
Chapter 1
Introduction: Overview

The present book expands SSA methodology in many different directions and
unifies different approaches and modifications within the SSA framework. This
chapter is introductory; it outlines the main principles and ideas of SSA, presents a
unified view on SSA, reviews its computer implementation in the form of the RSSA

package, and gives references to all data sources used. The chapter contains eight
sections serving different objectives.

Section 1.1 describes the generic structure of all methods from the SSA family
and introduces the main concepts essential for understanding different versions of
SSA and for making application of SSA in practice efficient.

Section 1.2 classifies different versions of SSA. As explained in that section,
there are two complementary directions in which versions of SSA can be created:
one is related to geometrical features of the objectX and the other one is determined
by the choice of the procedure of decomposition of the trajectory matrix into rank-
one matrices. These two directions of variations of SSA are not related to each other
so that any extension of SSA related to the geometry of X can be combined with
any procedure of decomposition of the trajectory matrix.

Section 1.3 discusses the concept of separability, which is the most theoretically
important concept of SSA. Achieving separability (for example, of a signal from
noise) is the key task of SSA in most applications. Correct understanding of this
concept is therefore imperative for making a particular application of SSA reliable
and efficient. We will be returning to separability in many discussions within the
book.

Section 1.4 briefly introduces the main underlying model used to apply SSA for
common problems such as forecasting, imputation of missing data, and monitoring
structural stability of time series. In the one-dimensional case, this model assumes
that a part of the series can be described by a linear recurrent relation and in
particular, by a sum of damped sinusoids. Estimation of parameters of this model
often constitutes the main objective in signal processing.
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2 1 Introduction: Overview

In Sect. 1.5, we give information about most known implementations of SSA,
describe the general structure of the RSSA package, and discuss efficiency of its
implementation.

In Sect. 1.6 we briefly discuss the place of SSA among other methods of time
series analysis, signal and image processing and provide a short overview of recent
publications where a comparison of SSA with several traditional methods has been
made.

In Sect. 1.7 we make a short historical survey of SSA, refer to recent applications
of SSA and to papers which discuss combination of SSA with other methods; we
also list the main papers, which a significant part of this book is based upon.

In Sect. 1.8 we make comments concerning installation of the RSSA package and
describe the real-life data sets (taken from many different sources) which we have
used in the book for illustrations. We provide the basic information about these data
sets and specify their location. The corresponding references would help the reader
to get more information about any of these data sets.

1.1 Generic Scheme of the SSA Family and the Main
Concepts

We use SSA as a generic term for a family of methods based on a sequential
application of the four steps schematically represented in Fig. 1.1 below and briefly
described in the next section.

1.1.1 SSA Methods

We define an SSA method (or simply SSA) as any method performing the four steps
depicted in Fig. 1.1 and briefly described below. The input object X is an ordered
collection of N numbers (e.g., a time series or a digital image). We denote the set of
such objects byM. Unless stated otherwise, the entries of X are assumed to be real
numbers although a straightforward generalization of the main SSA method to the
case of complex numbers is available, see Sect. 4.1.

Input: X, an ordered collection of N numbers.
Output: A decomposition of X into a sum of identifiable components: X = ˜X1 +

. . . + ˜Xm.

Step 1: Embedding The so-called trajectory matrix X = T(X) is constructed,
where T is a linear map transforming the object X into an L × K matrix of certain
structure. Let us denote the set of all possible trajectory matrices by M

(H)
L,K . The

letter H is used to stress that these matrices have Hankel-related structure.
As an example, in 1D-SSA (that is, SSA for the analysis of one-dimensional

real-valued time series), X = (x1, . . . , xN) and T = T1D-SSA maps RN to the space
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Input : X –
time series (t.s.),
collection of t.s.,
array (image), . . .

X = (X)

Trajectory matrix

1. Embedding

X = d

j=1
Xj

Sum of rank-one matrices

2. Decomposition

X = XI1 + · · · + XIm ,

XI =
j∈I

Xj

Grouped matrices

3. Grouping

X = X1 + . . . + Xm ,

Xk = −1 ◦ Π (XIk )

Output: SSA decomposition

4. Reconstruction

Fig. 1.1 SSA family: Generic scheme

of Hankel matrices L × K with equal values on the anti-diagonals, where N is the
series length, L is the window length, which is a parameter, and K =N−L+1:

T1D-SSA(X) =

⎛
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⎟

⎟

⎟

⎠

. (1.1)

Step 2: Decomposition of X into a Sum of Matrices of Rank 1 The result of this
step is the decomposition

X =
∑

i

Xi , Xi = σiUiV
T
i , (1.2)

where Ui ∈ RL and Vi ∈ RK are vectors such that ‖Ui‖ = 1 and ‖Vi‖ = 1 for all i
and σi are non-negative numbers.
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The main example of this decomposition is the conventional singular value
decomposition (SVD) for real-valued matrices X. If this conventional SVD is used,
then we call the corresponding SSA method “Basic SSA” (Golyandina et al. 2001;
Chapter 1). Let S = XXT, λ1 ≥ . . . ≥ λL ≥ 0 be eigenvalues of the matrix S,
d = rankX = max{j : λj > 0}, U1, . . . , Ud be the corresponding eigenvectors,
and Vj = XTUj/

√

λj , j = 1, . . . , d , be factor vectors. Denote Xj = √

λjUjV
T
j .

Then the SVD of the trajectory matrix X can be written as

X = X1 + . . . + Xd . (1.3)

The triple (
√

λj ,Uj , Vj ) consisting of the singular value σj = √

λj , the left singular
vector Uj and the right singular vector Vj of X is called j th eigentriple.

Step 3: Grouping The input in this step is the expansion (1.2) and a specification
of how to group the components of (1.2).

Let I = {i1, . . . , ip} ⊂ {1, . . . , d} be a set of indices. Then the resultant matrix
XI corresponding to the group I is defined as XI = Xi1 + . . . + Xip .

Assume that a partition of the set of indices {1, . . . , d} into m disjoint subsets
I1, . . . , Im is specified. Then the result of Grouping step is the grouped matrix
decomposition

X = XI1 + . . . + XIm. (1.4)

If only one subset, I , of {1, . . . , d} is specified, then we still can assume that a
partition of {1, . . . , d} is provided: this is the partition consisting of two subsets, I
and Ī = {1, . . . , d} \ I . In this case, XI is usually associated with the pattern of
interest (for example, signal) and XĪ = X− XI can be treated simply as a residual.

The grouping of the expansion (1.2), where Ik = {k}, is called elementary.

Step 4: Reconstruction At this step, each matrixXIk from the decomposition (1.4)
is transferred back to the form of the input object X. This transformation is
performed optimally in the following sense: for a matrix Y ∈ RL×K , we seek for
an object ˜Y ∈ M that provides the minimum to ‖Y − T(˜Y)‖F, where ‖Z‖F =
(

∑

ij |zij |2
)1/2

is the Frobenius norm of Z = [zij ] ∈ RL×K .

Let ΠH : RL×K → M
(H)
L,K be the orthogonal projection from RL×K to M

(H)
L,K

in the Frobenius norm. Then ˜Y = T−1 ◦ ΠH(Y). The projection ΠH is simply
the averaging of the entries corresponding to a given element of an object, see
Sect. 1.1.2.6 for details. For example, in 1D-SSA the composite mapping T−1 ◦ΠH

uses the averaging along anti-diagonals so that ỹk = ∑

(i,j)∈Ak
(Y)ij /|Ak|, where

Ak = {(i, j) : i + j = k + 1, 1 ≤ i ≤ L, 1 ≤ j ≤ K}.
Let ̂Xk = XIk be the reconstructed matrices, ˜Xk = ΠH

̂Xk be the corresponding
trajectory matrices, and ˜Xk = T−1(˜Xk) be the reconstructed objects. Then the
resulting decomposition of the initial object X is

X = ˜X1 + . . . + ˜Xm. (1.5)
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If the grouping is elementary, then the reconstructed objects ˜Xk in (1.5) are called
elementary components.

For convenience of referencing, Steps 1 and 2 of the generic SSA scheme are
sometimes combined into the so-called “Decomposition stage” and Steps 3 and 4
are combined into “Reconstruction stage.”

1.1.2 The Main Concepts

1.1.2.1 Parameters of the SSA Methods

Step 1: parameters of the linear map T. For a given object X, the trajectory matrix
X = T(X) can be computed in different ways. In 1D-SSA, there is only one
parameter in Step 1, the window length L.

Step 2: no parameters if the conventional SVD is performed. Otherwise, if an
alternative decomposition of X into a sum of rank-one matrices is used,
there may be some parameters involved, see Sect. 1.2.1.

Step 3: the parameter (or parameters) that defines the grouping.
Step 4: no extra parameters.

1.1.2.2 Separability

A very important concept in the SSAmethodology is separability. LetX = X1+X2.
(Approximate) separability of X1 and X2 means that there exists a grouping such
that the reconstructed object ˜X1 is (approximately) equal to X1. The representation
X = X1 + X2 can be associated with many different models such as “signal plus
noise,” “trend plus the rest,” and “texture plus the main image.”

If X = X1 + X2 and X1 and X2 are approximately separable, then SSA can
potentially separate X1 from X2; that is, it can find a decomposition X = ˜X1 + ˜X2
so that ˜X1 ≈ X1 and ˜X2 ≈ X2.

Consider, as an example, Basic SSA. Properties of the SVD yield that the
(approximate) orthogonality of columns and of rows of the trajectory matrices X1
and X2 of X1 and X2 can be considered as natural separability conditions.

There is a well-elaborated theory of separability for the one-dimensional time
series (Golyandina et al. 2001; Sections 1.5 and 6.1). Many important decomposi-
tion problems, from noise reduction and smoothing to trend, periodicity and signal
extraction, can be solved by SSA. The success of 1D-SSA in making separation
between separable objects is related to the simplicity of the Hankel structure of the
trajectory matrices and the optimality features of the SVD.

We will come back to the important concept of separability in Sect. 1.3 where
we define the main characteristic which is used in SSA for separability checking.
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1.1.2.3 Information for Grouping

The theory of SSA exhibits the ways of helping to detect the components
(σi, Ui, Vi) in the decomposition (1.2) related to the object component with certain
properties to perform proper grouping under the condition of separability. One of
the rules is that Ui and Vi (eigenvectors and factor vectors in the case of Basic
SSA) produced by an object component emulate the properties of this component.
For example, in Basic 1D-SSA the eigenvectors produced by slowly-varying series
components are slowly-varying, the eigenvectors produced by a sine wave are
sine waves with the same frequency, and so on. These properties help to perform
the grouping by visual inspection of eigenvectors and also by some automatic
procedures, see Sect. 2.7.

1.1.2.4 Trajectory Spaces and Signal Subspaces

Let X be the trajectory matrix corresponding to some object X. The column
(row) trajectory space of X is the linear subspace spanned by the columns
(correspondingly, rows) of X. The term “trajectory space” usually means “column
trajectory space.” The column trajectory space is a subspace of RL, while the row
trajectory space is a subspace of RK . In general, for real-world data the trajectory
spaces coincide with the corresponding Euclidean spaces, since they are produced
by a noisy data. However, in the “signal plus noise” model, when the signal has
rank-deficient trajectory matrix, the signal trajectory space can be called “signal
subspace.” Both column and row signal subspaces can be considered; note that the
dimensions of the row and column subspaces coincide.

1.1.2.5 Objects of Finite Rank

The class of objects that suit SSA are the so-called objects of finite rank. We say
that the object (either time series or image) has L-rank r if the rank of its trajectory
matrix is r < min(L,K); that is, the trajectory matrix is rank-deficient. If the L-
rank r does not depend on the choice of L for any sufficiently large object and
trajectory matrix sizes, then we say that the object is of finite rank and has rank r ,
see Sect. 2.1.2 for rigorous definitions.

Since the trajectory matrices considered in SSA methods are either pure Hankel
or consist of Hankel blocks, then the rank-deficient trajectory matrices are closely
related to the objects satisfying some linear relations. These linear relations can
be used for building forecasting methods. In the one-dimensional case, under some
non-restrictive conditions, rank-deficient Hankel matrices are in the one-to-one
correspondence with the linear recurrence relations (LRRs) of the form

xn = a1xn−1 + . . . + arxn−r
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and therefore are related to the time series which can be expressed as sums of
products of exponentials, polynomials, and sinusoids, see Sect. 2.1.2.2.

Each specific SSA extension produces a class of specific objects of finite rank.
The knowledge of ranks of objects of finite rank can help to recognize the rank-one
components for the component reconstruction. For example, in order to reconstruct
the exponential trend in the one-dimensional case, we need to group only one rank-
one component (the exponential function has rank 1), while to reconstruct a sine
wave we generally need to group two SVD components (the rank of a sine wave
equals 2).

The real-life time series or images are generally not of finite rank. However, if
a given object X is a sum of a signal of finite rank and noise, then, in view of
approximate separability, SSA may be able to approximately extract the signal and
subsequently use the methods that are designed for series of finite rank.

1.1.2.6 Reconstruction (Averaging)

Let us formally describe the operation of reconstruction of a matrix used in Step 4 of
the generic scheme described in Sect. 1.1.1. By analogy with the one-dimensional
case this operation can also be called “averaging over diagonals” even if the
averaging will be performed over more complicated patterns.

Assume that the entries xτ of the object X = {xτ } are indexed by the index τ

which can be simply a positive integer (for the one-dimensional series) or multi-
index (for digital images).

A linear map T is making a one-to-one transformation of M to M
(H)
L,K , the set of

L × K matrices of a specified structure. It puts elements of X on certain places of
the matrix T(X) = X = [(X)ij ].

Let eτ ∈ M be the object with 1 as the τ th entry with all other entries zero.
Define the set of indices

Aτ = {(i, j) such that (Eτ )ij = 1} ,

where Eτ is the matrix

Eτ = [(Eτ )ij ] = T(eτ ) ∈ M
(H)
L,K .

If τ is the place of an element xτ ∈ X, then (X)ij = xτ for all (i, j) ∈ Aτ .
Assume now that ̂X ∈ RL×K is an arbitrary L × K matrix and we need to

compute

˜X = (̃xτ ) = T−1 ◦ ΠH(̂X)

by first making the orthogonal projection of ̂X to the set M(H)
L,K and then writing

the result in the object space M. This operation is the extension of the “diagonal



8 1 Introduction: Overview

averaging” procedure applied in 1D-SSA: the elements x̃τ of˜X are computed by the
formula

x̃τ =
∑

(i,j)∈Aτ

(̂X)ij /wτ = 〈̂X,Eτ 〉F/‖Eτ‖2F ,

where Eτ = T(eτ ), wτ = |Aτ | = ‖Eτ ‖2F is the number of elements in the set Aτ

and the Frobenius inner product 〈·, ·〉F is defined by

〈Z,Y〉F =
∑

i,j

zij yij . (1.6)

1.2 Different Versions of SSA

Let us consider how the four steps of the generic scheme of SSA formulated in
Sect. 1.1 can vary for different versions of SSA.

Step 1: the form of the objectX and hence the specificity of the embedding operator
T makes a big influence on how a particular version of SSA looks like.

Step 2: not only the conventional SVD but many other decompositions of X into
rank-one matrices could be used.

Step 3: formally, this step is exactly the same for all versions of SSA although the
tools used to perform the grouping may differ.

Step 4: the embedding operator T defined in Step 1 fully determines the operations
performed at this step.

Therefore, we have two directions for creating different versions of SSA: the first
direction is related to geometrical features of the object X and a form of the
embedding operator T, while the second direction is determined by the form of the
decomposition at Step 2. Essentially, Step 1 is determined by the form of the object;
therefore, its variations can be considered as extensions of 1D-SSA. If instead of
SVD we use some other decomposition of X into rank-one matrices at Step 2,
then we call the corresponding algorithm a modification of Basic SSA. These two
directions of variations of SSA are not related to each other so that any extension of
Step 1 can be combined with any modification of Step 2.

We start the discussion with outlining some modifications that can be offered for
the use at Step 2.

1.2.1 Decomposition of X into a Sum of Rank-One Matrices

1.2.1.1 Variations of SSA Related to Methods of Decomposition

The conventional SVD formulated in the description of SSA in Sect. 1.1.1 is a
decomposition of X into a sum of rank-one matrices, which has some optimality
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properties, see Golyandina et al. (2001; Chapter 4). Therefore, Basic SSA, which
is SSA with the conventional SVD used at Step 2, can be considered as the most
fundamental version of SSA among all SSA methods.

Let us enumerate several variations of SSA, which could be useful for answering
different questions within the framework of SSA.

A well-known modification of Basic SSA is Toeplitz SSA (Sect. 2.2), which was
created for dealing with stationary time series. This modification is devised for the
analysis of a natural estimate of the auto-covariance matrix of the original time
series and assumes that this time series is stationary. However, if the time series
X is non-stationary, then the reconstruction obtained by Toeplitz SSA can have a
considerable bias.

An important variation of SSA is SSA with projection (Sect. 2.3). If we have
a parametric model (which should be linear in parameters and agreeable with the
finite-rank assumption) for one of the components of the series, such as trend of
a one-dimensional series, then a projection on a suitable subspace is performed
and is followed by a decomposition of the residual, e.g., by the SVD. The known
methods of SSA with centering and SSA with double centering for extraction of
constant and linear trends, respectively, are special cases of SSA with projection.
More generally, an arbitrary polynomial trend can be extracted by a suitable version
of SSA with projection. Another use of SSA with projection is to build a subspace
from a supporting series and project the main series onto this subspace.

In some versions of SSA the intention is to improve separability properties of
SVD. If we use an oblique version of the SVD, then the resulting SSA method
becomes Oblique SSA. The following two versions of Oblique SSA seem to be
useful in practice, namely Iterative Oblique SSA (Sect. 2.4) and Filter-adjusted
Oblique SSA (Sect. 2.5). The latter is useful for separation of components with equal
contribution.

1.2.1.2 Nested Application of Different Versions of SSA

Since Oblique SSA does not have good approximating features, it cannot replace
Basic SSA which uses the conventional SVD. Therefore, Oblique SSA should be
used in a nested manner so that Basic SSA is used first to extract several components
without performing careful split of these components and then one of the proposed
oblique methods is used for separating the mixed components.

If we use Basic SSA for denoising and then some other version of SSA (like
IndependentComponent Analysis or Oblique SSA) for improvement of separability,
then we can interpret this as if using Basic SSA for preprocessing and using another
method for a more refined analysis. There is, however, a significant difference
between this and some methods mentioned in Sect. 1.7.3, where Basic SSA is
used for preprocessing and then ARIMA or other methods of different nature are
employed. Indeed, when we use Basic SSA for denoising and some other SSA
technique like Oblique SSA for improvement of separability, then we are using the
signal subspace estimated by Basic SSA rather than the estimated signal itself (recall
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that in the transition from the estimated signal subspace to the estimated signal we
incur an additional error).

Let us schematically demonstrate the nested use of the methods as follows. Let
X = X

(1)+X
(2)+X

(3) be a decomposition of the time series andX = X(1)+X(2)+
X(3) be the corresponding decomposition of the trajectory matrix of X. Let Basic
SSA return at Decomposition stage X = ˜X(1,2) + ˜X(3) and assume that a chosen
nested method makes the decomposition˜X(1,2) = ˜X(1) + ˜X(2). Then the final result
is X = ˜X(1) +˜X(2)+˜X(3) and, after the diagonal averaging,X = ˜X

(1) +˜X
(2) +˜X

(3).
There is no need for reconstruction of the signal by Basic SSA as only the estimated
signal subspace is used for making a refined decomposition.

1.2.1.3 Features of Decompositions

The result of Decomposition step of SSA (Step 2) can be written in the form (1.2).
The SVD is a particular case of (1.2) and corresponds to the orthonormal systems
of {Ui} and {Vi}. By analogy with the SVD, we will call (σi , Ui, Vi) eigentriples, σi

singular values, Ui left singular vectors or eigenvectors, Vi right singular vectors or
factor vectors. For most of SSA decompositions, each Ui belongs to the column
space of X while each Vi belongs to the row space of X. We shall call such
decompositions consistent.

If the systems {Ui} and {Vi} are linearly independent, then the decomposi-
tion (1.2) is minimal; that is, it has smallest possible number of addends equal to
r = rankX. If at least one of the systems {Ui} or {Vi} is not linearly independent,
then the decomposition (1.2) is not minimal. If the decomposition (1.2) is not
consistent, then it can be not minimal even if {Ui} or {Vi} are linearly independent,
since their projections on the column (or row) space can be dependent.

If both vector systems {Ui} and {Vi} are orthogonal, then the decomposition (1.2)
is called biorthogonal. If {Ui} is orthogonal, then the decomposition is called left-
orthogonal; if {Vi} is orthogonal, then the decomposition is called right-orthogonal.

If Xi are F-orthogonal so that 〈Xi ,Xj 〉F = 0 for i �= j , then we say that the
corresponding decompositions are F-orthogonal. Either left or right orthogonality
is sufficient for F-orthogonality. For F-orthogonal decompositions (1.2), ‖X‖2F =
∑

i ‖Xi‖2F. In general, however, ‖X‖2F may differ from
∑

i ‖Xi‖2F.
The contribution of kth matrix componentXk is defined as σ 2

k /‖X‖2F, where σ 2
k =

‖Xk‖2F. For F-orthogonal decompositions, the sum of component contributions is
equal to 1. Otherwise, this sum can considerably differ from 1 (e.g., the sum of
component contributions can be 146%).

1.2.1.4 Decompositions in Different Versions of SSA

Let us gather several versions of 1D-SSA which are implemented in the RSSA

package and based on different procedures used at Decomposition step, and indicate
their features. Some of these variations are also implemented for multivariate and
multidimensional versions of SSA.
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Basic SSA: the conventional SVD, consistent, minimal, biorthogonal and therefore
F-orthogonal decomposition. Implemented in ssa with kind="1d-ssa".

Toeplitz SSA: generally, non-consistent, non-minimal F-orthogonal decomposi-
tion. Implemented in ssa with kind="toeplitz-ssa".

SSA with projection: F-orthogonal but non-consistent decomposition if at least one
basis vector used for the projection does not belong to the column (row)
trajectory space. The components, which are obtained by projections, are
located at the beginning of the decomposition and have indices 1, . . . , nspecial.
Implemented in ssa with kind="1d-ssa" and non-NULL row.projector or
column.projector arguments.

Oblique SSA with filter preprocessing (Filter-adjusted O-SSA): consistent, min-
imal F-orthogonal decomposition. The main particular case is DerivSSA.
Implemented in fossa.

Iterative Oblique SSA (Iterative O-SSA): consistent, minimal oblique decomposi-
tion. Implemented in iossa.

Oblique versions of SSA are made to perform in a nested manner.

1.2.2 Versions of SSA Dealing with Different Forms
of the Object

In this section, we briefly consider different versions of SSA which operate objects
X of different forms. The main difference between different versions of SSA of this
section is the form of the embedding operator T.

As has been mentioned above, SSA can be applied to multivariate and multidi-
mensional objects. SSA for a system of series is called Multivariate (or Multichan-
nel) SSA, shortly MSSA (Sect. 4.2); SSA for digital gray-scale images is called
2D-SSA (Sect. 5.1).

Complex SSA (Sect. 4.1) is a special version of SSA for the analysis of two time
series of equal length or a single one-dimensional complex-valued time series.

Shaped SSA (Sects. 2.6 and 5.2) can process data of complex structure and
arbitrary shape; the dimension of the object X is irrelevant. Shaped SSA can be
applied to many different kinds of data including time series, systems of time series,
digital images of rectangular and non-rectangular shapes.

For both series and images, circular versions of SSA are available. For series,
circular SSA works in the metric of a circle and therefore this version is suitable for
series, which are indeed defined on a circle.

For images, circular versions of SSA provide a possibility to decompose images
given on a cylinder (for example, obtained as a cylindrical projection of a sphere
or an ellipsoid) or given on a torus. Circular versions allow to eliminate the edge
effects, which are unavoidable in the case of, e.g., planar unfolding of a cylinder.

Table 1.1 contains a list of the extensions considered in this book.
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Table 1.1 Classification of different versions of SSA based on different geometrical features of
the object X

Method Data Notation Trajectory matrix Section

1D-SSA Time series (t.s.) X = (x1, . . . , xN ) of
length N

Hankel 2.1

CSSA Complex t.s. X
(1) + iX(2) Complex Hankel 4.1

MSSA System of t.s. X
(p) of length Np ,

p = 1, . . . , s
Stacked Hankel 4.2

2D-SSA Rectangular image X = (xij )
Nx ,Ny

i,j=1 Hankel-Block-Hankel 5.1

ShSSA Shaped objects X = (x(i,j))(i,j)∈N Quasi-Hankel 5.2

Circular SSA Circular/cylindrical Objects on circle or
cylinder

Quasi-Hankel 5.2.1.3

1.3 Separability in SSA

In this section, we discuss the SSA separability in more detail; see also
Sects. 2.1.3, 2.3.3, 2.4.2, 2.5.2 for special cases.

Let us assume that we observe a sum of two objectsX = X
(1)+X

(2). We say that
SSA separates these two objects if a grouping at Grouping step (Step 3) can be found
such that ˜X

(k) = X
(k) for k = 1, 2. If these equalities hold approximately, then

this defines approximate separability. Asymptotic separability can be introduced if
the series length N → ∞. In this case, approximate separability takes place for
large enough series lengths. The separability property is very important for SSA as
it means that the method potentially works; that is, it is able to extract the object
components.

In Basic SSA and its multidimensional extensions, (approximate) separability
means (almost) orthogonality of the object components, since the biorthogonal SVD
decomposition is used. In other versions of SSA, different conditions of separability
can be formulated.

If the decomposition (1.2) at Decomposition step is not unique, then two
variants of separability are introduced. Weak separability means that there exists a
decomposition such that after grouping we obtain ˜X

(k) = X
(k). Strong separability

means that this equality is achievable for any admissible decomposition.
Conditions of exact separability are very restrictive whereas asymptotic sepa-

rability takes place for a wide range of object components. For example, slowly
varying smooth components are asymptotically separable from regular oscillations
and they both are asymptotically separable from noise.

In order to verify separability of the reconstructed components ˜X1 and ˜X2, we
should check orthogonality of their reconstructed trajectory matrices ˜X1 and ˜X2. A
convenient measure of their orthogonality is the Frobenius inner product 〈˜X1,˜X2〉F
defined in (1.6).

The normalized measure of orthogonality is

ρ(˜X1,˜X2) = 〈˜X1,˜X2〉F/(‖˜X1‖F‖˜X2‖F) .
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Since the trajectory matrix consists of wτ = |Aτ | = ‖T(eτ )‖2F entries of the τ th
element xτ of the initial ordered object, we can introduce the weighted inner product
in the space M: (Y,Z)w = ∑

τ wτ yτ zτ . Then the quantity

ρw(˜X1,˜X2) = ρ(˜X1,˜X2) = (˜X1,˜X2)w

‖˜X1‖w‖˜X2‖w
(1.7)

will be called w-correlation by statistical analogy. Note however that in this
definition the means are not subtracted.

Let ˜Xj be the elementary reconstructed components produced by the elementary

grouping Ij = {j }. Then the matrix of ρ
(w)
ij = ρw(˜Xi ,˜Xj ) is called w-correlation

matrix.
The norm ‖ · ‖w is called the weighted norm and serves as a measure of

contribution of the components in the decomposition (1.5): the contribution of ˜Xk

is defined as ‖˜Xk‖2w
/‖X‖2w.

If the weighted correlation between a pair of elementary components is large,
then this suggests that these two components are highly correlated and should
perhaps be included into the same group.

1.4 Forecasting, Interpolation, Low-Rank Approximation,
and Parameter Estimation in SSA

There is a class of objects, which is special for SSA. This is the class of objects
satisfying linear recurrence relations. Trajectory matrices of these objects are rank-
deficient and, moreover, for these objects the number of non-zero terms in the
SVD (1.3) does not depend on the window length if this length is sufficiently large;
we will say in such cases that the objects are of finite rank. The class of objects
satisfying linear recurrence relations provides a natural model of the signal for SSA,
which is a fundamentally important concept for forecasting of time series.

Linear recurrence relation (LRR) for a time series SN = (si)
N
i=1 is a relation of

the form

si+t =
t

∑

k=1

aksi+t−k, 1 ≤ i ≤ N − t, at �= 0, t < N. (1.8)

It is well known (see, e.g., Hall (1998; Theorem 3.1.1)) that a sequence S∞ =
(s1, . . . , sn, . . .) satisfies the LRR (1.8) for all i ≥ 0 if and only if for some integer
p we have for all n

sn =
p

∑

k=1

Pk(n)μn
k , (1.9)
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where Pk(n) are polynomials in n and μk are some complex numbers. For real-
valued time series, (1.9) implies that the class of time series governed by the LRRs
consists of sums of products of polynomials, exponentials, and sinusoids.

A simplified model of (1.9) is sn =
p
∑

k=1
ckμ

n
k . Estimation of complex numbers

μk = ρke
i2πωk is equivalent to estimating the frequencies ωk and the rates lnρk .

For images S = [smn], LRRs are two-dimensional and the common term of the
signal (which can be called pattern) under the model has the form

smn =
p

∑

k=1

Pk(m, n)μm
k νn

k . (1.10)

This important fact is well known starting from Kurakin et al. (1995; §2.20).
In many real-life problems, a noisy signal (or noisy pattern for images) is

observed and the problem is to forecast the signal, impute gaps in the signal,
estimate signal parameters, find change-points in the signal, and so on. Note that
it is not compulsory to assume that the noise is random. In a very general sense,
noise is a residual which does not require further investigation.

SSA may provide estimates of the signal space, which is the subspace spanned by
the chosen basis duringGrouping step in SSA. The estimation of the signal subspace
can be performed by iterations (so-called Cadzow iterations), which consist of
iterative SSA processing, see Sect. 3.4.

In the process of estimation of the signal subspace we also obtain a parametric
estimate of the signal; that is, of the set of {μk} in the 1D case and the set of {μk, νk}
in the 2D case. One of the most common methods is called ESPRIT for series and
2D-ESPRIT for images (see Sects. 3.1.1.2 and 5.3).

For series, sequential on-line estimation of the signal structure produces natural
algorithms of subspace tracking (e.g., for monitoring structural stability of an object
changing in time) and change-point detection. Also, we can forecast the found
structure, e.g., by application of the constructed LRR. By performing interpolation
(which is forecasting inside the series) missing data can be filled in.

1.5 The Package

1.5.1 SSA Packages

There are many implementations of SSA. They differ by potential application areas,
implemented methods, interactive or non-interactive form, free or commercial use,
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computer system (Windows, Unix, Mac), level of reliability and support. The most
known supported software packages implementing SSA are the following:

1. http://gistatgroup.com:
general-purpose interactive “Caterpillar”-SSA software (Windows) following
the methodology described in Golyandina et al. (2001), Golyandina and Zhigl-
javsky (2013);

2. http://www.atmos.ucla.edu/tcd/ssa:
oriented mainly on climatic applications SSA-MTM Toolkit for spectral analysis
(Ghil et al. 2002) (Unix) and its commercial extension kSpectra Toolkit (Mac),
interactive;

3. The commercial statistical software, SAS, has an econometric extension called
SAS/ETS�, which includes SSA in its rather basic form; this version of SSA is
based on the methodology of Golyandina et al. (2001).

4. http://cran.r-project.org/web/packages/Rssa:
R package RSSA (Korobeynikov et al. 2017), an implementation of the main SSA
procedures for major platforms, extensively developed.

We consider the RSSA package as an efficient implementation of a large variety
of the main SSA algorithms. This package also contains many visual tools which
are useful for making proper choice of SSA parameters and examination of results.

RSSA is the only SSA package available from CRAN and we believe it is the
fastest implementation of SSA. Another important feature of the package is its very
close relation to the SSA methodology thoroughly described in Golyandina et al.
(2001), Golyandina and Zhigljavsky (2013), Golyandina et al. (2015). As a result of
this, the use of the package is well theoretically and methodologically supported.

1.5.2 Tools for Visual Control and Choice of Parameters

SSA needs tools to help choosing the method parameters and controlling the results.
To a great extent, SSA is an exploratory technique and hence visual tools are vital
and they are extensively used in RSSA. For example, in order to help to choose the
groups in (1.4), RSSA allows plotting measures of separability of series components
in the obtained decompositions.

The tools for accuracy control are divided into two groups. First, stability of
results with respect to parameter changes can be checked. Second, the bootstrap
procedure could be used when the model (not necessarily parametric) of either
the series or other object is built on the base of signal reconstruction and then
the accuracy of this model is assessed by simulation according to the estimated
model. Shortly, RSSA allows the user to enjoy a large variety of graphical tools and
bootstrap procedures.

http://gistatgroup.com
http://www.atmos.ucla.edu/tcd/ssa
http://cran.r-project.org/web/packages/Rssa
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1.5.3 Short Introduction to RSSA

The RSSA package implements all methods and tools mentioned above.
The main function is ssa, which initializes an ssa object and by default

performs the decomposition by different methods. Together with reconstruct,
they implement the SSA method. For nested versions, iossa and fossa serve for
refined decompositions.

An ssa object s contains, among others, elements of the decomposition (1.2),
which can be accessed as s$sigma, s$U, and s$V. Features of the decompositions
differ for different versions of SSA (see Sect. 1.2.1.4). For Basic SSA, s$sigma
are called singular values; squares of s$sigma are called eigenvalues; s$U are
called eigenvectors. (We keep these names for other versions of SSA as well.)
The relative contributions of components to the decomposition can be obtained
as contributions(s); see Sect. 1.2.1.3, where formulas for their calculation are
given and explained.

A variety of functions plot help to visualize the results and additional infor-
mation. Functionality of SSA-related methods is supplemented by the functions
forecast, parestimate, and some others.

All essential versions of SSA are implemented in RSSA but not all further actions
like forecasting and gap filling are consistent with all implemented versions of SSA.
The user can check the ssa object, which is returned by the main function ssa, for
compatibility by the function ssa.capabilities. This function returns a list of
capabilities with information TRUE or FALSE, respectively.

A general scheme of investigation by means of RSSA is as follows:

1. perform decomposition by ssa;
2. visualize the result by plot;
3. if necessary, refine decomposition by iossa or fossa;
4. again, visualize the result by plot;
5. perform grouping based on the obtained visual and numerical information; in

particular, choose the group of signal components;
6. then perform one of the following actions: reconstruction of series compo-

nents by reconstruct, forecasting by forecast, parameter estimation by
parestimate;

7. visualize the result by plot.

Note that RSSA contains more algorithms than this book formulates. However,
the book has enough information to understand how to extend the algorithms, such
as parameter estimation, filling-in missing data and O-SSA, to different dimensions
and geometries. Many of these versions are implemented in RSSA but not described
in the book explicitly: there are infinitely many dimensions and geometries and the
algorithms are formulated in the book in such a manner that they can be easily
generalized if needed.
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1.5.4 Implementation Efficiency

The user does not need to know the specifics of the internal implementation of the
RSSA functions. However, understanding of the general principles of implementa-
tion can help to use the package more effectively.

The fast implementation of SSA-related methods, which was suggested in
Korobeynikov (2010), extended in Golyandina et al. (2015) and is used in the
RSSA package (Korobeynikov et al. 2017), relies on the following techniques (see
Shlemov and Golyandina (2014) for a more thorough discussion).

1. The truncated SVD calculated by the Lanczos methods (Golub and Van Loan
1996; Ch. 9) is used. In most SSA applications, only a number of leading SVD
components correspond to the signal and therefore are used at Grouping step of
the SSA algorithm. Thus, a truncated SVD rather than the full SVD is usually
required by SSA.

2. Lanczos methods do not use the explicit representation of the decomposed
matrix A. They need only the results of multiplication of A and AT on some
vectors. In view of the special Hankel-type structure ofA in the SSA algorithms,
multiplication by a vector can be implemented very efficiently with the help of
the Fast Fourier Transform (FFT). Fast SVD algorithms are implemented in the
R-package SVD (Korobeynikov et al. 2016) in such a way that their input is the
function of a vector which yields the result of fast multiplication of the vector
by the trajectory matrix. Therefore, the use of SVD in RSSA allows a fast and
space-efficient implementation of the SSA algorithms.

3. At Reconstruction step, hankelization or quasi-hankelization of a matrix of
rank 1, stored as σUV T, can be written by means of the convolution operator
and therefore can also be effectively implemented; this is also done in RSSA.

The overall complexity of the computations is O(kN log(N) + k2N), where N

is the number of elements in a shaped object and k is the number of considered
eigentriples, see details in Korobeynikov (2010) and in Golyandina et al. (2015).
This makes the computations feasible for large data sets and large window sizes. For
example, the case of an image of size 299× 299 and a window size 100 × 100 can
be handled rather easily, whereas the conventional algorithms (e.g., the full SVD
(Golub and Van Loan 1996)) are impractical, because the matrix that needs to be
decomposed has size 104×4 ·104. Using larger window sizes is often advantageous,
since, for example, separability of signal from noise (in the “signal+noise” scenario)
can be significantly improved.

1.6 Comparison of SSA with Other Methods

In this section, we provide some notes and a short bibliographical overview
concerning comparison of SSA with several traditional methods.
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1.6.1 Fourier Transform, Filtering, Noise Reduction

• Fourier Transform uses a basis given in advance, while SSA uses an adaptive
basis, which is not restricted to a frequency grid with resolution 1/N . The wavelet
transform also uses fixed bases; the advantage of the wavelet transform is that a
change in the frequencies can be detected by the used time-space basis. In the
framework of SSA, the analysis of time series with changing frequency structure
can be performed by using moving procedures, e.g., by subspace tracking.

• One of the state-of-the-art methods of frequency estimation is the high-resolution
method ESPRIT, which is a subspace-based method. This method can be con-
sidered as an SSA-related method and indeed it is frequently used in the present
book and in RSSA.

• Fourier Transform is very inefficient for series with modulations in amplitudes
and frequencies. SSA can easily deal with amplitude modulation but cannot
efficiently deal with frequency modulation.

• SSA decomposition can sometimes be viewed as an application of a set of linear
filters (Bozzo et al. 2010; Harris and Yan 2010; Golyandina and Zhigljavsky
2013) with an interpretation depending on the window length L. For small L,
each decomposition component on the interval [L,K], where K = N − L + 1,
can be obtained by a linear filter. Therefore, the viewpoint of filtering on the
decomposition result can be adequate. For example, the reconstruction by the
leading components is close to application of the triangle filter.
If L � K and hence the interval [L,K] is small, then it is not so. In this case, the
separability approach, which is based on orthogonality of separated components,
is more appropriate. Note that oblique versions of SSA can weaken the condition
of orthogonality, see Sect. 2.4.

• There is a big difference between the moving averaging and SSA for noise
reduction. Consider an example of a noisy sinusoid. The moving averaging will
add a bias in estimation caused by the second derivative of the signal, while SSA
with large L will provide an unbiased estimate of the signal.
Note that even for small L, when the reconstruction by the leading component
is a weighted moving average with positive weights and therefore has the same
drawbacks as the moving averaging, the user can add additional components to
remove the possible bias.

• Filtering by SSA to obtain noise reduction can be considered from the view-
point of the low-rank approximation. The good approximation properties yield
appropriate noise suppression. Empirical-mode decomposition (EMD), in turn,
starts Intrinsic Mode Functions (IMF) with high frequencies, while the trend is
contained in the last IMFs.

As an example of comparison of SSA, Fourier transform and wavelet transform
see, e.g., Kumar et al. (2017). The authors conclusion states: “the SSA-based
filtering technique is robust for regional gravity anomaly separation and could be
effectively exploited for filtering other geophysical data.”
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In Barrios-Muriel et al. (2016), an SSA-based de-noising technique for removal
of electrocardiogram interference in Electromyography signals is comparedwith the
high-pass Butterworth filter, wavelets, and EMD. The authors of this paper state:
“the proposed SSA approach is a valid method to remove the ECG artifact from the
contaminated EMG signals without using an ECG reference signal.”

In Watson (2016), many different methods for trend extraction are compared
for synthetic data simulating sea level behavior; SSA is compared against moving
average, wavelets, regression, EMD. The author writes: “the optimum performing
analytic is most likely to be SSA whereby interactive visual inspection (VI)
techniques are used by experienced practitioners to optimize window length and
component separability.”

Comparison of SSA filtering and Kalman filters (KF) can be found in Chen et al.
(2016), where it is shown that “both SSA and KF obtain promising results from
the stations with strong seasonal signals, while for the stations dominated by the
long-term variations, SSA seems to be superior.”

1.6.2 Parametric Regression

Parametric regression naturally assumes a parametric model. There is a big dif-
ference between parametric and non-parametric models: if the assumed model is
true, then the related parametric methods are the most appropriate methods (if there
are no outliers in the data). If the assumed parametric model is not true, then the
results of parametric methods are biased and may be very misleading. Drawbacks of
non-parametric methods are also clear: there are problems with forecasting, testing
the model, confidence interval construction, and so on. Frequently, non-parametric
methods serve as preprocessing tools for parametric methods. As discussed in
Sect. 1.7.3, this is often the case for SSA.

For comparison of SSA with double centering and linear regression see, for
example, Sect. 2.3 and Golyandina and Shlemov (2017). It appears that SSA with
double centering as preprocessing method considerably improves the accuracy of
linear trend estimation.

SSA has a very rare advantageous property: it can be a non-parametric method
for preliminary analysis and can also be parametric for modeling the series governed
by LRRs. Moreover, the forecast by an LRR uses the parametric model in implicit
manner; therefore, it is more robust to deviations from the model than the forecast
based on explicit parameter estimation.

One of the subspace-based method for constructing the model of the signal,
which is governed by an LRR, is Hankel low-rank approximation (HLRA). HLRA
can be considered as a method of parameter estimation in a parametric model, where
only the rank of the signal is given rather than exact parametric form, see Sect. 3.4.
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1.6.3 ARIMA and ETS

First, the (Seasonal) ARIMA and Exponential smoothing models (ETS, which
means Error, Trend, Seasonal) totally differ from the model of SSA (for a com-
prehensive introduction to ARIMA and ETS, see Hyndman and Athanasopoulos
(2013)). In particular, in ARIMA the noise is added at each recurrence step, while
for SSA the noise is added after the signal is formed. Also, trends/seasonality in
SSA are deterministic, while in ARIMA/ETS the trends/seasonality are random. As
in many classical methods, ARIMA and ETS need the period values to be specified
for the periodic components.

However, if one considers the analysis/forecast of real-life time series, then these
time series do not exactly follow any model. Therefore, the problem of comparison
of methods of different nature is not easy.

As a rule, confidence intervals for ARIMA forecasts are too large but the mean
forecast can often be adequate. Advantage of Seasonal ARIMA and ETS is that
the model and its parameters can be fitted automatically on the base of information
criteria.

Rigorously substantiated information criteria are not constructed for SSA. One
of the reasons for this is the fact that SSA is a non-parametric method. The most
standard approach for the choice of parameters, when there are no given models,
is the minimization of the forecasting error on the validation period. In the most
frequent case, when the forecast is constructed on the base of r leading eigentriples,
SSA has only two parameters (L and r), which can be estimated by the minimization
of the forecasting error for several forecasts performed within the validation period,
see Sect. 3.5.7.

Comparison of SSA and ARIMA/ETS was performed in many papers. Some
examples are as follows.

• It is demonstrated in Hassani et al. (2015) that SSA has topped several other
methods in an example involving forecasting of tourist arrivals,

• It is exhibited in Vile et al. (2012) that for predicting ambulance demands “SSA
produces superior longer-term forecasts (which are especially helpful for EMS
planning), and comparable shorter-term forecasts to well established methods.”

• The author of Iqelan (2017) concludes: “The forecasting results are compared
with the results of exponential smoothing state space (ETS) and ARIMA models.
The three techniques do similarly well in forecasting process. However, SSA
outperforms the ETS and ARIMA techniques according to forecasting error
accuracy measures.”

• In Hassani et al. (2009, 2013), the univariate and multivariate SSA were favorable
in a comparison with ARIMA and VAR for forecasting of several series of
European industrial production.
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1.7 Bibliographical Notes

1.7.1 Short History

Commencement of SSA is usually associated with publication in 1986 of the papers
Broomhead and King (1986) and Broomhead and King (1986b). However, some
ideas, which later became parts of SSA, have been formulated very long ago
(de Prony 1795). Arguably, the most influential papers on SSA published in the
1980 and 1990s, in addition to Broomhead and King (1986,b), are Fraedrich (1986),
Vautard and Ghil (1989), Vautard et al. (1992), Allen and Smith (1996). In view of
many successful applications of SSA, the number of publications considering SSA
methodology grows exponentially and has surely reached few hundred.

A parallel development of SSA (under the name “Caterpillar”) has been con-
ducted in the former USSR, especially, in St.Petersburg (known at that time as
Leningrad), see, e.g., Danilov and Zhigljavsky (1997). The authors of this book
continue the traditions of the St.Petersburg school of SSA.

The monograph (Golyandina et al. 2001) contains a comprehensive description
of the theoretical and methodological foundations of SSA for one-dimensional (1D)
time series; the authors of that monograph tried to summarize all the knowledge
about 1D-SSA available at that time. A short book (Golyandina and Zhigljavsky
2013) developed further the methodology of 1D-SSA. It reflected the authors’ new
understandings as well as new SSA insights including subspace-based methods,
filtering and rotations in the signal space for improving separability. A substantial
paper (Golyandina et al. 2015) supplements the above books by expanding SSA for
processing multivariate time series and digital images.

1.7.2 Some Recent Applications of SSA

The number of publications devoted to applications of SSA is steadily increasing.
In addition to the standard applications areas such as climatology, meteorology,
and geophysics, there are now many papers devoted to applications in engineering,
economics, finance, biomedicine, and other areas. One can find many references to
recent publications in Zhigljavsky (2010) and many papers in the two special issues
of Statistics and Its Interface (2010, v.3, No.3 and 2017, v.10, No.1), which are
either fully or partly devoted to SSA. In this short section we briefly mention some
recent applications of SSA. In most of these papers, only the simplest versions of
SSA (that is, Basic SSA of Sect. 2.1 and Toeplitz SSA of Sect. 2.2) have been used.

Advantages of 2D-SSA (described in Sect. 5.1) over some other methods of
image processing are demonstrated in Zabalza et al. (2014, 2015) in application
to hyperspectral imaging. Application of 2D-SSA to gap-filling is considered in
von Buttlar et al. (2014). Application of Multivariate SSA for detecting oscillator
clusters in multivariate datasets is proposed in Groth and Ghil (2015).
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It is not easy to find applied areas related to analysis of temporal data, where
1D-SSA was not applied. Let us give some examples. In Salgado et al. (2013) and
several other papers of the same authors, SSA has been used as the main technique
in the development of a tool-wear monitoring system. Security of mobile devices is
considered in Genkin et al. (2016), where SSA is used for preprocessing. In Sella
et al. (2016), SSA was used for extraction of economic cycles. Filho and Lima
(2016) use SSA for gap filling of precipitation data. Some recent applications in
climatology were considered in Mudersbach et al. (2013), Monselesan et al. (2015)
and in Pepelyshev and Zhigljavsky (2017). In Karnjana et al. (2017), SSA helps
to solve the problem of unauthorized modification in speech signals. In Barrios-
Muriel et al. (2016), SSA is used for de-noising in the problem of removal of
electrocardiogram interference in electromyography signals. The paper (Hudson
and Keatley 2017) is related to the decomposition and reconstruction of long-term
flowering records of eight eucalypt species. In Wang et al. (2017), SSA was used as
a preprocessing tool prior to making a classification of a medical data; the authors
wrote: “the results have demonstrated the robustness of the approach when testing
on large scale datasets with clinically acceptable sensitivity and specificity.”

1.7.3 SSA for Preprocessing/Combination of Methods

For many differentmethods, SSA provides improvement if it is used as a preprocess-
ing tool. There are dozens of papers, where hybrid methods incorporating SSA are
considered. In most of the applications, SSA serves for either denoising or feature
extraction. Let us give some examples of papers considering hybrids of SSA and
other methods.

SSA is used as a preprocessing step for ARIMA in Zhang et al. (2011). A
cooperative hybrid of SSA, ARIMA, and Holt-Winters is suggested in Xin et al.
(2015). In Lakshmi et al. (2016) it is shown that the hybrid SSA + ARMAX is better
than ARMAX alone for detection of structural damages for problems of Structural
Health Monitoring.

In machine leaning, SSA is frequently used to obtain new characteristics of time
series for a subsequent use of them in other models and methods. This is called
feature extraction. The paper (Sivapragasam et al. 2001) is considered as a one of
the first papers, where SSA is used together with Support Vector Machines (SVM).
A hybrid of SSA with Neural Networks was suggested in Lisi et al. (1995).

In Wang et al. (2016), support vector machine regression (SVR) is applied
separately to the trend and fluctuations, which are extracted by SSA. The con-
structed method is applied to forecast a time series data of failures gathered at the
maintenance stage of the Boeing 737 aircraft. It is shown that the suggested hybrid
SSA+SVR outperforms Holt-Winters, autoregressive integrated moving average,
multiple linear regression, group method of data handling, SSA, and SVR used
separately. Similar techniques are considered in Xiao et al. (2014), where SSA is
employed for extraction of the trend and seasonality and then Neural Networks and
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fuzzy logic are applied to them separately with consequent combination. In Wu and
Chau (2011), SSA is successfully used for noise removal before Neural Networks
are applied. This work contains a review of different approaches to Rainfall-runoff
modeling by means of SSA used in combination with other methods.

In Zabalza et al. (2014), SSA has been applied in hyperspectral imaging for
effective feature extraction (noise removal), and then SVM was used for classifi-
cation. It appeared that SSA performed preprocessing better than Empirical Mode
Decomposition (EMD). Note that SSA and EMD do not only compete; they can be
successful as hybrids. For example, in Yang et al. (2012) EMD is used for trend
extraction and then SSA is applied to forecast changes in the trend.

1.7.4 Materials Used in This Book

In writing this book we have used much material from different sources. Many
sections contain the material which is entirely new but other sections are based on
our previous publications. Let us briefly describe the main references we have used
in writing the theoretical and methodological material of the book.

Chapter 1 (Introduction: Overview) contains an original approach to the SSA
modifications from a general viewpoint. The generic scheme of SSA-family meth-
ods from Sect. 1.1 was suggested in Golyandina et al. (2015).

1D-SSA is well elaborated and therefore Chap. 2 (SSA analysis of one-
dimensional time series), in addition to some new material (this especially concerns
new examples and the discussions concerning RSSA), revises standard SSA tech-
niques. Sections 2.1 (Basic SSA) and Sect. 2.2 (Toeplitz SSA) contain standard
material partially taken from Golyandina et al. (2001; Chapter 1). Ideas of Sect. 2.3
(SSA with projection) were firstly suggested in Golyandina et al. (2001; Sec-
tion 1.7.1) (centering) and then extended in Golyandina and Shlemov (2017).
Methods described in Sect. 2.4 (IterativeOblique SSA) and Sect. 2.5 (Filter-adjusted
O-SSA and SSA with derivatives) were suggested in Golyandina and Shlemov
(2015); these two sections closely follow this paper. Section 2.6 (Shaped 1D-SSA)
contains a particular case of Shaped SSA, which was suggested in Golyandina
et al. (2015) for multidimensional case and is described in Sect. 5.2. Section 2.7
(Automatic grouping in SSA) follows Alexandrov (2009) and Golyandina and
Zhigljavsky (2013; Section 1.4.5).

Much of the theoretical material of Chap. 3 (Parameter estimation, forecasting,
gap filling) is standard for the methodologies of the subspace-based methods. In
writing Sect. 3.1 (Parameter estimation) we have extensively used Golyandina
and Zhigljavsky (2013; Sections 2.2, 2.8). Section 3.2 (Forecasting) includes the
algorithms from Golyandina et al. (2001; Chapter 2). Gap filling in Sect. 3.3
contains two methods, iterative method taken from Kondrashov and Ghil (2006)
and the subspace-based method taken from Golyandina and Osipov (2007). Both
methods are described in accordance with Golyandina and Zhigljavsky (2013).
Section 3.4 devoted to structured low-rank approximation (briefly, SLRA) describes
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Cadzow-like (Cadzow 1988) iterative algorithms for finding low-rank approxima-
tions. SLRA is a very standard approach, which was extended to weighted Cadzow
iterations in Zhigljavsky et al. (2016a) and Zvonarev and Golyandina (2017).

In writing Chap. 4 (SSA for multivariate time series) we use Golyandina and
Stepanov (2005) and Golyandina et al. (2015). In Chap. 5 (Image processing), we
mainly follow Golyandina et al. (2015). Moreover, in Sect. 5.1 (2D-SSA) we use
material from Golyandina and Usevich (2010) and in Sect. 5.2 (Shaped 2D-SSA)
and Sect. 5.3 (2D ESPRIT) we incorporate the ideas developed in Golyandina et al.
(2015) and Shlemov and Golyandina (2014).

Some material in the algorithmic and RSSA sections is based on the papers
(Golyandina and Korobeynikov 2013; Golyandina et al. 2015).

1.8 Installation of RSSA and Description of the Data
Used in the Book

1.8.1 Installation of RSSA and Usage Comments

The package RSSA is available from CRAN on http://CRAN.R-project.org/
package=Rssa and can be installed via the standard install.packages routine
and therefore all the dependencies are installed automatically.

There is a special library, FFTW (Frigo and Johnson 2005), which is not mandatory
for the installation of RSSA; however, possibilities of RSSA would be considerably
lower if FFTW is not installed. The library FFTW should be installed prior to RSSA

by the standard tools of the used operating system. For example, FFTW can be
installed by running apt-get install libfftw3-bin libfftw3-dev (Ubuntu
Linux) or brew install fftw (MacOS, homebrew). Windows pre-built packages
from CRAN already use FFTW.

Sources of RSSA can be found at https://github.com/asl/rssa, where the user
can ask questions about installation and usage problems. In addition, the current
development version of RSSA could be installed straight from github repository
using install_github from DEVTOOLS (Wickham and Chang 2017).

In this book, RSSA v1.0 has been used for all illustrative examples. All SSA
computations can be reproduced by the reader and should run correctly by any later
version of RSSA. The sets of data used in these examples are included into the R-
package SSABOOK, unless a particular set is contained in one of the following three
R-packages: built-in DATASETS, FMA, and RSSA. The description of the datasets is
contained in Tables 1.2 and 1.3. In order to reproduce the examples from the book,
SSABOOK should be installed as well as LATTICE, LATTICEEXTRA, PLYR, and FMA.
Source codes for all examples as well as the R-package SSABOOK can be down-
loaded from the web-site devoted to the book https://ssa-with-r-book.github.io.

In the following chapters there are quite a few sections named “Description of
functions.” In these sections, we describe the main RSSA functions and their basic

http://CRAN.R-project.org/package=Rssa
http://CRAN.R-project.org/package=Rssa
https://github.com/asl/rssa
https://ssa-with-r-book.github.io
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Table 1.2 Description of data and R-packages

Data Short description Timing R package Dataframe name

AustralianWine Australian wine sales:
thousands of liters. By wine
makers in bottles ≤ 1 l

Monthly RSSA AustralianWine

CO2 Atmospheric concentrations
of CO2 in parts per million
(ppm)

Monthly DATASETS co2

White dwarf Time variation of the
intensity of the variable
white dwarf star
PG1159-035

Each 10 s SSABOOK dwarfst

Production Crude oil and natural gas
plant liquids production

Monthly SSABOOK oilproduction

Tree rings Tree ring indices, Douglas
fir, Snake river basin, USA

Annual SSABOOK dftreerings

MotorVehicle Total domestic and foreign
car sales in the USA in
thousands

Monthly RSSA MotorVehicle

US
unemployment

U.S. male and female
unemployment figures in
thousands (16–19 years and
from 20 years)

Monthly RSSA USUnemployment

Hotel Hotel occupied room av. Monthly SSABOOK hotel

PayNSA All employees: Total
nonfarm payrolls

Monthly SSABOOK paynsa

Elec Australian electricity
production

Monthly FMA elec

Cowtemp Daily morning temperature
of a cow, measured at
6.30am

Daily FMA cowtemp

Glonass Glonass time corrections Each 5 min SSABOOK g15

Sunspots Mean total sunspot number Annual SSABOOK sunspot2

Bookings Numbers of hotel bookings
through a particular web-site

Hourly SSABOOK bookings

EuStockMarkets Closing prices of major
European stock indices

Daily DATASETS EuStockMarkets

Mars An image of Mars
performed by Pierre Thierry

Image RSSA Mars

Brecon
Beacons

The test DTM of a region in
South Wales, UK

Image SSABOOK brecon

Kruppel Regularized data of gene
expression for the “Krüppel”
gene (a drosophila embryo)

image SSABOOK kruppel

Monet “A preview of the painting
of Claude Monet called
“Study of a Figure
Outdoors: Woman with a
Parasol, facing left,” 1886

Image SSABOOK monet
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Table 1.3 Description of data and sources

Data Length Time range Source

AustralianWine 176 Jan 1980–Jul
1995

Hyndman (2013)

CO2 468 Jan 1959–Jan
1997

Cleveland (1993)

White dwarf 618 during March
1989

Weigend and Gershenfeld (1993)

Production 300 Jan 1973–Dec
1997

Source: U.S. Energy Information
Administration (Jan 2016) http://www.
eia.gov/totalenergy/data/monthly/#
summary

Tree rings 669 1282–1950 Hyndman (2013)

MotorVehicle 541 Jan 1967–Jan
2012

U.S. Bureau of Economic Analysis,
2015. Table 7.2.5s https://www.bea.
gov/histdata/Releases/GDP_and_PI/
2015/Q1/Third_June-24-2015/UND/
Section7ALL_xls.xls

US unemployment 408 Jan 1948–Jan
1981

Andrews and Herzberg (1985)

Hotel 168 Jan 1963–Dec
1976

Hyndman (2013)

PayNSA 913 Jan 1939–Jan
2015

Hyndman (2013)

Elec 476 Jan 1956–Aug
1995

Makridakis et al. (1998)

Cowtemp 75 Unknown Makridakis et al. (1998)

Glonass 104832 02/01/2014 to
31/12/2014

https://www.glonass-iac.ru/en/index.
php

Sunspots 316 1700–2015 Hyndman (2013)

Bookings 4344 23/09/2016 to
22/03/2017

Provided by Crimtan, UK, to the
authors of the R-package SSABOOK

EuStockMarkets 1860 During
1994–1998

Provided by Erste Bank AG, Vienna,
Austria, to the authors of the R-package
DATASETS

Mars 258 × 275 NA http://www.astrosurf.com/buil/iris/
tutorial8/doc23_us.htm

Brecon Beacons 80 × 100 NA The data are obtained by means of the
function getData of the R-package
RASTER

Kruppel 200 × 200 NA http://bdtnp.lbl.gov/Fly-Net/

Monet 400 × 263 × 3 NA https://commons.wikimedia.org/wiki/
File:Monet.012.sonnenschirm.jpg

http://www.eia.gov/totalenergy/data/monthly/#summary
http://www.eia.gov/totalenergy/data/monthly/#summary
http://www.eia.gov/totalenergy/data/monthly/#summary
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.bea.gov/histdata/Releases/GDP_and_PI/2015/Q1/Third_June-24-2015/UND/Section7ALL_xls.xls
https://www.glonass-iac.ru/en/index.php
https://www.glonass-iac.ru/en/index.php
http://www.astrosurf.com/buil/iris/tutorial8/doc23_us.htm
http://www.astrosurf.com/buil/iris/tutorial8/doc23_us.htm
http://bdtnp.lbl.gov/Fly-Net/
https://commons.wikimedia.org/wiki/File:Monet.012.sonnenschirm.jpg
https://commons.wikimedia.org/wiki/File:Monet.012.sonnenschirm.jpg
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arguments. For more information about the RSSA functions and their arguments, we
refer the reader to the help information in the RSSA package.

1.8.2 Data Description

Tables 1.2 and 1.3 present the data used in the book for examples. All these sets of
data can be found in the R-packages indicated in the fourth column of Table 1.2.
Table 1.3 contains one of possible references; detailed descriptions and references
can be found in the corresponding R-packages.
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