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Abstract
Anterior cruciate ligament (ACL) injury pre-
vention strategies have not always been suc-
cessful. The identification of modifiable risk 
factors for injury is an important step in the 
injury prevention process. The gender differ-
ences observed in ACL injury rates pose an 
additional layer of complexity within this pro-
cess; specifically, what are the sex-specific, 
modifiable risk factors for noncontact ACL 
injury? The identification of sex-specific risk 
factors for noncontact ACL injury facilitates 
the development of precise interventions. The 
purpose of this chapter is to outline the 
dynamic joint stability paradigm and provide 
an overview of the neuromuscular differences 
between men and women. The authors’ stud-
ies have demonstrated that female athletes 
have decreased proprioception, compensatory 
neuromuscular control patterns, enhanced 
static balance, and decreased lower extremity 
strength compared with male athletes. These 
differences have resulted in altered neuromus-
cular control as observed in the kinematic and 

kinetic characteristics of the knee during 
dynamic tasks. Injury prevention and perfor-
mance optimization must account for these 
differences, with specificity of training 
included to reduce the incidence of these 
debilitating ACL injuries.

7.1	 �Introduction

Athletes participating in a wide variety of sports 
are at risk of suffering significant joint injuries 
such as anterior cruciate ligament (ACL) rupture 
[1, 2]. ACL injury results in short- and long-term 
disabilities and includes the development of 
osteoarthritis that limits individuals from leading 
a healthy, active lifestyle [3–5]. Injury prevention 
strategies have not always been successful (at 
least in student-athlete populations), because the 
ACL injury rate has remained consistent for over 
20 years [6–8]. This includes gender differences 
in ACL injury rates, a focus of this book [6–8]. 
Fittingly, a substantial research effort has been 
concentrated on the most effective injury preven-
tion techniques, surgical protocols, and rehabili-
tation programs following ACL rupture [9–12].

The identification of modifiable risk factors 
for injury is the most important step in the injury 
prevention process (see Fig. 7.1) [13]. We have 
used this process effectively in a large military 
population to significantly reduce injuries [14]. 

T. C. Sell (*) 
Department of Orthopaedic Surgery, Duke University, 
Durham, NC, USA
e-mail: timothy.sell@duke.edu; tcs30@duke.edu 

S. M. Lephart 
College of Health Sciences, University of Kentucky, 
Lexington, KY, USA
e-mail: scott.lephart@uky.edu

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56558-2_7&domain=pdf
https://doi.org/10.1007/978-3-662-56558-2_7
mailto:timothy.sell@duke.edu
mailto:tcs30@duke.edu
mailto:scott.lephart@uky.edu


134

The gender differences observed in ACL injury 
rates pose an additional layer of complexity 
within this process; specifically, what are the sex-
specific, modifiable risk factors for noncontact 
ACL injury? The identification of sex-specific 
risk factors for noncontact ACL injury facilitates 
the development of precise interventions. 
Intervention strategies must be precise, that is, 
focus only on the characteristics and require-
ments necessary to reduce injury. Targeted and 
precise injury prevention is economical and effi-
cient. It allows individuals to spend time and 
money on the wide range of needs necessary for 
care and training, which are particularly true in 
both student-athlete and military populations. 
The purpose of this chapter is to outline the 
dynamic joint stability paradigm and provide an 
overview of the neuromuscular differences 
between men and women. This overview will 
include an examination of gender differences in 
postural stability, muscle activation, strength, 
biomechanics, and the effects of fatigue on these 
same characteristics. The chapter will finish with 
a description of emerging research initiatives 
examining gender differences and point toward 
future research.

7.2	 �Dynamic Joint Stability 
and the Functional Joint 
Stability Paradigm

Dynamic joint stability is essential to safe and 
injury-free participation in sports, recreational 
activities, and exercise. This is particularly true at 
the knee because many activities place significant 

biomechanical demands on the lower extremity. 
Common athletic tasks such as stop-jump maneu-
vers require individuals to perform under joint 
loading forces that approach four times the ath-
lete’s body weight. Efficient and adequate 
dynamic knee stability is necessary to endure 
these high joint loading forces that can cause 
ligamentous injury [15–17]. Defined globally, 
stability is a state of remaining unchanged in the 
presence of forces that would normally change 
the state or condition [18]. From a physics per-
spective, stability can be compared to static equi-
librium such that objects that remain in static 
equilibrium have met conditions where the sum 
of the forces and the sum of the moments are 
equal to zero (both external and internal) [19]. 
Joint stability can be defined as the state of a joint 
remaining or promptly returning to proper align-
ment through an equalization of forces [20]. It is 
a complex process that requires synergy between 
bones, joint capsules, ligaments, muscles, ten-
dons, and sensory receptors [21].

The components of joint stability can be clas-
sified as either static or dynamic. The static com-
ponents include the ligaments, joint capsule, 
cartilage, friction, and the joint bony geometry 
[22, 23]. The static components are typically 
assessed through joint stress testing and have 
commonly defined clinical joint stability [20]. 
The components provide the foundation for joint 
stability during functional activities by guiding 
joint arthrokinematics. However, the static com-
ponents alone are not fully capable of providing 
the entire restraint necessary to prevent injury, 
especially during demanding tasks such as run-
ning, jumping, and cutting. The static components 
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of joint stability work synergistically with the 
dynamic components of joint stability.

The dynamic components of joints stability 
include neuromuscular control of the skeletal 
muscles crossing the joint [20]. Dynamic joint 
stability is influenced by the neuromuscular con-
trol of the muscles crossing the joint. 
Neuromuscular control is the unconscious activa-
tion of the dynamic restraints occurring in prepa-
ration for and in response to joint motion and 
loading for the purpose of maintaining and restor-
ing functional joint stability [20]. Neuromuscular 
control of joint stability involves a complex inter-
action between components of the nervous sys-
tem and the musculoskeletal system and typically 
is accomplished through two different control 
systems: feedback and feed-forward control [24]. 
In a system that uses feedback control, sensors 
are continually measuring the parameter of inter-
est based on an optimal value. A deviation from 
this optimal value will initiate an error signal. In 
response to this error signal, the system will trig-
ger a compensatory response. Feed-forward sys-
tems also require measurement of a parameter, 
but measurement occurs only intermittently. The 
sensory components of this system are designed 
to measure a potential disturbance or change in 
the parameter of interest. Once a potential distur-
bance has been detected, the system initiates an 
error signal. In response to this error signal, the 
system institutes commands to counteract the 
anticipated effects of the disturbance. The com-
mands instituted by this system are largely 
shaped by previous experience with similar dis-
turbances. Feed-forward control systems are con-
sidered to be anticipatory compared to feedback 
control systems, which are characterized by 
responses only to current stimulus. Both are 
essential for optimal maintenance of dynamic 
knee stability.

The majority of research on ACL injuries and 
joint stability has focused on the ACL’s primary 
role of restraining anterior translation of the tibia 
with respect to the femur [25]. The ACL also 
plays an important role in maintaining rotational 
stability (internal rotation [IR] and external rota-
tion [ER] of the tibia on the femur) [26–28]. 
While the ACL acts as a primary restraint to ante-

rior tibial translation, it also has a role in restraint 
to both valgus-varus and IR-ER rotation loading 
[29, 30]. Data that demonstrates the importance 
of the ACL in rotational stability includes the 
effect of injury on in vivo knee kinematics [31–
33]. Using a dynamic stereo X-ray system, 
Tashman and colleagues demonstrated that there 
is approximately 10° of knee IR-ER during run-
ning [32]. After ACL injury, knee IR-ER range of 
motion and kinematics are altered [31, 33]. These 
altered kinematics may be associated with 
changes in the mechanical restraint that were pre-
viously provided by the ACL.

The functional joint stability paradigm (see 
Fig. 7.2) was developed to demonstrate and pro-
vide a framework to examine the effects of injury, 
surgery, rehabilitation, and injury prevention on 
joint stability [34, 35]. It can also provide a frame-
work to examine the effects of fatigue, pain, and 
neurocognitive changes observed following con-
cussion. As originally described, the precipitating 
event (catalyst) is a ligamentous injury. This 
injury has a significant effect on the sensorimotor 
system, disruption of afferent information that 
previously arose from mechanoreceptors respon-
sible for proprioceptive information (Fig.  7.2a). 
These proprioceptive deficits can lead to decreased 
neuromuscular control (Fig. 7.2b), which can be 
observed in altered activation (magnitude) and 
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Fig. 7.2  Functional joint stability paradigm (From 
Lephart SM, Warner JP, Borsa PA, Fu FH. Proprioception 
of the shoulder joint in healthy, unstable, and surgically 
repaired shoulders. Journal of Shoulder and Elbow 
Surgery. 1994;3(6):371–80; and Lephart SM, Fu 
FH.  Proprioception and neuromuscular control in joint 
stability. [Champaign, IL]: Human Kinetics; 2000)
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activation patterns (timing and coordination) of 
those muscles that provide the dynamic restraint 
(dynamic components of joint stability) for the 
joint. The combined effect of proprioceptive defi-
cits and decreased neuromuscular control with a 
disruption (Fig.  7.2c) of a static component of 
joint stability (mechanical instability) leads to 
functional instability (Fig. 7.2d). While there are 
instances when an individual can maintain func-
tional joint stability after ligamentous injury, the 
majority of individuals will demonstrate episodes 
of giving way and altered joint kinematics and 
kinetics. Often, individuals suffer repetitive or 
additional injury to other joint structures includ-
ing other static components and dynamic compo-
nents of joint stability.

ACL injury is an ideal model to demonstrate 
how the functional joint stability paradigm can be 
used for research, rehabilitation, and injury pre-
vention. The primary role of the ACL is to restrain 
anterior translation of the tibia with respect to the 
femur [25]. This ligament also has important role 
in rotational stability (both IR-ER and valgus-
varus) [28, 30, 36]. Injury to the ACL leads to 
both mechanical instability as measured by a 
knee arthrometer (examining movement of the 
tibia relative to the femur [37]) and propriocep-
tion [38, 39]. The subsequent effects of these pro-
prioceptive deficits include altered neuromuscular 
control that, combined with mechanical instabil-
ity, leads to functional instability [40–42]. There 
are instances when individuals can function 
safely and effectively without reestablishing (sur-
gical repair of the ACL) the mechanical stability 
of the joint, but these instances are rare [43]. The 
goals of ACL reconstruction are to reestablish 
mechanical stability as well as restore proprio-
ception (Fig. 7.2a, c) [44]. Rehabilitation focuses 
on reestablishing or improving proprioception in 
an attempt to improve neuromuscular control and 
improve functional joint stability [34, 45, 46]. 
Injury prevention strategies focus on maximizing 
proprioception, increasing strength, improving 
neuromuscular control, improving joint kinemat-
ics during demanding tasks to reduce joint load-
ing, and developing movement strategies to 
dissipate and decrease landing forces (Fig. 7.2a, 
b, d) [47–54].

7.3	 �Proprioception

We define proprioception as the afferent informa-
tion arising from the internal peripheral areas of 
the body that contribute to postural control, joint 
stability, and conscious sensations. These include 
the conscious submodalities of proprioception: 
joint position sense, active and passive kinesthe-
sia, the sense of heaviness or resistance, and 
appreciation of movement velocity [55, 56]. As a 
component of the sensorimotor system (afferent 
sensory information, central processing and inte-
gration, and neuromuscular control), propriocep-
tion is essential in the maintenance of knee 
stability [57]. The role of the ACL is to resist 
anterior translation, valgus-varus, and IR-ER of 
the tibia on the femur [26–28]. Components of 
ACL (mechanoreceptors) provide afferent infor-
mation essential to joint stability in addition to 
the mechanical stability that the ligament affords. 
Histological examination of the ACL has demon-
strated the presence of several different mecha-
noreceptors including Ruffini endings, Pacinian 
corpuscles, Golgi-like receptors, and free nerve 
endings [58, 59]. Afferent information from these 
mechanoreceptors is integrated into the senso-
rimotor system and, when intact and functioning 
efficiently, contributes to safe and effective neu-
romuscular control of the lower extremity. 
However, any alterations in the acquisition, pro-
cessing, and integration of proprioceptive infor-
mation can impact functional joint stability and 
may result in injury.

Deficits in knee joint proprioception in female 
athletes may contribute to the increased rate of 
ACL injury because these deficits inhibit recruit-
ment of the dynamic stabilizers that prevent ante-
rior tibial translation. We previously examined 
the proprioceptive characteristics of male and 
female collegiate-level athletes [60]. Knee joint 
proprioception was measured by assessing 
threshold to detect passive motion (TTDPM) 
with a custom-built testing device that was capa-
ble of rotating the knee joint at 0.5°/s. The most 
important result of this study was that females 
demonstrated diminished proprioception when 
the knee was rotated from 15° of knee flexion 
toward full extension. We hypothesized that the 
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decreased ability to detect motion toward a dan-
gerous position [61–63] of full extension could 
interfere with the preactivation of protective mus-
cle forces such as the hamstrings.

Given the rotation stability requirement at the 
knee, we designed a comprehensive study to 
examine the reliability, precision, and gender dif-
ferences for TTDPM for IR-ER of the knee [64]. 
The dynamometer of a Biodex System 3 Multi-
Joint Testing and Rehabilitation System (Biodex 
Medical Inc. Shirley, NY) was adapted and modi-
fied in order to incorporate the appropriate con-
trols to eliminate visual, auditory, and tactile 
sensations that can confound results (Fig.  7.3). 
An air pneumatic boot (FP walker boots, Aircast, 
Summit, NJ) was modified so that it could be 
attached to the dynamometer. Each subject 
underwent four tests of TTDPM, two with the 
knee in a position of IR and two with the knee in 
a position of ER (Fig. 7.4). For each position, the 
knee was rotated toward IR and ER.  Subjects 
were asked to notify the examiner via a switch 
when motion occurred and in what direction it 
occurred. Repeated measures demonstrated that 
each TTDPM test had good reliability and preci-
sion. Gender comparisons revealed that female 
athletes had diminished proprioception when the 
knee was rotated internally from both starting 

positions of IR and ER.  Similar to movement 
toward full extension as observed previously, 
movement toward full IR loaded the ACL [28].

It may be theorized that diminished proprio-
ception negatively affects neuromuscular control 
and potentially put females at greater risk for 
noncontact ACL injury. Unfortunately, little evi-
dence exists that demonstrates a relationship 
between proprioception and neuromuscular con-
trol. We have examined these relationships and 
recently demonstrated a significant relationship 
between TTDPM and joint kinematics during an 
athletic task [65]. The relationship between knee 
flexion angle at landing, knee flexion/extension 
TTDPM, and strength was examined in a popula-
tion of 50 physically active male adults (mean 
age, 26.4  ±  5.8  years). The subjects underwent 
TTDPM testing (knee flexion/extension), knee 
flexion/extension strength testing with an iso-
kinetic dynamometer (Biodex Medical Inc., 
Shirley, NY), and a kinematic analysis during a 
single-leg stop task. Pair-wise correlation coeffi-
cients demonstrated that individuals who had 
better TTDPM in the direction of knee flexion 
and knee extension landed with greater knee flex-
ion at initial contact with the ground.

We have continued to examine the role of pro-
prioception in functional joint stability, especially 

Fig. 7.3  Knee internal/
external TTDPM setup 
(From Nagai T, Sell TC, 
Abt JP, Lephart 
SM. Reliability, 
precision, and gender 
differences in knee 
internal/external rotation 
proprioception 
measurements. Phys 
Ther Sport. 
2012;13(4):233–7)
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as it relates to gender and noncontact ACL injury 
[66, 67]. In the first of these studies, Clark et al. 
examined predictors of knee joint stability in 
uninjured physically active adults [66]. As part of 

this study, a new measure of active joint position 
sense (AJPS) was developed to provide greater 
clinical insight [68]. Reliability and precision 
were excellent for this measure that included 
eccentric-to-isometric hamstring-biased AJPS 
measured in a prone position. No differences in 
AJPS were observed between genders (see 
Fig. 7.5). In the second study, Keenan et al. mea-
sured trunk proprioception AJPS during a stop-
jump maneuver [67]. The regression analysis 
revealed that trunk proprioception was not a sig-
nificant predictor of knee kinematics.

7.4	 �Postural Stability

Maintenance of postural stability is essential for 
activities of daily living, work, and athletic activ-
ities. Postural stability is frequently measured in 
athletic populations and in sports medicine 
research. It has been demonstrated to be a predic-
tor of performance [69], is compromised after 
lower extremity musculoskeletal injuries [70, 
71], is used in injury prevention training pro-
grams [72–75], and has been analyzed to deter-
mine risk factors for lower extremity injury [60, 
76–82]. Postural stability has been defined as the 
ability to keep the body in equilibrium by 
maintaining the projected center of mass within 
the limits of the base of support [83]. Postural 
stability is often measured in research related to 
knee injuries since many of the same components 
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necessary for maintenance of postural stability 
are also necessary for dynamic joint stability. 
Both require establishing an equilibrium between 
destabilizing and stabilizing forces [84] and 
require sensory information from vision, the ves-
tibular system, and somatosensory feedback [20, 
85]. Postural stability is sometimes measured in 
studies designed to examine proprioception, 
but  postural stability is not a measure of 
proprioception.

Postural stability is typically measured under 
two wide-ranging testing modes, static and 
dynamic. We define static postural stability as 
maintaining steadiness on a fixed, firm, unmov-
ing base of support [86]. Typically, this is mea-
sured while an individual attempts to maintain a 
steady state (remaining as motionless as possi-
ble) while standing on one or two legs [87]. 
Dynamic postural stability has been defined as 
the ability to transfer the vertical projection of 
the center of gravity around the supporting base 
[87]. Another definition is the ability to maintain 
postural stability under changing conditions 
such as change in the support surface [88], fol-
lowing a perturbation of the individual [89, 90], 
or after a change in position or location such as 
during a single-leg jump or landing [86, 91, 92]. 
Dynamic postural stability has been measured 
with a multiple single-leg hop-stabilization test 
[86], a time to stabilization test [91], the star-
excursion test [93], and the dynamic postural 
stability index (DPSI) [92]. We have examined 
the correlation between static and dynamic mea-
sures of postural stability [94]. The goal was to 
determine what measure of postural stability has 
the best discriminatory capability in order to pre-
dict risk of injury, especially in athletic popula-
tions. The results of this study demonstrated that 
static measures of postural stability as measured 
with single-leg static balance measures (eyes 
open and eyes closed) do not correlate with two 
dynamic measures of postural stability: anterior-
posterior jump and medial-lateral jump (mea-
sured with the DPSI).

Gender comparisons in static postural stabil-
ity measures provide additional evidence sup-
porting the need to examine dynamic postural 
stability measures. We have examined differ-

ences in static postural stability between genders 
in high school athletes, college athletes, and 
military personnel [13, 60, 95–97]. Females 
demonstrated better static postural stability than 
males across all of these populations. We exam-
ined single-leg balance (eyes open and eyes 
closed) in male and female basketball players 
using a protocol based on Goldie et al. [87, 98]. 
Females demonstrated significantly better sin-
gle-leg balance scores for both conditions [97]. 
Our research in collegiate athletes (National 
Collegiate Athletic Association [NCAA] 
Division I) using the Biodex Stability System 
(Biodex, Inc., Shirley, New York) [60] demon-
strated that female athletes had a significantly 
better stability index then their male counter-
parts. We have completed a series of studies 
examining injury prevention and performance 
optimization with the US Army’s 101st Airborne 
Division (Air Assault) in Ft. Campbell, KY [13]. 
Tactical athletes such as these soldiers suffer 
similar unintentional musculoskeletal injuries as 
civilian athletes. Static postural stability was 
assessed using a protocol similar to our study 
with high school basketball players [13, 95, 96]. 
Female soldiers demonstrated better static pos-
tural stability than male soldiers (lower values 
represent better postural stability; Fig. 7.6). The 
results of these three studies appear to contradict 
the fact that females suffer ACL injuries at a 
higher rate than their male counterparts in simi-
lar sports and also demonstrate diminished pro-
prioception. Additionally, single-leg balance 
deficits have not been identified as a risk factor 
for primary ACL injury, which indicates the need 
for postural stability testing that presents a 
greater challenge to the sensorimotor system.

The DPSI has become a common measure to 
examine postural stability in athletic popula-
tions. Typically, the DPSI is measured during a 
landing task after jumping over an obstacle or 
after jumping a measured height [92, 94] and 
requires the individual to stabilize as quickly as 
possible after the landing. It may be a more 
appropriate challenge for healthy, athletic popu-
lations [94]. Previous studies have used the 
DPSI to examine differences between genders 
with mixed results [99, 100]. Both Wikstrom 
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et  al. and Dallinga et  al. examined gender 
differences during a landing task while calculat-
ing the DPSI [99, 100]. Wikstrom et al. exam-
ined an anterior-posterior jump and revealed 
that females had worse scores than males [100]. 
In contrast, Dallinga et  al. demonstrated that 
males had inferior scores than females during 
similar dynamic postural stability testing [99]. 
Our own research in a military population 

(Fig. 7.7) demonstrated no differences between 
genders for dynamic postural stability during an 
anterior-posterior jump [96].

We recently completed a study designed to 
challenge rotational stability of the knee (trans-
verse plane) during a landing task [101]. The task 
was identical to a traditional DPSI assessment 
except individuals were required to rotate 90° in 
the air prior to landing. Between-day reliability 
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of the rotational jump was high. There were dif-
ferences between the rotational jump and the 
traditional anterior-posterior jump in joint 
biomechanics, potentially indicating a greater 
challenge to rotational joint stability. Gender 
comparisons were made across multiple jumps, 
including an anterior-posterior jump and the two 
rotational jumps (Fig. 7.8). Subjects were healthy, 
recreationally active, college students. No signifi-
cant differences were observed for any of the 
jump directions for dynamic postural stability 
(Fig. 7.9).

7.5	 �Electromyographic Activity

The electromyogram (EMG) represents the elec-
trical manifestation of the contracting muscle 
[102] as it transmits from the neuromuscular 
junction along the muscle fiber [103]. 
Measurement of EMG activity provides informa-
tion regarding the amount of electrical activity in 
the contracting muscle, which in turn provides 
insight into the magnitude of tension developed 
[104]. Relative to the functional joint stability 
paradigm (Fig.  7.2), EMG can describe neuro-
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muscular control as well as the attempt to main-
tain functional joint stability (or inability to 
maintain functional joint stability). Unfortunately, 
many variables can influence this signal which 
creates difficulty in interpreting these data. A 
direct comparison between activation levels and 
force production is generally not recommended. 
However, muscle activation patterns, amplitude, 
and quantity provide important insight into the 
neuromuscular control of joint stability.

Dynamic knee stability is dependent on the 
neuromuscular control over the musculature of 
the knee in order to reduce strain in the ACL. In 
order for this control to be effective, the central 
nervous system (CNS) must be able to anticipate 
destabilizing forces and act appropriately [105]. 
Benvenuti et al. examined EMG activity of upper 
arm musculature during reaction-time arm move-
ments. These investigators demonstrated that, 
when destabilizing forces were anticipated, the 
CNS was capable of adjusting muscle activation 
patterns to oppose these forces. These findings 
support the belief that anticipatory postural 
adjustments are planned in detail [106]. Studies 
have conducted gender comparisons of EMG 
activity of the knee musculature during athletic 
tasks to quantify the role of the knee extensors 
and flexors in dynamic knee stability [107–109].

We have previously examined EMG activity 
of knee in order to determine differences between 
genders in dynamic stabilization strategies [60], 
to examine the demands of different athletic tasks 
[110], to determine differences between planned 
and reactive tasks [110], and to determine predic-
tors of proximal anterior tibia shear force [111]. 
Rozzi and colleagues demonstrated that female 
collegiate-level soccer players activated the lat-
eral hamstrings differently than male players dur-
ing a drop-landing task. Females had a greater 
peak amplitude and integrated EMG (IEMG) for 
lateral hamstrings in response to the landing. We 
concluded that this finding represented an attempt 
by female athletes to prevent anterior tibial trans-
lation that occurs during this task. Similar obser-
vations were made in male and female high 
school basketball players while they performed 
planned and reactive stop-jump tasks [110]. 
Reactive tasks were included to better simulate 

actual athletic conditions when athletes have to 
react quickly to other competitors. Female high 
school basketball players demonstrated greater 
IEMG activity of the semitendinosus and a higher 
co-contraction value during the 150 ms prior to 
the initial landing compared with male players 
for planned and reactive tasks. These gender dif-
ferences observed in semitendinosus activity dur-
ing stop-jump tasks are consistent with a previous 
study [60] and reinforce the concept that females 
use compensatory strategies to counter decreased 
knee joint proprioception in order to achieve 
functional joint stabilization.

We continue to analyze EMG relative to 
female athletes and knee injuries. EMG activa-
tion patterns, timing, amplitude, and quantity 
provide insight into the attempt to achieve func-
tion joint stability in the presence of destabilizing 
forces and moments. In our most recent study, we 
determined if EMG of the medial hamstrings 
muscle group predicted performance during a 
single-leg stop-jump task [66]. We examined pre-
activity and reactivity (relative to initial contact) 
and examined its relationship to valgus-varus dis-
placement. Preactivity explained a small, but sig-
nificant, percentage of the variance in 
valgus-varus displacement during the single-leg 
stop-jump task. No gender differences in muscle 
activity were observed.

7.6	 �Strength

The dynamic components of joint stability are 
dependent on the characteristics and capabilities 
of the muscles crossing the joint [20]. One of the 
more important capabilities is muscular strength 
(force production). Muscular strength represents 
the ability of an individual to produce the internal 
muscles to counteract the destabilizing forces 
that occur during dynamic activities. The primary 
dynamic stabilizers of the knee joint are the knee 
flexors (hamstrings) and the knee extensors 
(quadriceps). Both of these muscle groups 
influence strain on the ACL such that an increase 
in hamstrings activity can reduce the amount of 
strain, whereas an increase in quadriceps activity 
can increase the amount of strain [112, 113]. 
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Individuals with insufficient muscle strength, 
muscular imbalance, or inadequate activation 
levels and timing may not have the capability to 
counteract the destabilizing forces during 
dynamic tasks.

Our research has consistently demonstrated 
that males have significantly greater strength than 
females. Male Division I NCAA volleyball, bas-
ketball, and soccer athletes have significantly 
stronger knee extension and flexion strength 
compared with females of similar age and activ-
ity level [114]. Similar differences between gen-
ders in isokinetic knee strength have also been 
observed between male and female high school 
basketball players [97]. Strength comparisons 
between male and female soldiers of the 101st 
Airborne (Air Assault) Division have also been 
performed [13]. Similar to civilian athletes, male 
soldiers demonstrate significantly greater iso-
kinetic knee extensor and flexor strength than 
female soldiers (Fig.  7.10) [95]. In addition to 
tradition strength measures, we have also exam-
ined time-to-peak torque [66] which represents 
the amount of time between the initiation of a test 
and maximum (or peak) torque production. 
Females take longer to develop peak torque pro-
duction then their male counterparts (Fig. 7.11).

While strength testing as measured by force 
output is an important characteristic of the 
dynamic stabilizers of the knee joint, a more rel-
evant measure for injury risk may be the ham-
strings-to-quadriceps (H-Q) strength ratio. Myer 
and colleagues prospectively demonstrated that 
females who suffered ACL injury had a lower 
H-Q strength ratio compared with female con-
trols and male controls who did not suffer ACL 
injury [115]. These investigators also demon-
strated that females who subsequently suffered 
an ACL injury had lower hamstring strength, but 
not lower quadriceps strength, compared with 
males who did not suffer an ACL injury. Our 
studies have consistently demonstrated that 
females and males have similar H:Q strength 
ratios when using similar isokinetic speeds 
(Fig. 7.12). It is important to note that our studies 
represent comparisons between uninjured male 
and female groups.

We have examined isometric IR-ER strength 
in male and female athletes, as well as the rela-
tionship between knee flexion/extension strength 
and landing kinematics [65]. Internal and exter-
nal isometric strength was measured with a simi-
lar setup as described with TTDPM testing. 
Female athletes demonstrated lower IR and ER 
strength compared with male athletes (Fig. 7.13). 
These results are consistent with other gender 
comparisons in knee strength. Nagai and col-
leagues also demonstrated a significant relation-
ship between knee extension strength and knee 
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flexion angle on landing; as quadriceps strength 
increased, so did knee flexion angle at initial con-
tact [65]. In terms of ACL injury, landing in a 
more flexed position is safer than landing in an 
extended position [28, 116, 117]. Isolated knee 
strength measurements only describe the force 
production capabilities of the movements tested. 
Combining knee strength testing with other mea-
sures of functional joint stability such as landing 
kinematics, and examining the relationship 
between each, gives a better picture of the inter-

action between the variables and provides insight 
into strategies of maintenance of functional joint 
stability.

7.7	 �Biomechanics

The functional joint stability paradigm (Fig. 7.2) 
demonstrates that deficits in proprioception, 
EMG activity, and strength may affect neuromus-
cular control and knee joint stability. 
Neuromuscular control and knee joint stability 
may be further examined through motion analy-
sis and calculation of relevant knee biomechani-
cal variables such as joint kinematics and joint 
kinetics. We have examined the biomechanics of 
males and females performing several different 
tasks in order to determine how neuromuscular 
control (deficits) affects landing kinematics and 
kinetics. These studies demonstrated that female 
athletes typically land with greater vertical 
ground reaction forces, greater peak posterior 
ground reaction forces, greater proximal anterior 
tibia shear force, increased hip internal rotation, 
less knee flexion, and greater knee valgus com-
pared to their male counterparts [110, 114]. Our 
research with the military includes gender com-
parisons between male a female soldiers of the 
101st Airborne (Air Assault) Division while per-
forming a vertical drop-landing task. We ana-
lyzed the valgus-varus position of the knee at 
initial contact for each task. Females performed 
the vertical drop-landing task in greater valgus 
than males [95]. While males landed in a varus 
position, females landed relatively close to neu-
tral valgus-varus position (Fig. 7.14).

Measurement of knee biomechanics continues 
to be an important aspect of assessing functional 
joint stability. We have begun to examine differ-
ent instrumentations to measure knee biome-
chanics that does not depend on brick-and-mortar 
research laboratories. We are currently compar-
ing three-dimensional accelerations of the tibia 
measured with skin-mounted accelerometer to 
knee joint forces measured through inverse 
dynamics and tibial acceleration and translation 
compared with dynamic stereo X-ray system. 
Current research has been expanded to 
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incorporate emerging technology, including the 
use of wireless three-dimensional inertial sensors 
that have the potential to be used during actual 
competition. The ultimate goal of this research is 
to develop robust but portable instrumentation to 
collect relevant biomechanical data away from 
traditional laboratory environments.

7.8	 �Fatigue

Fatigue creates an environment in which more 
musculoskeletal injuries occur, whether it is 
within a single game/competition or within a 
series of closely scheduled games [118–124]. 
These observations include muscular injuries, 
joint injuries, and noncontact ACL injuries [125]. 
Muscular fatigue can disrupt or degrade the com-
pensatory stabilizing mechanisms necessary to 
maintain joint stability in the presence of destabi-
lizing forces and moments [80]. Although the 
exact mechanisms are unclear, the disruption of 
normal stabilizing mechanisms may decrease 
neuromuscular control [126, 127], increase knee 
joint laxity [80, 128, 129], decrease balance skill 
[126], and decrease proprioception [130–133]. 
We have conducted several studies examining the 
effects of fatigue on neuromuscular and biome-
chanical characteristics.

We have examined knee joint laxity, kines-
thesia (via TTDPM), lower extremity balance, 
and surface EMG activity during a landing 
maneuver of male and female athletes before 
and after a peripheral muscular fatigue protocol 
[80]. The protocol was designed to induce 
fatigue of the knee flexors and extensors and 
was implemented using a Biodex isokinetic 
dynamometer. Peripheral fatigue decreased the 
time to detect motion, increased the contraction 
onset time after landing for the medial ham-
strings and gastrocnemius, and increased IEMG 
of the vastus lateralis and vastus medialis after 
landing. Both males and females were affected 
equally. We have also demonstrated fatigue, 
induced by an exhaustive run [134, 135], forces 
adaptations in landing kinematics equally in 
both genders [136]. Both male and female recre-
ational athletes demonstrated a decreased knee 
flexion angle at initial contact and a decreased 
maximum valgus angle which were theorized to 
be an attempt to promote knee stability. Overall, 
it appears that fatigue affects both genders 
equally and places both male and female ath-
letes at greater risk for injury.

We have conducted several studies regarding the 
relationship between physiological characteristics 
such as anaerobic capacity, aerobic capacity, and 
muscular endurance to determine the effects of 
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fatigue on neuromuscular and biomechanical risk 
factors for injury. During a pilot study, we induced 
fatigue using a maximum oxygen uptake treadmill 
test and a test of anaerobic power and capacity. Both 
protocols significantly affected postural stability 
during a single-leg balance task that persisted for 
8 min. We recently completed a study examining 
the effects of fatigue (whole body exercises and 
multiple bouts of running) on knee proprioception 
measured by TTDPM [137]. Fatigue was verified 
through ratings of perceived exertion, heart rate, and 
blood lactate measures. No changes in propriocep-
tion were observed post-fatigue, but there was a sig-
nificant relationship between aerobic capacity and 
proprioception that may indicate highly trained 
individuals have better proprioception.

Fueling, or feeding, is one potential interven-
tion to prevent the onset of fatigue and its poten-
tial as a risk factor for noncontact ACL injury. We 
examined the effects of carbohydrate-electrolyte 
feedings on knee biomechanics and dynamic 
postural stability during intermittent high-inten-
sity exercise to fatigue [138]. The fatigue proto-
col was designed to simulate a basketball game, 
including timing of quarters and physical activi-
ties performed. Fatigue induced changes in land-
ing biomechanics such as knee flexion angle at 
initial contact during single-leg jump landings 
and dynamic postural stability. The feeding used 
in this study had little to no effect on knee biome-
chanics or dynamic postural stability. Nutrition 
and physical training and their relationship to 
fatigue-induced risk factors for noncontact ACL 
injury are an important area of research; however, 
few research studies have examined these inter-
ventions to date. Both nutrition and physical 
training strategies may be important to examine 
more closely in the future.

7.9	 �Current Research 
and Emerging Concepts

We continue to study gender differences between 
males and females in athletic and military popula-
tions, focusing on reducing the risk of injury as 
well as optimizing human performance. These 

objectives are not mutually exclusive, as improving 
performance and reducing injury risk can be 
accomplished simultaneously. This is especially 
true in environments where fatigue impacts injury 
risk. Performance optimization solely focusing on 
fitness (aerobic and anaerobic) can significantly 
impact injury risk [139]. Our research with the 
military, specifically examining the different injury 
risk profiles, task requirements, and demands of 
different mission types, demonstrates an increasing 
need for specificity of training relative to the physi-
ological, musculoskeletal, and neuromuscular 
demands. We should not discount the role of the 
CNS in injury prevention. There is a mounting 
body of evidence indicating that brain injuries such 
as sports-related concussions increase the risk of 
injury [140–145]. This risk factor seems to be gen-
der neutral. We are examining sports-related con-
cussion as a risk factor for lower extremity injury in 
an attempt to develop a measurement or assess-
ment tool to be added to medical clearance guide-
lines for return-to-play following concussion. This 
tool would screen for risk of lower extremity injury. 
Finally, the reinjury rate after ACL reconstruction 
is approaching 30% [146]. There is a critical need 
to develop better decision guidelines for this popu-
lation and potentially explore if females require 
different rehabilitation strategies.

7.10	 �Summary

The functional joint stability paradigm provides 
the framework for mechanistic studies examining 
neuromuscular differences between men and 
women. The injury prevention process provides 
the steps to conduct high quality injury preven-
tion research. Our studies have demonstrated that 
female athletes have decreased proprioception, 
compensatory EMG patterns, enhanced static 
balance, and decreased lower extremity strength 
compared with male athletes. Some of these 
same differences have also been observed in 
female military personnel. These differences 
have resulted in altered neuromuscular control as 
observed in the kinematic and kinetic character-
istics of the knee during dynamic tasks. Injury 
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prevention and performance optimization must 
account for these differences with specificity of 
training to reduce the incidence of debilitating 
ACL injuries.
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