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Abstract. Power grid and energy theft has an eternal relationship.
Though we moved towards Smart Grid, with an expectation for a more
efficient, reliable and secure service, so does the attackers. Smart Grid
and AMI systems incorporate a good number of security measures, still
it is open to various threats. Recent attacks on Smart Grids in U.S., Gulf
State and Ukraine proved that the attacks on the grid have become more
sophisticated. In this paper we have introduced a new, distributed and
intelligent energy theft: DIET attack and proposed an advanced Intru-
sion Detection System to protect AMI system. The proposed IDS can
perform a passive monitoring on the system as well as detect attackers.
This features make this IDS more robust and reliable.
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1 Introduction

Smart Grid is meant to modernize traditional power grids with the two-way data
communication along with energy supply. In order to enhance the functionalities
of the network, Smart Grid offers several applications to help both customers
and utilities to optimize the energy usage and billing. Advanced Metering Infras-
tructure or AMI is one of the most important features of Smart Grid [1]. It
establishes a direct communication between customers and utilities, including,
meter readings at periodic intervals (sometimes on demand) to the Data Col-
lection Units or DCUs, updated electricity tariffs at regular intervals to smart
meters, electricity outage alert messages and sometimes it upgrades the meter
firmware [2]. However, due to the unique characteristics of AMI, such as com-
plex network structure, resource-constrained smart meter, and privacy-sensitive
data, it is an especially challenging issue to make AMI secure. Energy theft is
one of the most important concerns related to the smart grid implementation.
It is estimated that utility companies lose more than $25 billion every year due
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to energy theft around the world [1]. Energy theft may become an even more
serious problem since the smart meters used in smart grids are vulnerable to
more types of attacks compared to traditional mechanical meters. The unique
challenges for energy theft in AMI call for the development of effective detection
techniques.

Generally, energy theft can be accomplished using three ways [1,3]. Firstly,
by interrupting smart meters from recording correct electricity usages, secondly,
by forging demand information in smart meters and lastly by injecting false/bad
data in the communication line. Now, the first attack is the only one that exists
for the traditional meters, the other two attacks are exclusively for smart meters.
Besides, premise of energy theft in AMI can also be classified in three categories:

– Type-1: where the attacker modifies its own smart meter to maximize its
individual gain.

– Type-2: where the attacker modifies numerous smart meters in his neighbor-
hood to either maximize its personal gain or penalize the utilities.

– Type-3: the cooperative attack, where a bunch of attackers create a chain of
attacks on a large scale to immobilize the system in a short time interval.

In the first scenario, it is quite easy to detect the attack by analyzing the
electricity usage pattern. Classification based detection schemes are quite suit-
able for these types of attacks. Besides, there exist several works to detect energy
thefts which belong into the first two category. However, these types of attacks
can be made more intelligent and difficult to detect, if implemented wisely. In
this paper, we have proposed an attack model for distributed and intelligent
electricity theft and proposed a two tier trust based intrusion detection system.
The third part: collaborative attack is much complicated to implement as well
as detect. We have considered these types of attacks as a part of our future
extension of this paper.

There exist a good number of research works addressing solutions towards
energy theft problem in Smart Grid. In [8] authors proposed a Support Vec-
tor Machine (SVM) based detection model to construct users’ load profile pat-
tern and then detect deviations from the standard pattern in order to identify
abnormal behavior. Besides, to improve the performance of this model, authors
incorporate fuzzy systems. The complete detection model identifies abnormal
behaviors in the grid by comparing current load with recorded load profile and
other additional information. Authors in [19] proposed an Auto Regressive Mov-
ing Average (ARMA) based model to analyze the probability distributions of
the normal and malicious consumption patterns of users. They have applied the
generalized likelihood ratio (GLR) test to detect energy theft attacks. The pro-
posed work is heavily dependent on the data capturing accuracy of the ARMA
model. Besides, it is based on the assumption that the attacker would always
choose to decreases the mean value of the real consumption. Works presented in
[9,10] also proposed a detection mechanism based on pattern matching and data
classification. First, they proposed an classification method based on SVM and
Rule based systems [9]. Then in [10], they introduce High Performance Com-
puting (HPC) based algorithms to enhance the performance of their previous
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model. They have implemented some parallelized encoding algorithms to speed
up the data classification, analyze and detection process. They have been able
to differentiate the behavior of fraud customers from genuine users, using this
model. AMIDS [11] is another AMI Intrusion Detection model, where a data min-
ing technique based Non Intrusive Load Monitoring (NILM) system can collect
data from three different sensors. These sensors gather data to identify cyber
attacks, physical attacks and power measurement based anomaly. Authors of
this paper claim that the proposed intrusion detection system (IDS) can detect
several attacks by using information fusion from different sensors and correla-
tion of different alert triggers. A Radio Frequency IDentification (RFID) based
theft detection technique is proposed in [12]. The proposed system is divided
in two parts: ammeter inventory management and ammeter verification control.
RFID tags are attached with meters and used to detect energy theft. In addi-
tion, the reader acquires the information transmitted from the tag and sends it
to the company’s ERP system through the network to determine whether it is
the approved tag or a different one placed by electricity thieves. Although the
RFID technology can be used to detect energy theft, the utility companies have
to pay extra cost to install the system. In order to find out whether implement-
ing RFID technology is beneficial for the utility company, cost-benefit theory is
used to analyze different value changes caused by the proposed system. Authors
of paper [13] proposed a rather simple approach. They compare the meter read-
ings of users with utilities reading. If the difference exceeds a threshold value,
then that meter is marked as malicious and the connection will be terminated
immediately.

The detection methods for energy theft can be broadly categorize into three
types [1,20]: classification or statistical methods based detection techniques, mon-
itoring based detection techniques and game theory based detection techniques.
Classification based methods apply data mining methods and machine learning
to energy usage patterns, collected from smart meters. They detect attacks by
finding the deviation from the original data. These methods are cost effective and
can be implemented easily. However, due to its lack of consideration for innovative
and adaptive attack techniques, often some intelligent and minute attacks remain
undetectable. Besides the false positive rates are on a higher side for these type of
methods. Monitoring based techniques use sensor nodes, RFIDs and sometimes
other smart meters to monitor the state of the network to detect the attack. This
method has a better detection rate and lower false positive rate than the previous
one. Continuous monitoring ensures the detection of very minute changes in the
system. However, the implementation and maintenance cost of such system can
become a disadvantage for implementation. Lastly, game theory based methods
[14,15] are new in this domain, very few works have been done to detect energy
theft. Planning the strategies for each player and formulated their goals can be
a bit tricky in Smart Grid environment. The rules of the games should update
simultaneously according to the change of situations in network and character-
istics of players. Besides, these types of methods have greater false positive rates
than monitoring based methods. It may be summarized that the monitoring based



80 M. Chakraborty

methods are best suitable to detect intelligent and minute attacks, providing the
implementation and maintenance costs are minimized. Thus the main goal is to
propose an effective monitoring system which ensures the trade-off between cost
optimization and detection efficiency.

In this paper, we have introduced a new attack type specific to Smart Power
Grid. We propose to call it Distributed and Intelligent Energy Theft (DIET)
attack. Further, we have proposed a two-tier solution to detect the proposed
DIET attack and perform a passive monitoring on the system, to provide an
additional level of security. We have simulated DIET attack and the proposed
detection mechanism using Qualnet 5.2 simulator [16].

The rest of the paper is organized as follows: Sect. 2 describes the network
infrastructure for our proposed solution, Sect. 3 elaborates the proposed attack
scenario, the working mechanism of our proposed IDS is described in Sect. 4,
whereas, the simulation results and performance analysis is presented in Sect. 5,
and finally Sect. 6 concludes this work.

2 Smart Infrastructure for Communication

Figure 1 shows the communication architecture of Smart Grid. Smart-energy
Utility Network (SUN) hierarchically consists of three components: Home Area

MDMS 

DA

Smart Meter (SM) 

SM-DA Link 

SM-SM Link 

DA-DCU Link 

DCU 

DCU-MDMS Link 

Fig. 1. Communication architecture of AMI in smart grid.
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Network (HAN), Neighborhood Area Network (NAN), and Wide Area Network
(WAN) [17]. The HAN provides the communication between the Smart Meters
in a home and other appliances in that home. The NAN connects SMs to the
Data Aggregators (DAs) and Data Collection Units (DCUs), and WAN provides
access between the DCUs and Meter Data Management System (MDMS). DAs
collect data from hundred of SMs registered under it and send them to DCUs.
DCUs are responsible for communication with MDMS. Smart Grid has a quasi
hierarchical structure, where the number of intermediate levels in the network
varies with demographic and socio-economic condition of any particular region
[7]. The smart meters act as hosts in a network, DCUs are the routers of the
network and DAs are intermediate connectors. We assume that Smart Meters are
managed by its immediate upper level DA or DCU, depending on the hierarchy.
We assume that Smart Grid is a cluster based network, where each DA acts as
a cluster head and can accommodate utmost 1000 of Smart meters. When a SM
X is installed in a grid, it should find a DA to bind with. X will continue to
communicate through DA in the network.

Firstly, we propose Near Term Digital Radio architecture [21] for the Clus-
tering scheme used by our IDS. In this specific architecture, the cluster is divided
into several physical subnets. Each subnet consists of the Cluster Head or DA
and the Cluster Members or SMs which are at one - hop distance from the
DAs. All SMs within a cluster can communicate with the DA using the same
frequency and can communicate with other SMs within the same subnet using
another frequency. These two channels are assumed to have different frequencies,
so that there is no interference. DAs can also communicate with its upper level
DCUs and DCUs with MDMS. The MDMS sends its messages to the DCUs,
which then propagates the information through other DAs and finally it reaches
to SM.

Communication between DAs, DCUs and MDMSs are supposed to be secure.
However, SM to SM communication link may be compromised by attacker. In
this paper, we have proposed a new Smart Grid specific energy theft (DIET)
attack. In order to model this attack scenario we have used several network
attacks, such as, extracting meter credentials and Man in the Middle (MITM)
attack.

2.1 Information Stored at Smart Meters

The basic job of a smart meter is to track the energy usage of its customer and
communicate with a DA. Generally a SM send their electricity usage after every
15 min of interval to the cluster head (DA) and receives various instructions from
the DA. Now, in order to implement our IDS, we assume that,

– Every SM has an unique MAC address within its cluster.
– A smart meter can acquire its neighbor SMs’ address through Neighbor Dis-

covery procedure and can communicate with them over a wireless medium.
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– A SM send a Electricity Usage (EU) message to the DA after every 15 min and
broadcasts the same message at the same interval so that all of its neighbors
can keep a tab of its electricity usage.
EUi,t denotes the energy usage of SM i at time interval t−(t−1), where i
denotes it unique MAC address.

– Every SM maintains an array, Neighbor’s Electricity Usage (NEU) for storing
the information about the energy usage of its neighbors. NEUi,t[j] denotes
the electricity usage of SM with unique MAC address j, at time t as stored
at smart meter i.

Every time when a SMi receives a broadcasted message from its neighbor
SMj at time t it adds the value of its electricity usage with the previously stored
value for SMj in the array, and updated its NEU as,

NEUi,t[j] = NEUi,t−1[j] + EUj,t

Where, t−(t−1) = 15 min.
Thus, a SM stores its neighbor SMs’ electricity usage in a cumulative array.

2.2 Information Stored at Cluster Heads

Cluster heads acts as a bridge between customers and utility. The main function
of cluster heads, or DAs, or DCUs (depending on the hierarchical structure of the
Grid) is to receive the electricity usage information of its SMs and provide billing
information, electricity pricing and various informations to the SMs, depending
on the applications. Besides cluster heads are also responsible for analyzing the
data and detect any anomalies or abnormal behaviors in its cluster and report
to the MDMS. We assume that,

– Each cluster head maintains a Smart Meter Connection (SMC) graph to store
the topological information about its cluster. The graph is represented by an
array of linked lists, where the size of the array defines the total number of
SMs in the cluster and the size of each individual list represents the number
of neighbors of that SM.

– Besides, every DA, i.e., cluster head will maintain a 2-D array ES(N,T) of
energy supplied to each smart meters in its cluster, Where N is the total
number of smart meters, registered with the cluster head and T denotes time.
ES[i][t] denotes the energy supplied to the smart meter with MAC address i
at t time-stamp.

Each cluster head communicates with the SMs within its cluster, and then
transmits the aggregated data to its upper level DCU or MDMS.

Data structures, EU, NEU and ES are initialized after every 4 h. And the
Smart meter Connection (SMC) graph is updated after the joining of every new
SM in the cluster.
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3 Proposed DIET Attack Model

In [3], the authors have addressed the issue of energy theft in smart grids using
AMI. However, the authors elaborate on Type-1 attacks only and how they
can be achieved in the AMI. The implementation of such attacks requires the
attacker to hack into his Smart Meter using a Man-in-the-Middle attack. Once
the attacker has his Smart Meter credentials, he can drop packets, inject new
packets, as well as modify the usage information stored within the Smart Meters.

However, the situation is quite different for Type-2 attacks. Here, the attacker
tries to hack and modify the data packets of its neighboring smart meters and
then forward those malicious packets to DCU. Now, the first level of secu-
rity can be easily provided by the AMI by implementing a modified version
of the Needham Schroeder protocol [18] (like the Kerberos protocol or the
Needham-Schroeder-Lowe protocol) to prevent replay attacks and Man-in-the-
middle attacks. This prevents any eavesdropper from spoofing its neighboring
Smart Meters during mutual authentication. Once this is ensured our only con-
cern remains in securing the network communication. Whenever a Smart Meter
tries to send a periodic update to the DCU about it’s usage, the attacker may
intercept this packet, drop it from the network and inject a new packet (with
the neighbors credentials) with modified usage statistics.

In this paper, we have considered a special case of Type-2 energy theft attack.
The Type-2 energy theft attack can be made quite difficult, if the attacker mod-
ifies the energy usage of a meter with a very negligible amount. 6% to 8% Tech-
nical Loss (TL) in transmission and distribution (T&D) is considered as normal
in traditional power grid [4], but with Smart Grid the TL in T&D is reduced to
4% to 6% [5], i.e., if the allocated energy is 10 kW for a particular smart meter,
then 9.4–9.6 kW of electricity is expected to be used by the smart meter. Now,
suppose a smart meter registered 9.55 kW of electricity usage and sends it to
the DCU. The attacker captures the packet and modifies the data to 9.45 kW.
Apparently, the modified amount is so negligible to the customer that it would
not bother him while billing. The DCU would also not be able to detect any
anomaly. On the other hand, if the attacker modifies 100 smart meters like this,
then it would create a 10 kW Non-Technical Loss (NTL) in the system.

There can be two intentions behind this type of attack: the attacker can
either maximize its personal gain by reducing its electricity usage by the same
amount as stole from the neighboring meters, or just minimize utility’s gain by
introducing a generous amount of NTL in the system.

– Personal Gain: The attacker may reduce its usage statistics by X% and uni-
formly distribute this power consumption value among its neighboring Smart
Meters. From the DCU’s perspective, the total power consumed by the Smart
Meters appears to be proportional to the Power allocated to that DCU. The
energy theft goes undetected. Here, the utility company does not bear the
brunt of the attack.

– Utility Loss: In this other type of attack, the attacker does not look for
personal gains; but is rather motivated by a more malicious intent of inflicting
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Fig. 2. DIET attack model.

financial losses to the utility. The attacker achieves this by considering the
Technical Loss during Transmission and Distribution. It drops all packets
from neighboring Smart Meters containing usage statistics and injects new
packets having usage statistics slightly less than the original (within the TL
threshold). The DCU interprets this as TL during T&D although consumers
have consumed this power but have not been billed for the same.

Figure 2 explains our DIET attack scenario. Here, the attacker captures the
data packets from SM 1 and 2, and modifies them slightly, so that it lies within
the TL threshold and send them to the DCU. The transmission between SM 4
and DCU remains secure.

This attack will proved to be more effective in densely populated areas, where
the attacker can have a huge number of smart meters as its neighbors Imple-
mentation of this attack become easier in a urban locality with numerous multi
storied buildings, where a huge number of smart meters are placed across a long
vertical line, but in a small horizontal section. As the attacker can access numer-
ous SMs within its neighbor proximity, the scale of attack can be made more
devastating in such scenarios.

4 Description of the Proposed IDS

In order to detect the DIET attack, we have proposed an IDS model. The detec-
tion mechanism will be performed in the cluster heads after certain time inter-
vals. The IDS can detect Type-1 and Type-2 energy theft attacks. We assume
that the Intrusion Detection System (IDS) will be running periodically with a
time interval of 4 h.
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4.1 Used Parameters in the IDS

We would first like to define the parameters used in the proposed IDS before
explaining the working principle of our algorithm.

1. CH = Cluster Head.
2. SM = Smart Meter, SMi, SMj denotes smart meters with MAC address i

and j respectively.
3. EUi,t denotes the electricity usage of SMi at time t.
4. δ defines the allowed technical loss margin for each SM.
5. EURect[i] defines the total electricity usage of SMi at time t as recorded

by the CH.
6. NEUi,t[j], denotes the electricity usage of SM with unique MAC address j,

at time t as stored at smart meter i.
7. DEP V Li denotes the Dependability Factor of SMi.
8. DEP TH denotes the threshold value for the Dependability Factor.
9. Attacked Nodes defines a list to store the SMs which have been attacked by

the attacker.
10. Negative Neighbors of SMi is the list of neighbour nodes which causes an

anomaly in the detection phase of the IDS.
11. Possible attacker Node holds the MAC address of those SMs which show

abnormal behaviour in terms of stored information of its neighbor SMs.
12. Attacker Nodes contains the nodes which are detected as attacker.

4.2 Working Principle of Proposed IDS

The working principle of our algorithm can be divided into two phases: Data
processing phase and Detection phase.

Data Processing Phase: In data processing phase, each SM in a cluster send
its electricity usage data to the cluster head at 15 min interval. Besides, they
also broadcast the same message over a separate channel, meant for only SMs
in a cluster. Upon receiving this messages, each SM update itself regarding its
neighbors’ usage history. Cluster heads perform a preliminary detection at every
15 min, to detect type-1 attacks. Besides, CH also stores this periodic usage
values in order to maintain a consistent usage log of each SM. The flow diagram
of information for data processing phase of IDS, among various components in
the AMI communication hierarchy is depicted in Fig. 3.

Detection Phase: We assume that the detection phase will execute at every
4 h instead of 15 min. The reason behind this is to reduce the packet transmission
overhead and network congestion. At every 4th hour CH will request its SMs to
send their NEUi,t[j] array. Upon receiving this packets from all the SMs, CH
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Fig. 3. Flow diagram for data processing phase of the proposed IDS.

extracts the neighbor information for each SMi, and compares those values with
EURect[i]. If all the neighbors’ information match with EURect[i], then SMi is
marked as safe, otherwise, the CH marks SMi as Attacked Node. The CH then
identifies the neighbors whose information matched with the stored information
for SMi and marks those as Matched Nodes, and the other neighbors of SMi

as, Mismatched Nodes. Now, the main idea of DIET attack is that the attacker
is working alone. So, in case of an attack, the attacker’s information will match
with the recorded usage of SMi, while the other neighbors will have a different
information, but same collectively. Thus, the CH then compares the total num-
bers of Matched Nodes and Mismatched Nodes of SMi and marks the minority
group as Negative Neighbors. The intersection of Negative Neighbors of all SMs
in a cluster is detected as Attacker Nodes. Whereas, the other Negative Neighbors
are marked as Possible Attacker Nodes and the CH decreases the Dependability
Value of these nodes at each detection cycle. These nodes can unmark them-
selves by showcasing good behavior and gaining Dependability Value at next
detection cycles, or can be marked as Attacker Nodes if the Dependability Value
goes under the threshold level.
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The detailed procedure for attack detection is described in Fig. 4.

Fig. 4. Flow diagram for detection phase of the proposed IDS.

4.3 Algorithm for the Proposed IDS

The algorithm for both the phases of our proposed algorithm is described in this
section. Step 1 of this algorithm defines the data processing phase and the rest of
the part is used to detect DIET attack. Here n is the total number of SMs under
a Cluster Head and m is the maximum number of neighbors for each individual
SMs among n SMs in the cluster

1. At every 15 min, when CH receives a EUi,t message from SMi, it checks
if (ESi,t−1 − δ <= EUi,t <= (ESi,t−1))
{
then, apparently SMi is safe;
EURect[i] = EURect−1[i] + EUi,t;
}
else, SMi is under attack;

2. After every 4 h, CH will ask its SMs to send their NEU array;
3. After receiving all the arrays, CH checks

for(i = 1 to n)
for(j = 1 to m)
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{
if (EURect[i] == NEUj,t[i])
{
match count++;
Add SMj to the list of Matched Nodes;
}
else
{
mismatch count++;
Add SMj to the list of Mismatched Nodes;
}
}

4. if(match count==m)
then, SMi is safe;
else,
{
add SMi to the list of Attacked Nodes ;
if(mismatch count >match count)
Mark Matched Nodes as Negative Neighbors;
else
Mark Mismatched Nodes as Negative Neighbors;
}

5. Let, r be the total number of attacked nodes;
6. Attacker Nodes = Intersection of Negative Neighbors for all the r SMs in the

list Attacked Nodes ;
7. Possible Attacker Node = Union of Negative Neighbors for all the r SMs in

the list Attacked Nodes − Attacker Nodes ;
8. Decrease the DEP VL of every SMs in Possible Attacker Node list.

if, DEP V Lx <DEP TH
Mark SMx as Attacker Node;
else
Add SMx to the list of Malicious Nodes;

9. End.

Once, the algorithm detects the attacker nodes and put them in Attacker
Nodes list, the CH, then checks the Attacked Nodes list and replace their forged
energy usage values by the original usage statistics with the help of its neighbors’
information.

5 Simulation Results

We have implemented The DIET attack and the proposed IDS in Qualnet 5.2.
The simulation settings and the used scenario are described in Table 1.
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Table 1. Parameter settings for simulation environment

Parameter Value

Experimental area 1500 ∗ 1500m2

Running time for each simulation 100 s

Mac layer protocol DCF of IEEE 802.11b standard

Network layer protocol AODV

Traffic model CBR

Number of CBR traffics 10% of the total number of nodes

Cluster head : Smart meter 1 : 10

5.1 DIET Attack Simulation

Firstly, the DIET attack is implemented and the results are analyzed. We have
considered varying node density of 11 to 55 nodes for our experiment. Data has
been collected for every variation and then the averaged values are plotted in
the graph. In order to implement DIET attack, we assumed that each Cluster
Head can have atmost 10 SMs under its surveillance, and the energy supplied
to these SMs is remained fixed at 10 kW. δ is defined as 5% of supplied energy,
i.e., 0.5 kW.

Figure 5 depicts the allowed, original and registered TL for implemented
DIET attack. Energy theft = (registered TL − original TL). Now, the regis-
tered TL is still under the threshold of allowed TL, thats why the theft can not
be detected by the system.

0

5

10

15

20

25

30

0 11 22 33 44 55

El
ec

tri
ci

ty
 (k

W
)

Node Density

DIET Attack Statistics
Original TL Registered TL Allowed TL

Fig. 5. Original technical loss and registered technical loss for DIET attack with vary-
ing node density.
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5.2 IDS Implementation

In order to evaluate the performance of our proposed algorithm, we have con-
sidered three metrics: false positive, false negative and detection efficiency. False
negative and false positive are both very important metric towards Smart Grid.
Identify a legitimate SM as an attacker (false positive) can harm the customers’,
as well as utility’s reputation and cause for temporarily disruption of service
for that innocent customer. On the other hand, not being able to identify an
attacker can lead to financial loss, malicious billing and can even cause havoc
devastation.

We have considered four different attack scenarios to evaluate our algorithm.

– Attack Scenario A has 100% of DIET attacks, i.e., where an attacker mod-
ifies its neighbor SMs usage data, but within the TL threshold. We assume
that typical Type-1 and Type-2 attacks are not present for this situation.

– Attack Scenario B has 50% of DIET attackers and another 50% of both
Type-1 and Type-2 attackers.

– Attack Scenario C has 25% of DIET attackers and another 75% of both
Type-1 and Type-2 attackers.

– Attack Scenario D has equal share of all the three attackers, i.e., 33.33%
of DIET, Type-1 and Type-2 attackers.

False Positive: Our proposed algorithm does not identify any false positives
for our entire simulation time with various node density and number of attackers
It only detects genuine attackers and put them in Attacker Nodes list. However,
it adds some genuine SMs in Possible Attacker Nodes list and decreases the
DEP VL for those nodes at some iterations.

False Negative: False negatives are used to measure the accuracy of the system.
If the total number of attackers present in the system is x, and the IDS detects
y of them, then the false negative can be calculated as:

False Negative = ((x−y)/x ) * 100%

Figure 6 depicts the total percentage of false negatives against varying node
density for various attack scenarios. Number of attackers in the system are also
increased proportionally with the number of nodes. Figure 6 shows that for attack
scenario A and C, the false negative is null for the first two instances. However,
it started increasing gradually thereafter, and reaches its peak when the node
density is 55. After that the false negative tend to decrease in scenario A. Now,
while analyzing the graph, we find that, for every instances, our proposed IDS
either successfully marked every attacker node or add them to the list of Possible
attacker Nodes. With 55 nodes in the scenario, the IDS is able to identify every
attacker node as a possible attacker, however, due to the lack of enough neighbor
support, it cannot mark the attackers immediately Though, the trust evaluation
process will help them detect gradually. Thus, we can confirm that our proposed
system can eventually detect all the attackers.



Detection System for DIET Attack in AMI 91

 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 

11 22 33 44 55 66 77 

A ack Scenario A A ack Scenario B 

A ack Scenario C A ack Scenario D 

Fig. 6. False negatives vs Node density for different attack scenarios.
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Detection Efficiency: Detection efficiency can simply be calculated as, (100 -
false negative), provided there is no false positives in the system.

Figure 7 shows the detection efficiency of our IDS. Since there is no false
positives in our IDS, the graph for detection efficiency is simple reciprocal of
false negative.

The detection efficiency for our proposed IDS remains 100% for smaller
number of nodes (i.e., up to 22 nodes for our simulation scenario.). However,
with increasing number of nodes and attackers, the detection efficiency tends to
decrease gradually. The detection mechanism of our proposed IDS depends heav-
ily on the anomalies in the data provided by SMs in a neighborhood. With fewer
nodes in the scenario, it will be easier to analysis the data and hence the detec-
tion of an attacker. On the contrary, when the node density increases, it affects
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the complexity of data analysis and hence the detection efficiency. However, to
address this situation and provide a stability in the system, our IDS marked all
suspicious nodes as Possible Attacker Nodes, and decreases their dependability
factor as well, so that the system can be aware of that nodes and do not let
those nodes to further affect the decision making process. When the dependabil-
ity factor goes beyond the threshold value, then only a node will be marked as
attacker.

Energy Loss: Finally we measure the energy loss for our IDS, and Fig. 8 demon-
strated that the proposed IDS is successfully able reduce the electricity loss due
to DIET attack.

Comparison with Existing Works: In this section, we have done a detailed
comparative analysis of our proposed IDS with a specification based IDS pro-
posed in [22]. In this paper, authors deployed sensors in NAN to monitor the
communication network and detect malicious activities in the AMI based on for-
mal verification of the specifications and monitoring operations. Authors claimed
that the proposed IDS can detect both known and unknown attacks in network
level, including MITM, black hole attack etc. Since, our proposed IDS handles
DIET attack, which in turn associates with MITM and stealing of meter data
credential attacks, we consider the IDS, proposed in [22] as an appropriate choice
for comparison. We have implemented the IDS of [22] for different attack sce-
narios, as mentioned in Sect. 5.2.

Figure 9 provides the comparative analysis of our proposed IDS and specifi-
cation based IDS proposed in [22]. We have considered the performance of both
the algorithms for four different attack scenarios and with seven different node
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Fig. 10. Comparative analysis for different attack scenarios.

densities over 11 nodes to 77 nodes, and then averaged the results. The IDS
in [22] monitors the state of communication network and verifies with existing
specification rules. It does not consider the content of packets transmitted over
the network, rather it keeps tab of total packet received and sent, time stamps
of different events, frequency of packet transmission etc. Thus, it cannot detect
Type-I attack, as in this case, a SM modifies its own packets and transmits them.
On the other hand, in DIET attack, a SM steals its neighbor SMs’ credentials,
manipulates their meter data within tolerance level and retransmits to the DA.
Thus, at the end points, the packet received and sent metrics for a particular
SM will remain unaltered. Hence the attack will remain undetected. However,
when node density increases, so does the traffic and if the sensors detect an
abnormally large number of packet transmission on a particular channel, then it
can detect the attack sometimes. However, for typical Type-II attack, the attack
can be detected by considering cumulative energy usage parameters.
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Figure 10 gives the performance of two IDSs for attack scenario A and D. In
attack scenario A, our proposed IDS performs much better than the other one.
Specification based IDS [22] performs better with increased node density. Still it
never performs like our proposed IDS. However, for attack scenario D, the IDS
of [22] performs much better, but still the false negatives are much higher than
our proposed IDS.

We have compared the performance our IDS with other existing IDSs.
Figures 11 and 12 provide comparative analysis of our proposed IDS and two
existing IDSs based on SVM [8] and ARMA-GLR [19] models respectively. Now,
our proposed IDS offers better detection efficiency than [8], however, Fig. 11
shows that the [19] performs much better than our IDS. On the other hand
Fig. 12 shows that both [8,19] have false positives, where our IDS has none.

As we already mentioned, false positives and false negatives are two impor-
tant metrics to evaluate the performance of any IDS. Now, energy theft is an
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attack scenario which involves the customers directly. The attackers disguised
themselves as customers. So we have to give extra care to detect attackers. False
positives may harm the reputation of genuine customers, which incurs in bad
reputation for the utilities. Thus, while dealing with energy theft attack, false
positives are much more important than false negatives. Thus we designed our
IDS in such a manner that it marks a node as attacker only after being 100%
sure of that. Otherwise, it can mark suspicious nodes as possible attackers, and
monitor their further behavior. This in turn justifies the results of Figs. 11 and 12.

6 Conclusions

Smart grid and especially AMI system enhances the efficiency, reliability, stabil-
ity, security and economic facilities of traditional power grid systems. Advanced
metering infrastructure (AMI) is arguably the most important and critical part
of Smart Grid. AMI deals with the most sensitive informations in the Grid and
transmits them through the network. There already exist a good number of
security solutions for AMI. However the percentage of security attacks are also
increasing day by day, and so does the innovative and intelligent ideas behind
those attacks.

Energy theft is always a serious concern for power industry. With traditional
power grid, tapping, physical tampering of meters are the common sources to
theft. Smart Grid and AMI can mitigate these attacks, however, with the recent
advancement in the technology, the attackers also invent newer and sophisti-
cated ideas to attack the grid. In this paper, we have proposed a new attack
situation named, DIET attack. Simultaneously, we have simulated this attack in
QUALNET and analyze the effect on the grid. In order to detect DIET attack,
we have proposed an advanced IDS.

Our IDS can successfully detect Type-1 and Type-2 attacks. Moreover, for
some scenarios, the IDS cannot detect the attacker primarily, but it is been
able to mark all of them as Possible Attacker and take precautionary measures
against them. If those nodes continue to being malicious, then eventually the
proposed IDS detect that node as attacker, otherwise, in case of a genuine node,
the dependability factor will be increased with positive behavior. Besides, there
exists lots of works for detecting energy theft, many of them are only capable to
detect whether a theft happened or not. On the contrary, the proposed IDS can
not only identify an intelligent theft situation, but can detect the attackers and
mark possible attackers in the network as well.

As a future extension of this paper, we would like to merge our idea with
some secure routing protocols like [6], where trust based evolution of nodes
are performed for route selection to ensure a secure communication system. The
collaboration of the proposed IDS with this type of routing protocols will confirm
security from DIET attack at transmission time and improve the performance
of the system, in terms of detection efficiency and false negatives.
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