
Hierarchical-Layout Treemap
for Context-Based Visualization

Jingtao Wang1, Yinwen Shen2, Dingke Kong2, and Jing Hua2(&)

1 School of Computer Science, Harbin Institute of Technique, Harbin, China
2 School of Computer Science and Information Engineering, Zhejiang

Gongshang University, Hangzhou 310018, China
xwang@zjgsu.edu.cn

Abstract. In order to represent hierarchical information more efficiently and
aesthetically on mobile devices, many researchers have adopted the space-filling
method—Treemap. In this article, a novel dynamic hierarchical-layout algorithm
is proposed to visualize hierarchical information on mobile devices. This layout
algorithm tries to represent the hierarchical data set with more balanced aspect
ratio for the rectangles which is closely related to the aesthetics of treemap. Fur-
thermore, a focus+context fisheye distortion algorithm is introduced to help users
understand details by increasing the size of the interested items while decreasing
the others. Experimental results show that the proposed method can provide a
suitable resolution for visualizing hierarchical information with high efficiency
and give focus+context views on mobile devices in real time.

Keywords: Treemap visualization � Hierarchy navigation
Dynamic context-based layout � Focus+context distortion

1 Introduction

As is well known, most information in the world is hierarchical information and the
most common form of hierarchical representation is the so-called treemap, which is
capable of representing hierarchical data [1]. It works by dividing the display area into
rectangles whose areas correspond to an attribute such as a value or proportion of the
hierarchical data set. Spatial positions between rectangles indicate the relationship of
nodes. Treemap can make efficient display of space, thereby representing more hier-
archical data sets. Now treemap has been widely applied in this world due to its
advantages [2].

Previous methods on treemap can be categorized into two general categories: layout
algorithms and interaction algorithms. The first category consists of the layout algo-
rithms for browsing hierarchy structures through space-filling visualizations [1]. The
second relates to the techniques that have been specially developed for browsing the
details and the context in treemap.

1.1 Layout Algorithms

The original treemap layout algorithm uses parallel lines to divide a rectangle into
smaller ones to represent the node and its children [1]. This method creates the layout

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
Z. Pan et al. (Eds.): Transactions on Edutainment XIV, LNCS 10790, pp. 27–39, 2018.
https://doi.org/10.1007/978-3-662-56689-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56689-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56689-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56689-3_3&domain=pdf

that contains rectangles with high aspect ratio which leads to the loss of aesthetics and
becomes hard to detect the details.

Shneiderman and Wattenberg proposed a novel layout algorithm, namely ordered
treemap layout [4]. This method keeps the original order of the data set and tries to
address the instability occurred in the dynamically data updating.

But most work is not suitable for displaying quantum-sized objects, such as images.
Benjamin B. Bederson, Martin Wattenberg and Dow Jones introduced the quantum
treemap to accommodate the items such as photos [6].

Moreover existing treemap layout algorithms suffer from poor mapping between
data order and visual order to some extents. Jo Wood and Jason Dykes generalized the
existing squarified algorithm so as to exploit nodes more effectively to display geo-
graphical statistics data [7].

However, quite a small proportion of the space results in awfully small size of the
rectangles due to the lack of details, which may become difficult to be recognized [3].
Therefore, this motives the interaction for treemap.

1.2 Interaction for Treemap

The interaction for treemap explores the set of hierarchical data in-depth, including the
basic operations and the distortion methods.

The basic interaction for treemap is drill-down and roll-up. Drill-down and roll-up
navigate the further or former level of the node which gives the detail about its children
or father [12].

Compared to the basic interaction, Liqun Jin and David C. Banks extended
See-Through interface proposed by Bier and Stone’s [7] and introduced an interactive
system called TennisViewer. It is used for visualizing the dynamic and tree-structured
tennis match data [8]. They adopted Magic Lenses to explore the information at lower
layers which can be laid atop each other easily to produce deep zooming.

Keahey and Visual Insights, Inc. described how focus+context techniques can be
integrated into other high-level visualization paradigms [9].

Furthermore, a distortion algorithm based on fisheye and continuous zooming
techniques is introduced to browse the data in treemap representation by Shi, Iranni and
Li [10]. Their distortion algorithm increases the size of the interested node while
shrinking its neighbors.

Ying Tu and Han-Wei Shen presented a seamless multi-focus and context tech-
nique, called Balloon Focus. It allows users to smoothly enlarge multiple treemap items
as the focus, while maintaining a stable treemap layout as the context [11].

In this article, a novel context-based hierarchical-layout algorithm is introduced to
represent the hierarchical information on mobile devices more effectively. Furthermore,
a focus+context distortion algorithm is proposed to help users understand the items.

2 Materials and Methods

In this section, a novel context-based hierarchical layout algorithm which extends the
ordered layout algorithm [5] is presented in detail. The algorithm explores better aspect
ratio of the rectangles by splitting the total value into one or two parts. Meanwhile, a

28 J. Wang et al.

novel focus+context distortion algorithm imitating fisheye is proposed in the way of
increasing the interest and shrinking the others.

2.1 Data Structures

Each item in treemap data sets represented hierarchically as father and children like
tree. Each node must contain enough information such as its size and label in order to
represent the details of the item.

A node is defined by the following information:

• Label (name): it represents the name of the node, such as the menswear of a dress.
• Size (weight): it represents the size or the weight of the node in data set. It may be

the size of the file for a data file or the value of a certain product sale.
• Parent: it points to the parent node.
• Children: this field contains an array of pointers to each of its children.
• Width, Height: the width and height of the rectangle influence the aspect ratio as it

is drawn on the display area. These values are computed according to its size and
the width and height of the display area.

In addition, this article also introduces several important data items for the dis-
tortion algorithm. The constant MIN_SIZE represents the smallest size that the node
should increase to maintain enough information. The variable—sign will denote the
number (one or two) of rectangles to be drawn, and is determined by the layout
algorithm and the node size. A variable flag is employed to represent the orientation of
the rectangle.

2.2 Hierarchical-Layout Treemap for Context-Based

The following layout algorithm extends the work by Shneiderman and Wattenberg [4].
It adopted the constant DIFF to determine the number of the rectangles drawn at the
same time. Through this method, the algorithm gives the advantageous block aspect
ratio for representing hierarchical information on mobile devices. The procedure of
layout algorithm (see Fig. 1) will be described below.

Step 1: Sort the nodes
Sort the nodes in decreasing order according to the size (value or proportion) of each
item in data set at the same level.

Step 2: Divide the nodes into two arrays
The function getPerfectSplitNumber is defined to search the advantageous split number
of the blocks drawn at the same time. Since the nodes have already been sorted in Step
1, the nodes are further divided into two partitions: ArrayA and ArrayB, which contain
the biggest node and the remaining notes respectively.

Step 3: Get the advantageous split number
The ratio denotes the division of the value in ArrayA by the total value at the same
level. Then HEIGHT and WIDTH are used to set to the width and height of the ArrayA
according to the following criteria.

Hierarchical-Layout Treemap for Context-Based Visualization 29

width ¼ WIDTH; height ¼ HEIGHT � ratio
when WIDTH\ ¼ HEIGHT
width ¼ WIDTH�ratio; height ¼ HEIGHT
when WIDTH[HEIGHT

8
>><

>>:

The algorithm assists the division of width by height to the variable of ratioWH and
the division of height by width. Then DIFF is calculated as follows.

DIFF ¼ 1� ratioWH when width \ height
DIFF ¼ 1� ratioHW when height [¼ width

�

If DIFF >0.5 and the length of the array ArrayA >= 3 then the advantageous split
number is set to 2; otherwise 1. This means that the number of the rectangles which are
drawn at the same time is 2 or 1.

Step 4: Set the height and the width for both arrays (rectangles)
If DIFF is more than 0.5, move the first node of ArrayB to ArrayA and calculate the
width and height for ArrayA and ArrayB. Then Step 3 is performed recursively to
calculate the advantageous split number.

Step 5: Draw rectangles
When the split number of the rectangles is 1, draw the rectangle with the width and
height assigned by the method in Step 3 until all rectangles are finished.

2.3 Focus+Context Distortion

The distortion algorithm increases the size of the interest node and decreases the size of
the others. To keep the original position of the node when distorted, the variable flag is
introduced to represent the orientation of the rectangle and is combined with the
advantageous split number. When flag equals 0 (or 1), it means the orientation of the
rectangle is horizontal (or vertical). The constant MIN_SIZE donates the minimum size

Fig. 1. The procedure of the proposed layout algorithm

30 J. Wang et al.

of the interested node to be increased when the size is less than MIN_SIZE. Otherwise,
the size will be increased to three times of the original size.

The distortion algorithm gives the focus+context view of the interested nodes. This
interaction is activated when the finger moves on the focus and is deactivated when the
finger moves away the touch screen. The algorithm will efficiently find the corre-
sponding node as the finger moves on the region. The procedure is described as follows.

Step 1: achieve the orientation of the rectangles
The orientation of the rectangles is determined in the process of the width and the
height setting. Setting the width of the rectangle to WIDTH and the height to
HEIGHT*ratio when WIDTH is less than HEIGHT means the orientation of the
rectangle is determined by the value of the flag. The value of flag is 1 represents the
vertical orientation when WIDTH is bigger than HEIGHT.

Step 2: catch the split number of the nodes at the level
The split number and the orientation determine the layout of all nodes at the same level.
They guarantee the order and layout of all nodes when distorted.

Step 3: calculate the size of the interest node and the others
The default size that the interested node will be increased is three times the original
size. But the distortion size must be at least the MIN_SIZE.

At last, the focus+context fisheye distortion works.

3 Experimental Results

The layout algorithm and the focus+context fisheye distortion algorithm are applied on
the Android platform. The data set is constructed according to the hierarchical data
storing in JSON document which is known as a lightweight data interchange format
based on JavaScript. Some experiments are implemented as follows.

Experiment 1 shown in Fig. 2 was designed to display the weight of each part
which makes up the visualization such as util, query and animate. The JSON document
constructs the data set as the hierarchical data with multi-level of father and children.
The labels including name and weight of the rectangle are displayed to give the details
about the nodes.

The data set about composition of visualization methods is represented by the
familiar hierarchical visualization—Tree, which has the drawback of low space usage
in Fig. 2(a). Compared to the Tree, treemap describes the nodes with the attributes of
name and proportion in Fig. 2(b). It shows the full-usage of screen rather than Tree. In
Fig. 2(b), some rectangles may be too small to understand the details for the reason of
the smaller proportion especially in the bottom right corner surrounding the red box.
When the focus moves to that rectangle, the focus+context fisheye distortion algorithm
will work, as shown in Fig. 2(c). The size of the rectangle increases to three times the
original size as presented by the red box in Fig. 2(c). So users can quickly catch the
details of the interested node including the name and the weight.

Hierarchical-Layout Treemap for Context-Based Visualization 31

Drilling-down by finger touching on the region of the rectangle is also
implemented.

The second experiment is also aimed to represent the actual sales data from taobao.
com by layout method and focus+context distortion algorithm on mobile devices. Part
of the data set is described in Fig. 4(a) by Tree. Figure 4(b) and (d) demonstrate the
data with red circle and blue circle respectively. These two charts have the same

(a) data set at the first level

(b) normal view of the treemap

(c) distortion view of the treemap

Fig. 2. Treemap layout and focus+context distortion (Color figure online)

32 J. Wang et al.

http://taobao.com
http://taobao.com

(a) children of node UTIL

(b) the structure of UTIL

(c) normal view

Fig. 3. Visualization and distortion of node UTIL (Color figure online)

Hierarchical-Layout Treemap for Context-Based Visualization 33

characteristic that the rectangles in the bottom right corner are hard to select, under-
stand and divide. Figure 4(c) demonstrates the focus+context fisheye distortion of node
photographic accessories with the advantages of easily selecting and understanding the
details about the interest node in red box. Figure 4(e) does the same work as Fig. 4(c)
in blue box.

The third experiment is still used to demonstrate the report of the infectious dis-
eases in China, which is released by the State Statistics Bureau. The table of data set is
divided into two parts according to the type of the infectious diseases that contain the
Class (A and B) infectious diseases and infectious disease C. The construct of the data
is represented by Tree in Fig. 5(a).

The second experiment is also aimed to represent the actual sales data from taobao.
com by layout method and focus+context distortion algorithm on mobile devices. Part
of the data set is described in Fig. 4(a) by Tree. Figure 4(b) and (d) demonstrate the
data with red circle and blue circle respectively. These two charts have the same
characteristic that the rectangles in the bottom right corner are hard to select, under-
stand and divide. Figure 4(c) demonstrates the focus+context fisheye distortion of node
photographic accessories with the advantages of easily selecting and understanding the
details about the interest node in red box. Figure 4(e) does the same work as Fig. 4(c)
in blue box.

The third experiment is still used to demonstrate the report of the infectious dis-
eases in China, which is released by the State Statistics Bureau. The table of data set is
divided into two parts according to the type of the infectious diseases that contain the
Class (A and B) infectious diseases and infectious disease C. The construct of the data
is represented by Tree in Fig. 5(a).

The experiment with hierarchical-layout algorithm is presented in Fig. 5(b) and (d).
This layout sorts the number of the death and sets the advantageous aspect of the

(d) distortion of node PREDICATE

Fig. 3. (continued)

34 J. Wang et al.

http://taobao.com
http://taobao.com

(a) composition of Tree

(b) normal layout view

(c) distortion of PHOTOGRAPH

Fig. 4. Visualization and distortion presentation (Color figure online)

Hierarchical-Layout Treemap for Context-Based Visualization 35

rectangles for the nodes. In Fig. 5(b), users can easily discover the drawback caused by
the layout: the bottom right corner of the display area looks crowded and it is hard to
select the red box. Figure 5(c) solves this problem by the focus+context fisheye dis-
tortion algorithm. The size of the interested node of epidemic encephalitis B is
increased to three times the original size in Fig. 3(c) with red box. Figure 5(e) also does
the same work as described in Fig. 5(c).

The three experiments on Android platform are designed to evaluate the effec-
tiveness and aspect ratio of rectangles by the novel methods on mobile devices. The
results suggest that the subjects are faster at browsing and locating objects of interests
in the layout. The effect will not be influenced even when there are a large number of
nodes at the same level.

(d) normal view of LIGHT

(e) distortion of LIGHT

Fig. 4. (continued)

36 J. Wang et al.

(a) Tree of the disease

(b) unclear layout view

(c) distortion of BILHARZIASIS

Fig. 5. Comparison between tree and treemap and distortion of interest (Color figure online)

Hierarchical-Layout Treemap for Context-Based Visualization 37

4 Conclusions and Future Work

The novel dynamic hierarchical-layout algorithm of treemap has been introduced to
efficiently and aesthetically represent the hierarchical information on mobile devices as
on PCs. This method has better layout performance with balanced aspect ratio which is
closely related to the ascetics of treemap. Furthermore, the fisheye distortion algorithm
helps users understand the details of the items deeply. This technique simulates the
fisheye distortion in the way of increasing size of the interest and decreasing the other.
This method gives a real-time focus+context view with the smooth transformation
between the normal view and the distortion view.

Additional work under consideration is to improve the layout algorithm to better
suit different data set which may cause the disadvantageous aspect ratio. The layout
algorithm should enhance the adaptive ability to the distinct pieces of data.

In addition, another variation of the distortion is to consider more than one node
distortion at the same time. The further work can be organized as the nodes in the

(d) distortion of RUBELLA

(e) distortion of LEPROSY

Fig. 5. (continued)

38 J. Wang et al.

circular region with certain radius increase. In this paper, only the linear distortion is
considered, the nonlinear distortion of the fisheye will be investigated.

Acknowledgement. This work was supported in part by the National Key Technology Research
and Development Program of the Ministry of Science and Technology of China
(No. 2014BAK14B01), National Natural Science Foundation of China (No. 61379075),
Zhoushan Municipal Science and Technology Plan Project (No.142014C21035). The authors are
grateful for the anonymous reviewers who made constructive comments.

References

1. Shneiderman, B.: Tree visualization with treemaps: a 2D space-filling approach. ACM
Trans. Graph. 11, 92–99 (1992)

2. Jungmeister, W.A., Turo, D.: Adapting treemaps to stock portfolio visualization. Technical
Report CS-TR-2996. University of Maryland, College Park, USA (1996)

3. Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: Proceedings of the Joint
Eurographics and IEEE TCVG Symposium on Visualization, 29–30 May 2000, Amsterdam,
Netherlands, pp. 33–42 (2000)

4. Shneiderman, B., Wattenberg, M.: Ordered treemap layouts. In: Proceedings of the IEEE
Symposium on Information Visualization, 22–23 October 2001, San Diego, CA, USA,
pp. 73–78 (2001)

5. Wood, J., Dykes, J.: Spatially ordered treemaps. IEEE Trans. Visual. Comput. Graphics 14,
1348–1355 (2008)

6. Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making
effective use of 2D space to display hierarchies. ACM Trans. Graphics 21, 833–854 (2002)

7. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic lenses:
The see-through interface. In: Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, 2–6 August 1993, Anaheim, CA, USA, pp. 73–80
(1993)

8. Jin, L., Banks, D.C.: TennisViewer: a browser for competition trees. IEEE Comput.
Graphics Appl. 7, 63–65 (1997)

9. Keahey, T.A.: Getting along: composition of visualization paradigms. In: Proceedings of the
IEEE Symposium on Information Visualization, 22–23 October 2001, San Diego, CA, USA,
pp. 37–40 (2001)

10. Shi, K., Irani, P., Li, B.: An evaluation of content browsing techniques for hierarchical
space-filling visualizations. In: Proceedings of the IEEE Symposium on Information
Visualization, 23–25 October 2005, Minneapolis, MN, USA, pp. 81–88 (2005)

11. Tu, Y., Shen, H.W.: Balloon focus: A seamless multi-focus+context method for treemaps.
IEEE Trans. Vis. Comput. Graphics 14, 1157–1164 (2008)

12. Turo, D., Johnson, B.: Improving the visualization of hierarchies with treemaps: design
issues and experimentation. In: Proceedings of the IEEE 3rd Annual Conference on
Visualization, October 19–23, 1992, Boston, MA, USA, pp. 124–131 (1992)

Hierarchical-Layout Treemap for Context-Based Visualization 39

	Hierarchical-Layout Treemap for Context-Based Visualization
	Abstract
	1 Introduction
	1.1 Layout Algorithms
	1.2 Interaction for Treemap

	2 Materials and Methods
	2.1 Data Structures
	2.2 Hierarchical-Layout Treemap for Context-Based
	2.3 Focus+Context Distortion

	3 Experimental Results
	4 Conclusions and Future Work
	Acknowledgement
	References

