
Chapter 3
Insect Pest Management in Stored Grain

Gregory J. Daglish, Manoj K. Nayak, Frank H. Arthur and
Christos G. Athanassiou

Introduction

Once cereal grain is harvested and put into storage, it provides a resource for a range
of insect pests of stored grain. With the exceptions of Sitophilus zeamais
Motschulsky (the maize weevil) (Giles and Ashman 1971), Prostephanus trunctatus
(Horn) (the larger grain borer) (Tigar et al. 1994), Sitotroga cerealella (Olivier)
(Lepidoptera: Gelechiidae) (the Angoumois grain moth) (Trematerra 2015), these
insects rarely attack grain in the field before harvest, but once grain is in storage there
is a degree of inevitability that insect infestation will occur. Insects can be carried
into storage via infested harvesters or other machinery (Sinclair and White 1980),
and infested grain can be moved from storage to storage during the postharvest
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handling of grain (Perez-Mendoza et al. 2004). Even without human help, field
studies have demonstrated the importance of flight in some species, and so flying
insects represent another source of infestation (e.g. Mahroof et al. 2010; Ridley et al.
2011a, b). This means that methods are needed to either disinfest grain or to protect it
from infestation during storage. The aim of this chapter is to review recent advances
in insect pest management in stored grain, focussing primarily on research published
in the last 10 years on chemical and non-chemical methods, ranging from methods
that are well established to those that are still being evaluated. As many papers have
been published on this broad topic, sometimes we cite only a few papers from the
many published to illustrate particular recent advances.

Disinfestation

Insecticides

For many years, the dichlorvos was available for grain disinfestation, but this
organophosphate (OP) is being phased out because of concerns about its chronic
health effects. Dichlorvos had the advantage over other OPs used on stored grain of
having considerable vapour action (Desmarchelier and Banks 1977), so it was a
useful treatment in situations where insufficient gas tightness was achievable for
fumigation to be effective, though resistance in Rhyzopertha dominica (F.) (the
lesser grain borer) has long been a concern (Zettler and Cuperus 1990). Dichlorvos
served a valuable purpose, and the loss of this insecticide has created a need for a
rapid disinfestant for situations where fumigation is not feasible because of poor gas
tightness or resistance to phosphine.

Fumigation

Phosphine and methyl bromide continue to be the main fumigants used in stored
products after many decades of use and despite issues facing each. For phosphine,
there has been a continued development of resistance in a range of species, and
much of the recent research on phosphine has been about understanding the impact
of resistance and providing a basis for improved fumigation ensuring control of
resistant types. In the case of methyl bromide, the restricted access to this fumigant
has stimulated the search for alternatives (Bell 2000), some of which have been
registered for use on stored grain.

Although phosphine resistance was detected in many countries around the world
in the 1970s, it was relatively uncommon at that time (Champ and Dyte 1976), but
studies since then have shown that the problem is increasing. This is demonstrated
by the fact that populations with resistant individuals can be common (e.g. Opit
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et al. 2012; Daglish et al. 2014, 2015), and that newer or stronger types of resistance
are emerging (e.g. Lorini et al. 2007; Pimentel et al. 2009; Jagadeesan et al. 2012;
Opit et al. 2012; Nayak et al. 2013). Obviously, the detection of phosphine resis-
tance raises concerns about its impact on fumigations, so, many recent papers have
investigated the practical significance of phosphine resistance. Daglish et al. (2002)
fumigated mixed-age populations of Sitophilus oyzae (L.) (the rice weevil) to
determine times to population extinction at constant concentrations. An important
finding was that the expression of resistance (i.e. time to population extinction)
depended on the concentration used. They tested a susceptible strain, a weakly
resistant strain and a strongly resistant strain, and found that differences between
strains were greatest at low concentrations and negligible at high concentrations
such as 1.5 mg L−1 (�1000 ppm). For at least one species, therefore, resistant
insects would be phenotypically susceptible in short fumigations with sufficiently
high concentrations. To a lesser extent, this was also the case with mixed-age
populations of susceptible, weakly resistant and strongly resistant R. dominica
(Lorini et al. 2007). In recent years, researchers have also investigated times to
population extinction in psocids of the species Liposcelis bostrychophila Badonnel
(Nayak and Collins 2008) and Cryptolestes ferrugineus (Stephens) (the rusty grain
beetle) (Kaur and Nayak 2015). By far the greatest threat is strongly phosphine
resistant C. ferrugineus, with an estimated time to population extinction of 10 days
at 2 mg L−1 (�1400 ppm) and 25 °C. Nayak et al. (2003) demonstrated the unique
ability of the eggs of the psocid Liposcelis bostrychophila Badonnel to delay its
development under phosphine fumigation as a way to survive a fumigation and
emerge to adults, several days after the end of fumigation. These authors have
recommended that to control these psocids using phosphine, a relatively low
concentration of phosphine should be applied for extended exposure times (e.g.
0.05 mg L−1 for 16 days) that should allow all eggs to hatch to the much less
tolerant nymph stage.

Several studies have been published recently on phosphine fumigation trials and
these have had a focus on controlling resistant insects. Rajendran and Muralidharan
(2001) carried out trials on bagged paddy rice stored outdoors and inside ware-
houses in southern India. There was considerable loss of phosphine from the
sheeted bag stacks, despite using new sheets and ensuring that sheets were weighed
down with sand snakes, and this was particularly so for the outdoor stacks which
had lost phosphine at about twice the rate that indoor stacks did. The authors
attributed the loss of phosphine to several factors including sorption by the paddy
rice, and permeation and leakage through the fumigation covers, and they suggested
that the registered application rate of 3 g t−1 of phosphine (released from alu-
minium phosphide) was probably insufficient to control resistant populations. In
another paper, Wang et al. (2006) reported the results of a Chinese study on
phosphine fumigation of paddy rice in sheeted indoor bag stacks. The application
rate was 1.67 g m−3 of phosphine (released from aluminium phosphide) based on
the enclosed bag stack volume but the mean maximum concentration was about
50% lower, and the authors attributed this mainly to sorption. Although all natural
and caged insects were dead after 21 days of fumigation, the authors raised the
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possibility that resistant pupae might have survived had they been tested. Recently,
Ridley et al. (2011a, b) reported Australian trials of phosphine fumigation of wheat
stored in silo bags fumigated with an application rate of 2.1 g t−1 of phosphine
(released from aluminium phosphide). The fumigations were judged to be effective
in controlling strongly phosphine resistant R. dominica based on examination of
cages containing all developmental stages after the 17-day fumigation period.
Carpaneto et al. (2016) conducted silo bag trials in Argentina showing that silo bags
were often insufficiently gas-tight for phosphine fumigation and made a recom-
mendation for improving gas retention.

Phosphine sorption by grain has been suggested to play a role in the loss of
phosphine observed during fumigation field studies (e.g. Rajendran and
Muralidharan 2001; Wang et al. 2006; Ridley et al. 2011a, b), and several recent
laboratory studies provide some insights into the practical impact of this process.
By fumigating a range of cereal grains, Reddy et al. (2007) showed that sorption
reduced the likelihood of target terminal concentrations being achieved. Daglish
and Pavic (2008) investigated effect of dose (based on the volumetric capacity of
fumigation vessel) on sorption in wheat. They found that the daily percentage
decline in gaseous phosphine was negatively correlated with dose, and that
re-fumigated wheat was less sorptive. In a subsequent study, they showed that
wheat was less sorptive the longer it was stored before being fumigated for the first
time (Daglish and Pavic 2009). The sorption was faster at 25 °C than 15 °C, and
the decline in sorptive capacity was greater when grain was stored at 25 °C than at
15 °C. They confirmed that re-fumigated wheat tended to be less sorptive, but they
concluded that re-fumigated wheat was less sorptive because it had been in storage
longer. The practical implications of these studies are that the impact of sorption on
phosphine fumigations will be greatest in low dose fumigations or fumigations of
freshly harvested grain.

Methyl bromide has received very little research attention in recent years, and
this may be partly because of the focus on reducing its use because of its status as
an ozone-depleting substance. One exception is the work of Athanassiou et al.
(2015) investigating methyl bromide efficacy under laboratory conditions against
five psocid species: Liposcelis paeta Pearman, L. entomophila (Enderlein),
L. decolor (Pearman), L. bostrychophila and Lepinotus reticulatus Enderlein. They
showed that eggs were more tolerant than mobile stages and identified concentra-
tions of methyl bromide needed to control psocids in 48 h fumigations in the
absence of significant amounts of grain. Further laboratory or field investigation of
methyl bromide efficacy in the presence of grain would be valuable because
sorption by grain can greatly reduce the fumigant concentration (e.g. Cherif et al.
1985).

Sulfuryl fluoride, although initially used for fumigating mills and other structures
to control stored product insects, is now being used to fumigate grain. Recent
research has focused on control of insects and sorption in laboratory studies.
Although some laboratory efficacy studies were conducted with structural fumi-
gation in mind, the results are useful with regard to sulfuryl fluoride fumigation of
grain. Bell and Savvidou (1999) estimated combinations of concentration and
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exposure period needed to control eggs of Ephestia kuehniella Zeller (the
Mediterranean flour moth) and Baltaci et al. (2009) did the same for eggs and other
stages of E. elutella (Hübner) (the warehouse moth). They found that tolerance to
sulfuryl fluoride varied greatly with egg age and that sulfuryl fluoride was less
effective at lower temperatures. Athanassiou et al. (2012) investigated sulfuryl
fluoride efficacy against five psocids (L. paeta, L. entomophila, L. decolor, L.
bostrychophila and L. reticulatus) and showed that eggs were more tolerant than
nymphs or adults. Jagadeesan et al. (2015) compared the responses of susceptible
and strongly phosphine resistant strains of Tribolium castaneum (Herbst) (the red
flour beetle) to sulfuryl fluoride. They found that eggs were the most tolerant stage
and there was no cross-resistance between phosphine and sulfuryl fluoride, indi-
cating the potential for the latter in managing phosphine resistance. Studies like
these help build a picture of sulfuryl fluoride efficacy against stored grain insects
but carefully monitored field trials are needed. Although many field trials have been
conducted evaluating the efficacy structural fumigations (e.g. Campbell et al. 2010)
they do not provide data helpful to understanding sulfuryl fluoride efficacy against
insects in grain fumigations. Opit et al. (2016) conducted trials in the USA in small
metal bins containing wheat and assessed efficacy against R. dominica and T.
castaneum in the wheat or in muslin bags in the wheat. The target dose was a
concentration x time product of 1500 mg-h L−1 and the fumigations lasted up to
1 day. High levels of control were achieved against both species but sulfuryl
fluoride was more effective against R. dominica (complete control) than T. casta-
neum (some survival). Nayak et al. (2016) conducted trials in Australia in bunkers
(sheeted grain piles) and a concrete silo, and assessed efficacy against natural
infestations and caged containing mixed-age populations. The target dose was a
concentration x time product of 1500 mg-h L−1 and the fumigations lasted up to
14 days. Complete control was achieved of natural infestations and caged popu-
lations. The species controlled included R. dominica, T. castaneum, C. ferrugineus
and S. oryzae; although not all species were present in all fumigation trials.

Two recent studies investigated the potential role of sulfuryl fluoride sorption by
grain. Sriranjini and Rajendran (2008) fumigated a range of grain types with sul-
furyl fluoride in the laboratory and showed that sorption reduced the amount of
fumigant gas in all cases. Subsequently, experimentation on wheat showed that
sulfuryl fluoride is sorbed faster than phosphine but slower than methyl bromide,
and temperature is a major factor affecting sorption with faster sorption occurring at
higher temperature (Hwaidi et al. 2015). These studies show that, as with other
fumigants, sorption by grain can be expected to contribute to gas loss during
commercial fumigations.

Two other fumigants that have progressed from research to registration for grain
are ethyl formate and carbonyl sulphide. In the case of ethyl formate, recent
research comprised Australian research on ethyl formate applied as a liquid and
ethyl formate applied as a vapour with carbon dioxide. Caged insects were inserted
into the grain to assess fumigant efficacy. Trials in farm bins showed that ethyl
formate applied as a liquid had the potential for use on stored grain (Ren and
Mahon 2006). In that study, ethyl formate was applied in two stages to avoid the
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problem of rapid sorption reducing exposure of insect to lethal concentrations.
Complete control of key pests such as Sitophilus and Tribolium species was
achieved. Laboratory research was also conducted on combining ethyl formate with
carbon dioxide to improve penetration through the grain mass, reduce sorption,
increase efficacy and reduce flammability (Haritos et al. 2006; Damcevski et al.
2009; Dojchinov et al. 2009). Ren et al. (2008) demonstrated the efficacy of car-
bonyl sulphide applied as a liquid to wheat in a large concrete silo in Australia, with
complete control possible of caged of mixed-age populations of the key pests R.
dominica, T. castaneum and S. oryzae. Research on ethyl formate and carbonyl
sulphide has led to the registration of cylinderised formulations of carbonyl sul-
phide and ethyl formate + carbon dioxide. To our knowledge, however, only the
latter is available in the market.

Several recent field studies have focussed on determining the strengths and
weakness of fumigating bulk grain with ozone gas. The major challenge in using
ozone is to optimise its application so as to maximise its penetration through the
grain bulk so that high levels of mortality can be achieved before it degrades into
oxygen. A pilot study using recirculation showed the rapid decay of ozone as it
passed through bulk wheat highlighting a practical challenge (Hardin et al. 2010).
Kells et al. (2001) evaluated ozone against caged adults in maize at doses of up to
50 ppm and 5 days of exposure. They found that efficacy varied across species and
complete mortality was difficult to achieve. Tribolium castaneum, for example, was
harder to control than S. zeamais. Similarly, Bonjour et al. (2011) evaluated ozone
against bags of insects in wheat at doses of up to 70 ppm and 4 days of exposure.
They found that efficacy varied across species. Rhyzopertha dominica, C. ferrug-
ineus and O. surinamensis, for example, were harder to control than S. oryzae.
These studies show that ozone has potential but that complete control of all species
may not be possible.

Other Methods

Considerable research has been undertaken on heat disinfestation of stored products.
The concept of the application of heat treatment is simple: temperature is increased
until it reaches a lethal level for insects; this level is considered to be 50 °C
(Mahroof et al. 2003a, b; Yu et al. 2011). Nevertheless, reaching this lethal threshold
is not always easy, as different structures have different physicochemical properties
that are expected to negatively influence the overall efficacy of the application
(Yu et al. 2011). Quantification of the responses of different species and develop-
mental stages within species to flameless catalytic infrared radiation has been the
focus of several recent studies (Khamis et al. 2010, 2011a, b), and another study
suggests that there are no negative effects of this treatment on grain (Khamis et al.
2010, 2011c). Elevated temperatures have been also used tested successfully in
combination with other methods, such as diatomaceous earths (Dowdy and Fields
2002), contact insecticides (Kljajic et al. 2009) or nitrogen (Athanassiou et al. 2016a).
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Although there are numerous techniques to implement controlled or modified
atmospheres, nitrogen seems to be the most promising agent for disinfestation of
stored grain. Given that approximately 80% of the atmosphere contains nitrogen,
usually there is no need to use gas in cylinders, but only nitrogen generators or
pumps that can take the nitrogen from the air and introduce the gas in the area that
is to be treated (Navarro et al. 2012a, b). The basis of this application is to reduce
oxygen, usually to less than 1% (Adler et al. 2000; Athanassiou et al. 2016b). In
practice, nitrogen can be applied either on commodities, in designated areas that are
made for this purpose, i.e. nitrogen chambers, or on target facilities, e.g. a silo or a
warehouse, either empty or with products (Navarro 2006, 2012; Navarro et al.
2012a). For some commodities, it is now known that the application of nitrogen
does not affect some key organoleptic properties, while, under certain circum-
stances, can also reduce microbial load (Navarro 2012; Navarro et al. 2012b;
Athanassiou et al. 2016b).

There are numerous other methods that have been utilised for disinfestation. One
method that gains in importance is the use of pheromones for moth suppression
through mating disruption. This concept has been successfully tested in storage and
processing facilities in various types of commodities and facilities in Europe, and
found effective in suppressing populations of Ephestia spp. or Plodia interpunctella
(Hübner) (the Indian meal moth) (Pyralidae). Currently, there are several formu-
lations that are commercially available for moths (Trematerra et al. 2011, 2013;
Athanassiou et al. 2016c), while there are recent efforts to develop the first for-
mulation for beetles, using Lasioderma serricorne (F.) (the cigarette beetle)
(Anobiidae) as a target species (Mahroof and Phillips 2014).

Apart from heat treatment, there is a renewed interest for the use of ‘cold
treatments’. Insects are generally tolerant to cold, so care should be taken to cal-
culate the target temperature and the required exposure interval that is needed to
obtain complete control, without affecting the commodity (Fields 1992; Flinn et al.
2015). Generally, the most difficult to control life stage is the egg (Fields 1992;
Johnson and Valero 2003).

Many papers have been published on the potential of essential oils extracted
from a wide range of plant species, and the vast majority of these report preliminary
screening. Rajendran and Sriranjini (2008) reviewed the literature on essential oils,
highlighting their potential but also a number of constraints, including lack of data
on sorption, tainting and residues in food. Research on allicin, one the components
of garlic essential oil, is an example of research that that has gone beyond pre-
liminary screening. Lu et al. (2013) investigated fumigant toxicity of allicin in the
laboratory against different developmental stages of three insect species, showing
that the presence of wheat reduced efficacy because of sorption. Laboratory studies
like this one provide more practical information than preliminary screening studies,
but studies on bulk grain stored under realistic are also needed.

Other disinfestation treatments such as carbon dioxide, changes in pressure, and
micro-biocontrol agents, are briefly discussed in other chapters of this book.
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Protection

Cooling

Temperature management is an important component for insect pest management in
stored bulk grains, particularly in temperate regions of the world. Aeration is
described as using ambient air to cool the grain mass to temperatures that will limit
insect population growth. A common threshold is 15 °C, which is the lower limit of
development for most stored product insects (Howe 1965; Fields 1992). Typical
airflow rates used are 0.0515–0.31 m3/min/metric tonne (t), depending on the
specific commodity and harvest date (Reed and Arthur 2000; Navarro et al. 2012c).
Aeration is not to be confused with grain drying, which uses airflow rates several
orders of magnitude higher than those used for aeration, with the emphasis on
drying grain to moisture contents required for long-term storage (Reed and Arthur
2000). Aeration does not necessarily eliminate an existing infestation, and the most
optimal use of aeration involves usage with other components in a management
plan.

There are several established methodologies for utilising aeration, and most
involve using some type of controller to activate aeration fans thresholds (Arthur
and Casada 2010). In Australia, aeration controllers were developed that used
web-bulb temperatures for precise activation and optimization of moisture man-
agement (Wilson and Desmarchelier 1994). In the USA, more simple controllers are
used that activate fans when temperatures fall below a specified threshold (Ranalli
et al. 2002; Arthur et al. 2008; Arthur and Casada 2005, 2010). There are several
recent papers that give a detailed review of aeration strategies, one, in particular, is
Navarro et al. (2012c), which is a chapter in the book “Stored Product
Management”, available from the Kansas State University (www.k-state.edu).
Other publications can be found that also give a more detailed review of aeration,
along with numerous references, that readers can consult for more information
(Navarro et al. 2012c).

There are several recent advances in utilising aeration for insect pest manage-
ment, including historical weather data to predict hours available for cooling stored
grains in different geographic regions (Arthur and Johnson 1995; Arthur and
Siebenmorgen 2005). These studies examined the various hours necessary for
cooling grains at different airflow rates at specified temperature thresholds, and
predicted hours needed for cooling. Analysis was done by using a q-Basic code that
used daily high and low temperatures, and sunrise and sunset data, to predict
temperature each hour (Arthur and Johnson 1995), and was subsequently utilised
for a number of successive studies based on the same procedures. These procedures
can be adapted for any site in the world that has similar temperature and sunset data,
and is an excelled method for examining the feasibility of aeration.

Analysis of weather data as described above can be incorporated into insect pest
population models to predict the impact of aeration on population development
(Arthur et al. 1998, 2001, 2011a, b; Arthur and Flinn 2000). It can also be used to
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predict a number of insect generations that could occur in a given time period
(Arthur et al. 2003). Results of these model simulation studies show the benefits of
using aeration, particularly in warm regions where winter temperatures are not
normally low enough to cool the grain mass. In the USA, a web-based management
system was developed for stored rough rice (also known as paddy rice) that includes
aeration along with other management options (Arthur et al. 2011a, b). Although
the recent modelling efforts have mainly been done in the USA, historical weather
data are available worldwide, and can be utilised in a similar manner to incorporate
aeration into management plans for bulk grains.

Another recent advance in aeration is using defined cycles to cool a grain mass,
and incorporating an initial cooling cycle in advance of what can be accomplished
in waiting for temperatures to cool so that the specified threshold of 15 °C can be
achieved. Arthur and Casada (2005) conducted studies in experimental grain bins
and showed that using a summer cooling cycle at 22 °C resulted in lower pest
populations in stored wheat compared to waiting to use the standard first autumn
cooling cycle of 15 °C. Another aspect for consideration is using suction aeration,
which pulls the cool air down through the grain mass, rather than the standard
pressure aeration, which pushes the cool air upward through the grain mass (Arthur
and Casada 2010, 2017). Cooling the top portion resulted in lower temperatures,
which in turn led to lower insect populations, as assessed through the use of probe
traps (Arthur and Casada 2010, 2017). However, in the Arthur and Casada (2017)
study, high infestation rates during the third year of a 3-year study mitigated the
positive effects of aeration. One possible reason for those high infestations was the
fact that the grain could have been infested when it was loaded into the bins for the
third year of the study. Thus, aeration should be considered as a component of
integrated management plans, not as a direct killing agent such as fumigation. It is
unlikely that aeration alone will eliminate an existing infestation.

Grain Protectant Insecticides

Grain protectants continue to play a major role in protecting grain during storage.
The scientific literature on grain protectants is extensive and can only be reviewed
very selectively here. As with the fumigant phosphine, the continued development
of resistance in a range of species has provided much of the impetus for research on
protectants. Malathion resistance was already of concern in the 1970s (Champ and
Dyte 1976) and other resistances have developed since then. Pyrethroid resistance
has developed in R. dominica (Lorini and Galley 1999), T. castaneum (Collins
1990) and S. zeamais (Guedes et al. 1995); and methoprene resistance has devel-
oped in R. dominica (Daglish et al. 2013).

Despite extensive research on potential new grain protectants in recent years (see
below), only one new grain protectant from a new chemical group has been reg-
istered and adopted. Spinosad was developed from the fermentation products of a
bacterium found in soil (Salgado 1998), before being evaluated as a grain

3 Insect Pest Management in Stored Grain 53



protectant. Since 2002, many papers have been published on the susceptibility of a
wide range of stored grain insects to grain treated with spinosad, including strains
that were resistant to other grain protectants (e.g. Fang et al. 2002a, b; Nayak et al.
2005; Vayias et al. 2009). These studies showed that R. dominica is much more
susceptible than other major pest species, including strains of R. dominica that are
resistant to other grain protectants. Other laboratory studies showed that spinosad
remains active against this species for long periods of storage (Fang and
Subramanyam 2006; Daglish and Nayak 2006). Long-term efficacy of spinosad on
bulk-stored wheat was demonstrated in silo-scale studies in the USA and Australia,
with wheat treated at an application rate of 1 mg kg−1 which ultimately became the
registered rate for this protectant (Fang et al. 2002a, b; Flinn et al. 2004;
Subramanyam et al. 2007; Daglish et al. 2008). Spinosad residues were shown to be
relatively stable on stored wheat in field studies in the USA and Australia (Fang
et al. 2002a, b; Subramanyam et al. 2007; Daglish et al. 2008), which matched the
results from the laboratory (Daglish and Nayak 2006). Due to its widespread use by
the Australian grain industry, a discriminatory dose of 1 mg kg−1 has been estab-
lished to monitor for potential resistance development in R. dominica, based on an
investigation of the base-line susceptibly of field populations of this species (Nayak
and Daglish 2017).

A major and long-standing challenge with grain protectants is finding a single
protectant or combination of protectants that will provide protection against the pest
species of concern. One reason is that there can be large interspecific differences in
susceptibility to grain protectants, and another is the development of resistance.
This problem can be illustrated by a laboratory study from Australia looking at the
efficacy of three grain protectants applied alone or in binary combinations against
resistant strains of five pest species (Daglish 2008). The five species were R.
dominica, T. castaneum, C. ferrugineus, S. oryzae and Oryzaephilus surinamensis
(L.) (the saw-toothed grain beetle). The three grain protectants were
chlorpyrifos-methyl (an organophosphorus compound), s-methoprene (a juvenile
hormone analogue) and spinosad (a biopesticide). At the time of the study,
chlorpyrifos-methyl and s-methoprene were registered in Australia and spinosad
was under consideration. The most effective combinations were spinosad
(1 mg kg−1) + chlorpyrifos-methyl (10 mg kg−1) which controlled all strains
except for OP-resistant O. surinamensis, and chlorpyrifos-methyl (10 mg kg−1) +
s-methoprene (0.6 mg kg−1) which controlled all strains except for
methoprene-resistant R. dominica. The result is that spinosad is usually applied in
Australia in combination with chlorpyrifos-methyl and s-methoprene. In another
study, Nayak and Daglish (2007) have shown the advantage combined treatment of
spinosad and chlorpyrifos-methyl to control four Liposcelis psocid species that have
shown variable levels of resistance to a range of currently registered grain pro-
tectants in Australia.

There are several commercial formulations available that combine more than one
substance. One of the oldest ones in the market is Storicide II, which contains the
OP chlorpyrifos-methyl with the pyrethroid deltamethrin. This combination has
been found to be effective against stored-product insects (e.g. poscids) that are
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tolerant to other substances (Athanassiou et al. 2009a). In that study, the authors
noted that psocids were susceptible to this combination, and hypothesised that this
was mostly due to the presence of chlorpyrifos-methyl in the mixture, as psocids
were found also susceptible to pirimiphos-methyl.

There have been many studies published on potential new grain protectants from
a range of chemical groups, with most of these studies undertaken in the laboratory.
Spinetoram, a spinosyn-based insecticide, has been evaluated in both short-term
and long-term laboratory studies (Vassilakos et al. 2012, 2015). Based on experi-
ence against insect pest of field crops, spinetoram was expected to have greater
potency than spinosad but these studies show that spinetoram efficacy against stored
grain beetles is broadly similar to that of spinosad. Despite the promising results for
spinetoram, evaluation has not progressed to field trials. Other compounds that have
been evaluated in the laboratory include ethiprole (a phenyl-pyrazole) (Arthur
2002), imidacloprid (a neonicotinoid) (Daglish and Nayak 2012), thiamethoxam (a
neonicotinoid) (Arthur et al. 2004) and indoxacarb (an oxadiazine) (Daglish and
Nayak 2012). In general, all tested compounds show potential in the laboratory at
varying doses depending on the species tested, but none have progressed to field
trials.

There are several combinations of two or more active ingredients that can be
used as grain protectants. For example, a combination of diatomaceous earth with
natural pyrethrum and piperonyl butoxide was found more effective and with higher
‘speed of kill’ than other formulations that were based on diatomaceous earth alone
(Athanassiou et al. 2004; Athanassiou and Kavallieratos 2005). Tucker et al. (2015)
found that the insect growth regulator methoprene could be used successfully with
synergized pyrethrin aerosols for the control T. castaneum. Arthur (2002) tested
different combinations of ethiprole with other insecticides with satisfactory results
for wheat and maize. Liu et al. (2016) showed the feasibility of using aeration with
methoprene against a wide range of insect species. In general, there are numerous
studies that showed that certain combinations may have some benefits in com-
parison with the application of a single active ingredient, as the range of species that
can be controlled can be expanded (Daglish 2008; Arthur 2012; Athanassiou et al.
2009a). In this context, currently, there are several commercial formulations
available for admixture with the grains, which combine two active ingredients with
different modes of action, such as one OP, either pirimiphos-methyl or
chlorpyrifos-methyl, and another substance, usually a pyrethroid (e.g. deltamethrin
or cypermethrin) or a neonicotinoid (thiamethoxam). These combinations can also
be used in order to mitigate insect resistance to certain insecticides, as these pop-
ulations will be exposed to substances that have different modes of action (Daglish
2008).

Field studies were completed in Australia on bifenthrin (a pyrethroid) (Daglish
et al. 2003) and diflubenzuron (a chitin synthesis inhibitor) (Daglish and Wallbank
2005) providing data on efficacy against key pest species and stability of residues.
Bifenthrin which targeted R. dominica was tested in combination with
chlorpyrifos-methyl so that the combination treatment would give broad spectrum
control. Bifenthrin was seen as a potential replacement for bioresmethrin which had
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been withdrawn from the Australian market, but the results showed that bifenthrin
failed to control pyrethroid-resistant R. dominica. Diflubenzuron targeted S. oryzae
and proved to be effective against this species. Surprisingly, the difluben-
zuron + s-methroprene resistant combination controlled methoprene-resistant R.
dominica. Neither bifenthrin nor diflubenzuron progressed to registration, despite
the promising results.

Plant products have been widely evaluated for stored product protection, but
registered products for this use are extremely few. Detailed lists of the plant species
that have been evaluated so far are given by Prakash and Rao (1997) and Weaver
and Subramanyam (2000). There are different ways that these compounds can be
used, but the most common evaluations refer to their repulsive activity and their
insecticidal effect. For example, Arthur et al. (2011a, b) reported that catmint oil
could be utilised further as a repellent of T. castaneum and T. confusum. Neem oil,
which is produced by the neem tree, Azadirachta indica, has also some repulsive
activity to insects (Athanassiou et al. 2014) but most of the studies available are
about its insecticidal value. The major active ingredient of neem, azadirachtin, is
now registered as an insecticide on various crops. Athanassiou et al. (2005) found
that azadirachtin was effective for the control of S. oryzae, R. dominica and T.
confusum, but at dose rates that were much higher than the currently used grain
protectants, which constitutes such an application unrealistic. Nevertheless, the
future of plant extracts for stored product protection, especially for use as grain
protectants, remains uncertain and should be regarded on the basis of additional
research that goes far beyond their insecticidal value (Athanassiou et al. 2015).
Hence, even if a plant extract is proved effective as an insecticide, there will be
always additional requirements that are needed for registration purposes, such as
toxicological and ecotoxicological data. In this effort, the economics of the
development of such plant product-based formulations, i.e. its cost-effectiveness,
should always be examined in more detail.

One other parameter that should be taken into account when grain protectants are
applied is their uneven distribution. In fact, uneven distribution may lead to the
occurrence of zones within the grain bulks that are under-dosed or even untreated
areas, which allow insect colonisation and progeny production. Daglish and Nayak
(2010) demonstrated that the efficacy of s-methoprene against R. dominica was
negatively influenced by an uneven application on wheat. Moreover, in that study,
the authors suggested that this phenomenon may be related with selection of
resistance. Similar results for the uneven distribution have also been reported in the
case of spinosad (Athanassiou et al. 2009b) and spinetoram (Vassilakos and
Athanassiou 2012).
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Conclusions

The aim of this chapter was to review recent advances in insect pest management in
stored grain, ranging from methods that are well established to those that are still
being evaluated. This topic has been the subject of considerable laboratory and field
research as evidenced by the large and growing body of published studies. Resistance
to phosphine and various insecticides, as well as the phase out of methyl bromide as
an ozone-depleting substance, continue to be major drivers for research on man-
agement of insects in stored grain. Other research has focussed on improving basic
understanding of various technologies or ways of improving methods currently in
use. Despite extensive research on a wide variety of chemical and non-chemical
treatments, very few have been commercialised. Two examples are spinosad which
has been registered as a grain protectant and sulfuryl fluoride which is now available
as a grain fumigant. The interest in non-chemical treatments, especially aeration
cooling, is encouraging. In general, integrated pest management is seen as the goal of
entomologists, requiring the strategic integration of multiple methods to provide
maximum effect, with minimal health and environmental risks. Some of the chemical
and non-chemical treatments reviewed in this chapter have great potential to be used
as part of an integrated approach.
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