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1 Definition of the Topic

Medical diagnosis requires reliable identification of very low concentration of
different biomarkers specific for medical conditions in a time-effective manner. In
this chapter, we summarize the work reported on the application of surface-enhanced
Raman spectroscopy for the detection and the identification of different biomarkers
in body fluids, tissues, or in vivo.

2 Overview

Early disease diagnosis allows for better treatment options and leads to improved
patient outcomes. This is because by delaying treatment the disease can also spread
to otherwise healthy organs. The consequences of this can vary, depending on the
specific medical condition (i.e., Alzheimer’s disease, diabetes, cancer, etc.) and on
the exact time of diagnosis.

One highly promising method for fast and reliable biomarker identification is
surface-enhanced Raman spectroscopy (SERS). Depending on the particular medi-
cal diagnosis requirements, different SERS approaches can be considered. That is
because, as it will be discussed in this chapter, many different SERS-active sub-
strates are available, and they can be applied within different schemes. Specifically,
functionalized SERS nanoparticles can have a high biocompatibility for in vivo
measurements, while different microfluidic approaches can be considered for the
analysis of body fluids.

The scientific interest for assessing the potential of SERS for medical analysis and
diagnosis increased during recent years. This is also demonstrated by the multiple
literature reports (scientific papers, communications, reviews, and book chapters)
that test and push the limits of using SERS in medicine or report on new SERS-
active substrates and platforms that are continuously developed for analyzing trace
amount of analytes in body fluids and tissue [1–5]. However, SERS has not yet been
established as a routine analytical tool for medical diagnosis. Moreover, clinical
trials and development of analytical procedures are still required. The high potential
and interest for development in this direction explains the high number of publica-
tions still being reported. The current chapter summarizes some of the most prom-
ising approaches introduced during the last 5 years. A wide panel of diseases is
addressed, and the best-suited SERS-based approaches are discussed for each of the
topics introduced.

3 Introduction

The latest developments in the health-care field have two directions: detection and
diagnosis of disease and its treatment. They are of comparable importance when it
comes to achieving positive patient outcomes. In particular, the fast and correct
diagnosis of a medical condition leads to more appropriate treatment decisions and
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to the establishment of a care plan at an early stage of the disease, increasing the
chances of successfully fighting the disease [6]. Nevertheless, for example, the direct
identification of viruses and bacteria can be challenging at times. In such situations
disease-specific biomarkers are targeted instead. Biomarkers, or biological markers,
have been defined several times in the literature, and they are mainly described as
substances, structures, or processes that can be objectively measured in the body and
can be used as indicators for normal biological processes, pathogenic processes, or
pharmacological responses to a therapeutic intervention (i.e., deoxyribonucleic acid
(DNA), messenger ribonucleic acid (mRNA), enzymes, metabolites, transcription
factors, and cell surface receptors) [7]. Frequently, during the early stages of disease,
biomarkers are present in low amounts, and their reliable detection is challenging. In
clinical chemistry, the specific and sensitive detection of disease biomarkers, of drug
levels in biological fluids, or the assessment of enzyme activities is carried out by a
multitude of analytical methods, such as high-performance liquid chromatography
[8–13], mass spectrometry [11, 14, 15], or immunoassays [16–21]. Since each
method has its advantages and shortcomings, the scientific community is continu-
ously searching for new, faster, and affordable tools.

Vibrational spectroscopy, particularly Raman spectroscopy, can provide molecu-
lar fingerprint information [22–24] and is suitable for investigating biological sam-
ples because of the low scattering cross section of water molecules. Consequently,
no or little sample pre-processing steps are required prior to the analysis. However,
owing to the inherently weak Raman effect, the identification of target molecules
present at very low concentrations is challenging. This is especially important for the
early diagnosis of medical conditions. Nevertheless, the sensitivity of Raman spec-
troscopy can be easily enhanced by several orders of magnitude by taking advantage
of the plasmonic properties of nanostructured metallic particles and performing
surface-enhanced Raman spectroscopy (SERS) measurements. The two underlying
mechanisms of SERS, extensively described in the literature [25–29], are the
electromagnetic and the chemical enhancement mechanisms. The first mechanism
explains how the molecules situated in the proximity of metallic nanoparticles (NPs)
experience a strong local electromagnetic field, referred to as localized plasmon
polaritons. This is caused by the resonant interaction between an incident electro-
magnetic wave and the oscillating charge density of the NPs. As a consequence, both
the electromagnetic radiation of the laser source incident on the molecules and the
intensity of the Raman-scattered photons will be enhanced. As the plasmon reso-
nance condition for a spherical NP, ϵ(λ) = �2ϵm,

1 can be fulfilled only for materials
with Re(ϵ(λ))< 0 and Im(ϵ(λ))� 0,2 gold and silver are the most preferred metals for
plasmonic nanostructure fabrication.

1ϵ(λ) is the wavelength-dependent dielectric function of the NP’s material, and ϵm is the dielectric
function of the surrounding medium.
2The dielectric function is a complex function with ϵ(λ) = Re(ϵ(λ)) + i�Im(ϵ(λ)), where Re(ϵ(λ)) is
the real part and Im(ϵ(λ)) is the imaginary part.
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The electromagnetic mechanism accounts for enhancement magnitudes up to
1011 [30]. However, enhancement factors of 1014–1015 [31, 32] have been often
reported in literature. This is due to the chemical enhancement mechanism to which
three different processes have been suggested to contribute: (1) chemical interactions
between the NP and the target molecule in the electronic ground state, (2) resonant
excitation of the charge-transfer process between the target molecule and the NP, and
(3) the resonance Raman enhancement. As the aim of this book chapter is to give a
comprehensive overview of the SERS advancements in the field of medical diagno-
sis, a detailed description of the fundamental principles of the technique is beyond
the purpose, and the reader is directed to the multiple extensive reviews and book
chapters reported in the literature [25–29, 33, 34].

An important factor when performing SERS measurements is the choice of the
SERS-active substrates to be used: planar substrates, NP suspension, core-shell
structures, functionalized NPs, etc. Depending on the exact application, specific
structures will be preferred. Moreover, the development of NPs that show a high
biocompatibility while still maintaining their physical properties is often desirable in
medical applications [35–37]. To this end, different functional layers are added to the
NP to facilitate their delivery to a specific affected organ. Upon this, the destruction
of the NP’s core-shell structure can lead to the release of different filling materials
[35], to a faster clearance of the NPs from the body, or to the induction of a highly
localized electrical field in the close vicinity of the NP that increases the efficiency of
in vivo biomarker detection.

In the following section, we will address some of the most relevant experimental
details having a considerable impact on the outcome of the SERS measurement.
Namely, details regarding Raman systems used for SERS measurements will be
introduced; the commonly used SERS-active substrates and the different approaches
used for SERS measurements will be summarized; the choice regarding the best-
suited laser wavelength for the investigation of biological samples will be discussed;
the synergy between SERS, immunoassays, and microfluidics will be presented; and
finally some details regarding quantitative SERS measurements will be addressed.

4 Experimental and Instrumental Methodology

When performing SERS measurements, the experimenter is confronted with a series
of measurement parameters to be considered and decided for. For example, reliable
SERS results can be achieved only when the parameters of the Raman setup, the
physicochemical properties of the targeted samples, the properties of SERS-active
substrate, and the measurement design are all carefully considered and optimized.
SERS spectra can be acquired with a large variety of commercial or in-house build
Raman setups. Detectors and instrumentation in this field are in continuous devel-
opment, and therefore, in the following, we will provide just a generalized view on
Raman (micro)spectroscopy, highlighting some of the major factors relevant for
SERS measurements. For a more detailed overview, the reader is directed to the
multiple book chapters reported in the literature [38–40].
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Although the Raman effect was discovered by C. V. Raman already in 1928, only
30 years later, with the development of lasers, Raman experiments gained popularity.
The introduction of charge-coupled devices (CCD) with high quantum efficiency
and the establishment of confocal micro-Raman spectroscopy have further sparked
the interest of scientists for this technique. For example, in Fig. 1.1 one of the many
existing Raman setups is depicted. Here, a laser source provides the monochromatic
light required to induce the inelastic light scattering events yielding a Raman
spectrum. The excitation laser is coupled into the Raman microscope via a dichroic
mirror. This element acts as a long pass filter, and it reflects with high efficiency the
laser excitation light, whereas the backscattered Stokes-shifted Raman photons will
be transmitted. If, however, the detection of the anti-Stokes Raman photons is
desired, the setup must be equipped with a holographic beam splitter that will act
as a notch filter. Further on, after the monochromatic light is reflected by the dichroic
mirror, it is focused on the surface of the sample via a microscope objective. Here,
the backscattered light is collected via the same objective, and it is transmitted via the
dichroic mirror. The currently available coating technologies applied on dichroic
mirrors reach a reflection of the elastically scattered photons of up to 95%, and thus,
for a more efficient suppression of the Rayleigh line, an additional edge/notch filter
is also implemented. This reduces the laser light intensity by around six orders of
magnitude. The resulting filtered light crosses through a pinhole, which, if present,
yields a confocal collection and reduces the background signal of the sample.
Finally, the light is coupled into a spectrometer, where by the aid of gratings the
beam is dispersed onto the CCD detector by deflecting each wavelength at a slightly
different angle.

Fig. 1.1 Scheme of a
confocal Raman microscope
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When deciding on the particularities of the experiment, the user can freely opt for
a number of the above-enumerated components such as the excitation source to
which the researcher should match the dichroic mirror and notch filter, the used
microscope objective, as well as the size of the pinhole and the type of grating.
Below, we will address the particularities of each of these parameters.

Generally, in order to obtain intense Raman spectra, lasers with short emission
wavelengths (UV, blue, or green) are preferred as the Raman-scattering intensity is
proportional to the fourth power of the frequency of the exciting laser radiation.
Nonetheless, many samples show strong fluorescence when excited with these lasers
and the detection of the Raman-scattered photons is inhibited. This is especially
valid for biological samples, as it will be discussed in the following sections, and
thus, often a red or near-infrared laser (emission above 600 nm) is preferred.
Furthermore, for SERS spectroscopy, one has also to consider the localized plasmon
polariton resonances of the employed SERS-active substrates in order to make use of
the electromagnetic enhancement mechanism. Generally, for silver spheres blue/
green laser lines are chosen, whereas for gold, wavelengths above 600 nm are
applied. This can be explained by considering the dielectric function of the two
metals, and it was described, among others, by, i.e., Le Ru et al. [33].

Besides carefully choosing the excitation wavelength, one has to pay attention
also to the excitation power. Although the Raman intensity is proportional to the
power of the used laser, limitations brought by the thermal damage of the sample
have to be considered. In Raman experiments, the excitation power can vary from
microwatts to several hundreds of milliwatts depending on the thermal conductivity
and absorption of the sample and the measurement conditions (point scan, line scan,
light sheet illumination, etc.). For SERS measurements, the applied laser power will
vary also based on the employed SERS-active substrate. When measurements are
performed on planar plasmonic substrates under dry conditions, laser powers in the
~20–500 microwatt range are used in order to avoid the local heating and damage of
both the nanostructure and molecule. If these substrates are measured while they are
incubated in the sample solution, the laser power can be increased up to 5–10 mW
due to the increased heat dissipation in the presence of a liquid. For measurements
carried out with microfluidic platforms, thanks to the dynamic flow, the laser
intensity can be increased considerably as no sample degradation is expected.

Microscope objectives play also a key role in maximizing collection efficiency
and spatial resolution. For applications where both parameters are crucial for optimal
results, objectives with a high numerical aperture (above 0.8) have to be selected.
Nevertheless, these objectives have generally a low working distance (at most
2–3 mm) and a reduced collection depth. Therefore, if the surface of the sample to
be measured presents high roughness, information might be lost during measure-
ments due to getting out of focus or the objective might be irreversibly contaminated
due to touching the sample surface. Furthermore, one must also pay attention to the
choice of the right objective for the intended excitation laser as the antireflection
coatings can present different transmission characteristics for different frequencies.

Lastly, a grating with a higher number of grooves per mm (e.g., 1800 l/mm) will
yield a spectrum with a high resolution (~2 cm�1) but with a lower spectral range,
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whereas a grating with, e.g., 600 l/mm will yield a lower resolution (~6–10 cm�1),
but it covers the whole Stokes Raman spectral range.

Overall, the excitation wavelength and power, the microscope objective, and the
grating will strongly influence the outcome of the SERS measurements. Neverthe-
less, the choice of the SERS-active substrates and the measurement approach (see
Fig. 1.2) will have also a key role. As summarized in several reviews [45–47], a large
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Fig. 1.2 Selected representations of the different encountered SERS measurement configurations:
cuvette measurement (a – adapted from Rong et al. [41] with permission from Elsevier. Copyright
# 2016 Elsevier); microfluidic platform measurement (b – adapted with permission from Hidi et al.
[42]. Copyright # 2016, American Chemical Society); flat substrate-based SERS measurement
(c – adapted with permission from Chen et al. [43]. Copyright # 2016, American Chemical
Society); immunoassay-based SERS measurement (d – adapted from Fu et al. [44]. Copyright #
2015 Elsevier B.V., with permission from Elsevier); SERS measurement performed through the
skin upon injection of the nanoparticles in laboratory mice (e – left image adapted with permission
from Lin et al. [35]. Copyright # 2013, American Chemical Society; right image adapted with
permission from Zeng et al. [37]. Copyright # 2015, American Chemical Society)
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variety of SERS-active substrates are available. As already mentioned in the previ-
ous section, the coinage metals, such as silver and gold, are the most often encoun-
tered materials for plasmonic structure fabrication. Depending on the preparation
procedure, the SERS-active substrates can be classified into bottom-up, self-
organizing, and top-down substrates [45–48]. Among the metal nanostructures
fabricated by bottom-up procedures, there are metal colloids [49, 50], core-shell
nanoparticles and structures, [35] seed-mediated growth structures [51, 52], and
others. A large variety of such substrates have been fabricated owing to the relatively
easy preparation protocols, the high diversity of sizes and geometries that can be
developed, and the ease of use while performing the measurements. However, most
of these NPs are suspended in an aqueous solution, restricting their application for
fat soluble analytes. For such analytes, additional preparation steps can follow,
resulting in the attachment of functional groups on the surface of the NPs, the
formation of core-shell structures, or the addition of protective layers on the surface
of the NPs. Still, this further increases the complexity of the preparation protocol and
the time and the costs of the substrate preparation. The second category of SERS-
active substrates mentioned are self-organizing substrates, which include self-
assembled colloidal nanoparticle [53] clusters and arrays as well as template-based
self-assembled planar nanostructures [52, 54, 55]. Finally, the top-down substrates
are prepared by using a template produced by electron beam lithography (EBL) [56,
57], lift-off processes [58], and ion beam etching processes as part of lithographic
methods [59]. Compared with the bottom-up procedures, the top-down substrates are
less cost-effective, and the preparation protocol is more complex, but the resulting
substrates have a more homogeneous size distribution and are highly reproducible
and structured. Additionally, the substrates’ templates can often be prepared in
advance, and the final layer of the coinage metal (i.e., Ag, Au, Cu, or Pt) can be
deposited on the substrate short before the actual SERS measurement is performed.

Among the measurement approaches, cuvette-based SERS measurements are the
most widely spread ones. Here, the colloidal nanoparticles in aqueous suspension are
mixed with the targeted analyte solved also in an aqueous solvent. Commonly, in
order to efficiently enhance the Raman signal, an electrolyte is also added, which has
the role to aggregate the nanoparticles and to create “hot spots.” The order of mixing
these three components, the ratio in which they are mixed, the type of electrolyte
used, and the time lapse between mixing and measurements will highly influence the
recorded SERS signal. Unfortunately, there exists no golden rule which guarantees
the best results, and for each targeted molecule, the procedure is commonly opti-
mized by the trial and error method. During the SERS measurements, objectives
with a long working distance are preferred as this avoids the unwanted dipping of the
microscope objective in the sample, and it offers information from a larger collection
volume. The incident laser power can have values of above 1 mW up to tens of
milliwatts due to the presence of the aqueous environment, and the excitation laser is
focused on the water-air interface or short below it as this avoids the reabsorption of
the Raman-scattered light by the sample.

If the targeted analytes are hydrophilic, scientists usually choose planar SERS-
active substrates. The deposition of the analytes is done either by the drop-and-dry

10 I. J. Jahn et al.



approach or by incubating the substrate in the sample solution for a given time. For
the first case, due to the coffee-ring effect, heterogeneous molecule layers will be
obtained, while in the second case, the incubation time will strongly influence the
outcome. Furthermore, in the second case, the scientist might opt to measure the
substrate after it was air-dried or when it is still dipped in the solution. In all cases,
most commonly Raman scans are performed in order to avoid the local heating and
degradation of both the analyte and the plasmonic structure. Under dry conditions,
laser powers lower than 1 mW are preferred, and objectives with a high numerical
aperture are selected. These two procedures, cuvette and scanning the surface of the
planar substrate, are suitable for the determination of biomarkers in body fluids. For
the in vivo applications, nanoparticles are injected into the tissue of interest, or
substrates are implanted below the skin and approaches like spatially offset SERS
microscopy is performed.

Reproducible and automated measurement conditions are essential characteristics
for the successful integration of new analytical methods in routine analysis. As
mentioned above, SERS measurements with NPs in colloidal solutions are generally
carried out in cuvettes, whereas in the case of the planar substrates, the analyte
molecules are deposited on the metallic surface either via drop and dry or incubation.
Neither of these two approaches offers the possibility to perform automated mea-
surements, and both methods are subject to human errors. The combination of SERS
with microfluidics, however, has been very promising at overcoming these limita-
tions, and it opened a door toward a plethora of biomedical applications
[60–68]. Notably, by employing microfluidics, the required reagent volumes can
be considerably reduced, chemical reactions can be observed at the microscale, and
sample preparation and measurements are integrated in the same platform. Among
the optical methods that have been applied to record signals from such volume-
reduced samples, SERS is favored because of its high sensitivity.

On the basis of literature, microfluidic platforms can be divided into two main
categories: flow-through or continuous flow platforms [69–88] and segmented or
droplet-based platforms [42, 68, 89–95]. In the first approach, planar substrates
prepared via top-down processes can be integrated into the channel system, colloidal
NPs can be injected via one of the inlet ports, or SERS-active substrates can be
produced in situ. In these platforms, solvent evaporation is inhibited, the coffee-ring
effect occurring in the open platforms is avoided, and the diffusion of the target
molecules toward the metallic surface can be improved via, e.g., electrokinetic [96]
or hydrodynamic focusing [97]. However, because the sample is permanently
wetting the channel walls of the microfluidic platform, the so-called memory effect
can appear, where the channel surface of the channels becomes enriched with the
samples over time and the reliability of the SERS measurements can be
compromised. This is one of the reasons leading to the development of droplet-
based microfluidic platforms. In these platforms, cross contamination can be signif-
icantly inhibited by ensuring no or very low cross talk between the different liquid
compartments by dispensing the sample and colloidal NPs into individual droplets
surrounded by an immiscible liquid phase. These droplets can be trapped, sorted,
mixed, or split, based on the specific experimental requirements. As droplet
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formation is controlled by high precision pump systems, the method will suffer less
from human-induced errors, and the SERS signals will offer reliable results.

With this approach, two of the main limitations of the SERS technique, repro-
ducibility and automation, can be overcome. However, this is not sufficient for the
selective detection of molecules in complex matrices. Generally, the SERS-active
substrates will enhance the signal of any Raman-active molecule situated in their
proximity. Consequently, the molecules of a complex matrix and the target mole-
cules will compete for free binding sites on the metallic surface, and the successful
detection of the molecule of interest can be inhibited. For example, when a bio-
marker must be detected in human blood, proteins, red blood cells, and other large
molecules will block the nanostructured metallic surface. Thus, the distance between
the target molecule and the enhanced electromagnetic field will be too large for the
molecule to still experience the SERS effect. Increased selectivity of the metallic
surface is present only toward those molecules that have functional groups with high
chemical affinity for the respective metal. Namely, thiol groups, the lone pair
electrons of oxygen and nitrogen atoms, and π electrons of aromatic rings show
high affinity toward gold and silver. To increase the selectivity of the SERS sub-
strates for the targeted molecules, immunoassay-based SERS platforms have been
developed. The working principle of an immunoassay is based on the antigen-
antibody binding reaction. The technique gains its high specificity and sensitivity
from three important properties of antibodies: (1) the ability to bind to both natural
and synthetic molecules, (2) specific binding, and (3) binding strength
[98–101]. Immunometric assays, such as the enzyme-linked immunosorbent assay
(ELISA), use two different specific antibodies that form a sandwich around the target
of interest, and they are suitable for the detection of molecules with large molecular
weight, such as proteins or peptides. For the low molecular weight substances, the
competition design is preferred. Here, the target molecule competes with a fixed
amount of tracer (labeled molecule) for a limited number of antibodies. The affinity
of the target molecule for the antibody is higher than that of the tracer. Therefore,
when the target molecule is present in the sample, fewer tracers will bind to the
antibody than in the absence of such a molecule. Finally, after the successful
formation of immunocomplexes, SERS can be used to detect the signal. Commonly,
Raman reporter molecules with well-defined and strong Raman signatures are
embedded in the SERS tags, and their signal rather than that of the target molecule
is measured. In the following section, the reader will find many examples of the
successful detection of biomarkers by means of SERS-based immunoassay
platforms.

For most medical diagnosis purposes, qualitative results are not sufficient for
confirming the presence of a medical condition. However, quantitative SERS mea-
surements are still very challenging even after more than 40 years from the first
reported enhanced Raman signals of pyridine on roughened metallic surfaces
[102]. This stems from the fact that SERS is a surface-sensitive technique. Only
the Raman signal of the molecules in the first layers on the metallic surface will be
considerably enhanced. Thus, the dynamic range of the method is limited, and very
seldom it extends over more than one or two orders of magnitude. At high

12 I. J. Jahn et al.



concentrations of the target molecules, the so-called saturation or poisoning effect
appears due to the evanescent character of the local electromagnetic field. Further-
more, using the traditional quantification method based on previously established
calibration curves will fail because of the batch-to-batch variation in the quality of
the SERS-active substrates and because of the high chemical variability of the
biological samples. Nevertheless, most of the reported SERS-based immunoassay
platforms, owing to their selective binding, offer reliable quantitative measurements,
while for the microfluidic SERS platforms, the standard addition was implemented
to improve quantitative measurements of molecules [89]. However, most studies in
the literature show results measured in a single run, and they do not address the
quantification of the target molecules in clinical samples, where the concentration is
unknown. Therefore, before SERS can be considered as a tool for clinical diagnosis,
this challenge has to be met.

In conclusion, due to the high variety of available SERS-active substrates, the
choice of the best-suited substrate is never trivial and highly depends on the specific
application. A top-down substrate with a highly homogenous surface would gener-
ally present a uniform enhancement over the surface, making it easily suited for
applications that require quantification and high reproducibility (e.g., cell measure-
ments). On the other hand, a substrate with less uniform enhancement would often
present hot spots with higher enhancements, which would make the substrate better
suited for applications connected to single-molecule detection or microfluidic system
measurements [46, 103]. Finally, functionalized colloids are easily distributed in the
organism, taken up by cells, or dispersed on tissues, making them a generally good
choice for in vivo medical applications. Nevertheless, in this situation, the problem
of ensuring the formation of hot spots remains, and different solutions have been
reported in the literature as it will be discussed below.

5 Key Research Findings

5.1 Aging-Associated Diseases

5.1.1 Neurodegenerative Diseases
Life expectancy has risen dramatically during the last century, leading to an increase
in the proportion of the elderly population. This, given the progressive degeneration
of the structure and function of the nervous system during aging, has increased the
incidence of neurodegenerative disorders. Alzheimer’s disease (AD) is the most
prevalent form of late-life mental failure in humans. Since 2010, multiple SERS
studies of AD have been conducted, and their results will be the subject of the
present section of the chapter. However, before discussing the findings in the field, a
brief summary of key factors related to AD will be presented in the following
paragraphs. For an extensive discussion of AD pathology, the reader is referred to
the multiple excellent review papers and books published on this topic [104–114].

AD is associated with progressive memory impairment, disordered cognitive
function, and altered behavior, including paranoia, delusions, and loss of social
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appropriateness, accompanied by progressive decline in language function
[104–108]. The study of AD pathogenesis generated long discussions in the medical
community. Nowadays, it is commonly accepted that the two main pathological
hallmarks of the disease are extracellular neuritic plaques and intracellular neurofi-
brillary tangles. The neuritic plaques are microscopic foci of extracellular deposi-
tions consisting of amyloid β (Aβ) proteins [104]. Aβ is a 39–43-residue-long
polypeptide generated through cleavage of the amyloid precursor protein by β- and
γ-secretase [115]. The Aβ species associated with AD are composed of 40 or
42 residues. Aβ (1-40) has a higher concentration in AD patients, although the
neurotoxicity of Aβ (1-42) is much more pronounced owing to its greater tendency
to form aggregates in vivo. The question of whether the insoluble Aβ fibrils and
monomeric Aβ proteins are less pathogenic than soluble, nonfibrillar assemblies
(dimers, trimers, or larger oligomers) has generated an intense debate [110–112]. In
addition to amyloid plaques, the AD brain contains also large, non-membrane-bound
bundles of abnormal fibers composed of the microtubule-associated protein tau [113,
114] with abnormal posttranslational modifications, including phosphorylation and
acetylation [116, 117]. In AD, more than 20 residues become phosphorylated,
whereas in the healthy brain, 8–10 of these residues are heterogeneously phosphor-
ylated and, therefore, do not bind to microtubules. As a consequence, dendritic
spines in the AD brain become enriched in the tau protein, which might interfere
with neurotransmission [118].

These two pathologies can occur independently of each other. Neurofibrillary
tangles have been observed in other neurodegenerative disorders that are not asso-
ciated with amyloid plaques. Similarly, Aβ aggregates were observed in brains of
cognitively normal-aged individuals in the virtual absence of tangles [104]. There-
fore, the gold standard for AD diagnosis to date is postmortem neuropathological
confirmation. However, it is commonly accepted that the neurological changes
leading to AD begin to develop decades before the earliest clinical symptoms
occur. Biomarker detection has been proposed to be used for early diagnosis. The
five most widely studied biomarkers of AD are decreased Aβ (1-42) concentrations
in the cerebrospinal fluid (CSF), increased CSF tau levels, decreased fluorodeox-
yglucose uptake assessed by positron emission tomography (PET) imaging, PET
amyloid imaging, and structural magnetic resonance imaging (MRI) measurements
of cerebral atrophy [105].

Aβ monomers and oligomers have been detected by electrochemical, surface
plasmon resonance, colorimetric, resonance light scattering, and fluorescent sensors,
as well as by ELISA and with large-scale instrumentation such as mass spectrometry
[115, 119–122]. However, there is no gold standard for these assays, and the research
community is strongly driven by this unmet challenge. As already described in the
experimental section, the combination of SERS with immunoassays yields a plat-
form with high specificity, sensitivity, and selectivity. Multiple groups have taken
advantage of this detection principle and reported on the successful determination of
Aβ and tau proteins in phosphate-buffered saline (PBS) and in artificially spiked
whole-blood samples. In Fig. 1.3, an easy and straightforward approach to detect Aβ
(1-40) is illustrated [123]. The platform is based on capturing Aβ (1-40) antigens by
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antibodies immobilized on an N-hydroxysuccinimide (NHS)- and 1-ethyl-3-
(3-dimethyl-aminopropyl)carbodiimide (EDC)-activated 11-mercaptoundecanoic
acid (MUA) layer linked to electrochemically deposited Au NPs. This immunoassay
was used for the detection and quantification of Aβ (1-40) based on its SERS
spectrum, at concentrations between 100 fg/ml and 1 μg/ml in PBS, with a linear
dynamic range of 100 fg/ml–1 ng/ml.

Tau, the biomarker indicating the formation of neurofibrillary tangles in the
human brain, has also been successfully quantified in PBS solution by a homoge-
nous sandwich assay combined with SERS [124]. For this, the authors used mono-
clonal anti-tau antibody-functionalized hybrid magnetic nanoparticle (MNP) probes
and polyclonal anti-tau antibodies immobilized on gold NPs as SERS tags. Figure 1.4
illustrates schematically the working principle of the assay. In the first step, silica-
coated, oleic acid-stabilized maghemite (γ-Fe2O3) NPs were prepared. To prevent
self-polymerization of the MNPs, 3-methacryloxypropyltrimethoxysilane (MPS) in
the presence of hydroquinone as a catalyzer was deposited on their surface. The
MPS-modified MNPs were then coated with the chain transfer agent 2-cyano-2-
propyl benzodithioate (CPBT) and azobis(isobutyronitrile) (AIBN). Grafted hybrid
MNPs were obtained via the surface-mediated reversible addition-fragmentation
chain transfer polymerization of 2-hydroxyethyl methacrylate (HEMA) from
CPBT-modified MNPs poly(HEMA). This was followed by the cleavage of the
poly(HEMA) grafted chains from the hybrid MNPs, the removal of dithiobenzoate
end groups, and the addition of the monoclonal anti-tau antibody. These hybrid
MNPs have a diameter of ~70 nm. As SERS tags, gold NPs with a diameter of
15 � 8 nm, modified with a self-assembled monolayer of 5,5-dithiobis
(2-dinitrobenzoic acid) (DTNB) and followed by the attachment of the polyclonal
anti-tau antibody, were used. A polyclonal antibody was chosen to amplify the low
signal from the target tau, as polyclonal anti-tau antibodies can recognize multiple
epitopes on tau molecules. As a result, sandwich complex aggregation is induced.

To detect the tau protein, the hybrid MNPs, functionalized with the monoclonal
anti-tau antibody, were added to the sample solutions. After 30 min, the resultant tau
conjugated MNPs were isolated with a magnet, washed, and added to the solution
containing the SERS tags. After another 30 min, the resultant sandwich complex was
isolated with a magnet and SERS measurements were performed. The MNPs are not

Fig. 1.3 Schematics of the SERS-based immunoassay used for Aβ (1-40) detection described by
El-Said et al. [123]
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SERS active, and therefore, there is no plasmonic coupling between them and the
SERS tags. However, it is very likely that hot spots can be generated between
adjacent polyclonal anti-tau antibody-functionalized Au NPs. This is clearly
supported by the appearance of Raman bands in the SERS spectrum associated
with the vibrational modes of DNTB (Fig. 1.5a). Under these conditions, it is
expected that by increasing the amount of tau proteins conjugated with the hybrid
MNPs, the number of captured polyclonal antibody-conjugated Au NPs will also
increase. The sensitivity of this immunoassay SERS platform is illustrated in
Fig. 1.5b. An excellent linear response was obtained for tau concentrations between
25 fM and 500 nM. Furthermore, the cross-specificity of the assay was also tested
using a solution containing equal amounts of tau, bovine serum albumin (BSA), and
immunoglobulin G (IgG). As it can be seen in Fig. 1.5c, the SERS intensity obtained
from the response of the mixture was strongly similar to that obtained from the
sample containing only tau in solution. Therefore, BSA and IgG had no strong
influence on the performance of the assay, confirming its high specificity for the tau
protein.

Ideally, the assays intended to diagnose a medical condition should measure
multiple indicators of the disease in biological fluids in order to avoid false-positive
results. In the case of AD, this is especially important, because common dementia
cases can be easily misdiagnosed as AD. Therefore, although the two assays
presented above offer high sensitivity and specificity for the detection of Aβ
(1-40) and tau in PBS, an assay offering multiplex measurements in biological fluids

Fig. 1.4 Scheme of the preparation of sandwich assay for tau protein detection described by Zeng
in et al. [124]
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is desired. Additionally, whole blood would be an attractive alternative to CSF as a
biological fluid of clinical interest for biomarker detection, because it allows less
expensive and invasive measurements, suitable for repeated, routine examinations.
However, the Aβ (1-42) levels in plasma (~20 pg/ml) are considerably lower than
those in CSF (800 pg/ml) [125, 126]; furthermore, plasma is a much more complex
matrix, as it contains high amounts of different proteins, and Aβ in plasma can also
be derived from peripheral tissues and not only from the brain [127]. In the case of
tau, its plasma levels were ~8 pg/ml, whereas its levels in CSF were ten times higher.
Furthermore, to have elevated tau protein levels in the plasma, substantial axonal
injury is required; thus, high levels of tau in the plasma is a late marker of AD [128].

Keeping in mind the need for multiplex detection platforms and the low concen-
trations of Aβ (1-42) and tau protein in plasma, Demeritte and coworkers developed
a large-scale, chemically stable, bioconjugated, multifunctional, hybrid graphene
oxide platform for the separation and identification of trace levels (femtogram) of the
two AD biomarkers in whole blood [129]. Their nanoplatform conjugated with anti-
tau and anti-Aβ antibodies is based on magnetic core-plasmonic shell nanoparticles

Fig. 1.5 (a) SERS spectra at different tau concentrations showing the Raman bands characteristic
for the DNTB molecule. (b) Concentration-response curve of the tau assay. For each concentration
four different reading of the SERS intensity was performed. (c) SERS spectra demonstrating the
specificity of the sandwich assay for the tau protein (Adapted with permission from Zengin et al.
[124]. Copyright # 2013, American Chemical Society)
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attached to 2D hybrid graphene oxide. Here, as also in the former report, the authors
took advantage of the magnetic properties of their particles in order to separate them
from the complex matrix and avoid autofluorescence background signals originating
from blood cells. The large surface area of the graphene oxide supports high
adsorption of the target molecules, and it also facilitates stable hot-spot creation
between the core-shell particles. The selective capture efficiency of the assay was
confirmed by using an ELISA kit, and it was estimated to be 98% for Aβ (1-42) and
97% for tau. In contrast to the previous case, SERS protein detection was performed
label-free, based on their intrinsic Raman vibrational modes. The SERS spectra of
Aβ (1-42) and tau are shown in Fig. 1.6, together with the background signal from
the nanoplatform. In the latter case, the Raman bands were assigned to the D and G
bands of graphene oxide. The SERS spectrum of Aβ (1-42) shows sharp bands
assigned to the amide I, amide II, and amide III groups. The position of the amide III
band is especially important, as it gives information about the structure of the
protein. When the protein adopts an α-helical structure, it is shifted to high
wavenumbers (~1300 cm�1), whereas with β-sheet conformations, it is shifted
toward the low wavenumbers (~1220 cm�1). In addition to the amide bands,
histidine residues, phenylalanine, and tyrosine molecules contribute to the Raman
spectrum of Aβ (1-42). In the case of tau, the vibrational modes of tyrosine are
strongly contributing to the Raman spectrum. Owing to the absence of amide II and
amide III bands in the spectrum of tau, the two molecules can be easily discriminated
based on their SERS spectrum. The sensitivity of the assay was 500 fg/ml for Aβ
(1-42), with a linear dynamic range up to 1 pg/ml. For the case of tau, SERS signals
were present at 100 fg/ml, but the authors do not offer information regarding the
linear range.

The three examples described above demonstrate the high potential of immuno-
assay SERS platforms for the detection of AD biomarkers with very high sensitivity.
However, SERS spectroscopy is not limited to the detection of molecules, but it can
also offer valuable information about the structure and conformation of the
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molecules. Although this does not have a diagnostic value per se, it is often
important to gather additional information of the detected molecules.

In the case of Aβ, it has been proposed that small oligomers, profibrils,
Aβ-derived diffusible ligands, and heterogeneous globular species are more neuro-
toxic than the fibrils in late aggregation stages [130, 131]. To investigate the
aggregation pathway, it is crucial to identify the conformation of the proteins
accumulated in the different aggregation stages. As already mentioned above, the
position of the Raman mode ascribed to the amide III vibration is sensitive to the
conformation of the protein (α-helical or β-sheet). Consequently, the Cα-H and N-H
bending motions of secondary structure elements, defined by the Ψ and Φ
Ramachandran angles (Fig. 1.7), will be affected by the aggregation stage of the
protein. In a SERS study carried out with Ag NPs coated with a silica shell, the
authors were able to monitor the conformational changes occurring during aggrega-
tion by correlating the SERS measurements with the results of a thioflavin T
fluorescence assay, the gold standard for assessing Aβ aggregation, and atomic
force microscopy [132]. The SERS results are nicely summarized in Fig. 1.7. In
the 3D plot, the Raman shift of the amide III band is shown as a function of the
incubation time with Aβ (1-42) monomer in PBS at 37 �C. These results show that as
the incubation time increases, the center of the Raman band shifts from higher to

Fig. 1.7 Model of peptide secondary structure and predominately contributed Raman signal
associated with the Cα–H bending motion mode. Characterization of Ab (1-42) peptide Am III
frequency, with simultaneously ThT assay fluorescence measurement of Aβ (1-42) (Adapted from
Wang et al. [132] with permission from Wiley)
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lower wavenumbers. At time points below 20 h, the position of the band suggests
that the structure of the protein might be flexible to form different hydrogen bonds
between Cα-H and N-H. This hypothesis was confirmed by fluorescence measure-
ments, showing no significant changes in the fluorescence intensity at times below
20 h, indicating that Aβ is still not aggregated or has only elementary aggregation
forms. For incubation times at the range of 20–80 h, the fluorescence emission of
thioflavin T increased exponentially, suggesting Aβ (1-42) aggregation, accompa-
nied by the formation of β-sheet hydrophobic cores. The apparent heterogeneity of
the Raman signal suggests that the aggregation process is not homogenous. After
80 h, the aggregation process reaches equilibrium and the Raman band is shifted to
1220 cm�1. In conclusion, SERS is a powerful tool for structure investigation, and it
is much more sensitive than classical fluorescence measurements.

5.1.2 Cardiovascular Diseases
Approximately half of the deaths in the western world are caused by cardiovascular
diseases (CVD) and particularly by myocardial infarction (MI). The early diagnosis
of MI will have a high impact on the health of the patients, as MI causes irreversible
heart damage, and it will also significantly decrease the financial burden placed on
clinical resources. MI diagnosis is performed by electrocardiogram (ECG) measure-
ments combined with the determination of the level of cardiac specific biomarkers in
patient blood [133, 134]. Troponin I (cTnI), troponin T (cTnT), myoglobin, and
creatine kinase MB (CK-MB) are the most commonly monitored MI biomarkers.
Myoglobin elevation above the clinical cutoff value of 70–200 ng/ml in the first
1–3 h is considered to be one of the earliest signs of MI. However, myoglobin is
released by both skeletal and cardiac muscle injury, and, thus, it has low specificity
[134]. CK-MB increases above the clinical cutoff value of 10 U/l 3–4 h after MI, and
it is considered of medium specificity for the clinical condition [134]. For the
confirmation of cardiomyocyte damage, cTnI and cTnT are considered to be the
gold standard [135, 136]. The troponin complex is responsible for skeletal and
cardiac muscle contraction. After myocardial damage, the individual proteins of
the complex are released in the bloodstream. Nevertheless, up to 6 h have to pass
since the first physical symptoms appeared to reach a concentration level above the
cutoff value of 0.01–0.1 ng/ml. Based on these facts, it becomes clear that once
again, as in the case of AD, it is desirable to determine the presence of more than just
one biomarker to avoiding false-positive diagnoses. Optical (intensity readout,
luminescence, surface plasmon resonance, SERS), electrochemical (amperometric,
potentiometric, impedimetric), and paramagnetic particle-based immunosensors
have been widely employed for this purpose [133, 134, 137–141].

The high sensitivity of SERS was the driving force for the development of various
assays for cardiac biomarker detection. Myoglobin concentrations as low as 10 ng/
ml were detected in PBS and in human urine, with a linear dynamic range of 10 ng/
ml–5 μg/ml, by employing a template-free, one-step synthesis for the plasmonic
structure [142]. However, the employed Ag nano-pinetree film-modified ITO sub-
strates are not selective for myoglobin and are most probably not suitable for the
detection of the molecule in blood.
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ELISA assays are routinely performed for molecule detection with high specific-
ity and sensitivity. The recently developed assays use fluorogenic, electro-
chemiluminescent, and real-time polymerase chain reaction to generate
quantifiable signals. SERS was also considered as a signal readout method, and it
was successfully applied for the quantification of the cTnT biomarker at concentra-
tions of 2–320 pg/ml. For this, the target molecule at different concentrations was
incubated in antibody-coated microplates, followed by the addition of an anti-cTnT-
horseradish peroxidase conjugate, chromogen A (3,30,5, 50-tetramethylbenzidine
(TMB)) and chromogen B (H2O2). As a result of the enzymatic reaction, TMB2+

was obtained, and it was found that its SERS intensities decreased upon decreasing
the concentration of the antigen (cTnT) present in the sample.

International guidelines for cardiac biomarker detection recommend a turnaround
time (TAT) of less than 1 h from the moment the patient is admitted to the hospital. A
competitive immunoassay for the simultaneous detection of two cardiac biomarkers
in human blood, cTnI and CK-MB, was proven to deliver results in less than 15 min,
requiring a minimum sample consumption of 10 μl [143]. In this assay, monoclonal
antibodies against cTnI and CK-MB were conjugated to magnetic beads, and the
target antigens were immobilized on the surface of SERS tags. Therefore, the free
target antigens in the sample would compete with the antigen-conjugated SERS tags
for the binding sites on the surface of the magnetic particles. After binding for 7 min,
the immunocomplexes were captured with a magnetic bar, and the Raman signals of
the remaining SERS tags in the supernatant were measured. As reporter molecules,
malachite green isothiocyanate was used for cTnI and X-rhodamine-5-(and-6)-
isothiocyanate for CK-MB. The cross-reactivity between cTnI and CK-MB was
also evaluated for a concentration range between 10 pg/ml and 1 μg/ml. The SERS
spectra of the two reporter molecules exhibited well-separated Raman bands. There-
fore, multiplex detection could be easily carried out. The clinical application of the
competitive immunoassay-based SERS platform was evaluated by determining the
two biomarkers in 18 blood samples collected from patients and comparing the
results with data measured by a commercial assay. For the quantitative determination
of the target molecules, SERS calibration curves were generated from cTnI and
CK-MB dissolved in PBS. The limit of detection was 42.5 pg/ml and 33.7 pg/ml for
CK-MB and cTnI, respectively. By applying the Bland-Altman and Passing-Bablok
regression analysis, it was demonstrated that the differences between the results of
the SERS assay and the commercial assay were in the 95% limit of agreement range.
Thus, the authors were successful in developing an immunosensor with fast TAT and
high specificity and with a considerably higher sensitivity than the commercially
available platform.

5.1.3 Diabetes Mellitus
Glucose levels in the human body are regulated by the ability of insulin, secreted by
the pancreas, to promote glucose uptake in the peripheral tissues and to suppress
hepatic glucose production [144]. Type I diabetes mellitus, also referred to as
juvenile diabetes, is caused by insulinopenia, and it affects 5–10% of all diagnosed
patients. Type II diabetes, with a prevalence outreaching 90%, is described as an
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insulin resistance. The onset of type II diabetes happens at adult age when the
pancreas is not able to produce excess insulin to overcome the resistance, and its
incidence increases with age. There is no established cure for this medical condition,
although the state of the patients can be considerably improved by responsible
glucose level monitoring. An impressive variety of glucose sensors are on the
market, including point-sample and continuous monitoring devices
[145–147]. Although glucose monitoring is not a diagnostic procedure per se, we
consider that the high number of publications reporting SERS-based sensors for
glucose monitoring [148–173] requires a separate section for highlighting the major
findings in the field.

Glucose molecules do not naturally absorb onto metallic surfaces; hence different
strategies had to be developed in order to detect them. The enzyme glucose oxidase
(GOx) catalyzes the oxidation of glucose, generating H2O2 and gluconic acid.
Consequently, the pH value of the microenvironment is changing. Several
researchers took advantage of this reaction and developed sensors based on
it. GOx was deposited on SERS-active microneedles used for in vivo glucose
sensing [159]. Specifically, 0.2 mm stainless-steel acupuncture needles were covered
with gold nanoshells and a microporous polystyrene layer. As the SERS reporter
molecule, 4-mercaptobenzoic acid (4-MBA) was deposited before GOx was added
on the surface. When the sensor was immersed in an environment containing
glucose, the integrated GOx molecules could convert the target molecule to gluconic
acid, which would cause a pH change. Consequently, owing to the pH-sensitive
SERS signal of 4-MBA, the concentration of glucose could be indirectly assessed.
This sensor showed satisfactory linear response for glucose concentrations between
2.7 and 8 mM in water. By taking into account that the normal blood glucose levels
in humans are in the range of 3–6 mM [174], the sensor would allow the quantifi-
cation of blood glucose at normal levels, but hypo- and hyperglycemic states cannot
be quantified. In the same study, the in vivo performance of the multifunctional
acupuncture needle was demonstrated on a male New Zealand rabbit. For this, the
glucose-responsive multifunctional acupuncture needles were inserted in the rabbit
tendon and ear vein for 30 s. The signal from different needles was measured before
and after the injection of a glucose solution (5 ml, 0.75 g) via the ear vein. At the
same time, reference values were measured using a commercial glucometer. Unfor-
tunately, the authors do not provide a quantitative estimation of the glucose levels in
the rabbit; however, the 4-MBA signal decreased upon increasing glucose concen-
tration. Overall, this technique is very promising, and with further work, it could
compete with other commercial devices.

Boronic acid covalently binds saccharides via the diol moieties [175]. Thus, many
glucometers rely on this recognition reaction for the detection of glucose levels. In
the SERS studies different isomers of mercaptophenylboronic acid (MPBA) have
been widely used for capturing glucose, and also as Raman reporters for quantifica-
tion purposes [153, 155, 158, 169–171]. Glucose recovery levels of 84–110% in
undiluted human urine were reported by employing a nanosensor based on 4-MPBA
decorated Ag NPs [171]. The working principle of the sensor relies on the aggrega-
tion of the Ag NPs induced by the 2:1 4-MPBA/glucose bonding ratio. Glucose
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contains two pairs of adjacent hydroxyl groups that could bind to two 4-MPBA-
modified Ag NPs. This glucose sensor showed a response time of 12 min, and its
selectivity over mannose, galactose, sucrose, and fructose was also demonstrated.
Two-component (4-MPBA and 1-decanethiol (1-DT)) self-assembled monolayers,
serving as molecular recognition and penetration agents, have also been employed in
a paper membrane-based SERS sensor [155]. Owing to the nitrocellulose layer,
blood cells and proteins were captured on the surface of the membrane, and only the
small molecules reached through capillary forces the sensing site. The assay time
was 5 min and a glucose recovery rate of 88% was reached. The limit of detection
was estimated to be 0.1 mM and the linear range 0.5–10 mM. To increase the
selectivity of the glucose sensing platforms, scaffolds incorporating two boronic
acid groups have also been considered [153]. Direct and selective SERS detection
under physiological conditions was carried out using a gold film-over-nanosphere
(AuFON) substrate, functionalized with bisboronic acid receptors incorporating two
4-amino-3-fluorophenylboronic acid units. By employing monobornic acid, the
glucose molecules will be in the close proximity of the metallic surface, sensing
the high electromagnetic field. On the basis of their results, the authors concluded
that a bisboronic acid analogue with seven atoms separating the amide carbonyls of
the receptor units showed the highest selectivity and affinity for glucose. By
applying multivariate statistical analysis, a clear distinction between hypoglycemic,
normal, and hyperglycemic levels was achieved.

All sensors described above rely on point measurements, where the patients are
requested to test their glucose levels multiple times per day. In this manner, hypo-
and hyperglycemic episodes can be hardly detected, as they might occur randomly
during the day. Continuous monitoring of glucose levels is therefore highly desired
for the well-being of the patients. Multiple continuous glucose monitoring (CGM)
devices are already on the market. However, they can generally function up to
7 days, they require multiple calibrations, and the product description recommends
the patients to verify with a regular glucometer the actual glucose levels before
taking measures. At the Van Duyne laboratory, a transcutaneous glucose sensing
platform relying on surface-enhanced spatially offset Raman spectroscopy
(SESORS) was developed, which could reliably sense glucose in vivo in rats for
more than 17 days [151, 152]. While in normal Raman measurements the excitation
and signal collection sites coincide, there is an offset between the two processes in
SORS. In this way, the Raman signal from the underlying layers in the investigated
samples will not be overwhelmed by the signals from the surface. Thus, SERS
signals originating from the transcutaneous sensors can be easily collected.
Decanethiol (DT)/6-mercapto-1-hexanol (MH) self-assembled monolayers partition
and localize the glucose molecules on the AgFON surface. Based on space-filling
computer models, the authors suggest that dynamic pockets capturing glucose are
formed from the long DT chains and the short MH chains. The reliability and
accuracy of new glucose sensors are generally assessed by the Clarke error grid
analysis (EGA), illustrated in Fig. 1.8. The grid is divided into five zones (A–E),
with measured concentrations by a reference method on the x-axis and predicted
concentrations by the new method on the y-axis. The zones have the following
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significance: (A) clinically accurate measurements and treatment, (B) benign errors
or no action, (C) unnecessary action, (D) lack of action, and (E) actions that are
opposite to those that are clinically necessary.

Therefore, data acquired with the new method has to fall into the A and B zones in
order to pass the accuracy test. Based on the plots presented in this study, this
transcutaneous sensor detected hypoglycemia with an accuracy exceeding the cur-
rent International Organization Standard (ISO/DIS 15197) requirements, with only
one calibration in a time period of 17 days.

5.2 Cancer Diagnostics

Another important cause of a high number of deaths worldwide is cancer and cancer-
related diseases. As nicely introduced in many review articles [176–178], the term
cancer encompasses a large family of diseases, all characterized by uncontrolled cell
growth that can potentially spread to other parts of the organism as well. Conse-
quently, the diseases develop fast and are often diagnosed at a rather late(r) stage.
Additionally, there is limited access to standard and efficient treatment, and cancer
removal surgeries depend strongly on the proper assessment of the tumor borders in
the affected tissue. Accordingly, cancer survival rates tend to be low, with the exact
rates depending on the specific region of the world, the type of cancer, the age of the
affected person, and the stage of the cancer spread [179]. To improve this, different
techniques have been applied to achieve fast and reliable cancer diagnosis at an early
stage, including polymerase chain reaction (PCR), ELISA, electrophoresis, SERS,
micro-cantilevers, colorimetric assay, electrochemical assay, and fluorescence
methods [176–178]. Each of these techniques relies on the specific identification
of different cancer biomarkers present in tumor tissues, cells, or body fluids
[176, 180]. Nevertheless, due to the high diversity of cancer-related diseases and
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the particularities of its detection at different organs, often, detection of more than
one biomarkers is required to assess whether an individual has cancer. DNA, mRNA,
enzymes, metabolites, transcription factors, and cell surface receptors are some of
the biomarkers used for cancer diagnosis [176, 179].

Proteins and related biomarkers released from cells and organs have been used for
the detection and monitoring of cancer [181–184]. The available SERS studies for
the ex vivo (cell, tissues, and body fluid measurements) identification of cancer often
relies on the recognition of such biomarkers, and promising results have been
reported for their ex vivo detection in cell culture [185–194]. Nevertheless, a more
clinically relevant approach would rely on body fluid measurements. However, the
concentration of protein biomarkers in serum during early cancer stages can be as
low as 10�16–10�12 M, making their detection rather challenging [181]. Since SERS
is a molecular fingerprinting technique that can identify target molecules at very low
concentrations, different SERS-based approaches have been tested to achieve this
goal. Among the most straightforward approaches, SERS NPs in the form of
commercially available colloids [195] or colloids prepared according to easy prep-
aration protocols [50] were mixed with blood or serum samples, dropped on glass
slides, and measured by Raman spectroscopy [195–197]. However, due to the low
specificity of label-free SERS NPs, the results obtained by this procedure only partly
correlated to the gold standard analysis (i.e., high-performance liquid chromatogra-
phy – HPLC) [195]. Nevertheless, upon functionalization of these nanostructures,
their specificity for specific cancer biomarkers increased, leading to better diagnostic
results [198, 199]. In addition to pure Au or Ag nanostructures [50, 182, 195, 198],
core-shell NPs have also been reported in the literature for cancer detection appli-
cations: Fe3O4/Au/Ag [41, 199], Au@Ag [41], or Au@ polyethylene glycol(PEG) –
Au@PEG [182]. For each of these structures, specific tags were used for distinct
cancer types, making the overall SERS substrate preparation protocols not univer-
sally applicable. For example, a surface-enhanced resonance Raman spectroscopy
(SERRS) sensor based on sandwich immunocomplexes consisting of a mixture of
Fe3O4@Ag NPs conjugated with capture antibody through an amidation reaction,
and Au@Ag NPs conjugated with antibody using an HS-PEG-COOH/Tween
20-assisted method was tested for the detection of the colon cancer biomarker
carcinoembryonic antigen (CEA) in clinical serum samples [41] (schematic repre-
sentation in Fig. 1.9). For the preparation of the sandwich structure, a rather
complicated and time-demanding procedure was followed. That is, the Fe3O4@Ag
NPs were first incubated overnight in an ethanolic solution containing 10 μM MUA
and 10 μM 11-mercapto-1-undecanol (MU). Then the carboxyl groups on the NP
surface were activated by using a mixture of 1 mM and 5 mM sulfo-NHS, and the
resulting NPs were incubated overnight in the presence of 10 μg of capture antibody.
In the case of the Au@Ag NPs, upon washing three times with a buffer containing
1 μM HS-PEG-COOH and 0.01% Tween 20, the NPs were sonicated for 30 min in
25 μM diethylthiatricarbocyanine iodide (DTTC) to synthesize Raman-encoded
NPs. Next, the particles were sonicated for another 30 min in 10 μL of a 1 mM
mPEG-SH solution to increase their stability, suspended in a K2CO3 solution,
vigorously mixed with 25 μM EDC and 25 μM sulfo-NHS for 15 min, and
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re-suspended in a K2CO3 solution. Finally, the resulting activated NPs were incu-
bated overnight in the presence of 10 μg of detection antibody. Thus, the preparation
of the two different types of NPs required overnight incubation, making the overall
NP preparation protocol rather time-consuming. However, once the NPs were avail-
able, the actual measurement protocol was rather simple. The magnetic NPs were first
allowed to interact with the target solution for 30 min, and then the immune com-
plexes were magnetically collected and washed. Subsequently, the DTTC-encoded
Au@Ag were added and incubated for another 30 min. Finally, the formed sandwich
complexes were washed with phosphate-buffered saline tween-20 (PBST),
re-suspended in deionized water, and measured by SERS. Thus, the detection time
required was approximately 1 h, which is fit for clinical application approaches.

Other commonly investigated biomarkers for cancer identification are DNA and
mRNA. As in the previous case, both NP-based [200] and planar substrates-based
[201] SERS immunosensors have been developed for their detection. For example,
the detection of micro ribonucleic acid 21 (miR21) is often achieved by using labels
such as cresyl fast violet T, Rhodamine B, Rhodamine 6G, and DTNB [201]. Nev-
ertheless, it was recently shown [200] that by using an “OFF-to-ON” SERS inverse
molecular sentinel (iMS) nanoprobe in a homogeneous assay for multiplexed detec-
tion of micro ribonucleic acid (miRNA) in a single sensing platform, no labeling is
required. The starting point in the preparation of this detection scheme was the
generation of Au nanostars based on a seed-mediated growth protocol introduced by
Wang et al. [200], followed by Ag coating of these structures by adding 0.1 M
AgNO3 and 29% NH4OH and allowing the chemicals to react for 5 min. Finally, the
SERS iMS nanoprobes were produced by mixing 10 μl of a 10 μM stem-loop DNA

Fig. 1.9 Scheme of the preparation of sandwich assay for CEA protein detection (Reprinted from
Rong et al. [41] with permission from Elsevier. Copyright # 2016 Elsevier)
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probe solution with 0.9 mL of 0.1 nM Ag-coated nanostars and 0.1 mL of a 2.5 mM
MgCl2 solution and incubating this mixture overnight at room temperature. The
obtained structures were stabilized by a 30-min incubation with a 1 μM O-
[2-(3-mercaptopropionylamino)ethyl]-O-methylpolyethylene glycol (mPEG-SH,
5000) solution. Following centrifugation and resuspension in Tris-HCl buffer
(10 mM, pH 8.0) containing 0.01% Tween-20, the metallic surface of the nanostars
was passivated with 0.1 mM MH. Subsequently, the SERS iMS nanoprobes were
washed and redispersed in Tris-HCl-Tween-20 buffer. Finally, the iMS SERS signal
was “turned OFF” by incubating the nanoprobes with 0.1 μM placeholder strands in
PBS buffer solution containing 0.01% Tween-20 overnight at 37 �C. While
performing the SERS measurements, the iMS SERS signal was “turned ON” when
the structures sensed the presence of at least 1 μM miR-21 targets.

For each of the above mentioned biomarkers, SERS immunosensors are also
available as planar substrates [43, 181, 184, 202–204] and within photonic crystal
fiber probes [51, 182], for the detection of breast cancer biomarkers such as vascular
endothelial growth factor (VEGF) [181], human epidermal growth factor receptor
2 (HER2) [184], and the wild-type and mutant mp53 protein [204] in patient blood
plasma. An example of a hollow core photonic crystal fiber (HCPCF) probe used for
multiplex detection of serological liver cancer biomarkers is illustrated in Fig. 1.10
[182]. Here, the fiber PCF was cut into 7 cm pieces cleaved at the ends, and its inner
walls were coated with poly-L-lysine to induce active sites for the binding of the
target biomarkers. The resulting fiber was then dipped in cell lysates from oral
squamous carcinoma (OSCC) HER2 biomarker supernatant from Hep 3b cancer
cell line for 3 min to allow for protein binding and was incubated at 4 �C for 2 h.
After drying, a mixture of antibody-conjugated SERS nanotags was added into the
fiber. In parallel, bio-conjugated SERS nanotags were prepared from commercially
available NPs. For this, NPs were incubated with the following Raman reporter
molecules: malachite green isothiocyanate (MGITC), naphthalenethiol (NT), or
lipoic acid-modified cyanine 5 (Cy5), for 15 min, 1 h, or 15 min, respectively, in a
ratio of 1:9. Subsequently, thiolated-carboxylated PEG (HS-PEG-CO2H) was added
and incubated for 20 min, followed by and incubation with thiolated PEG (PEG-SH)
for 3 h. Upon activation of the carboxylic acid functional groups on the surface of
these PEG-encapsulated NPs (by using EDC and sulfo-NHS), the resulting NPs were
mixed with an additional antibody to achieve multiplexing: the alpha-fetoprotein
(AFP) antibody was added to the activated Cy5 nanotag and the AIAT antibody to
the MGITC nanotag. Finally, the resulting bioconjugated SERS nanotags were
washed and bonded to the immobilized biomarkers in the fibers (see Fig. 1.10). In
this study [182], the HCPCF was used both as a proof of concept, achieving the
detection of HER2 in OSCC cancer cell lysate, and for the detection of two
prominent hepatocellular carcinoma biomarkers, alpha-fetoprotein and alpha-1-anti-
trypsin, in the Hep 3b cancer cell line. Furthermore, it was proposed that the HCPCF
probe can be used for the analysis of saliva, tear, urine, and other body fluids for the
early diagnosis of multiple diseases.

Other body fluids used for cancer biomarker detection include cervical fluids for
the identification of the E7 gene of human papillomavirus (HPV) [202]; additionally,
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breath analysis was also performed for the identification of volatile organic com-
pound that can act as biomarkers for gastric cancer [43]. For the latter, a sensor was
developed starting from a 7.5 cm clean glass, on which a 300-nm-thick Au layer was
sputtered and 2 μL of a graphene oxide homogeneous solution was dropped and
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Fig. 1.10 Scheme of a hollow core photonic crystal fiber (HCPCF) probe used for multiplex
detection of serological liver cancer biomarkers (a), SEM of the cross section of the HCPCF (b) and
SERS spectra of individual SERS nanotags and their mixture used for the multiplexing measure-
ments (c) (Adapted from Dinish et al. [182] with permission from John Wiley and Sons. Copyright
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dried. Following hydrazine vapor adsorption and reduction, the substrate was placed
in N2 for 30 min, and 1 μL of a 5 mM AuCl4

� solution was dried on the substrate,
resulting in a Au NP distribution on the reduced graphene oxide film. The resulting
SERS-active substrate was used for measurements of both simulated and real breath.
To this end, the substrate was placed in a small vessel, and 50 μL liquid standard of
each biomarker was added to the vessel without allowing any direct interaction
between the substrate and the liquid to occur. The vessel was sealed and placed at
37 �C to allow for the liquid to vaporize and interact with the substrate, dry, and be
measured. As illustrated in the simplified schematic in Fig. 1.11, statistical analysis
was performed on the measured data and the results allowed for the differentiation of
patients affected by early gastric cancer (EGC, stages I and II) from patients
suffering from advanced gastric cancer (AGC, stages III and IV).

As is evident from the examples presented above, the drawback of these SERS-
based analytical methodologies is the complexity of the protocol required for the
preparation of the SERS-active substrates. Following NP preparation, functiona-
lization and immobilization on a substrate are necessary, and the total time and
complexity of the measurements increase. Nonetheless, once the SERS substrates
are available, the measurements are easy to perform, and the results are available in a
time-efficient manner. An alternative approach for the identification of cancer in
tissues has also been reported in the literature [205–207], based on incubating the
tissue with NP solutions, which does not require NP immobilization on any sub-
strate. However, tissue measurements are by far the most invasive of the proposed
methods, as the tissue must be removed from the patient before being investigated
ex vivo by SERS. For the measurements, the tissue is first sliced into μm–mm thick
sections [206, 207], then stained [206] or breaded [205] with NPs, and measured by
mapping. It was found that upon incubation of the tissue with NPs,
non-functionalized Au NPs form nano-clusters, which lead to increased Raman
signals due to the formation of hot spots. On the contrary, encapsulated Au NPs
(i.e., Au/SiO2) and functionalized Au NPs are homogeneously spread over the tissue
surface, increasing afferent specificity for the targeted biomarkers and lower Raman
signals [205]. However, E. Cepeda-Pérez et al. [205] reported that in wet tissues, the
Au/SiO2 NPs used in their study formed aggregates in the vicinity of the biomole-
cules located on the tissue surface, leading to a further increase in Raman signals.

As an alternative to the abovementioned procedures, direct intra-tumoral injection
of NPs (see schematic representation in Fig. 1.12) has also been used for cancer
identification. Different approaches were considered here, starting from functiona-
lization of commercially available NPs [36] and ending with the development of
rather complex core-shell nanostructures [35, 208]. These complex core-shell nano-
structures, depicted in Fig. 1.12, consist of Au vesicles encapsulating active com-
pounds, such as chlorin e6 (Ce6). They were prepared starting from the generation of
Au NPs by citrate reduction of HAuCl4 in an aqueous phase. Subsequently, the Au
NPs were dried on a glass substrate, followed by triggering the self-assembly of
amphiphilic block copolymers by rehydrating of the thin Au NP film in water by
sonication. Finally, Ce6 was encapsulated in the resulting Au NPs by rehydrating the
structures with solutions having different concentrations of Ce6 during
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centrifugation of the mixtures. The resultant nanostructures were tested and charac-
terized regarding their SERS, near-infrared spectroscopy, fluorescence, thermal, and
photoacoustic properties. Moreover, it was found that laser irradiation causes them to
break and to be easier cleared from the organism [208]. Additionally, during the
experiments there was no significant inflammation observed in the heart, liver,
spleen, lung, and kidneys, suggesting low cytotoxicity and high biocompatibility
of the Au vesicles [208]. Therefore, these nanostructures are thought to represent a
potentially interesting tool for cancer identification.

In a different study, the detection of the breast cancer-specific biomarkers epider-
mal growth factor receptor (EGFR), CD44, and transforming growth factor beta
receptor II (TGFbRII) in mice was also reported [36]. To achieve this, three different
reporter molecules were immobilized on the surface of commercially available
60 nm SERS NPs: malachite green isothiocyanate (MGITC), Rh6G, and Cy5. For
this, solutions of 10 mM lipoic acid (LA) linker modified with Cy5, 10 mM
malachite green isothiocyanate (MGITC), and 50 mM Rh6G were separately
mixed with the AuNPs in a v/v ratio of x/x for 20 min. Subsequently, PEG
encapsulation for antibody conjugation and protection of the nanotags was
performed. Next, the carboxylic acid functional groups were activated on the surface
of the resulting nanostructures by the EDC and sulfo-NHS coupling reaction.
Finally, an anti-EGFR antibody was allowed to react with the activated Rh6G
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Fig. 1.12 Scheme of the preparation of sandwich assay for CEA protein detection (Adapted with
permission from Lin et al. [35]. Copyright # 2013, American Chemical Society)
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nanotag, an anti-CD44 antibody with the malachite green isothiocyanate (MGITC)
nanotag, and an anti-TGFbRII antibody with the Cy5 nanotag, for 2 h at 25 �C, and
the samples were incubated overnight at 4 �C. Although the overall NP preparation
was rather long (approximately 6 h of actual preparation time plus an overnight
incubation at 4 �C), the achieved multiplexing efficiency makes the resulting NPs a
potentially interesting structure. Moreover, the NP clearance by the liver and spleen
was evaluated by monitoring the SERS signals in these organs for more than 72 h
[36], and it was concluded that they are eliminated from the organism within 72 h
from their intra-tumoral injection.

Regarding NP biocompatibility and clearance time in mice, the study of Zeng
et al. [37] shows that the Ag@Au-DTTC nanostars prepared and used during the
experiments had a negligible effect on tumor volume and overall body weight in
mice for a period longer than 16 days (Fig. 1.13). Moreover, no inflammation in the
heart, liver, spleen, lung, kidney, or intestine tissue was observed during the study. In
this study, the NPs were injected through the tail vein and not directly at the tumor
site. An additional study was carried out to compare the use of Ag@Au-DTTC
nanostars, PBS, PBS + NIR, Ag@Au-DTTC, and Ag@Au-DTTC + NIR, and the
results are summarized in Fig. 1.13. The NIR addition in the names of the different
systems was used by the authors to denote that an 808 nm laser was applied for the
excitation of the NPs instead of the 785 nm laser used in all other cases. Ag@Au-
DTTC nanostars were prepared starting from simple, 20–30 nm Ag NPs by adding
dropwise deionized water and 0.1 mM DTTC under stirring. This led to the
formation of Ag-DTTC NPs, which were further mixed with 0.1 M HCl and
2.5 mM HAuCl4 aqueous solutions. Then, 10 mM AgNO3 and 100 mM ascorbic
acid (AA) were added under vigorous stirring. Next, 0.1 mM DTTC was dropped
into the NPs for the second time, while stirring, and the reaction was maintained for
10 min. Here, the addition of AgNO3 was performed to generate anisotropic Au
nanostars. Finally, the resulting Ag@Au-DTTC nanostars were modified with
mPEG-SH by adding 2 mM mPEG-SH to the Ag@Au-DTTC nanostars under
stirring and allowing them react for 30 min. Subsequently, the nanostarts were
washed, redispersed in deionized water, and used for measurements.

While a few studies are introduced here, many others are available in the
literature. Cancer detection is a high-interest topic, and much effort is directed
toward developing methods for the reliable detection of cancer biomarkers present
at low concentrations, especially at early stages of the disease.

5.3 Pathogen Detection

The early diagnosis of medical conditions caused by viruses and parasites is highly
needed, especially in the cases where treatment administration during the early stage
of the disease is crucial. For example, communal transmission of malaria and full
recuperation of patients infected with the apicomplexan parasite Plasmodium species
are guaranteed only when medication follows early detection. Hemozoin, a crystal-
line insoluble precipitate present in the red blood cells (RBCs), is considered to be a
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biomarker for malaria diagnosis. The reference method for its detection is based on
visual examination of light microscopy images of Giemsa-stained blood smears.
However, a considerable amount of hemozoin precipitates have to be present in the
sample in order to diagnose malaria with this method. Nevertheless, hemozoin is
produced in the RBCs already during the earliest stages of the parasite lifecycle. In a
period of 48 h, the parasite transitions from the merozoite stage to the ring and
trophozoite stage, and then it matures to the schizont stage. During this time, the
parasite digests up to 75% of the available hemoglobin, and it produces the crystal-
line, insoluble hemozoin. The compound is highly paramagnetic, and it has a strong
Raman fingerprint, as it can be seen in Fig. 1.14. Because hemozoin is a product of
hemoglobin digestion, most of the Raman bands are identical for the two molecules.
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(c) (Adapted with permission from Zeng et al. [37]. Copyright # 2015, American Chemical
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SERS, owing to its high sensitivity, can easily determine hemozoin at low
concentrations, and multiple studies have reported the successful detection of the
precipitates in lysed blood samples, infected RBC, or human blood, even at single
parasite level [210–213]. For example, Garrett and coworkers used gold-coated
butterfly wings for the detection of the malarial hemozoin pigment in the early

Fig. 1.14 Photomicrograph of P. falciparum-infected erythrocytes in the late trophozoite stage,
showing vacuoles containing hemozoin. The Raman spectrum of β-hematin, a structurally identical,
synthetic composite of hemozoin, is also depicted (Reprinted from Wood et al. [209] with
permission from John Wiley and Sons. Copyright # 2003, American Chemical Society)
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ring stage in lysed blood samples containing 0.005% and 0.0005% infected RBC
[210]. However, because the surface of the substrate was not functionalized,
hemozoin deposition from the cell lysate was random. The detection of the parasite
at a concentration of 0.0005% infected RBC was achieved only by manually
selecting the measurement spots on the SERS-active surface. This is a time-
consuming approach, and it is not feasible for real-time measurements of a high
number of samples. In another study, Chen et al. [211] performed detailed SERS
investigations of normal and infected RBCs at different stages of infection. By using
multivariate statistics based on principle component analysis, the authors were
successful in discriminating between ring, trophozoite, and schizont stages of
infected RBCs from normal RBCs. The changes observed in the SERS spectra
were associated with changes of the cell membrane. Namely, during the life cycle
of the parasite, the host cell plasma membrane displays a significantly decreased
content of cholesterol and sphingomyelin, and an increased ratio of phospholipid to
cholesterol, while a large number of proteins are exported. In this study, silver
nanorods were fabricated via the oblique angle deposition method on glass micro-
scope slides, and they were used for enhancing the weak Raman spectrum. In a
recent study, Chen and coworkers reported a procedure confirming that the source of
the measured SERS signal originated from a single parasite in the ring stage [212]. In
order to do this, silver NPs were synthesized directly inside the parasites to ensure
close proximity between the NPs and the target molecules and to avoid the necessity
of lysing the parasites. Specifically, following lysis of blood cells from the infected
sample, the lysate was re-suspended in AgNO3 solution. Triton X-100 was mixed
with hydroxylamine hydrochloride, and it was added dropwise to the AgNO3

solution containing the sample. The resulting solution was smeared on glass slides
covered with aluminum foil and measured with a Raman spectrometer. With the help
of bright field microscopy images and the SERS spectra, the authors showed that the
measurements were carried out on a single parasite level. On the basis of all the
studies described above, it is clear that SERS is very promising for early malaria
diagnosis. However, further work is required to design reliable platforms that can be
affordable for developing countries.

Hepatitis B can lead to liver cirrhosis and hepatoma; during the last years,
proteins, antibodies and antigens, and specific DNA sequences have been considered
as hepatitis B biomarkers. As already demonstrated in the previous sections, the
combination of immunoassays, microfluidics, and SERS yields fruitful synergy, and
it was also applied for the detection of hepatitis B virus antigen (HBsAg) in human
blood plasma [214]. In Fig. 1.15, the working principle of a microfluidic SERS-
based immunoassay is depicted. GaN/Au-Ag was used as the capturing substrate.
The substrate was modified with 6-amino-1-hexanethiol to form amino-terminated
linkages. The thiolated metallic substrate was placed in the measuring chamber of
the microfluidic chip fabricated on polycarbonate. A mixture of a hepatitis B virus
monoclonal antibody (anti-HBsAg) and an activation solution was injected via one
of the inlet ports. After 1 h, the remaining active surface was blocked by BSA, and
the antibody-immobilized substrate was stored at 4 �C until the measurements were
performed. The Raman reporter molecule, basic fuchsin, was designed to chemisorb
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on thiol-modified gold nanoflowers and to covalently bind to the antibody via a
terminal amino group. For the measurements, human blood samples from ten
healthy volunteers were spiked with HBsAg in different concentrations. The samples
were injected via the Y inlet, while the antibody-modified Raman reporter-labeled
nanoflowers were supplied via the Z inlet of the microfluidic chip. After 3 min, the
flows were stopped and for 30 min all reagents were incubated in the detection area
of the microfluidic chip to generate the sandwich immunocomplex, which was then
measured by Raman spectroscopy. A calibration curve was obtained from the SERS
intensity of the Raman marker band of fuchsin. HBsAg was successfully detected at
concentrations as low as 0.01 IU/ml (0.2 ng/ml corresponds to 0.05 IU/ml) with a
relative standard deviation of less than 10%. In addition to this study, hepatitis B
virus was also detected by employing plasmonic nanorice antennae on triangle
nanoarrays [215] and spatially reinforced nano-cavity arrays [216]. A SERS-based
lateral flow assay biosensor for the highly sensitive (down to 0.24 pg/ml) detection
of human immunodeficiency virus (HIV-1) DNA was described by Fu and
coworkers, and it is depicted in Fig. 1.16 [44]. The working principle of the platform

Fig. 1.16 SERS-based lateral flow assay for the quantification of HIV-1 DNA (Reprinted from Fu
et al. [44]. Copyright # 2015 Elsevier B.V., with permission from Elsevier)

1 Surface Enhanced Raman Spectroscopy for Medical Diagnostics 37



can be described as “DNA-conjugated Au NPs target DNA-capture DNA.” Namely,
on the nitrocellulose membrane, streptavidin-biotinylated capture DNA, which is
complementary with a part of the target DNA, and streptavidin-biotinylated control
DNA were immobilized at the test and control line, respectively. The control DNA
was complementary with the detection DNA probe immobilized on the malachite
green isothiocyanate (MGITC) functionalized Au NPs. The MGITC Au NPs were
dispersed on the conjugated pad, which was designed to bind specifically the target
DNA. The sample was applied on the sample pad and diffused toward the absorption
pad due to capillary action. When the sample crossed over the conjugate pad, the
target DNA, if it was present in the sample, and the detection DNA immobilized on
the Au NPs hybridized to form a complex. The immunoassay complexes reaching
the test line were captured by the DNA probe present there based on a second
hybridization step between the target DNA and the capture DNA, yielding sandwich
complexes. Finally, the excess DNA-conjugated Au NPs reached the control line and
were captured by the probe DNA pre-immobilized on the strip. For quantitative
analysis, SERS spectra were recorded at the test line with a bench top Raman
spectrometer. The Raman characteristic bands of the Raman label molecule,
MDITC, were considered for analytical performance assessment. The authors
claim that a detection limit of 0.24 pg/ml was achieved based on the IUPAC
regulations for LOD calculation. However, the lowest concentration that could be
measured was 8 pg/ml, and it showed only low-intensity Raman bands. For an
accurate estimation, measurements of solution with lower concentrations of HIV-1
DNA would be required. Furthermore, future experiments testing the feasibility of
the platform to detect the target DNA in biological fluids instead of pure solvent are
expected. As a simplified sample preparation protocol is of high interest for point-of-
care applications, it will have a major impact on the commercialization of the device.

With more than 50 known species that can be easily spread through the air as
aerosols, Legionella can rapidly infect a large number of people. As main clinical
symptoms, acute fever appears after a short incubation period, followed by pneu-
monia symptoms. Therefore, rapid identification of Legionella is important. The
study by Jing et al. [51] focuses on the discrimination between virulent and weak
Legionella strains in five commercially available Legionella species (ATCC33152
L. pneumophila, strong virulence; ATCC33156 L. pneumophila, strong virulence;
ATCC43878 L. brunensis, weak virulence; ATCC35249 L. spiritensis, weak viru-
lence; and ATCC35252 L. cherrii, weak virulence) and three L. pneumophila strains
(strain 1, strong virulence; strain 2, strong virulence; and strain 3, weak virulence)
isolated from different samples. For this, the different Legionella strains were
measured by SERS, using Au-tiopronin NPs. For the preparation of these NPs, Au
NPs were first prepared by the standard citrate reduction method followed by seed
growth by first mixing 0.24 ml of 15 nm Au NPs with 2.49 ml 10 mMHAuCl4�3H2O
solution with stirring and then adding 100 ml 0.4 mM ascorbic acid at a 10 mL/min
rate. Finally, excess tiopronin solution was added and allowed to react. The resulting
NPs were washed and added to the Legionella colonies as follows: each grown
colony was picked into a clean microslide onto which 5 μl NPs were added and
incubated for 5–10 s before performing the SERS measurements. The results
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obtained upon PCA analysis denote the potential of differentiating between
Legionella species based on their virulence and support the notion that this technique
could be further developed into an analytical tool for both environmental and
medical applications.

Wu et al. [217] used a SERS Ag nanorod array substrate, fabricated by the
oblique angle deposition (OAD) technique, to analyze and differentiate 27 different
bacteria species, strains, and serotypes isolated from chicken carcass rinses (denoted
USDACR in Fig. 1.17), patients from a medical center (denoted WRAMC in
Fig. 1.17), and patients from an army medical center (denoted BAMC in Fig. 1.17.
For the substrate fabrication, a glass slide was first cleaned and then positioned
perpendicular to the incident vapor direction for the deposition of a 20 nm titanium
film followed by a 200 nm silver film. The substrates were then rotated to an angle of
86� with respect to the incident vapor, resulting in the growth of Ag nanorods. Rods
of two different thicknesses were created: 2000 nm for pristine Ag nanoroads and
800 nm for vancomycin (VAN) Ag nanoroads. Finally, the 800 nm Ag nanorods
were immersed into a 1 mM vancomycin solution to achieve VAN functionalization
of the 800 nm for VAN Ag nanorods. For the measurements, either a 2 ml droplet of
a sample containing a single bacterial species was applied to the pristine Ag nanorod
substrate or the VAN Ag nanorod substrate was immersed in 2 ml of the single-
species bacterial culture for 2 h, rinsed with DI water, and measured. Upon statistical
analysis of the data, different visualization procedures were tested. As shown in
Fig. 1.17, it was possible to differentiate between gram-negative and gram-positive
bacteria, but it was still challenging to differentiate between different serotypes of the
same bacteria species.

The same SERS-active substrates were also used for the differentiation of patients
infected with Pseudomonas aeruginosa (denoted PA+ in Fig. 1.18) and Staphylo-
coccus aureus (denoted PA+/SA+ in Fig. 1.18) or patients that tested negative for
Pseudomonas aeruginosa infections (denoted PA- in Fig. 1.18), by analyzing spu-
tum samples [218]. Since the target analyte for Pseudomonas aeruginosa identifi-
cation was the redox-active blue green pigment pyocyanin (PCN), PCN was
extracted from sputum samples by mixing 100 μL of processed sputum with
50 μL of chloroform and then refrigerate the mixture for 2 min. Subsequently, the
chloroform layer was transferred to a new tube, a 1 μl droplet of the sample was
dropped on the SERS-active substrate, the contaminants on the substrate surface
were removed using Ar+ plasma generator, and the substrate was dried inside a
plasma generator chamber and measured by SERS. The LOD for the SERS detection
of PCN in aqueous solution was detected to be 5 ppm (2.38 � 10�8 M). This
information was used together with the calibration curve obtained by measuring
chloroform-treated sputum control samples spiked with different concentrations of
PCN (reproduced in Fig. 1.18a) to predict the presence of Pseudomonas aeruginosa
in patient sputum samples and to classify the patients based on this information.
Upon measuring 15 patient sputum samples and using the mentioned calibration
curve, it was found that the concentration of PCN ranges from 18.7 to 64.9 ppb in the
PA+ samples, from 5.1 to 21.5 ppb in the PA+/SA+ samples, and from 1.1 to 2.9 ppb
in the PA� samples (Fig. 1.18b). Considering that the LOD for detecting PCN was
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5 ppm, the authors concluded that the patients in the PA� group were not infected by
Pseudomonas aeruginosa. However, to better visualize and confirm this result, the
authors also performed PLS-DA analysis on the measured data, and the results are
also reproduced in Fig. 1.18c. Considering that by using the chloroform extraction
procedure introduced by Wu et al. [218] the total experimental work time is
approximately 5 min, this represents a promising analytical approach.

Rapid identification of bacteria has also been reported in the case of urinary tract
infections and the detection of E. Coli, Enterococcus faecalis, Staphylococcus

�

Fig. 1.17 Bacteria species, strains, and serotypes isolated from chicken carcass rinses (denoted
USDACR), from patients at a medical center (denoted WRAMC), and from patients at an army
medical center (denoted BAMC) used during the measurements (a). 3D PCA score plot differen-
tiation of five different serotypes of Salmonella species based on the chemometric analysis of the
SERS spectra (b). Partial least squares discriminant analysis (PLS-DA) score plot: gram-positive
(G+) bacteria are indicated as unfilled symbols, and the gram-negative (G-) bacteria are indicated as
filled symbols (c) (Reprinted from Wu et al. [217]. Copyright # 2015 Elsevier B.V., with
permission from Elsevier)
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Fig. 1.18 Intensity ratio of two peaks belonging to PCN in the PCN-spiked sputum samples (a).
Estimated PCN concentration in clinical sputum samples (b). PLS-DA plot of SERS spectra of the
clinical sputum samples (c) (Reprinted from Wu et al. [218]. Copyright# 2014 Elsevier Inc., with
permission from Elsevier)
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aureus, Staphylococcus saprophyticus, Klebsiella pneumoniae, Staphylococcus
haemolyticus, and Proteus mirabilis [219]. In this case, however, a bacterial culture
was required. The authors cultured the bacteria on nine different nutrient agar plates
and incubated them for different times: 1, 2, 4, 6, 8, 10, 12, 18, and 24 h. At the end
of each time frame, the bacteria were measured by SERS, using Ag NPs prepared
according to a simple procedure introduced by Leopold and Lendl [50]. As already
mentioned, it was found that a 1-h incubation was enough to discriminate between
the different bacteria.

Differentiation of the Mycobacterium tuberculosis complex (MTC), including
M. tuberculosis, M. bovis BCG, M. canettii, M. abscessus, and M. szulgai, was
attempted using a bead-beating module in combination with a lab-on-a-chip SERS
(LoC-SERS) system [90] and NPs prepared according to the Leopold-Lendl protocol
[50]. In this study, it was found that M. abscessus and M. szulgai can be differen-
tiated with an accuracy of 100%, whereas the bacteria in the MTC group (containing
M. bovis BCG,M. tb Beij,M. can, and M. tb H37Rv) could only be differentiated as
follows: M. can was separated from the others with an accuracy of 100%, while the
separation of M. bov BCG and M. tb H37Rv only reached 75.3% by applying a
principal component analysis-linear discriminant analysis (PCA-LDA) model.

As has been largely discussed in the literature, it is important to properly consider
and plan the growth conditions [220] as well as the steps prior to the measurement
[221] when working with cell and bacteria culture, since even small quantities of
culture medium present in the sample during the SERS measurement can give rise to
a strong SERS response [221] and also because more extreme culture growth
conditions (i.e., starvation) can modify the main components of the cell wall. Indeed,
according to a recently published study by Premasiri et al. [220], cell wall SERS
spectra of bacteria that were starved before performing the measurements at 785 nm
show that the cell wall is not dominated by peptidoglycan layer components such as
N-acetyl-D-glucosamine, N-acetylmuramic acid, lipids, and proteins, which would
be the normal cell wall composition suggested by the literature, but by molecular
species such as purine phosphoribosyltransferases, enzymes that convert purine
mononucleotides to purine bases. Moreover, according to this study, these purines
are the result of metabolic degradation of nucleic acids and nucleotides (i.e., RNA,
adenosine triphosphate, guanosine triphosphate, and other nucleotide containing
molecules). They are produced when bacteria are placed in a nutrient-free environ-
ment [220]. In contrast, the cell wall SERS spectra of starved bacteria measured at
514/532 nm were nearly equivalent to those of flavin adenine dinucleotide [220].
Figure 1.19 reproduces some of the example figures presented by the authors. However,
it is important to mention that the conditions of the SERS measurement play a very
important role. For example, whether NPs can interact with any other part of the
bacteria or whether they come in contact only with the cell wall will have an impact
on the results. Also, it is important to notice whether the NPs are functionalized or
not and how this induces a binding preference toward certain molecules of the cell
wall. In the particular case presented above, an aggregated Au NP-covered SiO2

SERS-active substrate was prepared by the hydrolysis of tetramethoxysilane in an
acidic methanol solution of HAuCl4 (containing methanol, water, and Si(OCH3)4).
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This resulted in the formation of metal-doped sol-gels, which were dried at room
temperature before mixed with aqueous sodium borohydride and exposed to water-
saturated air for 1 h. Subsequently, the solution was drained and the gel chips were
covered with water and gently shaken for 30 min. Finally, the substrates were

Fig. 1.19 Comparison of SERS spectra of bacterial species with model compounds (a). Empiri-
cally determined best fits (red) of the bacterial spectra (black) of some of the spectra shown in the
left side graph of the figure (b). Best-fit-determined relative (%) purine contributions to the bacterial
spectra on the graphs on the right upper side of the figure (c) (Premasiri et al. [220]. Copyright #
Springer-Verlag Berlin Heidelberg 2016, with permission of Springer)
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incubated for 24 h in a diluted NaBH4 solution for the slow growth of Au NPs. The
resulting substrates were covered with a 1 μL bacteria loop and measured 2 min later
[52, 220].

In the above paragraphs of this section, we presented themost promising findings on
pathogen detection. Different SERS platforms were applied in these studies, starting
with Leopold-Lendl colloids and microfluidic devices and reaching to SERS immu-
noassays and easy to prepare SERS planar substrates. Depending on the type of
substrate, different measurement methods were also chosen. Both very simple mea-
surement conditions, such as a simple mixing of the analyte with the pathogen
suspension or dropping the analyte on planar substrates and measuring the resulting
dried substrate, andmore complicated approaches, such asmicrofluidic platforms, have
been tested. Additionally, owing to the high resemblance of SERS spectra from
pathogens belonging to the same species, statistical analysis is often required for
reliable identification. Moreover, even though discrimination of pathogen species is
often reported in the literature, separation of different strains belonging to one species is
still challenging. However, there are numerous other reports proving the high potential
of SERS for medical diagnosis of infectious diseases, and with further work carried out
with clinical samples, SERS might yield a wide range of applications.

5.4 Other Fields of Application with Clinical Relevance

5.4.1 Therapeutic Drug Monitoring
The cost of medical treatments could be significantly lowered, while the patient
outcome could be considerably improved, by the practice of personalized medicine.
Therapeutic drug monitoring is of especially high value, as several drugs have a
narrow therapeutic range and the concentration of the active agent in the human
body strongly varies among individuals. Currently, different physiological indices
(lipid concentrations, blood glucose, blood pressure) are routinely used to monitor
the pharmacological response and determine the pharmacokinetic and pharmacody-
namic characteristics of drugs. However, there are many drugs with insufficiently
sensitive or no direct indicator of their therapeutic response. In these cases, thera-
peutic drug monitoring relies on measurements of the concentration of the prescribed
xenobiotic that, with an appropriate interpretation, could directly influence the
prescribing procedure and lead to the desired clinical outcome [222].

In clinical chemistry, the determination of drug levels in biological fluids is
performed by methods based on chromatographic separation or immunological
assays [98, 101, 223–230]. The first approach offers great specificity and sensitivity
for, theoretically, all existing drugs, but it is mainly available in reference clinical
laboratories and academic centers because of the high initial financial investment
required. On the other hand, immunological assays (or immunoassays) are easy to
integrate in a clinical setting, but they are available for only a limited number of
drugs because they require specific antibodies. In recent years, multiple SERS
studies for the determination of various drugs at clinically relevant concentrations
in biological fluids were reported. Thanks to the high sensitivity of the method and
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the narrow Raman bands, SERS is optimal for the determination of trace amounts of
molecules in complex matrices. Although SERS cannot compete with chromatog-
raphy for sensitivity and specificity in an academic lab setting, it finds its place in
on-field applications and near-patient settings thanks to the development of high-
performance portable and handheld Raman setups.

Anticancer drugs are notorious for their toxic effects when their concentration in
the human body exceeds their therapeutic range. Methotrexate is generally admin-
istered at high doses (5000 mg/week) for cancer therapy. However, its action is not
restricted only to cancerous cells, and a concomitant administration of leucovorin is
recommended to avoid side effects. According to most medical guidelines, a plasma
methotrexate concentration �0.2 μM allows the clinician to stop leucovorin admin-
istration [231]; 42 h after the start of methotrexate infusion, the target concentrations
are �1 μM, while high-risk toxic effects are associated with concentrations 	10 μM
[232]. The direct, quantitative determination of methotrexate in diluted human serum
samples spiked with different concentrations of the target drug was achieved by
employing gold NP deposited on paper as SERS-active substrate [233, 234]. Specif-
ically, a mixture of citrate-reduced gold NPs and sodium citrate, used as aggregation
agent, was added to a glass vial containing a 1 cm2 filter paper at the bottom. After
1 week, all particles were deposited on the surface of the paper. The supernatant was
removed, and the paper was dried in air and stored in Milli-Q water. The relative
standard deviation of the SERS signal from different analytes measured with sub-
strates from different batches was 15%. Relative standard deviations of 10–20% are
commonly reported in SERS studies and have their origin in the low homogeneity of
hot spots on the solid SERS-active substrate and on the random orientation of the
molecules on the metallic surface. Nevertheless, the SERS community is continu-
ously aiming at improving this and increasing the reliability of the SERS measure-
ments. For the determination of methotrexate with the abovementioned SERS-active
substrate, calibration standards were prepared by spiking drug-free human serum
with different amounts of methotrexate stock solutions. The final concentration of
the drug in the fivefold diluted serum was 0.1–300 μM. The data were evaluated by
employing chemometric methods, and the used model yielded a root mean square
error of prediction of 31.57 μM, with an R2 linear regression coefficient of 0.63.
These values show that the method yields poor predictions, emphasizing the chal-
lenge of quantitative SERS measurements. Paclitaxel, another highly antineoplastic
active drug against a wide spectrum of human malignancies, was also detected by
SERS in blood plasma using microwave-treated gold film polystyrene beads
[235]. Although the concentration window where the drug was detected was
narrower than that of the previous case (10�8–10�7 M), the accuracy was consider-
ably higher (3.8 � 10�9 M). The authors attributed this great accuracy to the direct
absorption of the molecule on the metallic surface owing to its high chemical affinity.
However, as in the preceding case, the authors had to dilute the paclitaxel/blood
mixture with ethanol to reduce strong matrix effects.

Clinical guidelines for antibiotic administration are most often derived from dose-
establishing clinical trials carried out with healthy volunteers instead of patients.
However, it was demonstrated that fix-dose administration will fail in the case of
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patients in the intensive care unit [236]. Therefore, it is of high interest to determine
the actual concentration of the active drug in the human body in order to guarantee
treatment success and avoid the emergence of antibacterial resistances. The
aminoglycoside tobramycin [237], the fluoroquinolone levofloxacin [42, 238], and
nitroxoline [89] were successfully detected by SERS. A 1000-fold dilution of human
serum samples spiked with tobramycin was required prior to SERS detection with
Au NPs prepared according to the traditional citrate reduction protocol and modified
with dithiobis-(2-nitrobenzoi acid) as a Raman reporter. Unfortunately, the authors
did not carry out quantitative measurements, but the intense Raman spectrum
recorded at 4 μM shows great promise for further studies.

SERS is a great analytical method owing to its specificity and sensitivity. How-
ever, it is challenging to achieve reproducible and automated measurement condi-
tions. The synergy between microfluidic platforms and SERS can overcome this
limitation, as demonstrated in numerous reports [60–68]. Hidi et al. took advantage
of a droplet-based SERS microfluidic platform and conducted measurements on
human urine samples collected from patients and healthy donors [42, 89]. As none of
the donors had previously taken levofloxacin or nitroxoline, the two antibiotics were
artificially added to the sample. In this way, the influence of the complex matrix on
the SERS signal of the target molecules was carefully characterized. The authors first
demonstrated that the two antibiotics can be successfully and reliably quantified in
the complex matrix by employing silver NPs prepared at room temperature. Specif-
ically, urinary levofloxacin concentrations in the range of 0.1–1 mM and urinary
nitroxoline concentrations in the range of 3–42.8 μM were detected with a good
linear response, covering the clinically relevant concentration window. The distinct
detection regions for the two antibiotics were explained based on the different
chemical affinity of the two molecules for the metallic surface. The detection limit
for levofloxacin dissolved in high purity water was found to be 0.8 μM, whereas that
for nitroxoline was 2.5 μM. The latter antibiotic showed a clear preference for
binding on the metallic surface, as its detection limit was not significantly affected
by the complex matrix, and this facilitated its detection.

Most of the reported SERS studies confirm that the technique can offer quantita-
tive measurements under well-controlled, known conditions; however, very seldom
the concentration of the target molecules is determined in patient samples containing
an unknown amount of the molecules. This has numerous reasons. First, the chemical
composition of the clinical samples varies strongly between patients, or even between
samples collected from the same patient at different time points. Therefore, if no
thorough sample cleanup procedure is applied, quantification based on previously
established calibration curves will fail, as the SERS signal is very sensitive to the
chemical species present in the sample. Second, the low batch-to-batch reproducibil-
ity of metallic NPs also inhibits the traditional quantification procedure, as signals
measured with NPs of different batches cannot be reliably compared. To overcome
these drawbacks, the SERS community directed its attention toward the standard
addition method (SAM) [91, 239–242]. Here, all analytical measurements, including
the calibration curve, are performed using the sample itself, and the slight variation
between colloid batches will have no impact on the final results.
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The SAM experiments are carried out as follows: (1) equal amounts of the sample
are pipetted into several volumetric flasks, (2) increasing volumes of standard are
added to each flask, and (3) the content of each flask is diluted to the same volume
(Fig. 1.20). Therefore, every flask contains the same concentration of the unknown
sample and different concentrations of the standard solutions, which contain the
same analyte as the one to be quantified. The number of flasks minus one represents
the number of the standard addition steps (SAS). The signal intensity from all flasks
is measured and plotted as shown in Fig. 1.20. The data are fitted by linear
regression, and the x-axis intercept gives the analyte concentration in the unknown
sample, which is the ratio between the intercept at y = 0 and the slope of the
regression. By combining this method with microfluidic SERS measurements and
multivariate statistical analysis, the authors were successful in determining the
unknown concentration of nitroxoline in four simulated clinical samples. In the
repots described above, sample dilution was carried out in order to reduce interfer-
ence from the matrix molecules. Nevertheless, in a recent study, the β-blocker
propranolol spiked into human serum, plasma, and urine was detected at physiolog-
ically relevant concentrations without the need for matrix dilution [243]. For this, the
authors employed silver NPs synthesized according to the Lee-Meisel citrate reduc-
tion method and multivariate data analysis. In this study, stock solutions of the drug
were prepared directly in the biological fluids, and serial dilutions of propranolol
with each biological fluid of interest were then performed using these stock solutions
in the range of 0–120 μM. In the case of the plasma samples, proteins were removed
by centrifugation prior to the measurements. Metallic NPs were mixed with the
samples in a 1:1 ratio, and 0.5 M sodium chloride was used as aggregation agent.

Principal component analysis of the SERS spectra demonstrated a clear differen-
tiation between pure biofluids and biofluids spiked with varying concentrations of
the target drug. To provide quantitative results, the authors used the partial least
square regression method. The limit of detection for propranolol was estimated to be
0.45 μM, 0.53 μM, and 0.57 μM for serum, plasma, and urine, respectively. The

Fig. 1.20 The principle of the standard addition method: (1) equal amounts of the sample are
pipetted into several volumetric flasks, (2) increasing volumes of the standard solution are added to
each flask, and (3) the content of each flask is diluted with water to the same volume. The signal
intensity for all flasks is measured and plotted. The intercept of the linear regression with the x-axis
will give the concentration of the analyte in the unknown sample
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reported results showed a linear response in the 1–10 μM range for serum,
10–100 μM range for plasma, and 10–120 μM for urine. In conclusion, the authors
were successful in detecting the target molecule in various biofluids with conven-
tional silver NPs, demonstrating the high potential of SERS.

Finally, in two recent studies, approaches based on a vertical-flow paper system
[244] and hierarchical zwitterion-modified SERS platforms [245] were reported and
were used successfully for the detection of various drugs owing to the inhibition of
substrate fouling by the components of the matrix. In the first approach, a sample
droplet was applied to a membrane selected to trap serum components while
transmitting the drug 5-fluorocytosine. An inkjet-fabricated paper-based SERS
sensor was placed below the filtering membrane. In this way, large molecules from
the serum were trapped, while the target molecule could interact with the metallic
surface. The SERS signal was measured with a portable Raman spectrometer. This,
and the fact that the no additional apparatus was required for sample cleanup, is very
promising for bedside applications. However, it would be interesting to see the
platform extend to whole-blood samples and to the determination of drug levels in
clinical samples. Concerning the analytical performance of the platform for
5-fluorocytosine spiked into human serum, a limit of detection of 93 μM and
linearity up to 1.16 mM were reported by the authors. An alternative strategy to
avoid substrate fouling and to trap the target analytes was reported by Sun et al.
[245]. In this study, the authors functionalized the optofluidic platform with two
different layers. The role of the first layer was to capture the target molecule via
functional thiols situated in the proximity of the SERS substrate. Thus, the surface
could be enriched with substances exhibiting weak surface affinity, and the SERS
signal could be enhanced. The second layer consisted of non-fouling zwitterionic
poly(carboxybetaine acrylamide) (pCBAA) grafted via surface-initiated atom trans-
fer radical polymerization, and it protected the metallic surface from the proteins in
whole blood. This SERS platform could detect the anticancer drug doxorubicin
when spiked into plasma sample. Doxorubicin is known to be deactivated upon
protein binding; hence the detection of the free drug is of clinical interest. Owing to
the presence of the polymer brush on the surface of the metallic substrate, only the
unbound amount of doxorubicin could get into the close proximity of the hot spots.
This phenomenon was confirmed by liquid chromatography-mass spectrometry
measurements. Furthermore, doxorubicin measurements were proved to be revers-
ible by carrying out experiments whereby drug-spiked plasma was injected into the
optofluidic platform, followed by injection of pure plasma after 250 s. The contin-
uously collected SERS spectra showed that doxorubicin detection was reversible
with exponential response constants of 43 and 95 s for partitioning and
departitioning, respectively. Furthermore, owing to the presence of thiol layers, the
authors were successful in detecting the tricyclic antidepressant amitriptyline hydro-
chloride and antiseizure medications carbamazepine and phenytoin at 20 μM in
spiked plasma. In conclusion, the same substrate could be used for multiple drug
detection, which is a very promising approach. The scientific community is looking
forward for further research developments to demonstrate the quantification power
of the platform applied to clinical samples.
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Although not exclusively related to the necessity of therapeutic drug monitoring,
SERS was shown to be powerful also in the detection of illicit drugs. The system
integration and miniaturization carried out in the last decade considerably increased
the chances of Raman and SERS spectroscopy to be employed in the field of clinical
forensics. Liu and coworkers published three consecutive studies during the last
3 years regarding the determination of amphetamines in human urine samples
[246–249]. The group also developed a portable kit, shown in Fig. 1.21, to facilitate
the multiplex determination of 3,4–methylenedioxymethamphetamine and
methcathinone. The study was carried out with 30 volunteers providing urine
samples. Briefly, the portable kit contains two sealed reagent containers, a standard-
ized packet of highly reproducible gold nanorod 2D arrays on silicon wafers, and a
handheld Raman device. Prior to the measurements, the human urine samples spiked
with the drugs were subjected to a 3-min pretreatment. The obtained results were
confirmed also by chromatographic measurements.

Overall, owing to the fingerprint specificity of Raman spectroscopy and the high
sensitivity of SERS, the technique can determine therapeutic and illicit drugs at
clinically relevant concentrations. However, work directed toward inhibiting the
fouling of the SERS-active substrate and the specific capturing of the drugs still

Fig. 1.21 Illustration of a portable kit for rapid SERS detection of drugs in real human urine: (I )
the urine sample and reagents; (II) the sampling of certain amounts of urine; (III) the mixing of urine
with T1 and T2; (IV) the layering of the mixture after fully shaking by hand; (V ) 2 μL of the
supernatant dropped and dried on 2D gold nanorods arrays, which were assembled on silicon wafer
and deposited on glass slides; (VI) SERS detection with a handheld Raman device (Reprinted with
permission from Han et al. [249]. Copyright (2015) American Chemical Society)
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needs to be performed before SERS can compete with the well-established reference
methods currently used in clinical chemistry laboratories.

5.4.2 Enzyme Activity Assays
Enzymes regulate almost all metabolic processes in cells, and the assessment of their
activity is crucial to either identify a special enzyme in order to prove its presence or
absence in the sample or to quantify the amount of the enzyme in the sample
[250]. SERS-based assays have been applied to assess the activity various enzymes,
including telomerase [193, 251–253], thiopurine S-methyltransferase [254–256],
and protease [257–261] activity.

Telomeres protect the ends of eukaryotic chromosomes by inhibiting the loss of
base pair sequences and conserving the genetic information stored in the chromo-
somes [262]. Telomere activity is controlled by erosion during cell division and, in
addition, determined by the telomerase activity. Telomerase or telomere terminal
transferase elongates chromosomes by adding TTAGGG sequences to their ends. In
normal somatic cells, this enzyme is highly suppressed; however, it was found that in
more than 85% of cancerous cells, telomerase activity is enhanced. This leads to the
so-called cell immortality and uncontrolled proliferation. Therefore, telomerase
activity is considered an important biomarker for cancer diagnosis
[263–265]. Zong and coworkers reported a dual-mode detection approach for
assessing telomerase activity based on colorimetry and SERS [251]. Using telomeric
elongation-assisted magnetic capturing of gold nanotags, a fast preliminary screen-
ing of the samples could be performed by the naked eye, using the colorimetric
functionality, while SERS quantitative analysis could also be carried out. The
platform employs two types of NPs: telomere substrate oligonucleotide
(TS primer)-modified gold shell-coated magnetic nanobeads (MBs) as the capturing
substrate and telomeric repeat complementary oligonucleotide (ATE)- and Raman
reporter-conjugated gold NPs (Au-Tag). If the clinical sample possesses telomerase
activity, then tandem telomeric repeats will be added to the TS primers on the
surfaces of the MB@Au@TS particles. The elongated telomeric sequences will
capture the Au-Tag NPs upon hybridization with ATE. This leads to a color change
and enhancement of the SERS signal due to the aggregation of the magnetically
separated NPs. If the sample does not present telomerase activity, the ATE-modified
Au-Tag cannot hybridize with the MB@Au@TS, and neither a color change nor a
SERS signal will be detected. Telomerase enzymes were extracted from human
cervical cells (HeLa), human breast cancer cells (SKBR3, MCF7), and normal
embryonic lung fibroblasts (MRC5). Quantitative analysis was carried out by dilut-
ing the cell extracts, and it was shown that telomerase activity of 1 cell/ml could be
reliably detected.

Shi and coworkers recently published a very well-founded study regarding the
detection of telomerase activity by SERS [193]. The authors first assessed the
feasibility of their approach by performing quantitative measurements with crude
telomerase extracts from HeLa cells. Then, they evaluated the selectivity of their
method by measuring the telomerase activity in the cancer cell lines HeLa, HT29,
and A549 and in the normal cell line HEK293. Furthermore, to test the capacity of
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their platform for ultra-early diagnosis of malignant disease, they mixed normal
HEK293 cells and HeLa cells in four different ratios. Additionally, samples from
colon cancer patients were also investigated, and their results were validated by the
gold standard method (see Fig. 1.22). In total, five samples from patients were
investigated. Finally, a telomerase inhibition assay was also carried out. For these
studies, quadratic SERS signal amplification via telomerase-triggered silver NP
assembly combined with ions-mediated cascade amplification was used. Namely,
silica microbeads were conjugated with the telomerase substrate primer via the
streptavidin-biotin binding reaction. In the presence of telomerase activity in the
sample, the primer will be extended via the TTAGGG repeat units.
Sulfhydryl-labeled single-stranded DNA served as the capture probe, and by
hybridizing with the extended part of TSP, a long double-stranded DNA would
form. This would provide numerous sulfhydryl groups for subsequent Ag NP
conjugation via Ag-S bonds. This assembly works as the primary amplification
element. Subsequently, the conjugated silver NPs were dissolved into Ag+ upon
the addition of H2O2. Ag

+ induced the aggregation of 4-amino-benzenthiol-mod-
ified gold NPs, creating highly active SERS hot spots. Based on the results
presented in this study, the platform could offer reliable and valuable information
for early cancer diagnosis.

In addition to telomerase activity, abnormal expression of certain proteases has
also been related to the presence of cancer or Alzheimer’s disease [266, 267]. Yazgan
and coworkers investigated two different SERS-based platforms for the quantifica-
tion of protease activity [258]. Spherical and rod-shaped gold NPs were used as
SERS-active substrates, while the molecule DTNB was employed as a Raman

Fig. 1.22 Results of telomerase activity SERS-based platform carried out on colon cancer tissues.
(a) SERS spectra of telomerase extracts of carcinoma tissue (purple), para-carcinoma normal tissue
(green), and the heat-inactive control (black). The Raman bands originate from the vibrational
modes of 4-amino-benzenethiol Raman reporter. (b) Histogram showing the results from five
patients with colon cancer. Purple bar represents carcinoma tissue, while green bar represents
para-carcinoma tissue (I0 and I are the SERS intensities at 1440 cm�1 in the absence and presence
of telomerase) (Reprinted from Shi et al. [193]. Copyright # 2015 Elsevier B.V. with permission
from Elsevier)
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reporter. The first analysis platform used gold-coated glass slides conjugated with
11-MUA (11-mercaptoundeconic acid) as a support material. When the sample
possessing protease activity was incubated on the surface of the platform, the
covalently immobilized Raman-labeled SERS probe was released from the surface
via the hydrolytic reaction catalyzed by the protease. Therefore, the SERS signal of
the DTNB molecule was negatively correlated with the enzyme concentration in the
sample. The second analysis platform used casein- or BSA-modified polystyrene
microtiter plates, coated with the labeled SERS probe. Upon hydrolytic activity, the
Raman probe with the peptide fraction was released from the surface and transferred
to the supernatant. The SERS signal measured in the aliquoted supernatant positively
correlated with the enzyme concentration. The platform with rodlike NPs on gold-
coated glass slides yielded the best results. Namely, a linear correlation between
protease activity and SERS signal in the range of 0.1–2 mU/ml and LOD and LOQ
of 0.43 and 0.3 mU/ml, respectively. At the end of their study, the authors success-
fully quantified the protease activity in a commercial enzyme preparation. A second
research group employed a novel “turn-on” SERS strategy based on non-cross-
linking aggregation of gold NPs [257]. Specifically, by first stabilizing
4-MBA-modified Au NPs with a short peptide substrate, their aggregation was
inhibited owing to their low isoelectric point. However, in the presence of a protease,
this peptide was cleaved and the gold NPs formed hot spots, considerably enhancing
the SERS signal of the reporter. Trypsin and thrombin were used as protease models,
considering their importance in clinical diagnosis, and diluted human serum samples
as matrix. The limit of detection was 85 fM for trypsin, and the experiments showed
good selectivity over other proteases.

As described in the previous section, therapeutic drug monitoring is crucial for
positive patient outcome. The pharmacokinetic and pharmacodynamic activity of
drugs is often governed by the metabolic characteristics of the individual patient. In
particular, the genetic differences in metabolic enzymes, such as thiopurine
s-methyltransferase (TPMT), in humans have a major impact on the therapeutic
response of drugs. This is the case for the immunosuppressive drug 6-mercaptopu-
rine, which is deactivated in the presence of high TPMT activity, reducing the
amount of parental drug available to form the active metabolite. Therefore, determi-
nation of TPMT activity in each patient before treatment is required in order to
improve the therapeutic response. März et al. performed lab-on-a-chip SERS mea-
surements on lysed red blood cells to assay TPMT activity [254], whereas Han et al.
investigated the conversion of 6-mercaptopurine to 6-mercaptopurine-ribose in
living cells by label-free SERS imaging [256]. In the first report, TPMT activity
was assessed based on the methylation of 6-mercaptopurine to
6-methylmercaptopurine in lysed red blood cells. The parental drug and the metab-
olite developed specific Raman signatures based on which the two molecules could
be clearly discriminated using linear discriminant analysis (LDA) (see Fig. 1.23).
Furthermore, confirmation of TPMT activity in lysed red blood cells was obtained
using a support vector machine classifier. The resulting accuracies were above 92%.

In the second study, the different orientation of 6-mercaptopurine and 6-mercap-
topurine-ribose on the surface of the SERS-active Au@Ag NPs also generated
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specific Raman spectra. In this study, the authors used a straightforward ratio of two
marker Raman bands to follow drug uptake and intracellular distribution, as well as
metabolism. For these tests, the concentrated Au@Ag NPs were incubated with
different concentrations of 6-mercaptopurine. After the removal of the free drug by
centrifugation, the drug-conjugated NPs were re-suspended in culture media and
incubated for 5 h with human lung adenocarcinoma cells. After washing steps to
remove the loosely attached NPs, measurements were carried out at 0, 2, 4, 6, 8, 10,
16, 20, and 24 h. The authors noticed that owing to the uneven distribution of the
parental drug in the cells, the transformation ratio of 6-mercaptopurine to 6-mercap-
topurine-ribose was less at sites of high concentration, and it reduced at sites of low
concentration. This and other SERS studies [268–285] on drug metabolism path-
ways can offer valuable information for drug development.

Overall, SERS offers multiple ways to monitor and assess enzymatic activity that
can have a crucial impact on, i.e., cancer diagnosis, drug uptake, and drug metab-
olism. This is very important for improving patient outcomes and to reduce the costs
associated with medical treatments.

6 Conclusions and Future Perspectives

The studies described in this chapter are just a small fraction of the publications
related to SERS as an analytical method for medical diagnosis and were selected
based on their significance. However, we are convinced that we did not manage to
fully cover all the developments in the field, and we ask our readers who are
interested in this topic to use this book chapter as a starting point for their research.

SERS was discovered more than 40 years ago. During these years, it transitioned
from fundamental studies where metal-molecule interactions were investigated, such
as food and environmental safety, to medical diagnosis. As demonstrated in this
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Fig. 1.23 LDA model of incubated test blood sample and test blood samples without incubation.
(a, b) Histograms of LDA values of spectra from each group. (c) LDA loading with assignment of
bands appearing in SERS spectrum of 6-mercaptopurine (blue) and 6-methylmercaptopurine
(green) (März et al. [254]. Copyright # Springer-Verlag 2011, with permission of Springer)
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chapter, SERS can be used for biomarker detection for Alzheimer’s disease, myo-
cardial infarction, diabetes, various types of cancer, and malaria, and it can offer
information for therapeutic drug monitoring and enzyme activities. Despite the large
number of publications, SERS is still not commercially available and is mainly used
in academic research laboratories. There are multiple reasons behind this. One of the
challenges is related to the preparation of SERS-active substrate. As described in the
previous sections, most of the time, preparation of these substrates is labor-intensive.
Additionally, their shelf life is seldom tested and needs to be considered for future
studies and applications. Ideally, these platforms must offer high stability over time,
reliable SERS enhancement, ease of use, and cost-efficiency. This is especially
important for medical diagnosis, where a large number of samples is expected to
be analyzed in a short time in non-laboratory environments, such as during field
screening. Once the challenge with the platform is overcome, it could be easily
combined with the existing high-performance portable Raman spectrometers. But
before clinical applications, researchers must present proof that SERS brings con-
siderable improvements as compared with chromatographic separation-based
methods or traditional immunoassays. The topic is extremely interesting, and the
work of researchers in the next years will demonstrate whether SERS could replace
the reference methods in the clinical chemistry laboratories.
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