
Three applications

of Euler’s formula

Chapter 13

Leonhard Euler

A graph is planar if it can be drawn in the plane R2 without crossing edges
(or, equivalently, on the 2-dimensional sphere S2). We talk of a plane graph
if such a drawing is already given and fixed. Any such drawing decomposes
the plane or sphere into a finite number of connected regions, including
the outer (unbounded) region, which are referred to as faces. Euler’s for-
mula exhibits a beautiful relation between the number of vertices, edges
and faces that is valid for any plane graph. Euler mentioned this result for
the first time in a letter to his friend Goldbach in 1750, but he did not have
a complete proof at the time. Among the many proofs of Euler’s formula,
we present a pretty and “self-dual” one that gets by without induction. It
can be traced back to von Staudt’s book “Geometrie der Lage” from 1847.

A plane graph G: n = 6, e = 10, f = 6

Euler’s formula. If G is a connected plane graph with n vertices,
e edges and f faces, then

n− e+ f = 2.

� Proof. Let T ⊆ E be the edge set of a spanning tree for G, that is, of a
minimal subgraph that connects all the vertices of G. This graph does not
contain a cycle because of the minimality assumption.

Dual spanning trees in G and in G∗

We now need the dual graph G∗ of G: To construct it, put a vertex into the
interior of each face of G, and connect two such vertices of G∗ by edges that
correspond to common boundary edges between the corresponding faces. If
there are several common boundary edges, then we draw several connecting
edges in the dual graph. (Thus G∗ may have multiple edges even if the
original graph G is simple.)

Consider the collection T ∗ ⊆ E∗ of edges in the dual graph that corre-
sponds to edges in E\T . The edges in T ∗ connect all the faces, since T
does not have a cycle; but also T ∗ does not contain a cycle, since otherwise
it would separate some vertices of G inside the cycle from vertices outside
(and this cannot be, since T is a spanning subgraph, and the edges of T and
of T ∗ do not intersect). Thus T ∗ is a spanning tree for G∗.

For every tree the number of vertices is one larger than the number of
edges. To see this, choose one vertex as the root, and direct all edges
“away from the root”: this yields a bijection between the non-root ver-
tices and the edges, by matching each edge with the vertex it points at.
Applied to the tree T this yields n = eT + 1, while for the tree T ∗ it yields
f = eT∗ + 1. Adding both equations we get n+f = (eT+1)+(eT∗+1) =
e+ 2. �
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Euler’s formula thus produces a strong numerical conclusion from a geo-
metric-topological situation: the numbers of vertices, edges, and faces of a
finite graph G satisfy n− e+f = 2 whenever the graph is or can be drawn
in the plane or on a sphere.

Many well-known and classical consequences can be derived from Euler’s
formula. Among them are the classification of the regular convex polyhedra
(the platonic solids), the fact that K5 and K3,3 are not planar (see below),

The five platonic solids

and the five-color theorem that every planar map can be colored with at
most five colors such that no two adjacent countries have the same color.
But for this we have a much better proof, which does not even need Euler’s
formula — see Chapter 39.

This chapter collects three other beautiful proofs that have Euler’s formula
at their core. The first two — a proof of the Sylvester–Gallai theorem, and
a theorem on two-colored point configurations — use Euler’s formula in
clever combination with other arithmetic relationships between basic graph
parameters. Let us first look at these parameters.

The degree of a vertex is the number of edges that end in the vertex, where
loops count double. Let ni denote the number of vertices of degree i in G.

2

4

5

2 2

5

Here the degree is written next to each
vertex. Counting the vertices of given
degree yields n2 = 3, n3 = 0, n4 = 1,
n5 = 2.

Counting the vertices according to their degrees, we obtain

n = n0 + n1 + n2 + n3 + · · · (1)

On the other hand, every edge has two ends, so it contributes 2 to the sum
of all degrees, and we obtain

2e = n1 + 2n2 + 3n3 + 4n4 + · · · (2)

You may interpret this identity as counting in two ways the ends of the
edges, that is, the edge-vertex incidences. The average degree d of the
vertices is therefore

d =
2e

n
.

Next we count the faces of a plane graph according to their number of sides:
a k-face is a face that is bounded by k edges (where an edge that on both
sides borders the same region has to be counted twice!). Let fk be the
number of k-faces. Counting all faces we find

f = f1 + f2 + f3 + f4 + · · · (3)

Counting the edges according to the faces of which they are sides, we get
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The number of sides is written into each
region. Counting the faces with a given
number of sides yields f1 = 1, f2 = 3,
f4 = 1, f9 = 1, and fi = 0 otherwise.

2e = f1 + 2f2 + 3f3 + 4f4 + · · · (4)

As before, we can interpret this as double-counting of edge-face incidences.
Note that the average number of sides of faces is given by

f =
2e

f
.
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Let us deduce from this — together with Euler’s formula — quickly that the
complete graph K5 and the complete bipartite graph K3,3 are not planar.
For a hypothetical plane drawing of K5 we calculate n = 5, e =

(
5
2

)
= 10,

thus f = e+ 2− n = 7 and f = 2e
f = 20

7 < 3. But if the average number
of sides is smaller than 3, then the embedding would have a face with at
most two sides, which cannot be.

K5 drawn with one crossing
Similarly for K3,3 we get n = 6, e = 9, and f = e+ 2− n = 5, and thus
f = 2e

f = 18
5 < 4, which cannot be since K3,3 is simple and bipartite, so

all its cycles have length at least 4.

K3,3 drawn with one crossing

It is no coincidence, of course, that the equations (3) and (4) for the fi’s look
so similar to the equations (1) and (2) for the ni’s. They are transformed
into each other by the dual graph construction G → G∗ explained above.

From the double counting identities, we get the following important “local”
consequences of Euler’s formula.

Proposition. Let G be any simple plane graph with n > 2 vertices. Then

(A) G has at most 3n− 6 edges.

(B) G has a vertex of degree at most 5.

(C) If the edges of G are two-colored, then there is a vertex of G with at
most two color-changes in the cyclic order of the edges around the
vertex.

� Proof. For each of the three statements, we may assume that G is con-
nected.

(A) Every face has at least 3 sides (since G is simple), so (3) and (4) yield

f = f3 + f4 + f5 + · · ·
and

2e = 3f3 + 4f4 + 5f5 + · · ·

and thus 2e− 3f ≥ 0. Euler’s formula now gives

3n− 6 = 3e− 3f ≥ e.

(B) By part (A), the average degree d satisfies

d =
2e

n
≤ 6n− 12

n
< 6.

So there must be a vertex of degree at most 5.
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(C) Let c be the number of corners where color changes occur. Suppose the

Arrows point to the corners with color
changes.

statement is false, then we have c ≥ 4n corners with color changes, since
at every vertex there is an even number of changes. Now every face with
2k or 2k + 1 sides has at most 2k such corners, so we conclude that

4n ≤ c ≤ 2f3 + 4f4 + 4f5 + 6f6 + 6f7 + 8f8 + · · ·
≤ 2f3 + 4f4 + 6f5 + 8f6 + 10f7 + · · ·
= 2(3f3 + 4f4 + 5f5 + 6f6 + 7f7 + · · · )

−4(f3 + f4 + f5 + f6 + f7 + · · · )
= 4e− 4f

using again (3) and (4). So we have e ≥ n+ f , again contradicting Euler’s
formula. �

1. The Sylvester–Gallai theorem, revisited

It was first noted by Norman Steenrod, it seems, that part (B) of the propo-
sition yields a strikingly simple proof of the Sylvester–Gallai theorem (see
Chapter 11).

The Sylvester–Gallai theorem. Given any set of n ≥ 3 points in the
plane, not all on one line, there is always a line that contains exactly two
of the points.

� Proof. (Sylvester–Gallai via Euler)
If we embed the plane R2 in R3 near the unit sphere S2 as indicated in
our figure, then every point in R2 corresponds to a pair of antipodal points
on S2, and the lines in R2 correspond to great circles on S2. Thus the
Sylvester–Gallai theorem amounts to the following:

Given any set of n ≥ 3 pairs of antipodal points on the sphere, not all on
one great circle, there is always a great circle that contains exactly two of
the antipodal pairs.

Now we dualize, replacing each pair of antipodal points by the correspond-
ing great circle on the sphere. That is, instead of points ±v ∈ S2 we
consider the orthogonal circles given by Cv := {x ∈ S2 : 〈x,v〉 = 0}.
(This Cv is the equator if we consider v as the north pole of the sphere.)v

Cv

−v

Then the Sylvester–Gallai problem asks us to prove:

Given any collection of n ≥ 3 great circles on S2, not all of them passing
through one point, there is always a point that is on exactly two of the great
circles.

But the arrangement of great circles yields a simple plane graph on S2,
whose vertices are the intersection points of two of the great circles, which
divide the great circles into edges. All the vertex degrees are even, and they
are at least 4 — by construction. Thus part (B) of the proposition yields the
existence of a vertex of degree 4. That’s it! �
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2. Monochromatic lines

The following proof of a “colorful” relative of the Sylvester–Gallai theorem
is due to Don Chakerian.

Theorem. Given any finite configuration of “black” and “white” points
in the plane, not all on one line, there is always a “monochromatic” line:
a line that contains at least two points of one color and none of the other.

� Proof. As for the Sylvester–Gallai problem, we transfer the problem to
the unit sphere and dualize it there. So we must prove:

Given any finite collection of “black” and “white” great circles on the unit
sphere, not all passing through one point, there is always an intersection
point that lies either only on white great circles, or only on black great
circles.

Now the (positive) answer is clear from part (C) of the proposition, since
in every vertex where great circles of different colors intersect, we always
have at least 4 corners with sign changes. �

3. Pick’s theorem

Pick’s theorem from 1899 is a beautiful and surprising result in itself, but
it is also a “classical” consequence of Euler’s formula. For the following,
call a convex polygon P ⊆ R2 elementary if its vertices are integral (that
is, they lie in the lattice Z2), but if it does not contain any further lattice
points.

Lemma. Every elementary triangle Δ = conv{p0,p1,p2} ⊆ R2 has area
A(Δ) = 1

2 .

� Proof. Both the parallelogram P with corners p0,p1,p2,p1 + p2 − p0

and the lattice Z2 are symmetric with respect to the map

σ : x �−→ p1 + p2 − x,

which is the reflection with respect to the center of the segment from p1

to p2. Thus the parallelogram P = Δ ∪ σ(Δ) is elementary as well, and
its integral translates tile the plane. Hence {p1 − p0,p2 − p0} is a basis
of the lattice Z2, it has determinant ±1, P is a parallelogram of area 1, and
Δ has area 1

2 . (For an explanation of these terms see the box on the next
page.) �

p0

p1

p2

p1 + p2 − p0

Theorem. The area of any (not necessarily convex) polygon Q ⊆ R2 with
integral vertices is given by

nint = 11, nbd = 8, so A = 14

A(Q) = nint +
1

2
nbd − 1,

where nint and nbd are the numbers of integral points in the interior
respectively on the boundary of Q.
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Lattice bases

A basis of Z2 is a pair of linearly independent vectors e1, e2 such that

Z2 = {λ1e1 + λ2e2 : λ1, λ2 ∈ Z}.

Let e1 =
(
a
b

)
and e2 =

(
c
d

)
, then the area of the parallelogram

spanned by e1 and e2 is given by A(e1, e2) = | det(e1, e2)| =
| det

(
a c
b d

)
|. If f1 =

(
r
s

)
and f2 =

(
t
u

)
is another basis, then

there exists an invertible Z-matrix Q with
(
r t
s u

)
=

(
a c
b d

)
Q. Since

QQ−1 =
(
1 0
0 1

)
, and the determinants are integers, it follows that

| detQ| = 1, and hence | det(f1,f2)| = | det(e1, e2)|. Therefore
all basis parallelograms have the same area 1, since A

((
1
0

)
,
(
0
1

))
= 1.

� Proof. Every such polygon can be triangulated using all the nint lattice
points in the interior, and all the nbd lattice points on the boundary of Q.
(This is not quite obvious, in particular if Q is not required to be convex, but
the argument given in Chapter 40 on the art gallery problem proves this.)

Now we interpret the triangulation as a plane graph, which subdivides the
plane into one unbounded face plus f − 1 triangles of area 1

2 , so

A(Q) =
1

2
(f − 1).

Every triangle has three sides, where each of the eint interior edges bounds
two triangles, while the ebd boundary edges appear in one single triangle
each. So 3(f−1) = 2eint+ebd and thus f = 2(e−f)−ebd+3. Also, there
is the same number of boundary edges and vertices, ebd = nbd. These two
facts together with Euler’s formula yield

f = 2(e− f)− ebd + 3

= 2(n− 2)− nbd + 3 = 2nint + nbd − 1,

and thus
A(Q) = 1

2 (f − 1) = nint +
1
2nbd − 1. �
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