
Chapter 4
SSA for Multivariate Time Series

In this chapter we consider the problem of simultaneous decomposition, recon-
struction, and forecasting for a collection of time series from the viewpoint of
SSA. The main method of this chapter is usually called either Multichannel SSA
or Multivariate SSA, shortly MSSA. The principal idea of the algorithm is the
same as for Basic SSA, the difference is in the way of how the trajectory matrix is
constructed. The aim of MSSA is to take into consideration the combined structure
of a multivariate series to obtain more accurate results.

MSSA is usually considered as an extension of 1D-SSA. However, the algorithm
of MSSA was published even earlier than the algorithm of 1D-SSA; see Weare
and Nasstrom (1982), where MSSA was named Extended Empirical Orthogonal
Function (EEOF) analysis. The MSSA algorithm in the framework of SSA was
formally formulated in Broomhead and King (1986b). Here we consider the
algorithm of MSSA for the analysis and forecasting of multivariate time series
following the approach described in Golyandina et al. (2001; Chapter 2) for one-
dimensional series and in Golyandina and Stepanov (2005) for multidimensional
ones.

Section 4.1 starts this chapter by describing the complex-valued version of 1D-
SSA (called Complex SSA), which is a natural generalization of 1D-SSA for the
analysis and forecasting of a system of two time series (Keppenne and Lall 1996).

In Sect. 4.2 we expand the methodology of Chap. 2 for the SSA analysis
of a system of several time series. It is important to note that there are two
main ways of stacking individual trajectory matrices into a joint trajectory matrix:
horizontal stacking and vertical stacking. For theMSSA analysis, these two stacking
procedures are equivalent.

Section 4.3 considers forecasting in MSSA. There are four main variants of
MSSA forecasting: recurrent column forecasting, recurrent row forecasting, vector
column forecasting, and vector row forecasting. We carefully describe the com-
monalities and differences between these four variants and make their comparison
on a simulated data. Finally, in Sect. 4.4 we discuss features of the MSSA analysis,
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forecasting and data filling on several real-world data sets. The examples considered
in Sects. 4.3 and 4.4 and the discussion of Sect. 4.3.4 demonstrate that essentially
all the techniques that have been developed in Chaps. 2 and 3 for 1D-SSA can be
naturally extended to the multivariate case. This concerns, in addition to the SSA
analysis and forecasting, the practical problems of smoothing, filtering, imputation
of missing values, estimation of parameters of the signal, and also subspace tracking
for monitoring stability and change-point detection.

4.1 Complex SSA

Any real-valued 1D-SSA variation can be transferred to the complex-valued case.
At present, only Basic 1D-SSA is implemented in the RSSA package in the complex-
valued form. Therefore, in this section we briefly discuss the complex-valued
version of Basic 1D-SSA and call it Complex SSA. A comparison of Complex SSA
with other methods of multivariate SSA will be made in subsequent sections of this
chapter.

4.1.1 Method

Assume that a system of two time series of the same length N is given. Then we
can consider the one-dimensional complex-valued series X = X

(1) + iX(2) and
apply the complex version of 1D-SSA to this one-dimensional series. Since the
Basic SSA algorithm in Sect. 2.1 is written in the real-valued form, there is some
difference in the form of the SVD performed in the complex-valued space, where
the transposition should be Hermitian.

Also, there is a specificity related to the uniqueness of the SVD expansion. If the
singular values are different, then the SVD is unique up to multiplication of left and
right singular vectors by c, where |c| = 1. In the real-valued case, c = ±1, while in
the complex-valued case there are infinitely many complex numbers c with |c| = 1.

Complex-valued SSA forecasting and parameter estimation are straightforward
extensions of the corresponding techniques for the real-valued time series. In the
current version of RSSA, forecasting (recurrent and vector ones), Cadzow iterations
and gap-filling are implemented but the parameter estimation and the shaped version
of SSA are not.

4.1.2 Separability

Separability in Complex SSA is defined exactly as in the real-valued 1D-SSA
variations. However, the conditions for separability are different. Conditions for
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Complex SSA separability of time series are more restrictive than the separability
conditions for the one-dimensional series (Golyandina et al. 2015; Appendix A.1).
In particular, the following sufficient condition for weak separability is valid.

Proposition 4.1 If time series F(1) and F(2),G(1) andG(2), F(1) andG(2), and also
G

(1) and F
(2) are weakly L-separable by 1D-SSA, then the complex-valued time

series F(1) + iF(2) and G(1) + iG(2) are weakly L-separable for Complex SSA.

The conditions of Proposition 4.1 can be extended to conditions for asymptotic
separability (N → ∞) and therefore for approximate separability for fixed N .

The most important difference between 1D-SSA and Complex SSA is
related to the separability of imaginary exponential functions with the term
sn = Aei(2πωn+φ) = A cos(2πωn + φ) + iA sin(2πωn + φ), 0 < ω < 0.5.
Such series have the Complex SSA-rank 1, which is smaller than the 1D-SSA-ranks
of real and imaginary parts of these functions; these ranks are equal to 2. Recall
that the rank of a series is equal to the rank of its trajectory matrix constructed by
the chosen method. In particular, this feature implies that Complex SSA provides
better separability of imaginary exponential functions, in comparison with other
1D-SSA variations, see Golyandina and Stepanov (2005). Note that Complex SSA
for extraction of imaginary exponential functions is used as a step of the “f-xy
eigenfiltering” method for noise suppression in stacked 3-D volumes of seismic
traces (Trickett 2003).

Another difference is related to the eigenvalues produced by the complex
exponentials like sn = A cos(2πωn+φ1)+ iB sin(2πωn+φ2). In contrast to Basic
SSA, such time series frequently produce quite different eigenvalues depending on
relation between amplitudes and phases (Golyandina et al. 2015; Appendix A.1).
This can influence strong separability, either for the better or for the worse.

4.1.3 Algorithm

Complex SSA formally differs from Basic SSA, presented in Sect. 2.1.4, by the use
of the Hermitian transpose, which we will denote by “*.”

Algorithm 4.1 Complex SSA: decomposition
Input: Complex-valued time series X of length N and rank d, window length L.
Output: Decomposition of the trajectory matrix on elementary matrices X = X1+ . . .+Xd , where

where d = rankX and Xi = √
λiUiV

∗
i .

1: Construct the trajectory matrix X = TSSA(X).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
∗
i .

Note that despite the difference between Algorithms 2.1 and 4.1 is just in the
change of “T” by “*,” numerical complex-valued algorithms can be much more
complicated and less stable.
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The reconstruction algorithm in Complex SSA is standard, see Algorithm 2.2.
Since the algorithms of forecasting for Complex SSA are very similar to that in

the real-valued case, we do not formulate them here.

4.1.4 Complex SSA in RSSA

4.1.4.1 Description of Functions

A typical call of the ssa function has the form

s <- ssa(x, L = (N + 1) %/% 2, kind = "cssa", svd.method = "svd")

where N is the series length.
Arguments:

x is an object to be decomposed. For Complex SSA it is assumed to be a simple
vector or vector-like object of complex numbers. Everything else is coerced to
vector.

L is a window length. By default it is fixed to half of the series length.
kind specifies the kind of SSA to apply.
svd.method selects the SVD method to use. Unlike for the case of real-valued

SSA, only straightforward implementations of the complex SVD at Decompo-
sition step are included into the RSSA package (called svd and eigen).

Since Complex SSA is an extension of Basic SSA to the complex-valued case,
calls of reconstruct, forecast, and cadzow functions are exactly the same as in
the real-valued case; see details in Sect. 2.1.5.

4.1.4.2 Typical Code

The following code demonstrates how to extract trends from two series simulta-
neously. The data “Stocks” includes daily closing prices of major European stock
indices, 1991–1998, included into the RSSA package. The first series is related to
Germany DAX (Ibis), the second series contains data for Switzerland SMI.

Fragment 4.1.1 (“Stocks”: Reconstruction)

> library("Rssa")
> s <- ssa(EuStockMarkets[, 1] + 1i*EuStockMarkets[, 2],
+ kind = "cssa", svd.method = "svd")
> r <- reconstruct(s, groups = list(Trend = 1:2))
> plot(r, plot.method = "xyplot", layout = c(2, 3))
> plot(s, type = "vectors", idx = 1:8)
> len = 2
> print(rforecast(s, groups = list(Trend = 1:2), len = len)[1:len])
[1] 6156.061+8492.425i 6169.006+8507.808i
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Fig. 4.1 “Stocks”: Reconstructed trends

The estimated common trends are depicted in Fig. 4.1.
We choose ET1–2 by analyzing eigenvectors shown in Fig. 4.2. Similarly to the

real-valued case, for trend extraction we should specify eigentriples with slowly-
varying real and imaginary parts of eigenvectors; they are depicted using different
colors. Note that the real part refers to the first series and the imaginary part
corresponds to the second series.

However, paired scatterplots can no longer be used for detecting the sine-wave
components, since eigenvectors are defined up to multiplication by a unit complex
number and therefore the real and imaginary parts of two eigenvectors can differ by
an arbitrary phase not equal to π/2.
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Eigenvectors
1 (98.78%) 2 (0.79%) 3 (0.17%) 4 (0.06%)

5 (0.05%) 6 (0.04%) 7 (0.02%) 8 (0.01%)

Fig. 4.2 “Stocks”: Eigenvectors, real and imaginary parts

4.2 MSSA Analysis

4.2.1 Method

Consider a multivariate time series; that is, a collection {X(p) = (
x

(p)
j

)Np

j=1, p =
1, . . . , s} of s time series of length Np, p = 1, . . . , s.

Denote X = (X(1), . . . ,X(s)) the initial data for the MSSA algorithm. The
generic scheme of the algorithm described in Sect. 1.1 holds for MSSA; we only
need to define the embedding operator TMSSA(X) = X.

4.2.1.1 Embedding

Let L be an integer called window length, 1 < L < min(Np, p = 1, . . . , s).

For each time series X(p), we form Kp = Np − L + 1 L-lagged vectors X
(p)

j =
(x

(p)
j , . . . , x

(p)

j+L−1)
T, 1 ≤ j ≤ Kp. Denote K = ∑s

p=1 Kp. The trajectory matrix
of the multidimensional series X is a matrix of size L × K and has the form

TMSSA(X) = X = [X(1)
1 : . . . : X

(1)
K1

: . . . : X
(s)
1 : . . . : X

(s)
Ks

] = [X(1) : . . . : X(s)], (4.1)

where X(p) = TSSA(X(p)) is the trajectory matrix of the one-dimensional series
X

(p) defined by (2.1). Thus, the trajectory matrix of a system of time series has
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stacked Hankel structure. Note that

T−1
MSSA(X) = [T−1

SSA(X(1)) : . . . : T−1
SSA(X(s))]. (4.2)

Let us make an important comment concerning Embedding step formulated
above.

In papers devoted to MSSA, Embedding step can differ. First, in some papers,
including papers on climatological applications of MSSA (see, e.g., Broomhead and
King (1986); Allen and Robertson (1996); Hannachi et al. (2007)), the trajectory
matrix is transposed; that is, the trajectory matrices X(p) are stacked vertically. We
stack them horizontally with the purpose of getting the same structure of the column
space in MSSA as in 1D-SSA. Since the time series can have different lengths, one
dimension of their trajectory matrices X(p), p = 1, . . . , s, is the same, while the
other dimension can differ. We call the coinciding dimension the window length
L and stack the matrices horizontally to obtain the trajectory space (the column
subspace of the trajectory matrix, i.e., the space produced by L-lagged vectors of
the system of series) of dimension L.

In the horizontally-stacked case, the column trajectory space of a system of
identical series coincides with the trajectory space of one time series, while in
the vertically-stacked case it is not so. Also, the horizontal stacking is consistent
with the continuation of time series, since the increase of series lengths changes the
number of lagged vectors and does not change their dimension.

The discussion on similarities and dissimilarities of the horizontally-stacked and
vertically-stacked versions of MSSA will be continued at the end of this section (see
Remarks 5 and 6) and in Sect. 4.2.4.1.

4.2.1.2 Decomposition

The conventional rank-one matrix decomposition at Decomposition step of MSSA
is constructed by applying the SVD to the trajectory matrix; that is, the standard
MSSA is an extension of Basic SSA and therefore it can be called Basic MSSA.

Oblique modifications of MSSA are the same as in the 1D case; that is, one can
perform nested decompositions by Iterative O-SSA and Filter-adjusted O-SSA. The
use of these nested variations is exactly the same as in the 1D case and we refer the
reader to Sects. 2.4 and 2.5 for details.

4.2.1.3 Reconstruction

SinceM(H)
L,K in MSSA is the set of stacked Hankel matrices, the orthogonal projector

Πstacked H toM(H)
L,K has the form

Πstacked H(Y) = [ΠH(Y(1)) : . . . : ΠH(Y(s))], (4.3)
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where ΠH is defined in (2.2). The equality (4.3) follows from the general form of
the projection described in Sect. 1.1.2.6. Similar to the 1D case, the reconstructed
series are obtained by means of the composition of T−1

MSSA and Πstacked H.

4.2.1.4 Comments

Let us make some comments concerning characteristic features of MSSA.
The eigenvectors {Ui} in the SVD of the trajectory matrix X = ∑

i

√
λiUiV

T
i

form the common basis of the column trajectory spaces of all time series from the
system. Factor vectors {Vi} (often called extended empirical orthogonal functions
(EEOF) in climatology applications, starting from Weare and Nasstrom (1982))
consist of parts related to each time series separately; that is,

Vi =
⎛

⎜
⎝

V
(1)
i
...

V
(s)
i

⎞

⎟
⎠ , (4.4)

where the pth factor subvector V
(p)

i ∈ RKp belongs to the row trajectory space of
the pth series.

The eigenvectors Ui reflect the common features of time series, while the factor
subvectorsV

(p)

i show how these common features appear in each series. It is natural

to transform a factor vector to a factor system of factor subvectors V
(p)
i . Then the

form of transformed factor vectors will be similar to the initial system of series.
Similarly to the one-dimensional case, the main result of application of MSSA

is a decomposition of the multivariate time series into a sum of m multivariate
series; the parameters are the window length L and the way of grouping. For the
frequently used case of two groups, we denote by X̃

(k) = (
x̃

(k)
j

)N
j=1, k = 1, . . . , s,

the reconstructed series (usually, the signal) corresponding to the first group of
eigentriples I1.

4.2.1.5 Remarks

1. The indexing of time points 1, . . . , Np (p = 1, . . . , s) starting from 1 does not
mean that all s series start at the same time; they can also finish at different times.
The resultant decomposition obtained by the MSSA algorithm does not depend
on the shift between the one-dimensional series and therefore this indexing is
only a formality. In particular, MSSA decompositions of two one-dimensional
series measured at the same time interval and at disjoint time intervals do not
differ.
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2. The original time ranges for series X(p) can be useful for depicting and inter-
preting them. The reconstructed series have the same time ranges as the original
series. Factor subvectors from the factor system can also be synchronized for
plotting based on the ranges of the initial series; although factor vectors are
shorter than the initial series, their time shifts are the same.

3. For simultaneous analysis of several time series, it is recommended to transfer
them into the same scale. Otherwise, the structure of one particular time series
will have too much influence on the MSSA results. To balance the time series,
they can be either standardized (centered and normalized, in additive models) or
only normalized (in multiplicative models). From the other viewpoint, scaling of
individual series can be used to influence the importance of a particular series of
the system when, for example, this particular series is more important or has a
smaller noise component.

4. The MSSA algorithm can be modified in the same ways as the 1D-SSA
algorithm. For example, Toeplitz MSSA and MSSA with projection (including
centering) can be considered. (However, these options are not implemented in
the current version of RSSA.) Nested oblique variations of 1D-SSA (Iterative
O-SSA and Filter-adjusted O-SSA) are implemented in RSSA.

5. In climatology, the SVD of the transposed (vertically-stacked) trajectory matrix
defined in (4.1) is traditionally considered (Hannachi et al. 2007) as the trajectory
matrix. Therefore, the eigenvectors {Ui} correspond to normalized extended
principal components in Hannachi et al. (2007), while the factor vectors {Vi}
are called Extended Empirical Orthogonal Functions (EEOFs).

6. The computational cost of the SVD at Decomposition step depends on the size of
the matrix XXT and hence this computational cost may be significantly different
for the horizontally-stacked and vertically-stacked versions of MSSA.

4.2.2 Multi-Dimensional Time Series and LRRs

The model of a system of time series which well suits MSSA is related to times
series governed by LRRs. Instead of one LRR of the form (1.8) in the 1D case, see
Sects. 1.4 and 2.1.2.2, we have a system of LRRs, which can reflect similarity of
time series in the system.

Consider a system of infinite time series X
(1), . . . ,X(s), choose the window

length L, and denote X(1), . . . ,X(s) the column trajectory spaces of the series.
Let X = span(X(1), . . . ,X(s)) be the column trajectory space of the collection
of time series (X(1), . . . ,X(s)). Similarly to the 1D case, we call the dimension
of the trajectory space X (equal to the rank of the trajectory matrix X of the
series collection) the MSSA-rank of the series collection, see Sect. 1.1.2 for short
description of general notions.
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Denote the 1D-SSA-ranks of X(l) by rl = dimX(l) ≤ L, l = 1, . . . , s. For each
time series X(l), we can write the minimal LRR governing the series:

x
(l)
j+rl

=
rl∑

k=1
a

(l)
k x

(l)
j+rl−k, where a

(l)
rl �= 0, l = 1, . . . , s. (4.5)

The characteristic polynomials of the LRRs (4.5) are

P
(l)
rl (μ) = μrl −

rl∑

k=1
a

(l)
k μrl−k, l = 1, . . . , s. (4.6)

Recall that the roots of the characteristic polynomials of the minimal LRRs
governing the series are called signal roots.

Let

p(l) be the number of different roots of the polynomial P
(l)
rl (μ),

μ
(l)
m be the m-th root of the polynomial P

(l)
rl (μ),

k
(l)
m be the multiplicity of the root μ

(l)
m .

Then

k
(l)
1 + . . . + k

(l)

p(l) = rl, l = 1, . . . , s.

The characteristic roots determine the series behavior. For example, if k
(l)
m = 1, then

x(l)
n =

rl∑

m=1

C(l)
m

(
μ(l)

m

)n

.

Also let

μ1, . . . , μp be the pooled set of roots of polynomials P
(1)
r1 , . . . , P

(s)
rs ,

k1, . . . , kp be the multiplicities of the roots μ1, . . . , μp,

where multiplicity of a root in the pooled set is equal to the maximum of
multiplicities of the corresponding roots in the initial sets.

Since the roots are determined by the structure of the trajectory space, the
following proposition holds, see Golyandina et al. (2015; Appendix A.2).

Proposition 4.2 Let r = ∑p

i=1 ki < L. Then the rank of the infinite multi-
dimensional time series (X(1),X(2), . . . ,X(s)) is equal to r .

Consider a simple example.
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Example 4.1 Let F(1) = (f
(1)
1 , . . . , f

(1)
N ) and F(2) = (f

(2)
1 , . . . , f

(2)
N ) with

f
(1)
k = A cos(2πω1k + ϕ1), f

(2)
k = B cos(2πω2k + ϕ2), (4.7)

where 0 < ω < 1/2, 0 ≤ ϕ1, ϕ2 < 2π and A,B �= 0. Let us fix the window length
L > 4 and find the 1D-SSA-rank of the time series F(1), the MSSA-rank of the
system (F(1),F(2)) and the Complex SSA-rank of F(1) + iF(2):

1. For ω1 = ω2, the 1D-SSA ranks of F(1) and F
(2), as well as the MSSA-rank of

(F(1),F(2)), are equal to 2. The Complex SSA-rank of F(1) + iF(2) is equal to 1
if A = B and |ϕ1 − ϕ2| = π/2 mod π and is equal to 2 otherwise.

2. For ω1 �= ω2 the 1D-SSA-rank of F(1) and F(2) is equal to 2. The MSSA rank of
(F(1),F(2)) and the Complex SSA-rank of F(1) + iF(2) are both equal to 4.

4.2.2.1 Matching of Series

Simultaneous analysis of several time series is usually performed to identify their
inter-relation and to extract their common structure. Recall that for 1D-SSA, a time
series has a structure if and only if the trajectory matrix of this series is rank-
deficient. Certainly, for a typical real-world series, the trajectory matrix has full
rank. Therefore, in what follows we talk about the rank of signal (a part of times
series with structure) or its components.

Consider a system of signals H = (H(1),H(2)) with a rank-deficient trajectory
matrix. The structure of a series is reflected in its trajectory space. We can say
that two time series have the same structure if their trajectory spaces coincide. For
example, for two sine waves with equal periods their trajectory spaces coincide,
whatever the values of their amplitudes and phases. This follows from the fact that
the trajectory space is the span of subseries of length L of the initial series. On the
other hand, sine waves with different frequencies have entirely different structure
and the combined trajectory space of their system is a direct sum of the series
trajectory spaces.

If two time series are fully matched, then the trajectory space of one time series
can be used for reconstructing or forecasting of the second series. If two series are
unrelated and have totally different structure, then neither series contains any useful
information about the other series for the MSSA analysis.

For MSSA, any shift between two time series and any difference between phases
of two matched sine waves have no influence on the result of analysis. Therefore,
one cannot say anything about the direction of causality. Moreover, asymmetry of
influence of one time series to the another series can be caused by different levels
of noise. However, the time series X(2) can be called supportive for the time series
X

(1) = H
(1) + R

(1) if the accuracy of either reconstruction or forecasting of H(1)

improves if we analyze the system of two series X = (X(1),X(2)) rather than the
series X(1) alone.
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Numerical experiments confirm that for two matching signals the series with any
level of noise, which is not larger than the other one, is always supportive (see, e.g.,
Sect. 4.3.3.3).

4.2.3 Separability

The notion of separability for multidimensional time series is similar to that for one-
dimensional series; the latter was briefly considered in Sect. 1.1.2 and thoroughly
described in Golyandina et al. (2001; Sections 1.5 and 6.1).

Separability is the key notion in the SSA theory. Indeed, separability of H from
R means the ability of SSA to extract H from the sum H + R. Recall that there is a
weak separability, which means orthogonality of the trajectory spaces, and a strong
separability which is equivalent to empty intersection of the sets of singular values
produced by the series which we are trying to separate.

Conditions of separability of multidimensional time series are more restrictive
than that for one-dimensional series. The following sufficient condition of weak
separability is valid (exactly the same as for Complex SSA, see Sect. 4.1.2), see
(Golyandina et al. 2015; Appendix A.1).

Proposition 4.3 If time series F(1) and F(2),G(1) andG(2), F(1) andG(2), and also
G

(1) and F
(2) are weakly L-separable by 1D-SSA, then the two-dimensional time

series (F(1),F(2)) and (G(1),G(2)) are weakly L-separable by MSSA.

Proposition 4.3 can be extended to cover the case of asymptotic separability (as
series lengths Ni → ∞) and therefore approximate separability for fixed large Ni .

Example 4.2 Consider an example of four harmonic real-valued time series F(1),
F

(2), G(1), and G(2) of length N :

f
(1)
k = A1 cos(2πω1k + ϕ1), f

(2)
k = B1 cos(2πω1k + ϕ2),

g
(1)
k = A2 cos(2πkω2k + φ1), g

(2)
k = B2 cos(2πkω2k + φ2),

ω1 �= ω2, k = 0, . . . , N − 1, A1, A2, B1, B2 �= 0. If Lωi and Kωi (i = 1, 2) are
integers, then (F(1),F(2)) and (G(1),G(2)) are L-separable by MSSA.

Note that if either Lωi or Kωi (or both) is not integer, then the two series are not
L-separable; however, asymptotic (and approximate for finite lengths) separability
takes place.

Weak separability is not enough for extraction of time series components.
Therefore, let us look at strong separability related to eigenvalues produced by
time series components. It appears that the same pair of time series (F(1),F(2)) can
produce different eigenvalues in 1D-SSA, MSSA, and Complex SSA. Therefore, by
applying a more suitable multivariate extension of 1D-SSA we can improve strong
separability.
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Example 4.3 Let

f
(1)
k = A cos(2πωk + ϕ1), f

(2)
k = B cos(2πkωk + ϕ2).

If Lω and Kω are integers, then (F(1),F(2)) produces two equal eigenvalues in
MSSA: λ1 = λ2 = (A2+B2)LK/4. This implies that there is no strong separability
in the respective version of MSSA. Note, however, that there is strong separability
in this example for Complex SSA, see Golyandina et al. (2015).

4.2.4 Comments on 1D-SSA, MSSA and Complex SSA

4.2.4.1 Covariance Structure

Consider in more detail the case of two time series X = (F,G) and let F and G
be the trajectory matrices of F and G correspondingly. Then, since in MSSA we
stack the individual trajectory matrices horizontally, the trajectory matrix of X is
X = [F : G]. In accordance with (2.3), the SVD of X = X(H) is X = ∑

i

√
λiUiV

T
i ,

where λi and Ui are eigenvalues and eigenvectors of the matrix S = S(H)
MSSA =

XXT = FFT + GGT and Vi = XTUi/
√

λi .
Consider now the vertical stacking of the trajectory matrices of F and G in the

trajectory matrix: X(V) =
(

FT

GT

)
= (

X(H)
)T

.

The SVD of X(V) is then X(V) = ∑
i

√
λiViU

T
i , the transposed SVD of X.

Here λi , Vi , and Ui are exactly the same as above but now they have different
interpretation: in particular, Vi (they are often called EEOFs, see Remark 5 in
Sect. 4.2.1) are the eigenvectors of

S(V)
MSSA = X(V)

(
X(V)

)T =
(

FTF FTG
GTF GTG

)
.

The last formula clearly demonstrates the relation between the two versions
(horizontal stacking and vertical stacking) of MSSA and shows that MSSA takes
into consideration cross-covariances of time series (more precisely, we obtain
the cross-covariances if centering of the one-dimensional series is done at the
preprocessing stage).

Consider now Complex SSA. Since the eigendecomposition of a complex-valued
matrix A + iB can be reduced to the eigendecomposition of the real-valued matrix

D =
(

A −B
B A

)
,
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in the case of Complex SSA we in fact analyze eigenvectors of the matrix

SCSSA =
(

FTF FTG
GTF GTG

)
+

(
GTG −GTF
−FTG FTF

)
.

We can observe that the structures of the two one-dimensional series in Complex
SSA are mixed more than in MSSA.

4.2.4.2 Separability

Conditions of separability for multidimensional time series are more restrictive than
that for one-dimensional series. In particular, a sufficient condition for separability
of a two-series system is the separability of each series from the first collection with
each series from the second one. However, for matched signals, their (weak) 1D-
SSA-separability from noise can be considerably improved by their simultaneous
MSSA analysis.

Since weak separability is not enough for extraction of time series components,
we should pay attention to strong separability related to eigenvalues produced by
the time series components. It appears (see Example 4.3) that the two-dimensional
time series (F(1),F(2)) typically produce different eigenvalues in 1D-SSA, MSSA,
and Complex SSA. Therefore, an application of more suitable multidimensional
version of SSA can improve strong separability. However, non-matching of one-
dimensional time series in a system of series increases the number of eigenvalues
related to the signal and hence increases the chance of mixing the signal with the
residual. To overcome this effect, the modification DerivSSA (see Sect. 2.5 for the
1D case), which is able to considerably improve strong separability, is implemented
in RSSA for the MSSA analysis of a collection of time series.

4.2.4.3 Ranks

Rank of a signal is a very important notion in SSA, since it reflects the complexity
of signals and hence the difficulty of the problem of their extraction. For MSSA
and Complex SSA, the notions of the time series of finite rank and of time
series satisfying LRRs are similar to the related notions in 1D-SSA, although the
rank of the same time series may be different and depend on the method used.
Let us compare 1D-SSA-, MSSA-, and Complex SSA-ranks, i.e., ranks of the
corresponding trajectory matrices. By 1D-SSA-rank for a collection of time series
we mean the rank of each one-dimensional series separately.

If two time series have the same structure (and therefore the same 1D-SSA-
ranks), then the MSSA-rank is equal to the 1D-SSA-rank of each of the two series.
The Complex SSA-rank can be even smaller than the individual 1D-SSA-ranks in
the specific case of imaginary exponentials.
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Consider a collection H
(k) = (

h
(k)
j

)N

j=1, k = 1, . . . , s, of s signals of length N .

Let rk denote the 1D-SSA rank of H(k) (i.e., the dimension of the trajectory space
generated by one-dimensional SSA applied to this time series) and r denote the
MSSA rank of (H(1), . . . ,H(s)). The relation between r and rk , k = 1, . . . , s, is
considered in Sect. 4.2.2. In particular, it is shown that rmin ≤ r ≤ rmax, where
rmin = max{rk, k = 1, . . . , s} and rmax = ∑s

k=1 rk . The case r = rmax is the
least favorable for MSSA and means that different time series do not have matched
components. The case r < rmax indicates the presence of matched components and
hence simultaneous processing of the time series system can be more effective than
their individual analysis.

In terms of matching, if all s series have the same characteristic roots (see
Sect. 4.2.2 for the definition), then the time series H

(m), m = 1, . . . , s, consist
of additive components of the same 1D-SSA-structure. Such time series are fully
matched. For fully matched time series, the MSSA-rank is much smaller than the
sum of the 1D-SSA-ranks of the separate time series from the system. On the other
hand, if the sets of characteristic roots do not intersect, then the time series have no
common structure. In this case, the MSSA-rank is equal to the sum of the 1D-SSA-
ranks of the separate time series from the system. For a typical system of real-world
time series, we are in-between these two extreme cases.

4.2.4.4 Choice of the Window Length

The choice of the window length for one-dimensional SSA was reviewed in
Sect. 2.1.3.2; see Golyandina et al. (2001; Section 1.6) and Golyandina (2010) for
more thorough discussions. The problem of the choice of the window length in
MSSA is more complicated than that in 1D-SSA. Until now there is no in-depth
study of the problem of the choice of the optimal window length for analysis and, to
an even greater extent, for forecasting of multidimensional time series. Moreover,
the choice of the best window length forMSSA forecasting differs for different types
of forecasting methods, see numerical comparison in Sect. 4.4. Some numerical
investigation of this problem has been performed in Golyandina and Stepanov
(2005), Golyandina et al. (2015); it is extended in Sect. 4.4.

By analogywith the one-dimensional case, we can formulate some key principles
for the choice of L. The main principle is the same as for 1D-SSA and states
that the choice of L should provide (approximate) separability of series. However,
the MSSA case has additional features. Different approaches to the choice of the
window length can be partly explained as follows. In 1D-SSA, it makes sense to
constrain the window length to the interval 2 ≤ L ≤ [(N + 1)/2], since the
SVD expansions for window lengths L and N − L + 1 coincide. For the MSSA-
analysis of more than one time series, the expansions for all possible window lengths
2 ≤ L ≤ mini Ni − 1 are generally different. In particular, while in the 1D-SSA
analysis it makes no sense to take L > (N + 1)/2, in the MSSA analysis it makes
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perfect sense choosing large L (and hence small Ki = Ni − L + 1) for trend
extraction and smoothing.

Since L in 1D-SSA does not exceed half of the time series length, the divisibility
of L = min(L,K) on possible periods of oscillations is recommended in 1D-SSA.
In MSSA, min(L,Ki) is not necessarily equal to L and therefore one also has to
pay attention to the values of Ki .

In 1D-SSA, the most detailed decomposition can be obtained if the trajectory
matrix X has maximal rank. In the general case of SSA-family methods, this
corresponds to the case of a square trajectory matrix. Thus, for a system of s time
series of length N the window length in MSSA providing the square trajectory
matrix X is approximately sN/(s + 1). For the case of two time series this
corresponds to 2L/3 for MSSA, while for Complex SSA applied to one complex-
valued series this gives N/2.

Numerical investigations show that the formula L 	 sN/(s + 1) is appropriate
for the decomposition of a small number of time series (see simulation results in
Sect. 4.4), but does not look suitable for the system of many short series (the values
of Ki become too small for achieving separability). Generally, the choice L 	 N/2
is still appropriate for MSSA.

Various special techniques can be transferred from 1D-SSA to MSSA, such
as Sequential SSA, see Sect. 2.8 for examples of Sequential 1D-SSA analysis.
Sequential 1D-SSA is based on successive application of 1D-SSA with different
window lengths, see Golyandina and Zhigljavsky (2013; Section 2.5.5) for more
details. Sequential MSSA can be applied in a similar manner. In addition to the
reasons which are similar to the 1D case, we may find extra arguments in favor of
Sequential MSSA. In particular, if trends of different one-dimensional series are of
different structure, a smaller window length can be applied to achieve similarity of
eigenvectors and to improve separability. After that, the residuals with a common
structure (e.g., containing the seasonality) can be simultaneously decomposed with
a larger window length.

4.2.5 Algorithm

The algorithm of MSSA decomposition differs from Algorithm 2.1 of Basic SSA
decomposition only by the form of the embedding operator.

Algorithm 4.2 MSSA: decomposition

Input: Collection {X(p) = (
x

(p)

j

)Np

j=1, p = 1, . . . , s} of s time series of length Np , p = 1, . . . , s,
window length L.

Output: Decomposition of the trajectory matrix on elementary matrices X = X1+ . . .+Xd , where
Xi = √

λiUiV
T
i .

1: Construct the trajectory matrix X = TMSSA(X), where TMSSA is defined by (4.1).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
T
i .
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Reconstruction stage is also very similar to Algorithm 2.2 for Basic SSA
reconstruction.

Algorithm 4.3 MSSA reconstruction

Input: Decomposition X = X1 + . . . + Xd , where Xi = σiUiV
T
i and ‖Ui‖ = ‖Vi‖ = 1, grouping

{1, . . . , d} = ⊔m
j=1 Ij .

Output: Decomposition of the time series system on identifiable components X = X1+. . .+Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: X = X1 + . . . + Xm, where Xi = T−1

MSSA ◦ Πstacked H(XIi ).

Recall that TMSSA and Πstacked H can be expressed through TSSA and ΠH

introduced in Chap. 2 for 1D-SSA (see Sect. 4.2.1).

4.2.6 MSSA Analysis in RSSA

4.2.6.1 Description of Functions

Typical call of ssa for the MSSA analysis is

s <- ssa(x, L = (min(N) + 1)%/%2, kind = "mssa")

where N is the vector of the series lengths.
Arguments:

x is an object containing a collection of time series to be decomposed.
L is a window length. By default it is fixed to half of the minimal series length.
neig is the number of desired eigentriples. If neig = NULL, a sane default value

which depends on L and N will be used.
kind specifies the kind of SSA to apply.
svd.method selects the SVD method to use. Full description is given in

Sect. 2.1.5.2.

Additional details and the description of the reconstruct function can be found
in Sect. 2.1.5, since there is no difference between one-dimensional and multivariate
cases here.

4.2.6.2 Typical Code

Here we demonstrate how the MSSA decomposition of a system of time series can
be performed by means of the Rssa package. Since the analysis and forecasting
of one-dimensional time series by Rssa are thoroughly described in previous
chapters and in Golyandina and Korobeynikov (2013), we pay more attention to
the differences between 1D-SSA and MSSA.
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Reconstructed Series

Time
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Drywhite Trend

Fortified Seasonality
Drywhite Seasonality

Fig. 4.3 “FORT” and “DRY”: Reconstructed trend and seasonality

In Sect. 2.1.5.3 we decomposed the one-dimensional series “FORT” (sales of
fortified wines) from the dataset “AustralianWine.” Here we add one more series,
the sales of dry wines (shortly “DRY”), for simultaneous analysis.

For loading the data we use the code from Fragment 2.1.1.

Fragment 4.2.1 (“FORT” and “DRY”: Reconstruction)

> wineFortDry <- wine[, c("Fortified", "Drywhite")]
> L <- 84
> s.wineFortDry <- ssa(wineFortDry, L = L, kind = "mssa")
> r.wineFortDry <- reconstruct(s.wineFortDry,
+ groups = list(Trend = c(1, 6),
+ Seasonality = c(2:5, 7:12)))
> plot(r.wineFortDry, add.residuals = FALSE,
+ plot.method = "xyplot",
+ superpose = TRUE, auto.key = list(columns = 3))

Fragment 4.2.1 contains a typical code for simultaneous extraction of the trend
and seasonality (compare with Fragment 2.1.2) and produces Fig. 4.3. A clear
difference between the two fragments is in the indicated value of the parameter
kind in the ssa function. A more significant difference is related to plotting the
results. For a multivariate series, there is, in a sense, a matrix of series, where
one index is the series number in the system and the second index indicates the
component number in the decomposition. The plot function for the reconstruction
object allows to indicate which subset (slice) of this matrix one wants to depict by
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Eigenvectors
1 (95.14%) 2 (0.97%) 3 (0.95%) 4 (0.48%)

5 (0.47%) 6 (0.32%) 7 (0.21%) 8 (0.21%)

Fig. 4.4 “FORT” and “DRY”: 1D graphs of eigenvectors

means of the parameter slice. The parameter slice consists of the list of indices of
series and indices of decomposition components. The use of slice is demonstrated
on several examples in Sects. 4.4.1 and 4.4.3.

The code for the component identification in MSSA is very similar to that in SSA,
compare Fragments 4.2.2 and 2.1.3. The difference is in the structure of the factor
vectors; however, they are not necessary for the identification. Figure 4.4 (compare
it with Fig. 2.2) shows that the trend is described by ET1 and ET6, which is slightly
mixed with seasonality. Figure 4.5 (compare with Fig. 2.3) demonstrates those pairs
of ETs that are related to seasonality.

The results of MSSA analysis are similar to the results of 1D-SSA analysis.
However, the separability is sometimes slightly worse for MSSA. Iterative O-SSA
(Sect. 2.4) and DerivSSA (Sect. 2.5) can be applied to MSSA objects to improve
separability. One can see in Fig. 4.6 (compare ET2 here with ET6 in Fig. 4.4)
that after application of the Iterative O-SSA the trend is no longer mixed with
seasonality. The eigentriples are reordered and the trend is described by the first two
eigentriples. Note that if the signal components are mixed up between themselves,
then the signal forecasting is not affected by this. However, if one wants to forecast
the trend only, then the mixture would typically worsen the forecast accuracy.

Since the implemented methods of parameter estimation are based on eigenvec-
tors only, they can be applied to eigenvectors in multidimensional case in exactly
the same way as in the one-dimensional case.
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Pairs of eigenvectors
2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7

7 vs 8 8 vs 9 9 vs 10 10 vs 11 11 vs 12

Fig. 4.5 “FORT” and “DRY”: 2D scatterplots of eigenvectors

Eigenvectors
1 (95.13%) 2 (0.33%) 3 (0.96%) 4 (0.94%)

5 (0.48%) 6 (0.47%) 7 (0.21%) 8 (0.21%)

Fig. 4.6 “FORT” and “DRY”: 1D graphs of eigenvectors after Iterative O-SSA

Fragment 4.2.2 (“FORT” and “DRY”: Identification)

> plot(s.wineFortDry, type = "vectors", idx = 1:8)
> plot(s.wineFortDry, type = "paired", idx = 2:11,
+ plot.contrib = FALSE)
> print(parestimate(s.wineFortDry, groups = list(2:3, 4:5),
+ method = "esprit"))
$F1

period rate | Mod Arg | Re Im
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12.128 -0.004789 | 0.99522 0.52 | 0.86463 0.49283
-12.128 -0.004789 | 0.99522 -0.52 | 0.86463 -0.49283

$F2
period rate | Mod Arg | Re Im
4.007 -0.001226 | 0.99877 1.57 | 0.00279 0.99877

-4.007 -0.001226 | 0.99877 -1.57 | 0.00279 -0.99877
> plot(wcor(s.wineFortDry, groups = 1:30),
+ scales = list(at = c(10, 20, 30)))
> si.wineFortDry <- iossa(s.wineFortDry,
+ nested.groups = list(c(1,6), c(2:5, 7:12)))
> plot(si.wineFortDry, type = "vectors", idx = 1:8)

4.2.6.3 Comments

Formats of Input and Output Data

While the representation of a one-dimensional time series in R is pretty obvious,
there are many possible ways of defining a multivariate time series. Let us outline
some common choices.

• A matrix with separate series in the columns. Optionally, an additional time
structure like in mts objects can be embedded.

• A matrix-like (e.g., a data.frame) object with series in the columns. In
particular, data.frame would be a result of reading the series from a file via
the read.table function.

• A list of separate time series objects (e.g., a list of ts or zoo objects).

Also, the time scales of the individual time series can be normalized via head or
tail padding with NA (for example, as a result of the ts.union call) or specified via
time series attributes.

The package is designed to allow any of the input cases outlined above and
produces the reconstructed series in the same format. All the attributes, names of the
series, NA padding, etc. are carefully preserved. For forecasted series, the time scale
attributes for several known time series objects (e.g., ts) are inferred automatically
where possible.

The examples in Fragments 4.2.1 and 4.3.2 provide an overview of the possible
input series formats.

Plotting Specifics

Plotting of the reconstructed series is performed by the function plot applied to
the reconstructed collection of time series. The parameter plot.method can be
"native" or "xyplot". Keep in mind that the default ("native") plotting method
for reconstruction objects may or may not be suitable for multivariate time series
plotting. For example, it provides many useful plotting possibilities for ts and mts

objects, but may be totally unusable in the case of data.frame objects, because it
will only call the pairs function on the resulting data frame at the end.
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Efficient Implementation

All ideas from the one-dimensional case can be extended to the multivariate case. In
the one-dimensional case, the complexity is determined by the series length N and
the window length L and the worst case corresponds to L ∼ K ∼ N/2 with overall
complexity of O(L3 + L2K) = O(N3).

In the multidimensional case (for simplicity assume that all the series have
equal lengths N), the worst case corresponds to L ∼ K ∼ sN/(s + 1); the
order of complexity is the same O(N3) but the constant can be considerably
larger. Therefore, the speed-up (due to efficient implementation) giving the order
O(kN log(N) + k2N), where k is the number of calculated eigentriples, in the
multivariate case can be much higher than in the one-dimensional case.

Note that MSSA can be viewed as a special case of Shaped 2D-SSA (see
Sect. 5.2.1.3) and the current implementation in the package implicitly uses this.

4.3 MSSA Forecasting

Recall from Sect. 3.2 that forecasting in 1D-SSA is performed for a signal compo-
nent which can be separated by 1D-SSA and is governed, perhaps approximately,
by an LRR. For brevity, we will talk about forecasting of the whole signal. 1D-
SSA provides an estimate of the signal subspace and thereby an estimate of one
of LRRs governing the signal. The recurrent 1D-SSA forecasting continues the
estimated signal by the estimated LRR. The vector 1D-SSA forecasting continues
the reconstructed vectors in the given subspace.

Methods of one-dimensional SSA forecasting in a given subspace are described
in Sect. 3.2. For CSSA, the forecasting algorithms are straightforward extensions
of 1D-SSA forecasting algorithms to the complex-valued case, therefore we do not
discuss them here. On the other hand, the methods of MSSA forecasting require
special attention.

As in 1D-SSA, methods of MSSA forecasting can be subdivided into recurrent
and vector forecasting. In contrast with 1D-SSA, rows and columns of the trajectory
matrix in MSSA have different structure. Therefore, there exist two kinds of MSSA
forecasting: row forecasting and column forecasting; this depends on which of the
two spaces the forecasting is made (row or column space respectively). In total,
there are four main variants of MSSA forecasting: recurrent column forecasting,
recurrent row forecasting, vector column forecasting, and vector row forecasting.

There are different names for the same forecasting methods. In Golyandina and
Stepanov (2005), column and row forecasting are called L- and K-forecasting.
In Hassani and Mahmoudvand (2013), these methods are called horizontal and
vertical forecasts and the trajectory matrix is transposed. In Sects. 4.2.1 and 4.2.4.1
we have explained the choice of orientation of the MSSA trajectory matrix and
the connection between the horizontally-stacked and vertically-stacked trajectory
matrices of separate time series. We use the name “column” and “row” with respect
to the horizontally-stacked trajectory matrices as defined in Sect. 4.2.1.
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In the column forecasting methods, each time series in the system is forecasted
separately but in a given common subspace (i.e., using the common LRR). In the
row forecasting methods, each series is forecasted with the help of its own LRR
applied to the whole set of series from the system. Let us describe all four variants
of MSSA forecasting.

4.3.1 Method

4.3.1.1 Common Notation

First, we introduce some common notation used for description of all the variants
of MSSA forecasting.

Denote by A ∈ RQ−1 the vectors consisting of the last Q − 1 coordinates of
A ∈ RQ; that is, the vectors with the first coordinate removed are indicated by the
line on the top of the vector. Denote by A ∈ RQ−1 the vectors consisting of the first
Q − 1 coordinates of A; by π(A) we denote the last coordinate of the vector. For a
matrix A = [A1 : . . . : Ar ], we denote A = [A1 : . . . : Ar ] and A = [A1 : . . . : Ar ]
and let π(A) = (π(A1), . . . , π(Ar))

T be the last row of the matrix A.
Consider the following form of B ∈ RK , where K = ∑s

i=1 Ki , induced by the
structure of the row trajectory space:

B =

⎛

⎜
⎜
⎜
⎝

B(1)

B(2)

...

B(s)

⎞

⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎝

B(1)

B(2)

...

B(s)

⎞

⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎝

B
(1)

B
(2)

...

B
(s)

⎞

⎟
⎟
⎟
⎟
⎠

, (4.8)

where B(j) ∈ RKj , and let μ(B) = (π(B(1)), . . . , π(B(s)))T. Also, for B = [B1 :
. . . : Br ] let B = [B

1
: . . . : B

r
] and B(j) = [B(j)

1 : . . . : B
(j)
r ].

Assume that the group I corresponding to the forecasted component is given
by the set of the leading components at Decomposition step of Algorithm 4.2; this
assumption is made just for simplifying the formulas. Thus, let r leading eigentriples
(
√

λj ,Uj , Vj ) be identified and chosen as related to the signal of rank r so that I =
I1 = {1, . . . , r}, U = [U1 : . . . : Ur ], V = [V1 : . . . : Vr ]. The reconstructed series
X̃, its trajectory matrix X̃, and the reconstructed matrix X̂ are defined in Sect. 1.1.1.
Define Lcol = span(Ui, i ∈ I), Lrow = span(Vi, i ∈ I). The reconstructed matrix
X̂ = [X̂1 : . . . : X̂K ] consists of the column vectors which are the projections of the
column vectors of the trajectory matrix on the chosen subspace Lcol.

To avoid repeating the transpose sign, denote Ỹ = [Ỹ1 : . . . : ỸL] = X̃T,
Ŷ = [Ŷ1 : . . . : ŶL] = X̂T, Ŷk = X̂T

k .
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4.3.1.2 Recurrent MSSA Forecast

We denote the vector of forecasted signal values for each time series by RN =(
x̃

(1)
N1+1, x̃

(2)
N2+1, . . . , x̃

(s)
Ns+1

)T
. Recurrent forecasting is closely related to missing

data imputation for components of vectors from the given subspace and in fact
uses the formula (1) from Golyandina and Osipov (2007). Following Golyandina
and Stepanov (2005), we will write the forecasting formulas for two versions of the
recurrent MSSA forecast: row (generated by {Uj }rj=1) and column (generated by
{Vj }rj=1). These one-term ahead forecasting formulas can be applied for M-term
ahead forecasting by using the recurrence.

The column recurrent forecasting performs forecast by an LRR of order L − 1
applied to the last L − 1 points of the reconstructed signal; that is, the same LRR
and different initial data. The row recurrent forecasting constructs s different linear
relations, each is applied to the set of Ki − 1 last points of series; that is, the LRRs
are different but the initial data for them is the same.

Column Forecast

Denote by Z the matrix consisting of the last L − 1 values of the reconstructed
signals:

Z =

⎛

⎜
⎜
⎜⎜
⎝

x̃
(1)
N1−L+2 . . . x̃

(1)
N1

x̃
(2)
N2−L+2 . . . x̃

(2)
N2

...
...

...

x̃
(s)
Ns−L+2 . . . x̃

(s)
Ns

⎞

⎟
⎟
⎟⎟
⎠

,

ν2 =
r∑

j=1
π(Uj )

2. If ν2 < 1, then the column MSSA forecast is uniquely defined

and can be calculated by the formula

RN = ZRL, where RL = 1

1 − ν2

r∑

j=1

π(Uj )Uj ∈ RL−1. (4.9)

Note that (4.9) implies that the forecasting of all individual signals is made using
the same linear recurrent formula which is generated by the whole system.

Row Forecast

Introduce the vectors of the last Km − 1 values of the reconstructed signals

Z(m) = (
x̃

(m)
N−Km+2, . . . , x̃

(m)
Nm

)T
, m = 1, . . . , s,
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and denote

Z =

⎛

⎜
⎜⎜
⎝

Z(1)

Z(2)

...

Z(s)

⎞

⎟
⎟⎟
⎠

, S = [μ(V1) : . . . : μ(Vr)].

In this notation, Z = Ỹ L.
If the inverse matrix (Is − SST)−1 exists and r ≤ K − s, then the row MSSA

recurrent forecast exists and can be calculated by the formula

RN = RKZ, where RK = (Is − SST)−1 SVT. (4.10)

Note that (4.10) implies that the forecasting of the individual signals is made using
the LRRs which are different for different series. The forecasting value generally
depends on the last values of all time series from the system of time series.

4.3.1.3 Vector MSSA Forecasting

Denote Lcol = span(U1, . . . , Ur) and Lrow = span(V
1
, . . . , V

r
). Let Πcol be the

orthogonal projector ofRL−1 onLcol andΠ row be the orthogonal projector ofRK−s

on Lrow.
An explicit form of the matrices of the column and row projectors can be

found in Golyandina and Osipov (2007; formula (4)). However, the calculation
by that formula is time-consuming. A fast algorithm of calculation is presented in
Golyandina et al. (2015; Section 6.3).

Column Forecast

We have mentioned above that for a given subspace (Lcol in our case) the column
forecast is performed independently for each time series. Define the linear operator
Pcol
Vec : RL → Lcol by the formula

Pcol
VecZ =

(
ΠcolZ

RT
LZ

)
, (4.11)

where RL is defined in (4.9).
The vector forecasting algorithm for j th series is as follows:

1. In the notation above, define vectors Zi as follows:

Zi =
{

X̂
(j)

i for i = 1, . . . ,Kj ,

Pcol
VecZi−1 for i = Kj + 1, . . . ,Kj + M + L − 1.

(4.12)
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2. By constructing the matrix Z = [Z1 : . . . : ZKj+M+L−1] and making its
diagonal averaging we obtain the series z1, . . . , zNj +M+L−1.

3. The numbers zNj +1, . . . , zNj +M form the M terms of the vector forecast.

Row Forecast

Define the linear operator Prow
Vec : RK → Lrow by the formula

Prow
VecZ = A, (4.13)

such that A = Π rowZ and μ(A) = RKZ, whereRK is defined in (4.10).
The vector forecasting algorithm is as follows:

1. In the notation above, define vectors Zi as follows:

Zi =
{

Ŷi for i = 1, . . . , L,

Prow
VecZi−1 for i = L + 1, . . . , L + M + K∗ − 1,

(4.14)

where K∗ = max(Ki, i = 1, . . . , s).
2. By constructing the matrix Z = [Z1 : . . . : ZL+M+K∗−1] and making

Reconstruction step we obtain the series z
(j)

1 , . . . , z
(j)

Nj +M+K∗−1, j = 1, . . . , s.

3. The numbers z
(j)
Nj +1, . . . , z

(j)
Nj +M , j = 1, . . . , s, form the M terms of the vector

forecast.

Remark 4.1 For the M-step ahead vector forecast, M + K∗ − 1 new lagged
vectors for the row forecasting and M + L − 1 ones for the column forecasting
are constructed. The reason for this is to make the M-step forecast inheriting the
(M − 1)-step forecast as its part. This specific feature of the vector forecasting
provides its stability and accuracy if the accurately extracted component of finite
rank is forecasted; that is, if a long-term forecast is appropriate. Otherwise (if
the MSSA approximation is inadequate), the long-term vector forecasting can be
misleading and even a short-term vector forecasting can be inaccurate for large K∗
or L correspondingly.

4.3.2 Algorithms

Algorithms of MSSA column forecasting are very similar to the algorithms of 1D-
SSA forecasting (see Algorithms 3.5 and 3.6). Let a version of MSSA be applied
to the system of s time series X and let the eigentriples {(σi , Pi,Qi), i ∈ I } be
chosen for reconstruction. The suggested forecasting algorithms are formulated for
the forecasting in the subspace Lr = span{Pi, i ∈ I } ⊂ RL. For simplicity, we
assume that I = {1, . . . , r} and the vectors Pi , i ∈ I , are orthonormal. Note that the
forecasting values do not depend on the choice of a basis of Lr .
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Algorithm 4.4 Recurrent MSSA column forecasting

Input: Collection of time series X
(p) of length Np , where p = 1, . . . , s, window length L,

orthonormal system of vectors {Pi}ri=1, forecast horizon M .

Output: Forecast values (̃x
(p)

Np+1, . . . , x̃
(p)

Np+M), p = 1, . . . , s.

1: Construct the vector R = (aL−1, . . . , a1)
T of coefficients of the min-norm LRR by

Algorithm 3.1 applied to {Pi, i ∈ I}.
2: Construct the reconstructed matrices X̂(p) = PPTX(p), where P = [P1 : . . . : Pr ], and the

reconstructed series X̃(p) = (̃x
(p)

1 , . . . , x̃
(p)

Np
) as X̃(p) = T−1

SSA ◦ ΠH(X̂(p)); p = 1, . . . , s.
3: Calculate the forecast values recurrently by

x̃
(p)
n =

L−1∑

i=1

ai x̃
(p)
n−i , n = Np + 1, . . . , Np + M; p = 1, . . . , s.

Algorithm 4.4 is written for the version, where the reconstructed series is taken
as the base for forecasting. In the other version, where the original series itself is
the base of forecasting, x(p)

n are taken instead of x̃
(p)
n at Step 3 for n = Np − L +

1, . . . , Np.
The next algorithm implements vector forecasting.

Algorithm 4.5 Vector MSSA column forecasting

Input: Collection of time series X
(p) of length Np , where p = 1, . . . , s, window length L,

orthonormal system of vectors {Pi}ri=1, forecast horizon M .

Output: Forecast values (̃x
(p)

Np+1, . . . , x̃
(p)

Np+M), p = 1, . . . , s.

1: Obtain the vector R = (aL−1, . . . , a1)
T of coefficients of the min-norm LRR by Algorithm 3.1

applied to {Pi, i ∈ I}.
2: Calculate the matrix Π defining the projection in (3.5).
3: Compute the reconstructed matrices X̂(p) = PPTX(p), where P = [P1 . . . : Pr ]; p = 1, . . . , s.
4: Extend the reconstructed matrices X̂(p) = [X̂(p)

1 : . . . : X̂
(p)
Kp

] by column vectors:

X̂
(p)
n = PVecX̂

(p)

n−1 for n = Kp + 1, . . . , Kp + M + L − 1; p = 1, . . . , s,

where PVec is given in (3.6) and uses the vectorR of coefficients of the min-norm LRR. Denote
the extended matrices by X̂(p)

ext ; X̂(p)
ext ∈ RL×(Kp+M+L−1); p = 1, . . . , s.

5: Obtain the extended reconstructed series X̃(p)
ext = (̃x

(p)

1 , . . . , x̃
(p)

Np+M+L−1) by X̃
(p)
ext = T−1

SSA ◦
ΠH(X̂(p)

ext ); p = 1, . . . , s.

6: Return the forecast values (̃x
(p)

Np+1, . . . , x̃
(p)

Np+M); p = 1, . . . , s.

Algorithms of row forecasting have more complicated form and follow the steps
outlined in Sect. 4.3.1.
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4.3.3 MSSA Forecasting in RSSA

4.3.3.1 Description of Functions

MSSA forecasting functions differ from the functions described in Sect. 3.2.3.1 for
one-dimensional case by the additional parameter direction, which can be equal to
either "row" or "column". The other parameters are exactly the same as described
in Sect. 3.2.3.1. For example, a call for the recurrent row forecast based on the ssa

object s can be made as follows:

f <- rforecast(s, groups = list(1:2, 3:4),
direction = "row", len = 12, only.new = FALSE)

The wrappers predict is able to construct forecasts in a unified manner. For
example, the presented call of rforecast is similar to the call

f <- predict(s, groups = list(1:2, 3:4),
method = "recurrent", direction = "row", len = 12)

The function forecast, the bootstrap intervals, and backward forecasting are not
implemented for MSSA forecasting.

4.3.3.2 Typical Code

The code for forecasting is very similar to that in 1D-SSA, compare Fragments 4.3.1
and 3.2.1. For demonstration, we use the monthly sales of fortified (“FORT”) and
dry (“DRY”) wines taken from the dataset “AustralianWine” (Fig. 4.7).

Fragment 4.3.1 (“FORT” and “DRY”: Forecast)

> f.wineFortDry <- rforecast(s.wineFortDry,
+ groups = list(1, 1:12),
+ len = 60, only.new = TRUE)
> plot(cbind(wineFortDry[, "Fortified"],
+ f.wineFortDry$F2[, "Fortified"]),
+ plot.type = "single",
+ col = c("black", "red"), ylab = "Fort")
> plot(cbind(wineFortDry[, "Drywhite"],
+ f.wineFortDry$F2[, "Drywhite"]),
+ plot.type = "single",
+ col = c("black", "red"), ylab = "Dry")
> par(mfrow = c(1, 1))

4.3.3.3 Simulated Example: Numerical Comparison

In this section, we demonstrate how the accuracy of MSSA is related to the structure
of the multivariate time series. The aim is to compare accuracy for separate analysis
and forecasting of time series with simultaneous processing of the series system. We
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Fig. 4.7 “FORT” and “DRY”: Forecast of the signal

summarize the results from Golyandina and Stepanov (2005) and Golyandina et al.
(2015) and supplement them with new comparisons. In particular, the comparison
results explain the choice of the default forecasting method.

In the study below, we consider the case s = 2 and examine the following SSA
methods: (a) 1D-SSA applied twice, (b) MSSA, and (c) CSSA. The investigated
model examples include the least favorable and the most favorable cases for MSSA
as well as some cases well suited for the application of CSSA.

Let us assume that we observe (X(1),X(2)) = (H(1),H(2)) + (N(1),N(2)), where
(H(1),H(2)) is a two-dimensional signal consisting of two harmonic time series,
N

(1) and N
(2) are realizations of independent white Gaussian noises. Then we can

use the standard simulation techniques to obtain estimates of the mean square errors
(MSE) for the reconstruction and forecasting of (H(1),H(2)) by the indicated SSA
methods. The resultant MSE is calculated as the mean of MSE(1) and MSE(2) for
H

(1) and H(2) correspondingly.
We take the following parameters for the simulation of the time series: N = 71,

the variance of all noise components is σ 2 = 25, the number of replications is
10000. We consider the following three versions of the signal (H(1),H(2)).

Example A (the same periods; the difference between the phases is different
from π/2):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 20 cos(2πk/12+ π/4), k = 1, . . . , N.
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Example B (the same periods and amplitudes; the difference between the phases
is equal to π/2):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 30 cos(2πk/12+ π/2), k = 1, . . . , N.

Example C (different periods):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 20 cos(2πk/8 + π/4), k = 1, . . . , N.

The choice of these examples is determined by the observation that the dimen-
sions of the signal trajectory spaces (i.e., ranks) are different for different extensions
of the 1D-SSAmethod, see Table 4.1. For each example the rank in blue corresponds
to the method with the best accuracy for this example. Cells in the row correspond-
ing to 1D-SSA contain one number, since the ranks of the times series from the
considered collections coincide.

The results of investigation for different window lengths L are summarized in
Tables 4.2 and 4.3. The 24 term-ahead forecast was performed. For each example,
the cells corresponding to the method with the reconstruction/forecast accuracy,
which is closed to the best one, are shown in bold and the overall minimum is in
blue color.

Comparison of Tables 4.2 and 4.3 with Table 4.1 clearly demonstrates the relation
between the accuracy of the signal reconstruction (forecast) and the dimension of
the signal trajectory space. Since the structure of the series from Example B and
Example A is the same from the viewpoint of MSSA and 1D-SSA, we omit the
corresponding results for Example B in Table 4.3.

Table 4.1 Dimension of the
signal trajectory space

Example A Example B Example C

MSSA 2 2 4

1D-SSA 2 2 2
CSSA 2 1 4

Table 4.2 MSE of signal reconstruction

Example A L = 12 L = 24 L = 36 L = 48 L = 60

MSSA 3.18 1.83 1.59 1.47 2.00

1D-SSA 3.25 2.01 2.00 2.01 3.25

CSSA 3.25 2.02 2.01 2.02 3.25

Example B L = 12 L = 24 L = 36 L = 48 L = 60

MSSA 3.18 1.82 1.58 1.47 1.97

1D-SSA 3.25 2.01 2.00 2.01 3.25

CSSA 1.57 1.00 0.99 1.00 1.57

Example C L = 12 L = 24 L = 36 L = 48 L = 60

MSSA 6.91 3.77 3.07 2.88 3.84

1D-SSA 3.23 2.01 2.00 2.01 3.23

CSSA 6.98 4.06 3.82 4.06 6.98
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Table 4.3 MSE of signal forecast

Example A L = 12 L = 24 L = 36 L = 48 L = 60

Recurrent

MSSA-column 5.36 3.67 3.73 3.70 4.43

MSSA-row 6.02 4.25 3.83 3.32 3.98

1D-SSA 7.24 5.59 6.30 6.42 7.93

CSSA 7.30 5.60 6.32 6.41 7.86

Vector

MSSA-column 5.93 3.77 3.62 3.11 3.65

MSSA-row 4.00 3.03 3.39 3.17 4.24

1D-SSA 7.74 5.43 5.85 5.14 6.76

CSSA 7.79 5.44 5.86 5.12 6.87

Example C L = 12 L = 24 L = 36 L = 48 L = 60

Recurrent

MSSA-column 25.76 7.39 7.55 7.43 9.00

MSSA-row 19.82 8.47 8.00 6.66 8.30

1D-SSA 7.36 5.61 6.28 6.44 8.00

CSSA 38.79 11.21 13.37 13.09 24.89

Vector

MSSA-column 25.34 7.56 7.57 6.20 7.67

MSSA-row 57.59 6.04 7.03 6.30 8.69

1D-SSA 7.84 5.47 5.84 5.18 6.88

CSSA 35.77 10.89 13.44 10.22 69.04

Example B L = 12 L = 24 L = 36 L = 48 L = 60

CSSA recurrent 3.48 2.76 3.10 3.19 3.99

CSSA vector 3.82 2.70 2.89 2.56 3.18

Note that the reconstructions by 1D-SSA and CSSA are the same for window
lengths L and N − L + 1 (12 and 60, 24 and 48 for the considered examples).
Reconstructions by MSSA are different for differentL. Also note that the trajectory
matrix for 1D-SSA has rank min(L,N − L + 1) and the rank is maximal for L 	
N/2. The MSSA-trajectory matrix has rank equal to min(L, (N −L+1)s), where s

is the number of time series in the system. This rank is maximal forL 	 sN/(s+1).
Although the maximality of the rank does not guarantee the minimality of errors,
this consideration means that to achieve better separability the choice of the window
length L larger than N/2 can often be recommended. Simulations confirm this: the
minimum of the reconstruction error for MSSA is achieved at L = 48 = 72 × 2/3.

The forecasting errors have much more complicated structure, see Golyandina
(2010). In particular, these errors for forecasting depend on the reconstruction errors
for the last time series points; therefore, the error may have a dependence on L,
which is different from that for the average reconstruction errors. The considered
examples show that the vector forecast is more accurate than the recurrent one
and that the row MSSA forecast is slightly more accurate than the column MSSA
forecast.
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The considered examples confirm the following assertions:

• The accuracy of the SSA-based methods is closely related to the structure
of the signal trajectory spaces generated by these methods. MSSA has an
advantage if time series from the system have matched components. (Note that
we considered equal levels of noise.)

• Optimal window lengths for analysis and forecasting can differ. Despite the
accuracy of forecast is related to the accuracy of reconstruction, this relation is
not straightforward.

• The vector forecast with the best window length is more accurate than the
recurrent forecast. However, it is not always the case if we compare forecast
accuracies for the same window length. This is probably valid for forecasting
of well-separated signal of finite rank only, see Remark 4.1.

• In MSSA, the recommendations for the choice of the window length (e.g., “take
L larger (or smaller) than the half of the time series length”) for recurrent
forecasting are in a sense opposite to that for the vector forecasting.

• For the row and column forecasting (1D-SSA and CSSA forecasting methods
are particular cases of the column forecasting), the recommendations are also
opposite. This is not surprising since L and K have swapped places in MSSA
relative to 1D-SSA and CSSA.

Fragment 4.3.2 demonstrates how the RSSA package allows estimation of the
reconstruction and forecast accuracy on the example of MSSA and CSSA analysis
and vector forecasting applied to Example A with R = 10 replications. Note that the
numbers in Tables 4.2 and 4.3 were obtained by another complicated code, where
R = 10000 (see the replicated code to Golyandina et al. (2015)).

Fragment 4.3.2 (Simulation for Accuracy Estimation)

> N <- 71
> sigma <- 5
> Ls <- c(12, 24, 36, 48, 60)
> len <- 24
> signal1 <- 30 * cos(2*pi * (1:(N + len)) / 12)
> signal2 <- 30 * cos(2*pi * (1:(N + len)) / 12 + pi / 4)
> signal <- cbind(signal1, signal2)
> R <- 10
> mssa.errors <- function(Ls) {
+ f1 <- signal1[1:N] + rnorm(N, sd = sigma)
+ f2 <- signal2[1:N] + rnorm(N, sd = sigma)
+ f <- cbind(f1, f2)
+ err.rec <- numeric(length(Ls)); names(err.rec) <- Ls
+ err.for <- numeric(length(Ls)); names(err.for) <- Ls
+ for (l in seq_along(Ls)) {
+ L <- Ls[l]
+ s <- ssa(f, L = L, kind = "mssa")
+ rec <- reconstruct(s, groups = list(1:2))[[1]]
+ err.rec[l] <- mean((rec - signal[1:N, ])^2)
+ pred <- vforecast(s, groups = list(1:2), direction = "row",
+ len = len, drop = TRUE)
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+ err.for[l] <- mean((pred - signal[-(1:N), ])^2)
+ }
+ list(Reconstruction = err.rec, Forecast = err.for)
+ }
> mres <- replicate(R, mssa.errors(Ls))
> err.rec <- rowMeans(simplify2array(mres["Reconstruction", ]))
> err.for <- rowMeans(simplify2array(mres["Forecast", ]))
> print(err.rec)

12 24 36 48 60
2.869683 1.587789 1.248881 1.153730 1.855115
> print(err.for)

12 24 36 48 60
2.671251 2.578059 1.501565 2.595378 4.564218
> signal <- signal1 + 1i*signal2
> cssa.errors <- function(Ls) {
+ f1 <- signal1[1:N] + rnorm(N, sd = sigma)
+ f2 <- signal2[1:N] + rnorm(N, sd = sigma)
+ f <- f1 + 1i*f2
+ err.rec <- numeric(length(Ls)); names(err.rec) <- Ls
+ err.for <- numeric(length(Ls)); names(err.for) <- Ls
+
+ for (l in seq_along(Ls)) {
+ L <- Ls[l]
+ s <- ssa(f, L = L, kind = "cssa", svd.method = "svd")
+ rec <- reconstruct(s, groups = list(1:2))[[1]]
+ err.rec[l] <- mean(abs(rec - signal[1:N])^2)
+ pred <- vforecast(s, groups = list(1:2), len = len,
+ drop = TRUE)
+ err.for[l] <- mean(abs(pred - signal[-(1:N)])^2)
+ }
+ list(Reconstruction = err.rec, Forecast = err.for)
+ }
> cres <- replicate(R, cssa.errors(Ls))
> err.rec <- rowMeans(simplify2array(cres["Reconstruction", ]))
> err.for <- rowMeans(simplify2array(cres["Forecast", ]))
> print(err.rec)

12 24 36 48 60
7.349316 4.298144 4.101666 4.298144 7.349316
> print(err.for)

12 24 36 48 60
24.67425 13.60116 14.54819 11.72135 15.86380

4.3.4 Other Subspace-Based MSSA Extensions

In view of the common structure of all SSA-family algorithms (see Sect. 1.1), many
SSA-related techniques can be naturally extended from 1D objects (i.e., series) to
other objects, and particularly to the systems of series.
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In Sect. 4.3.1, we have considered methods of MSSA forecasting. Let us now
describe some extensions. Since the algorithms and the codes are either exactly
or almost identical to the 1D case, we are not writing them out. In particular, all
methods and algorithms that are based on the use of the column subspaces are
exactly the same in MSSA and 1D-SSA. For example, parameter estimation based
on the column subspace can be performed using the same function parestimate.

The shaped version of MSSA is almost the same as Shaped 1D-SSA (Sect. 2.6)
except for the following difference. If NA are placed at the ends of the time series,
then the corresponding series is considered as a series of smaller length. If there is
no other missing data, then the resultant series of smaller length does not have any
missing values and is decomposed by a non-shaped version ofMSSA. It is important
to mention that if there are NA at the right end of a series, then forecasts start from
the last not-NA values.

Formally, forecasting can be applied to shaped ssa object. However, it is
generally recommended to fill gaps first and then forecast the series.

Iterative gap-filling (Sect. 3.3.3, the function igapfill) and low-rank approxi-
mation by Cadzow iterations (Sect. 3.4, the function cadzow) are implemented in a
general manner and therefore can be applied to systems of time series with gaps in
exactly the same manner as in the 1D case.

Subspace-based gap-filling (Sect. 3.3.3, the function gapfill) is implemented
on the base of the recurrent column forecasting only and therefore does not have the
parameters direction and method.

4.4 Case Studies

4.4.1 Analysis of Series in Different Scales (Normalization)

Assume that different time series in the system of series are measured in different
scales. In statistics, this problem is typically resolved by making a standardization
of the data. In SSA, centering may not be an appropriate preprocessing. Therefore,
two types of preprocessing can be applied, conventional standardization and
normalization, which is the division by the square root of the mean sum of squares.
The normalization can be more appropriate for positive series, since it changes only
the scale of data.

Let us consider fortified (“FORT”) and rosé (“ROSE”) wine sales from the
dataset “AustralianWine.” Sales of fortified wines are measured in thousands but
sales of rosé wines are measured in tens and hundreds. Fragment 4.4.1 shows how
the scale influences the reconstruction result.
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Fragment 4.4.1 (“FORT” and “ROSE”: Influence of Series Scales)

> wineFortRose <- wine[, c("Fortified", "Rose")]
> summary(wineFortRose)

Fortified Rose
Min. :1154 Min. : 30.00
1st Qu.:2372 1st Qu.: 66.00
Median :2898 Median : 87.00
Mean :3010 Mean : 93.01
3rd Qu.:3565 3rd Qu.:114.25
Max. :5618 Max. :267.00

> norm.wineFortRosen <- sqrt(colMeans(wineFortRose^2))
> wineFortRosen <-
+ sweep(wineFortRose, 2, norm.wineFortRosen, "/")
> L <- 84
> s.wineFortRosen <- ssa(wineFortRosen, L = L, kind = "mssa")
> r.wineFortRosen <- reconstruct(s.wineFortRosen,
+ groups = list(Trend = c(1, 12, 14),
+ Seasonality = c(2:11, 13)))
> s.wineFortRose <- ssa(wineFortRose, L = L, kind = "mssa")
> r.wineFortRose <- reconstruct(s.wineFortRose,
+ groups = list(Trend = 1,
+ Seasonality = 2:11))
> wrap.plot <- function(rec, component = 1, series,
+ xlab = "", ylab, ...)
+ plot(rec, add.residuals = FALSE, add.original = TRUE,
+ plot.method = "xyplot", superpose = TRUE,
+ scales = list(y = list(tick.number = 3)),
+ slice = list(component = component, series = series),
+ xlab = xlab, ylab = ylab, auto.key = "", ...)
> trel1 <- wrap.plot(r.wineFortRosen, series = 2,
+ ylab = "Rose, norm", main = NULL)
> trel2 <- wrap.plot(r.wineFortRosen, series = 1,
+ ylab = "Fort, norm", main = NULL)
> trel3 <- wrap.plot(r.wineFortRose, series = 2,
+ ylab = "Rose", main = NULL)
> trel4 <- wrap.plot(r.wineFortRose, series = 1,
+ ylab = "Fort", main = NULL)
> plot(trel1, split = c(1, 1, 2, 2), more = TRUE)
> plot(trel2, split = c(1, 2, 2, 2), more = TRUE)
> plot(trel3, split = c(2, 1, 2, 2), more = TRUE)
> plot(trel4, split = c(2, 2, 2, 2))

Figure 4.8 demonstrates the result of a trend reconstruction, where the trend was
detected in the same way as before; that is, by using the forms of eigenvectors
and weighted correlations. The trend of the “ROSE” series is more complicated.
However, “FORT” overweighs the decomposition and the eigentriples that refine the
“ROSE” trend have very small weight and mix with the common noise. Therefore,
the MSSA processing with no normalization is worse for the analysis of the series
ROSE, which is measured on a smaller scale.
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Fig. 4.8 “FORT” and “ROSE”: Trends with normalization (ET1,12,14) and without (ET1)

4.4.2 Forecasting of Series with Different Lengths and
Filling-In

Fragment 4.3.1 in Sect. 4.3.3.2 shows a typical code when MSSA is used for the
series of equal lengths. However, the same code can be applied to series which have
different lengths. The full set of “AustralianWine” data has missing values: there is
no data for two months (points 175 and 176) for sales of “ROSE” and there is no
data for the last 11 months of “Total” sales.

Let us perform the following actions: (A) fill-in missing data in ROSE, (B)
calculate the sum of sales of the wines presented in the data, and (C) forecast this
sum together with the total series in order to fill-in the missing data.

To use the analysis performed above, let us process the “ROSE” series together
with the “FORT” series for (A). Fragment 4.4.2 implements (A). We fill-in the
missing data by two methods. The result is presented in Fig. 4.9.

Fragment 4.4.2 (“FORT” and “ROSE”: Filling-in the Missing Data in
“ROSE”)

> wineFortRose <- AustralianWine[, c("Fortified", "Rose")]
> L <- 84
> wineFortRose <- AustralianWine[, c("Fortified", "Rose")]
> norm.wineFortRosen <-
+ sqrt(colMeans(wineFortRose^2, na.rm = TRUE))
> wineFortRosen <-
+ sweep(wineFortRose, 2, norm.wineFortRosen, "/")
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> s.wineFortRosen <- ssa(wineFortRosen, L = L, kind = "mssa")
> g.wineFortRosen <-
+ gapfill(s.wineFortRosen, groups = list(1:14))
> ig.wineFortRosen <-
+ igapfill(s.wineFortRosen, groups = list(1:14))
> ig.wineFortRose <-
+ norm.wineFortRosen["Rose"] * ig.wineFortRosen
> g.wineFortRose <-
+ norm.wineFortRosen["Rose"] * g.wineFortRosen
> xyplot(AustralianWine[100:187, "Rose"] +
+ ig.wineFortRose[100:187, "Rose"] +
+ g.wineFortRose[100:187, "Rose"] ~
+ time(AustralianWine)[100:187],
+ type = "l", xlab = "Time", ylab = "Rose",
+ lty = c(1, 2, 1), lwd = c(2, 1, 1),
+ auto.key = list(text = c("‘Rose’",
+ "Iterative gap filling",
+ "Subspace-based gap-filling")))

Fragment 4.4.3 implements (B) and (C). Since the series “Total” and “Mainsales”
are of different lengths (recall that NA at the end of series correspond to the reduction
of the series length), the forecasts correspond to different times (Fig. 4.10). If one is
only interested in filling-in the missing data in “Total,” then the forecasted values of
“Mainsales” can be ignored.
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Fig. 4.9 “FORT” and “ROSE”: Filling-in of “ROSE” by two methods
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Fig. 4.10 “Total” and “Mainsales”: Forecast to fill-in “Total”

Fragment 4.4.3 (“Total” and “Mainsales”: Forecast to Fill-in “Total”)

> FilledRose <- AustralianWine
> FilledRose[175:176, "Rose"] <- g.wineFortRose[175:176]
> mainsales <- ts(rowSums(FilledRose[, -1]))
> tsp(mainsales) <- tsp(AustralianWine)
> wine.add.mainsales <- cbind(FilledRose, mainsales)
> colnames(wine.add.mainsales) <-
+ c(colnames(FilledRose), "Mainsales")
> L <- 84
> s.totalmain <- ssa(wine.add.mainsales[, c("Mainsales",
+ "Total")],
+ L = L, kind = "mssa")
> f.totalmain <- rforecast(s.totalmain, groups = list(1:14),
+ len = 11, only.new = TRUE)
> plot(f.totalmain, main = "", xlab = NULL, oma = c(3, 1, 1, 1))

4.4.3 Simultaneous Decomposition of Many Series

In this example, we consider the system of many time series and show that the
decomposition by MSSA helps to look at similar patterns in the series.

Let us consider a collection of s = 6 series from the “AustralianWine”
dataset, which includes the series of wine sales considered in Fragment 4.2.1, see
Sect. 4.2.6.2. A considerable part of this multivariate series can be described as
seasonality. Therefore, MSSA can have an advantage over conventional 1D-SSA
applied separately to each series from the system.

Since the time series have different scales, it may be advantageous to transform
the time series to the same scale by normalizing them.We choose the window length
L = 163, then Ki = 12 (i = 1, . . . , 6) and K = 6 · 12 = 72 and therefore the
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number of elementary components is equal to 72 = min(163, 72). This choice of
window length does not correspond to the maximal possible number of elementary
components.

We can obtain a more detailed decomposition with 144 = min(151, 144)
elementary components if we choose L = 151 and Ki = 24 but in this case
elementary components appear with almost equal weights (implying a lack of strong
separability). Thus, the choice L = 163 and Ki = 12 helps to avoid mixing up of
the components.

The identification of the trend (ET1,2,5) and seasonality (ET3,4, 6–12) is per-
formed on the base of eigenvectors and uses the principles used in the typical code
from Sect. 4.2.6.2. Fragment 4.4.4 contains the code which gives the reconstruction
shown in Figs. 4.11 and 4.12.
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Fig. 4.11 “Australian wines”: Extraction of trends
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Fig. 4.12 “Australian wines”: Extraction of seasonality

Fragment 4.4.4 (“Australian wines”: Simultaneous Decomposition by MSSA)

> L <- 163
> norm.wine <- sqrt(colMeans(wine[, -1]^2))
> winen <- sweep(wine[, -1], 2, norm.wine, "/")
> s.winen <- ssa(winen, L = L, kind = "mssa")
> r.winen <- reconstruct(s.winen,
+ groups = list(Trend = c(1, 2, 5),
+ Seasonality = c(3:4, 6:12)))
> plot(r.winen, add.residuals = FALSE,
+ plot.method = "xyplot",
+ slice = list(component = 1),
+ screens = list(colnames(winen)),
+ col =
+ c("blue", "green", "red", "violet", "black", "green4"),
+ lty = rep(c(1, 2), each = 6),
+ scales = list(y = list(draw = FALSE)),
+ layout = c(1, 6))
> plot(r.winen, plot.method = "xyplot", add.original = FALSE,
+ add.residuals = FALSE, slice = list(component = 2),
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+ col =
+ c("blue", "green", "red", "violet", "black", "green4"),
+ scales = list(y = list(draw = FALSE)),
+ layout = c(1, 6))

The reconstructed trends and seasonal components look adequate. In addition,
the simultaneous processing of several time series is very convenient as we obtain
similar time series components all at once. In particular, it is clearly seen from
Fig. 4.12 that the sales of fortified wines are maximal in June-July (that are winter
months in Australia), while the sales of sparkling wines are largest in December.
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