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Abstract. A novel methodology for matching of illumination-invariant
and heterogeneous faces is proposed here. We present a novel image rep-
resentation called local extremum logarithm difference (LELD). Theoret-
ical analysis proves that LELD is an illumination-invariant edge feature
in coarse level. Since edges are invariant in different modalities, more
importance is given on edges. Finally, a novel local zigzag binary pattern
LZZBP is presented to capture the local variation of LELD, and we call
it a zigzag pattern of local extremum logarithm difference (ZZPLELD).
For refinement of ZZPLELD, a model based weight value learning is
suggested. We tested the proposed methodology on different illumina-
tion variations, sketch-photo and NIR-VIS benchmark databases. Rank-
1 recognition of 96.93% on CMU-PIE database and 95.81% on Extended
Yale B database under varying illumination, show that ZZPLELD is an
efficient method for illumination invariant face recognition. In the case
of viewed sketches, the rank-1 recognition accuracy of 98.05% is achieved
on CUFSF database. In the case of NIR-VIS matching, the rank-1 accu-
racy of 99.69% is achieved and which is superior to other state-of-the-art
methods.
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1 Introduction

Biometric authentication is becoming a ubiquitous component of any modern
systems, such as mobile phone, smart TV, computer, etc. There is a set of unique
biometric features, such as fingerprints, faces, retinas, DNA samples, ears, etc.
Among these features, faces are the most easily available and easily recogniz-
able feature. The valuable part of any face biometrics is that the recognition
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or authenticate can be done without any expertise. However, by the naked eye
without an expert, it is quite impossible to authenticate depending on finger-
prints, DNA samples, retinas and ears. Another advantage of face biometric is
that a single face consists of a bundle of unique biometric features like eyes, nose,
etc. Therefore, in recent years, a lot of work has been done on face biometric
authentication based on real life applications. Depending on the broad range of
applications, different face recognition algorithms have already been proposed
by many researchers [43-45]. The performances of these algorithms are primarily
tested on face images collected under well-controlled studio conditions. In effect,
most of them have found difficulty in the case of handling natural images, which
are captured under different illumination variations. With the variations of illu-
mination, the result degrades drastically. On the other hand, different real life
applications need faces captured in different situations. Near-infrared cameras
are used to capture faces at night, and for illumination-invariant face recognition
[1]. To detect liveness by capturing body heat, thermal-infrared (TIR) cameras
are used. Often, it may happen that there are no available fingerprints, no avail-
able DNA samples and devices, which are present, have captured poor quality
images. In those situations, the only solution is the use of face sketches generated
by interviewing the eye witness. Hence we can say that various scenarios and
necessities create different modalities of faces. In situations like this, it becomes
difficult to use conventional face recognition systems. Therefore, an interesting
and challenging field of face biometric recognition has emerged for forensics,
called heterogeneous face recognition (HFR) [2].

The problem of heterogeneous face recognition has received increasing atten-
tion in recent years. Up to now, many different techniques has been proposed in
the literature to solve the problem. We can easily classify these solutions into
three broad categories: image synthesis based methods, common subspace learn-
ing based methods and modality-invariant feature representation based methods.

— Image synthesis: In this category, a pseudo-face or pseudo-sketch is gener-
ated using synthesis techniques to transform one modality image into another
modality and then some classification technique is used. The pioneering work
of Tang and Wang [3], where they introduced an eigen transformation based
sketch-photo synthesis method. The same mechanism was also used by Chen
et al. [4] for NIR-VIS synthesis. Gao et al. [5] proposed an embedded hidden
markov model and a selective ensemble strategy to synthesise sketches from
photos. Wang and Tang [6] again proposed a patch based Markov Random
Field (MRF) model for the sketch-photo synthesis. Li et al. [7] used the same
MRF model for TIR-VIS synthesis. Gao et al. [8] proposed a sparse represen-
tation based pseudo-sketch or pseudo-photo synthesis. Another sparse feature
selection (SFS) and support vector regression for synthesis was proposed by
Wang et al. [9]. Wang et al. [10] proposed a transductive learning based face
sketch-photo synthesis (TFSPS) framework. Recently, Peng et al. [11] pro-
posed a multiple representation based face sketch-photo synthesis.

— Common Subspace learning: In this category, different modality face
images are projected into a subspace for learning. Lin and Tang [12]
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introduced a common discriminant feature extraction (CDFE) for face sketch-
photo recognition. Yi et al. [13] proposed a canonical correlation analysis
based regression method for NIR-VIS face images. A coupled spectral regres-
sion (CSR) based learning for NIR-VIS face images was proposed by Lei and
Li [14]. A partial least square (PLS) based subspace learning method was
proposed by Sharma and Jacobs [15]. Mignon and Jurie [16] proposed a cross
modal metric learning (CMML) for heterogeneous face matching. Lei et al.
[17], proposed a coupled discriminant analysis for HFR. A multi-view dis-
criminant analysis (MvDA) technique for single discriminant common space
generation was proposed by Kan et al. [18].

— Modality-invariant feature representation: In this category, images of
different modalities are represented using some modality-invariant feature
representation. Liao et al. [19] used difference of Gaussian (DoG) filter and
multi-block local binary pattern (MB-LBP) features for both NIR and VIS
face images. Klare et al. [20] employed the scale invariant feature transform
(SIFT) and multi-scale local binary pattern (MLBP) features for forensic
sketch recognition. A coupled information-theoretic encoding (CITE) feature
was proposed by Zhang et al. [21]. Bhatt et al. [22] used a multi-scale cir-
cular Weber’s local descriptor (MCWLD) for semi-forensic sketch matching.
Klare and Jain [23] proposed a kernel prototype random subspace (KP-RS)
on MLBP features. Zhu et al. [24] used a Log-DoG filter based LBP and
a histogram of oriented gradient (HOG) features with transductive learning
(THFM) for NIR-VIS face images. Gong et al. [25] combined histogram of
gradients (HOG) and multi-scale local binary pattern (MLBP) with canonical
correlation analysis (MCCA). Roy and Bhattacharjee [26] proposed a geomet-
ric edge-texture (GETF) based feature with hybrid multiple fuzzy classifier
for HFR. Roy and Bhattacharjee [27] again proposed an illumination invari-
ant local gravity face (LG-face) for HFR. A local gradient checksum (LGCS)
feature for face sketch-photo matching was proposed by Roy and Bhattachar-
jee [28]. Another local gradient fuzzy pattern (LGFP) based on restricted
equivalent function for face sketch-photo recognition was again proposed by
Roy and Bhattacharjee [29]. A graphical representation based HFR (G-HFR)
was proposed by Peng et al. [31]. Recently, Roy and Bhattacharjee [30] pro-
posed another edge texture based feature called quaternary pattern of local
maximum quotient (QPLMQ) for HFR.

In the synthesis based category, more concentration is applied in the synthesis.
The synthesis method itself is a time-consuming technique, where synthesis tech-
nique is repeated several times to get a better pseudo sketch or photo. Again,
the synthesis mechanism is depending on image quality, and modality i.e. “task-
specific”. In the common subspace learning category, both modality images are
projected into another domain. The projection technique requires huge training
data and also generates some loss of information. Due to the loss of information,
the accuracy of recognition is also reduced. In the modality-invariant feature
representation, local hand-crafted features are directly used, which means no
loss of local information and algorithms are more time saving than the other
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two categories. One and the only problem in this category is to recognize or
search features, which are either common to different modalities or invariant in
different modalities.

Modality-invariant feature representation methods are neither time-
consuming and task-specific synthesis, nor common subspace based learning,
but able to consider the local spatial features. Motivated by the advantages of
modality-invariant feature representation, in this paper, we propose a modality-
invariant feature representation for different modality images. The existing
modality-invariant methods [19-25] tried to generate modality-invariant fea-
tures using the existing popular hand-crafted features. More emphasis is given
on classifier. No one tried to develop new modality-invariant features, except
[31]. In [26-29], we developed some new hand-crafted features which are actu-
ally modality-invariant. From our visual inspection, we conclude that edges are
the most important modality-invariant feature. Psychological studies also says
that we can recognize a face from its edges only [32]. It is easy to understand
that facial components in a face have maximum edges and they belong to high-
frequency components of an image. Another feature i.e. texture information
is also important for face matching. Since edges and textures in a face image
are sensitive to illumination variations, an illumination-invariant domain with
the capability of capturing high-frequency information is necessary. LGCS [28§]
was only applied on sketch-photo recognition CHUCK database. LGFP [29] was
developed only for sketch-photo recognition. In GETF [26] and LG-face [27], we
tested the features for both sketch-photo and NIR-VIS recognition. Although
the results were impressive, the NIR-VIS existing database (CASIA-HFB) has a
very small size and still the result was not 100%. Therefore, we need new meth-
ods to handle huge databases, where faces not only have variation in modality,
but also in pose, illumination, expression and the obstacle. The goal of the pro-
posed method is to recognize the facial features, which are invariant in different
modalities, and illumination.

The artist gives more attention towards edges and texture information at
the time of drawing a sketch. In the case of NIR images, the high-frequency
information is captured. Therefore, selection of edge and texture features
for modality-invariant representation is correct in the sense. We propose an
illumination-invariant image representation called local extremum logarithm dif-
ference (LELD), which is a modification of the work explained in [33]. LELD gives
only high-frequency image representation at a coarse level. A local micro level fea-
ture representation is also important to capture local texture information. Moti-
vated by the superior output results of the local binary pattern (LBP) [34] and
LBP-like features in face and texture recognition, we propose one novel local zig
zag binary pattern (LZZBP). LZZBP measure the binary relation between pix-
els, which are in a zigzag position in a local square window. LZZBP captures
more edge and texture patterns than LBP. Finally, the combination of LELD and
LZZBP gives the proposed modality-invariant feature representation for HFR and
we call it a zigzag pattern of local extremum logarithm difference (ZZPLELD).
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Experimental results on different HFR databases show the excellent performance
of the proposed methodology. The major contributions are:

1. LELD is proposed for capturing illumination-invariant image representation.

2. LZZBP is developed to capture the relation between pixels in a zigzag position
of a square window.

3. ZZPLELD is developed to capture the local texture and edge patterns of the
modality-invariant key facial features.

4. Weights learning model is developed to enhance the discrimination power of
the proposed ZZPLELD.

This paper is organized as follows: in Sect.2, the proposed ZZPLELD is
described in detail. Experimental results and comparisons are presented in
Sect. 3, and finally, the paper concludes with Sect. 4.

2 Proposed Work

In this section, we introduce the way we extract the modality-invariant fea-
tures for HFR. We start with a detailed idea about illumination-invariant LELD
based image representation. Finally, we conclude with a detail description of the
proposed ZZPLELD feature.

2.1 Local Extremum Logarithm Difference Based Image
Representation

In any face recognition system, one of the main problems is the presence of illumi-
nation variations. Due to the presence of illumination variations, the intra-class
variation between faces also increase heavily. At the same time, we consider
edges as our modality-invariant feature and edges are also sensitive towards illu-
mination. Therefore, we need an illumination-invariant image representation for
extracting better edge information. According to the Illumination-Reflectance
Model (IRM) [35,36], a gray face image I(x,y) at each point (z,y) is expressed
as the product of the reflectance component R(x,y) and the illumination com-
ponent L(x,y), as shown in Eq. 1

I(z,y) = R(x,y) x L(z,y) (1)

Here, the R component consists of information about key facial points, and
edges, whereas the L component represents only the amount of light falling on
the face. Now, after the elimination of the L component from a face image,
the R component is still able to represent the key facial features and edges,
which are the most important information for our modality-invariant feature
representation. Moreover, the L component corresponds to the low-frequency
part of an image, whereas the R component corresponds to the high-frequency
part. One widely accepted assumption in the literature [27,37] is that L remains
approximately constant over a local 3 x 3 neighborhood.
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In literature, a wide range of approaches has been proposed to reduce the illu-
mination effect. In those methods, mainly two different mathematical operations
are used: division and subtraction. Methods like [37,38] used division operation
and methods like [33,42] used subtraction operation. In the case of subtraction
operation, at first, the image is converted to the logarithmic domain to convert
the multiplicative IRM into an additive one, as shown in Eq. 3. Since, the divi-
sion operation is “ill-posed and not robust in numerical calculations” [33] due
to the problem of divided by zero, it is better to apply subtraction operation to
eliminate the L component.

Lai et al. [33] proposed a multiscale logarithm difference edgemaps (MSLDE),
which used logarithmic domain and subtraction operation to compensate the illu-
mination effect. They calculated a local logarithm difference using the following
equation:

MSLDE = Y (Liog(x,y) — Liog(,9)) , Y, Vy (2)
(Z:9) R (2 1)

where X, .y is a square neighborhood surrounding a center pixel at (z,y). In
MSLDE, only the R component is present. Therefore, MSLDE is an illumination-
invariant method. In this method authors considered a long range of square
neighborhood from 3 x 3 to 13 x 13 and all the logarithm difference values are
added together. Now, the question is does the L component be constant for such
a long neighborhood i.e. 13 x 13. We know that R component belongs to high-
frequency. Similarly edge and noise also belong to high-frequency. There is no
doubt that MSLDE increases the edge information, which is very important in
face recognition, by adding all logarithm differences. However, it is also increasing
the noise, which causes degradation in true edge detection. The effect of noise is
clearly visible in Fig. 2(d), where the proposed MSLDE provides too much false
edge information and which are nothing but noise. To solve both the problems
i.e. large neighborhood size and presence of noise, we consider the maximum and
minimum logarithm difference in a 3 X 3 neighborhood (as shown in Fig. 1) and
we call it local extremum logarithm difference (LELD).

Theorem 1. Given an arbitrary image I(x,y) with illumination effect. The
local extremum logarithm difference (LELD) between central pizel and its 3 x 3
neighborhood is an illumination invariant feature.

Proof. Let us consider a local 3 x 3 window and the center pixel is ‘c’, as shown
in Fig.1. Applying logarithmic domain, the IRM (1) multiplicative model is
converted to additive model as follows
Ilog(m7y) = lOg (R (l',y) X L (l',y))
= lLiog(z,y) = log (R (z,y)) + log (L (z,y)) (3)
where, I;o4(2,y) is the logarithm representation of the image pixel I(x,y). Now,

let us measure the difference between central pixel against all its 3 x 3 neighbors
and the logarithm differences (LD) are represented as follows

LD = {Ilog(xia yz) - Ilog(xcy yc)} 5 (xia yi)€N(wc,yc) (4)
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Fig. 1. Central pixel and its 3 x 3 neighborhood.

where X, ) is a 3 x 3 square neighborhood surrounding a center pixel at (2., y.).
Putting the representation of I;o4(z,y) Eq. (3) into Eq. 4, we have:

LD = {(log (R (i, y:)) + log (L (i, 4:))) — (log (R (¢, ye)) + log (L (e, ye)))}
= LD = {(log (R (i, y:)) — log (R (z¢,yc))) + (log (L (wi,y:)) — log (L (2c,ye)))} (5)

Based on the widely accepted assumption that L varies slowly, we can say L is
almost equal to a local 3 x 3 window. Therefore, we can write:

L(xhyl) = L(:Emyc)
= log (L (wi,y:)) = log (L (w¢,ye))

= log (L (i, yi)) — log (L (e, yc)) =0 (6)
Now, the Eq.5 is modified using Eq. 6 as follows:
LD = {log (R (zi,y:)) — log (R (zc, yc))} (7)
The maximum and minimum logarithm differences are calculated as follows:
LDpax = max {log (R (zi,y:)) — log (R (e, ye))} , Ve, Ve (8)
LDmin = min {log (R (zi,y:)) — log (R (e, ye))} , Ve, Ve (9)

Therefore, the local extremum logarithm difference (LELD) is as follows:
LELD = {LD 4z, LDpin},V2c, VY. (10)

Now, in Eq. 10, we can see that ‘LE LD’ consists of R-part of the IRM. According
to this model, R is the illumination invariant feature. Thus, it is proved that
the local extremum logarithm difference between central pixel and its 3 x 3
neighborhood is an illumination invariant feature.



8 H. Roy and D. Bhattacharjee

LY \ )
@ \d (®) N /]
T = (@

Fig. 2. (a) The original images with illumination variations, (b) The canny edge images
for (a) images, (c) The corresponding MSLDE images of (a) images as proposed in [33],
(d) The canny edge images of MSLDE images, (e) The proposed LELD images of (a)
images with maximum difference, (f) The canny edge images of (e) images, (g) The
proposed LELD images of (a) images with minimum difference, (h) The canny edge
images of (g) images.

Since we are considering the smallest square neighborhood i.e. 3 x 3, the
assumption that L is constant in the neighborhood is theoretically true. Again,
we are avoiding total sum of differences, therefore, presence of noise is reduced.
The results of proposed LELD are shown in Fig. 2(e)—(h) and it gives better edge
detection result than MSLDE. Finally, we have two different LELD methods to
convert the different modality face images into an illumination-invariant domain,
where important facial key values and edges are almost intact.

2.2 Local ZigZag Binary Pattern for ZZPLELD Generation

Local binary pattern (LBP) [34] has been used successfully in many fields of
image processing and pattern classification problems. It is capable to represent
local features in micro structures. LBP implements the binary relation of each
and every neighboring pixels with respect to center pixel i.e. if neighboring pixel
is greater than or equal to center pixel, then binary value ‘1’ otherwise ‘0’.
Although LBP captures the binary relations between surrounding neighboring
pixels with the center pixel, it is not able to capture edge information properly,
mainly in diagonal direction. Since our modality-invariant feature is edge related,
a local pattern having good edge capturing capability is important. Inspired from
the zigzag scanning pattern used for MPEG data compression in discrete cosine
transform (DCT) domain, we developed a zigzag binary pattern for the pixels
in a zigzag position of a square mask. Figure3 shows the positions of 3 x 3
and 5 x 5 zigzag scanning used in our experiment. We use a left to right zigzag
scanning (considering top left pixel as the starting point) and right to left zigzag
scanning (considering top right pixel as the starting point) in each square mask.
Figure 3(a) shows the 3 x 3 left zigzag scanning, Fig. 3(b) shows the 3 x 3 right
zigzag scanning and Fig. 3(c) shows the 5 x 5 left zigzag scanning. Again, we
consider only 8 bits binary patterns to make the histogram feature vector length
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up to 256 bins. In case of 5 x 5 image pixels we can have a total of 24 bits binary
string. To make it with in a small range, we divide it into three 8 bits binary
string. Different arrows in Fig. 3(c) shows different sequences of binary string.

Let, the image pixels in a square window are collected in a zigzag pat-
tern, as shown in Fig.3(a). Then, the pixels are stored in a linear array
Zp = {91,92,93,...,9p}, where P is the number of pixels in a square win-
dow. For 3 x 3 window P is 9 and for 5 x 5 window it is 25. Then, we calculate
the binary relation between those consecutive pixels according to the following
equation (for P = 8):

P-1
LZZBP = 2" x f(gis1 — g:)
i=1

f(a)—{l’ if a0 (11)

0, otherwise

In case of 5 x 5 window the 24 bits binary string is first broken into 3 parts of 8
bits string and then converted to three separate patterns.
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(a) 24 28— (b) 2o 2s 24
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Fig. 3. (a) Zigzag scanning in a 3 x 3 window starting at top left corner, (b) Zigzag
scanning in a 3 X 3 window starting at top right corner, (c) Zigzag scanning in a 5 X 5
window starting at top left corner. Here 3 different arrows are used to represent 3
different sequences of 8 bits binary strings.
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Fig.4. (a) Sample image and its corresponding LBP and LZZBP images. The 2nd
image is the 3 x 3 LBP image and rest 3rd—4th are 3 x 3 LZZBP images. (b) The 2nd
image is the 5 x 5 LBP image and rest 3rd—8th are 5 X 5 LZZBP images.

The proposed zigzag binary pattern gives better edge preserving texture
information. The different LBP images and LZZBP images in Fig. 4 shows the
edge preserving properties of LZZBP. The key facial features are preserved far
better than normal LBP in LZZBP.

Finally, the proposed LZZBP is applied on LELD image representation
to measure the local patterns of LELD image and which give our proposed
ZZPLELD. For two different extremum LELD i.e. maximum and minimum dif-
ferences, we get 4 different ZZPLELD results after applying 3 x 3 LZZBP and
12 different ZZPLELD results after applying 5 x5 LZZBP. Therefore, altogether
16 different ZZPLELD images. The image features are represented in the form
of histogram bins.

2.3 Similarity Measure

The whole ZZPLELD image is divided into a set of non-overlapping square
blocks with dimension wy X wp. Then, the histogram of each square block is
measured. Finally, all the histograms measured from all the blocks of all the dif-
ferent (16) ZZPLELD images are concatenated to obtain the final face feature
vector. Here, we use the nearest neighbor (NN) classifier with histogram inter-
section distance measure. Therefore, for a query image (I;) with a concatenated
histogram H,J and a gallery image (Ig) with a concatenated histogram HY,
the similarity measure for a particular level of ZZPLELD is given as follows:

S*(Iy Ie) = =Y min (H;J, ng) (12)

i,J

where, S*(I,, 1) is the similarity score of kth ZZPLELD level of both query
and gallery image; (¢,7) is the jth bin of ith block. Square block selection is
another essential task. In this paper, we chose 3 x 3 and 5 x 5 windows pixels
for LZZBP and different block sizes w, = 6,8, 10,12 for histogram matching.

2.4 Weighted ZZPLELD Model

To enhance the performance of ZZPLELD, we assign a weight value to each
ZZPLELD patterns. A set of weight values is measured depending on the dis-
criminating ratio proposed in the linear discriminating analysis (LDA). This
weight calculation needs a training set consisting of few people and their cor-
responding different modality images. After calculating the weights from the
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training set, the values are applied to rest of the database images. A detail idea
is given below.

Let, there are ‘C’ numbers of different persons i.e. ‘C’ number of different
classes in the training set. We have 1 to N numbers of different ZZPLELD for
one face image (where N is the number of different ZZPLELD patterns). Since
there are two different LELD images, for each LELD two different 3 x 3 LZZBP
and two different 5x5 LZZBP. Again, each 5x5 LZZBP is partitioned into three
different 8-bits patterns. Therefore, altogether 10(2 4+ 2 + 3 + 3 = 10) different
8-bits patterns. Thus the value of N is 10. Now, we calculate the class-wise mean
(1) and overall mean (y;) for the ith ZZPLELD.

1 < ;

c _ - C,j
u = Z ZZPLELD! (13)

j=1
where, ‘57 denotes the jth number of different modality images (total number of
images n, which is either 2 for sketch-photo and 4 for NIR-VIS) of a particular
person ‘C” and i € (1,2,...,N).
C n

1 .
=g > > zzPLELD{? (14)
k=1 j=1

Then, we calculate within-class error (e,,) and between-class error (ep):

C n
ew=Y_ Y |ZZPLELD{” — if| (15)
k=1j=1
C
eb:nxzmic—uil (16)
k=1

If the ZZPLELD has a high discriminating ability, then e, should be relatively
large compared with e,,. Hence, we set the ratio between this two as our weights
(cv;). The normalized weights (a°™™) are

Q; = ﬁ (17)

e?l)

aperm = g (18)

i P

Dim1
Therefore, for each different ZZPLELD pattern we have different a]*"™. Now,
the similarity between two images, as given in Eq. 12, is modified into the fol-
lowing equation:

P
Sim(I(]aIG) = Zak X Sk(I(DIG) (19)
k=1

The value of « also varies from database to database. Different o values mea-
sured during training in different databases are shown in Table 1. The results
of weighted ZZPLELD are superior than normal ZZPLELD. The recognition
accuracy results on different databases are given in a form of tables in the next
section and weight learning ZZPLELD is represented as ZZPLELD (weighted).
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Table 1. Different level weight values for ZZPLELD, measured from training data of
CMU-PIE, Extended Yale B, CUFSF, and CASIA NIR-VIS databases

Levels of weight values | CMU-PIE | Extended Yale B | CUFSF | CASIA NIR-VIS
o1 0.1021 0.0734 0.0471 |0.0841
(o2 0.0371 0.0576 0.0501 |0.0819
as 0.1156 0.1008 0.0718 |0.0812
oy 0.1097 0.0995 0.0695 |0.0964
as 0.1015 0.1134 0.1094 |0.1101
e 0.1807 0.1693 0.1103 |0.1103
ar 0.1503 0.1412 0.1378 |0.1145
as 0.0962 0.1139 0.1230 |0.1039
g 0.1013 0.1200 0.1301 |0.1151
Q10 0.0055 0.0109 0.1509 |0.1025

3 Experimental Results

In this section, ZZPLELD is evaluated on one illumination variation scenario and
two different HFR scenarios, i.e. face sketch vs. photo recognition and NIR image
vs. VIS image recognition respectively on the existing benchmark databases.
For illumination variation scenario, we tested our proposed method on CMU-
PIE [46], and Extended Yale B Face Database [39,40]. For face sketch vs. photo
recognition, we tested the proposed method on the CUHK Face Sketch FERET
Database (CUFSF) [21]. CASIA-HFB Face Database [41] is used for NIR face
image vs VIS face recognition testing.

At first, proposed ZZPLELD is tested on illumination-invariant face recog-
nition. We compared ZZPLELD with several other methods, namely LBP,
Gradient-face [37], TVQI [38], HF+HQ [42], MSLDE [33] on CMU-PIE and
Extended Yale B Face Databases. All the methods mentioned above are well
tuned according to their respective published papers.

We compared ZZPLELD with several state-of-the-art methods, namely, PLS
[15], CITE [21], MCCA [25], TFSPS [10], KP-RS [23], MvDA [18], G-HFR [31],
and LGFP [28] on viewed sketch database. We also compared ZZPLELD with
several state-of-the-art methods, namely, KP-RS, LCKS-CSR [17], and THFM
[24] on NIR face image vs VIS face image database. Experimental setups (train-
ing and testing samples) and accuracies of the methods mentioned above, except
LGFP, are taken from the published papers.

3.1 Rank-1 Recognition Results on CMU-PIE

This database contains 41368 images of 68 different subjects. We have tested
our proposed method on the illumination subset “C27” with 1428 images of 68
subjects. All the images are in frontal face with pose 27 and 21 different lighting
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Fig.5. (a) Sample ZZPLELD images after applying 3 x 3 LZZBP on both extremum
LELD from CMU-PIE Face database. (b) Sample ZZPLELD images after applying
5x5 LZZBP on maximum LELD from CMU-PIE Face database. (c) Sample ZZPLELD
images after applying 5 x5 LZZBP on minimum LELD from CMU-PIE Face database.

Table 2. Average rank-1 recognition rates for different methods on CMU-PIE database
of 68 subjects

State-of-the-art methods | Average rank-1 accuracy (%)
LBP 69.15
Gradient-face 93.66
TVQI 92.94
HF4+HQ 93.86
MSLDE 94.85
ZZPLELD 95.23
ZZPLELD (weighted) 96.93

conditions. In each turn, one image per subject is chosen as the gallery, and the
others are tested as query images. All total 21 rank-1 recognition rates for 21
turns. Figure 5 shows few sample face images and their corresponding ZZPLELD
from CMU-PIE database at different illuminations.

Average rank-1 recognition is shown in Table 2 on CMU-PIE database of 68
subjects. Proposed method is better than other methods in average recognition.

3.2 Rank-1 Recognition Results on Extended Yale B Database

This database contains total 2432 images of 38 subjects under 64 different illu-
mination conditions and in a cropped form with a size of 192 x 168 pixels. Again,
the database is divided into five different subsets according to the illumination
angle: Subset 1 (0° to 12°, 7 images per subject), Subset 2 (13° to 25°, 12 images
per subject), Subset 3 (26° to 50°, 12 images per subject), Subset 4 (51° to 77°,
14 images per subject), and Subset 5 (78° and above, 19 images per subject).
Figure 6 shows one sample face images under different illumination conditions
from the Extended Yale B database and their corresponding ZZPLELD images.
For the experiment, the image with the most neutral light condition without
illumination for each subject from Subset 1 were defined as the gallery, and
the remaining images from Subset 1 to Subset 5 were used as query images.
A comparison on of the rank 1 accuracy achieved on this database of 38 subjects
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Fig. 6. (a) Sample ZZPLELD images after applying 3 x 3 LZZBP on both extremum
LELD from Extended Yale B Face database. (b) Sample ZZPLELD images after apply-
ing 5x5 LZZBP on maximum LELD from Extended Yale B Face database. (¢) Sample
ZZPLELD images after applying 5x 5 LZZBP on minimum LELD from Extended Yale
B Face database.

Table 3. Rank-1 recognition rates for different methods on different subsets of
Extended Yale B database of 38 subjects.

State-of-the-art methods | Rank-1 accuracy (%)
S1 S2 S3 S4 S5 Avg

LBP 84.81 | 89.91|80.04 |72.18 |74.99 |80.39
Gradient-face 94.74 1100 83.33 |75.94 | 84.65 |87.73
TVQI 92.28 | 95.20/90.27 |81.39 |84.32 |88.69
HF+HQ 94.81 | 98.76|93.18 |82.90 |84.43 |90.82
MSLDE 96.61 | 100 93.20 |86.66 |89.33 |93.16
ZZPLELD 97.01 | 100 94.56 | 90.62 | 90.37 | 94.51
ZZPLELD (weighted) 99.01 | 100 96.06 | 91.93 | 92.07 | 95.81

on the individual subset and after averaged over all subsets is shown in Table 3.

3.3 Rank-1 Recognition Results on Viewed Sketch Databases

A CUHK Face Sketch FERET (CUFSF) database has been used for the experi-
mental study, which includes 1194 different subjects from the FERET database.
For each person, there is a sketch with shape exaggeration drew by an artist
when viewing this photo and a face photo with lighting variations. All the
frontal faces in the database are cropped manually by setting approximately the
same eye levels and resized to 120 x 120 pixels. The proposed method is tested
with the existing state-of-the-art methods (PLS, CITE, MCCA, TFSPS, KP-RS,
MvDA, G-HFR, and LGFP). Experimental setups and results of other state-of-
the-art methods are collected from the published papers. The rank-1 recognition
result of proposed ZZPLELD on CUFSF database is 96.35% at rank-1, and it is
shown in the Table 4. Proposed method outperforms other state-of-the-art meth-
ods. Figure 7 shows one sample face photo and sketch image from the CUFSF
database and their corresponding ZZPLELD images.
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Table 4. Rank-1 recognition rates for different methods on CUFSF database.

State-of-the-art Number of training | Number of testing | Rank-1
methods samples (subjects) |samples (subjects) | accuracy (%)
PLS 300 894 51.00
CITE 500 694 89.54
MCCA 300 894 92.17
TFSPS 300 894 72.62
KP-RS 500 694 83.95
MvDA 500 694 55.50
G-HFR 500 694 96.04
LGFP 0 1194 94.47
ZZPLELD 0 1194 96.35
ZZPLELD (weighted) | 500 694 98.05

(a)

Fig. 7. Sample Sketch and photo images and their corresponding ZZPLELD images
from CUFSF database. (a) Photo-ZZPLELD images after applying 3 x 3 LZZBP on
both extremum LELD, (b) Sketch-ZZPLELD images after applying 3 x 3 LZZBP on
both extremum LELD, (¢) Photo-ZZPLELD images after applying 5 x 5 LZZBP on
maximum LELD, (d) Sketch-ZZPLELD images after applying 5 x 5 LZZBP on max-
imum LELD, (e) Photo-ZZPLELD images after applying 5 x 5 LZZBP on minimum
LELD, (f) Sketch-ZZPLELD images after applying 5 X 5 LZZBP on minimum LELD.

3.4 Rank-1 Recognition Results on NIR-VIS CASIA-HFB Database

This database has 200 subjects with probe images captured in the near-infrared
and gallery images captured in the visible light. Each and every subject has
4 NIR images and 4 VIS images with pose and expression variations. All the
frontal faces in the database are cropped manually by setting approximately the
same eye levels and resized to 120 x 120 pixels. This database follows standard
evaluation protocols.

The output result is also tested against other state-of-the-art methods
(KP-RS, LCKS-CSR, THFM). Table5 shows the rank-1 accuracy of the pro-
posed method and other state-of-the-art methods. The rank-1 recognition of
all those methods, mentioned above, is found from different published papers.
The rank-1 recognition accuracy of the proposed method is 99.39%, and it is
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Table 5. Rank-1 recognition rates for different methods on CASIA-HFB database of
200 subjects.

State-of-the-art methods | Number of training | Number of testing | Rank-1
samples (subjects) |samples (subjects) |accuracy (%)
KP-RS 133 67 87.80
LCKS-CSR 150 150 81.43
THEFM 100 100 99.28
ZZPLELD 0 200 96.01
ZZPLELD (weighted) 100 100 99.69

Fig. 8. Sample VIS and NIR images and their corresponding ZZPLELD images from
CASIA-HFB database, (a) VIS-ZZPLELD images after applying 3 x 3 LZZBP on both
extremum LELD, (b) NIR-ZZPLELD images after applying 3 x 3 LZZBP on both
extremum LELD, (c) VIS-ZZPLELD images after applying 5x 5 LZZBP on maximum
LELD, (d) NIR-ZZPLELD images after applying 5 X 5 LZZBP on maximum LELD,
(e) VIS-ZZPLELD images after applying 5 x 5 LZZBP on minimum LELD, (f) NIR-
ZZPLELD images after applying 5 x 5 LZZBP on minimum LELD.

better than other methods. One sample NIR-VIS pair image from CASTA-HFB
database and its different levels of ZZPLELD is shown in Fig. 8.

4 Conclusion

We have presented a novel modality-invariant feature representation ZZPLELD
for HFR. It is a combination of LELD and LZZBP to boost the performance
of HFR. The proposed LELD is an illumination-invariant image representation.
To capture the local patterns of LELD a novel zigzag binary pattern (LZZBP)
is proposed. Since the entire database images used in the experiment are in a
frontal mode without rotation, we have not thought about whether LZZBP will
work good in huge rotation variations or not.

Experimental results on illumination variations, sketch-photo and NIR-VIS
databases, it shows the supremacy in rank-1 recognition than other compared
methods. The result shows ZZPLELD has a good verification and discriminating
ability in heterogeneous face recognition.

LELD can easily be used as a preprocessing stage to remove illumination
variations, and to enhance edge features. Therefore, it has a long range of appli-
cations for illumination variations to heterogeneous face recognition. Since the
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entire database images used in the experiment are in a frontal mode without
rotation, we have not thought about whether LZZBP will work well on huge
rotation variations or not. In future a rotation-invariant LZZBP can be thought
of texture analysis. Again, how ZZPLFELD will work on other facial variations
like pose, expression, etc. that also need a further investigation. At the same
time, a further investigation is also required to search other application domains
for ZZPLELD.
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