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Preface

The Formal Grammar conference series (FG) provides a forum for the presentation of
new and original research on formal grammar, mathematical linguistics, and the
application of formal and mathematical methods to the study of natural language.
Themes of interest include, but are not limited to:

– Formal and computational phonology, morphology, syntax, semantics, and
pragmatics

– Model-theoretic and proof-theoretic methods in linguistics
– Logical aspects of linguistic structure
– Constraint-based and resource-sensitive approaches to grammar
– Learnability of formal grammar
– Integration of stochastic and symbolic models of grammar
– Foundational, methodological, and architectural issues in grammar and linguistics
– Mathematical foundations of statistical approaches to linguistic analysis

Previous FG meetings were held in Barcelona (1995), Prague (1996),
Aix-en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento
(2002), Vienna (2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin
(2007), Hamburg (2008), Bordeaux (2009), Copenhagen (2010), Ljubljana (2011),
Opole (2012), Düsseldorf (2013), Tübingen (2014), Barcelona (2015), and
Bolzano-Bozen (2016).

FG 2017, the 22nd conference on Formal Grammar, was held in Toulouse during
July 22–23, 2017. The conference consisted in two invited talks, by Jakub Szymanik
and Michael Benedikt, and nine contributed papers selected from 14 submissions. The
present volume includes the contributed papers.

We would like to thank the people who made the 22nd FG conference possible: the
invited speakers, the members of the Program Committee, and the organizers of
ESSLLI 2017, with which the conference was colocated.

July 2017 Annie Foret
Reinhard Muskens
Sylvain Pogodalla
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Comparing Relational Vocabularies

Michael Benedikt

Department of Computer Science, Oxford University, Parks Road, Oxford, UK
michael.benedikt@comlab.ox.ac.uk

http://www.cs.ox.ac.uk/michael.benedikt/

A relational schema is a set of metadata describing relational instances, cor-
responding to tabular data. Schema information includes the names of relations,
their arities, and optionally integrity constraints that capture some of the
semantics of the data. In this talk I will outline research concerning the “ex-
pressiveness” of relational schemas. What does it mean to say that one schema
subsumes the “information content” of another? How can one verify a
schema-level relationship algorithmically? I will give a quick look at approa-
ches to the problem proposed in database theory, including some work dating to
the late 1970’s and my own recent work in the area.

Hopefully the ideas proposed for comparing schemas for structured data can
be of interest in comparing the expressiveness of vocabularies in other contexts.



From Grammar to Meaning

Jakub Szymanik

Institute for Logic, Language, and Computation, University of Amsterdam,
Amsterdam, The Netherlands
J.K.Szymanik@uva.nl

http://www.jakubszymanik.com/

I will discuss how different grammatical formalisms can be combined with
logic and cognitive modeling techniques to account for the meaning of natural
language. In a slogan, if you take care of the syntax of representational system,
its semantics will take care of itself. I will survey some recent work on the
meaning of quantifiers, reasoning, learnability, and evolution of language. The
common thread of all the models will be taking the idea of logico-syntactic
properties of thought (Language of Thought, LoT) seriously to account for
linguistic and cognitive phenomena, showing how grammar can be driving the
semantic engine.

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement
n. STG 716230 CoSaQ.
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Binding Domains: Anaphoric and Pronominal
Pronouns in Categorial Grammar

Maŕıa Inés Corbalán(B)

Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
inescorbalan@yahoo.com.ar

Abstract. In this paper we present a treatment for anaphoric pronouns
and reflexives in a Type Logical Grammar. To this end, we introduce
structural modalities into the left pronominal rule of the categorial cal-
culus with limited contraction LLC [8]. Following a proposal due to
Hepple [6], we also sketch an analysis for the long-distance anaphora seg
from Icelandic.

Keywords: 3sg Reflexives · 3sg Pronouns · Binding Theory
Type Logical Grammar · Calculus LLC

1 Introduction

From a generative perspective, the licensing of pronominal expressions such as
he, him, himself is determined by the so-called Principles A and B of the Binding
Theory [3]. Principle A stipulates that an anaphor (reflexives and reciprocals)
must be bound in its governing category (roughly, it must have a c-commanding
local antecedent). Principle B stipulates that a pronoun must be free (i.e. not
bound) within its governing category; notwithstanding, a pronoun can be bound
from outside this syntactic domain. Thus a pronoun, unlike an anaphor, also
admits a free reading. Principles A and B jointly imply a strict complemen-
tary distribution between pronouns and reflexives in some syntactic domains, as
exemplified below:

(1) John1 admires himself1/*him1.

(2) John1’s father2 loves him1/∗2/himself2/∗1.

(3) The father1 of John2 loves him2/∗1/himself1/∗2.

(4) John1 believes himself1/*he1/*him1 to love Mary.

(5) John1 says he1/2/*himself1 loves Mary.

The Binding Theory has been successively revisited to overcome some coun-
terexamples. Complementary distribution is disconfirmed, on the one hand, in
adjunct clauses, like in (6) below. On the other hand, languages like Icelandic,
Dutch, German and Norwegian each contain an anaphoric form—sig, zich, sich,

c© Springer-Verlag GmbH Germany 2018
A. Foret et al. (Eds.): FG 2017, LNCS 10686, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-662-56343-4_1



2 M. I. Corbalán

seg, respectively—that does not meet Principle A, as the former can be bound
by a long-distance antecedent (cf. [22]).1

(6) John1 glanced behind him1/himself1.

(7) Jón1

John
segir
says

að
that

Maŕıa2
Maria

telji
believe.sbj

að
that

Haraldur3
Harold

vilji
want.sbj

að
that

Billi4
Bill

heimsæki
visit.sbj

sig1/2/3/4.
se-anaphor

‘John says that Maria believes that Harold wants that Bill visit him/her.’

Several categorial—combinatory and type-logical—calculi have been pro-
posed to deal with reflexives and anaphoric pronouns. Some of them treat multi-
ple-binding into the lexicon (cf. [16,23]); others use a syntactic approach (cf. [6–
8]). Working on a Type-Logical Grammar, Jaeger [8] develops the Lambek cal-
culus with Limited Contraction (LLC) to syntactically process personal pro-
nouns in a uniform way; he does not discriminate syntactically (nor semanti-
cally) among reflexives, anaphoric pronouns and pronominals. In other words,
he does not take Principles A and B of the Binding Theory into account.

Our goal is to give a more accurate treatment of personal pronouns, taking
as a starting point the pronominal connective | from Jaeger and the intuition
behind its logical rules. Firstly, we modify the right rule of LLC to distinguish
on the one hand the free (or pronominal) use from the bound (or anaphoric) use
of a personal pronoun. Secondly, by using the (lexical) structural modality 〈 〉
of [18] (and, analogously, for our � �), we identify different syntactic domains for
binding: we impose structural conditions into the pronominal left rule of LLC
by using the corresponding (syntactic) structural modality [ ] (and also { }).
Thus, on the other hand, we also distinguish anaphoric pronouns from reflexive
anaphors. As a consequence, although we deal with reflexives, anaphoric pro-
nouns and pronominals, our proposal is not intended to be a uniform approach.
For reasons of space, we restrict ourselves to cases where the binder is a nominal
phrase and the bindee (a pronoun or a reflexive) carries 3sg features.2 Since our
proposal is inspired by Jaeger’s calculus, we also do not deal with cases in which
the bindee precedes its binder.3

The structure of the paper is as follows. In Sect. 2, we present Jaeger’s calculus
LLC (in a sequent format) and we briefly discuss some questions related to the
problem of overgeneration. In Sect. 3 we change the right pronominal rule of LLC
to distinguish between a reflexive and a pronominal type-constructor. In Sect. 4,
firstly we present our treatment for subject-oriented anaphors in several syntactic
1 Although these languages contain this kind of simple (also weak) reflexive form, their

syntactic behavior is not the same in all of them (cf. for example, [5]).
2 Hence, we restrict ourselves to what some theories call anaphoric coreference, not

binding (cf. [2,21]). Though it is generally accepted that reflexives and reciprocals
behave in the same way with respect to binding conditions, their semantic value
diverges. For this reason, we also do not deal with reciprocal anaphors.

3 However, a version of Jaeger’s rules that also allows cases of cataphora is presented
in [17].



Binding Domains for Anaphors in CG 3

domains and secondly, we deal with object-oriented anaphors in double-object
constructions and prepositional complements. Finally, we sketch an analysis for
long-distance anaphors from Icelandic. Section 5 concludes the paper. In the
Appendix we sketch the principal cut for our new pronominal rules.

2 LLC Calculus

LLC is a conservative extension of the Lambek L calculus (without empty
antecedents) [9]. Like L, LLC is free of structural rules. Jaeger’s calculus
treats resource multiplication syntactically. LLC extends the sequent calculus
L by adding the anaphoric type-constructor |. The rules of the latter encode a
restricted version of the structural rule of Contraction, thus allowing for multiple-
binding (see Fig. 1). Despite incorporating this structural rule, LLC, as well as
Lambek system, enjoys Cut elimination, decidability and the subformula prop-
erty. Indeed, as the reader can check, all the formulas that occur in the premises
of the two new rules for the anaphoric type-constructor are subformulas of the
formulas that occur in their conclusion.

Y ⇒ M : A X, x : A, Z, y : B, W ⇒ N : C

X, Y, Z, z : B|A, W ⇒ N [M/x][(zM)/y] : C
|L

X, x1 : B1, Y1, . . . , xn : Bn, Yn ⇒ N : C

X, y1 : B1|A, Y1, . . . , yn : Bn|A, Yn ⇒ λz.N [(y1z)/x1] . . . [(ynz)/xn] : C|A |R

Fig. 1. Left and right rules for |

Note that when A is a basic type, the left premise of |L is an instance of the
identity axiom; thus the rule can be simplified, as shown in Fig. 2.4

X, x : A, Z, y : B, W ⇒ M : C |L
X, x : A, Z, z : B|A, W ⇒ M [zx/y] : C

Fig. 2. Simplified left rule for |

Anaphoric expressions are then assigned a type B|A: it works as a type
B in the presence of an antecedent of type A. The |L rule expresses the fact
that for an anaphoric expression to be bound it needs an antecedent in the same

4 Jaeger is not only concerned with anaphoric pronouns but also with other anaphoric
phenomena, such as ellipsis of VP.
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premise, that is, in some local syntactic domain. Besides imposing an antecedent
condition, this rule incorporates a restricted version of the structural rule of
(long-distance) Contraction, in that the antecedent A for the anaphoric type
B|A occurs in both premises of this rule.

Since personal pronouns take their reference from a nominal antecedent, they
are assigned the syntactic anaphoric category n|n.5 In semantic terms, a pronoun
denotes the identity function λx.x over individuals; the reference of a pronoun
is identical with the reference of its antecedent.6

Since a pronominal type n|n can be constructed by using the |R and |L rules,
and since anaphoric and pronominal pronouns are assigned the same syntactic
type (and the same semantic category), the system can accurately recognize the
free and the bound readings for a pronominal. Thus, for example, the system rec-
ognizes the double reading for he in (5), and so may assign it the saturated type
s or the unsaturated (or functional) type s|n. The latter expresses the fact that
a free pronoun occurs in the clause. In addition, the system can also derive the
co-occurrence of bound pronouns and reflexives in syntactic domains in which
complementary distribution fails, as exemplified in (6) above (see Fig. 3). It can
also recognize the ungrammaticality of (8b) below, since the antecedent condi-
tion on |L is not fulfilled. Nevertheless, LLC also allows for the ungrammatical
anaphoric readings in the following examples.7

(8) a. John1 saw himself1/*him1.
b. * Himself1 saw John1.

(9) a. John talked to Mary1 about herself1.
b. * John talked about Mary1 to herself1.

(10) John1 saw *himself1’s/his1 mother.

(11) a. John1 believes himself1 to kiss Mary.
b. * John1 believes himself1 kisses Mary.

n, (n\s)/pp, pp/n, n ⇒ s

n, (n\s)/pp, pp/n, n|n ⇒ s
|L n, (n\s)/pp, pp/n, n ⇒ s

n, (n\s)/pp, pp/n, n|n ⇒ s|n |R

Fig. 3. Schematic derivation for John1 glanced behind himself1/him1

Since we are looking for a more accurate treatment for the distribution of
pronominal and anaphoric pronouns, we shall begin by distinguishing between an

5 As usual, we use n for proper names, s for sentences, cn for common nouns and pp
for prepositional phrases.

6 In this respect, Jaeger follows [6,7].
7 Everaert [4] uses these sentences to evaluate the scope and limits of several generative

models for binding.
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anaphoric connective for reflexives and a (possibly) non-anaphoric connective for
personal pronouns like he and him. Later on, we shall draw a distinction between
reflexives and bound pronouns.

3 Bound and Free Pronouns: Splitting the Pronominal
Connective

For non-reflexive pronouns, we adopt Jaeger’s left rule and the following left and
right rules, which split the |R rule of LLC. It is important to emphasize that
these two new rules, like those of LLC, satisfy the subformula property: all the
formulas that occurs in the premises of ‖L and ‖R are subformulas of the formulas
that occurs in their conclusion. Given that the proof of Cut elimination for these
rules requires using a limited version of the Expansion rule (see Appendix),
we call our modified version of Jaeger’s system LLBE: Lambek calculus with
Bracketed Expansion (Fig. 4).

Fig. 4. Left and right rules for ‖

As can be noted, we split (an extremely simplified version of) the |R rule of
LLC to obtain a second left rule.8 Hence, a pronominal type-constructor will
have two left rules: |L and ‖L.9 By breaking the |R rule of LLC we can more
clearly show that free and bound are labels that result from the procedures by
which we use a pronoun: we apply the rule of use |L to get a bound (or anaphoric)
use of a pronoun, while in applying ‖L we use a pronoun freely.10

The ‖R rule compiles a restricted form of the structural rule of Expansion,
as it introduces a formula that is a sub-formula of the pronominal type C‖A.
Given that we do not assume logical rules for the brackets ��, they can only be
introduced (deleted) through the use of the ‖R (‖L) rule. Consequently, like in
Jaeger’s proposal, the rule of proof for a free pronoun goes hand in hand with its
free use in LLBE. However, unlike the |R rule of LLC, the ‖R rule of LLBE

8 Strictly speaking, we split the |R rule of LLC for the case where n = 1 and X is the
empty sequence ε. As we shall show in the Appendix, the proof of principal Cut for
the new rules requires using bracketed versions of the structural rules of Permutation
and Expansion. In order to avoid a proof of a pronominal type C‖A for any type C,
the antecedent type A of the rule ‖R has to be left-peripheral.

9 From Sect. 4, the |L rule (for non-reflexive pronouns) will be renamed ‖La, and ‖L
will have to be read as ‖Lp. Though we shall retain |L for reflexives only, we will
rename it |La for the sake of uniformity.

10 As we shall see later, the formula B in the ‖L rule will have a bracketed structure
[B] in most cases.
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does not simultaneously construct a pronominal type to the left and to the right
sides of a sequent.

In addition, since LLBE contains two left pronominal rules (i.e. |L and ‖L),
we are able to characterize two anaphoric type-constructors: a reflexive type-
constructor, which uses only the |L rule, and a pronominal type, which uses
|L, ‖R and also ‖L.11 By assigning different syntactic types for reflexives and
pronouns—n|n and n‖n, respectively—, and given that the |R rule of LLC for
the case n = 1 may be derived by using ‖L and ‖R of LLBE, the latter system,
like the former one, adequately recognizes grammatical sentences like those in
(12–16a), whilst blocking the ungrammatical sentence in (16b) below (Fig. 5).

(12) John1 said he1/2 runs.

(13) John1 said Mary likes him1/2.

(14) John1 likes him2.

(15) He1 likes himself1.

(16) a. John1 likes himself1.
b. * John1 likes himself2.

Fig. 5. Derivation for John1 likes him2

Nevertheless, since |L is adopted for the pronominal type n‖n and also for
the anaphoric type n|n, LLBE is not yet capable of separating bound (object)
pronouns from reflexives.12

11 A Type-Logical sequent calculus generally contains one left and one right rules for
each type-constructor. Since in our proposal the reflexive type-constructor uses only
a left rule, our approach is non-standard.

12 In order to distinguish subject and object pronouns, we could assign the lifted type
(s‖n)/(n\s) to the former (cf. [17]). Although at first glance it would seem that a
lifted type—(s/n)\(s‖n)—is also adequate to categorize an object pronoun like him,
it is not clear how we could deal with Exceptional Case Marked (ECM) constructions,
in which the semantic argument of the embedded infinitive clause surfaces with
accusative case. Indeed, if him were assigned (s/n)\(s‖n) because of its surface
form, it would combine with a verb phrase to the left, like a real object complement
does. But if this were the case, the subject slot of the embedded complement clause
would not be saturated and then, the sentential argument of the ECM verb would
become unsaturated as well.
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4 Reflexives and Bound Pronouns: Imposing Structure
Through Bracket Modalities

4.1 Subject-Oriented Reflexives and Bound Pronouns

There are several syntactic domains where a reflexive can occur: in nomi-
nal object complements, prepositional object complements, adjunct clauses,
and even in an embedded position within nominal phrases (the so-called NP
anaphora). In some of them, complementary distribution is fully verified: when
the reflexive and its antecedent are co-arguments of the same function, a bound
pronoun is ruled out.

Propositional Complements. Complementary distribution is also verified in
the opposite direction in (some) clauses selected by propositional verbs like say
and believe. As is widely known, reflexives are ruled out and bound pronouns are
licensed in (finite) propositional complements of both these verbs, as exemplified
below:

(17) John1 said/believes *himself1/he1/2 walks.

(18) John1 said/believes Mary hates *himself1/him1/2.

Anaphors within propositional complements have already been adequately ana-
lyzed in Categorial Grammar (cf. [6,15,23], a. o.). The correct binding relation
in these complements is ensured by using a normal (or semantic) S4 modal-
ity � [13]. In these categorial proposals, reflexives and pronouns are assigned
different pronominal types. The following modalized lexical entries capture the
above-mentioned facts:

him/he : �(�n‖n)
himself : �(n|n)
say/believe : �((n\s)/�s)
walk : �(n\s)
hate : �((n\s)/n)

Nevertheless, authors have sometimes glossed over the fact that a reflexive may
occur within a propositional complement if it occupies an embedded position:

(19) Max1 said (that) the queen invited both Lucie and himself1/him1 for tea.

Similarly, it has not always been noted that believe licenses the occurrence of
a reflexive in the subject position when the complement verb is in a non-finite
form.13 This last fact is a specific case of a more general situation: in complements
of Exceptional Case Marked (ECM) verbs, such as believe or expect, a reflexive
is allowed, while a bound pronoun is ruled out in the subject (and also the

13 In passing, we point out that, unlike English, literary Spanish and Italian allow
a nominative free or bound pronoun in non-finite complements of propositional
verbs [11].
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object) argument slot. Thus, in ECM constructions, the claimed complementary
distribution is verified, as in other verb complements. Nevertheless, complemen-
tary distribution in ECM constructions is, in some sense, unexpected, since the
reflexive in the subject position of non-finite complements is not a co-argument
of the binder.

(20) John1 believes himself1/*him1/*he to kiss Mary.

(21) Lucie expects John1 to like himself1/*him1.

(22) Lucie1 expects herself1/*her1/*she to kiss John.

From this evidence, it seems important to differentiate the lexical entry for
a propositional believe from the ECM believe, despite the fact that both verbs
select a sentential (finite or non-finite) complement. Following [12,14,18], we
shall use the structural modality 〈 〉 to mark the (syntactic) argument positions
of a verb; though we shall use it to mark not only the subject position, but
also the object complement position. In order to distinguish the propositional
verb believe/say from non-propositional verbs, we shall set a different bracket
modality � � aside for the former.

A sample of a bracketed lexicon is given below:

walk : 〈n〉 \s
like/hate/kiss : (〈n〉 \s)/ 〈n〉
say/believe : (〈n〉 \s)/ �s�
john/mary : n
him : n‖n
himself : n|n

The right rules for brackets 〈 〉 and � � are given below. The rules for Lam-
bek’s slashes are applied to structured sequences [X] and {X} of types.14 The
structures [ ] and { } are then spread over the sequents when functional types
A/B and B\A are built out of [B] and {B}, respectively. Hence, while the struc-
tural modality 〈 〉 is a lexical mark, the insertion of the modalities [ ] and { },
and thus the delimitation of syntactic domains, is a consequence of syntactic
operations (Figs. 6 and 7).

Fig. 6. Rules for brackets 〈 〉 and structured [ ] sequents

14 Generally, Δ[Γ ] indicates a configuration Δ containing a distinguished configuration
Γ of types. In our rules, X[Z] would indicate a sequence X with a distinguished
structured sequence [Z] of types, and analogously for {Z}.
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Fig. 7. Rules for brackets � � and structured { } sequents

Fig. 8. Rules for (subject-oriented) reflexives and bound pronouns within a [ ] domain

Fig. 9. Rules for bound pronouns and reflexives within a { } domain

We propose, consequently, bracketed versions for the |La and ‖La rules, with
the following side conditions: X1 �= ε or X2 �= ε in [‖]La; Z3 �= ε in {|}La.15

15 As an anonymous reviewer pointed out, if the type (〈n〉 \s)/s were assigned to ECM
verbs to differentiate them from propositional verbs, it would allow for ungrammat-
ical sentences like (i–ii) below. To block binding of a reflexive in an object position
by a non-local antecedent it seems we would have to impose some condition on the
sequence Z1 in [|]La. We plan to address the challenge posed by ECM constructions
in future investigations.

(i) * John1 expects Mary to like himself1.

(ii) * John1 believes Mary to expect Susan to like himself1.

In addition, the side conditions on the [‖]La rule inadequately license pronouns to be
bound by an antecedent within a conjunctive nominal phrase, as exemplified below.
Indeed, Mary is taken as an argument of the functional type commonly assigned to
and :

(iii) * John and Mary1 praised her1.

(iv) John1 and Mary talked about him1.

It appears that the unbracketed type assigned to the conjunction and has to be
differentiated from the (bracketed) functional types assigned, for example, to of —
(n\n)/ 〈n〉 and ’s—〈n〉 \(n/cn). A distinction between a collective and a distribu-
tive type for and also seems to be relevant: roughly, X\X/X and 〈X〉 \X/ 〈X〉, for
example. For reasons of space, and since judgments seem to vary among speakers
and sentences, we defer this problem to future research.
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n ⇒ n 〈 〉R
[n] ⇒ 〈n〉

n ⇒ n 〈 〉R
[n] ⇒ 〈n〉

s ⇒ s � �R{s} ⇒ �s� {\}L{[n], 〈n〉 \s} ⇒ �s� {/}L{[n], (〈n〉 \s)/ 〈n〉 , [n]} ⇒ �s�

...
[n], 〈n〉 \s ⇒ s

/L
[n], (〈n〉 \s)/ �s� , {[n], (〈n〉 \s)/ 〈n〉 , [n]} ⇒ s {‖}La

[n], (〈n〉 \s)/ �s� , {[n], (〈n〉 \s)/ 〈n〉 , [n‖n]} ⇒ s

Fig. 10. Derivation for John1 says Mary hates him1

...
[n], (〈n〉 \s)/ 〈n〉 , [n] ⇒ s

[|]La
[n], (〈n〉 \s)/ 〈n〉 , [n|n] ⇒ s � �R{[n], (〈n〉 \s)/ 〈n〉 , [n|n]} ⇒ �s�

...
[n], 〈n〉 \s ⇒ s

/L
[n], 〈n〉 \ �s� , {[n], (〈n〉 \s)/ 〈n〉 , [n|n]} ⇒ s

Fig. 11. Derivation for Mary says John hates himself

...
{[n], (〈n〉 \s)/ 〈n〉 , [n]} ⇒ �s�

...
[n], 〈n〉 \s ⇒ s

/L
[n], (〈n〉 \s)/ �s� , {[n], (〈n〉 \s)/ 〈n〉 , [n]} ⇒ s {|}La*
[n], (〈n〉 \s)/ �s� , {[n], (〈n〉 \s)/ 〈n〉 , [n|n]} ⇒ s

Fig. 12. Illicit derivation for John1 says Peter hates himself1

The rule [|]La in Fig. 8 preserves the prominence condition on the binder for
reflexives: given that the reflexive within an argument domain [ ] takes [A] as
its binder, the binder itself is not part of the subject (i.e. higher) argument.
Conversely, the side conditions on the sequences X1 and X2 in [‖]La impede
binding of a pronoun in an argument position if the binder is not part of the
higher subject argument.

Note that there is no condition on the sequences X1 and X2 in the rule for
pronouns {‖}La in Fig. 9. Thus, a pronoun within a propositional complement
can be bound by a matrix subject (see Fig. 10). The side condition on the
reflexive {|}La rule ensures that the reflexive stands in an embedded position
within the propositional complement clause (contrast Figs. 11 and 12).

Nominal Complements. In nominal complements complementary distribu-
tion is fully verified: where the anaphora and its antecedent are co-arguments of
the same function, a bound pronoun is ruled out. Nevertheless, a pronoun in the
object complement position can still be bound provided that the binder itself is
an argument of another functional type, as exemplified below:
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(23) [John1’s father]2 loves him1/himself2.

(24) [The father of John1]2 loves him1/himself2.

From the following (bracketed) lexicon we may obtain the correct binding rela-
tions for reflexives and pronouns within the (direct) object argument position,
as exemplified in (23–24) above and in (25–28) below (Fig. 13):

see/like : (〈n〉 \s)/ 〈n〉
john/mary : n
father/picture : cn
the/a : n/cn
of : (n\n)/n
’s : n\(n/cn)

(25) John likes himself/*him.

(26) John takes a picture of himself/*him.

(27) * John saw himself’s mother.

(28) John believes himself/*him to kiss Mary.

...
[n], (〈n〉 \s)/ 〈n〉 , [n] ⇒ s

[|]La/ [‖]La∗
[n], (〈n〉 \s)/ 〈n〉 , [n|n] ⇒ s

Fig. 13. Derivation for John1 likes himself1/ ∗ him1

Prepositional Phrases. In general terms, scholars agree that prepositional
phrases (PPs) selected by a verb can only contain a reflexive but not a bound
pronoun, while prepositional phrases operating as adjuncts allow both a reflexive
and a bound pronoun (cf. [4]).

Since our proposal strongly depends on the syntactic types assigned to the
lexical items into the lexicon, the correctness of our proposal for anaphoric items
within prepositional phrases mainly rests on the type assigned to the different
classes of verbs.

Unfortunately, the distinction between complement prepositional phrases and
adjunct phrases is not so pure in some cases. As claimed in [10], locative PPs,
including those selected by a verb, must be distinguished from other PPs. Those
verbs that select a PP bearing a locative role like put and sit, allow several
locative prepositions, such as in, on, near, into, next, in front of. In this sense,
locative PPs resemble adjunct PPs. By contrast verbs like relies, despite selecting
a PP as complement, also select some specific preposition. The PP headed by
on/upon in relies on/upon does not bear a locative role. Given this, it seems clear
that we need to set a distinction between the PP selected by verbs like put and
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the PP selected by verbs like relies. In other terms, we need to set a bipartition
into the set of PP complements: locative PPs and non-locative PPs. By using
the bracket modality 〈 〉 we mark the non-locative PP complement position into
the lexical entry of the corresponding verbs and, taking into consideration the
similarity between adjunct PPs and locative PP complements, we leave the PP
position for the locative complement unmarked.16

Given that reflexives and anaphoric pronouns can occur within an unmarked
position, we assume the following rules to process them (Fig. 14):

[X1, A, X2], Z, B, W ⇒ C

[X1, A, X2], Z, B|A, W ⇒ C
|La

[X1, A, X2], Z, B, W ⇒ C

[X1, A, X2], Z, B‖A, W ⇒ C
‖La

Fig. 14. Rule for reflexives and anaphoric pronouns out of bracketed domains

Thus, assuming the following lexicon, we obtain the correct binding relation
in different prepositional phrases, as exemplified in (29–32):

put/see : ((〈n〉 \s)/pp)/ 〈n〉
glance : (〈n〉 \s)/pp
rely : (〈n〉 \s)/ 〈pp〉
on/upon/behind/next : pp/n

(29) John1 relies on himself1/*him1.

(30) John1 glanced behind himself1/him1.

(31) John1 put the gun near/under/on himself1/him1.

(32) John1 saw a gun near himself1/him1.

4.2 Object-Oriented Reflexives and Bound Pronouns

Nominal Complements. Verbs like show, give, send, promise, introduce may
select two nominal phrases as complements, and thus give rise to double-object
constructions. These structures allow then for another pattern of reflexivization:
reflexives bound by a nominal within a verb complement position. In other terms,
besides subject-oriented reflexives, double-object constructions also allow for
object-oriented ones. Double-object constructions alternate with oblique dative
structures:

(33) Mary showed/gave/sent/promised John a gift.

(34) Mary showed/gave/sent/promised a gift to John.

16 Alternatively, Reinhart and Reuland [22] consider that relies on forms a complex
(semantic and syntactic) unit selecting a nominal complement, whilst put selects a
prepositional complement. In view of this fact, we would assign the type (〈n〉 \s)/ 〈n〉
to relies on/upon.
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Although the two structures display a different linear order, both reveal the
same behavior when licensing anaphors. They show an asymmetry with respect
to the licensing of object-oriented reflexives. As shown in the examples below, the
correct binding relation for object-oriented reflexives in both structures depends
on an ordering of the complements.

(35) Mary showed/presented John1 himself1.

(36) Mary showed/presented John1 to himself1.

Thus, these structures indicate that a hierarchical order between the two
objects has to be imposed. To deal with double-object constructions we extend
the calculus by adding a new product type-constructor.17 We also present a
different inference rule for object-oriented reflexives, where Z1 does not contain
a subtype s (Figs. 15 and 17).18

Fig. 15. Right rule for non-commutative � asymmetrical product

The correct binding relation is ensured by the following lexical assignment:

show/give/present/send : (〈n〉 \s)/(〈n〉 � 〈n〉)
show/give/present/send : (〈n〉 \s)/(〈n〉 � 〈pp〉)
17 Note that the product � is not a discontinuous (or wrapping) type-constructor,

unlike that of [1] or [19]. Since � is non-commutative, we would not be able to derive
cases of “heavy” NP, as exemplified below. Nevertheless, in the following section we
shall adopt a commutative product-type for the treatment of prepositional phrases.

(i) I gave to the students presents that I had brought back from Spain.

To deal with double-object structures, Hepple [6] extends the L calculus by adding
a new slash type-constructor

∮
and a modality �. Since the slash type-constructor

lacks introduction rules, it may encode the hierarchical ordering of the nominal com-
plements; the modality allows the nominal complements to be reordered to obtain
the correct surface word-order.

18 We note that a slightly modified version of the rule in Fig. 16 may also be used for
anaphors in a complement of possessives, which are not either subject nor object-
oriented. Once again, it appears that a distinction between the functional type
assigned to of or ’s and and has to be made to prevent He and himself from
assigning the type n.

(i) John1’s description of himself1 is lovely.

(ii) Lisa burned Andy Warhol1’s portrait of himself1.

It seems that it could be possible to also encode a hierarchical ordering into the rules
for the Lambek slash type-constructors. In this case, it would be possible to deal
with subject- and object-oriented anaphors in a uniform way.
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Fig. 16. Rule for object-oriented reflexives

Fig. 17. Derivation for Mary presents John himself

Prepositional Phrases: The About-Phrase. Verbs selecting two preposi-
tional phrases also challenge several binding theories. In this case, there is also
no complete agreement among scholars with respect to their syntactic status.19

As is known, two prepositional complements may appear in either order:

(37) John talked to Mary about Bill.

(38) John talked about Bill to Mary.

Despite the free word-order, the occurrence of a reflexive within a preposi-
tional phrase, such as in double-object structures, indicates that a structural
ordering between the about-phrase and the to-phrase has to be imposed.

(39) John talked to Mary1 about herself1.

(40) * John talked about Mary1 to herself1.

19 In some generative theories, the about-phrase is evaluated as an adjunct phrase and
thus is separated from the to-phrase or with-phrase complement (cf. [22]). This would
explain the ungrammaticality of (40), but not the ungrammaticality of (i) below.

(i) * Mary talked to John1 about him1.

In other theories, the about-phrase, as well as the to-phrase, is considered a verb
complement; the difference between these PPs is made by assuming an ordering
with respect to their relative obliqueness: the about-phrase is more oblique than the
to-phrase (cf. [20]). Since the anaphor has to be bound by a less oblique co-argument,
the relationship of relative obliqueness would account for (i) above, but not for (ii)
below, where the linear word-order seems to be also relevant.

(ii) * Mary talked about himself1 to John1.

In addition, [3] suggests an approach in which the verb talk (and also speak) and
the preposition to are reanalyzed as one verb taking a nominal object (and a prepo-
sitional complement) (cf. also [23]). Thus, talk would be analogous to (one of the
forms of) tell. To formalize this proposal, besides encoding free linear word-order
and relative obliqueness, the syntactic functional type assigned to the talk to-phrase
would have to encode discontinuity as well.
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Fig. 18. Right rules for commutative asymmetrical product �

Fig. 19. Illicit derivation for *John talked about Mary to herself

Fig. 20. Derivation for John talked to Mary about herself

In a categorial framework, it is the functional type assigned to a verb like talk
which has to express the different syntactic relation that these two PPs maintain
with the verb. In [16], for example, the type assigned to talk is ((n\s)/pp)/pp,
while in [19] it is the type (n\s)/(ppto⊗ppabout), where ⊗ is the nondeterministic
continuous product of the Displacement Calculus D. Thus, this last type cap-
tures the alternative surface word-order. This notwithstanding, by using either
the former or the latter type, prepositional phrases both get the same syntactic
non-hierarchical status of verb complements.20

Hence, the different hierarchical relation the PPs complements maintain with
the verb seems to call for a new type-constructor that is analogous to that we
have used to deal with double-object constructions, but which encodes commu-
tativity as well (Figs. 18, 19 and 20).

With this type-constructor at hand, we then propose the following lexical
assignment:

talk : (〈n〉 \s)/(〈ppto〉 � 〈ppabout〉)

4.3 Long-Distance Anaphors

Anaphors in Icelandic are necessarily subject-oriented and do not respect Princi-
ple A for anaphors, as they can be bound by a long-distance antecedent, provided
20 Since the calculus D also contains a nondeterministic discontinuous product �, the

type (n\s)/(pp�pp) would take the structural ordering into account if the premisses
of the right rule were bracketed sequences.
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that the anaphora stands in a subjunctive clause. In this sense, long-distance
anaphors resemble anaphoric pronouns in propositional (finite) complements
from English. In addition, the subjunctive mood in Icelandic may be propa-
gated down through embedded complements (this is the so-called domino effect).
Given that bracket modalities have been applied in Type-Logical Grammar to
delimit syntactic domains, we suggest using the bracket { } to simulate the
domino effect of the subjunctive mood generated by some verbs (e.g. segir ‘say’
vs. v́ıta ‘know’) and the bracket [ ] to ensure binding only by the subject (that
is, the subject condition; cf. [18]). Since the licensing of a long-distance anaphor
in this language also depends on the case properties of the binder and bindee,
we merely sketch an analysis here. The left rule for long distance anaphors is
given in Fig. 21.

segir ‘say’: (〈n〉 \s)/ �s�
v́ıta ‘know’: (〈n〉 \s)/s
elskar ‘love’: (〈n〉 \s)/n

(41) Jón1

John
segir
say

að
that

Maŕıa2
Maria

elski
love.subj

sig1.
se-anaphor.acc

‘John says that Mary loves him.’

(42) ?Jón1

John
veit
know

að
that

Maŕıa
Maria

elskar
love.ind

sig1.
se-anaphor.acc

‘John knows that Mary loves him.’

X, [A], Z1, {Z2, B, W} ⇒ C

X, [A], Z1, {Z2, B|A, W} ⇒ C
|Llg

Fig. 21. Rule for long-distance anaphor

5 Conclusions

In this paper we have proposed different rules to deal with anaphoric and
pronominal pronouns occurring in several syntactic domains. Although both the
type assignment for pronouns and our initial idea for the pronominal rules come
from Jäeger [8], we have proposed a different type assignment for reflexives and
pronominal pronouns and we have modified the rules of LLC. The inspiration for
lexical entries encoding marked argument positions comes from [18]. By adopt-
ing bracket modalities we have identified different syntactic domains; in light
of the latter, we have encoded binding restrictions into the left anaphoric rule
of LLBE. The right pronominal rule of LLBE, in turn, evidences that despite
the fact that an antecedent A could occur in the local syntactic domain [ ], a
free pronoun is derived by assuming an antecedent in a non-local domain � �.
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The rules of LLBE reveal then that free and anaphoric pronouns on the one
hand, and bound pronouns on the other, are generally processed in different steps
in a proof: if X1 = X2 = ε and so the antecedent A is left-peripheral, free pro-
nouns and reflexives, but not bound pronouns, can be inserted into a derivation.
Our proposal preserves the prominence condition on the binder for reflexives:
the binder may not be an argument lower in the hierarchy and neither may it be
part of an argument higher in the hierarchy. In addition, we have incorporated
the previous modal categorial analysis for say in terms of structural modalities,
in accordance with our overall proposal. Further, we have suggested how this
proposal can be used to deal with long-distance anaphors in Icelandic. Our rule
for object-oriented reflexives could also be used to deal with non-subject- and
non-object-oriented reflexives, such as anaphors in possessive complements.

In future work, we propose to investigate how to impose structural conditions
upon the sequences of the left rules for the customized slash type-constructors
in order to reduce the number of pronominal rules and thus to deal with subject
and object anaphoric pronouns in a more uniform way. We also plan to explore
how to deal with ECM constructions.

Acknowledgment. The author was supported by a doctoral scholarship granted by
FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, process number
2013/08115-1).

Appendix

The proof for the Cut elimination theorem requires the use of the following
bracketed versions of the structural rules of Permutation and Expansion (Fig.
22). In order to prove Cut Elimination for LLBE we have to consider two more
cases for principal Cut: the left premise of Cut is the conclusion of ‖La or that
of ‖Lp and the right premise is the conclusion of ‖R. These two configurations
are given schematically in Figs. 23 and 24. In both cases, the principal Cut is
replaced by a Cut of lower degree. Since no rule introduces a formula �A� into
the right side of a sequent (i.e. there are only antecedent occurrences of the
formula �A�), the Cut formula could not have been derived by applying either
of the bracketed structural rules.

Fig. 22. Bracketed structural rules
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Fig. 23. Principal cut for ‖: ‖La

Fig. 24. Principal cut for ‖: ‖Lp

References

1. Bach, E.: Control in montague grammar. Linguist. Inq. 10(4), 515–531 (1979)
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Abstract. Minimalist Grammars provide a useful tool for modeling nat-
ural language syntax by defining grammar fragments in a very precise
way. As a formalization of the Minimalist Program, they can accommo-
date linguistic analyses from the field of generative syntax. However, they
have no machinery for encoding agreement; while morphology can be sim-
ulated by multiplying lexical items, there is no systematic way to state
generalizations and implement actual proposals. This paper extends Min-
imalist Grammars with morphological features and operations on them.
As a proof of concept, I show how Icelandic dative intervention can be
encoded in the modified formalism.

Keywords: Minimalist Grammars · Minimalist Syntax · Agreement
Morphosyntax · Icelandic

1 Introduction

Agreement can be defined as the morphological manifestation of dependencies
between words. In a basic English sentence like He walks the verb agrees in person
and number with the subject, and the subject, in turn, receives nominative
case from the verb.1 These dependencies may be nonlocal; for instance, English
expletive constructions like There seems to have arrived a man exhibit long-
distance subject-verb agreement.

Chomsky’s Minimalist Program [4,5] treats these phenomena as an effect of
a much more general mechanism known as Agree. An explicit theory of feature
structures compatible with Chomsky’s framework is proposed by Adger in [1].
Lexical items are defined as sets of features, each specified as bearing a value
(drawn from some finite set) or being unvalued. Syntax is driven by features:
the probe of a syntactic operation is an element with an unvalued feature, and
the goal must bear a matching valued feature. Adger defines feature valuation

as unification of values (cf. [15]): the unvalued feature on the probe assumes
the value of the goal. The three operations are Merge, Move, and Agree. Merge
and Move operate on categorial features (T, V, N ...) and build new structure.
Agree targets morphosyntactic features (case, number, person, ...) and forms
dependencies between elements of the existing structure.

1 For the sake of exposition, I assume that case assignment reduces to agreement and
that structural case is explicitly assigned by finite verbs. Neither is free of controversy.

c© Springer-Verlag GmbH Germany 2018
A. Foret et al. (Eds.): FG 2017, LNCS 10686, pp. 20–36, 2018.
https://doi.org/10.1007/978-3-662-56343-4_2
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Example 1. The phrase this nice boy exhibits determiner-noun agreement. The
determiner bears an unvalued number feature and dominates the noun, which
has a valued feature. This probe-goal configuration allows Agree to apply:

DP

NP

boy [N, number: sg]nice [A]

this [D, number: ǫ]

Stabler’s Minimalist Grammars (MGs, [16,17]) have been designed as a math-
ematically rigorous formalization of Minimalist Syntax. The MG formalism is
based on operations analogous to Merge and Move. Agree, however, has no
counterpart. My goal is to extend MGs in a way that retains the relation to
the Minimalist Program, allowing to translate Minimalist proposals involving
agreement into the modified formalism.

2 Minimalist Grammars

I begin with the version of Minimalist Grammars defined in [17], with a few
tweaks. This formalism employs chain notation, reducing syntactically active
subtrees of derived trees to tuples of strings.

Definition 2. A minimalist grammar G is a 5-tuple 〈Σ,Syn, Types, Lex,F〉,
where

Σ is a finite set (of pronounced segments),

Syn = Base (nonempty finite set of categories)
∪ {=f | f ∈ Base} ∪ {=>f | f ∈ Base} (selectors)
∪ {+f | f ∈ Base} (licensors)
∪ {-f | f ∈ Base} ∪ {∗f | f ∈ Base} (licensees)

is a set of syntactic features,

Types = {::, :}, (lexical, derived)

Let the set of initial chains2 IC = Σ∗ × Σ∗ × Σ∗ Types Syn∗, and the set of
non-initial chains NC = Σ∗ Syn∗;

Lex ⊂ {ǫ} × Σ∗ × {ǫ} {::} Syn∗, a subset of IC, is a finite set of lexical items
(lexicon),

F = {merge,move} is a set of structure-building operations:
• merge is the union of the following five functions, for ss, sh, sc, ts, th, tc ∈

Σ∗, · ∈ {:, ::}, f ∈ Base, γ ∈ Syn∗, δ ∈ Syn+, α1, ..., αk, β1, ..., βl ∈
NC (0 ≤ k, l),

2 Angle brackets are used to denote tuples. For any n-tuple or sequence, for 1 ≤ i ≤ n,
T [i] denotes the ith component of T . The (finite) product of sets A1, A2, ..., An

A1 ×A2 × ...×An = {〈a1, a2, ..., an〉 | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}. Similarly, their
concatenation A1A2...An = {a1a2...an | a1 ∈ A1, a2 ∈ A2, ..., an ∈ An}.
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mrg1 :
〈ǫ, sh, ǫ〉 :: =fγ 〈ts, th, tc〉 · f, β1, ..., βl

〈ǫ, sh, tsthtc〉 : γ, β1, ..., βl

mrg2 :
〈ss, sh, sc〉 : =fγ, α1, ..., αk 〈ts, th, tc〉 · f, β1, ..., βl

〈tsthtcss, sh, sc〉 : γ, α1, ..., αk, β1, ..., βl

mrg3 :
〈ss, sh, sc〉 · =fγ, α1, ..., αk 〈ts, th, tc〉 · fδ, β1, ..., βl

〈ss, sh, sc〉 : γ, α1, ..., αk, tsthtc : δ, β1, ..., βl

hmrg1 :
〈ǫ, sh, ǫ〉 :: =>fγ 〈ts, th, tc〉 · f, β1, ..., βl

〈ǫ, thsh, tstc〉 : γ, β1, ..., βl

hmrg3 :
〈ss, sh, sc〉 · =>fγ, α1, ..., αk 〈ts, th, tc〉 · fδ, β1, ..., βl

〈ss, thsh, sc〉 : γ, α1, ..., αk, tstc : δ, β1, ..., βl

• move is the union of the following three functions, for ss, sh, sc, t ∈ Σ∗,
f ∈ Base, F ∈ {-f, *f}, γ, ζ ∈ Syn∗, δ ∈ Syn+, and for α1, ..., αk ∈
NC (0 ≤ k) satisfying the condition (SMC)3 there is exactly one i ∈ [1, k]
such that αi has -f or *f as its first feature,

mv1 :
〈ss, sh, sc〉 · +fγ, α1, ..., αi−1, t F, αi+1, ..., αk

〈tss, sh, sc〉 : γ, α1, ..., αi−1, αi+1, ..., αk

mv2 :
〈ss, sh, sc〉 · +fγ, α1, ..., αi−1, t Fδ, αi+1, ..., αk

〈ss, sh, sc〉 : γ, α1, ..., αi−1, t : δ, αi+1, ..., αk

mv∗:
〈ss, sh, sc〉 · +fγ, α1, ..., αi−1, t ∗fζ, αi+1, ..., αk

〈ss, sh, sc〉 : γ, α1, ..., αi−1, t : ∗fζ, αi+1, ..., αk

Definition 3. An expression is a member of Exp = IC NC∗. An expression
e is a complete expression of category c ∈ Base iff e = 〈ss, sh, st〉 · c, where
· ∈ {::, :}.

Starred licensees of the form ∗f are optionally deleted (by mv1 or mv2 ) or
saved for later (by mv∗). The latter possibility corresponds to intermediate posi-
tions of movement. [16] mentions this option of implementing successive cyclic
movement; and a version of MGs with starred categorial features is explored in
[11]. A formalism with persistent features, optionally erased by syntactic opera-
tions, has been shown to be weakly equivalent to standard MGs [18].

MGs offer a limited means of encoding (agglutinative) morphology by assign-
ing separate lexical items to morphemes and constructing morphological words
with head movement. Dependencies between words can be enforced by building
restrictions into syntactic features.

3 The SMC (Shortest Move Constraint): is a special case of the requirement that at
any given step in the derivation the derived structure contain only finitely many
subtrees (chains) which are syntactically active (i.e. have unchecked features).
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Example 4. G = 〈ΣG, SynG, T ypes, LexG,F〉 is an MG. Its lexicon LexG con-
tains the following lexical items:

this.sg.nom := 〈ǫ, this, ǫ〉 :: =n3SgN d -k3SgN
boy.sg.nom := 〈ǫ, boy, ǫ〉 :: n3SgN
walk := 〈ǫ, walk, ǫ〉 :: =d v

prs.3sg := 〈ǫ, -s, ǫ〉 :: =>v +k3SgN t

G generates one expression of category t, derived as follows:
mv1

〈this boy, walk -s, ǫ〉 : t

hmrg1

〈ǫ, walk -s, ǫ〉 : +k3SgN t, this boy -k3SgN

mrg3

〈ǫ, walk, ǫ〉 : v, this boy -k3SgN

mrg1

〈ǫ, this, boy〉 : d -k3SgN

boy.sg.nom

〈ǫ, boy, ǫ〉 :: n3SgN

this.sg.nom

〈ǫ, this, ǫ〉 :: =n3SgN d -k3SgN

walk

〈ǫ, walk, ǫ〉 :: =d v

prs.3sg

〈ǫ, -s, ǫ〉 :: =>v +k3SgN t

This toy grammar forces merge and move to only combine lexical items with
compatible morphological features – at the expense of having a separate feature
for each combination of morphological properties that may result in a distinct
morphological form. All agreement in this boy walk -s is local, which makes it easy
to refine syntactic features manually. For long-distance agreement dependencies,
a better option is to state compatibility restrictions as constraints defined in
monadic second-order logic, as shown in [8].

The generative capacity of MGs is sufficient to encode any mildly context-
sensitive pattern, so this strategy is adequate for ensuring correct agreement.
However, it does not provide a succinct, systematic way of formulating gen-
eralizations about morphological dependencies; the relation to the Minimalist
Agree operation remains obscure. Furthermore, the mappings from derivation
to pronounced form in MGs have been given without special attention to the
complications imposed by a detailed model of morphology. In the next section I
propose a refinement which allows for straightforward integration with standard
models of morphology.

3 Towards Agreement

3.1 Bird’s-Eye View

Bundles and Channels. MGs treat all features as uninterpretable – in the
sense that they all (with the exception of one category feature) must be deleted
to form a complete expression. Morphological agreement essentially requires a
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class of features which are valued in the course of derivation and serve as building
blocks of syntactic output. The first step is to redefine lexical items, replacing
each sequence of phonological segments with a bundle – a set of morphological
features. Incidentally, this modification separates syntax from phonology: pro-
nounced segments are no longer present in lexical items and are assumed to be
inserted outside syntax.

What about feature valuation? One option is an almost faithful translation
of Minimalist Agree [1] into the MG formalism. Agree can be straightforwardly
implemented as (covert) movement, allowing lexical items with matching mor-
phological features to exchange information. However, no finite boundary can
be imposed on the number of chains with unchecked features in the structure:
consider, for instance, a sequence of adjectives modifying a noun, all of which
have case requirements yet to be satisfied. This “naive” approach is incompatible
with any version of the SMC.

An alternative, explored here, is to use existing syntactic dependencies cre-
ated by merge and move to transmit morphological information. Agree is depen-
dent on structure-building operations, which means that agreement is necessarily
local. A long-distance morphological dependency between elements X and Y can
be represented as a series of local information exchanges across merge depen-
dencies involving, step by step, all elements intervening between X and Y .

Expanding on the idea outlined in [12], the flow of morphological informa-
tion can be controlled by annotating syntactic features with their agreement
properties, which can be conveniently thought of in terms of channels. For each
syntactic feature, one needs to specify whether it accepts information from what-
ever checks it (receiving channel) and which values it transmits to whatever
checks it (emitting channel).4 Whenever two syntactic features establish a syn-
tactic dependency, and one of them has a receiving channel, the chain/expression
bearing this feature is updated with values specified for the emitting channel of
the other feature. Borrowing terminology from linguistic literature, I call this
process downward agreement if the feature at the receiving end is a selector or
licensor, and upward agreement if it is a categorial feature or licensee.

Example 5. Recall the lexical item boy.sg from Example 4. The phonological
exponent boy is replaced with a bundle, with ǫ being the default value:

boy.sg :=

〈

ǫ,

[

boy
num:sg
per:3
case:ǫ

]

, ǫ

〉

:: n

[

num:sg
per:3

]

→

←

The category feature n has a receiving channel (denoted by ←), which allows
boy.sg to receive a case value via upward agreement. The emitting channel on
n (indicated by →) transmits number and person to whatever selects boy.sg.

4 A lexical item may transmit different values of the same morphological feature via
different channels. Moreover, these values need not be a subset of values in the item’s
own bundle. Keeping the content of emitting channels unconstrained is useful: for
example, a preposition is allowed to transmit lexical case to its complement without
morphologically manifesting it itself.
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Probes and Goals. The channel-based agreement system can be refined to
bring it more in line with the traditional notion of Agree. One such restriction
is mentioned in [5] as a locality condition on goal defined in terms of “closest c-
command” and in [1] as the requirement that the features in a probe-goal relation
have no other matching feature intervening between them. The channel system
has a built-in locality condition: each lexical item interacts directly with the
head of the expression it selects/licenses and is not allowed to probe further. For
items with multiple selectors/licensors, it is sufficient to require heads to accept
agreement information via their last receiving channel. In other words, later
values overwrite those received earlier. The intuition is simple: if X is selected
by Y , the argument of X which is merged last will be the closest goal for Y .

Another useful restriction is known as the freezing effect of feature checking
[2]. In essence, it rules out agreement in intermediate positions of successive
cyclic movement. This condition is only relevant for starred licensees and can be
built into the definition of mv∗ in a straightforward way.

Feature Sharing. Long-distance upward agreement (across merge dependen-
cies) cannot be reconciled with the requirement that the goal always provide a
valued feature to the probe. When this is not the case, the agreement relation
between lexical items in an expression has to be recorded so that, when the
needed value enters the derivation, both items could be updated simultaneously.
Nothing prevents such a relation from spanning multiple chains. The MG for-
malism distinguishes between the initial chain and non-initial chains but does
not record any hierarchical relations. Additional bookkeeping is required to keep
track of this information.

The proposed solution is reminiscent of feature sharing [7]. Their version
of Agree does not require the goal feature to bear a value: matching features
become a shared feature which is valued if either of the coalescing features is
valued. I adopt a similar approach by recording for each feature, alongside its
value, its rewritability – the highest chain that can transmit a value to it. With
the SMC in place, every non-initial chain is uniquely identified by the name of
its first licensee. Thus, rewritability can be set to on (active, or sharing value
with the initial chain), a licensee name (sharing value with a non-initial chain),
or off (inactive, or not accessible to agreement). I assume that morphological
features start out as off if valued in the lexicon.

For any chain in an expression, its subchains are chains representing its sub-
trees. Each non-initial chain can be annotated with the sequence of all non-initial
chains it is a subchain of (including itself), from the outermost to the most
embedded. I will refer to this sequence as lineage of the chain. By convention,
all lineages end with an off value. The set of all lineages for a given grammar is
the set of all sequences of elements of Base without repetitions, followed by off.
Lineages are updated throughout the derivation. Whenever a new non-initial
chain appears in the expression, the name of its first licensee is prepended to the
lineage of the new chain as well as all its subchains. On the other hand, when
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a chain moves, it ceases to be a subchain of any non-initial chain.5 Therefore,
all chains undergoing movement are stripped of the initial part of their lineage
up to and including the relevant licensee.

Long-distance upward agreement succeeds if there is an uninterrupted
sequence of channels between the probe and the goal. All that is required is to
record, for each morphological feature, where this sequence ends (rewritability)
and what path it takes (chain lineage). Thus, the two modifications introduced
above are sufficient to keep track of channels connecting chains in an expression.

Example 6. Consider the expression exp, shown as a phrase-structure tree:

exp :=

<

<

<

A 〈ǫ, [ m:ǫ ] , ǫ〉

a← -h←

B 〈ǫ, [ m:ǫ ] , ǫ〉

=a[ m:ǫ ]→ b← -g←

C 〈ǫ, [ m:ǫ ] , ǫ〉

=b[ m:ǫ ]→ c -f←

X 〈ǫ, [ m:v ] , ǫ〉

=c +g[ m:v ]→ x

The next derivation step will engage the +g/-g feature pair, transmitting the
value v to B; v has to percolate to A, but not to C. This information is lost in the
standard chain notation. However, adding rewritabilities and lineages allows to
identify chains accessible to agreement – namely, those with g in the lineage:

exp′ := mrg3 (X,mrg3 (C,mrg3 (B, A))) =

〈ǫ, [ m:v/off ] , ǫ〉 : +g[ m:v/off ]→ x (off),

[ m:ǫ/f ] -f← (f off), [ m:ǫ/f ] -g← (f g off), [ m:ǫ/f ] -h← (f g h off)

3.2 Minimalist Grammars with Agreement

Definition 7. A minimalist grammar with agreement (MGagr) G is a 5-tuple
〈Mor, Syn, Types, Lex, F〉, where

Mor = {f : X → Basem × ({on, off} ∪ Base)} is a set of bundles, where
Basem, V al are finite sets such that ǫ ∈ V al is the default value, and Base

is a nonempty finite set (of syntactic feature names);
Feat = Syn × {←,←6 } × Mor is a set of annotated features, where Syn is a set

of syntactic features built from Base as specified in Definition 2;
Types = {::, :}, (lexical, derived)
Let Lineage = {s | s ∈ Base∗ & for 1 ≤ i, j ≤ |s|, si 6= sj} {off}. Then the set

of initial chains IC = Mor∗ × Mor∗ × Mor∗ Types Feat∗ Lineage, and the
set of non-initial chains NC = Mor∗ Feat∗ Lineage;

5 If movement is viewed as copying, it is not immediately clear why this should be the
case. A system where moving subtrees retain their relation to the original position
would be interesting to explore but falls outside the scope of this paper.
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Lex ⊂ {ǫ}×Mor∗ ×{ǫ} {::} Feat∗ {off}, a subset of IC, is a finite set of lexical
items,

F = {merge-agr,move-agr} is a set of structure-building operations.

Notation 8. Let M ∈ Mor such that M = {〈φ1, 〈v1, r1〉〉, ..., 〈φn, 〈vn, rn〉〉}.
Then for i ∈ [1..n], vi ∈ V al is the value of φi in M , and ri ∈ {on, off} ∪ Base

is its rewritability. M can be written as

[

φ1:v1/r1
...

φn:vn/rn

]

or as ∅ if n = 0.

Notation 9. Let f = 〈xf, Y, M〉 ∈ Feat such that f ∈ Base. Then fid = f

is the name of f , Y ∈ {←,←6 } specifies its receiving channel and M ∈ Mor

its emitting channel. f can be written as xfM→
Y . Where it does not lead to

ambiguity, the receiving channel may be omitted if Y = ←6 , and the emitting
channel may be omitted if M = ∅.

Notation 10. Chain lineages are enclosed in parentheses for better readability.

Notation 11. Let item = 〈ǫ,M, ǫ〉 :: γ (off), where M ∈ Mor and γ ∈ Feat∗,

be a lexical item such that the bundle M =
[

φ1:v1/r1
...

φn:vn/rn

]

. Then

[

item

φm+1:vm+1/rm+1
...

φn:vn/rn

]

can be used as a semi-formal abbreviation for M , where item stands for a subset
of lexically valued features {〈φ1, 〈v1, off〉〉, ..., 〈φm, 〈vm, off〉〉} ⊆ M .

At the level of bundles, agreement is handled by two functions updating
active (on) features with values provided by the goal. Downward agreement
(agr↓) leaves all features in the probe on, as the probe is, by definition, part of
the initial chain. Upward agreement (agr↑) sets each probe feature to on if active
in the goal and to a given rewritability value otherwise. An auxiliary function,
act, reactivates features with rewritability values present in a given sequence.

Definition 12. agr↓ : (Mor × Mor) → Mor is a function such that for P,M ∈
Mor, for φ ∈ Basem the result of downward agreement of P with M is as follows:

agr↓(M,P, φ) ≡ P ↓M (φ) =











〈M(φ)[1], on〉 if M(φ) is defined

and P (φ)[2] = on;

P (φ) otherwise.

Definition 13. agr↑ : (({off} ∪ Base) × Mor × Mor) → Mor is a function
such that for P,M ∈ Mor, re ∈ {off} ∪ Base, φ ∈ Basem the result of upward
agreement of P with M (setting to re the rewritability of any feature in P whose
value is not to be shared with the feature in M) is as follows:

agr↑(re,M, P, φ) ≡ P ↑M
re (φ) =















































〈M(φ)[1], on〉 if P (φ)[2] = on

and M(φ)[2] = on;

〈M(φ)[1], re〉 if P (φ)[2] = on

and M(φ)[2] = off;

〈P (φ)[1], re〉 if P (φ)[2] = on

and M(φ) is undefined;

P (φ) otherwise.
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Definition 14. act : (Base+ × Mor) → Mor is a function such that for P ∈
Mor, L ∈ Base+, φ ∈ Basem:

act(L,P, φ) ≡ actL(P, φ) =

{

〈P (φ)[1], on〉 if P (φ)[2] ∈ L;

P (φ) otherwise.

The definitions are extended to apply to objects other than bundles:

Notation 15. For M ∈ Mor, re ∈ {off}∪Base, L ∈ Base+, fun ∈ {agr↓(M),
agr↑(re,M), act(L)}:

for f ∈ Feat, fun(f) = 〈f [1], f [2], fun(f [3])〉;

for (x1, ..., xn) ∈ Mor∗, fun(x1, ..., xn) = fun(x1), ..., fun(xn);

for (x1, ..., xn) ∈ Feat∗, fun(x1, ..., xn) = fun(x1), ..., fun(xn);

for c = s γ (A) ∈ NC such that s ∈ Mor∗ and γ ∈ Feat∗,

fun(c) = fun(s) fun(γ) (A).

Finally, merge and move are redefined to accommodate agreement. The new
rules manipulate lineages as well as bundles. Note that P ↓∅ = P , but P ↑∅

re 6= P :
upward agreement with an empty bundle sets the rewritability of all features in
the goal to re. This special case corresponds to lack of agreement in the absence
of a receiving channel and in intermediate positions of movement.

Definition 16. merge-agr is the union of the following five functions, for ss,
sh, sc, ts, th, tc, t1, ..., tl ∈ Mor∗, · ∈ {:, ::}, f, x1, ..., xl ∈ Base, γ, ζ ∈ Feat∗,
δ1, ..., δl ∈ Feat+, M,N ∈ Mor, L1, ..., Ll ∈ Lineage, X,Y ∈ {←,←6 }, α1, ..., αk,
t1 δ1 x1L1, ..., tl δl xlLl ∈ NC (0 ≤ k, l),

mrg1-agr :
〈ǫ, sh, ǫ〉 :: =fM→

X γ (off) 〈ts, th, tc〉 · fN→
Y (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ǫ, sh
↓N̂ , (tsthtc)

↑M̂
off

〉 : γ↓N̂ (off), (t1 δ1 (x1L1))
↑M̂
x1

, ..., (tl δl (xlLl))
↑M̂
xl

mrg2-agr :
〈ss, sh, sc〉 : =fM→

X γ (off), α1, ..., αk 〈ts, th, tc〉 · fN→
Y [off], t1 δ1 (x1L1), ..., tl δl (xlLl)

〈(tsthtc)
↑M̂
off

ss
↓N̂ , sh

↓N̂ , sc
↓N̂ 〉 : γ↓N̂ (off), α1

↓N̂ , ..., αk
↓N̂ , (t1 δ1 (x1L1))

↑M̂
x1

, ..., (tl δl (xlLl))
↑M̂
xl

mrg3-agr :
〈ss, sh, sc〉 · =fM→

X γ (off), α1, ..., αk 〈ts, th, tc〉 · fN→
Y gζ (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ss
↓N̂ , sh

↓N̂ , sc
↓N̂ 〉 : γ↓N̂ (off), α1

↓N̂ , ..., αk
↓N̂ , (tsthtc gζ (gidoff))

↑M̂
gid

, (t1 δ1 (gidx1L1))
↑M̂
gid

, ..., (tl δl (gidxlLl))
↑M̂
gid

hmrg1-agr :
〈ǫ, sh, ǫ〉 :: =>fM→

X γ (off) 〈ts, th, tc〉 · fN→
Y (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ǫ, th
↑M̂
offsh

↓N̂ , (tstc)
↑M̂
off

〉 : γ↓N̂ (off), (t1 δ1 (x1L1))
↑M̂
x1

, ..., (tl δl (xlLl))
↑M̂
xl

hmrg3-agr :
〈ss, sh, sc〉 · =>fM→

X γ (off), α1, ..., αk 〈ts, th, tc〉 · fN→
Y gζ (off), t1 δ1 (x1L1), ..., tl δl (xlLl)

〈ss
↓N̂ , th

↑M̂
offsh

↓N̂ , sc
↓N̂ 〉 : γ↓N̂ (off), α1

↓N̂ , ..., αk
↓N̂ , (tstc gζ (gidoff))

↑M̂
gid

, (t1 δ1 (gidx1L1))
↑M̂
gid

, ..., (tl δl (gidxlLl))
↑M̂
gid
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where M̂ =

{

M if Y = ←

∅ if Y = ←6
and N̂ =

{

N if X = ←

∅ if X = ←6

Movement rules have to address the additional complication of classifying
chains. Each non-initial chain undergoes upward agreement (if it has the moving
chain in its lineage) or downward agreement (as a subchain of the initial chain).

Definition 17. move-agr is the union of the following three functions, for ss,
sh, sc, t1, ..., tk ∈ Mor∗, f ∈ Base, F ∈ {-f, ∗f}, γ, ζ ∈ Feat∗, δ1, ..., δk ∈ Feat+,
M,N ∈ Mor, A ∈ Base∗, B,L1, ..., Ll ∈ Lineage, X,Y ∈ {←,←6 }, and for
α1, ..., αk ∈ NC (0 ≤ k) such that for j ∈ [1, k] αj = tj δj Lj , satisfying (SMC):
there is exactly one i ∈ [1, k] such that αi has -f or ∗f as its first syntactic
feature

mv1-agr :
〈ss, sh, sc〉 · +fM→

X γ (off), α1, ..., αi−1, ti F
N→
Y (Af off), αi+1, ..., αk

〈(actAf(ti))
↑M̂
offss

↓N̂ , sh
↓N̂ , sc

↓N̂ 〉 : γ↓N̂ (off), α1
′, ..., αi−1

′, αi+1
′, ..., αk

′

where for j ∈ [1, k], j 6= i

αj
′ =











(actLj
′f(tj δj (xLj

′′)))↑M̂
x if Lj = Lj

′
fxLj

′′ such that

Lj
′ ∈ Base∗, x ∈ Base, Lj

′′ ∈ Lineage

(tj δj (Lj))
↓N̂ otherwise

mv2-agr :
〈ss, sh, sc〉 · +fM→

X γ (off), α1, ..., αi−1, ti F
N→
← gζ (AfB), αi+1, ..., αk

〈ss
↓N̂ , sh

↓N̂ , sc
↓N̂ 〉 : γ↓N̂ (off), α1

′, ..., αi−1
′, (actAf(ti gζ (gidB)))↑M̂

gid
, αi+1

′, ..., αk
′

where for j ∈ [1, k], j 6= i

αj
′ =











(actLj
′f(tj δj (gidLj

′′)))↑M̂
gid

if Lj = Lj
′
fLj

′′ such that

Lj
′ ∈ Base∗, Lj

′′ ∈ Lineage

(tj δj (Lj))
↓N̂ otherwise

mv∗-agr :
〈ss, sh, sc〉 · +fM→

X γ (off), α1, ..., αi−1, ti ∗fN→
Y ζ (AfB), αi+1, ..., αk

〈ss, sh, sc〉 : γ (off), α1
′, ..., αi−1

′, (actA(ti ∗fN→
Y ζ (fB)))↑∅

f , αi+1
′, ..., αk

′

where for j ∈ [1, k], j 6= i

αj
′ =











(actLj
′(tj δj (fLj

′′)))↑∅
f if Lj = Lj

′
fLj

′′ such that

Lj
′ ∈ Base∗, Lj

′′ ∈ Lineage

tj δj (Lj) otherwise

where M̂ =

{

M if Y = ←

∅ if Y = ←6
and N̂ =

{

N if X = ←

∅ if X = ←6
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Example 18. G′ = 〈ΣG′ , SynG′ , T ypes, LexG′ ,F〉 is a MGagr. Its lexicon
LexG′ contains the following lexical items:

this :=

〈

ǫ,

[

this

num:ǫ/on
per:ǫ/on
case:ǫ/on

]

, ǫ

〉

:: =n[case:ǫ/on]→
← d -k

[

num:ǫ/on
per:ǫ/on

]

→

← (off)

boy.sg :=

〈

ǫ,

[

boy

num:sg/off
per:3/off
case:ǫ/on

]

, ǫ

〉

:: n

[

num:sg/off
per:3/off

]

→

← (off)

walk :=

〈

ǫ, [ walk ] , ǫ

〉

:: =d v (off)

prs :=

〈

ǫ,

[

prs

num:ǫ/on
per:ǫ/on

]

, ǫ

〉

:: =v +k[case:nom/off]→
← t (off)

G′ generates one expression of category t:
mv1-agr

〈[

this

num:sg/off
per:3/off

case:nom/off

][

boy

num:sg/off
per:3/off

case:nom/off

]

, [ walk ]

[

prs

num:sg/on
per:3/on

]

, ǫ

〉

:
t (off)

hmrg1-agr
〈

ǫ, [ walk ]

[

prs

num:ǫ/on
per:ǫ/on

]

, ǫ

〉

,

:
+k[case:nom/off]→

← t (off)

[

this

num:sg/k
per:3/k
case:ǫ/k

][

boy

num:sg/off
per:3/off
case:ǫ/k

]

-k

[

num:sg/k
per:3/k

]

→

← (k off)

mrg3-agr
〈

ǫ, [ walk ] , ǫ

〉

,

:
v (off)

[

this

num:sg/k
per:3/k
case:ǫ/k

] [

boy

num:sg/off
per:3/off
case:ǫ/k

]

-k

[

num:sg/k
per:3/k

]

→

← (k off)

mrg1-agr
〈

ǫ,

[

this

num:sg/on
per:3/on
case:ǫ/on

]

,

[

boy

num:sg/off
per:3/off
case:ǫ/on

] 〉

:

d -k

[

num:sg/on
per:3/on

]

→

← (off)

boy.sg
〈

ǫ,

[

boy

num:sg/off
per:3/off
case:ǫ/on

]

, ǫ

〉

::

n

[

num:sg/off
per:3/off

]

→

← (off)

this
〈

ǫ,

[

this

num:ǫ/on
per:ǫ/on
case:ǫ/on

]

, ǫ

〉

::

=n[case:ǫ/on]→
← d -k

[

num:ǫ/on
per:ǫ/on

]

→

← (off)

walk
〈

ǫ, [ walk ] , ǫ

〉

::
=d v (off)

prs
〈

ǫ,

[

prs

num:ǫ/on
per:ǫ/on

]

, ǫ

〉

::
=v +k[case:nom/off]→

← t (off)
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4 Case Study: Dative Intervention in Icelandic

4.1 Data

A certain class of Icelandic constructions exhibits an interesting agreement pat-
tern. The verb agrees in number with its nominative object inside a small clause
(SC). However, this agreement seems optional: as an alternative, the verb may
appear in the default 3.sg form. Furthermore, agreement can be disrupted by a
dative experiencer intervening between the verb and the nominative object, in
which case only the default verb form is possible. Only some experiencers cause
this effect (1), while others are transparent for agreement (2):

(1) a. Það
expl

finnst

find.sg

fáum
few

börnum
children.dat

[sc tölvurnar
computers.def.nom

ljótar
ugly.nom

].

b. *Það
expl

finnast

find.pl

fáum
few

börnum
children.dat

tölvurnar
computers.def.nom

ljótar.
ugly.nom

‘Few children find the computers ugly.’ [13, pp. 54–55]

(2) a. Það
expl

finnst

find.sg

mörgum
many

stúdentum
students.dat

tölvurnar
computers.def.nom

ljótar.
ugly.nom

b. Það
expl

finnast

find.pl

mörgum
many

stúdentum
students.dat

tölvurnar
computers.def.nom

ljótar.
ugly.nom

‘Many students find the computers ugly.’ [10, p. 1000]

The intervention effect can occur even if the dative undergoes wh-movement
and no longer linearly intervenes between the verb and the nominative object:

(3) a. Hvaða
which

stúdent
student.dat

finnst

find.sg

tölvurnar
computers.def.nom

ljótar?
ugly.nom

b. Hvaða
which

stúdent
student.dat

??finnast

find.pl

tölvurnar
computers.def.nom

ljótar?
ugly.nom

‘Which student finds the computers ugly?’ [10, p. 1001]

A generalization dealing with these examples is proposed in [13]: dative expe-
riencers are transparent for agreement just in case they can undergo Object
Shift – a movement to the specifier of v. The ability of a DP to shift is an
independent property of the quantifier. Furthermore, [13] argues that agreement
with the nominative is, in fact, deterministic: obligatory iff the experiencer has

shifted, impossible otherwise. Object Shift is string-vacuous in examples like
(2a). However, VP-level adverbs are expected to precede an in-situ dative and
follow a shifted dative. The former configuration is compatible only with default
agreement (4), while the latter only with normal agreement (5):

(4) a. Það
expl

finnst

find.sg

fljótt
quickly

mörgum
many

köttum
cats.def.dat

mýsnar
mice.def.nom

góðar.
tasty

b. Það
expl

??/*finnast

find.pl

fljótt
quickly

mörgum
many

köttum
cats.def.dat

mýsnar
mice.def.nom

góðar.
tasty

‘Many cats quickly find the mice tasty.’ [13, p. 63]
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(5) a. Það
expl

??/*finnst

find.sg

mörgum
many

köttum
cats.def.dat

fljótt
quickly

mýsnar
mice.def.nom

góðar.
tasty

b. Það
expl

finnast

find.pl

mörgum
many

köttum
cats.def.dat

fljótt
quickly

mýsnar
mice.def.nom

góðar.
tasty

‘Many cats quickly find the mice tasty.’ [13, p. 63]

This reasoning is extended to fronted dative experiencers, including wh-
arguments (3), which are also required to undergo Object Shift for agreement to
succeed. Importantly, Object Shift does not alter the relation between the T(ense)
head, which morphologically manifests agreement, and the nominative object.
This observation can be reconciled with the traditional notion of Agree by assum-
ing that the primary locus of agreement is lower than T – namely, v. Object Shift
removes the dative from the probing domain of v, allowing v to probe the nomina-
tive object. T inherits the relevant features from v (via Agree with other heads
intervening between T and v). This approach to Agree reduces an instance of
long-distance agreement to a series of local dependencies – not unlike the MGagr

formalism.

4.2 Grammar Fragment

Let each determiner phrase transmit its number value via its category fea-
ture channel and the default value via its licensee channel. Then the differ-
ence between shiftable and non-shiftable DPs can be reduced to the distinction
between a starred licensee (∗k) and a plain licensee (-k).6

many∼ :=
〈

ǫ,
[

many∼
num:pl/off

]

, ǫ
〉

:: d[num:pl/off]→ ∗k[num:ǫ/off]→ (off)

few∼ :=
〈

ǫ,
[

few∼
num:pl/off

]

, ǫ
〉

:: d[num:pl/off]→ -k[num:ǫ/off]→ (off)

The verb find selects a small clause (containing an object DP) and an expe-
riencer DP, receiving a number value from the former. There is no agreement
with the dative experiencer, so the relevant selector =d has no receiving channel.

find :=
〈

ǫ, [ find ] , ǫ
〉

:: =sc← =d V[num:ǫ/on]→ (off)

SC :=
〈

ǫ,
[

SC

num:pl/off

]

, ǫ
〉

:: sc[num:pl/off]→ (off)

The crucial point in the derivation is AgrO which has two receiving channels.
v and vshift pass information along; additionally, vshift provides the landing site
of Object Shift. Thus, T eventually receives the last value transmitted to AgrO.

AgrO :=
〈

ǫ, [ AgrO ] , ǫ
〉

:: =>V← +k← agrO[num:ǫ/on]→ (off)

6 For space reasons, DPs and small clauses are treated as atomic units. They can
be decomposed to model internal agreement in detail. In particular, it is possible
to embed DPs within another functional projection, connecting intervention and
case (cf. [14], i.a.); this would allow the verb to assign dative to its argument and
manipulate the agreement properties of its outer layer at the same time.
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v :=
〈

ǫ, [ v ] , ǫ
〉

:: =>agrO← v[num:ǫ/on]→ (off)

vshift :=
〈

ǫ, [ vshift ] , ǫ
〉

:: =>agrO← +k v[num:ǫ/on]→ (off)

T :=
〈

ǫ,
[

T

num:ǫ/on

]

, ǫ
〉

:: =>v← t (off)

Abstracting away from person and case, the eight lexical items defined above
suffice7 to model the number contrast between (1) and (2). Any experiencer can
check its licensee in the specifier of AgrO. In this case, AgrO receives the default
number value, giving rise to (1a) and (2a).

Example 19. The derivation of (1a) proceeds as follows:

i1 :=mrg1-agr (find, sc)

=
〈

ǫ, [ find ] ,
[

SC

num:pl/off

]

〉

: =d V[num:pl/on]→ (off)

i2 :=mrg3-agr (i1, few∼)

=
〈

ǫ, [ find ] ,
[

SC

num:pl/off

]

〉

: V[num:pl/on]→ (off),
[

few∼
num:pl/off

]

-k[num:ǫ/off]→ (off)

i3 := hmrg1-agr (AgrO, i2)

=
〈

ǫ, [ find ] [ AgrO ] ,
[

SC

num:pl/off

]

〉

:: +k← agrO[num:pl/on]→ (off),
[

few∼
num:pl/off

]

-k[num:ǫ/off]→ (k off)

i4 :=mv1-agr (i3)

=
〈

[

few∼
num:pl/off

]

, [ find ] [ AgrO ] ,
[

SC

num:pl/off

]

〉

: agrO[num:ǫ/on]→ (off)

i5 := hmrg1-agr (v, i4)

=
〈

ǫ, [ find ] [ AgrO ] [ v ] ,
[

few∼
num:pl/off

] [

SC

num:pl/off

]

〉

: v[num:ǫ/on]→ (off)

i6 := hmrg1-agr (T, i5)

=
〈

ǫ, [ find ] [ AgrO ] [ v ]
[

T

num:ǫ/on

]

,
[

few∼
num:pl/off

] [

SC

num:pl/off

]

〉

: t (off)

7 These items support partial derivations up to T, where morphological dependencies
are resolved. Assuming that expletives are merged above TP and move to the specifier
of CP [3], the following addition enables full CP derivations of (1)–(3):

which∼ :=
〈

ǫ,
[

which∼

num:pl/off

]

, ǫ
〉

:: d
[num:pl/off]→

-k
[num:ǫ/off]→

-wh (off)

Texpl :=
〈

ǫ, [ Texpl ] , ǫ
〉

:: =t =expl t (off)

Expl :=
〈

ǫ, [ expl ] , ǫ
〉

:: expl -wh (off)

C :=
〈

ǫ, [ C ] , ǫ
〉

:: =t +wh c (off)
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The second option is only available for shiftable experiencers. The ∗k feature
can “survive” movement to the specifier of AgrO to be checked later, in the spec-
ifier of vshift (whose +k has no receiving channel): this movement corresponds
to Object Shift. In this case, AgrO will never receive the default agreement value
and will instead transmit whatever value came from the small clause, resulting
in the verb agreeing with its nominative argument.

Example 20. The derivation of (2b) proceeds as follows:

a1 :=mrg1-agr (find, sc)

=
〈

ǫ, [ find ] ,
[

SC

num:pl/off

]

〉

: =d V[num:pl/on]→ (off)

a2 :=mrg3-agr (a1, many∼)

=
〈

ǫ, [ find ] ,
[

SC

num:pl/off

]

〉

: V[num:pl/on]→ (off),
[

many∼
num:pl/off

]

∗k[num:ǫ/off]→ (k off)

a3 := hmrg1-agr (AgrO, a2)

=
〈

ǫ, [ find ] [ AgrO ] ,
[

SC

num:pl/off

]

〉

: +k← agrO[num:pl/on]→ (off),
[

many∼
num:pl/off

]

∗k[num:ǫ/off]→ (k off)

a4 :=mv∗-agr (a3)

=
〈

ǫ, [ find ] [ AgrO ] ,
[

SC

num:pl/off

]

〉

: agrO[num:pl/on]→ (off),
[

many∼
num:pl/off

]

∗k[num:ǫ/off]→ (k off)

a5 := hmrg1-agr (vshift, a4)

=
〈

ǫ, [ find ] [ AgrO ] [ vshift ] ,
[

SC

num:pl/off

]

〉

: +k v[num:pl/on]→ (off),
[

many∼
num:pl/off

]

∗k[num:ǫ/off]→ (k off)

a6 :=mv1-agr (a5)

=
〈

[

many∼
num:pl/off

]

, [ find ] [ AgrO ] [ vshift ] ,
[

SC

num:pl/off

]

〉

: v[num:pl/on]→ (off)

a7 := hmrg1-agr (T, a6)

=
〈

ǫ, [ find ] [ AgrO ] [ vshift ]
[

T

num:pl/on

]

,
[

many∼
num:pl/off

] [

SC

num:pl/off

]

〉

: t (off)

5 Discussion

In this paper, I have developed a modification of Minimalist Grammars that
accommodates morphological agreement, redefining syntactic operations over
bundles of morphological features. The Agree operation of Chomsky’s Mini-
malist Program is reduced to local transmission of information over syntac-
tic dependencies. In order to demonstrate the practicality of the new formal-
ism, I have used it to express a precise, formalized analysis of Icelandic dative
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intervention inspired by the proposal in [13]. The key element of the generaliza-
tion – namely, the link between Object Shift and agreement – has been translated
into a grammar fragment, which can be expanded further to incorporate more
insights from Minimalist syntax (see e.g. fn. 6, 7).

MGs with agreement output sequences of bundles and can interface with
any sufficiently explicit theory of morphology. For instance, they are compatible
with formalizations of Distributed Morphology [9] that take a sequence of feature
structures as syntactic input: [19] and, more recently, [6].

While proving the equivalence of MGs with agreement and unmodified MGs
is outside the scope of this paper, a few observations on the matter are in order.
Agreement is transmitted across dependencies established by structure-building
operations. This limits the number of goals in any given expression to the number
of chains, which, in turn, is guaranteed to be finite by the SMC. The problem of
long-distance upward agreement, which is the only remaining source of “nonlo-
cality” in the grammar, is addressed by adopting an approach similar to feature
sharing: informally speaking, each item that requires a feature value via upward
agreement pushes the responsibility for obtaining it to whatever item immedi-
ately selects or licenses it. Thus, at any given point in the derivation, there are
finitely many different morphological feature values which can be updated or
transmitted to other items. This makes it possible to convert an MGagr into an
equivalent MG, reformulating lexical items over bundles in terms of unanalyzable
elements (corresponding to bundles of valued features) and recasting agreement
transformations as compatibility constraints.

Acknowledgments. My thanks to Karlos Arregi and Greg Kobele for their advice
regarding both the linguistic and the formal aspects of this paper, and to the anonymous
reviewers for their helpful comments and suggestions.
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Abstract. I present an analysis of the interpretation of anaphora that
takes concepts from type-theoretic semantics, in particular the use of
the Σ and Π dependent type constructors, and incorporates them into a
model-theoretic framework. The analysis makes use of (parametrically)
polymorphic lexical entries. The key ideas are that, in the simplest case,
eventualities can play the role that proof objects do in type-theoretic
semantics; that more complex, compositionally-defined, structures can
play that role in other cases; and that pronouns can be modelled by
context-dependent functions from proof objects of the preceding dis-
course (in this sense) to entities.

Keywords: Anaphora · Donkey sentences · Polymorphism

1 Introduction

Type-theoretic semantics (TTS) is a variety of proof-theoretic semantics accord-
ing to which the meaning of a sentence is a type in some underlying type theory,
such that objects of that type are proofs of the proposition expressed by the
sentence; we may say, then, that the sentence is true if and only if there is some
object of that type [18].

Type theories chosen for TTS tend to be based on the intuitionistic type
theory (ITT) of Martin-Löf [15], which contributes the particularly important
(for TTS analyses) dependent type constructors Σ and Π, defined as in (1).

(1) a. If A is a type and, on the assumption that x is of type A, B is a type,
then (Σx : A)(B) and (Πx : A)(B) are types.

b. Objects of type (Σx : A)(B) are ordered pairs 〈a, b〉 such that a is of
type A and b is of type B[a/x].

c. Objects of type (Πx : A)(B) are functions f with domain A such
that for any object a of type A, f(a) is of type B[a/x].

In TTS, Σ and Π types can be used to give the meanings of existentially and
universally quantified sentences, respectively.1 For example, on the assumptions
1 Σ can also be used to give the meaning of conjunction, and Π implication; this
is reflected in the lexical entries given in Fig. 1. Limitations of space prevent any
further consideration of these connections here.
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that donkey is the type of donkeys and that (for any x) bray(x) is the type of
proofs that x is braying, (2-a)–(2-b) have the interpretations given by the types
shown in (3-a)–(3-b) respectively.

(2) a. A donkey is braying.
b. Every donkey is braying.

(3) a. (Σx : donkey)(bray(x))
b. (Πx : donkey)(bray(x))

In this analysis, (2-a) is true iff there is some object of the type shown in
(3-a), i.e. an ordered pair consisting of a donkey and a proof that that donkey is
braying. Likewise, (2-b) is true iff there is some object of the type shown in (3-b),
i.e. a function mapping every donkey to a proof that that donkey is braying.

TTS gives us the resources to formalize the famous ‘donkey sentence’ (4)
from [6], in a way that respects the syntax of the English sentence.

(4) Every farmer who owns a donkey beats it.

On the most natural interpretation of (4), the interpretation of it co-varies
with that of a donkey. The well-known problem that this example poses for
model-theoretic semantic (MTS) theories in the tradition of [16] is that this co-
variation cannot straightforwardly be accounted for. In the natural näıve formal-
ization of (4), shown in (5), the variable y in the consequent of the conditional is
outside the scope of the existential quantifier.2 Its interpretation would therefore
not covary with donkeys according to standard model theory.3

(5) ∀x.(farmer(x) ∧ ∃y.donkey(y) ∧ own(x, y)) → beat(x, y)

There is a truth-conditionally adequate formalization of (4), shown in (6),
but this leaves an explanatory gap as to why the (normally) existential a donkey
should end up being translated as a universal quantifier.

(6) ∀x.∀y.(farmer(x) ∧ (donkey(y) ∧ own(x, y))) → beat(x, y)

By contrast, as first pointed out in [21], in TTS the meaning of (4) can be
expressed by the type shown in (7), where Π has been given as the meaning of
every and Σ has been given as the meaning of a, as expected. (This translation
also makes use of the projections p and q, where for any ordered pair 〈a, b〉,
p(〈a, b〉) = a and q(〈a, b〉) = b.)

(7) (Πz : (Σx : farmer)((Σy : donkey)(own(x, y))))(beat(p(z), p(q(z))))

2 Here and throughout the paper, a dot following a variable binder will often be used
instead of parentheses to indicate unbounded scope to the right.

3 One option, therefore, is to change the model theory so that (5) would be interpreted
in the desired way. This, explicitly, is the approach taken in Dynamic Predicate Logic
(DPL) [8]. Discourse Representation Theory (DRT) [13] and File Change Semantics
(FCS) [10] take a similar approach.
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The type shown in (7) is the type of functions f such that:

– the domain of f is the set of ordered pairs 〈a, b〉 such that:
• a is a farmer, and
• b is an ordered pair 〈c, d〉 such that

∗ c is a donkey, and
∗ d is a proof that a owns c, and

– f maps every 〈a, 〈c, d〉〉 in its domain to a proof that a beats c.

If and only if there is such a function, then there is an object of the type given in
(7), and therefore, according to TTS, (4) is true on the intended interpretation.

The insight that ITT can be fruitfully applied to natural language semantics
has been expanded into a detailed system in [18], and the analysis of anaphora,
including especially cases like (4), has been developed and improved recently in
[2]. In this paper, I will give an implementation of the ideas underlying the TTS
analysis of anaphora, largely based on [2], in a model-theoretic framework.4 This
implementation has a two-fold motivation. Firstly, it enables us to examine the
extent to which the TTS account of anaphora genuinely depends on an enriched
type theory. Secondly, it provides insight into the relationship between the TTS
account of anaphora and some ‘dynamic’ accounts in the MTS literature, given
the similarity between the system that we end up with and some of them.

The paper is structured as follows. In Sect. 2 a translation of the account of
[2] into higher-order logic will be built up in stages. In Sect. 3 I will expand the
analysis to generalized quantifiers and plurals. Section 4 concludes.

2 Translating TTS for Anaphora into MTS

2.1 A First Pass

As a first step in our implementation we can consider again the interpretations
given by TTS to (2-a)–(2-b) shown in (3-a)–(3-b) respectively. For the case of
the Σ type constructor, and hence the existential claim, we have the gloss shown
in (8).

(8) A donkey is braying is true iff there is an ordered pair consisting of a
donkey and a proof that donkey is braying.

What would constitute a proof that a donkey is braying? In the light of the
helpful discussion in [18], Sect. 2.26, I will take the proof object to be an event,
and in general the proof objects denoted by VPs to be eventualities. We will
need in our underlying type theory a basic type v for eventualities, then, in
addition to the basic types e for entities and t for truth values. For reasons to be
discussed in Sect. 2.2, I will also assume that the unit type 1 is among our basic
4 By this, I mean that meanings will be given as expressions of a logical language,
which are taken to be dispensable in favour of their interpretations in a model (as
in [16]), which is where the ‘real’ semantics is. Expressions of the language of type
theory are not understood this way in TTS; see [14] and [18], Sect. 2.27.
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types. As (8) shows that we want to express ordered pairs, we will also need
the type constructor × for binary product types in addition to the standard type
constructor � for functional types, along with associated term constructors (., .)
for pairing and [.]0 and [.]1 for left and right projections, respectively.

Given these considerations, (2-a) can be translated into higher-order logic
as shown in (9). Note that I am assuming a ‘Davidsonian’ approach to events
according to which predicates denote relations between individuals and events
directly, rather than mediated by theta roles.

∃ae × v.donkey([a]0) ∧ bray(a)(9)
∃xe.∃ev.donkey(x) ∧ bray(x, e)≡

However, recall that the non-empty type condition reflected in (8) (‘there
is. . . ’) comes from TTS—that is to say, from the natural language semantic appli-
cation of ITT and not from the definitions of the type constructors themselves;
it is not, for example, reflected in (3-a). It therefore seems more appropriate to
say that the compositionally-constructed interpretation of (2-a) is as shown in
(10), and that existential closure of the abstracted variable a comes about from
a discourse process. As we will see in Sect. 2.2, this will also allow indefinites to
bind pronouns outside of what is normally thought to be their scope.

(10) λae × v.donkey([a]0) ∧ bray(a)

These considerations lead to the provisional lexical entry for a, expressed in
TTS by Σ, shown in (11).5

(11) λP e � t.λV e � v � t.λae × v.P ([a]0) ∧ V ([a]0)([a]1)

Now let us consider the Π type constructor, and the interpretation given to
(2-b) in (3-b) as glossed in (12).

(12) Every donkey is braying is true iff there is a function mapping every
donkey to a proof that donkey is braying.

Here, we meet a complication that is not present in the discussion of Σ. Given
the definition of the Π type constructor, the domain of the function alluded
to in (12) should just be the set of donkeys. But this is not straightforward to
accomplish in higher-order logic without having a type of donkeys—which is
precisely a feature of TTS that we want to eliminate. The technique that I will
adopt at this point is simply to say that the function is defined on the whole
domain of entities, but that its interpretation is constrained in the right way
whenever it applies to a donkey. Therefore, (3-b) can be translated as shown in
(13), and hence the provisional lexical entry for every, expressed in TTS by Π,
can be given as shown in (14).

5 In the type annotations, here and throughout the rest of the paper, brackets are
omitted where possible, on the understanding that both × and � associate to the
right and that × binds more tightly than �.
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λfe � v.∀xe.donkey(x) → bray(x, f(x))(13)

λP e � t.λV e � v � t.λfe � v.∀xe.P (x) → V (x)(f(x))(14)

We meet another complication when we consider the interpretation of the
relative pronoun who. As shown in (7), the TTS analysis formalizes this using Σ,
like the indefinite article—this, in fact, is part of what makes the extended binding
scope possible. So we might expect the lexical entry to be as shown in (15).

(15) λV e � v � t.λP e � t.λae × v.P ([a]0) ∧ V ([a]0)([a]1)

However, on the basis of the provisional lexical entry given for a in (11) and
other natural assumptions, the VP owns a donkey would be translated as shown
in (16), and the types of (15) and (16) don’t fit together.

(16) λxe.λae × v.donkey([a]0) ∧ own(x, a)

This example shows up the need for some limited polymorphism in our lexical
entries. (16) is not quite of the right type to be an argument for (15) because
it contains extra information about an indefinite that was an argument to the
embedded verb, and therefore is of type e� e× v � t rather than e� v � t as
expected by (15).

A similar issue is brought to light if we use (15) to derive the interpretation
of a modified noun not containing any indefinites, for example donkey who brays,
as shown in (17).

(17) λae × v.donkey([a]0) ∧ bray(a)

Unsurprisingly—given that (15) is just a permutation of (11)—(17) is identical
to the interpretation derived for a donkey brays in (10). It is of type e× v � t,
not e� t, and therefore not the right type to be an argument to (11).

The final limitation of the account so far is that there is no obvious way to
incorporate pronouns. In the system set out in the next section, I will follow [2]
and address this limitation by introducing a notion of context and a mechanism
for updating it.

2.2 Full Implementation

In Fig. 1 I have given an initial list of lexical entries for a fragment to be used
in this paper.

Some remarks are in order. Firstly, how should we understand the lowercase
Greek letters in the type annotations? I prefer to think of them as metavariables
over types, such that what we have in Fig. 1 are schemata over lexical entries.
An alternative is to think of them as genuine type variables that should really be
abstracted over as in System F [7], such that e.g. the translation for and would
be as shown in (18), with the universally-quantified type indicated.
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Λα.Λβ.Λγ.λp.λq.λi.λa.p(i)([a]0) ∧ q(i, [a]0)([a]1) :(18)
∀α.∀β.∀γ.(α �β � t)� (α ×β � γ � t)� α � β × γ � t

What I want to stress, though, is that in either case we do not need the whole
power of System F , since we only need (and want) the type variables to range
over unquantified types. [5] has provided a set-theoretic model theory for this
kind of polymorphism, whereas there are no set-theoretic models for the full
System F [19].

Fig. 1. Some (schematic) lexical entries

Secondly, note that all the lexical entries incorporate an extra (polymorphic)
argument position for input context, and that context is updated and passed
on in appropriate ways. For example, the lexical entry for and requires that the
first conjunct, and the conjunction as a whole, be dependent on input context i
of (some) type α. The second conjunct is then dependent on i extended with the
contribution of the first conjunct, of type β. The effect of this will be seen in the
treatment of examples to be considered. N.B. for the sake of transparency, the
lexical entry given for conjunction is ‘leftward-looking’, i.e. the first argument is
the first conjunct.

Thirdly, the lexical entry for the common noun has a ‘dummy’ position filled
by abstraction over the unit type. This is so as to achieve uniformity for modified
and unmodified common nouns: both donkey and donkey who brays will be of
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type e× α � β � t, for some α and β, and hence the issue of type mismatch raised
in Sect. 2.1 with respect to these examples does not arise.6

Fourthly and finally, the lexical entries given for the pronouns he and it con-
tain a free variable. The idea is that this free variable is resolved in context,
subject to constraints that will be discussed. This aspect of the analysis is cer-
tainly not crucial: [11] has shown how, with the appropriate syntax, apparently
free variables can actually be lambda-bound and retained in interpretation until
such point as they are discharged. In the interest of making as few assumptions
about syntax as possible, however, I retain a free variable analysis.

2.3 Examples

Now let us consider some examples, beginning with the example of cross-
sentential binding shown in (19), where it is most readily interpreted as roughly
synonymous with the donkey that brays.

(19) A donkey brays. Giles owns it.

We assume that the input context for (19) contains no information, so it is ∗ : 1.7

In what follows I will use the notation [word]var :=type , meaning the translation
of word on the assumption that the type metavariable var is resolved to type.

The interpretation of the first sentence of (19) proceeds as follows:

a donkey 
→ [a]α,β:=1;γ:=v
(
[donkey]α:=1

)

⇒β λV e � 1× e × 1� v � t.λi1.λa(e × 1)× v.donkey([[a]0]0) ∧ V ([[a]0]0)(i, [a]0)([a]1)

a donkey brays 
→ [a donkey]
(
[brays]α:=1× e × 1

)

⇒β λi1.λa(e × 1)× v.donkey([[a]0]0) ∧ bray([[a]0]0, [a]1)

The interpretation is not dependent on the input context: λi is a vacuous
abstraction. The second sentence is then interpreted as follows:

owns it 
→ [owns]α,β:=1× (e × 1)× v;γ:=v
(
[it]α:=e;β:=1× (e × 1)× v;γ:=v

)

⇒β λxe.λi1× (e × 1)× v.λev.own(x, g1× (e × 1)× v � e(i), e)

Giles owns it 
→ [Giles]α:=1× (e × 1)× v;β:=v ([owns it])

⇒β λi1× (e × 1)× v.λae × v.own([a]0, g1× (e × 1)× v � e(i), [a]1) ∧ [a]0 = giles

This time the interpretation is dependent on the input context because of
the pronoun: λi is not a vacuous abstraction. Putting the sentences together, we
have:
6 The same issue prompted [2] to switch from treating common nouns as type-denoting
to predicate-denoting.

7 In the rest of the paper this will be referred to as ‘the null context’, and will generally
be assumed.
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(19) 
→ [and]α:=1;β:=(e × 1)× v;γ:=e × v ([a donkey brays]) ([Giles owns it])

⇒β λi1.λa((e × 1)× v)× e × v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)

∧ (
own

(
[[a]1]0, g1× (e × 1)× v � e(i, [a]0), [[a]1]1

)

∧ [[a]1]0 = giles
)

Now the interpretation is potentially dependent on the input context, because i
is within the argument to the free variable g. However, g is also fed [a]0, which
means that it in (19) can refer back to a referent introduced in the first clause.

g is a free variable and is contextually resolved. However, we can impose
constraints on what a natural resolution would be. What we want to say is that
if g is a function the domain of which is a tuple (of tuples. . . ), then a natural
resolution of g is a function that selects an element of (an element of. . . ) that
tuple. This requirement can be given the recursive definition shown in (20).

(20) For any types α, β and γ:
a. λbα.b is a natural resolution function (NRF).
b. λbα × β .[b]0 is an NRF.
c. λbα × β .[b]1 is an NRF.
d. For any terms F : β � γ and G : α � β, λbα.F (G(b)) is an NRF if F

and G are NRFs.

So in particular, λb1× (e × 1)× v.[[[b]1]0]0 is a natural resolution function. With
this resolution, (19) would be interpreted as shown in (21).

λi1.λa((e × 1)× v)× e × v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)

∧ (
own

(
[[a]1]0, λb([[[b]1]0]0)(i, [a]0), [[a]1]1

)

∧ [[a]1]0 = giles
)

(21)

λi1.λa((e × 1)× v)× e × v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)

∧ (
own

(
[[a]1]0, [[[a]0]0]0, [[a]1]1

) ∧ [[a]1]0 = giles
)

⇒β

This is the interpretation of the two-sentence discourse shown in (19). It is
a relation, as in common in dynamic semantic systems, between an input and
an output. It is also common in dynamic semantic systems to give a derived
truth definition for this relational meaning. What that amounts to in this case
is to take the input to be the null context ∗ : 1 (as discussed above), and then
existentially close the result;8 as noted in Sect. 2.1, existential closure achieves
the effect of the non-empty type condition from TTS. If we do that, then we
derive (22) from (21).

8 This corresponds closely to the truth definition for DRT proposed in [12], p. 149.
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∃a((e × 1)× v)× e × v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)

∧ (
own

(
[[a]1]0, [[[a]0]0]0, [[a]1]1

) ∧ [[a]1]0 = giles
)

(22)

∃xe.∃ev.∃ye.∃e1
v.

(
donkey(x) ∧ bray(x, e)

) ∧ (
own(y, x, e1) ∧ y = giles

)≡

(22) accurately represents the intended interpretation of (19).
The system provides a semantic account for why the interpretation of it

cannot covary with donkeys in (23) or (the most natural interpretation of)9

(24).

(23) Every donkey brays. Giles owns it.

(24) Giles does not own a donkey. It brays.

(23) is interpreted as follows:

[and]
α:=1;β:=τ ;
γ:=e × v

(
[every]α,β:=1

(
[donkey]α:=1

) (
[brays]α:=1× e × 1

))

(
[Giles]α:=1× τ ;β:=v

(
[owns]α,β:=1× τ ;γ:=v

(
[it]α:=e;β:=1× τ ;γ:=v

)))

⇒β λi1.λaτ × e × v.∀xe × 1
(
donkey([x]0) → bray([x]0, [a]0(x))

)

∧ (
own([[a]1]0, g1× τ � e(i, [a]0), [[a]1]1) ∧ [[a]0]0 = giles

)

Where τ := e× 1� v. Given the type of the free variable g, there is no way to
get a bound reading for the pronoun.

The explanation in the case of (24) is essentially the same. It is (most natu-
rally) interpreted as follows:

[and]α:=1;β:=e × (τ � τ);γ:=v

(
[Giles]

α:=1;
β:=τ � τ

(
[not]

α:=1;
β:=τ

(
[own]

α:=1× e × 1;
β:=1;γ:=τ

(
[a]

α,β:=1;
γ:=v

(
[donkey]α:=1)))))

(
[it]α:=e;β:=1× e × (τ � τ);γ:=v

(
[brays]α:=1× e × (τ � τ)

))

⇒β λi1.λa(e × (τ � τ))× v.
(
∀bτ((

donkey([[b]0]0) ∧ own([[a]0]0, [[b]0]0, [b]1)
)

→ [[a]0]1(b) �= [[a]0]1(b)
)

∧ [[a]0]0 = giles
)

∧ bray(g(1× e × (τ � τ)) � e(i, [a]0), [a]1)

Where τ := (e× 1)× v. Once again, given the type of the free variable g, there
is no way to get an unattested bound reading for the pronoun.

As in TTS, the treatment of negation here10 is inspired by the equivalence,
in classical and intuitionistic logic, of ¬φ and φ → ⊥. A proof object of Giles
9 Some speakers may allow an interpretation of (24) on which a donkey takes wider
scope than negation. In that case, the pronoun could anaphorically refer back to the
donkey.

10 Figure 1 defines VP negation, which is derived from sentential negation in the obvious
way. The VP formulation is more transparent in terms of compositional semantics,
and also makes Giles available for anaphoric reference.
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does not own a donkey is taken to be a pair consisting of Giles and a function
mapping every state of Giles owning a donkey to an absurd (non-self-identical)
object. Therefore, for there to be a proof object of Giles does not own a donkey,
there cannot be a proof object of Giles owns a donkey.

Now we can look at a couple of genuine donkey sentences.

(25) Every farmer who owns a donkey feeds it.

�→ [every]
α:=1× τ ;
β:=1;γ:=v

(
[who]

α,β:=1;
γ:=τ

(
[owns]

α:=σ × e × 1;
β:=σ;γ:=τ

(
[a]α,β:=σ ([donkey]α:=σ)

) )
(
[farmer]α:=σ;β:=1;γ:=v

) )
(
[feeds]α,β:=1× e × 1× τ ;γ:=v

(
[it]α:=e;β:=1× e × 1× τ ;γ:=v

))

⇒β λi1.λfe × 1× τ � v.∀ae × 1× τ .
(
farmer([a]0) ∧ (

donkey([[[[a]1]1]0]0)

∧ own([a]0, [[[[a]1]1]0]0, [[[a]1]1]1)
))

→ feed([a]0, g
1× τ � e(i, a), f(a))

Where σ := 1× e× 1 and τ := (e× 1)× v, as for the rest of the discussion of
(25).

This time, the resolution function that we want is λb.[[[[[b]1]1]1]0]0.11 If g is
resolved in this way then we derive the interpretation shown in (26).

λi1.λf (e × 1)× τ � v.∀a(e × 1)× τ .
(
farmer([a]0) ∧ (

donkey([[[[a]1]1]0]0)

∧ own([a]0, [[[[a]1]1]0]0, [[[a]1]1]1)
))

→ feed([a]0, λb([[[[[b]1]1]1]0]0)(i, a), f(a))

(26)

λi1.λf (e × 1)× τ � v.∀a(e × 1)× τ .
(
farmer([a]0) ∧ (

donkey([[[[a]1]1]0]0)

∧ own([a]0, [[[[a]1]1]0]0, [[[a]1]1]1)
))

→ feed([a]0, [[[[a]1]1]0]0, f(a))

⇒β

If we apply (26) to the null context and then apply existential closure, we
get (27).

∃f (e × 1)× τ � v.∀a(e × 1)× τ .
(
farmer([a]0) ∧ (

donkey([[[[a]1]1]0]0)

∧ own([a]0, [a]1,1,0,0, [[[a]1]1]1)
))

→ feed([a]0, [[[[a]1]1]0]0, f(a))

(27)

∀xe.∀ye.∀ev.(farmer(x) ∧ (donkey(y) ∧ own(x, y, e))) → ∃e1
v.feed(x, y, e1)≡

The interpretation just derived is equivalent to that derived for (28), as shown
below.
11 As stated, λb.[[b]1]0 is also a possible resolution function, which would have it varying

with farmers rather than donkeys, which is obviously not a possible reading of (25).
This reading could be ruled out by tweaking the lexical entry for every, but only at
the cost of ruling out interpretations that we do want when we have an embedded
clause. The mechanism for ruling out violations of ‘Principle B’ must come from
somewhere else.
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(28) If a farmer owns a donkey, he feeds it.


→ [if]

α:=1;
β:=τ ;
γ:=v

(
[a]

α,β:=1;
γ:=(e × 1)× v

(
[farmer]α:=1

)

⎛

⎝[owns]

α:=σ × e × 1;
β:=σ;
γ:=(e × 1)× v

⎛

⎝[a]

α:=1;
β:=σ;
γ:=v ([donkey]α:=σ)

⎞

⎠

⎞

⎠

⎞

⎠

(
[he]α:=1× τ

(
[feeds]α,β:=1× τ ;γ:=v

(
[it]α:=e;β:=1× τ ;γ:=v

)))

⇒β λi1.λfτ � v.∀xτ .
(
farmer([[x]0]0) ∧ (donkey([[[x]1]0]0)

∧ own([[x]0]0, [[[x]1]0]0, [[x]1]1))
)

→ feed(g1× τ � e(i, x), h1× τ � e(i, x), f(x))

Where σ := 1× e× 1 and τ := (e× 1)× (e× 1)× v, as for the rest of the discus-
sion of (28).

The resolution functions that give us the desired outcome are g := λb.[[[b]1]0]0
and h := λb.[[[[b]1]1]0]0. With these in place, and with (28) then applied to the
null context and existentially closed, we derive the interpretation shown in (29).

∃fτ � v.∀xτ .
(
farmer([[x]0]0) ∧ (donkey([[[x]1]0]0)

∧ own([[x]0]0, [[[x]1]0]0, [[x]1]1))
)

→ feed([[x]0]0, [[[x]1]0]0, f(x))

(29)

∀xe.∀ye.∀ev.
(
farmer(x) ∧ (donkey(y) ∧ own(x, y, e))

) → ∃e1
v.feed(x, y, e1)≡

The interpretations derived for (25) and (28) are thus equivalent, and in both
cases it is the ‘strong’ interpretation that is derived; namely, that every farmer
feeds every donkey that he owns. Weak readings will be discussed in the next
section.

Finally, note how the use of eventualities as the equivalent of proof objects in
this account, plus the polymorphism in the translation of it, allow for the most
salient interpretation of (30) to be accounted for.

(30) If a farmer beats a donkey, he regrets it.

If we proceed as for (28) but with [regrets]([it]α:=v) instead of [feeds]([it]α:=e)
and with appropriate resolution of the free variables introduced by the pronouns,
the interpretation derived is as shown in (31) (where τ := (e× 1)× (e× 1)× v).

∃fτ � v.∀xτ .
(
farmer([[x]0]0) ∧ (donkey([[[x]1]0]0)

∧ beat([[x]0]0, [[[x]1]0]0, [[x]1]1))
)

→ regret([[x]0]0, [[x]1]1, f(x))

(31)

∀xe.∀ye.∀ev.
(
farmer(x) ∧ (donkey(y) ∧ beat(x, y, e))

) → ∃dv.regret(x, e, d)≡
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3 Plurals, Generalized Quantifiers and Weak Readings

The lexical entries given in Fig. 1 do not cover plurals or determiners that resist
analysis in first-order terms, like most. Some lexical entries illustrating the gen-
eral approach to be taken in extending to these cases are shown in Fig. 2.

Fig. 2. More (schematic) lexical entries

The general strategy for these cases will be to set up ‘witness sets’ in the
sense of [1], or, more precisely, higher-order functions from which witness sets
can be recovered. For example, the interpretation of two donkeys VP will be (a
function from input contexts to) a higher-order function from which sets of two
donkeys can be recovered. Of course, the nature of witness sets for quantifiers
that aren’t monotone-increasing means that the lexical entries for those will have
to be more complex so as to enforce some version of what [20] calls the ‘maximal
participant condition’; this is evidenced by the lexical entry shown for fewer
than two, which requires that the witness set not be a proper subset of any other
witness set also in the extension of the VP.

A further point worth noting is that, throughout this section, the denotation
for nouns and verbs with plural agreement is taken to be the same as that for
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those with singular agreement. Relatedly, only distributive readings of plurals
are derived. Considering the distributive/collective distinction at the same time
as everything else would take us too far afield.

Let us consider another simple example, in (32).

(32) Two donkeys bray. Giles owns them.

two donkeys bray 
→ [two]α,β:=1;γ:=v
(
[donkey]α:=1

) (
[bray]α:=1

)

⇒β λi1.λX(e × 1)× v � t.
∣
∣λxe.∃a1.∃dv.X((x, a), d)

∣
∣ = 2

∧ ∀be × 1.∀cv.X(b, c) → (
donkey([b]0) ∧ bray([b]0, c)

)

Giles owns them 
→
[Giles]α:=1× τ ;β:=v

(
[owns]α,β:=1× τ ;γ:=v

(
[them]α:=e;β:=1× τ ;γ:=v

))

⇒β λi1 × τ.λae × v.∀ye
(
G1× τ � e � t(i)(y) → (

own([a]0, y, [a]1)
) ∧ giles = [a]0

)

∴ (32) 
→ [and]α:=1;β:=τ ;γ:=e × v ([two donkeys bray]) ([Giles owns them])

⇒β λi1.λaτ × e × v.
∣
∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣
∣ = 2

∧ ∀be × 1
(∀cv.[a]0(b, c) → (

donkey([b]0) ∧ bray([b]0, c)
))

∧ ∀ye.G1× τ � e � t(i, [a]0)(y) → (
own([[a]1]0, y, [[a]1]1)

∧ [[a]1]0 = giles
)

Where τ := (e× 1)× v � t.
Since we are now dealing with plural (set) entities, the definition of natural

resolution functions given in (20) is inadequate. We need to extend the definition
so that we can extract a set of entities from a set of tuples. Clauses d. and e. in
(33), an extension of (20), achieve this.

(33) For any types α, β and γ:
a. λbα.b is a natural resolution function (NRF).
b. λbα × β .[b]0 is an NRF.
c. λbα × β .[b]1 is an NRF.
d. λbα × β � t.λY α.∃Zβ .b(Y,Z) is an NRF.
e. λbα × β � t.λY α.∃Zβ .b(Z, Y ) is an NRF.
f. For any terms F : β � γ and G : α � β, λbα.F (G(b)) is an NRF if F

and G are NRFs.

(33) means that λb1× ((e × 1)× v � t).λxe.∃n1.∃ev.[b]1((x, n), e) is a natural res-
olution function. With G in (33) instantiated to this function, the interpretation
proceeds as follows.
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λi1.λaτ × e × v.
∣
∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣
∣ = 2

∧ ∀be × 1
(∀cv.[a]0(b, c) → (

donkey([b]0) ∧ bray([b]0, c)
))

∧ ∀ye.∃n1
(∃ev.[(i, [a]0)]1((y, n), e)

)

→ (
own([[a]1]0, y, [[a]1]1) ∧ [[a]1]0 = giles

)

(34)

λi1.λaτ × e × v.
∣
∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣
∣ = 2

∧ ∀be × 1
(∀cv.[a]0(b, c) → (

donkey([b]0) ∧ bray([b]0, c)
))

∧ ∀ye.∃n1
(∃ev.[a]0((y, n), e)

)

→ (
own([[a]1]0, y, [[a]1]1) ∧ [[a]1]0 = giles

)

⇒β

Where τ := (e× 1)× v � t.
Applied to the empty context and then existentially closed, the interpretation

comes out as shown in (35).

∃a((e × 1)× v � t)× e × v.
∣∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣∣ = 2

∧ ∀be × 1(∀cv.[a]0(b, c) → (
donkey([b]0) ∧ bray([b]0, c)

))
∧ ∀ye.∃n1(∃ev.[a]0((y, n), e)

)
→ (

own([[a]1]0, y, [[a]1]1) ∧ [[a]1]0 = giles
)

(35)

∃Re × v � t.∃ze.∃ev. |λxe.∃dv.R(x, d)| = 2

∧ ∀ve(∀cv.R(v, c) → (donkey(v) ∧ bray(v, c))
)

∧ ∀ye.∃bv(R(y, b)) → (own(z, y, e) ∧ z = giles)

≡

We are now in a position to look at a proportional donkey sentence, (36),
under both strong and weak readings.

(36) Most farmers who own a donkey feed it.

With appropriate type instantiations, the weak reading of the sentence is derived
as shown below.

λi1.λX(e × τ)× v � t. |λxe.∃aτ .∃dv.X((x, a), d)| >
∣
∣
∣
∣
∣
λxe.∃aτ .farmer(x) ∧ (

donkey([[[a]1]0]0)

∧ own(x, [[[a]1]0]0, [[a]1]1)
)

∣
∣
∣
∣
∣

2
∧ ∀be × τ .∀cv.X(b, c) → ((

farmer([b]0) ∧ (
donkey([[[[b]1]1]0]0)

∧ own([b]0, [[[[b]1]1]0]0, [[[b]1]1]1)
))

∧ feed([b]0, g1× e × τ � e(i, b), c)
)

Where τ := 1× (e× 1)× v, as for the rest of the discussion of (36).

In this case the resolution function that we want is λb1× e × τ .[[[[[b]1]1]1]0]0.
With this resolution, followed by application to the empty context and existential
closure, we end up with the interpretation shown in (37).
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∃X(e × τ)× v � t. |λxe.∃aτ .∃dv.X((x, a), d)| >∣∣∣∣∣
λxe.∃aτ .farmer(x) ∧ (

donkey([[[a]1]0]0)

∧ own(x, [[[a]1]0]0, [[a]1]1)
)
∣∣∣∣∣

2

∧ ∀be × τ .∀cv.X(b, c) → ((
farmer([b]0) ∧ (

donkey([[[[b]1]1]0]0)

∧ own([b]0, [[[[b]1]1]0]0, [[[b]1]1]1)
))

∧ feed([b]0, [[[[b]1]1]0]0, c)
)

(37)

∃Y e × e × v × v � t. |λxe.∃ye.∃dv.∃ev.Y (x, y, d, e)| >∣∣λxe.∃ye.∃ev.farmer(x) ∧ (
donkey(y) ∧ own(x, y, e)

)∣∣
2

∧ ∀xe.∀ye.∀dv.∀ev.Y (x, y, d, e)

→ ((
farmer(x) ∧ (

donkey(y)

∧ own(x, y, d)
)) ∧ feed(x, y, e)

)

≡

Suppressing mention of eventualities for the sake of simplicity, (37) expresses
the existence of a set Y of farmer-donkey pairs such that the number of farmers
in Y is greater than half the number of farmers who own a donkey; and for every
farmer-donkey pair in Y , the farmer owns the donkey and feeds the donkey. It
does not require that every farmer in Y feed every donkey that he owns. For
that, we need the lexical entry given in Fig. 2 for the strong version of most.
With this in place, and the same resolution for the pronoun, we end up with the
interpretation shown in (38).

∃X(e × τ)× v � t. |λxe.∃aτ .∃dv.X((x, a), d)| >∣∣∣∣∣
λxe.∃aτ .farmer(x) ∧ (

donkey([[[a]1]0]0)

∧ own(x, [[[a]1]0]0, [[a]1]1)
)
∣∣∣∣∣

2

∧ ∀ye(∀mτ .∀n1.
(
farmer(y) ∧ donkey([[[m]1]0]0)

∧ own(y, [[[m]1]0]0, [[m]1]1)

∧ ∃oτ .∃rv.X((y, o), r)
) → ∃sv.X((y, m), s)

)
∧ ∀be × τ .∀cv.X(b, c) → ((

farmer([b]0) ∧ (
donkey([[[[b]1]1]0]0)

∧ own([b]0, [[[[b]1]1]0]0, [[[b]1]1]1)
))

∧ feed([b]0, [[[[b]1]1]0]0, c)
)

(38)

∃Y e × e × v × v � t. |λxe.∃ye.∃dv.∃ev.Y (x, y, d, e)| >∣∣λxe.∃ye.∃ev.farmer(x) ∧ (
donkey(y) ∧ own(x, y, e)

)∣∣
2

∧ ∀ye(∀ze.∀dv.
(
farmer(y) ∧ donkey(z) ∧ own(y, z, d)

∧ ∃ve.∃cv.∃rv.Y (y, v, c, r)
)

→ ∃sv.Y (y, z, d, s)
)

∧ ∀xe.∀ye.∀dv.∀ev.Y (x, y, d, e)

→ ((
farmer(x) ∧ (

donkey(y)

∧ own(x, y, d)
)) ∧ feed(x, y, e)

)

≡
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In addition to what is expressed in (37), (38) requires that for every farmer-
donkey pair in Y , if the farmer owns any other donkey then that farmer-donkey
pair is in Y as well. This captures the strong reading.

4 Discussion and Conclusion

I have presented a framework for capturing many anaphoric relationships which
is inspired by the concepts behind TTS analyses of these phenomena, but without
actually using an enriched type theory like ITT. Nevertheless, the type theory
used is not exactly the simple theory of types either, as the account crucially
relies on type polymorphism, either at the object-level or at the meta-level.
This requirement, however, appears to be at least partly independent of the
TTS/MTS distinction, since type polymorphism is also required in TTS analyses
once the account is extended to include generalized quantifiers, as in [22].

On the MTS side, there is an obvious similarity between the account pre-
sented in this paper and accounts that make use of lists or stacks to keep track
of discourse referents, for example [3,4,9,17]. That in itself suggests a con-
nection between MTS and TTS approaches to anaphora, particularly between
lists/stacks of discourse referents and (Martin-Löf) proof objects, that should be
further explored.
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Abstract. We present a formal logical approach using a combina-
tory categorial grammar for entity level sentiment analysis that utilizes
machine learning techniques for efficient syntactical tagging and per-
forms a deep structural analysis of the syntactical properties of texts in
order to yield precise results. The method should be seen as an alterna-
tive to pure machine learning methods for sentiment analysis, which are
argued to have high difficulties in capturing long distance dependencies,
and can be dependent on significant amount of domain specific train-
ing data. The results show that the method yields high correctness, but
further investment is needed in order to improve its robustness.

1 Introduction

The amount of unstructured textual data available through the Social Web has
grown rapidly over the last years. The potential in such data are numerous, and
has found applications in both commercial products and services, as well as the
political and financial world cf. [6].

Sentiment analysis (or opinion mining) has enjoyed high research activity
for some time now, sparked by work such as [11,14]. Traditional approaches
include statistical text classifiers and keyword-based algorithms, and will usually
classify sentiment on document, sentence or simply on word level. However such
granularity suffers from obvious weaknesses, for instance when trying to analyze
sentences with coordination of sentiments for multiple entities, e.g. (1).

The buffet was expensive, but the view is amazing . (1)

To cope with such cases the granularity of sentiment analysis has in recent
work shifted towards entity level (or concept level) approaches. However this
increased degree of detail introduces new challenges, especially for statistical
methods, cf. [3], both due to their semantic weakness and because labeled train-
ing data are sparse at this granularity level. Statistical methods generally rely
on some fixed window for feature extraction (i.e. n-grams), and can thus fail to
detect long distance dependencies between an entity and opinion stated about
that entity. An illustration of this is shown by the potentially unbound number
of relative clauses allowed in English, e.g. (2), where breakfast is described as
c© Springer-Verlag GmbH Germany 2018
A. Foret et al. (Eds.): FG 2017, LNCS 10686, pp. 54–71, 2018.
https://doi.org/10.1007/978-3-662-56343-4_4
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best, however one would need to use a window size of at least 9 to detect this
relation, which is arguably larger then normally considered ([11] only considers
up to tri-grams).

The breakfast that was served Friday morning was the best I ever had ! (2)

We present a formal logical approach for entity level sentiment analysis that
utilizes machine learning techniques for efficient syntactical tagging and performs
a deep structural analysis of the syntactical properties of texts in order to yield
precise results.

The present paper is a substantial extension of [15]. Specifically we elaborate
on the semantic annotation and the use of semantic networks for assignment
of sentiment polarity. Furthermore, we extend the method with intensifiers and
qualifiers, i.e. adverbs that respectively strengthen or weaken the sentiment.

After Sect. 2 on related work we present in Sect. 3 the combinatory catego-
rial grammar and the tagging model used. Section 4 describes the adaption to
sentiment analysis. The experimental results are described in Sect. 5 and further
discussed in Sect. 6. Finally Sect. 7 concludes.

2 Related Work

Notably related work using formal approaches includes [20] where the authors
present a method of extracting sentiment from dependency structures and also
focus on capturing long distance dependencies. As dependency structures simply
can be seen as binary relations on words, it is indeed a formal approach. However
what seems rather surprising is that in the end they only classify on sentence-
level, and thus in this process loose the entity of the dependency.

The most similar work on sentiment analysis found using a formal approach
is the work [17]. The paper presents a method to detect sentiment of newspaper
headlines, in fact partially using the same grammar formalism that later will be
introduced and used in the present work, but, however, without the combina-
torial logic approach. The paper focus on some specific problems arising with
analyzing newspaper headlines, e.g. such as headline texts often do not con-
stitute a complete sentence, etc. However the paper also present more general
methods, including a method for building a highly covering map from words to
polarities based on a small set of positive and negative seed words. This method
has been adopted by this approach as it solves the assignment of polarity values
on the lexical level quite elegantly, and is very loosely coupled to the domain.
However their actual semantic analysis, which unfortunately is described some-
what shallow in the paper, seem to suffer from severe problems with respect to
certain phrase structures, e.g. dependent clauses.

Finally it is noted, that there seem to be a strong imbalance between the
formal approaches and machine learning approaches, with respect to amount of
research, i.e. there exists a lot of research on sentiment analysis using machine
learning compared to research embracing formal methods.
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3 Materials and Methods

3.1 Combinatory Categorial Grammar

The grammar formalism used is Combinatory Categorial Grammar (CCG), pio-
neered largely by [18], and later enhanced by [1] to incorporate modalities. CCG
adds a layer of combinatory logic onto pure Categorial Grammar, which allows
an elegant and succinct formation of higher-order semantic expressions directly
from the syntactic analysis. The set of modalities used, M, follows [1,19], where
M = {�, �,×, ·}. The set is partially ordered cf. the lattice (3).

�

� ×

· (3)

A CCG lexicon, Lccg, is a mapping from a lexical unit, w ∈ Σ�, to a set
of 2-tuples, each containing a lexical category and semantic expression that the
unit can entail cf. (4), where Γ denotes the set of lexical and phrasal categories,
and Λ denotes the set of semantic expressions.

Lccg : Σ� → P(Γ × Λ) (4)

A category is either primitive or compound. The set of primitive categories,
Γprim ⊂ Γ , is language dependent and, for the English language, it consists
of S (sentence), NP (noun phrase), N (noun) and PP (prepositional phrase).
Compound categories are recursively defined by the infix operators /ι (forward
slash) and \ι (backward slash), i.e. if α and β are members of Γ , then so are α/ιβ
and α\ιβ. The modality of the operator, ι ∈ M, can restrict the application of
inference rules during deduction in order to ensure the soundness of the system.
The partial ordering allows the most restrictive categories to also be included
in the less restrictive, e.g. any rule that assumes α/�β will also be valid for
α/·β. Since · permits any rule it is convenient to simply write / and \ instead of
respectively /· and \·, i.e. the dot is omitted from these operators.

3.2 Combinatory Rules

CCGs can be seen as a logical deductive proof system where the axioms are
members of Γ × Λ. A text T ∈ Σ� is accepted as a sentence in the language,
if there, for some tagging of T , exists a deductive proof for S (sentence). A
tagging of a text is, for each lexical unit w ∈ Σ� in the text, simply the selection
of one of the pairs yielded by Lccg(w). While this seems simple, it constitutes
the major computational challenge of this approach. E.g. given some ordered set
of lexical units, which constitutes the text T to analyse, the number of possible
combinations of taggings might be very large.
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Once an appropriate selection is made rewrite is done using a language inde-
pendent set of combinatory rules:

X/� Y : f Y : a ⇒ X : f a (>)
Y : a X\� Y : f ⇒ X : f a (<)

X/� Y : f Y /� Z : g ⇒ X/� Z : λa.f(g a) (>B)
Y \� Z : g X\� Y : f ⇒ X\� Z : λa.f(g a) (<B)

X : a ⇒ T /(T \X ) : λf.fa (>T)
X : a ⇒ T \(T /X ) : λf.fa (<T)

X/× Y : f Y \× Z : g ⇒ X\× Z : λa.f(g a) (>B× )
Y /× Z : g X\× Y : f ⇒ X/× Z : λa.f(g a) (<B× )

Where X, Y , Z and T are variables ranging over categories (i.e. Γ ), and f ,
a and g are variables over semantic expressions (i.e. Λ).

With only functional application, (>) and (<), the system is capable of
capturing any context-free language cf. [18]. Figure 1 shows the deduction of
S from the simple declarative sentence “the hotel had an exceptional service”
(semantics are omitted).

the
NP/�N

hotel
N

NP
>

had
(S\NP)/NP

an
NP/�N

exceptional
N /N

service
N

N
>

NP
>

S\NP
>

S
<

Fig. 1. Deduction of simple declarative sentence.

The functional composition, (>B) and (<B), is often used in connection with
type-raising (>T) and (<T), for instance to allow relative clauses, coordination,
while crossed functional composition, (>B×) and (<B×), are needed for more
exotic linguistic phenomenons such as heavy noun phrase shifting.

3.3 Maximum Entropy Tagging

There exists some wide covering CCG lexicons, most notable CCGbank, compiled
by [10] by techniques presented by [9]. It is essentially a translation of almost
the entire Penn Treebank [12], which contains over 4.5 million lexical units, and
where each sentence structure has been analyzed in full and annotated. The
result is a highly covering lexicon, with some entries having assigned over 100
different lexical categories. Clearly such lexicons only constitutes half of the
previous defined Lccg map, i.e. only the lexical categories, Γ . The problem of
obtaining semantic expressions, is addressed later.
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To ensure the presented method works with a large vocabulary and a wide
range of sentence structures, and thus the variety of opinion texts harvested
from social networks, an efficient syntactical CCG-tagging is required. This is
substantiated by the fact that [10] calculates that the expected number of lexical
categories per token is 19.2 for the CCGBank. This mean that an exhaustive
search of even a short sentence (seven tokens) is expected to consider over 960
million (19.27) possible taggings.

Machine learning is used to handle this otherwise exponentially bounded
search, specifically [4] presents a method based on a maximum entropy model
that estimates the probability that a token is to be assigned a particular category,
given the features of the local context, e.g. the POS-tag of the current and
adjacent lexical units, and the CCG-category of lexical units left to the current.

This is used to select a subset of possible categories for a lexical unit, by
selecting categories with a probability within a factor of the category with highest
probability. In some cases this of cause will prune the correct tagging needed to
deduct S , but [4] shows that the average number of lexical categories per lexical
unit can be reduced to 3.8 while the method still recognize 98.4% of unseen data.

A complete parser is presented in [5]. It utilizes this tagging model and a
series of (log-linear) models to speed-up the actual deduction once the tagging
model has assigned a set of categories to each token.

Finally, since the tagging models are based on trained data, which also can
contain minor grammatical errors and misspellings, it is still able to assign cate-
gories to lexical entries even though they might be incorrect spelled or of wrong
form, which it not very uncommon when harvesting data from social networks,
user reviews, etc.

4 Theory and Calculation

4.1 Definition of a Sentiment Analysis

The sentiment polarity model used in this paper is continuous, and can thus
be seen as a weighted classification. Thereby the polarity is a value in some
predefined interval, [−ω;ω]. An opinion with value close to −ω is considered
highly negative, whereas a value close to ω is considered highly positive. Opinions
with values close to zero are considered almost neutral. This model allows the
overall process of the sentiment analysis presented in this paper to be given by
Definition 1.

Definition 1. A sentiment analysis A is a computation on a text T ∈ Σ� with
respect to a subject of interest s ∈ E, where Σ� denotes the set of all texts, and
E is the set of all entities. The result is a normalized score as shown in (5).
The yielded score should reflect the polarity of the given subject of interest in
the text, i.e. whether the overall opinion is positive, negative, or neutral.

A : Σ� → E → [−ω;ω] (5)
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4.2 Combinatory Categorial Grammar for Sentiment Analysis

In order to apply the CCG formalism to the area of sentiment analysis the
expressive power of the semantics needs to be adapted to this task. The set of
semantic expressions, Λ, is defined as a superset of simply typed λ-expressions
cf. Definition 2.

Definition 2. Besides variables, functional abstraction and functional applica-
tion, which follows from simply typed λ-expressions cf. [2], the following struc-
tures are available:

– A n-ary functor (n ≥ 0) with name f from an infinite set of functor names,
polarity j ∈ [−ω;ω], and impact argument k (0 ≤ k ≤ n).

– A sequence of n semantic expressions of the same type.
– The change of impact argument.
– The change of an expression’s polarity.
– The scale of an expression’s polarity. The magnitude of which an expression’s

polarity may scale is given by [−ψ;ψ].

Formally this can be stated:

x : τ ∈ V ⇒ x : τ ∈ Λ (Variable)
x : τα ∈ V, e : τβ ∈ Λ ⇒ λx.e : τα → τβ ∈ Λ (Abstraction)

e1 : τα → τβ ∈ Λ, e2 : τα ∈ Λ ⇒ (e1e2) : τβ ∈ Λ (Application)

e1, . . . , en ∈ Λ, 0 ≤ k ≤ n, j ∈ [−ω; ω] ⇒ fk
j (e1, . . . , en) ∈ Λ (Functor)

e1 : τ, . . . , en : τ ∈ Λ ⇒ 〈e1, . . . , en〉 : τ ∈ Λ (Sequence)

e : τ ∈ Λ, 0 ≤ k′ ⇒ e�k′
: τ (Impact change)

e : τ ∈ Λ, j ∈ [−ω; ω] ⇒ e◦j : τ ∈ Λ (Change)
e : τ ∈ Λ, j ∈ [−ψ; ψ] ⇒ e•j : τ ∈ Λ (Scale)

The semantics includes normal α-conversion and β-, η-reduction as shown
in the semantic rewrite rules for the semantic expressions given by Definition 3.
More interesting are the rules that actually allow the binding of polarities to
the phrase structures. The change of a functor itself is given by the rule (FC1),
which applies to functors with, impact argument, k = 0. For any other value of k
the functor acts like a non-capturing enclosure that passes on any change to its
k’th argument as follows from (FC2). The change of a sequence of expressions is
simply the change of each element in the sequence cf. (SC). Finally, it is allowed
to push change inside an abstraction as shown in (PC), simply to ensure the
applicability of the β-reduction rule. Completely analogous rules are provided
for the scaling as shown in respectively (FS1), (FS2), (SS) and (PS). Finally the
change of impact allows change of a functors impact argument cf. (IC). Notice
that these change, scale, push and impact change rules are type preserving, and
for readability type annotation is omitted from these rules.
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Definition 3. The rewrite rules of the semantic expressions are given by the
following, where e1[x �→ e2] denotes the safe substitution of x with e2 in e1, and
FV (e) denotes the set of free variables in e. For details, see for instance, [2].

(λx.e) : τ ⇒ (λy.e[x �→ y]) : τ y 
∈ FV (e) (α)
((λx.e1) : τα → τβ) (e2 : τα) ⇒ e1[x �→ e2] : τβ (β)

(λx.(e x)) : τ ⇒ e : τ x 
∈ FV (e) (η)

f0
j (e1, . . . , en)◦j′ ⇒ f0

j ̂+j′(e1, . . . , en) (FC1)

fk
j (e1, . . . , en)◦j′ ⇒ fk

j (e1, . . . , ek◦j′ , . . . , en) (FC2)

〈e1, . . . , en〉◦j′ ⇒ 〈e1◦j′ , . . . , en◦j′〉 (SC)
(λx.e)◦j′ ⇒ λx.(e◦j′) (PC)

f0
j (e1, . . . , en)•j′ ⇒ f0

j ·̂ j′(e1, . . . , en) (FS1)

fk
j (e1, . . . , en)•j′ ⇒ fk

j (e1, . . . , ek•j′ , . . . , en) (FS2)

〈e1, . . . , en〉•j′ ⇒ 〈e1•j′ , . . . , en•j′〉 (SS)
(λx.e)•j′ ⇒ λx.(e•j′) (PS)

fk
j (e1, . . . , en)�k′ ⇒ fk′

j (e1, . . . , en) (IC)

It is assumed that the addition and multiplication operator, respectively ̂+
and ·̂ , always yields a result within [−ω;ω] cf. Definition 4.

Definition 4. The operators ̂+ and ·̂ are defined cf. (6) and (7) such that
they always yield a result in the range [−ω;ω], even if the pure addition and
multiplication might not be in this range.

j ̂+j′ =

⎧

⎪

⎨

⎪

⎩

−ω if j + j′ < −ω

ω if j + j′ > ω

j + j′ otherwise
(6)

j ·̂ j′ =

⎧

⎪

⎨

⎪

⎩

−ω if j · j′ < −ω

ω if j · j′ > ω

j · j′ otherwise
(7)

The presented definition of semantic expressions allows the binding between
expressed sentiment and entities in the text to be analyzed, given that each
lexicon entry have associated the proper expression.

Example 1 shows how to apply this for a simple declarative sentence, while
Example 2 considers an example with long distance dependencies.
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Example 1. This example considers simple declarative sentence (8) including
semantics.

the hotel had an exceptional service (8)

The lexicon used in the example is provided in Table 1. Notice that nouns,
verbs, etc. are reduced to their lemma for functor naming.

Table 1. Lexicon used in Example 1.

Token Category Type

the NPnb/N : λx.x

hotel N : hotel0

had (Sdcl\NP )/NP : λx.λy.have00(x, y)

an NPnb/N : λx.x

exceptional N/N : λx.(x◦40)

service N : service0

Figure 2 shows the entity “service” is modified by the adjective “exceptional”
which is immediately to the left of the entity. The semantic expression associated
to “service” is simply the zero-argument functor, initial with a neutral sentiment
value. The adjective has the “changed identity function” as expression with a
change value of 40. Upon application of combinatorial rules, semantic expressions
are reduced based on the rewrite rules given in Definition 3.

an
NPnb/N : λx.x

exceptional
N/N : λx.(x◦40)

service
N : service0

N : service40
>

NPnb : service40
>

Fig. 2. Deduction of simple noun phrase sentence with semantics.

The conclusion of the deduction proof is a sentence with a semantic expression
preserving most of the surface structure, and includes the bounded sentiment
values on the functors cf. Fig. 3.

Example 2. This example considers the sentence (9) including semantics, and
demonstrates variations of all combinator rules introduced.

the breakfast that the restaurant served daily was excellent (9)

The lexicon used in the example is provided in Table 2. Most interesting is
the correct binding between “breakfast” and “excellent”, even though these are
far from each other in the surface structure of the sentence.
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the hotel
· · ·

NPnb : hotel0

had

(Sdcl\NP )/NP : λx.λy.have00(x, y)

an exceptional service
· · ·

NPnb : service40
Sdcl\NP : λy.have00(service40, y)

>

Sdcl : have00(service40,hotel0)
<

Fig. 3. Deduction of simple declarative sentence with semantics.

Table 2. Lexicon used in Example 2.

Token Category Type

the NPnb/N : λx.x

breakfast N : breakfast0

that (N\�N)/(Sdcl/�NP ) : λx.λy.((x y)�1)

restaurant N : restaurant0

served (Sdcl\NP )/NP : λx.λy.serve00(x, y)

daily (SX\NP )\(SX\NP ) : λx.(x◦5)

was (Sdcl\NP )/(Sadj\NP ) : λx.x

excellent Sdcl\NP : λx.(x◦25)

the restaurant
· · ·

NPnb : restaurant0
SX/(SX\NP ) : λf.(f restaurant0)

>T

served
(Sdcl\NP )/NP : λx.λy.serve00(x, y)

daily
(SX\NP )\(SX\NP ) : λx.(x◦5)

(Sdcl\NP )/NP : λx.λy.serve05(x, y)
<B×

Sdcl/NP : λx.serve05(x, restaurant0)
>B

Fig. 4. Deduction of dependent clause.

Figure 4 shows how the adverb “daily” correctly modifies the transitive verb
“served”, even though the verb is missing its object since it participates in a
relative clause.

Figure 5 shows the details of the relative clause. When the relative pronoun
binds the dependent clause to the main clause, it “closes” it for further modifi-
cation by changing the impact argument of the functor inflicted by the verb of
the dependent clause, so that further modification will impact the subject of the
main clause.

the
NPnb/N : λx.x

breakfast
N : breakfast0

that
(N\�N)/(Sdcl/�NP ) : λx.λy.((x y)�1)

the restaurant served daily
· · ·

Sdcl/NP : λx.serve05(x, restaurant0)
N\�N : λy.serve15(y, restaurant0)

>

N : serve15(breakfast0, restaurant0)
<

NP : serve15(breakfast0, restaurant0)
<

Fig. 5. Binding of relative clause and noun phrase.
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Finally the the long distance binding can be established as shown in Fig. 6.

the breakfast that the restaurant served daily
· · ·

NP : serve15(breakfast0, restaurant0)

was
(Sdcl\NP )/(Sadj\NP ) : λx.x

excellent
Sadj\NP : λx.(x◦25)

Sdcl\NP : λx.(x◦25)
>

Sdcl : serve15(breakfast25, restaurant0)
<

Fig. 6. Sentiment of sentence with long distance dependencies.

4.3 Lexicon Annotation

There is however one essential component missing from the lexicon, namely the
semantic expressions. However due to the Principle of Categorial Type Trans-
parency it is known exactly what the types of the semantic expressions should
be. There are currently a total of 429 different tags in the maximum entropy tag-
ging model, thus trying to handle each of these cases individually is certainly not
very robust for changes in the lexical categories. The solution is to handle some
cases that need special treatment, and then use a generic annotation algorithm
for all other cases. Both the generic and the special case algorithms will be a
transformation (T , Σ�) → Λ, where the first argument is the type, τ ∈ T , to
construct, and the second argument is the lemma, � ∈ Σ�, of the lexicon entry to
annotate. Since the special case algorithms will fallback to the generic approach,
in case preconditions for the case are not met, it is convenient to start with the
generic algorithm, Ugen, which is given by Definition 5.

Definition 5. The generic semantic annotation algorithm, Ugen (10), for a type
τ and lemma � is defined by the auxiliary function U ′

gen, which takes two addi-
tional arguments, namely an infinite set of variables V cf. Definition 2, and an
ordered set of sub-expressions (denoted A), which initially is empty.

Ugen(τ, �) = U ′
gen(τ, �,V, ∅) (10)

If τ is primitive, i.e. τ ∈ Tprim, then the generic algorithm simply return a
functor with name �, polarity and impact argument both set to 0, and the ordered
set A as arguments. Otherwise there must exist unique values for τα, τβ ∈ T ,
such that τα → τβ = τ , and in this case the algorithm return an abstraction of
τα on variable v ∈ V , and recursively generates an expression for τβ.

U ′
gen(τ, �, V,A) =

{

�00(A) : τ if τ ∈ Tprim

λv.U ′
gen(τβ , �, V \ {v}, A′) : τ otherwise, where :

v ∈ V

τα → τβ = τ

A′ =

⎧

⎪

⎨

⎪

⎩

A[e : τα → τγ �→ ev : τγ ] if e′ : τα → τγ ∈ A

A[e : τγ �→ ve : τδ] if τγ → τδ = τα ∧ e′ : τγ ∈ A

A ∪ {v : τ} otherwise
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The recursive call also removes the abstracted variable v from the set of variables,
thus avoiding recursive abstractions to use it. The ordered set of sub-expressions,
A, is modified cf. A′, where the notation A[e1 : τ1 �→ e2 : τ2] is the substitution
of all elements in A of type τ1 with e2 : τ2. Note that e1 and τ1 might be used
to determine the new value and type of the substituted elements. Since the two
conditions on A′ are not mutual exclusive, if both apply the first case will be
selected. The value of A′ can be explained in an informal, but possibly easier to
understand, manner:

– If there is a least one function in A, that takes an argument of type τα, then
apply v (which is known to by of type τα) to all such functions in A.

– If the type of v itself is a function (i.e. τγ → τδ = τα), and A contains at least
one element that can be used as argument, then substitute all such arguments
in A by applying them to v.

– Otherwise, simply append v to A.

Clearly the generic algorithm does not provide much use with respect to
extracting the sentiment of entities in the text, i.e. it only provide some safe
structures that are guaranteed to have the correct type. The more interesting
annotation is actually handled by the special case algorithms. How this is done
is determined by a combination of the POS-tag and the category of the entry.
Most of these treatments are very simple, with the handling of adjectives and
adverbs being the most interesting:

– Determiners with simple category, i.e. NP/N , are simply mapped to the iden-
tity function, λx.x. While determiners have high focus in other NLP tasks,
such as determine if a sentence is valid, the importance does not seem signif-
icant in sentiment analysis, e.g. whether an opinion is stated about an entity
or the entity does not change the overall polarity of the opinion bound to that
entity.

– Nouns are in general just handled by the generic algorithm, however in some
cases of multi-word nouns, the sub-lexical entities may be tagged with the cat-
egory N /N . In these cases the partial noun is annotated with a list structure,
that eventually will capture the entire noun, i.e. λx.〈Ugen(τn, �), x〉, where � is
the lemma of the entity to annotate.

– Verbs are just as nouns in general handled by the generic algorithm, how-
ever linking verbs is a special case, since they relate the subject (i.e. an
entity) with one or more predicative adjectives. Linking verbs have the cate-
gory (Sdcl\NP)/(Sadj\NP), and since the linked adjectives directly describes
the subject of the phrase such verbs are simply annotated with the identity
function, λx.x.

– Adjectives can have a series of different categories depending on how they
participate in the sentence, however most of them have the type τα → τβ ,
where τα, τβ ∈ Tprim. These are annotated with the change of the argument,
i.e. λx.x◦j , where j is a value determined based on the lemma of the adjective.
Notice that this assumes implicit type conversion of the parameter from τα

to τβ , however since these are both primitive, this is a sane type cast. Details
on how the value j is calculated are given in the next section.
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– Adverbs are annotated in a fashion closely related to that of adjectives. How-
ever the result might either by a change or a scale, a choice determined by the
lemma: normally adverbs are annotated by the change in the same manner as
adjectives, however intensifiers and qualifiers, i.e. adverbs that respectively
strengthens or weakens the meaning, are scaled. The next section gives fur-
ther details on how this choice is made. Finally special care are taken about
negating adverbs, i.e. “not”, which are scaled with a value j = −1.

– Prepositions and relative pronouns need to change the impact argument of
captured partial sentences, i.e. preposition phrases and relative clauses, such
that further modification should bind to the subject of the entire phrase as
were illustrated by Example 2.

– Conjunctions are annotated by an algorithm closely similar to Ugen, however
instead of yielding a functor of arguments, the algorithm yields a list structure.
This allow any modification to bind on each of the conjugated sub-phrases.

4.4 Assignment of Sentiment Polarity

An understanding of the domain of the review is needed in order to reason about
the polarity of the entities present in texts to analyse. For this purpose the con-
cept of semantic networks was used. Concretely the semantic network WordNet,
originally presented by [13], and later presented in depth by [7]. WordNet con-
tains a variety of relations, however for the purpose of calculating sentiment
polarity values, only the following were considered interesting:

– The similar -relation, rsimilar, links closely similar semantic concepts, i.e. con-
cepts having almost the synonymies mensing in most contexts. The relation
is present for most concepts entailed by adjectives.

– The see also-relation, rsee-also, links coarsely similar semantic concepts, i.e.
concepts having a clear different meaning, but may be interpreted interchange-
ably for some contexts.

– The pertainym-relation, rpertainym, links the adjectives from which an adverb
was derived, e.g. extreme is the pertainym of extremely.

An approach similar to the one presented by [17] was used to calculate an
assignment of sentiment polarity values for adjectives and adverbs: Positive and
negative seed concepts are identified for the domain of the analysis, respectively
Spos and Sneg, e.g. as shown in (11) and (12).

Spos = {clean, quiet, friendly, cheap} (11)
Sneg = {dirty,noisy,unfriendly, expensive} (12)

The calculation of the polarity change and/or scale for some lemma, present
in the texts to analyze, is then based on the distances between the concepts
yielded by the lemma and the seed concepts. To solve semantic ambiguity a
rational assumption was taken that concepts stated in the texts presumably are
to be interpreted within the domain given by the seed concepts, Spos and Sneg.
Thus concepts that are strongly related to one or more seed concepts should be
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preferred over weaklier related concepts. The solution is to select the n closest
relations, thus reasoning greedily positively, respectively greedily negatively.

The approach for calculating sentiment polarity values for intensifying or
qualifying adverbs modify the meaning of a verb, adjective, or another adverb,
some special treatment are presented for this. Analog to the positive and nega-
tive concepts, sets of respectively intensifying and qualifying seed adjectives are
stated, e.g. (13) and (14). Also notice that, unlike Spos and Sneg, these sets does
not rely on the domain, as they only strengthens or weakens domain specific
polarities.

Sintensify = {extreme,much,more} (13)
Squalify = {moderate, little, less} (14)

The distances are normalized such that the change value for some adverb
or adjective with lemma, �, will always be in [−ω;ω]; and for intensifying or
qualifying adverbs with lemma, �, the scale will always be in

[

1
2 ; 2

]

.

5 Results

5.1 Test Data

The test data set chosen for evaluation of the method was the Opinosis data set
[8]. The data set consists of approximately 7000 texts from consumer reviews on
a number of different topics. The topics are ranging over different product and
services, from consumer electronics (e.g. GPS navigation, music players, etc.)
to hotels and restaurants. They are harvested from several online resellers and
service providers, including among others Amazon (http://www.amazon.com/)
and TripAdvisor (http://www.tripadvisor.com/).

Since the data set is unlabeled it was chosen to label a small subset of it in
order to measure the robustness and the correctness of the presented method
(see Appendix). To avoid biases toward how the proof of concept system analyzes
text the labeling was performed independently by two individuals who had no
knowledge of how the presented solution processes texts.

As the example texts might have hinted, the subset chosen was from the set
of hotel and restaurant reviews. The subject of interest chosen for the analysis
were hotel rooms, and the subset was thus randomly sampled from texts with
high probability of containing this entity (i.e. containing any morphological form
of the noun “room”).

The individuals were given a subset of 35 review texts, and should mark each
text as either positive, negative or unknown with respect to the given subject of
interest. Out of the 35 review text the two subject’s positive/negative labeling
agreed on 34 of them, while unknowns and disagreements were discarded. Thus
the inter-human concordance for the test data set was 97.1%, which is very
high, and would arguably drop if just a few more individuals were used for label
annotation.

http://www.amazon.com/
http://www.tripadvisor.com/
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5.2 Evaluation Results

An entity sentiment value was considered to agree with the human labeling,
if it had the correct sign (i.e. positive sentiment values agreed with positive
labels, and negative values with negative labels). The baseline presented here is
a sentence-level baseline, calculated by using the Naive Bayes Classifier available
in the Natural Language Toolkit (NLTK) for Python.

The precision and recall results for both the baseline and the presented
method are shown in Table 3. As seen the recall is somewhat low for the proof
of concept system, which is addressed in the next section, while it is argued that
precision of the system is indeed acceptable, since even humans will not reach a
100% agreement.

Table 3. Precision and recall results for proof of concept system.

Baseline The presented method

Precision 71.5% 92.3%

Recall 44.1% 35.3%

6 Discussion

The presented method for entity level sentiment analysis using deep sentence
structure analysis has shown acceptable correction results, but inadequate
robustness.

The biggest issue was found to be the lack of correct syntactic tagging mod-
els. It is argued that models following a closer probability distribution of review
texts than the one used would have improved the robustness of the system signif-
icantly. One might think, that if syntactic labeled target data are needed, then
the presented logical method really suffers the same issue as machine learning
approaches, i.e. domain dependence. However it is argued that exactly because
the models needed are of syntactic level, and not of sentiment level, they really do
not need to be domain specific, but only genre specific. This reduces the number
of models needed, as a syntactic tagging model for reviews might cover several
domains, and thus the domain independence of the presented method is intact.

Especially the property of being domain independent is considered to be of
significant importance of the presented method. As harvested data grows, and
new domains surfaces (e.g. Internet of Things) any method requiring labeled
training data will be slower and more costly to deploy. Besides the savings
of avoiding expensive computational training of domain specific models, the
method also allows the ability to reuse models on new and unseen domains, as
long as some domain expert provides the seed concepts (Spos and Sneg).

An interesting experiment would have been to see how the presented method
performed on such genre specific syntactic models. [16] presents methods for
cross-domain semi-supervised learning, i.e. the combination of labeled (e.g. CCG-
Bank) and unlabeled (e.g. review texts) data from different domains (e.g. syn-
tactic genre). This allows the construction of models that utilizes the knowledge
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present in the labeled data, but also biases it toward the distribution of the
unlabeled data. The learning accuracy is of cause not as significant as compared
to learning with large amounts of labeled target data, but it can improve genres
where no labeled data are available.

7 Conclusions

This paper has presented a formal logical method for entity level sentiment anal-
ysis, which utilizes machine learning techniques for efficient syntactic tagging.
The method should be seen as an alternative to pure machine learning methods,
which have been argued inadequate for capturing long distance dependencies
between an entity and opinions, and of being highly dependent on the domain
of the sentiment analysis.

Empirical results showed that while the correctness of the presented method
seems acceptably high, its robustness is currently inadequate for most real-world
applications. However, it is argued that it indeed is possible to improve the
robustness significantly with further refinements of the presented method.

Besides resolving the issue of the low robustness, the presented method
also leaves plenty of opportunities for expansion. This could include a more
sophisticated pronoun resolution, and even more advanced extraction strategies
could also include relating entities by the use of some of the abstract topo-
logical relations available in semantic networks. E.g. hyponym/hypernym and
holonym/meronym. With such relations, a strong sentiment of the entity room
might inflict the sentiment value of hotel, since room is a meronym of building,
and hotel is a hyponym of building.

In the future we aim to use advanced mathematical proof assistants like
Coq (https://coq.inria.fr/) and Isabelle (https://isabelle.in.tum.de/) for the for-
malization of the presented theory. The proof assistants have support for the
necessary data structures and algorithms. The use of proof assistants would
allow for formal proofs of key properties and also for easier experiments with
the presented method.

Appendix: Labeled Test Data

The following table consists of a random sample chosen from the “Swissotel
Hotel” topic of the Opinosis data set [8] which contain any morphological form
of the subject of interest: hotel rooms. Each sentence in the data set (which may
not constitute a complete review) has been labeled independently by two human
individuals with respect to the subject of interest: hotel rooms. Furthermore the
table contains results for the presented method (entity level polarity value of
subject of interest).

https://coq.inria.fr/
https://isabelle.in.tum.de/
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# Review text Humans Method

1 The rooms are in pretty shabby condition, but they are
clean

Negative Unknown

2 The rooms are spacious and have nice views, I was NOT
impressed with the mattress and every, little, tiny thing
costs money

Unknown N/A

3 The rooms look like they were just remodled and
upgraded, there was an HD TV and a nice iHome
docking station to put my iPod so I could set the alarm
to wake up with my music instead of the radio

Positive Unknown

4 The rooms were cleaned spic and span every day Positive Unknown

5 When I got to the room, I thought the new rooms
would have a plasma since the website implies the new
rooms would have them, but I guess those come later

Negative Unknown

6 Very impressed with rooms and view! Positive Unknown

7 The rooms are not all that big Negative Unknown

8 Expensive Parking but great rooms Positive 30.0

9 Rooms were nicely furnished Positive Unknown

10 The rooms are very clean, comfortable and spacious and
up-to-date

Positive 52.0

11 I’ve only ever stayed in the “standard” rooms in this
property, all of which are spacious and airy, and
function well for both business or leisure travellers

Positive Unknown

12 It does suffer, however, from a trend that I have been
noticing that as rooms at business class hotels are
upgraded, particularly with a patch panel for the big
LCD, TV, drawer space becomes less and less

Negative Unknown

13 We even got upgraded to one of the corner rooms which
also looked west toward Michigan Ave and the Wrigley
building

Positive Unknown

14 The rooms were very clean, the service was polite and
helpful, and it’s near the heart of Chicago!

Positive 52.0

15 You can see downtown and or the Navy Pier from most
of the rooms

Positive Unknown

16 no more bathrobes in corner rooms suites, coffee service
in room is parred way down, the buffet offered in the
cafe is not as bountiful, although the cafe staff is
impeccable and extremely gracious and will bring you
what you wish, check in staff not at all eager to upgrade
you, even though you may be a frequent visitor

Negative Unknown

17 Our rooms were nice and didn’t look worn or old Positive Unknown

18 Rooms at the hotel are getting somewhat tired Negative 0.8

(Continued)
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(Continued)

# Review text Humans Method

19 Great Location great rooms and bed but no help from
desk personnel

Positive 38.0

20 While the rooms are quite nice, I was dismayed by the
snotty service I received at the Swissotel in Chicago

Positive 72.0

21 Rooms are dated, our corner room’s bathroom was
shabby

Negative Unknown

22 The hotel was very nice, rooms were big, the pool hot
tub area was very nice, and the location was great and
easy to get to

Positive 10.0

23 Rooms are good quality and clean, what you would
expect from a four star business hotel

Positive 46.0

24 The view from the rooms was fantastic, My daughters
are allergic to feathers and all trace of them were
removed from the room as soon as we advised
housekeeping

Positive Unknown

25 The Swissotel is one of our favorite hotels in Chicago
and the corner rooms have the most fantastic views in
the city

Positive Unknown

26 Then again, the rooms are much larger and the view
more than makes up for it

Positive 26.0

27 Rooms in similar hotels would usually be about $250,
300

Positive Unknown

28 The actual hotel and rooms were very nice with
amazing views, the staff was extremely rude

Positive 8.0

29 The rooms were clean, and upscale for the low price we
paid

Positive Unknown

30 Thanks to TravelZoo I was able to find an amazing
deal, lakeside rooms for $129 night as part of a spring
promotion

Positive Unknown

31 I received a great deal on the rooms here and it was
wonderful

Positive 8.0

32 The room was huge as hotel rooms go Positive 26.0

33 Hotel was very clean and the rooms were comfy Positive Unknown

34 word to the wise, avoid the rooms ending with 11 Negative Unknown

35 The rooms are large and well, appointed, the staff was
very professional and friendly, and the view was striking!

Positive 34.0
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Abstract. Many recent proposals aim to simplify semantic represen-
tations, and Abstract Meaning Representation (AMR) comes from this
tradition, but it is nevertheless quite expressive. Bos 2016 proposes a
slightly reformed AMR for translation to first order logic. This paper
proposes a different augmentation of AMR that is more easily provided,
and a slightly different mapping to higher order and dynamic logic. The
proposed augmentation can be, at least in most cases, easily computed
from standard ‘unreformed’ AMR corpora. The mapping from this aug-
mented AMR to logical representation is a finite state multi bottom up
tree transduction.

With a variety of scientific and engineering motivations, a number of recent
studies have aimed to simplify semantic representations in various ways that
include reducing recursion, reducing the number of modes of composition, and
leaving some ambiguities unresolved [2,14,36,40]. Abstract Meaning Represen-
tation (AMR) [4,5,27] falls into this tradition; it was initially designed to be
easily learnable by automated translation systems [31]. An ongoing effort uses
AMR to annotate large corpora [27] for engineering applications and other quan-
titative studies of the important question: which constructions are used to mean
which things in which contexts?

In [4], the AMR on the left below is proposed to represent the meaning of
The boy wants to go. The AMR on the right is slightly augmented with syntactic
features in the leaves and a :quant arc for the determiner the, as discussed below.

c© Springer-Verlag GmbH Germany 2018
A. Foret et al. (Eds.): FG 2017, LNCS 10686, pp. 72–87, 2018.
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In the graph on the left, above, the 3 leaves (i.e., the nodes with no outgoing
arcs) are disambiguated lexical concepts, while the 3 internal nodes are variables,
written with a single letter optionally followed by a number. The 6 arcs are
labeled with roles written with an initial colon. Intuitively, the graph on the
left could be read: “there is an :instance of wanting, w, with an :arg0 (subject)
role filled by an instance b of a boy, and with an :arg1 (theme) role filled by an
:instance g of going, which in turn has an :arg0 role again filled by b.” In this
version of AMR, the arc labels and the relevant senses of the verbs want and go
are taken from OntoNotes [41] and PropBank [8].

So AMR indicates verb senses, coreference, and some aspects of argument
and modifier structure. In some discourse contexts, the prepositional phrase
modifier in The money was stolen by the bank is an agent and not a locative.
And in some contexts, a spoken or casually written let’s meet at last call could
intend the prepositional phrase to specify not a time but a location, one of the
many bars named ‘Last Call’. In a large corpus, some of the relevant cues for
such distinctions can be studied, cues to which normal human speakers are obvi-
ously exquisitely attuned. But standard AMR does not indicate tense, plurality,
quantification, or scope. For some engineering applications, tense, plurality and
quantification may not matter, but for other applications it is obviously impor-
tant to get the whole message of an utterance approximately right. Following
preliminary work by Bos and others [3,6,9], this paper argues that with a very
minor reform that does not significantly affect the syntactic complexity of AMR
notation, it can become considerably more sophisticated. The reform is indi-
cated in the augmented AMR (AAMR) shown above on the right: we add tense
to leaves corresponding to verbs, grammatical number to leaves corresponding
to nouns, and for each noun concept, if that noun has an associated article (the,
a) or quantifier (every, some, most, exactly 5, between 10 and 20, . . . ), those go
into the :quant role.

1 AMR Triples and Trees

Each AMR is a connected, directed, arc-labeled graph with a designated ‘root’
node, where (a) at most one node has no incoming arcs, and when there is such a
node, it is the designated ‘root’, (b) any node with an outgoing arc is a variable,
(c) the arc-labels are roles (chosen from a small, finite set), (d) every internal
node has a unique outgoing arc with the :instance role, and (e) every leaf is a
lexical concept, where a lexical concept is a sense-disambiguated stem possibly
with tense, number, gender information. We can represent any AMR by a pair
(rootNode, arcs) where arcs is a set of (sourceNode,role,targetNode) triples. So
for example the AAMR displayed on the right above is:

(w, { (w,:instance,want-01.pres), (w,:arg0,b), (w,:arg1,g),
(b,:instance,boy.sg), (b,:quant,the),
(g,:instance,go-01.sg), (g,:arg0,b) } )

Note that in this AAMR, one and the same :instance of a boy b plays a role
in two predications, because want is a ‘control verb’ [29]. English obviously has
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many ways to indicate intended coreference. When we construct AAMRs for
conjunctions of sentences and discourses, it is common to have many long chains
of coreferring argument expressions. The following is a very simple case, showing
again a notation on the right that is discussed below.

John loves Mary. John loves Sue.
(m / multisentence

:snt1 (l / love-01.pres
:arg0 (p / person

:name (n / name
:op1 John))

:arg1 (p1 / person
:name (n1 / name

:op1 Mary)))
:snt2 (l1 / love-01.pres

:arg0 p
:arg1 (p2 / person

:name (n2 / name
:op1 Sue))))

In this structure we see that the named entities are classified by lexical concepts
(like person) that do not correspond to explicit items in the sentence, as explained
in [5]. This classification of named entities will not be a focus in this paper.

[4, Sect. 2] says AMRs are rooted and acyclic, but [5] provides a non-rooted,
cyclic structure for a procedure to ensure quality, which we also allow, augmented:

(p / procedure.sg
:purpose (e / ensure-01.inf

:arg0 p
:arg1 (q / quality.sg))

:quant a)

[4, Sect. 2] uses a node labeling function, which we do not need for AMRs, but
only for the AMR tree representations introduced in this section, as discussed
above. And in addition to lexical concepts, [5] uses some special constants, like
‘-’ on a :polarity arc to indicate negation. But ‘-’ can at least sometimes be
regarded as the representation the lexical ‘not’; see Sects. 2 and 3 below.

Letting the K-width of a directed graph be the maximum number of distinct
simple paths (possibly overlapping) between any two nodes [20], it is easy to
see that there is no finite bound on the K-width of AMR structures of English.
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For example, even just with arbitrarily long conjunctions of the form John loves
Mary and John loves Sue and. . . , in which the love relation can be asserted
between any pair of named individuals in any finite set, we can make K-width
arbitrarily high. Notice that even as K-width grows quite high, discourses with
this kind of structure (perhaps adding some modifiers) can be not only intelligible
but exciting in some contexts. Ignoring the direction of the arcs, AMR structures
for English sentences also have unbounded treewidth [1,15]; any number of nodes
in these love relations can be connected to each other and involved in any number
of cycles.1 AMRs are not simple graphs. But for some calculations, we can split
the AMR nodes with more than one predecessor to make a tree, putting all
descendants of the split node under only one of its copies, and calculate on the
tree without ever needing to check the identities among those split nodes. All
the calculations described in this paper have that property.

Turning to the tree representations for AMRs already shown above, these can
be derived from AMRs by the introduction of a node labeling function which is
the identity function for every node with p ≤ 1 predecessors, but for any node n
with p > 1 predecessors in the graph, the tree has p different nodes n0,. . . , np−1

all labeled n, with all descendants of the original node attached under only one
of the copies ni in the tree. As we saw above, because AMRs can be cyclic, it can
happen that no node lacks a predecessor, but when that happens the ‘designated
root’ is chosen as the root of the corresponding tree. Applying these ideas to the
AAMR on the first page of this paper, and abbreviating :instance with / (as is
standard in the literature), we obtain a tree that can be drawn or pretty-printed:

(w / want-01.pres
:arg0 (b / boy.sg

:quant the)
:arg1 (g / go-01.inf

:arg0 b))

Additional examples of the pretty-printed tree format have already been
provided for the love and purpose-clause examples above.

In order to have a unique tree representation for each AMR, let’s initially
adopt the convention that (i) subtrees are ordered left-to-right with the :instance
subtree (often labeled /) first and otherwise in standard alphanumeric order, and

1 A tree decomposition of undirected graph g = (V,R) is a tree t = (U,S) where (i)⋃
u∈U u = V, (ii) if an arc in g connects vi and vj , then some u ∈ U contains

both vi and vj , and (iii) if some node v of g is in two nodes ui, uj of U, then v is
in every node on the path between ui and uj . The treewidth of a decomposition is
maxu∈U|u|−1. The treewidth of g is the minimum treewidth over all decompositions
of g. Many problems have complexities that increase with treewidth [7,20], and
Courcelle’s theorem relates treewidth to MSO definability [15]. Computing treewidth
is NP-complete, but code for computing treewidth of small graphs is available at [1].
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(ii) for any set of nodes with the same label, all must be leaves except possibly
the one that occurs first in the preorder traversal. (i) is revised in Sect. 3 below.

2 Raising Negation and First Order Quantifiers

The intuitive reading of AMRs suggested in the first paragraph of this paper
binds the variables of an AMR with existential operators. But that will not work
when negation is attached under the verb. As in some dependency grammars.
[9] proposes a translation from AMRs with negation to first order logic (FOL),
raising the negative polarity to take wide scope. Assuming The boy didn’t giggle
gets the AMR on the left, it is mapped to the FOL translation on the right:

(g / giggle-01
:arg0 (b / boy)
:polarity - )

¬∃g(giggle-01(g) ∧ ∃b(boy.sg(b) ∧ :arg0(g, b)))

But that FOL means something like No boy giggled, while the sentence The boy
didn’t giggle is clearly talking about some particular boy. For this, Bos proposes
a reform of AMR which marks constituents with a backwards :instance slash
whenever they should be raised to take scope over negation. In the translation
to FOL, a concept :instance introduced with the backward slash takes scope over
the negation:

(g / giggle-01
:arg0 (b \ boy)
:polarity - )

∃b(boy(b) ∧ ¬∃g(giggle-01(g) ∧ :arg0(g, b)))

Note that the FOL representation here actually means roughly: some boy doesn’t
giggle, still not quite what we want.

Extending this backslash idea to universal quantification, Bos proposes that
AMRs be augmented to indicate every as shown in this example, with a backslash
to give it wide scope:

(g / giggle-01
:arg0 (b \ boy

:quant A ))
∀b(boy(b) → ∃g(giggle-01(g) ∧ :arg0(g, b)))

In summary, Bos’s proposal is roughly this: (1) The event structure associated
with each verb is existentially closed; (2) negation scopes over the existential
closure of the event that the :polarity role is attached to; (3) arguments marked
by reversing their :instance slash are raised to take scope over the whole struc-
ture; and (4) alternative permutations of the quantifiers with reversed slashes
are generated nondeterministically.

These steps head in the right direction, but observe these four points:

• If articles, grammatical number and tense are not indicated, then the AMR
assigned to Bos’s example The boy didn’t giggle is also assigned to boys don’t
giggle and the boys will not giggle and a boy won’t giggle. These sentences mean
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different things in respects that could be important for some applications of
AMR annotation, and it is easy to add a little more to the annotation to
distinguish them, as proposed in the introduction to this paper.

• Bos’s backslash proposal (3,4) provides a way to allow arguments to scope over
the existential event quantifier, but, as noted for example by Champollion [12]
and Landman [30], it is not the exception but the rule that this should hap-
pen. For various theoretical and empirical reasons, it is more natural to take
a sentence like John kissed every girl to assert possibly many different kissing
events, one for each girl, rather than a single event that includes possibly
many different girls at many different times and places. And Bos points out
that among the phrases that regularly outscope the event quantifier and nega-
tion are not only quantified phrases like every boy but also “proper names,
appositive expressions, definite descriptions, and possessive constructions.”
This could be built into the translation, rather than requiring every instance
to be marked. This idea is developed in Sect. 3.

• When AMRs are used to represent conjunctions of sentences and discourses,
proposals (3,4) will raise quantifiers over the whole conjunction or discourse,
and permuting them will generate spurious scope interactions. Scope inver-
sions are usually clause- and sentence-bound, and even with those restrictions,
the number of alternative scopings can grow quickly. Scope locality restric-
tions are imposed in Sect. 3, and we don’t generate alternatives.

• As noted above, since the definite article is ignored in current AMR, the FOL
translation for the boy didn’t giggle actually means something like some boy
didn’t giggle. Articles have not only quantificational force but also a discourse
role that affects utterance meaning. AAMRs, augmented with quantifiers and
articles as suggested in the introduction, allow a translation to logic that can
respect the force of these elements. This idea is briefly developed in Sect. 5.

3 Towards a Proper Treatment of Quantifiers

The survey in [38, Sects. 13, 14, 15 and 16] shows that among the many things
not expressible by any iterations of first order quantifiers are the following, using
As, Bs for determiner phrase denotations, R for properties/relations, and R-er
for comparatives: most As R, more than one third of As R, 80% of As R, more
As than Bs R, an even number of As R, different As R different Bs, As are
usually R-er than Bs, an infinite number of As R. A longer, wider-ranging list
is provided in [26]. And the list gets much longer if we include quantifiers whose
representation in FOL with identity is possible but not feasible: it is an old point
that FOL with identity is not a good language to express propositions like More
than seven billion people need clean water. FOL is not appropriate for linguistic
semantics. And even for a wide range of common engineering applications, oper-
ators for cardinalities and cardinal comparisons are common enough that logics
like OWL, carefully designed for engineering goals, provide them [7,24].

So we begin by proposing a translation from AAMR to higher order logic
(HOL) in which quantifiers like every and some are treated like most, seven
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billion, more than 1/3 of,. . . . Let’s assume that these quantifiers apply to pairs
of properties to yield truth values. (We revise this assumption about the higher
order type of binary quantifiers in section Sect. 5.) For example, taking a simple
variant of Bos’s example, we will map the AAMR for Most boys giggled on the
left to this HOL on the right:2

(g / giggle-01.pres
:arg0 (b / boy.pl

:quant: most ))
most(boy.pl,λb∃g(giggle-01.pres(g) ∧ :arg0(g,b)))

That is, roughly, most boys have the property that there is an event in which
they giggle. Note that we scope most over the event existential by default, rather
than needing a backslash to trigger that effect.

Adding negation to get Most boys do not giggle, there are actually two read-
ings: either the ‘surface order’ (i) most boys are such that it’s not the case that
they giggle, or the ‘inverted order’ (ii) it’s not the case that most boys are such
that they giggle. This is a case where the two readings are not so easy to disas-
sociate. But if we assume that most means more that half, precisely, then in a
situation where exactly half the boys giggle, then (i) is false, but (ii) is true. As
is often the case in structures with interacting scopes, I think the surface order
reading is the most natural here:

(g / giggle-01.pres
:arg0 (b / boy.pl

:quant most )
:polarity - )

most(boy.pl,λb¬∃g(giggle-01.pres(g) ∧ :arg0(g,b)))

Rather than generating the non-surface order scopal orders for AAMRs, we
will generate just the basic surface order reading. If needed, alternative orders
can be computed from the basic order either with an algorithm that raises the
quantifiers to get all possible alternative orders, or by using some kind of heuristic
method to generate only scopes that are most likely in some sense, as discussed
in Sect. 4.

In sum, while Bos computes all the raised quantifiers for the whole structure
together, and then applies them to the representation of the unraised structure,
we will only raise quantifier arguments to scope over the AAMR that they are
arguments of, to generate surface-order scope only. We can see already that this
calculation of HOL from the tree representation of AAMR is quite simple; it can
be done by a simple finite state mechanism, a deterministic multi bottom up tree
transducer (mbutt) [16,19]. To set the stage for that, first we revise our earlier
convention about the linear order in tree representations of AAMRs: instead of
putting subtrees into alphanumeric order, we will order them according to the

2 HOL with generalized quantifiers is introduced, for example, in Carpenter’s [11,
Sect. 3]. Like Carpenter, we write ∀xφ for every(λx.φ), and ∃xφ similarly.
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linear order of their corresponding elements in the input string.3 Second, we will
modify the tree representation so that the roles are not treated as arc labels but
as node labels. This allows AMRs to have a standard term representation. So
our previous example actually is given to the transducer as the tree on the left:

g(:instance(giggle-01.pres),
:arg0(b(:instance(boy.pl),

:quant(most))),
:polarity(-))

most(boy.pl,λb¬∃g(giggle-01.pres(g) ∧ :arg0(g,b)))

Intuitively, a bottom up tree transducer differs from a bottom up tree accep-
tor in that the states may have a subtree, their output. An mbutt differs from a
simple tree transducer in allowing states to have more than one subtree, so that
up to k subtrees can be carried up the tree. What needs to happen in our trans-
formation is that the subtrees corresponding to negation and to each argument
of each lexical concept need to be lifted to scope over each verbal concept. We
will define the transducer so that the order of the quantifier subtrees is preserved
as they raise, so that the transducer can place those elements in the order that
corresponds to the string surface order.

Slightly more formally, a bottom up tree acceptor A = (Q,F,Σ, δ) where Q
is a finite set of states, F ⊆ Q is the set of final states, Σ is a ranked alphabet,
and δ is a finite set of transition rules of the form f(q1, . . . , qn) → q, mapping
a tuple of states to a state. Leaves are 0-ary, and hence treated by rules of the
form f → q, mapping a leaf to a state. The acceptor is deterministic iff no two
rules have the same left side. To get a transducer we let the states be 1-ary, with
rules of the form f(q1(t1), . . . , qn(tn)) → q(t), where t may contain t1, . . . , tn as
subtrees, together with any fixed structure. If a rule has at most one occurrence
of each ti in t, it is linear, and the transducer is linear iff all its transitions are.
And we extend this to mbutts by letting the states have arity up to k for some
k. See [16,18,19].

Formalizing and implementing the transduction we need for any corpus is
straightforward, but slightly tedious since many elements are rearranged in the
HOL. Stepping through the simple example above, most boys do not giggle, will
make clear what the task requires. Since HOL allows higher order functions, the
expressions denoting functions can be complex, and so expressions like (f(g))(h)
are well formed – with some operator precedence conventions this is written
more simply as fgh. To represent such expressions as trees, we will make the
applications explicit, using a period as the application operator, representing
(f(g))(h) with the tree .(.(f,g),h):

3 The correspondence between AAMR subgraphs and elements of the input string is
sometimes given by hand-specified alignments, and there are a number of proposals
about how to compute them when hand-specifications are not available [13,17]. Note
that “:polarity -” will be aligned with the negation in the input string. In the example
above with ‘most’ and ‘not’, the surface order and the alphanumeric order coincide.
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.

.

f g

h

Since the translation from (f(g))(h) to .(.(f,g),h) is easy and the former is easier to
read, in the following discussion we use the former notation, sometimes omitting
parentheses when no confusion results. And sometimes, λx.p(x) is reduced to p.

We assume that the set of basic vocabulary of concepts w is fixed and given.
For every concept w, we have a rule mapping that concept to a 1-ary state qc
that has the concept as an argument:

w → qc(w)

That is, for the leaves of the AAMR just above for most boys do not giggle, we
have the rules:

giggle-01.pres → qc(giggle-01.pres)
boy.pl → qc(boy.pl)
most → qc(most).
- → qc(-)

Now moving up the tree, we have the :instance role dominating the state
qc(giggle-01.pres). For these :instance roles, we have the rule

:instance(qc(t)) → qi(t).

So at that node, we now have the state qi(giggle-01.pres). Climbing up from -,
we have the :polarity role, a special case handled by the rule

:polarity(qc(-)) → q−.

Climbing up from boy.pl use the instance rule just above to get qi(boy.pl). Climb-
ing from most, we have the :quant role and use the rule:

:quant(qc(t)) → qq(t).

Now we get to the more interesting steps. The AAMR dominated by b is pro-
cessed with this rule:

b(qi(t0), qq(t1)) → qqa(t1,b, t0).

So this last step yields qqa(most,b,boy.pl). Climbing from that last step, the :arg0
role is assigned:

:arg0(qqa(t0, t1, t2)) → qrcq(:arg0, t0, t1, t2).

At this point we have qrcq(:arg0,most,b,boy.pl). Now all the needed parts are
available for the last step:

g(qi(t0), q−, qrcq(t1, t2, t3, t4)) → qa(t2(t4, λt3¬∃g(t0(g) ∧ t1(g, t3)))).
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This rule yields the desired qa(most(boy.pl, λb¬∃g(giggle-01.pres(g) ∧ :arg0
(g, b)))).

Clearly, this kind of deterministic bottom up assembly of HOL is going to
be possible as long as the number of subtrees needed at each step is finite and
the number of different things we need to do with those subtrees – controlled
by the states – is finite. AMR does not impose a fixed bound on the number
of argument roles a predicate can have, but for any fixed AMR corpus, there
will be a maximum. And we carry quantifiers only up to the verbal sub-AMR
that introduces them – a kind of locality restriction on scope interaction – so we
only ever have a finite number. So clearly, within the finite bounds needed for
any corpus, an mbutt mapping AAMR to the surface-order scope HOL can be
defined. This finite state transduction is ε-free and deterministic, but not linear
because of variable copying.

4 Bounded Quantifier Raising

The calculation described in the previous section has nice properties, but it leaves
quantifiers in their low ‘surface order’ positions. If we provide a fixed finite bound
on the number of quantifiers requiring non-surface scope, a nondeterministic
mbutt can be defined that permutes the quantifiers to get the alternative scopes.
We sketch an extension to the transducer of the previous section with this effect,
but a similar alternative approach could define the quantifier-raising transducer
independently, and compose it with the previous transducer when alternative
scopes are desired.

Hobbs and Shieber [23] observe that the following sentence with 3 quantifiers
has not 3 != 6 but only 5 alternative scopes:

Every representative of some company saw most samples.

The missing reading is the one where every representative takes widest scope,
and most samples scopes over some company. That scope order is excluded
because representative is relational and the of-phrase names one of its argu-
ments.4 Consider first the HOL surface scope of these simpler sentences:

Every representative saw most samples
surface scope: every(representative, λy.most(sample, λx.saw(x, y)))

Every representative of some company laughed
surface scope: every(λx.some(company, λy.representative(x, y)), laughed)

4 The discussion in Hobbs and Shieber has an error that does not affect their main
point. Their example sentence is not talking about things that are both represen-
tatives and also of-some-company – that doesn’t quite make sense intuitively, and
in fact gets the wrong entailments; see e.g. [37]. Rather, representative is relational
and of some company specifies one of its arguments. We rephrase the Hobbs and
Shieber argument here without that mistake. In the LDC AMR corpus [27], repre-
sentative is treated relationally as it should be, as denoting an :arg0-of the predicate
represent-01, where :arg0 is the representer and :arg1 is the thing represented.
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Note that in the former example, most is in the second argument (sometimes
called the ‘scope’) of every, while in the latter example, some is in the first
argument (the ‘restriction’) of every. Returning now to the sentence considered
by Hobbs and Shieber, it is clear that we cannot put most between every and
some, since some must be in the first argument of every, and most needs to
be in the second argument of every. Hobbs and Shieber mention a number of
quantifier-scoping proposals that derived ill-formed structures for the missing
reading, and they also note that while reducing 5 to 4 may seem unimportant,
the same consideration reduces the possibilities for the following sentence from
5 != 120 to 42:

Some representative of every department in most companies saw
a few samples of each product.

The ill-formed structures are avoided by any approach that respects the binary
type of these quantifiers and only raises them, never lowering a quantifier into
the argument of another quantifier.

It is now easy to see that a nondeterministic mbutt can do this quantifier
raising if there is a fixed, finite bound on the number of quantifiers to raise.
For the previous 2 simple examples, consider what is required to derive these
non-surface scopes:

Every representative saw most samples
inverse scope: most(sample, λy.every(representative, λx.saw(x, y)))

Every representative of some company laughed
inverse scope: some(company, λy.every(λx.representative(x, y), laughed))

The former inverse LF means something like: most samples are in the set of
things that every representative saw, and the latter inverse LF means roughly:
some company is such that every one of its representatives laughed. To derive the
former LF, instead of using the rule placing most and its restriction into surface
scope position, these are lifted up to take wide scope over the whole formula.
In the latter case, instead of using the rule placing some and its restriction into
surface position, we lift them to wide scope. Comparing the surface and inverse
representations for each of these examples, notice that just finitely many subtrees
are lifted in each case – and they are, in fact, subtrees already computed by the
transduction from AMR to surface order HOL. Clearly, with a finite bound
on the number of moving quantifiers, we can define rules to place the moving
quantifiers in all possible orders.

The quantifier raising steps are nondeterministic but it is ε-free and linear;
as we see in the examples above, the quantifier raising step rearranges subtrees
from the surface order, and never needs to delete or produce multiple copies of
those subtrees. The Hobbs and Shieber algorithm achieves the same effect, but
one advantage of a linear mbutt representation is that linear mbutts are closed
with respect to composition [16,19]. For example, we can compose an mbutt
that accepts any particular input HOL with the quantifier raising transduction
to get a representation of the whole set of alternative scopes for the input.
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Hobbs and Shieber point out that many preferences can be incorporated rela-
tively easily by controlling the nondeterministic choices, and at least some of
these appear to be within the range of weighted mbutts [33] – a topic for future
work.

There is an enormous and still growing literature on quantifier scoping pat-
terns and preferences. In a recent summary review, Szabolcsi [39] discusses some
preferences that were not mentioned in the paper by Hobbs and Shieber more
than 20 years earlier, but points out that the main advance is the recognition
that many different things are interacting to produce effects that are sometimes
misleadingly lumped together as scope interactions. We split out one of the
important factors in Sect. 5.

5 Dynamics and Accommodation

We conclude with a brief sketch of a possible approach to the definite article
and some of the many things related to that.5 As noted at the beginning of this
paper, when an entity is the argument of more than one predicate, roles from
the respective predicates point to a single representation of that entity. This can
happen in control constructions, with pronouns, with proper names, and with
descriptions. Computing the coreference relations as a typical speaker would is
clearly a hard problem [35], so as in the previous section, we consider how to
factor this hard problem away from other aspects of AAMR calculation.

In a sense, the coreference in the first example of the paper is the easiest to
recognize: it is unambiguously determined by the grammar of English control
constructions. Repetition of names in a discourse usually, but not always, sig-
nals coreference, as in our second example. Recognizing intended coreference in
descriptions and pronouns is obviously harder:

John giggled. He’s delighted.
John giggled. The boy is very happy.

Though the details remain controversial, there are clearly common elements in
these coreference determinations, whether they involve control verbs, names, pro-
nouns or descriptions. Just as The present king of France is bald presupposes that
the subject describes something, so He is bald presupposes that there is some-
thing salient and male available to refer to. To handle this in discourse requires
some notion of context that extends across sentence boundaries. This can seem
impossible because context includes all kinds of things and grows without bound,
but Montague famously pointed out that it is not necessary to consider contexts
in their full complexity: we need only track what is essential for understanding
5 Here we focus on the definite article, sketching briefly the fundamental change to

a dynamic perspective. But indefinite articles are even trickier and complicate the
picture of how scope works, impeding progress until it was recognized that they
require special treatment. As discussed for example in Kratzer [28] and references
cited there, they are unlike quantifiers like every or three, unlike referential expres-
sions formed with the, and not adequately handled by the discourse closure proposed
by Heim [22] and DRT [25]. See e.g. [10].



84 E. Stabler

the particular discourse [34]. Furthermore, we have the fact that humans can
not only do this with little or no conscious effort, but can predict fairly well how
others will do it in a given context, as any careful writer knows.

There is a large literature about coreference resolution and tracking entities
in discourse, but here I will sketch the bare outlines of a preliminary framework
proposed by Lebedeva [32], based on de Groote [21]. Where the static theory
has propositions of type o, this framework gives them the type γ → (γ →
o) → o, a map from contexts γ to continuations γ → o to propositions o. This
‘dynamization of types’ can be propagated throughout the type hierarchy. The
logical constants are also dynamized so that, for example, conjunction applies
the update of the first proposition and then the update of the second. And the
terms are similarly dynamized, with a special treatment reserved for pronouns
and the definite article. The selection of an antecedent for a pronoun can be
modeled by assuming the existence of a dynamic selection function ˜sel which
takes the context to return a dynamic entity. Let ˜it represent the dynamized
term that represents a function that selects a referent from context. Similarly
let ˜the represent a function that combines with a dynamic property to return
an entity from the discourse context. When appropriate entities are not present,
these functions can raise an exception that triggers an accommodation, e.g. the
listener could just add a relevant entity. This is a big picture with many parts,
but here I just want to make a small suggestion.

Consider again the simple example The boy giggled. In AAMR, the past tense
and the definite article are indicated, and so now the natural proposal for its
HOL representation is this:

(g / giggle-01.past
:arg0 (b / boy.pl

:quant: the ))
t̃he(boy.pl,λb∃g(giggle-01.pres(g) ∧ :arg0(g,b)))

Obviously, adding this treatment of the definite article has no effect on the
complexity of the AAMR to HOL mapping. This approach simply marks this
sentence as unlike the dynamized representation of Some boy giggled in a relevant
respect. The operator ˜the signals that an appropriate boy should be selected
from context, or if that’s not possible, some kind of accommodation should be
triggered. Lebedeva proposes that not only definite descriptions, but names and
pronouns should be treated in an analogous fashion.

Recognizing that the calculation of the selection function ˜sel is often chal-
lenging, notice that we could first calculate AAMR without the coreference links,
without evaluating ˜sel. In the example 2-sentence discourse given in Sect. 1, that
would mean having two instances of individuals named John. Computing AMRs
without selection is obviously going to be easier in many cases. Instead of an
HOL translation of the AAMR given for the small dialog in Sect. 1, with the two
occurrences linked, we could instead have only two dynamic terms. Elements
that look for antecedents in the context can be marked in the translation but
left unresolved. Coreference resolution, application of selection function, can then
be done in a separate step and evaluated separately to see whether it assumes the
same coreference links as a human speaker probably would in the same context.
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6 Reforming the Corpus and Other Future Work

Why not translate directly from the strings in context to the higher order
dynamic logic, dispensing with the AAMR? First, some practical points: AMR
already annotates fairly large corpora, and it is being developed largely by vol-
unteers and academics who disagree about what counts as an appropriate anno-
tation for linguistic meaning. For this reason, a shared effort necessarily focuses
on fundamental points of agreement. And for this same reason, it is relevant
that the revisions proposed here are minor. AAMR adds some additional lexical
information to AMR leaves, and attaches quantifiers to the nominal concepts
they are associated with. In an aligned and parsed AMR corpus, the generation
of the corresponding AAMR can be done largely mechanically. There is also a
second, more elusive but possibly more important motivation for AMR, noted
by many of the projects aiming to simplify semantic representations. For both
practical and scientific reasons, it can be useful to have a semantic formalism that
makes it easy to express those things that are most commonly expressed in nat-
ural language, without requiring a precision in interpretation that is completely
unlike anything humans do. AMR is designed to fit the language, composing
verb frames with classified argument and modifier roles, without settling the
sometimes complex issues about quantifier scope, etc.

AAMR specifies a number of things that standard parse trees do not explic-
itly provide: verb senses, a semantic classification of arguments and modifiers,
and intended coreference relations. This paper shows that fairly sophisticated
logical representations with higher order argument structure can also be com-
puted from these structures. If the computation of coreference is left to a later
step, AAMR calculation should be quite feasible when context makes argument
and modifier roles clear. And if determining the intended scope of quantifiers is
left to a later step, the translation from AAMR into HOL is easy to define and
compute. We have shown that when scope is local and scope determination is
postponed, the translation to HOL is finite state and deterministic. Additional
lexical information in the leaves sets the stage for treating other semantically
important matters, some of which may similarly allow some of the relatively
tractable parts of meaning representation to be factored away from the harder
and less understood parts. In at least many cases, this approach will produce
satisfactory results. In future work we hope to contribute to the production of
an AAMR corpus with transducers that map it to reasonable HOL.

Acknowledgments. Many thanks to the anonymous reviewers for their valuable
suggestions.
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Abstract. We present a logical calculus extending the classical propo-
sitional calculus with an additional connective which has some features
of substructural logic. This results in a logic which seems to be suitable
for reasoning with ambiguity. We use a Gentzen style proof theory based
on multi-contexts, which allow us to have two ways to combine formulas
to sequences. These multi-contexts in turn allow to embed both features
of classical logic as well as substructural logic, depending on connectives,
which would be impossible with simple sequents. Finally, we present an
algebraic semantics and a completeness theorem.

1 Introduction

The term linguistic ambiguity designates cases where expressions of natural
language give rise to two or more sharply distinguished meanings.1 We let the
ambiguity between two meanings m1,m2 be denoted by m1‖m2. Ambiguity is
usually considered to be a very heterogeneous phenomenon, and this is certainly
true as far as it can arise from many different sources: from the lexicon, from
syntactic derivations, semantic sources as quantifiers (this is sometimes reduced
to syntax), and finally from literal versus collocational meanings. Despite this,
we have recently argued (see [14]) that the best solution is to treat ambigu-
ity consistently as part of semantics, because there are some properties which
are consistently present irregardless of its source. The advantage of this unified
treatment is that having all ambiguity in semantics, we can use all resources in
order to resolve it and draw inferences from it (we will be more explicit below).
Ambiguity is a really pervasive phenomenon in natural language, but mostly
does not seem to pose any problems for speakers: in some cases, we do not even
notice ambiguity, whereas in other cases, we can also perfectly reason with and
draw inferences from ambiguous information:

(1) The first thing that strikes a stranger in New York is a big car.

Here for example, without any explicit reasoning, the conclusion that in New
York there is at least one big car (and probably many more) seems sound to us.
Hence we can easily draw inferences from ambiguous statements. This entails
two things for us:
1 This roughly distinguishes ambiguity from cases of vagueness [10].
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1. We should rather not disambiguate before we start constructing semantics,
as otherwise at least one reading remains unavailable, and soundness of infer-
ences cannot be verified.

2. Hence we construct something as “ambiguous meanings”, and it is perfectly
possible to reason with them.

As regards 1., we have to add that disambiguating before interpreting is often
plausible from a psychological point of view, and in many cases ambiguity can go
completely unnoticed. However, from a logical point of view this prevents sound
reasoning, and our goal here is to provide a theory for sound (and complete)
reasoning with ambiguity, not a psychological theory.

We will present a logic of ambiguity which extends classical logic with an
additional connective ‖, a fusion style connective which is non-commutative (for
now), non-monotonic in both directions, but which allows for both contraction
and expansion. Moreover, it is self-dual, which is probably its most remarkable
feature, a feature we find for example in classical bilinear logic (see [6]). Another
remarkable property of our calculus is that we extend classical contexts to multi-
contexts, hence embed classical logic into a larger logic. We find this idea briefly
mentioned in [12], but to our knowledge this seems to be the first place where
it is explicitly spelled out (though the idea of using multi-contexts is not new,
see [2,5]).

The paper is structured as follows: we firstly introduce the key properties of
ambiguity, in particular in relation to logic. Then we present the logic AL, an
algebraic semantics, and establish its soundness and completeness.

2 Logic and Ambiguity

2.1 Background and Motivation

From a philosophical point of view, one often considers ambiguity to be a kind
of “nemesis” of logical reasoning; for Frege for example, the main reason to
introduce his logical calculus was that it was in fact unambiguous, contrary to
natural language (but the discussion about the detrimental effect of ambiguity
in philosophy can be traced back even to the ancient world, see [13], and is still
going on, see [1]. On the other hand, in natural language semantics, there is a long
tradition of dealing both with ambiguity and logic, since if we translate a natural
language utterance into an unambiguous formal language such as predicate logic,
ambiguity does not go away, but becomes visible by the fact that there are several
translations. To consider a famous example:2

(2) Every boy loves a movie.
(3) ∃x.∀y.movie(x) ∧ (boy(y) → loves(y, x))
(4) ∀y.∃x.movie(x) ∧ (boy(y) → loves(y, x))

2 Technically, this translation presupposes the existence of a boy, this however is irrel-
evant to our argument.
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So we cannot simply translate natural language into logical representations
(predicate logic or other), as there is no way to represent ambiguity in these
languages. Note, by the way, that if we would use disjunction of (3) and (4),
the formula would be logically equivalent to (3), hence this is no viable option.
The standard way around the lack of functional interpretation is that we do
not interpret strings, but rather derivations: one string has several syntactic
derivations, and derivations in turn are functionally mapped to semantic rep-
resentations (e.g. see [8]). The problem with this approach is that we basically
ban ambiguity from semantics: we first make an (informed or arbitrary) choice,
and then we construct an unambiguous semantics. Now this is a problem, as we
have seen above:

1. If we simply pick one reading, we cannot know whether a conclusion is gen-
erally valid or not, because we necessarily discard some information.

2. To decide on a reading, we usually use semantic information; but if we choose
a reading before constructing a semantic representation, how are we suppose
to decide?

Now these two reasons indicate that we should not prevent ambiguity from
entering semantics, because semantics is where we need it, and if it is only to
get rid of it. But once ambiguity enters into semantics, we have to reason about
its combinatorial, denotational and inferential properties.

For reasons of space, we will here only briefly expose what for us are the
key features of ambiguity. For more extensive treatment, we refer the reader to
[14]. Our exposition briefly lays out what are the challenges in developing a logic
of ambiguity, and what are the key features it should have. We also want to
quickly address the main reasons why ambiguity cannot be adequately treated
with disjunction, which is a long-lasting misunderstanding among many scholars,
even though this has been recognized many years ago, see for example [11].

2.2 Key Aspects of Ambiguity

1. Universal Distribution. For the combinatorics of ‖, the most prominent
(though only recently focussed, see [14]) feature of ambiguity is the fact that
it equally distributes over all other connectives. To see this, consider the follow-
ing examples:

(5) a. There is a bank.
b. There is no bank.

(5-a) is ambiguous between m1 = “there is a financial institute” and m2 = “there
is a strip of land along a river”. When we negate this, the ambiguity remains,
with the negated content: (5-b) is ambiguous between n1 = “there is no financial
institute” and n2 = “there is no strip of land along a river”, and importantly,
the relation between the two meanings n1 and n2 is intuitively exactly the same
as the one between m1 and m2. This distinguishes an ambiguous expression
such as bank from a hypernym as vehicle, which is just more general than the
meanings “car” and “bike”:
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(6) a. There was a vehicle.
b. There was no vehicle.

(6-a) means: “there was a car or there was a bike or...”; but (6-b) rather means:
“there was no car and there was no bike and...”. Hence when negated, the
relation between the meanings changes from a disjunction to a conjunction (as
we expect from a classical logical point of view); but for ambiguity, nothing
like this happens: the relation remains invariant. This also holds for all other
logical operations (see [14]). This invariance is the first point where we see a
clear difference between ambiguity and disjunction. This property of universal
distribution seems to be strongly related to another observation: we can treat
ambiguity as something which happens in semantics (as we do here), or we can
treat it as a “syntactic” phenomenon, where “syntactic” is to be conceived in a
very broad sense. In our example, this would be to say: there is not one word
(as form-meaning pair) bank, but rather two words bank1 and bank2, bearing
different meanings. The same holds for genuine syntactic ambiguity: one does not
assume that the sentence I have seen a man with a telescope has strictly
speaking two meanings, one rather assumes it has two derivations (thus the
string represents really two distinct sentences), where each derivation comes with
a single meaning. Universal distribution is what makes sure that semantic and
syntactic treatment are completely parallel: every operation f on an ambiguous
meaning m1‖m2 equals an ambiguity between two (identical) operations on two
distinct meanings, hence

(7) f(m1‖m2) = f(m1)‖f(m2)

Note that in cases where we combine ambiguous meanings with ambiguous mean-
ings, this leads to an exponential growth of ambiguity, as is expected. Hence
universal distribution is what creates the parallelism between semantic and syn-
tactic treatment of ambiguity. This means: strictly speaking, we do not even need
to argue whether ambiguity is a syntactic or semantic phenomenon – because
the result in the end should be the same, it is of no relevance where ambiguity
comes from. However, as soon as we start to reason with ambiguity, a unified
semantic treatment will only have advantages, as all information is in one place.
As we only consider propositional logic, (7) reduces to

(8) ¬(α‖β) ≡ ¬α‖¬β
(9) (α‖β) ∨ γ) ≡ (α ∨ γ)‖(β ∨ γ)
(10) (α‖β) ∧ γ) ≡ (α ∧ γ)‖(β ∧ γ)

By convention, we use symbols as m1,m2 if we speak about (propositional)
linguistic meanings, symbols like a, b, c when we speak about arbitrary algebraic
objects; Greek letters α, β etc. will be reserved for logical formulas. Logically
speaking, this means that ‖ is self-dual: ‖ preserves over negative contexts
such as negation, as fusion in [6] (this logic is however used for a very different
purpose, namely syntactic analysis).
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Entailments. An ambiguity m1‖m2 is generally characterized by the fact the
speaker intends one of m1 or m2. The point is: we do not know which one of the
two, as for example in

(11) Give me the dough!

From this simple fact, we can already deduce that for arbitrary formulas φ, α, β, χ
in the logic of ambiguity, if φ 	 α 	 χ and φ 	 β 	 χ hold, then φ 	 α‖β 	 χ
holds, hence in particular, α ∧ β 	 α‖β 	 α ∨ β. But: we cannot reduce α‖β to
neither α nor β: we have α 
	 α‖β and β 
	 α‖β, and also α‖β 
	 α and α‖β 
	 β.
This is because our logic is supposed to model which inferences are valid in
every case (i.e. under every intention), not in some cases, and all the latter
entailments are all invalid in some cases. Considering (11), the speaker either
means “pastry” or “money”, but he might complain either when you given him
the money or when you give him the pastry. Hence ‖ does not coincide with any
classical connective and is not Boolean definable. It is actually a substructural
connective (see [12] for an introduction), behaving similar as fusion in linear
logic: in particular, it does not allow for weakening (we will make this precise
below). Note that this also illustrates how ambiguity behaves differently from
disjunction.

Conservative Extension. In particular in connection with logic, it should be clear
that our logical calculus of ambiguity should be a conservative extension of the
classical calculus. The reason is that even if we include ambiguous propositions,
unambiguous propositions should behave as they used to before – if there are
new entailments, they should only concern ambiguous propositions.

Monotonicity/Consistency. Imagine someone telling you something about
banks, and as he goes on, you discover that what he says does not make any
sense to you. In the end, you notice that he has been using the term bank with
different meanings in different utterances. At this point, you will obviously have
to consider his entire discourse meaningless: how can you possibly reconstruct
what meaning was intended in which utterance? Hence reasoning with ambigu-
ous information presupposes uniform usage: terms with several senses must
be used consistently in one sense. And in fact, arguments with ambiguous terms
fail if this principle of uniform usage is violated; this marks the line between
their use and abuse. Hence we have the following principle:

(UU) In a given context, an ambiguous statement must be used consistently in
only one sense.

This is of course very arguable, not only because the notion of “context” remains
vague, but also because we can use the same word with different meanings in
the same sentence, as in I spring over a spring in spring.3 There is a
lot to say on this issue, for us however (UU) remains a technical necessity.

3 Thanks to an anonymous reviewer for this example!.
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(UU) also clarifies the following important point: whereas in classical reason-
ing, we have inconsistency by logical contradiction, in reasoning with ambiguity,
there is another source of inconsistency, namely inconsistent usage of ambiguous
terms. Logically, uniform usage has its counterpart in the following inference (we
denote this by monotonicity):

(monotonicity)
α 	 γ β 	 δ

α‖β 	 γ‖δ

In our logic, this will rule will be admissible, though we formulate rules in a
more general way for technical reasons.

There are some more important properties of ambiguity, such as the one
that it is not productive and hence in natural language, we do not find arbitrary
ambiguities. However, as neither there seems to be an apriori restriction on
ambiguity, we will ignore this issue (and some others) for the moment.

2.3 A Note on the Standard Treatment

As we have said, in natural language semantics it is already common to represent
ambiguous meanings in one way or other. The standard approach for representing
ambiguity (as e.g. in the quantifier case) is to use a sort of meta-semantics,4

whose expressions underspecify the logical representations (see for example [3]).
Assume our “unambiguous” language is the logic L; and call the meta-language
M, where for example χ is a formula of M underspecifying the two formulas
α, β of L (for example (3) and (4)). But now that we have this meta-language
M of our logic L, there are new questions:

1. How do we interpret terms of M?
2. How do we provide connectives of M with a compositional semantics?
3. What are the inferences both in L and M we can draw from terms in M?

Once we start seriously addressing these questions, we see that moving to a
meta-language does not solve any problems – at best, it removes them from
our sight. We usually do have a compositional semantics and consequence rela-
tion for L; for M we do not. Hence M fails to have the most basic features
of a semantics, unless, of course, M itself is a logic with consequence relation
and compositional semantics. But in this case, considering that M should con-
servatively extend L, it seems to be much more reasonable to include the new
operator for ambiguity into our object language L. And this is exactly what we
do here. From this example it becomes once more clear that ambiguity cannot
be reasonably interpreted the same way as disjunction: because L in any normal
case already has disjunction, and there would be no need at all for M.

4 Actually, this would be a meta-metalanguage, because logical representations are
already a form of representation of real meanings.
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3 The Ambiguity Logic AL

3.1 Multi-sequents and Contexts

We want to advert the reader that from the presentation of AL, it will not be
immediately clear how it relates to ambiguity. This will be much more obvious
for its semantics, universal distribution algebras, which we present in Sect. 4;
hence if the reader is interested in the motivation rather than the logic, we
advise him to first consider Sect. 4. The logic AL is a conservative extension of
classical (propositional) logic, that is, it derives all and only the valid sequents of
classical logic in the language of the latter, but it has an additional connective ‖,
with which we can derive additional valid sequents. ‖ is not very exotic from the
point of view of substructural logic: it is a fusion-style operator, which allows for
contraction and expansion (its inverse), but not for weakening; we can present it
both in a commutative and non-commutative version. Our approach differs from
the usual approach to substructural logic in that we extend classical logic with a
substructural connective, whereas usually, one considers logics which are proper
fragments of classical logic. In order to make this possible, we have to go beyond
the normal sequent calculus: we still have sequents, but we have different types of
contexts: one we denote by �(...), which basically embeds classical logic, one we
denote by ♦(...), which allows to introduce the new connective ‖. These contexts
thus differ in what kind of connectives we can introduce in them, and what kind
of structural rules are allowed in them. For technical reasons, there will also be
a third, negative context 	(...), which has however a less “deep” meaning. The
first two contexts can be arbitrarily embedded within each other, whereas the
negative context is restricted to single formulas. We refer to the symbols �,♦, 	
as modalities (but they do not really relate to modal logic).

We call the resulting structures multi-contexts, a pair Δ 	 Γ , with Δ,Γ
multi-contexts we call a multi-sequent, and the calculus a multi-sequent
calculus. We have found this idea briefly mentioned as a way to approach sub-
structural logic in [12], and structures similar to multi-contexts are found in
[2]. Our approach is particular in that we actually extend classical propositional
contexts, and as AL is but one particular instance of multi-sequent logics, we
think that this field definitely deserves further study.

In order to increase readability, we distinguish contexts both by the symbols
�,♦, 	, and by the type of period we use to separate formulas/contexts. This will
be ‘,’ in the classical context, so �(α, β) is a well-formed (classical) context. Here ‘,’
corresponds to ∧ left of 	, and to ∨ right of 	, and allows for all structural rules.
In the ambiguous context, we use ‘;’, hence ♦(α;β) is a well-formed (ambiguous)
context. ‘;’ corresponds to ‖, is self-dual, and allows for some structural rules such
as contraction, but not for others, such as weakening or commutativity. For the
negative context 	, this problem will not arise, as it is strictly unary. Formulas are
defined as usual, we have a set Var of propositional variables, and:

– if p ∈ Var , then p ∈ WFF;
– if φ, χ ∈ WFF, then φ ∧ χ, φ ∨ χ, φ‖χ,¬φ ∈ WFF;
– nothing else is in WFF.
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Next, we define multi-contexts; for sake of brevity, we refer to them simply as
contexts.

1. �(ε), where ε is the empty sequence, is a well-formed, classical context, which
we also call the empty context.

2. If γ ∈ WFF,then �(γ) is a well-formed, classical context.
3. If γ ∈ WFF, then 	(γ) is a well-formed, negative context.
4. If Γ1, ..., Γi are well-formed contexts, then �(Γ1, ..., Γi) is a well-formed, clas-

sical context.
5. If Γ1, Γ2 are well-formed, non-empty contexts, then ♦(Γ1;Γ2) is a well formed

ambiguous context.

Note that 	 is a strictly unary modality, whereas ♦ is strictly binary. This choice
is somewhat arbitrary, but seems to be the most elegant way to prevent some
technical problems. � has no restriction in this sense. Γ 	 Δ is a well-formed
multi-sequent, if both Γ,Δ are well-formed, classical contexts. The calculus
with all modalities is somewhat clumsy to write, so we have a number of con-
ventions for increasing readability:

– We generally omit unary classical contexts; hence ♦(α;β) is short for
♦(�(α); �(β)). We never omit negative contexts, which are always unary.

– In the same vein, we omit the outermost context in multi-sequents. We can
do this because it always is �(...), otherwise the sequent would not be well-
formed. As a special case, we omit the empty context �(). Hence 	 α is a
shorthand for �() 	 �(α) etc.

– We write Γ to refer to arbitrary contexts, so α, Γ is a shorthand for �(�(α), Γ );
– We write Γ [α] to refer to a subformula α of a context Γ ; same for Γ [Δ], where

Δ is a sub-context.
– We write Γ [�α] etc. in order to indicate that α does occur in the scope of �,

that is, the smallest sub-context containing it is classical.

We urge the reader to be careful: we will make full use of these conventions
already in the presentation of the sequent calculus. The reason is that only this
way, it will be plain obvious that our calculus is a nice extension of classical logic.
Moreover, we aim to formulate the calculus in a way to make the structural rules
of contraction and weakening admissible, as far as they are desired (see [9] for
background), though we cannot prove these properties here for reasons of space.
For the same reason, we skip the proof of basic properties such as the fact that
all rules preserve well-formedness of multi-sequents, which in fact is not entirely
trivial.

3.2 The Classical Context and Its Rules

The modality � (partly) embeds the classical calculus; hence we have the follow-
ing well-known rules:
(ax) α, Γ 	 α,Δ
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(∧I)
Γ [�α, β] 	 Θ

Γ [�α ∧ β] 	 Θ (I∧)
Γ 	 Θ[α] Γ 	 Θ[β]

Γ 	 Θ[α ∧ β]

(∨I)
Γ [α] 	 Θ Γ [β] 	 Θ

Γ [α ∨ β] 	 Θ (I∨)
Γ 	 Θ[�α, β]

Γ 	 Θ[�α ∨ β]

Note that in (I∧), (∨I) there is no requirements regarding the context. (∧I)
and (I∨) show how ∧,∨ correspond to ‘,’, depending on the side of 	. The clas-
sical rules of negation introduction are not part of the calculus, however, they
are admissible in it; this will be clear when we introduce the negative context
	. In the following, we have the three structural rules of classical logic; these
rules are of course bound to the classical context. We conjecture that weakening
and contraction are admissible in the calculus (usual argument of reducing the
degree of the rule), so the only rule we really need is commutativity.

(�comm)
Γ [�Ψ,Θ]
Γ [�Θ,Ψ ]. (�weak)

Γ [�Δ]
Γ [�Δ,Ψ ] (�contr)

Γ [�Δ,Δ]
Γ [�Δ]

This notation means that the rules can be equally applied on both sides of 	.
Note that we have all these rules not for formulas, but for contexts (recall that
in our notation, a formula is just a shorthand for an atomic context anyway).
Finally, note that we cannot explicitly introduce � at any point, and neither
eliminate it explicitly. But our rules have a number of implicit eliminations of �,
for example when we combine two formulas to one.

3.3 The Ambiguous Context and Its Rules

♦ is a strictly binary modality, and hence there should be no way to introduce
single formulas in this context. The introduction rules for ♦ are as follows:

(♦I1)

Γ, Λ � Δ, Ψ Θ, Λ � Φ, Ψ

♦(Γ ; Θ), Λ � ♦(Δ; Φ), Ψ (♦I2)

Γ, Λ � Δ Θ, Λ � Δ

♦(Γ ; Θ), Λ � Δ (♦I3)

Γ � Δ, Λ Γ � Φ, Λ

Γ � ♦(Δ; Φ), Λ

Note that if we would allow the empty context in ♦(; ), then the rules (♦I2),(♦I3)
are just particular instances of (♦I1). Hence all these rules can be seen as spe-
cial instances of a single one, which would however be tedious to write down.
Alternatively, we can derive (♦I2), (♦I3) from (♦I1) with (♦contr). However, we
rather want (♦contr) to be admissible, as it causes an infinite search space. Con-
sider also the particular instance of (♦I1) where Λ, Ψ are empty: here we can see
that these rules are in a sense a generalization of •-introduction in the Lambek-
calculus, and simply generalize (monotonicity) we mentioned above. There are
two (parallel) introduction rules for ‖:

(‖I)
Γ [♦(α;β)] 	 Θ

Γ [α‖β] 	 Θ (I‖)
Γ 	 Θ[♦(α;β)]

Γ 	 Θ[α‖β]
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At the same time, these rules eliminate the ♦-context. There are two structural
rules in ♦-context, namely associativity and contraction (we do for now not allow
commutativity), where for the latter we conjecture admissibility.

(♦ass)

Ψ [♦(Γ ;♦(Δ;Θ))]

Ψ [♦(♦(Γ ;Δ);Θ))] (♦contr)
Γ [♦(α;α)]
Γ [♦(α)]

Here double lines indicate that the rule works in both directions, and absence
of 	 means rules work equally on both sides. We still need a rule which ensures
that we will always satisfy the distributive laws as required. The introduction
rules for ♦ are already sufficient to derive ∧,∨-distribution over ‖ in the atomic
case; however, they interact with the negation rules (see below) in a manner not
sufficiently strong to ensure that this holds for �	 as a congruence as long as we
do not use cut. Therefore, we include the following unproblematic rule:

(distr)
Γ [�♦(Δ;Ψ), Θ1] Γ [�♦(Δ;Ψ), Θ2]

Γ [♦(�(Δ,Θ1); �(Ψ,Θ2))]

Θ1, Θ2 are distinct, as otherwise, we have a form of expansion, which is prob-
lematic for cut elimination. This rule slightly generalize normal distribution: if
Θ1 = Θ2, we get simple distribution, and in this special case, the rule is also
invertible, that is, its inversion is admissible in the calculus. It is not difficult to
show that without (distr), we cannot eliminate cut.

3.4 The Negative Context

	 marks the negative context. We design it in a way such that it subsumes
classical negation rules. For this reason, we have to make sure no (classical)
structural rules are applied in this context: in particular, using weakening in
	() would lead us into trouble, as the meaning of ‘,’ changes with position with
respect to 	. This is why 	 only applies to formulas. We need this context to
derive the distributional laws for ‖ and negation, which are not derivable so far.

(	I)
Γ [�(α)]

Γ [	(¬α)] (	distr)
Γ [♦(	(φ); 	(χ))]

Γ [	(φ‖χ)]

Again, these rules operate equally on both sides of 	. Note that this is the
only occasion where we explicitly write �(φ), because in this case, the classical
modality is actually cancelled and replaced by 	. Note also that in (	distr), we
introduce ‖ and delete an ambiguous context.

(	E)
Γ, 	(α) 	 Δ

Γ 	 Δ,α (E	)
Γ 	 Δ, 	(α)
Γ, α 	 Δ

Hence the modality is simply eliminated by changing the position. It is easy
to see that this subsumes classical negation rules: it splits one step into two,
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thereby allowing for negation distribution over ‖ as an intermediate step. The
best way to think of 	 is maybe to assume that every formula has an atomic
polarity attached, which is either positive in the case of �, or negative in the
case of 	.

3.5 Cut Rules

We now present the cut rule. Its adaption to our multi-sequents is not entirely
straightforward, as we have to be sensitive to different contexts: cut needs to be
aware of the modality of the cut formula (the formula being substituted), because
otherwise we might insert positive contexts into negative contexts, which would
be unsound. As ♦ is a strictly binary modality, it does not play a role for cut,
as it is never the modality attached to a cut formula.

(�cut)
Γ [�(α)] 	 Ψ Δ 	 �(α), Θ

Γ [Δ] 	 Ψ,Θ (♦cut)
Γ [	(α)] 	 Ψ Δ 	 	(α), Θ

Γ [Δ] 	 Ψ,Θ

The two rules could be obviously merged into one, if we used a meta-variable
for �, 	; this would however not really simplify things. These cut rules ensure
transitivity and congruence without any special cases to consider. Importantly,
as every context has a particular modality, also the sequence inserted by cut
comes with a modality – but it need not be the same as the one of the cut-
formula!

We define the notion of a derivation as usual as a proof-tree with the leaves
being the instances of (ax); a multi-sequent Γ 	 Δ is derivable if it is the root
of such a proof-tree. In this case, we write �AL Γ 	 Δ, meaning the sequent is
derivable in AL.

4 Semantics of AL

4.1 Universal Distribution Algebras

We now introduce a class of algebraic models for AL. For reasons of space, we
cannot dwell on algebraic properties of this class, though they are also quite use-
ful for understanding AL. We call this class universal distribution algebras
or UDA. From the axioms, it will be easy to see that it is also a nice model for
ambiguity. A universal distribution algebra is an algebra U = (U,∧,∨,∼, ‖, 0, 1),
where (U,∧,∨,∼, 0, 1) is a Boolean algebra (for background on Boolean alge-
bras see [4,7]), and ‖ is a binary function satisfying the following axioms (a ≤ b
is an abbreviation for a ∧ b = a or equivalently a ∨ b = b):

(‖1) (a‖b) ∧ c = (a ∧ c)‖(b ∧ c)
(‖2) ∼(a‖b) = ∼a‖∼b

(ass) (a‖b)‖c = a‖(b‖c)
(inf) a ∧ b ≤ a‖b ≤ a ∨ b

(mon) a‖b ≤ (a ∨ c)‖(b ∨ d)
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(‖1) and (‖2) make sure ‖ has the property of universal distribution (∨ is redun-
dant). (ass) is clear; (inf) regulates the relation ‘≤’ between ambiguous and non-
ambiguous objects; (mon) the relation ‘≤’ between ambiguous objects. Note that
(inf) is partly redundant, as a‖b ≤ a ∨ b entails a∧b ≤ a ‖ b and vice versa (use
complementation). Spelling out (mon), we can see it is basically a sort of distribu-
tive law. It is also easy to see that (mon) is equivalent to monotonicity: it states
that if a ≤ a′, b ≤ b′, then a‖b ≤ a′‖b′. The formulation we chose shows that
UDA is a variety. Note that ‖ does not have a unit element, because intuitively,
there is no unit for ambiguity. In presence of distributive laws, (inf) is equivalent
to (id) a‖a = a: (id) entails (inf), because (a‖b)∧ (a∧b) = (a∧b)‖(a∧b) = a∧b,
and hence by definition of ≤, a ∧ b ≤ a‖b; parallel for a ∨ b. Conversely, (inf)
entails (id), because then a = a∧a ≤ a‖a ≤ a∨a = a. In UDA, there are many
interesting properties we cannot state here for reasons of space. However, from
the axioms it is clear that UDA presents a nice model for ambiguity.

4.2 Interpretations of AL

The interpretation of AL into UDA is straightforward, but we have to spell it
out nonetheless. We define interpretations for contexts; this is necessary for the
usual inductive soundness proof. Assume U ∈ UDA, σ : Var → U is then an
atomic interpretation. We define two interpretation functions σ, σ by:

1. σ(p) = σ(p) = σ(p), for p ∈ Var .
2. σ(φ ∧ χ) = σ(φ) ∧ σ(χ) = σ(φ ∧ χ)
3. σ(φ ∨ χ) = σ(φ) ∨ σ(χ) = σ(φ ∨ χ)
4. σ(¬χ) = ∼σ(χ) = σ(¬χ)
5. σ(φ‖χ) = σ(φ)‖σ(χ) = σ(φ‖χ)
6. σ(�(Γ1, ..., Γi)) = σ(Γ1) ∨ ... ∨ σ(Γi)
7. σ(�(Γ1, ..., Γi)) = σ(Γ1) ∧ ... ∧ σ(Γ )
8. σ(	(φ)) = ∼(σ(φ)) = σ(	(φ))
9. σ(♦(Γ ;Δ) = σ(Γ )‖σ(Δ)
10. σ(♦(Γ ;Δ)) = σ(Γ )‖σ(Δ)

As is easy to see, σ and σ coincide on formulas, and hence in the formula case
there is no reason to distinguish them. They also coincide in their interpretation
of ‘;’, but as there might be a classical context embedded, it is important to
distinguish them. With 	, there is no need to keep them distinct, as this context
only embeds formulas.

We define truth in a model as usual: U, σ |= Γ 	 Δ iff σ(Γ ) ≤U σ(Δ); as a
special case, we have U, σ |=	 Δ iff 1U ≤U σ(Δ) and U, σ |= Δ 	 iff σ(Δ) ≤U 0U .
Moreover, we define the notion of validity as usual by UDA |= Γ 	 Δ (stating
that Γ 	 Δ is valid) iff for all U ∈ UDA, σ : Var → U , we have U, σ |= Γ 	 Δ.
We now prove soundness and completeness of UDA-semantics for AL, that is,
UDA |= Γ 	 Δ iff �AL Γ 	 Δ. We start with a section on soundness.

4.3 Soundness for AL

In this section, we only prove the following lemma:
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Lemma 1 (Soundness). If �AL Γ 	 Δ, then UDA |= Γ 	 Δ.

Proof. We make the usual induction over proof rules, showing they preserve
correctness. We omit this for the classical rules for which the standard proofs
can be taken over with minor modifications.

� (♦I1) Assume Γ,Λ 	 Δ,Ψ and Θ,Λ 	 Φ, Ψ are true in a model. Then by
(mon) ♦(�(Γ,Λ); �(Θ,Λ)) 	 ♦(�(Δ,Ψ); �(Φ, Ψ)) is true, too. It is now easy to
check that by distributive laws,

σ(♦(�(Γ,Λ); �(Θ,Λ))) = σ(�(♦(Γ ;Θ), Λ))
σ(♦(�(Δ,Ψ); �(Φ, Ψ))) = σ(♦(Δ; Φ), Ψ)

Same for σ.
� (♦I2),(♦I3) are just particular instances of (♦I1), provided we use (♦contr),

which is sound by idempotence (which in turn is equivalent to (inf)).
� (‖I),(I‖),(ass): the former are sound, because antecedent and consequent have

actually the same interpretation; the latter is obvious.
� (	I) is sound because the law of double negation holds in UDA: hence

σ(	(¬φ)) = σ(φ), same for σ, hence the claim follows easily.
� (	distr) is sound because of (‖2), negation distribution.
� (	E),(E	) As the function ∼ is a bijection in all Boolean algebras, soundness

of these rules (eliminating a ∼) is equivalent to the soundness of the classical
negation introduction rules (technically, it is their contraposition).

� (∨I) As contexts on the left of 	 are interpreted as terms over ‖,∧,∼, we show
that

(#) a‖(b ∨ b′)‖c ≤ (a‖b‖c) ∨ (a‖b′‖c)
(+) a ∧ (b ∨ b′) ∧ c ≤ (a ∧ b ∧ c) ∨ (a ∧ b′ ∧ c)
(*) ∼(a ∨ b) ≤ ∼a ∨ ∼b

from which the soundness of the rule follows by an easy induction on the
complexity of the context. (+) and (*) are obvious and well-known; we prove

(a‖b‖c) ∨ (a‖b′‖c) = (a ∨ (a‖b′‖c))‖(b ∨ (a‖b′‖c))‖(c ∨ (a‖b′‖c))
≥ a‖(b ∨ (a‖b′‖c))‖c (by (mon))
= a‖(b ∨ a)‖(b ∨ b′)‖(b ∨ c))‖c (by (‖1))
≥ a‖a‖(b ∨ b′)‖c‖c (by (mon))
≥ a‖(b ∨ b′)‖c (by (id))

� (I∧) A parallel argument to (∨I): invert ≥ and ≤, and show that (a‖b‖c) ∧
(a‖b′‖c) ≤ a‖(b∧b′)‖c. Then we can perform the same induction on contexts.

� (distr) We just consider the case on the left of 	; the other case is parallel. So
assume Γ [(Δ;Ψ), Θ1] 	 Ξ and Γ [(Δ;Ψ), Θ2] 	 Ξ are true in a model. Assume
moreover that θ1, θ2 are formulas such that σ(θ1) = σ(Θ1) and σ(θ2) = σ(Θ2),
which obviously exist. We can then see (because of soundness of ∨-rules) that
Γ [(Δ;Ψ), θ1∨θ2] 	 Ξ is true, and by distributive laws, Γ [(�(Δ, θ1∨θ2);Ψ, �(θ1∨
θ2))] 	 Ξ is also true. Now as σ(Θ1) = σ(θ1) ≤ σ(θ1 ∨ θ2), same for θ2, it
follows that Γ [(�(Δ,Θ1); �(Ψ,Θ2))] 	 Ξ is also true. For the right side of 	,
we just use ∧ instead of ∨, σ instead of σ.
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� (�cut) We use the well-known fact that in Boolean algebras, we have a∧¬b ≤ c
iff a ≤ c ∨ b. Assume both Γ [�α] 	 Ψ and Δ 	 �α,Θ are true in a model, and
let θ ∈ WFF be a formula such that σ(θ) = σ(Θ). Then Δ,¬θ 	 �α is true, and
by congruence, so is Γ [�(Δ,¬θ)] 	 Ψ . Now we make an intermediate step:

σ(Γ [Δ], Θ) ≤ σ(Γ [�(Δ,Θ)]). This can be shown by an easy induction over
Γ , the crucial step being that (a‖b) ∧ c = (a ∧ c)‖(b ∧ c) ≤ (a‖(b ∧ c)) etc.
So Γ [Δ],¬θ 	 Ψ remains true, and by double negation elimination, so is
Γ [Δ] 	 Ψ, θ, where θ can be again replaced by Θ.

� (	cut) can be, as far as semantics is concerned, be conceived of a special case
of (�cut), where α = ¬α′. But this reduction obviously only works on the
semantic side, syntactically, the rule has to be kept distinct. �

4.4 Completeness for AL

We now present a standard algebraic completeness proof for AL and UDA via
the Lindenbaum algebra for AL, denoted by Linda. Its carrier set M is the
set of AL-formulas modulo logical equivalence: we write α �	 β iff �AL α 	 β,
�AL β 	 α. This relation is symmetric by definition, reflexive and transitive (by
cut). We put α�� = {β : β�	α}, and M = {α�� : α ∈ WFF}. The next step
will be to show that �	, more than an equivalence relation, is a congruence over
connectives.

Lemma 2. Assume α1�	β1, α2�	β2. Then for � ∈ {∧,∨, ‖}, α1 �α2�	β1 � β2,
and ¬α1�	¬β1.

Proof. By cases; for all classical connectives, just use standard proof; for ‖, this
is no less straightforward. �

Hence we can use the equivalence classes irrespective of representatives and
define, for m,n ∈ M :

– m ∧ n = (α ∧ β)��, where α ∈ m,β ∈ n
– m ∨ n = (α ∨ β)��, where α ∈ m,β ∈ n
– m‖n = (α‖β)��, where α ∈ m,β ∈ n
– ∼m = (¬α)��, where α ∈ m
– 1 = (p ∨ ¬p)��, where p ∈ Var
– 0 = (p ∧ ¬p)��, where p ∈ Var

Since our calculus subsumes the classical propositional calculus, the algebra
(M,∧,∨,∼, 0, 1) is a Boolean algebra, where the relation ≤ coincides with 	
(modulo equivalence). We prove it is a universal distribution algebra:

Lemma 3. (M,∧,∨,∼, ‖, 0, 1) is a universal distribution algebra.
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Proof. As 	 corresponds to ≤, = corresponds to �	. Hence equalities fall into
two subclaims, which we sometimes treat separately.

(‖1) i. (a‖b) ∧ c ≤ (a ∧ c)‖(b ∧ c).

ii. (a ∧ c)‖(b ∧ c) ≤ (a‖b) ∧ c.

a, c � c b, c � c

♦(�(a, c); �(b, c)) � c
(♦I2)

a, c � a b, c � b

♦(�(a, c); �(b, c)) � ♦(a; b)
(♦I1)

♦(�(a, c); �(b, c)) � a‖b
(I‖)

♦(�(a, c); �(b, c)) � (a‖b) ∧ c
(I∧)

...
(a ∧ c)‖(b ∧ c) � (a‖b) ∧ c

(‖ 2) i. ¬(a‖b) ≤ ¬a‖¬b We slightly abbreviate the proof:

♦(a; b) � a‖b

♦(�(¬a); �(¬b)) � �(¬(a‖b)

�(¬a‖¬b) � �(¬(a‖b))

¬(a‖b) � ¬a‖¬b

ii. ¬a‖¬b ≤ ¬(a‖b) is parallel.

(ass) Straightforward.
(inf) Consider the following (abbreviated) proof for a ∧ b ≤ a‖b:

a, b 	 a a, b 	 b

a, b 	 ♦(a; b)
(♦I3)

a ∧ b 	 a‖b

a‖b ≤ a ∨ b can be proved similarly, but already follows algebraically.

(mon) a‖b ≤ (a ∨ c)‖(b ∨ d) is easy to derive from a 	 a ∨ c, b 	 b ∨ d and (‖I1).

�
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So we have a completeness result, following by the standard argument: if
a sequent is valid in all algebras, it is in particular valid in Linda, the term
algebra, hence it is derivable in the calculus.

Theorem 4. UDA |= Γ 	 Δ if and only if �AL Γ 	 Δ.

5 Conclusion and Further Work

We have presented the logic AL, which is an extension of the classical proposi-
tional calculus with an additional ambiguity operator. The main achievements
have been the following: we have introduced a multi-sequent calculus which
embeds both classical and a substructural logic. For reasons of space, we could
not dwell on proof-theoretic properties of this logic, but we conjecture that many
structural rules are admissible. What is most interesting is decidability of the
calculus, a problem we did not treat in this paper. We rather focussed on the
semantics of the calculus: we provided the algebraic semantics by means of uni-
versal distribution algebras, which we proved to be sound and complete.

Of course, this work is only preliminary: the exact properties of AL and
UDA have not even been discussed. Still, we hope that this work shows on the
conceptual side that the relation between logic and ambiguity is not an entirely
negative one, and that we can effectively reason with ambiguous information.
On the formal side, we think that multi-contexts and the extension of classical
logic by substructural connectives is a very interesting field in the study of logic,
which to our knowledge has yet attracted little attention.
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Abstract. In this paper, we computationally implement and compare
grammars of Samoan stress patterns that refer to feet and that refer
only to syllables in Karttunen’s finite state formalization of Optimal-
ity Theory, and in grammars that directly state restrictions on surface
stress patterns. The grammars are defined and compared in the high-
level language of xfst to engage closely with specific linguistic proposals.
While succinctness (size of the grammar) is not affected by referring to
feet in the direct grammars, in the OT formalism, the grammar with
feet is clearly more succinct. Moreover, a striking difference between the
direct and OT grammars is that the OT grammars suffer from scaling
problems.

Keywords: Phonology · Stress · Finite state · Optimality theory

1 Introduction

A substantial body of work in theoretical phonology suggests that referring to
phonological constituents—units such as feet, prosodic words and higher-level
constituents—can capture generalizations in phonological patterns [15,35,43,45].
But other work in theoretical phonology offers alternative ways to capture the
same kinds of generalizations [28,29,47]. And strikingly, computational descrip-
tions of phonological patterns have revealed strong structural universals without
referring to constituents at all [17,18]. Thus, while “we [phonologists] tend to help
ourselves to prosodic domains without further comment” [46], there is in fact
a puzzle here—Do constituents make phonological grammars more succinct?—
which hasn’t yet been carefully investigated computationally.1 The work here is
an initial effort to begin to fill this gap.

In this paper, we implement and compare phonological grammars of stress pat-
terns in Samoan monomorphs to assess whether grammars referring to feet are
more succinct than grammars that refer only to syllables. Succinctness compar-
isons between grammars of the same ilk have appeared in [5,8,14,33,38,44], among
other work. We define all grammars in xfst [4], software for computing with finite
1 Some computational work has defined phonological patterns in terms of tiers [6,9,30]

from autosegmental theory [12], but tiers aren’t properly nested like constituents,
e.g., it’s generally assumed that feet don’t straddle prosodic words.

c© Springer-Verlag GmbH Germany 2018
A. Foret et al. (Eds.): FG 2017, LNCS 10686, pp. 105–124, 2018.
https://doi.org/10.1007/978-3-662-56343-4_7
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state machines, and our comparison is a 2 × 2 experimental design because we
compare grammars with and without feet in two formalisms: (a) Karttunen’s finite
state Optimality Theory (OT) [27], which maps underlying forms to surface forms
without an intermediate mapping to violations, by using a special composition
operator “lenient composition”, and (b) a “direct” approach which directly regu-
lates the surface patterns, e.g., [17,22]. Our work thus addresses not only the role
of constituents in phonology, but also the advantages anddisadvantages of different
formalisms. Our method of implementation and comparison is designed to engage
closely and concretely with linguistic analyses and empirical data. The goal here is
not to make general, abstract claims, but to question if a particular phenomenon
motivates prosodic constituents, cf. case studies that examine where phonological
and syntactic patterns fall in the Chomsky hierarchy. In doing this, we carefully
state very specific assumptions and claims guided by proposals by phonologists
about the phenomenon to gain a clearer understanding of the phenomenon and
the proposals. The code implementing and testing the grammars is available at
https://github.com/krismyu/smo-constituency-feet.

The rest of the paper is structured as follows: the remainder of this introduc-
tory section operationalizes Do constituents make phonological grammars more
succinct? (Sect. 1.1) and describes the simplified language of stress patterns of
Samoan that our grammars are designed to capture (Sect. 1.2). We describe
the four grammars in Sect. 2: the direct account with feet (Sect. 2.2), the direct
account with syllables only (Sect. 2.3), the OT account with feet (Sect. 2.4), and
the OT account with syllables (Sect. 2.5). The discussion follows in Sect. 3, and
we conclude with Sect. 4.

1.1 Operationalizing the Research Question

In this section, we define the concepts in our research question: phonological
grammars, constituents, and succinctness.

Phonological Grammars and Constituents. In Formal Language Theory, a
grammar is defined by a finite alphabet of terminal symbols, a finite set of non-
terminal categories (which shares no members in common with the alphabet),
a finite set of rewrite rules, and a start symbol that initiates the derivation
[7,41]. The set of strings that can be derived by the grammar is defined to be
the language derived by the grammar. In a tree derived by the grammar, nodes
are labeled with categories, and a set of nodes form a constituent if they are
exhaustively dominated by a common node.

The nature of restrictions on the structure of rewrite rules determines the
structural complexity of the grammar. A standard definition of a (right) regular
grammar says that it is a grammar where the rules are restricted to the form
A → aB, and A → ε, where A and B are non-terminal categories and a is a ter-
minal symbol. This restriction results in grammars where the only constituents of
length >1 are suffixes. But prosodic constituents in phonological theory include
both prefixes and suffixes. For instance, given an alphabet of light and heavy

https://github.com/krismyu/smo-constituency-feet
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syllables Σ = {L,H}, suppose we defined a (right) regular grammar that could
derive the string LLHLL. Then the suffix-constituents derived by the grammar
would never be able to pick out the initial LL or the medial H as feet.

A regular language is one that can be derived by a regular grammar. It has
been shown that (almost) all phonological patterns are regular [24,26]. We are
left with an apparent contradiction: if phonology has constituents that are both
prefixes and suffixes, then how is it that phonology is regular? The critical point
is that it’s the language—the set of admissible surface patterns—that’s been
shown to be regular in phonology, not the grammar that could derive it. There
are infinitely many grammars that can define the same language; supra-regular
grammars—with fewer restrictions on rewrite rules than regular ones—can define
regular languages. A language that can be defined by a grammar with suffix-
constituents can also be defined by one with non-suffix constituents. This paper
shows how we might assess which kind of grammar is, in a certain sense, better.

We define the four accounts as regular transductions. We start with a transduc-
tion that overgenerates: it marks up input sequences of light and heavy syllables
with all possible stress patterns (Gen, defined in Sect. 2.1). From this point on, the
syllable-based grammars are defined with identity transductions (i.e., acceptors).
However, the foot-based “grammars”2 require an additional (non-identity) trans-
duction because they also mark up the stressed sequences with boundary symbols
indicating left and right foot edges. Here we are coding constituents into the state,
not in the derivation tree. An approach that codes constituents into the state can
provide an exact account if the bound on tree depth required is finite, and here we
are only coding feet—constituents up to depth 1.

We implement (non-suffix) constituents into the state (with regular transduc-
ers), rather than into the derivation (with supra-regular acceptors) to keep the
definition of the grammars close to those that phonologists use. Linguists have
characterized a wealth of phonological patterns with SPE-style rewrite rules,
introduced in [8], and also with optimality-theoretic (OT) constraints [36]. [26]
showed that the expressivity of SPE-style phonological characterizations is equiv-
alent to that of regular transductions (provided that cyclic application of rules
is not permitted). And [10] showed that an OT characterization has the expres-
sivity of a regular transduction if the mapping from input to possible output
forms (Gen) and the constraints (Con) are regular, and the number of violations
a constraint can assign is finitely bounded; moreover, OT limited in such a way
is sufficient for capturing analyses proposed by phonologists, except for analy-
ses with gradient constraints (which can assign unboundedly many violations).
Thus, the analytical tools that phonologists use—keeping the hedges mentioned
above in mind—have the expressivity of regular transductions.

While phonologists may work with the power of regular transductions, they
do not define phonological grammars by specifying transductions in the standard

2 Because they are defined with non-identity transductions, the foot-based “grammars”
are not grammars as defined by Formal Language Theory. But the phonological litera-
ture calls phonological transductions—input-output mappings from underlying forms
to surface forms—like these “grammars”, and we’ll follow that convention.
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way, by listing states and transitions. Instead, they specify them at a high-level.
We can do this too, by writing the grammars in xfst [4]. This language was
carefully designed by linguists to make it easy for us to express generalizations
in the high-level language which are hard to express or detect at the level of
a regular grammar or a finite state machine. It includes pre-defined complex
operators to give us a high-level notation for regular transducers. For example,
we can write SPE-style rules using replacement rules with the syntax A -> B ||
L _ R, where we simply need to specify the focus, change, and the structural
description: this rule clearly does not meet the form A → aB. xfst allows us
to define our own operators and units, too, e.g., feet, and it compiles our high-
level grammars to machine-level finite state transducers. Since xfst grammars are
compiled into standard finite state representations, an xfst definition establishes
that the phenomenon described is regular (see [11]) and gives us a common
formalism in which we can define all four grammars. It is not possible to define
“standard OT” [37] fully in xfst: we could define Gen, which generates the set of
candidate outputs, and the assignment of violation marks according to the set of
violable constraints in Con—but not the non-regular Eval relation for computing
the optimal candidate, since the number of states required to define Eval can’t
be bounded [10]. However, we can define Karttunen’s finite state formulation of
OT [27] in xfst, as it avoids Eval by mapping underlying forms directly to surface
forms with “lenient composition”.

Succinctness. Having xfst as a common formalism for defining all four gram-
mars allows us to make a controlled comparison of the succinctness of the gram-
mars. We define the succinctness of a grammar as its size—the number of symbols
it takes to write it down (in xfst), under the conventions specified in Sect. 2. We
define size over the high-level xfst grammar rather than at the machine level
because it’s the high-level language that we can express and detect generaliza-
tions in; the machines that xfst compiles are big and redundant by compari-
son. Defining size in this way over a high-level language follows other linguistic
work, e.g., [5,8,33,44]. And xfst is a reasonable choice for the high-level lan-
guage because it was designed by linguists to make it easy to state linguistic
generalizations, and not, say, tailor-made to prefer feet over non-feet.

Our metric for succinctness can be thought of a special case of minimum
description length (MDL) [39], relativized to the descriptive notation provided
by xfst. MDL as a metric for succinctness balances the minimization of the size of
the grammar, which favors simple grammars that often overgenerate, with mini-
mization of the size of the data encoded by the grammar, which favors restrictive
but often overly memorized grammars. The alphabet over which the grammars
are defined (primary, secondary, and unstressed light and heavy syllables) is con-
stant across grammars.3 Since all grammar definitions are expressed in the same
language, we don’t need to translate them into some common language like bit

3 The foot-based accounts also introduce (, ), and X as symbols, where X is an unparsed
syllable, but: (i) it’s not clear these should be included in the alphabet since they
come in only in the calculation of stress, (ii) if they are included, they make a
negligible difference.
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representations; we can simply measure xfst grammar size with symbol counting.
The data is also the same across the comparisons (the set of stress patterns in
words elicited from linguistic consultants, plus some predicted ones up to 5 sylla-
bles; we have empirical data for monomorphs only up to 5 syllables). Moreover,
as we show in Sect. 3, all the grammars admit exactly the same set of stress pat-
terns up to 5 syllables (with one exception). Thus, the MDL metric, relativized
to the descriptive resources of xfst, reduces to the size of the grammar. That
is, the size of their encodings of the sequences up to 5 syllables is exactly the
same, since the possibilities allowed by the grammars in that range is identical.
We accordingly consider just the size of the four grammars, all expressed in the
common xfst formalism.

1.2 Description of the Language Little Samoan

Samoan stress presents a good case study for a first comparison of the suc-
cinctness of grammars with and without feet. We can engage closely with the
literature and empirical data because a recent detailed foot-based OT analysis of
Samoan stress based on a rich set of elicited words is available [47]. [47]’s analy-
sis also extends to morphologically complex words parsed into multiple prosodic
words. In future work, we plan to extend the work here by comparing grammars
with higher-level prosodic constituents than feet and modeling parsing at the
syntax-phonology interface.

We define Little Samoan (LSmo), a language of strings of syllables marked
for stress and weight, as a simplified version of the description of Samoan stress
in monomorphs provided in [47]. LSmo is defined over light and heavy syllables
rather than segments, and thus ignores complications from diphthongization and
the interaction of stress with epenthesis. In [47]’s description, Samoan outputs
LL for HL-final words to avoid heavy-light (HL) feet, and also presumably for
L (content) words, to satisfy minimal word constraints. Since our OT grammars
don’t change the syllable weights in the input, we model this in OT by mapping
LL and HL-final inputs to a special Null symbol denoting a null output [37]. Our
direct models simply define transductions that don’t accept HL and LL.

The basic primary stress pattern in LSmo (and Samoan) is moraic trochees
at the right edge [47, (4)], e.g., la("va:) ‘energized’, ("manu) ‘bird’, i("Noa) ‘name’;
exactly like the well-known stress system of Fijian [15, Sect. 6.1.5.1], “if the final
syllable is light, main stress falls on the penult; if the final syllable is heavy, main
stress falls on the final syllable”. Secondary stress in LSmo is almost like in Fijian,
where “secondary stress falls on the remaining [non-final] heavy syllables, and on
every other light syllable before another stress, counting from right to left” [15,
Sect. 6.1.5.1, p. 142], e.g., (ma:)(lo:)("lo:) ‘rest’ [47, (7)]. However, LSmo has an
initial dactyl effect: initial LLL sequences are initially stressed, e.g., ("mini)si("ta:)
‘minister’ (cf. Fijian mi(nisi)("ta:)), ("temo)ka("lasi) (cf. Fijian pe(resi)("te

>
ndi)

‘president’).4

4 This ignores [47]’s evidence from LLLLL loan words showing that an initial weak-
strong-weak (WSW) pattern can occur if the first vowel in the word is epenthetic.
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[47] provides data on only two monomorphs that are longer than 5 moras:
[(ma:)(lo:)("lo:)] and a 7-mora all light loanword for Afghanistan. As noted in
[47, p. 281, fn. 2] the consultant produced (Pafa)(kani)si("tana), while a true
initial dactyl pattern would yield [(Pafa)ka(nisi)("tana)]. Little data is available
for longer words in Fijian, too, and there is variability [te(reni)("sisi)(ta:)] ‘tran-
sistor’ vs. [(ke:)(misi)ti("ri:)] ‘chemistry’, which may be due to faithfulness to
stress in the source word and a dispreference for stressing epenthetic vowels, as
in Samoan [15, p. 144, (44b, 47)]. Due to the lack of data on longer words, we
limit testing empirical coverage of LSmo to monomorphs of 5 syllables (although
of course our grammars can accept input strings of arbitrary length). Also, we
allow a more general distribution of dactyls, which permits both initial or medial
dactyls. This allows both (LL)(LL)L("LL) and (LL)L(LL)("LL), and predicts,
for example, that HLLLH may be (H)(LL)L("H) or (H)L(LL)("H).

2 Four Grammars for Little Samoan

In this section, we describe our grammars for LSmo: the foot-based direct account
(Sect. 2.2), the syllable-based direct account (Sect. 2.3), the foot-basedOTaccount
(Sect. 2.4), and the syllable-based OT account (Sect. 2.5). We define the trans-
ductions in the grammar in xfst, with symbol counts in square brackets to the
right of the command. All of the xfst expressions we use are definitions, which
get compiled into transducers associated with a variable. These have the syn-
tax define variable-name xfst-expression. Our conventions for writing xfst expres-
sions and counting symbols are as follows: (a) xfst expressions are delimited
by square brackets in a define command. (b) Auxiliary terms are defined for
any expression that appears more than once in the grammar. (c) A conjunct
or disjunct longer than one symbol is enclosed in brackets. (d) A semicolon
ending a line counts as a symbol; spaces do not count. (e) A number or a
character enclosed in double quotes, e.g., "(", counts as one symbol. (f) Each
variable name, command, operator, and atomic expression counts as a single sym-
bol, i.e., define, Heavy, WeakLight, etc., ?, *, +, ˆ, .#., [, ], (, ), |, &, ˜, \, $, −>, ,,
=>, −>@ _, ..., .o., .O. (g) Symbols used to defineGen (constant across the gram-
mars) don’t contribute to the symbol count.

Each of the four grammars is implemented as a cascade of transducers and
all four share the same basic schematic architecture:

addMarkup .o. defineSyllableAndFootTypes .o. enforceSurfaceRestrictions

All accounts begin with the transduction Gen to mark up input sequences of light
and heavy syllables with stress, as described in Sect. 2.1. The foot-based accounts
additionally add markup to indicate foot edges. These markup transductions are
the only non-identity transductions in the implementations. They overgenerate
stress patterns.5 These are then filtered in subsequent transductions that define

5 We set up the initial generation of stress patterns like Gen in Standard OT [36,
Sects. 2.2, 5.2.3.3] for the direct accounts as well as the OT accounts. We do this for
convenience; we could also generate in some other way for the direct accounts.
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sub-types of syllables (and feet in foot-based accounts) and then restrict stress
patterns in terms of these syllable (and foot) types. The difference between direct
and OT accounts shows up in the way the surface restrictions are expressed in
the grammar: the OT accounts are limited to define the restrictions as OT
constraints used by phonologists, while the direct accounts are not.

2.1 Preliminaries: Adding Stress Markup with Gen

Let us call the transduction that generates all possible sequences of syllables
marked with degree of stress and weight Gen. We define Gen (4) as the compo-
sition of Input (1), SWParse (2), and ElevateProm (3). Input generates Σ∗ over
the alphabet of light (L) and heavy (H) syllables, Σ = {L,H}. Then, SWParse
marks the degree of stress on a syllable by inserting labeled brackets around each
syllable,6 (see Parse in [27] and also [4, p. 68]), e.g., the input L has the output
S[L] (strong/stressed), W[L] (weak/unstressed). Finally, ElevateProm optionally
replaces any strong syllable S[ ] with a primary stressed syllable, P[ ], so that
S[ ] now stands for secondary stress. As an example, input LL is mapped to
{ P[L]P[L], P[L]W[L], P[L]S[L], W[L]P[L], W[L]W[L], W[L]S[L], S[L]P[L], S[L]W[L],
S[L]S[L]}.

define Input ["L" | "H"]*; [9] (1)
define SWParse [ ? -> [ "S" "[" | "W" "[" ] ... "]"]; [15] (2)

define ElevateProm ["S"(->)"P"]; [10] (3)
define Gen [ Input .o. SWParse .o. ElevateProm ]; [10] (4)

2.2 Direct Account with Feet

ParseFoot (6) parses the output from Gen into feet, marking it up with boundary
symbols; it refers to auxiliary terms for heavy [H] and light [L] syllables, Heavy
and Light (5). We restrict a foot to being bimoraic: either a LL or a H, so Parse-
Foot wraps parentheses pairs around any LL or H, e.g., (P[L]W[L]), regardless of
the stress pattern. We then define types of feet to express restrictions on stress
patterns. Foot defines a foot as string of non-parentheses enclosed in parenthe-
ses (7); PrimaryFoot defines a primary stressed foot as a string accepted by Foot
that also includes P (8), and WeakLight defines a weak light syllable (9) using
Light. We define trochaic feet with Trochee (12), which accepts a strong-weak
LL sequence LLFoot (10), or a strong H HFoot (11). The sequence \"W" in (10)
and (11) indicates the negation of the character W, i.e., any character but W
such as P or S, which mark strong syllables.

With parsing the input into feet and definitions of types of feet behind us,
the payoff comes as we can express LSmo’s restrictions on stress patterns in
terms of feet. TrocheesOnly (13) forces feet to be trochaic: it only accepts strings
6 We assume that syllable splitting feet do not occur [15, Sect. 5.6.2, p. 121].
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that are sequences of trochees that may be interspersed with unparsed syllables
(weak lights), e.g., it winnows down the parses for LL to just (S[L]W[L]) and
(P[L]W[L]). Additionally, PrimaryFootRight accepts only strings which terminate
in a foot bearing primary stress and whose final foot is not preceded by any other
primary stresses (14), e.g., eliminating (S[L]W[L]). Note that this transduction
eliminates lone Ls and HL-final strings in the language, since they do not have
parses with final primary stressed feet. Finally, we implement the “initial dactyl
effect” in LSmo with InitialDactyl (15), which forbids a sequence of a weak light
followed by a LL foot at the beginning of the word, if the LLL sequence is non-
final, i.e., followed by at least one character (?+). This yields the SWW-initial
output (S[L]W[L])W[L](P[H]) for LLLH sequences ([(mini)si("ta:)], [47, (8)]), but
a WSW pattern W[L](P[L]W[L)] for LLL sequences [i("Noa)], [47, (4)]. This also
allows outputs for HLLLH and 7Ls with medial dactyls. The final transduction
going from all possible sequences of stressed and weighted syllables to only those
in LSmo composes the foot parser with the restrictions on words in terms of feet
(16).7 All together, excluding Gen, the grammar (5–16) costs 141 symbols.

define Heavy [ "[" "H" "]"]; define Light [ "[" "L" "]"]; [16] (5)
define ParseFoot [ [ [ ? Light ]^2 | [ ? Heavy ] ] ->"(" ... ")"]; [22] (6)

define Foot ["("\. ["(" | ")"]]* ")"]; [16] (7)
define PrimaryFoot [ Foot & $["P"] ]; [11] (8)

define WeakLight ["W" Light ]; [7] (9)
define LLFoot ["(" \"W" Light WeakLight ")"]; [11] (10)

define HFoot ["(" \"W" Heavy ")"]; [10] (11)
define Trochee [ LLFoot | HFoot ]; [8] (12)

define TrocheesOnly [ Trochee | WeakLight ]*; [9] (13)
define PrimaryFootRight [ \"P"* PrimaryFoot ]; [9] (14)
define InitialDactyl ~[ WeakLight LLFoot ?+ ]; [10] (15)

define LSmoDirFt [ ParseFeet .o. TrocheesOnly

.o. PrimaryFootRight .o. InitialDactyl ]; [12] (16)

2.3 Direct Account Referring to Syllables only

The definition of Gen in this account is the same as in Sect. 2.2, but then we
state restrictions on stress patterns in terms of syllables, rather than over feet.
In addition to the previously defined auxiliary terms Heavy and Light (5), and
WeakLight (9), we also define: PrimaryLight and SecondaryLight, a primary P[L]
and secondary stressed light syllable S[L] (17); StressedSyll, a syllable of any
weight that is not weak (18); and W2, a sequence of two weak lights W[L]W[L]
(a lapse) (19).
7 LSmoDirFt can also be composed with a transduction that replaces W in unparsed

syllables with X, to match notation for the OT footed account in Sect. 2.4.
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Restrictions on the distribution of secondary and weak lights are more com-
plex and are expressed as a series of cases. StressSLight (22) restricts a secondary
light to be followed by a non-final weak light (so a penult light cannot receive
secondary stress). In addition, a secondary light must be string-initial, preceded
by a lapse W[L]W[L], or preceded by a S[L]W[L], i.e., in terms of feet, start a
new foot. We must further restrict the position of weak lights, because the trans-
ducer that is the intersection of (20), (21), and (22) admits strings with lapses
anywhere, e.g., it accepts both P[L]W[L] and W[L]W[L] from the set of sequences
generated from input LL. RestrictLapse (23) restricts a lapse W[L]W[L] to be pre-
ceded by a secondary light and followed by a stressed syllable, allowing a lapse
just in case it is in a dactyl S[L]W[L]W[L] and not string-final. The intersection
of StressPLight, StressSLight eliminates a lone stressed L, since StressPLight and
StressSLight restrict stressed lights to being non-final. But RestrictLapse does not
eliminate a lone weak L. Moreover, no transduction thus far eliminates HL-final
sequences.8 Thus, we must define transducers to ban HL-final sequences and lone
Ls: NoFinHL and NoLoneL (24). All together the grammar costs 145 symbols.

define PrimaryLight ["P" Light]; define SecondaryLight ["S" Light]; [14] (17)
define StressedSyll [ \"W" [ Heavy | Light ] ]; [12] (18)

define W2 [ WeakLight WeakLight ]; [7] (19)
define StressHeavy [ Heavy =>"P"_ .#., "S" _ ]; [13] (20)

define StressPLight [ PrimaryLight => _ WeakLight .#. ]; [10] (21)
define StressSLight [SecondaryLight =>

[.#. | W2 | [StressedSyll WeakLight] | Heavy] _ WeakLight ? ]; [19] (22)
define RestrictLapse [ W2 => SecondaryLight _ StressedSyll ]; [10] (23)

define NoFinHL ~[?* ? Heavy ? Light]; [10] define NoLoneL ~[Light] ; [7] (24)
define LSmoDirSyll [ Gen .o. [ StressHeavy & StressPLight &

StressSLight & RestrictLapse ] .o. NoFinHL .o. NoLoneL ]; [20] (25)

2.4 Karttunen OT with Feet

Our constraint set for this account is a subset of the constraints used in [47]; we
have removed constraints that are only relevant for segments, morphologically
complex words and multiple prosodic words. The partial ranking was computed
with OTSoft9 [16] based on monomorphemic candidates used in [47] and is:
Stratum 1 (i) FootBinarity (FtBin) A foot must contain exactly two moras. (ii)
RhythmType=Trochee (RhType=Trochee) A foot must have stress on its initial

8 HL-final sequences are allowed in [17]’s acceptor for Fijian stress (http://phonology.
cogsci.udel.edu/dbs/stress/language.php?id=109), based on [15]’s basic description
of Fijian stress, but [15, p. 145, Sect. 6.1.5.2]’s more detailed description suggests
that they should not be accepted.

9 All OTSoft input and output files are in the github repository.

http://phonology.cogsci.udel.edu/dbs/stress/language.php?id=109
http://phonology.cogsci.udel.edu/dbs/stress/language.php?id=109


114 K. M. Yu

mora, and its initial mora only. (iii) Align(PWd,R; "Ft,R) (Edgemost-R) The end of
the prosodic word must coincide with the end of a primary-stressed foot; Stratum
2 (i) Parse-σ Every syllable must be included in a foot. (ii) Align(Pwd;L,Ft,L)
The beginning of the prosodic word must coincide with the beginning of a foot.
Constraints in a earlier stratum are ranked higher than those in a later one, but
constraints within a stratum are not ranked with respect to one another.

define MarkUnparsed [ "W" (->) "X" ]; [10] (26)
define FtParse [ [ \"X" [ Heavy | Light ] ]+ -> "(" ... ")" ]; [19] (27)

define GenFt [ Gen .o. MarkUnparsed .o. FtParse]; [10] (28)
define Culminativity [ $.P ]; [8] (29)

define NullFinHL [ [?* Heavy [?]^<4 Light (")") ] ->@ "Null" ]; [27] (30)
define NullLoneL [ [ ("(") ? Light (")") ] -> "Null" ]; [21] (31)

define Unparsed [ "X" "[" ? "]" ]; [8] (32)
define FtBinH [ "(" ? Heavy ")" ]; [7] define FtBinLL [ "("[ ? Light]^2 ")" ]; [13] (33)

define FtBin [ FtBinH | FtBinLL | Unparsed ]*; [11] (34)
define Stressed [ "S" | "P" ]; [8] (35)

define RhTypeTrocheeH [ [ Heavy ")" ] => "(" Stressed _ ]; [13] (36)
define RhTypeTroLL [ "[" "L" => "(" Stressed _ , "]" "W" _ , "X" _ ] ; [18] (37)

define RhTypeTrochee [ RhTypeTrocheeH & RhTypeTrocheeLL ]; [8] (38)
define ParseSyll ~[$"X"]; [8] (39)

define ParseSyll1 ~[[$"X"]^>1]; [13] define ParseSyll2 ~[[$"X"]^>2]; [13] (40)
define AlignWdLFtL [ "(" ?* ]; [8] (41)

define LSmoMonoFtOT [ GenFt .O. NullFinHL .O. NullLoneL .O. Culminativity

.O. FtBin .O. RhTypeTrochee .O. EdgemostR .O. ParseS .O. ParseS1 .O. ParseS2

.O. ParseS3 .O. ParseS4 .O. ParseS5 .O. AlignWdLFtL ]; [28] (42)

We compute constraints referring to a prosodic word edge with respect to
the edge of the input string since the input never contains more than a single
prosodic word. With the exception of Edgemost-R, our constraint definitions are
identical to those in [47, (5), (12)]. Some constraints, called categorical, assign
multiple violations to a candidate iff there are multiple places where the con-
straint is violated in the candidate, e.g., Parse-σ (39). Other constraints, called
gradient, “measure the extent of a candidate’s deviance from some norm”, and can
assign multiple violations even if there is a single locus of violation in the input
[31, p. 75]. [47] computes Align(Pwd;L,Ft,L) as a categorical constraint, e.g., 1
violation for *[sika("lamu)] ‘scrum’. However, Edgemost-R in [47] is computed
gradiently, e.g., 2 violations for . We define it instead as categorical:
since it’s undominated in our constraint set, whether it is assessed categorically
or gradiently makes no difference. We can paraphase the constraint definition as
“assign a violation for every PWd where there exists a primary-stressed foot such
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that the right edge of the PWd and the right edge of the primary-stressed foot do
not coincide” [32]. As we’ll discuss in Sect. 3, whether a constraint is categorical
vs. gradient markedly impacts the succinctness of the grammar in Karttunen’s
formalism, as does whether a constraint can be multiply or only singly violated.

We define the candidate set in the OT footed account with GenFt (28)
as the composition of Gen (4), MarkUnparsed (26), and FtParse (27). MarkUn-
parsed optionally replaces W[ ] with X[ ] to mark syllables unparsed into feet.
FtParse parses the input into feet by wrapping parentheses around a non-empty
sequence of syllables that are not unparsed, e.g., X[L](P[L]W[L]). We define three
undominated constraints not included in the OTSoft ranking: Culminativity (29),
NullFinHL (30), and NullLoneL (31). We define Culminativity (every word must
contain exactly one primary stress) as a constraint rather than a property of Gen
to keep Gen constant across grammars. NullFinHL and NullLoneL map HL-final
and L inputs to Null. These definitions allow the HL-final and L inputs to be
footed or unfooted and use directed replacement operators [4, p. 73]. For the
-@> operator, replacement strings are selected right to left, and only the longest
match is replaced.

We then define constraints on feet. FtBin (34) restricts footed sequences to
be any sequence of heavy feet and LL feet (FtBinH, FtBinLL, (33)), and unparsed
syllables (Unparsed, (32)). We define RhyTypeTrochee (38) as the conjunction of
RhyTypeTrocheeH (36) and RhyTypeTrocheeLL (37). RhyTypeTrocheeH restricts
a heavy syllable followed by a parentheses, i.e., a footed H, to be preceded by
a parentheses and S (secondary) or P (primary): a footed H must be stressed.
RhyTypeTrocheeLL restricts a light syllable to be foot-initial and stressed (defined
with Stressed (35)), or non-initial in a foot and weak, or unparsed. It accepts
SWW dactyls. EdgemostR (not shown) is identical to PrimaryFootRight (14).

ParseSyll (39) must be implemented as a family of constraints because it
can be multiply violated; we discuss this further in Sect. 3. Each ParseSyllN con-
straint in the family restricts the input string to have no more than N substrings
containing X, e.g., N = 1 in ParseSyll1 (40). We follow the implementation in
[27, pp. 10–11]10 We must impose some finite k-bound on the family; here we
set k = 5 since the range of patterns we want to account for are only as long
as five syllables. AlignWdLFtL (41) states that the beginning of the input string
must coincide with the beginning of a foot and then may be followed by any
string. The final transduction LSmoMonoFtOT is defined as a “lenient compo-
sition” (42).11 [27] defines this (.O.) to be a special form of composition where
input strings are held back from being eliminated to keep the set of output candi-
dates from becoming empty. The order of “lenient” composition is important: the
higher ranked a constraint is, the earlier it must enter the composition. Within a
stratum, order of composition doesn’t matter. In total the OT footed grammar
costs 306 symbols, including 73 from the ParseSyll family (as well as 16 from
previously defined Light and Heavy (5)).

10 But there’s an inconsistency in [27]’s definitions of Parse; it should be defined as
$̃["X["]; and not [̃$"X["]; in Figs. 8 and 16.

11 We abbreviate ParseSyll as ParseS for space; see github repository for definitions of
ParseSyllN for N > 2.
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2.5 Karttunen OT with Syllables only

The grammar using Karttunen OT with syllables only is by far the biggest gram-
mar: it includes not only categorical constraints that can be multiply violated,
but also gradient alignment constraints. There are few OT analyses of stress
patterns that are not based on feet, i.e., “grid-based” [3,13,25], and we drew on
constraints from them, but failed to generate only the allowed stress patterns
up to 5 syllable words without introducing ad-hoc constraints that referenced
feet without naming them. The partial ranking was computed with OTSoft [16]
and is: Stratum 1. (i) WeightToStress (WSP) A heavy syllable must be stressed.
(ii) NonfinalityL A word-final light syllable must be unstressed. (iii) NoLapseFol-
lowingHeavy A heavy syllable musn’t be followed by two unstressed syllables. (iv)
NoInitialWS A word musn’t begin with an unstressed-stressed sequence. Stratum
2. Align(x2,R,x0,PWd) Assign a violation for every grid mark of level 2 that
doesn’t coincide with the right edge of level 0 grid marks in a prosodic word.
Stratum 3. *Clash Assign a violation for every sequence of two stressed syllables.
Stratum 4. *Lapse Assign a violation for every sequence of two unstressed syl-
lables. Stratum 5. Align(x1;L,x0,PWd) Assign a violation for every grid mark of
level 1 that doesn’t coincide with the left edge of level 0 grid marks in a prosodic
word.

The xfst grammar for syllable-based Karttunen OT is shown in (43)–(57).
After first introducing some auxiliary terms, we define the undominated con-
straints: WeightToStress (46), NonfinalityL (nonfinality restricted to light syllables)
(47) [23], and two ad-hoc constraints—NoLapseFollowingHeavy and NoInitialWS.
NoLapseFollowingHeavy (48) essentially enforces that a LL sequence after a heavy
should be footed, and thus receive stress and allows the general *Lapse constraint
to be ranked lower. NoInitialWS (49) essentially bans iambic feet word-initially.
To achieve the initial dactyl effect, we use grid-based gradient Align-x constraints
drawn from the schema in [13, (2)]. Align(x2,R,x0,PWd) enforces primary stress
towards the right, while Align(x1;L,x0,PWd) is necessary to promote SWW initial
candidates. While WSP (46) and NoLapseFollowingHeavy may have multiple loci
of violation, because they are undominated, we were able to implement them
as if they could only be singly violated. However, we had to implement a fam-
ily of constraints to effectively count multiple violations for *Clash, *Lapse, and
Align(x2,R,x0,PWd). We use Culminativity (29) to filter out strings with multi-
ple primary stresses, so we could implement Align(x2,R,x0,PWd) similarly to the
ParseSyll family. But the implementation of Align(x1;L,x0,PWd) requires doing
arithmetic because the same number of violations could be incurred by multi-
ple stress patterns. We present a selection of the grammar below (see the github
repository for the full grammar); Gen (4) is the same as before. Previously defined
transductions repeated here (not shown) are: Culminativity (29), Heavy and Light
(5), and W2 (19). We also defined Weak (43) and Stressed (44) syllables, and
clash S2 (45), two adjacent stressed syllables. Transductions similar to NullFinHL
(30) and NullLoneL (31) map HL-final and L inputs to Null (not shown).

The NoNClash family of constraints restricts the input from having N clashes:
if an input is not accepted by NokClash, then it is also not accepted for any
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N > k. The constraints define languages that are in a strict subset relation, like
[27]’s ParseSyll family. We implemented NoNClash constraints (for N = 1, 2, 3, 4)
as conjunctions, because there are multiple stress patterns that can result in the
same number of clashes. For instance, an input may have two clashes because it
has two nonadjacent clashes, or because it has a sequence of three stressed syl-
lables, see No2Clash (54). The higher N is, the more conjuncts in the definition;
specifically, it is 2N−1. Already for No3Clash, we require 4 conjuncts: strings
containing a substring of 4 stressed syllables (SSSS, where S stands for stressed
syllable), two substrings containing SSS sequences, a substring containing SSS
followed by a substring containing SS, and a substring containing SS followed
by a substring containing SSS. The definition of NoNLapse is identical to that of
NoNClash, but replaces S2 with W2 and Stressed with Weak.12

define Weak "W" [ Heavy | Light ]; [9] (43)
define Stressed ["S"|"P"] [ Heavy | Light ] ; [13] (44)

define S2 [ Stressed Stressed ]; [7] (45)
define WSP [ Heavy => \W _ ]; [10] (46)

define NonfinalityL ~[?* \"W" Light]; [11] (47)
define NoLapseFollowingHeavy ~[$[Heavy W2]]; [11] (48)

define NoInitWS ~["W" Light "S" Light ?*]; [12] (49)
define AnySyll [ ? "[" ? "]" ]; [9] (50)

define Alignx2R0 [ Primary => _ .#. ]; [9] (51)
define Alignx2R1 [ Primary => _ [AnySyll]^<2 .#. ]; [15] (52)

define No1Clash ~[$[S2]]; [10] (53)
define No2Clash ~[$[Stressed]^3] & ~[[$[S2]]^2]; [25] (54)

define SWStar [Stressed [Weak]*]; [10] (55)
define Alignx1L1 ~[AnySyll SWStar]; define Alignx1L2 ~[AnySyll Weak SWStar]; (56)

define Alignx1L3 ~[AnySyll W2 SWStar] & ~[AnySyll Stressed SWStar]; [16] (57)

Similarly, we implement Align(x2,R,x0,PWd) as a categorical constraint, as
the family Alignx2RN. We can do this because there is only ever one grid mark
of level 2 (primary stress) in our candidates, since we restrict them to be single
prosodic words. Each transducer Alignx2RN restricts primary stress to be at most
N syllables from the right edge, where the syllables can be of any type (AnySyll
(50)). All Alignx2RN transducers for N > 1 have the same form as Alignx2R1
(52); the languages accepted by the transducers are in a strict subset relation,
and for words only up to 5 syllables, Alignx2RN for N > 4 may be omitted.

Align(x1;L,x0,PWd), though, must be implemented as a gradient constraint.
There can be multiple grid marks of level 1 (stressed, i.e., not weak) in our
12 See the github code repository for definitions of No3Clash (61 symbols) and No4Clash

(131 symbols) and the NoNLapse constraint family.
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candidates. We do it in two parts. First we define the Alignx1LN family, a set of
transducers where Alignx1LN restricts the input to have the sum of the distances
that stressed syllables are away from the left edge to total N . For example,
Alignx1L3 (57) does not accept inputs that are in ?WWSW* (3 violations) or
?SSW* (1 + 2 violations), and Alignx1L5 does not accept inputs that are in
?WWWWSW* (5 violations), ?SWWSW* (1 + 4 violations), or ?WSSW* (2 +
3 violations), where W stands for a weak syllable, S for a stressed syllable, and
? for any character. The family definition refers to auxiliary term SWStar, the
language of a stressed syllable followed by any number of unstressed syllables
(55). Definitions for N = 1, 2, 3 are given in (56, 57).

We then take intersections of the Alignx1LN languages to define languages
Alignx1LgM that accept any number of violations less than M . For example
Alignx1Lg5 is the intersection of Alignx1L5, Alignx1L6, Alignx1L7, . . ., Alignx1Lk,
“don’t have 5, 6, 7, . . . k violations” where k is some finite upper bound. The
Alignx1Lg5 language contains S[H]S[L]W[L]P[H], which has a total of 1 + 3 = 4
violations, but not S[H]W[L]S[L]P[H], which has a total of 2 + 3 = 5 violations.
How high does k need to be? The output S[H]W[L]S[L]S[H]P[H] for HLLHH has
2+ 3+ 4 = 9 violations in total, while the output S[H]S[L]W[L]S[H]P[H] has 1+
3+4 = 8 violations in total. With our constraints, these two candidates have no
other difference in their violation profiles. Thus, our transduction should admit
the candidate with 8 violations, and not the one with 9. The candidate with 8
violations should be in any Alignx1LgM language where M > 8, in particular,
in the Alignx1Lg9 language, while the candidate with 9 should not. However, if
k = 8, and we define Alignx1LgM transducers up to M = 7, then Alignx1Lg7 is
the intersection of Alignx1L7 and Alignx1L8 “don’t have 7 or 8 violations”. Then
the candidate with 9 violations is in the Alignx1Lg7 language, while the candidate
with 8 isn’t: the transduction outputs the wrong candidate. To output the correct
one, we must have k ≥ 10, with M ≥ 9: even for only up to 5-syllable words,
we must have k ≥ 10. Minimally we must include Alignx1L10 in the conjunction
that defines Alignx1Lg9. In general, a n-syllable word can have a maximum of∑n−1

i=2 i violations of Align(x1;L,x0,PWd) and k must be greater than that sum.
The language derived by the OT syllable grammar has a small difference

from the others: while all the other grammars admit two outputs for HLLLH:
S[H]S[L]W[L]W[L]P[H] or S[H]W[L]S[L]W[L]P[H], the OT syllable account admits
only S[H]W[L]S[L]W[L]P[H]. But [47] doesn’t actually include elicited data for
HLLLH, so we don’t know which pattern(s) our consultants would accept. The
striking difference about the OT syllable grammar is in its size. It is much
larger than any of the other grammars, and the growth of the size of the gram-
mar increases rapidly with the length of the input string: the definition of just
the gradient constraint Align(x1;L,x0,PWd) takes more symbols than any of the
other entire grammars, and the definitions of the clash and lapse constraints
alone already grow exponentially with the size of the input. Moreover, all of the
constraints which can be multiply violated cannot be implemented as finite state
transducers, and our implementations approximating these constraints require
doing arithmetic and defining constraint families that have the effect of counting
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up violations to some finite bound. Finally, to just get near-coverage of the data
without feet, we needed to define ad-hoc constraints that referenced feet with-
out revealing generalizations in the structural restrictions on stress patterns.
And additional exploratory calculations from OTSoft showed that we still need
gradient alignment constraints to fit the data, despite including additional cat-
egorical constraints from [25]’s Rhythmic Licensing Theory—designed to avoid
gradient constraints (see github repository, otsoft-files/syll/test-with-rlt).

3 Discussion

We examined the set of possible stress patterns from our grammars by com-
posing our final transducers with an identity transducer that was defined as a
disjunction of elicited/expected stress patterns for LSmo up to 5 syllables. We
also defined an identity transducer for all possible light-heavy inputs up to 5 syl-
lables and composed that with our final transducers. Then we checked that the
set of strings defined by these two compositions was identical for each grammar
and across grammars. Our four grammars for LSmo admit exactly the same set
of stress patterns up to 5 syllables, with the one exception mentioned above:
the OT syllable account admits only one stress pattern for HLLLH.13 Thus, the
MDL metric, relativized to the descriptive resources of xfst, reduces to the size
of the grammar, although that’s not quite the case for the OT syllable account.
The direct accounts were almost the same in size: 145 symbols for the syllable
account and 141 symbols for the footed account; the OT footed grammar cost
306 symbols. The small differences between these is insignificant, compared to
the qualitatively different character of exponential growth we saw in definition
of the OT syllable grammar, with a count in the 1000s. Even if including a bat-
tery of constraints from Rhythmic Licensing Theory [25], we found that an OT
syllable grammar would still need to include multiply violated clash and lapse
constraints and gradient Align constraints; we’d also expect this to be true in gen-
eral beyond the Samoan case study here, such that the size of OT syllable-based
grammars would in general blow up.

Our results show that with a direct account, a grammar referencing feet in
the description of stress patterns in LSmo is about as succinct as a grammar
that does not. By this metric, one isn’t preferable to the other. Also, the size of
the direct grammars is a few times smaller than even the OT footed grammar,
so Karttunen OT grammars are certainly not preferable by succinctness. For
the OT accounts, a grammar referencing feet is sizeably more succinct than one
that references only syllables, showing the utility of feet. It’s interesting that the

13 Although our accounts define the same transduction, that does not mean that the
transducers LSmoDirFt, LSmoDirSyl, LSmoMonoFtOT are identical at the machine-
level. While any finite-state acceptor can be determinized and minimized to a unique,
canonical acceptor [21, Sect. 4.4], the same is not true for finite-state transducers.
First, not all finite-state transducers are determinizable [40, p. 587]. Second, mini-
mization of a finite-state transducer does not in general result in a unique transducer
[34, p. 29].
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direct footed account wasn’t notably more succinct than the direct syllable one;
this could be because of the narrowness of the scope of phonological phenomena
considered here. For instance, patterns of stress shift in Samoan upon affixation
can be generalized on the basis of constituents [47], but here we considered only
monomorphs. The more phonological processes that reference constituents in the
grammar, the more the savings from those constituents.

One thing to stress about the foot-based grammars, is that although they
place boundaries (parentheses) in the string language, they are very different
from SPE-style “boundary symbol theory” [8,42]. In our grammars, the use of
boundary symbols is not arbitrary; rather a left parentheses signals entering
into a sequence of states representing a constituent, and a right parentheses is
invariably placed when that sequence of states is completed. As [42] points out,
compared to a grammar which references nested units in the prosodic hierarchy,
grammars with boundary symbols may be expressive enough to fit the data,
but the lack of a well-defined relation between the different boundary symbols
makes the grammars much too expressive. Moreover, boundary symbol theory
locate the boundary symbols in the alphabet and allows their placement to
be restricted only by general restrictions on possible rewrite rules. But we are
coding constituency into the state: the LSmo foot-based grammars place paren-
theses in the string language so we can refer to the units that they enclose, and
what restricts their placement is the phonological generalizations defined in the
grammar.

Comparing the direct grammars to the OT grammars, a number of the trans-
ducers defined are identical or similar, e.g., EdgemostR appears in both footed
accounts. This suggests that structural regularities we notice in phonological
patterns can be well-described in both types of grammars. However, there is a
striking difference between the direct grammars and the OT grammars: the OT
grammars have scaling problems. The two direct accounts defined can handle
syllable strings of arbitrary length. But for the OT accounts, as the syllable
string gets longer, the amount of counting that needs to be done increases. In
the foot-based OT account, we defined ParseSyll constraint family only up to 5
syllables. Add another syllable to the syllable string, and the grammar becomes
inadequate. In the syllable-based OT account, the NokClash and Align constraint
families also effectively count up violations, resulting in the same kind of scaling
problem. As previously mentioned, it is in fact the unlimited violation counting
that “pushes [standard] optimality theory out of the finite domain” [27, p. 11].
The adequacy of the direct accounts—which are similar in size to the OT gram-
mars and even describe similar regularities—suggests that perhaps this addi-
tional power is unnecessary.

It is also an advantage that finite state transducers are sufficient to define
the direct grammars. Defining phonology with finite state tranducers is not only
helpful as a common formalism with comparison of syntax (and other patterns),
but also enables us to compose phonological transducers with syntactic ones to
model the syntax-phonology interface. In contrast, the expressive power of finite
state transducers is not enough to define OT grammars where underlying forms
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are mapped directly to surface forms rather than violation vectors. As noted
by [27], any constraint that can be multiply violated such as Parse-σ cannot be
defined with a finite state transducer in [27]’s formalization of OT because a finite
system cannot distinguish between infinitely many degrees of well-formedness
[10,31]. If, instead we do define relations that map from underlying forms to vio-
lations as in standard OT, we can easily use xfst to implement Parse-σ as: define
ParseSyllOT ["Unparsed" -> "1", \"Unparsed" -> "0" ]; [11] The FST is trivial:
a 2-state machine, where one state maps any syllable that is not unparsed to
0 and the other maps an unparsed syllable X[?] to 1, e.g., it maps X[L]P[L]X[L]
to 101. This shows an advantage to mapping to violations in Con, but then the
scaling problem with counting is shifted to Eval. In Karttunen’s formalization,
both gradient and categorical constraints that can assign multiple violations can-
not be defined with a FST. Moreover, as we saw with Align(x1;L,x0,PWd), the
implementation of gradient constraints is even more cumbersome. Not only are
the machines that xfst compiles them into much too big and redundant to dis-
cover generalizations in; even the high-level language description are, too. When
OT transduces instead to violation marks, only gradient constraints cannot be
defined with a FST. While [31] argues that OT constraints are categorical, even
if that is the case, Eval isn’t a finite state process. OT isn’t regular if the number
of violations is unbounded [10].

However, one potential advantage of OT grammars vs. direct grammars in
the work here is that limiting ourselves to mainstream constraints proposed by
phonologists has provided some restrictions on the defined grammars—even if
these restrictions might not be well-characterized in terms of structural classes
in the Chomsky or sub-regular hierarchy, and even if standard OT admits supra-
regular transductions. Limiting the statement of restrictions in direct grammars
to the expressivity of regular transductions (as we’ve done here) is not restrictive
enough: it is well-known that regular transductions include patterns that we’d
never expect to see in phonology, e.g., [19]. On-going work has been tightening
bounds on the expressivity of ‘direct’ transductions to sub-regular classes and
making connections between restrictions on these transductions and restrictions
on OT constraints, see [20] for an overview.

4 Conclusion

In this paper, we implemented and compared syllable- and foot-based grammars
of Samoan stress patterns. We made this comparison in Karttunen’s finite state
formalization of OT, and in grammars directly describing restrictions of the sur-
face patterns. The definition and comparison of the grammars was done in the
xfst language to follow linguistic practice, since xfst was designed to be a high-
level language that makes it easy to express and detect linguistic generalizations.
Such generalizations might not be revealed at the level of a regular grammar or
finite state machine.14 In the OT formalism, having the prosodic constituents of
14 See the github repository for graphs of the transducers defined for each of the four

accounts.
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feet clearly allowed the grammar to be much more succinct. However, whether
or not we have feet in the direct account did not impact succinctness of the
grammar. It is striking that direct finite-state descriptions of phonological pat-
terns have revealed strong structural universals without referring to constituents,
while the advantage of having constituents is clear in the OT formalism used
here. The difference in the comparison between the two types of grammars may
simply be because our measure of succinctness is not appropriate, and also may
not hold in general, or because the range of phonological phenomena considered
here is too narrow.

A natural follow-up to the work here would be to extend grammar com-
parisons to a wider range of phonological phenomena that have been studied
in prosodic phonology. For instance, all the dependencies in the Little Samoan
language defined here are local. What if the language included non-local depen-
dencies? Another natural follow-up would be to explore the consequences of
introducing constituents in more expressive grammars. For instance, OpenFST
is a finite state transducer library that offers the capability to define grammars
with the expressivity of context-free languages via pushdown automata, which
are finite state transducers augmented with a stack [1,2]. It would be interesting
to see if a comparison of syllable-based and foot-based grammars for Samoan
stress defined with pushdown automata might yield different results from the
ones here. More broadly, this paper shows a way in which we can study con-
crete, specific linguistic proposals and engage closely with linguistic practice,
while still maintaining a rigorous approach. We hope that this proof of concept
may inspire additional computational work taking this kind of approach.
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Abstract. In order to automatically analyse Russian texts, one needs
to model complex verb formation, as it is a productive mechanism and
dictionary data is not sufficient. In this paper I discuss two implementa-
tions that aim to produce all and only the existing complex verbs built
from the available morpheme inventory for the same fragment of Rus-
sian grammar. The first implementation is based on the syntactic theory
approach to prefix combinatorics by Tatevosov (2009) and the other one
uses the combination of basic syntactic restrictions and frame semantics
to construct all possible combinations. I show that a combination of basic
syntactic and semantic restrictions provides better results than a set of
elaborated syntactic restrictions, especially for the complex verbs that
are not normally tested by introspection.

1 Russian Verbal Prefixation System

Russian verbal derivational morphology is extremely rich. One stem can serve
as a base for deriving hundreds of verbs via prefixation and suffixation. This
is possible due to a high number of prefixes (28 according to Švedova 1982,
p. 353, whereby most of them have productive usages), polysemy of prefixes
(e.g., the prefix pere- has 10 usages according to Švedova 1982, pp. 363–364),
and the possibility of prefix stacking. In addition to this, at some stages of the
derivation (once per derivation) the imperfective suffix can be attached to the
verb. The number and order of affixes, in turn, influences the aspect: prefixation
usually leads to the perfective aspect of the derived verb and suffixation leads to
the imperfective aspect of the derived verb. On the other hand, both prefixation
and suffixation processes are restricted: not any prefix can be attached to a given
verb (either simplex or complex), and the suffixation is not always available.

To show how the whole system functions together, let me provide an example.
We start with a simplex verb pisat’ ‘to write’. It is imperfective and refers to an
unbounded writing activity. If it is prefixed with za-, the derived verb zapisat’ ‘to
record’ is perfective and refers to a completed event of recording something. It
can be, in turn, suffixed, and the derived verb zapisyvat’ ‘to record/be recording’
is imperfective. Yet another prefixation step can be made, for example with the
prefix do-, which results in the derived perfective verb dozapisyvat’ ‘to finish
recording again’, as shown in (1).1

1 IPF superscript marks the imperfective aspect of the verb and PF superscript marks
the perfective aspect of the verb.

c© Springer-Verlag GmbH Germany 2018
A. Foret et al. (Eds.): FG 2017, LNCS 10686, pp. 125–141, 2018.
https://doi.org/10.1007/978-3-662-56343-4_8
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(1) pisat’IPF → zapisat’PF → zapisyvat’IPF → dozapisyvat’PF

‘to write’ → ‘to record’ → ‘to (be) record(ing)’ → ‘to finish recording’

On the other hand, the order of the last two steps can be reversed: if the
prefix do- is attached to the verb zapisat’ ‘to record’, the derived verb dozapisat’
‘to finish recording’ is perfective and can be suffixed with -iva-, producing the
imperfective verb dozapisyvat’ ‘to finish/be finishing recording’, as shown in
(2). As a result, the verb dozapisyvat’ ‘to finish/be finishing recording’ can be
obtained through two different derivations, one leading to the perfective (1) and
the other (2) leading to the imperfective aspect of the derived verb.

(2) pisat’IPF → zapisat’PF → dozapisat’PF →
‘to write’ → ‘to record’ → ‘to finish recording’ →
dozapisyvat’IPF

‘to be finishing recording’

To illustrate the limits of the derivational morphology, let us try to change
the order of prefix attachment in the derivation (2). If the prefix do- is attached
first, the derived verb dopisat’ ‘to finish writing’ exists and is perfective. It is,
however, not possible to attach the prefix za- to it: the verb *zadopisat’ does
not exist (3).

(3) pisat’IPF → dopisat’PF *→ *zadopisat’
‘to write’ → ‘to finish writing’

The goal of both accounts I discuss in this paper is to predict which com-
plex verbs can be derived using the given set of morphemes and which aspect
they will have. The implemented grammar fragment contains the following ele-
ments: a verb pisat’ ‘to write’, a prefixed verb zapisat’ ‘to record’, prefixes po-
(delimitative and distributive interpretations), pere- (repetitive and distributive
interpretations), and do- (completive interpretation), and the imperfective suffix
-iva-. With this inventory I construct verbs with a maximum of four affixes (this
can be realised if the base verb is prefixed two times, then suffixed, and then
prefixed again).

Two alternative implementations proposed in this paper are based on two
approaches to the prefixation system. In Sect. 2, I present the syntactic approach
which is used as a base for the first implementation. Then, in Sect. 3, I introduce
the frame semantic approach which motivates the second implementation. I then
show that replacing complex syntactic restrictions with a combination of simple
syntactic restrictions and semantic restrictions allows for better predictions of
the existence and aspect of complex verbs with respect to both precision and
recall.

2 Syntactic Approach

2.1 Theory

The main idea of approaches that pursue a syntactic view of the prefixation is to
represent the verbal structure by means of a syntactic tree (Babko-Malay 1999)
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and divide various prefix usages into categories such that each category is related
to a specific position in the tree. This allows to restrict the available derivations.
For example, according to this view, the derivation (3) is blocked because the
prefix za- cannot occupy the position higher than that of the prefix do-, as the
prefix za-, with the usage it has in the verb zapisat’ ‘to record’, is classified as
lexical whereas the prefix do- is classified as superlexical.

These two categories—lexical and superlexical prefixes—form a base of any
existent syntactic approach to prefixation, as the two classes are claimed to
exhibit distinct properties due to the different structural positions in the verbal
tree. Such an approach is pursued by Svenonius (2004a, b), Romanova (2006),
Ramchand (2004), Tatevosov (2007, 2009), among others. A serious problem of
all these accounts is that they implicitly predict the non-existence of biaspectual
verbs, as the highest affix in the structure serves to determine the aspect of the
whole verb and there is only one possible structure for any verb with a fixed
interpretation.2

In this paper I address the theory proposed by Tatevosov (2009) that stems
from this line of research but includes substantial modifications with respect to
the earlier proposals. Tatevosov (2009) divides the class of superlexical prefixes
into three groups: selectionally limited, positionally limited, and left periphery
prefixes.

Selectionally limited prefixes can be added only to a formally imperfective
verb. The group includes the delimitative prefix po- (posidet’ ‘to sit for some
time’), the cumulative prefix na-, the distributive prefix pere- (perelovit’ X ‘to
catch all of X’), and the inchoative prefix za-. The group of positionally limited
prefixes is constituted by the completive prefix do- (dodelat’ ‘to finish doing’),
the repetitive prefix pere- (perepisat’ ‘to rewrite’), and the attenuative prefix
pod -. These prefixes, according to Tatevosov (2009), can be added only before
the secondary imperfective suffix -yva-/-iva-. The group of left periphery prefixes
is constituted by only one prefix: distributive po- (pobrosat’ ‘to throw all of’). It
occupies the left periphery of the verbal structure.

Such a division of superlexical prefixes into several subclasses allows
Tatevosov (2009) to effectively limit the number of complex verbs. One draw-
back of the analysis is, as mentioned above, the prediction of the absence of
complex biaspectual verbs (missing verb-aspect pairs). In order to better test
the accuracy of the proposal by Tatevosov (2009), I have implemented it for the
grammar fragment described above. In the next section I show fragments of the
implementation and explain decisions that I had to make.

2.2 Implementation

For the implementation, I have used EXtensible MetaGrammar3 (XMG, Crabbé
et al. 2013; Petitjean et al. 2016)—a formalism that allows to describe linguistic

2 In any existent syntactic analysis either (1) or (2) is not a valid derivation. For
details, see Zinova and Filip (2013).

3 http://xmg.phil.hhu.de/.

http://xmg.phil.hhu.de/
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information contained in the grammar and a tool to compute grammar rules and
produce a redundant, strongly lexicalised Tree Adjoining Grammar (TAG, Joshi
and Schabes 1997). In particular, the compiler for the current implementation
is created using XMG 2 and has a syntactic (syn) and a frame semantic (frame)
dimension (Lichte and Petitjean 2015). The code and the xml file that is output
by the compiler are available online.4

The syntactic dimension is described using the following elements: first, all
the nodes are declared using the keyword node and a variable name. These dec-
larations are accompanied by optional marks (in brackets) and syntactic features
(in square brackets, separated by commas). Values of syntactic features can be
either specified or represented by a variable to ensure the same value of the
feature across the nodes without specifying it. Second, the relations between
the nodes are stated (immediate dominance, dominance, immediate precedence,
precedence).

XMG is designed to output unanchored TAG elementary trees, but as cur-
rently there is no parser that would take into account the frame semantic dimen-
sion, I simulate the insertion of lexical anchors in the metagrammar. This solu-
tion leads to a more complicated metagrammar architecture, but allows us to
see the results in a form that can be easily understood. If I were to output the
unanchored trees only, I would obtain prefixation schemes but the stem that
carries important information would not be inserted, which would make it very
hard to check the predictions of the second implementation. (For the first imple-
mentation it would not make much difference as the only property of the verbal
stem that can influence prefixation patterns in their productive part is aspect.)

As the first implemented approach is syntactic, all restrictions are formu-
lated in syntactic terms and the frame dimension is used to represent the order
of attachment of affixes with different semantics. For example, the class for
the distributive interpretation of the prefix pere- looks as shown on Fig. 1. The

class PereVerb

export ?VP ?VPInt

declare ?VP ?VPInt ?Pere ?PereLex ?AGR ?X0 ?X1

{ <syn>{

node ?VP [cat=vp, agr=?AGR, e=?X1, aspect = perf];

node ?Pere [cat=pref];

node ?PereLex (mark=flex) [cat=pere-];

node ?VPInt [cat=vp, agr=?AGR, e=?X0, aspect = imperf];

?VP -> ?VPInt; ?VP -> ?Pere; ?Pere -> ?PereLex; ?Pere >> ?VPInt

}; <frame>{

?X1[distributive,

of: ?X0] } }

Fig. 1. XMG implementation for the distributive interpretation of the prefix pere-
following Tatevosov (2009)

4 https://user.phil-fak.uni-duesseldorf.de/zinova/XMG/index.html.

https://user.phil-fak.uni-duesseldorf.de/zinova/XMG/index.html
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restriction on this prefix attachment is the imperfective aspect of the base verb,
which is reflected via a syntactic constraint on the feature aspect of the node
?VPInt. The top node after the prefixation is ?VP and it is characterized by
the perf value of the feature aspect. The semantic dimension is a dummy for
storing the relevant usage labels (as they are related to distinct syntactic prop-
erties) and keeping track of the approximate meaning of the derived verb so it
can be compared with the exact meaning we will be dealing with in the second
interpretation.

Other constraints (restricting the position of the prefix either to that below
the imperfective suffix or to the leftmost slot in the structure) are realized
through limiting the classes that can be assembled with the derivational base at
each step.

The output of this implementation consists of 81 models. Each model is asso-
ciated with a certain verb with fixed order and interpretation of the prefixes. As
an example, let me show the output for the verb dozapisyvat’ ‘to (be) finish(ing)
recording’ that we have discussed in Sect. 1. On Fig. 2, one can see that the last
step of the derivation is the attachment of the imperfective suffix and the aspect
of the derived verb is imperfective. This corresponds to the derivation (2). There
is no other model in the output that would correspond to the derivation (1).

Fig. 2. XMG model for the verb dozapisyvat’ ‘to (be) finish(ing) recording’
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To evaluate the output, I have manually checked the existence of all the
possible verb-aspect pairs using the assumption that an existent verb cannot be
derived from a non-existent base. The total number of possible complex verbs
built from the given morpheme inventory and paired with aspect is 546. The
number of existent verb-aspect pairs that can be created out of this set, according
to my count, is 70. Out of them the implementation of the account proposed
by Tatevosov (2009) produces 52, which amounts to 0,642 precision and 0,743
recall for the implemented grammar fragment. In the next section I show how
this result can be improved if complex syntactic restrictions are replaced with a
combination of basic syntactic restrictions with semantic restrictions.

3 Alternative: Frame Semantics

3.1 Framework

I argue that Russian verbal prefixation is a complex system that cannot be
successfully modelled by means of one linguistic layer. In order to simplify indi-
vidual components of the system and allow for the observed flexibility without
massive overgeneration, one needs to coordinate the work of the morphological,
syntactic, semantic, and pragmatic dimensions. In the fragment I describe here I
limit myself to the first three systems, leaving pragmatic strengthening for future
work.

Following Kallmeyer and Osswald (2012, 2013), I adopt a combination of
frame semantics (Fillmore 1982) and Lexicalized Tree Adjoining Grammars
(LTAG, Joshi and Schabes 1997; Frank 1992; Abeillé and Rambow 2000; Frank
2002). This framework has various benefits, such as a transparent syntax-seman-
tics interface, numerous factorisation possibilities within the lexicon (especially
important for the modelling of derivational morphology), and cognitive motiva-
tion. More information about the advantages of frame-based LTAG semantics
can be found in Kallmeyer and Osswald (2013).

The idea of using frame representations in linguistic semantics and cognitive
psychology has been put forward by Fillmore (1982) and Barsalou (1992), among
others. A widescale realisation of this idea is the Berkeley FrameNet project
(Fillmore et al. 2003). The main ideas that motivate the use of frames as a
general semantic and conceptual representation format can be summarized as
follows (cf. Löbner 2014):

– conceptual-semantic entities can be described by types and attributes;
– attributes are functional relations, i.e., each attribute assigns a unique value

to its carrier;
– attribute values can be also characterized by types and attributes (recursion);
– attribute values may be connected by additional relational constraints

(Barsalou 1992) such as spatial configurations or ordering relations.

These ideas are formalized by Kallmeyer and Osswald (2013) who define
frames as finite relational structures in which attributes correspond to functional
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relations. The members of the underlying set are referred to as the nodes of
the frame. An important restriction is that any frame must have a functional
backbone. This means that every node has to be accessible via attributes from
at least one of the base nodes: nodes that carry base labels (unique identifiers).
Importantly, feature structures may have multiple base nodes. In such a case
often some nodes that are accessible from different base nodes are connected by
a relation.

Another important component of the formalism is the type hierarchy. Since
the number of syntactic restrictions I use is very limited, many derivations will
be filtered out by the semantic constraints. For this, there are two main mech-
anisms: unification failure (type incompatibility or conflicting attribute values)
and constraint failure (requirement for the two values to be in a specific rela-
tion is not satisfied). It is important to note that in the formalisation of Frame
Semantics proposed by Kallmeyer and Osswald (2013) all types are considered
compatible unless stated otherwise, so all the type conflicts have to be listed
explicitly.

3.2 Frame Representations for Selected Prefixes

In this section I show frame representations of prefixes that are included in the
implemented grammar fragment: po-, pere-, do-. Due to the space constraints I
present only the representations and skip the theoretical motivation for them.

The Prefix po-. The first prefix I provide a frame representation for is po-. The
usages that are of interest for the implementation are the delimitative (posidet’
‘to sit for some time’) and the distributive (pobrosat’ ‘to throw all of’) ones.
On the basis of the discussions in (Filip 2000; Kagan 2015; Zinova 2017, Chap.
4) I propose to represent the contribution of the prefix by the frame shown on
the left side of Fig. 3. The idea behind this representation is that the prefix
adds information that the event is bounded (type bounded-event) and the initial
(INIT) and the final (FIN) stages of the event are related to arbitrary points on
the scale ( 2 and 3 are free variables).

Such a representation allows the derivation of both delimitative and distribu-
tive usages of the prefix when the appropriate scale is selected. The equivalence
of VERB-DIM and M-DIM attributes means that the appropriate scale must be
equivalent to the verbal dimension. For the verb pisat’ ‘to write’ this would
be the time dimension that is realised as self-scaling. When this dimension is
selected, the delimitative interpretation is acquired. If there is a source of iter-
ation (e.g., a quantified object), the type of the M-DIM gets conjuncted with
cardinality and the derived verb is interpreted distributively.

The Prefix pere-. The prefix pere- is extremely polysemous. In this paper
I consider two of its usages that are relevant for the implemented grammar
fragment: distributive (perelovit’ X ‘to catch all of X’) and repetitive (perepisat’
‘to rewrite’).
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Fig. 3. Frame representations of the prefixes po- (left) and pere- (case of a closed scale,
right) and frame for coercion of an unbounded event into a bounded event (right)

The frame for the distributive usage of the prefix pere- is shown on the right
side of Fig. 3. The key restrictive factor in this case is the type of the measure
dimension (M-DIM) that has to be supplied by the context (M-DIM = NOUN-
DIM, the context-determined dimension is called NOUN-DIM as usually it is
the direct object that supplies it): a closed proper scale in this case (closed-
scale ∧ proper-scale). The initial and final stages of the event correspond
to the minimum and maximum points on the scale (INIT.DEG = M-DIM.MIN;
FIN.DEG = M-DIM.MAX).

The repetitive usage of the prefix pere- arises when the measure dimen-
sion of the event denoted by the derivational base (PREP.M-DIM) is of type
property-scale (Fig. 4, the types proper-scale and property-scale are not compat-
ible with each other). This event then becomes a value of the preparatory phase
(PREP) attribute of the new event. The initial and the final stages, the noun
dimension, the measure dimension, and the manner attributes are copied to the
event node that refers to the new event (M-DIM = PREP.M-DIM, FIN = PREP.FIN,
INIT = PREP.INIT, MANNER = PREP.MANNER). The tree on the right side of 4
shows that the derived verb refers to a frame node (feature E, E = f) other
than the derivational base (E = e). It also stores information about the noun to
the right of the verb being the THEME of the original event (PREP.THEME = 6 ,
I = 6 ).

The next restriction for the repetitive usage of the prefix pere-, apart from
the property type of the scale, is that the event denoted by the derivational
base must have a final stage in its representation. This means that a simplex
imperfective verb cannot be combined with this prefix usage, unless it is coerced
into a bounded event. On the formal side it means formulating a requirement on
the frame configuration (the presence of the FIN attribute). For implementing the
coercion of an unbounded event into a bounded event, I propose to use the frame



Modelling Derivational Morphology: A Case of Prefix Stacking in Russian 133

f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bounded-event

M-DIM 3

[
property-scale

]
NOUN-DIM 4

INIT 1

FIN 2

MANNER 5

PREP e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

event

THEME 6

M-DIM 3

NOUN-DIM 4

INIT 1

FIN 2

MANNER 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VP[E=f]

VP[E=f] NP[I=6 ]

Pref VP[E=e]

pere-

Fig. 4. Representation of the contribution of the prefix pere-: case of a property scale
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Fig. 5. Frame for coercion of an unbounded event into a bounded event

shown on Fig. 5. It functions similarly to the frame for the distributive usage of
the prefix pere- (on the right side of Fig. 3), varying from it only with respect to
the type of the measure dimension (property-scale instead of proper-scale).

The Prefix do-. The last prefix included in the implemented grammar fragment
is the prefix do- with completive semantics. The event denoted by a do-prefixed
verb is a terminal part of the original event. In other words, when the prefix is
attached, the maximum of the scale has to be associated with the final stage of
the event (M-DIM.MAX = FIN.DEG). The frame shown on Fig. 6 realizes this as
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Fig. 6. Frame representation of the prefix do-

well as the do-specific mechanism of scale selection (it can be either NOUN-DIM
or VERB-DIM, but the types of all the dimensions have to be copied from the
representation of the event denoted by the derivational base to the representa-
tion of the event denoted by the derived verb). Note that attributes in Frame
Semantics are functional, so the attribute PART-OF has to satisfy this restriction
as well. To ensure this, I define the value of this attribute as the maximum event
that has the event in question as a part. In particular, it would be an event
that proceeds from the minimum (f.M-DIM.MIN, 3 in the frame above) to the
maximum degree (f.M-DIM.MAX, 1 in the frame above) on the relevant scale.
The scale has to be closed in order for the value of the PART-OF attribute to be
defined using the frame on the left side of Fig. 6.

Similarly to the iterative usage of the prefix pere-, the prefix do- can be only
attached to bounded events. This means that, again, simplex imperfective verbs
need to be first coerced into a bounded interpretation.

3.3 Implementation

Restrictions. In this section I present the implementation of the frame-based
proposal for limiting the derivation of complex verbs and predicting their aspect
and semantics. As the frame domain is a new development in XMG, I had to
deal with parser restrictions and place some semantically motivated constraints
on the syntactic level.
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First, I had to ‘lift’ two features (bounded and limited) to the syntactic level
due to the fact that such feature checking inside the semantic dimension of
XMG is not yet supported. The feature bounded appears at those nodes that
are associated with frames of event type. It gets the value yes if there is a path
from the central node of the frame to an attribute FIN that can proceed through
the PART-OF attributes. This corresponds to the event being of type bounded-
event or being a PART-OF an event of a bounded-event type. If there is no such
path, the value of the feature is no. The feature limited is a stronger version
of a similar constraint: for limited to get the value yes, the central node has to
have an attribute FIN and its value has to be specific (concrete value or a bound
variable). This corresponds to the event being of type bounded-event. In all other
cases the feature limited gets the value no.

Another restriction that is located in the syntactic domain despite its seman-
tic nature is the unicity of iteration. The idea is that inside a derivation there
can be only one semantic marker of iteration. In the current implementation,
this feature is doubled on the syntactic side because there is no possibility to
check whether this constraint holds on the semantic side.

Type Hierarchy. As I have noted above, type incompatibility is one of the
mechanisms that blocks derivations. The type hierarchy description consists of
two types of statements: (1) statements declaring that one type is also some
other type, e.g. property-scale -> scale (something of type property-scale is
also of type scale) and (2) statements declaring that types are not compatible,
e.g. cardinality property-scale -> - (something of type cardinality cannot
simultaneously be of type property-scale). In the implementation proposed here
I postulate a minimum set of constraints that is sufficient to block unwanted
prefix combinations and is motivated by the internal structure of the scales in
question.

Lexical Anchors. In a proper implementation that would separate the meta-
grammar level from the syntactic level the following elements would not belong
to the metagrammar, but would be used as lexical anchors for the appropriate
tree families. The first entry is the noun that is used to fill the object slot. For
the implementation proposed here I have selected the plural form of the noun
rasskaz ‘story’. For our purposes it is important that stories have length and
(due to the plurality of the noun) also some cardinality.

The description of the noun (Fig. 7) is straightforward: on the syntactic side,
it is a daughter of the N category node and on the semantic side it contains
relevant attributes. The two nodes (?N and ?Story) are declared in the first
two lines of the syntactic domain description and connected via an immediate
dominance relation in the third line.5 Both nodes are characterized with feature

5 This unary branching is necessary in the current implementation due to the absence
of a syntactic compiler that would work with frames: it models the lexical anchor
insertion inside the metagrammar.
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class Story

export ?Length ?Card ?N

declare ?N ?Story ?X0 ?Length ?Card

{ <syn>{

node ?N (mark=coanchor) [cat=n, num = pl, i=?X0];

node ?Story (mark=nounacc) [cat=rasskazy, num = pl, i=?X0];

?N -> ?Story

}; <frame>{

?X0[story,

length: ?Length,

cardinality: ?Card ] } }

Fig. 7. XMG code: noun that is used to fill the accusative NP slot

i=?X0 which connects them to the semantic frame characterized in the frame
dimension. The frame description states that the type of the frame ?X0 is story
and it has two attributes: length and cardinality.

These attributes enable the noun to enter one of the dimension constructors.
The cardinality constructor is available for all nouns that have a cardinality
attribute with an additional restriction for plural number. On the semantic side
it creates an M-DIM attribute and the event description bounded to the VP
node also acquires the type iteration. Another dimension constructor that I use,
implemented in the class NounLength, creates a NOUN-DIM of type property-
scale ∧ length and the MAX being equal to the value of the LENGTH attribute
of the noun.

The second group of lexical items consists of two verbs: pisat’ ‘to write’ and
zapisat’ ‘to write down’. The second verb contains the prefix za-, but its semantic
contribution is not transparent (in terms of a syntactic approach it is a lexical
prefix usage), so the whole verb must be stored in the dictionary. The class that
represents the verb pisat’ ‘to write’ has a simple syntactic structure of two nodes
(see Fig. 8): the node of category V and the node that contains the verb itself,
where the V node inherits all syntactic properties of the verb, except for the
category. The aspect feature, in contrast with the features limited and bounded,
is a syntactic feature and carries information about the syntactic aspect of the
verb represented by the respective node. For the frame semantic side, I use a
simple representation that serves the purposes of the current analysis.

Prefixes. As we have already discussed the frames for all individual prefix
usages in Sect. 3.2, I will now show how frames correspond to the XMG descrip-
tions and what happens on the syntactic side, taking one prefix as an example.

Figure 9 shows the code for the prefix po-. The syntactic part of it repre-
sents a VP that consists of a prefix head and another (internal) VP that carries
information about the derivational base. The agreement information as well as
the semantic frame are then passed to the higher VP node. This node is also
characterized by the perf (perfective) value of the aspect feature independently
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class Pisat

export ?V

declare ?V ?Pisat ?X0 ?Actor ?Theme ?Mean

{ <syn>{

node ?V (mark=anchor) [cat=v, e=?X0, asp = unbound, aspect = imperf];

node ?Pisat (mark=flex) [cat=pisat, e=?X0, asp = unbound,

aspect = imperf];

?V -> ?Pisat

}; <frame>{

?X0[event & process,

actor:?Actor,

theme:?Theme,

mean:?Mean,

manner:[write],

verb-dim:?X0 ] } }

Fig. 8. XMG code for representation of the verb pisat’ ‘to write’

class PoVerb

export ?VP ?VPInt

declare ?VP ?VPInt ?Po ?PoLex ?AGR ?X0 ?Init ?Fin ?VDim

{ <syn>{

node ?VP [cat=vp, agr=?AGR, e=?X0, limited = yes, bounded = no,

aspect = perf];

node ?Po [cat=pref];

node ?PoLex (mark=flex) [cat=po-];

node ?VPInt [cat=vp, agr=?AGR, e=?X0, bounded = no];

?VP -> ?VPInt; ?VP -> ?Po; ?Po -> ?PoLex; ?Po >> ?VPInt

}; <frame>{

?X0[bounded-event,

m-dim: ?VDim,

verb-dim: ?VDim,

init: [stage,

scale-deg:?Init],

fin: [stage,

scale-deg:?Fin] ] } }

Fig. 9. XMG code for the class describing the prefix po-

of the value of the aspect feature of the internal VP node. Following the defini-
tions provided above, the feature limited is assigned the value yes because the
semantic frame contains the attribute FIN, but the feature bounded is assigned
the value no, as the value of the attribute FIN is a free variable.

As for the frame description part, it follows the proposed frame configuration
straightforwardly. This is evident if one compares the code with the frame on
the left side of Fig. 3 for the prefix po-.

Encoding of other prefix usages proceeds in a similar way: the syntactic
part does not vary much from prefix to prefix and semantic descriptions can be
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directly obtained from the frame descriptions I have proposed in Sect. 3.2. The
coersion that is sometimes required before the attachment of the prefix pere-
or the prefix do- is realised by the class NDimCoercedVerb that transforms a
non-bounded event into a bounded event using the nominal scale.

Imperfective Suffix. I use two separate classes to produce two interpretations
of secondary imperfective verbs: progressive and habitual. For the analysis that
I propose it is important to distinguish between them when another prefix is
attached after the suffixation, as these two interpretations have different semantic
properties.

The habitual interpretation of the imperfective suffix (IterVerb class) pro-
duces an unlimited event that is a series of limited events. The NOUN-DIM of the
new event necessarily is of type cardinality and does not need to correspond to
the respective attribute of the derivational base. The verbal dimension is copied
from the individual event level to the series level. This interpretation of the
imperfective suffix is also associated with the introduction of the iteration type
of the event and the respective syntactic feature.

The second interpretation of the imperfective suffix is progressive: on the
semantic side I represent it as a creation of a new event that is a PART-OF the
event denoted by the derivational base. Due to the PART-OF relation the new
event remains limited. As relations are currently not implemented in XMG, for
the sake of the implementation I use PART-OF as an attribute when represent-
ing the progressive interpretation of the imperfective suffix (class ProgrVerb),
although it is not functional.

Assembling the Parts. The last part of the code assembles the verbal phrases
from the components described above. This is done by the classes OneBasePre-
fixedVerb, VerbWithOnePrefix, TwoPrefixedVerb, TwoPrefixedSuffixedVerb.6

The compilation of the code produces 88 models (in this case not verbs, but
verbal phrases). As these models include two interpretations of the imperfective
suffix whereas such distinction is not made in the analysis of Tatevosov (2009),
before calculating precision and recall one has to remove ‘duplicates’: models
that differ only with respect to suffix interpretations. This leaves 79 models of
which 70 are correct and amounts to 0,886 precision and full recall. Nine extra
models have to be filtered out later by the pragmatic module, but most part of
the work is done by the syntactic and semantic constraints shown above.

6 An additional operation of type matching has to be performed after the suffixed
verbs are assembled, as in the current version of XMG type copying is performed
not via creating a connection between two types (as it is done with attributes),
but by copying the value that is there at the moment the operation is performed.
To ensure that later type enrichments are copied to all the necessary locations, the
class TypeMatcher identifies all types of the measure dimensions (M-DIM, NOUN-DIM,
VERB-DIM) between the higher and the embedded frames.



Modelling Derivational Morphology: A Case of Prefix Stacking in Russian 139

4 Discussion

In this paper I have proposed two implementations of analyses that aim to
predict the existence and aspect of complex Russian verbs. I have shown that an
analysis that is based exclusively on syntactic restrictions (postulating a division
of prefixes into several groups) does worse both with respect to precision and
recall than an analysis that uses both simple syntactic and semantic restrictions
(for the implemented grammar fragment). The summary of precision/recall data
is provided in Table 1.

Table 1. Precision, recall and F-measure for two implementations

Analysis Precision Recall F-measure

Frame-based analysis 0,886 1 0.94

Tatevosov (2009) 0,642 0,743 0.689

It is interesting to note that the difference is not huge if one considers only
verbs with one or two prefixes and an imperfective suffix added at the last step
of the derivation: the number of errors stays close (two versus three within the
implemented fragment) and both implementations have full recall with respect
to this part of the grammar. The comparison becomes more interesting when
we consider the most complex verbs created by the two implementations. The
number of models produced here is close: 45 models according to the analysis by
Tatevosov (2009) and 49 models in the implementation of the frame semantic
analysis. The overlap of these sets constitutes, however, only 27 models. One can
argue that such verbs are rare, but I consider them to be an opportunity to test
the model, as fitting the theory to such complex cases is not feasible.

Another remark I want to add is that all nine incorrect models that are
encountered in the output of the second implementation can be filtered out
using basic pragmatic reasoning. Besides, the output of the analysis contains
fully spelled-out semantic representations that are obtained compositionally and
the interpretation of the prefix in a given position is derived and not stipulated.

In future work I plan to extend the implementation of the frame-based anal-
ysis to a larger language fragment and test the predictions of the theory using
not only the corpus data and introspection, but setting up experiments to verify
the existence of certain complex verbs and then build a database that could be
used for future research.
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Švedova, N.J.: Russkaja Grammatika, vol. 1. Nauka, Moscow (1982)
Zinova, Y.: Russian verbal prefixation. Ph.D. thesis, Heinrich-Heine University,

Düsseldorf (2016)
Zinova, Y., Filip, H.: Biaspectual verbs: a marginal category? In: Aher, M., Hole, D.,
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Abstract. Generalized noun phrases are expressions which play the role
of verbal arguments in the same way as ordinary NPs. However proper
generalized NPs cannot easily occur in all argumental positions of the
verb. Two types of generalized NPs are distinguished and semantically
characterized and various properties of functions they denote are stud-
ied. These properties indicate similarities and differences between ordi-
nary NPs and generalized NPs and show that generalized NPs essentially
extend the expressive power of natural languages.

1 Introduction

Syntactically, generalized noun phrases (GNPs) belong to expressions which typ-
ically fulfill the function of argument of the main clause argument like (ordinary)
noun phrases (ONPs). However, genuine GNPs are expressions which, in con-
trast to ONPs, cannot occur in all argumental positions of the verb; in particular
they cannot occur in the subject position. Typical examples of (proper) GNPs
are anaphoric NPs (ANPs) whose positions in the sentence are determined by
the position of their antecedents. The classical example of an ANP belonging to
the sub-class of reflexives is the pronoun himself and the classical example of
the ANP belonging to the sub-class of reciprocals is the pronoun each other.

In Sect. 3 we discuss in some details the structure of GNPs and of ANPs
in particular. At present it suffices to indicate that we will count as proper
GNPs many complex expressions containing himself or each other. Such com-
plex examples can in particular be Boolean compounds of anaphoric pronouns
with anaphoric or non-anaphoric noun phrases. For instance himself but not
most students is such a reflexive and each other and ten philosophers is such a
reciprocal.

There are also complex reflexives and reciprocals which are GNPs which are
not Boolean compounds. One can obtain such complex ANPs by the application
of anaphoric determiners (ADets) to a common noun (CN) (cf. Zuber 2010b).
Thus we have reflexive (anaphoric) determiners (RefDets) like for instance no,...
except herself or most,..., including Socrates and himself which can apply to a
CN and give complex reflexives like no teacher, except herself or most philoso-
phers, including Socrates and himself. Similarly reciprocal determiners (RecDets)
like no... except each other, most..., including each other which can apply to a
CN and give complex reflexives and reciprocals like every logician except each
other (as in Dan and Leo admire every logician except each other).
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Another important class of GNPs, distinct from ANPs representing nominal
anaphors, is formed by comparative generalised NPs, CNPs. It contains two sub-
classes. First, to CNPs belong what Keenan (2016) calls predicate anaphors, that
is expressions like more linguists than Dan or the greatest number of teachers
(as found in Leo met more linguists than Dan/the geatest number of teachers).
Clearly such expressions can be used, at least “at the surface” as verbal argu-
ments for some verbal positions.

The second sub-class of CNPs is formed from what we will call, for reasons
to be explained below, higher order comparative GNPs (HCNPs). These are
expressions like the same books or very different articles and the oldest book in
the library.

We will also discuss HCNPs formed with determiner like the same number
of. They give rise to the following HCNPs: the same number of students, almost
the same number of articles, etc.

The following examples show that the indicated reflexives, reciprocals and
HCNPs are indeed genuine GNPs:

(1) *He(self) admires Dan.

(2) *Each other admires Dan and Leo.

(3) *Most philosophers, including Socrates and himself admire Dan.

(4) *Every logician except each other admire Dan and Leo.

(5) *More students than Dan knows Leo.

(6) *The same articles and the oldest book in the library read Dan and Leo.

Even though many HCNPs can occur in the subject position (for instance
the same CN as in the same actors played three characters in the movie) we will
consider them, for formal reason to be given below, as genuine GNPs.

The purpose of this paper is to characterize in a preliminary way denotations
of GNPs in their opposition to ONPs. We will be mainly interested in formal
properties of functions denoted by GNPs. In the next section we recall some
basic notions from the generalized quantifier theory and, more importantly, we
show how they can be extended so that they apply to denotations of GNPs, more
specifically to CNPs, ANPs and HCNPs. In Sect. 3 we indicate various syntactic
forms which GNPs can take. In Sect. 4 we give semantics of some basic GNPs
and indicate properties of functions representing this semantics.

2 Formal Preliminaries

We will consider binary relations and functions over a universe E, assumed to
be finite throughout this paper. D(R) denotes the domain of R. The relation I
is the identity relation: I = {〈x, y〉 : x = y}. If R is a binary relation and X a
set, then R/X = R∩ (X ×X). The binary relation RS is the greatest symmetric
relation included in R, that is RS = R ∩ R−1 and RS− = RS ∩ I ′. If R is an
irreflexive symmetric relation (i.e. R ∩ R−1 ∩ I = ∅) then Π(R) is the least fine
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partition of R such that every one of its blocks is of the form (A × A) ∩ I ′. A
partition is trivial iff it contains only one block. Observe that if R is an irreflexive
symmetric relation and Π(R) is not trivial than every block of Π(R) contains
at least two elements.

If a function takes only a binary relation as argument, its type is noted
〈2 : τ〉, where τ is the type of the output; if a function takes a set and a
binary relation as arguments, its type is noted 〈1, 2 : τ〉. If τ = 1 then the
output of the function is a set of individuals and thus its type is 〈2 : 1〉 or
〈1, 2 : 1〉. The function SELF , denoted by the reflexive himself and defined as
SELF (R) = {x : 〈x, x〉 ∈ R}, is of type 〈2 : 1〉 and the function denoted by the
anaphoric determiner every...but himself is of type 〈1, 2 : 1〉. We will consider
here also the case when τ corresponds to a set of type 〈1〉 quantifiers and thus
τ equals, in Montagovian notation, 〈〈〈e, t〉t〉t〉. The type of such functions will
be noted either 〈2 : 〈1〉〉 - functions from binary relations to sets of type 〈1〉
quantifiers or 〈1, 2 : 〈1〉〉 - functions from sets and binary relations to sets of
type 〈1〉 quantifiers.

Basic type 〈1〉 quantifiers are functions from sets to truth-values. Functions
from sets to type 〈1〉 quantifiers are type 〈1, 1〉 quantifiers which are denoted
by (nominal) unary determiners. Basic type 〈1〉 quantifiers are denotations of
subject NPs. However, NPs can also occur in the direct object position and in this
case their denotations do not take sets (denotations of VPs) as arguments but
denotations of TVPs (relations) as arguments (Keenan 2016). To account for this
eventuality the domain of application of basic type 〈1〉 quantifiers is extended in
the way that it contains in addition the set of binary relations. When a quantifier
Q acts as a “direct object” we get its accusative case extension Qacc (Keenan
and Westerst̊ahl 1997):

Definition 1. For each type 〈1〉 quantifier Q, QaccR = {a : Q(aR) = 1}, where
aR = {y : 〈a, y〉 ∈ R}.

Formally accusative extensions of type 〈1〉 quantifiers are of the same expres-
sive power as type 〈1〉 quantifiers because the algebra of type 〈1〉 quantifiers is
isomorphic to the algebra of the accusative extensions of type 〈1〉 quantifiers.

Various applications of the notion of the accusative extension of a quantifier
are given in Keenan (2016) where in particular it is shown that the accusative
extension allows us to avoid recourse to LF movement when interpreting NPs
in the object position.

A type 〈1〉 quantifier Q is positive, Q ∈ POS, iff ∅ /∈ Q; Q is natural iff either
Q ∈ POS and E ∈ Q or Q /∈ POS and E /∈ Q; Q is plural, Q ∈ PL, iff if X ∈ Q
then |X| ≥ 2. QA is the atomic quantifier true of just A.

A special class of type 〈1〉 quantifiers is formed by individuals: Ia is an indi-
vidual (generated by a ∈ E) iff Ia = {X : a ∈ X}. They are denotations of
proper names. More generally, Ft(A), the (principal) filter generated by the set
A, is defined as Ft(A) = {X : X ⊆ E ∧ A ⊆ X}. NPs of the form Every CN
denote principal filters generated by the denotation of CN. Meets of two principal
filters are principal filters: Ft(A) ∩ Ft(B) = Ft(A ∪ B).
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We will use also the property of living on (cf. Barwise and Cooper 1981).
The basic type 〈1〉 quantifier lives on a set A (where A ⊆ E) iff for all X ⊆ E,
Q(X) = Q(X∩A). We extend the notion of living on to the type 〈2 : 1〉 functions.
Thus a type 〈2 : 1〉 function F lives on the relation S iff F (R) = F (R ∩ S) for
any binary relation R. It is easy to see that Q lives on A iff Qacc lives on E ×A.

If E is finite then there is always a smallest set on which a quantifier Q lives.
If A is a set on which Q lives we will write Li(Q,A) and the smallest set on
which Q lives will be noted SLi(Q). A related notion is the notion of a witness
set of the quantifier Q, relative to the set A on which Q lives:

Definition 2. W ∈ WtQ(A) iff W ∈ Q ∧ W ⊆ A ∧ Li(Q,A).

One can see that any principal filter lives on the set by which it is generated,
and, moreover, this set is its witness set. Atomic quantifiers live on the universe
E only.

Accusative extensions of type 〈1〉 quantifiers are specific type 〈2 : 1〉 func-
tions. They satisfy the invariance condition called accusative extension condition
EC (Keenan and Westerst̊ahl 1997):

Definition 3. A type 〈2 : 1〉 function F satisfies EC iff for R and S binary
relations, and a, b ∈ E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

Observe that if F satisfies EC then for all X ⊆ E either F (E × X) = ∅
or F (E × X) = E. Given that SELF (E × A) = A the function SELF does
not satisfy EC. The function SELF satisfies the following weaker predicate
invariance condition PI (Keenan 2007):

Definition 4. A type 〈2 : 1〉 function F is predicate invariant (PI) iff for R
and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R) iff a ∈ F (S).

This condition is also satisfied for instance by the function ONLY -SELF
defined as follows: ONLY -SELF (R) = {x : xR = {x}}. Given that ONLY -
SELF (E × {a}) = {a}, the function ONLY -SELF does not satisfy EC.

The following proposition indicates another way to define PI (Zuber 2016):

Proposition 1. A type 〈2 : 1〉 function F is predicate invariant iff for any
x ∈ E and any binary relation R, x ∈ F (R) iff x ∈ F ({x} × xR).

The PI condition is weaker than EC. The function MORES,d which inter-
prets the CNP more students than Dan and which is defined as MORES,d(R) =
{x : |xR| > |dR|} satisfies another weakening of EC, the so-called argument
invariance condition AI (Keenan and Westerst̊ahl 1997):

Definition 5. A type 〈2 : 1〉 function F is argument invariant (AI) iff for any
binary relation R and a, b ∈ E, if aR = bR then a ∈ F (R) iff b ∈ F (R).

The invariant conditions EC, PI and AI concern type 〈2 : 1〉 functions,
considered here as being denoted by full GNPs. As an illustration we provide
a similar definition for type 〈1, 2 : 1〉 functions denoted by ordinary (nominal)
determiners. Thus:
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Definition 6. A type 〈1, 2 : 1〉 function F satisfies D1EC iff for R and S
binary relations, X ⊆ E and a, b ∈ E, if aR ∩ X = bS ∩ X then a ∈ F (X,R) iff
b ∈ F (X,S).

Observe that if F (X,R) satisfies D1EC then for all X,A ⊆ E either
F (X,E×A) = ∅ or F (X,E×A) = E. Denotations of ordinary determiners occur-
ring in NPs which take direct object position satisfy D1EC. More precisely, if D
is a type 〈1, 1〉 conservative quantifier, then the function F (X,R) = D(X)acc(R)
satisfies D1EC: in this case F (X,R) = {y : D(X)(yR ∩ X) = 1} and
F (X,S) = {y : D(X)(yS ∩ X) = 1}. So if aR ∩ X = bS ∩ X then a ∈ F (X,R)
iff b ∈ F (X,S).

The above invariance principles concern type 〈2 : 1〉 and type 〈1, 2 : 1〉 func-
tions. We need to present similar “higher order” invariance principles for type
〈2 : 〈1〉〉 functions, that is functions having as output a set of type 〈1〉 quantifiers.

One can distinguish various kinds of type 〈2 : 〈1〉〉 functions. Observe first
that any type 〈2 : 1〉 function whose output is denoted by a VP can be lifted to
a type 〈2 : 〈1〉〉 function. The accusative extension of a type 〈1〉 quantifier Q can
be lifted to type 〈2 : 〈1〉〉 function in the way indicated in (7). Such functions
will be called accusative lifts. More generally, if F is a type 〈2 : 1〉 function, its
lift FL, a type 〈2 : 〈1〉〉 function, is defined in (8):

(7) QL
acc(R) = {Z : Z(Qacc(R)) = 1}.

(8) FL(R) = {Z : Z(F (R)) = 1}.

The variable Z above runs over the set of type 〈1〉 quantifiers.
For type 〈2 : 〈1〉〉 functions which are lifts of type 〈2 : 1〉 functions we have:

Proposition 2. If a type 〈2 : 〈1〉〉 function F is a lift of a type 〈2 : 1〉 function
then for any type 〈1〉 quantifiers Q1 and Q2 and any binary relation R, if Q1 ∈
F (R) and Q2 ∈ F (R) then (Q1 ∧ Q2) ∈ F (R).

For type 〈2 : 〈1〉〉 functions which are accusative lifts we have:

Proposition 3. Let F be a type 〈2 : 〈1〉〉 function which is an accusative lift.
Then for any A,B ⊆ E, any binary relation R, Ft(A) ∈ F (R) and Ft(B) ∈
F (R) iff Ft(A ∪ B) ∈ F (R).

Accusative lifts satisfy the following higher order extension condition HEC
(Zuber 2014):

Definition 7. A type 〈2 : 〈1〉〉 function F satisfies HEC (higher order extension
condition) iff for any natural type 〈1〉 quantifiers Q1 and Q2 with the same
polarity, any A,B ⊆ E, any binary relations R,S, if Li(Q1, A), Li(Q2, B) and
∀a∈A∀b∈B(aR = bS) then Q1 ∈ F (R) iff Q2 ∈ F (S).

Functions satisfying HEC have the following property:

Proposition 4. Let F satisfies HEC and let R = E × C, for C ⊆ E arbitrary.
Then for any X ⊆ E either Ft(X) ∈ F (R) or for any X, Ft(X) /∈ F (R).
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Thus a function satisfying HEC condition and whose argument is the cross-
product relation of the form E × A, has in its output either all principal filters
or no principal filter. We will see that the function denoted by the ANP each
other does not satisfy HEC.

It follows from Proposition 4 that lifts of genuine predicate invariant functions
do not satisfy HEC. They satisfy the following weaker condition (Zuber 2014):

Definition 8. A type 〈2 : 〈1〉〉 function F satisfies HPI (higher order predicate
invariance) iff for type 〈1〉 quantifier Q, any A ⊆ E, any binary relations R,S,
if Li(Q,A) and ∀a∈A(aR = aS) then Q ∈ F (R) iff Q ∈ F (S).

The higher order property corresponding to AI is the higher order argument
invariance:

Definition 9. A type 〈2 : 〈1〉〉 function F satisfies HAI (higher order argument
invariance) iff for any natural type 〈1〉 quantifiers Q1 and Q2 with the same
polarity, any A,B ⊆ E, any binary relation R, if SLi(Q1, A), SLi(Q2, B) and
∀a∈A∀b∈B(aR = aS) then Q1 ∈ F (R) iff Q2 ∈ F (R).

Higher order invariance conditions are generalizations of “simple” invariance
conditions because it can be shown (cf. Zuber 2014) that lifts of functions sat-
isfying simple invariance condition satisfy higher order invariance conditions.
Thus the accusative lift of a type 〈1〉 quantifier satisfies HEC, the lift a function
satisfying PI satisfies HPI and the lift of a function satisfying AI satisfies HAI.

3 Structure of Generalized Noun Phrases

In this section we indicate some structural and syntactic differences and simi-
larities between ONPs and GNPs by comparing their respective structures. The
remarks which follow are not intended, however, to characterise syntactically the
class of proper GNPs. Moreover, we have to keep in mind that we consider that
the class of GNPs is strictly included in the class of NPs and thus that there
are genuine, or proper, GNPs which are not ONPs. In the next section we will
characterise semantically two classes of proper GNPs: simple and higher order
GNPs. Roughly speaking, simple GNPs are GNPs related to reflexives or simple
comparatives (or predicate anaphors) and higher order GNPs are those which
are related to reciprocals or HCGNPs such as the same CN.

The first thing to notice is that among genuine GNPs there are no elements
corresponding to proper names, which, obviously are OMPs. Thus there are no
morphologically simple non-pronominal genuine GNPs. We observe that morpho-
logically simple or “almost simple” genuine GNPs have a pronominal character.
This is the case with the reflexive himself or reciprocal each other. Interestingly
“ordinary” pronouns are ONPs.

One of very productive ways of forming complex ONPs is by the application
of determiners to CNs. Thus there is a natural class of ONPs which are of the
form Det CN where Det is an unary determiner that is a functional expression
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which when applied to one CN gives an NP. Such “ordinary” determiners have
been extensively studied, various sub-classes of them have been distinguished and
formal properties of their denotations, that is type 〈1, 1〉 quantifiers, have been
established. It is generally admitted that unary determiners denote conservative
type 〈1, 1〉 functions and conservative functions have formally important sub-
classes of intersective and co-intersective functions. For instance the determiner
most denotes a conservative function which is conservative but neither intersec-
tive nor co-intersective, the numerals are determiners which denote intersective
functions and determiners like every or every...but ten denote co-intersective
functions.

Now, important point is that there is also a class of genuine GNPs which are
obtained by the application of a (generalised) determiner to a CN, that is GNPs
of the form GDet CN, where GDet, a generalized determiner, is a functional
expression which when applied to a CN gives a genuine GNP. GDets in their turn
can be divided into anaphoric GDets (ADets) and comparative GDets (CGDets).
Finally, among ADets we have RefDets, reflexive determiners and RecDets, that
is reciprocal determiners. To see these different classes of GDets consider the
following examples:

(9) Dan hates every linguist except himself

(10) Dan knows more linguists than Leo

(11) Leo and Dan admire no linguist except each other

(12) Leo and Dan read the same books

In (9) the determiner every... except himself is a RefDet. Similarly no...except
himself and Dan and most..., including himself are RefDets. In (10) we have a
CDet more... than Leo. In (11) the expression no... except each other is a RecDet
as are for instance expressions like every... except each other and Dan or most,
including each other. In (12) we have a CDet the same. Other examples of such
determiners are represented by different, very different, quite different, similar,
very similar, almost the same, etc.

Another very productive way of forming NP is by the use of Boolean connec-
tors. For instance the following NPs are such Boolean compounds Dan and most
students, ten logicians and some linguists, five students and no teacher except
Dan. As the following examples show there are also genuine GNPs which are
Boolean compounds:

(13) Dan admires himself and most philosophers

(14) Leo and Dan admire each other but not themselves

(15) Leo and Dan read five articles and the same books

(16) Leo and Dan read the same articles and different books

(17) Leo and Dan admire each other but not themselves and Lea

(18) Dan and Leo admire each other, themselves and the same linguists
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Observe that in the above examples GNPs belonging to various subclasses
are conjoined. This does not mean that all GNPs can be freely conjoined in the
same way as ONPs cannot always be freely conjoined.

The next similarity between ONPs and genuine GNPs I mention briefly con-
cerns the possibility of their modification by the so-called categorically polyva-
lent modifiers, CPM, that is modifiers which can apply to expressions of differ-
ent categories. CPM include expressions like only, also, even, at least, etc. These
modifiers can modify expressions of various categories and in particular they can
apply to ONPs since we have: even Dan, only Dan and Bill, also some students,
at least ten teachers, etc. As the following examples show, proper GNPs can also
be modified by the CPM:

(19) Leo admires only/even/at/least himself.

(20) Leo and Dan admire at least/at most/only/even each other.

(21) They read even/at least the same books.

Finally, ONPs and proper GNPs can also play the role of arguments of non-
verbal predicatives, that is complex expressions which are not modifiers and do
not contain a verb but which take GNPs as an argument. A natural class of
such predicatives is formed either from transitive CNs (like friend of or young
grand-parent of ) or from transitive adjectives (like jealous of ). Thus we have
the following predicatives in which ONPs occur as arguments: grand-parents of
ten children, friends of some gangsters. Proper GNPs can also occur in such
contexts since we have: grand-parents of the same students, fond of the same
students/themselves or jealous of each other.

Proper GNPs can also occur in relative clauses and other embedding con-
structions. In this case, however, the complex constructions containing such
embedded GNPs can easily occur in the subject position: the expressions persons
with the same taste/who admire each other and to hate each other can be used
as subject NPs. In addition both types of noun phrases can occur as arguments
in prepositional phrases since we have leave with each other or talk with the same
persons.

A general form of sentences in which ANPs, CNPs and HCNPs occur and
which we will consider here, is given in (22):

(22) NP TV P GNP

TV P is a transitive verb phrase which denotes a binary relation and GNP
is either himself or each other or has the form RefDet(CN), RecDet(CN), the
same CN or is a Boolean combination of all such cases.

4 Formal Properties of Generalized Noun Phrases

In this section we analyze properties of full GNPs and not of their specific parts
such as reflexive determiners, comparative determiners or reciprocal determiners.
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Properties of RefDets are studied in Zuber (2010b) and comparative determiners
- in Zuber (2011). A proposal to treat some higher order comparatives is given
in Zuber (2017b).

The fact that nominal anaphors have various properties which distinguish
them from ONPs is well known. For instance Geach (1968) indicates various
peculiarities of the pronoun himself and suggest that some of them have been
discussed by medieval philosophers. I will illustrate first informally some dif-
ferences between ONPs and various simple proper GNPs, using in particular
various observations from Keenan (2007, 2016) and Zuber (2011).

When an ONP (in the subject position) denotes a type 〈1〉 quantifier Q then
when it occurs in the object position it denotes the accusative extension Qacc

of Q. Accusative extensions of a quantifier satisfy EC. This means that if, for
instance, the persons that Leo washes are the same as the persons that Dan
shaves than the following two sentence forms have the same truth values, for
any NP:

(23) Leo washes NP

(24) Dan shaves NP

This is not the case with functions denoted by simple proper GNPs. Consider
for instance the reflexive himself. Suppose again that persons that Dan washes
are the same as the persons that Leo shaves. In this case the following sentences
can fail to have the same truth value:

(25) Dan washes himself.

(26) Leo shaves himself.

Consider now the CNP the greatest number of languages. Suppose that the
set of languages that Dan speaks is the same as the set of languages that Leo
studies. It does not follow from this that the following sentences have the same
truth value:

(27) Dan speaks the greatest number of languages.

(28) Leo studies the greatest number of languages.

Thus simple GNPs denote functions which do not satisfy EC satisfied by
accusative extensions denoted by ONPs in the object position. Functions denoted
by reflexives satisfy the weaker PI condition and functions denoted by simple
comparatives satisfy the weaker AI condition.

Higher order GNPs are additionally different from ONPs and from simple
GNPs. To see this informally consider the following examples (cf. Zuber 2014):

(29) a. Leo and Lea hug each other/read the same books.

b. Bill and Sue hug each other/read the same books.

(30) Leo, Lea, Bill and Sue hug each other/read the same books.
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Clearly (29a) in conjunction with (29b) does not entail (30). However, if we
replace each other or the same books by an ordinary NP or by a simple proper
GNP, the corresponding entailment holds. This means that the conjunction and
cannot be understood pointwise and that the functions denoted by GNPs like
the same CN and each other are of not the same type as functions denoted by
ONPs or by simple GNPs.

Observe that the non entailment of (30) from (29a) and (29b) in conjunction
with Proposition 3 indicates that the GNPs the same books and each other are
not accusative lifts (of any type 〈1〉 quantifier).

The question one can ask now is what is the logical type of the result of
the function denoted by GNPs which are reciprocals or HCNPs. We know that
sentences with such GNPs (in the object position) do not take proper nouns
as subjects and thus the type of objects denoted by the subject NP cannot
be e, the type corresponding to individuals. We can suppose that it is of the
raised type 〈〈e, t〉, t〉, which, ignoring directionality, corresponds to the category
S/(S/NP). Since the same CN and each other form a verbal argument playing
the role of direct object, the same (CN) and each other apply to a transitive
verb to form a VP. Semantically, this verb phrase denotes a set of type 〈1〉
quantifiers. Thus, in order to avoid the type mismatch, the verb phrase must
be raised to become of the category S/(S/(S/NP)). This can be done using the
following higher order reduction via function application (where “+” symbolises
the function application):

(31) S/(S/NP) + S(S/(S/NP )) = S

Thus in (31) the V P has been raised to the category S(S/(S/NP)) whose
type is now 〈〈〈e, t〉t〉t〉. This means that such raised VPs denote a set of type
〈1〉 quantifiers and consequently the sentence of the form (22) is true iff the
quantifier denoted by the NP belongs to the set denoted by the TV P GNP .
Keenan and Faltz (1985) show that (extensional) non-raised VPs (classically)
denote, up to the isomorphism, specific characteristic functions of sets of type
〈1〉 quantifiers, that is they denote a set of quantifiers. The reason is that these
characteristic functions are in addition homomorphisms (from the algebra of
quantifiers to the algebra of truth-values) and the algebra of such homomorphic
functions is isomorphic to the algebra of sets (subsets of the universe), the clas-
sical denotational domain of VPs (or of one-place predicates in the first order
logic). Thus “classical” denotations of VPs are homomorphic in the sense that
they preserve meets in particular. We have seen that this is not the case for the
VPs formed from higher order GNPs given the non-entailment between (29) and
(30) and consequently VPs with higher order GNPs do not denote sets, subsets
of E, but sets of type 〈1〉 quantifiers.

Let me start the discussion of formal properties by the following:

Proposition 5. Boolean algebra of type 〈1〉 quantifiers is isomorphic to the alge-
bra of intersective type 〈1, 1〉 quantifiers and to the algebra of co-intersective
quantifiers.



152 R. Zuber

The proof of this proposition is obvious if one observes that there is one to one
correspondence between atoms of the algebra of type 〈1〉 quantifiers and the atoms
of the algebra of intersective quantifiers. Indeed for any setA the singleton {A} is an
atomic type 〈1〉 quantifier and the type 〈1, 1〉 quantifier FA such that FA(X)(Y ) =
1 iff X ∩ Y = A is an atom of the algebra of intersective quantifiers.

Thus there are as many type 〈1〉 quantifiers as there are intersective quanti-
fiers. Since (cf. Keenan and Westerst̊ahl 1997) any type 〈1〉 quantifier is express-
ible (in English) by an ONP (of English) this means that there as many (English)
ONPs as there are intersective (or co-intersective) quantifiers. If the universe E
has n elements then there are 2k, for k = 2n type 〈1〉 quantifiers. But there are
much more anaphoric type 〈2 : 1〉 functions. As Keenan (2007) indicates in this
case there are 2m, for m = n × 2n functions satisfying PI. The number off all
functions from the set of binary relations to the set of sets equals kl for k = 2n

and l = 2n×n. This means that in the universe with just two elements there
are 16 type 〈1〉 quantifiers, 256 functions satisfying PI and 416 functions from
binary relations to sets.

Let us now define some functions denoted by some GNPs. To define the type
〈2 : 〈1〉〉 function EA denoted by the reciprocal each other we use the partition
Π(RS−) (Zuber 2016). Our definition is the definition “by cases” which depend
on whether the partition Π(RS−) is trivial or non-trivial. Thus

Definition 10.

(i) EA(R) = {Q : Q ∈ PL ∧ ¬2(E) ⊆ Q} if RS− = ∅
(ii) EA(R) = {Q : Q ∈ PL ∧ QD(B) ⊆ Q}, if Π(RS−) is trivial with B as its

only block
(iii) EA(R) = {Q : Q ∈ PL ∧ ∃B(B ∈ Π(RS−) ∧ Q(D(B) = 1} ∪ {Q : Q ∈

PL ∧ ∃B(B ∈ Π(RS−) ∧ Q = ¬QD(B)} if Π(RS−) is non-trivial.

Functions denoted by GNPs are anaphoric in the sense that they satisfy pred-
icate invariance conditions PI or HPI and do not satisfy stronger conditions EC
or HEC. We have already seen that SELF and ONLY -SELF are anaphoric in
that sense. Using Proposition 5 and Definition 8 we show that the function EA
in definition (10) is anaphoric (because for R = E × A the partition Π(RS−)
is trivial). Some other higher order anaphoric functions are discussed in Zuber
(2016, 2017a). In particular RefDets and RecDets and properties of functions
they denote are discussed in Zuber (2017a).

To define the functions SAME(X,R) and SAME-N denoted by the same
CN and the same number of CN respectively, where CN denotes X, we will use
the set partitions defined by the following equivalence relations (Zuber 2017b):

Definition 11.

(i) eR = {〈x, y〉 : xR = yR}
(ii) eR,n = {〈x, y〉 : card(xR) = card(yR)}.

We will say that the block of a partition is singular if it is a singleton. A block
B is plural, B ∈ PL, if it is contains at least two elements. A partition is atomic
iff all its blocks are singular. With the help of these notions, using the partition
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ΠRA
(E) we can now express the function SAME(X,R), where R is a binary

relation, as follows (for X and R non-empty and where RX is a subrelation of
R whose range is restricted to X):

Definition 12. SAME(X,R) =
(i) = {Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if ΠRX

(E) is atomic
(ii) = {Q : Q ∈ PLR ∧ ∃B(B ∈ PL ∧ B ∈ ΠRX

(E) ∧ Q(B) = 1}
∪ {Q : Q ∈ PLR ∧ ∃C⊆E∀B∈ΠRX

(E)C ⊆ B) ∧ ¬ALL(C) ⊆ Q)}, if ΠRX
(E) is

not atomic.

The above definition says that SAME applied to a set X and a binary relation R
gives as result a set of quantifiers. This set can be decomposed into various sub-
sets depending on the structure of the partition of E induced by R and X. Clause
(i) says that when the partition is atomic then no two objects are in the relation
R with all objects of a sub-set of X. This entails that the quantifier denoted
by no two objects and any of its consequences belong to the set SAME(X,R).
This means that, for instance, the quantifiers denoted by no five objects or no
two students also belong to the set SAME(X,R).

Clause (ii) concerns the case where the partition is not atomic. In this case
there is at least one plural block of the partition such that all its members
are, roughly speaking, in the relation R with the same subset of X. This block
corresponds to the property expressing the sameness we are looking for and a
plural quantifier can be true or false of it. The second part of the clause (ii)
provides a set of quantifiers obtained from a “negative information” given by
sets which are not blocks of the partition. If, for instance, Jiro and Taro are
Japanese students who read different books then no set to which they belong is
a block of ΠRB

(E) - where R corresponds to READ and B - to BOOK. Then,
according to the second part of the clause (ii), the quantifiers denoted by the
NPs not all Japanese students, not all students and not all Japanese belong to
SAME(B,R).

The definition of the function SAME-N denoted by the generalized deter-
miner the same number of is quite similar to the definition of the function
SAME(X,R). We just have to replace everywhere in Definition 12 the partition
ΠRX

(E) by the partition ΠRX ,n(E). Consequently we have:

Definition 13. SAME-N(X,R) =
(i) = {Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if ΠRX,n

(E) is atomic
(ii) = {Q : Q ∈ PLR ∧ ∃B(B ∈ PL ∧ B ∈ ΠRX,n

(E) ∧ Q(B) = 1}
∪ {Q : Q ∈ PLR ∧ ∃C⊆E(C ∈ ΠRX

(E) ∧ ¬ALL(C) ⊆ Q)}, if ΠRX
(E) is not

atomic.

Definitions 12 and 13 provide the readings of the same and the same number
of without the existential import that is without the presupposition that the set
denoted by CN is not empty. In order to get the reading in which the existential
import is involved the following equivalence relations have to be used:

Definition 14. eei
R = {〈x, y〉 : (xR = yR ∧ xR = ∅) ∨ (x = y)}.



154 R. Zuber

Definition 15. eei
R,n = {〈x, y〉 : (|xR| = |yR| ∧ xR = ∅) ∨ (x = y)}.

The relation eei
R defines the partition Πei

R (E) and the relation eei
R,n defines

the partition Πei
R,n(E). It follows from Definitions 14 and 15 that if aR = ∅, then

the singleton {a} is a singular block of both partitions Πei
R and Πei

R,n and thus
is not a member of any plural quantifier. Consequently the reading of the same
with the existential import is given in Definition 16:

Definition 16. SAMEei(X,R) =
(i) = {Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if Πei

RX
(E) is atomic

(ii) = {Q : Q ∈ PLR ∧ ∃B(B ∈ PL ∧ B ∈ Πei
RX

(E) ∧ Q(B) = 1}
∪ {Q : Q ∈ PLR ∧ ∃C⊆E∀B∈Πei

RX
(E)C ⊆ B) ∧ ¬ALL(C) ⊆ Q)}, if Πei

RX
(E) is

not atomic.

It is easy, though tedious, to show that functions defined in Definitions 12, 13
and 16 satisfy HAI (and do not satisfy HEC). Consequently, higher order GNPs
also denote functions which are not accusative extensions of type 〈1〉 quantifiers.

5 Conclusive Remarks

Generalized noun phrases are expressions which, syntactically play the role of
direct objects as do ordinary NPs. Semantically, however, they do not denote
type 〈1〉 quantifiers or their accusative extensions. Functions they denote satisfy
weaker conditions than the extension condition, which is satisfied by accusative
extensions of type 〈1〉 quantifiers. In spite of that they resemble quantifiers in
various ways.

We distinguished two types of GNPs, according to the type of functions they
denote: simple GNPs (for instance reflexives and predicate anaphors) denote type
〈2 : 1〉 functions and higher order GNPs (like reciprocals) denote type 〈2 : 〈1〉〉
functions. Both types of these functions satisfy similar invariance conditions and
both types of GNPs have their syntactic structure similar to the structure of
ONPs.

Syntactic similarity in the structures of GNPs and ONPs and the fact that
the two types of expressions, ONPs and GNPs can occur as different conjuncts in
the same Boolean compounds indicates that GNPs should not be considered as
a new syntactic category. Rather, to account for the specificity of their semantics
we should consider, in the spirit of Partee et al. (1986) that the type of NPs can
change depending on the environment it finds itself in. In this case higher order
GNPs give rise to the VP raising.

Formal properties of GNPs presented in this paper shows that the existence
of anaphors and higher order comparative NPs strongly extends the expressive
power of NLs. Keenan (2007, 2016) shows that denotations of reflexive anaphors
and predicate anaphors lie outside the class of classically defined generalized
quantifiers (they do not satisfy the extension condition). Results presented in
this paper show that in addition higher order GNPs form non-homomorphic
predicates which force the VP raising because their denotations are not lifts of
type 〈2 : 1〉 functions.
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