
Chapter 3
Parameter Estimation, Forecasting,
Gap Filling

Similarly to Chap. 2, this chapter is devoted to applications of SSA for one-
dimensional series; that is, to 1D-SSA. The SSA analysis of time series, which
is considered in Chap. 2, can be classified as model-free. In this chapter, on
the contrary, we consider the methodologies within the 1D-SSA approach, which
require a model. These methodologies include the common problems of forecasting,
interpolation, low-rank approximation, and parameter estimation. The model used
is based on properties of the approximating subspace constructed in the process of
1D-SSA analysis of Chap. 2 and so the methodologies of this chapter belong to the
class of subspace-based methods of time series analysis and signal processing.

The main parametric model of 1D-SSA is a linear recurrence relation (LRR)
which a time series should approximately satisfy. In Sect. 3.1, we describe how to
estimate the LRR coefficients and parameters of a series component satisfying such
LRR.

Section 3.2 is devoted to forecasting, the most practically important application
of time series analysis. In 1D-SSA, the problem of forecasting coincides with the
problem of continuation of the signal S extracted from the observed series S + R,
where R is the residual (or noise). To do that, we estimate the trajectory space of
S and make the continuation based on the estimated subspace. A straightforward
manner to make a forecast is to directly use the parametric form of the signal
estimated using the methods of Sect. 3.1. However, the class of series suitable for
forecasting is much wider than the class of series where the parametric model is
adequate and some of the forecasting methods of Sect. 3.2 only use certain features
of the estimated subspaces and not the estimators of the signal parameters; hence,
a medium-term forecast could be quite accurate even if the given series cannot
be approximated by a signal which globally satisfies an LRR. Section 3.2 also
thoroughly discusses the problem of assessing stability of forecasts, which is the
key issue in understanding of how much the forecasts can be trusted.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
N. Golyandina et al., Singular Spectrum Analysis with R, Use R!,
https://doi.org/10.1007/978-3-662-57380-8_3

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-57380-8_3&domain=pdf
https://doi.org/10.1007/978-3-662-57380-8_3

122 3 Parameter Estimation, Forecasting, Gap Filling

Section 3.3 is devoted to the problem of imputation of missing values, or gap
filling. The methods of Sect. 3.3 extend the methods of Sect. 3.2 as the problem of
forecasting can be considered as a particular case of the problem of missing value
imputation when the missing values are located at the end of the series.

Section 3.4 is devoted to the problem of structured low-rank approximation of
Hankel matrices which arises when the parametric model of the signal is of the main
interest. The most commonmethod of solving this problem is a repeated application
of the SSA algorithm. In Sect. 3.4 we stress that choosing appropriate weights in
defining the matrix norm can make a significant improvement in the accuracy of the
approximation, especially at the points close to both ends of the series.

In Sect. 3.5 we carefully analyze several real-world time series to illustrate
the main points of previous sections. We also discuss the problem of choosing
parameters of the algorithms.

As in Chap. 2, for the sake of brevity, in this chapter we will refer to 1D-SSA
simply as SSA. In contrast to the SSA analysis, the input for the algorithms of this
chapter is not necessarily a collection XN = (x1, . . . , xN) of N real numbers; it can
be an estimated subspace. This subspace is, as a rule, obtained after Grouping step
of any of the SSA algorithms and has the form span(Ui, i ∈ I).

3.1 Parameter Estimation

In Sect. 2.1.2, in the process of explaining the concepts related to the SSA analysis
such as SSA decomposition and separability, we have described a class of series
S = (sn) governed by linear recurrence relations (LRRs) sn = ∑

aisn−i . In this
section, we describe how to estimate the LRR coefficients and parameters of a series
components governed by an LRR. We will assume that the SSA method is able to
approximately extract the investigated series component; that is, the component of
interest is approximately separated and the window length together with the SSA
modification are chosen appropriately.

A series governed by an LRR can be expressed in the parametric form (1.9).
A particular case is a series S = (sn) with sn = ∑r

i=1 Ciμ
n
i , μi ∈ C, or, in the

real-valued form, sn = ∑p

i=1 Ai exp(αin) cos(2πnωi + φi), where Ai , αi , ωi and
φi (i = 1, . . . , p) are unknown parameters whose values may be (and often are) of
interest to the investigator. Hence the problem of parameter estimation arises.

3.1.1 Method

We describe the so-called subspace-based methods of parameter estimation, where
only the estimated subspace of the series components is of concern but Reconstruc-
tion step of the SSA algorithm is of no importance.

3.1 Parameter Estimation 123

Let a set of indices I correspond to the component of interest in the constructed
decomposition of the trajectory matrix X = ∑d

i=1 σiPiQ
T
i . For simplicity of

notation we assume I = {1, 2, . . . , r}. Then the estimated subspace is S̃ =
span(P1, . . . , Pr). We always consider the generating set {Pi} of S̃ to be orthonormal
as otherwise we can orthonormalize it. Since the original vectors Pi may be linearly
dependent (for example, in the method of SSA with projection), the procedure of
orthogonalization may reduce the number of vectors. We will consider r to be equal
to the number of vectors after orthogonalization.

We consider two kinds of parametrization; first, in the form of a governing LRR
and, second, in the form (1.9). Correspondingly, we describe how to estimate the
coefficients of a governing LRR and the parameters of (1.9).

3.1.1.1 Estimation of the Governing LRR

The trajectory space S of a signal S governed by a particular LRR corresponds
to many LRRs. More precisely, any vector from S⊥ with the last coordinate −1
produces such an LRR; in other words, any such vector from S⊥ provides a set of
coefficients for a linear combination of the first L−1 coordinates of a vector from S

to obtain the last coordinate; see Golyandina et al. (2001; Section 5) and Golyandina
and Zhigljavsky (2013; Chapter 3) for detailed explanations.

Among all these LRRs (generating the same trajectory space S) there is the best
LRR with minimal sum of squared coefficients (the so-called min-norm LRR). The
min-norm LRR suppresses possible perturbations in the initial data as much as
possible, which is important if we use this LRR for series generation or continuation,
on the base of SSA approximation of the initial data.

For a chosen window length L, the signal subspace S ∈ RL and therefore the
min-norm LRR has order L−1. For each column vector Pi of Pr , denote πi the last
coordinate of Pi , P i ∈ RL−1 the vector Pi with the last coordinate removed, and
ν2 = ∑r

i=1 π2
i . Then the elements of the vector

R = (aL−1, . . . , a1) = 1

1 − ν2

r∑

i=1

πiP i (3.1)

provide the coefficients of the min-norm governing LRR: sn = ∑L−1
i=1 aisn−i .

For an estimated subspace S̃, the estimated LRR is calculated in the same way,
on the base of an orthonormal basis of S̃.

3.1.1.2 Estimation of Frequencies

Let XN = SN + RN , where sn = ∑r
j=1 cjμ

n
j and the series SN and RN are

approximately separable for a given window length L. Generally, the signal roots
of the characteristic polynomial of a governing LRR allow estimation of the signal

124 3 Parameter Estimation, Forecasting, Gap Filling

parametersμj , j = 1, . . . , r (see Sect. 2.1.2.2). However, the min-norm LRR is not
minimal and therefore we should somehow distinguish between the signal roots and
the extraneous roots. Usually, the signal roots of the min-norm LRR have maximal
moduli (e.g., see Usevich (2010)). Therefore, one can find roots of the min-norm
LRR, arrange them in the order of decrease, and take the first r roots.

However, the ordering is never guaranteed. Therefore, the methods that are able
to separate the signal and extraneous roots could be very useful.

Let us describe one of these methods called ESPRIT (Roy and Kailath 1989).
This method is implemented in two versions, LS-ESPRIT and TLS-ESPRIT, where
LS means least squares, TLS means total least squares (see, e.g., the method
description in Golyandina and Zhigljavsky (2013; Section 3.8.2)). Other names
are HSVD (Barkhuijsen et al. 1987) and HTLS (Van Huffel et al. 1994). Here we
describe the LS version (HSVD).

Denote {P1, . . . , Pr } an orthonormal basis of the estimated subspace of the
component under interest. Set Pr = [P1 : . . . : Pr] and let Pr be the matrix with the

last row removed and Pr be the matrix with the first row removed. Then μi can be
estimated by the eigenvalues of the matrix P†

r Pr , where † denotes pseudo-inversion.
Correspondingly, the estimated frequencies are the arguments of μi .

Note that the matrix Pr conventionally consists of the chosen eigenvectors Ui in
the Basic SSA algorithm. However, any basis of the subspace, which estimates the
signal subspace, is suitable.

Let us mention a simple and fast method of frequency estimation which is used
for identification of the eigentriples at Grouping step. Two vectors U(1) and U(2)

forming an orthogonal basis of the trajectory space of an exponentially-modulated
sine wave have similar forms and their phases differ by approximately π/2. Let A

and B be defined by an = ρn sin(2πωn + φ) and bn = ρn cos(2πωn + φ). Denote

the angle between vectors by � . Then ω = �
((

a1
b1

)
,
(

a2
b2

))/
(2π). Therefore,

we can estimate the frequency using the basis vectors U(1) and U(2). Since these
vectors do not have exactly the same form as A and B, the sequence of angles

�
((

u
(1)
i

u
(2)
i

)

,

(
u

(1)
i+1

u
(2)
i+1

)) /
(2π), i = 1, . . . , L − 1, can be considered and then the

mean or median can be taken as an estimate of the frequency; see Golyandina et al.
(2001; Section 1.6) for details. In RSSA, the median is considered and the median
of absolute deviations from the median is used as a measure of accuracy.

3.1.2 Algorithms

Although the LRR approximating the time series is usually used for forecasting,
it can also be helpful for construction of the signal model. Hence we introduce an
algorithm for calculation of the min-norm LRR coefficients.

3.1 Parameter Estimation 125

Algorithm 3.1 Estimation of the signal LRR

Input: Matrix Pr ∈ RL×r consisting of orthonormal column vectors, which form a basis of the
estimated signal subspace.

Output: Coefficients R = (aL−1, . . . , a1) of the corresponding LRR.
1: For each column vector Pi of Pr , calculate πi and P i , ν

2 = ∑r
i=1 π2

i . If ν2 is equal to 1, then
STOP with the error message “Verticality coefficient equals 1.”

2: Compute R = 1
1−ν2

∑r
i=1 πiP i .

The next algorithm shows how the parameters μi in sn = ∑r
i=1 Ciμ

n
i can be

estimated from the roots of the characteristic polynomial of an LRR governing this
time series (see Sect. 2.1.2.2 for a description of the relation between LRRs and their
characteristic polynomials). The given LRR is an estimate of an LRR governing a
series of rank r; therefore, only r roots correspond to the signal, while the other
roots are extraneous. Since frequently (but not always!) the signal roots for the min-
norm LRR have larger moduli than the extraneous roots, we can select signal roots
with large absolute values among the whole set of roots.

Algorithm 3.2 Estimation of the signal roots through characteristic polynomial of
LRR
Input: Coefficients A = (a1, . . . , am) of the LRR sn = ∑m

i=1 aisn−i , rank r .
Output: Signal roots μi , i = 1, . . . , r .
1: Construct the characteristic polynomial P (μ) = μd − ∑m

i=1 aiμ
n−i .

2: Find the roots μ1, . . . , μm of P (μ).
3: Order the roots so that |μ1| ≥ . . . ≥ |μm|.
4: The leading roots μi , i = 1, . . . , r , are the candidates for the signal roots.

Algorithm 3.3 is one of the most known high-resolution subspace-based algo-
rithms of estimation of frequencies and damping factors.

Algorithm 3.3 ESPRIT
Input: Matrix Pr ∈ RL×r consisting of orthonormal column vectors, which form a basis of the

estimated signal space.
Output: r roots in the form (ρi , ωi).
1: Using either LS or TLS method, find a matrix M ∈ Rr×r satisfying Pr ≈ Pr M. For the

LS-method, M = P†
r Pr .

2: Find eigenvalues μi , i = 1, . . . , r , of M.
3: Set ρi = Mod(μi), ωi = Arg(μi).

The next algorithm is a complementary to Decomposition step used for helping
to gather sine-waves with similar frequencies.

126 3 Parameter Estimation, Forecasting, Gap Filling

Algorithm 3.4 Fast (“pairs”) estimation of frequencies

Input: Two orthonormal vectors U(1) and U(2) forming an estimated trajectory space of a sine
wave.

Output: Frequency ω, period T .

1: Compute φi = �
((

u
(1)
i

u
(2)
i

)

,

(
u

(1)
i+1

u
(2)
i+1

))

, i = 1, . . . , L − 1.

2: Calculate φ̄ as the mean or median of {φi}.
3: ω = φ̄/(2π), T = 1/ω.

3.1.3 Estimation in RSSA

3.1.3.1 Description of Functions

After the ssa object s has been constructed by the call of the ssa (alternatively,
iossa or fossa) function, the min-norm LRR can be constructed by the call of the
form

lrr.coef <- lrr(s, groups = list(2:3))

Arguments:

s is an ssa object holding the full one-dimensional SSA decomposition.
groups is a list defining the group of selected eigentriples.

The function lrr returns a list of objects of the lrr class, which contain coefficients
of the LRRs for each given group.

Complex roots of the characteristic polynomial of an LRR, which are ordered by
their moduli, are calculated by the call

lrr.roots <- roots(lrr.coef, method = "companion")

Arguments:

lrr.coef is an lrr object.
method is a method used for calculation of the polynomial roots: via eigenvalues

of the companion matrix or via R’s standard polyroot routine.

Estimation of parameters can be performed by means of this typical call:

est <- parestimate(s, groups = list(c(2, 3, 5, 6)),
method = "esprit")

Arguments:

s is an ssa object holding the full one-dimensional SSA decomposition.
groups is a list of eigentriples groups; for method = "pairs" each group should

consist of exactly two components.
method is a method of estimation of frequencies and damped factors; it can have

the following values: "esprit", "pairs".

3.1 Parameter Estimation 127

subspace indicates which space, column or row, will be used for parameter
estimation by the ESPRIT method. The default value "column" is standard for
ESPRIT.

solve.method is the method of shift matrix estimation; it can be set as "ls" for
the least squares solution and "tls" for the total least squares approach.

For an lrr object, the function print prints the LRR coefficients and plot draws
the produced complex roots, both signal and extraneous.

For the result of parestimate, the function print prints the estimated parame-
ters, while plot draws the estimated signal roots on the complex plane.

3.1.3.2 Typical Code

We start with a simple example to show a relation between LRRs and roots
(Fragment 3.1.1). For the exponential series sn = 1.01n = en ln 1.01 of rank
r = 1, the minimal LRR is xn = 1.01xn−1; that is, the vector of its coefficients
is A = (1.01). The characteristic polynomial has the form P(μ) = μ − 1.01, its
root is 1.01. The minimal LRR can be obtained for L = r + 1. Note that this choice
is an inappropriate choice for noisy series, since it would most likely provide a poor
separability between the signal and noise.

For L = 6 we have 4 extraneous roots. All five roots are depicted in Fig. 3.1.
Moduli of all four extraneous roots are smaller than 1.

The second simple example produces LRR coefficients and signal roots for a
linear function. In this example, rank r = 2, the minimal LRR does not depend
on the coefficients of the linear function and is xn = 2xn−1 − xn−2; that is, A =
(2,−1)T. The characteristic polynomial is P(μ) = μ2 − 2μ + 1; it has root 1 of
multiplicity 2. Since all methods are numerical, it is impossible to obtain exactly
equal roots. Therefore, a linear function numerically generates two different roots,
each close to 1. In this example, the linear function is approximated by a sum of
two exponentials (the case of two different real roots). In the case of two conjugate
complex roots instead of one root 1 of multiplicity 2, it can be approximated by one
sine wave with low frequency.

Fragment 3.1.1 (LRRs and Roots of Characteristic Polynomials)

> # Minimal LRR
> x <- 1.01^(1:10)
> s <- ssa(x, L = 2)
> l <- lrr(s, groups = list(1))
> print(l)
[1] 1.01
attr(,"class")
[1] "lrr"
> print(roots(l))
[1] 1.01
> # Extraneous roots
> x <- 1.01^(1:10)

128 3 Parameter Estimation, Forecasting, Gap Filling

> s <- ssa(x, L = 6)
> l <- lrr(s, groups = list(1))
> r <- roots(l)
> plot(l)
> # Multiple roots
> x <- 2.188 * (1:10) + 7.77
> s <- ssa(x, L = 3)
> l <- lrr(s, groups = list(1:2))
> print(l)
[1] -1 2
attr(,"class")
[1] "lrr"
> print(roots(l))
[1] 1.0000003 0.9999997

Fragment 3.1.2 demonstrates the methods of parameter estimation for the real-
life series “CO2.” For this series, ET1,4 correspond to a trend, while ET2,3 are
related to a sine-wave with period 12 (annual periodicity) and ET5,6 correspond to
half-year periodicity. One can see that both estimationmethods provide almost equal

Roots of Linear Recurrence Relation

Real part

Im
ag

in
ar

y
pa

rt

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

l

l

l

l

l

Fig. 3.1 Exponential signal: One signal and four extraneous roots

3.2 Forecasting 129

estimated periods of the annual component close to 12. Note that for the method
"pairs", the values rate and Mod mean nothing.

The ESPRIT method results in complex signal roots μj , which are presented
in convenient exponential form μj = ρje

i2πωj : period is 1/ωj , Mod is ρj ,
rate is lnρj , Arg means 2πωj . Since for real-valued series complex roots form
conjugate pairs, two rows with parameter estimates have equal absolute values but
have opposite signs. One can see that the trend part of the chosen components is
approximated by a sum of two real exponentials (their periods equal Inf), the first
one is increasing (the rate is positive), while the second one is decreasing.

Fragment 3.1.2 (Parameter Estimation for “CO2”)

> # Decompose "co2" series with default window length L
> s <- ssa(co2)
> # Estimate the periods from 2nd and 3rd eigenvectors
> # using default "pairs" method
> print(parestimate(s, groups = list(c(2, 3)), method = "pairs"))

period rate | Mod Arg | Re Im
11.995 0.000000 | 1.00000 0.52 | 0.86592 0.50019

> # Estimate the periods and rates using ESPRIT
> pe <- parestimate(s, groups = list(1:6),
+ method = "esprit")
> print(pe)

period rate | Mod Arg | Re Im
11.995 0.000542 | 1.00054 0.52 | 0.86638 0.50047

-11.995 0.000542 | 1.00054 -0.52 | 0.86638 -0.50047
5.999 0.000512 | 1.00051 1.05 | 0.50015 0.86653

-5.999 0.000512 | 1.00051 -1.05 | 0.50015 -0.86653
Inf 0.000375 | 1.00037 0.00 | 1.00037 0.00000
Inf -0.008308 | 0.99173 0.00 | 0.99173 0.00000

> plot(pe)

Figure 3.2 depicts six estimated signal roots on the complex plane, where two
trend real-valued roots can hardly be distinguished.

3.2 Forecasting

The problem of forecasting is the problem of continuation of the signal S extracted
from the observed series X = S + R. To do that it is sufficient to estimate the
trajectory space of S and then to construct the forecasted series based on the
estimated subspace.

An obvious way to perform forecasting would be to estimate series parameters
and use them for forecasting. However, the class of series suitable for forecasting is
considerably wider than the class of series for parameter estimation and hence the
forecasting methods considered below do not estimate series parameters but only
use some features of the estimated subspace.

130 3 Parameter Estimation, Forecasting, Gap Filling

Roots

Real part

Im
ag

in
ar

y
pa

rt

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

l

l

l

l

ll

Fig. 3.2 “CO2”: Six signal roots

Generally, the forecasted series should have a structure to forecast. In the
framework of SSA, we say that S has a structure if S is governed by an LRR.
However, it is very important to note that SSA forecasts are meaningful for a much
wider class of series when an LRR gives an adequate description of the structure
of the series only locally rather than globally, which is a requirement for parameter
estimation. For example, as a rule, a trend does not satisfy an LRR on the whole
time range but it can be locally approximated by a smooth series governed by an
LRR. In particular, relatively reliable forecasts can be made for the series which can
be approximated by a series of the form sn = ∑r

i=1 Ci(n)μn
i , μi ∈ C, where Ci(n)

are slowly varying functions of n.
In any version of the forecasting algorithm, we should assume that the series S is

approximately separated from R by a chosen modification of the SSA method.

3.2 Forecasting 131

3.2.1 Method

The methods of SSA forecasting are closely related to construction of LRRs
described in Sect. 3.1. Below we describe two forecasting algorithms. One of them
directly uses the constructed LRR for forecasting, whereas the other algorithm does
it implicitly. Both algorithms provide the same forecasts of series governed by
LRRs, if parameters of SSA are chosen properly.

3.2.1.1 Approach

We will use the same notation as in Sect. 3.1.
Let {Pi} be a basis of a subspace S̃ of RL. Then we can state the problem of

forecasting in this subspace.
Different modifications of SSA described in Chap. 2 (except for SSA with

projection) provide an estimate of a basis of the signal subspace.
If an SSA modification is applied and a set of eigentriples {(σi , Pi,Qi), i ∈ I } is

chosen for reconstruction, then S̃ = span{Pi, i ∈ I }. The set of vectors {Pi, i ∈ I }
is not necessarily an orthonormal basis. The first mandatory step is therefore the
ortho-normalization of the set of vectors {Pi, i ∈ I }. After making this step we can
construct forecasting algorithms considering an orthonormal basis as an input.

The subspace S̃ produces coefficients of a linear combination for reconstruction
of the last coordinates of vectors from S̃ through their first L − 1 coordinates. The
linear combination used for forecasting has minimal Euclidean norm of coefficients
among all linear combinations that correspond to the subspace S̃. If S̃ is exactly the
trajectory subspace of a series governed by an LRR, then the linear combination
with minimal norm corresponds to the min-norm LRR. Moreover, the continuation
of the series in this subspace is unique.

However, if the series subspace is estimated approximately, several versions
of forecasting can be suggested. If the estimation of the subspace was accurate
enough, then different forecasting versions will be close. Otherwise, they can differ
considerably.

Now we formally describe the forecasting algorithms. For detailed explanation,
see Golyandina et al. (2001; Chapter 2).

3.2.1.2 Recurrent Forecasting

The recurrent SSA forecasting is performed by means of the min-normLRR defined
in (3.1).

132 3 Parameter Estimation, Forecasting, Gap Filling

The recurrent forecasting method can be formulated as follows:

1. The time series YN+M = (y1, . . . , yN+M) is defined by

yi =

⎧
⎪⎨

⎪⎩

x̃i for i = 1, . . . , N,
L−1∑

j=1
ajyi−j for i = N + 1, . . . , N + M.

(3.2)

2. The numbers yN+1, . . . , yN+M form the M terms of the recurrent forecast.

Thus, the recurrent forecasting is performed by the direct use of the forecasting
LRR with coefficients taken from R = (aL−1, . . . , a1).

Remark 3.1 Let us define the linear operator PRec : RL �→ RL by the formula

PRecZ =
(

Z

RTZ

)

, (3.3)

where Z consists of the last L − 1 coordinates of Z. Set

Yi =
{

X̃i for i = 1, . . . ,K,

PRecYi−1 for i = K + 1, . . . ,K + M.
(3.4)

It is easily seen that the matrix Y = [Y1 : . . . : YK+M] is the trajectory matrix of the
series YN+M . Therefore, (3.4) can be regarded as a vector version of (3.2).

Remark 3.2 In recurrent forecasting, the original series can be taken instead of the
reconstructed series as the initial data for the forecasting LRR. This may be sensible
only if the leading components are chosen for forecasting. This option can reduce
the bias caused by the reconstruction inaccuracy but the volatility of forecasts may
increase.

If the LRR is not minimal, then only r of the roots correspond to the signal.
Other roots are extraneous and can influence the forecast. Extraneous roots that
have moduli larger than 1 can lead to instability.

3.2.1.3 Vector Forecasting

Let Lr = span(Pi, i ∈ I) and X̂i be the projection of the lagged vector Xi on Lr .
Consider the matrix

Π = P PT + (1 − ν2)RRT, (3.5)

where P = [P1 : . . . : Pr] and R is defined in (3.1). The matrix Π defines the
linear operator that performs the orthogonal projection RL−1 �→ Lr , where Lr =

3.2 Forecasting 133

span(Pi, i ∈ I). Finally, we define the linear operator PVec : RL �→ Lr by the
formula

PVecZ =
(

ΠZ

RTZ

)

. (3.6)

The vector forecasting method can be formulated as follows:

1. In the notation above, define the vectors

Yi =
{

X̂i for i = 1, . . . ,K,

PVecYi−1 for i = K + 1, . . . ,K + M + L − 1.
(3.7)

2. By constructing the matrix Y = [Y1 : . . . : YK+M+L−1] and making its diagonal
averaging we obtain the series y1, . . . , yN+M+L−1.

3. The numbers yN+1, . . . , yN+M form the M terms of the vector forecast.

In recurrent forecasting, we perform diagonal averaging to obtain the recon-
structed series and then apply the LRR. In the vector forecasting algorithm, these
steps are applied in the reverse order. The vector forecast is typically slightly more
stable. The current fast implementation of the vector forecasting makes the vector
forecasting comparablewith recurrent forecasting it terms of the computational cost,
see Golyandina et al. (2015).

If the time series component is fully separated from the residual and is governed
by an LRR, both recurrent and vector forecasting coincide and provide the exact
continuation. In the case of an approximate separability, the recurrent and vector
forecasting algorithms give different forecasts.

3.2.1.4 Specificity of SSA Modifications

Basic SSA, Toeplitz SSA, and Filter-adjusted SSA provide orthogonal bases. The
basis obtained by Iterated O-SSA needs ortho-normalization. After the subspace is
chosen, the forecasting algorithms do not depend on the modification of SSA used.

The algorithms of forecasting for SSA with projection are constructed and
implemented in the RSSA package by Alex Shlemov but are not yet properly studied
and even properly described. In view of this, we do not discuss these algorithms in
this book. For row centering, the algorithm is a generalization of the forecasting
with centering described in Golyandina et al. (2001; Section 1.7.1).

3.2.1.5 Bootstrap Confidence and Prediction Intervals

Assume again XN = SN + RN . Let us describe the construction of bootstrap
confidence intervals for the signal SN and its forecast assuming that the signal has

134 3 Parameter Estimation, Forecasting, Gap Filling

rank r and the residuals are white noise. The algorithm consists of the following
steps.

• Fix L, I = {1, . . . , r}, apply SSA, reconstruct the signal and obtain the
decompositionXN = S̃N + R̃N .

• Fix S̃N , calculate the empirical distribution of the residual R̃N .
• Simulate Q independent copies R̃N,i , i = 1, . . . ,Q, using the empirical
distribution, construct X̃N,i = S̃N + R̃N,i .

• Apply SSA with the same L and I to X̃N,i , reconstruct the signal, then perform
M-step ahead forecasting and obtain S̃N+M,i , i = 1, . . . ,Q.

• For each time point j consider the sample s̃j,i , i = 1, . . . ,Q, and construct the
bootstrap γ -confidence interval as the interval defined by (1 − γ)/2- lower and
upper sample quantiles. The sample mean is called average bootstrap forecast.

Remark 3.3 In the same manner as for linear regression, the prediction intervals
can be considered in addition to the confidence intervals. The prediction intervals
are constructed as the confidence intervals enlarged by the values of quantiles of
the noise distribution. While the confidence intervals show the bounds for the signal
and its forecast, the prediction intervals determine the bounds for the whole series
and its prediction. Note that in the case of linear regression, this is the theoretical
approach; for SSA, this is an empirical approach. To estimate quantiles of the
noise distribution, we use (1 − γ)/2- lower and upper sample quantiles of the
residuals R̃N = (r1, . . . , rN). To construct the bootstrap γ -prediction intervals,
these quantiles are added to the lower and upper bounds of the γ -confidence interval,
correspondingly.

Note that for cross-validation of SSA forecasts future values should not be
involved for construction of forecasts and choice of parameters; in this respect, see
a discussion in a recent paper (Du et al. 2017).

3.2.2 Algorithms

Let a version of SSA be applied to the time series X and let an eigentriple group
{(σi, Pi,Qi), i ∈ I } be chosen for reconstruction. The suggested forecasting
algorithms are formulated for forecasting in the subspace Lr = span{Pi, i ∈ I } ⊂
RL. For simplicity, we assume that I = {1, . . . , r} and the vectors Pi , i ∈ I , are
orthonormal. Note that the forecasting values do not depend on the choice of basis
in Lr .

Algorithm 3.5 is written in the form, when the reconstructed series is taken as a
base for forecasting. If the original series is used as the base of forecasting, xn are
taken instead of x̃n for n = N − L + 2, . . . , N at Step 3.

Algorithm 3.5 constructs a forward recurrent forecasting. Backward recurrent
forecasting is obtained by applying the forward forecasting to the reversed series.

3.2 Forecasting 135

Algorithm 3.5 Recurrent SSA forecasting
Input: Time series X of length N , window length L, orthonormal system of vectors {Pi}ri=1,

forecast horizon M .
Output: Forecast values (̃xN+1, . . . , x̃N+M).
1: Construct the vector R = (aL−1, . . . , a1)

T of coefficients of the min-norm LRR by
Algorithm 3.1 applied to {Pi, i ∈ I}.

2: Construct the reconstructed matrix X̂ = PPTX, where P = [P1 : . . . : Pr], and the
reconstructed series X̃ = (̃x1, . . . , x̃N) by X̃ = T−1

SSA ◦ ΠH(X̂).
3: Calculate the forecast values by applying the min-norm LRR:

x̃n =
L−1∑

i=1

ai x̃n−i , n = N + 1, . . . , N + M

The next algorithm implements the algorithm of vector forecasting, where the
application of the min-norm LRR and the hankelization operation are taken in the
reverse order.

Algorithm 3.6 Vector SSA forecasting
Input: Time series X of length N , window length L, orthonormal system of vectors {Pi}ri=1,

forecast horizon M .
Output: Forecast values (̃xN+1, . . . , x̃N+M).
1: Obtain the vector R = (aL−1, . . . , a1)

T of coefficients of the min-norm LRR by Algorithm 3.1
applied to {Pi, i ∈ I}.

2: Calculate the matrix Π of projection given in (3.5).
3: Construct the reconstructed matrix X̂ = PPTX, where P = [P1 . . . : Pr].
4: Extend the reconstructed matrix X̂ = [X̂1 : . . . : X̂K] by column vectors:

X̂n = PVecX̂n−1 for n = K + 1, . . . , K + M + L − 1,

where PVec is given in (3.6) and uses Π and R. Denote the extended matrix X̂ext ∈
RL×(K+M+L−1).

5: Obtain the extended reconstructed series X̃ext = (̃x1, . . . , x̃N+M+L−1) as X̃ext = T−1
SSA ◦

ΠH(X̂ext).
6: Return the forecast values (̃xN+1, . . . , x̃N+M).

Additional L − 1 vectors X̂n at Step 4 are calculated to make the forecast values
independent on the forecast horizon.

In Algorithm 3.6, the reconstructed series is taken as the base for forecasting.
For vector forecasting, it makes little sense to use the original series as the base for
forecasting.

Note that in this straightforward form, Algorithm 3.6 has a much larger com-
putational cost than Algorithm 3.5. However, a fast implementation described in
Golyandina et al. (2015; Section 6.3) and realized in RSSA makes the vector
forecasting as fast as the recurrent one.

136 3 Parameter Estimation, Forecasting, Gap Filling

3.2.3 Forecasting in RSSA

3.2.3.1 Description of Functions

Forecasting becomes available after an SSA decomposition is performed. RSSA

implements two methods of SSA forecasting, the recurrent and vector ones, with
construction of bootstrap confidence intervals if the signal is forecasted. The
package provides different interfaces for forecasting.

Let the decomposition s be constructed by one of SSA modifications. For
example, we construct the decomposition by Basic SSA as s <- ssa(x). Then
typical calls of forecasting functions are

Recurrent forecasting
fr <- rforecast(s, groups = list(1, c(2:3)), len = 1,

only.new = TRUE)

Vector forecasting
fv <- vforecast(s, groups = list(trend = c(1,4)), len = 12,

only.new = FALSE, drop = FALSE)

Arguments

s is an ssa object holding the decomposition;
groups is a list of groups of eigentriples to be used in the forecast;
len is a number of terms to forecast;
base is a series used as a “seed” of forecast: "original" or "reconstructed"

(default) according to the value of groups argument;
reverse : TRUE means that the recurrent forecast is backward;
only.new : if TRUE, only the forecast values are returned; otherwise, the forecasted

values from the parameter base are added;
drop acts only if one group is chosen; TRUE (default) value means that the result is

transformed from the list of the forecasted series to the forecasted series itself.

The following function can perform the chosen forecasting algorithm along with
construction of bootstrap confidence intervals. For example, one can call

Bootstrap confidence intervals
bf <- bforecast(s, groups = list(1, c(2:3)), len = 1,

R = 100, level = 0.95,
type = "recurrent",
interval = "confidence", only.intervals = FALSE)

In addition to parameters of rforecast and vforecast, the parameter R defines
the number of simulations and level denotes the confidence level. The parameter
type, which might take either "recurrent" or "vector" values, indicates what
kind of forecasting should be used. The parameter only.intervals influences
the construction of the forecast. If only.intervals = TRUE, then the forecast
coincides with the result of the function rforecast (or vforecast, in the case of
vector forecast). For the default value only.intervals = FALSE, the forecasting
values are obtained by averaging the forecasts, which were performed during the

3.2 Forecasting 137

construction of bootstrap confidence intervals. Since these forecasts are constructed
for simulated series, both the bootstrap intervals and the forecasting values can differ
for different calls of bforecasts.

The argument interval takes the value from c("confidence","predic-

tion"). The value "confidence" means that the bootstrap confidence bounds for
the reconstructed signal/forecast are calculated; the value "prediction" means that
the bootstrap prediction intervals for the whole series are computed.

One of the parameters of rforecast and vforecast, which can be added to the
arguments of the functions bforecast, is the parameter only.new. If only.new =

FALSE, then the bootstrap intervals are constructed for both the signal/series and the
forecast.

The following all-in-one function is designed to form an input for visualization
of the forecast results by means of the FORECAST package (Hyndman 2017).

All-in-one forecasting
f <- forecast(s,

groups = list(trend = 1:4), len = 12,
method = "recurrent",
interval = "confidence",
level = c(0.8, 0.99))

The function predict is exactly the same as forecast except for the form of the
returned value.

The parameter method can have values "recurrent" (by default) and
"vector". The value of interval is from c("none", "confidence",

"prediction"). If interval = "none", then bootstrap intervals are not
constructed. Opposite to the function bforecast, the default value of the parameter
only.intervals in the function forecast is TRUE. Parameters of rforecast,
vforecast, or bforecast can be added to the parameters of the functions
forecast and predict depending on the values of method and interval. One
of the parameters, which can be formally added, is only.new. However, for the
function forecast the value of this parameter is forced to TRUE.

Note that the help information for forecast and predict can be obtained in R
as ?forecast.ssa and ?predict.ssa.

Like the function reconstruct, all the forecasting routines try to use the
attributes of the initial series for the resulting series (in particular, they try to add
to the result the time index of the series). Unfortunately, this cannot be done in
class-neutral way as it is done in the reconstruct case and needs to be handled
separately for each possible type of time series. The forecasting routines know how
to impute the time indices for some standard time series classes like ts and zooreg.

3.2.3.2 Typical Code

Let us demonstrate the result of application of the family of forecasting functions to
the series “CO2,” see Fragment 3.2.1.

138 3 Parameter Estimation, Forecasting, Gap Filling

Fragment 3.2.1 (Forecasting of “CO2”)

> # Decomposition stage
> s <- ssa(co2, L = 120)
> # Recurrent forecast, the result is the forecast values only
> # The result is the set of forecasts for each group
> for1 <- rforecast(s, groups = list(1, c(1,4), 1:4, 1:6),
+ len = 12)
> matplot(data.frame(for1), type = "b",
+ pch = c("1", "2", "3", "4"), ylab = "")
> # Vector forecast, the forecasted points are
> # added to the base series
> for1a <- vforecast(s,
+ groups = list(1, trend = c(1,4), 1:4, 1:6),
+ len = 36, only.new = FALSE)
> # Plot of the forecast based on the second group c(1,4)
> plot(cbind(co2, for1a$trend), plot.type = "single",
+ col = c("black", "red"), ylab = NULL)
> # Reverse recurrent forecast
> len <- 60
> for2 <- rforecast(s, groups = list(1:6), len = len,
+ only.new = TRUE, reverse = TRUE)
> initial <- c(rep(NA, len), co2)
> forecasted <- c(for2, rep(NA, length(co2)))
> matplot(data.frame(initial, forecasted), ylab = NULL,
+ type = "l", col = c("black", "red"), lty = c(1, 1))
> set.seed(3)
> for3 <- forecast(s, groups = list(1:6),
+ method = "recurrent", interval = "confidence",
+ only.intervals = FALSE,
+ len = 24, R = 100, level = 0.99)
> plot(for3, include = 36, shadecols = "green", type = "l",
+ main = "Confidence intervals")
> set.seed(3)
> for4 <- forecast(s, groups = list(1:6),
+ method = "recurrent", interval = "prediction",
+ only.intervals = FALSE,
+ len = 24, R = 100, level = 0.99)
> plot(for4, include = 36, shadecols = "green", type = "l",
+ main = "Prediction intervals")

Analysis of the Basic SSA decomposition (see Sect. 2.1 for recommendations)
shows that ET1,4 can be referred to a trend, while ET2-3,5–6 make the seasonality
group. Figure 3.3 shows a set of the forecast values for different eigentriple
groups. The forecast for trend (ET1 and ET4) is shown in Fig. 3.4 together
with the reconstructed series. Figure 3.5 demonstrates backward recurrent forecast.
Figure 3.6 shows the bootstrap confidence and prediction intervals for the forecasts;
it uses the graphical tools from the FORECAST package. Recall that the confidence
intervals are constructed for the signal forecast, while the prediction intervals are
constructed for the forecast of the whole signal. Therefore, prediction intervals are
wider.

3.3 Gap Filling 139

1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12

36
2

36
3

36
4

36
5

36
6

36
7

36
8

2 2 2 2 2 2 2 2 2 2 2 2

3

3

3

3 3

3

3

3

3
3

3

3
4

4

4

4

4
4

4

4

4 4

4

4

Fig. 3.3 “CO2”: A set of recurrent forecasts

Time

1960 1970 1980 1990 2000

32
0

33
0

34
0

35
0

36
0

37
0

Fig. 3.4 “CO2”: Forecast of trend

3.3 Gap Filling

This section is devoted to the extension of the SSA forecasting algorithms for the
analysis of time series with missing data.

There are three approaches for solving this problem. The first approach was
suggested in Schoellhamer (2001). This approach is suitable for stationary time
series only and uses the following simple idea: in the process of the calculation
of the inner products of vectors with missing components we use only pairs of valid

140 3 Parameter Estimation, Forecasting, Gap Filling

0 100 200 300 400 500

31
0

32
0

33
0

34
0

35
0

36
0

da
ta

.fr
am

e(
in

iti
al

, f
or

ec
as

te
d)

Fig. 3.5 “CO2”: Backward forecast of the signal

Confidence intervals

1995 1997 1999

35
8

36
2

36
6

37
0

Prediction intervals

1995 1997 1999

35
8

36
2

36
6

37
0

Fig. 3.6 “CO2”: Plots of confidence and prediction intervals for the forecast

vector components and omit the others. The RSSA package does not implement
this approach in view of its limitations. We hence concentrate on the other two
approaches, the subspace-based (Golyandina and Osipov 2007) approach and the
iterative (Kondrashov and Ghil 2006) one.

Usually, the problem of missing data imputation is stated as the problem of
filling-in the signal data. However, the problem of imputation is more general.
For example, one can be interested in imputation of missing data in the trend or
seasonality only. To do it, the structure, which we are interested in, should be
detected by the method. From the viewpoint of SSA, it means that the interesting
series component should be separated from the residual and also the rule for the
component extraction should be fixed (e.g., the indices of the eigentriples for
reconstruction should be set in Basic SSA). Therefore, it makes sense to combine the
considered methods with the SSA modifications described in Chap. 2 that improve
separability.

For detection of structure prior to performing gap filling, Shaped SSA can be
applied to the series if the location of the gaps allows the decomposition (see

3.3 Gap Filling 141

Sect. 2.6). If Shaped SSA gives unsatisfactory results (for example, if the number
of complete lagged vectors is too small and therefore detection of the structure
is impossible), then the subspace-based approach is not applicable. However, the
following general technique can be applied in the framework of the iterative
approach: artificial gaps can be added and parameters of the method of gap filling
can be chosen to minimize the error of imputation.

3.3.1 Method

3.3.1.1 Subspace-Based Approach

The subspace-based method of gap filling suggested in Golyandina and Osipov
(2007) (see also Golyandina and Zhigljavsky (2013; Section 3.7)) is an extension
of SSA forecasting algorithms. For forecasting, the last vector coordinate in a
chosen subspace can be uniquely imputed as a linear combination of the first L − 1
coordinates. The approach can be extended for imputing a set of unknown (missing)
vector coordinates as linear combinations of known coordinates. Here we use a
found signal structure (in the form of a subspace) to fill the gaps. In a particular
case, when missing values are located at the end of the series, the problem of filling-
in of these values coincides with the problem of forecasting.

The assumptions for the gap filling are the same as for forecasting; that is, SSA
should be able to approximately separate the series component of interest.

Note that imputation of gaps in separate signal components can be performed
as the following two-step procedure: first, we fill gaps in the whole signal and then
decompose the reconstructed signal into desired components.

Clusters of Missing Data

In the subspace-based approach, the gap filling method can be applied to different
groups of missing data independently. To introduce such independent clusters, let
us give several definitions following (Golyandina and Osipov 2007).

Definition 3.1 For a fixed L, a sequence of missing data of a time series is called a
cluster of missing data if every two adjacent missing values from this sequence are
separated by less than L non-missing values and there is no missing data among L

neighbors (if they exist) of the left/right element of the cluster.
Thus, a group of not less than L successive non-missing values of the series

separates clusters of missing data.
A cluster is called left/right if its left/right element is located at a distance of less

than L from the left/right end of the series. A cluster is called continuous if it does
not contain non-missing data.

142 3 Parameter Estimation, Forecasting, Gap Filling

The Layout of the Algorithm

Let us describe the algorithm layout. Note that the description below is different
from the descriptions provided in Golyandina and Osipov (2007) and Golyandina
and Zhigljavsky (2013; Section 3.7); we present it here in the form that is
implemented in the RSSA package.

Assume that we have the initial time series XN = (x1, . . . , xN) consisting
of N elements, some part of which is unknown. Let us describe the scheme of
the algorithm assuming that we are reconstructing the first component X(1)

N of the

observed series XN = X
(1)
N + X

(2)
N .

The scheme of the method is as follows. Parameters are the window length
L and a group I of components in the SSA decomposition. We assume that the
location of missing data allows application of Shaped SSA for the chosen L. Two
versions, “sequential” and “simultaneous” are suggested. These versions correspond
to sequential recurrent forecasting and simultaneous vector forecasting, respectively.

Scheme of Subspace-Based Gap Filling

1. Shaped SSA. For the series, the shaped version of SSA is applied for the given
window length L and group I . Any modification described in Chap. 2 and
consistent with Shaped SSA can be used. As a result, we obtain a reconstructed
series and a set of orthonormal vectors providing a basis for the approximated
signal subspace.

2. Detection of clusters of missing data. All missing entries are split into clusters.
For sequential version, each cluster is transformed into a continuous one; that is,
non-missing values within the cluster are changed to NA.

3. Forecasting. For forecasting or filling-in several values, two approaches can
be used, sequential and simultaneous. Both of these approaches can use either
the recurrent or vector forecasting methods. In the current version of the RSSA

package, the sequential approach uses the recurrent forecasting method, while
the simultaneous approach uses a method similar to the vector forecasting one.
Sequential gap filling-in makes forecasting from the left and from the right for
each cluster with subsequent weighted averaging of the forecasting results; the
subspace used for forecasting is estimated by Shaped SSA. If a cluster is left or
right, then only one forecast is used for gap-filling.
For simultaneous gap filling the so-called simultaneous forecasting is used. In
Golyandina and Zhigljavsky (2013; Section 3.1), simultaneous forecasting is
described in its recurrent version. Since here we use the vector version, the
simultaneous gap filling coincides with the description in Golyandina and Osipov
(2007), where the method consists of two operations called “Π-projection” and
“simultaneous filling-in.”

3.3 Gap Filling 143

Discussion

Note that for successful imputation, an approximate separability of the imputed
component is necessary. For exactly separated component, the missing values can
be reconstructedwith no error. The location of missing data is very important for the
possibility of imputation by the subspace method, since the number of non-missing
values should be large enough for achieving separability by Shaped SSA. At least,
the number of the complete lagged vectors should be larger than the rank of the
imputed time series component.

3.3.1.2 Iterative Approach

A natural and simple idea for filling-in missing values is the iterative approach,when
the missing entries are initially filled-in using some reasonable values and then these
values are iteratively improved by updating the SSA approximations for underlying
structure of the object. This idea was suggested in Beckers and Rixen (2003) for the
imputation of missing values in noisy rank-deficientmatrices and was later extended
to time series in Kondrashov and Ghil (2006).

For a rank-deficient matrix, the structure is defined by its rank and therefore
the improvement is performed by the SVD, where the first r SVD components
describe this structure. Time series of finite rank r can be considered in the form
of its trajectory matrix, which has rank r and also is a Hankel matrix. Therefore, the
improvement can be obtained with the help of the SVD of the trajectory matrix with
subsequent hankelization. Note that this is exactly the Basic SSA algorithm with
reconstruction. Also, Toeplitz SSA or SSA with projection can be used at iterations,
if the series is stationary or we partly know the series model.

At each iteration, we insert the improved values at the places of missing entries
and restore the initially used data at the places of non-missing entries. The initially
used data may be of two types. First, the original values are used. Second, if
application of Shaped SSA is possible, then the reconstructed values can be used
instead of the original ones.

The approach described above can be formally applied for almost any location
of missing values. Numerical experiments shows that the iterative approach can fail
if missing data are located at the ends of the time series.

The iterative approach has no rigorous proof of convergence. Another drawback
of the iterative approach is its impossibility to fill-in the gaps exactly even for
noiseless signals. Moreover, the iterative method has large computational cost.

3.3.2 Algorithms

Let us start with describing a simpler iterative gap-filling algorithm. For a collection
Y and a set of indices P we denote byY

∣
∣
P
the part of the collection with the indices

from P . Set N = {1, . . . , N}.

144 3 Parameter Estimation, Forecasting, Gap Filling

Algorithm 3.7 Iterative gap filling
Input: Time series X of length N containing gaps, set of indices of missing values P , window

length L, version of SSA, series G of length N as the source of initial values for gaps, rank for
reconstruction r , stop criterion STOP.

Output: Reconstructed series component X̃ with no gaps.
1: k ← 0, G̃(k)

∣
∣
P

= G
∣
∣
P
, I = {1, . . . , r}.

2: Set X̃(k+1) such that X̃(k+1)
∣
∣
N\P = X

∣
∣
N\P and X̃

(k+1)
∣
∣
P

= G
(k)

∣
∣
P
.

3: Apply the selected version of SSA with the chosen L and I to X̃
(k+1) and obtain the

reconstructed series G(k+1).
4: k ← k + 1
5: If not STOP, go to Step 2; else X̃ = G

(k).

Input of the algorithm can contain several groups of indices Ik , k = 1, . . .m.
Then the iterations are performed for r = max{i : i ∈ Ik, k = 1, . . . ,m}. In this
case, the reconstruction at the last step before STOP is performed for each group Ik

separately.
There is a modification of Algorithm 3.7, where X̃

(k+1)
∣
∣
N\P at step 2 is taken

from the reconstructed series, which is calculated by Shaped SSA applied to the
initial time series X.

Below we only provide a short description of the algorithms of subspace-
based filling-in. More comprehensive description and mathematical details of the
algorithms can be found in Golyandina and Osipov (2007) and Golyandina and
Zhigljavsky (2013; Section 3.7). The algorithms can deal with several gaps. We
only describe their versions for one internal gap.

The following algorithm corresponds to a combination of methods “sequential
filling-in from the left” and “sequential filling-in from the right.”

Algorithm 3.8 Sequential recurrent subspace-based gap filling
Input: Time series X of length N containing a gap, which starts from ith and finished in j th

points, set of gap indices P = {i, . . . , j}, p = |P |, window length L, version of SSA, group
of eigentriples I .

Output: Reconstructed series component X̃ with a filled gap.
1: Apply the shaped form of the chosen SSA version to X̃ (Algorithms 2.13 and 2.14) and obtain

the subspace L = span{Pi, i ∈ I} and the reconstructed series X̃ with gaps.
2: Apply the forward recurrent forecasting algorithm in the subspace L starting from

(̃xi−L+1, . . . , x̃i−1) and construct the p-step recurrent forecast Gleft.
3: Apply the backward recurrent forecasting algorithm in the subspace L starting from

(̃xj+L−1, . . . , x̃j+1) and construct the p-step recurrent forecast Gright.

4: CombineGleft andGright to obtain G. For example, gi = (1−αi)g
left
i +αig

right
i , i = 1, . . . , p,

where αi = i/(p + 1).
5: Set X̃

∣
∣
P

= G.

Note that if the gap is right (or left), then only forward (or backward) recurrent
forecasting is applied.

3.3 Gap Filling 145

There is a modification of the algorithm, when the initial data for the forecasting
formula at Steps 2 and 3 is taken from the initial series but not from the reconstructed
series as in Algorithm 3.8.

The following algorithm corresponds to the combination of the method “Π-
projector” and “simultaneous filling-in” introduced in Golyandina and Osipov
(2007).

Algorithm 3.9 Simultaneous vector subspace-based gap filling
Input: Time series X of length N containing a gap, which starts from ith and finishes in j th

points, set of gap indices P = {i, . . . , j}, p = |P |, window length L, version of SSA, group
of eigentriples I .

Output: Reconstructed series component X̃ with a filled gap.
1: Apply the shaped form of the chosen SSA version to X̃ (Algorithms 2.13 and 2.14) and obtain

the subspace L = span{Pi, i ∈ I} and the reconstructed matrix X̂ consisting of vectors with
non-missing values at all positions.

2: Continue the values of the complete reconstructed vectors according to Hankel structure of the
matrix to obtain partly filled reconstructed vectors.

3: Project the valid parts of vectors by means of the Π -projector.
4: Simultaneously fill-in the missing parts of the vectors. If it is impossible, then put NA (“not

available”).
5: Hankelize the matrix X̂ to obtain the series X̃. Hankelization is performed by averaging by

non-missing values. If there are no non-missing values, then the result is NA.

3.3.3 Gap-Filling in RSSA

3.3.3.1 Description of Functions

Since subspace-based gap filling can be considered as interpolation (that is, as
forecasting of the time series to gaps), the call of gapfill is similar to a call of
the forecasting functions.

Similarly to forecasting, one should estimate the trajectory space of an inter-
polated series component by an SSA-modification; for example, by a call s <-

ssa(ts, L=120). Since series contains gaps, the shaped version of SSA is applied.
Shaped SSA results in reconstruction of a set of series points, which can be covered
by the chosen window length. Therefore, the set of uncovered points can be wider
than the set of missing values. The sequential method considers uncovered points as
gaps, while the simultaneous method imputes the initial gaps.

Subspace-based gap filling-in is applied to each cluster of missing values, which
are detected automatically. A typical call is as follows:

Subspace-based gap filling
g <- gapfill(s, groups = list(c(1,4),c(2:3,5:6)),

base = "reconstructed",
method = "sequential",
alpha = function(len) seq.int(0, 1, length.out = len))

146 3 Parameter Estimation, Forecasting, Gap Filling

Arguments:

s is a shaped ssa object holding the decomposition; this kind of the object is
obtained for a series with NA values.

groups is a list of groups of eigentriples used for estimation of the component
subspaces.

base is a series used as a “seed” for gap filling: original or reconstructed according
to the value of groups argument; e.g., for sequential filling-in, this is simply the
series a forecasting LRR is applied to.

method is a method used for gap filling, "sequential" or "simultaneous".
alpha is used for method = "sequential" and sets weights used for combining

forecasts from the left and from the right. It can have the following values: 0 (1)
means that only the forecast from the left (respectively, from the right) is used;
0.5 means that the forecasts are averaged. It can be a function of len, where
len is the number of missing data in one gap. By default, the function provides
linearly decreasing weights from 1 to 0 from both sides.

Note that the computational cost of subspace-based gap filling is very low.
Iterative gap filling is used when the signal subspace is hard (or even impossible)

to estimate. Suppose that we know the rank of the signal r . Then the short call has
the form

Iterative gap filling
ig <- igapfill(s, groups=list(1:r), base = "original")

Arguments:

s is a shaped ssa object holding the decomposition; at least, the window length
L is taken from s. Decomposition in s can be empty if base = "original" is
used.

groups is a list of groups of eigentriples to be used for reconstruction at iterations.
Each group I is used at the first iteration. Next iterations use groups {1, . . . , |I |}.

fill is a time series of the length coinciding with the length of the original series;
initial values for the missing entries at the first iteration are taken from this
series; if fill = NULL, the average of the base series is used.

tol is a tolerance for the difference between reconstructions at subsequent itera-
tions.

maxiter is an upper bound for the number of iterations; if maxiter = 0, the upper
bound is not used.

norm is a distance function used in the convergence criterion;
base is a series used for forced values at non-missing positions at each

iteration. "original" is used if a shaped decomposition is impossible;
"reconstructed" is used if Shaped SSA yields an appropriate estimation
of the component subspace.

trace is logical; specifies whether the convergence process should be traced. For
example, the number of iterations for convergence can be found in the trace.

3.3 Gap Filling 147

3.3.3.2 Typical Code

Let us demonstrate the methods of gap filling by inserting artificial gaps into the
time series “CO2.” The methods fill gaps in a series component such as signal or
trend; noise component can not be recovered.

Fragment 3.3.1 demonstrates how the subspace-based filling method is able to
reconstruct a gap. We take one gap of length 100 in the middle of the time series
and use the window length L = 72. In this case we have enough data to estimate
the signal subspace.

Fragment 3.3.1 (Subspace-Based Gap Filling)

> F <- co2
> F[201:300] <- NA
> s <- ssa(F, L = 72)
> g0 <- gapfill(s, groups = list(c(1, 4)), method = "sequential",
+ alpha = 0, base = "reconstructed")
> g1 <- gapfill(s, groups = list(c(1, 4)), method = "sequential",
+ alpha = 1, base = "reconstructed")
> g <- gapfill(s, groups = list(c(1, 4)), method = "sequential",
+ base = "reconstructed")
> plot(co2, col = "black")
> lines(g0, col = "blue", lwd = 2)
> lines(g1, col = "green", lwd = 2)
> lines(g, col = "red", lwd = 2)

Figure 3.7 shows the result of sequential filling-in. Sequential filling-in is
constructed as a linear combination of forecasts from the left and from the right
in the subspace estimated by Shaped SSA applied to the whole series. To choose the
subspace, identification of eigentriples should be performed as it was demonstrated
in Sect. 2.6. Here ET1,4 correspond to a trend.

It can be seen that the accuracy of forecasts from the left and from the right gets
worse as the distance from the corresponding edge increases. Therefore, one should

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 3.7 “CO2”: Subspace-based gap filling, from the left, from the right, and their combination

148 3 Parameter Estimation, Forecasting, Gap Filling

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 3.8 “CO2”: Iterative gap filling of trend

combine these forecasts with assigning weights which decrease while moving far
from the edges (this combination is discussed in Rodrigues and de Carvalho (2013)).
We take the sets of weights linearly decreasing from 1 to 0 with the sum of weights
equal to 1. The linear combination of forecasts becomes more accurate.

Since for the recurrent forecast the forecasting LRR is applied to reconstructed
series by default, here we also choose base = "reconstructed". The mode base

= "original" can be used only if the gaps in the signal are imputed, while base =

"reconstructed" provides a reasonable result for reconstruction of any separable
series component, e.g., seasonality.

Simultaneous gap filling cannot fill-in the considered missing data, since the
window length is smaller than the size of the gap.

Let us demonstrate how the iterative method works (Fragment 3.3.2). The first
example of gaps location is the same as in Fragment 3.3.1 and Fig. 3.7. At each
iteration, non-missing values are returned to either reconstructed or original values.
The mode with reconstructed values is available only if Shaped SSA for estimation
of the component subspace is applicable. The mode with original series values is
used when the component subspace cannot be estimated by Shaped SSA because
of the gap location. Note that the latter cannot be used for filling-in gaps in
components, which are not the leading ones. Figure 3.8 shows that both options
yield approximately the same result as the subspace method.

Fragment 3.3.2 (Iterative Gap Filling, One Gap)

> F <- co2
> F[201:300] <- NA
> is <- ssa(F, L = 72)
> ig <- igapfill(is, groups = list(c(1,4)),
+ base = "reconstructed")
> igo <- igapfill(is, groups = list(c(1,4)),
+ base = "original")
> # Compare the result
> plot(co2, col="black")

3.3 Gap Filling 149

> lines(ig, col = "blue", lwd = 1)
> lines(igo, col = "red", lwd = 1)
> ig1 <- igapfill(is, groups = list(c(1, 4)),
+ base = "original", maxiter = 1)
> ig5 <- igapfill(is, groups = list(c(1, 4)), fill = ig1,
+ base = "original", maxiter = 4)
> ig10 <- igapfill(is, groups = list(c(1, 4)), fill = ig5,
+ base = "original", maxiter = 5)
> init.lin <- F
> init.lin[200:301] <- F[200] + (0:101) / 101 * (F[301] - F[200])
> ig.lin <- igapfill(s,
+ fill = init.lin,
+ groups = list(c(1, 4)),
+ base = "original", maxiter = 10)
> # Compare the result
> plot(co2, col = "black")
> lines(ig1, col = "green", lwd = 1)
> lines(ig5, col = "blue", lwd = 1)
> lines(ig10, col = "red", lwd = 1)
> lines(ig.lin, col = "darkred", lwd = 1)

By default, iterations are run until the difference between filled-in values
becomes smaller than the given accuracy. The reconstructed trend in Fig. 3.8 was
obtained with accuracy tol = 1e-6 and used about 200 iterations; that is, 200 calls
of SSA (to obtain this information, one can add trace = TRUE to the function
parameters).

Results of filling-in after performing 1, 5 and 10 iterations are depicted in
Fig. 3.9. It seems that performing 10 iterations is probably enough. The difference
between filled-in values in consecutive iterations is 0.17. Note that we continue the
iterations (1 + 4 = 5, 5 + 5 = 10) using the results of the previous iterations as
the initial values for the next iterations. These iterations start from the initial values
by default; these initial values are the mean for the whole time series. Evidently, for

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0

Fig. 3.9 “CO2”: Iterative gap filling of trend: convergence

150 3 Parameter Estimation, Forecasting, Gap Filling

time(co2)

320

330

340

350

360

1960 1970 1980 1990

igapfill
gapfill
series

Fig. 3.10 “CO2”: Iterative and simultaneous subspace-based gap filling of trend: randomly
located gaps

non-stationary time series it is not a good choice. If we take a linear combination of
edge values, then 10 iterations give the difference 0.1.

In the second example (Fragment 3.3.3), gaps are located arbitrarily and their
location may make it difficult to estimate the signal subspace. Here we use an
additional information that the components ET1–6 correspond to a signal. The result
of imputation is shown in Fig. 3.10. Recall that in the case of unknown rank of the
signal, one can add artificial gaps and choose the number of components to minimize
errors for artificial gaps (Kondrashov and Ghil 2006).

Fragment 3.3.3 (Iterative Gap Filling, Several Gaps)

> F <- co2
> loc <- c(11:17, 61:67, 71:77, 101:107)
> F[loc] <- NA;
> sr <- ssa(F, L = 200)
> igr <- igapfill(sr, groups = list(c(1:6)), fill = 320,
+ base = "original", maxiter = 10)
> gr <- gapfill(sr, groups = list(c(1:6)),
+ method = "simultaneous", base = "original")
> G <- rep(NA, length(F)); G[loc] = gr[loc]
> print(mean((gr[loc] - co2[loc])^2)) #MSE of gapfill
[1] 0.1132225
> print(mean((igr[loc] - co2[loc])^2)) #MSE of igapfill
[1] 0.1425962
> xyplot(igr + G + F ~ time(co2), type = "l",
+ lwd = c(1, 2, 1), ylab = NULL,
+ auto.key = list(lines = TRUE, points = FALSE,
+ text = c("igapfill", "gapfill", "series")))

3.4 Structured Low-Rank Approximation 151

Note that it is typical for the iterative approach to use the parameter value
force.decompose = FALSE in the preliminary call of ssa to avoid the decom-
position, which may be impossible due to the gap location. Here we used the
default value TRUE of force.decompose, since it was necessary for demonstration
of gapfill and igapfill with base = "reconstructed".

In addition to iterative gap filling-in, we depict the result of simultaneous
subspace-based gap filling, with the original series as the base series. One can see
that the results almost coincide.Moreover, the mean-squared error is slightly smaller
for the simultaneous filling-in.

3.4 Structured Low-Rank Approximation

3.4.1 Cadzow Iterations

Let us consider the problem of extraction of a finite-rank signal SN of rank r from
an observed noisy signal XN = SN + RN .

The problem of finite-rank approximation can be reduced to the problem of
approximation of the L-trajectory matrix X of the observed time series X by a
Hankel matrix of rank r . This problem belongs to the class of problems of structured
low-rank approximation (SLRA), see, e.g., Markovsky et al. (2006), Markovsky
(2012).

The Hankel SLRA problem can be stated in two forms: (a) vector form and (b)
matrix form. The vector (time series) form of this problem is

fw(Y) → min
Y:rankY≤r

, fw(Y) = ‖X − Y‖2w =
N∑

i=1

wi(xi − yi)
2, (3.8)

where Y = (y1, . . . , yN) and w1, . . . , wN are some non-negative weights.
The Hankel SLRA problem in the matrix form is the following optimization

problem:

fM(Y) → min
Y∈Mr∩H

, fM(Y) = ‖X−Y‖2M =
L∑

l=1

K∑

k=1

mlk(xlk −ylk)
2, (3.9)

where M = [mlk] is a matrix of size L × K , H = M
(H)
L,K ⊂ RL×K is the space

of Hankel matrices of size L × K , Mr ⊂ RL×K is the set of matrices of rank not
larger than r . Matrices X and Y are related to vectors (time series) X and Y by,
respectively, X = T(X) and Y = T(Y), where T = TSSA is the SSA embedding
operator defined in (2.1).

152 3 Parameter Estimation, Forecasting, Gap Filling

Each M in (3.9) generates a set of weights wi in (3.8) by the equality fM(Y) =
fw(Y). If mlk = 1 for all l and k, then the weights wi are as in (2.2).

The iterative step of the method of alternating projections for solving (3.9) has
the following form:

Yk+1 = Π̆H ◦ Π̆Mr
(Yk), (3.10)

where Y0 = X and Π̆H and Π̆Mr
are projectors to the corresponding sets with

respect to the norm ‖ · ‖M.
For the matrix M with mlk = 1 for all l and k, we obtain the well-known

method of Cadzow iterations (Cadzow 1988). In this case, ‖ · ‖M is the conventional
Frobenius norm and Π̆H = ΠH. We will keep the same name “Cadzow iterations”
for general M.

The projector Π̆H is calculated in a straightforward way: for Ŷ = Π̆HY we have

ŷij =
∑

l,k: l+k=i+j mlkylk
∑

l,k: l+k=i+j mlk

. (3.11)

The projector Π̆Mr
is easily calculated if there exist P and Q such that ‖X −

Y‖2M corresponds to the Frobenius norm with respect to the oblique inner products
(X, Y)P = XTPY in RL and (X, Y)Q = XTQY in RK . Then Π̆Mr

is calculated as
the r leading terms of the (P, Q)-SVD defined by (2.14) in Definition 2.5.

One of examples of such M is the case, when P = diag(p1, . . . , pL), Q =
diag(q1, . . . , qK) and therefore mij = piqj . In this case, as explained in Zhigl-
javsky et al. (2016a), ‖ · ‖M = ‖ · ‖w if and only if W = P � Q, where
W = (w1, . . . , wN), P = (p1, . . . , pL), Q = (q1, . . . , qK), and � denotes
convolution of vectors.

A natural choice of equal weights wi in (3.8) corresponds to the ordinary least-
squares method. As there are no vectors P and Q with positive elements (in
this case (·, ·)P and (·, ·)Q would be norms) such that (1, 1, . . . , 1) = P � Q

only approximately equal weights wi , i = 1, . . . , N , can be achieved; see, e.g.,
Zhigljavsky et al. (2016b) or Gillard and Zhigljavsky (2016).

As a rule, Cadzow iterations do not converge to the optimal solution, see, e.g.,
Gillard and Zhigljavsky (2011, 2013). There are some partial results on convergence
of Cadzow iterations to the set Y ∈ Mr ∩H, but even this question is hard, see, e.g.,
Zvonarev and Golyandina (2017). One may try to solve (3.8) by applying standard
techniques of global optimization in a parametric space (assuming the model of
the sum of damped sinusoids, for example) but the arising optimization problem is
far too difficult, see Gillard and Kvasov (2016). Another general approach to the
numerical solution of the weighted SLRA problems can be found in Markovsky and
Usevich (2014).

3.4 Structured Low-Rank Approximation 153

Assume we have stopped after k iterations of (3.10) and have mapped the
matrices to RN . Then the resulting series can be written as

S̃N = T−1 ◦ (
Π̆H ◦ Π̆Mr

)k ◦ T (XN). (3.12)

The vector (series) S̃N obtained by (3.12) can be considered as an estimator of the
signal. If k = 1 and mlk = 1 for all l and k, then (3.12) is simply the Basic SSA
reconstruction with I = {1, . . . , r}.

Let the series length N be divisible by the window length L. Choose some α > 0
and set pi = 1 for each i and

qk = qk(α) =
{
1, if k = jL + 1 for some j,

α, otherwise.
(3.13)

According to Zvonarev and Golyandina (2017), we will call the method (3.12)
with these P = (p1, . . . , pL) and Q = (q1, . . . , qK) “Cadzow(α) iterations.”
In this notation, Cadzow(1) corresponds to the conventional Cadzow iterations,
while Cadzow(0) corresponds to the Cadzow iterations that would attempt to solve
the problem (3.8) with wi = 1 (i = 1, . . . , N). Cadzow(0) does not solve the
problem (3.8) in view of the degeneracy of some weights inQ. As an approximation
to Cadzow(0) iterations, Cadzow(α) iterations with small α > 0 are considered.

It is shown in Zvonarev and Golyandina (2017) that Cadzow(α) with smaller α

has slower convergence rate and better accuracy in the limit than Cadzow(α) with
larger α.

3.4.2 Algorithms

We call Algorithm 3.10 Cadzow iterations. It implements the iterations (3.12),
where projections are performed with respect to the norm, induced by the left and
right weight vectors P and Q.

Algorithm 3.10 Cadzow iterations
Input: Time series X of length N , window length L, version of SSA, weight vectors P ∈ RL and

Q ∈ RK , rank for reconstruction r , stop criterion STOP.
Output: Approximation X̃ of rank r for the series X.
1: k ← 0, X(0) = T(X).
2: X(k+1)

r = Π̆Mr
X(k) taking the leading r components of the (P, Q)-SVD, see Algorithm 2.6.

3: X(k+1) = Π̆HX(k)
r by (3.11) with mij = piqj .

4: k ← k + 1;
5: If not STOP, go to Step 2; else X̃ = T−1(X(k)).

154 3 Parameter Estimation, Forecasting, Gap Filling

Note that in the RSSA package the input data are partly taken from the ssa object
(e.g., the window length L).

3.4.3 Structured Low-Rank Approximation in RSSA

3.4.3.1 Description of Functions

A typical call is as follows:

c <- cadzow(s, rank = 2, correct = FALSE, tol = 1e-6,
maxiter = 100, norm = function(x) max(abs(x)))

Arguments:

s is an ssa object holding the decomposition parameters. Decomposition in s can
be empty.

tol is a tolerance for the difference between reconstructions at sequential itera-
tions.

maxiter is an upper bound for the number of iterations; if maxiter = 0, this upper
bound is not used.

norm is a distance function used for the convergence criterion;
trace is logical; it indicates whether the convergence process should be traced. For

example, the number of iterations for convergence can be found in the trace,
which is printed at the output window.

There are no parameters related to weights in Cadzow iterations. This is because
the weights are fully specified in the preliminary call of the ssa function. For
example, in the call

s <- ssa(x, column.oblique = ’identity’, row.oblique = weights)

the parameter row.oblique = weights provides the vector of right weights of
length K .

3.4.3.2 Typical Code

Let us demonstrate how to perform forecasting by means of the result of weighted
Cadzow iterations. We take the first 360 points of the “CO2” series and L = 60.
Small values of α provide better accuracy of the signal reconstruction but slow
convergence, see Zvonarev and Golyandina (2017). Therefore, we take 10 iterations
with small α = 0.01 and then continue iterations with α = 1 to reach convergence.
Fragment 3.4.1 contains the code for such iterations. The weights are constructed
according to (3.13).

3.4 Structured Low-Rank Approximation 155

Fragment 3.4.1 (Weighted Cadzow Approximation)

> cut <- 49 + 60
> x <- window(co2, end = time(co2)[length(co2) - cut + 1])
> L <- 60
> K <- length(x) - L + 1
> alpha <- 0.01
> weights <- vector(len = K)
> weights[1:K] <- alpha
> weights[seq(K, 1, -L)] <- 1
> xyplot(weights ~ 1:K, type = "l")
> s1 <- ssa(x, L = L) #to detect the series rank
> ncomp <- 6
> s01 <- ssa(x, L = L, column.oblique = "identity",
+ row.oblique = weights)
> c01 <- cadzow(s01, rank = ncomp, maxiter = 10)
> s01.1 <- ssa(c01, L = L, column.oblique = NULL,
+ row.oblique = NULL)
> c01.1 <- cadzow(s01.1, rank = ncomp, tol = 1.e-8 * mean(co2))
> print(t(ssa(c01.1, L = ncomp + 1)$sigma), digits = 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 16472 73.537 41.096 12.29 4.674 0.044457 2.2465e-06
> ss01.1<- ssa(c01.1, L = ncomp + 1)
> fr <- rforecast(ss01.1, groups = list(1:ncomp), len = cut)
> xyplot(cbind(Original = co2, Cadzow1and01 = c01.1,
+ ForecastCadzow = fr), superpose = TRUE)
> print(parestimate(ss01.1, groups = list(1:ncomp),
+ method = "esprit"))

period rate | Mod Arg | Re Im
11.998 0.000525 | 1.00053 0.52 | 0.86643 0.50035

-11.998 0.000525 | 1.00053 -0.52 | 0.86643 -0.50035
Inf 0.000450 | 1.00045 -0.00 | 1.00045 -0.00000

5.998 0.000287 | 1.00029 1.05 | 0.49986 0.86644
-5.998 0.000287 | 1.00029 -1.05 | 0.49986 -0.86644

Inf -0.004656 | 0.99535 -0.00 | 0.99535 -0.00000

The resultant signal estimate c01.1 has rank r = 6: the 7-th singular value is
practically zero. The trajectory subspace of this signal for any L > 6 uniquely
defines the LRR, which governs the estimated signal and provides the forecasting
formula. To obtain this formula by means of RSSA, we apply Basic SSA with
L = r + 1 and then construct forecast by any forecasting method, see Fig. 3.11.
In addition to forecasting, parameter estimation can be performed by applying the
corresponding function to the ssa object.

3.4.3.3 Simulated Example

One example presented in Sect. 3.4.3.2 cannot show if Cadzow(α) iterations
are better than the conventional Cadzow(1) iterations. Therefore, we perform
simulations for a noisy sine wave. The parameters are chosen to repeat one of
the numerical results of Zvonarev and Golyandina (2017). Simulations show that

156 3 Parameter Estimation, Forecasting, Gap Filling

Time

32
0

33
0

34
0

35
0

36
0

37
0

1960 1970 1980 1990

Original
Cadzow1and01
ForecastCadzow

Fig. 3.11 “CO2”: Approximation of rank 6 by the weighted Cadzow method and its forecast

α = 0.01 provides approximately 10% improvement in the MSE of the signal
estimator.

Fragment 3.4.2 (Accuracy of Weighted Cadzow Approximation)

> SIMUL <- FALSE
> set.seed(3)
> L <- 20
> N <- 2 * L
> K <- N - L + 1
> alpha <- 0.01
> sigma <- 1
> signal <- 5 * sin(2 * pi * (1:N) / 6)
> weights <- vector(len = K)
> weights[1:K] <- alpha
> weights[seq(1, K, L)] <- 1
> M <- 1000
> norm.meansq <- function(x) mean(x^2)
> if (SIMUL) {
+ RMSE <- sqrt(rowMeans(replicate(M, {
+ x <- signal + sigma * rnorm(N)
+ s.alpha <- ssa(x, L = L, column.oblique = NULL,
+ row.oblique = weights)
+ c.alpha <- cadzow(s.alpha, rank = 2, tol = 1.e-8,
+ norm = norm.meansq,
+ correct = FALSE)
+ s <- ssa(x, L = L)
+ cc <- cadzow(s, rank = 2, norm = norm.meansq, tol = 1.e-8,
+ correct = FALSE)
+ c("err" = mean((cc - signal)^2),
+ "err.alpha" = mean((c.alpha - signal)^2))
+ })))

3.5 Case Studies 157

+
+ cadzow.sim <- as.data.frame(t(RMSE))
+ } else {
+ data("cadzow.sim", package = "ssabook")
+ }
> print(cadzow.sim)

err err.alpha
1 0.3753331 0.3222088

3.5 Case Studies

3.5.1 Forecasting of Complex Trend and Seasonality

Let us consider the series “Elec,” which was analyzed in Sect. 2.8.8. We will
construct forecasts obtained using the subseries with the last two years removed
and then compare the two-year forecasts with the known data. The series “Elec”
has complex trend and therefore the trend can be extracted by means of Basic SSA
with a small window length. Unfortunately, the window length L = 12 is too small
to obtain a stable forecast. However, larger window lengths would make the signal
and residual to be badly mixed. Iterated O-SSA can help to better separate the trend
from the residual. Fragment 3.5.1 contains the code, which performs two forecasts,
on the base of the whole time series and on the base of the second half of the
series. Figure 3.12 shows that Iterative O-SSA allows to obtain accurate forecasts.
Moreover, both forecasts are almost the same.

50
00

10
00

0
15

00
0

1960 1970 1980 1990

original
trend
forecast
forecast0

Fig. 3.12 “Elec”: Trend forecasting

158 3 Parameter Estimation, Forecasting, Gap Filling

Fragment 3.5.1 (“Elec”: Trend Forecasting and iossa)

> data("elec", package = "fma")
> N <- length(elec)
> len <- 24
> L <- 24
> s <- ssa(window(elec, end = c(1993, 8)), L = L)
> si <- iossa(s, nested.groups = list(c(1, 4), c(2, 3, 5:10)))
> fi <- rforecast(si, groups = list(trend = c(1:2)),
+ len = len, only.new = FALSE)
> s0 <- ssa(window(elec, start = c(1972, 8), end = c(1993, 8)),
+ L = L)
> f0 <- vforecast(s0, groups = list(trend = c(1)),
+ len = len, only.new = TRUE)
> si0 <- iossa(s0, nested.groups = list(c(1,4), c(2,3,5:10)))
> fi0 <- vforecast(si0, groups = list(trend = c(1:2)),
+ len = len, only.new = TRUE)
> theme <- simpleTheme(col = c("black", "red", "blue", "green"),
+ lwd = c(1, 1, 2, 2),
+ lty = c("solid", "solid",
+ "solid", "dashed"))
> xyplot(cbind(elec,
+ window(fi, end = c(1993, 8)),
+ window(fi, start = c(1993, 9)),
+ fi0),
+ superpose = TRUE, type ="l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("original", "trend",
+ "forecast", "forecast0"),
+ type = c("l", "l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

Unlike the trend, seasonality has a stable structure. The window length L

equal to two periods is still too small to obtain an accurate forecast. Therefore,
a combined forecast similar to Sequential SSA briefly described in Sect. 2.1.3.2
can be recommended. In Fragment 3.5.2, the trend estimated in Fragment 3.5.1 is
subtracted from the series and the residual is forecasted with large windowL = 240.
Figure 3.13 contains the forecast obtained by the sum of trend and seasonality
forecasts. Note that the choice of eigentriples for forecasting was performed by the
standard technique, which involves the analysis of eigenvectors as demonstrated in
Sect. 2.1.5.3.

Fragment 3.5.2 (“Elec”: Combined Forecasting)

> L <- 240
> elec_sa <- elec - fi
> s_sa <- ssa(window(elec_sa, end = c(1993, 8)), L = L)
> f_sa <- rforecast(s_sa, groups = list(trend = c(1:13)),
+ len = len, only.new = FALSE)
> theme <- simpleTheme(col = c("black", "red", "green"),
+ lwd = c(1, 2, 2),
+ lty = c("solid", "solid", "solid"))
> xyplot(cbind(window(elec, start = c(1985, 12)),

3.5 Case Studies 159

+ window(fi, start = c(1985, 12), end = c(1993, 8)),
+ window(fi, start = c(1993, 9)) +
+ window(f_sa, start = c(1993, 9))),
+ superpose = TRUE, type = "l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("original", "trend",
+ "forecast"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

3.5.2 Different Methods of Forecasting

In the example considered in Sect. 3.5.1, it was not important which forecasting
method to apply, since the series “Elec” has a reasonably stable structure. Generally,
the closeness of vector and recurrent forecasts can be considered as an indication of
structural stability of the series component we have chosen to forecast. This does not
guarantee, however, that the forecasts are accurate, since the structure of the series
may change in the future.

Here we demonstrate a difference between recurrent and vector forecasts. From
the theoretical point of view, the recurrent forecast is simpler, since it is just
a continuation by an LRR. An explicit formula for this continuation can be
constructed in a similar manner to what is done in Sect. 3.5.5 below. Vector
forecasting, however, can be more accurate for continuation of a stable structure;
in particular, it performs extra L − 1 steps; the extra steps are done for making the

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

1986 1988 1990 1992 1994 1996

original
trend
forecast

Fig. 3.13 “Elec”: Combined forecasting

160 3 Parameter Estimation, Forecasting, Gap Filling

coincidence between an M-step forecast and the first M points of (M + 1)-step
forecast.

Let us consider a small example “Cowtemp” (daily morning temperature of a
cow).

We have removed the last 14 points (2 weeks) and constructed the recurrent
and vector forecasts of the 61-term series. Window length was chosen to be equal
to 4 weeks. It is large and therefore we can expect the global tendency to be
captured well. In addition to the two main forecasts, we consider the forecast
based on Toeplitz SSA (see Sect. 2.2). Recall that Toeplitz SSA is designed to
analyze stationary series. The considered series probably has a trend. Therefore,
we take a small window length for Toeplitz SSA. The code, which implements
three methods of forecasting, is contained in Fragment 3.5.3. In all cases, we will
construct forecasts based on one leading eigentriple.

Figure 3.14 shows several typical effects. First, if the separability is not good,
then the recurrent forecast can have a jump at its first point. We can see that the
vector forecast (a) has no jumps and (b) changes the last L − 1 points of the
reconstructed series. Nevertheless, both forecasts are similar. They have the form
C · 0.995n.

The estimator of the signal root by Toeplitz SSA is much closer to 1. Note that
parestimate for Toeplitz SSA force unit moduli of roots by default. For the option
normalize.roots = FALSE, which we have chosen, the root estimate is almost 1.
The root estimator obtained as the maximum-modulus root of the characteristic
polynomial of the estimated LRR (which is the forecasted LRR for the recurrent
forecast) is equal to 0.999. Thus, we see that the vector and recurrent Basic SSA

40
50

60
70

80
90

0 20 40 60 80 100

original series
reconstructed series
recurrent forecast
vector forecast
recurrent Toeplitz forecast

Fig. 3.14 “Cowtemp”: Basic SSA and Toeplitz SSA forecasting

3.5 Case Studies 161

forecasts decrease as 0.995n, while the recurrent Toeplitz SSA forecast decreases
slower as 0.999n.

On the time interval [62, 75], the forecasts are more or less similar. However,
the long-term forecast is much more appropriate in the case of Toeplitz SSA,
since the temperature is likely to oscillate around a constant and cannot rapidly
decrease. Therefore, the method, which adds the limitation of stationarity, wins in
this particular example.

Fragment 3.5.3 (“Cowtemp”: Different Methods of Forecasting)

> data("cowtemp", package = "fma")
> series <- cowtemp
> N <- length(series)
> cut <- 14
> future <- 21
> len <- cut + future
> r <- 1
> L <- 28
> Lt <- 14
> s <- ssa(window(series, end = N - cut), L = L)
> parestimate(s, groups = list(trend = c(1:r)),
+ method = "esprit")$moduli
[1] 0.9946241
> roots(lrr(s, groups = list(trend = c(1:r))))[1]
[1] 0.9953519+0i
> rec <- reconstruct(s, groups = list(1:r))
> st <- ssa(window(series, end = N - cut),
+ kind = "toeplitz-ssa", L = Lt)
> parestimate(st, groups = list(trend = c(1:r)),
+ method = "esprit")$moduli
[1] 1
> parestimate(st, groups = list(trend = c(1:r)),
+ normalize.roots = FALSE,
+ method = "esprit")$moduli
[1] 0.9999984
> roots(lrr(st, groups = list(trend = c(1:r))))[1]
[1] 0.9990458+0i
> fr <- rforecast(s, groups = list(trend = c(1:r)),
+ len = len, only.new = TRUE)
> fv <- vforecast(s, groups = list(trend = c(1:r)),
+ len = len, only.new = FALSE)
> ftr <- rforecast(st, groups = list(trend = c(1:r)),
+ len = len, only.new = FALSE)
> print(sqrt(mean((window(fr, start = 62) -
+ window(series, start = 62))^2)))
[1] 5.711485
> print(sqrt(mean((window(fv, start = 62) -
+ window(series, start = 62))^2)))
[1] 5.253602
> print(sqrt(mean((window(ftr, start = 62) -
+ window(series, start = 62))^2)))
[1] 4.785783

162 3 Parameter Estimation, Forecasting, Gap Filling

> theme <- simpleTheme(col = c("black", "red", "blue",
+ "green", "violet"),
+ lwd = c(1, 1, 2, 2, 1),
+ lty = c("solid", "solid", "solid",
+ "dashed", "solid"))
> future.NA <- rep(NA, future)
> xyplot(cbind(series, rec$F1, fr, fv, ftr),
+ superpose = TRUE, type = "l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("original series",
+ "reconstructed series",
+ "recurrent forecast",
+ "vector forecast",
+ "recurrent Toeplitz forecast"),
+ type = c("l", "l", "l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

3.5.3 Choice of Parameters and Confidence Intervals

Since SSA is a model-free method, there are no theoretical confidence intervals. As
shown in Sect. 3.2.1.5 we can naturally construct bootstrap confidence intervals for
the signal. The assumption for the adequacy of bootstrap confidence intervals is that
the signal is extracted and a model for the residual distribution is built. In practice,
these assumptions are not valid (or we cannot check them) and therefore bootstrap
confidence intervals can only be considered as indicative measures of accuracy of
the forecasts.

By considering bootstrap confidence intervals, the user investigates forecasting
stability. As an alternative to bootstrap confidence intervals, one can study forecast
response to a perturbation of the initial series. To do this, we add to the initial
series a perturbation (e.g., a white noise with some standard deviation σ) and
look at the resulting variability of forecasts. Similarly to the case of bootstrap
confidence intervals, for a confidence level γ , we will consider the intervals between
(1 − γ)/2 lower and upper quantiles and call them perturbed forecasting intervals
(see Fragment 3.5.4). Note that the influence of perturbation on the signal subspace
estimation is theoretically studied in Nekrutkin (2010).

Fragment 3.5.4 (Function for Perturbed Forecasting Intervals)

> perturbation <-
+ function(s, noise, R, Qfor, num.comp, L, level, template) {
+ r <- reconstruct(s, groups = list(1:num.comp))
+ stopifnot(length(r) == 1)
+
+ delta <- sd(residuals(r))
+ res <- matrix(nrow = Qfor, ncol = R)
+
+ ser <- s$F; attributes(ser) <- s$Fattr
+ for (j in 1:R) {

3.5 Case Studies 163

+ si <- ssa(ser + delta * noise[, j], L = L)
+ res[, j] <- rforecast(si, groups = list(1:num.comp),
+ len = Qfor)
+ }
+
+ cf <- apply(res, 1, quantile,
+ probs = c((1 - level) / 2, (1 + level) / 2))
+ out <- template
+ out$x[] <- ser
+ out$fitted[] <- r[[1]]
+ out$residuals[] <- residuals(r)
+ out$lower[] <- cf[1,]
+ out$upper[] <- cf[2,]
+ out$level[] <- 100 * level
+ out$mean[] <- rowMeans(res)
+
+ out
+ }

Fragment 3.5.5 shows how the bootstrap and perturbed intervals depend on the
number of eigentriples, which are used for reconstruction, for the total wine sales
“Total” from the dataset “AustralianWine”.

Fragment 3.5.5 (“Total”: Stability of Forecasting)

> data("AustralianWine", package = "Rssa")
> wine <- window(AustralianWine, end = time(AustralianWine)[174])
> ser0 <- wine[, "Total"]
> Q <- 66
> l <- length(ser0)
> ser <- window(ser0, end = time(ser0)[l-Q])
> include <- min(1000, l - Q)
> L <- 48
> s <- ssa(ser, L = L)
> plot(wcor(s, groups = 1:min(nu(s), 50)),
+ scales = list(at = c(10, 20, 30, 40, 50)))
> set.seed(1)
> R <- 100
> noise <- matrix(rnorm(length(ser) * R), nrow = length(ser))
> range <- 1:30
> err.pert <- numeric(length(range))
> err <- numeric(length(range))
> k <- 1
> for (num.comp in range) {
+ bf0 <- forecast(s, groups = list(1:num.comp),
+ method = "recurrent",
+ interval = "confidence",
+ len = Q, R = R, level = 0.9)
+
+ bf0.pert <- perturbation(s, noise, R, Q, num.comp, L,
+ level = 0.9, bf0)
+ err.pert[k] <- sqrt(mean((bf0.pert$upper - bf0.pert$lower)^2))
+ err[k] <- sqrt(mean((bf0$upper - bf0$lower)^2))
+ k <- k + 1

164 3 Parameter Estimation, Forecasting, Gap Filling

+ }
> bf0.pert1 <- perturbation(s, noise, R, Q, 1, L,
+ level = 0.9, bf0)
> plot(bf0.pert1, include = include, shadecols = "green",
+ main = paste("Perturbed SSA forecast, 1 component"))
> bf0.pert12 <- perturbation(s, noise, R, Q, 12, L,
+ level = 0.9, bf0)
> plot(bf0.pert12, include = include, shadecols = "green",
+ main = paste("Perturbed SSA forecast, 12 components"))
> bf0.pert14 <- perturbation(s, noise, R, Q, 14, L,
+ level = 0.9, bf0)
> plot(bf0.pert14, include = include, shadecols = "green",
+ main = paste("Perturbed SSA forecast, 14 components"))
> start <- 48
> theme <- simpleTheme(col = c("black","red","blue"),
+ lwd = c(2, 1, 2),
+ lty = c("solid", "solid", "solid"))
> xyplot(cbind(window(ser0, start = c(1984, 1)),
+ bf0.pert12$mean,
+ bf0.pert14$mean),
+ superpose = TRUE, type = "l", ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("‘Total’",
+ "forecast, ET1-12",
+ "forecast, ET1-14"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)
> xyplot(err + err.pert ~ range, type = "l",
+ ylab = NULL, xlab = NULL,
+ auto.key = list(text = c("Bootstrap errors",
+ "Perturbation errors"),
+ type = c("l", "l"),
+ lines = TRUE, points = FALSE),
+ scales = list(y = list(log = TRUE)))

We take the first 108 points and consider 66-term forecasting. Window length is
L = 48. Figure 3.15 contains the graph of w-correlations. One can see that there
are several natural candidates for the number of leading components which we can
choose. For example, if we choose the number of leading components to be equal to
12, 16, 17, or 19, then the reconstructed signal looks to be almost unmixed with the
residual. Let us calculate the mean size of bootstrap and perturbed 90% confidence
intervals for the forecasts performed for different numbers of leading components.
For construction of the perturbed intervals, we will take σ equal to the standard
deviation of the residuals after the reconstruction by the corresponding number of
components. Figure 3.16 contains square roots of mean squared confidence ranges
as a function of the number of components. One can see that after 12 components
the variability of forecasts sharply increases. On the base of this, the choice of
12 components can be recommended. It is interesting that there is only a small
difference between bootstrap and perturbed intervals.

3.5 Case Studies 165

W−correlation matrix

10

20

30

40

10 20 30 40

Fig. 3.15 “Total”: w-Correlations

10^4.0

10^4.5

10^5.0

10^5.5

10^6.0

0 5 10 15 20 25 30

Bootstrap errors
Perturbation errors

Fig. 3.16 “Total”: Sizes of 90% forecasting intervals in dependence on the number of components

166 3 Parameter Estimation, Forecasting, Gap Filling

Let us demonstrate how the confidence intervals look like for forecasts which use
ET1, ET1–12, and ET1–14 (Figs. 3.17, 3.18, and 3.19, respectively). Figure 3.19
shows that the long-term forecasting by 14 components is likely to be wrong.

Let us compare the obtained forecasts with the known series values. The mean
forecasts which are calculated by averaging simulated forecast values are depicted.
Figure 3.20 shows that, first, the long-term forecast by ET1–12 is more or less
adequate, but the forecast by ET1–14 fails. On the other hand, short-term forecasts
by ET1–12 and 1–14 are similar. Moreover, the “wrong” forecast (by ET1–14) is
slightly more accurate at short horizons.

Perturbed SSA forecast, 1 component

1980 1985 1990

15
00

0
30

00
0

Fig. 3.17 “Total”: Perturbed forecasting intervals, ET1

Perturbed SSA forecast, 12 components

1980 1985 1990

20
00

0
40

00
0

Fig. 3.18 “Total”: Perturbed forecasting intervals, ET1–12

Perturbed SSA forecast, 14 components

1980 1985 1990

−1
e+

05
0e

+0
0

Fig. 3.19 “Total”: Perturbed forecasting intervals, ET1–14

3.5 Case Studies 167

10
00

0
30

00
0

1984 1986 1988 1990 1992 1994

`Total'
forecast, ET1−12
forecast, ET1−14

Fig. 3.20 “Total”: Comparison of forecasts by ET1–12 and ET1–14

3.5.4 Gap Filling

Let us consider the data “Glonass” provided by the satellite navigation system
Glonass (the investigated data igs<wwww><d>.clk.Z contains final corrections of
time in the format Clock_RINEX obtained in IGS). Data are presented with the
step 5 min (300 s) so that any 24-h period consists of 288 points. This data can be
used for correcting future time values. However, the data contain gaps. Trends of
corrections can be of different form. In Fragment 3.5.6, we demonstrate how RSSA

can help for data imputation on a simple example with an almost linear trend. Data
consists of 104832 points, taken from 02/01/2014 to 31/12/2014, the GLONASS
satellite number 15.

Fragment 3.5.6 (“Glonass”: Gap Filling)

> data("g15", package = "ssabook")
> xyplot(g15 ~ 1:length(g15), type = "l",
+ ylab = NULL, xlab = NULL)
> range1 <- 14950:15050
> g15_short <- g15[range1]
> g15_un <- na.omit(as.vector(g15))
> g15_un_short <- g15_un[range1]
> p1 <- xyplot(g15_short ~ range1, type = "l",
+ ylab = NULL, xlab = NULL)
> p2 <- xyplot(g15_un_short ~ range1, type = "l",
+ ylab = NULL, xlab = NULL)
> plot(p1, split = c(1, 1, 2, 1), more = TRUE)
> plot(p2, split = c(2, 1, 2, 1), more = FALSE)
> L <- 72
> neig <- min(L, 100)
> s <- ssa(g15, L = 72, neig = neig)
> plot(s, type = "vectors", idx = 1:8, plot.contrib = FALSE)
> g <- gapfill(s, groups = list(1:2))
> xyplot(g[range1] + g15[range1] ~ range1, type = "l",
+ ylab = NULL, xlab = NULL,

168 3 Parameter Estimation, Forecasting, Gap Filling

+ par.settings = simpleTheme(col = c("red", "black")))
> spec.pgram(g15_un, detrend = FALSE, log = "no",
+ xlim = c(0.00, 0.02), ylim = c(0, 1e-14),
+ main = "", sub = "")
> axis(1, at = c(1/144, 1/72), labels = c("1/144", "1/72"),
+ las = 2)
> spec.pgram(as.vector(g), detrend = FALSE, log = "no",
+ xlim = c(0.00, 0.02), ylim = c(0, 1e-14),
+ main = "", sub = "")
> axis(1, at = c(1/144, 1/72), labels = c("1/144", "1/72"),
+ las = 2)

The whole time series is depicted in Fig. 3.21. It contains several gaps; the total
number of missing points is 895.

Let us consider two ways for dealing with missing data: suppressing it (simply
by removing time points with missing observations and thus reducing the sample
size) or properly treating it as missing and imputing the missing observations. A
part of the data in these two cases is depicted in Fig. 3.22.

We start with filling-in the gaps and then show why suppressing the missing data
is a wrong strategy, at least for this data set.

Since the time series is very long and the missing data has several compact loca-
tions, we will use the subspace-based method of gap filling, which is implemented
in the function gapfill. To cover by the window all the points of the time series, we

−0.00022

−0.00020

−0.00018

−0.00016

0 20000 40000 60000 80000 100000

Fig. 3.21 “Glonass”: Initial series with gaps

−0.00016448

−0.00016446

−0.00016444

−0.00016442

14960 15000 15040

−0.00016448

−0.00016446

−0.00016444

−0.00016442

14960 15000 15040

Fig. 3.22 “Glonass”: A subseries with a gap (left) and with the suppressed gap (right)

3.5 Case Studies 169

will take a moderate window length L equal to 120. Figure 3.23 shows the leading
eight eigenvectors. One can see that the first two eigenvectors correspond to a linear
trend. Let us implement the gaps on the base of ET1,2. Figure 3.24 demonstrates
imputation for one of the gaps. Certainly, for a trend as simple as this one, many
methods can impute the gaps. An advantage of SSA is that the method does not use
any trend model and therefore can be applied to trends of other shapes in exactly the
same way.

Periodograms of the series with suppressed gaps (Fig. 3.25) and with filling-
in gaps (Fig. 3.26) clearly demonstrate that the suppression of gaps corrupts the
trend and hides periodicities, while the time series with properly filled gaps is

Eigenvectors
1 2 3 4

5 6 7 8

Fig. 3.23 “Glonass”: Eigenvectors for the series with gaps, L = 72

−0.00016448

−0.00016446

−0.00016444

−0.00016442

14960 14980 15000 15020 15040

Fig. 3.24 “Glonass”: A subseries with the filled gap

170 3 Parameter Estimation, Forecasting, Gap Filling

0.000 0.005 0.010 0.015 0.020

0e
+0

0
2e

−1
5

4e
−1

5
6e

−1
5

8e
−1

5
1e

−1
4

frequency

sp
ec

tru
m

1/
14

4

1/
72

Fig. 3.25 “Glonass”: Periodogram of the series with suppressed gaps

0.000 0.005 0.010 0.015 0.020

0e
+0

0
2e

−1
5

4e
−1

5
6e

−1
5

8e
−1

5
1e

−1
4

frequency

sp
ec

tru
m

1/
14

4

1/
72

Fig. 3.26 “Glonass”: Periodogram of the series with filled gaps

well-structured. Figure 3.26 shows that there are strong peaks at frequencies 1/144
and 1/72, which corresponds to a 12-h periodicity.

Let us extract the periodicity (Fragment 3.5.7) from the obtained time series with
no gaps. Since the trend is simple, we take a large window length L = 52416 equal
to the half of the time series length and divisible by 288. As a guess, we use the
period estimates obtained from all pairs of eigenvectors with numbers (i, i + 1).

3.5 Case Studies 171

−4e−10

−2e−10

0e+00

2e−10

0 200 400 600

Fig. 3.27 “Glonass”: A subseries with the 12-h periodicity; it is extracted from the series with
filled gaps and L = 52416

The pairs (32, 33) and (59, 60), where the estimated period is smaller than 300,
have the expected periods 144 and 72, approximately.

Figure 3.27 demonstrates the extracted 12-h periodicity.

Fragment 3.5.7 (“Glonass”: Periodicity Extraction After the Gap Filling)

> s_filled = ssa(g, L = 52416, neig = 100)
> pg <- vector(length = 99)
> for (i in 1:99) {
+ pg[i] <- parestimate(s_filled, groups = list(i:(i + 1)),
+ method = "esprit")$period[1]
+ }
> print(ind <- which(pg < 1/0.003))
[1] 32 58
> print(pg[ind], digits = 0)
[1] 144 72
> r <- reconstruct(s_filled, groups = list(day = c(ind, ind+1)))
> xyplot(r$day[1:720] ~ 1:720, type = "l",
+ ylab = NULL, xlab = NULL)

3.5.5 Parameter Estimation and Low-Rank Approximation

Low-rank approximation works well if the signal is governed by an LRR exactly.
Such kind of signals, e.g., a sum of modulated sinusoids, is a common case in
engineering.

To demonstrate the method, we choose a simple series “FORT” from the dataset
“AustralianWine,” which is very similar to a noisy signal of finite rank. First, let
us apply the Cadzow(α) method described in Sect. 3.4 (see Fragment 3.5.8). In
Zvonarev and Golyandina (2017), the value α = 0.2 is recommended for the

172 3 Parameter Estimation, Forecasting, Gap Filling

Time

10
00

20
00

30
00

40
00

50
00

1980 1985 1990

Reconstructed
Initial

Fig. 3.28 “FORT”: Approximation by a series of finite rank

reconstruction of the signal in “FORT.” The result of the Cadzow(0.2) iterations
is depicted in Fig. 3.28.

Fragment 3.5.8 (“FORT”: Cadzow Iterations)

> wine <- window(AustralianWine, end = time(AustralianWine)[168])
> ser <- wine[, "Fortified"]
> N <- length(ser)
> L <- 84
> K <- N - L + 1
> rank <- 11
> # Basic SSA
> s0 <- ssa(ser, L = L)
> r0 <- reconstruct(s0, groups = list(signal = 1:rank))$signal
> # Cadzow iterations with series weights close to equal.
> alpha <- 0.1
> weights <- numeric(K)
> weights[1:K] <- alpha
> weights[seq(from = K, to = 1, by = -L)] <- 1
> s <- ssa(ser, L = L, column.oblique = "identity",
+ row.oblique = weights, decompose.force = FALSE)
> c <- cadzow(s, rank = rank)
> sc <- ssa(c, L = rank + 1)
> rc <- reconstruct(sc, groups = list(signal = 1:rank))$signal
> xyplot(cbind(rc, ser), type = "l",
+ superpose = TRUE,
+ auto.key = list(text = c("Reconstructed",
+ "Initial"),
+ type = c("l", "l"),
+ lines = TRUE, poinwts = FALSE))

3.5 Case Studies 173

Let us describe how an explicit form of the estimated signal can be obtained.
We consider two cases: (a) estimation of the signal parameters by means of one
Cadzow iteration (this iteration coincides with the Basic SSA reconstruction) in
Fragment 3.5.9, and (b) estimation of the signal parameters using a finite-rank
approximation in Fragment 3.5.10.

To estimate r signal roots of a signal of rank r , it is sufficient to take the
window length equal to r + 1. Thus, we apply Basic SSA to the limit series of the
Cadzow iterations and then call the function parestimate for the group consisting
of ET1–r . Since we apply Basic SSA to a noisy signal, we should take a large
window length L to separate the signal from noise. The results are quite similar for
different choices of L, as long as L is large enough. Negative periods are calculated
formally as 1/ ± ω.

Fragment 3.5.9 (“FORT”: Estimation of Parameters by Basic SSA)

> # Estimation by means of the first iteration of Cadzow
> # iterations (SSA)
> par <- parestimate(s0, groups = list(1:rank),
+ method = "esprit")
> print(par)

period rate | Mod Arg | Re Im
5.972 0.004238 | 1.00425 1.05 | 0.49781 0.87218

-5.972 0.004238 | 1.00425 -1.05 | 0.49781 -0.87218
2.388 0.001744 | 1.00175 2.63 | -0.87403 0.48945

-2.388 0.001744 | 1.00175 -2.63 | -0.87403 -0.48945
4.000 0.000359 | 1.00036 1.57 | -0.00008 1.00036

-4.000 0.000359 | 1.00036 -1.57 | -0.00008 -1.00036
Inf -0.003318 | 0.99669 -0.00 | 0.99669 -0.00000

12.006 -0.005931 | 0.99409 0.52 | 0.86104 0.49680
-12.006 -0.005931 | 0.99409 -0.52 | 0.86104 -0.49680

3.015 -0.011285 | 0.98878 2.08 | -0.48570 0.86127
-3.015 -0.011285 | 0.98878 -2.08 | -0.48570 -0.86127

> o <- order(abs(par$periods), decreasing = TRUE)
> periods <- (par$periods[o])
> moduli <- par$moduli[o]
> len <- rank
> vars <- matrix(nrow = len, ncol = rank)
> for (i in 1:rank) {
+ if (periods[i] == Inf)
+ vars[, i] <- moduli[i]^(1:len)
+ else if (periods[i] == 2)
+ vars[, i] <- (-moduli[i])^(1:len)
+ else if (periods[i] > 0)
+ vars[, i] <-
+ moduli[i]^(1:len) * sin(2 * pi * (1:len) / periods[i])
+ else
+ vars[, i] <-
+ moduli[i]^(1:len) * cos(2 * pi * (1:len) / periods[i])
+ }
> lm0 <- lm(r0[1:len] ~ 0 + ., data = data.frame(vars))
> coefs0 <- coef(lm0)
> print(round(coefs0[1:6], digits = 2))

174 3 Parameter Estimation, Forecasting, Gap Filling

X1 X2 X3 X4 X5 X6
3969.23 -717.10 -927.57 105.52 137.98 -287.11
> print(round(coefs0[7:11], digits = 2))

X7 X8 X9 X10 X11
215.64 -254.51 -205.12 90.44 10.95

Fragment 3.5.10 (“FORT”: Estimation of Parameters by Cadzow Iterations)

> # Estimation by means of the limit of Cadzow iterations
> parc <- parestimate(sc, groups = list(1:rank),
+ method = "esprit")
> print(parc)

period rate | Mod Arg | Re Im
5.975 0.004986 | 1.00500 1.05 | 0.49863 0.87258

-5.975 0.004986 | 1.00500 -1.05 | 0.49863 -0.87258
2.389 0.003402 | 1.00341 2.63 | -0.87506 0.49102

-2.389 0.003402 | 1.00341 -2.63 | -0.87506 -0.49102
3.998 0.000311 | 1.00031 1.57 | -0.00076 1.00031

-3.998 0.000311 | 1.00031 -1.57 | -0.00076 -1.00031
Inf -0.003356 | 0.99665 0.00 | 0.99665 0.00000

12.009 -0.005985 | 0.99403 0.52 | 0.86105 0.49669
-12.009 -0.005985 | 0.99403 -0.52 | 0.86105 -0.49669

3.018 -0.010620 | 0.98944 2.08 | -0.48394 0.86301
-3.018 -0.010620 | 0.98944 -2.08 | -0.48394 -0.86301

> oc <- order(abs(parc$periods), decreasing = TRUE)
> periodsc <- (parc$periods[o])
> modulic <- parc$moduli[o]
> lenc <- rank
> varsc <- matrix(nrow = lenc, ncol = rank)
> for (i in 1:rank) {
+ if (periodsc[i] == Inf)
+ varsc[, i] <- modulic[i]^(1:lenc)
+ else if (periodsc[i] == 2)
+ varsc[, i] <- (-modulic[i])^(1:lenc)
+ else if (periodsc[i] > 0)
+ varsc[, i] <-
+ modulic[i]^(1:lenc) * sin(2 * pi * (1:lenc) / periodsc[i])
+ else
+ varsc[, i] <-
+ modulic[i]^(1:lenc) * cos(2 * pi * (1:lenc) / periodsc[i])
+ }
> lm.c <- lm(rc[1:lenc] ~ 0 + ., data = data.frame(varsc))
> #lm.c
> coefs.c <- coef(lm.c)
> print(round(coefs.c[1:6], digits = 2))

X1 X2 X3 X4 X5 X6
4005.56 -721.77 -940.64 68.30 184.45 -269.52
> print(round(coefs.c[7:11], digits = 2))

X7 X8 X9 X10 X11
325.92 -251.10 -255.41 154.28 61.90

3.5 Case Studies 175

By looking at the signal root estimates, we suggest the following model for the
signal:

sn = C0ρ
n
0 +

5∑

k=1

Ckρ
n
k sin

(
2πn

Tk
+ φk

)

= C0ρ
n
0 +

5∑

k=1

ρn
k

(

Ak sin

(
2πn

Tk

)

+ Bk cos

(
2πn

Tk

))

. (3.14)

Results of parestimate are the estimates of ρk and Tk in (3.14). To estimate Ck

and φk , one can first estimate Ak and Bk by the least-squares method and then find

Ck =
√

A2
k + B2

k , φk = arctan(Bk/Ak) (Fragment 3.5.11). Note that for Basic SSA
we take the whole time series to estimate the coefficients, while in the case of series
of finite rank it is sufficient to take any r sequential series points to find r unknown
parameters.

Fragment 3.5.11 (“FORT”: Estimation of Parametric Real-Valued Form)

> idx <- seq(2, 11, 2)
> coefs.c.phase <- numeric(length(idx))
> phases.c <- numeric(length(idx))
> periods.c.phase <- numeric(length(idx))
> moduli.c.phase <- numeric(length(idx))
> for (i in seq_along(idx)) {
+ periods.c.phase[i] <- periodsc[idx[i]]
+ moduli.c.phase[i] <- modulic[idx[i]]
+ coefs.c.phase[i] <- sqrt(coefs.c[idx[i]]^2 +
+ coefs.c[idx[i] + 1]^2)
+ phases.c[i] <- atan2(coefs.c[idx[i] + 1], coefs.c[idx[i]])
+ }
> print("trend:")
[1] "trend:"
> print("coefficient * modulus^n")
[1] "coefficient * modulus^n"
> print(data.frame(coefficients = coefs.c[1],
+ moduli = modulic[1]))

coefficients moduli
X1 4005.561 0.9966493
> print("periodics:")
[1] "periodics:"
> print("coefficient * modulus^n * cos(2 * pi* n/period + phase)")
[1] "coefficient * modulus^n * cos(2 * pi* n/period + phase)"
> print(data.frame(periods = periods.c.phase, phases = phases.c,
+ coefficients = coefs.c.phase,
+ moduli = moduli.c.phase))

periods phases coefficients moduli
1 12.008804 -2.225294 1185.6458 0.9940328
2 5.974637 1.216171 196.6835 1.0049988
3 3.998061 2.261753 422.9253 1.0003111
4 3.018060 -2.347688 358.1681 0.9894363
5 2.388825 0.381569 166.2372 1.0034081

176 3 Parameter Estimation, Forecasting, Gap Filling

3.5.6 Subspace Tracking

Let us consider the problem of finding changes in a time series by the SSA subspace
tracking. There are many algorithms for change-point detection in time series, see
Basseville et al. (1993), Tartakovsky et al. (2014). We advocate SSA for change-
point detection and structure monitoring. The principal technique of using SSA
for sequential detection of structural changes was developed in Moskvina and
Zhigljavsky (2003); in what follows, we pursue the approach thoroughly described
in Golyandina et al. (2001; Chapter 3). We take the annual sunspots data 1700–
2015 and try to find changes in the oscillations. Trend needs to be extracted
as a preprocessing step. Trend extraction and further analysis are performed in
Fragment 3.5.12.

Fragment 3.5.12 (“Sunspots”: Subspace Tracking)

> data("sunspot2", package = "ssabook")
> s <- ssa(sunspot2, L = 11)
> r <- reconstruct(s, groups = list(Trend = 1))
> plot(r, plot.method = "xyplot", superpose = TRUE)
> sun.oscill <- residuals(r)
> N <- length(sun.oscill)
> rank <- 2
> periods <- function(M, L) {
+ ts(sapply(1:(N - M),
+ function (i) {
+ s <- ssa(sun.oscill[i:(i + M - 1)], L = L)
+ par <- parestimate(s, groups = list(c(1:rank)),
+ method = "esprit")
+ abs(par$periods[1])
+ }),
+ start = time(sunspot2)[M + 1], delta = 1)
+ }
> per22 <- periods(22, 11)
> per44 <- periods(44, 22)
> xyplot(cbind(per22, per44), type = "l", xlim = c(1677, 2040),
+ strip = strip.custom(factor.levels =
+ c("B = 22", "B = 44")))
> M <- 22; L <- M / 2
> hm <- hmatr(sun.oscill, B = M, T = M, L = L, neig = rank)
> plot(hm)
> M <- 44; L <- M / 2
> hm <- hmatr(sun.oscill, B = M, T = M, L = L, neig = rank)
> plot(hm)

Figure 3.29 (top) contains the extracted trend and the residual. We choose the
window length L = 11 as approximately equal to the main period. This choice
corresponds to the extraction of a more detailed trend, which can be reconstructed
by the leading eigentriple.

Further we consider the residual. Let us check the behavior of the main frequency.
First, we consider the sliding subseriesXn = (xn−B+1, . . . , xn), n = B, . . . N , with

3.5 Case Studies 177

Time

10
12

14
16

B = 22

10
11

12
13

14

1700 1800 1900 2000

B = 44

Reconstructed Series

Time

−1
00

0
10

0
20

0

1700 1800 1900 2000

Original
Trend
Residuals

Fig. 3.29 “Sunspots”: Trend extraction (top), subspace tracking of residuals withB = 22 (middle)
and B = 44 (bottom)

B = 22 and B = 44, choosing window length L equal to B/2. Then, we apply
SSA to each series Xn, find the subspace produced by the first two eigenvectors and
estimate the main period Pn by the LS-ESPRIT method. Graphs of periods Pn as
functions of n are shown in Fig. 3.29 (middle and bottom). One can see that the
period is oscillating around P = 11. However, after 1800 we see that the period
sharply increases. This corresponds to small values of sun activities (Fig. 3.29, top).
If we use the tracking of frequencies for a-priori change detection, then we can
clearly see that the delay for B = 44 (bottom) is larger than that for B = 22
(middle).

Let us apply the techniques suggested in Golyandina et al. (2001; Chapter 3)
for a visualization of a-posteriori change-point detection. Visual change-point
detection can be performed by means of the so-called heterogeneity matrix. The

178 3 Parameter Estimation, Forecasting, Gap Filling

50 100 200

50
15

0
25

0

Heterogeneity Matrix

50 100 200

50
10

0
20

0

Heterogeneity Matrix

Fig. 3.30 “Sunspots”: Heterogeneity matrices B = 22 (left) and B = 44 (right)

rows correspond to sliding base subseries of length B. We chose the same two
values, B = 22 and B = 44. Each subseries produces a subspace, which is
exactly the subspace used for frequency tracking. The columns correspond to sliding
test subseries of length T . We take T = B. Each test series produces a set
of L-lagged vectors. The heterogeneity index is defined as the sum of distances
from the L-lagged vectors of the test series to the base subspace, see (3.1) in
Golyandina et al. (2001). Large values of the heterogeneity index correspond to
large dissimilarity between the test and base subseries. In Fig. 3.30, large values
of the heterogeneity index are depicted by red color, while small values of this
index are depicted by white and yellow colors. If we consider rows or columns of
the heterogeneity matrix, then we see that there is a change-point starting from the
subseries (x80, . . . , x80+B−1). This corresponds to the same change at around year
1800, which we have found by the frequency tracking. Note that after the subseries
passes the intervals that include the change-point, the values of the heterogeneity
index become smaller again. This means that the change in the series was temporal.

Fast algorithms of subspace tracking were developed in many papers (e.g., Real
et al. (1999), Badeau et al. (2004), among others), since it can be expected that the
subspace estimate for the (n + 1)th subseries can be calculated more effectively if
one uses the information obtained at the previous nth step. However, our experience
shows that despite the fast algorithms implemented in the RSSA and SVD packages
cannot be improved on the base of the use of previously constructed subspaces, these
implementations of RSSA and SVD can be faster than the improved conventional
algorithms.

3.5.7 Automatic Choice of Parameters for Forecasting

Since SSA can be applied without requiring validity of any model for the time
series, the choice of parameters should be non-specific. The most conventional

3.5 Case Studies 179

model-free way of parameter choice is the minimization of forecasting errors within
the validation (training) period. This approach can be applied if the time series
length is large enough.

Fragment 3.5.13 contains the code of functions, which may help in finding
the optimal parameters (which are the window length and the number of leading
components). The function forecast.mse performs forecasting on the base of a
given ssa object x and calculates the mean square of the difference between the
forecast and a given time series F.check. The function forecast.sliding.mse

call forecast.mse for sliding subseries, given set of window lengths L, and set of
numbers of components ncomp used for forecasting. The function forecast.mse

is designed to be applied to one series (subseries), one window length, one number
of leading components. In forecast.sliding.mse, forecast.mse is applied to
many (K.sliding) subseries of a given series, many window lengths (stored in
the vector L), many numbers of components (stored in the vector ncomp), which is
done in an effective manner. In this way, we obtain a 3D array of MSE errors. Note
that the number of SSA decompositions is equal to the number of sliding windows
K.sliding multiplied by the number of window lengths.

Finally, the function optim.par on the base of this 3D array calculates the matrix
of mean MSE errors, which are obtained by computing the average of the MSE
errors corresponding to different sliding subseries, and finds the optimal window
length and the number of components, which correspond to the minimal meanMSE.
The matrix of mean MSE errors provides a possibility to plot the dependence of
accuracy as a function of parameters and hence to check if this accuracy is stable
(that is, does not change much) in the chosen range of parameters.

To use the function optim.par, the user should choose the length of the
validation period. This validation period may correspond to the whole series. In the
example considered (see Fragment 3.5.13) the whole series is divided into training
and test periods to check the forecast accuracy.

Fragment 3.5.13 (Functions for the Search of Optimal Parameters)

> library("plyr")
> forecast.mse <- function(x, F.check,
+ forecast.len = 1, ...) {
+ stopifnot(length(F.check) == forecast.len)
+ f <- forecast(x, h = forecast.len, ...)
+ mean((f$mean - F.check)^2)
+ }
> forecast.sliding.mse <- function(F,
+ L, ncomp,
+ forecast.len = 1,
+ K.sliding = N %/% 4,
+ .progress = "none",
+ .parallel = FALSE,
+ ...) {
+ N <- length(F)
+ sliding.len <- N - K.sliding - forecast.len + 1
+ L.max = max(L); L.min = min(L); ncomp.max = max(ncomp)
+ stopifnot(sliding.len > L.max)

180 3 Parameter Estimation, Forecasting, Gap Filling

+ stopifnot(ncomp.max + 1 < min(L.min, N - L.max + 1))
+ g <- expand.grid(L = L, i = 1:K.sliding)
+ aaply(g, 1,
+ splat(function(L, i) {
+ F.train <- F[seq(from = i, len = sliding.len)]
+ F.check <- F[seq(from = sliding.len + i,
+ len = forecast.len)]
+ s <- ssa(F.train, L = L)
+ sapply(ncomp,
+ function(ncomp) {
+ res <- forecast.mse(s, F.check,
+ forecast.len =
+ forecast.len,
+ groups =
+ list(1:ncomp),
+ ...)
+ names(res) <- as.character(ncomp)
+ res
+ })
+ }),
+ .progress = .progress, .parallel = .parallel)
+ }
> optim.par <- function(m0) {
+ m <- apply(m0, c(1, 3), mean)
+ mpos <- which(m == min(m), arr.ind = TRUE)
+ L.opt <- Ls[mpos[1]]
+ ncomp.opt <- ncomp[mpos[2]]
+ list(L.opt = L.opt, ncomp.opt = ncomp.opt, m = m)
+ }

Fragment 3.5.14 shows how this function is applied to “Bookings” data to obtain
optimal parameters. The data contains the numbers of hourly hotel bookings through
a particular web-site during 6 months. We can expect the main period of the data to
be equal to 168 = 24 · 7 (frequency of the data is equal to 168 observations per
week). We forecast the series for 2 weeks. To find the parameters, we minimize the
RMSE errors of two forecasts for 336 = 2 · 168 steps ahead (K.sliding = 2).

Fragment 3.5.14 (“Bookings”: Search for Optimal Parameters)

> data("bookings", package = "ssabook")
> K.sliding <- 2
> forecast.base.len <- 2*frequency(bookings)
> base.len <- length(bookings)
> sliding.len <- base.len - K.sliding - forecast.base.len + 1
> print(sliding.len)
[1] 4007
> ncomp <- 1:100
> L.min <- frequency(bookings)
> Ls <- seq(L.min, 10*L.min, by = frequency(bookings))
> m0 <- forecast.sliding.mse(bookings,
+ K.sliding = K.sliding,
+ L = Ls, ncomp = ncomp,
+ method = "recurrent",

3.5 Case Studies 181

+ forecast.len = forecast.base.len,
+ .progress = "none")
> p <- optim.par(m0)
> print(c(p$L.opt, p$ncomp.opt, sqrt(min(p$m))))
[1] 504.0000 90.0000 116.0134
> matplot(Ls, sqrt(p$m), ylab = "", xlab = "Window lengths",
+ type = "l", col = topo.colors(100))

The dependence of RMSE errors on window lengths for different number
of components r chosen for decomposition is depicted in Fig. 3.31. Colors are
changing from blue to yellow; this corresponds to values of r from 1 to 100. The
optimal window length us equal to 504, the optimal number of components is equal
to 90.

In Fragment 3.5.15, the forecast is constructed with the parameters found. The
forecasts are shown in Fig. 3.32 for the whole series. One can see that the series has
some irregularities. The last points are depicted in Fig. 3.33.

Fragment 3.5.15 (“Bookings”: Forecast with Optimal Parameters)

> forecast.len <- 2*frequency(bookings)
> ssa.obj <- ssa(bookings, L = p$L.opt)
> ssa.for <- rforecast(ssa.obj, groups = list(1:p$ncomp.opt),
+ len = forecast.len)
> xyplot(cbind(bookings, ssa.for),
+ type = "l", superpose = TRUE)
> xyplot(cbind(bookings, ssa.for), type = "l",
+ superpose = TRUE, xlim = c(21,29))

500 1000 1500

15
0

20
0

25
0

30
0

Window lengths

Fig. 3.31 “Bookings”: Dependence of RMSE on L for different numbers of components

182 3 Parameter Estimation, Forecasting, Gap Filling

Time

0
50

0
10

00
15

00

5 10 15 20 25 30

bookings
ssa.for

Fig. 3.32 “Bookings”: Forecast with optimal parameters

Time

0
50

0
10

00
15

00

22 24 26 28

bookings
ssa.for

Fig. 3.33 “Bookings”: Forecast with optimal parameters for last points

3.5.8 Comparison of SSA, ARIMA, and ETS

As was mentioned in Sect. 1.6.3, real-world time series do not satisfy any model
exactly. Therefore, comparing application of ARIMA and SSA with totally different
models, we compare approximations by these models.

3.5 Case Studies 183

Seasonal ARIMA and exponential smoothing (ETS) methods correspond to
concrete model families. In particular, the frequency of the periodic component
(e.g., seasonality) should be specified. Therefore, different information criteria are
developed for these models. The idea of these criteria is to use some measure of
correspondence between the model and the time series and then adjust it by the
number of parameters in the model. In real-world problems, these information
criteria can be formally applied for the choice of model from the corresponding
family.

For SSA, we will use the approach described in Sect. 3.5.7. Since the minimized
forecasting errors are calculated for series points which do not participate in the
construction of the forecasts, this procedure partly avoids over-fitting. Minimization
of reconstruction errors is senseless, since the minimum can be reached by over-
fitting (the larger is the number of the reconstructed components, the smaller is the
reconstruction error).

ARIMA and ETS models provide theoretical prediction intervals for the whole
series. SSA provides bootstrap confidence intervals for the signal and bootstrap
prediction for the whole series in the model “signal + noise,” see Sect. 3.2.1.5. For
comparability, we will consider prediction intervals for all considered methods. To
compare accuracy of the methods, we consider the mean squared difference between
the series and mean forecasts for ARIMA and ETS and the mean squared difference
between the series and signal forecasts for SSA.

Let us consider the series “Sweetwhite” from the dataset “AustralianWine.”
This time series contains monthly sales of sweet white wines and has a changing
structure. Therefore, it does not suit any model. We divide the series into two parts:
training (base) and test ones (Fragment 3.5.16). Models will be constructed by
means of the training part, while the methods will be compared by the forecasting
of the test part values.

Fragment 3.5.16 (“Sweetwhite”: Training and Test Periods)

> name <- "Sweetwhite"
> wine <- window(AustralianWine, end = time(AustralianWine)[174])
> series <- wine[, name]
> set.seed(1)
> forecast.len <- 12
> base.len <- length(series) - forecast.len
> F.base <- window(series,
+ end = time(series)[base.len]) # training
> F.new <- window(series,
+ start = time(series)[base.len + 1]) # test

Fragment 3.5.17 contains the code, which seeks the parameters of SSA, the
window length and the number of eigentriples for forecasting. Similar to the
example in Sect. 3.5.7, the parameters correspond to minimal MSE forecasting
errors on the training part. Since the series is short enough and has a changing

184 3 Parameter Estimation, Forecasting, Gap Filling

behavior, we minimize the mean MSE of 12 two-step ahead forecasts. The obtained
values are L = 108, r = 8.

Fragment 3.5.17 (“Sweetwhite”: Search for SSA Parameters)

> K.sliding <- 12
> forecast.base.len <- 2
> ns <- base.len - K.sliding - forecast.base.len + 1
> ncomp <- 1:15
> L.min <- 24
> Ls <- seq(L.min, ns - L.min, by = 12)
> method <- "recurrent"
> m0 <- forecast.sliding.mse(F.base, K.sliding = K.sliding,
+ L = Ls, ncomp = ncomp,
+ method = method,
+ forecast.len = forecast.base.len)
> p <- optim.par(m0)
> print(c(p$L.opt, p$ncomp.opt, sqrt(min(p$m))))
[1] 108.00000 8.00000 24.80634
> # These parameters provides the best forecast
> # L.opt <- 132; ncomp.opt <- 13

In Fragment 3.5.18, the forecasts are constructed and the methods are compared
by RMSE. Since the parameters of SSA were constructed by forecasting of sliding
shortened time series of length 149, we will use the last 149 points of the base
series to construct the forecast for comparison. One can see that the forecast
accuracy is approximately the same. Since ARIMA and ETS models provides
prediction intervals for the whole series, we consider the SSA prediction intervals
too. Figures 3.34, 3.35, and 3.36 depict the series, the forecast (in blue color), and
the prediction intervals. Note that for ARIMA forecasting the prediction intervals
are very large.

Fragment 3.5.18 (“Sweetwhite”: Comparison of SSA, ARIMA and ETS)

> # SSA forecast
> F.base.short <-
+ window(F.base, start =
+ time(series)[K.sliding + forecast.base.len])
> ssa.obj <- ssa(F.base.short, L = p$L.opt)
> ssa.for <- forecast(ssa.obj,
+ groups = list(1:p$ncomp.opt),
+ method = method, h = forecast.len,
+ interval = "prediction",
+ level=c(0.8, 0.95))
> err.ssa <- (ssa.for$mean - F.new)^2
> # ARIMA forecast
> sarima.fit <- auto.arima(F.base, trace = FALSE,
+ lambda = 0, stepwise = FALSE)
> sarima.for <- forecast(sarima.fit, h = forecast.len)
> err.sarima <- (sarima.for$mean - F.new)^2
> # ETS forecast
> ets.fit <- ets(F.base)
> ets.for <- forecast(ets.fit, h = forecast.len)

3.5 Case Studies 185

> err.ets <- (ets.for$mean - F.new)^2
> # Models
> print(sarima.fit)
Series: F.base
ARIMA(1,1,0)(2,0,0)[12]
Box Cox transformation: lambda= 0
Coefficients:

ar1 sar1 sar2
-0.4165 0.4847 0.2123

s.e. 0.0722 0.0765 0.0813
sigma^2 estimated as 0.03897: log likelihood=30.78
AIC=-53.55 AICc=-53.29 BIC=-41.22
> print(ets.fit)
ETS(M,N,M)
Call:
ets(y = F.base)
Smoothing parameters:

alpha = 0.5571
gamma = 1e-04

Initial states:
l = 123.5798
s=1.4262 1.2408 1.0236 1.0546 1.1188 1.0852

0.7795 0.8136 0.8903 0.8834 0.8241 0.8598
sigma: 0.1732

AIC AICc BIC
2026.600 2029.887 2072.913
> print(c("SSA(L,r)", p$L.opt, p$ncomp.opt))
[1] "SSA(L,r)" "108" "8"
> # RMSE for test periods
> print(c("ssa", sqrt(mean(err.ssa))))
[1] "ssa" "55.3572366330604"
> print(c("sarima", sqrt(mean(err.sarima))))
[1] "sarima" "60.1534785331151"
> print(c("ets", sqrt(mean(err.ets))))
[1] "ets" "54.2338009066311"
> # Plot of forecasts with confidence intervals
> plot(ets.for); lines(series,col="black");
> plot(sarima.for); lines(series,col="black");
> plot(ssa.for); lines(series,col="black");

186 3 Parameter Estimation, Forecasting, Gap Filling

Forecasts from ETS(M,N,M)

1980 1985 1990

10
0

30
0

50
0

Fig. 3.34 “Sweetwhite”: ETS forecast with optimal parameters

Forecasts from ARIMA(1,1,0)(2,0,0)[12]

1980 1985 1990

10
0

30
0

50
0

Fig. 3.35 “Sweetwhite”: ARIMA forecast with optimal parameters

Forecasts from SSA (recurrent)

1982 1984 1986 1988 1990 1992 1994

10
0

30
0

50
0

Fig. 3.36 “Sweetwhite”: SSA forecast with optimal parameters

References

Badeau R, Richard G, David B (2004) Sliding window adaptive SVD algorithms. IEEE Trans
Signal Process 52(1):1–10

Barkhuijsen H, de Beer R, van Ormondt D (1987) Improved algorithm for noniterative time-
domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson
73:553–557

Basseville M, Nikiforov IV, et al (1993) Detection of abrupt changes: theory and application,
vol 104. Prentice Hall, Englewood Cliffs

References 187

Beckers J, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic data
sets. Atmos Ocean Technol 20:1839–1856

Cadzow JA (1988) Signal enhancement: a composite property mapping algorithm. IEEE Trans
Acoust 36(1):49–62

Du K, Zhao Y, Lei J (2017) The incorrect usage of singular spectral analysis and discrete wavelet
transform in hybrid models to predict hydrological time series. J Hydrol 552:44–51

Gillard J, Kvasov D (2016) Lipschitz optimization methods for fitting a sum of damped sinusoids
to a series of observations. Stat Interface 10(1):59–70

Gillard J, Zhigljavsky A (2011) Analysis of structured low rank approximation as an optimization
problem. Informatica 22(4):489–505

Gillard J, Zhigljavsky A (2013) Optimization challenges in the structured low rank approximation
problem. J Global Optim 57(3):733–751

Gillard J, Zhigljavsky AA (2016) Weighted norms in subspace-based methods for time series
analysis. Numer Linear Algebra Appl 23(5):947–967

Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with
missing values. J Stat Plan Inference 137(8):2642–2653

Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer briefs in
statistics. Springer

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and
related techniques. Chapman&Hall/CRC

Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of
singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78

Hyndman RJ (2017) FORECAST: Forecasting functions for time series and linear models. URL
http://CRAN.R-project.org/package=forecast, R package version 8.1, with contributions from
Slava Razbash and Drew Schmidt

Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets.
Nonlinear Process Geophys 13(2):151–159

Markovsky I (2012) Low rank approximation. Springer
Markovsky I, Usevich K (2014) Software for weighted structured low-rank approximation. J

Comput Appl Math 256:278–292
Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and approximate modeling of

linear systems: A behavioral approach, vol 11. SIAM
Moskvina V, Zhigljavsky A (2003) An algorithm based on singular spectrum analysis for change-

point detection. Commun Stat Simul Comput 32(2):319–352
Nekrutkin V (2010) Perturbation expansions of signal subspaces for long signals. Stat Interface

3:297–319
Real E, Tufts D, Cooley JW (1999) Two algorithms for fast approximate subspace tracking. IEEE

Trans Signal Process 47(7):1936–1945
Rodrigues PC, de Carvalho M (2013) Spectral modeling of time series with missing data. Appl

Math Modell 37(7):4676–4684
Roy R, Kailath T (1989) ESPRIT: estimation of signal parameters via rotational invariance

techniques. IEEE Trans Acoust 37:984–995
Schoellhamer D (2001) Singular spectrum analysis for time series with missing data. Geophys Res

Lett 28(16):3187–3190
Tartakovsky A, Nikiforov I, Basseville M (2014) Sequential analysis: Hypothesis testing and

changepoint detection. CRC Press
Usevich K (2010) On signal and extraneous roots in singular spectrum analysis. Stat Interface

3(3):281–295
Van Huffel S, Chen H, Decanniere C, van Hecke P (1994) Algorithm for time-domain NMR data

fitting based on total least squares. J Magn Reson Ser A 110:228–237
Zhigljavsky A, Golyandina N, Gillard J (2016a) Analysis and design in the problem of vector

deconvolution. In: Kunert J, Müller HC, Atkinson CA (eds) mODa 11 - advances in model-
oriented design and analysis. Springer International Publishing, pp 243–251

http://CRAN.R-project.org/package=forecast

188 3 Parameter Estimation, Forecasting, Gap Filling

Zhigljavsky A, Golyandina N, Gryaznov S (2016b) Deconvolution of a discrete uniform distribu-
tion. Stat Probab Lett 118:37–44

Zvonarev N, Golyandina N (2017) Iterative algorithms for weighted and unweighted finite-rank
time-series approximations. Stat Interface 10(1):5–18

	3 Parameter Estimation, Forecasting, Gap Filling
	3.1 Parameter Estimation
	3.1.1 Method
	3.1.1.1 Estimation of the Governing LRR
	3.1.1.2 Estimation of Frequencies

	3.1.2 Algorithms
	3.1.3 Estimation in Rssa
	3.1.3.1 Description of Functions
	3.1.3.2 Typical Code

	3.2 Forecasting
	3.2.1 Method
	3.2.1.1 Approach
	3.2.1.2 Recurrent Forecasting
	3.2.1.3 Vector Forecasting
	3.2.1.4 Specificity of SSA Modifications
	3.2.1.5 Bootstrap Confidence and Prediction Intervals

	3.2.2 Algorithms
	3.2.3 Forecasting in Rssa
	3.2.3.1 Description of Functions
	3.2.3.2 Typical Code

	3.3 Gap Filling
	3.3.1 Method
	3.3.1.1 Subspace-Based Approach
	3.3.1.2 Iterative Approach

	3.3.2 Algorithms
	3.3.3 Gap-Filling in Rssa
	3.3.3.1 Description of Functions
	3.3.3.2 Typical Code

	3.4 Structured Low-Rank Approximation
	3.4.1 Cadzow Iterations
	3.4.2 Algorithms
	3.4.3 Structured Low-Rank Approximation in Rssa
	3.4.3.1 Description of Functions
	3.4.3.2 Typical Code
	3.4.3.3 Simulated Example

	3.5 Case Studies
	3.5.1 Forecasting of Complex Trend and Seasonality
	3.5.2 Different Methods of Forecasting
	3.5.3 Choice of Parameters and Confidence Intervals
	3.5.4 Gap Filling
	3.5.5 Parameter Estimation and Low-Rank Approximation
	3.5.6 Subspace Tracking
	3.5.7 Automatic Choice of Parameters for Forecasting
	3.5.8 Comparison of SSA, ARIMA, and ETS

	References

