
Towards a Fine-Grained Privacy-Enabled
Attribute-Based Access Control Mechanism

Que Nguyet Tran Thi(&) and Tran Khanh Dang

Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
{ttqnguyet,khanh}@hcmut.edu.vn

Abstract. Due to the rapid development of large scale and big data systems,
attribute-based access control (ABAC) model has inaugurated a new wave in the
research field of access control. In this paper, we propose a novel and com-
prehensive mechanism for enforcing attribute-based security policies stored in
JSON documents. We build a lightweight grammar for conditional expressions
that are the combination of subject, resource, and environment attributes so that
the policies are flexible, dynamic and fine grained. Besides, we also present an
extension from the ABAC model for privacy protection with the approach of
purpose usage. The notion of purpose is associated with levels of data disclosure
and constraints to support more fine-grained privacy policies. A prototype built
for the proposed model using Java and MongoDB has also presented in the
paper. The experiment is carried out to illustrate the relationship between the
processing time for access decision and the complexity of policies.

Keywords: Attribute based access control model
Purpose based access control model � Privacy protection � Privacy preserving

1 Introduction

Since the rapid development of large scale, open and dynamic systems, the short-
comings of traditional access control models (e.g. Discretionary Access Control
(DAC), Mandatory Access Control (MAC), Role based Access Control (RBAC) [1])
have gradually revealed, for example, applied for only closed systems, role explosion,
complexity in compulsory assignments between users, roles, and permissions, and
inflexibility in specifying dynamic policies and contextual conditions. Attribute based
access control models (ABAC) have been recently investigated [2–4] and considered as
one of three mandatory features for future access control systems [5].

Extensible Access Control Markup Language (XACML) 3.0 is an industrial OASIS
standard1 for enforcing access control policies based on attributes, considered as a
predecessor of ABAC. In XACML policies, every operation on attributes even trivial
conditions such as comparison requires function and data type definitions. This has
caused the verbosity and difficulty in the specification of policies. Moreover, XACML
is based on XML, which is not well-suited for Web 2.0 applications. Meanwhile,

1 https://www.oasis-open.org/committees/xacml/.

© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXVI, LNCS 10720, pp. 52–72, 2017.
https://doi.org/10.1007/978-3-662-56266-6_3

https://www.oasis-open.org/committees/xacml/

JavaScript Object Notation (JSON) language2 is the fat-free alternative of XML. In
[27], the experimental results indicate that JSON is remarkably faster and uses fewer
resources than XML. Thus, JSON is currently a light weight and widely used data
interchange format in the Web of Things. Moreover, since JSON is a subset of Java-
Script, it is easier to parse components of a policy into programming objects for further
processing. Besides, JSON has been used in many NoSQL databases for storage and
retrieval with the high performance. Such advantages of JSON have brought the
motivation for our work when using it to model attribute based policies.

Furthermore, our mechanism is built on the principle of the NIST Standard ABAC
model that an access decision is permitted only if the request satisfies conditions on
attributes of subject, resource and environment specified in policies. We also propose a
light-weight grammar for conditional expressions, which are human readable text and
enough robust to describe complex policies such as user, data, environment driven
policies. Besides, we also build an additional module by extending the ABAC model
for data privacy protection.

Privacy is a major concern in both of research and industrial fields due to dis-
semination of personal and sensitive data without user control, especially in mobile and
ubiquitous computing applications and systems. In [7], privacy is defined as the claim
of individuals, groups, or institutions to determine for themselves when, how, and to
what extent information about them is communicated to others. Most previous studies
have considered privacy protection in access control models as constraints on purpose
of data usage. The research on purpose based access control (PBAC) model has
recently drawn many interests, although it has developed since 2000s. However, to the
best of our knowledge, no research has integrated PBAC into ABAC. The novel
contribution of our work includes three main aspects: (1) using JSON to specify
attribute based policies, (2) integrating PBAC model into ABAC model and (3) de-
veloping the prototype by Java and MongoDB database for demonstrating privacy
preserving attribute based policy evaluation mechanism.

The rest of the paper is organized as follows. Section 2 gives a brief survey of
related works. Section 3 presents the overview of our approach. In Sect. 4, we intro-
duce the structure of policies and main components in our proposed model. Section 5
indicates the mechanism of the proposed access control model in details. The experi-
ment for evaluating the processing time is shown in Sect. 6. Concluding remarks and
future work are discussed in Sect. 7.

2 Related Work

The development of Information Technology, especially in the age of Big Data and
Internet of Things, causes the role explosion problem and increases the complexity in
permission management in RBAC models which have been dominant for a long time
[20, 21]. An emerging interest in addressing these problems is ABAC models, which
can be adaptable with large, open and dynamic environments [2, 3].

2 www.json.org.

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 53

http://www.json.org

In the common approach of ABAC, according to the NIST standard [2], autho-
rization decision is based on rules that simultaneously specify a set of conditions on
numerous attributes such as subject, object, action and environment for a certain valid
permission. There are many research works on ABAC. In [28], the authors have
presented a taxonomy of ABAC research which is demonstrated in Fig. 1. According
to the classification, our work focuses on the branches as follows: ABAC models, policy
language and confidentiality of attributes. In this survey, ABAC research about con-
fidentiality of attributes means that how to ensure the privacy of attributes in the model.
It has been also recognized that no research work in the survey have used JSON for
policy language and addressed data privacy protection in ABAC.

There are two fields for researching about ABAC models, pure ABAC models and
hybrid models. Several papers have provided various approaches for a general model.
In [4], the authors took a first consideration about formal connections between tradi-
tional access control models (DAC, MAC, RBAC) and ABACa which consists of
users, subjects, objects and their attributes. In this ABACa, the authors did not mention
the environment component in policies as well as the enforcement mechanisms. In [2,
3], the authors provided a definition of ABAC and considered about using ABAC in
organizations according to NIST standard. However, the implementation has not been
discussed yet in these papers. In another paper [29], Next Generation Access Control
(NGAC) takes advantages of graphs illustrating assignment and association between
attributes and values to perform access rights. It has provided benefits for policy review
and management. However, the cost for building such graphs and the complexity of the
policy evaluation algorithm increase significantly when the size of attribute domains
and the variety of data structure grow up. In hybrid models, majority of research works
have integrated traditional access control models (DAC, MAC, and RBAC) with
ABAC such as [21–23]. About policy language to express policy enforcement
mechanism in the above papers, several approaches such as XACML, logic pro-
gramming languages or UML have been proposed. For the last problem, the confi-
dentiality of attributes, access control models need to provide a mechanism which can
protect data attributes with the highest fine-grained level as possible. Attribute based
access control models can allow or not allow to access to each data attribute in various
context through attribute based policies. Purpose based access control (PBAC) model is
another approach to protect data privacy based on the concept of purpose of data usage.
A purpose compliance check in PBAC models depends on the relationship between
access purposes and intended purposes of data objects ranging from the level of tables
to the data cells [7–10]. In the beginning, Byun et al. [7] proposed the model with two
types of allowable and prohibited intended purposes. It was then extended with an
additional purpose, i.e. conditional intended purpose [9]. Several works have been
conducted on enhancing this model by combining with role based access control (e.g.,
[11–14]), implementing with relational database management systems (DBMSs) with
the technique of SQL query rewriting [15] and integrating with MongoDB [16].
Recently, action-aware with indirect access and direct access has also been considered
in policies [17]. Nevertheless, research works about PBAC have not expressed privacy
policies with the approach of attribute based policies yet except of the paper in [30].
However, such PBAC models have not provided the fine granularity for privacy
policies. In such approaches, there are three setting levels for disclosing values of

54 Q. N. T. Thi and T. K. Dang

F
ig
.
1.

A
ta
xo

no
m
y
of

at
tr
ib
ut
e
ba
se
d
ac
ce
ss

co
nt
ro
l
re
se
ar
ch

[2
8]

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 55

attributes, that is, show, hide and partial. All data items of the same attribute have the
same disclosure level for the same purpose. Besides, such privacy policies have also
not considered about contextual conditions.

With the different approach compared to related works, our research takes a new
mechanism for enforcing attribute based policies using the JSON language and pro-
poses an additional module for data privacy protection based on the principle of PBAC
and its enhancement.

In summary, our work contributes a novel and comprehensive attribute based
access control mechanism which can preserve data privacy. In this mechanism, we use
JSON which is more light-weight than XML and widely used in Web 2.0 applications
as the language for policy specification. The additional module, PurJABAC, is inte-
grated into the model based on the purpose concept to describe attribute based data
privacy policies. Our approach can support fine grained policies with contextual and
attribute based constraints and protect data attributes with various disclosure levels
according to the tree of data generalization.

3 The Overview

In this paper, we propose a model, called as the JABAC model which is an integration
between ABAC, PBAC and using JSON to express attribute based security policies to
regulate data accesses and protect data privacy. We also provide a mechanism to
execute this model. In this section, we briefly describe the access control mechanism of
our proposed model. In Fig. 2, requests from applications are sent to the Policy
Enforcement Point module. For each request, all necessary data is retrieved. Both of
data and the request are processed and converted to the JSON based request context.
After that, it is sent to the JABAC module to be decided whether it is permitted or
denied according to the predefined attribute based policies stored in JSON document
store database. In addition, before returning data to the requester, JABAC calls the
PurJABAC module to filter data according to privacy policies. We achieve privacy
awareness through the PurJABAC module which enforces privacy policies to show,
hide and generalize data before the requester receives them.

Fig. 2. Overview of the approach

56 Q. N. T. Thi and T. K. Dang

A JSON based request context contains information of a request string and the
context at the time of requesting. Any request issued from the application is converted
to the structure of a request context in the JSON format by Policy Enforcement Point. If
there exists at least one rule requiring requested data during the process of policy
evaluation, the data queried from the application database will be converted into the
JSON format and filled in the request context for processing.

After evaluating necessary policies, JABAC returns a response to Policy Enforce-
ment Point for the decision result. The response also contains the final data if they are
filtered according to related privacy policies by the PurJABAC module. Policy
Enforcement Point has the responsibility to convert data into the format of application.

The communication between the application, the application database and JABAC
uses the JSON format to exchange data. Therefore, JABAC is independent from the
technology of application and application database.

Unlike the traditional purpose based access control models, in the approach, all
degrees of privacy policies from the table one to the cell one are expressed in the same
way under the form of attribute based policies through generalization functions. Fur-
thermore, we take attribute based conditions into consideration for privacy policies.

The structure of access control and privacy policies is identical. Therefore, in
general, we provide a simple but sound and comprehensive solution. The details of the
JABAC model and its mechanism will be provided in Sects. 4 and 5.

4 The JABAC Model

We describe the proposed access control model in this section before describing the
mechanism to enforce this model. When a subject s accesses an object o, the autho-
rization process is carried out through two stages called as 2-stage authorization:
(1) access policy authorization and (2) privacy policy authorization. The first step using
access policies verifies that the request is legitimate with rights for the subject to access
data. After that, the request is transferred to the second stage for checking privacy
compliance based on privacy policies.

Access policies describe access rights of subjects on resources, and conditions
compositing of attributes of subject, action, resource, and environment as well as
obligations that are instructions from Policy Decision Point to Policy Enforcement
Point to be performed before or after data results is returned to the requester.

Privacy policies describe access restriction on data objects which need to be pre-
served privacy. The structure of privacy policies is similar to access policies. It also
includes subject, action, resource, environment, obligations and attribute based con-
dition. However, each component contains the slightly different meaning. The com-
ponents of subject, action, resource, environment in privacy policies indicate attribute
based conditions and the component of obligation contains generalization functions
applied on values of data objects for privacy protection.

In privacy preserving access control, the purpose concept plays an important role in
privacy policies to describe a valid reason for data usage. When users send a request to
query data, they must provide their access purpose to the system. The access purpose is
then verified whether the subject is permitted for using it in the access policy

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 57

authorization stage. In our model, this value, access purpose, is considered as an
attribute of the environment entity. However intended purpose is not implicitly men-
tioned, it is described through a conditional expression based on the access purpose
attribute identifying which values are valid for data usage and generalization (Fig. 3).

4.1 Policy Structure

In this section, we present a general structure used for both of access and privacy
policies. However, for each use case, we will describe how to specify policies through
examples. The mechanism of processing policies works slightly differently.

General Structure. In our model, a policy set includes policies. Each policy includes
rules. Each rule defines a conditional expression that is a critical component in the
policy. The rule returns a value specified in Effect if the condition is true. The target
component, including three sub components Subject, Action and Resource, is used to
pre-select applicable policies for access decision. To avoid conflicts between policies
and rules, the policy and rule combining algorithms such as permit override, deny
override, etc. are applied into the policy set and policies. The implementation for rule
combining algorithm is inherited from XACML [26]. The final component in a rule is
obligations indicating actions which will be performed before or after a final response
is established by Policy Enforcement Point. The relationship diagram between policy
set, policies and rules are illustrated in Fig. 4. The structure of a policy in the JSON
format is illustrated in Fig. 5. Its properties are described in details in Table 1.

In the above structure, the condition component <conditionalExpr> is written
according to the below grammar (Fig. 6):

It can be seen that the operands in the condition expression are attributes from
Subject, Action, Resource, ResourceContent and Environment or specific values. The
values of attributes are loaded from the request context. For missing values, JABAC

Fig. 3. The components of ABAC model for privacy protection

58 Q. N. T. Thi and T. K. Dang

Fig. 4. The relationship diagram of components in policy set

Fig. 5. The JSON structure of policy

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 59

Table 1. The description of the fields in a policy

Level Field name Type Description

PolicySet PolicyCombiningAlgID String Indicate which combining
algorithm is used to combine
the results of evaluating
policies in the policyset

PolicySet.
Policy

Policies Array of
documents

Contain a list of policies

PolicySet.
Policy

PolicyID String Indicate policy code

PolicySet.
Policy

RuleCombiningAlgID String Indicate which combining
algorithm is used to combine
results of rule evaluation in a
policy

PolicySet.
Policy

Target Embedded
document

Indicate which subject, action,
resource is applied for the
policy

PolicySet.
Policy.Target

Subject String Indicate ID of subject or ANY

PolicySet.
Policy.Target

Action String Indicate ID of action or ANY

PolicySet.
Policy.Target

Resource String Indicate name of resource or
ANY

PolicySet.
Policy

Rules Array of
embedded
documents

Contain a list of rules in each
policy

PolicySet.
Policy.Rules

RuleID String Indicate rule code

PolicySet.
Policy.Rules

Target Embedded
document

Indicate which subject, action,
resource is applied for a rule.
Similar to PolicySet.Policy.
Target

PolicySet.
Policy.Rules

Condition String Contain a Boolean expression.
If the condition is evaluated as
true, the rule returns the value
of the effect property

PolicySet.
Policy.Rule

Effect String Indicate whether the rule
returns permit or deny if the
condition is evaluated as true

PolicySet.
Policy.Rule

Obligations Array of
embedded
documents

Contain a list about obligations
which will be executed after
evaluating policies

PolicySet.
Policy.Rule.
Obligations

FunctionID String Contain the function name
which will be called to execute
for an obligation

(continued)

60 Q. N. T. Thi and T. K. Dang

will look up from database to fulfill the request context. More details will be presented
in Sect. 5.

A below example for a rule demonstrates the policy structure and the grammar of
conditional expression:

Doctors can read their patient records with the purpose of treatment. If the request
is denied, the system will email to the administrator John about the subjectID and the
access purpose of subject.

Table 1. (continued)

Level Field name Type Description

PolicySet.
Policy.Rule.
Obligations

Parameters Array of
embedded
documents

Contain a list of parameters of
the function defined in
FunctionID, including
ParaValue, SourceType, and
ParaType

PolicySet.
Policy.Rule.
Obligations.
Parameters

ParaValue Object Contain the value for the
parameter

PolicySet.
Policy.Rule.
Obligations.
Parameters

SourceType String If the ParaValue is a certain
attribute name, SourceType
contains the name of source of
attribute to get value for that
attribute. Example, ParaValue
is “subjectName” and
SourceType is “Subject”. If
SourceType has Null value, the
ParaValue field contains a
specific and direct value

PolicySet.
Policy.Rule.
Obligations.
Parameters

ParaType String The name of data type of
ParaValue. This is used to
convert into the data type of
the corresponding argument
declared in the function

PolicySet.
Policy.Rule.
Obligations

FullFillOn String Contain the value of permit or
deny which indicates the case of
executing an obligation. The
Permit value means that the
obligation will be executed
when the final result is Permit
and vice versa for the Deny
value

PolicySet.
Policy.Rule.
Obligations

Directive String Indicate when the obligation is
executed, namely, before or
after data results are returned to
the subject

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 61

RuleID: “ARU001”,
Target: {

Subject: “ANY”,
Action: ”read”,
Resource: ”patients”},

Condition: “Subject.role = ' doctor ' AND
ResourceContent.doctorID = Subject.subjectID
AND Environment.accessPurpose = 'treatment '”,

Effect: permit,
Obligations:[{

FunctionID: “email”,
Parameters: [{

ParaValue: “john@gmail.com”,
 SourceType: Null,
 DataType: “String”},
 {ParaValue: “subjectID”,
 SourceType: “Subject”,
 DataType: “String”}],

FullFillOn: “deny”,
Directive: “after”}]

With the above rule, a doctor can read only patient records if he is a doctor and his
subjectID equals to the doctorID in each patient record. By obligations, if the request is
denied, the information of subjectID will be sent to john@gmail.com by calling the
function email after the response is returned to the requester. The attributes role,
subjectID of subject, the attribute accessPurpose of environment, and the attribute
doctorID of resource content keep values in the request context. If they cannot be
found, the system will call Policy Information Point to look up them in the application
database and the JABAC database. If an error occurs or some values are missing, the
rule will return Indeterminant. If the target component does not match with the
information in the request context, the rule will return NotApplicable. To produce the
final result, the mechanism will take advantage of the rule and policy combing algo-
rithms specified in the policy to make a decision when evaluating rules and policies in
the loop. The structure of request context and details of the mechanism will be pre-
sented in Sects. 4.2 and 5 respectively.

When a request is evaluated as permit, it does not ensure that all data corresponding
to the request will be accessed by the subject. For example, Alice with the role of
doctor can read the records of her patients according to the above rule. However, due to
privacy, Bob, one of her patients, only wants his information about address, social
security number, and birthdate to be partially shown to his doctor. Thus, in our pro-
posed model, Bob can define privacy policies to protect his data. However, it can
appear special cases defined by the highest security administrative to bypass his privacy
policies such as standard regulations of the organization. In this paper, such delegation
problem has not been mentioned yet.

62 Q. N. T. Thi and T. K. Dang

Privacy Policies. They have the same structure with the general one but it is slightly
different about the use of components. The obligations in privacy policy play the role of
expressing how to generalize the value of data item to protect privacy. In our mech-
anism, an obligation in privacy policies associates with the special function
MakeGeneralization (field name, data disclosure level) for hiding details of data.

Fig. 6. The grammar of conditional expression

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 63

It takes two parameters; the name of the field which needs to be protected and the level
of data disclosure for privacy preserving. The definition of data disclosure level is
presented as below.

Data Disclosure Level (DL). DL of data item represents the level of data generalized
in the Domain Generalization Hierarchy (DGH). Based on DL, data are generalized
into a new value according to Value Generalization Hierarchy (VGH) generated from
DGH. The concepts of VGH and DGH are explained as follows: Each attribute has a
range of values designated by a domain. For data privacy preserving, the generalization
process is applied to the value domain of the attribute and establishes a DGH tree. Each
value in the domain contains many generalized value in generalized domains. A set of
these values with the order of generalization process establishes a VGH tree. The
formal definitions for DGH and VGH tree can be seen in [24].

Figure 7 describes a DGH tree and VGH tree for the attribute domain Birthdate. In
this example, the number of data disclosure levels of birthdate is five, in which the
smallest number (DL0) indicates the data does not require any privacy protection,
whereas the highest number indicates the data will be hidden with the keyword “*”.

In summary, to specify policies for privacy protection, access purpose is defined as
an attribute of environment; obligations is modeled as an indicator for data general-
izations. For example, the below privacy rule PRU001 indicates “The information
about birthdate and social security number of Bob who has the patientID 10001 are
generalized according to the following levels: 2 (only displaying the year of birthdate),
and 1 (not displaying any information of the string) respectively when any subject read
the patient record of Bob with the access purpose of treatment”. Thus, the rule PRU001
is specified as follows:

The components such as Effect and FullFillOn will be discarded because they have
no meaning in privacy policies. The PurJABAC module retrieves privacy policies and
applies the MakeGeneralization function for related fields in each document in
ResourceContent.

Fig. 7. Domain generalization hierarchy tree

64 Q. N. T. Thi and T. K. Dang

Take an example that Alice, who has the subjectID 20001, sends a request to
database to read her patient records with the access purpose “treatment”. Alice is
allowed but information about birthdate and social security number of Bob is gener-
alized by PRU001. For instance, Table 2 shows patient records in the database. There
are only two records of Bob and Kitty which Alice can see due to the rule ARU001.
Besides, the information of Bob displays only the year of his birthdate and his ssn with
the special character “*” due to the rule PRU001 (ref. Table 3). In the next section, the
structure of the request context is presented in details.

RuleID: “PRU001”,
Target: {

Subject: ANY,
Action: read,
Resource: patients},

Obligations: [
 {FunctionID: “MakeGeneralization”,

Parameters: [
 {ParaValue: “Birthdate”,
 SourceType: “ResourceContent”,
 DataType: “String”},
 {ParaValue: 2,

DataType: “Integer”}],
FullFillOn: Null},
{FunctionID: “MakeGeneralization”,
Parameters: [

 {ParaValue: “SSN”,
 SourceType: “ResourceContent”,
 DataType: “String”},
 {ParaValue: 1,
 SourceType: Null,

DataType: “Integer”}],
FullFillOn: Null}],

Condition: “ResourceContent.patientID = '10001' AND
Environment.accessPurpose = 'treatment'”,

Effect: null

Table 2. An example of patient records

patientID patientName birthdate ssn doctorID

10001 Bob 1/13/1990 12345789 20001
10002 Paul 12/10/1980 12345999 20002
10003 Kitty 3/13/1970 12345777 20001

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 65

4.2 The Request Context Structure

The structure of a request context is very important for the JAPAC mechanism. A re-
quest context contains the components such as Subject, Resource, Action and Envi-
ronment. The below example demonstrates the structure of the request context. Each

Table 3. An example of patient records returned to alice

patientID patientName birthdate ssn doctorID

10001 Bob 1990 * 20001
10003 Kitty 3/13/1970 12345777 20001

Subject: {
SubjectID: "Alice",
Attributes: [{

AttributeID: "Role",
AttributeType: "String",
Value: "doctor"}]},

Resource: {
ResourceID: "db.Patients",
ResourceRequest: "db.Patients.find({doctorID:

'20001'})",
ResourceContent: [

{ patientID : "10001",
patientName: "Bob",
birthDate:”1/13/1990”,
ssn:”12345789”,
doctorID:”20001”},

{ patientID : "10003",
patientName: "Kitty",
birthDate:”3/13/1970”,
ssn:”12345777”,
doctorID:”20001”}],

Attributes: [{
AttributeID: "SelectedFields",
AttributeType: "Array",
Value: “['patientID',

'patientName', 'birthDate' 'ssn', 'doctorID']"}]},
Action: {

ActionID: "READ",
Attributes: []}

Environment: {
EnvironmentID: Null,
Attributes: [{

AttributeID: "WorkingTime",
AttributeType: "DateTime",
Value: "14:30"}]}

66 Q. N. T. Thi and T. K. Dang

part contains ID and its attributes. Especially, the Resource component includes
ResourceContent which contains data queried from the original request and inserted by
Policy Enforcement Point into the request context.

In our model, JABAC receives a request which must comply with the designed
structure in the JSON format and contains information about the request such as
subject, action, resource and environment. The system then analyzes the request and
evaluates whether it is permitted or denied. After evaluating, JABAC calls the Pur-
JABAC model to filter data for privacy protection.

In this section, the structure of components has been introduced in details. How-
ever, the mechanism for enforcing such policies has not been mentioned yet. In the next
section, we present the mechanism of evaluating access control policies and processing
data based on privacy policies.

5 The JABAC Mechanism

In this work, we utilize the concepts in XACML such as Policy Enforcement Point
(PEP), Policy Decision Point (PDP), Policy Information Point (PIP), Policy Adminis-
tration Point (PAP) and Obligations. PEP takes responsibility for receiving requests
from applications, converting into request contexts in the JSON format, sending them to
PDP for evaluating whether they are permitted or not, filtering and hiding data according
to privacy policies and finally executing obligations of related access control policies.
PDP receives the JSON request contexts to check access rights with access control
policies. PIP has the feature of collecting information of attributes if PDP cannot find
them in the request contexts. PAP represents the module of specifying policies. Obli-
gation is the module of executing obligation functions of access control policies. With
obligations specified in privacy policy, the PurJABAC module has a different mecha-
nism to enforce. The below section will describe the data flow of our model.

The main processes in the data flow of our model depicted in Fig. 8 are described
as follows:

1. PEP receives the access request consisting of the components: subject, action, and
resource.

2. PEP creates another request, called request context, for policy decision from the
access request fulfilled with the attributes of subject, action, resource, and envi-
ronment and then sends to PDP for access authorization.

3. PDP retrieves the list of access policies from database.
4. For each policy, PDP checks whether the target element of the policy (i.e. subject,

action, resource) matches with the corresponding components of the request
context by the Target Matching module. If it returns “successfully matching”, all
rules of this policy are examined. Rules satisfying the target component will be
processed in the next step.

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 67

5. In this step, the condition component of applicable rules is evaluated by the module
ConditionalExpr Parser and Evaluator. ConditionalExpr Parser and Evalu-
ator uses the open source ANTLR3 with the grammar presented in Sect. 4.1 to
evaluate the expression.

6. The module Condition Parser and Evaluation sends requests to Policy Infor-
mation Point (PIP) to retrieve values for operands.

7. PIP collects values from the request context and database; and then sends them to
ConditionalExpr Parser and Evaluator for expression evaluation.
Depending on the combining rule algorithm specified in the component Pol-
icyCombiningAlgID in the current policy, PDPwill continue to check the next access
rule (e.g. permit overrides) or terminate with the result deny (e.g. deny overrides).
Similarly, depending on the combining algorithms for policies specified in the
component RuleCombiningAlgID of PolicySet, PDPwill terminate together with the
result of policy evaluation or keep on checking with other applicable policies.

8. After evaluating all applicable policies from step 4 to step 7, PDP returns the
response to PEP. The response can be permit or deny.

9. In the case of permit, PEP asks the PurJABAC module for filtering and hiding
data in ResourceContent of the request context.
To generalize data for privacy protection, PurJABAC retrieves privacy policies
which their target component matches with the request context and then read data
documents in ResourceContent. For each document, PurJABAC selects the set of
privacy policies which can be applied to the current document and then computes
the highest disclosure level for each field name from those privacy policies. Take
the example in Sect. 4; we assume that there have two privacy rules for Bob and
one privacy rule for Kitty. The first one is PRU001 described above and the second
one is PRU002 which allows showing the year and the month of birthdate (the
lower level than PRU001) in the case of treatment purpose. Thus, PRU001 wants
to generalize the birthdate of Bob into the year level meanwhile the birthdate of
Kitty is not influented by PRU001. Therefore, the PurJABAC module chooses the
highest disclosure value, DL02 for Bob and DL01 for Kitty to generalize their
birthdate.

10. In the case ResourceContent has not been fulfilled in the request context due to no
prior policy requires resource data, the PurJABAC module will send the request to
PIP for querying resource content.

11. After checking all objects in the result set, PEP calls Obligation Services to per-
form obligations. The obligations are executed before or after PEP returns results to
the requester. If any function in obligations returns an exception, PEP will not send
data to the requester however the access is permitted. For example, an obligation
requires the requester to accept terms and conditions. If she/he refuses to perform
this obligation, her request is denied.

12. PEP returns data results to the requester.

3 www.antlr.org.

68 Q. N. T. Thi and T. K. Dang

http://www.antlr.org

In general, the components of our model and its mechanism are presented in this
paper. With our best knowledge, no research work has integrated PBAC into ABAC.
Besides, we extend the fine grained feature for access control policies through the
conditional expression specified by our grammar and for privacy policies through the
generalization function with various data disclosure levels.

6 Evaluation

We carried out experiments about the relevance between processing time of the PDP
module and complexity of rules. The system configuration for the experiments is Dell
Vostro 3650, 8 GB RAM, Intel core i5-3230M 2.60 GHz. The prototype is imple-
mented by Java SDK, Spring Framework and MongoDB 3.0.7 for storing policies and
data. The target database includes 20 collections with 20 attributes and 200 documents
for each collection generated randomly. Each subject, action, resource and environment
contains 20 attributes.

The following Table 4 indicates the results after five experiments. For each
experiment, we measure processing time with three times (e.g. T1, T2 and T3). From
the Table 1, it can be seen that the processing time increases with the complexity of

Fig. 8. The data flow diagram of the proposed access control model

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 69

rules. However, when there was a fivefold and twofold increase in the number of rules
from 10 to 50 and from 50 to 100, the processing time only increased by 2–3 ms,
approximately 13–25%.

About the fine granularity, our attribute based access control model can describe
various attribute based policies due to the flexibility of conditional expressions built
under the proposed grammar. Compared to other approaches, our model can specify
policies with the conditions based on the combination of attributes of subject, resource,
and environment. Besides, by using JSON, our model can easily integrate with Web
2.0 applications as well as devices and systems in Internet of Things.

7 Conclusion and Future Work

In this paper, we have proposed the fine grained attribute and purpose based access
control model JABAC for privacy protection with the mechanism of 2-stage autho-
rization. A conditional expression based on attributes of subject, resource, action and
environment are built on the ANTLR grammar, which is enough to describe various
policies. Besides, an additional module PurJABAC is integrated into JABAC for pri-
vacy protection. In our approach, privacy policies are specified under the same
structure of attribute based policies. Purposes are associated with the new concept,
disclosure level, for indicating the degree of generalization for privacy protection. They
are demonstrated as obligations in privacy policies which call MakeGeneralization
functions to generalize data.

However our model takes a novel approach in the research field of attribute access
control and purpose based access control, there have still some disadvantages. In
future, we will improve the grammar for conditional expressions to describe more
complex policies which can retrieve data from multiple sources not only from the
request context. Furthermore, the solution currently supports the data which are not
allowed many levels of embedded documents. Therefore, the complexity of data will be
investigated as well. Besides, the problems such as policy review and administration
have not been mentioned yet in this article. They will be promising research problems
in the future.

Acknowledgements. This research is funded by Vietnam National University Ho Chi Minh
City (VNU-HCM) under grant number C2017-20-11.

Table 4. The Results of Experiments

ID Number
of rules

Logical expressions
in each rule

Arithmetic
expressions in each
rule

T1
(ms)

T2
(ms)

T3
(ms)

1 1 1 1 5 4 4
2 1 10 10 8 8 7
3 10 10 10 12 11 12
4 50 10 10 15 14 14
5 100 10 10 17 17 16

70 Q. N. T. Thi and T. K. Dang

References

1. Bertino, E., Ghinita, G., Kamra, A.: Access Control for Databases: Concepts and Systems.
Now Publishers, Hanover (2011)

2. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M., Schnitzer, A.,
Sandlin, K., Miller, R., Scarfone, K.: Guide to Attribute Based Access Control (ABAC)
definition and considerations (draft). NIST Special Publication, 800, 162 (2013)

3. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer 2, 85–88
(2015)

4. Jin, X., Krishnan, R., Sandhu, R.: A Unified attribute-based access control model covering
DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.)
DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31540-4_4

5. Sandhu, R.: The Future of access control: attributes, automation, and adaptation. In:
Krishnan, G.S.S., Anitha, R., Lekshmi, R.S., Kumar, M.S., Bonato, A., Graña, M. (eds.)
Computational Intelligence, Cyber Security and Computational Models. AISC, vol. 246,
p. 45. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1680-3_5

6. Westin, A.F.: Privacy and Freedom. Atheneum, New York (1967)
7. Byun, J.-W., Bertino, E., Li, N.: Purpose based access control of complex data for privacy

protection. In: Proceedings of the Tenth ACM Symposium on Access Control Models and
Technologies (2005)

8. Byun, J.W., Li, N.: Purpose based access control for privacy protection in relational database
systems. VLDB J. 17(4), 603–619 (2008)

9. Kabir, M.E., Wang, H.: Conditional purpose based access control model for privacy
protection. In: Proceedings of the Twentieth Australasian Conference on Australasian
Database, vol. 92, pp. 135–142. Australian Computer Society, Inc. (2009)

10. Wang, H., Sun, L., Bertino, E.: Building access control policy model for privacy preserving
and testing policy conflicting problems. J. Comput. Syst. Sci. 80(8), 1493–1503 (2014)

11. Kabir, M.E., Wang, H., Bertino, E.: A role-involved conditional purpose-based access
control model. In: Janssen, M., Lamersdorf, W., Pries-Heje, J., Rosemann, M. (eds.)
EGES/GISP 2010. IFIP AICT, vol. 334, pp. 167–180. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15346-4_13

12. Kabir, M.E., Wang, H., Bertino, E.: A conditional purpose-based access control model with
dynamic roles. Expert Syst. Appl. 38(3), 1482–1489 (2011)

13. Ni, Q., Lin, D., Bertino, E., Lobo, J.: Conditional privacy-aware role based access control.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 72–89. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74835-9_6

14. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C.M., Karat, J., Trombeta, A.: Privacy-aware
role-based access control. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(3), 24 (2010)

15. Colombo, P., Ferrari, E.: Enforcement of purpose based access control within relational
database management systems. IEEE Trans. Knowl. Data Eng. 26(11), 2703–2716 (2014)

16. Colombo, P., Ferrari, E.: Enhancing MongoDB with purpose based access control. IEEE
Trans. Depend. Secur. Comput. (2015, will appear)

17. Colombo, P., Ferrari, E.: Efficient enforcement of action-aware purpose-based access control
within relational database management systems. IEEE Trans. Knowl. Data Eng. 27(8),
2134–2147 (2015)

18. Pervaiz, Z., Aref, W.G., Ghafoor, A., Prabhu, N.: Accuracy-constrained privacy-preserving
access control mechanism for relational data. IEEE Trans. Knowl. Data Eng. 26(4), 795–807
(2014)

Towards a Fine-Grained Privacy-Enabled ABAC Mechanism 71

http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-81-322-1680-3_5
http://dx.doi.org/10.1007/978-3-642-15346-4_13
http://dx.doi.org/10.1007/978-3-642-15346-4_13
http://dx.doi.org/10.1007/978-3-540-74835-9_6

19. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST
standard for role-based access control. ACM Trans. Inf. Syst. Secur. (TISSEC) 4(3), 224–
274 (2001)

20. Fuchs, L., Pernul, G., Sandhu, R.: Roles in information security–a survey and classification
of the research area. Comput. Secur. 30(8), 748–769 (2011)

21. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access control. IEEE
Comput. 43(6), 79–81 (2010)

22. Huang, J., Nicol, D.M., Bobba, R., Huh, J.H.: A framework integrating attribute-based
policies into role-based access control. In: Proceedings of the 17th ACM symposium on
Access Control Models and Technologies, pp. 187–196. ACM (2012)

23. Rajpoot, Q.M., Jensen, C.D., Krishnan, R.: Attributes enhanced role-based access control
model. In: Fischer-Hübner, S., Lambrinoudakis, C., Lopez, J. (eds.) TrustBus 2015. LNCS,
vol. 9264, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22906-5_1

24. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppres-
sion. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 571–588 (2002)

25. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies and
privacy policies. In: Proceedings of the 13th ACM Symposium on Access Control Models
and Technologies, pp. 133–142 (2008)

26. Rissanen, E.: eXtensible Access Control Markup Language (XACML) version 3.0
(committe specification 01). Technical report, OASIS (2010). http://docs.oasisopen.org/
xacml/3.0/xacml-3.0-core-spec-cd-03-en.Pdf

27. Nurseitov, N., et al.: Comparison of JSON and XML data interchange formats: a case study.
In: Caine 2009 (2009)

28. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based access
control. ACM Comput. Surv. (CSUR) 49(4) (2017)

29. Ferraiolo, D., et al.: Extensible Access Control Markup Language (XACML) and Next
Generation Access Control (NGAC). In: Proceedings of the 2016 ACM International
Workshop on Attribute Based Access Control (2016)

30. Thi, Q.N.T., Si, T.T., Dang, T.K.: Fine grained attribute based access control model for
privacy protection. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold,
E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 305–316. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48057-2_21

72 Q. N. T. Thi and T. K. Dang

http://dx.doi.org/10.1007/978-3-319-22906-5_1
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.Pdf
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.Pdf
http://dx.doi.org/10.1007/978-3-319-48057-2_21
http://dx.doi.org/10.1007/978-3-319-48057-2_21

	Towards a Fine-Grained Privacy-Enabled Attribute-Based Access Control Mechanism
	Abstract
	1 Introduction
	2 Related Work
	3 The Overview
	4 The JABAC Model
	4.1 Policy Structure
	4.2 The Request Context Structure

	5 The JABAC Mechanism
	6 Evaluation
	7 Conclusion and Future Work
	Acknowledgements
	References

