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1 Definition of the Topic

Label-free Raman imaging is a noninvasive spectroscopic method for investigating
the nature and distribution of molecular species within a sample. In this chapter, we
describe the applications of conventional Raman imaging, as well as the related
techniques of coherent anti-Stokes Raman scattering (CARS) and stimulated Raman
scattering (SRS) imaging for medical, life sciences, and other biological
applications.
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2 Overview

The application of Raman imaging to a wide range of biological materials has shown
very promising results and is now providing biological insights that are not available
to other methods. In this chapter, we first discuss typical experimental considerations
for Raman, CARS, and SRS biological imaging in terms of sample preparation,
instrumentation and measurement parameters, data processing, and data analysis
approaches. Secondly, we discuss the recent applications of Raman, CARS, and SRS
imaging of biological materials ranging from human cells and tissues for disease
diagnosis to nonmammalian samples including plants, shellfish, algae, and nematode
worms. The three techniques have been used to investigate wide-ranging topics from
organism development, disease progression, drug uptake and metabolism, the effects
of environmental pollution and toxin effects on cells, all the way through to testing
the quality of food products, drugs, and even biologically derived charcoal. Finally,
information obtained from Raman, CARS, and SRS images can be complimented by
other techniques, and we discuss various multimodal imaging approaches that have
been employed for biological analysis.

3 Introduction

Raman spectroscopy is based on the inelastic scattering of light, i.e., where incident
and scattered photons have different energies, or frequencies, after interaction with
matter. The frequency shift between the incident and scattered photons is indicative
of the vibrational level of a molecule [1]. Therefore, a Raman experiment gives rise
to a spectrum containing information about the chemical bonds present in a sample
and can be thought of as a “fingerprint” of a sample. Raman spectroscopy has been
used to characterize many different sample types in fields as wide ranging as
materials science, organometallic chemistry, and geology [2]. However, key instru-
mentation advances such as the advent of laser-based Raman spectrometers in the
1960s [3] and their combination with optical microscopes in the 1970s opened up
applications in fields that had often proved challenging with weaker excitation
sources [4], including the analysis of biological materials.

Subsequent developments in instrumentation have improved the speed of collec-
tion to such levels where, in the last few years, it has been possible to measure
Raman images, where each pixel contains a Raman spectrum with sufficient signal to
noise for subsequent data analysis, within a few minutes. This has facilitated the
application of Raman imaging to many types of biological samples, including live
cells and tissues, providing information on the spatial distribution as well as the
nature of the chemical components of the sample. Some studies have also shown that
time-lapse Raman imaging is possible (for examples, see [5–7]) providing additional
temporal information on changes in chemical distribution and composition.

Raman spectroscopy has a number of advantages over other analytical imaging
techniques such as fluorescence imaging. In general, Raman spectroscopy is non-
destructive, meaning that a sample can be measured multiple times, for Raman-based
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time-lapse imaging or for subsequent measurements with other analytical tech-
niques. In contrast to many biological assays, this allows Raman measurement
while the sample continues to carry out its normal function, e.g., cells can be
reimplanted and continue to develop. Raman spectra can be collected from samples
in many forms such as liquids, including aqueous solutions, soft and hard tissues,
solids, and powders. Samples can be relatively simple compositions, as may be
found in a pharmaceutical tablet, or more complex mixtures of components that may
be present in tissue sections or whole organisms. This flexibility in sample format
means that sample preparation steps are often simple and can be kept to a minimum
to avoid inducing noticeable changes in the sample under investigation. In addition,
it is possible to measure samples in conditions that mimic, or are close to, the normal
sample environment, particularly useful for in vitro cell or in vivo tissue analyses, for
example.

One of the main advantages of Raman spectroscopy is that it does not require the
use of labels to identify sample components, which is particularly beneficial where
the presence of a label may perturb the sample. This means that no prior knowledge
of the sample composition is needed to perform a Raman experiment and Raman
spectroscopy therefore has the potential to measure previously unknown compo-
nents in a sample. (It is worth noting that although Raman spectroscopy can be
performed on labeled samples, including Raman-active dyes, deuterium-labeled
samples, and molecular tags that produce bands in the silent region (e.g., [8]),
these are not routinely applied in Raman experiments.) The imaging studies outlined
in this chapter have all been restricted to those that do not use labels, including
deuterium labeling, or the use of signal enhancement, e.g., from surface plasmons,
utilized in techniques such as tip-enhanced Raman scattering (TERS) or surface-
enhanced Raman scattering (SERS). Readers interested in biological applications of
these enhanced Raman techniques are referred to several recent reviews on the topic
(e.g., [9–11]). In addition, the other imaging techniques described in the multimodal
Raman section have been limited to those that also do not require any sample
labeling.

With improvements in the speed of Raman imaging measurements in recent
years, there has been a corresponding increase in the number of published studies
using Raman imaging, particularly for biological applications. While there are a
number of recent reviews detailing the current status of Raman imaging for partic-
ular topics within bioanalysis, such as focusing on plant biology, hard tissue
applications, and so on, this chapter aims to showcase the wide range of biological
and medical-related applications utilizing Raman imaging. Although this chapter
primarily focuses on spontaneous Raman imaging, there are several other label-free
Raman techniques available that can vastly improve imaging speed, but at a trade-off
of spectral resolution and range. CARS and SRS are the most well-known
approaches and use coherent nonlinear effects to boost the measured signal. As
such, an overview of the implementation and types of results obtained with CARS
and SRS is also included. Raman, CARS, and SRS can all, potentially, be combined
with other techniques to provide additional information on the nature of the sample
under investigation. Therefore, the final section of this chapter focuses on recent
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developments in combining Raman-based imaging modalities with other imaging
techniques including infrared spectroscopy, mass spectrometry, digital holographic
microscopy, and Brillouin imaging.

In the following chapters, we will outline some of the main considerations
Raman, CARS, and SRS imaging including sample preparation (Chap. 2.1), instru-
mentation (Chap. 2.2), and data analysis (Chap. 2.3). In Chap. 3, we summarize the
key research findings in the last few years, primarily from 2010 onward, in the fields
of Raman (Chap. 3.1), CARS and SRS (Chap. 3.2), and combined imaging
approaches (Chap. 3.3) for applications in biosensing and medical diagnosis.

4 Experimental and Instrumental Methodology

4.1 Sample Preparation

Raman spectroscopy can be performed on a wide range of different sample types
from solutions such as tears, blood, plasma, and other bodily fluids (see Baker et al.
[12] for a recent review) to solid materials including teeth and bones (see
Gamsjaeger et al. [13] for a review). In terms of imaging studies, Raman has been
used to study a wide range of both soft and hard tissues in organisms ranging from
humans and other mammals to plants, fungi, and bacteria. Each of these sample
types has their own preparation constraints, and some example protocols have been
outlined in a recent review [14]. Some general considerations for both soft and hard
tissues are discussed below.

4.1.1 Sample Considerations
While sample preparation for Raman imaging is usually straightforward, there are
some factors that should be considered to ensure good-quality images. In general, it
is more challenging to perform Raman spectroscopy on dark-colored samples than it
is for lighter-colored or transparent samples, as darker colors can absorb the excita-
tion laser light resulting in damage to the sample. For example, Zhang et al. noted
Raman spectroscopy of black hair was difficult due to the melanin content which
absorbed the laser light resulting in sample destruction and so restricted their
analyses to lighter-colored hair [15]. Therefore, on darker pigmented samples, it
may be necessary to limit the excitation laser power used to prevent sample damage
or shift the wavelength to a nonabsorbing region, both of which can have an effect on
the signal-to-noise quality of the generated Raman spectra.

In many exploratory Raman studies, it can be useful to compare the Raman
images obtained with other imaging techniques, one of the most established being
fluorescence imaging. Fluorescence imaging (unless limited to autofluorescence)
requires the use of labels, either through the use of dyes, immunostains, or expres-
sion of fluorescent proteins such as green fluorescent protein (GFP) in the cells or
tissues of interest. In general, the presence of these labels will generate a broad
fluorescence signal that completely obscures the Raman bands in a spectrum. This
precludes the use of pre-stained samples for Raman, i.e., any fluorescence labels
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should be added after the Raman imaging has been performed, and means that
Raman imaging cannot routinely be applied to cells or tissues from transgenic
animals expressing fluorophores.

Currently, most Raman imaging of cells has been based on those in 2D cell
culture, i.e., individual cells or monolayers of cells. However, in the last few years
the possibilities of using 3D cell cultures have emerged. With continuing advance-
ments in fields such as scaffold engineering and tissue fabrication [16], or tumor
tissue architecture [17], for example, the ability to measure biomolecules, cells, and
tissues in 3D will be a key tool for future research in these areas. While the
practicalities of successful 3D cell culture preparation are beyond the scope of this
chapter, it is worth noting that it has already been shown that Raman spectra of
sufficient quality for analysis can be obtained from within both spheroidal 3D
cultures, approximately 300 μm depth, and cells embedded in a matrix, at approx-
imately 120 μm depth when using 785 nm excitation [18]. The effects of the laser
excitation wavelength on the penetration depth achievable are discussed in more
detail in the Raman instrumentation section. In a similar manner, imaging of both
hard and soft tissue has often required sectioning the sample to produce thinner, and
often flatter, subsections of the sample for analysis. Depending on the strength of the
sample, sectioning can result in tearing, fracturing, or other distortions to the sample.
As such, developments in imaging of 3D cell cultures may also be useful for imaging
of tissues by reducing the need for sectioning or may have an impact on the
applications of Raman imaging in surgery, for example, where tissue sectioning
prior to measurement is not possible.

4.1.2 Live Versus Preserved Samples
While it can be argued that imaging live samples, in conditions close to their natural
environment, is most desirable, it is not always possible to do so. Examples where
imaging live samples is not feasible include the use of nonsimultaneous multiple
imaging techniques where movement in the sample between measurements will
affect image registration, where the phenomenon under investigation occurs faster
than the time taken to collect an image, or where samples must be collected in a
different location to the imaging measurement, e.g., tissues collected during surgery
or from tissue banks. In circumstances where samples need to be preserved prior to
measurement, determining which fixation method to use can be a challenging
question. A number of studies have investigated fixation and cryopreservation
methods for cells [19, 20] including oocytes [21] and tissues [22–24] in terms of
their effects on sample morphology and biochemical composition as well as on
Raman spectra and image quality. Chemical fixation methods, such as formalin
fixation, and cytocentrifugation have been shown to preserve the cell in a state
close to that of live cells, while air-drying results in more distinct changes
[19]. When using chemical-based fixation methods for cells, aldehyde-based fixation
protocols perform better than alcohol-based methods, and parameters such as the
temperature of the fixation media also influence the quality of both the Raman
images and spectra [20]. In tissues, common fixation, embedding, and dewaxing
procedures can lead to a loss of lipid content, with the consequence that other cellular
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components such as proteins are relatively enriched in the resulting spectra
[23]. Depending on the tissue, xylene removal may not be completely effective,
resulting in some paraffin signal present throughout the sample, and may be partic-
ularly prevalent in some tissue types. This paraffin residue can also affect the
interpretation of molecules in the tissue section that have a spectral overlap with
paraffin, such as phospholipids [22]. However, the spectra are still detailed enough to
allow for clear determination of different tissue layers in skin [24] and colon tissue
[22], for example.

Although not commonly analyzed by Raman imaging, it is also possible to
measure biofluids, and for imaging, this would generally mean that the biofluid
would be dried out on a suitable sample carrier so that variations in sample
composition can be measured. When using this approach, it is important to consider
the concentration of the sample deposited onto the sample carrier as greater homo-
geneity in the distribution of components is seen for more dilute samples, as was
shown for proteins in synovial fluid [25].

4.1.3 Sample Substrates and Imaging Environment
The substrate that a sample is placed on for measurement can influence the Raman
spectrum, especially if the sample is relatively thin, for low numerical apertures, or
if Raman spectra from z-positions close to the substrate are needed. Many plastics,
such as those used for cell culture dishes, are not suitable for Raman imaging as
they give rise to very strong Raman spectra. Glass microscope slides and coverslips
can be a suitable option, particularly when using longer excitation wavelengths,
although most glass slides do produce some broad bands below approximately
1000 cm�1 which can be particularly noticeable in spectra collected close to the
glass surface. Quartz microscope slides and coverslips also give rise to relatively
weak, broad Raman bands, but these tend to cover a more limited wavenumber
range than those observed with glass substrates, making quartz a good option. In
terms of cell imaging, cell culture dishes with either glass or quartz bottoms are
available, allowing cell culture and Raman measurements to be performed on the
same substrate, minimizing the environmental change experienced by the cells.
Good-quality CaF2 exhibits a strong Raman band at approximately 321 cm�1 but
does not give rise to strong bands in the fingerprint or high wavenumber regions,
particularly when using visible excitation [26, 27]. Therefore CaF2 slides can also
be used for Raman imaging in cases where the low wavenumber regions are not
required. Other common sample carriers may not always be suitable for Raman
imaging, depending on the nature of the sample. For example, cells do not appear
to proliferate well on ZnSe [28], while other substrates may alter the Raman signal
obtained, e.g., MirrIR Low-E glass slides can increase the Raman signal via
reflections but require measurements to be performed in a transflection orientation
[29] which may not always be desirable.

Depending on the sample, the substrate may need to be treated in order that the
sample adheres to the substrate. This is common for cell imaging where the substrate
is coated with compounds, often proteins such as gelatine [30] or poly-L-lysine,
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which cells often adhere to better than the bare substrate. For other samples, such as
nonadherent cells, samples may have to be embedded in a matrix prior to measure-
ment. Example matrix materials include cellulose, methylcellulose, collagen, glyc-
erol, and complex matrices such as Matrigel. However, it should be noted that all of
these matrix compounds produce Raman spectra of their own, and so careful
selection of the right matrix material should be based on minimizing the spectral
overlap with the sample of interest.

Hard tissues and many preserved samples can be measured in air. However, for
live samples, and indeed some preserved samples, they should be immersed in
liquid during the Raman imaging experiment in order to prevent the sample drying
out. Raman spectra are not strongly affected by the presence of water, allowing the
use of aqueous solutions for sample immersion. Although water may be suitable
for some preserved samples, for most live sample imaging and particularly for
longer-term imaging, additional salts and sugars are needed to maintain the health
of the sample. Simple buffers such as phosphate-buffered saline supplemented with
an energy source such as glucose do not generally make a significant contribution
to the Raman spectrum of the immersed sample. It is also possible to measure
samples in common culture media such as RPMI 1640, DMEM, MEM, etc. as long
as they do not contain colored indicators such as phenol red, which create signif-
icant background contributions to the Raman spectra, often completely swamping
any Raman signals from the sample. Supplemented culture media, e.g., with fetal
bovine serum added, can still be used during Raman imaging experiments, but
depending on the concentration of the supplemented compounds, they may con-
tribute to the Raman spectrum.

4.1.4 Sample Number and Statistical Significance of Results
Finally, when designing any experiment that uses human or animal samples, or other
samples that are in limited supply, it is important to consider the number of samples
that should be analyzed. For exploratory studies, the sample number may not be as
important, but for any studies from which conclusions about human health, disease
markers, purity assessments, and so on are drawn, it is important to ensure that a
sufficient number of samples are analyzed to ensure the conclusions drawn are
robust and unbiased. The number of samples that will be required for a particular
study is dependent on several factors including the type of samples, the hypothesis or
scientific question under investigation, and the confidence limits required for
reporting the data. More information on the parameters affecting the appropriate
number of samples for a study and methods to determine appropriate samples sizes
have been outlined previously (e.g., [31–33]). With spectroscopic data in mind,
detailed information on the selection of the appropriate number of statistically
independent samples for use in classification models has been provided by Beleites
et al. While they focus on classifier training and testing, the points covered are also
applicable to other experiments (i.e., where classifier training is not used) including
where limited sample numbers are available [34].

7 Label-Free Raman Imaging 283



4.2 Instrumentation

4.2.1 Raman Instrumentation
The components of typical Raman microscopes have been comprehensively
described in recent reviews by Butler et al., Krafft et al., and Pence and
Mahadevan-Jansen [14, 35, 36]. Therefore, in this chapter we have concentrated
on those elements of particular importance for the analysis of biological specimens
and the developments in instrumentation that are specific for imaging microscopes.

Raman spectroscopy can be achieved using excitation wavelengths from the UV,
through the visible range, and into the infrared with the wavelength employed
influencing several aspects of the Raman spectra obtained from biological samples.
Using near-infrared (NIR) excitation wavelengths avoids the problems of fluores-
cence, partly due to the fact that the excitation photon energy is lower and cannot
drive the same transitions to fluorescing excited states that occur with visible photon
energies. Additionally the Raman spectrum and fluorescence do not overlap signif-
icantly [37] and NIR light penetrates deeper into tissues such as skin [38], compared
with visible and UV light. However, as the efficiency of most CCD detectors is lower
in the NIR region, and the Raman intensity is inversely proportional to the 4th power
of the excitation wavelength, acquiring Raman spectra with good signal to noise in
the NIR can require relatively long collection times [37]. Measurements taken with
excitation lasers operating in the visible region, therefore, benefit from increased
Raman intensities and better detector efficiencies; however, this is at the cost of
increased overlap with fluorescence contributions to the Raman spectrum. Despite
this, many of the studies discussed in 3.1 have been performed with visible excita-
tion, both in the green and red regions of the electromagnetic spectrum. The UV
region of the spectrum generally suffers less from fluorescence contributions [37]
but, due to the high energy of the excitation light, can cause photodamage and
photodegradation of the sample. Deep UV imaging is not commonly carried out due
to the risk of sample damage. However, under carefully controlled conditions, it is
possible and generates Raman images rich in information on nucleic acid bases and
aromatic amino acids. Adding Lanthanide ions can also significantly extend the
sample lifetime under deep UV imaging conditions [39]. The choice of excitation
laser may also depend on the sample under investigation as resonance enhancement
of Raman signals can occur when the excitation wavelength is close to an electronic
absorption band in the sample [40]. As examples of molecules of biological interest,
resonance Raman spectra of nucleic acid bases and aromatic amino acids can be
recorded with UV excitation, while carotenoids such as β-carotene and heme-based
molecules generate resonance Raman spectra at visible wavelengths [40, 41].

Raman measurements were initially performed as point-based measurements (see
Fig. 7.1a for a basic overview of a Raman microscope), which eventually led to the
ability to capture high-quality spectra from distinct points in biological samples
using confocal detection around the early 1990s, where the techniques were referred
to as “microspectroscopy” rather than “imaging” [42]. The approach was initially
very limited in terms of speed: if the detector is only one dimensional and the
acquisition time for a single Raman spectra is in the order of seconds, then modest
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a Raman Microscopy

b Coherent Anti-Stokes Raman Microscopy

Laser
Scanning
mirror

Bandpass
filter

Objective

Microscope stage and sample

Notch
Filter Lens Slit

Spectrograph 
Incl. grating(s)

CCD camera

Pump Beam

Objective

Microscope
stage and sample

Objective

Stokes Beam

Notch
Filter Lens Slit

Spectrograph 
Incl. grating(s)

CCD camera

c Stimulated Raman Scattering Microscopy
Pump beam

Objective

Microscope
stage and sample

Objective

Stokes beam

Dichroic mirror

Photodiode

Photodiode

Lock-in detector

Fig. 7.1 Basic outline of instrumentation for (a) Raman, (b) CARS, and (c) SRS microscopes. In
all cases, many optical components such as lenses and filters have been omitted for simplicity. In
addition, only the laser path is represented, and indications of laser beam width, polarization, etc.,
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sized Raman images could take hours to acquire (e.g., 100 � 100 pixels, 1 s per
pixel, ~3 h). Especially for biological samples, where higher power may result in
sample damage, and even fixed samples that may degrade over long measurement
times, there has been a strong need for faster Raman imaging. Significantly faster
biological images can be obtained by using a line-shaped focus with a
two-dimensional detector, modality [43], allowing the observation of biological
dynamics with a time scale of minutes, such as apoptosis [44]. The 2D detector
allows for the parallel acquisition of all spectra from each point in the line-shaped
focus. For the current state of the art, high-end deep-cooled CCDs can collect more
than 90% of the incoming light, the laser excitation can be applied up to the limits of
sample damage, and the numerical aperture (capture angle) of the microscope
objectives is effectively maximized; the imaging speed for diffraction limited images
by spontaneous Raman can be on the order of minutes per cell and not substantially
faster unless some other factors are exploited. One intuitively obvious way to
improve imaging speed is to reduce the sampling points. Interestingly, this does
not always result in a significant degradation of the final image. Spectra taken from
points in cells separated by much more than the diffraction limit can show notably
different features [45], but in general, the oversampling in order to maximize
resolution includes a large amount of redundant spectral measurements that are not
significantly different from their adjacent pixels. This depends of course on the
spatial variability of the sample but also results from the physics of the microscope
itself, where the point spread function blurs each measured point. To avoid excessive
blur, oversampling is common, but for more uniform samples, where the differences
from region to region are more gradual, such requirements can be relaxed in order to
speed up the measurement time. Even for highly heterogeneous samples, intention-
ally undersampling and using compressed sensing reconstruction techniques can be

�

Fig. 7.1 (continued) are not shown. (a) Raman microscopy. Laser light is directed to the sample on
the microscope stage via a microscope objective, illuminating a point on the sample. Backscattered
light is directed via a bandpass filter through a notch filter (rejecting light that is the same
wavelength as the laser excitation) and slit (controlling the amount and angle of the light entering
the spectrograph) before dispersion of the light, via gratings, and collection on the CCD camera.
The addition of cylindrical lenses in the system, in conjunction with a 2D detector, results in parallel
collection of spectra from all points along a line illumination on the sample. (b) CARS microscopy.
Many different instrumentation approaches have been used for CARS microscopy, and so only a
stylized version is given here. Two laser wavelengths, a pump beam and Stokes beam, are directed
to the sample via a microscope objective. The output light is collected via a second objective and
detected via a spectrograph and CCD camera. Generation of the two laser wavelengths is often done
using a pulsed laser in conjunction with an optical parametric oscillator (OPO) or optical parametric
amplifier (OPA) or in conjunction with a photonic crystal fiber. (c) SRS microscopy. Similarly to
CARS, SRS employs two laser wavelengths, a pump beam and a Stokes beam, with the intensity of
one beam modulated. These beams are directed to the sample via a microscope objective where
(in the presence of a resonant vibrational mode) some degree of modulation is transferred between
the two beams. The light is collected via a second microscope objective and the change in
modulation of the beams detected via photodiodes attached to a lock-in amplifier

286 A. J. Hobro and N. I. Smith



very powerful in optimizing the total information acquired for a given amount of
measurement time and laser power [46].

For larger samples, particularly tissue sections, even with improvements men-
tioned above, measurement times with full imaging can still be prohibitive. Various
approaches to better “target” the Raman measurements to specific regions of interest
have been suggested in order to further reduce measurement times required. The
majority of these approaches involve combining Raman imaging into a multimodal
system where other analysis techniques provide an overview of the sample
(discussed in more detail in the multimodal imaging section) allowing Raman
measurements to be taken from the regions of interest identified by the other
modality. By using scanning mirrors, it is possible to select regions in a cell and
determine how much spatial information to average from the sample, which can
result in improved Raman spectra compared to single point or even full imaging
[47]. Another approach is to use the Raman data collected as a means of determining
the next measurement points. Rowlands et al. implemented this approach by first
taking two spectra at random. Next they calculated a cubic spline interpolant and a
Kriging interpolant between these two points. Depending on the result from the
Kriging interpolant calculation, the next measurement point is taken as either the
position furthest from those already measured or the position with the largest
difference between the two interpolants. The process is repeated with the new
measurement points until the difference between the two interpolants reaches an
acceptably small level. The increase in overall measurement speed is based on the
assumption that these two interpolant values will converge in areas where there is
little variation in sample features. This should result in fewer measurement points
taken in these regions while concentrating the measurements in areas with higher
variability [48]. An alternative method for reducing the number of spectral measure-
ments required to analyze a sample is to employ compressed sensing approaches,
where a signal can be reconstructed from a sparse subset of data points. This
approach has recently been applied to hyperspectral Raman images, without the
need for microscope modifications. High-resolution and relatively low-noise Raman
images could be reconstructed from five times less data point sampling than would
be used in conventional image Raman imaging, increasing the speed of measure-
ment. The reduced exposure time for the sample has added benefits of reducing
photobleaching on sensitive samples [46].

4.2.2 Coherent Anti-Stokes Raman Scattering (CARS) Instrumentation
The discussion so far has been concentrated on spontaneous Raman scattering,
whereby an incident photon is scattered according to the vibrational bonds in the
sample. The excitation light does not need to be coherent, although in practice, lasers
provide the most efficient narrow bandwidth and easily focused excitation fields.
The low Raman scattering cross section for most biological materials means that the
techniques require large photon flux, optimized collection geometries (i.e., high NA
lenses), and sensitive detectors. With excitation powers approaching the limits of
sample damage, one approach to improve signal is to tune the laser excitation to
resonate with a vibrational band of interest. This then requires coherent excitation
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and is usually implemented with pulsed lasers. Pulsed lasers have the additional
advantages of having high peak power, which is necessary to drive the nonlinear
interactions, and are usually tunable. Coherent Raman techniques have limitations in
the ability to measure and quantitatively interpret rich spectral information, but
rather than competing directly with spontaneous Raman spectroscopy in terms of
spectral range and resolution, they are usually exploited for their strengths, which
include the ability to provide high-speed, high-contrast spectral imaging. Until now,
the most common way to use nonlinear coherent effects to boost the Raman signal
has been to use coherent anti-Stokes Raman scattering (CARS) that can be used as an
imaging mode [49]. It is also possible to combine CARS in a complementary manner
with spontaneous Raman spectroscopy to provide detailed spectra from one mode,
with high signals from the CARS mode [50].

CARS imaging is implemented by using two wavelengths of laser excitation, one is
the pump beam which drives a molecular excitation to a virtual state, which can then
be driven, by stimulated excitation, down to a vibrational state by a Stokes beam
(Fig. 7.1b). The molecule can then be excited to a higher virtual state and driven by
stimulated emission down to the ground state. When the frequency difference between
the two incident beams is resonant with a vibrational transition in the sample, the
output signal increases. With the pathways involving virtual states, the process occurs
essentially instantaneously, following a four-wave mixing process, rather than follow-
ing actual excitation and de-excitation transitions which occur in fluorescence. This
means that the output CARS light is coherent and directional. This has implications for
detection methods including the possibility of gating the detection to reduce back-
ground signals, as well as control of the wave front and optimizing detection effi-
ciency, while maintaining polarization. It also makes the process highly nonlinear with
regard to the incident laser intensities. These points allow a degree of optical section-
ing which, in conjugation with the near-infrared wavelengths, allows imaging in tissue
samples that are difficult to image by spontaneous Raman imaging. For CARS, the
fact that the anti-Stokes shift is used means that the output signal is also far away from
the Stokes fluorescence typically generated from the sample.

While CARS imaging is a relatively complex imaging mode, in its most basic
form, it provides only the spatial contrast resulting from a single vibrational mode. In
practice this can be useful, but the ability to record multiple bands, or an entire
spectrum, remains a key strength of spontaneous Raman imaging. CARS research
has therefore pushed toward acquiring hyperspectral information. There are two
instrumental approaches to achieving hyperspectral CARS imaging. One is to
change the laser wavelength to achieve the signals for each vibrational modes of
interest. The second is to use a broadband source to produce multiple excitations of
vibrational modes [51].

The rapid pace of development in CARS techniques means that there are a large
amount of different reports using different variations in instrumentation, and a full
discussion is beyond the scope of this current work. However, key features of CARS
include the spectral selectivity and high-speed imaging capability [52]. The inherent
nonlinearity in CARS can also be exploited to increase both spatial and spectral
resolution by measuring the onset of saturation in the CARS signals [53].
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4.2.3 Stimulated Raman Scattering (SRS) Instrumentation
There are multiple ways in which coherent excitation and nonlinearity can be
exploited to achieve high signals in Raman measurements. Aside from CARS
techniques, discussed above, pulsed laser excitation can be used to stimulate
Raman scattering, known as SRS. SRS can be used as a rapid imaging modality,
with tunable selectivity for bands of interest. A good overview of the technique, with
an explanation of the differences between SRS, CARS, and spontaneous Raman
scattering, is available [52]. A significant advantage of SRS over CARS is the
reduced background signal contribution. In terms of implementation, SRS uses
two pulsed laser beams at pump and Stokes frequencies (Fig. 7.1c), and the intensity
of one of the pulsed beams is modulated. Due the nonlinear interaction of the two
laser beams, which occurs in the presence of a resonant vibrational mode at the laser
focus, a degree of modulation is transferred from one beam to the other. This can
then be detected using a lock-in amplifier and is related to the amount and type of
vibrational modes in the sample, producing imaging contrast. SRS shares some of
the overall limitations of CARS in the sense that it is challenging to acquire full
spectra, but a number of different approaches have been made toward this goal
[54]. High frame rate imaging, while stepping the spectral collection range, has
already been demonstrated at video rates and above [55].

4.3 Data Analysis

4.3.1 Data Pre-processing
Interpretation of Raman spectra, especially Raman spectra acquired during imaging
(which tend to have lower signal-to-noise levels than point spectra), usually requires
some level of pre-processing before analysis, either by visual inspection of the
spectra or by subsequent analysis by chemometric algorithms. Many of the points
for consideration have also been discussed in a recent review by Byrne et al. [56],
and particular attention to how experimental parameters affect Raman peak intensi-
ties, and hence Raman quantification, has been addressed by Kumar et al. [57]. Ide-
ally, when analyzing Raman spectra, there should be no contribution to the spectra
from any source other than the sample. While it is not always feasible to remove all
other influences to the spectra, pre-processing steps aim to remove non-sample
contributions as much as possible. Roughly, the sources of influence on the spectra
arise from the instrument, the substrate, and the sample itself.

The exact performance of Raman instruments will vary slightly from machine to
machine and will also change over time for an individual instrument particularly
where maintenance procedures such as laser alignment or replacement of compo-
nents are performed. Therefore, in order to allow comparisons between measure-
ments, both those taken on the same instrument and those taken on different
instruments, it is advisable to regularly asses the response of the Raman instru-
ment(s) used and, as and when necessary, correct parameters such as data point
spacing and scattering intensities [56]. There are various approaches to calibrate
Raman instruments, for example, Slater et al. have outlined a calibration procedure
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with the following steps: (1) wavelength calibration using a neon standard, (2) inten-
sity calibration using a tungsten-halogen standard, (3) laser wavelength calibration
using a Raman standard, and (4) validation of the calibration using the Raman
standard. They suggest cyclohexane as a good Raman standard, using the
801.1 cm�1 Raman band [58], but other materials with a well-characterized
Raman spectrum (particularly in terms of band position(s) and intensities) such as
silicon are often used as well. It should be noted that using a homogenous sample to
calibrate a Raman imaging system may obfuscate optical aberrations that appear
when a spatially variant sample is then used after calibration/alignment. Therefore
the quality of both spatially resolved components in the image and their spectral
features should always be carefully evaluated in acquired data, even when alignment
and calibration metrics appear correct. Where it is necessary to compare Raman
spectra that have been measured with different excitation wavelengths, calibration
procedures such as that suggested by Bocklitz et al. [59] can be used.

Other sources of spectral variation in the Raman spectrum originating from the
instrument response include electronic sources of noise such as detector sensor
variations, cosmic rays, dark current, and readout noise, which are always present to
some degree but are often unpredictable contributions to the spectra. In order to reduce
the influence of these sources of noise to the data, Raman images can be filtered or
smoothed. Cosmic rays often strike the detector during long measurement times,
causing errors that are large but usually very localized. They can then be removed
by a local application of a median filter, with a threshold (typically several standard
deviations) so that the majority of the data (i.e., the locations where no cosmic rays
exist) is not altered in any way. As a 3D hyperstack, Raman images can be smoothed
in the spectral domain, the spatial (x-y) domain, or both. Smoothing in the spatial
domain is of limited use, since noise will be present throughout the spectral vector
represented by one pixel, but smoothing in the spectral domain is commonly used.
Depending on the spectrometer resolution, slit width, and laser wavelength, the
spectrometer resolution is often less than would be implied by simply looking at the
output spectra, and a more realistic (and less noisy) spectra can be produced by
smoothing appropriately, considering all of these parameters. Loess fitting and other
techniques are commonly employed but are beyond the scope of this current work. In
general, however, it should be noted that the output from smoothing procedures should
result in removal of noise, without the removal of features interest. Oversmoothing in
the spectral domain will result in a loss of biochemical information, while over-
smoothing in the spatial domain will lead to blurring of images.

Even with careful selection of a sample carrier, there will usually be some contribu-
tion to the Raman spectrum from the sample substrate. There are several ways to remove
the background contributions in the spectrum. One method is to select a region of the
image where no sample is present, extract an average Raman spectrum from this region,
and then subtract this average from each pixel in the image. However, depending on the
exact proportion of contributions from the sample and background to each pixel in the
image, this may require careful implementation of baseline correction and normalization
prior to background subtraction. It can also easily force some pixel values to become
negative, which can be problematic for analysis since no real optical signal should be
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measured as negative. Another method to remove substrate influence in the Raman
spectrum is to use chemometric algorithms such as independent component analysis
(ICA) that identify the background contributions as one spectral component [56]. While
subtraction approaches can be useful when samples are imaged in simple media or
matrices, it should be noted that background subtraction becomes more difficult when
samples are imaged in more complex media. This is due to the mismatch between the
sample and the surrounding media in terms of composition, particularly where sub-
stances are present in the media that are not present in the sample, as subtraction will
result in negative contributions to the Raman spectrum of the sample for these sub-
stances. It is worth considering that even for simple media, the water “concentration”
will be higher outside the sample, and so background subtraction to remove media
contributions to the sample spectrum should also be normalized carefully before
subtraction.

Some distortions to the Raman spectra can originate from the sample itself and
also need to be addressed during spectral pre-processing. Autofluorescence often
results in an increased background signal, particularly in the fingerprint region of the
Raman spectrum. As most fluorophores have distinct excitation and emission ranges,
autofluorescence can be avoided by the choice of excitation laser used. However,
this is not always practical, especially if multiple fluorophores are present in the
same sample, and the influence of the autofluorescence has to be dealt with once the
spectrum is recorded. If the autofluorescence is relatively uniform across an image,
for example, if it originates from the sample substrate, it is usually possible to
remove the bulk of its influence by background subtraction. However, many com-
pounds within the cell generate some level of autofluorescence. Examples include
NAD(P)H, collagen, elastin, and flavins [60]. As these will not be uniformly
distributed throughout the cell, it is harder to remove their influence, and baseline
correction methods are perhaps the most effective solution. However, as the auto-
fluorescence can be a signature of the compounds in the cell, it is not always
desirable to remove it, since it can provide meaningful biological information [61].

One of the issues with analysis of tissue sections, and to a certain extent cells,
particularly when using chemometric analysis methods, is the effect arising from the
edges of the cell/tissue [30, 62]. Spectra originating from these regions can suffer
from a number of problems including baseline distortions and widely varying pro-
portions of sample versus background/substrate from pixel to pixel [62]. The high
spectral variability in these regions, as compared to the bulk of the tissue, results in a
large number of clusters/components that have little biological meaning. Strategies
to overcome this and to focus on the relevant differences in the sample include
controlling the number of clusters or components so that the edge of the tissue is
described by distinct clusters that do not influence the interpretation of the bulk of
the sample [30, 62]. Sample thickness can also affect Raman spectra, either through
different volumes of sample being probed at each pixel or through out-of-focus
effects [63]. A few studies have overcome the out-of-focus effects by using optical
profilometry methods to assess the 3D topography of the sample, directing the
measurement of the Raman spectra to always be taken from the top layer of the
sample [63, 64]. Normalization of spectra, either through the use of an internal

7 Label-Free Raman Imaging 291



standard or through vector normalization, can reduce the spectral differences
induced by sample thickness differences but should always be applied after other
corrections (background subtraction, baseline correction, and so on) [56].

4.3.2 Data Visualization and Analysis
Raman images of biological samples contain a wealth of information in terms of both
chemical contributions and spatial distribution, and visualizing the data is an impor-
tant step in interpreting this information. A common way to represent the data
contained in a Raman hyperspectral dataset involves producing false color images
based on the spectral information contained at each pixel in the image, e.g., the area
under a Raman band, Raman band intensity at a given wavelength, the ratio between
two Raman band intensities, or similar characteristics of the Raman spectra. Multiple
false-colored images can be overlaid to compare the distribution of molecules
represented by Raman bands at different wavelengths.

Ashton, Hollywood, and Goodacre [65] have shown, using a “rainbow” lookup
table (also known as “jet”) that is often the default color lookup table (LUT) for
many image plotting software packages, the importance of the way in which the data
is plotted in avoiding over-interpreting the data or missing features of interest. Using
the simulated data shown in Fig. 7.2, they show that four different images can be
obtained from the same dataset depending on how the false color is implemented. As
the authors point out, there is no “right” or “wrong” image here; rather each image is
able to answer different questions about what is contained within the data. The
example, shown in Fig. 7.2, shows this. Image (a) with a significantly truncated
range can answer the question “is this an animal?” (b) with a slightly increased
maximum can answer “what animal is this?” (c) covering the full range of counts can
answer “is there more than one animal here?” as a bird-like shape is also present on
the zebra. And finally (D) with discrete blocks of color for the scaling, rather than the
continuous scaling in the other three images, shows two bird shapes and so is able to
answer the question “how many animals are in the image?” [65]. This illustrates that
the appearance of “objects” in the data can be highly dependent on not only the type
of analysis performed but on something as simple as the false color LUT applied
when showing the image. Although the data shown in this example is analogous to
that of a single peak area/intensity/ratio plot, the points raised are also pertinent to
overlaid images and to any scale-based images produced during chemometric
analyses, for example, PCA scores images.

4.3.3 Chemometric Analysis Methods
Chemometric analysis methods aim to clarify components in the data and separate
them from noise, as well as provide other statistical tools such as classification of
features into groups. There are many chemometric analysis methods that can be
applied to Raman spectroscopy, many of which can also be adapted for the analysis
of Raman images. Chemometric algorithms are often classified in several ways.
They can be univariate, based on one measurement point (wavelength/Raman shift),
or can be multivariate, incorporating multiple measurement points in the analysis.
They can either be hard classification methods, where a spectrum (or image pixel)
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can only belong to one class, or they can be soft classification methods where a
spectrum or pixel can belong to more than one class. Finally, they can be
unsupervised, where no a priori information is used, or can be supervised, where
information, for example, in the form of a reference spectrum, is required for the
analysis. There are numerous articles that compare and contrast the various methods
that have been applied to Raman spectroscopy (e.g., [56, 66–71]) to which the reader
is referred to for further details. In this chapter, discussion has been limited to a brief
overview of those analysis methods most commonly applied to Raman imaging as
evidenced by the studies discussed in Sect. 3.

Principal component analysis (PCA) looks for a fundamental set of independent
variables in a dataset [72], thereby reducing the dimensionality of a dataset. PCA
produces a set of principal components (PCs) where PC1 describes the largest
variation in the dataset, PC2 describes the second largest variation in the dataset,
and so on. In terms of Raman imaging, PCA produces a score for each pixel/spectrum
along with a loading vector, containing spectral information on the variance in the
dataset, for each PC. The loading vectors contain both negative and positive peaks
and, depending on the complexity of the sample, can be challenging to interpret
[56]. The score values for each pixel can be used to create false color multivariate

Fig. 7.2 A comparison of rainbow-shaded images constructed from a simulated Raman map with an
intensity range of (a) 500–2000 counts, (b) 500–3500 counts, (c) minimum to maximum intensity,
and (d) minimum to maximum intensity but using discrete colors to form the color ramp, (i) and
(ii) identify the position of the bird shapes discussed in the text. Color bars are shown to the left of
each image (Figure reproduced from [65] published by the Royal Society of Chemistry)
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images showing the distribution of each of the PCs in a similar manner to the
univariate plots produced by Raman band intensities/peak areas, etc.

Hierarchical cluster analysis (HCA) is a method for grouping spectra together
into clusters based on their similarities to each other often by calculating Euclidian or
Mahalanobis distances [68]. In terms of Raman imaging, each pixel can be assigned
to a particular color based on which cluster the spectrum belongs to, creating a false
color map showing the location of spectra in each cluster. Selection of the number of
clusters is normally user defined, meaning that determining the number of clusters
can be somewhat subjective, although consideration of the spectral differences
between average spectra for each cluster and the standard deviation for spectra
described by one cluster can help determine how many clusters are appropriate.

Vertex component analysis (VCA) is based on unmixing hyperspectral datasets to
find their reference components, also known as end-members. VCA is based on the
end-members being vertices of a simplex in 3D space, meaning that all other data
points can be described in terms of these end-members [73]. For Raman imaging,
this means identifying the spectra that are the most “different” from each other and
producing false-colored images (one per end-member) that then describe the abun-
dance of that end-member at each pixel in the image. The end-member images can be
overlaid to produce a composite image. As for HCA, many of the implementations
of VCA require the number of end-members to be user defined.

Multivariate curve resolution (MCR) is another method for elucidating the pure
signals from a data matrix of mixed measurements, based on the idea that the mixture
is a bilinear model of pure signal contributions, or at least the variation in the dataset
can be described by a bilinear model. Raman images must be unwrapped prior to
MCR analysis and the results reformed into images [74]. Thus MCR produces
distribution images and corresponding spectra for each of the pure components
identified during the MCR analysis.

K-means clustering is another clustering method that aims to reduce a data set
into a defined number of groups. The process starts with “k” number of groups
consisting of a random data point. Subsequent data points are added to the group
whose mean is closest to that of the data point, and the mean of each group is
adjusted as new data points are added [75]. For Raman imaging, k-means clustering
can be used to produce false-colored maps, with each pixel assigned to a single
cluster, as well as also generating an average spectrum for each cluster.

5 Key Research Findings

5.1 Key Research Findings in Raman Imaging

5.1.1 Cell State and Metabolism
The use of Raman imaging for analysis of cells and tissues, particularly when used
for many of the applications to human health and disease discussed later, is depen-
dent on understanding the origins of the Raman signals generated. The simplest way
to do this is to compare cell and tissue spectra to the spectra of individual cellular
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components. This is relatively straightforward when the sample has a simple com-
position but can be challenging where a large number of different molecular species
are all contributing to the overall signal. One way to tackle this complexity, partic-
ularly for cellular imaging, although the same can be applied to tissue imaging, is to
identify marker bands or spectral profiles for classes of molecules, such as a lipid or
protein signature. An alternative approach, depicted in Fig. 7.3, is to compare Raman
and fluorescence images in order to identify spectral profiles for different cellular
compartments and organelles [76]. Ramoji et al. have also shown that false color
Raman images can identify some of the same cellular features as classical staining
methods in leukocytes [77]. In another example, this time exploiting the resonance
Raman effect, the colocalization of cytochromes B and C has been used to pinpoint
the location of mitochondria in yeast cells [78]. A more recent study has taken
hierarchical cluster analysis (HCA) of Raman images and matched the distribution
of each of the components generated in terms of the best overlap they have with
corresponding fluorescence images. In doing so, Raman spectra that are related to
each of the fluorescent stains used can be generated and can then be used as training
data/reference spectra for further analysis of Raman images, without the need for the
fluorescent staining of later samples [79].

One of the main applications of resonance Raman imaging in a biological context
has been for the study of cytochromes. As key components of the electron transport
chain, cytochrome molecules have been used as indicators of living cells, particu-
larly with regard to their redox states. Okada et al. followed the diffusion and
oxidative state of cytochrome C during apoptosis and showed that these changes
are independent of cell morphology [6]. The redox state of mitochondrial

Fig. 7.3 Comparison of immunofluorescence images (a–d) and Raman-based images (e–h)
measured by Klein et al. The red channels reflect actin, green channels reflect Golgi, and the blue
channels reflect the nucleus. There are differences in distribution between the Raman signals and
that of the fluorescence images, particularly in terms of actin distribution (correlation between a and
e= 0.36, b and f= 0.74, c and g= 0.71). However, the combination of the components can provide
a multichannel Raman image with a high degree of similarity to the fluorescence images [76]
(Reproduced from Elsevier [76])
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cytochromes in cardiomyocytes has also been estimated, based on the Raman
intensities originating from cytochromes c, c1, and b, with reduced forms providing
more intense Raman signals than the oxidized forms [80].

Several groups showed that with careful consideration of experimental condi-
tions, it is possible to image live cells multiple times, allowing changes in the cells to
be recorded at different time points (e.g., [5–7]). Pully et al. showed that changes in
carotenoids induced by exposure to light could be detected before other changes in
cell health, such as blebbing – a process that was accompanied by spectral changes in
DNA and proteins. They also noted that some of the main constraints on time-lapse
imaging studies are the control of nutrients, temperature, and pH of the cellular
environment [5].

Raman spectroscopy has commonly been employed to discriminate between
different cell types. Raman images characterizing the chemical composition (pri-
marily heme, vitamin A and lipid content) of several types of cells originating from
the liver (liver sinusoidal endothelial cells, hepatocytes, and hepatic stellate cells)
have been used to identify each cell type [81]. Spectral differences were also used to
classify different cell types/classes that may typically be present in blood from
cancer patients, such as leukocytes, leukemic cells, and tumor cells [82]. The
biochemical differences in Raman spectra of lymphocytes have been used to dis-
criminate between T and B lymphocytes [83], and Raman imaging of murine stem
cell colonies was able to identify nuclei and cytoplasm within the cells, as well as the
extracellular matrix between the cells [84]. Raman imaging is also capable of
distinguishing between different microorganisms, as shown by the identification of
Bacillus subtilis, Staphylococcus epidermidis, and Saccharomyces cerevisiae from a
mixture of all three species [85].

Identification of the current metabolic or activation states of cells can be a key
step in understanding the course of diseases occurring when these normal processes
go wrong. Raman imaging can determine the activation state of B lymphocytes, with
a decrease in phospholipid content associated with activation [86]. Ghita et al.
proposed that the differentiation status of neural stem cells could also be determined
by nucleic acid Raman bands, specifically those indicating the levels of cytoplasmic
RNA present, with higher concentrations seen in neural stem cells compared with
glial cells [87]. Raman imaging has been used to assess the quality of human sperm,
with healthy sperm exhibiting higher-intensity Raman bands associated with DNA
and mitochondria, compared with sperm that had undergone UV-induced damage
[88]. Chinese hamster ovary cells can be used for the production of proteins and
monoclonal antibodies with Raman imaging able to discriminate between the dif-
ferent cell lines, as well as potentially able to indicate high-producing cell lines via
the presence of a protein-rich signal that the authors attribute to the endoplasmic
reticulum (ER) [89]. Raman imaging has also been used to characterize the com-
munication between different cell types, with actin and DNA content and distribu-
tion shown to be important in the immunological synapse that forms between
dendritic cells and T lymphocytes [90].

Raman imaging of the cell cycle provides information on the different states of a
cell during normal cellular processes. An early study was able to identify the cell
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cycle stage based on the Raman spectra obtained. However, the study suffered from
problems in identifying the nuclear boundary which, as the authors pointed out,
could be addressed by increasing spatial resolution of the Raman images but at the
cost of the time taken for the measurements [91]. Shulze et al. were able to study the
nucleus in detail, particularly in terms of the RNA and DNA distributions [92]. Com-
bining Raman measurements with a second modality to identify the nucleus prior to
Raman imaging has been suggested as a method for speeding up the Raman imaging
[91]. Hsu et al. used such an approach, combining Raman measurements with
autofluorescence imaging to follow the division of cells during cytokinesis and
interphase [93].

5.1.2 Cancer Studies
Many cancer studies are performed on tissue sections, meaning that there is a mix of
cell types included within each sample. As Raman imaging provides information on
biochemical composition and spatial distribution, it can be used to identify the
presence of different cell types within a tissue section. One such study showed
that, in colon cancer tissue sections, Raman spectra could be used to identify
erythrocytes (rich in heme but lacking other protein or lipid bands), lymphocytes
(rich in lipids), connective tissue, and carcinoma (distinguished by differences in
protein and DNA content). Although some researchers tend to avoid using 532 nm
excitation for biological tissues in order to try and avoid the increased fluorescent
background signal, this study found that the regions with this increased background
also provided useful biological information as they correlated with areas where p53,
a tumor suppressor protein, was active [61].

A different approach, focusing on the spatial distribution of molecules within
breast tissue, has been used to assess a number of cell parameters including the size
and dimensions of the cell and nucleus, distance between neighboring cells and
Voronoi tessellation in order to characterize breast cancer cell types [94]. Larraona-
Puy et al. have looked at the different distribution of key molecules in different tissue
types, using a classification model based on bands associated with collagen, proline,
protein backbone, and DNA to identify regions of the skin. Not only were they able
to classify regions of normal tissue such as hair follicles, epidermis, and dermis,
closely matching that of histologically stained tissue sections, but they could also
identify regions of basal cell carcinoma [95].

Many cancer studies using Raman imaging have focused on the strength of, or
lack of, particular signals in the Raman spectra. For example, in a study of cancerous
and noncancerous tissue from salivary glands, the noncancerous tissue did not reflect
the β-sheet protein content seen in the cancerous samples [96]. The presence of
cancer cells in tissue, based on the acetylation and methylation of lysine residues in
proteins contained in the cancer cells, has also been proposed [97]. On a cellular
level, the presence and distribution of myeloperoxidase in both normal and abnormal
promyelocytes, along with its absence in myeloblasts, could be used to identify each
cell type as shown in Fig. 7.4. The numbers of each cell type found in bone marrow
and peripheral blood smears can then be used for the diagnosis of myelodysplastic
syndrome and acute myeloid leukemia [98].
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Surmaki et al. noted that while many studies of cancer identification or develop-
ment have concentrated on protein-based changes, lipids and carotenoid molecules
are also significant players in the cell; in particular with regard to cancer develop-
ment, they both have antioxidant properties that are important in the control of
reactive oxygen species. In their study, Surmaki et al. used Raman maps to identify
regions of carotenoids, lipids, and proteins with spectral differences seen for ductal
and lobular carcenomas. They also noted that Raman images will incorporate
information from the extracellular matrix, as well as the cells, providing additional
information on the cellular environment [99]. Other studies have also focused on
carotenoids and lipids in breast cancer, particularly looking at the nature of the lipids
present in terms of saturation [100]. The ratio of the intensity of the nucleic acid peak
at 785 cm�1 and the tryptophan peak at 752 cm�1 has also been proposed as a simple
method for identifying skin tumors [101].

As cancer development is a multistep process, biochemical changes detected by
Raman imaging can appear in areas that appear to be normal in morphological terms,
with such changes potential markers for the early stages of the disease [102]. For
example, an increased amount of lipid droplets in breast cancer cells has been
correlated with the aggressiveness of cancer, suggesting that fatty acid synthesis
could be an indicator of cancer development, particularly in the early stages of the
disease [103]. An increase in lipid droplets has also been implicated in the develop-
ment of colorectal cancer [104]. Raman imaging has also shown increased lipid
content, lipid saturation, and phospholipid content in cells expressing high levels of
the Her2/neu receptor, a proto-oncogene implicated in breast cancer, leading
Hartsuiker et al. to suggest that the fatty acid content may be an indicator of
metastatic potential in cells [105]. The metastasis of cancer cells from the primary
tumor to secondary sites around the body is often associated with the later stages of
cancer progression and can reflect poorer outcomes for the patient. The presence of
metastatic cancer cells can also cause complications at the secondary site. Raman
imaging has been used to monitor the effects of metastatic breast cancer cells on
endothelial cells in the aorta of mice, where Raman analysis indicated an 18%
increase in proteins and a 4% decrease in lipids for metastatic cancer cells. This
change in endothelial cell composition may be a factor in the alteration of vasodi-
lation that the authors note is associated with this disease stage [106].

There is currently a push to take Raman spectroscopy into the clinic, particularly
to determine if tissue is cancerous to ensure all cancerous tissue is removed, while
saving as much healthy tissue as possible, during surgery [107]. One of the main
limitations for implementing Raman imaging in this context is the time required for
measurements. However, advances such as the selective sampling approach outlined
by Rowlands et al. [48] have been applied to basal cell carcinoma [107] and breast
cancer tissue [108] potentially bringing the measurement time for large tissue
sections, on the order of 1 � 1 cm2, down to as little as 20 min [107].

5.1.3 Lifestyle Diseases and Aging
Lifestyle diseases, including diabetes, atherosclerosis, hypertension, strokes, and
heart attacks, are often linked to unhealthy lifestyle choices such as a high-calorie
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diet rich in fats and sugars, lack of exercise, as well as factors such as smoking and
alcohol consumption. These diseases tend to manifest in later life and are becoming
more prevalent, particularly in industrialized societies. The risk factors for many of
these diseases are shared, and the presence of some of these diseases themselves can

Fig. 7.4 Raman images from acute myeloid leukemia cells analyzed by Vanna et al. (a–d) Cells
stained with May-Grünwald-Giemsa stain. (e–h) Bright field images before Raman measurement.
(i–l) Hierarchical cluster analysis images. (m–p) multivariate images created from specific bands
relating to nucleus (blue) and cytoplasm (green). For images (m–o), the presence of
myeloperoxidase is shown in red. For image (p) the presence of hemoglobin is shown in red.
Scale bar represents 10 μm (Figure reproduced from [98] with permission from the Royal Society of
Chemistry)
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also be additional risk factors for other lifestyle diseases. For example, diabetes
itself, along with the accumulation of lipids or cholesterol and endothelial damage, is
an added risk factor for many other lifestyle diseases. Czamara et al. exploited the
sensitivity of Raman to lipids to investigate the calcification process associated with
aortic stenosis, finding colocalization between lipid and calcium (hydroxyapatite)
even for the very small mineral deposits [109].

The relatively strong Raman signals generated by lipids in cells and tissues have
been particularly beneficial for studies of atherosclerosis in both mouse models and
human tissues. Kochan et al. [110] were able to show that while the livers of normal
mice showed only small areas that were rich in lipids, the livers of atherosclerotic
mice were rich in lipids, as were the livers of diabetic mice. In addition, even though
the spectral overlap between vitamin A, essential for cell health [111, 112], and heme
complicated matters, they were also able to visualize the vitamin A content in the
mouse livers, highlighting a decrease in vitamin A content in early stages of disease
[110]. Similar results were observed in the brains of mice where lipid to protein
ratios were increased in animals in advanced stages of the disease [113]. A change in
the structure of proteins contained within endothelial cells has been indicated to
contribute to the stiffness of these cells during hypertension. Raman imaging has
also identified changes in overall protein structure, α-helix and β-sheet [114], and
amino acid composition [115], in mouse models of hypertension and atherosclerosis.

Raman imaging has been used to investigate the effects of sunlight on skin tissue.
In a study by Ali et al., the lack of DNA bands in the basal layer was taken as
evidence of DNA damage as a result of the solar radiation. The use of chemometric
analysis methods also showed irradiation-induced changes in lipid content in the
stratum corneum and the dermis [62].

Early identification of the complications of aging, such as the onset of
Alzheimer’s or Parkinson’s diseases, is important in managing the disease progres-
sion and, consequently, the patient’s quality of life. Raman imaging has been used
with the aim of resolving controversy surrounding the potential presence of amyloid-
beta (Aβ) protein, characteristic of Alzheimer’s disease, in the cornea of affected
patients. If Aβ was present in the eye, this could be an easily accessible tissue to
monitor, in contrast to the brain. Techniques, such as staining, had given both
positive and negative results for different researchers. Michael et al. then used
Raman imaging to characterize the β-sheet to protein ratio for regions in the
hippocampus with Aβ plaques or tangles, unaffected regions of the hippocampus,
and the cornea. They found that the ratio was elevated in the regions where plaques
and tangles were present, but unaffected areas of both the brain and the cornea had
lower ratios, indicating no Aβ is present in the cornea [116].

5.1.4 Infectious Diseases
Identifying the presence of infective agents, such as bacteria or parasites, is impor-
tant for implementing appropriate treatment, while analyzing the corresponding
immune response of the infected cells and tissues provides information that may
be beneficial for designing drug treatments or vaccines. Raman imaging has been
used in a number of studies investigating the presence of bacteria in mammalian
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cells. For example, the growth of Staphylococcus aureus has been tracked over a
24-h time period, with internalization of the bacteria confirmed via multiple images
taken at different planes through the cell to create a 3D image [117]. Both 2D and 3D
imaging approaches were used to identify cellular changes associated with Myco-
bacterium gordonae, with the lipid response in the mammalian cells suggested to
originate from lipid-filled phagosome or lipid bodies [118].

Raman imaging of Neospora caninum parasite infection in human brain micro-
vascular endothelial cells was able to indicate the location of the parasite within cells
through identification of the parasite nucleus and lipid-rich regions thought to be the
parasite membrane. In addition, the presence of a Raman band at 1554 cm�1 was
attributed to the presence of lysozyme, indicating Raman imaging can also identify a
step in the immune response of the infected cells [119]. Toxoplasma gondii is another
protozoan parasite that is known to infect a wide range of hosts and cell types. Cells
infected with T. gondii showed increased protein and lipid content, suggesting these
molecules are part of the cellular response to the parasite. However, increases in
nucleic acid content in the Raman spectra were noted to be proportional to the
parasite proliferation, therefore originating from the parasite itself [120]. In malaria,
Plasmodium parasites produce hemozoin, a crystalline form of heme, during
catabolisis of hemoglobin in infected red blood cells. Hemozoin gives rise to
resonance Raman signals when using green excitation wavelengths, allowing low
concentrations to be detected within cells. Imaging the presence of hemozoin in
erythrocytes is possible, even though erythrocytes also contain high concentrations
of hemoglobin, due to the small spectral differences between the two substances
[121]. Macrophages, forming part of the immune defense, are known to engulf
hemozoin particles released into the bloodstream during malaria, and Raman imag-
ing has been used to identify the presence of hemozoin inside macrophages, along
with characterizing the corresponding cellular rearrangements and changes in bio-
chemical composition of the macrophage cells [122].

5.1.5 Drug Treatments and Interactions
The effectiveness of drug treatment is dependent on the chemicals reaching the target
site in cells, tissues, and/or organs. Once in the appropriate location, the action of the
drug will induce changes, potentially both chemical and morphological, in the
surrounding cells and tissues. Conversely, if drugs accumulate in the wrong site,
the induced changes in the surrounding cells and tissues will manifest as undesirable
side effects. As Raman spectroscopy does not require a priori knowledge of the
sample, it is an ideal method to monitor cellular changes induced by drug interac-
tions. Chloroquine is used as a drug treatment for Plasmodium infections that cause
malaria. Raman imaging of infected erythrocytes has been used to probe the
oxygenation state of hemoglobin as a marker for the effects of the chloroquine
exposure [123]. Oxygenation of heme-based molecules has also been used as a
marker for the presence of Clostridium difficile infection. Infection also results in
altered protein and threonine contributions to the Raman spectra, attributed to the
presence of inflammation, with the threonine signal reduced after antibiotic treat-
ment [124]. Raman spectroscopy has been used to monitor the effects of drug
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treatments in models of disease by monitoring vitamin A levels in hepatic stellate
cells [125].

Other studies have noted that Raman imaging can monitor the effects of cancer
drugs such as panitumumab on cells, allowing an assessment of their efficacy, even
when the mode of action of the drug is not fully understood [126]. Anthracycline
compounds are also potential therapies for cancer, as they inhibit topoisomerase, and
have been shown to induce changes in the spectra originating from the cell nucleus in
a concentration-dependent manner [127]. Two structurally related compounds,
nobiletin and 5-demethlynobiletin, have been shown to have different effects,
suggesting different modes of action, on cancer cell lines. Raman imaging studies
showed that nobiletin induced changes in Raman bands originating from nucleic
acids, while 5-demethylnobiletin affected localized lipids [128]. Nucleic acids were
also the target for the action of indinavir and lopinavir in cervical cancer cells [129],
and both nucleic acid and protein secondary structure changes were seen in myeloma
cells after treatment with bortezomib, a proteasome inhibitor [130].

Photodynamic therapies, where a drug taken up into a cell or tissue is activated by
light exposure to produce free radicals or reactive oxygen species to induce cell
death in nearby cells, are used for cancer treatments. Brozek-Pluska et al. have used
Raman imaging to identify the cancer cell composition, track the uptake of hema-
toporphyrin, and assess the effects on the surrounding tissue after photoactivation.
They found cancerous regions were richer in saturated acids and proteins such as
mammaglobin A and that cancerous cells took up larger amounts of hematoporphy-
rin compared to noncancerous regions of the tissue. Additionally, they showed that
the Raman intensity of proteins and lipids in the surrounding regions did not alter
significantly after photoactivation [131]. Raman imaging has also been able to show
that cells with oncogenic mutations do not respond to drug treatments such as
erlotinib, in the same way as normal cells do [132], indicating Raman analyses can
provide insights into drug resistance as well as drug responses.

Depending on the chemical structure and concentration of a drug, it can be
possible to directly measure the presence of the drug in the cell, facilitating simul-
taneous measurement of the drug position and the response of the surrounding
regions of the cell. In drugs containing C�O bonds, by integrating across
1945–1965 cm�1, the drug location can be visualized, since that spectral region
does not overlap with signals from a typical cell. The drug location can be an
important step in determining its mode of action, and, in this case, the authors
were able to show that the drug accumulates both inside and directly surrounding
the nucleus [133]. Although exhibiting some overlap with cell-based vibrations, the
C=O bond in the cancer drug paclitaxel has also been used as an effective marker to
track the number of cells taking up the drug and its location at different exposure
times [134]. Another Raman imaging study, based on understanding the metabolism
of erlotinib which contains a C�C bond, have indicated that it is possible to assess
how drugs are modified within the cell, after desmethyl-erlotinib was detected inside
exposed cells [135].

The composition of drugs can be measured via Raman imaging, providing
information on both the nature and the distribution of active ingredients, other tablet
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ingredients such as binding or dilution agents, and the nature of the polymer coating
(if present). Vukosavljevic et al. used this approach to look at the composition of
tablets containing verapamil hydrochloride, a calcium channel blocker, and were
able to determine that drug release occurs through pores that form in the polymer
coating of the tablet [64]. In order to understand the process of drug transfer from
topologically applied drugs, e.g., those contained in lotions or creams, Goto, Morita,
and Terada have used Raman imaging to follow the crystallization of components
from creams containing urea as the active ingredient [136].

Modeling the uptake of nanoparticles is another potential application where
Raman imaging can provide insight into the cellular response to particulate matter.
Nanoparticles are sometimes employed as vehicles for drug delivery into cells, and
Chernenko et al. have used Raman imaging to follow the uptake and metabolism of
two nanocarriers (poly-(-caprolactone) (PCL) and poly(lactic-co-glycolic acid)
(PLGA)) tracking their location within HeLa cells via Raman bands characteristic
for the two molecules [137]. A significant impact of nanoparticles on human health
is the potential detrimental effect on our cells and organs from environmental
pollutants. Particulate matter in air, for example, has been shown to contribute to
lung cancer [138]. Taking the subcellular environment and induced changes in
metabolism as potential indicators of a toxic response, Dorney et al. investigated
the local environment of polystyrene nanoparticles that were taken up into the
cytoplasm of human lung adenocarcinoma cells [139]. Raman imaging studies of
fibroblasts and macrophages showed differences in nanoparticle uptake when
exposed to TiO2 nanoparticles, with fibroblasts storing the nanoparticles in small
vesicles, whereas the macrophages, with a higher uptake of nanoparticles, distrib-
uted them in much larger vesicles [140]. Other studies have suggested that nano-
particles such as TiO2 and α-FeO(OH) can pass across the nuclear membrane and
accumulate in the nucleus [141]. Extending these studies into multicellular organ-
isms, cyanobacteria have been shown to internalize TiO2 nanoparticles [142]. The
uptake of TiO2 nanoparticles by Caenorhabditis elegans has shown that despite the
increase in sample complexity, Raman imaging can still provide information on the
position of the nanoparticles as well as the changes they induce in the nematode
itself, particularly with respect to proteins [143].

5.1.6 Hard Tissues
Raman imaging has been used to study various aspects of tooth structure in humans
and primates. A recent study concentrated on the ratios of carbonate and phosphate
in the dentine – enamel junction, as well as determining the presence of collagen as
part of the organic component of teeth [144]. The composition of enamel in teeth
determines tooth strength with hypomineralization linked to increased porosity,
faster wear, and increased susceptibility to decay. Healthy enamel was shown to
have strong spectral features attributed to phosphate-rich minerals, whereas lesions
exhibited both carbonate substitution in the mineral components and an increase in
protein content [145]. Similar mineral substitution has also been shown in sea urchin
teeth where a simple band shift was sufficient to determine the presence of Mg2+

within the CaCO3 crystal structure [146]. In direct clinical applications, Raman
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imaging has identified the presence of pyrophosphate an atypical femoral fracture,
with no pyrophosphate observed for control samples [147].

A particularly intriguing study used Raman imaging to assess structural defects
created during tooth formation, based on the idea that these defects could be used as
an assessment of illnesses and other stressors occurring during the early years of
child development. The authors correlated the information from Raman imaging and
other analytical techniques, such as mass spectrometry, with that of medical and
behavioral data that noted the occurrences of stressful events in the lives of primates.
Raman imaging was able to identify small features, primarily changes in protein and
biomineral structure, that were not visible via light microscopy, and the resolution
provided by the Raman images meant the size of the defect, and therefore the length
of time the stressful event lasted could be estimated [148].

The repair of teeth, using resins, has also been studied by Raman imaging.
Toledano et al. investigated dentin adhesive systems in terms of their ability to
induce remineralization at the dentin interface [149]. In a further study, they found
mechanical stresses (modeling the effect of chewing or grinding on the
remineralization process) resulted in alterations of the mineral/matrix ratio [150].

Several studies have investigated the process of mineralization during bone cell
differentiation. Hashimoto et al. followed the mineralization process during the first
72-h of cell differentiation, using Raman imaging to locate the presence of hydroxy-
apatite [151]. In a further study, they showed that the β-carotene concentration was
proportional to the degree of mineralization, suggesting the presence of β-carotene
could be used as an indicator for the initiation of mineralization. In addition, they
also monitored cytochrome C as an indicator of apoptosis, with the onset of
apoptosis in different cells linked to the fluctuations in cytochrome C intensity
seen in the Raman spectra [7]. In another study of the mineralization process of
bone nodules, Raman imaging identified the transition of hydroxyapatite from
amorphous to crystalline during the 28-day monitoring period [152]. Extending
this to more direct medical applications, Gao et al. monitored human mesenchymal
stem cells, placed on a scaffold that would be implanted during bone regeneration
therapies, to assess the effects of such a scaffold on osteogenic differentiation. They
observed two stages of mineralization over a 28-day period and also noted that the
mineralization process in cells on the scaffold was slightly delayed compared to that
of cells on culture plates [153]. Of consequence for bioengineering, Raman imaging
has shown that other substrates can also affect stem cells including strontium ion
incorporation in bioactive glass resulting in increases in lipid rafts and cellular and
membrane cholesterol [154].

Hair is an easily accessible sample for analysis. Wei et al. have investigated the
potential for hair samples to provide information on the health status of an individ-
ual, namely, those suffering from rectal cancer. They found that different sections of
the hair may be more useful than others for such studies in that there were little
differences in cuticle between healthy people and cancer patients. The cortex and
medulla, on the other hand, both showed changes in proteins, with cancer patient’s
hair reflecting lower protein content in the cortex, less α-helical, and more β-sheet
proteins in the medulla [155]. Other hair studies have focused on the distribution of
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particular compounds such as squalene, a lipid produced by skin cells in humans,
noting it is primarily in the cortex [156]. Franzen et al. have also used Raman
imaging to study the hair follicle, as it allows easy penetration into the skin for
drugs, etc. They characterized the follicle in terms of the hair, sebum, and skin
dermis and epidermis structures in both humans and pigs, as porcine skin is often
used as a model for the human skin [63].

5.1.7 Plants, Algae, Molluscs, Bacteria, Fungi, and Small Multicellular
Organisms

In plants, Raman imaging has primarily been used to investigate the composition of
plant cell walls and other structural elements, with a focus on molecules including
lignin and polysaccharides such as pectin and cellulose. The lignin and total carbo-
hydrate content of cell walls in poplar trees has been described by Pererra et al.
[157]. Analysis of Norway spruce and Scots pine showed similar lignin and cellulose
distributions between both species, but spruce trees showed higher amounts of
lignin-coniferyl aldehyde/alcohol groups in the secondary cell wall compared to
the middle lamella and primary cell wall. Pine, on the other hand, showed compa-
rable lignin-coniferyl aldehyde/alcohol content in the secondary cell wall and middle
lamella, while the primary cell wall reflected lower levels [158]. The cell wall
architecture in different regions ofMiscanthus sinensis cv. has also been investigated
with Raman imaging, providing information on the orientation of cellulose fibers
with respect to the fiber axis [159]. The orientation of cellulose fibers was also
important in brittle culm rice plant mutants, where cellulose fibers are arranged in a
random orientation, as opposed to the parallel orientation found in wild-type plants
[160]. Cellulose is an important source of ethanol for fuel during fermentation, and
Chu et al. used Raman imaging to show that NaOH treatment of Miscanthus �
giganteus samples removed lignin while leaving the cellulose behind [161]. Vermaak
et al. have also imaged the distribution of molecules within plants, focusing on the
steroidal glycoside p57 which has potential appetite suppressant properties, and
found that p57 is primarily found in the inner fleshy part of the plant with low
amounts in the outer layers [162]. In addition to the main plant, pollen grains are also
amenable to Raman imaging studies. Analysis of intact grains provides information
on the composition of the pollen grain walls, and molecular information on the
substructure of the grains can be obtained from Raman images of sectioned
grains [163].

Using tomatoes as a model system, Chylinska et al. identified the presence and
distribution of pectin, cellulose, and polysaccharide molecules [164]. Tomatoes were
also the focus for a recent study into ester cross-linking in cutin [165]. The distri-
bution of pectins, cellulose, and hemicellulose in apples has been determined at
different time points during the growth and storage of the fruit. These components
are relatively evenly distributed throughout the young fruit. As the fruit matures, the
pectins become more concentrated in the edges of the cell walls. During storage, the
pectin distribution, once again, becomes more evenly distributed [166]. The distri-
bution of plant cell wall polymers, namely, pectin and lignin, in different parts of the
plant Phormium tenax is shown in Fig. 7.5. Higher pectin content in the lower
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regions of the plant (Fig. 7.5 P1) was attributed to higher water content. This was not
found in higher regions of the plant (Fig. 7.5 P3 and P4), which show a higher lignin
content, reduced water content, and increased mechanical stability [167]. The dis-
tribution of lipids and lignin has also been used to understand the waterproofing
characteristics of Arabidopsis plants [168]. The rhizosphere bacterium Pantoea
sp. YR343 has been studied in terms of its co-culture with Arabidopsis thaliana,
with Raman imaging able to distinguish wild-type and mutant bacteria via the
resonance Raman contributions originating from carotenoids [169].

Raman imaging has been used to study algae, for example, to determine the
proportions of silica, inorganic and organic components found in the cell walls of
diatoms [170]. Monitoring the ratio of biomolecules in crops intended for producing
biofuels is an important step in ensuring a good-quality fuel, for example, with a high
calorific content, is produced. Chiu et al. used Raman imaging to assess the lipid and
carbohydrate content in algal cells when subjected to stress. They showed that the
lipid-to-carbohydrate ratio is affected by the nature of the stress applied, with
nitrogen depletion resulting in increased carbohydrate content, but nitrogen deple-
tion in combination with an increase in salinity increased the lipid content
[171]. Polysaccharides are also a key component of fungi as well as plants and
algae, and a recent study illustrated the ability of Raman imaging to simultaneously
measure multiple polysaccharide components, including α- and β glucans and
mannan, from fungal spores [172].

Raman imaging has also been used to investigate the nature and distribution of
biochemicals within multicellular, living organisms. The connections between hard
and soft tissues in molluscs have also been visualized by Raman imaging to
investigate the interface between the living tissue and shell [173]. Raman imaging
can also be used to study the whole organism as shown by Nakamura, Hotta, and
Oka who followed the development of the Ciona intestinalis (sea squirt) embryo
during development from the two-cell stage through to the tail bud stage. They were
able to identify muscle and ectoderm at multiple stages throughout the development
and to discriminate these cells from others that had divided from the same parent cell
but that had different developmental fates [174]. Nematodes are particularly acces-
sible samples for Raman imaging as they are usually semitransparent. Raman
imaging has also been employed to assess the changes in Radopholus similis
nematodes, a banana plant parasite, to the anigorufone compounds produced by
the banana plants in response to a nematode infection. Exposed nematodes showed
an increase in lipid-rich droplets which the authors suggest may be a defense
mechanism to limit the toxic effects of the anigorufone on the nematode [175].

5.1.8 Food and Drug Quality and Safety
Raman imaging has been used in a number of studies investigating the distribution of
components within the sample. Smith et al. have imaged the distribution of fat,
protein, and water in processed cheese, along with additives such as trisodium
citrate, starch, and paprika. [176]. Carotenoids are responsible for the color in fruit
and vegetables such as tomatoes and peppers and are an important part of our diets as
they have protective capabilities including antioxidant properties and vitamin A
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activity. Raman imaging has been used to study the nature and subcellular location of
carotenoids in chili peppers, as the subcellular location has been proposed to affect
the dietary availability of the carotenoids. Carotenoids were located in lipid bodies
that were outside of the chromoblast. The pepper varieties studied (four red and one
orange when ripe) were found to contain different carotenoid compounds. For
example, lutein was the main carotenoid component of Costeno-Amarillo, whereas
NuMex Heritage 6-4 was rich in β-carotene [177].

The incidence of several food scandals in recent years, such as melamine in
powdered milk in China and horse meat in meat products in the UK and Europe, has
raised questions about the origins and quality of our food products. A number of
studies have shown that Raman imaging can be a useful tool for quality control and
the identification of contaminants in a number of food items. Quin et al. tested the
potential for Raman imaging to determine the presence of contaminants such as
ammonium sulfate, dicyandiamide, urea, and melamine in dry milk. Taking advan-
tage of the well-defined Raman spectrum of the contaminants, compared to the
broader-featured milk powder spectrum, they could simultaneously detect these
contaminants at concentrations between 0.1% and 5.0% [178]. Extending this,
Dhakal et al. tested the potential for Raman imaging to determine the presence of
melamine in spiked samples of skimmed milk powder. Using a thresholding
approach on the images, they were able to detect melamine at concentrations as
low as 0.005% [179].

The compound benzylisothiocyanate (BITC) has antimicrobial properties. Clem-
ent et al. used Raman imaging to investigate the action of BITC when incorporated
into food packaging, with a focus on its effects on the food-borne mold Aspergillus
ochraceus. They showed BITC-induced spectral changes associated with most
classes of macromolecule – saccharides, proteins, lipids, amino acids, and so on –
indicating BITC disrupts multiple cellular processes in A. ochraceus, which will
ultimately lead to the death of the microbe [180].

Not all food adulterations are dangerous to human health such as those that
involve the substitution of one food product with another, usually cheaper, food
product. Eksi-Kocak et al. have noted that pistachio nuts, as a more expensive crop,
are often bulked out by the addition of green peas which exhibit similar green-
colored kernels. They were able to use spectral feature differences observed across
small areas of Raman images to identify the presence of both pistachio and green pea
in mixtures of different proportions [181].

Raman imaging has also been applied to the analysis of drug mixtures in both
genuine and counterfeit tablets. Kwok and Taylor compared genuine Cialis tablets,
containing the active ingredient tadalafil and binding agents lactose monohydrate

�

Fig. 7.5 (continued) integrating between 1075 and 1114 cm�1 reflecting changes in cellulose
orientation. PEC: intensities calculated by integrating between 842 and 872 cm�1 reflecting pectin
content. LIG: intensities calculated by integrating between 1641 and 1546 cm�1 reflecting lignin
content (Reproduced from Springer [167])
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and microcrystalline cellulose, to two fake tablets. These fake tablets were found to
contain talk, starch, calcium sulfate, and several unknown ingredients in addition to
varying amounts of the active ingredient. They were also able to show that the
genuine tablets had a much more even distribution of the ingredients compared to the
counterfeit tablets [182]. Sacré et al. showed that the spatial differences in the
chemical distribution of sildenafil in counterfeit and genuine Viagra tablets were
not sufficient to discriminate between the two groups; however, the presence of
lactose was a clear marker for counterfeit tablets [183].

5.2 Key Research Findings in Nonlinear Raman Imaging

5.2.1 Coherent Anti-Stokes Raman Scattering (CARS) Imaging
The sensitivity of CARS to lipids has been shown to visualize the accumulation of
lipids in adipocytes with higher definition and at an earlier stage to oil red O staining
commonly used for marking lipids [184]. This sensitivity has meant that CARS
imaging has predominantly focused on areas where the presence of lipids or lipid
metabolism is a key component of the sample. Bradley et al. have used CARS to
monitor the early stages of early embryo development. They tracked the distribution
of lipid droplets showing that the early embryo, at the two and four cell stages,
exhibit small lipid droplets. As development continues, cells exhibit fewer droplets
but these are larger in size. They also noted that the composition of the lipid droplets
varied, with different ratios of saturated and unsaturated lipids found in droplets from
the same embryo [185]. Unsaturated fatty acids were the focus of another study that
investigated the nature of the fatty acids that were involved in the transport of yolk
lipoprotein into C. elegans oocytes. Through the analysis of mutants deficient in
polyunsaturated fatty acid synthesis, the authors were able to determine that omega-6
fatty acids were a key regulator of this fatty acid delivery process [186].

Jüngst et al. exploited the sensitivity of CARS to lipids in order to monitor the
fusion process of lipid droplets in adipocytes, observing the cells over a 120-h
period. They found that the increase in size of lipid droplets was mainly due to
fusion of smaller droplets, rather than being due to synthesis of new lipids. They
showed that the transfer of material was from the smaller droplets to the larger
droplets, with the rate of transfer dependent on a number of parameters including the
relative size difference and the diameter of the smaller droplet [187]. A similar study
also monitored lipid droplets during the development of adipocytes, this time
illustrating that the nature of fatty acids present in the cell culture medium can
influence the fatty acid composition of the lipid droplets. The maturation stage of the
adipocyte was also shown to be a determining factor in the speed of the cellular
response to the change in fatty acid composition of the extracellular environment
[188]. The manifestation of many lifestyle diseases is accompanied with changes in
lipid signals. CARS imaging has identified increased lipid signals in brain samples
from mice suffering from Alzheimer’s disease [189].

Lipid droplets are also important in algae, and Cavonius et al. were able to
identify three phases in the synthesis process. They employed time gating in order
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to measure the lipid signals despite the strong pigmentation from the chloroplasts,
but they did note that, when measuring time-lapse images of live algal systems, the
extended exposure to the CARS excitation light is likely to have an effect on the light
harvesting of the chloroplasts [190].

The myelin sheath surrounding nerves also gives rise to strong CARS signals due
to its fat content. Berlanger et al. used CARS to image the myelin content of the
spinal cord in live mice [191]. Turcotte et al. used polarization-resolved CARS to
study myelination in live zebra fish and to assess promyelination drugs [192]. CARS
imaging of lipids had also been used to indirectly measure the sweating process by
covering a small area of skin with an exogenous oil, thereby filling the sweat pores.
The oil can then be imaged as it is flushed out by the discharge of sweat
[193]. Although CARS-based research is dominated by lipid imaging, a few studies
have been engaged in determining the distribution of other molecular classes. Wang
et al. looked at the distribution of pheomelanin, responsible for red hair pigmenta-
tion, in melanocytes, amelanotic melanomas, and a red-haired mouse model [194].

As with conventional Raman imaging, CARS can be used as a method to assess
the impact of nanoparticle uptake on tissues. Johnston et al. were able to locate the
presence of both TiO2 and Au nanoparticles in macrophages, hepatocytes, and live
animals with the CARS signals able to visualize both the cells and the position of the
nanoparticles [195]. An investigation into the uptake of environmental microplastics
by crabs has also used CARS to locate the particles within the crab [196].

Some CARS studies have also used spontaneous Raman measurements (usually
point spectra) to provide spectral information while still retaining the speed of CARS
measurement. This approach has been used to identify brain tumors, with tumor
boarders and regions of infiltration imaged at the cellular level. The CARS signal
was moderately reduced in metastatic tumors and markedly reduced in the glioblas-
toma regions, with Raman spectroscopy showing that this reduction in CARS signal
was due to a lower lipid content in the tumors [197]. FAST (femtosecond adaptive
spectroscopic techniques) CARS imaging and Raman spectroscopy have been used
in conjunction to distinguish between polarized and non-polarized epithelia in breast
tissue, based on the lipid ordering present [17]. In studies of breast and prostate
cancer cells, CARS images showed an increase in the number and size of lipid
droplets, while Raman spectroscopy indicated an increase in saturation of the lipids
present, after treatment with the drugs medroxyprogesterone acetate or synthetic
androgen R1881 [198].

A method for increasing the spectral information provided by CARS is to
measure broadband CARS, which produces spectra that are more akin to conven-
tional Raman spectra, with the first report showing a vibrational spectrum covering
the region from 600 to 3200 cm�1 [199]. This opens up the technique for more
detailed investigation of protein structure, as the peak shifts associated with α-helix,
β-sheet, and other protein structural forms can be measured. Bito et al. found that the
cortex of hair is mainly α-helical, while the cuticle is richer in β-sheet and random
coil structures, with an α-helix to β-sheet transition observed after chemical and
mechanical treatments [200]. Several recent studies have begun to explore the
possibilities of combining CARS with chemometric analysis techniques. Lin et al.
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applied PCA to CARS images of the meibum lipids produced by meibomian glands
in the eyelid, using the lipid composition to identify the different functional regions
within the gland [201]. El-Mashtoly et al. focused on the 2700–3000 cm�1 region
and used a random forest approach to automate identification of common cellular
organelles such as the endoplasmic reticulum, lipid droplets, nucleus, and
nucleolus [202].

5.2.2 Stimulated Raman Scattering (SRS) Imaging
SRS has been used to visualize different biomolecules within food products.
Roeffaers et al. were able to image the two phases in mayonnaise, fat and water,
as an example of a simple emulsion. SRS images could also be obtained from cheese
and a soy-based drink which have extra components, proteins and carbohydrates, as
well as fat and water [203]. In plants, SRS has been shown to discriminate between
different wax components, cellulose and pectins [204], and to assess effects of
maleic acid treatment on lignins in cell walls of poplars [205]. SRS has also been
used to investigate the uptake of the fungicides azoxystrobin and chlorothalonil in
plants, both of which contain C�N bonds allowing clear identification of the peaks
in the “silent region” of the spectrum [206].

Egawa et al. have used SRS to study pig and human skin with a particular focus
on the various stages of differentiation in keratinocytes [207]. SRS has also been
used to monitor the changes occurring in mammalian tissues during disease
manifestation. Tian et al. studied the nerve degeneration occurring in amyotrophic
lateral sclerosis (ALS) in mouse models of the disease. They found changes in the
peripheral myelin, with lipid depositions appearing in ALS-affected individuals. In
addition, they monitored the effects of treatment with minocycline, a drug known
to slow the progression of ALS in mice, which appeared to reduce the number of
lipid deposits observed, but did not reduce them to the levels seen in unaffected
individuals [208]. SRS has also been used to investigate the lipids present in
ovarian cancer stem cells, with cells such as ALDH+/CD133+ cells that have
high tumorigenic and metastatic potential [209] found to have a high degree of
unsaturated lipids [209]. Li et al. also noted that the degree of saturation in lipids
could be indicative of the metabolism after noting COV362 cells grown in a
monolayer had lower levels of lipid unsaturation compared to those grown as
spheres [210]. Many molecules give rise to Raman signals between 2800 and
3000 cm�1, but Lu et al. have exploited the small shifts in position for each of
the main classes of molecules to measure signals from DNA with SRS. They
showed that it was possible to measure SRS signals from DNA in a sample of
mixed components, within a cell, and within skin samples, as well as using SRS
time-lapse imaging to monitor chromosome dynamics [211].

As with CARS, a few recent studies have been extending the analysis of SRS
signals through the application of chemometric analyses. Satoh et al. have used
PCA, concentrating on the 2800–3100 cm�1 region, to visualize acetaminophen-
induced liver injury in mice [212]. Datta et al. used VCA to identify lipid droplets
within a protein matrix when investigating metabolism and oxidative stress in
cardiomyocytes derived from pluripotent stem cells [213].
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5.3 Multimodal Imaging

Although the speed at which Raman imaging can be performed has increased with
developments such as line scanning and improvements in detector sensitivity, it is
still slow in comparison to many cellular processes. One way to compensate for this
is to combine Raman with other modalities that have faster imaging capabilities and
provide additional information on the nature of the sample. Multimodal approaches
to Raman measurement can ideally combine two or more techniques that are applied
to the sample simultaneously, so that the information between the different modes
can be most easily compared. The instrumental challenges of that approach can be
significant [214], but highly useful measurements can still come from multimodal
techniques carried out sequentially on a sample [215]. Indeed, by relaxing the
constraint of measuring simultaneous multimodal information, a wider variety of
modalities may be used. For example, fluorescent staining measured following
Raman can be a very useful validation technique.

One of the big challenges with multimodal imaging is the image registration
between different measurement techniques. This is particularly problematic where
one modality is used to provide information on what another modality is measuring
as differences in the z-resolution, and probed volume will mean that there will be
differences in the morphological and, potentially, molecular species measured by
each technique [79, 214].

5.3.1 Raman and Infrared (IR) Spectroscopy
Raman and IR spectroscopies are both forms of vibrational spectroscopy, but as
Raman imaging is based on a scattering process and IR imaging is based on
absorption, they can be used to provide complimentary information on a sample.
IR imaging is much more sensitive to the presence of water, meaning that it can be
difficult to measure aqueous samples, restricting many of the studies to tissue
sections or other samples that can be dried prior to measurement.

Garip et al. have used both Raman and IR imaging to investigate the changes in
rat liver during treatment with simvastatin. Both Raman and IR images showed
varying decreases in lipids and proteins, leading to an overall increased lipid:protein
ratio, and Raman analysis also suggested a relative increase in DNA to proteins. The
authors concluded that simvastatin causes notable damage to the liver, possibly
through oxidative stress mechanisms [216]. Lau et al. used Raman and IR in
conjunction to study the distribution of biomolecules within Steinernema kraussei
nematode worms. Due to the different measurement configurations, confocal Raman
images provided high spatial resolution images in a single plane through the
nematode. IR images performed in transmission mode, on the other hand, provided
complementary information in terms of the biochemical composition of the whole
thickness of the worm [217].

In terms of hard tissues, Raman and IR imaging have been used in conjunction to
study untreated human hair with both techniques providing information on the
protein secondary structure and lipid composition of hair fibers. In addition, due to
the fact that Raman is sensitive to disulfide linkages, Raman images also provided
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information on keratin, which is rich in cysteine amino acids [15]. Bone tissue
engineering was the focus of a study concentrating on determining the biocompat-
ibility of a composite made from hydroxyapatite and β-glucan. Here, Raman imag-
ing was used in conjunction with infrared spectroscopic imaging to investigate the
differences between the composite and decalcified bone, identifying subtle changes
in the mineral composition and a decrease in phosphate contributions with increasing
age of the sample [218]. Chia et al. have also used Raman and IR imaging to study
the formation of biochar (produced by heating biomass in limited oxygen environ-
ments) used as a soil additive. FTIR was able to show the effects of mineral additives
on heat-induced chemical changes in the biochar, while Raman data provided
information on the carbon structure in biochar and mineral-enriched biochar [219].

Raman and IR imaging have also been combined with additional modalities.
Caine et al. added CARS and fluorescence imaging in order to investigate the
alterations to the brain caused by a stroke. Raman provided high spatial resolution
imaging of the lipid acyl groups revealing that the neuropil within in the peri-infarct
zone showed reduced amount of lipid acyl groups. CARS showed that both the
ischemic infarct and the surrounding peri-infarct zone were mainly devoid of
myelinated axons. This information was complimented by IR and fluorescence
imaging of the same areas [220]. Palombo et al. combined the chemical information
obtained from Raman and IR imaging with Brillouin imaging, providing information
on the mechanical properties, primarily the viscoelasticity, of Barrett’s esophagus
samples [221].

5.3.2 Raman and Mass Spectrometry (MS) Imaging
In recent years, mass spectrometry imaging has been applied to a number of
biological samples (for a recent review, see Spengler et al. [222]) with a small
number of studies looking to combine the mass-based sample information from
MS with the vibrational information from Raman imaging. Lanni et al. combined
secondary ion mass spectrometry (SIMS) with Raman in order to image bacterial
biofilms of Pseudomonas aeruginosa, identifying components such as quinolones in
the sample [223]. Ahlf et al. used an alternative MS modality, matrix-assisted laser
desorption ionization (MALDI), combined with Raman for the analysis of 3D cell
cultures. In this case, unlike Lanni et al., Ahlf et al. did not directly correlate the
Raman and MS images, instead analyzing both modalities with PCA and then
correlating the components obtained. For both techniques, the main variation,
identified by the first principal component, identified the necrotic core of the culture,
while the second component was associated with the proliferating edge
[224]. Bocklitz et al. have proposed a workflow for combining Raman imaging
with MALDI-based MS imaging, using a larynx carcinoma sample as their target. In
this workflow, Raman images were compared to the H&E-stained images, with
Raman identifying two layers in the epithelium attributed to differences in metabolic
state. MALDI images were then taken from regions where the Raman and pathol-
ogist classifications were in agreement and from regions where the two did not agree,
with m/z values from the MALDI imaging providing additional information to aid in
classifying the tissue [225].
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5.3.3 Raman and Atomic Force Microscopy (AFM)
AFM probes the mechanical properties of a sample such as viscoelasticity, stiffness,
and topography [226]. Recently, the information provided by AFM imaging has
been used to try and decouple the molecular concentration of components within
cells from the topography of the sample in Raman images, as a move toward
quantitative Raman measurements that are completely independent of sample thick-
ness. In this case, correlated Raman and AFM images were used to produce
quantitative maps of the cellular distribution of components such as proteins and
RNA [227]. Correlated AFM and Raman images have also been used to study the
effects of ex vivo treatment methods, particularly those commonly used in cell
fixation protocols, on human erythrocytes [228]. Raman and AFM have also been
used to assess the oxidation state of heme in erythrocytes [229].

Raman and AFM studies have often included IR imaging analyses as well. One
such study used all three techniques to investigate the content and distribution of
usnic acid, which has potential antibiotic properties, in three different species of
lichen [230]. Raman imaging and AFM have also been used in conjunction with IR
images to study mycobacterium and gram-negative bacteria, Pseudomonas putida
and Escherichia coli in co-culture [231].

5.3.4 Raman and Digital Holographic Microscopy (DHM)/Quantitative
Phase Imaging

Digital holographic microscopy (DHM) is a quantitative, label-free, and noninva-
sive technique that provides information in terms of the phase shifts induced by a
sample [232]. DHM can be performed at high frame rates, making it an ideal
complement to the relatively slow collection times required for Raman imaging.
The implementation of a dual DHM and Raman system has been achieved using
the same light source for sequential measurements [233] and by using two light
sources and spectral separation allowing for simultaneous measurements from the
two modalities [232]. The quantitative phase image information provided by DHM
has been used to screen red blood cells infected with malaria, identifying cells of
interest which can then be further analyzed by Raman to provide chemical and
spatial distribution of hemozoin, for example [233]. Simultaneous measurements
have provided information on the classes of biomolecules that give rise to the phase
signals. Raman spectra of cells are often lipid-rich, with moderate-intensity bands
from proteins and smaller contributions from other molecules such as nucleic
acids. On the other hand, proteins and nucleic acids generate a significant propor-
tion of the contrast in phase images, while the contribution from lipids is less
intense. This highlights an additional aspect of the complementarity between the
two imaging modes [232]. The combination of Raman and DHM has also been
used to assess the health of bovine sperm cells during selection for artificial
insemination. In this case, the morphology of the cells, provided by DHM, gave
insight into the health of the sperm, and the Raman images and spectra were used to
identify the X-carrying and Y-carrying sperm [234].

314 A. J. Hobro and N. I. Smith



5.3.5 CARS, Second Harmonic Generation (SHG), and Two-Photon
Emission Fluorescence (TPEF)

CARS has often been used in conjunction with second harmonic generation (SHG) and
two-photon emission fluorescence (TPEF) imaging. This triple combined approach has
been used to study the muscle tissue changes induced by cold shock in crustaceans, with
CARS providing information on the ER, cisternae, and T-tubules [235]. All three
techniques are able to identify the epidermis, dermis, and subcutis in the human skin,
but Heuke et al. demonstrated that an overlay of all three images combined provided
clear delineation between the tissue types, illustrating this with example regions includ-
ing a sweat gland, sebaceous gland, hair bulb, and blood vessels [60]. In cancer
applications, the three techniques have been used to discriminate between normal,
desmoplastic tissue and cancerous lesions in the lung [236] and to identify normal
tissue, tumor, and necrotic tissue in the kidney [237]. In atherosclerosis studies, CARS
has been used in conjunction with TPEF and SHG to study the plaque deposits [238,
239]. The vitamin A content of pig liver has also been investigated with all three
modalities where CARS produced images of the vitamin A droplets, fluorescence
imaging highlighted the hepatocytes and liver sinusoids, and SHG showed the location
of connective tissues [240]. Chernovskaia et al. combined CARS at two different
wavelengths, with TPEF also at two different wavelengths and SHG to provide in
total five image channels for the investigation of inflammation in diseases such as
Crohn’s disease and inflammatory bowel syndrome as shown in Fig. 7.6. The authors
used the information from these combined modalities to predict different levels of
chronicity, architecture, and activity associated with the samples [241].

CARS and TPEF have been used together to study the reorganization of the major
classes of biomolecules in cells during the cell cycle. Along with quantitative
analysis of concentrations of these molecules at particular points in the cell provided
by Raman spectra, the study showed that proteins are inhomogenously distributed
throughout the cell and that lipids tend to be more abundant at the edges of the cell.
In addition, only the local concentration of DNA was found to fluctuate during the
mitosis and G1 phases of the cell cycle [242].

CARS and SHG have been used to provide complimentary information on fibrosis in
nonalcoholic fatty liver disease with SHG providing information on the nature of the
fibrosis and CARS identifying the liver fat [243]. In a mouse model of obesity, both
techniques were used to visualize the increase in size of adipocytes induced by high fat
and fructose diets [244]. The combination of CARS and SHG has also been employed in
several studies centered on proteins. Fibrin hydrogels are one type of substrate used as a
scaffold in regenerative medicine, and Mortati et al. used SHG and CARS to follow the
collagen production of mesenchymal stem cells, as an indicator of cell differentiation,
and corneal fibroblasts in 3D cultures on these scaffolds [245]. Brackmann et al. used
CARS and SHG in combination to investigate orange fruits/vegetables such as sweet
potatoes, carrots, and mangos, with CARS used to visualize the carotenoids and SHG
highlighting the starch granules in each sample [246]. Brackmann et al. also looked at
the interaction of cells with a matrix, this time investigating the interactions of smooth
muscle cells with a cellulose matrix in terms of how they compress the matrix [247].
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Fig. 7.6 Multimodal images (a, c, d, f, h, i) and corresponding H&E-stained tissue sections (b, e,
g, j) of normal (a–e) and diseased (f–j) colon mucosa. Sub-figures (a) and (f) show multimodal
images acquired with CARS at 2930 cm�1, TPEF at 503–548 nm, and SHG. Sub-figures (c) and (h)
show details from (a) and (f) represented by the white boxes. Sub-figures (d) and (i) show
multimodal images corresponding to sub-figures (c) and (h), respectively, that were acquired with
the combination of CARS at 2850 cm�1, TPEF at 426–490 nm, and SHG. Red, CARS; green,
TPEF; blue, SHG. White scale bar represents 1 mm and black scale bar 250 μm. Arrows:
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Mansfield et al. have compared CARS and SRS for imaging of superficial zone
chondrocytes showing that SRS provides a spectrum closer to that of the Raman and
also gives rise to a clearer image. They then went on to combine TPEF, SHG, and
SRS imaging to investigate the structure of cartilage, with three SRS channels
providing images of carbonate, phosphate, and CH stretching. The TPEF images
provided information on autofluorescence, while the SHG images highlighted the
collagen fibers [248].

6 Conclusions and Future Perspectives

Raman imaging has been applied to a wide range of sample types and fields of
research that all have an impact on human health. That includes a growing variety
of applications including fundamental studies of biological reactions, through the
assessment and quantification of disease states and the impact of environmental toxins
on biological systems or more indirectly through determining the quality of foodstuffs
and drugs. Future developments in Raman imaging will, no doubt, continue to expand
the applications of Raman analyses to other fields of biochemical analysis.

In terms of applications for medical diagnosis, many studies have shown the potential
for Raman in characterizing changes in cells and tissues that can be thought of asmarkers
for diseases as wide ranging as cancer, atherosclerosis, dental lesions, and parasitic
infections. The next stage will be to expand these small-scale studies to larger sample
sizes and more complex sample groups (e.g., samples from patients who exhibit symp-
toms from multiple medical conditions) with a view to applying Raman-based diagnos-
tics in clinics and surgeries. In many cases, this will involve the development of smaller,
dedicated instruments and the development of automated software for determining the
status of a sample. While much of the instrumentation currently being developed for use
in surgery or other clinical settings are primarily concerned with recording single point
spectra, the information provided byRamanmapping and imaging studies is useful when
developing such probes [249], particularly in terms of the spatial distributions and
concentrations of the key molecules of interest in a given sample.

In terms of instrumentation, it is challenging to directly improve the amounts of
acquired Raman signal, since for many setups, detector sensitivity, grating efficiencies,
and so on are relatively close to what might be expected theoretically. Instead,
improvements in Raman imaging are likely to come from improving the speed of
measurement via measures such as increased degree of parallel acquisition (i.e., in the
same way that line scanning drastically improved Raman imaging speed, other
improvements might be implemented) or by increasing resolution [250]. Additionally,
improvements are already underway by use of smart selective sampling, compressed

�

Fig. 7.6 (continued) 1, lymphocytes, increase overall fluorescence, loss of crypt density; 2, crypt
branching; 3, irregularities of crypts’ shape; 4, flattened epithelial layer facing the lumen
(Figure reproduced from Nature Publishing Group [241])

7 Label-Free Raman Imaging 317



sensing, or other techniques to reduce the number of spectra required to construct an
image. In essence, these directions involve the optimization of the desired information
content that can be measured in a constrained set of parameters, where laser power,
sample damage, and measurement time are all crucial considerations. The optimum
measurement would then provide the best answer to a given hypothesis, by optimizing
the measurement protocol according to the physical constraints. Most current work
does not take this approach, partly because the optimum measurement may require a
flexible and customizable imaging system. There is then a trade-off between the best-
case measurement approaches and practical considerations. Nevertheless, we can
expect significant improvements in Raman imaging, with increased attention to
exploiting these factors. In addition, combining Raman imaging with other modalities,
providing correlated but nonredundant information, will be important in future studies,
particularly where the other modalities measure different characteristics of the sample,
compared to the Raman spectra. In terms of live sample imaging, complimentary
modalities with high frame rates will be particularly useful characterizing sample
changes taking place during the Raman imaging measurement, currently on the order
of a few minutes for a typical cell.

The complimentary information obtained from multimodal imaging, particularly
when measurements are taken simultaneously, will also further our understanding of
what biochemical information is contained within the Raman images. As Raman
spectra contain contributions from all Raman-active molecules in a sample, they are
rich in information but complex to interpret. Chemometric algorithms are very useful
for decomposing the spectra into various types of components, but these component
spectra are also composed of contributions from mixtures of molecules. Therefore,
correlating Raman images with those obtained from other techniques will allow us to
more accurately identify the nature of the molecules contributing to particular
Raman signals. This knowledge can be transferred back to single modality Raman
studies, allowing more detailed interpretation of the biochemical composition of
samples.
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