditioning filter ΨW( f ) and window function w(t)
for SLL reduction. While ΨW( f ) tends to enhance the band edges, w(t) is designed
for smoothing them. As a last aspect, it should be mentioned that pulse compression
by the adapted Wiener filter HWW

PC ( f ) is almost independent of the excitation signal
because such filter acts as an inverse filter in the frequency band of w( f ). Compared
to the other combinations of excitation signal and pulse compression filter, HWW

PC ( f )
produces the best values for both TP and SLL.
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Fig. 9.23 Normalized
compression output eev(t)
for three steel plates of
different thicknesses dP;
pulse compression conducted
with mismatched fil-
ter (MM)hMM

PC (t) = uI(−t) · w(t)
and adapted Wiener
filter (WW) HWW

PC ( f )
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Measurement Results

The realized measurement setup was utilized to analyze flat plates of different thick-
nesses and materials, e.g., steel. Before the determined values for plate thickness dP
and SOS cP are compared to reference values, let us discuss the resulting compres-
sion outputs eev(t) of steel plates differing in thickness. Figure 9.23 depicts eev(t)
for the nominal plate thicknesses 3.0, 2.0, and 1.5mm. Just as in Fig. 9.22, the
conditioned chirp signal uIC(t) served as transmitter excitation. Pulse compression
was conducted either through the mismatched filter hMM

PC (t) = uI(−t) · w(t) or the
adapted Wiener filter HWW

PC ( f ). For simultaneous determination of dP and cP, it is
indispensable that directly transmitted waves as well as multiple reflections cause
pronounced maxima in eev(t). Both compression filters enable separation of these
maxima for dP = 3.0mm as well as dP = 2.0mm. However, in case of the thinnest
steel plate (i.e., dP = 1.5mm), the mismatched filter does not allow maxima identi-
fication and, therefore, dP as well as cP cannot be calculated. By contrast, the com-
pression output resulting from the adapted Wiener filter contains separable maxima.

To actually measure plate thickness dP and SOS cP by means of the realized ultra-
sonic measuring system, we have to figure out the TOFs t0 and tR in the compression
output eev(t). The maxima in the normalized eev(t), which contain this information,
were found algorithmically. With a view to avoiding side lobe detection, normalized
maxima were only taken into account if they exceeded 0.15. The TOF tR was esti-
mated by computing the mean value of the time differences between all successive
maxima. Together with the parameters cW and tW, the aimed quantities dP as well
as cP can finally be determined simultaneously from (9.25) and (9.26).

Figure 9.24a and b show the obtained results for dP and cP, respectively. Overall,
seven plates of the dimension 250mm × 150mm × dP were investigated. The plates
were made of steel, aluminum or poly(methyl methacrylate) (PMMA). Again, the
mismatched filter hMM

PC (t) = uI(−t) · w(t) and the adapted Wiener filter HWW
PC ( f )

were applied for pulse compression. The given percentage values relate to the relative



9.2 Determination of Plate Thickness and Speed of Sound 451

(a) plate thickness

(b) SOS inside plate

MM

MM

WW

WW

d
P

in
m
m

c P
in

m
s−

1

-1.0%
-0.7%

0.0%
-1.3%

-1.5%

-0.4%
0.0%

-0.4%
0.5%

-1.0%
0.8%

-1.6%
2.2%

-2.1%
-0.9%

-2.2%
1.7%

3.0%
0.3%

0.6%
-0.1%

0.8%
3.0%

2.2%

0.8%
0.2%

steel
3.0mm

steel
3.0mm

steel
2.0mm

steel
2.0mm

steel
1.5mm

steel
1.5mm

Al
6.0mm

Al
6.0mm

Al
4.0mm

Al
4.0mm

Al
2.5mm

Al
2.5mm

PMMA
2.0mm

PMMA
2.0mm

0

0

2

4

6

8

2000

4000

6000

8000

Fig. 9.24 Comparison of determined a plate thickness dP and b SOS cP inside plate for dif-
ferent plate materials and plate thicknesses; pulse compression conducted with mismatched fil-
ter (MM) hMM

PC (t) = uI(−t) · w(t) and adapted Wiener filter (WW) HWW
PC ( f ); relative deviations

from reference values as percentage values above bares

deviations from reference values, which are displayed as horizontal lines. While
a micrometer screw served as reference for dP, the reference values for cP were
determined by standard TOF measurements (see Fig. 5.8d on p. 138) with a piezo-
electric contact transducer that generates longitudinal waves inside the investigated
plates. The contact transducer (Olympus V112 [77]) with the active element diam-
eter 2RT = 6.4mm offers a nominal center frequency of fc = 10MHz and, thus,
provides small wavelengths. Consequently, the relative deviations from the refer-
ence values can be interpreted as relative measurement error of the ultrasonic mea-
suring system. With the exception of the thinnest steel plate (i.e., dP = 1.5mm),
the combination of conditioned chirp excitation uIC(t) and mismatched filter leads
to reliable measurement results for dP as well as cP. The Wiener filter additionally
allows determination for this steel plate because maxima in eev(t) can still be sepa-
rated (cf. Fig. 9.23). For both compression filters, the maximum relative deviations
of dP and cP from the reference take values within ±3%.

In summary, we are able to simultaneously determine plate thickness and speed of
sound by the considered ultrasonic measuring system that is based on the through-
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transmission mode, i.e., the investigated plate is located between transmitter and
receiver. The characterization of thin plates calls for an outstanding spatial resolution
of the measuring system, which goes hand in hand with a high center frequency
and a large bandwidth of the used ultrasonic transducers. To exploit the available
bandwidth best possible and achieve a reasonable SNR in the receive signals, linear
up-chirp signals served as coded transmitter excitation. By additionally conditioning
the excitation signal before sending, one can enhance spectral components at the
lower and upper edge of the transducer bandwidth. However, owing to their duration,
coded excitation signals always require pulse compression approaches. In the present
case, pulse compression was conducted by matched filters, mismatched filters as
well as adapted Wiener filters. As the comparison of the different pulse compression
filters reveals, the adapted Wiener filter leads to the best performance of the realized
ultrasonic measuring system. It is interesting to note that plate thicknesses can be
measured down to 60% of the wavelength inside the plate.

9.3 Fluid Flow

The metrological registration of fluid flow is an important branch of process mea-
surement technology. Various technical and industrial applications demand a precise
acquisition of mass flow rates and volumetric flow rates of fluids (i.e., liquids or
gases) through pipes. For instance, it is very important for industry to measure the
oil quantity, which is flowing through pipelines and for drivers to be aware of the
obtained fuel at petrol stations. Moreover, the amount of consumed water represents
a decisive quantity for private households. Owing to the great variety of applications
and large value range of flow rates, there exists a remarkable number of different
measurement principles [30, 106]. Basically, one can distinguish between direct and
indirect measurement methods for mass flow rates and volumetric flow rates. As the
names suggest, direct methods provide immediately the mass flow rates or volumet-
ric flow rates through pipes, while indirect methods require the pipe cross section to
determine the desired quantities. Direct measurement methods include displacement
flow meters and coriolis flow meters. In contrast, turbine flow meters, vortex shed-
ding flow meters, magnetic flow meters as well as ultrasonic flow meters belong to
the group of indirect measurement methods.

In the following, let us concentrate on ultrasonic flow meters since these flow
meters usually exploit piezoelectric transducers for transmitting and receiving ultra-
sonic waves. Before the fundamental measurement principles of ultrasonic flow
meters are studied in Sect. 9.3.2, we will discuss decisive physical quantities in
fluid flow measurements. Section 9.3.3 addresses typical arrangements of transmit-
ters and receivers for ultrasonic flow meters. Finally, a modeling approach will be
presented which enables efficient simulation of clamp-on ultrasonic flow meters.
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9.3.1 Fundamentals of Fluid Flow Measurements

In this subsection, let us explain decisive physical quantities in fluid flow measure-
ments as well as fundamental relations for ultrasonic flow meters. The mass flow
rate ṁF(t) (unit kg s−1) represents such a physical quantity because it measures the
mass mF(t) of a fluid, which passes per unit of time t . Therefore, ṁF(t) is defined as

ṁF(t) = lim
Δt→0

ΔmF(t)

Δt
= dmF(t)

dt
. (9.61)

If we assume a uniformfluid of constant density �0 that flows in one direction through
a circular pipe (inner cross section AP) with the flow rate vF(r, t) depending on both
radial position r inside the pipe and time, ṁF(t) will result from

ṁF(t) = �0

∫

AP

vF(r, t) dA . (9.62)

Besides the mass flow rate, the volumetric flow rate V̇F(t) (volume flow rate;
unit m3 s−1) denotes a decisive physical quantity in fluid flow measurements. It
is given by

V̇F(t) = lim
Δt→0

ΔVF(t)

Δt
= dVF(t)

dt
=
∫

AP

vF(r, t) dA (9.63)

and, thus, measures the fluid volume inside the pipe, which passes per unit of time
with vF(r, t). For a uniform fluid of constant density, there exists a simple connection
of volumetric flow rate and mass flow rate according to ṁF(t) = �0V̇F(t).

Common ultrasonic flow meters do not provide the spatially resolved flow
rate vF(r, t) of a fluid along the pipe cross section. Actually, one can mostly just
determine the average flow rate vF(t), which indicates the average value of vF(r, t)
along the path of propagating ultrasonic waves (see Sect. 9.3.2). Before this fact is
discussed in detail, it makes sense to introduce as a further quantity the average area
velocity vA(t) of the pipe cross section AP. The volumetric flow rate V̇F(t) and vA(t)
are linked by

V̇F(t) = vA(t) AP . (9.64)

By inserting (9.63), vA(t) then becomes

vA(t) = V̇F(t)

AP
= 1

AP

∫

AP

vF(r, t) dA = 2

R2
Pi

RPi∫

0

vF(r, t) r dr (9.65)
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with the inner radius RPi of the circular pipe. In contrast to the average area velocity,
the average flow rate vF(t) being defined as

vF(t) = 1

RPi

RPi∫

0

vF(r, t) dr (9.66)

does not directly lead to the volumetric flow rate V̇F(t)within the pipe. To handle this,
one should take a closer look at the ratio kv of both velocities, which takes the form

kv = vA(t)

vF(t)
= 2

RPi

RPi∫

0
vF(r, t) r dr

RPi∫

0
vF(r, t) dr

(9.67)

and is always smaller than 1. When kv is known, we can calculate V̇F(t) from vF(t)
with the aid of

V̇F(t) = kvvF(t) AP . (9.68)

The problem lies, however, in the fact that the ratio kv strongly depends on the
flow profile of the fluid [36, 62]. In the case of an inline ultrasonic flow meter (see
Sect. 9.3.3), one can calibrate the measurement system in advance since the arrange-
ment at the measuring point (transducers and pipe) is well known. The aim is to
determine a relation between measured average flow rate vF(t) and volumetric flow
rates V̇F(t). By contrast, we usually do not exactly know the arrangement in case
of clamp-on ultrasonic flow meters that represent a noninvasive configuration. It
should be, nevertheless, possible to estimate kv if the flow profile inside the pipe
is known. Because the flow profile itself depends on the average flow rate vF(t)
of the fluid, we have to calculate kv iteratively during flow measurement [84]. The
actual existing flow profile gets approximated while doing so. In this context, the
so-called Reynolds number Re, which denotes an important dimensionless quantity
in fluid mechanics [25], plays a significant role. For the flow inside a circular pipe,
the Reynolds number is defined as3

Re = �0vFDPi

η
(9.69)

with the inner diameter DPi = 2RPi of the pipe and the dynamic viscosity η of the
fluid.

Table 9.2 contains the underlying mathematical relations of the spatially resolved
flow rate vF(r) as well as the resulting ratio kv for three different characteristic flow
profiles that are often used to approximate the actual flow profile inside a circular

3For compactness, the argument time t is omitted hereinafter.
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Table 9.2 Fluid velocity vF(r) inside pipe with respect to radial position r ; ratio kv = vA/vF of
average area velocity vA and average flow rate vF; inner radius RPi of pipe; maximum vmax of vF(r);
parameter nv depends on Reynolds number Re and differs for the velocity profiles

Velocity profile Fluid velocity vF(r) Ratio kv
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Fig. 9.25 Normalized
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profiles vF(r) inside pipe of
inner radius RPi with respect
to parameter nv (see
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pipe. The flow profiles are named (i) power law velocity profile, (ii) logarithmic
velocity profile, and (iii) parabolic velocity profile [36]. Eachof these velocity profiles
depends on the Reynolds number Re since the parameter nv in the mathematical
relations is a function of Re. Obviously, nv modifies the three velocity profiles in a
different way and, thus, it does not make any sense to compare them for the same
parameter value.

The parabolic velocity profile with nv = 1 describes the flow profile for laminar
flow inside a pipe, which means that the fluid flows in parallel layers without any
disruption between the layers [25]. A laminar flow will occur if Re < 2300 holds,
whereas a turbulent flow is present for Re > 4000. Such a turbulent flow implies
chaotic changes in pressure aswell as velocity and corresponds to a parabolic velocity
profile with nv > 5. When a fluid flow exhibits a Reynolds number from 2300 to
4000, it is usually named transition flow. Figure 9.25 displays normalized parabolic
velocity profiles inside a pipe for different values of nv .
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9.3.2 Measurement Principles of Ultrasonic Flow Meters

In this subsection, we will explain the underlying measurement principles of transit
time aswell asDoppler ultrasonic flowmeters. These two types of flowmeters are fre-
quently employed in technical applications that use ultrasound for flowmeasurements
of fluids, i.e., liquids and gases. Moreover, we will briefly study speckle-tracking
ultrasonic flow meters, which enable determination of velocity profiles inside pipes.
Further types of ultrasonic flow meters such as the tag cross-correlation flow meter
are discussed in, e.g., [3, 62].

Transit Time Flow Meters

Ultrasonic flow meters are mostly based on the so-called windfall effect for prop-
agating sound waves, i.e., one makes use of the fact that sound waves travel faster
in the direction of flow than against [30, 36]. The utilization of this windfall effect
is particularly suitable in fluids, which contain only a small number of scattering
particles for incident ultrasonic waves. For illustration of the measuring principle,
let us assume a configuration consisting of two ultrasonic transducers (T1 and T2)
as well as a circular pipe (inner diameter DPi) through which a homogeneous fluid
is flowing. As displayed in Fig. 9.26a, the connecting line of both transducers and
the pipe axis enclose the angle βF and, therefore, this connecting line exhibits the
angleαF = 90◦ − βF perpendicular to the pipe axis. According to the windfall effect,
the sound velocities in the direction of flow and against will become (average flow
rate vF)

cdown = cF + vF cosβF = cF + vF sinαF = cF + v‖ (9.70)

cup = cF − vF cosβF = cF − vF sinαF = cF − v‖ (9.71)

if the sound velocity in the resting fluid (i.e., without any flow; vF = 0) amounts cF.
The expressions cdown and cup denote the downstream and upstream sound velocity,
respectively. The terms±vF cosβF = ±vF sinαF = ±v‖ in (9.70) and (9.71) indicate
the flow-induced changes in these sound velocities (see Fig. 9.26b). Not surprisingly,
the difference of cdown and cup will take its maximum for a given average flow rate
when βF = 0◦ (i.e., αF = 90◦) holds.

In order to acquire vF, we have to determine the sound velocities cdown as well
as cup. This can be done by evaluating the transit times tdown and tup of sound waves
propagating in the direction of flow and against, respectively. The transit time tdown
will arise when T1 serves as transmitter and T2 as receiver. In the other case (i.e.,
transmitter T2 and receiver T1), it is possible to figure out tup. For the considered
configurations, the sound waves cover in both directions the geometric distance

LF = DPi

sin βF
= DPi

cosαF
(9.72)
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Fig. 9.26 aMeasurement principle of transit time ultrasonic flowmeters; transit times tdown and tup
differ in downstream and upstream direction; ultrasonic transducers T1 and T2; b component v‖
of average flow rate vF causes difference of sound velocities cdown and cup in downstream and
upstream direction

inside the fluid. Consequently, the transit times tdown;up = LF/cdown;up of the propa-
gating sound waves result from4

tdown = DPi

cdown cosαF
+ tdelay and tup = DPi

cup cosαF
+ tdelay . (9.73)

Here, tdelay stands for a constant time delay, which does not depend on vF and com-
prises sound propagation times within the ultrasonic transducers as well as further
delays of the obtained electrical signals. By computing the time difference ΔtF of
both transit times, tdelay cancels out and, therefore, does not affect the identified value
of vF. The time difference takes the form

ΔtF = tup − tdown = DPi

cup cosαF
− DPi

cdown cosαF

= DPi

cosαF

cdown − cup
cdown cup

, (9.74)

which can be directly converted to the phase difference ΔϕF = 2π f ΔtF in case of a
knownultrasonic frequency f . If cdown and cup are replacedby (9.70) and (9.71), (9.74)
will read as

ΔtF = DPi

cosαF

2vF sinαF

c2F − v2
F sin

2 αF
. (9.75)

Because vF � cF is usually fulfilled in ultrasound-based flow measurements, one
can simplify this relation to

4The following mathematical relations are given exclusively for the angle αF.
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ΔtF ≈ 2DPi vF tanαF

c2F
(9.76)

without causing significant deviations. In doing so, the averageflow ratevF is given by

vF = ΔtF c2F
2DPi tanαF

. (9.77)

If the delay time tdelay is known or comparatively small, we can also exploit the
sum Σ tF of both transit times to determine vF. This sum becomes

Σ tF = tup + tdown = DPi

cup cosαF
+ DPi

cdown cosαF

= DPi

cosαF

cdown + cup
cdown cup

(9.78)

and after replacing cdown as well as cup

Σ tF = DPi

cosαF

2cF
c2F − v2

F sin
2 αF

= 2LF cF
c2F − v2

F sin
2 αF

. (9.79)

Just as in (9.75), it is possible to neglect the expression v2
F sin

2 αF since vF � cF
holds. The resulting relation Σ tF ≈ 2LF/cF in combination with the time differ-
ence Δt yields

vF = cF
sinαF

ΔtF
Σ tF

(9.80)

for the average flow rate. In contrast to (9.77), this equation requires neither the
inner diameter DPi of the pipe in which the fluid flows nor the geometric distance LF

between the ultrasonic transducers, but the time delay tdelay has to be known. Never-
theless, the sumΣ tF will lead to the sound velocity cF of the fluid when LF is known.
This can be particularly useful to consider the temperature dependency of cF in the
framework of determining vF.

Figure 9.27 displays typical receive signals of transit time ultrasonic flow meters
for pulse-shaped electrical excitation and an average flow rate vF �= 0. While udownrec
refers to the output of transducer T2, uuprec represents the output of transducer T1.
As can be clearly seen, a certain time difference ΔtF between both receive signals
occurs. Especially in case of low flow rates, vF and, thus, the time differenceΔtF will
be small, e.g., in the range of a few nanoseconds [7, 84]. On the other hand, a large
flow rate may produce strong differences of udownrec and uuprec regarding their amplitudes
as well as signal shape [52]. For these reasons, one should apply cross-correlation
approaches [59] and interpolation techniques [82, 108] to precisely determine ΔtF.
Further improvements can be achieved by means of coded transducer excitation
signals, such as chirp signals, Barker codes, and Gold codes [48, 67]. However, the
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Fig. 9.27 Results ofFE simulations for receive signals of transit timeultrasonicflowmeter in clamp-
on configuration; a entire receive signals udownrec and uuprec in downstream and upstream direction; b
detail 1 shows receive signals due to solid-borne sound propagating in pipe wall; c detail 2 shows
desired signals offering time difference ΔtF between udownrec and uuprec for determination of vF

available electrical energy and computing power as well as the utilized ultrasound
transducers primarily specify the possible measuring range of transit time ultrasonic
flow meters.

Besides conventional transit time ultrasonic flow meters consisting of one mea-
suring section (i.e., two ultrasonic transducers), there exist various other implemen-
tations that require two or even more measuring sections. The so-called sing-around
ultrasonic flow meter is based on two measuring sections (i.e., four ultrasonic trans-
ducers), which are operated simultaneously as well as permanently [30, 36]. One of
these sections captures the downstream direction, while the other one the upstream
direction. Due to the different sound velocities cdown and cup, the resulting tran-
sit times tdown and tup will differ again. If a pulse-shaped transducer excitation is
applied, we can distinguish between two sing-around methods, namely (i) fixed
measurement time and (ii) fixed number of signal circulations. In each case, the
receiver triggers the transmitter within one measuring section, which means that the
transmitter will generate a pulse-shaped sound wave when a sound wave reaches the
receiver. The number ndown and nup of trigger events in downstream and upstream
direction indirectly relate to the average flow rate vF. As the name suggests, the
trigger events are counted during a fixed measurement time for the first sing-around
method. By means of
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vF = cF
sinαF

ndown − nup
ndown + nup

, (9.81)

one finally obtains vF. Owing to the integer discretization, the accuracy strongly
depends on the number of trigger events that are considered for a singlemeasurement.
A large number and, therefore, a longmeasurement timewill lead to precise results for
vF. However, a long measurement time prevents dynamic measurements of vF. The
second sing-aroundmethod is based on a fixed number of trigger events, i.e., ndown =
nup. Of course, the time intervals Tdown and Tup to reach this number will differ
in downstream and upstream direction because the effective sound velocities and,
consequently, the transit times do not coincide. The connection of vF and the time
intervals is given by

vF = cF
sinαF

Tup − Tdown
Tup + Tdown

. (9.82)

A further type of transit time ultrasonic flow meter exploits the so-called lambda
locked loop principle [60]. Thereby,we require again at least onemeasuring section in
downstream direction and one in upstream direction. Since the sound velocities cdown
and cup will differ when vF �= 0, the wavelengths λdown = cdown/ f and λup = cup/ f
of the generated sound waves do not coincide for a given ultrasonic frequency f .
The lambda locked loop principle aims at a constant wavelength in downstream and
upstream direction. This condition can only be satisfied if the ultrasonic frequen-
cies fdown and fup in both flow directions differ, i.e.,

λ0 = λdown = cF + vF sinαF

fdown
= λup = cF − vF sinαF

fup
(9.83)

where λ0 = cF/ f stands for the wavelength without flow. As a result, we obtain an
identical phase difference ΔϕF in the measuring sections between transmitted and
received signal. For the practical implementation, it makes, thus, sense to vary fdown
as well as fup according to the phase differences in the measuring sections. When
equal values for ΔϕF are achieved, the average flow rate will follow from

vF = λ0

2 sinαF

(

fdown − fup
)

. (9.84)

Generally speaking, transit time ultrasonic flow meters are utilized in several
applications, where the mass flow rate or the volumetric flow rate of fluids has to be
acquired over a wide measuring range of flow velocities. Depending on the investi-
gated medium, such ultrasonic flow meters typically operate at frequencies ranging
from 40 kHz up to a few megahertz [3, 62]. Rather small operating frequencies are
chosen for gases due to sound attenuation, while the ultrasonic transducers feature
center frequencies of ≈1MHz for liquids. Especially in case of multipath configura-
tions, whichmeans that more than onemeasuring section is available for determining
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the flow velocity, transit time ultrasonic flow meters offer a relative measurement
error smaller than 1%.

Doppler Flow Meters

Instead of the windfall effect, Doppler ultrasonic flow meters exploit the Doppler
effect inside flowing fluids [30, 36]. Such ultrasonic flow meters will be especially
appropriate if the fluid contains many scattering particles for incident ultrasonic
waves. Before the idea behind Doppler ultrasonic flow meters is detailed, we will
briefly repeat the fundamentals of the Doppler effect for sound waves. Basically,
one can distinguish between three different standard scenarios: (i) stationary trans-
mitter and moving receiver, (ii) moving transmitter and stationary receiver, and (iii)
stationary transmitter and stationary receiver for a moving reflector (see Fig. 9.28).
Let us suppose for each scenario that the transmitter generates sound waves with the
frequency fT in a fluid featuring the sound velocity cF. In case of scenario (i), the
resulting wavelength λT also arises at the receiver, which is assumed to move toward
the transmitter with the velocity given by the vector v0. Due to this movement, the
effective sound velocity of the incident waves changes to cF + v0 · eRT and, therefore,
the relation (wavelength λR at receiver)

λT = cF
fT

= λR = cF + v0 · eRT
fR

(9.85)

holds with the unit vector eRT pointing from receiver to transmitter. By rewrit-
ing (9.85), the frequency fR of the sound waves at the receiver becomes

fR = fT

(

1 + v0 · eRT
cF

)

. (9.86)

Since the transmitter moves toward the receiver with the velocity vector v0 in sce-
nario (ii), the wavelength λR of the incident sound waves at the stationary receiver
reads as (unit vectoreTR pointing from transmitter to receiver)

λR = λT − v0 · eTR
fT

. (9.87)

Inserting this equation as well as λT = cF/ fT in fR = cF/λR leads to

fR = fT

(

1 − v0 · eTR
cF

)−1

(9.88)

for the sound frequency at the receiver. If |v0 · eTR| � cF is satisfied, (9.88) can be
simplified to

fR ≈ fT

(

1 + v0 · eTR
cF

)

. (9.89)
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Fig. 9.28 Standard scenarios concerning Doppler effect; a stationary transmitter and moving
receiver; b moving transmitter and stationary receiver; c stationary transmitter and receiver for
moving reflector; transmitter T and receiver R; velocity vector v0

According to (9.86) and (9.89), fR is solely influenced by the relative velocity
between transmitter and receiver. If they move toward each other, the receive fre-
quency fR will be higher and, otherwise, smaller than the transmit frequency fT.

Scenario (iii) relates to a stationary transmitter and receiver, which are located at
the same position. In case of a reflector moving toward the transmitter–receiver com-
binationwith the velocity vectorv0, the reflector observes the same frequency as given
in (9.86). The reflector itself serves as source of soundwaves and can, thus, be treated
as a transmitter that moves toward the receiver. The sound frequency fR of reflected
sound waves at the receiver results then from the link of (9.86) and (9.88), i.e.,

fR = fT
1 + v0·ePT

cF

1 − v0·ePR
cF

(9.90)

with the unit vectors ePT pointing from moving reflector to stationary transmitter
and ePR (=̂ ePT) pointing from moving reflector to stationary receiver, respectively.
Under the assumption of |v0 · ePT| � cF, this equation takes the form

fR ≈ fT

(

1 + 2v0 · ePT
cF

)

. (9.91)

The velocity of the reflector has, consequently, the double impact on the receive
frequency as a moving transmitter or moving receiver without reflector.

Now, let us consider an actual realization of a Doppler ultrasonic flow meter,
which is displayed in Fig. 9.29. The central axis of both ultrasonic transducers and
the pipe axis encloses the angle βF. A scattering particle shall be moving along the
pipe axis with the flow velocity vF = ‖vF‖2. If the transmitter generates a continuous
soundwave of frequency fT, the sound frequency fP at themoving scattering particle
will become (cf. (9.86))

fP = fT

(

1 + vF · ePT
cF

)

= fT

(

1 − vF cosβF

cF

)

(9.92)
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with the unit vector ePT pointing from particle to stationary transmitter. Again, this
scattering particle can be treated as source of sound waves. The resulting sound
frequency fR at the stationary receiver is finally given by (cf. (9.90))

fR = fT
1 + vF ·ePT

cF

1 − vF ·ePR
cF

= fT
1 − vF cosβF

cF

1 + vF cosβF

cF

(9.93)

where ePR denotes the unit vector pointing frommovingparticle to stationary receiver.
Owing to the fact that vF � cF is always fulfilled for common fluid flows being
measured with Doppler ultrasonic flow meters, this equation simplifies to

fR ≈ fT

(

1 − 2vF cosβF

cF

)

. (9.94)

The velocity of the scattering particle reads then as

vF = cF( fT − fR)

2 cosβF fT
. (9.95)

When the quantities cF, fT, fR, andβF are known,we can, therefore, calculate the flow
velocity. In doing so, it is supposed that the particles move uniformly with the flow,
which sometimes constitutes a problem in practical applications. Besides, (9.95) is
based on the assumption that scattering particles exclusively exist along the pipe axis.
As a matter of course, scattering particles also arise apart from this axis. Because the
anglesβF for the ultrasonic transducer differ for suchparticle locations (seeFig. 9.29),
the mathematical link between vF, fT, and fR changes. According to Fig. 9.25, the
particle velocities depend, moreover, on the radial position r inside the pipe. Those
are the reasons why one should use a transducer combination, which features a
limited spatial extension of the measuring volume around the pipe axis. Similar to
transit time ultrasonic flow meters, one has to know the velocity profile vF(r) inside
the pipe with a view to determining the mass flow rate ṁF and the volumetric flow
rate V̇F from the flow velocity along the pipe axis.

The studied Doppler ultrasonic flowmeter requires two ultrasonic transducers (cf.
Fig. 9.29). While one transducer serves as transmitter of continuous sound waves
that commonly exhibit constant frequency, the other transducer is utilized as receiver.
If we apply a pulse-shaped excitation, it will be possible to build up a Doppler
ultrasonic flow meter with only one transducer operating in pulse-echo mode [3].
Just as in case of two transducers, we can evaluate the frequency shift between
transmitted and received pulse to determine the flow velocity. However, a single
transducer exhibits a sustained measuring volume, which is usually larger than that
of a transmitter–receiver combination. Due to the large measuring volume, scattering
particles at different radial positions and, thus, with different velocities contribute to
the receiver output. As a result, we obtain a broadband frequency spectrum, which
cannot be assigned to a single flow velocity of the fluid.



464 9 Measurement of Physical Quantities and Process Measurement Technology
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In general, typical Doppler ultrasonic flow meters operate at frequencies of a few
megahertz and provide a relative measurement error of the flow velocity smaller
than 5% [30]. They can be used for flow velocities of liquids in the range of 0.2–
10m s−1. The frequency difference Δ f = fT − fR between transmit and receive
frequency normally accounts 200Hz to 10 kHz. The optimum concentration of the
scattering particles in the liquid is in the order of 0.01% [3]. Their size should
be approximately in the range of 30–100µm. Apart from industrial applications,
Doppler ultrasonic flow meters are employed in medical diagnostics for blood flow
measurements [45].

Speckle-Tracking Flow Meters

To determine volumetric flow rates as well as mass flows inside a pipe, one has to
know the velocity profile vF(r) for standard realizations of transit time ultrasonic
flow meters and Doppler ultrasonic flow meters. Speckle-tracking ultrasonic flow
meters do not require the knowledge of vF(r) because they can be used to recon-
struct this quantity [60, 62]. Just as Doppler ultrasonic flowmeters, speckle-tracking
flow meters exploit reflections of incident sound waves at scattering particle, which
are supposed to move uniformly with the flow inside the pipe. The underlying mea-
surement principle is based on the pulse-echo mode of an ultrasonic transducer. By
exciting the transducer with a pulse-shaped electrical signal, we are able to determine
the radial position r of the scattering particles from the time-of-flight of the resulting
echo. The cross-correlation of the echo signals for successive transducer excitations
yields the position change of the scattering particles. In case of a sufficient concentra-
tion of scattering particles, we can, thus, deduce the spatially resolved flow velocity
of the fluid, i.e., the velocity profile inside the pipe.

Speckle-tracking ultrasonic flow meters offer a comparatively low relative mea-
surement error in the range of 1%. However, such flow meters cannot be utilized for
small flow velocities like 0.2m s−1 since the scattering particles commonly do not
move with the liquid anymore.
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Fig. 9.30 Selected transducer arrangements of ultrasonic flow meters [30, 36]; a single-path inva-
sive; b single-path invasive with acoustic mirrors; c single-path noninvasive; d two paths invasive;
e four paths invasive; ultrasonic transducers Tx ; ultrasonic wedge transducers Wx

9.3.3 Arrangement of Ultrasonic Transducers

There exist many different arrangements of transmitters and receivers for ultra-
sonic flow meters, in particular for transit time ultrasonic flow meters [30, 36, 62].
Figure 9.30 depicts selected arrangements for such flowmeters, which are frequently
utilized in technical applications. Mainly, one can distinguish between single-path
and multipath arrangements as well as invasive and noninvasive configurations.
Because multipath arrangements exploit more than one measuring section (e.g., four
sound paths), the determination of the flow velocity is more reliable and does not
heavily depend on the velocity profile vF(r) inside the pipe [69, 116]. However, the
operation of several measuring sections within ultrasonic flowmeters requires a large
number of ultrasonic transducers and is, furthermore, accompanied by an increas-
ing effort of both control and readout electronics. In the following, let us discuss
the difference between invasive and noninvasive configurations of ultrasonic flow
meters.

Invasive Configurations

In case of invasive configurations of ultrasonic flow meters that are also named
inline ultrasonic flowmeters, the ultrasonic transducers themselves and/or associated
components are in contact with the flowing fluid [3]. Depending on the geometric
circumstances, this contact does not influence the fluid flow or it can be intrusive
disturbing the fluid flow (see Fig. 9.31a and b). Invasive configurations of ultrasonic
flowmeters always require special pipe sections. If the pipe sections are intrusive, they
may cause various additional problems in practical applications. For example, the
flowing fluid can be swirled at the measuring point and, therefore, the velocity profile
will bemodified locallywhich alters themeasured averageflow rate vF for transit time
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Fig. 9.31 a Intrusive and b nonintrusive transducer configurations of invasive ultrasonic flow
meters; c V path, i.e., one reflection at inner pipe wall; dW path, i.e., three reflections at pipe wall;
ultrasonic transducers T1 and T2 [3]

flowmeters. Although inline ultrasonic flowmeters that exploit acoustic mirrors (see
Fig. 9.30b) represent an intrusive configuration, they often facilitate evaluating the
difference ΔtF of transit times in upstream and downstream direction. This is a
consequence of the enlarged transducer distance LF, which linearly increases ΔtF
for a given value of vF in case ofαF = 90◦. Note that we are also able to enlarge LF by
using one (V path; see Fig. 9.31c), two, three (W path; see Fig. 9.31d), or even more
acoustic reflections at the inner pipe wall and by increasing the angle αF. Each of
these methods for enlarging LF leads to a frequently unwanted geometric extension
of the measuring point as well as sometimes to a remarkably reduced SNR in the
receive signals.

Figure 9.32a shows the commercially available inline ultrasonic flow meter
HYDRUS from the company Diehl Metering [23]. This low-cost transit time flow
meter is equipped with a pipe section containing acoustic mirrors and can be applied
for recording water consumption in private households over a wide measuring range.
The low energy consumption of the HYDRUS flow meter allows a battery lifetime
of up to 16 years.

Noninvasive Configurations

In contrast to invasive configurations, there does not occur any contact between fluid
and ultrasonic transducer for noninvasive configurations of ultrasonic flow meters.
This will constitute a great advantage when the flowing fluid exhibits a wide tem-
perature range and would damage the transducers. However, since the transducers
are not in direct contact with the flowing fluid but have to be appropriately cou-
pled to the outer pipe wall, remarkable sound energy does not reach the receiver
due to reflections at the interface fluid/inner pipe wall. Such reflections reduce the
receive signals and, consequently, the achievable SNR. This fact needs to be taken
into account, especially when further acoustic reflections at the inner pipe wall are
used for enlarging the effective transducer distance LF.
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Fig. 9.32 a Inline ultrasonic flow meter HYDRUS from company Diehl Metering; b clamp-on
ultrasonic flow meter from company Endress+Hauser; ultrasonic wedge transducers mounted on
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Fig. 9.33 a Intrusive and b nonintrusive configurations of noninvasive ultrasonic flow meters [3];
clamp-on ultrasonic flow meters represent well-known nonintrusive configuration

Just as in case of inline ultrasonic flow meters, we can distinguish between intru-
sive and nonintrusive configurations [3]. The primary difference between intrusive
ultrasonic flow meters in invasive and noninvasive configurations lies in the position
of the ultrasonic transducers. While the transducers are in contact with the fluid for
invasive configurations, we have to mount the transducers on designated places at the
outer pipe wall for noninvasive configurations. The specific shaping of the inner pipe
wall (see Fig. 9.33a) can cause, again, swirls in the flowing fluid and, thus, measure-
ment errors of the average flow rate vF if an appropriate calibration procedure was
not conducted in advance. Besides, we need a special pipe section at the measuring
point of noninvasive ultrasonic flow meters in intrusive configuration.

The so-called clamp-on ultrasonic flow meters represent a very well-known and
advantageous noninvasive configuration. They do not demand a special pipe section
but can theoretically be installed at any location along the pipe.Hence, one has neither
to open nor to modify an existing pipe system for inserting a pipe section at the
measuring point [30, 36]. Clamp-on ultrasonic flow meters typically use ultrasonic
wedge transducers that consist of a piezoelectric element being mounted on a wedge
featuring the angle αW (see Fig. 9.33b). By utilizing such wedge transducers as
transmitters and receivers, one obtains a fluid angle αF �= 0◦, which is required for
the measurement principle of transit time as well as Doppler ultrasonic flow meters.
To avoid wave refractions and reflections at the interface wedge/outer pipe wall,
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the wedge could be made of the same material as the pipe, e.g., steel. However, in
doing so, we cannot reduce wave reflections at the interface inner pipe wall/fluid.
According to the fundamental law of refraction for acoustics (see Sect. 2.3.4), a
large fluid angle αF for extending ΔtF calls, moreover, for an even larger wedge
angle αW (i.e., αW > αF) because the propagation velocity of longitudinal waves in
the fluid is smaller than in the pipe wall.

Apart from problems concerning technical feasibility, large wedge angles go hand
in handwith a reduced wave transmission at the interface inner pipe wall/fluid. Those
are the reasons why the wedge material should not coincide with the pipe material.
If a special wedge material like plastic of low sound velocity is used instead, we
can, however, exploit mode conversions at the interfaces wedge/outer pipe wall and
inner pipe wall/fluid [3, 84]. Starting from the propagating longitudinal wave in
the wedge, the wave gets converted into a transverse wave propagating in the pipe
wall. At the interface inner pipe wall/fluid, the transverse wave gets converted again
into a longitudinal wave propagating in the fluid. Such ultrasonic wedge transducers
provide primarily three advantages for clamp-on ultrasonic flow meters.

• When the propagation velocities of longitudinal waves in the wedge material
approximately corresponds to the fluid, αW will be similar to αF. Therefore, we
do not need a large value of αW, which facilitates technical realization as well as
coupling of wedge transducers.

• The impedance mismatch at the interfaces inner pipe wall/fluid is much lower
since the acoustic impedance Zaco of the pipe material is smaller for transverse
waves than for longitudinal waves. As a result, we can transmit much more sound
energy at these interfaces, which leads to higher receive signals.

• The third advantage lies in the possibility of generating mechanical Lamb waves
in the pipe wall (cf. Fig. 9.39), which yield a large axial extension of the sound
field in the fluid. This so-called wide beam makes transducer positioning easier
but also reduces the receiver outputs [30, 70].

Despite the great advantages of clamp-on ultrasonic flow meters, both their installa-
tion and commissioning are crucial points for a proper operation [95]. As mentioned
above, clamp-on ultrasonic flow meters can be theoretically installed at any loca-
tion along the pipe. However, when the ultrasonic transducers are mounted a short
distance after a pipe elbow or a change of the pipe cross section, the introduced turbu-
lences inside the flowing fluid will influence the measured average flow rate vF. Just
as the other ultrasonic flow meters, clamp-on ultrasonic flow meters require, thus, a
sufficient inlet path to minimize unwanted disturbances in the flow profile. Another
important aspect refers to the actual measuring point. Only if parameters such as the
pipe inner diameter are known or an adequate calibration can be conducted, it will
be possible to determine vF correctly. Furthermore, the ultrasonic wedge transducers
have to be perfectly aligned at the measuring point. Small axial and radial misalign-
ments of the transducers can alter the measured average flow rate significantly [32,
64]. Proper coupling of the transducers to the outer pipe wall is, of course, a fur-
ther decisive point for clamp-on ultrasonic flow meters. Coupling can be ensured by
means of a thin layer of, e.g., an appropriate liquid, epoxy resins, or silicon grease
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between wedge transducer and cleaned outer pipe wall. Finally, one always has to
keep in mind that the pipe also directly transmits mechanical waves from transmitter
to receiver [7, 84]. This so-called solid-borne sound does not depend on the fluid
velocity and, therefore, represents unwanted components in the receive signals (see
Fig. 9.27b). Let us assume that those signal components arise at the same time as the
desired signals (see Fig. 9.27c) being propagating through the fluid. In such a case,
the determination of vF might be impossible because we are not able to identify the
time difference ΔtF of transit times in upstream and downstream direction anymore.
Note that solid-borne sound can also cause problems for other types of ultrasonic
flow meters, e.g., inline ultrasonic flow meters.

Figure 9.32b illustrates a picture of two ultrasonic transducers from the Prosonic
Flow W series from the company Endress+Hauser [29] that are mounted on a pipe.
Each cylindrical transducer contains a wedge made of plastics, which is equipped
with a piezoceramic disk. By evaluating the difference of transit times, an extern anal-
ysis unit yields the average flow rate and, consequently, the sought-after quantities
mass flow rate as well as volumetric flow rate. Recently, the company Bürkert [17]
presented the product FLOWave as a modification of conventional clamp-on ultra-
sonic flowmeters. Instead of wedge transducers, interdigital transducers are attached
to the outer pipe wall for transmitting and receiving waves.

9.3.4 Modeling of Clamp-on Transit Time Ultrasonic Flow
Meters in Frequency–Wavenumber Domain

Notwithstanding the advantages of clamp-on transit time ultrasonic flow meters5

(CTU), the wave propagation from transmitter to receiver is much more complicated
than for invasive configurations of ultrasonic flow meters. This fact originates from
refraction effects taking place at the interfaces ultrasonic wedge transducer/pipe wall
as well as pipe wall/fluid. Such refraction effects alter the dominant fluid angle αdom

F ,
which indicates the dominant direction of propagation for plane sound waves within
the fluid. If the flow profile is ideal and the parameters inner pipe diameter DPi, time
difference ΔtF, and sound velocity cF of the fluid are exactly known, the calculated
average flow rate vF will exclusively depend on αdom

F (cf. (9.77)). In the majority of
cases, the expected fluid angle α0

F is determined by means of the fundamental law of
refraction for acoustics. Angle deviations ΔαF = αdom

F − α0
F between expected and

dominant fluid angle result in the relative systematic measurement error εv [85, 87]

εv = vF|αF=α0
F

vF|αF=αdom
F

− 1 = tanαdom
F

tanα0
F

− 1 (9.96)

5For compactness, clamp-on transit time ultrasonic flow meter is abbreviated as CTU flow meter
hereinafter.
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of the calculated average flow rate with respect to the true value. For instance, a
slight angle deviation of 0.1◦ from the expected fluid angle α0

F = 25◦ will already
yield a relative systematic measurement error of 0.46%. Therefore, it is of utmost
importance to accurately predict αdom

F for practical applications of CTU flowmeters,
especially when one requires a high precision of the measured flow rate.

In principle, we are able to identify the dominant fluid angle αdom
F of a CTU

flow meter with the aid of measurements and numerical simulations. For the mea-
surements, it is recommended to acquire the generated sound field in the fluid for
a representative configuration of the flow meter; i.e., a setup comprising ultrasonic
wedge transducer, pipe wall as well as fluid [84]. Both hydrophone and Schlieren
measurements can provide the decisive sound field information (see Sect. 8.1). Spe-
cial signal processing techniques like a modified Hough transform finally lead to the
orientation of each wavefront inside a spatially resolved wave packet [86, 87]. As a
matter of course, these orientations are closely linked to αdom

F .
Several approaches to determine αdom

F by means of numerical simulations are
based on the finite element (FE; see Chap. 4) method. FE simulations additionally
enable predicting the flow-dependent electrical output of the receiver in case of CTU
flowmeters. However, reliable simulation results call for precise material parameters
of all components, e.g., piezoelectric element and pipe. Conventional FE simulations
are, moreover, accompanied by a remarkable computational effort because we have
to discretize both time and the spatial domain including all components of the CTU
flowmeter as well as the fluid. That was the reason why Bezděk et al. [7, 8] proposed
a hybrid simulation approach combining the FE method with a particular boundary
integralmethod, the so-calledHelmholtz integral ray-tracingmethod (HIRM).While
they apply the FE method for the ultrasonic wedge transducer and pipe wall, the
HIRM is exploited to efficiently calculate the sound propagation within the fluid,
which would take plenty of time if conventional FE simulations were used. Such
a hybrid approach allows simulations for three-dimensional models of CTU flow
meters and, thus, facilitates product development. When one is primarily interested
in the dominant fluid angle αdom

F , the coupled FEM-HIRM scheme will deliver,
however, information (e.g., spatially resolved sound field) that is not required but
takes most of the computation time.

Besides FE-based simulations, there exist various analytical as well as semi-
analytical approaches, which can be exploited to determine αdom

F for CTU flow
meters. In the following, we will briefly discuss a few approaches from the liter-
ature. Montegi et al. [70] suggested a method that provides the spatial frequency
representation (i.e., wave number spectrum) of the transmitted beam in the fluid.
The generated beam of the ultrasonic wedge transducer is modeled in the spatial fre-
quency domain. By applying the transmission model from Oliner [76], they describe
the filter effect of the pipe wall for CTU flow meters. The combination of the wave
number spectra for both the transducer’s beam and the pipe wall yields the overall
transmission coefficient as a function of the horizontal wave number. From that, it
is possible to calculate the angle deviations ΔαF between expected and dominant
fluid angle. Funck et al. [32] presented an extended modeling version by additionally
introducing a coordinate transform. The authors also recognized filter effects of the
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pipe wall and, moreover, deduced appropriate excitation signals for the ultrasonic
transmitter. Both modeling approaches exclusively concentrate on the spatial fre-
quency domain and, thus, consider neither the transducer’s transfer behavior in the
frequency domain nor in the time domain. In contrast to these approaches, Wöckel et
al. [113] aim at predicting the output signal of CTU flow meters in the time domain.
Since they suppose only plane wave propagation resulting from geometric acous-
tics, the spatial filter effect of the pipe wall cannot be considered which represents
a certain oversimplification for describing such flow meters. However, this model
takes the complex-valued frequency spectra of the electrical transducer excitation as
well as the transfer behavior of ultrasonic transmitter and receiver into account. By
evaluating the inverse Fourier transform, it is then possible to compute the receive
signal of a CTU flow meter in the time domain.

As a conclusion of the previous explanations, it makes sense to combine the
spatial frequency domain and the conventional frequency domain referring to time.
When we use such a combination, the modeling will be carried out in the so-called
frequency–wavenumber domain. Below, let us detail an efficient modeling approach
in the frequency–wavenumber domain for CTU flow meters. The semi-analytical
approach was developed within the framework of the doctoral thesis of Ploß [84]
and published in [85].

General Idea of the Modeling Approach

The general idea of the modeling approach is based on the angular spectrum method
originating from Fourier optics [34]. According to this method, one can decompose
eachwave field into an angular spectrum of planewaves. Each planewave is assumed
to travel in a unique direction given by the wave vector

k = kxex + kyey + kzez (9.97)

with the components ki . The magnitude ‖k‖2 of the wave vector is linked to the fre-
quency f of the propagating wave and its wave propagation velocity c through (wave
number k)

‖k‖2 = k = 2π f

c
. (9.98)

Because it is commonly sufficient to model CTU flowmeters in the two-dimensional
space, we can restrict the following calculation steps to the xy-plane [84, 85].
Figure 9.34 depicts the considered setup of a CTU flow meter, which contains two
equal ultrasonic wedge transducers beingmounted on the outer pipe wall on opposite
sides. For this setup, the fundamental law of refraction for acoustics (cf. Sect. 2.3.4)
leads to the relation

c

sinα
︸ ︷︷ ︸

general

= cl,W
sinαW
︸ ︷︷ ︸

wedge

= ct,P
sinα0

t,P
︸ ︷︷ ︸

pipe

= cF
sinα0

F
︸ ︷︷ ︸

fluid

= c0ph (9.99)
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Fig. 9.34 Considered
two-dimensional setup of
CTU flow meter; ultrasonic
wedge transducers contain
piezoelectric element for
generating and receiving
ultrasonic waves; angles with
superscript 0 refer to
expected orientations of
wave propagation according
to fundamental law of
refraction for acoustics [84]

x

y

αW

α0
t,P

α0
F

wedge transducer

pipe wall

piezoelectric element

vF

tP

tP

DPiDPo

between expected directions of plane wave propagation and wave propagation veloc-
ity in the components of the CTU flow meter. The angles αW, α0

t,P, and α0
F refer to

the wedge transducers, the pipe wall, and the fluid, respectively. Note that here, the
wave propagation in both wedge and fluid is supposed to consist exclusively of lon-
gitudinal waves (index l), while only transverse waves (index t) should be present in
the pipe wall. The expression c0ph stands for the so-called design phase velocity of
the CTU flow meter, i.e., the desired phase velocity.

The phase velocity cph denotes an appropriate parameter to describe refraction of
waves at interfaces of different media since the interface conditions depend on cph.
For the considered setup, cph is linked to the component kx of k in x-direction by

kx = 2π f

cph
. (9.100)

This means that if cph changes, kx and, consequently, the direction of plane wave
propagation (i.e., angle α = arctan

(

kx/ky
)

) will be altered because

ky =
√

k2 − k2x =
√

(

2π f

c

)2

− k2x (9.101)

has always to be fulfilled.
Owing to the finite-sized transducer’s apertures, the wave propagation within a

CTU flow meter is not limited to a single plane wave propagating under a defined
angle. Instead, one obtains a certain range of angles α and, thus, phase velocities cph.
Depending on the frequency f and wave propagation medium (e.g., pipe wall),
each cph is directly connected to an angle α by means of (9.100) and (9.101).

To apply the angular spectrum method, the considered CTU flowmeter should be
split up into five components, namely (i) ultrasonic transmitter, (ii) first pipe wall,
(iii) fluid, (iv) second pipe wall, and (v) ultrasonic receiver. Under the assumption
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Fig. 9.35 Complex-valued transfer functions Gi

(

f, cph
)

of components for modeling considered
CTU flow meter in frequency–wavenumber domain; arguments f and cph omitted for compactness

of a linear time-invariant system, we can assign an individual complex-valued trans-
fer function Gi

(

f, cph
)

to the components, which depends on frequency f as well
as phase velocity cph. From the system point of view, the output Y

(

f, cph
)

of the
ultrasonic receiver results then from (cf. Fig. 9.35)

Y
(

f, cph
) = U ex

(

f, cph
) · GUS,t

(

f, cph
) · GP

(

f, cph
) · GF

(

f, cph
) ·

· GP

(

f, cph
) · GUS,r

(

f, cph
)

, (9.102)

whereby U ex

(

f, cph
)

represents the electrical excitation of the ultrasonic transmit-
ter in the frequency–wavenumber domain. The transfer functions GUS,t

(

f, cph
)

,
GP

(

f, cph
)

, GF

(

f, cph
)

, and GUS,r

(

f, cph
)

rate the transfer behavior of ultrasonic
transmitter, first as well as second pipe wall, fluid and ultrasonic receiver in the
frequency–wavenumber domain, respectively. Since we are able to directly con-
vert Gi

(

f, cph
)

into Gi ( f,α), each complex-valued transfer function can be inter-
preted as frequency-dependent directivity pattern.

Motivated by an actually existing CTU flow meter that was exploited to verify
the modeling approach, let us suppose the quantities as listed in Table 9.3. For this
arrangement, the fundamental law of refraction for acoustics yields the expected
angles α0

t,P = 52.00◦ within the pipe wall and α0
F = 21.91◦ inside the fluid as well

as the design phase velocity c0ph = 3980m s−1. Hereinafter, the electrical excitation
and all complex-valued transfer functions of the CTU flow meter will be studied
separately.

Excitation Signal

In order to generate an ultrasonic wave within the fluid, the piezoelectric element of
one ultrasonic wedge transducer has to be excited by an electrical signal uex(t) that
changes over time t . There are various possibilities regarding the shape of uex(t),
ranging from simple bipolar square bursts to tailored arbitrary signals such as coded
signals (see Sect. 9.2.3). Without limiting the generality, let us assume a bipolar
square burst as excitation signal that consists of nburst = 3 burst periods and features
the frequency fex = 2MHz. Figure 9.36a and b display the excitation signal in the
time domain and the magnitude

∣

∣U ex( f )
∣

∣ = |F{uex(t)} | of the resulting frequency
spectrum. Due to the rather short signal duration of uex(t), the frequency fex,max =
1.94MHz of the maximum spectral magnitude Uex,max does not coincide with fex.
However, when nburst is increased, the difference between fex,max and fex will be
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Table 9.3 Decisive quantities of considered CTU flow meter (see Fig. 9.34) for modeling in
frequency–wavenumber domain

Component Variable Value

Ultrasonic wedge transducers

Center frequency fc 2MHz

Bandwidth B-6dB
US 1MHz

Diameter of piezoelectric disk Dpiezo 20mm

Wedge angle αW 38◦

Material density of wedge �W 1270 kgm−3

Propagation velocity of
longitudinal waves

cl,W 2450m s−1

Steel pipe

Outer diameter DPo 90mm

Wall thickness tP 2mm

Inner diameter DPi 86mm

Material density �P 7897 kgm−3

Propagation velocity of
longitudinal waves

cl,P 5729m s−1

Propagation velocity of
transverse waves

ct,P 3136m s−1

Fluid (water)

Material density �F 1000 kgm−3

Propagation velocity of
longitudinal waves

cF 1485m s−1

reduced. The bandwidth B-6dB
ex = 0.79MHz refers to the frequency range, in which

the signal’s spectral magnitude
∣

∣U ex( f )
∣

∣ stays above Uex,max/2.
As mentioned above, the modeling approach for CTU flow meters demands the

electrical excitation in the frequency–wavenumber domain, i.e., U ex

(

f, cph
)

. We
have, therefore, to extend the frequency spectrum of uex(t) by the phase velocity cph.
Because U ex( f ) does not depend on cph, this step leads to

U ex

(

f, cph
) = U ex( f ) ∀ cph . (9.103)

Ultrasonic Wedge Transducer

The transfer function GUS

(

f, cph
)

of an ultrasonic transducer in the frequency–
wavenumber domain results from combining both the effective frequency-dependent
directivity pattern Γt,az

(

f,αt,P
)

and the electroacoustic transfer function HEA( f )
of the transducer. In a first step, let us discuss the expression Γt,az

(

f,αt,P
)

that
is defined as

Γt,az
(

f,αt,P
) = Γt,geo

(

f,αt,P
) · Pt

(

αt,P
)

, (9.104)
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whereby Γt,geo
(

f,αt,P
)

and Pt
(

αt,P
)

stand for the geometric directivity pattern and
the point source directivity of thewedge transducer in the xy-plane (azimuthal plane),
respectively. The geometric directivity pattern depends on various geometric param-
eters of the wedge transducer and computes as [24, 115]

Γt,geo
(

f,αt,P
) = Dpiezo

cosαW
sinc

[

Dpiezo

cosαW

f

ct,P

(

sinαt,P − ct,P
cl,W

sinαW

)]

(9.105)

with the sinc function sinc(x) = sin(πx) /(πx). The inspection of (9.105) reveals
that increasing the diameter Dpiezo of the piezoelectric disk, the wedge angle αW or
frequency f yields a geometric directivity, which is more pronounced. Hence, one
approaches the assumption of a single plane wave as stated by the fundamental law
of refraction (cf. (9.99)). This is proven in Fig. 9.37 showing Γt,geo

(

f,αt,P
)

for two
different frequencies.

The point source directivity Pt
(

αt,P
)

can significantly affect the direction of the
dominant wave propagation in the pipe wall. As a result, there arise remarkable
deviations between the angle αdom

t,P of this direction and the expected angle α0
t,P from

the fundamental law of refraction. In case of a CTU flow meter, we are interested in
the point source directivity of transverse waves that are generated in the pipe wall.
Due to the thin fluid coupling layer being usually present between wedge transducer
and pipe wall, shear forces can hardly be transmitted. It is, therefore, sufficient to take
only point forces acting perpendicular to the interface wedge/pipe wall into account.
According to [54, 115], the point source directivity for such arrangement becomes

Pt
(

αt,P
) = 4 sinαt,P · cosαt,P

N1 + N2

√

(

ct,P
cl,P

)2

− sin2 αt,P (9.106)
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(a) f = 500 kHz (b) f = 2MHz
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with

N1 = 4 sin2 αt,P · cosαt,P

√

(

ct,P
cl,P

)2

− sin2 αt,P +(1 − 2 sin2 αt,P
)2

(9.107)

N2 = �W

�P

√

(

ct,P
cl,P

)2

− sin2 αt,P

⎡

⎢

⎢

⎢

⎣

(

1 − 2
(

ct,P
cl,P

)2
sin2 αt,P

)2

√

(

ct,P
cl,W

)2 − sin2 αt,P

+

+ 4

(

ct,W
ct,P

)4

sin2 αt,P

√

(

ct,P
ct,W

)2

− sin2 αt,P

⎤

⎦ . (9.108)

In contrast to the geometric directivity pattern, Pt
(

αt,P
)

exclusively depends onmate-
rial parameters and is not a function of frequency. Figure 9.37 depicts the point
source directivity for the considered setup as well as the obtained combined direc-
tivity pattern Γt,az

(

f,αt,P
)

for two different frequencies. One can clearly observe
that Pt

(

αt,P
)

influences Γt,az
(

f,αt,P
)

, especially for comparatively low frequencies,
e.g., f = 500 kHz. Figure 9.38a shows the resulting frequency-dependent deviation

Δαt,P( f ) = αdom
t,P ( f ) − α0

t,P (9.109)

between dominant angle αdom
t,P ( f ) and expected angle α0

t,P for the studied CTU flow
meter due to Γt,az

(

f,αt,P
)

. For high frequencies, Δαt,P( f ) will take small values
because of the geometric directivity pattern Γt,geo

(

f,αt,P
)

. However, Δαt,P( f ) is
rather large for low frequencies.
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∣

∣GUS

(

f, cph
)∣

∣ (magnitude) of ultrasonic wedge transducer in frequency–
wavenumber domain; dotdashed blue lines indicate transducer’s excitation frequency fex = 2MHz
and design phase velocity c0ph = 3980m s−1 corresponding to expected angle αt,P = 52.00◦

As mentioned at the beginning, the transfer function GUS

(

f, cph
)

of an ultrasonic
transducer in the frequency–wavenumber domain also depends on its electroacous-
tic transfer behavior HEA( f ). This transfer function is connected to the electroa-
coustical impulse response hEA(t) of the transducer through the relation HEA( f ) =
F{hEA(t)}. There exist various measurement techniques to determine hEA(t) and
HEA( f ), e.g., hydrophone measurements (see Chap. 8). For the sake of simplicity,
let us suppose here a Gaussian distribution for HEA( f ), namely

HEA( f ) = e
−
(

f − fc
στ

)2

with στ = B-6dB
US√

2 ln(2)
. (9.110)

The final transfer function GUS

(

f,αt,P
)

of the ultrasonic transducer reads as

GUS

(

f,αt,P
) = Γt,az

(

f,αt,P
) · HEA( f ) (9.111)

and applies, of course, to both transmitter and receiver because they are assumed
to exhibit identical behavior, i.e., GUS

(

f,αt,P
) = GUS,t

(

f,αt,P
) = GUS,r

(

f,αt,P
)

. It
is again possible to convert GUS

(

f,αt,P
)

into GUS

(

f, cph
)

with the aid of (9.100)
and (9.101).

The resulting transfer function
∣

∣GUS

(

f, cph
)∣

∣ (magnitude) of the considered ultra-
sonic wedge transducer can be seen in Fig. 9.38b. As expected, the transducer’s radi-
ation behavior is limited in the frequency and wave number domain. Consequently,
the generated wave packet after pulsed transducer excitation will be also limited in
time as well as space.
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(a) (b)

Fig. 9.39 Example of a symmetrical Lamb wave modes sn and b antisymmetric Lamb wave
modes an ; dashed line indicate plate in original state

Pipe Wall Transmission

As a next step, we will discuss the influence of the pipe on CTU flow meters. In
doing so, the pipe wall is treated as flat plate representing the intermediate layer
of the three-layered system wedge half-space/pipe wall/fluid half-space. Before this
configuration is studied in detail, let us take a brief look at the sound transmission
through a plate being immersed in a fluid. Sound transmission through such an
immersed plate was already subject to numerous publications, e.g., [18, 83]. It is well
known that Lamb wave modes can be excited in a plate for specific combinations of
frequency f and phase velocity cph within the plate. These modes represent waves
guided along a plane plate of finite thickness and infinite extent otherwise. Mainly,
one distinguishes between symmetrical and antisymmetric Lamb wave modes (see
Fig. 9.39), which are usually termed sn and an , respectively. The index n stands for
the order of the Lamb wave mode, e.g., n = 0 indicates the zero-order modes. For
the simple configuration of a free plate, the possible combinations of f and cph for
the different Lamb wave modes (i.e., sn and an) result from the solution to the so-
called Rayleigh–Lamb frequency equations [90]. However, the pipe wall of a CTU
flow meter calls for an alternative approach due to two reasons: (i) the considered
structure consists of three different materials and (ii) we are not only interested in
generated Lamb waves but in the quantitative transfer behavior of the pipe wall for
various combinations ( f, cph). The so-calledGlobal Matrix Method (GMM) enables
the calculation of the desired transfer behavior for arbitrary layered structures [61].

Figure 9.40a displays the transfer function
∣

∣GP

(

f, cph
)∣

∣ (magnitude) of the pipe
wall in the frequency–wavenumber domain, which results from the GMM for the
considered CTU flow meter. The horizontal axis was rescaled for the wall thick-
ness tP = 2mm of the steel pipe. As expected from the theoretical point of view,
most energy will be transmitted through the pipe wall in the vicinity of Lamb wave
modes (e.g., a1). The resonance frequencies fres,P of the pipe wall are specified by
the intersections of design phase velocity c0ph = 3980m s−1 and Lamb wave modes
in
∣

∣GP

(

f, cph
)∣

∣. In the relevant frequency range (i.e., f ∈ [0.5, 4.0]MHz), the Lamb
wave modes s0, a1, and s1 arise at 1.21, 2.49, and 3.76MHz, respectively. Note that
the transfer function GP

(

f, cph
)

and, therefore, these resonance frequencies strongly
depend on the wall thickness tP.
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(a) transfer function GP f, cph (b) transfer function Y f, cph
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Fig. 9.40 a Normalized transfer function
∣

∣GP

(

f, cph
)∣

∣ (magnitude) of pipe wall in frequency–
wavenumber domain; Lamb wave modes s0, a1 and s1; b normalized overall transfer func-
tion

∣

∣Y
(

f, cph
)∣

∣ (magnitude) of considered CTU flow meter in frequency–wavenumber domain;
dotdashed blue lines indicate transducer’s excitation frequency fex = 2MHz, design phase veloc-
ity c0ph = 3980m s−1 and expected fluid angle αF = 21.91◦; dotdashed green lines indicate reso-
nance frequencies fres,P of pipe wall at 1.21, 2.49 and 3.79MHz

Fluid

The remaining transfer function GF

(

f, cph
)

of the CTU flowmeter in the frequency–
wavenumber domain refers to the sound propagation inside the fluid. This trans-
fer function is influenced by both the flow-dependent measurement effect and the
attenuation of propagating sound waves. Let us start with the flow-dependent mea-
surement effect. According to the explanations in Sect. 9.3.2, there arise different
sound velocities in upstream and downstream direction, which are here indicated
as cF,up and cF,down, respectively. Due to the differing sound velocities, the time-
of-flights tF,i of the sound waves propagating from transmitter to receiver also vary
in the upstream and downstream direction. We can directly convert the time differ-
ence ΔtF = tF,up − tF,down between both time-of-flights (transit times) into a phase
difference ΔφF( f,αF) by relating ΔtF to the period duration T = 1/ f . The phase
difference, of course, depends on the angle αF of the sound waves propagating inside
the fluid (cf. Fig. 9.34). By additionally inserting (9.77), ΔφF( f,αF) takes the form

ΔφF( f,αF) = 2πΔtF
T

= 2πΔtF f = 4πDPi tanαF

c2F
vF f (9.112)

with the sound velocity cF of the fluid and its average flow rate vF through the pipe. It
makes sense to splitΔφF( f,αF) into phase differences for upstream and downstream
direction that become

ΔφF( f,αF)

2
= ΔφF,up( f,αF) = −ΔφF,down( f,αF) = 2πDPi vF f

cF
√

c2ph − c2F

(9.113)
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by substituting αF = arcsin
(

cF/cph
)

in (9.112) and after some mathematical treat-
ment.

As alreadydiscussed inSect. 2.3.5, soundpropagation influids is always accompa-
nied by certain absorptionmechanisms.The resulting attenuation depends on thefluid
and the frequency f of the soundwaves. To incorporate this attenuation in themodel-
ing procedure, one should introduce a frequency-dependent factor ΨF( f,αF), which
stems from the frequency-dependent attenuation coefficient αat( f ) (see (2.143,
p. 39)) of the fluid and the geometric distance of sound propagation. For the consid-
ered CTU flow meter, ΨF( f,αF) can be approximated by

ΨF( f,αF) ≈ e
−αat( f )DPi

cosαF (9.114)

with the inner diameter DPi of the pipe.
The combination of the part ΔφF,i ( f,αF) originating from the flow-dependent

measurement effect with ΨF( f,αF) yields the fluid’s transfer function

GF,i ( f,αF) = ΨF( f,αF) e
jΔφF,i ( f,αF) (9.115)

in the frequency–wavenumber domain for upstream and downstream direction,
respectively. If the flow rate vF of the fluid is zero, both transfer functions will
coincide, i.e.,GF,up( f,αF) = GF,down( f,αF) = GF( f,αF). Just as the other transfer
functions, GF( f,αF) can easily be converted to GF

(

f, cph
)

.

Resulting System Response

After all transfer functions of the considered CTU flowmeter have been determined,
we can evaluate the output Y

(

f, cph
)

as well as Y ( f,αF) of the ultrasonic receiver
representing the system response in the frequency–wavenumber domain. Without
limiting the generality, let us assume that the average flow rate vF of the fluid through
the pipe is zero. Hence, the phase difference ΔφF( f,αF) is also zero; i.e., one can
apply GF( f,αF) for upstream and downstream direction.

Figure 9.40b shows the obtainedmagnitude
∣

∣Y
(

f, cph
)∣

∣, which reveals two impor-
tant aspects for the considered CTU flow meter [84, 85]. The first aspect refers to
the maximum in

∣

∣Y
(

f, cph
)∣

∣ that mainly specifies the dominant frequency fdom and
the dominant phase velocity cdomph . Neither fdom nor cdomph coincide with the excitation
frequency fex = 2MHz and the design phase velocity c0ph = 3980m s−1. Since there
is a distinct connection of phase velocity and angle, the dominant fluid angle αdom

F
for sound propagation, thus, also differs from the expected angle α0

F. If this angle
deviation is not taken into account in the analysis unit of the CTU flow meter, we
will be inevitably confronted with remarkable measurement errors of the calculated
flow rates.

The second aspect refers to the additional maximum in
∣

∣Y
(

f, cph
)∣

∣ at ( f, cph) =
(2.2MHz, 4500m s−1) being located far away from c0ph. This maximum is caused
by the synergy of the first side lobe in the transducer’s effective directivity pat-
tern Γt,az

(

f,αt,P
)

at αt,P = 45◦ (cf. Figs. 9.37b and 9.38b) and the Lamb wave
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Fig. 9.41 Normalized
angular spectrum Γ (αF) for
considered CTU flow meter
with respect to fluid
angle αF; expected fluid
angle α0

F = 21.91◦;
dominant fluid
angle αdom

F = 21.57◦
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mode a1 of the pipe wall (cf. Fig. 9.40a). Consequently, substantial sound energy is
transmitted for combinations ( f, cph) close to the additional maximum.

Besides the conducted qualitative observations, the complex-valued system
response Y ( f,αF) can be exploited to predict the angular spectrum for propagat-
ing waves inside the fluid as well as the receive signal of the considered CTU flow
meter. As a matter of fact, the dominant angle αdom

F does not exclusively depend on
the peak of

∣

∣Y ( f,αF)
∣

∣ but on each frequency containing sound energy. It is possi-
ble to approximate the angular spectrum Γ (αF) by performing an integration of the
energy ∝ ∣

∣Y
∣

∣
2
over the relevant frequencies f ∈ [ fmin, fmax], i.e.,

Γ (αF) =
fmax
∫

fmin

(∣

∣Y ( f,αF)
∣

∣

)2
d f . (9.116)

The resulting angular spectrum for the considered CTU flow meter is displayed
in Fig. 9.41. The progress of Γ (αF) can be interpreted as a directivity plot, which
provides amaximum that corresponds to the dominant fluid angleαdom

F . In the present
case, αdom

F takes the value 21.57◦ and, thus, exhibits a significant deviation from the
expected angle α0

F = 21.91◦ by ΔαF = −0.34◦. According to (9.96), such angle
deviation always leads to a relative systematic measurement error of εv = −1.7%
for the average flow rate, regardless of the actually value.

The receive signal urec(t) of the CTU flow meter is an electrical output, which
depends only on time t in the time domain and, consequently, only on frequency f in
the frequency domain. That is the reason why we have to get rid of the argument αF

in the system response Y ( f,αF) with a view to calculating urec(t). It, therefore,
makes sense to conduct an integration of Y ( f,αF) over all relevant fluid angles αF ∈
[αF,min,αF,max]; i.e., the complex-valued frequency spectrumU rec( f ) of the receive
signal is obtained from
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(a) spectral magnitude (b) time signal
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Fig. 9.42 a Normalized spectral magnitude
∣

∣U rec( f )
∣

∣ of receive signal for considered CTU flow
meter; excitation frequency fex = 2MHz; dominant frequency fdom = 2.35MHz; relevant reso-
nance frequencies fres,P of pipewall at 1.21, 2.49 and 3.79MHz; b normalized receive signal urec(t)
in time domain

U rec( f ) =
αF,max
∫

αF,min

Y ( f,αF) dαF . (9.117)

Figure 9.42a depicts the resulting spectral magnitude
∣

∣U rec( f )
∣

∣ of the receive signal
for the considered CTU flow meter. Let us take a closer look at the dominant fre-
quency fdom = 2.35MHz, which indicates the maximum Urec,max of

∣

∣U rec( f )
∣

∣. Not
surprisingly, fdom strongly deviates from the excitation frequency fex = 2MHz of
the ultrasonic transmitter. The maximum seems to be shifted toward the second pipe
wall resonance at fres,P = 2.49MHz that refers to Lamb wave mode a1. Further-
more,

∣

∣U rec( f )
∣

∣ contains an additional peak at 1.21MHz and a notch at 1.33MHz.
While the additional peak originates from Lamb wave mode s0 of the pipe wall,
the notch results from the frequency spectrum U ex( f ) of the excitation signal (cf.
Fig. 9.36b).

In a last step, it is possible to compute the receive signal urec(t) of the consid-
ered CTU flow meter in the time domain (see Fig. 9.42b) by applying the inverse
Fourier transform to U rec( f ), i.e., urec(t) = F−1

{

U rec( f )
}

. This step concludes the
modeling procedure starting from the electrical excitation signal uex(t) of the ultra-
sonic transmitter and ending with the electrical output signal urec(t) of the ultrasonic
receiver.

Experimental Verification

To verify the modeling approach for CTU flowmeters in the frequency–wavenumber
domain, let us finally compare predicted relative systematic measurement errors εv

for the average flow ratewithmeasurements, as observed on awater flow rig. In doing
so, a constant volume flow of V̇F = 20 L s−1 water was prescribed whereby a high-
precision Coriolis flow meter served as reference measurement device
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[84, 85]. Owing to the constant V̇F, the average flow rate vF in the steel pipe also
remains constant. The entries in Table 9.3 correspond to the material properties and
most of the geometric quantities of the realized experimental setup. The only excep-
tions are the pipe dimensions (i.e., outer and inner diameter as well as wall thick-
ness) at themeasuring point, which take the values DPo = 88.9mm, DPi = 85.1mm,
and tP = 1.9mm. For the wall thickness being actually present, the relevant Lamb
wave modes within the pipe arise at the frequencies 1.27, 2.62 and 3.96MHz.

The frequency–wavenumber modeling approach was exploited for calculating
the dominant fluid angle αdom

F that is required to determine the average flow rate vF

through the pipe (cf. (9.77)). The angle deviationΔαF betweenαdom
F and the expected

angle α0
F was then used to predict εv through (9.96). The measured average flow rate

was calculated on basis of α0
F and the time difference ΔtF between sound wave

propagation in upstream and downstream direction of the utilized CTU flow meter.
By comparing the measurement result for vF with the true value, we obtain the
relative systematic error of the conducted measurement.

In Fig. 9.43, one can see measured as well as predicted values for the relative
systematic measurement error εv with respect to the excitation frequency fex of the
ultrasonic transmitter. Each frequency refers to a bipolar square burst signal consist-
ing of nburst = 3 burst periods. As the comparison of the curve progressions clearly
demonstrates, measured and predicted values coincide very well in a wide frequency
range around the center frequency fc = 2MHz of the ultrasonic transducers. In both
cases, the relative systematic measurement error of the average flow rate vF takes
almost values in the range of ±3%, which is too large for various industrial appli-
cations of flow meters. Besides, it is possible to deduce further findings for CTU
flow meters from the results of Fig. 9.43. For instance, excitation frequencies close
to one of the pipe wall resonances fres,P do not always imply a small value of εv . By
exploiting the presented modeling approach in frequency–wavenumber domain, we
are, however, able to figure out appropriate transducer excitations that lead to a small
systematic measurement error of a CTU flow meter [84]. The modeling approach
also allows the optimization of the transducer design regarding the expected pipe
wall properties.

Fig. 9.43 Measured and
predicted systematic
measurement error εv of
actually realized CTU flow
meter; pipe wall
thickness tP = 1.9mm at
measuring point; relevant
resonance frequencies fres,P
of pipe wall at 1.27
and 2.62MHz
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9.4 Cavitation Sensor for Ultrasonic Cleaning

Ultrasonic cleaning iswidely used in practical applications for cleaningof objects like
surgical instruments, parts of precision mechanics, optical lenses, dentures, jewelry
as well as assembled printed circuit boards. Especially in case of irregularly shaped
object surfaces, ultrasonic cleaning constitutes an excellent choice since traditional
cleaning methods such as grinding are hardly feasible.

During ultrasonic cleaning, the object to be cleaned gets immersed in an appro-
priate cleaning liquid in which an ultrasonic field of high sound intensity is present.
Such an ultrasonic field leads to nucleations of cavitation bubbles, which subse-
quently can collapse close to the object surface. If the process parameters (e.g.,
cleaning duration) are chosen carefully, the resulting mechanical forces will release
dirt particles from the object surface and, therefore, the immersed object will be
cleaned. However, it is impossible to generate an evenly distributed ultrasonic field
of high intensity inside the cleaning liquid due to the exploitation of standing waves
and the presence of the object to be cleaned. We are, consequently, confronted with
a varying cavitation activity and cleaning efficiency along the object surface. That
is the reason why a special cavitation sensor has been developed at the Chair of
Sensor Technology (Friedrich-Alexander-University Erlangen-Nuremberg) [93, 97,
98]. The mechanically flexible cavitation sensor is based on a ferroelectret material
and can be directly applied to curved surfaces of objects.

This section deals with the realized cavitation sensor. We will start with fun-
damentals of acoustic cavitation and ultrasonic cleaning. Afterward, conventional
approaches for measuring cavitation activity are explained. Section 9.4.3 details
then the setup of the realized cavitation sensor and Sect. 9.4.4 its characterization.
At the end, selected experimental results will be presented.

9.4.1 Fundamentals of Acoustic Cavitation and Ultrasonic
Cleaning

In the following, let us briefly discuss the fundamentals of acoustic cavitation and
ultrasonic cleaning. This includes the nucleation of cavities inside a liquid as well
as the dynamics of cavitation bubbles because the bubble collapse is exploited in
ultrasonic cleaning. Such cavities can be generated either by high sound fields which
is referred to as acoustic cavitation or by intense pulsed laser radiation. Owing to
the fact that ultrasonic cleaning is commonly based on high sound fields inside a
cleaning tank, we will, however, concentrate exclusively on acoustic cavitation.

Nucleation of Cavities

The nucleation or initial formation of a cavity inside a liquid constitutes the starting
point of cavitation. Basically, a distinction is made between homogeneous nucle-
ation and heterogeneous nucleation [109]. Homogeneous nucleation can occur in a
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homogeneous liquid that contains neither impurities nor gas bubbles. If the negative
pressure of a propagating sound wave takes higher values than the liquid’s tensile
strength, the liquid will be locally torn and, consequently, a cavity will be formed.
As stated by Temperley, the van der Waals forces have to be exceeded which implies
sound pressure amplitudes >108 MPa in water [26, 104]. However, in real systems
and practical experiments, nucleation of cavities already exists at much lower sound
pressure amplitudes. This so-called heterogeneous nucleation arises at impurities
inside the liquid as well as at the interfaces liquid/solid and liquid/gas.

Regardless ofwhether homogeneous nucleationor heterogeneous nucleation takes
place in the liquid, the resulting cavitation bubbles are filled with vapor. According
to the classical nucleation theory, cavitation bubbles must overcome a certain energy
barrier. The energy in the system comprising cavitation bubble as well as surrounding
liquid can be altered by two counteracting factors during bubble formation. When a
cavitation bubble is generated in a liquid, the Gibbs free energy GB of the systemwill
be reduced because vapor exhibits a lower energy density than liquid. However, GB

also increases by an amount proportional to the bubble surface due to the formation
of the bubble/liquid interface. For a spherical cavitation bubble with radius RB, the
change dGB of Gibbs free energy reads as [65]

dGB = 4πR2
B

︸ ︷︷ ︸

surface

γsurf − 4

3
πR3

B
︸ ︷︷ ︸

volume

(

pv,sat − p
)

(9.118)

whereγsurf stands for the surface energy density in J m−2. The expressions p and pv,sat
denote the local pressure inside the liquid and the saturation vapor pressure,6 respec-
tively. The critical radius Rcrit of a spherical cavitation bubble follows from the
first-order derivative of (9.118) and finally computes as

Rcrit = 2γsurf
pv,sat − p

. (9.119)

Note that for this bubble radius, dGB reaches its maximum, which becomes

dGB,max = 16πγ3
surf

3
(

pv,sat − p
)2 . (9.120)

If the actual bubble radius RB is smaller than Rcrit , cavitation bubbles will tend
to shrink, whereas for RB > Rcrit , cavitation bubbles will tend to expand. There-
fore, dGB,max corresponds to the activation energy that is required for nucleation of a
cavity. The activation energy will be exceeded when sound waves feature sufficiently
high amplitudes.

6The saturation vapor pressure equals the pressure atwhich liquid and vapor are in phase equilibrium
for a given temperature ϑ.
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Fig. 9.44 Heterogeneous
nucleation of cavitation
bubble of radius RB at flat
wall; bubble filled with vapor
and surrounded by liquid;
contact angle ΘB between
bubble and wall

RB

liquid
vapor

ΘB
wall

In case of heterogeneous nucleation, the formed cavitation bubbles are not spher-
ical anymore and, thus, the activation energy gets altered. For instance, if a cavitation
bubble is formed at a flat wall (see Fig. 9.44), the change dGB of Gibbs free energy
will take the form [65]

dGB =
[

4πR2
Bγsurf − 4

3
πR3

B

(

p − pv,sat
)

]

(1 + cosΘB)2(2 − cosΘB)

4
︸ ︷︷ ︸

=λcav

(9.121)

with the contact angle ΘB of cavitation bubble and wall. Here, the quantity λcav

describes a scaling factor between homogeneous and heterogeneous nucleation. The
critical radius Rcrit for heterogeneous nucleation corresponds again to (9.118), but
the resulting maximum change dGB,max is given by

dGB,max = 16πγ3
surf

3
(

pv,sat − p
)2 λcav . (9.122)

Not surprisingly, when the cavitation bubble does not touch the wall,ΘB = 0 as well
as λcav = 1 will be satisfied and heterogeneous becomes homogeneous nucleation.

As the comparison of (9.120) and (9.122) reveals, dGB,max is always smaller for
heterogeneous than for homogeneous nucleation since λcav < 1 ∀ΘB �= 0 holds. In
otherwords, heterogeneous nucleation arises at lower sound pressure amplitudes than
homogeneous nucleation. Due to the fact that liquids are contaminated with impuri-
ties in practical situations and contain, moreover, fluid/solid interfaces in ultrasonic
cleaning, heterogeneous nucleation is the dominating mechanism for the formation
of cavitation bubbles.

Cavitation Bubble Dynamics

After nucleation, the size of the cavitation bubbles will change dynamically when
there exists a sound field within the surrounding liquid. This includes bubble growth
and bubble shrinking as well as bubble oscillations that are commonly referred to
as stable cavitation. Moreover, cavitation bubble dynamics also comprises bubble
collapse, the so-called inertial cavitation.

One can find various differential equations in the literature to describe the dynamic
behavior of cavitation bubbles. Hereinafter, let us briefly detail the fundamental
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idea behind those equations. In doing so, we assume a single cavitation bubble
and an incompressible surrounding liquid. In the initial equilibrium state, the gas
pressure pB0 inside the cavitation bubble of radius RB0 results from [53]

pB0 = p0 + 2 Tsurf
RB0

. (9.123)

The expressions p0 and Tsurf stand for the hydrostatic pressurewithin the surrounding
liquid and the surface tension on the bubble surface, respectively. By applying an
additional soundpressurefield p∼(t), the pressurewithin the liquid changes to p(t) =
p0 + p∼(t). Hence, the time-dependent pressure pW(t) that acts on the bubble wall
reads as

pW(t) = p(t) + 2 Tsurf(t)

RB(t)
= p0 + p∼(t) + 2 Tsurf(t)

RB(t)
(9.124)

with Tsurf(t) and RB(t) also depending on time. As a matter of fact, the bubble
radius will change if pW(t) does not coincide with the gas pressure pB(t). Let us
assume a constant gas quantity inside the cavitation bubble, i.e., diffusion processes
are neglected, and moderate sound pressure amplitudes p̂∼. Then, cavitation bub-
bles shrink in case of positive sound pressure values, i.e., p∼(t) > 0. On the other
hand, p∼(t) < 0 is accompanied by a growth of the cavitation bubbles. A propagating
sound pressure wave, therefore, alters the bubble size (see Fig. 9.45).

Every change in the size of a cavitation bubble generates a certain fluid flow in
the surrounding liquid. The time-dependent velocity vL(r, t) of this fluid flow at the
radial distance r from the bubble center is calculated as

vL(r, t) =
[

RB(t)

r

]2 dRB(t)

dt
(9.125)

p∼(t)

t

changes in
bubble size

p∼(t) > 0

p∼(t) < 0
bubble collapse

Fig. 9.45 Size of cavitation bubbles changes periodically with respect to time t through sinusoidal
sound pressure wave p∼(t); bubble shrinks for p∼(t) > 0 and grows for p∼(t) < 0; high sound
pressure amplitudes cause bubble collapse generating shock waves in surrounding liquid
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and tends to zero for r → ∞. Overall, the kinetic energy Ekin(t) of the fluid flow
becomes (density �L of the liquid) [53]

Ekin(t) = �L

2

∞
∫

RB(t)

vL(r, t)
2 · 4πr2dr = 2π�LRB(t)3 Ṙ2

B (9.126)

with ṘB = dRB(t) /dt , which represents the velocity of the bubble wall. The change
in the bubble size implies, however, an additional work WB(t) since the bubble wall
has to move against the pressure difference pW(t) − pB(t). This work takes the form

dWB(t)

dt
= [ pW(t) − pB(t)] 4πRB(t)2 ṘB (9.127)

per unit time and has to be compensated by reducing the kinetic energy of the fluid
flow, i.e.,

dWB(t)

dt
= −dEkin(t)

dt
. (9.128)

Inserting (9.124), (9.126), and (9.127) in (9.128) leads to7

�L

[

RB R̈B + 3

2
Ṙ2
B

]

+ p + 2 Tsurf
RB

− pB = 0 (9.129)

with R̈B = d2RB(t) /dt2. This differential equation is known as Noltingk–Neppiras
equation [73]. By additionally considering the dynamic viscosity ηL of the surround-
ing liquid, we arrive at the so-called Rayleigh–Plesset equation [58]

�L

[

RB R̈B + 3

2
Ṙ2
B

]

+ p + 2 Tsurf
RB

+ 4ηL
RB

ṘB − pB = 0 . (9.130)

It is reasonable to assume adiabatic changes in state,whichmeans that heat exchanges
between gas and surrounding liquid do not occur. According to this assumption, the
gas pressure pB(t) inside the cavitation bubble exclusively depends on its current
radius RB(t) as well as on the radius RB0 and the gas pressure pB0 in the initial
equilibrium state. The mathematical link is given by [53]

pB(t) = pB0

[

RB0

RB(t)

]3κ

(9.131)

where κ represents the adiabatic exponent of the enclosed gas. By combining this
relation with (9.123) and replacing pB in (9.130), one finally obtains the RPNNP

7For compactness, the argument time t is omitted.
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equation8 [58]

�L

[

RB R̈B + 3

2
Ṙ2
B

]

+ p + 2 Tsurf
RB

+ 4ηL
RB

ṘB −
[

p0 + 2 Tsurf
RB0

][

RB0

RB

]3κ

= 0 .

(9.132)

This equation describes movements of the bubble wall with sufficient precision in
case of moderate wall velocities [72]. However, if strongly nonlinear bubble oscil-
lations arise, the assumption of an incompressible surrounding liquid will lead to
large deviations after the first bubble collapse. Extended versions like the so-called
Herring-Trilling equation [105] and Gilmore equation [58] consider the compress-
ibility of the surrounding liquid in addition.

Now, let us take a look at the numerical solution of the RPNNP Eq. (9.132) for
an applied sound pressure p∼(t). In doing so, sinusoidal sound pressure waves are
assumed to propagate in water (density �L = 1000 kgm−3; cL = 1484m s−1) at a
typical frequency of fex = 30 kHz in ultrasonic cleaning. The bubble radius and the
gas pressure in the initial equilibrium state equal RB0 = 10µm and pB0 = 105 Pa,
respectively. The adiabatic exponent κ of the enclosed gas was set to 1.0. The surface
tension Tsurf on the bubble wall was neglected which will be permitted if the bubble
radius is not too small.

Figure 9.46a, b, and c depict the numerical solutions for three sound pressure
amplitudes p̂∼, namely 10, 30, and 80 kPa. The top and bottom panels show the
current bubble radius RB(t) and the resulting wall velocity ṘB(t), respectively. It
can be clearly observed that the cavitation bubble expands during negative sound
pressure and shrinks during positive sound pressure for low values of p̂∼, i.e., for 10
and 30 kPa. As expected, the greater p̂∼, the larger the variations in RB(t) and ṘB(t)
will be. Both quantities show almost a sinusoidal progression (see Fig. 9.46a, b) and,
therefore, overtones are only weakly pronounced. However, in case of comparatively
large sound pressure amplitudes like p̂∼ = 80 kPa, RB(t) as well as ṘB(t) strongly
deviate from sinusoidal progression (see Fig. 9.46c). The bubble shrinks to less
than 0.5RB0 and grows to more than RB0 several times in a row during positive
sound pressure. These bubble oscillations are accompanied by high velocities of the
bubble wall. Moreover, there arise remarkable overtones (e.g., at 2 fex and 3 fex) in
the frequency spectra of RB(t) and ṘB(t) since the bubble oscillations are of higher
frequency than the excitation frequency [56].

When the sound pressure amplitude is increased further, the bubble oscillations
will also increase and RB(t) can grow to a multiple of RB0; e.g., a cavitation bub-
ble can exhibit a radius of more than 100µm for fex = 30 kHz. In such cases, the
bubble oscillations comprise frequency components lower than the excitation fre-
quency fex in addition because this bubble growth usually takes more than one
excitation period. The frequency spectra of RB(t) and ṘB(t), consequently, do not
only contain pronounced components at fex and its overtones at, e.g., 2 fex but
also so-called subharmonic components at fex/2, fex/3, etc., as well as so-called

8The abbreviation RPNNP stands for Rayleigh–Plesset–Noltingk–Neppiras–Poritsky.
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(a) p̂∼ = 10 kPa (b) p̂∼ = 30 kPa (c) p̂∼ = 80 kPa
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Fig. 9.46 Solution of RPNNP equation for sound pressure amplitudes a p̂∼ = 10 kPa, b p̂∼ =
30 kPa, and c p̂∼ = 80 kPa at excitation frequency fex = 30 kHz; initial bubble radius RB0 =
10µm; time-dependent bubble radius RB(t) in top panels; time-dependent wall velocity ṘB(t)
of bubble in bottom panels; gray dotted line illustrates normalized sound pressure wave p∼(t) in
surrounding water

ultraharmonic components at 3 fex/2, 5 fex/2, etc., [53, 56]. It should be mentioned
that bubble oscillations are in general larger for low than for high excitation frequen-
cies. This circumstance directly follows from the longer period of negative pressure
for low values of fex. That is the reason why lower excitation frequencies are accom-
panied by a greater cavitation activity than higher excitation frequencies.

An oscillating cavitation bubble itself acts as sound source, which generates sound
pressure waves according to p∼(t) ∝ R̈B(t). As a result, there arise sound pressure
waves in the surrounding liquid due to the excitation at fex as well as sound pressure
waves originating from bubble oscillations. If the sound pressure signal is measured
in the surrounding liquid and this signal includes pronounced overtones, subhar-
monic and ultraharmonic components, we can, thus, expect that the liquid contains
oscillating cavitation bubbles.

As a matter of fact, cavitation bubbles will tend to collapse when we do not have
stable cavitation in the liquid, i.e., stable bubble oscillations. Note that a cavitation
bubble usually does not vanish completely during the collapse (inertial cavitation),
but the bubble size is enormously reduced, e.g., to one-twentieth of the diameter
before collapse [53]. Afterward, the small cavitation bubble can unite with other
bubbles and grow again. The inertial cavitation represents an extremely fast process,
whereby thewall velocity ṘB(t) of the bubble can reach values greater than the sound
velocity cL of the surrounding liquid [21]. Therefore, a bubble collapse generates a
very short sound pressure pulse in the form of a shock wave, which leads to a broad-
band noise in the frequency spectrum of the measured sound pressure signal [109].
To this end, we can state that the measured sound pressure signal in the surrounding
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(a) shock wave

(b) micro jet

wall

Fig. 9.47 Two effects of inertial cavitation near to wall, i.e., object surface; a shockwave exhibiting
high acoustic intensity; b microjet impinging at very high speed on wall [97]

liquid contains characteristic frequency components as well as broadband noise in
case of a pronounced cavitation activity, which includes bubble oscillations and
bubble collapse. Since the broadband noise is also present for frequencies smaller
than 20 kHz, people commonly perceive cavitation activity as noise.

Besides a shock wave, an extremely short flash of light is emitted during inertial
cavitation. This phenomenon is usually named sonoluminescence [22]. The emitted
light flashes of a typical duration up to a few hundred picoseconds exhibit a peak
radiation intensity of the order of a few milliwatts.

Ultrasonic Cleaning

Ultrasonic cleaning is based on inertial cavitation of bubbles nearby the object sur-
face, which has to be cleaned. In principle, one can distinguish between two different
effects of the inertial cavitation near to a wall representing the object surface. While
the first effect is the generation of an acoustic shock wave during bubble collapse,
the second effect refers to the formation of a microjet (see Fig. 9.47) [97]. The gener-
ated shock wave exhibits high acoustic intensity acting on the object surface. In case
of the microjet formation, the cavitation bubble near to the object surface loses its
spherical shape due to differences in the flow conditions around the bubble [57]. The
bubble area facing away from the object becomes invaginated. In the further course,
a microjet is developed that impinges at a very high speed of more than 100 km s−1

on the object surface [60].
Shock waves as well as micro jets have a certain impact on the object surface

because both effects are accompanied by a local energy input. Hammitt [37] figured
out that a material-dependent energy barrier has to be exceeded in order to remove
particles from the object surface. Not surprisingly, only the energy portion exceed-
ing this so-called damaging threshold contributes to the surface erosion, which is
caused by inertial cavitation. Fortes-Patella et al. [31] suggested amaterial-dependent
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Fig. 9.48 Cleaning tank
with piezoelectric sandwich
transducers attached to
bottom; transducers generate
standing sound waves of
high intensity inside cleaning
liquid [53]

cleaning
tank

standing
waves

sandwich
transducer

parameter that enables estimating the damaging threshold and, therefore, rating the
cavitation resistance of a material. For example, this parameter amounts ≈4 Jmm−3

for aluminum and ≈30 Jmm−3 for steel, respectively.
In the course of ultrasonic cleaning, the objects to be cleaned are immersed in

cleaning liquids like aqueous solutions or organic cleaning agents [53]. Since dis-
solved gases lower the cavitation activity, it is recommended to degas the cleaning
liquid in advance and to heat it up to 80 ◦C during the cleaning process. The liquid
is filled into a so-called cleaning tank that is usually made of stainless steel. With a
view to achieving pronounced cavitation activities inside the cleaning liquid through
acoustic waves, we need sound pressure waves of remarkable amplitudes because
cavitation bubbles have to be formed and inertial cavitation must take place. That
is the reason why standing sound waves of high intensity (i.e., up to 5W cm−2) are
commonly generated inside the cleaning liquid (see Fig. 9.48). In doing so, there
arises a good cleaning effect at the antinodes but a little cleaning effect close to
the nodes of the standing waves. A uniform cleaning requires, thus, movements and
rotations of the object to be cleaned during the cleaning process. It should be also
noted that the immersed object influences the formation of standing waves inside the
cleaning liquid.

The standing soundwaves are usually generated by several piezoelectric sandwich
transducers, which are attached to the bottom of the cleaning tank (see Fig. 9.48)
or immersed into the cleaning liquid as encapsulated unit. To avoid noise pollu-
tion in immediate surroundings and to facilitate inertial cavitation inside the liquid,
the operating frequency fex of typical ultrasonic cleaning systems lies between 20
and 40 kHz [60, 97]. Higher operating frequency (e.g., 100 kHz) can, however, be
helpful if gentle cleaning is desired. Depending on the degree of contamination of the
object to be cleaned, the sound intensity and the used cleaning liquid, the cleaning
duration ranges from a few seconds to one minute [53]. On grounds of efficiency,
the resonance frequency fr of the utilized piezoelectric sandwich transducers should
coincide with the operating frequency of the ultrasonic cleaning system.

9.4.2 Conventional Measurements of Cavitation Activity

Asmentioned above, inertial cavitation implies broadbandnoise in the soundpressure
signal, which arises in the surrounding liquid. Furthermore, short flashes of light are



9.4 Cavitation Sensor for Ultrasonic Cleaning 493

emitted during bubble collapse. It is not surprising that both effects are exploited
in practical applications to evaluate cavitation activity, i.e., inertial cavitation as
well as bubble oscillations. Here, we will concentrate exclusively on sound pressure
measurements, in particular on ultrasonic measurements.

Fundamentally, one can distinguish between active and passive cavitation detec-
tion if sound pressure measurements are utilized [109]. In the framework of active
cavitation detection, the area of cavitation gets treatedwith ultrasound by an appropri-
ate ultrasonic transducer. The scattered ultrasonic waves contain information about
the existing cavitation activity because processes like bubble oscillations and bubble
collapses affect those waves. When a focused ultrasonic transducer (e.g., a linear
array) is operated in pulse-echo mode, we can additionally localize the cavitation
area [103]. In such a case, active cavitation detection is also termed active cavitation
imaging or active cavitation mapping. The problem of active cavitation detection
lies, however, in the fact that this kind of detection is technically feasible only during
the intermission of the ultrasonic source, which generates inertial cavitation. Other-
wise, the scattered ultrasonicwaves become completely covered by the high-intensity
ultrasound generating cavitation and, thus, we are not able to acquire them in a reli-
able way. That is the reason why active cavitation detection is hardly applicable for
ultrasonic cleaning.

In contrast to active cavitation detection, passive cavitation detection does not
require an ultrasonic transducer for providing an additional sound field. The utilized
transducer solely serves as receiver for the sound waves, which are generated from
inertial cavitation and bubble oscillations [4]. Passive cavitation detection can also
be applied during the operation of the ultrasonic source being responsible for inertial
cavitation. Owing to this fact, passive cavitation detection should be applicable for
ultrasonic cleaning. However, similar to active cavitation detection, we have to deal
with the problem that the receive signals comprise pronounced spectral components
at the fundamental frequency fex of the excitation as well as its overtones due to
nonlinear sound propagation. Subharmonic components (e.g., fex/2) and ultrahar-
monic components (e.g., 3 fex/2) pointing out the existence of oscillating cavitation
bubble become, nevertheless, visible [109]. Besides, the frequency spectra of the
receive signals contain the broadband noise, which is typical for inertial cavitation.
An appropriate analysis of these frequency spectra enables measuring bubble oscil-
lations as well as inertial cavitation by means of passive cavitation detection. When
special imaging techniques like beam forming are used, the spatial resolution of the
measurement can be improved, e.g., [35]. Passive cavitation detection is then also
named passive cavitation imaging or passive cavitation mapping.

9.4.3 Realized Sensor Array

Even though there exist several approaches for measuring cavitation activity (cf.
Sect. 9.4.2), the conventional measurement techniques are suitable only to a limited
extent in ultrasonic cleaning. This can be mainly ascribed to the fact that objects
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Fig. 9.49 Geometric structure of realized sensor array and signal lines [93]; array consists of 16
elements arranged in 4 rows and 4 columns; geometric dimensions in mm

to be cleaned influence the sound field in the cleaning liquid and, therefore, the
cavitation activity will change spatially which will also alter the cleaning efficiency
along object surfaces. Consequently, reliable investigations in ultrasonic cleaning
demand a cavitation sensor that can be attached directly onto an object surface and
allows spatial resolved measurements of the cavitation activity.

Below, we will discuss a special cavitation sensor, which was developed within
the framework of the doctoral thesis of Strobel [97]. The underlying approach and
obtained results were also published in [93, 98]. The realized sensor array represents
a device for passive cavitation detection and is based on the mechanically flexible
ferroelectret material electromechanical film (EMFi; see Sect. 3.6.3) from the com-
pany Emfit Ltd [27]. To achieve a pronounced piezoelectric coupling, the material
type EMFi-HS of thickness ≈70µm was utilized as active sensor material. Owing
to its low mechanical stiffness and material density, the EMFi material should pro-
vide a comparable large frequency bandwidth for operating in cleaning liquids (cf.
Fig. 7.39b on p. 322). The mechanical flexibility of this material constitutes, fur-
thermore, a great advantage since it can be attached directly onto the surface of an
object, even if the surface is curved.

Figure 9.49 displays the geometric dimensions of the realized sensor array con-
taining 16 elements of 2RT = 3.0mm diameter each, which are arranged in 4 rows
and 4 columns. Both the element diameter and the lateral spacing between themwere
chosen according to the typical frequencies ranging from 20 to 40 kHz in ultrasonic
cleaning. A further design criterion was themechanical and electrical crosstalk of the
array elements. For the maximum frequency of 40 kHz, the wavelength λ of the gen-
erated ultrasonic waves equals 37.1mm in water. The geometric distance between
neighboring sound pressure minimum (i.e., node) and maximum (i.e., antinode)
amounts then λ/4 = 9.3mm. Consequently, the chosen lateral spacing of 4.6mm
between two array elements guarantees that a single wave train can be sufficiently
resolved in both time and spatial domain.

A schematic cross-sectional view of a single element of the realized sensor array is
illustrated in Fig. 9.50. The active sensor component, a square-shaped EMFimaterial
with an edge length of 20mm, was fixed onto the bottom electrodes of the array
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Fig. 9.50 Schematic
cross-sectional view of
single element of sensor
array; copper (Cu) electrode
at bottom of EMFi material
and common aluminum (Al)
electrode at top

Parylene C
Al electrode
EMFi material
adhesive
Cu electrode
PCB2RT = 3.0mm

elements by a highly viscous and solvent-free adhesive. The bottom electrodes as
well as the signal lines are made of copper. Electrodes and signal lines are, moreover,
part of a flexible printed circuit board (PCB), which allows bending of the sensor
array. While the sensor signals can be measured separately at these circular element
electrodes of 3.0mm diameter, a single top aluminum layer of 20 nm thickness that
was vapor-deposited on the EMFi material serves as common ground for all sensor
elements. To protect sensor array aswell as signal lines fromdamaging environmental
conditions due to cavitation effects, an additional coating with a Parylene C layer
of 40µm thickness is used. This polymer coating material is optically transparent,
features an excellent chemical resistance, and enables a uniform surface covering [15,
112]. The Parylene C layer was formed by a chemical vapor deposition (CVD)
process.

9.4.4 Characterization of Sensor Array

In the following, the metrological and simulation-based characterization of the real-
ized sensor array will be detailed. This includes directivity pattern, resonance fre-
quency, achievable sensitivity, and signal-to-noise ratio of the array elements. More-
over, we will study mechanical as well as electrical crosstalk between the sensor
components.

Directivity Pattern

The directivity pattern describes the spatial sensitivity of the sensor arraywith respect
to the angle of incident sound pressurewaves. Concerning the practical application of
the sensor array, the sensitivity of the array elements should not depend on the angle
of incidence. To verify this, let us treat the individual array elements as piston-type
transducers with element radius RT = 1.5mm. According to Sect. 7.2.1, piston-
type transducers will feature almost a spherical directivity pattern in the half-space
if the product of wave number k = 2π/λ and element radius is smaller than one,
i.e., kRT < 1. The higher the frequency f , the smaller the acoustic wavelength λ
and the larger k will be. In the present case, the realized sensor array operates in
water (cW ≈ 1500m s−1) and should provide sound field information for frequencies
up to 100 kHz, which leads to the maximum wave number k ≈ 420. Hence, the
condition kRT < 1 always holds and the array elements may theoretically offer a
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spherical directivity pattern. This behavior was also confirmed by experiments as
well as FE simulations [97].

Resonance Frequency

Themechanical resonance frequency fr of a piezoelectric sensor denotes an essential
parameter. From the theoretical point of view, the sensor sensitivity remains constant
for frequencies smaller than fr and decreases by−20 dB/decade for frequencies f >

fr. Here, let us a regard a simple analytical model to calculate fr of a single array
element. Basically, fr is influenced by the mechanical mass mS and mechanical
compliance nS of the sensor material. In case of a homogeneous and disk-shaped
sensor element (thickness tS) that can oscillate uniformly and freely in space, the
resonance frequency in thickness direction reads as

fr = 1

2π
√
mS · nS = 1

2π
√
MS · NS

(9.133)

with the so-called area density MS = mS/AS and the surface-related compliance
NS = nS · AS. The expression AS = R2

Tπ stands for the base area of the disk. As
shown in Fig. 9.50, the EMFi material of the realized sensor array is one-sided
clamped at its bottom area. The effective mass of the EMFi material is, thus, reduced
to one-third [51].

Even though the realized sensor array exhibits a rather complicated setup, we can
neglect the adhesive layer at the bottom as well as the aluminum electrodes at the top
of the EMFi material due to their low thickness. However, the same does not apply
to the Parylene C coating because its thickness is comparable to the EMFi material.
A further important point for the sensor’s resonance frequency is the propagation
medium of the received sound pressure waves, which has to be taken into account
for estimating fr . In the present case, the sensor array operates in a cleaning liquid
that is very similar to water. While one can neglect the influence of air as wave
propagation medium, water represents a heavy load for the realized sensor array. Not
surprisingly, fr will be remarkable reduced when the sensor array operates in water.
For a piston-type transducer, the area density MW of water oscillating with the active
transducer surface results in [51]

MW = �W
8RT

3π
(9.134)

where �W is the equilibrium density of water. The oscillating volume can be inter-
preted as a cylinder with height 8RT/3π and the base area R2

Tπ.
Table 9.4 contains the decisive quantities of the EMFi material (ME and NE), the

Parylene C coating (MP and NP), and water for calculating fr. Thereby, the area
density Mi and surface-related compliance Ni are derived from

Mi = �i · ti and Ni = Ei

ti
(9.135)
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Table 9.4 Thickness ti , equilibrium density �i , Young’s modulus Ei , and resulting area den-
sity Mi as well as surface-related mechanical compliance Ni for element diameter 2RT = 3.0mm;
entries ‘−’ not meaningful or not required for calculating resonance frequency fr of array element;
material parameters from [15, 51]

Layer ti
µm

�i
kgm−3

Ei
106 Nm−2

Mi
kgm−2

Ni
10−12 m3 N−1

EMFi material 70 330 ≈ 2.0 0.023 35

Parylene C
coating

40 1289 ≈ 3000 0.052 0.013

Water − 998 − 1.271 −

with the equilibrium density �i , Young’s modulus Ei , and the layer thickness ti ,
respectively. Because the compliances of EMFi material and Parylene C coating
differ by more than three orders of magnitude, we are able to neglect NP. It can
also be seen that the area density MW dominates the other values, i.e., MW � ME +
MP. That is the reason why the resonance frequency of the sensor array is mainly
determined by water.

Overall, the resonance frequency of a single array element can be approximated
through

fr = 1

2π
√

(ME/3 + MP + MW) · NE
. (9.136)

For the given layer thicknesses and material parameters, this equation leads to fr =
23 kHz. When air serves as wave propagation medium (i.e., MW ≈ 0), the resonance
frequency of an array element equals ≈300 kHz and, thus, coincides very well with
the measurement results presented in Fig. 7.39a on p. 322.

Actual measurements in a water tank revealed that the maximum sensitivity of the
realized sensor array for incident sound pressure waves arises at ≈40 kHz, which is
much higher than the approximated resonance frequency of 23 kHz. This deviation
follows, on the one hand, from uncertainties of the supposed material parameters.
Besides, we assume a uniformmechanical oscillation for the analytical model, which
is not fulfill (cf. Fig. 9.52). As a consequence, the effective area density decreases
and, therefore, fr takes higher values. By adjusting the relevant material parameters
appropriately, coupled FE simulations provide a similar behavior and resonance
frequency as the realized sensor array [97].

Sensor Sensitivity and Signal-to-Noise Ratio

The frequency-resolved sensitivity BS( f ) in V Pa−1 of the realized sensor array was
measured in a water tank. In doing so, an ultrasonic transmitter generated approxi-
mately plane sound pressurewaves that impinge perpendicular to the sensor array. By
comparing the electrical outputs of the array elements and a reference hydrophone,
it was possible to determine the aimed quantity. The sensor sensitivity stays almost
constant up to the cutoff frequency of 33 kHz and equals BS( f ) = 8.7µVPa−1. For
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higher frequencies, BS( f ) increases until the resonance frequency fr ≈ 40 kHz is
reached and strongly decreases for f > fr . This behavior could be also proven by
the results of coupled FE simulations [97]. When one uses the common reference
value pref = 1µPa for sound pressure waves in water, the sensor sensitivity will
become −221.1 dB re 1VµPa−1. To improve the sensor sensitivity in conventional
sound field measurements with one array element, a low-noise amplifier (Reson
VP1000 [101]) was exploited that provides a constant gain factor of 32 dB in the
relevant frequency band. The overall sensitivity BS,sys( f ) of the combination sen-
sor array and amplifier takes the values 350µVPa−1 and −189.1 dB re 1VµPa−1

below 33 kHz.
In general, the SNR results from the ratio of the root mean square (RMS) value of

wanted system output that is noiseless to the noise signal at the system’s output [59,
60]. For the combination of realized sensor array and amplifier, the SNR in dB is
given by

SNR = 20 log10

(

US,sys

Unoise

)

=̂ Lp − Lnoise (9.137)

whereUS,sys andUnoise denote RMS values for both wanted output signal of amplifier
and resulting noise signal at its output, respectively. The expression Lp stands for the
sound pressure level of the wanted signal, and Lnoise is the equivalent acoustic noise
level

Lnoise = 20 log10

⎛

⎝

√
∫ fmax

fmin
Unoise,f( f )

2 d f

BS,sys( f ) pref

⎞

⎠ (9.138)

of the overall system. The noise voltage spectral density Unoise,f( f ) in V/
√
Hz

was measured at the amplifier output by the vector signal analyzer Keysight
HP89441A [47]. In the relevant frequency band ranging from 0 to 100 kHz, the
equivalent acoustic noise level amounts Lnoise = 115 dB. Preliminary investigations
indicated that the sensor array should provide a resolution limit of 100 Pa to detect
cavitation in the cleaning liquid.With the resulting soundpressure level Lp = 160 dB,
the SNR value of the combination sensor array and amplifier equals 45 dB. Conse-
quently, the operational capability of a single array element including the amplifier
Reson VP1000 could be confirmed.

Mechanical Crosstalk

Crosstalk always constitutes a decisive aspect for array systems. For the consid-
ered piezoelectric sensor array, we have to deal with mechanical as well as electrical
crosstalk betweenneighboring array elements.When themechanical crosstalk should
bemeasured directly, it would be necessary that sound pressurewaves impinge exclu-
sively on a single array element but do not arise at the remaining elements of the
sensor array. As a matter of fact, this requirement cannot be satisfied in practical sit-
uations. That is the reason why the array elements should be operated as transmitter;
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Fig. 9.51 aMeasured spatially resolved displacement amplitudes û of realized sensor array; array
elements excited by 100Vpp at f = 27.2 kHz; b numbering of array elements; signal lines border
on top elements, i.e., 11 to 14; dashed line shows scan line of laser Scanning vibrometer in Fig. 9.52

i.e., the sensor array exploiting the direct piezoelectric effect transforms to an actuator
array, which is based on the inverse piezoelectric effect [93]. Because the electrome-
chanical coupling factor of mechanical and electrical energy is identical in both
directions of energy flow (see Sect. 3.5), high sensor sensitivities directly imply high
actuator deformations and vice versa. In other words, one should be able to rate
the mechanical crosstalk by electrically exciting a single element and measuring the
resulting deformations of all array elements, which can be done by a laser scanning
vibrometer.With a view tominimizing disturbing coupling effects due to propagating
sound waves, the measurements were performed in air.

Before we study mechanical crosstalk, let us regard the mechanically displace-
ments of the realized sensor array if it operates as actuator array. Figure 9.51a shows
the resulting spatially resolved displacement amplitudes û, which were measured by
the laser Scanning vibrometer Polytec PSV-300 [89]. Thereby, the array elements
were simultaneously excited by the voltage 100Vpp at the frequency f = 27.2 kHz.
Note that this frequency was also used as excitation frequency for ultrasonic cleaning
in the considered cleaning bath. As can be clearly observed, the displacement ampli-
tudes of the array elements coincide very well.Moreover, the array elements oscillate
in phase, which is especially important for time-resolved sound pressure measure-
ments. The maximum relative deviation of the element’s displacement amplitudes is
smaller than 10%, and, thus, the difference of the element sensitivities BS should be
below 1 dB. These deviations mainly originate from inhomogeneities of the EMFi
material and slight differences of the realized array structure.

Figure 9.52 displays both measured and simulated values for û along a horizon-
tal line ranging from array element 41 to 44 (see Fig. 9.51b). Since in contrast to
Fig. 9.51a, only the array element 41 was excited by 100Vpp at 27.2 kHz, it should be
possible to rate the mechanical crosstalk by means of this measurement. Within the
excited element, the coupled FE simulations correspond well to the measurement
results. There arise, however, rather large deviations between measurements and
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Fig. 9.52 Measured and
simulated displacement
amplitudes û along
horizontal line ranging from
array element 41 to 44 (see
Fig. 9.51b); array element 41
excited by voltage 100Vpp at
frequency 27.2 kHz
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simulations outside the excited element, i.e., at the array elements 42, 43, and
44. Interestingly, the measured displacement amplitudes take the highest values
in the center of those array elements. Such behavior, of course, does not emerge
from mechanical crosstalk inside the realized sensor array but stems from electrical
crosstalk between neighboring signal lines, which exhibit a length >200mm for
practical reasons (see Fig. 9.49). An isolated evaluation of the mechanical crosstalk
inside the realized sensor array requires, strictly speaking, numerical simulations. In
the present case, coupled FE simulations yielded displacement amplitudes <0.1 nm
outside the excited array element, which equals for the maximum amplitude 4.5 nm a
crosstalk attenuation of 33 dB [93]. According to further FE simulations, such a high
attenuation does not affect the performance (e.g., directivity pattern) of the realized
sensor array because the individual elements are mechanically decoupled.

Electrical Crosstalk

As just mentioned, the electrical crosstalk of the realized sensor array seems to
dominate its mechanical crosstalk. In the present case, electrical crosstalk is caused
by the coupling capacitances between the different array components. This does not
only refer to the coupling capacitances CCE between the individual array elements
but also to the coupling capacitances CCL between the signal lines. Owing to the
fact that it is hardly possible to measure the individual capacitances separately, FE
simulations were exploited for this task [97]. The aimed capacitances follow from
applying variable voltages to the sensor electrodes and evaluating the fundamental
relationC = Q/U .As the simulation results revealed,CCE takesmuch smaller values
than the intrinsic capacitance CS of a single array element. This is a consequence
of the thin EMFi material and the comparatively large lateral distance of 4.6mm
between the centers of two neighboring array elements (cf. Fig. 9.49). CCE and CS

amount 0.07 and 1.48 pF, respectively. Hence, the crosstalk attenuation calculates
to 27 dB, which represents again a quite high value.

Now, let us discuss the electrical crosstalk between the utilized signal lines of lat-
eral extension 0.3mm, whereby the lateral distance (from center to center) between
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two neighboring signal lines equals 1.0mm. In contrast to the realized sensor array,
the signal lines are not equipped with a common ground layer. As a result, capac-
itive coupling occurs on both top and bottom side of the signal lines. Especially if
the signal lines are immersed in water, which is the case here, the coupling capaci-
tance CCL between two signal lines will take large values because water exhibits a
high relative electric permittivity of εr ≈ 80. According to FE simulations, the max-
imum of CCL will amount 16.1 pF when the signal lines are completely immersed in
water. This value is only slightly reduced for two signal lines that are not neighbor-
ing. The coupling capacitances of the signal lines, therefore, dominate the intrinsic
capacitance CS of a single array element.

To suppress electrical crosstalk due to coupling capacitances between the sensor
components, especially between the signal lines, each array element was connected
to a separate charge amplifier circuit. By means of these charge amplifiers, which
contain operational amplifiers, both the bottom array electrodes and the signal lines
are forced to ground potential (see Sect. 9.1.5). Consequently, the coupling capaci-
tances CCE as well as CCL become short-circuited and, ideally, they do not influence
the sensor performance anymore. Measurements demonstrated that the used charge
amplifier circuits yield more than 50 dB attenuation of electric crosstalk in the rel-
evant frequency band. Electric crosstalk is, thus, negligible for the combination of
realized sensor array and charge amplifier circuits.

9.4.5 Experimental Results

Finally, let us discuss some experimental results that were achieved by the realized
sensor array. We will study the connection of cavitation activity and amplified elec-
trical element output. In doing so, the sensor array was fixed to a cylindrically shaped
body and placed in a cleaning liquid. The sensor output will also be verified with
regard to the cleaning effect by a special test layer.

Frequency-resolved Sound Pressure Amplitudes

Asmentioned in Sect. 9.4.1, cavitation activity is closely linked to the spectral sound
pressure amplitudes

∣

∣P∼( f )
∣

∣ in the surrounding liquid. It is, thus, meaningful to
measure

∣

∣P∼( f )
∣

∣ by means of the realized sensor array. Figure 9.53a illustrates
the experimental setup that was used for this task. The sensor array was fixed to a
cylindrically shaped steel body of diameter 15mm (see Fig. 9.53b). This is possible
because the realized sensor array including the signal lines is mechanically flexible.
The steel body together with the sensor arraywas placed in a cylindrically shaped and
optically transparent tank featuring an inner diameter of 140mm. A steel membrane
was attached to the base of the tank. At the bottom side, the membrane is equipped
with a special piezoelectric sandwich transducer serving as ultrasonic source. The
resonance frequency fr of the utilized sandwich transducer lies at 27.2 kHz.

The tank was filled with demineralized water, which served as cleaning liquid. Its
temperature was kept constant at 50 ◦C with the aid of an external infrared source.
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(a) (b)
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Fig. 9.53 a Schematic of experimental setup for measurements with realized sensor array being
immersed in cleaning liquid; liquid level HW = 200mm; b sensor array was fixed to cylindrically
shaped steel body of 15mm diameter [98]

By electrically exciting the ultrasonic sandwich transducer, one can generate sound
pressure waves inside the tank. In order to obtain high sound pressure amplitudes that
are required for initiating cavitation activities, standing waves were produced. The
formation of such standing waves strongly depends on the liquid level HW inside
the tank and the frequency fex of the excited sound pressure waves [11]. Due to
the transducer’s resonance frequency fr and the desire for six maxima along tank’s
cylinder axis, the liquid level was set to HW = 200mm.

Now, let us consider two different scenarios, namely a low and a high excita-
tion voltage Uex of the sandwich transducer. While Uex = 100Vpp represents a low
excitation voltage, Uex = 500Vpp denotes a high excitation voltage. For both sce-
narios, the excitation frequency fex should coincide with the resonance frequency of
the transducer, i.e., fex = fr. The experimental investigations revealed that there do
not arise cavitation bubbles inside the cleaning bath for low excitation voltage and,
consequently, cavitation activity is not present [97]. In contrast, several cavitation
bubbles could be observed forUex = 500Vpp. The resulting cavitation activity could
also be recognized as broadband noise in the audible range.

Figure 9.54a and b depict for both scenarios the resulting spectral magnitude
∣

∣USC( f )
∣

∣ of the measured element output, which has been amplified by the charge
amplifier. Thereby, the selected array element was located in the top maximum
of the standing waves. In case of the low excitation voltage Uex = 100Vpp (see
Fig. 9.54a),

∣

∣USC( f )
∣

∣ contains a pronouncedmaximumat the fundamental frequency
corresponding to fex as well as overtones at 2 fex, 3 fex etc. For the high excitation
voltageUex = 500Vpp (see Fig. 9.54b), these spectral components increase. We are,
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Fig. 9.54 Spectral magnitude
∣

∣USC( f )
∣

∣ of amplified element output for a low excitation volt-
age Uex = 100Vpp and b high excitation voltage Uex = 500Vpp of sandwich transducer at excita-
tion frequency fex = 27.2 kHz

moreover, confronted with an additional subharmonic component at fex/2 and ultra-
harmonic components at 3/2 fex, 5/2 fex, etc. of appreciable magnitudes, especially
at fex/2. According to Sect. 9.4.1, such spectral components result from bubble oscil-
lations and, thus, prove the existence of cavitation bubbles. Because the broadband
noise in

∣

∣USC( f )
∣

∣ remarkably increases for high excitation voltage compared with
low excitation voltage, we can also conclude that these bubbles implode (inertial
cavitation) which goes hand in hand with arising cavitation activity. Therefore, the
recorded spectral magnitude contains the expected information. The realized sensor
array seems to be applicable for cavitation analysis in ultrasonic cleaning.

Cavitation Measurements

The cavitation activity does not only depend on the sound field intensity but, among
other things, on the concentration of dissolved gases inside the cleaning liquid [21,
91]. If demineralized water serves as cleaning liquid, the concentration of dissolved
oxygen will play an important role. Even though gas bubbles represent cavitation
nuclei (cf. Sect. 9.4.1), an increasing concentration of dissolved oxygen is accom-
panied by a reduced cavitation activity and, thus, leads to a reduced cleaning effect.
To test whether the realized sensor array enables such observations, the progress of
individual spectral components in the recorded spectral magnitude

∣

∣USC( f )
∣

∣ of a
selected array element was rated with respect to two quantities. The first quantity
refers to the excitation voltage Uex of the sandwich transducer, whereas the second
quantity is the concentration of dissolved oxygen inside the cleaning liquid. Again,
the steel cylinder together with the realized sensor array was placed in the cylindri-
cally shaped tank.

Figure 9.55a and b show the resulting progress of the measured spectral com-
ponents at fex/2, fex as well as 2 fex in

∣

∣USC( f )
∣

∣ for two different oxygen con-
centrations, namely 3.5 and 7.0mgO2/L. The current oxygen concentration inside
the cleaning liquid was determined with the aid of a electrochemical oxygen



504 9 Measurement of Physical Quantities and Process Measurement Technology

(a) oxygen concent. 3.5mgO2/L (b) oxygen concent. 7.0mgO2/L
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Fig. 9.55 Components at fex/2 (subharmonic), fex (fundamental frequency), and 2 fex (second
harmonic) in spectral magnitude

∣

∣USC( f )
∣

∣ of amplified element output for oxygen concentration
a 3.5mgO2/L and b 7.0mgO2/L with respect to excitation Uex of sandwich transducer at fex =
27.2 kHz; resulting test layer after cleaning time of 30 s for oxygen concentration c 3.5mgO2/L
and d 7.0mgO2/L; dark areas indicate cleaned areas

meter and titrimetric tests [106]. Not surprisingly, the considered spectral compo-
nents get altered by Uex. The subharmonic component

∣

∣USC( fex/2)
∣

∣ exhibits the
strongest change, while the modification of the spectral component

∣

∣USC( fex)
∣

∣ at the
excitation frequency is least pronounced. Especially for the oxygen concentration
of 3.5mgO2/L, the subharmonic component increases dramatically between Uex =
200Vpp andUex = 300Vpp.However, such a big change does not arise for the oxygen
concentration of 7.0mgO2/L. In case of the transducer excitationUex = 500Vpp, the
spectral component

∣

∣USC( fex/2)
∣

∣ takes much smaller values for high than for low
oxygen concentrations. Since this spectral component represents an unambiguous
indicator for oscillations of existing cavitation bubbles, cavitation activity and, thus,
the cleaning effect should be very small for the oxygen concentration 7.0mgO2/L.
In contrast, one can expect a good cleaning effect for the low oxygen concentration.
Just as the subharmonic component, the broadband noise in

∣

∣USC( f )
∣

∣ (cf. Fig. 9.54b)
increases remarkably for 3.5mgO2/L. Hence, it is reasonable to assume that inertial
cavitation occurs frequently.

To prove the findings, which were deduced from themeasurements by the realized
sensor array, the actual cleaning effect was rated in addition. For this purpose, the
steel cylinder was coated with a special test layer. Figure 9.56 displays the setup
of the used test layer, which consists of nickel, tin, and copper [97]. The metal
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copper layer
tin layer
nickel layer
steel substrate

Fig. 9.56 Schematic cross-sectional view of test layer comprising nickel, tin, and copper layer;
test layer exhibits thickness of ≈1.5µm

layers were formed successively by electroplating. While the nickel layer serves as
bonding agent, the tin layer reduces the adhesion between copper and nickel. The
copper layer represents the top layer and is, therefore, in permanent contact with
the cleaning liquid. Copper was applied because it features an average resistance
against cavitation and can be optically distinguished from other metals such as tin.
Altogether, the thickness of the test layer equals ≈1.5µm.

Figure 9.55c and d depict photos of the test layer for the considered oxy-
gen concentrations after a cleaning time of 30 s. The sandwich transducer was
excited by Uex = 500Vpp at fex = 27.2 kHz. For the low oxygen concentration
of 3.5mgO2/L, one can recognize a remarkable cleaning effect since the bright
copper layer was removed in large areas. As a matter of fact, these dark areas coin-
cide with the maxima of the standing waves inside the cleaning bath. However,
for the high oxygen concentration of 7.0mgO2/L, the test layer remains almost
unchanged and, thus, the cleaning effect is negligible after a cleaning time of 30 s.
These observations coincide with the expectations from the corresponding spectral
component

∣

∣USC( fex)
∣

∣ in Fig. 9.55a and b.

In summary, the realized sensor array consisting of 4 × 4 individual elements
can be attached onto the object surface, which should be cleaned in an ultrasonic
cleaning bath, even if the surface is curved.We are able to detect cavitation bubbles in
a spatially resolved manner by analyzing subharmonic and/or ultraharmonic spectral
components of the measured element output. When there arise high magnitudes
for these spectral components as well as broadband noise in the resulting spectral
magnitudes, cavitation bubbles will implode and a remarkable cleaning effect on the
object surface will be present.
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8. Bezděk, M., Landes, H., Rieder, A., Lerch, R.: A coupled finite-element, boundary-integral
method for simulating ultrasonic flowmeters. IEEETrans. Ultrason. Ferroelectr. Freq. Control
54(3), 636–646 (2007)

9. Blackstock, D.T.: Fundamentals of Physical Aocustics. Wiley, New York (2000)
10. Blahut, R.E., Miller, W., Wilcox, C.H.: Radar and Sonar: Part I. Springer, Berlin (1991)
11. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Krieger Publishing Com-

pany, Malabar (1995)
12. Bronstein, I.N., Semendjajew, K.A., Musiol, G., Mühlig, H.: Handbook of Mathematics, 6h

edn. Springer, Berlin (2015)
13. Brüel & Kjær: Product portfolio (2018). http://www.bksv.com
14. Buzug, T.M.: Computed Tomography, 6th edn. Springer, Berlin (2008)
15. Chen, P.J., Rodger, D.C., Humayun,M.S., Tai, Y.C.: Unpowered spiral-tube parylene pressure

sensor for intraocular pressure sensing. Sens. Actuators A: Phys. 127(2), 276–282 (2006)
16. Chiao, R.Y., Hao, X.: Coded excitation for diagnostic ultrasound: a system developer’s per-

spective. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005)
17. Christian Bürkert GmbH & Co. KG: Manufacturer of transit time ultrasonic flow meters

(2018). Homepage: https://www.burkert.com/en/
18. Claeys, J.M., Leroy, O.: Reflection and transmission of bounded sound beams on half-spaces

and through plates. J. Acoust. Soc. Am. 72(2), 585–590 (1982)
19. Cook, C.E.: Pulse compression - key to more efficient radar transmission. Proc. IRE 48(3),

310–316 (1960)
20. Cowell, D.M.J., Freear, S.: Separation of overlapping linear frequency modulated (LFM)

signals using the fractional Fourier transform. IEEETrans.Ultrason. Ferroelectr. Freq.Control
57(10), 2324–2333 (2010)

21. Crum, L.A.: Rectified diffusion. Ultrasonics 22(5), 215–223 (1984)
22. Crum, L.A., Mason, T.J., Reisse, J.L., Suslick, K.S.: Sonochemistry and Sonoluminescence.

Kluwer Academic Publishers, Dordrecht (1999)
23. Diehl Metering GmbH: Manufacturer of transit time ultrasonic flow meters (2018). Home-

page: http://www.diehl.com/en/diehl-metering.html
24. Ditri, J.J., Rose, J.L.: Excitation of guided waves in generally anisotropic layers using finite

sources. J. Appl. Mech. Trans. ASME 61(2), 330–338 (1994)
25. Durst, F.: Fluid Mechanics: An Introduction to the Theory of Fluid Flows. Springer, Berlin

(2008)
26. Eisenmenger, W., Köhler, M., Pecha, R., Wurster, C.: Neuartige Methode zur Messung der

Zerreißspannung von Wasser. In: Proceedings of Fortschritte der Akustik (DAGA), pp. 574–
575 (1997)

27. Emfit Ltd: Manufacturer of electro-mechanical films (2018). https://www.emfit.com
28. Endevco as part of Meggitt Sensing Systems: Product portfolio (2018). https://endevco.com
29. Endress+Hauser AG:Manufacturer of transit time ultrasonic flowmeters (2018). http://www.

endress.com
30. Fiedler, O.: Strömungs- und Durchflußmeßtechnik. Oldenbourgh Verlag München (1992)
31. Fortes-Patella, R., Reboud, J., Archer, A.: Cavitation erosion mechanism: numerical simula-

tion of the interaction between pressure waves and solid boundaries. In: Proceedings of CAV,
pp. 1–8 (2001)

32. Funck, B., Mitzkus, A.: Acoustic transfer function of the clamp-on flowmeter. IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 43(4), 569–575 (1996)

http://www.bksv.com
https://www.burkert.com/en/
http://www.diehl.com/en/diehl-metering.html
https://www.emfit.com
https://endevco.com
http://www.endress.com
http://www.endress.com


References 507

33. Gautschi, G.: Piezoelectric Sensorics. Springer, Berlin (2002)
34. Goodman, J.W.: Introduction to Fourier Optics, 3rd edn. Roberts & Company Publishers,

Englewood (2005)
35. Gyöngy, M., Coussios, C.C.: Passive cavitation mapping for localization and tracking of

bubble dynamics. J. Acoust. Soc. Am. 128(4), EL175–180 (2010)
36. Gätke, J.: Akustische Strömungs- und Durchflußmessung. Akademie, Berlin (1991)
37. Hammitt, F.G.: Observations on cavitation damage in a flowing system. J. Basic Eng. 85(3),

347–356 (1963)
38. Harput, S., Evans, T., Bubb, N., Freear, S.: Diagnostic ultrasound toothiimaging using frac-

tional fourier transform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(10), 2096–2106
(2011)

39. Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier transform.
Proc. IEEE 66(1), 51–83 (1978)

40. Hecht, E.: Optics, 5th edn. Pearson, London (2016)
41. Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N.: Improving the time-resolution and

signal-to-noise ratio of ultrasonic NDE signals. Ultrasonics 41(9), 755–763 (2004)
42. Hottinger Baldwin Messtechnik (HBM) GmbH: Product portfolio (2018). https://www.hbm.

com
43. Hsu, D.K., Hughes, M.S.: Simultaneous ultrasonic velocity and sample thickness measure-

ment and application in composites. J. Acoust. Soc. Am. 92(2), 669–675 (1992)
44. Ilg, J., Rupitsch, S.J., Lerch, R.: Impedance-based temperature sensing with piezoceramic

devices. IEEE Sens. J. 13(6), 2442–2449 (2013)
45. Jensen, J.A.: Estimation of Blood Velocities Using Ultrasound. Cambridge University Press,

Cambridge (1996)
46. Keiji K.K., Gordon II, J.G.: The oscillation frequency of a quartz resonator in contact with

liquid. Analytica Chimica Acta 175(C), 99–105 (1985)
47. Keysight Technologies Inc.: Product portfolio (2018). http://www.keysight.com
48. Kiefer, D.A., Fink, M., Rupitsch, S.J.: Simultaneous ultrasonic measurement of thickness

and speed of sound in elastic plates using coded excitation signals. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 64(11), 1744–1757 (2017)

49. Kistler Instrumente GmbH: Product portfolio (2018). https://www.kistler.com
50. Krautkrämer, J., Krautkrämer, H.: Werkstoffprüfung mit Ultraschall. Springer, Berlin (1986)
51. Kressmann, R.: New piezoelectric polymer for air-borne and water-borne sound transducers.

J. Acoust. Soc. Am. 109(4), 1412–1416 (2001)
52. Kupnik, M., Krasser, E., Gröschl, M.: Absolute transit time detection for ultrasonic gas

flowmeters based on time and phase domain characteristics. In: Proceedings of International
IEEE Ultrasonics Symposium (IUS), pp. 142–145 (2007)

53. Kuttruff, H.: Phyik und Technik des Ultraschalls. S. Hirzel, Stuttgart (1988)
54. Kühnicke, E.: Elastische Wellen in geschichteten Festkörpersystemen. TIMUG (2001)
55. Kümmritz, S., Wolf, M., Kühnicke, E.: Simultaneous determination of thicknesses and sound

velocities of layered structures. Tech. Messen 82(3), 127–134 (2015)
56. Lauterborn, W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J.

Acoust. Soc. Am. 59(2), 283–293 (1976)
57. Lauterborn, W., Hentschel, W.: Cavitation bubble dynamics studied by high speed photogra-

phy and holography: Part I. Ultrasonics 23(6), 260–268 (1985)
58. Leighton, T.: The Acoustic Bubble. Academic Press, New York (1994)
59. Lerch, R.: Elektrische Messtechnik, 7th edn. Springer, Berlin (2016)
60. Lerch, R., Sessler, G.M., Wolf, D.: Technische Akustik: Grundlagen und Anwendungen.

Springer, Berlin (2009)
61. Lowe, M.J.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE

Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 525–542 (1995)
62. Lynnworth, L.C.: Ultrasonic Measurements for Process Control. Academic Press, Boston

(1989)

https://www.hbm.com
https://www.hbm.com
http://www.keysight.com
https://www.kistler.com


508 9 Measurement of Physical Quantities and Process Measurement Technology

63. Maev, G.: Advances in Acoustic Microscopy and High Resolution Imaging. Wiley-VCH,
Weinheim (2012)

64. Mahadeva, D.V., Baker, R.C., Woodhouse, J.: Further studies of the accuracy of clamp-on
transit-time ultrasonic flowmeters for liquids. IEEE Trans. Instrum. Meas. 58(5), 1602–1609
(2009)

65. Maris, H.J.: Introduction to the physics of nucleation. Comptes Rendus Physique 7(9–10),
946–958 (2006)

66. Martin, S.J., Frye, G.C., Wessendorf, K.O.: Sensing liquid properties with thickness-shear
mode resonators. Sens. Actuators: A. Phys. 44(3), 209–218 (1994)

67. Misaridis, T., Jensen, J.A.: Use of modulated excitation signals in medical ultrasound. Part I:
basic concepts and expected benefits. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2),
177–190 (2005)

68. Misaridis, T., Jensen, J.A.: Use of modulated excitation signals in medical ultrasound. Part II:
design and performance for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 52(2), 192–206 (2005)

69. Moore, I.P., Brown, G.J., Stimpson, B.P.: Ultrasonic transit-time flowmeters modelled with
theoretical velocity profiles: methodology. Meas. Sci. Technol. 11(12), 1802–1811 (2000)

70. Motegi, R., Takeuchi, S., Sato, T.: Widebeam ultrasonic flowmeter. In: Proceedings of Inter-
national IEEE Ultrasonics Symposium (IUS), pp. 331–336 (1990)

71. Neal, S.P., Speckman, P.L., Enright,M.A.: Flaw signature estimation in ultrasonic nondestruc-
tive evaluation using the Wiener filter with limited prior information. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 40(4), 347–353 (1993)

72. Neppiras, E.A.: Acoustic cavitation. Phys. Rep. 61(3), 159–251 (1980)
73. Noltingk, B.E., Neppiras, E.A.: Cavitation produced by ultrasonics. Proc. Phys. Soc. Sect. B

63(9), 674–685 (1950)
74. Oelze,M.L.: Bandwidth and resolution enhancement through pulse compression. IEEETrans.

Ultrason. Ferroelectr. Freq. Control 54(4), 768–781 (2007)
75. Ohm, J., Lüke, H.D.: Grundlagen der digitalen und analogen Signalübertragung. Springer,

Berlin (2015)
76. Oliner, A.A.: Microwave network methods for guided elastic waves. IEEE Trans. Microwave

Theory Tech. 17(11), 812–826 (1969)
77. Olympus Corporation: Product portfolio (2018). https://www.olympus-ims.com
78. Onda Corporation: Product portfolio of hydrophones (2018). http://www.ondacorp.com
79. O’Sullivan, C.K., Guilbault, G.G.: Commercial quartz crystal microbalances - theory and

applications. Biosens. Bioelectr. 14(8–9), 663–670 (1999)
80. Peng, Q., Zhang, L.Q.: High-resolution ultrasound displacement measurement using coded

excitations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(1), 122–133 (2011)
81. Physik Instrumente (PI) GmbH & Co. KG: Product portfolio (2018). https://www.

physikinstrumente.com/en/
82. Pinton, G.F., Trahey, G.E.: Continuous delay estimationwith polynomial splines. IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 53(11), 2026–2035 (2006)
83. Plona, T.J., Pitts, L.E., Mayer, W.G.: Ultrasonic bounded beam reflection and transmission

effects at a liquid/solid-plate/liquid interface. J. Acoust. Soc. Am. 59(6), 1324–1328 (1976)
84. Ploß, P.: Untersuchung von Clamp-on-Ultraschalldurchflussmessgeräten im k-Raum. Ph.D.

thesis, Friedrich-Alexander-University Erlangen-Nuremberg (2017)
85. Ploß, P., Rupitsch, S.J.: Modeling of clamp-on ultrasonic flow meters in the wavenumber

domain for prediction of flow measurement errors. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control (2018). Submitted

86. Ploß, P., Rupitsch, S.J., Fröhlich, T., Lerch, R.: Identification of acoustic wave orientation for
ultrasound-based flow measurement by exploiting the Hough transform. Procedia Eng. 47,
216–219 (2012)

87. Ploß, P., Rupitsch, S.J., Lerch, R.: Extraction of spatial ultrasonic wave packet features by
exploiting a modified Hough transform. IEEE Sens. J. 14(7), 2389–2395 (2014)

https://www.olympus-ims.com
http://www.ondacorp.com
https://www.physikinstrumente.com/en/
https://www.physikinstrumente.com/en/


References 509

88. Pollakowski, M., Ermert, H., Bernus, L., Schmeidl, T.: The optimum bandwidth of chirp
signals in ultrasonic applications. Ultrasonics 31(6), 417–420 (1993)

89. Polytec GmbH: Product portfolio (2018). http://www.polytec.com
90. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)
91. Rozenberg, L.: Physical Principles of Ultrasonic Technology. Springer, Berlin (1973)
92. Rupitsch, S.J., Glaser, D., Lerch, R.: Simultaneous determination of speed of sound and

sample thickness utilizing coded excitation. In: Proceedings of International IEEEUltrasonics
Symposium (IUS), pp. 711–714 (2012)

93. Rupitsch, S.J., Lerch, R., Strobel, J., Streicher, A.: Ultrasound transducers based on ferro-
electret materials. IEEE Trans. Dielectr. Electr. Insul. 18(1), 69–80 (2011)

94. Rupitsch, S.J., Zagar, B.G.: Acoustic microscopy technique to precisely locate layer delami-
nation. IEEE Trans. Instrum. Meas. 56(4), 1429–1434 (2007)

95. Sanderson, M.L., Yeung, H.: Guidelines for the use of ultrasonic non-invasive metering tech-
niques. Flow Meas. Instrum. 13(4), 125–142 (2002)

96. Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur
Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)

97. Strobel, J.:Werkzeuge zur Charakterisierung der Kavitation inUltraschall-Reinigungsbädern.
Ph.D. thesis, Friedrich-Alexander-University Erlangen-Nuremberg (2009)

98. Strobel, J., Rupitsch, S.J., Lerch, R.: Ferroelectret sensor for measurement of cavitation in
ultrasonic cleaning systems. Tech. Messen 76(11), 487–495 (2009)

99. Szabo, T.L.: Diagnostic Ultrasound Imaging: Inside Out, 2nd edn. Academic Press, Amster-
dam (2014)

100. Tektronix, Inc.: Product portfolio (2018). https://www.tek.com
101. Teledyne Marine: Product portfolio (2018). http://www.teledynemarine.com
102. Tietze, U., Schenk, C., Gamm, E.: Electronic Circuits - Handbook for Design andApplication.

Springer, Berlin (2008)
103. Ting, D., Yuan, Y., Supin, W., Mingxi, W.: Spatial-temporal dynamics of cavitation bubbles

induced by pulsed hifu thrombolysiswithin a vessel and parameters optimization for cavitation
enhancement. In: Proceedings of International IEEE Ultrasonics Symposium (IUS) (2016)

104. Trevena, D.H.: Cavitation and the generation of tension in liquids. J. Phys. D: Appl. Phys.
17(11), 2139–2164 (1984)

105. Trilling, L.: The collapse and rebound of a gas bubble. J. Appl. Phys. 23(1), 14–17 (1952)
106. Tränkler, H.R., Reindl, L.M.: Sensortechnik - Handbuch für Praxis und Wissenschaft.

Springer, Berlin (2014)
107. Vellekoop, M.J.: Acoustic wave sensors and their technology. Ultrasonics 36(1–5), 7–14

(1998)
108. Viola, F., Walker, W.F.: A spline-based algorithm for continuous time-delay estimation using

sampled data. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(1), 80–93 (2005)
109. Wan, M., Feng, Y., ter Haar, G.: Cavitation in Biomedicine. Springer, Berlin (2015)
110. Wolf, D.: Signaltheorie: Modelle und Strukturen. Springer, Berlin (1999)
111. Wolf, M., Kühnicke, E., Kümmritz, S., Lenz, M.: Annular arrays for novel ultrasonic mea-

surement techniques. J. Sens. Sens. Syst. 5(2), 373–380 (2016)
112. Wolgemuth, L.: Assessing the performance and suitability of parylene coating. Med. Device

Diagn. Ind. 22(8), 42 (2000)
113. Wöckel, S., Steinmann, U., Auge, J.: Signal processing for ultrasonic clamp-on-sensor-

systems. Tech. Messen 81(2), 86–92 (2014)
114. Wüst, M., Eisenhart, J., Rief, A., Rupitsch, S.J.: System for acoustic microscopy measure-

ments of curved structures. Tech. Messen 84(4), 251–262 (2017)
115. Wüstenberg, H.: Untersuchungen zum Schallfeld von Winkelprüfköpfen für die Materialprü-

fung mit Ultraschall. Ph.D. thesis, Technische Universität Berlin (1972)
116. Zhao, H., Peng, L., Takahashi, T., Hayashi, T., Shimizu, K., Yamamoto, T.: Ann based data

integration for multi-path ultrasonic flowmeter. IEEE Sens. J. 14(2), 362–370 (2014)

http://www.polytec.com
https://www.tek.com
http://www.teledynemarine.com


Chapter 10
Piezoelectric Positioning Systems
and Motors

As already stated, piezoelectric elements (in particular piezoceramic elements)
enable an efficient conversion of electrical energy into mechanical energy. They
provide high mechanical forces and a high dynamic performance. Piezoelectric ele-
ments are, moreover, nonwearing and feature a high rigidity. On those grounds,
such elements should be ideally suited as active components in various drives. In
this chapter, we will concentrate on piezoelectric positioning systems and motors.
Such devices contain piezoelectric actuators, which consist of one or more piezo-
electric elements. Figure10.1 illustrates four different actuator structures that are
often employed, namely (a) piezoelectric stack actuators, (b) piezoelectric bimorph
actuators, (c) piezoelectric trimorph actuators, and (d) the so-called macrofiber com-
posite (MFC [25]) actuators. While piezoelectric stack actuators comprise several
piezoelectric elements being stacked, bimorph and trimorph actuators contain only
two piezoelectric bars (cf. Fig. 7.27 on p.300). In contrast to bimorph actuators, tri-
morph actuators are equipped with a thick metallic layer between the piezoelectric
bars. MFC actuators belong to the group of piezoelectric composite transducers (see
Sect. 7.4.3), which contain either thin piezoceramic plates or a large number of stripes
or fibers that are skillfully contacted. To obtain robust aswell asmechanically flexible
devices, the active components (i.e., the piezoelectric elements) of the piezoelectric
composite transducers are commonly surrounded by appropriate passive materials,
e.g., polymers [22]. Not surprisingly, piezoelectric composite transducers are not
restricted to actuator applications but can also be used as sensors.

Apart from their structure, the considered actuators in Fig. 10.1 differ significantly
in the achievable mechanical forces and displacements in working direction, e.g.,
[20, 25]. Basically, we always have to choose a compromise between force and dis-
placement; i.e., a piezoelectric actuator features either high forces or large displace-
ments. For instance, the stacking of several elements in case of piezoelectric stack
actuators yields high forces in working direction. The available displacements are,
however, small in comparison with the tip displacements of piezoelectric bimorph
and trimorph actuators. As a matter of fact, the large displacement of bimorph and

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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(a) (b) (c) (d)

piezoceramic material
passive material

positive electrode
negative electrode working direction

Fig. 10.1 Typical piezoelectric actuator structures for positioning systems andmotors; a piezoelec-
tric stack actuator; b piezoelectric bimorph actuator; c piezoelectric trimorph actuator; dmacrofiber
composite (MFC) actuator

trimorph actuators is achieved at the expense of the reachable force and rigidity. This
also applies to MFC actuators.

The chapter starts with the fundamentals of piezoelectric stack actuators as well as
the effect of mechanical prestress on the stack performance. Preisach hysteresis mod-
eling fromChap.6 will be applied to describe the large-signal behavior of prestressed
stack actuators. Section10.2 deals with so-called amplified piezoelectric actuators,
which provide relatively large mechanical displacements by converting mechanical
forces into displacements. The conversion is performed with the aid of special metal-
lic hinged frames. In Sect. 10.3, the applicability of piezoelectric trimorph actuators
for positioning tasks will be demonstrated. For this purpose, model-based hysteresis
compensation is conducted. At the end of the chapter, a brief overview of piezoelec-
tric motors will be given which includes selected examples of linear as well as rotary
motors.

10.1 Piezoelectric Stack Actuators

Piezoelectric stack actuators are often utilized in practical applications because these
actuators enable much larger strokes than single piezoelectric elements. The section
starts with the fundamentals of piezoelectric stack actuators as well as typical setups.
Since piezoelectric stack actuators should be mechanically prestressed in practical
applications, we will take a closer look at effects of such prestress on the resulting
electrical and mechanical quantities in Sect. 10.1.2. Moreover, Preisach hysteresis
modeling is exploited to predict the electrical as well as mechanical large-signal
behavior of a stack actuator in case of prestress.

10.1.1 Fundamentals

Actuators that are based on piezoceramic materials provide an efficient conversion of
electrical energy into mechanical energy and large operating frequencies. However,
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the achieved deflections of such materials for common excitation voltages are rather
small. With a view to increasing the available stroke of a piezoelectric device for
practical applications, it makes sense to stack several piezoceramic elements. The
resulting piezoelectric device is usually termed piezoelectric stack actuator (PSA).
Depending on the operating direction, we can distinguish between longitudinal PSAs
and shear PSAs [6].While longitudinal PSAs exploit the longitudinal mode of piezo-
electricity (i.e., the d33-effect), shear PSAs are often based on the transverse shear
mode of piezoelectricity (i.e., the d15-effect).

Figure10.2a illustrates the conventional setup of a longitudinal PSA, which con-
sists of a large number of polarized piezoceramic disks that are equipped with two
electrodes each, i.e., a positive and a negative electrode. The electric polarizationP of
the piezoceramic disks points from the positive to the negative electrode. As a matter
of fact, the PSA demands an electrical link of all positive electrodes and all negative
electrodes, respectively. We can reduce the resulting wiring effort by stacking the
disks appropriately. This means that either the positive or the negative electrode of
two neighboring disks should border on each other. If a conductive adhesive is used
for connecting the disks, the wiring effort will then be minimal. The manufacturing
costs of such longitudinal PSAs are, however, extremely high because they have to
be handmade [24]. Therefore, the conventional setup is only occasionally utilized in
practical applications.

The so-called multilayer stack actuators (see Fig. 10.2b) represent an alternative
to the conventional setup of longitudinal PSAs [8]. They can be fabricated in large
numbers by a multistage manufacturing process starting with an unfired layer of the
piezoceramicmaterial. The typical layer thickness amounts 50–100µm.Bymeans of
screen printing, the piezoceramic layer gets equipped with a thin metallic film, which
serves as inner electrode of the multilayer stack actuator. Commonly, more than 100
piezoceramic layers including the printed electrodes are laminated to a block. This
is done at elevated temperature and under a certain mechanical stress. During the
subsequent process steps, themultilayer block is tailored, fired, and sintered just as in
case of piezoceramic single elements. The block is, moreover, equippedwith external

(a) (b) (c)

x y

z

PP

P

P

passive
material

piezoceramic
material

uexuexuex

positive electrode
negative electrode

working direction

adhesive
adhesive

Fig. 10.2 Principle setup of a conventional longitudinal PSAs, b multilayer stack actuators, and c
shear PSAs; P indicates direction of electric polarization
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electrodes, which connect the inner electrodes in an appropriate manner. Finally, the
multilayer stack actuator has to be polarized with a view to activating piezoelectric
coupling. Such stack actuators are used in high-speed switching applications (e.g.,
injection system in diesel engines [6]) as well as for precision positioning.

Besides of longitudinal PSAs, one can also fabricate shear PSAs. In contrast to
longitudinal PSAs, it is, however, hardly possible to build up a multilayer stack actu-
ator because the required direction of electric polarization cannot be created by the
inner electrodes. That is the reason why shear PSAs comprise individual piezoce-
ramic elements, which are equipped with a positive and a negative electrode. Again,
the wiring effort can be minimized by a conductive adhesive and an appropriate ele-
ment stacking. Figure10.2c depicts a shear PSAconsisting of piezoceramic elements,
which are alternately polarized in positive and negative x-direction. Therefore, the
shear PSA provides comparatively large displacements between its lower and upper
end in this direction. If we additionally utilize a shear PSA that contains piezoce-
ramic elements being alternately polarized in positive and negative y-direction, a
PSA combination will be achieved which allows displacements in both directions,
i.e., in x- and in y-direction. For instance, such shear PSA combinations can be used
in scanning microscopes. There also exists an alternative design of shear PSAs, the
so-called multilayer pseudo-shear actuator, which exploits the transverse mode of
piezoelectricity, i.e., the d31-effect [31]. By alternately using a stiff conductive adhe-
sive at the left and right end of the piezoceramic plates, the overall block behaves
like a shear PSA.

To demonstrate the general operation principle of piezoelectric stack actu-
ators, let us assume a mechanically unloaded (i.e., T3 = 0) longitudinal PSA
consisting of ndisk = 100 cylindrical piezoceramic disks. Each disk shall feature
the diameter dS = 10mm and thickness tS = 0.5mm. By neglecting the adhe-
sive layer between the disks, the stack exhibits, thus, the overall length lstack =
ndisk · tS = 50mm. Furthermore, we assume a typical piezoelectric strain constant
d33 = 4 · 10−10 m V−1 of a piezoceramicmaterial, an excitation voltage of uex;stack =
500V, and purely linear material behavior. The assumptions lead to the mechanical
strains of piezoelectric disk S3;disk and stack S3;stack

S3;disk = S3;stack = d33E3 = d33
uex;stack

tS
= 4 · 10−4 (10.1)

in 3-direction. Therefore, the longitudinal PSA offers a stroke of

zstroke = S3;stack · lstack = ndisk · S3;disk · tS = 20µm . (10.2)

If a piezoceramic cylinder of the same length is used instead (i.e., cylinder length lS =
50mm), such stroke will require the excitation voltage

uex;cylinder = S3;cylinder · lS
d33

= zstroke
d33

= 50 kV , (10.3)
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which is ndisk times higher than the excitation voltage uex;stack of a stack actuator
with the same performance, i.e., uex;cylinder = ndisk · uex;stack. When we increase the
number ndisk of piezoceramic disks and reduce their thickness tS accordingly that the
stack length lstack stays constant, the obtained stroke will be improved further. This
simple example already reveals the great advantage of piezoelectric stack actuators.
However, one also has to consider that a stack actuator behaves electrically like the
parallel connection of ndisk single piezoceramic disks. The capacitance Cdisk of a
single disk is given by

Cdisk = εT33AS

tS
= εT33d

2
Sπ

4tS
(10.4)

with the electric permittivity εT33 for constant mechanical stress. Therewith, the total
capacitance Cstack of the longitudinal PSA results in

Cstack = ndisk · Cdisk = ndiskεT33d
2
Sπ

4tS
= n2diskε

T
33d

2
Sπ

4lstack
. (10.5)

Compared to the capacitance Ccylinder = εT33AS/ lstack of the piezoceramic cylinder
with the same geometric dimensions, Cstack takes values that are n2disk times as large,
i.e., Cstack = n2disk · Ccylinder. Although the excitation voltage uex;stack is relatively
small, the parallel connection of ndisk capacitances Cdisk increases the current con-
sumption of the PSA remarkably. If the electric current of a single disk is idisk, the
current istack of the entire stack becomes istack = ndisk · idisk. It seems only natural that
both the increasing total capacitance and the increasing current consumption have to
be taken into account when designing the control electronics for a PSA.

With regard to practical applications, one should always bear in mind that PSAs
are very sensitive to tensile forces. On the one hand, this is due to the adhesive layer
between the piezoceramic elements in conventional setups. On the other hand, piezo-
ceramic materials itself should generally not be loaded with tensile forces because
these materials exhibit low tensile strength. Hence, tensile forces cannot only dam-
age conventional PSAs but also multilayer stack actuators. Even if there do not act
external tensile forces on the PSA, the inner forces in case of electrical excitation
may cause damages. That is the reason why PSAs (especially longitudinal PSAs)
are commonly mechanically prestressed in practical applications [6]. For the lon-
gitudinal PSAs in Fig. 10.2a and b, mechanical prestress means a mechanical force
acting in negative z-direction on the top end, i.e., parallel to the working direction.
We can generate the required prestress either with the aid of a suitable PSA housing
or through an external preloading.

The permitted range of the excitation voltage uex represents a further important
point concerning the practical application of PSAs. In order to avoid partial or full
depolarization of the involved piezoceramic materials, PSA must not be excited by
large negative voltages. To some extent, the permitted range is exclusively limited to
positive voltages, i.e.,uex ≥ 0V.Exceptions to this are shear PSAs,which canusually
be operated symmetrically around zero up to a few hundred volts. The permitted
voltage range for conventional longitudinal PSAs often goes up to uex = +1000V.
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The company PI Ceramic GmbH [20] is a well-known manufacturer of longitu-
dinal and shear PSAs. Depending on the stack length lstack, commercially available
longitudinal PSAs in the conventional setup provide strokes of more than 30µm.
The blocking forces can reach values >50 kN in longitudinal direction. Note
that the blocking force will correspond to the maximum mechanical force when
actuator displacements are completely prevented. Multilayer stack actuators allow
strokes >30µm and blocking forces greater than 3000N. The maximum displace-
ment of commercially available shear PSAs typically amounts 10µm. However,
due to the setup of shear PSAs, the permitted maximum of the shear load hardly
exceeds 200N.

10.1.2 Effect of Mechanical Prestress on Stack Performance

Figure10.3 depicts the investigated longitudinal piezoelectric stack actuator PICA
P-010.20P of cylindrical shape, whichwasmanufactured by the company PI Ceramic
GmbH [20]. The PSA consists of ndisk = 50 single disksmade of the ferroelectrically
soft material PIC255. Owing to the fact that the disks are polarized and stacked in 3-
direction, the stack actuatormainly elongates in 3-direction,which also represents the
working direction. Consequently, it makes sense to restrict the further investigations
to the 3-direction. This includes the decisive physical quantities (e.g., mechanical
strain), whichmeans that we consider solely their 3-components. Themost important
specifications of the PSA are listed in Table10.1.

Fig. 10.3 Piezoelectric stack
actuator PICA P-010.20P
manufactured by PI Ceramic
GmbH; total length lstack and
cross section AS = d2Sπ/4;
electrical excitation uex;
applied mechanical
prestress T3 = F3/Adisk

1
2

3

uex

l s
ta

ck

dS
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F3



10.1 Piezoelectric Stack Actuators 517

Table 10.1 Specifications of
investigated longitudinal
piezoelectric stack actuator
PICA P-010.20P

Thickness tS of a single disk ≈0.5mm

Diameter dS of a single disk 10mm

Disk material PIC255

Amount ndisk of single disks 50

Total length lstack of the stack actuator 31mm

Maximum permissible mechanical
prestress T3;max

30MPa

Electrical excitation voltage uex 0 . . . 1 kV

Let us start with the maximum achievable values for both the electric polariza-
tion P+

max and the mechanical strain1 S+
max of the PSA in the unipolar working area

(see Fig. 6.1 on p.196) state of the actuator is unknown, we will exclusively quantify
maximum changes of those quantities, i.e., ΔP+

max and ΔS+
max. Just as in Chap.6,

a Sawyer–Tower circuit and a linear variable differential transformer were utilized
to acquire ΔP and ΔS, respectively. The PSA was exposed to a mechanical pre-
stress T3 = F3/Adisk in thickness direction through a tension–compression test-
ing machine. Firstly, T3 was stepwise increased from 0MPa to 30MPa in steps
of 2.5MPa and, secondly, stepwise reduced again to the mechanically unloaded
case (i.e., T3 = 0MPa). In order to ensure that all transient phenomena within the
actuator have decayed, the electrical excitation was applied after a waiting time
of 5min. The sinusoidal excitation voltage (frequency f = 0.1 Hz) featured an
amplitude of ûex = 500 V and an offset ofUoff = +500 V; i.e., the PSAwas operated
in the permissible range (see Table10.1). This leads to the maximum electric field
intensity E = 2 kVmm−1 within a single disk.

Figure10.4a and b show the obtained results for ΔP+
max and ΔS+

max of the PSA
with respect to T±

3 . Interestingly, both quantities rise with increasingmechanical pre-
stress T+

3 and dropwith decreasing prestress T−
3 in the investigated value range. Such

behavior ismainly attributable to the fact that several domainswithin the ferroelectric
material switch to the ferroelastic intermediate stage due to applied prestresses [34].
As a consequence, the global electric polarization of the PSA reduces, but the amount
of domains that can be aligned in parallel to the applied electric field increases. There-
fore, the changes of electric polarizations ΔP+

max and mechanical strains ΔS+
max also

rise in the considered range of mechanical prestresses (cf. Fig. 6.21c on p.236). It
has to be noted that a further increase of the prestress would, however, drastically
reduce ΔP+

max as well as ΔS+
max since the domains stay in the ferroelastic interme-

diate stage. In other words, the applied electric field is no longer capable to align
domains within the ferroelectric material. Besides, there occurs a certain hystere-
sis for increasing prestress T+

3 and decreasing prestress T−
3 in ΔP+

max(T3) as well
as ΔS+

max(T3), i.e., ΔP+
max

(
T+
3

) �= ΔP+
max

(
T−
3

)
and ΔS+

max

(
T+
3

) �= ΔS+
max

(
T−
3

)
. The

reason for this lies in altered domain configurations within the ferroelectric material
for increasing and decreasing prestresses.

1The given mechanical strains of the PSA always relate to its total length lstack.
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Fig. 10.4 Variation of a maximum electric polarization ΔP+
max(T3) and b maximum mechanical

strain ΔS+
max(T3) versus applied mechanical prestress T3; increasing prestress T+

3 and decreasing
prestress T−

3 ; piezoelectric stack actuator PICA P-010.20P operating in unipolar working area

10.1.3 Preisach Hysteresis Modeling for Prestressed Stack

As the results in Fig. 10.4 demonstrate,ΔP+
max andΔS+

max of the PSA strongly depend
on the applied mechanical prestress T3. The values (especially ΔP+

max) are altered
up to almost 15% in the investigated range of T3. Accordingly, it seems only natural
that the underlying large-signal behavior of the electric polarization and mechanical
strain also varies. With a view to studying this effect more in detail, additional
measurements were conducted for the actuator operating in the unipolar working
area. In particular, a unipolar electrical excitation signal of sinusoidal shape was
utilized which features decreasing amplitudes and a frequency of f = 0.1Hz. The
mechanical prestress T+

3 was again stepwise increased from0MPa to 30MPa in steps
of 2.5MPa. After a waiting time of 5min, the PSA was excited with the unipolar
electrical input sequence. Figure10.5a and b show the collectedmeasurements for the
electric polarization ΔPmeas(t, T3) and mechanical strain ΔSmeas(t, T3) with respect
to time t as well as applied prestress T3. Similar to the previous experiments, the
strong dependence on T3 becomes apparent. This can also be seen in the resulting
hysteresis curves ΔPmeas(E, T3) and ΔSmeas(E, T3) in Fig. 10.5c and d.

To incorporate the applied mechanical prestress T3 in Preisach hysteresis model-
ing for the PSA, it is advisable to proceed in the same manner as in Sect. 6.6.5. This
means that we introduce a weighting distribution µDAT(α,β, T3) for the elementary
switching operators of the generalized Preisach hysteresis operatorHG, which addi-
tionally depends on T3. In a first step, the entire parameter set of μDAT(α,β, T3) is
identified forΔP(E, T3) as well asΔS(E, T3) separately in case of themechanically
unloaded PSA, i.e., T3 = 0. Subsequently, selected parameters have to be modified
with respect to T3. In contrast to the piezoceramic disk in Sect. 6.6.5, it is here suf-
ficient to solely alter the parameter B because the considered PSA only operates in
the unipolar working area. As the comparison of measured and simulated hysteresis
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Fig. 10.5 a and b Measured curves ΔPmeas(t, T3) and ΔSmeas(t, T3) versus time t and increas-
ing mechanical prestress T+

3 for identifying parameters of Preisach hysteresis operator; c and
d measured hysteresis curves ΔPmeas(E, T3) and ΔSmeas(E, T3); e and f simulated hysteresis
curves ΔPsim(E, T3) and ΔSsim(E, T3); piezoelectric stack actuator PICA P-010.20P operating in
unipolar working area

curves in Fig. 10.5c–f indicates, the generalized Preisach hysteresis model performs
excellently. Even if the mechanical prestress changes, we will be able to realistically
describe the large-signal behavior of the PSA in the unipolar working area.

The same investigationswere conducted for a decreasingmechanical prestressT−
3 ;

i.e.,T−
3 was stepwise reduced from30MPa to0MPa in steps of 2.5MPa.Figure10.6a

and b contains the identified parameter values of BP(T3) as well as BS(T3) for
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Table 10.2 Parameters ςi of smoothing function ψsmooth(T3) in (10.6) for BP and BS , which are
required to define weighting distribution μDAT(α,β, T3)

ς1 ς2 ς3

Polarization BP (T3) 962.8092 8.1108 0.0788

Strain BS(T3) 10.8679 0.0319 0.0012

increasing and decreasing prestress, respectively. Due to smooth progression of the
parameter values, they can also serve as data points of an appropriate smoothing
function ψsmooth(T3). Here, we use the function (cf. (6.30, p. 237))

ψsmooth(T3) = ς1 + ς2

(
T3

1MPa

)
+ ς3

(
T3

1MPa

)2

. (10.6)

The resulting values of ςi for BP(T3) and BS(T3) are listed in Table10.2.
For validation purpose, let us exploit the determined parameter set to predict

polarizations and strains of the PSA for an electrical excitation signal, which was not
considered during the identification procedure. Contrary to the identification signal,
the unipolar excitation signal for validation features rising amplitudes. Figure10.7a
and b display the measured curves ΔPmeas(t, T3) and ΔSmeas(t, T3) with respect
to t and T3. The corresponding simulation results ΔPsim(t, T3) and ΔSsim(t, T3) are
shown in Fig. 10.7c and d. Again, the comparison clearly points out that one is able
to reliably predict the large-signal behavior of the PSA through Preisach hysteresis
modeling, even in case of applied mechanical prestress. This is also confirmed by
the normalized relative deviations εr between simulations and measurements, which
always stay below 5% (see Fig. 10.7e and f). However, if the mechanical prestress is
not taken into account, the modeling approach will yield relative deviations of more
than 10% [34].
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Fig. 10.7 a and b Measured curves ΔPmeas(t, T3) and ΔSmeas(t, T3) versus time t and increas-
ing mechanical prestress T+

3 for validating Preisach hysteresis model; c and d simulated
curves ΔPsim(t, T3) and ΔSsim(t, T3) versus time t and increasing mechanical prestress T+

3 ; e
and f collected normalized relative deviations |εr| in % (magnitude); piezoelectric stack actuator
PICA P-010.20P operating in unipolar working area

10.2 Amplified Piezoelectric Actuators

Even though piezoelectric stack actuators provide huge blocking forces, excellent
positioning accuracy as well as large operating frequencies, the available strokes are
much smaller than those of electromagnetic actuators. This fact constitutes a con-
siderable disadvantage for various practical applications like vibration sources. The
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so-called amplified piezoelectric actuators (APA) supply remedy because they pro-
vide large strokes by converting mechanical forces into displacements. The working
principle and basic design of an APAwill be explained in Sect. 10.2.1. Subsequently,
we will discuss simulation results, which allow to deduce design criteria for ampli-
fied piezoelectric actuators. In Sect. 10.2.3, experimental results for different APA
configurations will be compared to corresponding simulation results.

10.2.1 Working Principle

Amplified piezoelectric actuators always consist of piezoelectric elements and appro-
priate structures for convertingmechanical forces into displacements. In the majority
of cases, piezoelectric stack actuators serve as piezoelectric elements since the avail-
able strokes of such actuators are much higher than those of single piezoelectric
elements, e.g., a disk. The conversion structure contains a certain amount of arms
and is often diamond-shaped, which can be achieved either by the pitch angles of
straight structure arms or by arms featuring the shape of suitable free-form curves,
e.g., [11, 15, 17, 38]. Apart from the structure shape, the connection of the arms
greatly influences the performance of the APA.

Figure10.8a shows the typical setup of an APA containing a PSA and a metallic
hinged frame for conversion. The hinged frame comprises four arms with two joints
each. If the PSA expands due to electrical excitation, amechanical forcewill be intro-
duced to the hinged frame and its geometric dimension in x-direction will increase.
This goes hand in hand with a reduction of the frame dimensions in y-direction. As a
matter of fact, the geometric changes depend on the excitation signal, the geometric
circumstances of stack actuator and frame as well as on their material properties.

In a first step, let us conduct a purely geometric consideration of the APA in
Fig. 10.8a. Therefore, we assume ideal hinges and neglect acting forces as well as
material properties. The symmetrical hinged frame comprising four nondeformable
arms can then be reduced to a single arm of constant length lA [14, 15]. While the
left-end PL of the arm moves only in y-direction, the right-end PR moves only in

(a) (b)

ux

ux

uy

uy

PSA

hinged frame

hinge

arm

α∗α0

y

x

y0

y1

x0 x1

lA
lA

α0 α1

PL

PR

Fig. 10.8 a Typical setup of APA containing piezoelectric stack actuator (PSA) and closed hinged
frame with four arms; b quantities for geometric consideration of single APA arm
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x-direction. Figure10.8b depicts the geometric circumstances for the initial state (i.e.,
without actuator excitation) and for the expanded state. In the initial and expanded
state, the end positions of the arm are given by (x0, y0) and (x1, y1), respectively.
The resulting effective pitch angles of the arm read as

α0 = arctan

(
y0
x0

)
and α1 = arctan

(
y1
x1

)
. (10.7)

Owing to the fact that lA is assumed to remain constant, both states have to satisfy

lA =
√
x20 + y20 =

√
x21 + y21 =

√
(x0 + ux )

2 +(
y0 + uy

)2
(10.8)

with the displacement ux of PR in positive x-direction and uy of PL in positive y-
direction. By solving for uy , which represents the aimed quantity, (10.8) becomes

uy = −y0 ±
√
y20 − u2x − 2x0ux

= −lA sinα0 +
√
(lA sinα0)

2 − u2x − 2lA cosα0ux . (10.9)

This means that the displacement uy of the hinged frame in y-direction depends
exclusively on the actuator stroke ux , the arm length lA, and the pitch angle α0 in the
initial state. Because we modeled a quarter of the setup, ux and uy denote half of the
actuator stroke and half of the entire frame displacement, respectively. It seems only
natural that an APA should fulfill the condition uy > ux .

10.2.2 Numerical Simulations for Parameter Studies

Thegeometric considerations in the previous subsectionneglect both the acting forces
and the material properties of the APA components. It is not surprising that such an
approach represents an oversimplification of the actual circumstances. To describe
the behavior of an APA in a reliable way, we need, therefore, alternative three-
dimensional approaches like elastostatic modeling, compliance-based modeling, or
finite element (FE) analysis [13]. In the context of elastostatic modeling, the support
reactions (i.e., forces and torques) at PL and PR are evaluated as function of the acting
forces. These forces are given by the generated force of the PSAand theweight forces.
The combination of support reactions and strain energy yields the displacements ux
and uy of the APA. In case of compliance-based modeling, one has to introduce an
elastic compliance tensor [s] for each component of the APA, i.e., for the structure
arms and the PSA. From the acting forces and the resulting compliance tensor of
the APA, we are again able to compute ux as well as uy . Although the elastostatic
and compliance-based modeling approaches are rather simple, they exhibit serious
weaknesses. Both modeling approaches do not allow to determine eigenfrequencies
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Fig. 10.9 Schematic front
and side view of
three-dimensional FE model
of APA with sample
holder [14]; FE model
represents quarter of overall
structure; point of interest
(POI); geometric pitch
angle α∗ of arm

POIPOI

fix(x)
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z
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of the APA, which are of utmost importance concerning practical applications [14].
Moreover, the underlying calculation procedures require the acting force of the PSA.
On these grounds, wewill exclusively focus on the FEmethod hereinafter. In contrast
to elastostatic and compliance-basedmodeling, the FEmethod can be used for several
types of analysis, e.g., eigenfrequency analysis. The consideration of piezoelectric
coupling (see Sect. 4.5.1) also enables the determination of ux and uy for a given
electrical excitation of the PSA.

Figure10.9 depicts a schematic front and side view of the three-dimensional FE
model including characteristic geometric dimensions. The FE model was created
according to the APA configurations that were built up at the Chair of Sensor Tech-
nology (Friedrich-Alexander-University Erlangen-Nuremberg). Besides of the PSA
and the metallic hinged frame, the simulation model contains a sample holder made
of acrylic glass. Owing to its symmetry, the entire setup can be reduced to a quarter,
which remarkably reduces to computation effort and makes certain boundary con-
ditions for the mechanical displacement necessary. The boundary conditions fix(x)
and fix(z) imply that the displacements are zero in x- and z-direction, respectively.
Because the ground plate of the realized APA is fixed, the FE model contains addi-
tionally fix(x, y, z) at its bottom.

The cylindrically shapedpiezoelectric stack actuator P-010.40P from the company
PI Ceramic GmbH [20] serves as piezoelectric element in the realized setup. The
stack with diameter dS = 10mm and total length lstack = 58mm consists of 98 active
disks that are made of the ferroelectrically soft material PIC255. They are equipped
with electrodes and glued together. At the bottom and top end, the stack contains
a ceramic plate as well as a steel plate.The active disks are alternately polarized
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Fig. 10.10 Schematic front
and side view of
three-dimensional FE model
of PSA [14]; FE model
represents quarter of overall
structure; P indicates
direction of electric
polarization

fix(x) fix(z)
x

x

yy

z
z

dS

tS tP

tE

PPPP P

active disk
passive plate

steel plate

pos. electrode
neg. electrode

Table 10.3 Numbers and geometric dimensions of components for FE model of PSA in Fig. 10.10

Number Geometric dimensions

Passive ceramic plate 1 Thickness tP = 1.0mm

Active piezoelectric disk 49 Thickness tS = 0.56mm

Steel plate 1 Thickness tE = 0.5mm

in opposite directions. Figure10.10 illustrates a schematic front and side view of
the PSA in the FE model. Table10.3 summarizes the number of components and
geometric dimensions. Note that the adhesive layers and electrodes between the disks
were not considered in the simulation. Thematerial parameters of PIC255were taken
from the results of the inverse method in Table5.3 on p.160. For the metallic hinged
frame that is made of tool steel, the decisive material parameters density, Young’s
modulus, andPoisson’s ratiowere assumed to be	0 = 7800 kg m−3, EM = 210GPa,
and νP = 0.28.

As already mentioned, the numerical simulations were conducted for different
configurations of the APA [14]. While the PSA remains unchanged for all configura-
tions, the metallic framewas altered. This refers to the hinge design and its geometric
dimensions as well as to the arm length lA. In Fig. 10.11, one can see the two types
of considered hinge designs with the characteristic dimensions wH and lH. Type A
contains rounded cuts, whereas hinges of type B feature a rectangular shape. It is
not surprising that both arm length and hinge influence the effective pitch angle α0

of the arms and, therefore, the conversion of ux into uy , which is provided from the
APA.

Table10.4 contains the initial parameters of the hinged frame for the harmonic
FE simulations, which were carried out in frequency range from 10Hz to 3 kHz.
Let us start with simulation results for a hinge of type B. Figure10.12 displays the
normalized simulated velocity amplitude v̂y( f ) = 2π f ûy( f ) in y-direction at the
point of interest (POI) that corresponds to the top end of the sample holder (cf.
Fig. 10.9). The first resonance in v̂y( f ) occurs at a frequency of fr ≈ 300Hz. Until
shortly before this resonance, v̂y( f ) rises linearly with the frequency since the dis-
placement amplitude ûy( f ) at the POI stays almost constant. If the arm length lA
of the hinged frame is reduced (e.g., lA = 15mm), fr will increase which might be
amajor advantage. However, the available velocity amplitude below fr will decrease
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Fig. 10.11 Characteristic
geometric dimensions of
hinges of a type A and b
type B

(a) (b)

wH
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Fig. 10.12 Normalized
simulated velocity amplitude
v̂y( f ) of APA at POI for
different arm lengths lA;
hinges of type B; geometric
parameters listed in
Table10.4; normalization to
amplitude ûex of PSA
excitation voltage
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for shorter values of lA. Similar studies can be performed for the other geometric
parameters of the hinged frame. Table10.4 summarizes the simulated influence of
the geometric parameters on v̂y( f ) and fr. Thereby, one parameter was increased,
while the other parameters remain unchanged. The table entries demonstrate that
similar to lA, a larger length lH of the hinge is accompanied by a higher v̂y( f ) and a
lower fr . The opposite behavior arises for the arm height wA, the hinge height wH,
and the geometric pitch angleα∗ of the arms. If these parameters are increased, v̂y( f )
will decrease and fr will increase. The influence of frame thickness tA as well as
height lF on both parameters is comparatively low. As a matter of fact, the mate-
rial parameters of the PSA and the hinged frame also have a strong impact on the
APA performance. Because these material parameters are predefined for the realized
setup, their influence was not studied.

Guided by the parameter study, one can create different APA designs with regard
to the practical application. In the present case, the APA should provide high veloc-
ities v̂y( f ) at the POI up to a frequency of f = 80Hz, which implies that fr
has to be much greater than 80Hz. For this purpose, five metallic hinged frames
were designed and fabricated at the Chair of Sensor Technology [14]. The closed
frames (see Fig. 10.13) of constant frame thickness 2tA = 10mm and constant arm
height wA = 5mm differ in the geometric dimensions lA, lH, wH and α∗ as well as
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Table 10.4 Initial geometric parameters of metallic hinged frame for FE simulations; simulated
influence of individually increasing parameters on velocity amplitude v̂y( f ) below resonance and
first resonance frequency fr ; ↑ and ↓ indicate strong increase and strong decrease, respectively; ↗
and ↘ indicate slight increase and slight decrease, respectively

Parameter Initial value v̂y( f ) fr

lA 25mm ↑ ↓
lH 1mm ↑ ↓
wA 5mm ↓ ↑
wH 0.5mm ↓ ↑
α∗ 1◦ ↑ ↓
tA 5mm ↘ ↗
lF 30mm ↘ ↓

(a) entire frame A-1 (b) part of frame A-1

(c) part of frame A-2 (d) part of frame A-3

(e) part of frame B-1 (f) part of frame B-2

10mm

10mm10mm

10mm

10mm
10mm

Fig. 10.13 Fabricated closed metallic frames for APA [14]; a entire frame A-1; part of b frame
A-1, c frame A-2, d frame A-3, e frame B-1, and f frame B-2; decisive geometric dimensions are
listed in Table10.5

in the hinge designs. The metallic frames are designated as A-1, A-2, A-3, B-1, and
B-2, whereby the letter stands for the hinge type. Table10.5 lists the characteristic
geometric dimensions of the individual frames. Figure10.14 displays the obtained
normalized simulation results of v̂y( f ) for the frames. To some extent, the frequency-
resolved amplitudes show large differences. Due to the thin hinges of A-1 and B-1,
these frames provide large velocities but exhibit small resonance frequencies. By
contrast, the hinges of the frames A-2, A-3, and B-2 are stiffer which goes hand in
hand with lower values of v̂y( f ) and higher values of fr. In each case, fr takes much
higher values than 80Hz. The achieved velocity amplitudes at 80Hz and resonance
frequencies are listed in Table10.5.
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Fig. 10.14 Normalized simulated velocity amplitudes v̂y( f ) of APA at POI for hinges of a type
A and b type B; normalization to amplitude ûex of PSA excitation voltage

Table 10.5 Decisive geometric dimensions of hinged frames in Fig. 10.13; simulated normalized
displacement amplitudes ûy and velocity amplitudes v̂y of POI at 80Hz for different frames; sim-
ulated frequency fr of first resonance

Type A-1 A-2 A-3 B-1 B-2

lA in mm 26 31 29 34 24

lH in mm 2.0 3.0 4.0 1.5 3.0

wH in mm 0.5 1.0 1.5 0.5 1.5

α∗ 0◦ 0◦ 0◦ 0◦ 3◦

lF in mm 30 25 25 25 26

ûy in nmV−1 539 147 149 338 145

v̂y in
µm s−1 V−1

271 74 75 170 73

fr in Hz 151 188 321 168 412

10.2.3 Experimental Verification

With a view to verifying the simulation results, measurements were conducted in
addition [14]. Figure10.15 shows the realized APA with the sample holder. At the
bottom end, the APA is equipped with a rigid adapter plate made of stainless steel.
The displacements amplitudes ûy( f ) and velocity amplitudes v̂y( f ) at the POI (i.e.,
at the top end of the sample holder) were acquired by the laser vibrometer OFV
303/3001 from the company Polytec GmbH [21]. In doing so, the PSA was excited
harmonically by a sinusoidal voltage of the amplitude ûex = 1.5V around the con-
stant offset Uoff = +1.5V. Therefore, the excitation voltage varied between 0 and
3V. The frequency range of the electrical excitation was chosen according to the
simulations, i.e., from 10Hz up to 3 kHz.
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Fig. 10.15 Realized APA
including piezoelectric stack
actuator, closed metallic
hinged frame (types A-1,
A-2, A-3, B-1, or B-2),
adapter plate as well as
sample holder [14]

sample
holder

piezoelectric
stack actuator

metallic
hinged frame

adapter plate 10mm

Figure10.16a and b display the normalized measurement results of v̂y( f ) for
the hinges of type A and type B, respectively. As the comparison with Fig. 10.14
reveals, the measurements show a similar behavior as the simulation results. This
means that the frames with the hinges A-1 and B-1 provide large velocity amplitudes
at f = 80Hz, while the frames with the hinges A-2, A-3, and B-2 offer higher values
of the resonance frequency fr. For low excitation frequencies (i.e., f < 40Hz), the
measurement results should be interpreted with caution since small velocities lead
to noisy output signals of the laser vibrometer.

Table10.6 contains for each frame the measurement values for ûy(80Hz),
v̂y(80Hz), and fr . Although the basic behavior of simulations and measurements
coincides very well, the differences in the absolute values are remarkable (cf.
Table10.5). In particular, the displacement and velocity amplitudes strongly deviate
from each other. The deviations are mainly caused by three reasons. Firstly, the geo-
metric circumstances of the metallic frames change slightly after inserting the PSA.
This applies above all to the effective pitch angle α0 of the frame arms, which influ-
ences the nonlinear relation between ux and uy (see (10.8)). Secondly, the conducted
linear FE simulations do not consider prestresses inside PSA and hinged frame. Last
but not least, the simple FEmodel of the stack actuator contains neither adhesive lay-
ers nor electrode layers between the almost 100 disks. Of course, both layers greatly
affect the performance of the APA. It makes, however, hardly sense to take them into
account since the computation effort of the FE simulations would increase remark-
ably. Moreover, we do not know their material behavior and geometric dimensions,
in particular of the adhesive layers. A potential remedy would be a homogenized FE
model of the PSA [32, 33]. Instead of the complex layer structure, the actuator would
then consist of one homogeneous cylindrical-shaped material with fictive properties.
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Fig. 10.16 Normalized measured velocity amplitudes v̂y( f ) of APA at POI for hinges of a type
A and b type B; normalization to amplitude ûex of PSA excitation voltage

Table 10.6 Measured normalized displacement amplitudes ûy and velocity amplitudes v̂y of POI
at 80Hz for different frames; measured frequency fr of first resonance

Type A-1 A-2 A-3 B-1 B-2

ûy in nmV−1 190 55 70 237 69

v̂y in
µm s−1 V−1

101 31 37 133 38

fr in Hz 150 200 300 120 360

These material properties can be identified by means of the inverse method (see
Sect. 5.2), i.e., by an iterative adjustment of numerical simulations to measurements.

The practical use of the APA including the sample holder calls commonly for
much higher displacement and velocity amplitudes than given in Table10.6. That
is the reason why the piezoelectric stack actuator has to be excited by AC volt-
ages with amplitudes ûex � 1V. In the present case, the experiments were repeated
with a sinusoidal excitation of ûex = 250V and an offset of Uoff = +250V [14].
With a view to avoiding plastic deformations and mechanical damages of the APA,
the excitation frequency f was kept below the first resonance. Figure10.17a and b
depict the measured velocity amplitudes v̂y( f ) at the POI for the hinges of type A
and type B, respectively. Compared to the measurement results in Fig. 10.16a and
b, the achieved velocity amplitudes are much higher. However, they do not coincide
with the amplitudes that arise from multiplying the curves in Fig. 10.16 by the factor
250, i.e., 250V/1V. This circumstance can be ascribed to the nonlinear behavior
of stack actuator and frame. The nonlinearity gets also visible in the total harmonic
distortion THD relating the energy of the harmonics to the entire energy of a sig-
nal [12]. For the small excitation voltage ûex = 1.5V, THD is always lower than 5%
in the considered frequency range, while it takes values up to 15% at f = 80Hz
for ûex = 250V.
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Fig. 10.17 Measured velocity amplitudes v̂y( f ) of APA at POI for hinges of a type A and b type
B; amplitude of excitation voltage ûex = 250V

Summing up, it can be stated that linear FE simulations allow predicting the
frequency-dependent behavior of an APA qualitatively. As the simulation and mea-
surement results demonstrated, one can build up a compactAPA that exceeds velocity
amplitudes of 50mms−1 at an excitation frequency of 80Hz. The required excitation
voltages are in the range of a few hundred volts.

10.3 Piezoelectric Trimorph Actuators

Piezoelectric bending actuators like bimorph and trimorph actuators provide large
mechanical deflections in short periods of time. Therefore, they aremostly utilized as
mechanical switches in various applications, e.g., in circular knittingmachines. How-
ever, the large deflections of those actuators might be also interesting for positioning
tasks. In this section, let us verify the suitability of a piezoelectric trimorph actuator
for such tasks. Section10.3.1 deals with Preisach hysteresis modeling to describe
the hysteretic behavior of the investigated actuator. Since positioning demands the
precise knowledge of the electrical actuator excitation, model-based hysteresis com-
pensation is exploited and characterized in Sect. 10.3.2.

10.3.1 Preisach Hysteresis Modeling for Trimorph

In Fig. 10.18, one can see the investigated trimorph actuator 427.0086.12F from
the company Johnson Matthey Piezo Products GmbH [9]. This bending actuator
containstwo piezoceramic layers (ferroelectric material M1100), both polarized in
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Fig. 10.18 Piezoelectric
trimorph actuator
427.0086.12F manufactured
by Johnson Matthey
Catalysts GmbH; total
length ltri and width wtri;
electrical excitation uex; tip
deflection xtip

1
2

3uex
ltri

wtri

GND

+200V

xtip

Table 10.7 Specifications of
investigated trimorph actuator
427.0086.12F

Thickness hlayer of a single piezoceramic
layer

260µm

Thickness hint of the intermediate layer 240µm

Total thickness htri of the trimorph actuator 780µm

Width wtri of the trimorph actuator 2.1mm

Length ltri of the trimorph actuator 49mm

Maximum permissible excitation voltage uex 230V

positive 3-direction. They aremechanically linked through an additional intermediate
layer, which does not exhibit piezoelectric properties and serves as central electrode.
The most important specifications of the trimorph actuator are listed in Table10.7.
Due to the chosen electrical connection assignment (see Fig. 10.18), the actuator
will deflect in 3-direction if an electrical excitation signal uex �= 100V is applied.
Considering linear material behavior, bending in positive 3-direction arises for uex >

100V,while an excitation signal uex < 100V causes bending in negative 3-direction.
Hereinafter, we concentrate on tip deflections xtip for the case that the inves-

tigated trimorph actuator is fixed at the other end. Since xtip can reach values up
to 1mm, an optical triangulation position sensor was used for nonreactive displace-
mentmeasurements [4].With regard to practical applications of the trimorph actuator
in positioning tasks, xtip as function of uex represents the decisive transfer behavior.
To characterize this transfer behavior, a unipolar electrical excitation signal uex(t)
of sinusoidal shape was utilized which features decreasing amplitudes and a fre-
quency of f = 0.1Hz [34]. The results xtip(uex) in Fig. 10.19 clearly indicate that
the investigated trimorph actuator shows strongly pronounced hysteresis. Even for
small excitation signals, the hysteresis will not be negligible if precise positioning is
required. It is for this reason very important to predict xtip with respect to uex. Again,
let us exploit Preisach hysteresis modeling, in particular the generalized Preisach
hysteresis operator HG (see Sect. 6.6). The model parameters (e.g., B and h1) were
identified by means of adjusting simulations to measured hysteresis curves xtip(uex).
In doing so, an offset of 100V has to be added because the trimorph actuator
remains in its neutral position (i.e., xtip = 0) for the excitation signal uex = 100V.
As the comparisons of measurements and simulations in Fig. 10.19a and b (magni-
fied detail) demonstrate, Preisach hysteresismodeling allows precise prediction of tip
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(a) tip deflections of trimorph (b) magnified detail
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Fig. 10.19 a Measured and simulated hysteresis curves xtip(uex) as well as linearization; b mag-
nified detail of a; piezoelectric trimorph actuator 427.0086.12F

deflections. This holds for the entire working area of the investigated trimorph actua-
tor. In contrast, the assumption of linearmaterial behavior, which yields the linearized
tip deflection xlinear

xlinear = xmeas,min + xmeas,max − xmeas,min

uex,max − uex,min
uex (10.10)

will lead to remarkable deviations between predicted results and measurements.
Here, the expressions xmeas,min and xmeas,max stand for minimum and maximum tip
deflections that are achieved through the excitation signals uex,min and uex,max in the
considered working area, respectively.

10.3.2 Model-Based Hysteresis Compensation for Trimorph

The previous results have proven that Preisach hysteresis modeling is well suited
to predict the hysteretic behavior of the investigated piezoelectric trimorph actua-
tor. However, positioning tasks in practical applications demand knowledge of the
electrical excitation signal uex to achieve the desired actuator’s tip deflection xtar.
One has, therefore, to invert the generalized Preisach hysteresis operator leading
to H−1

G . For this purpose, let us apply the same inversion procedure as in Sect. 6.8.
Figure10.20a illustrates the general approach of the underlying model-based hys-
teresis compensation: Starting from the desired target output xtar(t) with respect
to time t , we determine the electrical excitation signal uinv(t) through H−1

G . The
resulting tip deflections xmodel(t) of the trimorph actuator are then measured and
compared to xtar(t). Besides, the investigated actuator was excited with the electrical
signal ulinear(t), which results from inverting (10.10) and represents the case that the
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(a)

(b)

xtar(t) uinv(t)

xtar(t) ulinear(t)

xmodel(t)

xlinear(t)

H−1
G

Fig. 10.20 Block diagram to achieve desired mechanical deflections xtar(t) of the trimorph actu-
ator for a model-based hysteresis compensation and b uncompensated case (i.e., linearization);
determined quantities: uinv(t) and ulinear(t); measured quantities: xmodel(t) and xlinear(t)

hysteretic behavior of the actuator is not taken into account (see Fig. 10.20b). For
this excitation, the acquired tip deflections xlinear(t) are also compared to xtar(t).

As already mentioned in Sect. 10.3.1, the parameters of the generalized Preisach
hysteresis operator were identified on basis of sinusoidal excitations signal fea-
turing decreasing amplitudes. With a view to evaluating the performance of the
model-based hysteresis compensation for the piezoelectric trimorph actuator, a tar-
get quantity xtar(t) should be chosen that remarkably differs from the one con-
sidered during parameter identification. Figures10.21b and 10.22b display such
target quantities containing several local minima and maxima as well as differ-
ent slopes of the tip deflection with respect to time. The top panels (Figs. 10.21a
and 10.22a) depict the applied excitation signals uinv(t) and ulinear(t) of the investi-
gated trimorph actuator resulting frommodel-based hysteresis compensation and lin-
earization (see Fig. 10.20), respectively. Although the chosen target quantities are of
completely other shape as the identification signal, H−1

G yields normalized relative
deviations |εr| (magnitude) between xmodel(t) and xtar(t) that always stay below 5%.
In contrast, the normalized relative deviations for the linearization approach partially
exceed 15%, which confirms the relevance of model-based hysteresis compensation
for the trimorph actuator in positioning tasks. Nevertheless, especially steep changes
in xtar(t) followed by a constant value are accompanied by large relative deviations εr .
This fact can be ascribed to the creep behavior of the actuator that is not taken into
account even if we conduct generalized Preisach hysteresis modeling [34].

In various practical applications, positioning actuators have to move exclusively
between two positions at constant speed. For the piezoelectric trimorph actuator, it is,
thus, desired that the slope ∂xtar(t) /∂t (i.e., velocity) of the tip deflections remains
constant between the two positions. Consequently, the target tip deflection xtar(t) of
the actuator with respect to time corresponds to a triangular waveform. Figure10.23a
shows such a tip deflection oscillating between the positions ±0.580mm with the
frequency f = 0.1Hz. To obtain the desired tip deflections xtar(t) of the investigated
trimorph actuator, we have to consider its hysteric behavior through model-based
hysteresis compensation (see Fig. 10.20a). By means of the inverted generalized
Preisach hysteresis operator H−1

G , the measured tip deflections xmodel(t) oscillate
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(a) electrical excitation signals

(b) desired and measured tip deflections

(c) relative deviations from desired tip deflections xtar
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Fig. 10.21 a Electrical excitation signals uinv(t) and ulinear(t) for model-based hysteresis com-
pensation and uncompensated case, respectively; b desired tip deflections xtar(t) and measured
ones xmodel(t) as well as xlinear(t); c normalized relative deviations |εr| in % (magnitude); piezo-
electric trimorph actuator 427.0086.12F

between +0.584mm and −0.573mm. The normalized relative deviations |εr| (mag-
nitude) in Fig. 10.23b reveal that xmodel(t) and xtar(t) do not only coincide well for
maximum as well as minimum tip deflections but also in between [34, 35]. On the
other hand, when we neglect the hysteretic behavior of the trimorph actuator mean-
ing linearization according to Fig. 10.20b, the resulting tip deflections xlinear(t) will
remarkably differ from xtar(t). For instance, xlinear(t) oscillates between +0.476mm
and −0.565mm. While the maximum of |εr| for model-based compensation is less
than 3%, assuming linear behavior can lead to values greater than 12%.

Actually, the tip deflections xtip of the investigated trimorph actuator exhibit a cer-
tain frequency dependence. If resonance phenomena are not considered, an increas-
ing frequency f of the electrical excitation signal uex will reduce the achievable
tip deflection. Figure10.23c illustrates this behavior with the aid of hysteresis
curves xtip(uex, f ), which result from sinusoidal excitation signals featuring differ-
ent frequencies. For the excitation voltage uex = 200V, the maximum tip deflection
decreases from 1.003mm for 0.01Hz to 0.842mm for 10Hz. As a matter of course,
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(a) electrical excitation signals
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Fig. 10.22 a Electrical excitation signals uinv(t) and ulinear(t) for model-based hysteresis com-
pensation and uncompensated case, respectively; b desired tip deflections xtar(t) and measured
ones xmodel(t) as well as xlinear(t); c normalized relative deviations |εr| in % (magnitude); piezo-
electric trimorph actuator 427.0086.12F

we have to consider the frequency-dependent behavior in Preisach hysteresis mod-
eling for the trimorph actuator. Similar to Sect. 6.6.4, the excitation frequency can
be incorporated in modeling through varying only a few parameters. Here, it is suffi-
cient to exclusively alter themodel parameter h2 with respect to f [34]. Figure10.23d
depicts the identified values for h2( f ) that can serve as data points for the smoothing
function (cf. (6.29, p. 233))

ψsmooth( f ) = ς1 + ς2 · f ς3 (10.11)

with the function parameters ςi . On basis of this smoothing function, the general-
ized Preisach hysteresis operator was inverted, which is required for model-based
hysteresis compensation of actuator deflections. Figure10.23e contains the target
tipdeflection xtar(t) of triangular shape with a frequency of 10Hz as well as the
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(a) tip deflections at 0.1Hz (b) relative deviations from xtar

(c) hysteresis curves (d) variation of h2(f)

(e) tip deflections at 10Hz (f) relative deviations from xtar
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Fig. 10.23 a Desired tip deflections xtar(t) (triangular; frequency f = 0.1Hz) and measured
ones xmodel(t) as well as xlinear(t); b normalized relative deviations |εr| in % (magnitude); c mea-
sured hysteresis curves xtip(uex, f ) with respect to excitation frequency f ; d variation of model
parameter h2( f ) as well as smoothing function ψsmooth( f ) according to (10.11) with the param-
eters ς1 = 0.5042, ς2 = −0.5030, and ς3 = 0.0457; e desired tip deflections xtar(t) (triangular;
frequency f = 10Hz) and measured ones xmodel(t) as well as xlinear(t); f normalized relative devi-
ations |εr| in % (magnitude); piezoelectric trimorph actuator 427.0086.12F

measured quantities xmodel(t) and xlinear(t). Due to the steep changes of the elec-
trical excitation, there occur high-frequency mechanical vibrations of the actuator
tip that are not covered by phenomenological Preisach hysteresis modeling. How-
ever, once again, the model-based hysteresis compensation provides much more reli-
able tip deflections of the investigated trimorph actuator than the linearization (see
Fig. 10.23f).
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10.4 Piezoelectric Motors

A piezoelectric motor is a device that converts electrical energy into mechanical
energy. In doing so, piezoelectric motors perform either translational or rotational
motions. Depending on the movement type, they are designated as linear piezo-
electric motors or rotary piezoelectric motors. Figure10.24 depicts the principle
components of piezoelectric motors. The components can be grouped into the vibra-
tor and the slider [27]. While the vibrator is composed of a piezoelectric driving
element and an elastic vibrator piece, the slider contains a friction coating as well as
an elastic sliding piece. The motion of vibrator and slider against each other leads
to the mechanical output of the piezoelectric motor. Since the arising component
movements are often in the ultrasonic range, piezoelectric motors are also termed
piezoelectric ultrasonic motors [37].

In contrast to electromagnetic motors, one can easily build up efficient piezo-
electric motors with sizes smaller than 1 cm−3. This stems from the fact that the
conversion of electrical into mechanical energy does not depend on the size of
piezoelectric motors. The conversion efficiency is predominantly determined by
the utilized piezoelectric material and the basic motor design. As a result, we can
achieve a large ratio of mechanical power to motor weight. In general, linear and
rotary piezoelectric motors provide low translation velocities and slow rotational
speeds, respectively [23, 27, 28]. Further advantages of piezoelectric motors over
electromagnetic motors lie in the simple structure, easy production process, high
retention forces, and negligible impacts of external magnetic fields on the motor
performance. However, piezoelectric motors demand a high-frequency power sup-
ply andmostly offer less durability due to frictionwear. Besides, the ratio of available
force to generated velocity decreases with increasing velocities of linear piezoelec-
tric motors. The same holds for the ratio of available torque to generated rotational
speed for increasing rotational speeds of rotary piezoelectric motors. Nevertheless,
since the advantages of piezoelectric motors often outweigh their disadvantages, they
are used in various applications, e.g., as space-saving and efficient drives in camera
lenses [1, 18].

Fig. 10.24 Principle
components of piezoelectric
motors that convert electrical
inputs into mechanical
outputs
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It is not surprising that the piezoelectric elements strongly influence the perfor-
mance of piezoelectricmotors. Due to this fact, piezoelectricmotors aremostly based
on piezoceramic materials because such materials offer high electromechanical cou-
pling factors (see Sect. 3.6). To avoid excessive heat development during operation,
especially in case of motors that exploit the resonance mode, one should use ferro-
electrically hard PZT materials. Heat-induced depolarization can be prevented if the
piezoceramic material additionally exhibits a high Curie temperature ϑC.

There can be foundmany different designs of piezoelectricmotors in the literature.
In the following, we will briefly discuss selected examples of linear piezoelectric
motors (see Sect. 10.4.1) and rotary piezoelectric motors (see Sect. 10.4.2).

10.4.1 Linear Piezoelectric Motors

The selected examples of linear piezoelectric motors include inchworm, stepper as
well as slip-stick motors.

Inchworm Motors

Inchworm motors can be considered as one the oldest categories of piezoelectric
motors [3]. The name is justified by the underlying motion sequence, which is remi-
niscent of themovement of an inchworm. Basically, an inchwormmotor contains two
clamp actuators, a feed actuator, and two end plates and a slider (see Fig. 10.25) [5].
Because of the required strokes, longitudinal PSAs usually serve as clamp and feed
actuators. A single motion sequence of an inchworm motor comprises six steps (see
Fig. 10.26).

Fig. 10.25 Principle setup
of piezoelectric inchworm
motor; slider can be moved
in positive and negative
y-direction

x y

z

feed actuator

silder

clamp
actuator

end plate
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step 1 step 2 step 3

step 4 step 5 step 6

Fig. 10.26 Single motion sequence of inchworm motor; red arrows indicate direction of current
actuator expansion and contraction

• Step 1: Releasing the right clamping by contraction of the right clamp actuator.
• Step 2: Forward motion by expansion of the feed actuator.
• Step 3: Expansion of the right clamp actuator, i.e., activation of the right clamping.
• Step 4: Releasing the left clamping by contraction of the left clamp actuator.
• Step 5: Contraction of the feed actuator.
• Step 6: Expansion of the left clamp actuator, i.e., activation of the left clamping.

After step 6, the motion sequence starts again with step 1. If the center of the feed
actuator is fixed in space, the sliderwillmove from the right to the left. By exchanging
right through left and left through right in the motion sequence, the slider will move
from the left to the right.

In general, inchworm motors offer high positioning accuracy, high rigidity, and
a travel distance, which is infinite from the theoretical point of view. Even though
the deployed PSAs provide high velocities, the complicated motion sequence results
in greatly reduced travel speeds. The friction-type connection between end plates
and slider in conventional inchworm motors leads, furthermore, to limited feed and
holding forces. That is the reason why many efforts have been recently made to
replace the friction-type connection by a positive-locking connection, which can
be realized by equipping both the end plates and the slider with an appropriate
interlocking [2, 19]. As a matter of fact, the lateral distance between adjacent teeth
determines the minimal travel distance. From there, it makes sense to use a tight
interlocking. If the end plates and the slider are made of silicon, one is able to
fabricate the interlocking by anisotropic etching. A more robust interlocking can
be obtained by using components that are made of hardened steel. In this case, the
fabrication of a tight interlocking calls for laser ablation methods.
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Fig. 10.27 Principle setup
of piezoelectric stepper
motor; slider can be moved
in positive and negative
y-direction
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Stepper Motors

The working principle of piezoelectric stepper motors is quite similar to that of inch-
wormmotors. Themain difference between bothmotor types lies in the feed actuator,
which is not required for piezoelectric stepper motors [16, 26]. Stepper motors are
commonly based on either piezoelectric bimorph actuators or combinations of longi-
tudinal and shear PSAs. Here, let us describe the working principle for piezoelectric
bimorph actuators. Figure10.27 displays a fundamental setup, which consists of
two piezoelectric serial bimorph actuators with contact elements and a slider that
gets mechanically pressed against at least one actuator. Both piezoelectric bimorph
actuators are connected at their top end to the housing. The two piezoelectric bars
inside a single bimorph actuator are polarized in opposite direction and have to be
controlled separately. In Fig. 10.28, one can see a single motion sequence of a piezo-
electric serial bimorph actuator as well as the sinusoidal excitation voltages uex;A(t)
and uex;B(t) of both piezoelectric bars. It is possible to distinguish between three
excitation scenarios.

• uex;A(t) = uex;B(t): The bimorph actuator keeps its shape. If both voltages are
negative, the bimorph actuator will expand (state I in Fig. 10.28a). If both voltages
are positive, the bimorph actuator will contract (state III in Fig. 10.28a).

• uex;A(t) > uex;B(t): The bimorph actuator bends to the right because the left bar
expands and the right bar contracts (state II in Fig. 10.28a).

• uex;A(t) < uex;B(t): The bimorph actuator bends to the left because the left bar
contracts and the right bar expands (state IV in Fig. 10.28a).
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(a) (b)
uex;Buex;Buex;Buex;B uex;Auex;Auex;Auex;A uex;A(t)
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Fig. 10.28 a Motion sequence of single piezoelectric serial bimorph actuator; direction of elec-
tric polarization P; b electrical excitation signals uex;A(t) and uex;B(t) for elliptical motion of
bimorph tip

step 1 step 2 step 3 step 4

step 5 step 6 step 7 step 8

Fig. 10.29 Single motion sequence of piezoelectric stepper motor; slider moves from left to right

Whenuex;A(t) anduex;B(t)have identical amplitude and frequencybut exhibit a phase
difference of 90◦, the lower end of the piezoelectric bimorph actuator performs an
elliptical motion. By exciting both bimorph actuators (i.e., the four piezoelectric
bars) appropriately, the slider of the piezoelectric stepper motor moves due to this
elliptical motion. Figure10.29 shows the motion sequence comprising eight steps for
a slider movement from the left to the right. If the piezoelectric bimorph actuators
are regarded as legs, the resulting motion sequence will reminiscent of a walking
human.

Slip-Stick Motors

Piezoelectric slip-stickmotors exploit the inertial principle, i.e., the inertia of moving
objects [7, 36]. In Fig. 10.30a, one can see a possible setup and the underlying
working principle of such a motor. The setup contains a longitudinal PSA, a drive
shaft, and a moving part. While the left-hand side of the PSA is fixed, its right-hand
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Fig. 10.30 a Possible setup of piezoelectric slip-stick motor; b initial state and steps of single
motion sequence; displacement umov of moving part; red arrow indicates expansion and contraction
of longitudinal PSA; c electrical excitation voltage uex(t) of PSA for shifts of moving part to right
and left, respectively

side is attached to the drive shaft. The moving part, which represents the slider of
the piezoelectric motor, is located on the drive shaft. A single motion sequence of
the considered slip-stick motor comprises two steps.

• Step 1: Slow expansion of the PSA.
• Step 2: Fast contraction of the PSA.

The steps can be achieved by exciting the PSA with the electrical voltages uex(t) as
shown at the top of Fig. 10.30c. During step 1, the static friction between moving
part and drive shaft leads to a slow shift of both components (see Fig. 10.30b). Due
to the fast PSA contraction during step 2, the static friction between moving part
and drive shaft converts into dynamic friction. This stems from the fact that the
inertia force acting on the moving part exceeds the static friction force. As a result,
the moving part alters its position by umov. In the present case, the moving part is
shifted to the right. If the speed of PSA expansion and contraction is exchanged (i.e.,
fast expansion and slow contraction), which results from uex(t) at the bottom of
Fig. 10.30c, the moving part will be shifted to the left. The attainable velocity of the
moving part mainly depends on the duration of the slow PSA deformation.When this
duration is too short, the accelerations will yield high inertia forces exceeding the
static friction force between moving part and drive shaft. Consequently, the moving
part will remain at the same position.



544 10 Piezoelectric Positioning Systems and Motors

10.4.2 Rotary Piezoelectric Motors

The selected examples of rotary piezoelectricmotors include standingwave, traveling
wave as well as so-called Kappel motors.

Standing Wave Motors

As the name already suggests, standing wave motors are based on the formation of
standing waves. Before we discuss rotary piezoelectric motors that exploit standing
waves, let us regard a one-dimensional standing wave from the mathematical point
of view. Such a wave can be expressed as

uS(x, t) = ûS cos(kx) cos(ωt) (10.12)

with the displacement amplitude ûS, the wave number k, the position x , the angular
frequencyω, and the time t , respectively. The resulting displacement uS(x, t) exhibits
fixed nodes at which uS(x, t) = 0 holds aswell as fixed antinodes at which uS(x, t) =
ûS holds.

In the context of rotary piezoelectric motors, one makes use of shifts of vibrator
against slider due to standing waves [23, 27]. Figure10.31a depicts a simple setup
of a rotary standing wave motor. It comprises a longitudinal PSA that is spatially
fixed at one end, a plunger being connected to the other end of the PSA, and a
rotor. According to the definition in Fig. 10.24, the combination of PSA and plunger
represents the vibrator, while the rotor is the slider. To generate rotational movements
of the rotor, we need a slight angle ΘM between the central axis of the plunger and
the surface normal of the rotor surface, where the plunger is pressed to the rotor. If
the PSA expands, the arising contact area will move along the rotor surface. In case
of a sufficient static friction between plunger and rotor, this plunger movement yields
a rotational movement of the rotor. Not surprisingly, large rotational movements can
be reached when the longitudinal PSA excites a standing wave that offers antinodes
at the plunger tip.

The superposition of the longitudinal PSA stroke and the movement along the
rotor surface results in an almost elliptical motion of the plunger tip with respect to
a fixed coordinate system. Figure10.31b illustrates a possible tip motion with the
characteristic points A and B. From A to B, the plunger tip contacts the rotor. That
is the reason why the tip motion corresponds to the rotor surface. Since there does
not exist any contact from B to A, plunger and rotor do not affect each other. The
plunger tip undergoes, thus, an elliptical motion. Although the tip does not contact
the rotor from B to A, the rotor continues rotating, which is a consequence of the
nonzero rotor’s moment of inertia IR. A small value of IR is accompanied by strong
fluctuations of the rotor movement. Of course, the driven load also influences IR and,
therefore, the uniformity of the rotor movement.

By using only one vibrator (i.e., one longitudinal PSA with plunger) as shown
in Fig. 10.31a, we are restricted to a single direction of rotation. When the piezo-
electric motor contains a second vibrator, which is appropriately arranged, it is pos-
sible to introduce rotational movements in the other direction of rotation. For the
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Fig. 10.31 a Simple setup of rotary piezoelectric standing wave motor with single longitudinal
PSA; red arrows indicate direction of movements; bmagnified plunger’s tip motion at contact area
with characteristic points A and B [27]

given example, this can be achieved by placing the second vibrator on the opposite
side of the rotor. There also exist rotary piezoelectric motors, which are based on a
butterfly-shaped vibrator that contains both vibrators [37]. In further motor designs,
the piezoelectric vibrators directly act on the front surface of the rotor.

Traveling Wave Motors

Just as in case of standing wave motors, let us start with a one-dimensional traveling
wave from the mathematical point of view. The location-dependent as well as time-
dependent displacement uT(x, t) of such a wave can be expressed as

uT(x, t) = ûT cos(kx − ωt) (10.13)

with the displacement amplitude ûT. In contrast to a standing wave, a traveling
wave contains neither fixed nodes nor fixed antinodes. However, by using basic
trigonometric relations, we are able to convert (10.13) into

uT(x, t) = ûT cos(kx) cos(ωt) + ûT cos
(
kx − π

2

)
cos

(
ωt − π

2

)

= ûT cos(kx) cos(ωt) + ûT sin(kx) sin(ωt) . (10.14)

Both terms of the sum represent standing waves, whose phases differ by π/2 from
each other in space and time. Thus, a traveling wave can be generated by superim-
posing two standing waves. Note that this is not limited to the fundamental wave but
also holds for the nth harmonic uT;n(x, t) of a traveling wave, which is given by

uT;n(x, t) = ûT;n cos(nkx − ωt) . (10.15)
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Fig. 10.32 Principle of
piezoelectric traveling wave
motors; slider movement is
opposite to propagation
direction of surface wave

slider

vibrator

moving direction

propagation direction

The decomposition into two standing waves becomes then

uT;n(x, t) = ûT;n cos(nkx) cos(ωt) + ûT;n sin(nkx) sin(ωt) . (10.16)

From there, it should be possible to build up a piezoelectric motor that exploits
travelingwaves bymeans of two standingwaves. This fact is decisive because we can
easily generate standing waves inside a structure of finite size through piezoelectric
actuators.

Figure10.32 shows the underlying principle of common piezoelectric traveling
wave motors. Let us assume an elastic wave, which propagates from the left to the
right on the vibrator surface that faces the slider. Such traveling wave corresponds
to a surface wave (Rayleigh wave) and, therefore, comprises longitudinal as well as
transverse waves. A surface particle of the vibrator undergoes an elliptical motion
in counterclockwise direction. The contact areas between vibrator and slider arise at
the positive local maxima of the propagating surface wave. When the static friction
between vibrator and slider at these areas is sufficient, the longitudinal part of the
elliptical motion will lead to a slider movement against the direction, in which the
surface wave propagates. Not surprisingly, the contact mechanism is decisive for the
operational characteristic (e.g., rotational speed) of traveling wave motors [29].

In Fig. 10.33a, one can see a well-known practical implementation of a rotary
piezoelectric motor that is based on traveling waves. This so-called Sashida motor
consists of a piezoceramic ring, an elastic ring, a slider, and a rotor [23, 27]. While
the elastic ring is linked to the piezoelectric ring, the slider is linked to the rotor.
The piezoceramic ring contains 16 active areas, which are polarized in either posi-
tive or negative thickness direction (see Fig. 10.33b). The active areas are grouped
into the two parts A and B, each with eight elements being contacted by common
electrodes. In peripheral direction, the active areas feature the geometric dimen-
sion λT/2, whereby λT stands for the wavelength of the resulting surface wave on
the piezoceramic ring. The spacings (i.e., areas without electrodes) between the two
parts amount 3/4λT and λT/4, respectively. With the aid of a single part, we can gen-
erate a standing wave along the piezoelectric and elastic ring. Relating to the ring’s
circumference, this standing wave corresponds to the ninth harmonic. The spacings
of the part A and B lead to the spatial phase shift 90◦/9 = 10◦ of both standing
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Fig. 10.33 a Cross-sectional view of Sashida motor; b top view of piezoceramic ring containing 16
active areas with different directions of electric polarization P [23, 27]; wavelength λT of traveling
wave along ring; electrical excitation uex;A(t) and uex;B(t) of part A and B, respectively

waves. According to (10.16), it will, thus, be possible to generate a traveling wave
along the rings if one part is electrically excited by ûex sin(ωt) and the other part
by ûex cos(ωt). Exchanging the excitation signals of the parts results in a change of
the direction of rotation, e.g., from clockwise to counterclockwise. In each case, the
traveling wave yields a rotation of the rotor.

Sashida-type motors are energy-saving as well as thin and do not require gears.
On those ground, such piezoelectric rotary motor is often used in camera lenses for
autofocusing. There also exist extended versions of Sashida-type motor, which are
equipped with a tooth-shaped vibrator to improve the rotation speed of the rotor [37].

Kappel Motors

This special type of rotary piezoelectric motor was invented by Kappel in 1999.
Similar to piezoelectric standing wave motors, Kappel motors exploit the conversion
of linearmotions into rotarymotions [10, 30]. Figure10.34 depicts the principle setup
of a Kappel motor that consists of two longitudinal PSAs with plungers, a drive ring,
and a pivoted rotor with a slightly smaller diameter than the inner diameter of the
drive ring. The two PSAs are arranged at 90◦ to each other and, thus, can move the
drive ring in the xy-plane. If this movement takes place along an appropriate circular
path, the rotor will roll on the inner surface of the drive ring. Consequently, the rotor
undergoes a rotarymotion. The circularmovement of the drive ring requires electrical
PSA excitations with identical amplitudes ûex but a phase shift of 90◦; i.e., when
one PSA is excited by ûex cos(ωt), the other PSA has to be excited by ûex sin(ωt).
Exchanging the PSA excitations yields the opposite direction of rotation.

With a view to achieving rotary motions in case of smooth surfaces of drive ring
and rotor, the static friction between them has to be sufficient. High load torquesmay
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Fig. 10.34 Principle setup
of Kappel motor with two
longitudinal PSAs; red
arrows indicate direction of
movements

drive ring

PSA

rotor

plunger

x

y

z

lead, however, to a malfunction of the motor. That is the reason why several practical
implementations of Kappel motors are equipped with a tight interlocking, just as
inchworm motors [10]. In doing so, the friction-type connection between drive ring
and rotor becomes replaced by a positive-locking connection.

Kappel motors allow a high positioning accuracy, a speed-independent high
torque, an outstanding dynamic behavior, and sensorless measurements of load
torques. In contrast to many other rotary piezoelectric motors, Kappel motors can be
used in a wide speed range. On these grounds, there exist various practical applica-
tions for such motors, e.g., electric window lifter. The high production costs com-
pared to conventional electromagnetic motors hamper, nevertheless, the commercial
breakthrough of Kappel motors up to now.
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BKT, see bismuth potassium titanate
B-mode imaging, 333
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Bouc-Wen model, 202
Bridgman growth technique, 68
Bubble collapse, see inertial cavitation
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Cable capacitance, 423
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Cauchy stress tensor, 17
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directivity pattern, 495
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Composite transducers, 306
Compression output, 442
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Coupling conditions, 123
Coupling factors, 57
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Cubic crystal system, 63
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D
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Donor doping, 75
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field intensity, 8
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Electromagnetics, 7
Electromechanical coupling, 53
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strong formulation, 84
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First law of thermodynamics, 45
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Force sensors, 412
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Fourier slice theorem, 352
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Frequency domain, 14
Frequency-resolved electrical impedance,
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Fundamental vibration modes, 131
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G
Galerkin’s method, 87
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generalized hysteresis operator, 224
inversion, 252, 533
mechanical deformations, 228
rate-dependent behavior, 230
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Gibbs free energy, 46, 485
Gilmore equation, 489
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Inertial cavitation, 490
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Insulation resistance, 424
Intensive state variables, 47
Interdigital transducers, 261, 408, 469
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Jacobian matrix, 146
Jiles-Atherthon model, 202

K
Kappel motors, 547
Kelvin-Voigt model, 168, 231
Kirchhoff’s current law, 14
Kirchhoff’s voltage law, 14
KLM equivalent circuit, 311
KNN, see sodium potassium niobate
Kramers-Kronig relations, 40, 170

L
Lambda locked loop principle, 460
Lamb waves, 478
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Lamé parameters, 22, 394
Landau-Devonshire theory, 200
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decisive parameters, 358
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measurable frequency, 370
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principle, 349
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sound pressure in fluids, 350

sound fields in air, 387
sound fields in water, 372
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curved phased array, 304
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Linear motors, 539
Linear play operator, 203
Linear stop operator, 203
Linear wave equation, 33
Lithium niobate, 67
Load washer sensor, 413
Longitudinal stack actuators, 513
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Lorentz-Lorenz equation, 351
Loss factor, 167, 310
Love wave (LW), 408
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Lumped circuit elements, 12, 134, 311
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Magnetic

field intensity, 8
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flux density, 8
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Mason’s equivalent circuit, 311
Mass flow rate, 453
Mass matrix, 89, 100, 109
Matched filter, 442
Matching layers, 297
Material characterization, 127
Material density, 18
Maxwell model, 167
Maxwell’s equations, 7
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energy, 45, 57
normal strain, 20
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strain, 18
stress, 16
volume force, 15, 99, 115

Mechanical-acoustic coupling, 122
Mechanical attenuation, 104
Mechanical impedance, see radiation
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Medical diagnostics, 331
Micro electromechanical systems (MEMS),
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Micro jet, 491
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Navier’s equation, 15, 115
Newmark scheme, 94
Newton’s law, 30
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NKN, see sodium potassium niobate
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Nondestructive testing (NDT), 331
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Ohm’s law, 13
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absorbing boundary conditions (ABC),
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Operational amplifier, 423, 425
Orthorhombic crystal system, 63
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Parameter conversion, 52
Parameter vector, 155, 180
Parking sensors, 320
Passive cavitation detection, 493
Pellicle-based optical interferometry, 345
Perfectly matched layer (PML), 111
Perovskite structure, 69
Phased arrays, see transducer arrays
Phase diagram, 71
Phase field model, 199
Phase transition, 64, 70, 198
Phase velocity, 472
Piezocaloric effect, 47
Piezoceramic materials, 69, 130, 147
Piezoelectric bimorph actuators, 511
Piezoelectricity, 43

constitutive equations, 50, 295
coupling factors, 57
crystal classes, 63
direct effect, 44
extrinsic effects, 54
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inverse effect, 44
linear, 49
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material parameters, 66, 160
materials, 63
practical applications, 3
principle, 43
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stress-charge form, 49
thickness extensional mode, 133, 295
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transverse length mode, 132, 295
transverse mode, 45, 56
transverse shear mode, 57
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Piezoelectric micromachined ultrasonic
transducers (pMUTs), 306

Piezoelectric microphones, 417
Piezoelectric motors, 538

linear, 539
rotary, 544

Piezoelectric stack actuators (PSA), 511
effect of mechanical prestress, 516
fundamentals, 512
Preisach hysteresis modeling, 518

Piezoelectric trimorph actuators, 511, 531
model-based hysteresis compensation,
533

Preisach hysteresis modeling, 531
Piezoelectric ultrasonic transducers, see ul-

trasonic transducers
Piezo-optic coefficient, 351

air, 387
water, 372

Piezo-optic effect, 350
Pipe wall transmission, 478
Piston-type transducer, 274, 373, 390

directivity pattern, 276
far field, 279
Fresnel zone, 278
Green’s function, 276
near field length, 278
on-axis sound field, 275
sound pressure distribution, 275

Pitch-catch mode, 261
Planar coupling factor, 134
Plane strain state, 101
Plane stress state, 101
Plane waves, 35
Plate capacitor, 13
PMN-PT, see lead magnesium niobate and

lead titanate
Point-like target, 263
Point source directivity, 475
Point spread function (PSF), 447
Poisson’s ratio, 22, 137, 166
Poling, 71
Polycrystalline ceramic materials, 69

hysteresis, 71
manufacturing process, 69
molecular structure, 69
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Polytetrafluoroethylene (PTFE), 79
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Preisach hysteresis operator, 204
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efficient numerical calculation, 209
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Everett function, 211
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Process measurement technology, 407
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Pyroelectric effect, 46
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Radiation impedance, 310
Radon transform, 352
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Rayleigh damping model, 104
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Rayleigh-Plesset equation, 488
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Read-out of piezoelectric sensors, 422
Receiver, 261, 319, 429, 465
Rectangular window, 443
Reflection, 35
Reflection coefficient, 38, 111, 432
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Regularization parameter, 144
Relaxor-based single crystals, 68
Relaxor ferroelectrics, 54
Relay operator, 203
Remanent electric polarization, 73
Remanent mechanical strain, 73
Representative volume element (RVE), 200
Repulsive force, 29
Resistance, 132
Resistor, 12
Resonance frequency, 132
Reynolds number, 454
Rheological models, 201
Rhombohedral crystal system, 63
Rhombohedral phase, 70
RoHS, 75
Rotary motors, 544
RPNNP equation, 489

S
Sashida motor, 546
SAW, see surface acoustic wave
Sawyer-Tower circuit, 216, 517
Scalar potential, 23
Scandium aluminum nitride, 76
Schlieren optical methods, 346
Seismic mass, 418
Semi-bipolar working area, 196
Sensors, 1
Series resonance frequency, 132
Sharp interface approach, 199
Shear-horizontal acoustic plate mode (SH-

APM), 408
Shear modulus, 22
Shear stack actuators, 514
Shock wave, 491
Side lobe level (SLL), 442
Signal-to-noise ratio (SNR), 358, 435, 445,
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ness and speed of sound, 428
measurement setup, 447
principle, 429
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transmitter excitation, 434

conditioned transducer, 438
signal conditioning, 438

Sing-around ultrasonic flow meter, 459
Single crystals, 64
Single-element transducers, 296

thickness extensional mode, 296
transverse length mode, 299

parallel bimorph, 301
serial bimorph, 301
unimorph, 300

SIR, see spatial impulse response
Slip-stick motors, 542
Small-signal behavior, 54
Snell’s law, 37
Sodium potassium niobate (KNN or NKN),

76
Solid-fluid interface, 122
Sonography, 331
Sonoluminescence, 491
SOS, see speed of sound
Sound

absorption, 38
intensity level, 28
power level, 28
pressure, 27
pressure level, 28
velocity, 32

Sound field characterization, 341
Sound fields of transducers, 272
Spatial impulse response (SIR), 265

piston-type transducer, 267
spherically focused transducer, 269

Spatial resolution of transducers, 289
axial, 291
lateral, 292

Rayleigh two-point definition, 293
Sparrow two-point definition, 294

Specific heat, 32
Speckle-tracking flow meters, 464
Speed of sound (SOS), 32, 429
Spherically focused transducer, 281

depth of focus, 286
directivity pattern, 283
f-number, 283
focal length, 281
focal volume, 283
Fresnel parameter, 283
lateral beam width, 288
on-axis sound field, 283
prolate ellipsoid, 288

sound field in geometrical focal plane,
287

sound pressure distribution, 282
true focus, 284

Spontaneous electric polarization, 70
Stack actuators, 512
Standard linear solid (SLS) model, 168
Standing wave motors, 544
State equation, 31
Static analysis, 101
Static Young’s modulus, 170
Stepper motors, 541
Stiffness matrix, 89, 96, 100, 109
Stiffness tensor, 21, 99, 105
Stoke’s theorem, 11
Stress relaxation, 166
Strong coupling, 122
Strong formulation, 84
Surface acoustic wave (SAW), 408
Surface normal velocity, 263
Susceptance, 132
Switching operators, 202
Synthetic aperture focusing technique

(SAFT), 334

T
Tailored material model, 170
Temperature dependence, 71, 162, 188
Tensile modulus, see Young’s modulus
Tensile test, 138
Tetragonal crystal system, 63
Tetragonal phase, 70
Thermodynamical considerations, 45
Thickness coupling factor, 134
Three-layer problem, 431
Three-port network, 311
Through-transmission mode, 429
Tikhonov functional, 144
Tikhonov regularization, 143
Time-bandwidth product, 435
Time-of-flight measurement, 139
Time-of-flight (TOF), 408, 429
Timoshenko beam, 139
TOF, see time-of-flight
Tomographic imaging, 352
Torque sensors, 414
Torsion test, 140
Total reflection, 37
Tourmaline, 65, 414
Transducer arrays, 301

beam steering, 301
focused beam, 301
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steering and focusing, 301
synchronous beam, 301

Transducers, 2
Transducer structure, 295
Transient analysis, 102
Transit time flow meters, 456
Transmission coefficient, 38, 432
Transmission line model for plate, 431

frequency domain, 432
time domain, 431

Transmitter, 261, 319, 429, 465
Transverse waves, 25
Traveling wave motors, 545
Triclinic crystal system, 63
Turkey window, 364
Two-dimensional phased array, 305
Types of FE analysis, 101

eigenfrequency, 103
harmonic, 102
static, 101
transient, 102

U
Ultrasonic cleaning, 491

micro jet, 491
shock wave, 491

Ultrasonic flow meters, 456
Ultrasonic imaging, 331

A-mode, 332
B-mode, 333
C-mode, 334
M-mode, 332

Ultrasonic motors, see piezoelectric motors
Ultrasonic testing, 331
Ultrasonic transducers

airborne ultrasound, 319
examples, 319
medical diagnostics, 330
underwater ultrasound, 324

Ultrasonic wedge transducers, 467

Ultrasound, 27
Unimorph transducers, 300
Unipolar working area, 196
Unpolarized ceramics, 69

V
Vector potential, 23
Velocity dispersion, 40
Virgin curve, 73, 207
Viscoelasticity, 166
Voided charged polymers, 78
Voigt notation, 17, 50
Volume charge density, 8
Volumetric flow rate, 453

W
Wavelength, 35, 114, 263, 297
Wave number, 24, 35, 110, 274, 371, 471,

495, 544
Wave propagation velocity, see sound veloc-

ity
Wave theory, 28
Wave vector, 24
Weak coupling, 122
Weak formulation, 84
WEEE, 75
Well-posed problem, 141
Wiener filter, 439, 445
Windfall effect, 456
Wurtzite, 76

Y
Young’s modulus, 22, 137, 165

Z
Zener model, 168
Zinc oxide (ZnO), 76, 408
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