
Chapter 2
SSA Analysis of One-Dimensional
Time Series

In the present chapter and Chap. 3, we thoroughly examine the use of SSA for one-
dimensional data. This chapter is fully devoted to the SSA analysis of such data.
Consideration of SSA forecasting, gap filling, and estimation of parameters of the
signal is delayed until Chap. 3. The main difference between the materials of these
two chapters is the use of the models. In the present chapter, the use of models is
minimal; on the contrary, the methodologies of Chap. 3 are model-based.

In the terminology of Chap. 1, SSA for one-dimensional data should be referred
to as 1D-SSA. However, but for the sake of brevity, in this chapter we will refer to
it simply as SSA. The SSA input for all algorithms of this chapter is a collection
XN = (x1, . . . , xN) of N real numbers, which can be thought of as a time series.

Let us start with the common parts of all versions of SSA algorithms considered
in this chapter. These common parts are the embedding procedure at Step 1 of SSA
and the diagonal averaging which makes the reconstruction at Step 4 (see Fig. 1.1).

Let L (1 < L < N) be some integer called window length and set K =N−L+1.
Construct L-lagged vectors of size L as

Xi = (xi, . . . , xi+L−1)
T, i = 1 . . . ,K.

Define the embedding operator T = TSSA by

TSSA(X) = X = [X1 : . . . : XK ] =

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2
...

...
...

. . .
...

xL xL+1 xL+2 . . . xN

⎞
⎟⎟⎟⎟⎟⎠

. (2.1)
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Matrix X of (2.1) is called trajectory (or L-trajectory) matrix. There are two
important properties of this matrix:

(a) both the rows and columns of X are subseries of the original series, and
(b) X has equal elements on its anti-diagonals, which is equivalent to saying that X

is a Hankel matrix.

The operator T = TSSA : RN → M
(H)
L,K makes a correspondence between

time series (collections of N numbers) andM(H)
L,K , the set of Hankel matrices of size

L×K . Since the correspondence defined by T is one-to-one, there exists the inverse
T−1, which transfers any Hankel matrix of size L × K to a series of length N .

Let us also introduce the projector ΠH : RL×K → M
(H)
L,K into the space of

Hankel matrices as the operator of hankelization

(ΠHY)ij =
∑

(l,k)∈As

ylk

/
ws, (2.2)

where s = i + j − 1, As = {(l, k) : l + k = s + 1, 1 ≤ l ≤ L, 1 ≤ k ≤ K}
and ws = |As | denotes the number of elements in the set As . This corresponds to
averaging the matrix elements over the “anti-diagonals.” The weightsws are equal to
the number of series elements xs in the trajectory matrix (2.1) and has a trapezoidal
shape, decreasing towards both ends of the series.

On the base of (2.2), any matrix Y ∈ RL×K can be transferred to a series of
length N by applying T−1 ◦ ΠH. Note that this is done in an optimal way.

2.1 Basic SSA

Basic SSA is the SSA for the analysis of one-dimensional series such that the
decomposition into rank-one matrices at Step 2 (see the general scheme in Fig. 1.1)
is done by the SVD.

2.1.1 Method

2.1.1.1 Step 1: Embedding

The seriesX is mapped to a sequence ofL-lagged vectors, which form the trajectory
matrix X = TSSA(X), as shown in (2.1).
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2.1.1.2 Step 2: Decomposition

Set S = XXT and denote by λ1, . . . , λd the positive eigenvalues of S taken in
the decreasing order of magnitude (λ1 ≥ . . . ≥ λd > 0) and by U1, . . . , Ud

an orthonormal system of the eigenvectors of the matrix S corresponding to these
eigenvalues; Vi = XTUi/

√
λi are called factor vectors. At this step, we perform the

singular value decomposition (SVD) of the trajectory matrix:

X =
d∑

i=1

√
λiUiV

T
i = X1 + . . . + Xd . (2.3)

The matrices Xi = √
λiUiV

T
i in (2.3) have rank 1; such matrices are called

elementary matrices. The collection (
√

λi, Ui, Vi) consisting of the singular value√
λi , the left singular vector Ui and the right singular vector Vi will be called ith

eigentriple (abbreviated as ET). Note that λi = ‖Xi‖2F and ‖X‖2F = ‖X1‖2F + . . . +
‖Xd‖2F. The contribution of ith componentXi can thus be measured by λi/

∑
j λj .

For real-world time series, d = rankX is typically equal to min(L,K); that is,
the trajectory matrix is of full rank.

2.1.1.3 Step 3: Eigentriple Grouping

The input in this step is the expansion (2.3) and the specification of how to group
the components of (2.3).

Let I = {i1, . . . , ip} ⊂ {1, . . . , d} be a set of indices. Then the resultant matrix
XI corresponding to the group I is defined as XI = Xi1 + . . . + Xip .

Assume that a partition of the set of indices {1, . . . , d} into m disjoint subsets
I1, . . . , Im is specified. Then the expansion (2.3) leads to the decomposition

X = XI1 + . . . + XIm. (2.4)

The procedure of choosing the sets I1, . . . , Im is called eigentriple grouping. If m =
d and Ij = {j }, j = 1, . . . , d , then the corresponding grouping is called elementary.

The grouping is performed by analyzing the eigentriples so that each group
corresponds to an identifiable series component. The choice of several leading
eigentriples corresponds to an optimal approximation of the time series, in accor-
dance with the well-known optimality property of the SVD.

2.1.1.4 Step 4: Reconstruction (Diagonal Averaging)

The diagonal averaging (2.2) applied to a resultant matrix XIk produces a recon-

structed series X̃(k) = (̃x
(k)
1 , . . . , x̃

(k)
N ) = T−1 ◦ ΠH(X(k)). This way, the initial
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series (x1, . . . , xN) is decomposed into a sum of m reconstructed series:

xn =
m∑

k=1

x̃(k)
n , n = 1, . . . , N. (2.5)

The reconstructed series produced by the elementary grouping will be called
elementary reconstructed series.

If grouping is sensible, then we obtain a reasonable decomposition into identi-
fiable series components. Typical resultant decompositions are signal plus noise or
trend plus seasonality plus noise.

As well as in the generic scheme, Steps 1 and 2 of Basic SSA are sometimes
combined into the so-called “Decomposition stage” and Steps 3 and 4 are combined
into “Reconstruction stage.”

2.1.2 Appropriate Time Series

2.1.2.1 Time Series of Finite Rank

Although the SSA method is model-free and therefore SSA can be considered as an
exploratory method, there is a model that perfectly suits SSA.

We say that a series has L-rank r if its L-trajectory matrix has rank r . Series S is
called a series of finite rank r (rankS = r) if rankL S = r for any sufficiently large
series length N and window length L. The term “finite rank” also has a meaning
for the case of infinite series. For a generic infinite times series (cut at some N),
L = L(N) can tend to infinity and in this case the rank of the trajectory matrix
would typically tend to infinity too. For a time series of finite rank, the rank r of
the trajectory matrix is finite and fixed for large enough N and L such that r ≤
min(L,N − L + 1).

It is useful to know rank of a time series and the form of the singular vectors
of its trajectory matrix, since knowing rank means knowing the number of the
SVD components, which we should group for extraction of the corresponding
series component, while the form of the singular vectors along with properties of
eigenvalues helps in finding these SVD components.

We refer to Golyandina et al. (2001; Chapter 5) for details and full description.
Here we mention that an exponential series sn = Aeαn, n = 1, 2, . . ., has rank 1, a
linear function sn = an+b, a 
= 0, has rank 2, a sinusoid with sn = A sin(2πωn+φ)

has rank 2 for 0 < ω < 0.5 and rank 1 for ω = 0.5. Singular vectors of trajectory
matrices of time series have the same form as the series itself, which follows from
the fact that rows and columns of the trajectory matrices are subseries of the original
series. This information helps in choosing the groups at Grouping step.
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2.1.2.2 Linear Recurrence Relations, Characteristic Polynomials
and Roots

Time series of finite rank are closely related to the series governed by linear
recurrence relations (LRRs). In particular, for infinite time series, the class of time
series governed by LRRs coincides with the class of time series of finite rank.

Definition 2.1 A time series SN = (si )
N
i=1 is governed by an LRR, if there exist

a1, . . . , at such that

si+t =
t∑

k=1

aksi+t−k, 1 ≤ i ≤ N − t, at 
= 0, t < N − 1. (2.6)

The number t is called the order of the LRR and a1, . . . , at are the coefficients of
the LRR. If t = r is the minimal order of an LRR that governs the time series SN ,
then the corresponding LRR is called minimal.

The minimal LRR is unique and its order is equal to the series rank.
As was mentioned in Sect. 1.4, it is well known that the time series S∞ =

(s1, . . . , sn, . . .) satisfies the LRR (2.6) for all i ≥ 0 if and only if

sn =
p∑

m=1

⎛
⎝

km−1∑
j=0

cmjn
j

⎞
⎠μn

m, (2.7)

where the complex coefficients cmj depend on the first t points s1, . . . , st .
For real-valued time series, (2.7) implies that the class of time series governed by

the LRRs consists of sums of products of polynomials, exponentials, and sinusoids

sn =
p̃∑

m=1

⎛
⎝

km−1∑
j=0

c̃mjn
j

⎞
⎠ eαmn cos(2πωmn + φm), 0 ≤ ωm ≤ 0.5. (2.8)

The minimal LRR determines all, except cmj , parameters in (2.7) and all, except
c̃mj and φm, parameters in (2.8).

Definition 2.2 The polynomialPt (μ) = μt −∑t
k=1 akμ

t−k is called characteristic
polynomial of the LRR (2.6).

Roots of the characteristic polynomial are called characteristic roots of the
corresponding LRR. The roots of the characteristic polynomial of the minimal LRR
governing the series, which can be called signal roots of the LRR or characteristic
roots of the series, determine the values of parametersμm and km in (2.7) as follows.
Let the time series S∞ = (s1, . . . , sn, . . .) satisfy the LRR (2.6) with at 
= 0
and i ≥ 1. Consider the characteristic polynomial of the LRR (2.6) and denote
its different (complex) roots by μ1, . . . , μp, where p ≤ t . All these roots are
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non-zero as at 
= 0 with km being the multiplicity of the root μm (1 ≤ m ≤ p,
k1 + . . . + kp = t).

Let ckp−1,j 
= 0 for all j ; this corresponds to the case of the minimal LRR. Then
the rank of time series S∞ given in (2.7) is equal to r = ∑p

m=1 km. In the real-
valued case, if c̃kp̃−1,j 
= 0 for all j , then the rank of time series S∞ given in (2.8)

is equal to r = ∑p̃

m=1 δmkm, where δm = 1 for ωm equal 0 or 0.5 and δm = 2 for
0 < ωm < 0.5.

If we find the signal roots μm = ρme±i2πωm of the characteristic polynomial
of the LRR governing the signal, then we can estimate the signal parameters. For
example, the frequency ωm of an exponentially-modulated sinusoid can be found
using the argument of the corresponding conjugate roots, whereas the root modulus
ρm gives the exponential rate αm = lnρm.

2.1.3 Separability and Choice of Parameters

Understanding separability is very important for understanding how SSA works.
Recall that if two time series X(1)

N and X(2)
N are separable, then X(1)

N can be extracted

from the observed series XN = X
(1)
N +X

(2)
N . This means that there exists a partition

into groups at Grouping step such that X̃(m)
N = X

(m)
N .

Let us define the separability formally. Let X(m) be the trajectory matrices of the
considered series components, X(m) = ∑dm

i=1

√
λm,iUm,iV

T
m,i , m = 1, 2, be their

SVDs. The column and row spaces of the trajectory matrices are called column and
row trajectory spaces correspondingly.

Definition 2.3 LetL be fixed. Two seriesX(1)
N andX(2)

N are called weakly separable
(or simply separable) if their column trajectory spaces are orthogonal and the
same is valid for their row trajectory spaces; that is, (X(1))TX(2) = 0K,K and
X(1)(X(2))T = 0L,L.

Definition 2.4 Two series X(1)
N and X

(2)
N are called strongly separable, if they are

weakly separable and the sets of singular values of their L-trajectory matrices are
disjoint; that is, λ1,i 
= λ2,j for any i and j .

Weak separability means that at Decomposition step there exists such an SVD
that allows the proper grouping. A possibility of a non-separating SVD expansion
which does not allow a proper grouping is related to the non-uniqueness of the SVD
in the case of equal singular values. Strong separability means that any SVD of the
trajectory matrix admits the proper grouping. Therefore, in order to be sure that SSA
makes an accurate separation we have to require strong (approximate) separability.

By the definition, weak separability means orthogonality of the column and
row spaces of the trajectory matrices of the series components X(1)

N and X
(2)
N . For

approximate (asymptotic) separability with X̃
(m)
N ≈ X

(m)
N , we need the condition of
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approximate (asymptotic) orthogonality of subseries of the considered components.
Asymptotic separability is considered if L and/or K tend to infinity.

For sufficiently long time series, SSA can approximately separate, for example,
signal and noise, sine waves with different frequencies, trend and seasonality
(Golyandina et al. 2001; Chapter 6, Section 1.5; Golyandina and Zhigljavsky 2013;
Section 2.3.3).

Let us demonstrate the separability of two sinusoids with different frequencies
ω1 and ω2: x

(i)
n = Ai cos(2πωin + φi). These sinusoids are asymptotically weakly

separable; that is, their subseries are asymptotically orthogonal as their lengths tend
to infinity. However, the rate of convergence depends on the difference between
the frequencies. If the frequencies are close and the time series length is not long
enough, the two series can be far from orthogonal and therefore not separable.
Note that two sinusoids with equal amplitudes are asymptotically weakly separable,
but not strongly asymptotically separable and therefore are mixed in the SSA
decompositions.

2.1.3.1 Separability Measure

The so-called w-correlation matrix contains very helpful information that can be
used for detection of separability and identification of groups. This matrix consists
of weighted cosines of angles between the reconstructed time series components.

Let wn (n = 1, 2, . . . , N) be the weights defined in (2.2): wn is equal to the
number of times the series element xn appears in the trajectory matrix. Define the
w-scalar product of time series of length N as (YN,ZN)w = ∑N

n=1 wnynzn =
〈Y,Z〉F, where Y and Z are the L-trajectory matrices of the series YN and ZN ,
respectively. Define the so-called w-correlation between YN and ZN as

ρw(YN,ZN) = (YN,ZN)w/(‖YN‖w‖ZN‖w).

Well-separated components in (2.5) have weak (or zero) correlation whereas
poorly separated components typically have high correlation. Therefore, looking at
the matrix of w-correlations between elementary reconstructed series X̃(i)

N and X̃(j)
N

one can find groups of correlated series components and use this information for
the subsequent grouping. One of the main rules is: “do not include highly correlated
components into different groups.” Thew-correlations can also be used for checking
the grouped decomposition.

It is very instructive to depict the matrix of absolute values of w-correlations
between the series components graphically in the white-black scale, where small
correlations are shown in white and correlations with their absolute values close
to 1 are shown in black; see, for example, Figs. 2.4 and 2.15.
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2.1.3.2 Choice of Parameters

The conditions of (approximate) separability yield recommendations for the choice
of the window length L: it should be large enough (L ∼ N/2) and if we want to
extract a periodic component with known period, then the window lengths, which
are divisible by the period, provide better separability. Choice of parameters is
discussed in Golyandina et al. (2001; Section 1.6) and Golyandina (2010). If we
choose a few leading eigentriples, then SSA with smallL performs smoothing of the
series as a filter of order 2L−1, see Golyandina and Zhigljavsky (2013; Section 3.9).
Generally, the choice of the window length is important but the result is usually
stable with respect to small changes in the values of L.

If the time series has a complex structure, then the so-called Sequential SSA
(Golyandina et al. 2012a; Section 2.5.5) is recommended. Sequential SSA consists
of two stages; at the first stage, trend is extracted with a small window length and
then periodic components are detected and extracted from the residual with L ∼
N/2.

2.1.3.3 Justification

If we use SSA as a model-free and exploratory technique, then the justification of
the decomposition cannot be formal; it must be based on the separability theory and
the interpretability of the results. Real-time or batch processing by SSA is possible
if the class of series is not too broad and well-determined so that one can fix the rule
for choosing proper parameters. For performing statistical testing, a model of the
time series should be specified.

2.1.4 Algorithm

In Sect. 2.1.1 we described the Basic SSA method. Here we formally present the
algorithm of Basic SSA. Note that the RSSA package implements the algorithms
efficiently (see Sect. 1.5.4 for a brief discussion). Since effective implementation is
complicated and hides the sense of algorithm steps, we write down the algorithms
in the original form.

Input data for the whole algorithm of Basic SSA are the window length and the
way of grouping of the elementary components Xi in (2.3). However, the rule for
grouping is made after the decomposition (2.3) is made. Therefore, the grouping
becomes the input data for Reconstruction stage. For this reason, we split the
algorithm into two parts. Note that modifications of Basic SSA mostly differ by
Decomposition step only; Reconstruction stage is the same for virtually all SSA
versions.
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Algorithm 2.1 Basic SSA: decomposition
Input: Time series X of length N , window length L.
Output: Decomposition of the trajectory matrix on elementary matrices X = X1+ . . .+Xd , where

d = rankX and Xi = √
λiUiV

T
i (i = 1, . . . , d).

1: Construct the trajectory matrix X = TSSA(X).
2: Compute the SVD X = X1 + . . . + Xd , Xi = √

λiUiV
T
i .

Reconstruction algorithms are almost the same for different versions of SSA;
their inputs have a decomposition of the trajectory matrix into a sum of rank-one
matrices and the split of the rank-one components into groups. We therefore for-
mulate a general algorithm of reconstruction and will make comments concerning
specific features of modifications in the corresponding sections. The specific feature
of Basic SSA is: the input decomposition is the SVD and hence the biorthogonal
decomposition into the rank-one components is ordered according to component
contribution σ 2

i = λi so that σ1 ≥ . . . ≥ σd .

Algorithm 2.2 Reconstruction
Input: Decomposition X = X1 + . . . + Xd , where Xi = σiUiV

T
i and ‖Ui‖ = ‖Vi‖ = 1; partition

of indices: {1, . . . , d} = ⊔m
j=1 Ij .

Output: Decomposition of the time series X into identifiable components X = X1 + . . . + Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: Compute X = X1 + . . . + Xm, where Xi = T−1

SSA ◦ ΠH(XIi ).

2.1.5 Basic SSA in RSSA

2.1.5.1 Description of Functions

The main function of RSSA is ssa which constructs the so-called ssa object holding
the decomposition and various auxiliary information necessary for performing a
particular implementation. The function has many arguments; some of them are
common for different types of SSA, some are specific. Below we will outline the
main arguments of ssa in a typical function call:

s <- ssa(x, L = (N + 1) %/% 2, neig = NULL,
kind = "1d-ssa", svd.method = "auto")

where N is the series length.
Arguments:

x is an object to be decomposed. For Basic SSA it is assumed to be a simple
vector or vector-like object (e.g., univariate ts or zooreg object). Everything
else is coerced to a vector.
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L is a window length. By default it is fixed to half of the series length.
neig is the number of desired eigentriples. If neig = NULL, a default value, which

depends on L and N , will be used.
kind specifies the version of SSA to be used; it can be omitted in non-ambiguous

cases (e.g., when x is a vector or a ts object).
svd.method selects the SVD method to use. Full description is given in

Sect. 2.1.5.2.

In addition to constructing an ssa object s, by default the ssa function also
performs Decomposition step and thus corresponds to Algorithm 2.1. If necessary,
Decomposition stage can be skipped setting the argument force.decompose to
FALSE.

The function returns an ssa object. The precise layout of the object is hidden
and can be different in different versions of the package. However, there are several
fields that are available to users and can be extracted with the help of $ operator,
namely:

s$sigma is a vector of singular values;
s$U is a matrix of eigenvectors;
s$V is a matrix of factor vectors. Note that it may not be calculated for particular

selections of the SVD method.

The number of the calculated singular values, eigenvectors, and factor vectors
can be obtained by means of the functions nsigma(s), nu(s), and nv(s) corre-
spondingly. Call of summary(s) provides a consolidated information about the ssa

object.
The next function is reconstruct which implements Reconstruction stage

(Algorithm 2.2). The basic signature of the function call is

r <- reconstruct(s, groups = list(trend = 1:2, c(3:6,9)))

Arguments:

s is an ssa object holding the decomposition.
groups is a list of numeric vectors consisting of indices of the elementary

components used for reconstruction; the entries of the list can be named.
drop acts only if one group is chosen; TRUE value means that the result is

transformed from the list of the reconstructed series to the reconstructed series
itself (FALSE is default).

The function returns a list of reconstructed objects. Elements of the list have the
same names as elements of groups (e.g., r$trend). If a group is unnamed, then
the corresponding component will obtain the name Fn, where n is its index in the
groups list (e.g. r$F2).

By default, the routine tries to preserve all the attributes of the input object. In
this way, for example, the reconstruction result of the ts object is the ts object
with the same time scale. This feature can be disabled by setting the argument
drop.attributes to TRUE.
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2.1.5.2 SVD Methods

In many cases only few leading eigentriples are of interest for the SSA analysis.
Thus the full SVD of the trajectory matrix can yield large computational and
memory space burdens. Instead, the so-called Truncated SVD can be used and
only a number of desired leading eigentriples can be computed. Four different
SVD implementations are available in RSSA and can be specified via the argument
svd.method of the function ssa:

• "auto"—Automatic method of selection depending on the series length, the
window length, and the number of desired eigentriples.

• "nutrlan"—Truncated SVD via thick-restart Lanczos bidiagonalization algo-
rithm (Yamazaki et al. 2008). The method internally calculates the eigenvalues
and eigenvectors of the matrix XXT. Factor vectors are calculated on-fly during
Reconstruction stage when necessary.

• "propack"—Implicitly restarted Lanczos bidiagonalization with partial
reorthogonalization (Larsen 1998). The method calculates the truncated SVD
of the trajectory matrix X (and hence calculates the factor vectors as well).

• "eigen" and "svd"—Full decomposition of the trajectory matrix using either
eigendecomposition or SVD routines from LAPACK (Anderson et al. 1999).
Using ssa with these svd.methods yields the straightforward implementations
of Basic SSA algorithm without computational and space complexity reductions
via additional sophisticated algorithms. Note that both methods perform full
decompositions and thus the argument neig (which allows one to request a
desired number of eigentriples) is silently ignored for these methods.

Selecting the best method for performing the SVD is not easy. However, there
are several simple rules of thumb which work well in most situations.

First of all, it is unwise to use the Lanczos-based truncated SVD methods if the
trajectory matrix is small or “wide.” This corresponds to small series lengths (say,
N < 100) or small window lengths (L < 50). Also, it is unwise to ask for too
many eigentriples: when more than L/2 eigentriples are needed then it is better to
use the full SVD instead of a truncated one. The SVD method eigen works best for
small L.

Usually the method propack tends to be slightly faster and more numerically
stable than nutrlan; however, it may yield considerable memory consumption
when factor vectors are large. For example, for a time series of length 87000 and
window length 43500, the decomposition with the method nutrlan took 16 s while
with propack it took only 13 s (we are not aware of any other implementation of
SVD, besides RSSA implementations, which can perform the decomposition with
such a large window length at all). The memory consumption for the latter method is
twice higher than the consumption of the former. This difference is more important
for multivariate versions of SSA and should not be a problem in the 1D case.

A specific feature of the Lanczos-based truncated SVD methods is their possible
non-convergence in the case of coinciding eigenvalues. In real-life time series, the
exact coincidence of eigenvalues happens very rarely and hence we can often enjoy
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the outstanding effectiveness of these SVD methods. For a time series of finite
rank r , zero eigenvalue has the multiplicity L − r; therefore, the number of the
truncated components should be chosen appropriately, e.g. r + 1 components can
be requested for calculation. Since for a time series of finite rank r even a small
window length L � r + 1 can be sufficient for the analysis and forecasting, the use
of the eigen method is recommended.

By default, the method nutrlan is selected. However, the function ssa tries
to correct the selection, when the chosen method is clearly not the most suitable.
In particular, for short series, small window lengths or large number of desired
eigentriples, the method eigen is automatically selected.

It should be noted that the truncated SVD implementations were extracted from
the RSSA package into a separate package SVD (Korobeynikov et al. 2016) and thus
can be used independently.

2.1.5.3 Typical Code

For demonstration, we consider the series of sales of fortified wines (shortly
“FORT”) taken from the dataset “Australian Wines” (monthly wine sales in
thousands of liters). The full dataset contains sales from January, 1980, to July, 1995
(187 points). However, the data after June, 1994 have missing values. Therefore, we
analyze the first 174 points.

Fragment 2.1.1 contains the standard code for loading the package RSSA and for
the input of the data included into the package.

Fragment 2.1.1 (“Australian Wines”: Input)

> library("Rssa")
> data("AustralianWine", package = "Rssa")
> wine <- window(AustralianWine, end = time(AustralianWine)[174])

Fragment 2.1.2 contains a typical code for extraction of the trend and seasonality.
The resultant decomposition is depicted in Fig. 2.1.

Fragment 2.1.2 (“FORT”: Reconstruction)

> fort <- wine[, "Fortified"]
> s.fort <- ssa(fort, L = 84, kind = "1d-ssa")
> r.fort <- reconstruct(s.fort,
+ groups = list(Trend = 1,
+ Seasonality = 2:11))
> plot(r.fort, add.residuals = TRUE, add.original = TRUE,
+ plot.method = "xyplot",
+ superpose = TRUE, auto.key = list(columns = 2))

Roughly speaking (see details in Golyandina and Korobeynikov (2013)), ssa
performs Steps 1 and 2 of the algorithmic scheme described in Sect. 1.1.1, while
reconstruct performs steps 3 and 4 of the algorithm. The argument values kind

= "1d-ssa" and svd.method = "auto" are default and can be omitted. The
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Fig. 2.1 “FORT”: Decomposition

function plot applied to the reconstruction object performs different special kinds
of plotting. In addition to specific parameters, this function can include parameters
of the function xyplot from the standard package LATTICE (see the last two
parameters of plot in Fragment 2.1.2).

The choice of groups for reconstruction was made on the base of the following
information obtained from the ssa object:

1. one-dimensional (1D) figures of the eigenvectors Ui (Fig. 2.2),
2. two-dimensional (2D) figures of the eigenvectors (Ui, Ui+1) (Fig. 2.3), and
3. matrix of w-correlations ρw between the elementary reconstructed series (func-

tions wcor and plot, Fig. 2.4).

The following fragment shows the code that reproduces Figs. 2.2–2.5.

Fragment 2.1.3 (“FORT”: Identification)

> plot(s.fort, type = "vectors", idx = 1:8)
> plot(s.fort, type = "paired", idx = 2:11, plot.contrib = FALSE)
> print(parestimate(s.fort, groups = list(2:3, 4:5),
+ method = "pairs"))
$F1

period rate | Mod Arg | Re Im
11.971 0.000000 | 1.00000 0.52 | 0.86540 0.50109

$F2
period rate | Mod Arg | Re Im
4.005 0.000000 | 1.00000 1.57 | 0.00177 1.00000

> plot(wcor(s.fort, groups = 1:30),
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+ scales = list(at = c(10, 20, 30)))
> plot(reconstruct(s.fort, groups = list(G12 = 2:3, G4 = 4:5,
+ G6 = 6:7, G2.4 = 8:9)),
+ plot.method = "xyplot", layout = c(2, 2),
+ add.residuals = FALSE, add.original = FALSE)

Let us explain how the figures obtained by means of Fragment 2.1.3 can help to
perform the grouping. Figure 2.2 shows that the first eigenvector is slowly-varying
and therefore the eigentriple ET1 should be included into the trend group. Figure 2.3
shows that the pairs 2–3, 4–5, 6–7, 8–9, 10–11 are produced by modulated sine-
waves, since the corresponding 2D-scatterplots of eigenvectors resemble regular

Eigenvectors
1 (94.65%) 2 (1.43%) 3 (1.36%) 4 (0.5%)

5 (0.5%) 6 (0.26%) 7 (0.25%) 8 (0.15%)

Fig. 2.2 “FORT”: 1D graphs of eigenvectors

Pairs of eigenvectors
2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7

7 vs 8 8 vs 9 9 vs 10 10 vs 11 11 vs 12

Fig. 2.3 “FORT”: 2D scatterplots of eigenvectors
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Fig. 2.4 “FORT”: Weighted
correlations
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polygons. This way of identification is based on the following properties: a sine
wave has rank 2 and produces two eigentriples, which are sine waves with the same
frequency and have a phase shift exactly or approximately equal to π/2, due to the
orthogonality of eigenvectors.

By counting the numbers of polygon vertices in Fig. 2.3, the periods of the
sine-waves can be determined as 12, 4, 6, 2.4, 3. Alternatively, automatic methods
of frequency calculation can be employed, such as LS-ESPRIT and TLS-ESPRIT
methods (Roy and Kailath 1989). These methods are implemented in RSSA in the
function parestimate, see Sect. 3.1, and are described in Golyandina et al. (2001;
Sections 2.4.2.4. and 3.8.2) and Golyandina and Korobeynikov (2013) for one-
dimensional time series. The periods, calculated by the automatic parestimate

method in Fragment 2.1.3, agree with the numbers of vertices in Fig. 2.3 for the five
pairs listed.

The matrix of absolute values of w-correlations in Fig. 2.4 is depicted in
grayscale (white color corresponds to zero and black color corresponds to the
absolute values equal to 1). Figure 2.4 confirms that the indicated pairs are separated
between themselves and also from the trend component, since the w-correlations
between the pairs are small, while w-correlations between the components from the
same pair are very large. The block of 12–84 components is “gray,” therefore we
can expect that these components are mixed and are largely produced by noise.
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Fig. 2.5 “FORT”: Reconstructed sine waves

Figure 2.5 contains four reconstructed modulated sine waves and shows that
several sine waves have increasing amplitudes, while others are decreasing; the
same can be seen in Fig. 2.2. In Fig. 2.1, we grouped the modulated sine waves
and obtained the seasonal component with varying annual behavior.

2.2 Toeplitz SSA

2.2.1 Method

Toeplitz SSA differs from Basic SSA only in Step 2 of the generic scheme presented
in Fig. 1.1; that is, in the decomposition ofX into rank-onematrices. Basic SSA uses
the SVD at this step with Ui calculated as eigenvectors of S = XXT. If the length
N of the series X is not large and the series is assumed to be stationary, then the
usual recommendation is to replace the matrix S by some other matrix, which is
constructed under the assumption of stationarity.

Note first that in Basic SSA we can consider the lag-covariance matrix C =
S/K instead of S for obtaining the SVD of the trajectory matrix X. Indeed, the
eigenvectors of the matrices S and C are the same and the eigenvalues differ only
by the factor 1/K .
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Denote by cij = cij (N) the elements of the lag-covariance matrix C. If the time
series is stationary with zero mean, L is fixed and K → ∞, then lim cij (N) =
RX(|i − j |) as N → ∞, where RX(k) stands for the lag-k term of the time
series autocovariance function. We can therefore define a Toeplitz version of the
lag-covariance matrix by putting equal values c̃ij at each matrix auxiliary diagonal
|i − j | = k. The most natural way for defining the values c̃ij and the corresponding
matrix C̃ is to compute

c̃ij = 1

N − |i − j |
N−|i−j |∑

m=1

xmxm+|i−j |, 1 ≤ i, j ≤ L. (2.9)

While using this formula it is usually assumed that the time series X is centered so
that the mean x̄ = ∑N

i=1 xi/N is subtracted from all xi ∈ X.
Let L ≤ K and denote by Pi (i = 1, . . . , L) the eigenvectors of C̃; these vectors

form an orthonormal basis of RL. Then the decomposition on elementary matrices
can be written as X = ∑L

i=1 Pi(XTPi)
T. Ordering of addends is performed by

the magnitudes of σi = ‖XTPi‖. Note that this ordering generally differs from
the ordering of eigenvalues of the matrix C̃ corresponding to the eigenvectors Pi .
Some of these eigenvalues could even be negative as the matrix C̃ is not necessarily
positive definite.

If the original series is stationary with zero mean, then the use of Toeplitz lag-
covariance matrix C̃ can be more appropriate than the use of the lag-covariance
matrix C. On the other hand, Toeplitz SSA is not suitable for nonstationary series;
if the original series has an influential nonstationary component, then Basic SSA
works better than Toeplitz SSA. For example, if we are dealing with a pure
exponential series, then it is described by a single eigentriple for any window length,
while Toeplitz SSA produces L eigentriples for the window length L; moreover,
the eigenvectors in Toeplitz SSA have some special properties (Andrew 1973),
which do not depend on the series. The same effect takes place for the linear series,
exponential-cosine series, etc.

A number of papers devoted to SSA analysis of climatic time series (e.g., Ghil
et al. (2002), where Toeplitz SSA is often referred to as a VG method) consider
Toeplitz SSA as the main version of SSA and state that the difference between the
Basic and Toeplitz versions of SSA is marginal. However, using the Toeplitz version
of SSA is unsafe if the series contains a trend or oscillations with increasing or
decreasing amplitude. Examples of effects observed when Toeplitz SSA is applied
to non-stationary time series are presented in Golyandina (2010). For the study of
theoretical properties of Toeplitz SSA, see, for example, Harris and Yan (2010).
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2.2.2 Algorithm

Algorithm 2.3 Toeplitz SSA: decomposition
Input: Time series X of length N , window length L.
Output: Decomposition of the trajectory matrix on elementary matrices X = X1+. . .+XL, where

Xi = σiPiQ
T
i , ‖Pi‖ = ‖Qi‖ = 1.

1: Construct the trajectory matrix X = TSSA(X).
2: Obtain the decomposition

X =
L∑

i=1

σiPiQ
T
i = X1 + . . . + XL, (2.10)

where {Pi}Li=1 are eigenvectors of the matrix C̃ with entries computed by (2.9), Si = XTPi ,
Qi = Si/‖Si‖ and σi = ‖Xi‖F = ‖Si‖. Components are ordered by the magnitudes of σi :
σ1 ≥ σ2 ≥ . . . ≥ σL.

The reconstruction algorithm is exactly the same as Algorithm 2.2 with vectors
(Pi,Qi) substituted for (Ui, Vi).

2.2.3 Toeplitz SSA in RSSA

2.2.3.1 Description of Functions

In RSSA, Toeplitz SSA is implemented via the same ssa function as Basic SSA.
One should use kind="toeplitz-ssa" to enable the Toeplitz version. All other
arguments have the meaning as described in Sect. 2.1.5:

s <- ssa(x, L = (N + 1) %/% 2, neig = NULL,
kind = "toeplitz-ssa", svd.method = "auto")

where N is the series length.
Note that the triples (σi, Pi,Qi), which are generated by the decomposi-

tion (2.10), are also called eigentriples in RSSA and the access to {Pi} and {Qi}
is provided by the codes s$U and s$V.

2.2.3.2 Typical Code

To our mind, Toeplitz SSA has a limited range of applications, since it requires
stationarity for both signal and noise, which is first unnatural and second impossible
to verify. Hence, in the example below we use simulated data (Fragment 2.2.1).

As mentioned above, before using Toeplitz SSA it is recommended to center the
series. Then Toeplitz SSA can be used in exactly the same way as Basic SSA.
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Eigenvectors
1 (36.52%) 2 (33.46%) 3 (1.61%) 4 (1.59%)

Eigenvectors
1 (36.63%) 2 (33.6%) 3 (1.81%) 4 (1.72%)

Fig. 2.6 Noisy sinusoid: 1D graphs of eigenvectors (top: Toeplitz SSA, bottom: Basic SSA)

Fragment 2.2.1 (Noisy Sinusoid: Toeplitz SSA)

> N <- 100
> sigma <- 0.5
> set.seed(1)
> F <- sin (2 * pi * (1:N) / 7) + sigma * rnorm(N)
> Fcenter <- F - mean(F)
> st <- ssa(Fcenter, L = 50, kind = "toeplitz-ssa")
> s <- ssa(F, L = 50, kind = "1d-ssa")
> p <- plot(s, type = "vectors", idx = 1:4, layout = c(4, 1))
> pt <- plot(st, type = "vectors", idx = 1:4, layout = c(4, 1))
> plot(pt, split = c(1, 1, 1, 2), more = TRUE)
> plot(p, split = c(1, 2, 1, 2), more = FALSE)
> pt <- plot(reconstruct(st, groups = list(1:2)),
+ plot.method = "xyplot", layout = c(3, 1))
> p <- plot(reconstruct(s, groups = list(1:2)),
+ plot.method = "xyplot", layout = c(3, 1))
> plot(pt, split = c(1, 1, 1, 2), more = TRUE)
> plot(p, split = c(1, 2, 1, 2), more = FALSE)

Here we see that for Toeplitz SSA the amplitude of the sinusoid reconstruction
is closer to a constant than that for Basic SSA (Figs. 2.6 and 2.7). Generally,
eigenvectors for Toeplitz SSA are more regular, even for the noise decomposition.
This is due to the properties of eigenvectors of Toeplitz matrices (Fig. 2.7).

Note that typically the window length for Toeplitz SSA should be rather small,
since the used estimate of auto-covariance matrix of the series tends to the true
auto-covariance matrix only if L is fixed and K tends to infinity.
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Fig. 2.7 Noisy sinusoid: Reconstruction (top: Toeplitz SSA, bottom: Basic SSA)

2.2.3.3 Simulated Example

As was mentioned above, for stationary time series the use of Toeplitz SSA is
appropriate, while it makes no sense to apply Toeplitz SSA for trend extraction.
Also, if a periodic component (e.g., a seasonal behavior) is changing in time, the
accuracy of signal reconstruction is worse than that for Basic SSA.

Let us demonstrate this by means of simulation. We consider the signal in the
form sn = exp(αn) sin(2πn/7), n = 1, . . . , 100, and the noisy series xn = sn+σεn,
where σ = 0.5, εn is white Gaussian noise.

For α = 0 this series can be considered as stationarywith stationary deterministic
signal (see definition in Golyandina et al. (2001; Sections 1.7.2 and 6.4)). For non-
zero α, this series is not stationary. Thus, let us consider α from [0, 0.01].
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Fragment 2.2.2 (Simulation: Comparison of Toeplitz and Basic SSA)

> SIMUL <- FALSE
> N <- 100
> sigma <- 0.5
> set.seed(1)
> alpha <- seq(0.0, 0.01, 0.001)
> L <- 50
> Q <- 1000
> if (SIMUL) {
+ RMSE <-
+ sapply(alpha,
+ function(a) {
+ sqrt(rowMeans(replicate(Q, {
+ S <- exp(a * (1:N)) * sin(2 * pi * (1:N) / 7)
+ F <- S + sigma * rnorm(N)
+ Fcenter <- F - mean(F)
+ st <- ssa(Fcenter, L = L, kind = "toeplitz-ssa")
+ s <- ssa(F, L = L, kind = "1d-ssa")
+ rec <- reconstruct(s, groups = list(1:2))$F1
+ rec.t <- reconstruct(st, groups = list(1:2))$F1
+ c("1d-ssa" = mean((rec - S)^2),
+ "toeplitz" = mean((rec.t - S)^2))
+ })))
+ })
+
+ toeplitz.sim <- as.data.frame(t(RMSE))
+ } else {
+ data("toeplitz.sim", package = "ssabook")
+ }
> matplot(alpha, toeplitz.sim, type = "l", ylim = c(0, 0.25))

Figure 2.8 shows the dependence of the reconstruction accuracy on the exponen-
tial rate α constructed with the help of the code from Fragment 2.2.2. The window
length L = 50 was chosen and RMSE was taken as a measure of accuracy. One can
see that the accuracy of Basic SSA reconstruction does not depend on α, while the
error of Toeplitz SSA increases as α increases. If a series is very close to a stationary
series, Toeplitz SSA has a slightly smaller error than Basic SSA. However, already
for α = 0.01 Toeplitz SSA makes considerably larger errors than Basic SSA.

2.3 SSA with Projection

2.3.1 Method

As was mentioned in Sect. 1.2.1.1, the goal of SSA with projection is an efficient
use of a known information about series components. The well-known methods of
SSA with centering and SSA with double centering for extraction of constant and
linear trends, respectively, are special cases of SSA with projection.
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Fig. 2.8 Simulation: Reconstruction error of Toeplitz (dash red line) and Basic SSA (solid black
line)

Let X be a time series of length N , L be the window length,K =N−L+1, and X
be the trajectory matrix. The general form of centering can be expressed as follows:

1. Calculation of a special matrix C(center) = C(X) based on a priori information.
2. Computation of X� = X − C(center).
3. Construction of the SVD: X� = ∑d�

i=1

√
λ�

i U
�
i (V �

i )T.

As a result, we obtain the decomposition X = C(center) +
d�∑
i=1

√
λ�

i U
�
i (V �

i )T.

Denote EM = (1, . . . , 1)T ∈ RM the M-vector of ones. The following three
types of centering can be considered (Golyandina et al. 2001; Sections 1.7.1
and 6.3):

• Single row centering when C(center)
row (X) = (XEK/K)ET

K corresponds to averag-

ing by rows; that is, each element of a row of C(center)
row consists of the average of

the corresponding row of the trajectory matrix.
• Single column centering when C(center)

col (X) = EL(XTEL/L)T corresponds to
averaging by columns.

• Double centering when C(center)
both = C(center)

row + C(center)
col

(
X − C(center)

row (X)
)
corre-

sponds to averaging by both rows and columns.

Note that the single centering can be considered as a projection of rows or
columns of X on span(EK) or span(EL), respectively, since EKET

K and ELET
L

are exactly the matrices of the projection operators. Therefore, centering in SSA
can be considered as a preliminary projection of the trajectory matrix on a given
subspace; the residual matrix will be subsequently expanded by the SVD or any
other decomposition.
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Let us generalize this approach to projections to arbitrary spaces following
Golyandina and Shlemov (2017). Let Πcol : RL → Lcol and Πrow : RK → Lrow
be orthogonal projectors, where Lcol ∈ RL is called the column projection space
and Lrow ∈ RK is called the row projection space. For any Y ∈ RL×t , denote
Πcol(Y) the matrix consisting of the columns, which result from projections of the
columns of Y. Similarly, for any Y ∈ Rt×K , denote Πrow(Y) the matrix consisting
of the rows, which result from projections of the rows of Y.

Denote a basis of the column projection space {Pi, i = 1, . . . , p} and a basis
of the row projection space {Qi, i = 1, . . . , q}. Let P = [P1 : . . . : Pp] and
Q = [Q1 : . . . : Qq ]. Without loss of generality we assume that {Pi, i = 1, . . . , p}
and {Qi, i = 1, . . . , q} are orthonormal bases of Lcol and Lrow (otherwise, we can
perform ortho-normalization).

In SSA with projection, the scheme of SSA with centering is extended to
arbitrary projections; that is, C = Πcol(X) for the column projection,C = Πrow(X)

for the row projection and C = Πboth(X) for the double projection, where

Πboth(X) = Πrow(X) + Πcol(X − Πrow(X))

= Πcol(X) + Πrow(X − Πcol(X))

= Πrow(X) + Πrow(X) − (Πcol ◦ Πrow) (X). (2.11)

If either the column or row basis is absent (that is, the space for column or row
projection consists of zero), then we formally set the corresponding projector to be
zero operator implying C = Πboth(X) in any mode.

A general form of the decomposition provided by SSA with projection is

X = C +
d�∑
i=1

√
λ�

i U
�
i (V �

i )T, (2.12)

where C = Πboth(X) and
∑d�

i=1

√
λ�

i U
�
i (V �

i )T is the SVD of X� = X − C.
It is shown in Golyandina and Shlemov (2017) that (2.12) can be represented

as a sum of elementary matrices of rank 1. The matrix C can be considered as
a sum of q + p elementary matrices of the forms σ

(r)
i P̃iQ

T
i , i = 1, . . . , q , and

σ
(c)
i PiQ̃

T
i , i = 1, . . . , p. The triples (σ

(r)
i , P̃i ,Qi) and (σ

(c)
i , Pi , Q̃i ) have the

same meaning as eigentriples. For double projection, this representation depends
on the order of projections; we will apply the row projector first. Therefore, the
decomposition (2.12) can be transformed into a decomposition of X into a sum of
q + p + d� elementary rank-one matrices, which are orthogonal with respect to the
Frobenius norm ‖ · ‖, by construction. As a consequence, the contribution of the
projection term C into the decomposition is measured by ‖C‖2/‖X‖2.

Thus, (2.12) is a decomposition of X on elementary matrix components unam-
biguously defined. Reconstruction stage is exactly the same as in the Basic SSA
method. Note that it has little sense to include the eigentriples produced by
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projections to different groups, since the projections are performed on the subspaces
as a whole. It follows from Golyandina and Shlemov (2017; Lemma 1) that the rank
d� of the matrix X� obtained after projection cannot be larger than the rank of the
original matrix X and can not be smaller than rankX − (q + p).

When we use projections, we should expect some specific form for one of the
series component. For example, to extract a sine wave using projections, we should
know its period, and to extract exponential trend, we should know its rate. These
conditions are often too restrictive. A clear exception is extraction of the polynomial
trends, when we should assume only the degree of the polynomial to define its
trajectory space.

Note finally that SSA with projection can be applied in the shaped version, when
the series has gaps.

2.3.2 Appropriate Time Series

For SSA with projection, a known series component with a trajectory matrix Y
should be in agreement with projections so that Πcol(Y) = Y for the column
projection, Πrow(Y) = Y for the row projection, and Πboth(Y) = Y for the double
projection.

Clearly, for column and row projections, this is true if the corresponding
projection is performed on the column or row trajectory space of the known series
component. For example, the trajectory space of an exponential component sn = μn

spans (1, μ, . . . , μL)T, while the trajectory space of the linear function sn = an+b

spans (1, 1, . . . , 1)T and (1, 2, . . . , L)T for any a and b.
Let us introduce a condition sufficient for Πboth(X) = X to hold for the general

case of the double projection.
Recall that a series governed by an LRR, whose characteristic polynomial has

the given set of roots called characteristic roots, is of the form (1.9).

Theorem 2.1 (Golyandina and Shlemov (2017)) Let series Y(m), m = 1, 2, be
governed by minimal LRRs of orders rm, Y(m) be their trajectory matrices. Denote
{μj ; j = 1, . . . , s} the set containing the characteristic roots of both series.
Assume that Y(m), m = 1, 2, have the signal roots μj , j = 1, . . . , s, with

multiplicities d
(m)
j ≥ 0,

∑s
j=1 d

(m)
j = rm. Let Πcol be the projector on the column

space of Y(1), Πrow be the projector on the row space of Y(2), Πboth be given
in (2.11). Then Πboth(X) = X if and only if the set of characteristic roots of the
series X consists of the roots μj , j = 1, . . . , s, of multiplicities dj ≤ d

(1)
j + d

(2)
j .

Corollary 2.1 Let Y be a series of dimension r , Y be its trajectory matrix, Πrow
be the projector on its row trajectory space, Πcol be the projector on its column
trajectory space. Consider the series X with xn = (an + b)yn. Then Πboth(X) = X.

Remark 2.1 Note that multiplication by an + b means that the multiplicities of the
characteristic roots increase by 1.
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Since for polynomial trends of a degree k there is the unique characteristic root
equal to 1 of multiplicity k+1 (Golyandina et al. 2001; Example 5.3) and we should
assume only the degree of the polynomial trend to obtain its trajectory space, this
case is of particular interest.

Corollary 2.2 Let Πrow be the projection on the row trajectory space of the
polynomial of order m, Πcol be the projection on the column trajectory space of
the polynomial of order k. Then for the polynomialX = Pm+k+1 of order m+ k + 1
we have Πboth(X) = X.

It immediately follows from the projection definition that in the conditions of
Corollary 2.2, for any polynomial X = Pm of degree m we have Πrow(X) = X and
for any polynomialX = Pk of degree k we have Πcol(X) = X.

2.3.3 Separability

We can expect that if the bases of the spaces to be projected to are chosen properly
(for example, if an LRR governing a time series component is known), then SSA
with projection improves the resultant decomposition, in comparison with Basic
SSA.

Using the notion of separability, we can formulate this improvement as follows.
Let X = X

(1) + X
(2). We will say that a time series component X(1) is separated

by SSA with projection if its trajectory matrix X(1) coincides with C, where C
is as in (2.12). Therefore, separability by SSA with projection means that the
series componentX(1) can be reconstructed by projecting components of the matrix
decomposition (2.12) only.

Let X(1) be a series of finite rank, X = X
(1) + X

(2). Similar to Golyandina
et al. (2001; Sections 1.7.1 and 6.3), where conditions for separability by SSA with
centering are considered, the following conditions of separability can be obtained:

1. Basic SSA: X(1) and X
(2) are separable if (if and only if, by the definition) their

row and column spaces are orthogonal.
2. SSA with row projection on the row space of X(1): X(1) and X(2) are separable if

their row spaces are orthogonal.
3. SSA with column projection on the column space of X(1): X(1) and X

(2) are
separable if their column spaces are orthogonal.

4. SSA with double projection on the row and column space of Y, where X(1) and
Y are such that x

(1)
n = (an + b)yn, a 
= 0: X(1) and X

(2) are separable by SSA
with double projection if Y and X(2) are separable by Basic SSA.

For an approximate separability X(1) ≈ C, we need an approximate orthog-
onality. Also, an asymptotic separability and the rate of convergence can be
considered by analogy with the conventional separability for Basic SSA and SSA
with centering.
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Recall that the usual double centering in SSA corresponds to a constant series
Y and therefore a linear series X(1). Orthogonality to a constant series is a much
weaker condition than that to a linear series. Therefore, for extraction of a linear
trend the use of double centering is recommended.

We can expect that in the case of a polynomial trend, SSA with double centering
can work better than SSA with row or column centering and also than Basic SSA.

Also, the separability conditions imply that for extraction of polynomial trends
double projection can be used for better separability and therefore the result can
be more accurate than the ordinary least-squares polynomial regression provides;
see Golyandina et al. (2001; Section 1.7.1) and Golyandina and Shlemov (2017)
containing comparison with least-squares regression estimates.

It is important that separability of SSA with projection, if it takes place, is always
strong, since the elementary components, which are produced by the projection,
precede the SVD components, by construction of the decomposition.

2.3.4 Algorithm

Algorithm 2.4 SSA with projection: decomposition
Input: Time series X of length N , window length L, orthonormal basis of the column projection

space {Pi, i = 1, . . . , p} and orthonormal basis of the row projection space {Qi, i =
1, . . . , q}. Either p or q can be zero.

Output: Decomposition of the trajectory matrix on elementary matrices X = X1+ . . .+Xd , where
Xi = σiUiV

T
i are either zero or rank-one matrices.

1: Construct the trajectory matrix X = TSSA(X).
2: Subtract the row projection: X′ = X − Crow, where

Crow = Πrow(X) =
q∑

i=1

σ
(r)
i P̃iQ

T
i ,

σ
(r)
i = ‖XQi‖, P̃i = XQi/σ

(r)
i if σ

(r)
i > 0; otherwise, P̃i is the zero vector.

3: Subtract the column projection: X� = X′ − Ccol, where

Ccol = Πcol(X′) =
p∑

i=1

σ
(c)
i PiQ̃

T
i ,

σ
(c)
i = ‖X′TPi‖, Q̃i = X′TPi/σ

(c)
i if σ

(c)
i > 0; otherwise, Q̃i is the zero vector.

4: Construct an SVD of the matrix X�: X� = ∑d�

i=1X
�
i , where X

�
i = √

λ�
i U

�
i (V �

i )T.

5: As a result, X = ∑d
i=1Xi , where d = q + p + d� , Xi = σ

(r)
i P̃iQ

T
i for i = 1, . . . , q,

Xi+q = σ
(c)
i PiQ̃

T
i for i = 1, . . . , p, and Xi+q+p = √

λ�
i U

�
i (V �

i )T for i = 1, . . . , d�.
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Algorithm 2.5 SSA with projection: reconstruction

Input: DecompositionX = X1+. . .+Xd ,Xi = σiUiV
T
i , number q of row-projection components,

number p of column-projection components, grouping {1, . . . , d} = ⊔m
j=1 Ij , which does not

split the first q + p projection components.
Output: Decomposition of the time series on identifiable components X = X1 + . . . + Xm.
1: Construct the grouped matrix decomposition X = XI1 + . . . + XIm , where XI = ∑

i∈I Xi .
2: Compute X = X1 + . . . + Xm, where Xi = T−1

SSA ◦ ΠH(XIi ).

The only essential difference with the reconstruction by Basic SSA is that the set
of the matrices Xi , i = 1, . . . , q + p, produced by projections, should be included
to the same group.

2.3.5 SSA with Projection in RSSA

2.3.5.1 Description of Functions

In RSSA, Basic SSA with projection is a special case of Basic SSA, hence ssa

function should be used with additional arguments that would specify column and
row projection bases. The meaning of all other arguments is the same as described
in Sect. 2.1.5. A typical call is as follows:

s <- ssa(x, L = (N + 1) %/% 2, neig = NULL,
kind = "1d-ssa", svd.method = "auto",
column.projector = "centering",
row.projector = "centering")

where N is the series length.
Arguments:

column.projector, row.projector Each may be a matrix of orthonormal basis
of the projection subspace, or a single integer, which will be interpreted as the
dimension of the orthogonal polynomial basis (note that the dimension equals
to the degree of the basis plus 1, e.g. the quadratic basis has dimension 3), or
one of following character strings: "none", "constant" (or "centering"),
"linear", "quadratic," or "cubic" for orthonormal bases of the corre-
sponding polynomial series.

The ssa call when both projectors are set to "none" corresponds to ordinary Basic
SSA, column.projector = "centering" (or, the same, column.projector=1)
corresponds to Basic SSA with centering, column.projector = "centering"

and row.projector = "centering" corresponds to Basic SSA with double
centering. The mode kind = "toeplitz-ssa" is unavailable for any choice of
projections.

Note that the special triples generated by projections are included into the whole
set of triples produced by the adaptive decomposition used. In RSSA, all the triples
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are named eigentriples for uniformity. The first nspecial(s) triples correspond
to projections. Hence, reconstruction by groups = list(1:nspecial(n)) corre-
sponds to reconstruction of the projection term. For example, for double centering
mode, one obtains a linear trend estimation.

2.3.5.2 Typical Code

Let us consider the example “CO2” (Mauna Loa Atmospheric CO2 Concentration).
It seems that for such kind of time series, many methods can yield very similar
results. Basic SSA provides very natural way for trend extraction, it is demonstrated
in Golyandina and Korobeynikov (2013), where the choice L = 120, ET 1, 4 was
considered.

Fragment 2.3.1 demonstrates the code, which allows to perform reconstruction
by means of SSA with projection.

Fragment 2.3.1 (“CO2”: SSA with Projection)

> s2 <- ssa(co2, column.projector = "centering",
+ row.projector = "centering")
> plot(reconstruct(s2, groups =
+ list(Linear.trend = seq_len(nspecial(s2)))),
+ add.residuals = FALSE, plot.method = "matplot")
> s4 <- ssa(co2, column.projector = 2, row.projector = 2)
> plot(reconstruct(s4, groups =
+ list(Trend = seq_len(nspecial(s4)))),
+ add.residuals = FALSE, plot.method = "matplot")
> plot(s4, type = "vectors", idx = 1:12)
> r <- reconstruct(s4,
+ groups =
+ list(Signal = c(seq_len(nspecial(s4)), 5:8)))
> plot(r, plot.method = "xyplot")

We start with extraction of linear trend and therefore choose column.projector
= "centering", row.projector = "centering" to perform SSA with double
centering. Note that the same choice of projectors can be achieved by setting
column.projector and row.projector equal to 1, where 1 is the dimension of
the trajectory space of a polynomial series of degree 0; that is, of a constant series.
Recall that the choice column.projector = p, row.projector = q corresponds
to extraction of a polynomial trend of degree p + q − 1. To select all the
projection components in the decomposition s2 for extraction, we set the trend
group consisting of the first nspecial(s2) components. The extracted trend is close
to linear, see Fig. 2.9. Certainly, the accurate trend of “CO2” series is not linear.

To extract a more accurate trend, let us choose other subspaces for projections,
column.projector = 2 and row.projector = 2, to extract a trend, which is
close to a cubic polynomial. Figure 2.10 shows that the extracted trend is quite
accurate. This trend is very similar to that in Golyandina and Korobeynikov
(2013), which was extracted by Basic SSA. Note that in this example the trend
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Fig. 2.9 “CO2”: Reconstruction of linear trend
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Fig. 2.10 “CO2”: Reconstruction of the cubic trend

is approximated by a sum of two exponentials in Basic SSA (ET1,4 for L = 120)
and a polynomial of order 3 in SSA with projection; both approximations have four
parameters and achieve similar accuracy.

Note that SSA with projection allows us to extract not only a trend but also other
kinds of series components, similar to what Basic SSA does. Figure 2.11 presents
graphs of eigenvectors for the “CO2” example. The first two components contain
two vectors produced by projecting rows on the row projection space and the next
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Eigenvectors
1 (99.94%) 2 (0.05%) 3 (0%) 4 (0%)

5 (0%) 6 (0%) 7 (0%) 8 (0%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 2.11 “CO2”: 1D graphs of eigenvectors

two components contain a basis of the column space (two linear functions here).
Other graphs show singular vectors of the matrix X′′ obtained by subtraction of
the projection matrices. Choice of the trend components ET1–4 and the seasonality
components ET5–8 leads to the signal extraction depicted in Fig. 2.12.

2.3.5.3 Simulated Examples: Polynomial Regression

Here we consider an example showing the difference between SSA with projection
and the least-squares parametric regression for polynomial trend extraction. Let us
take a polynomial trend tn = 10(n/N − 0.5)5 of order 5, xn = tn + sin(2πn/10),
where N = 199 and n = 1, . . . , N .

Projections, which keep a polynomial of degree 5, can be composed in different
ways. It can be purely either column or row projection on the 6-dimensional
polynomial trajectory space. Also, a double projection can be considered. For
example, we can take both row and column projections on the row and column
trajectory spaces of a polynomial of degree 2 (and of dimension 3). By Corollary 2.2,
this double projection with k = m = 2 keeps polynomial of degree 5.
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Fig. 2.12 “CO2”: Reconstruction of signal

SSA with projection for neither choice provides approximate separability of the
polynomial trend from a sinusoid. However, in view of the separability conditions
we can expect that the choice k = m = 2 probably corresponds to the best accuracy.

Fragment 2.3.2 (Polynomial Trend: SSA with Projection)

> N <- 199
> tt <- (1:N) / N
> r <- 5
> F0 <- 10 * (tt - 0.5)^r
> F <- F0 + sin(2 * pi * (1:N) / 10)
> L <- 100
> dec <- ssa(F, L = L, column.projector = 3, row.projector = 3)
> rec1 <- reconstruct(dec, groups =
+ list(Trend = seq_len(nspecial(dec))))
> fit1 <- rec1$Trend
> fit1_3b <- lm(fit1 ~ poly((1:N), r, raw = TRUE))
> fit3b <- lm(F ~ poly((1:N), r, raw = TRUE))
> li <- 1:199
> d <- data.frame(Initial = F[li],
+ dproj = fit1[li],
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+ dproj_reg = predict(fit1_3b)[li],
+ regr = predict(fit3b)[li], trend = F0[li])
> xyplot(as.formula(paste(paste(colnames(d), collapse = "+"),
+ "~", "1:nrow(d)")),
+ data = d,
+ type = "l", ylab = "", xlab = "",
+ lty = c(1, 1, 1, 1, 1), lwd = c(1, 2, 2, 2, 2),
+ auto.key = list(columns = 3,
+ lines = TRUE, points = FALSE))

We compare the following trend estimations (see Fragment 2.3.2). First, we set
L = 100 and consider the trend obtained by double projection with k = m = 2 (this
is called “dproj”). Then, we find the least-squares polynomial regression of order 5
for the initial series (“regr”) and for “dproj” (“dproj_regr”).

If L and K are divisible by the period, then the separability accuracy is better
and the result is in a sense unbiased. Least-squares polynomial regression of order 5
does not estimate the polynomial trend in the meaning considered in this example
as it minimizes the prediction mean square error, by the definition.

The results are presented in Fig. 2.13. SSA with double projection extracts the
trend approximately with visible mixture with the sine-wave component. However,
these oscillations are around the proper trend. Least-squares polynomial regression
of order 5 applied to the result of double projection confirms it.

Least-squares parametric regression provides a poor estimator of trend in the
considered example. For longer time series the difference is not so dramatic and the
trend estimates are closer.
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Fig. 2.13 Polynomial trend: Comparison of trend reconstructions
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2.4 Iterative Oblique SSA

For reasonably long time series lengths and moderate noise levels, interpretable
components such as trends, oscillations, and noise are approximately separable by
Basic SSA (Golyandina et al. 2001; Sections 1.5 and 6.1). However, the conditions
of approximate separability can be restrictive, especially, for short time series.

Orthogonality of subseries, which is the main condition for separability in Basic
SSA, see Sect. 2.1.3, can be a strong limitation on the series which we want to
separate. However, if we consider orthogonality with respect to a non-standard
Euclidean inner product, conditions of separability are considerably weaker. This
approach yields the method called Oblique SSA (O-SSA) with the SVD performed
in a non-orthogonal coordinate system at Decomposition step. The idea of Oblique
SSA is similar to that of prewhitening which is frequently used in statistics as
preprocessing: if we know covariances between components, then we can perform
linear transformation and obtain uncorrelated components. Since the “covariances”
of the components are not known in advance, an iterative method called Iterative
Oblique SSA can be used. Also, the method is able to change contributions of the
components in a specific way so that their strong separability will most likely to be
improved.

2.4.1 Method

2.4.1.1 Use of Oblique SVD

Although many interpretable series components like trend (a slowly varying
component) and seasonality are asymptotically orthogonal, for a given time series
length the orthogonality can be unreachable even approximately. Therefore, it would
be helpful to weaken the orthogonality condition. Oblique SSA uses different
orthogonality, which still means the equality of an inner product to 0, but this time
a non-standard inner product is used; this inner product is adapted to the time series
components, which we want to separate.

It is well-known that any inner product in the Euclidean space is associated with
a symmetric positive-definite matrix A and is defined as 〈X1,X2〉A = (AX1,X2).
The standard inner product corresponds to the use of the identity matrix as A. The
notion of inner product implies the notion of A-orthogonality: two vectors X1 and
X2 are A-orthogonal if 〈X1,X2〉A = 0. If the matrix A is semi-definite, then it
defines the inner product in its column space (also, in the row space which is the
same in view of symmetry). While considering 〈X1,X2〉A, we will always assume
that the vectors X1 and X2 belong to the column space of A.

The non-standard Euclidean inner products induce such notions as oblique
coordinate systems, orthogonality of vectors, which are oblique in the ordinary
sense, and so on.
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Let us consider an elementary example. Let X = (1, 2)T and Y = (1, 1)T. These
two vectors are not orthogonal in the usual sense as (X, Y ) = 3. However, if we
define

A =
(

5 −3
−3 2

)
, (2.13)

then 〈X,Y 〉A = (AX,Y ) = 0 and (OAX,OAY ) = 0 for anyOA such thatOT
AOA =

A, e.g.,

OA =
(

1 −1
−2 1

)
.

This means that {X,Y } is an orthogonal basis with respect to the A-inner product
〈·, ·〉A and the matrix OA defines the orthogonalizing map. The matrix A can be
chosen in such a way that X and Y have any given A-norms. The choice (2.13)
corresponds to A-orthonormality.

To describe Oblique SSA, let us introduce the SVD of a matrix X produced by
two oblique bases, L-orthonormal and R-orthonormal correspondingly, in the row
and column spaces.

Definition 2.5 We say that

X =
d∑

i=1

σiPiQ
T
i (2.14)

is the (L,R)-SVD, if {Pi}di=1 is an L-orthonormal system and {Qi}di=1 is an R-
orthonormal system; that is, the decomposition is (L,R)-biorthogonal.

This kind of SVD is called Restricted SVD (RSVD) given by the triple (X,L,R),
see De Moor and Golub (1991) for details. The mathematics related to inner
products 〈·, ·〉A with positive-semidefinite matrix A and the corresponding RSVD
is shortly described in Golyandina and Shlemov (2015; Appendix A) from the
viewpoint of decompositions into a sum of elementary matrices.

Oblique SSA (O-SSA) is a modification of the Basic SSA method described in
Sect. 2.1, where the standard SVD at Decomposition step is replaced by the (L,R)-
SVD for some matrices L and R. We will use all the notions related to Basic SSA
for this oblique modification.

IfL andR are the identity matrices, then Oblique SSA coincides with Basic SSA,
σi = √

λi , Pi = Ui , and Qi = Vi .
Computationally, oblique SVD is straightforwardly reduced to the ordinary SVD

(see Golyandina and Shlemov (2015; Proposition 4)) and therefore its calculation
does not require special numerical techniques, see Algorithm 2.6.
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2.4.1.2 Nested Oblique SSA

Unlike the ordinary SVD, the SVD with respect to a non-orthogonal coordinate sys-
tem provides a matrix approximation which does not have obvious approximation
properties. This implies that Oblique SSA is not a good tool for extraction of the
leading components, in particular, for extraction of the signal and for denoising.

Therefore, we suggest to use Oblique SSA in the nested way. The approach
is somewhat similar to factor analysis, where a factor space can be estimated by
principal component analysis and then interpretable factors are extracted from the
factor space.

Suppose that in a particular application Basic SSA is able to extract the signal
but is not able to separate the signal components. For example, let the time series
consist of a noisy sum of two sinusoids with close frequencies. Then Basic SSA
can perform the denoising but it is unlikely that it will be able to separate these
sinusoids. Hence Basic SSA should only be used for estimation of the subspace
of the sum of sinusoids and then some other method is advised to be employed
for separating the sinusoids. Note that the nested approach is similar to the refined
grouping used in Golyandina and Zhigljavsky (2013; Section 2.5.4) for the SSA-
ICA and Golyandina and Lomtev (2016) for the SSA-AMUSE algorithms, which
use ideas taken from independent component analysis.

Thus, let us apply Basic SSA with proper parameters and let a matrix decom-
position X = XI1 + . . . + XIp be obtained at Grouping step of Basic SSA; each
group corresponds to a separated time series component. Let the sth group I = Is be
chosen for a refined decomposition.DenoteY = XI , r = rankY,Y = T−1◦ΠH(Y)

the series obtained from Y by diagonal averaging.
Let us describe the scheme of Nested Oblique SSA. The aim of the nested

scheme is obtaining a refined decomposition of Y = XI in the matrix form
Y = Y(1) + . . .+Y(l), using the (L,R)-SVD and therefore getting a decomposition
of the corresponding time series Y = Ỹ

(1) + . . . + Ỹ
(l).

For correctness of the scheme, we should assume that the matrices L and R are
consistent with Y; that is, the column space of Y is a subset of the column space of
L and the row space of Y is a subset of the column space of R.

Nested O-SSA is very similar to Basic SSA; the difference is that there is no
Embedding step and that the matrix XI , which is not necessarily a Hankel matrix,
is used instead of the conventional trajectory matrix.

At Decomposition step, we construct the (L,R)-SVD of Y in the form

Y =
r∑

i=1

σiPiQ
T
i , (2.15)

see Algorithm 2.6.
The rest of the method coincides with Reconstruction stage of Basic SSA. After

Grouping step, we obtain the decomposition Y = YJ1 + . . . + YJl and then, as
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a result, the refined series decomposition Y = Ỹ
(1) + . . . + Ỹ

(l), where Ỹ
(m) =

T−1 ◦ ΠH(YJm).
Therefore, after application of Nested O-SSA to the group Is , we obtain the

following decomposition of the original series X:

X = X̃
(1) + . . . + X̃

(p), where X̃(s) = Ỹ
(1) + . . . + Ỹ

(l).

For simplicity, below we will consider the case l = 2.

2.4.1.3 Iterative Approach to O-SSA

Let us describe an iterative version of Nested O-SSA; that is, an iterative algorithm
for obtaining appropriate matrices L and R for the (L,R)-SVD of XI . For proper
use of nested decompositions, we should expect that the matrix XI is close to a
rank-deficient trajectory matrix of rank r .

To explain the main principle of the method, assume thatXI = Y is the trajectory
matrix of Y. Let Y = Y

(1) +Y
(2) and the trajectory matrices Y1 and Y2 be of ranks

r1 and r2, r1 + r2 = r . Then by Golyandina and Shlemov (2015; Theorem 1) there
exist r-rank separating matrices L∗, R∗ of sizes L × L and K × K correspondingly
and a partition {1, . . . , r} = J1 � J2 such that we can perform the proper grouping
in the (L∗,R∗)-SVD and thereby obtain YJ1 = Y1 and YJ2 = Y2.

The separating matrices L∗ and R∗ are unknown as they are determined by
unknown trajectory spaces of Y

(1) and Y
(2). Therefore, we want to construct

a sequence of (L,R)-SVD decompositions (2.14), which in the limit gives the
required separating decomposition.

Let us have an initial (L(0),R(0))-SVD decomposition of Y and group its
components to obtain some initial estimates Ỹ

(1,0) and Ỹ
(2,0) of Y(1) and Y

(2).
Then we can use the trajectory spaces of Ỹ(1,0) and Ỹ

(2,0) to construct the new
inner product which is expected to be closer to the separating one. Therefore, we
can expect that Ỹ(1,1) and Ỹ

(2,1) will be closer to Y
(1) and Y

(2) and therefore we
take their trajectory spaces to construct a new inner product; and so on. Of course, if
the initial decomposition is strongly separating, then we obtain Ỹ

(m,1) = Ỹ
(m,0) =

Y
(m), m = 1, 2.

2.4.1.4 Basic Iterative Algorithm

We call the iterative version of Nested Oblique SSA Iterative Oblique SSA or
Iterative O-SSA.

As before, we consider a nested O-SSA whose input is the matrix Y = XI of
rank r . For Basic SSA and for nested O-SSA, a partition of eigentriple numbers for
grouping is made after Decompositions stage. For Iterative O-SSA, a partition I =
J̃1 � J̃2, rm = |J̃m|, should be specified in advance, since iterations are performed
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in an automatic mode. Certainly, the choice of partition is not made in dark since
before the use of a nested version, we have a full decomposition which we use for
choosing the group I and its partition.

Iterative O-SSA is made of repeated application of nested O-SSA with recal-
culation of (L(k),R(k)). As any iterative algorithm, Iterative O-SSA should have
initial data (L(0),R(0)) and a stopping rule. Standard stopping rule includes the
maximum number of iterationsM and the precision threshold ε. In Iterative O-SSA,
the algorithm stops if the reconstructed series components Ỹ(m,k), m = 1, 2, change
very little. For a function ρ(·) defining a vector norm, the iterations stop under the
condition max

(
ρ(Ỹ(m,k) − Ỹ

(m,k−1)),m = 1, 2
)

< ε.
Note that since the consistence of (L,R) with Y is needed for a correct (L,R)-

SVD, the initial data (L(0),R(0)) should also be consistent.

Remark 2.2 The initial matrices (L(0),R(0)) together with grouping can be speci-
fied so that the initial decomposition is a part of the SVD (2.3) given by the set of
indices I and I = J̃1 � J̃2, where J̃1 and J̃2 are chosen on the base of analysis of
the components in (2.3). Since (2.3) is biorthogonal, L(0) and R(0) are the identity
matrices. It is convenient to denote by J1 and J2 the sets consisting of ordinal indices
of the elements of J̃1 and J̃2 in I . Thereby, {1, . . . , r} = J1 � J2. For example, if
J̃1 = {11, 14} and J̃2 = {12, 18}, then I = {11, 12, 14, 18}, J1 = {1, 3} and
J1 = {2, 4}.

To finalize the Iterative O-SSA method, we present a formal description of
iterations. The separating decompositionY = Y1 +Y2 should satisfy the following
properties:

(a) Y1 and Y2 are Hankel;
(b) rankY1 = r1, rankY2 = r2;
(c) the column and row spaces ofY1 and Y2 lie in the column and row spaces of Y;
(d) Y1 and Y2 are (L,R)-biorthogonal for L = L∗ and R = R∗.

Define Πcol the orthogonal projection operator (for the Euclidean norm) on the
column space of Y, Πrow the projection operator on the row space of Y. The nested
group is the ordered union I = J̃1 � J̃2, rm = |J̃m|, J1 and J2 are defined in
Remark 2.2; the pair of matrices (L(k−1),R(k−1)) is the input for the kth iteration.

Let us formulate the kth iteration steps.

(A) To obtain Hankel matrices, we perform hankelization of the input decomposi-
tion Ỹm = ΠHY(k−1)

Jm
, m = 1, 2.

(B) Then, to obtain a low-rank approximation of ranks r1 and r2 correspondingly,

we construct the ordinary SVDs Ỹm = ∑dm

i=1

√
λ

(m)
i U

(m)
i (V

(m)
i )T, m = 1, 2,

and take the leading rm terms.
(C) Since we should not fall outside the column space of the input matrix Y (we

consider a nested decomposition), we find the projections Û
(m)
i = ΠcolU

(m)
i

and V̂
(m)
i = ΠrowV

(m)
i for i = 1, . . . , rm, m = 1, 2. Denote

Û(m) = [Û (m)
1 : . . . : Û (m)

rm
], V̂(m) = [V̂ (m)

1 : . . . : V̂ (m)
rm

].
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For the algorithm correctness, we assume that the matrices Û(m) and V̂(m) are
of full rank; otherwise, the algorithm may not work.

(D) Finally, calculate L(k) = (Û†)TÛ† and R(k) = (V̂†)TV̂†, where Û = [Û(1) :
Û(2)] and V̂ = [V̂(1) : V̂(2)], to achieve the (L(k),R(k))-biorthogonality.

The convergence of Ỹ
(1,k) and Ỹ

(2,k) to a proper decomposition is not proved
theoretically. However, looking at the construction scheme, which resembles the
alternating projections, we do expect this convergence, at least if the case chosen is
not too unusual. Numerical experiments confirm the convergence in the majority of
examples. Note also that Iterative O-SSA does not change the separating decompo-
sition; that is, the separating decomposition is a fixed point of the algorithm.

2.4.1.5 Modification with Sigma-Correction

If the initial point (L(0), R(0)) for iterations is not far from the separating pair
(L∗, R∗), then we can expect that the convergence in the algorithm above will
take place, since we are close to the fixed-point value and we can expect that σ

(k)
i

in the (L(k), R(k))-SVDs Y = ∑r
i=1 σ

(k)
i P

(k)
i (Q

(k)
i )T are just slightly changed

during iterations. In general, however, a possible reordering of the decomposition
components between iterations of Iterative O-SSA can interfere with convergence.
The case of J1 = {1, . . . , r1}, when the minimal singular value σr1 of the first
series is kept significantly larger than the maximal singular value σr1+1 of the second
series, would prevent the component reordering and hence improve the convergence.

Let us describe a modification of Iterative O-SSA that provides reordering of
the components, moves them apart and thereby relaxes the problem of component
mixing. In this modification, an adjustment is made for calculation of Û(2) and V̂(2)

at Step (C) of iterations.
Let us choose a parameter 
 > 1. If λ

(1)
r1 < 
2λ

(2)
1 at Step (C), then define

μ = 


√
λ

(2)
1 /λ

(1)
r1 and change Û(2) ← √

μÛ(2), V̂(2) ← √
μV̂(2). To be consistent

with the reordering, set J1 = {1, . . . , r1}, J2 = {r1 + 1, . . . , r}.
Note that if λ

(1)
r1 < 
2λ

(2)
1 , then the adjustment above makes a change in the

order of the matrix components in (2.18), since they are ordered by σ
(k)
i . Hence we

force an increase of the matrix components related to the first series component.
For explanation of how this sigma-correction works, see Golyandina and Shlemov
(2015; Proposition 5).

Remark 2.3 The reordering procedure is made by sequential adjustment of the
component weights and therefore depends on the component enumeration.

Summarizing, the described correction can help to improve convergence and to
provide strong separability of components in the case when only weak separability
takes place.
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2.4.2 Separability

The notion of weak and strong (L,R)-separability, which is similar to the conven-
tional separability described in Sect. 2.1.3, can be introduced. Let X = X

(1) +X
(2),

X be the trajectory matrix of X, X(m) be the trajectory matrices of the series
components, X(m) = ∑rm

i=1 σm,iPm,iQ
T
m,i be their (L,R)-SVDs, m = 1, 2. We

assume that L and R are consistent with X, X(1) and X(2).

Definition 2.6 Let L be fixed. Two series X(1)
N and X

(2)
N are called weakly (L,R)-

separable, if their column trajectory spaces are L-orthogonal and their row trajec-
tory spaces are R-orthogonal; that is, (X(1))TLX(2) = 0K,K and X(1)R(X(2))T =
0L,L.

Definition 2.7 Two series X
(1)
N and X

(2)
N are called strongly (L,R)-separable, if

they are weakly (L,R)-separable and σ1,i 
= σ2,j for any i and j .

The (L,R)-separability of two series componentsmeans L-orthogonality of their
subseries of length L and R-orthogonality of the subseries of length K =N−L+1.
For suitably chosenL andR, the (L,R)-separability is much less restrictive than the
ordinary one. Indeed, Theorem 1 from Golyandina and Shlemov (2015) states that
for series X = X

(1) + X
(2) of rank r , where X(m) is the series of rank rm, m = 1, 2,

and r1 + r2 = r , there exist separating matrices L ∈ RL×L and R ∈ RK×K of
rank r such that the series X(1) and X

(2) are strongly (L,R)-separable. Moreover,
the separating matrices L and R can be explicitly written down.

Denote by {P (m)
i }rmi=1 a basis of the column space of X(m) and by {Q(m)

i }rmi=1 a

basis of the row space of X(m), m = 1, 2; e.g., P (m)
i = Pm,i ∈ RL, Q(m)

i = Qm,i ∈
RK . Define

P = [P (1)
1 : . . . : P (1)

r1
: P

(2)
1 : . . . : P (2)

r2
],

Q = [Q(1)
1 : . . . : Q(1)

r1
: Q

(2)
1 : . . . : Q(2)

r2
].

Then the separating matrices have the form L = (P†)TP† and R = (Q†)TQ†

(compare with Step (D) of the algorithm scheme in Sect. 2.4.1.4).
The condition r1 + r2 = r can be expressed in terms of the characteristic roots.

This condition is satisfied if the sets of the characteristic roots of the series are
disjoint.

Thus, any two times series governed by LRRs with different characteristic roots
can be separated by some (L,R)-SVD for sufficiently large series and window
lengths. This statement is not constructive, since the trajectory spaces of the
separated series should be known for exact separation. However, we can try to
estimate these spaces and therefore improve the separability.

We have already explained how to achieve weak separability. Proposition 5 from
Golyandina and Shlemov (2015) shows how to correct the decomposition to get
strong separability. Denote by I the set of decomposition components corresponding
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to X(1) in a separating (L,R)-SVD

Y =
∑

i

σiPiQ
T
i =

∑
i∈I

σiPiQ
T
i +

∑
i /∈I

σiPiQ
T
i . (2.16)

If in the group I there is a σi , which coincides with a σj from the residual group, then
the SVD decomposition is not unique and therefore the calculated SVD can differ
from the separating SVD (2.16). This situation can be easily avoided as follows: let
us take P̃i = μiPi and Q̃i = νiQi for some μi and νi , then the (L̃, R̃)-SVD

Y =
∑

i

σ̃i P̃i Q̃
T
i

for L̃ = (̃P†)TP̃† and R̃ = (Q̃†)TQ̃† will still be separating; however, σ̃i =
σi/(μiνi) can be made equal to any given numbers by choosing appropriate μi

and νi .
Measures of oblique separability. If Oblique SSA does not separate the

components exactly, a measure of separability is necessary. As stated in Sect. 1.3,
the main measure of separability in Basic SSA is the w-correlation between two
time series: ρw(X,Y) = 〈X,Y〉F/ (‖X‖F‖Y‖F) , where X and Y are the trajectory
matrices of the series.

In Oblique SSA with (L,R)-SVD we then naturally consider ρL,R, which is
similar to ρw and defines the inner product by

〈X,Y〉(L,R) = trace(LXRYT).

Note that if the matricesL andR are not consistent withX andY, then ρL,R takes
into consideration only projections of their columns and rows on the column spaces
of L and R. This means that ρL,R can underestimate the separability inaccuracy.

For Oblique SSA, when only one of two coordinate systems (left or right)
is oblique, the conventional w-correlations between series are more appropriate
measures of separability, since in the case of exact oblique separability we have
both ρw and ρL,R equal to zero.

Another important measure of separability is the closeness of the reconstructed
series components to set of time series of finite rank. This can be measured by the
contribution of the leading rm = |Im| eigentriples into the SVD of the trajectory
matrix X̃(m) of the mth reconstructed series component X̃(m). If we denote λ̃m,i the
squared singular values in the ordinary SVD of X̃(m), then

τrm(X̃(m)) = 1 −
rm∑
i=1

λ̃m,i/‖X̃(m)‖2 (2.17)

can be considered as a characteristic of closeness of themth series to the set of series
of rank rm.
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2.4.3 Algorithms

Let us present the method described in Sect. 2.4 in the form of algorithms. The
method consists of different parts and therefore we describe it as several algorithms.

Let us start with a general algorithm demonstrating howOblique SVD of a matrix
Z can be reduced to an ordinary SVD.

Algorithm 2.6 (L,R)-SVD
Input: Matrix Z ∈ RL×K to decompose and matrices L ∈ RL×L, and R ∈ RK×K of rank r , where

(L,R) is consistent with Z.
Output: The (L,R)-SVD in the form Z = ∑r

i=1 σiPiQ
T
i .

1: Find OL ∈ Rr×L and OR ∈ Rr×K such that OT
LOL = L and OT

ROR = R.
2: Calculate OLZOT

R.
3: Compute the ordinary SVD decomposition OLZOT

R = ∑r
i=1

√
λiUiV

T
i .

4: Set σi = √
λi , Pi = O†

LUi and Qi = O†
RVi , where † denotes pseudo-inverse.

Now we formulate the Iterative O-SSA algorithm. Denote Y = XI , r = rankY,
Y = T−1 ◦ ΠH(Y) the series obtained from Y by the diagonal averaging.

We separate the whole algorithm into two parts. Algorithm 2.7 shows a general
scheme of Iterative O-SSA, but it does not show how to calculate the pair of matrices
(L(k),R(k)) at each iteration. Algorithm 2.8 covers this gap.

Algorithm 2.7 Iterative O-SSA

Input: Decomposition of the L-trajectory matrix X = ∑d
i=1 σiPiQ

T
i of the series X; disjoint sets

of indices J̃1 and J̃2 from {1, . . . , d}; the accuracy tolerance ε; function ρ for calculating the
accuracy; the maximal number of iterations M ; initial matrices (L(0),R(0)) consistent with
Y = XI . The set I = {i1, . . . , ir } is defined as I = J̃1 � J̃2, rm = |J̃m|, r = |I | = r1 + r2, the
sets J1 and J2 are defined in Remark 2.2. This partition produces the decompositions for the
matrices and series: Y = Y(0)

J1
+ Y(0)

J2
and Y = Ỹ

(1,0) + Ỹ
(2,0).

Output: Y = Ỹ
(1) + Ỹ

(2).
1: Set k = 1.
2: Call Algorithm 2.8 for calculation of (L(k),R(k)) consistent with Y.
3: Compute the (L(k),R(k))-SVD of Y by Algorithm 2.6:

Y =
r∑

i=1

σ
(k)
i P

(k)
i (Q

(k)
i )T = Y(k)

J1
+ Y(k)

J2
. (2.18)

4: Obtain the decomposition of the series Y = Ỹ
(1,k) + Ỹ

(2,k), where Ỹ(m,k) = T−1 ◦ΠH(Y(k)
Jm

),
m = 1, 2.

5: If k ≥ M or max
(
ρ(Ỹ(m,k) − Ỹ

(m,k−1)),m = 1, 2
)

< ε, then Ỹ
(m) ← Ỹ

(m,k), m = 1, 2, and
STOP; else k ← k + 1 and go to Step 2.
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Algorithm 2.8 presents the iteration itself, including the sigma-correction, which
may be useful for achieving the strong separability.

Algorithm 2.8 Calculation of (L(k),R(k))

Input: Partition {1, . . . , r} = J1 � J2; rm = |Jm|; pair of matrices (L(k−1),R(k−1)); parameter for
sigma-correction 
 > 1 (if 
 = 0, then the sigma-correction is not performed).

Output: Pair of matrices (L(k),R(k)) for kth iteration.
1: Calculate Ỹm = ΠHY(k−1)

Jm
, m = 1, 2.

2: Construct the ordinary SVDs:

Ỹm =
dm∑
i=1

√
λ

(m)
i U

(m)
i (V

(m)
i )T, m = 1, 2,

(we need the first rm terms only).

3: Sigma-correction (if 
 
= 0): If λ
(1)
r1 < 
2λ

(2)
1 , then define μ = 


√
λ

(2)
1 /λ

(1)
r1 and change

Û(2) ← √
μÛ(2), V̂(2) ← √

μV̂(2). In view of reordering, set J1 = {1, . . . , r1}, J2 = {r1 +
1, . . . , r}.

4: Find the projections Û
(m)
i = ΠcolU

(m)
i and V̂

(m)
i = ΠrowV

(m)
i for i = 1, . . . , rm, m = 1, 2.

Denote

Û(m) = [Û (m)
1 : . . . : Û (m)

rm
], V̂(m) = [V̂ (m)

1 : . . . : V̂ (m)
rm

].

5: Calculate L(k) = (Û†)TÛ† and R(k) = (V̂†)TV̂†, where Û = [Û(1) : Û(2)] and V̂ = [V̂(1) :
V̂(2)].

Remark 2.4 Algorithm 2.7, which uses the sigma-correction, may change the
groups of indices. The new groups in Algorithm 2.8 are constructed in such a way
that J1 and J2 partition the set {1, . . . , r}. The new partition of I is obtained as
J̃1 = {ik ∈ I : k ∈ J1} and J̃2 = {ik ∈ I : k ∈ J2}.
Remark 2.5 Algorithm 2.7 describes a refined decomposition of the matrix XI .
However, we can consider Iterative O-SSA as an algorithm, where the full decom-
position of the trajectory matrix X of an original series X is used (which changes
components from the group I ). The result would also be a full decomposition.

2.4.4 Iterative O-SSA in RSSA

2.4.4.1 Description of Functions

Since Iterative O-SSA is a nested method, the ssa function can be called for
obtaining an ssa object s, see “Description of Function” in Sects. 2.1–2.3, 2.6.
For Iterative O-SSA itself, the function iossa is used. Since the result of iossa is
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also an ssa object, which contains the full decomposition, the iossa function can
be applied to the result of another application of iossa.

Let us outline the main arguments of iossa in a typical function call:

ios <- iossa(s, nested.groups = list(c(1,4),7:10), trace = FALSE,
tol = 1e-5, maxiter = 100,
norm = function(x) sqrt(mean(x^2)),
kappa = 2)

Arguments:

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, Basic SSA with projections, Shaped SSA) decomposition.

nested.groups is a list of groups of eigentriples from the full decomposition s;
the list gives the initial grouping for Iterative O-SSA iterations.

tol, maxiter, norm are related to the convergence of iterations: tolerance with
respect to the indicated norm and the number of iterations. Function norm

calculates a norm of a vector; this norm is applied to the difference between
the reconstructed series at sequential iterations and is used for convergence
detection. If this norm is smaller than tol, then iterations stop.

trace indicates whether the convergence process should be traced.
kappa is the “kappa”-parameter for the sigma-correction procedure. If kappa =

NULL, the sigma-correction is not applied.

Note that only s and nested.groups should be set if the default values are
appropriate.

The returning value of the function is an object of ossa class. In addition to usual
ssa object fields, it also contains the following fields:

iossa.result is an object of iossa.result class, a list which contains algorithm
parameters, condition numbers, separability measures, the number of iterations,
and the convergence status.

iossa.groups is a list of groups within the nested decomposition; indices of
components correspond to their indices in the full decomposition.

iossa.groups.all is a list, which describes the cumulative grouping after
sequential Iterative O-SSA decompositions in the case of non-intersecting
groups given by nested.groups. Otherwise, the list iossa.groups.all

coincides with iossa.groups.
ossa.set is a vector of indices of elementary components used in Iterative O-SSA

(that is, used in nested.groups).

To look at weighted oblique correlations of the obtained elementary components,
one can call owcor(ios, groups = ios$ossa.set).

The reconstruct function performs reconstruction as usual. A possible ques-
tion is how to set the groups, which are a part of the result of iossa. A typical call
is

r.ios <- reconstruct(ios, groups = ios$iossa.groups)
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2.4.4.2 Typical Code

Fragment 2.4.1 demonstrates the method on a simulated example. Since Iterative
O-SSA is designed to separate non-orthogonal series components, let us consider
a noisy sum of three sine waves with two of them having close frequencies, see
Fig. 2.14. For achieving separability from noise we assume that the level of noise is
low.

First, we apply Basic SSA. In Fig. 2.15 we see that the signal is contained in
components 1–6 and is separated from noise. Weighted correlations do not show any
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Fig. 2.14 Noisy sum of three sinusoids: The original series
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Fig. 2.15 Noisy sum of three sinusoids, Basic SSA: w-Correlation matrix
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Eigenvectors
1 (32.79%) 2 (31.38%) 3 (18.64%) 4 (16.86%)

5 (0.12%) 6 (0.11%) 7 (0.01%) 8 (0.01%)

Fig. 2.16 Noisy sum of three sinusoids, Basic SSA: Eigenvectors

problem with separability of three groups of components, 1–2, 3–4, 5–6. However
the graph with eigenvectors (Fig. 2.16) shows that the pairs 3–4 and 5–6 are most
likely mixed within the signal. This means that Iterative O-SSA may help.

Fragment 2.4.1 (Noisy Sum of Three Sinusoids: Iterative O-SSA)

> N <- 100
> L <- 50
> omega1 <- 0.07
> omega2 <- 0.065
> omega3 <- 0.15
> sigma <- 0.1
> set.seed(3)
> F <- 2 * sin(2 * pi * omega1 * (1:N)) +
+ sin(2 * pi * omega2 * (1:N)) +
+ 3 * sin(2 * pi * omega3 * (1:N)) + sigma * rnorm(N)
> xyplot(F ~ 1:N, type = "l")
> s <- ssa(F, L)
> plot(s, type = "vectors", idx = 1:8, layout = c(4, 2))
> plot(wcor(s, groups = 1:20), scales = list(at = seq(1,20,2)))
> ios <- iossa(s, nested.groups = list(3:4, 5:6), maxiter = 1000)
> plot(ios, type = "vectors", idx = 1:8, layout = c(4, 2))
> ior <- reconstruct(ios, groups = c(list(1:2), ios$iossa.groups))
> plot(ior, plot.method = "xyplot", add.original = FALSE,
+ add.residuals = FALSE)

Indeed, the reconstruction by Basic SSA has failed, while the nested reconstruc-
tion of the signal components by Iterative O-SSA is successful, see Figs. 2.17
and 2.18. We can apply Iterative O-SSA to the whole signal but the separability
is better if we take only the mixed components 3–6. We choose initial grouping
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Eigenvectors
1 (32.79%) 2 (31.38%) 3 (3.85%) 4 (3.42%)

5 (13.65%) 6 (12.9%) 7 (0.01%) 8 (0.01%)

Fig. 2.17 Noisy sum of three sinusoids, Iterative O-SSA: Eigenvectors
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Fig. 2.18 Noisy sum of three sinusoids, Iterative O-SSA: Reconstruction

list(3:4, 5:6) since these groups look like corrupted pairs; we could have also
chosen list(3:6, 4:5).

For Iterative O-SSA, it is convenient to use automatically generated groups
ios$iossa.groups for grouping within the refined decomposition. The groups
returned by ios$iossa.groups can differ from the groups which were set initially,
especially if the sigma-correction is used (kappa is not zero). In the considered
example, the resulting groups after sigma-correction will be list(3:4, 5:6).

If the problem of lack of conventional weak separability is supplemented by
the problem of lack of strong separability (in the considered example, when the
amplitudes of sinusoids coincide or are close to each other), the use of kappa can
still allow us to achieve the right decomposition.
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Fragment 2.4.2 contains characteristics of the resultant decomposition by Iter-
ative O-SSA. The summary contains measures of quality of the initial and the
final decompositions. One can see that the iterations converged according to a
default tolerance (tol) in 243 iterations. The measure τ defined in (2.17) as a
measure of rank-deficiency of trajectory matrices of the found components has
decreased considerably. Standard w-correlations appear inappropriate as measures
of separability.

Fragment 2.4.2 (Noisy Sum of Three Sinusoids: Iterative O-SSA, Summary)

> print(ios$iossa.groups)
[[1]]
[1] 3 4
[[2]]
[1] 5 6
> summary(ios)
Call:
iossa.ssa(x = s, nested.groups = list(3:4, 5:6), maxiter = 1000)
Series length: 100,Window length: 50, SVD method: eigen
Special triples: 0
Computed:
Eigenvalues: 50, Eigenvectors: 50, Factor vectors: 6
Precached: 0 elementary series (0 MiB)
Overall memory consumption (estimate): 0.0352 MiB
Iterative O-SSA result:

Converged: yes
Iterations: 243
Initial mean(tau): 0.1032
Initial tau: 0.0007976, 0.2055299
I. O-SSA mean(tau): 0.0004452
I. O-SSA tau: 0.0006709, 0.0002196
Initial max wcor: 0.02442
I. O-SSA max wcor: 0.06986
I. O-SSA max owcor: 0.0732

2.4.4.3 Simulated Example: Separability of Sine Waves

Let us add noise to the sum of two sinusoids and take

xn = sin(2πω1n) + A sin(2πω2n) + δεn

with close frequencies ω1 = 0.07 and ω2 = 0.06 and unequal amplitudes, 1 and
A = 1.2. Here εn is white Gaussian noise with variance 1, δ = 1. Let N = 150,
L = 70.

Basic SSA separates well the sinusoids from noise, but cannot separate these
sinusoids from each other. Thus, Iterative O-SSA, applied to the estimated signal
subspace, should be used. We use the sigma-correction with 
 = 2, since the
difference between amplitudes, 1 and 1.2, appears to be small for achieving strong
separability in the presence of noise. We set the initial grouping ET1–2 and ET3–4.
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Let us investigate the dependence of number of iterations on ω1 with fixed ω2 =
0.06. We change ω1 from 0.03 to 0.059 and from 0.061 to 0.1. Fragment 2.4.3
depicts the results.

Fragment 2.4.3 (Dependence of iossa Error on Difference Between Frequen-
cies)

> rowMeansQuantile <- function(x, level = 0.05) {
+ apply(x, 1,
+ function(x) {
+ q <- quantile(x, c(level / 2, 1 - level / 2))
+ x[x < q[1]] <- q[1]
+ x[x > q[2]] <- q[2]
+
+ mean(x)
+ })
+ }
> data("iossa.err", package = "ssabook")
> lseq <- c(seq(0.03, 0.058, 0.002), seq(0.062, 0.1, 0.002))
> iter.real <- rowMeansQuantile(iossa.err$iter.real)
> iter.est <- iossa.err$iter.est
> err1 <- sqrt(rowMeansQuantile(iossa.err$err1))
> err2 <- sqrt(rowMeansQuantile(iossa.err$err2))
> xlab <- expression(omega[1])
> ylab1 <- expression(N[plain(iter)])
> ylab2 <- expression(RMSE)
> p1 <- xyplot(iter.real + iter.est ~ lseq,
+ type = "l", ylab = ylab1, xlab = xlab)
> p2 <- xyplot(err1 + err2 ~ lseq,
+ type = "l", ylab = ylab2, xlab = xlab)
> print(p1, split = c(1, 1, 1, 2), more = TRUE)
> print(p2, split = c(1, 2, 1, 2), more = FALSE)

Figure 2.19 (top) shows the number of iterations for noiseless signal (blue
line) and the estimated mean number of iterations for the noisy signal (red line);
the number of repetitions equals 1000, 5% winsorized estimates of means were
calculated. Note that the number of iterations was limited by 200, although for the
pure signal the convergence was achieved for each ω1 from the considered set. A
surprisingly small number of iterations for the noisy signal and close frequencies
is explained by the convergence to a wrong limit, see Fig. 2.19 (bottom) with root
mean square errors of LS-ESPRIT estimates for ω1 and ω2 based on the subspaces
spanned by eigenvectors from ET1–2 and ET3–4 (see Algorithm 3.3 for the ESPRIT
algorithms). Since we use the nested decomposition, the noise slightly influences the
reconstruction accuracy for the frequencies that are quite different (ω1 smaller than
0.048 and larger than 0.072).
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Fig. 2.19 Dependence of number of iterations (top) and RMSE errors of frequency estimations
(bottom) on ω1 for ω2 = 0.6

2.5 Filter-Adjusted O-SSA and SSA with Derivatives

2.5.1 Method

In this section we describe further variations of SSA that help to overcome the
problem of lack of strong separability of components if weak separability holds.

Recall that the lack of strong separability of two series components is caused
by equal singular values in the sets of the singular values generated by the two
components. In turn, the singular values depend on the coefficientsA1 and A2 in the
representation of the signal as the sum sn = A1s

(1)
n +A2s

(2)
n . The question is how to

change the coefficients A1 and A2 with unknown s
(1)
n and s

(2)
n to make the singular

values different.
It appears that it could be advantageous to use the derivative of the time series

in order to change the coefficients without changing the component subspaces. For
example, if xn = A sin(2πωn + φ), then x ′

n = 2πωA cos(2πωn + φ); that is,
the new coefficient is A′ = 2πωA. For two sinusoids with different frequencies,
derivatives change their amplitudes differently. The derivative of xn = Aeαn also
changes the coefficient before the exponential, since x ′

n = αAeαn, preserving the
rate. For most of the series of finite rank, the derivative subspace coincides with
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the series subspace. The exception is the polynomial series, when the derivative
subspace is a subset of the initial subspace.

As we deal with discrete time, we consider the differences ϕn(X) = xn+1 − xn

instead of derivatives, but this is still an approach that seems to be working well.
For example, for the series X = XN of length N with xn = A sin(2πωn + φ), the
differences give us the series ΦN−1(X) = (ϕ1(X), . . . , ϕN−1(X)) of length N − 1
with ϕn(X) = 2 sin(πω)A cos(2πωn+πω+φ); for xn = Aeαn, we obtain ϕn(X) =
(eα − 1)Aeαn.

Thus, we can combine the initial series and the series of its differences to
change the balance for the component contributions and therefore to reach strong
separability. For sinusoids with small periods, an increase of the sinusoid amplitudes
is large. Therefore, taking derivatives (or differences) increases the contribution of
high frequencies. This can also increase the level of the noise component, if the
series is corrupted by a high-frequency noise. Hence, the nested version of the
method implementation should be employed; in particular, the noise component
should be removed by Basic SSA first.

The approach involving derivatives (that is, sequential differences) can be
naturally extended to considering an arbitrary linear filtration ϕ instead of taking
simple (sequential) differences. We start with the version with derivatives (that is,
differences), since this particular case is simple and has very useful applications.

2.5.1.1 Nested O-SSA with Derivatives (DerivSSA)

Taking the sequential differences changes contributions of the components. There-
fore, the method is inappropriate as an approximation method for signal extraction.
Thus, the suggested method should be applied in a nested manner (see Sect. 2.4.1.2).

Let us formulate the nested version of O-SSA with derivatives called DerivSSA
(Golyandina and Shlemov 2015). As well as in Sect. 2.4.1.2, let L be the window
length, K = N − L+ 1, and Y = XI ∈ RL×K be one of the matrices in the
decompositionX = XI1 + . . . +XIp obtained at Grouping step of Basic SSA; each
group corresponds to a separated time series component and we want to construct a
refined decomposition of Y. As before, denote r = rankY, Y = T−1 ◦ ΠH(Y).

DerivSSA is similar to Basic SSA. Since DerivSSA is applied in a nested manner,
the window length is already chosen. Therefore, DerivSSA adds only one additional
parameter γ , which regulates the contribution of derivatives.

The DerivSSA method consists of decomposition and reconstruction. First we
take sequential differences for each row of Y = [Y1 : . . . : YK ] and hence compute
the matrices Φ(Y) = [Y2 − Y1 : . . . : YK − YK−1] ∈ RL×(K−1) and Z = [Y :
γΦ(Y)]. Then DerivSSA works almost exactly as Basic SSA but it uses Z instead
of the conventional trajectory matrix.

After Decomposition step, we obtain the SVD of Z in the form Z =∑r
i=1

√
λiUiV

T
i . We are interested only in the first K columns in this matrix

decomposition. Since the column space of Z coincides with the column space of
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Y and therefore {Ui}ri=1 is a basis of the column space of Y, we can rewrite the
decomposition as Y = ∑r

i=1 UiU
T
i Y.

The rest of the method coincides with Reconstruction step of Basic SSA. After
Grouping step, we obtain the decomposition Y = YJ1 + . . . + YJl and then, as
a result, the refined series decomposition Y = Ỹ

(1) + . . . + Ỹ
(l), where Ỹ

(m) =
T−1 ◦ ΠH(YJm), m = 1, . . . , l.

The following proposition shows that DerivSSA is a version of Oblique SSA with
a specific pair of matrices (L,R), where Pi = Ui and Qi are normalized vectors
YTUi in (2.15). Denote IM the M × M identity matrix.

Proposition 2.1 (Golyandina and Shlemov (2015)) The left singular vectors of
the ordinary SVD of Z coincide with the left singular vectors of the (IL,R)-SVD of
the input matrix Y, where R is defined by the equality R = IK + γ 2FTF and

F =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠

∈ R(K−1)×K.

2.5.1.2 Filter-Adjusted O-SSA

Note that sequential differences, which are taken for each row of the matrix
Y, can be extended to an arbitrary linear filter of the rows. That is, we can
choose coefficients of a linear filter A = (a1, . . . , at )

T and define Φ(Y) =
[Y ∗

1 , . . . , Y ∗
K−t+1], where Y ∗

i = a1Yi + . . . + atYi+t−1. The rest of the respective
version of SSA is the same as DerivSSA. DerivSSA corresponds to t = 2 and
A = (−1, 1)T.

2.5.2 Separability

Let XN = X
(1)
N + X

(2)
N and X

(1)
N and X

(2)
N be of finite rank and approximately

weakly separable which implies that their row and column trajectory spaces are
approximately orthogonal. The same is then true for ΦN−1(X

(1)) and ΦN−1(X
(2)),

due to the fact that their column spaces belong to the column spaces of X(1)
N and

X
(2)
N , while their row spaces are spanned by the vectors of the same structure that

the vectors constituting bases of the row spaces of X(1)
N and X

(2)
N , except that these

basis vectors have length K − 1 and not K . Therefore, approximate orthogonality
still holds. Since ΦN−1(X) = ΦN−1(X

(1)) + ΦN−1(X
(2)), DerivSSA applied to

(XN, γΦN−1(X)) will approximately separate the time series X(1)
N and X(2)

N .
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Thus, DerivSSA does not worsen weak separability and can achieve strong
separability. It is important to always keep in mind that DerivSSA increases the
contribution of high-frequency components and decreases that for low-frequency
components.

2.5.3 Algorithm

The general algorithm of Filter-adjusted O-SSA is described in two equivalent
forms in Algorithms 2.9 and 2.10. Algorithm 2.9 directly follows the description
of the method given in Sect. 2.5.1, while Algorithm 2.10 is more appropriate for an
effective implementation and for a modification implemented in Algorithm 2.11.

Algorithm 2.9 Filter-adjusted O-SSA: decomposition

Input: Decomposition of theL-trajectory matrixX = ∑
σiPiQ

T
i , group of components I , |I | = r ,

filter coefficients (a1, . . . , at ), weight γ > 0.
Output: Decomposition of Y = XI on elementary matrices Y = Y1 + . . . + Yr , where Yi =

σ ′
i P

′
i (Q

′
i )
T.

1: Form the matrix Y = XI = ∑
i∈I σiPiQ

T
i .

2: Denote Φ(Y) = [Y ∗
1 , . . . , Y ∗

K−t+1], where Y ∗
i = a1Yi + . . . + at Yi+t−1. Construct the matrix

Z = [Y : γΦ(Y)].
3: Compute the SVD of Z: Z = ∑r

i=1
√

λiUiV
T
i .

4: Construct the following decomposition of Y = XI into a sum of elementary matrices: Y =∑r
i=1 UiU

T
i Y.

5: Obtain the decomposition Y = ∑r
i=1 σ ′

i P
′
i (Q

′
i )
T, where σ ′

i = ‖UT
i Y‖, P ′

i = Ui , Q′
i =

UT
i Y/σ ′

i .

Algorithm 2.10 Filter-adjusted O-SSA: decomposition (equivalent)

Input: Decomposition of the trajectory matrix X = ∑
σiPiQ

T
i , group of components I , |I | = r ,

filter coefficients (a1, . . . , at ), weight γ .
Output: Decomposition of Y = XI on elementary matrices Y = Y1 + . . . + Yr , where Yi =

σ ′
i P

′
i (Q

′
i )
T.

1: Form the matrix Y = XI = ∑
i∈I σiPiQ

T
i and compute its thin SVD Y = UrΛ

1/2
r VT

r . Set

S = [S1 : . . . : SK ] = Λ
1/2
r VT

r ∈ Rr×K .
2: Denote Φ(S) = [S∗

1 , . . . , S∗
K−t+1], where S∗

i = a1Si + . . . + atSi+t−1. Construct the matrix

Z = [S : γΦ(S)] ∈ Rr×(2K−t+1).
3: Calculate the rotation matrix Ũ ∈ Rr×r consisting of the eigenvectors of ZZT as columns.
4: Set P̃ = [P̃1 : . . . : P̃r ] = Ur Ũ and Q̃ = [Q̃1 : . . . : Q̃r ] = STŨ.
5: Obtain the decomposition Y = ∑r

i=1 σ ′
i P

′
i (Q

′
i )
T, where σ ′

i = ‖Q̃i‖, P ′
i = P̃i , Q′

i = Q̃i/σ
′
i .

The method introduced in Sect. 2.5.1 has a modification implemented in RSSA,
which can slightly worsen the separability but has an advantage that it orders
the eigentriples corresponding to sine-waves exactly by the decrease of their
frequencies, independently of the values of the sine-wave amplitudes. We will call
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this modification “Filter-adjusted O-SSA with normalization.” The main difference
between Algorithms 2.10 and 2.11 is in the construction of the matrix S at step 1.

Algorithm 2.11 Filter-adjusted O-SSA with normalization: decomposition

Input: Decomposition of the trajectory matrix X = ∑
σiPiQ

T
i , group of components I , |I | = r ,

filter coefficients (a1, . . . , at ), weight γ .
Output: Decomposition of Y = XI on elementary matrices Y = Y1 + . . . + Yr , where Yi =

σ ′
i P

′
i (Q

′
i )
T.

1: Form the matrix Y = XI = ∑
i∈I σiPiQ

T
i and construct its thin SVD Y = UrΛ

1/2
r VT

r . Set
S = [S1 : . . . : SK ] = VT

r ∈ Rr×K .
2: Denote Φ(S) = [S∗

1 , . . . , S∗
K−t+1], where S∗

i = a1Si + . . . + atSi+t−1. Construct the matrix

Z = [S : γΦ(S)] ∈ Rr×(2K−t+1).
3: Calculate the rotation matrix Ũ ∈ Rr×r consisting of the eigenvectors of ZZT as columns.
4: Set P̃ = [P̃1 : . . . : P̃r ] = (UrΛ

1/2
r )Ũ and Q̃ = [Q̃1 : . . . : Q̃r ] = STŨ.

5: Obtain the decomposition Y = ∑r
i=1 σ ′

i P
′
i (Q

′
i )
T, where σ ′

i = ‖P̃i‖, P ′
i = P̃i/σ

′
i , Q

′
i = Q̃i .

Remark 2.6 Algorithms 2.9–2.11 can be extended to the case when several filters
in a stacked manner are applied. For example, if filters Φ1 and Φ2 are given, then
the matrix Z at Step 2 has the forms Z = [Y : γΦ1(Y) : γΦ2(Y)] and Z = [S :
γΦ1(S) : γΦ2(S)], respectively.

The reconstruction algorithm is the same as for most versions of SSA. Since
Filter-adjusted O-SSA (as well as DerivSSA) is a nested method, the result is a
decomposition of a chosen series component rather than a decomposition of the
original series.

Algorithm 2.12 Filter-adjusted O-SSA: reconstruction

Input: Decomposition Y = ∑r
i=1 Yi , where Yi = σ ′

i P
′
i (Q

′
i )
T, grouping I = ⊔l

k=1 Jk .
Output: Refined series decomposition Y = Ỹ

(1) + . . . + Ỹ
(l).

1: Obtain the grouped matrix decomposition Y = YJ1 + . . . + YJl
, where YJ = ∑

j∈J Yj .

2: Obtain a refined series decomposition Y = Ỹ
(1) + . . . + Ỹ

(l), where Ỹ(m) = T−1 ◦ΠH(YJm
),

m = 1, . . . , l.

Remark 2.7 Algorithm 2.12 describes a refined decomposition of the matrix XI .
However, we can consider Filter-adjusted O-SSA as an algorithm, which we apply
to the full decomposition of the trajectory matrix X of an original series X, which
changes components from the group I . Then the result is also a full decomposition
of X.
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2.5.4 Filter-Adjusted O-SSA in RSSA

2.5.4.1 Description of Functions

As in the case of Iterative O-SSA, since Filter-adjusted O-SSA is a nested method,
the ssa function must be called prior to this in order to obtain an ssa object s, see
“Description of function” in Sects. 2.1–2.3, 2.6. For Filter-adjusted O-SSA itself,
the function fossa is used. Since the result of fossa is also an ssa object, which
contains the full decomposition, the fossa and iossa functions can be applied to
the result of another application of fossa.

Let us outline the main arguments of fossa in a typical function call:

fos <- fossa(s, nested.groups = list(2:3, 6:7),
filter = c(-1,1), gamma = 1, normalize = TRUE)

Arguments:

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, Basic SSA with projections, Shaped SSA) decomposition.

nested.groups is a vector of indices of eigentriples from the full decomposition
for the nested decomposition. The argument is coerced to a vector, if necessary.

filter is a list of numeric vectors of reverse impulse response coefficients for filter
adjustment. Value by default c(-1,1) corresponds to DerivSSA, which is the
most common case.

gamma is the weight of filter adjustment; the value Inf corresponds to the removal
of the first part of the matrix Z: Z = Φ(S).

normalize indicates if the modification with normalization is used (see Algo-
rithm 2.11).

Note that for Filter-adjusted SSA, only a group I should be given; the partition
is performed later at Reconstruction step. Therefore, the list of groups, which are
given for the parameter nested.groups, is transformed to a single vector of indices
composing I (compare with iossa). That is, in the considered function call, I =
{2, 3, 5, 6}.

The return value is an object of class ossa. The field ossa.set contains the
vector of indices of elementary components used in Filter-adjusted O-SSA (that
is, used in nested.groups, which is in fact just I ). For example, to look at
weighted oblique correlations of the obtained elementary components, one can call
owcor(fos, groups = fos$ossa.set).

2.5.4.2 Typical Code

This example demonstrates the difference between Filter-adjusted O-SSA and
Iterative O-SSAwith sigma-correction. Let us consider a noisy sum of two sinusoids
with different and not close frequencies (see Fragment 2.5.1). These sinusoids are
approximately separable. However, since the sinusoid amplitudes are equal, there
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is no strong separability and therefore after application of Basic SSA we obtain an
unsatisfactory decomposition, an arbitrary mixture of the sinusoids (the top pictures
of Fig. 2.21 with eigenvectors).

Fragment 2.5.1 (Separation of Two Sine Waves with Equal Amplitudes)

> N <- 100
> L <- 50
> omega1 <- 0.03
> omega2 <- 0.06
> sigma <- 0.1
> set.seed(3)
> F <- sin(2 * pi * omega1 * (1:N)) +
+ sin(2 * pi * omega2 * (1:N)) +
+ sigma * rnorm(N)
> s <- ssa(F, L = L, neig = min(L, N - L + 1)) #full decomposition
> plot(s)
> p1 <- plot(s, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, Basic SSA")
> fos <- fossa(s, nested.groups = list(1:2, 3:4), gamma = 10,
+ normalize = FALSE)
> # The total percent is equal to 100%
> print(sum(fos$sigma^2) / sum(s$sigma^2) * 100)
[1] 100
> p2 <- plot(fos, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, SSA with derivatives")
> ios1 <- iossa(s, nested.groups = list(1:2, 3:4), maxiter = 1)
> # The total percent is not equal to 100%
> print(sum(ios1$sigma^2) / sum(s$sigma^2) * 100)
[1] 99.62939
> p3 <- plot(ios1, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, Iterative O-SSA, 1 iter")
> ios2 <- iossa(ios1, nested.groups = list(1:2, 3:4), maxiter = 1)
> # The total percent is not equal to 100%
> print(sum(ios2$sigma^2) / sum(s$sigma^2) * 100)
[1] 101.7544
> p4 <- plot(ios2, type = "vectors", idx = 1:4, layout = c(4, 1),
+ main = "Eigenvectors, Iterative O-SSA, 2 iter")
> plot(p1, split = c(1, 1, 1, 4), more = TRUE)
> plot(p2, split = c(1, 2, 1, 4), more = TRUE)
> plot(p3, split = c(1, 3, 1, 4), more = TRUE)
> plot(p4, split = c(1, 4, 1, 4), more = FALSE)
> fo.rec <- reconstruct(fos, groups = list(1:2, 3:4))
> pr1 <- plot(fo.rec, plot.method = "xyplot",
+ main = "SSA with derivatives", xlab = "")
> io.rec <- reconstruct(ios2, groups = ios2$iossa.groups)
> pr2 <- plot(io.rec, plot.method = "xyplot",
+ main = "Iterative O-SSA", xlab = "")
> plot(pr1, split = c(1, 1, 1, 2), more = TRUE)
> plot(pr2, split = c(1, 2, 1, 2), more = FALSE)
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Fig. 2.20 Noisy sum of sinusoids: Graph of eigenvalues for Basic SSA

To apply a nested version of Oblique SSA, we should start with the signal
subspace extraction. Figure 2.20 confirms that the signal is contained in eigentriples
1–4, since the corresponding eigenvalues are considerably larger than the eigenval-
ues of the residual components.

Thus, we apply SSA with derivatives to the group ET1–4, taking a large enough
γ = 10. The eigenvectors become regular (Fig. 2.21, top) and the reconstruction is
accurate (Fig. 2.22, top).

The Iterative O-SSA algorithm is designed to improve weak separability. Let us
also use its ability to change component contribution during iterations by means
of the sigma-correction. One can see that one iteration slightly improves the
decomposition, while the second iteration provides almost ideal decomposition (see
Fig. 2.21 with eigenvectors and Fig. 2.22 with reconstruction).

Comparing the results in this example, we see that among the versions of the two
methods with the same computational cost, DerivSSA is better; however, one more
iteration in Iterative O-SSA makes Iterative O-SSA advantageous to DerivSSA.

Let us draw attention to different order of the sinusoids in the reconstructions
(Fig. 2.22). The order of components produced by DerivSSA is explained by an
increase of contribution of high frequencies due to taking the differences, while the
order of components in Iterative O-SSA is more or less random in this example.
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Eigenvectors, Basic SSA
1 (29.05%) 2 (27.99%) 3 (21.7%) 4 (20.54%)

Eigenvectors, SSA with derivatives
1 (23.47%) 2 (24.88%) 3 (26.27%) 4 (24.65%)

Eigenvectors, Iterative O−SSA, 1 iter
1 (22.55%) 2 (23.81%) 3 (25.92%) 4 (26.62%)

Eigenvectors, Iterative O−SSA, 2 iter
1 (26.29%) 2 (25.21%) 3 (25.27%) 4 (24.25%)

Fig. 2.21 Noisy sum of sinusoids: 1D graphs of eigenvectors for Basic SSA (top), DerivSSA
(middle) and Iterative O-SSA, 1 iteration (second from bottom) and 2 iterations (bottom)

For DerivSSA, the decomposition is F-orthogonal and therefore the contributions
of series components are correct. IterativeO-SSAmay have the sum of contributions
different from 100%. This is exactly the case in our example, see the last warning
message:

In .contribution(x, idx, ...): Elementary matrices are not

F-orthogonal (max F-cor is -0.016). Contributions can be

irrelevant.
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Fig. 2.22 Noisy sum of sinusoids: Reconstructions for DerivSSA (top) and Iterative O-SSA, 2
iterations (bottom)

2.6 Shaped 1D-SSA

2.6.1 Method

Shaped SSA is a very general SSA method. Formally, any other SSA method can
be considered as a particular case of Shaped SSA. For multivariate extensions, the
versions of Shaped SSA, which cannot be reduced to conventional SSA, have many
different applications. For one-dimensional time series, Shaped SSA is particularly
useful when the time series contains gaps as in this case the versions of 1D-SSA
considered above are not directly applicable.

The specificity of Shaped SSA is in the construction of the L-trajectory matrix,
which we denote X̃ = TshSSA(X). This matrix is constructed so that its columns are
the complete L-lagged vectors. Any incomplete lagged vectors containing missing
values are not included into TshSSA(X).
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Denote the set of series elements, which are presented in the trajectory matrix
X̃, as N; that is, N is the set of non-missed elements of X, which are covered
by windows of length L. The operator TshSSA makes a one-to-one correspondence
between a restriction of the series to N and the set of trajectory matrices, if the
location of the missing data is fixed.

The SSA decomposition is performed by any technique (excluding Toeplitz SSA)
described in Sects. 2.1–2.5 including nested Iterative O-SSA and Filter-adjusted O-
SSA. All these SSA decompositions, except for Toeplitz SSA, are eligible tools
since construction of the trajectory matrix and a tool for SSA decomposition do not
affect one another. Thus, we can naturally define shaped Basic SSA, shaped SSA
with projection, and so on.

For Toeplitz SSA, the decomposition is performed in a very specific way, which
is not directly based on the trajectory matrix; thereby the shaped version of Toeplitz
SSA does not make much sense and hence it is not implemented in the current
version of RSSA.

After decomposition of the trajectory matrix into a sum of elementary matrices
and then into a sum of groupedmatrices, we need to obtain the series decomposition.
Generally speaking, the trajectory matrix is not Hankel in view of the gaps.
Therefore, we need a more general procedure than the hankelization and diagonal
averaging. This procedure is determined by the operator ΠH,sh(·) which is defined
as follows.

For ith term of the series, where i ∈ N, denote Ei the series with zeros
everywhere except ith term, which is equal to 1, Bi = TshSSA(Ei ). For a given
matrix Y, define a series Ỹ by ỹi = 〈Y,Bi 〉F/‖Bi‖2 which gives

ΠH,sh(Y) = TshSSA(Ỹ).

2.6.2 Separability

Definition and conditions of separability for Shaped SSA are the same as for
underlying modifications of SSA (see, e.g., Sect. 2.1.3). However, the separability
accuracy is naturally worse when there are gaps in the series. Moreover, there
are extreme cases where ranks of series can be corrupted by gaps and where the
conditions of separability cannot be satisfied.

2.6.3 Algorithm

The SSAmodifications described in Sects. 2.2–2.5 differ fromBasic SSA (Sect. 2.1)
by Decomposition step, while Shaped SSA differs from these modifications by
Embedding step, which depends on the window shape and the shape of the analyzed
object. Therefore, we consider Shaped SSA as an extension of SSA. Let us describe
the Shaped SSA algorithm for the analysis of time series with gaps.
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Algorithm 2.13 Shaped SSA: decomposition
Input: Time series X of length N with missing data, window length L, an SSA modification for

making a decomposition.
Output: Decomposition of the trajectory matrix on elementary matrices X̃ = X̃1+ . . .+X̃d , where

X̃i = σiPiQ
T
i .

1: Construct the trajectory matrix X̃ = TshSSA(X).
2: Obtain the decomposition X̃ = ∑d

i=1 X̃i , where X̃i = σiPiQ
T
i , by means of Decomposition

step of the chosen SSA modification.

Since Decomposition stage differs by Embedding step, which transfers a time
series with gaps into a trajectory matrix, Reconstruction stage differs by the way a
matrix is transferred to a time series with gaps.

Algorithm 2.14 Shaped SSA: reconstruction
Input: Decomposition X̃ = X̃1 + . . . + X̃d , X̃i = σiPiQ

T
i , grouping {1, . . . , d} = ⊔m

j=1 Ij .
Output: Decomposition of the time series on identifiable components X = X1 + . . . + Xm.
1: Construct the grouped matrix decomposition X̃ = X̃I1 + . . . + X̃Im , where X̃I = ∑

i∈I X̃i .
2: X = X1 + . . . + Xm, where Xj = T−1

shSSA ◦ ΠH,sh(X̃Ij ), j = 1, . . . , m.

We have assumed here that all series points can be covered by the window of the
chosen length. If it is not so, then we obtain the reconstruction given only on the
covered points.

2.6.4 Shaped SSA in RSSA

2.6.4.1 Description of Functions

There is no specific form of the ssa function for Shaped SSA. If the series has gaps
(that is, it contains NA values), then the shaped version of Basic SSA is applied by
default.

In the 1D case as well as in the case of 2D-SSA, specific masks for the window
shape can be done. For example, the window can be not a whole interval but an
interval with a gap. Since windows with gaps do not have much sense in the one-
dimensional case we do not discuss general shaped window in this chapter; see
Sect. 5.2 on how to set shaped windows for 2D-data.

2.6.4.2 Typical Code

Let us consider the time series “CO2” and set up several artificial missing values.
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Fragment 2.6.1 (Decomposition for Series with a Gap)

> F <- co2; F[100:200] <- NA
> # Prompt for the choice of window length
> clplot(F)
> # Perform shaped SSA
> s1 <- ssa(F, L = 72)
> plot(s1, type = "vectors", idx = 1:12)
> plot(s1, type = "series", groups = 1:6, layout = c(2, 3))
> plot(wcor(s1, groups = 1:20), scales = list(at = seq(1,20,2)))
> plot(reconstruct(s1, groups = list(c(1, 4, 7))),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = TRUE)

Fragment 2.6.1 demonstrates that the code looks similar to the code for Basic
SSA. However, there is a specificity. First, the choice of the window length should
take into consideration the number of complete vectors. The function clplot

(Fig. 2.23) shows the proportions of complete vectors; this proportion is equal to
1 only if there are no gaps. Eigenvectors serve for component identification in
the same way as for the series with no gaps (Fig. 2.24). Note that plotting the
factor vectors can be misleading, since factor vectors are depicted point-by-point
and therefore the gaps are not visible. The reconstructed series, however, are drawn
correctly, with the gaps (Figs. 2.25, 2.27). Weighted correlations, as usual, help for
component identification (Fig. 2.26).

Since in Basic SSA large window lengths can provide better accuracy, Frag-
ment 2.6.2 performs reconstruction with window length L = 120. This window
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Fig. 2.23 “CO2” with gaps, Shaped SSA: Dependence of proportion of complete vectors on
window length
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Eigenvectors
1 (100%) 2 (0%) 3 (0%) 4 (0%)

5 (0%) 6 (0%) 7 (0%) 8 (0%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 2.24 “CO2” with gaps, Shaped SSA: Eigenvectors, L = 72

cannot cover the series points on the left from the gap and therefore the left part of
the series cannot be reconstructed (Fig. 2.28).

Fragment 2.6.2 (Incomplete Decomposition for a Series with a Gap)

> s2 <- ssa(F, L = 120)
> # plot(s2, type = "vectors")
> # plot(wcor(s2, groups = 1:20))
> # plot of reconstruction
> plot(reconstruct(s2, groups = list(c(1, 6, 7))),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = TRUE)

2.7 Automatic Grouping in SSA

2.7.1 Methods

While the choice of the window length is well supported by the SSA theory, the
procedure for choosing the eigentriples for grouping is much less formal. Several
methods for component identification and automatic grouping are described in
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Fig. 2.25 “CO2” with gaps, Shaped SSA: Elementary reconstructed series, L = 72

Golyandina and Zhigljavsky (2013; Section 2.4.5). Let us shortly discuss these
methods and the basic principles of automatic grouping.

Automatic grouping assumes that the components to be identified are (approx-
imately) separated between themselves and from the residual. Grouping is based
on finding common features in the components. The first method measures the
communality of components by means of thew-correlations ρ

(w)
ij , see (1.7), between

them: if a weighted correlation is large, then the corresponding components have
similar behavior and should be included into the same group. This approach is very
similar to the so-called correlation clustering of variables in multivariate statistics.
The input dissimilarity matrix for clustering methods contains values 1 − |ρ(w)

ij |.
The second method is based on finding components with similar frequency

characteristics. Contribution of frequencies is defined through the periodogram

ΠM
y (k/M) =

⎧⎪⎨
⎪⎩

c20 for k = 0,
(c2k + s2k )/2 for 0 < k < M/2,

c2M/2 for k = M/2 if M is even,
(2.19)
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W−correlation matrix
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Fig. 2.26 “CO2” with gaps, Shaped SSA: w-Correlation matrix, L = 72
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Fig. 2.27 “CO2” with gaps, Shaped SSA: Trend reconstruction, L = 72
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Fig. 2.28 “CO2” with gaps, Shaped SSA: Incomplete trend reconstruction, L = 120

where the coefficients ck and sk are taken from the Fourier decomposition of Y =
(y1, . . . , yM):

yn = c0 +
�M/2�∑
k=1

(
ck cos(2πn k/M) + sk sin(2πn k/M)

)
,

For a series Y of length M and for 0 ≤ ω1 ≤ ω2 ≤ 0.5, we define

T (Y; ω1, ω2) =
∑

k:ω1≤k/M<ω2

IM
y (k/M), (2.20)

where IM
y (k/M) = M ΠM

y (k/M)/‖Y‖2, ΠM
y is defined in (2.19). Since ‖Y‖2 =

M
∑[M/2]

k=1 ΠM
y (k/M), the measure T (Y; ω1, ω2) can be considered as a proportion

of frequencies contained in the frequency bin [ω1, ω2).
One of the aims in performing grouping is the extraction of a series component

with frequency range mostly from the chosen frequency bin. Therefore, it is natural
to calculate the value of T for elementary reconstructed components. Moreover,
SSA reconstruction can be considered as a linear filter. It appears that the frequency
response of the filter generated by the ith eigentriple is almost the same as the
periodogram of the corresponding singular vector, see Golyandina and Zhigljavsky
(2013; Proposition 3.13). Therefore, it is reasonable to apply T also to singular
vectors to reconstruct the series components with the given frequency ranges.
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Since the trend of a series can be defined as its slowly varying series component,
for extracting a trend a frequency bin in the form [0, ω) should be chosen. The value
of ω reflects the frequency range, which we associated with a trend. For example, if
the series has monthly seasonality, ω should be notably smaller than 1/12. Note that
the groupingmethod does not answer the question whether the extracted component
is indeed a deterministic trend or simply a result of smoothing.

We can also consider several frequency bins, perhaps overlapping; in this case,
the described method can be applied to each bin separately. A modification of
grouping with several bins can be suggested.

Let the whole frequency range be divided into disjoint bins. Then we can refer a
component to a frequency bin with the largest proportions of the corresponding
frequency range; that is, with the maximal value of T . In this modification, all
the considered bins participate simultaneously and are hence dependent. This
modification can be used for splitting the series into a set of the components
according to the specified frequency ranges.

Values of T for each elementary decomposition component can be used for
devising the grouping. To perform an automatic grouping, a threshold T0, 0 ≤ T0 ≤
1, should be given. For example, if the value T (Yi; 0, ω) is larger than T0 for some
small ω, where Yi is the ith elementary series or ith left/right singular vector, then
the corresponding eigentriple can be automatically considered as a part of trend.

2.7.2 Algorithm

The algorithm of auto-grouping, which uses the w-correlation matrix, supplements
an algorithm which performs clustering based on the (dis)similarity matrix.

Algorithm 2.15 Auto-grouping: Clustering

Input: w-Correlation matrix [ρ(w)
ij ] between reconstructed components, number of groups.

Output: Groups of components.
1: Use a method of cluster analysis to the dissimilarity measure defined by 1 − |ρ(w)

ij |.
2: Obtain the given number of groups from the results of cluster analysis.

The algorithm of component identification based on frequency characteristics
of the components is implemented in two versions. In the first version, each
frequency interval is considered separately and the desired components are selected
by comparing the values of (2.20) to a given threshold. For simplicity, we formulate
Algorithm 2.16 for one frequency interval only. The second version, Algorithm 2.17,
uses the set of frequency intervals simultaneously.
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Algorithm 2.16 Auto-grouping: Frequency ranges, by the threshold
Input: Frequency range [ω1, ω2), threshold T0, group I , type of series: eigenvectors, factor vectors

or reconstructed series.
Output: A group of components J ⊂ I .
1: For each series Yi , i ∈ I , the measure T (Yi; ω1, ω2) given in (2.20) is calculated.
2: The resultant group J consists of indices i ∈ I such that T (Yi; ω1, ω2) ≥ T0.

Algorithm 2.17 Auto-grouping: Frequency ranges, by the maximal contribution

Input: Set of frequency ranges [ω(m)
1 , ω

(m)
2 ), m = 1, . . . , k (if the separating points 0 = ω0 <

ω1 < ω2 < . . . < ωk for frequencies are given, then [ω(m)
1 , ω

(m)
2 ) = [ωm−1, ωm)), group I ,

type of series Yi : eigenvectors, factor vectors or reconstructed series.
Output: Set of k groups Jm ⊂ I , I = ⊔

m Jm.

1: For each series Yi , i ∈ I , and each frequency interval [ω(m)
1 , ω

(m)
2 ), m = 1, . . . , k, the measure

T (Yi; ω
(m)
1 , ω

(m)
2 ) given in (2.20) is calculated.

2: Each index i, i ∈ I , is referred to a group Jm0 with the maximal value of the measures

T (Yi; ω
(m)
1 , ω

(m)
2 ), m ∈ {1, . . . , k}. As a result, k groups are formed.

2.7.3 Automatic Grouping in RSSA

2.7.3.1 Description of Functions

Let us outline the main arguments of grouping.auto for Algorithm 2.15 in typical
function calls (the two grouping calls below are equivalent):

g <- grouping.auto(s, nclust = 2, groups = 1:20,
method = "complete", grouping.method = "wcor")

g <- grouping.auto.wcor(s, nclust = 2,
groups = 1:20, method = "complete")

Arguments

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, SSA with projection, Shaped SSA, DerivSSA, Iterative O-SSA) decom-
position.

grouping.method is a method for automatic grouping.
groups is a list of groups, which is coerced to a vector with component numbers to

obtain the elementary reconstructed components and calculate thew-correlation
matrix for them.

nclust is a number of clusters.
method determines the way of cluster amalgamation; method is a parameter of the

R function hclust from the STATS package, which performs the hierarchical
cluster analysis.

The result of the function grouping.auto.wcor can be depicted by the function
call plot(g) in the form of a hierarchical tree.
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For application of Algorithms 2.16 and 2.17, the typical call is

gp <- grouping.auto(s, groups = 1:20, base = "series",
freq.bins = list(0.01,0.02),
threshold = 0.8,
grouping.method = "pgram")

Arguments

s is an ssa object holding the full one-dimensional SSA (Basic SSA, Toeplitz
SSA, SSA with projection, Shaped SSA, DerivSSA, Iterative O-SSA) decom-
position.

grouping.method is a method for automatic grouping.
groups is a list of indices of elementary components for grouping,which is coerced

to a vector.
base is an input for the periodogram analysis: elementary reconstructed series

("series"), eigenvectors ("eigen"), or factor vectors ("factor").
freq.bins could be: a single integer larger than 1, which defines the number of

intervals of equal length dividing the frequency range [0, 1/2]; a vector of
frequency separating points (of length ≥ 2); a list of frequency ranges. For
each range, if only one frequency is indicated, then it will be used as the upper
bound, while the lower bound will be zero. If the frequency intervals, given by
the parameter freq.bins, are named, then the resultant groups will take these
names.

threshold is a threshold for frequency contributions. The value threshold=0
indicates that Algorithm 2.17 will be used.

method is a method of interpolation ("const" or "linear") of the periodogram
values, which are initially given on the regular grid.

The result of grouping.auto.pgram (that is, of grouping.auto, where the
parameter grouping.method = "pgram") can be depicted in the form of compo-
nent contributions T by the call

plot(gp, superpose = TRUE, order = TRUE)

Here superpose is logical and indicates whether to plot contributions for all
intervals on one panel. If the parameter order is TRUE, then the depicted component
contributions are ordered by their values.

2.7.3.2 Typical Code

Let us demonstrate how to replicate the examples of automatic grouping taken from
Golyandina and Zhigljavsky (2013; Section 2.4.5) by means of the RSSA package.
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Grouping Based on w-Correlations

Let us consider the “White dwarf” data and apply clustering to the corresponding
w-correlation matrix for window lengthL = 100. To do that we use Fragment 2.7.1.

Fragment 2.7.1 (“White dwarf”: Auto Grouping by Clustering)

> data("dwarfst", package = "ssabook")
> s <- ssa(dwarfst, L = 100)
> g <- grouping.auto(s, grouping.method = "wcor",
+ method = "average", nclust = 2)
> print(g[[1]])
[1] 1 2 3 4 5 6 7 8 9 10 11

> plot(wcor(s, groups = 1:30), scales = list(at = c(1, 11, 30)))
> plot(reconstruct(s, groups = g),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = FALSE)

Thew-correlations between the 30 leading elementary reconstructed components
are depicted in Fig. 2.29. We can deduce from this figure that the components can
be partitioned into two groups, signal (ET1–11) and noise (ET12–100). Hierarchical
clustering with average linkage into two groups provides a proper split into two
clusters with the first cluster consisting exactly of ET1–11. Reconstruction with
automatic grouping is presented in Fig. 2.30.

Fig. 2.29 “White dwarf”:
w-Correlation matrix,
L = 100

W−correlation matrix
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Fig. 2.30 “White dwarf”: Decomposition with automatic grouping performed by clustering

Identification of Trend

Let us consider the “Production” example. Fragment 2.7.2 demonstrates how to
choose the threshold and how to extract trends of different forms by means of the
frequency approach. We consider two frequency ranges, [0, 1/240] and [0, 1/24].
To understand what is a reasonable value of the threshold, we first choose an
arbitrary small threshold to draw the plot of component contributions in the chosen
frequency ranges; we reorder the components by their contributions. Figure 2.31
shows that the threshold should be between the contributions of the 9th and
10th components. We choose the contribution of the 9-th component, which is
approximately equal to 0.89, as a new threshold.

Fragment 2.7.2 (“Production”: Auto Grouping by Frequency Analysis)

> data("oilproduction", package = "ssabook")
> s <- ssa(oilproduction, L = 120)
> plot(s, type = "vectors", vectors = "factor", idx = 1:12)
> g0 <- grouping.auto(s, base = "series",
+ freq.bins = list(Tendency = 1/240,
+ Trend = 1/24),
+ threshold = 0.1)
> plot(g0, order = TRUE, type = "b")
> contrib <- attr(g0, "contributions")[, 2]
> print(thr <- sort(contrib, decreasing = TRUE)[9])

8
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0.861955
> g <- grouping.auto(s, base = "series",
+ freq.bins = list(Tendency = 1/240,
+ Trend = 1/24),
+ threshold = thr)
> print(g[[1]])
[1] 1 2
> print(g[[2]])
[1] 1 2 3 6 8 11 12 17 18
> plot(reconstruct(s, groups = g),
+ add.residuals = FALSE,
+ plot.method = "xyplot", superpose = TRUE)

If we choose ω0 = 1/24 and T0 = 0.89, then the described procedure identifies
ET1–3,6,8,11,12,17,18; a rough trend is thus identified accurately enough, see
Fig. 2.33, red line. Figure 2.32 with factor vectors explains the result. Indeed, the
detected factor vectors are slowly varying. The function grouping.auto allows to
consider several frequency intervals. In this case, one should set a threshold for each
frequency bin. In the code of Fragment 2.7.2, by rules of R, threshold = thr is
equivalent to threshold = list(thr, thr). For convenience, the implementa-
tion of grouping.auto allows to write freq.bins = list(1/240,1/24) instead
of freq.bins = list(c(0,1/240),c(0,1/24)). Figure 2.33 shows two trends
of different forms obtained by means of different frequency intervals.

If we were interested in the general tendency only, then the measure T with
ω0 = 1/240 and the threshold T0 = 0.89 identifying one leading component would
be sufficient.

Fig. 2.31 “Production”:
Ordered frequency
contributions of factor
vectors, L = 120
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Factor vectors
1 (99.75%) 2 (0.13%) 3 (0.02%) 4 (0.02%)
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Fig. 2.32 “Production”: Factor vectors, L = 120
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Fig. 2.33 “Production”: Two extracted trends of different resolution, automatic grouping by
frequencies
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2.8 Case Studies

2.8.1 Extraction of Trend and Oscillations by Frequency
Ranges

A decomposition on interpretable series components may differ from a decom-
position on components with different frequency ranges but sometimes these
decompositions can be similar. For example, extraction of a trend can be considered
as a smoothing, i.e., extraction of a slowly-varying series component with a
frequency range close to zero.

In Sect. 2.1.5.3, a typical decomposition of the series of sales of fortified wines
in Australia into a sum of a trend, a seasonal component and a noise is shown.

Let us introduce an example of frequency decomposition. Consider the series
“Tree rings” (tree ring width, annual, 1282–1950).

Fragment 2.8.1 makes a decomposition of the series “Tree rings” into compo-
nents from the following frequency ranges: [0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4),
and [0.4, 0.5]. In the code, the last frequency is depicted as +Inf but in fact the
upper bound is 0.5.

Fragment 2.8.1 (“Tree rings”: Frequency Decomposition)

> data("dftreering", package = "ssabook")
> L <- 300
> s.tree <- ssa(dftreering, L = L, neig = L)
> g.tree <- grouping.auto(s.tree, base = "series",
+ freq.bins = c(0.1, 0.2, 0.3, 0.4, +Inf))
> r.tree <- reconstruct(s.tree, groups = g.tree)
> plot(r.tree, add.residuals = FALSE, add.original = TRUE,
+ plot.method = "xyplot")
> specs <-
+ lapply(r.tree, function(x) spectrum(x, plot = FALSE)$spec)
> w.tree <- seq(0, length.out = length(specs$F1),
+ by = 1/length(dftreering))
> xyplot(F1 + F2 + F3 + F4 + F5 ~ w.tree, data = specs,
+ superpose = FALSE, type = "l", xlab = NULL, ylab = NULL,
+ auto.key = list(lines = TRUE, points = FALSE,
+ column = 5))

The resultant decomposition is depicted in Fig. 2.34. Since the given frequency
ranges split the whole range [0, 0.5], we obtain a full decomposition of the original
series.

Figure 2.35 shows spectrums of the series components depicted in Fig. 2.34. It
can be seen that the frequency ranges of the series components are almost disjoint.
Since the window length L makes an influence on the resolution of the method (see,
e.g., Golyandina and Zhigljavsky (2013; Section 2.9)), the intersection of frequency
ranges increases for small window lengths.
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Fig. 2.34 “Tree rings”: Frequency decomposition

2.8.2 Trends in Short Series

Let us consider the series “FORT” from the dataset “Australian Wines” with
monthly sales. The first 120 points of the series are depicted in Fig. 2.36.

The series length is long enough to obtain weak separability; therefore, we will
consider short subseries to demonstrate the ability of Iterative O-SSA to improve
separability.

We choose the window lengthL = 18 to make the difference between Basic SSA
and Iterative O-SSA clearly visible on the figures, although the relation between
accuracies of the considered methods is very similar for other choices of the window
length. Let us consider the subseries consisting of the points from 30th to 72th.

Let us start with Basic SSA. ET1 is identified as corresponding to trend; other
components are produced by seasonality and noise (we do not include their plots).
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Fig. 2.35 “Tree rings”: Periodograms of the series components
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Fig. 2.36 “FORT”: Trend reconstruction by Iterative O-SSA for the subseries consisting of points
30–72

One can see in Fig. 2.36 that the reconstructed trend is slightly mixed with the
seasonality and follows the seasonal component at the ends of the series.

To apply Iterative O-SSA, we should choose a group of elementary components
containing the trend components and approximately separated from the residual.
Let it be ET1–7. Thus, we apply one iteration of O-SSA to the refined groups
ET1 and ET2–7. Since the trend has much larger contribution than the residual,
we consider Iterative O-SSA with no sigma-correction. The result of reconstruction
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is much more relevant, see Fig. 2.36. This reconstruction is obtained by means of
the code of Fragment 2.8.2.

Fragment 2.8.2 (“FORT”: Basic SSA and Iterative O-SSA Trends)

> data("AustralianWine", package = "Rssa")
> Nfull <- 120
> wine <- window(AustralianWine,
+ end = time(AustralianWine)[Nfull])
> fort_sh <- window(wine[, "Fortified"],
+ start = c(1982, 6), end = c(1985, 12))
> ss_sh <- ssa(fort_sh, L = 18)
> res_ssa_sh <- reconstruct(ss_sh, groups = list(1, 2:7))
> iss_sh <- iossa(ss_sh, nested.groups = list(1, 2:7),
+ kappa = 0, maxiter = 1, tol = 1e-5)
> res_issa_sh <- reconstruct(iss_sh, groups = iss_sh$iossa.groups)
> theme <- simpleTheme(col = c("blue", "red", "black"),
+ lwd = c(1, 2, 1),
+ lty = c("solid", "solid", "dashed"))
> xyplot(cbind(res_ssa_sh$F1, res_issa_sh$F1, wine[, "Fortified"]),
+ superpose = TRUE,
+ xlab = "", ylab = "", type = "l", lwd = c(1, 2, 1),
+ col = c("blue", "red", "black"),
+ auto.key = list(text = c("Basic SSA trend",
+ "Iterative O-SSA trend",
+ "Full series"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme)

2.8.3 Trend and Seasonality of Complex Form

Let us analyze the time series “MotorVehicle” which contains monthly data of
total domestic and foreign car sales in the USA, from 1967 to 2012, January. The
total series length is 541. This time series was investigated in Golyandina and
Korobeynikov (2013) by means of Sequential SSA.

Figure 2.37 shows that the shape of the trend is complex. From the viewpoint of
SSA, complexity of a trend means that it can only be approximated by a time series
of a large rank and therefore it is decomposed into a large number of elementary
components, if a large enough window length was chosen. Therefore, there are high
odds that the trend decomposition components are going to be mixed with seasonal
components in Basic SSA.

Since seasonal components are approximately orthogonal to slowly-varying
components, we can consider the problem of mixing as a problem of lack of strong
separability.

RSSA offers several options helping to avoid mixing. The first option is to use
Sequential SSA as done in Golyandina and Korobeynikov (2013) (see Sect. 2.1.3.2,
where the idea of Sequential SSA is briefly described).
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Fig. 2.37 “MotorVehicle”: Trend extracted by Basic SSA with small window length L = 12

First, let us extract a trend. Since for a trend of such a difficult shape its
extraction is similar to smoothing, we start with choosing a minimally possible
window length, which in this case is L = 12. The reason for this choice of window
length is similar to that in the moving averaging procedure: for smoothing a time
series containing a periodic component, the window length should be divisible by
the period. Then, the residual is decomposed with a large window length 264 to
extract the seasonality, since the seasonal component can be considered as a sum of
exponentially-modulated harmonics and therefore has a rank not exceeding 11.

Fragment 2.8.3 shows how Sequential SSA can be performed (see the explana-
tion of the component choice in Golyandina and Korobeynikov (2013)). Figure 2.37
shows the resultant decomposition.

Fragment 2.8.3 (“MotorVehicle”: Decomposition by Sequential SSA)

> data("MotorVehicle", package = "Rssa")
> s1 <- ssa(MotorVehicle, L = 12)
> res1 <- reconstruct(s1, groups = list(trend = 1))
> trend <- res1$trend
> plot(res1, add.residuals = FALSE, plot.type = "single",
+ col = c("black", "red"), lwd = c(1, 2),
+ plot.method = "xyplot", superpose = TRUE)
> res.trend <- residuals(res1)
> s2 <- ssa(res.trend, L = 264)
> res2 <- reconstruct(s2, groups = list(seasonality = 1:10))
> seasonality <- res2$seasonality
> res <- residuals(res2)
> # The resultant decomposition consists of
> # trend, seasonality and residual
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Sequential SSA consists of a repeated application of one of the SSA methods,
for example, Basic SSA. Let us demonstrate the use of another two-step approach,
DerivSSA of Sect. 2.5, using a nested decomposition. In DerivSSA, a signal
subspace should be estimated at the first step and then an additional rotation is
performed in the signal subspace to avoid a mixture. Fragment 2.8.4 shows how
DerivSSA can be applied. The signal subspace was detected by the analysis of
eigenvectors and the w-correlation matrix. Identification of components of the
refined decomposition, which was obtained by means of DerivSSA, is performed
in the same way as it is done in Basic SSA.

Fragment 2.8.4 (“MotorVehicle”: Decomposition by DerivSSA)

> data("MotorVehicle", package = "Rssa")
> s <- ssa(MotorVehicle, L = 264)
> sf <- fossa(s, nested.groups = 1:19)
> rf <- reconstruct(sf, groups =
+ list(seasonality = 1:10, trend = 11:19))
> plot(rf, plot.method = "xyplot", superpose = TRUE,
+ add.residuals = FALSE,
+ col = c("black", "darkgreen", "red"), lwd = c(1, 1, 2))
> p<- parestimate(sf, groups = list(1:10),
+ method = "esprit")
> print(p$period[seq(1, 10, 2)], digits = 3)
[1] 3.00 12.01 2.40 5.99 4.02

The decomposition results are similar. We present the results of full DerivSSA
decomposition (we have used the version with normalization, see Algorithm 2.11)
into trend, seasonal component and a noise in Fig. 2.38.

2.8.4 Finding Noise Envelope

Here we demonstrate how to estimate the variance of a heterogeneous noise. The
procedure is based on the following two observations: first, the variance of noise is
equal to the expectation of the squared noise values, and second, for a stochastic
process the trend is its expectation. Therefore, the variance can be estimated as the
trend of squared residuals. This trend can be extracted by SSA with a small window
length and reconstructed by the leading eigentriple. The choice of the window
length influences the level of detail with which we see the extracted trend. For the
“MotorVehicle” data, window length L = 30 provides an appropriate trend. The
result of Fragment 2.8.5 is depicted in Fig. 2.39 which shows the residuals and the
standard deviation bounds.

Fragment 2.8.5 (“MotorVehicle”: Finding Noise Envelope)

> resf <- residuals(rf)
> s.env <- ssa(resf^2, L = 30)
> rsd <- sqrt(reconstruct(s.env, groups = list(1))$F1)
> xyplot(resf + rsd + (-rsd) ~ time(resf), type = "l")
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Fig. 2.38 “MotorVehicle”: Decomposition by DerivSSA with L = 264
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Fig. 2.39 “MotorVehicle”: Residuals with envelopes

2.8.5 Elimination of Edge Effects

Let us consider “US Unemployment” data (monthly, 1948–1981, thousands) for
male (20 years and over). The series length is N = 408. Since the series is long,
we can expect weak separability between the trend and seasonality. For better weak
separability we choose the window length equal to L = N/2 = 204, which is
divisible by 12. Fragment 2.8.6 demonstrates how DerivSSA allows to improve the
decomposition.
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Fragment 2.8.6 (“US unemployment”: Improvement by DerivSSA)

> data("USUnemployment", package = "Rssa")
> ser <- USUnemployment[, "MALE"]
> Time <- time(ser)
> L = 204
> ss <- ssa(ser, L = L, svd.method = "eigen")
> res<- reconstruct(ss, groups =
+ list(c(1:4, 7:11), c(5, 6, 12, 13)))
> trend <- res$F1
> seasonality <- res$F2
> w1 <- wcor(ss, groups = 1:30)
> fss <- fossa(ss, nested.groups =
+ list(c(1:4, 7:11), c(5, 6, 12, 13)),
+ gamma = Inf)
> fres <- reconstruct(fss, groups = list(5:13, 1:4))
> ftrend <- fres$F1
> fseasonality <- fres$F2
> theme1 <- simpleTheme(col = c("grey", "blue","red"),
+ lwd = c(2, 1, 1),
+ lty = c("solid", "solid", "solid"))
> theme2 <- simpleTheme(col = c("blue", "red"), lwd = c(1, 1),
+ lty = c("solid", "solid"))
> p1 <- xyplot(ser + trend + ftrend ~ Time,
+ xlab = "", ylab = "", type = "l", lwd = c(2, 1, 1),
+ col = c("grey", "blue","red"),
+ auto.key = list(text = c("Full series",
+ "Basic SSA trend",
+ "DerivSSA trend"),
+ type = c("l", "l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme1)
> p2 <- xyplot(seasonality + fseasonality ~ Time,
+ xlab = "", ylab = "", type = "l", lwd = c(2, 1),
+ col = c("blue", "red"),
+ auto.key = list(text = c("Basic SSA seasonality",
+ "DerivSSA seasonality"),
+ type = c("l", "l"),
+ lines = TRUE, points = FALSE),
+ par.settings = theme2)
> plot(p1, split = c(1, 1, 1, 2), more = TRUE)
> plot(p2, split = c(1, 2, 1, 2), more = FALSE)

Basic SSA does not separate the trend and seasonality for this time series.
It is another very typical situation that if trend has a complex form, then trend
components are mixed with the seasonality components and therefore the so-
called Sequential SSA was recommended (Golyandina et al. 2001; Section 1.7.3).
However, this is also the case when DerivSSA is able to help.

We apply DerivSSA (the version with normalization) to the group ET1–13
that can be related to the signal. DerivSSA separates different frequencies so that
components with higher frequencies become the leading ones. Since the low-
frequency components in the considered series have large contribution, the weight
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Fig. 2.40 “US unemployment”: Decompositions by Basic SSA and DerivSSA

of derivatives should be large in order to make the seasonal components leading; we
take gamma = Inf to exclude non-derivative part from the decomposed matrix.

Figure 2.40 depicting the DerivSSA reconstructions of the trend and the seasonal-
ity confirms that DerivSSA visibly improves the reconstruction accuracy, especially
at both ends of the series. It is shown in Golyandina and Shlemov (2015) how to
obtain a similar effect by means of Iterative O-SSA.

2.8.6 Extraction of Linear Trends

Here we consider the example “Hotel” following Golyandina et al. (2001; Sec-
tion 1.7.1). We extract trend from a short subseries of length n. Then we compare
predictions by linear regressions constructed from the series itself and constructed
from the trends extracted by SSA. More detailed comparison of SSA and regression
for simulated examples can be found in Golyandina and Shlemov (2017).
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Fig. 2.41 “Hotel”: SSA with projection, linear trend detection

Consider two cases: n = 24 (Fragment 2.8.7) and n = 30 (Fragment 2.8.8).
For n = 24, the best separability of the linear trend from the residual is achieved
by SSA with double centering (a particular case of SSA with projection). This is
because we can choose L and K approximately divisible by the period 12. One
can see in Fig. 2.41 that SSA linear trend (blue) is very close to a linear trend
constructed by the whole long time series (green). Linear regression line (red) gives
an approximation of the trend which is much worse than for SSA.

However, for n = 30, there is no appropriate window length providing desired
orthogonalities. Therefore, direct SSA with double centering is not so successful
in this case but to improve separability we can apply Iterative O-SSA. The result
shown in Fig. 2.42 is rather good.

Fragment 2.8.7 (“Hotel”: SSA with Projection, Linear Trend Detection)

> data("hotel", package = "ssabook")
> len <- length(hotel)
> n <- 24
> hotel.2years <- window(hotel, end = time(hotel)[n])
> sp <- ssa(hotel.2years, L = 12,
+ row.projector = "center",
+ column.projector = "center")
> r <- reconstruct(sp, groups = list(trend = 1:2))
> hotel.2years.data <- data.frame(x = 1:n, y = hotel.2years)
> fit.2years <- lm(y ~ x, data = hotel.2years.data)
> fit.2years.continued <- predict(fit.2years,
+ newdata = data.frame(x = 1:len))
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> hotel.data <- data.frame(x = 1:len, y = hotel)
> fit <- lm(y ~ x, data = hotel.data)
> fit.rec <- lm(r$trend ~ x, data = hotel.2years.data)
> fit.rec.continued <- predict(fit.rec,
+ newdata = data.frame(x = 1:len))
> xyplot(cbind(hotel,
+ predict(fit),
+ fit.2years.continued,
+ ts(predict(fit.2years),
+ start = c(1963, 1), freq = 12),
+ fit.rec.continued,
+ ts(predict(fit.rec),
+ start = c(1963, 1), freq = 12)),
+ superpose = TRUE,
+ type = "l", ylab = "",
+ lty = c(1, 2, 1, 1, 1, 1),
+ lwd = c(1, 2, 1, 5, 1, 5),
+ col = c("black", "green", "red", "red",
+ "blue", "blue"),
+ auto.key =
+ list(text = c("Original series",
+ "General linear trend",
+ "Linear regression, forecasted",
+ "Linear regression",
+ "SSA with double centering, forecasted",
+ "SSA with double centering"),
+ type = c("l", "l", "l", "l", "l", "l"),
+ lines = TRUE, points = FALSE))
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Fig. 2.42 “Hotel”: Iterative O-SSA, linear trend detection
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Fragment 2.8.8 (“Hotel”: Iterative O-SSA, Linear Trend Detection)

> n <- 30
> hotel.2years <- window(hotel, end = time(hotel)[n])
> s <- ssa(hotel.2years, L = 12)
> ios <- iossa(s, nested.groups = list(1, 2:5))
> r <- reconstruct(ios, groups = list(trend = 1))
> hotel.2years.data <- data.frame(x = 1:n, y = hotel.2years)
> fit.2years <- lm(y ~ x, data = hotel.2years.data)
> fit.2years.continued <- predict(fit.2years,
+ newdata = data.frame(x = 1:len))
> hotel.data <- data.frame(x = 1:len, y = hotel)
> fit <- lm(y ~ x, data = hotel.data)
> fit.rec <- lm(r$trend ~ x, data = hotel.2years.data)
> fit.rec.continued <- predict(fit.rec,
+ newdata = data.frame(x = 1:len))
> xyplot(cbind(hotel,
+ predict(fit),
+ fit.2years.continued,
+ ts(predict(fit.2years),
+ start = c(1963, 1), freq = 12),
+ fit.rec.continued,
+ ts(predict(fit.rec),
+ start = c(1963, 1), freq = 12)),
+ superpose = TRUE,
+ type = "l", ylab = "",
+ lty = c(1, 2, 1, 1, 1, 1),
+ lwd = c(1, 2, 1, 5, 1, 5),
+ col = c("black", "green", "red", "red",
+ "blue", "blue"),
+ auto.key =
+ list(text = c("Original series",
+ "General linear trend",
+ "Linear regression, forecasted",
+ "Linear regression",
+ "Iterative O-SSA, forecasted",
+ "Iterative O-SSA",
+ type = c("l", "l", "l", "l", "l", "l"),
+ lines = TRUE, points = FALSE))

2.8.7 Automatic Decomposition

Let us consider an automatic identification based on frequency characteristics of the
elementary series components (Fragment 2.8.9). This way of identification is very
well suited for the problem of trend extraction. For the extraction of periodicities,
we would recommend a more sophisticated approach described in Alexandrov and
Golyandina (2005) and based on an idea from Vautard et al. (1992).
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Fig. 2.43 “PayNSA”: Contributions of trend components

The data “PayNSA” contains monthly numbers of all employees, total nonfarm
payrolls, thousands of persons. Since the trend is complex, we will use Sequential
SSA.

To extract a trend we take a small window length L = 36 and a frequency
range [0, 0.06] noting that the frequency 1/12 ≈ 0.0833 is related to seasonality.
Figure 2.43 shows ordered contributions of these frequency ranges. A sharp drop
after the fifth ordered component is clearly seen. Therefore, we choose the threshold
equal to 0.7. The extracted trend is depicted in Fig. 2.44 together with the original
series.

After performing trend extraction, let us investigate the residual. To extract the
seasonal component, we choose the frequency range consisting of small intervals
containing the frequencies 1/12, 2/12, 3/12, 4/12, 5/12, and 6/12. Figure 2.45
shows the contributions of the components in the initial order (right) and the
contributions ordered by the magnitude of their values for each frequency range
(left). In the right figure, one can see that the components with large contributions
come in pairs with each pair corresponding to one frequency, except for a single
component for the frequency 1/2. The extracted seasonal component is presented in
Fig. 2.46.

Note that if we subtract the seasonal component from the original time series,
then we obtain the so-called seasonally adjusted component. To confirm that the
seasonal component was really extracted, we depict the log-spectra of the original
series and seasonally-adjusted series together (Fig. 2.47).
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Fig. 2.44 “PayNSA”: Automatically identified trend
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Fig. 2.47 “PayNSA”: Log-periodogram of original and seasonally-adjusted series

Fragment 2.8.9 (“PayNSA”: Automatically Identified Trend)

> data("paynsa", package = "ssabook")
> n <- 241
> pay <- window(paynsa, start = time(paynsa)[n])
> s <- ssa(pay, L = 36)
> g1 <- grouping.auto(s, base = "series",
+ freq.bins = list(trend = 0.06),
+ threshold = 0.7)
> print(g1$trend)
[1] 1 2 3 8 12
> plot(g1, order = TRUE, type = "b")
> r1 <- reconstruct(s, g1)
> plot(r1, plot.method = "xyplot", superpose = TRUE,
+ add.residuals = FALSE)
> s1 <- ssa(pay - r1$trend, L = 120)
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> coef <- c(1 - 0.02, 1 + 0.02)
> freq.bins.seas = list(s12 = 1/12 * coef, s6 = 1/6 * coef,
+ s4 = 1/4 * coef, s3 = 1/3 * coef,
+ s2.4 = 1/2.4 * coef, s2 = 1/2 * coef)
> g3 <- grouping.auto(s1, base = "series", groups = 1:20,
+ freq.bins = freq.bins.seas,
+ threshold = list(0.6))
> p1 <- plot(g3, order = TRUE, scales = NULL,
+ auto.key = list(columns = 3))
> p2 <- plot(g3, order = FALSE, scales = NULL,
+ auto.key = list(columns = 3))
> plot(p1, split = c(1, 1, 2, 1), more = TRUE)
> plot(p2, split = c(2, 1, 2, 1), more = FALSE)
> r3 <- reconstruct(s1, groups = list(unlist(g3)))
> plot(r3, plot.method = "xyplot", add.residuals = FALSE,
+ add.original = FALSE)
> specNSA <- spectrum(pay - r3$F1, plot = FALSE)
> specSA <- spectrum(pay, plot = FALSE)
> w.pay <- seq(0, length.out = length(specNSA$spec),
+ by = 1/length(pay))
> xyplot(log(specNSA$spec) + log(specSA$spec) ~ w.pay,
+ type = "l", xlab = NULL, ylab = NULL)

2.8.8 Log-Transformation

As mentioned in Golyandina and Zhigljavsky (2013; Section 2.3.1.3), any multi-
plicative model can be considered as an additive model:

xn = tn(1 + sn)(1 + rn) = tn + tnsn + (tn + tnsn)rn, (2.21)

where tn is a trend, sn consists of regular oscillations, and rn is a homogeneous noise.
Since tnsn can be considered as modulated regular oscillations and (tn + tnsn)rn is
a heterogeneous noise, SSA is able to perform such a decomposition.

On the other hand, one can consider the log-transformed series x̃n = ln xn =
t̃n+s̃n+r̃n, where t̃n = log(tn) is a trend, s̃n = log(1+sn), and r̃n = log(1+rn) ≈ rn
is noise; if sn is small, then s̃n = log(1+ sn) ≈ sn can still be treated as oscillations.

Thus, if a series follows the multiplicative model (2.21), then SSA-family
methods can be applied both to the initial series and to the log-transformed data
to obtain a decomposition into a sum of a trend, oscillations, and noise.

If the log-transformation makes the structure of the series components simpler,
then it can be recommended. For example, if the model is multiplicative and the
time series trend has a complex form, then the log-transformation may eliminate
the modulation. Note that if the trend is exponential, then the log-transformed trend
becomes linear and therefore SSA with double centering can be recommended for
its extraction.
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Fig. 2.48 “Elec”: Decomposition for initial and log-transformed data

Let us consider the series “Elec” of Australian monthly electricity production
(Jan 1956 – Aug 1995).

In Fragment 2.8.10, the trend is estimated by the decomposition of the original
data and of the log-transformed data. Figure 2.48 shows that the trend estimations
almost coincide. This is typical in cases when the model is not purely multiplicative.
In the present example, the multiplicativity breaks down after 1980 when the range
of oscillations slightly decreases.

The log-transformation can only be applied when the original data is positive.
After making the log-transformation we have to apply the exponential transforma-
tion to the series, which we obtain from the SSA analysis, in order to return to the
initial scale. This makes the resulted data positive; this is a very attractive feature of
the log-transformation in many applications.

Fragment 2.8.10 (“Elec”: Log-Transformation)

> data("elec", package = "fma")
> elec.log <- log(elec)
> Time <- time(elec)
> s <- ssa(elec, L = 12)
> r <- reconstruct(s, groups = list(trend = c(1)))
> sl <- ssa(elec.log, L = 12)
> rl <- reconstruct(sl, groups = list(trend = c(1)))
> xyplot(elec + exp(as.vector(rl$trend)) + r$trend +
+ (elec - r$trend) ~ Time,
+ superpose = TRUE, type ="l", ylab = NULL, xlab = NULL,
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+ auto.key = list(text = c("original", "exp(log-trend)",
+ "trend", "residual")))
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