
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXXIVLN

CS
 1

06
20

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Hendrik Decker
Guest Editor

Special Issue on Consistency and Inconsistency
in Data-Centric Applications

Lecture Notes in Computer Science 10620

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain • Josef Küng
Roland Wagner • Hendrik Decker (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXXIV
Special Issue on Consistency and Inconsistency
in Data-Centric Applications

123

Editors-in-Chief
Abdelkader Hameurlain
IRIT
Paul Sabatier University
Toulouse
France

Josef Küng
FAW
University of Linz
Linz
Austria

Roland Wagner
FAW
University of Linz
Linz
Austria

Guest Editor
Hendrik Decker
Polytechnic University of Valencia
Valencia
Spain

and

Ludwig Maximilian University of Munich
Munich
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 1869-1994 ISSN 2510-4942 (electronic)
Transactions on Large-Scale Data- and Knowledge-Centered Systems
ISBN 978-3-662-55946-8 ISBN 978-3-662-55947-5 (eBook)
https://doi.org/10.1007/978-3-662-55947-5

Library of Congress Control Number: 2017956080

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

At long last, we have finished completing a TLDKS collection of articles about con-
sistency and inconsistency in data-centric applications. The road toward that aim was
rough and rugged. At the outset, there was the workshop COIN at DEXA 2016, where
eight papers about that same subject were presented. Those papers have been published
in the 2016 volume of the DEXA workshop proceedings series. Both scientifically and
socially speaking, the workshop was a big success.

At one of its social dinners, some of the participants came up with the proposal to
invite contributions of more elaborate versions of COIN workshop papers, as well as to
call for papers from colleagues in related research communities that had not taken part
in the workshop, for publication in a journal.

At first, the idea was encouraged enthusiastically by all participants. So, together
with a colleague, the writer of these lines put himself behind the task of finding a
journal, issuing the invitations, broadcasting a call for papers, organizing a two-round
reviewing process, and editing the final outcome.

All of that was more easily agreed upon than actually done. In the end, only three
papers from the COIN workshop made it into the present TLDKS volume. The other
COIN participants had opted out, for various reasons (large overlap with papers already
published or planned to be published elsewhere, priority to get done with a PhD thesis,
change of career plans, personal preferences).

Fortunately, there was some response to the call for papers. Six additional sub-
missions were considered for publication by the reviewers, and three of them received
green light to work on an improved version for inclusion this TLDKS edition. How-
ever, each of them, and also the papers drawn from the workshop, had received
controversial reviews. It took several more rounds of thorough reviews, considerate
reconciliation, and further modifications for the final versions included this volume.

In addition to the accepted papers, we were fortunate to be able to include an invited
article, written by Philippe Besnard, entitled “Basic Postulates for Inconsistency
Measures”. It advances a discussion that has been going on for several years about
certain properties that inconsistency measures should have, or shouldn’t, depending on
the demands of applications or one’s point of view.

Krishnamurthy Vidyasankar has contributed a paper entitled “Batch Composite
Transactions in Stream Processing”. The author has successfully applied his recognized
expertise on transaction serializability to the concurrent execution of batches of
streaming data.

In their paper entitled “Enhancing User Rating Database Consistency through
Pruning”, Dionisis Margaris and Costas Vassilakis describe a sophisticated technique
for improving the quality of stored data in recommender systems, by reducing user
profile inconsistencies that are bound to accumulate over time.

In his paper entitled “A Second Generation of Peer-to-Peer Semantic Wikis”,
Charbel Rahhal presents a mechanism for detecting inconsistencies in annotations of

collaborative semantic wikis. Also the causes of the inconsistencies are spotted and
visualized, in order to support their removal.

The article by Jørgen Villadsen and Anders Schlichtkrull, entitled “Formalizing a
Paraconsistent Logic in the Isabelle Proof Assistant”, features the capabilities of the
automated proof assistant Isabelle. They are shown to not only support proofs in
classical logic, but also the specification, modification, and execution of a paracon-
sistent logic.

Ricardo Queiroz de Araujo Fernandes, Edward Hermann Haeusler, and Luiz Carlos
Pinheiro Dias Pereira have contributed an article on “A Proximity-Based Under-
standing of Conditionals”. The authors propose a logic account of David Kellog Lewis’
counterfactual conditionals, an interesting application of which is hypothetical rea-
soning in databases.

The paper by Hendrik Decker is entitled “Inconsistency-Tolerant Database Repairs
and Simplified Repair Checking by Measure-Based Integrity Checking”. It uses
inconsistency measures for monitoring the dynamics of databases, as opposed to
inconsistency measures such as those addressed in Besnard’s paper, which are meant to
be applied in static propositional logic theories.

Finally, I’d like to acknowledge the indefatigable support of Gabriela Wagner at the
TLDKS office, and say “thank you” to all authors and reviewers involved in this
project, for their tireless commitment and perseverance. The reviews, and not least the
most critical ones, were highly appreciated by the authors, enabling them to come up
with satisfactory camera-ready versions. What follows is a list of the reviewers’ names,
except those who prefer to remain anonymous: Ofer Arieli, Jesper Bengtson, Christoph
Benzmüller, Walter Carnielli, Karen Davis, Valeria de Paiva, Hendrik Decker, Car-
los F. Enguix, Hermann Haeusler, Leandro B. Marinho, Pedro Muñoz, Jyrki Num-
menmaa, Denis Parra Santander, Lawrence Paulson, Andrei Popescu, Nuno Preguica,
Norbert Ritter, Alexander Steen, Diego Torres, Christoph Trattner, Jørgen Villadsen,
Gottfried Vossen, Makarius Wenzel, Yorick Wilks, Wolfram Wingerath, and Max
Wisniewski. Many thanks to all of you!

August 2017 Hendrik Decker

VI Preface

Editorial Board

Reza Akbarinia Inria, France
Bernd Amann LIP6 - UPMC, France
Dagmar Auer FAW, Austria
Djamal Benslimane Lyon 1 University, France
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria, Italy
Mirel Cosulschi University of Craiova, Romania
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Sergio Ilarri University of Zaragoza, Spain
Petar Jovanovic Univ. Politècnica de Catalunya, BarcelonaTech, Spain
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Liu Lian University of Kentucky, USA
Vladimir Marik Technical University of Prague, Czech Republic
Jorge Martinez Gil Software Competence Center Hagenberg, Austria
Franck Morvan Paul Sabatier University, IRIT, France
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Themis Palpanas Paris Descartes University, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Soror Sahri LIPADE, Descartes Paris University, France
Klaus-Dieter Schewe University of Linz, Austria
A Min Tjoa Vienna University of Technology, Austria
Shaoyi Yin Paul Sabatier University, Toulouse, France

Reviewers

Ofer Arieli The Academic College of Tel-Aviv, Israel
Jesper Bengtson IT University of Copenhagen, Denmark
Christoph Benzmüller Freie Universität Berlin, Germany
Walter Carnielli State University of Campinas, Brazil
Karen Davis University of Cincinnati, USA
Valeria de Paiva Nuance, USA
Hendrik Decker Universidad Politécnica de Valencia, Spain

Carlos F. Enguix University of Sidney, Australia
Hermann Haeusler Pontifícia Universidade Católica do Rio de Janeiro, Brazil
Leandro B. Marinho Universidade Federal de Campina Grande, Brazil
Pedro Muñoz Universidad Carlos III de Madrid, Spain
Jyrki Nummenmaa University of Tampere, Finland
Denis Parra Santander Pontificia Universidad Católica de Chile, Chile
Lawrence Paulson University of Cambridge, UK
Andrei Popescu Middlesex University London, UK
Nuno Preguica Universidade Nova de Lisboa, Portugal
Norbert Ritter Universität Hamburg, Germany
Alexander Steen Freie Universität Berlin, Germany
Diego Torres Universidad Nacional de La Plata, Argentina
Christoph Trattner Modul University Vienna, Austria
Jørgen Villadsen Technical University of Denmark, Denmark
Gottfried Vossen Universität Münster, Germany
Makarius Wenzel Sketis, Germany
Yorick Wilks University of Sheffield, UK
Wolfram Wingerath Universität Hamburg, Germany
Max Wisniewski Freie Universität Berlin, Germany

VIII Editorial Board

Contents

Basic Postulates for Inconsistency Measures . 1
Philippe Besnard

Batch Composite Transactions in Stream Processing 13
K. Vidyasankar

Enhancing User Rating Database Consistency Through Pruning 33
Dionisis Margaris and Costas Vassilakis

A Second Generation of Peer-to-Peer Semantic Wikis 65
Charbel Rahhal

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 92
Jørgen Villadsen and Anders Schlichtkrull

A Proximity-Based Understanding of Conditionals 123
Ricardo Queiroz de Araujo Fernandes, Edward Hermann Haeusler,
and Luiz Carlos Pinheiro Dias Pereira

Inconsistency-Tolerant Database Repairs and Simplified Repair Checking
by Measure-Based Integrity Checking . 153

Hendrik Decker

Author Index . 185

http://dx.doi.org/10.1007/978-3-662-55947-5_1
http://dx.doi.org/10.1007/978-3-662-55947-5_2
http://dx.doi.org/10.1007/978-3-662-55947-5_3
http://dx.doi.org/10.1007/978-3-662-55947-5_4
http://dx.doi.org/10.1007/978-3-662-55947-5_5
http://dx.doi.org/10.1007/978-3-662-55947-5_6
http://dx.doi.org/10.1007/978-3-662-55947-5_7
http://dx.doi.org/10.1007/978-3-662-55947-5_7

Basic Postulates for Inconsistency Measures

Philippe Besnard(B)

IRIT, CNRS, University of Toulouse, Toulouse, France
besnard@irit.fr

Abstract. Postulates for inconsistency measures are examined, the set
of postulates proposed by Hunter and Konieczny being the starting point.
The focus is on two postulates that were questioned by various authors.
Studying the first suggests a systematic transformation to guard postu-
lates against a certain kind of counter-examples. The second postulate
under investigation here is devoted to independence, for which a general
version is proposed that avoids the pitfalls mentioned in the literature.
Combining these two additions with some postulates previously intro-
duced by the same author, a set of basic postulates alternative to the
core set given by Hunter and Konieczny arises.

1 Inconsistency Measures

There are plenty of reasons for belief bases to be inconsistent. Unfortunately,
inconsistency is a nuisance on a number of counts (it makes deductive reasoning
to collapse, it allows decision-making to simultaneaously enforce two mutually
exclusive options, . . .). In short, inconsistency in belief bases is bad. How bad?
This is the question that inconsistency measures have been taking seriously.
Informally speaking, an inconsistency measure tells to what extent a belief base
is inconsistent. Indeed, there seems to be degrees. Consider e.g. the statement
“This item is robust and affordable”. One way to contradict it is by means of
the statement “If it’s robust then it is not affordable”. Another way is by means
of the statement “It is neither robust nor affordable”. The latter expresses that
both claims (i.e., “the item is robust” and “the item is affordable”) in the initial
statement are false but the former only objects that either “the item is robust”
is false or “the item is affordable” is false. Accordingly, the belief base

K1 =
{

This item is robust and affordable
If it’s robust then it is not affordable

}

can be viewed as less inconsistent than the belief base

K2 =
{

This item is robust and affordable
It is neither robust nor affordable

}
.

Formally, for I denoting an inconsistency measure,

I(K1) < I(K2).
c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 1–12, 2017.
https://doi.org/10.1007/978-3-662-55947-5 1

2 P. Besnard

A host of inconsistency measures exist, e.g., [1,8,9,12,14,15,20,22,23]. An exam-
ple of a well-known inconsistency measure is [10], an approach based on counting
contradicted atoms (a belief base consists of propositional formulas). Using A|K
to denote the set of atoms occurring in K, it is defined as

I3Mod(K) def=
minM∈3Mod(K) |{a ∈ A|K : M(a) = B}|

|A|K|
where 3Mod is a system of {T, F,B}-valuations (with T and B being the des-
ignated truth-values) in which T stands for True and F stands for False while
Both stands for True and False. The truth tables are:

¬
F T
T F
B B

∧ F T B
F F F F
T F T B
B F B B

→ F T B
F T T T
T F T B
B F T T

Let the atom a represent the statement “the item is affordable” and the atom
r represent the statement “the item is robust”. Then, the belief bases K1 and
K2 above can be written formally as

K1 = {r ∧ a, r → ¬a}
K2 = {r ∧ a,¬r ∧ ¬a}

The {T, F,B}-models of K1 are

3Mod(K1) =

{
a �→ B a �→ B a �→ T

, ,
r �→ T r �→ B r �→ B

}

of which the first and the third are such that only one atom is assigned the truth-
value B (whereas in the second model, a and r are assigned the truth-value B).
Then, the minimum number of atoms that are assigned B in models of K1 is 1
(in symbols, minM∈3Mod(K1) |{a ∈ A |K1 : M(a) = B}| = 1). There are exactly
two atoms occurring in K1 hence |A|K| = 2. Therefore,

I3Mod(K1) =
1
2
.

There is a single {T, F,B}-model of K2, namely

3Mod(K2) =

⎧⎨
⎩

a �→ B

r �→ B

⎫⎬
⎭

hence the minimum number of atoms assigned B in models of K2 is 2. Thus,

I3Mod(K2) =
2
2

= 1.

Basic Postulates for Inconsistency Measures 3

Summing up, I3Mod(K1) < I3Mod(K2) which means that, according to the I3Mod

inconsistency measure, K1 is less inconsistent than K2.
An approach based on counting formulas underlying contradictions is in [5].
Let MI(K) denote the set of Minimal Unsatisfiable Subsets of K (in symbols,
MI(K) = {K ′ ⊆ K : K ′ � ⊥ and K ′ \ {ϕ} 	� ⊥ for all ϕ ∈ K ′}). Next, define

IP (K) def=
∣∣∣⋃ MI(K)

∣∣∣ .

Back to the above illustration, the only MUS of {r ∧ a, r → ¬a} is itself and
the only MUS of {r ∧ a,¬r ∧ ¬a} is also itself. That is, MI(K1) = {K1} and
MI(K2) = {K2}. Despite contrary intuition (in fact, MUSes are not fine-grained
enough to discriminate between contents of formulas), it follows that

IP (K1) = 2 = IP (K2).

Intuitively, an inconsistency measure I is supposed to indicate how much
inconsistency a knowledge base K carries (where a more inconsistent belief base
is ascribed a larger value). Of course, not every function I can do! A list of
requirements over I is needed. To this end, postulates can ensure I to make
sense for the purpose of inconsistency measuring.

This note is an investigation into such requirements as postulates for incon-
sistency measures have indeed been proposed on the following grounds:

– The context is classical logic � over a language L.
– Belief bases are finite sets of formulas of L.
– I maps all finite sets of formulas of L to values in IR+ ∪ {∞}.

2 Postulates

Hunter and Konieczny [7] proposed a few postulates for inconsistency measures.
The core set (of the Hunter-Konieczny postulates) is:

– I(K) = 0 iff K 	� ⊥ (Consistency Null)
– I(K ∪ K ′) ≥ I(K) (Monotony)
– If α � β and α 	� ⊥ then I(K ∪ {α}) ≥ I(K ∪ {β}) (Dominance)
– If α is free for K then I(K ∪ {α}) = I(K) (Free Formula Independence)

where a formula ϕ is free for X iff Y ∪{ϕ} � ⊥ for no consistent subset Y of X

The last two postulates have been questioned on various grounds (see e.g., [13]).
This note first gives a general principle that, among others, backs (Dominance)
in a slightly amended form, and, second, proposes an independence postulate
more sound than (Free Formula Independence) and also stronger than another
well-known substitute [18] called (Safe Formula Independence).

In the course of this study, we emphasize the importance of the postulate for
the elimination of tautologies (in a sense, the weakest independence postulate)
and the role of the postulate expressing that the amount of inconsistency does
not increase when a conjunction is replaced by one of its conjuncts.

In other words, we suggest a starting point for a body of postulates alternative
to the core set provided by Hunter and Konieczny in their pioneering article.

4 P. Besnard

2.1 Formalities

All the postulates to be discussed refer to propositional logic � with a language
L based on a set of propositional variables denoted Atoms(L) as well as the
propositional constants ⊥ and . The symbols we use for the connectives are
¬ (negation), ∧ (conjunction), ∨ (disjunction). Turning to meta-level notation,
≡ denotes logical equivalence, i.e., p ≡ q means p � q and q � p. In addition,
α, β, γ, . . . denote formulas of L while K, K ′, . . . are called belief bases and
denote finite sets of formulas of L. Lastly, KL is comprised of all belief bases
over L.

Formally, inconsistency measures are maps I : KL → IR+ ∪ {∞}. Intuitively,
I(K) indicates how inconsistent a belief base K ∈ KL is: A more inconsistent K
is ascribed a larger value by I (with 0 being the least).

A number of inconsistency measures actually have [0, 1] as their codomain.
Equivalently, they can be viewed as satisfying the following postulate from [7]

– 0 ≤ I(K) ≤ 1 (Normalization)

In any case, postulates are meant to capture some aspects of rationality for
inconsistency measures.

3 Restriction on Membership

As already mentioned, (Dominance) has been argued against on various grounds.
Here is a specific illustration.

Proposition 1. Assuming (Monotony), (Dominance) is equivalent with:

– For α ∈ K, if α 	� ⊥ and α � β then I(K ∪ {β}) = I(K) (A1)

Proof. Let α and β be such that α 	� ⊥ and α � β. Assume (A1). Trivially,
α ∈ K ∪ {α} so that (A1) applies to give I(K ∪ {α} ∪ {β}) = I(K ∪ {α}).
Due to (Monotony), I(K ∪ {α} ∪ {β}) ≥ I(K ∪ {β}). By transitivity, it follows
that I(K ∪ {α}) ≥ I(K ∪ {β}). Conversely, assume (Dominance). Consider K
such that α ∈ K. As a consequence of (Dominance), I(K ∪ {α}) ≥ I(K ∪ {β}).
Accordingly, I(K) ≥ I(K ∪ {β}) since I(K ∪ {α}) = I(K) in view of α ∈ K.
The converse, i.e., I(K ∪ {β}) ≥ I(K) holds by (Monotony).

Proposition 1 really pinpoints the fact that (Dominance) may get I to go astray
when α is in K, should β be involved in a MUS of K ∪ {β}. Indeed, (A1) then
expresses that I(K ∪ {β}) = I(K) which may happen to be counterintuitive as
the set of MUSes of K and K ∪ {β} need not be the same.

Example 1 (Adapted from [13]). Consider K = {p,¬q, p ∧ q}. Take α = p ∧ q
and β = ¬p ∨ q. So, α 	� ⊥ and α � β. By Proposition 1, (Dominance) would
require I(K ∪ {β}) = I(K), i.e.,

I

⎛
⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

p,
¬q,

p ∧ q,
¬p ∨ q

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠ = I

⎛
⎝

⎧⎨
⎩

p,
¬q,

p ∧ q

⎫⎬
⎭

⎞
⎠

Basic Postulates for Inconsistency Measures 5

although the MUSes of K consist of {{¬q, p ∧ q}} and the MUSes of K ∪ {β}
consist of {{¬q, p ∧ q}, {p,¬q,¬p ∨ q}}.

This suggests a general principle, denoted *-principle in the sequel, as follows.
Would-be postulates of the form

– if . . . then I(K ∪ {α}) ≥ I(K ∪ {β}) (Postulate)

should be turned into the form

– for α 	∈ K, if . . . then I(K ∪ {α}) ≥ I(K ∪ {β}) (Postulate*)

The expected proviso β 	∈ K is omitted because I(K ∪ {α}) ≥ I(K ∪ {β}) is
ensured by (Monotony) for β ∈ K.

Fact 1 For all inconsistency measure I, if I satisfies (Postulate) then I also
satisfies (Postulate*).

The *-principle gives rise to a slightly restricted version of (Dominance), i.e.,

– For α 	∈ K, if α � β and α 	� ⊥ then I(K ∪{α}) ≥ I(K ∪{β}) (Dominance*)

Proposition 1 no longer holds if (Dominance) is replaced by (Dominance*).
Moreover, (Dominance*) does not impose I(K ∪ {β}) = I(K) in Example 1.
However, Example 2 introduced by Mu, Liu, Jin and Bell in [13] to show that
the IMI inconsistency measure (it simply counts the number of MUSes, i.e.,
IMI(K) = |{M ⊆ K : M is a MUS of K}|) fails (Dominance) also shows that
IMI fails (Dominance*).

Example 2 [13]. Let K = {p, p ∧ r,¬q}. Let α = p ∧ r ∧ (¬p ∨ q) and β = ¬p ∨ q.
K ∪ {α} has a single MUS {¬q, p ∧ r ∧ (¬p ∨ q)} and K ∪ {β} has two MUSes,
which are {p,¬q,¬p ∨ q} and {p ∧ r,¬q,¬p ∨ q}, hence both (Dominance) and
(Dominance*) fail here because IMI(K ∪ {α}) = 1 < 2 = IMI(K ∪ {β}).

A most worthwhile application of the *-principle is with a postulate introduced
in [3], to the effect that inconsistency does not increase when a conjunction is
replaced by any one of its conjuncts. In symbols, I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}).
This actually conveys the very same idea than (Monotony): Extra information
(whether in the form of an extra formula or in the form of an extra conjunct)
cannot make the amount of inconsistency to decrease. Keeping the non-starred
name although applying the *-principle, the postulate writes

– If α ∧ β 	∈ K then I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}) (Conjunction Dominance)

The need for the proviso α ∧ β 	∈ K in (Conjunction Dominance) can be
illustrated by means of Example 3.

Example 3. Let K = {p ∧ ¬p ∧ q}. Take α to be p ∧ ¬p and take β to be q.
If it were not for the proviso α ∧ β 	∈ K, (Conjunction Dominance) would give
I({p ∧ ¬p ∧ q, p ∧ ¬p}) ≤ I({p ∧ ¬p ∧ q}) —thereby precluding the intuitive
possibility I({p ∧ ¬p ∧ q, p ∧ ¬p}) > I({p ∧ ¬p ∧ q}).

The *-principle extends in a natural way to would-be postulates of the form
if . . . then I(K ∪ {α}) = I(K ∪ {β}), to be turned into for α 	∈ K and β 	∈ K,
if . . . then I(K ∪ {α}) = I(K ∪ {β}).

6 P. Besnard

4 Independence

A most welcome consequence of (Free Formula Independence) is

– If α ≡ then I(K ∪ {α}) = I(K) (Tautology Independence)

Unless β 	� ⊥ (i.e., the case that would let (Dominance) to apply), there is
unfortunately no guarantee that the following holds:

– for α ≡ , if α ∧ β 	∈ K and β 	∈ K then I(K ∪ {α ∧ β}) = I(K ∪ {β})
(-conjunct Independence)

Addressing the concern that (Free Formula Independence) applies in some
undesirable cases, Thimm [17] proposed a postulate called (Weak Independence)
which was examined by Hunter and Konieczny [7] in the following form

– If α is safe for K then I(K ∪ {α}) = I(K) (Safe Formula Independence)
where a formula ϕ is safe for X iff ϕ 	� ⊥ and Atoms(ϕ) ∩ Atoms(X) = ∅
Unfortunately, (Safe Formula Independence) is weaker than expected. First,

it may fail to apply to a formula α ∧ (p ∨ ¬p) although applying to α. Second,
(Safe Formula Independence) does not entail (Tautology Independence).

Anyway, postulates about independence attempt to capture the idea that if a
formula can be satisfied with no impact on the truth value of critical items then
such a formula is not to count for measuring inconsistency. We now propose a
general version. In order to express syntactically the fact that a subformula has a
truth value determining the truth of the entire formula, we follow the NP-form
approach [16]. However, we focus on atoms and we can thus simplify Schütte’s
inductive definition, instead resorting to a special class of substitutions:

Definition 1. σ : Atoms(L) → Atoms(L)∪{,⊥} is a Boolean substitution iff
for all a ∈ Atoms(L), either σ(a) = a or σ(a) = or σ(a) = ⊥.

A generalization of the notion of a safe formula is now in order, according to
the intuitions just expressed.

Definition 2. A formula ϕ is safely consistent for X if there exists a Boolean
substitution σ such that σϕ is a tautology and σ(a) = a for all a ∈ Atoms(X).

A new independence postulate can then be formulated—with a due proviso
from the *-principle—as follows.

– If α ∧ β 	∈ K, β 	∈ K, and α is safely consistent for K ∪ {β}
then I(K ∪ {α ∧ β}) = I(K ∪ {β}) (Conjunct Independence)

Clearly, if ϕ is safely consistent for K then ϕ is free for K. This means that
(Free Formula Independence) is at least as strong as (Conjunct Independence).
Example 4 shows that the converse is untrue.

Basic Postulates for Inconsistency Measures 7

Example 4. Consider K = {p ∧ r, q ∧ ¬r}. Let α be (¬p ∨ ¬q) ∧ . Clearly, α is
free for K hence (Free Formula Independence) applies although ¬p∨¬q causes a
contradiction with two conjunctively consistent parts of formulas of K (see [3]).
In other words, I({p ∧ r, q ∧ ¬r, (¬p ∨ ¬q) ∧ }) = I({p ∧ r, q ∧ ¬r}) is required
by (Free Formula Independence) but not by (Conjunct Independence).

The next results show that (Conjunct Independence) entails several other
independence postulates, possibly with the help of (Tautology Independence).

Proposition 2. (Conjunct Independence) entails (-conjunct Independence).

Proof. For α tautologous, σ can be taken to be identity. It is then possible to
apply (Conjunct Independence) which gives I(K ∪ {α ∧ β)}) = I(K ∪ {β}).

Proposition 3. Assuming (Tautology Independence), (Conjunct Independence)
entails

– if α is safely consistent for K then I(K ∪ {α}) = I(K)

Proof. If α ∈ K then I(K ∪ {α}) = I(K). Therefore, assume α 	∈ K. Since K
is finite, there exists n such that α ∧ ∧n

i=1 	∈ K and
∧n

i=1 	∈ K. Clearly,
(Tautology Independence) gives I(K) = I(K ∪ {∧n

i=1 }). Since α is safely
consistent for K, it is safely consistent for K ∪ {∧n

i=1 }. Due to
∧n

i=1 	∈ K
and α ∧ ∧n

i=1 	∈ K, (Conjunct Independence) can thus be applied so that
I(K ∪{∧n

i=1 }) = I(K ∪{α∧∧n
i=1 }) is obtained. In view of α∧∧n

i=1 	∈ K
and α 	∈ K, it happens that I(K ∪{α∧{∧n

i=1 }) = I(K ∪{α}) by means of (-
conjunct Independence) which is available according to Proposition 2. Summing
up, I(K) = I(K ∪ {α}).

Proposition 4. Assuming (Tautology Independence), (Conjunct Independence)
entails (Safe Formula Independence).

Proof. Let α be safe for K, that is, α 	� ⊥ and Atoms(K) ∩ Atoms(α) = ∅.
From completeness of �, there exists a valuation v over Atoms(α) satisfying
v(α) = true. Thus, α has the truth value true if each atom a in Atoms(α)
has the truth value v(a). Define σ as σ(a) = a if a ∈ L \ Atoms(α) whereas
σ(a) = for a ∈ Atoms(α) s. t. v(a) = true and σ(a) = ⊥ for a ∈ Atoms(α)
s. t. v(a) = false. Accordingly, for all atomic formulas a in α, v(a) = v(σa).
By induction, v(α) = v(σα). Thus, σα is true under v. However, all atomic
formulas in σα are and ⊥ hence the truth value of σα is independent of v.
Since σα is true under v, this means that σα is a tautology. In view of σ(a) = a
for all a ∈ L \ Atoms(α), it is clear that σ(a) = a for all a ∈ Atoms(K) because
Atoms(K) ∩ Atoms(α) = ∅. Therefore, α is safely consistent for K. Finally,
I(K ∪ {α}) = I(K) by Proposition 3.

Example 5 shows that the converse of Proposition 4 is untrue.

Example 5. Consider K = {p ∧ q ∧ ¬q} and let α be ¬q ∨ [r ↔ (s ∧ (q ∨ ¬q))]
(for readibility, α is abbreviated using the symbol ↔ with its usual meaning).
Since α is not safe for K, (Safe Formula Independence) fails to apply. However,
replacing r and s by ⊥ in α results in a tautology, i.e., (Conjunct Independence)
and (Tautology Independence) give I(K ∪ {α}) = I(K) (see Proposition 3).

8 P. Besnard

5 Paradigm

Example 6. A paradigmatic case is

K0 =
{

p ∧ ¬p
q ∧ ¬r ∧ s

}
K1 =

{
p ∧ ¬p

p ∧ ¬p ∧ s

}
K2 =

{
p ∧ ¬p

q ∧ ¬q ∧ s

}

where it is expected that I(K0) ≤ I(K1) and I(K0) ≤ I(K2) and I(K2) 	< I(K1).

The codomain of I is totally ordered hence I(K2) 	< I(K1) is in fact equivalent
with I(K1) ≤ I(K2), and what is expected in Example 6 is in fact

I(K0) ≤ I(K1) ≤ I(K2).

Intuition also suggests
I(K0) < I(K2).

Hence, either I(K0) < I(K1) or I(K1) < I(K2) (or both) must hold. That is,

• the number of occurrences of the same atomic contradiction makes a
difference,

• or the number of distinct atomic contradictions makes a difference.

Now, I(K0) ≤ I(K1) (and I(K0) ≤ I(K2) in a similar way) can be shown
using (Monotony) and (Safe Formula Independence) as follows. Since q ∧ ¬r ∧ s
is safe for {p ∧ ¬p}, (Safe Formula Independence) can be applied to give

I

({
p ∧ ¬p

q ∧ ¬r ∧ s

})
= I

({
p ∧ ¬p

})

while (Monotony) of course gives

I
({

p ∧ ¬p
}) ≤ I

({
p ∧ ¬p

p ∧ ¬p ∧ s

})

and I(K0) ≤ I(K1) ensues by transitivity, i.e.,

I

({
p ∧ ¬p

q ∧ ¬r ∧ s

})
≤ I

({
p ∧ ¬p

p ∧ ¬p ∧ s

})

However, (Safe Formula Independence) is not general enough to deal with a
variant where an intuitively safe formula actually fails to be safe because it has a
conjunct which is a tautology over an atom in K; e.g., for our running example:

K ′
0 =

{
p ∧ ¬p

q ∧ ¬r ∧ s ∧ (p ∨ ¬p)

}
K1 =

{
p ∧ ¬p

p ∧ ¬p ∧ s

}
K2 =

{
p ∧ ¬p

q ∧ ¬q ∧ s

}

The combination “(Safe Formula Independence) + (Monotony)” can be gen-
eralized by substituting (Conjunct Independence) and (Tautology Independence)
for (Safe Formula Independence). To generalize further, supplement (Monotony)
with (Conjunction Dominance).

In the example, I(K ′
0) = I({p ∧ ¬p}) is given by (Conjunct Independence)

together with (Tautology Independence) whereas I({p ∧ ¬p}) ≤ I(K1) comes
from (Monotony). That is, I(K ′

0) ≤ I(K1) can be shown using these postulates.

Basic Postulates for Inconsistency Measures 9

6 Exhibiting Conjunctions

The reader might be concerned that some important postulates above explicitly
mention a distinctive connective, namely conjunction. Such a concern is well-
taken because there are a host of forms, ¬(¬α ∨ ¬β) for instance, under which
conjunctions may hide. Display logic [2] tells us what to do: if a subformula α
is in essence a conjunct of the whole formula then it is possible to rewrite the
formula in such a way that α actually occurs as a conjunct. Fortunately, there is
no need here to resort to the full-fledged system (display logic is meant to cover
a large family of logics) because we are only interested in classical logic.

Thus, define α′ to be a prenormal form of α if α′ results from α by applying
(possibly repeatedly) one or more of the principles: commutativity, associativity
and distribution for ∧ and ∨, De Morgan laws, double negation equivalence.

– If β is a prenormal form of α then I(K ∪ {α}) = I(K ∪ {β}) (Rewriting)

There is another way the form of a belief base should be irrelevant with
respect to inconsistency measuring, and that is, the propositional symbols chosen
to express formulas in a belief base must be interchangeable as follows.

– If σ and σ′ are substitutions s.t. σK = K ′ and σ′K ′ = K then I(K) = I(K ′)
(Variant Equality)

It seems indeed rational to hold that {p, q ∧¬p} for example conveys exactly
the same amount of inconsistency than {r, s ∧ ¬r} and the like.

7 Towards an Alternative Set of Basic Postulates

Summing up, an alternative set of basic postulates would be:

– I(K) = 0 iff K 	� ⊥ (Consistency Null)

– I(K ∪ K ′) ≥ I(K) (Monotony)

– For α 	∈ K, if α � β and α 	� ⊥ then I(K ∪{α}) ≥ I(K ∪{β}) (Dominance*)

– If α ≡ then I(K ∪ {α}) = I(K) (Tautology Independence)

– If α ∧ β 	∈ K, β 	∈ K, and α is safely consistent for K ∪ {β}
then I(K ∪ {α ∧ β}) = I(K ∪ {β}) (Conjunct Independence)

– If β is a prenormal form of α then I(K ∪ {α}) = I(K ∪ {β}) (Rewriting)

– If σ and σ′ are substitutions s.t. σK = K ′ and σ′K ′ = K then I(K) = I(K ′)
(Variant Equality)

10 P. Besnard

In a very insightful comparison, Thimm [21] checks many inconsistency measures
against various postulates. An interesting conclusion is that no postulate except
(Inconsistency Null) is satisfied by all those inconsistency measures. How well do
our basic postulates would fare? In fact, all those inconsistency measures satisfy
(Variant Equality) and (Rewriting). The other way around, an inconsistency
measure such as IMIC (defined in [6] by IMIC (K) = ΣM∈MI(K)1/|M | with
MI(K) denoting the set of MUSes of K) satisfies all our basic postulates.

Despite the argument that (Monotony) is only one way to express that extra
information cannot make the amount of inconsistency to decrease while another
way is by means of the postulate

– If α ∧ β 	∈ K then I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}) (Conjunction Dominance)

the latter is not in the set. The reason is that (Conjunction Dominance) rules out
inconsistency measures based on Minimal Unsatisfiable Subsets. As an example,
considering K = {p,¬q,¬r} when taking α to be s ∧ (¬p ∨ (q ∧ r)) and taking β
to be ¬p gives IMIC (K ∪ {α}) = 1/3 + 1/3 > 1/2 = IMIC (K ∪ {α ∧ β}). That
is, (Conjunction Dominance) is failed by IMIC .

With the advent of a number of new inconsistency measures (see e.g. [9] as
well as the special issue [11] in the Journal of Approximate Reasoning) or related
approaches [4,19], further investigations are afoot.

8 Conclusion

We have examined basic postulates for inconsistency measures, unearthing a
simple transformation to secure would-be postulates against a family of counter-
examples and investigating independence postulates. We have also considered a
case study in the form of three belief bases close to each other, illustrating the
impact of the linearity of the codomain of an inconsistency measure (so that an
intuition about I(K) 	< I(K ′) actually means I(K) ≥ I(K ′)) leading to the fact
that on some occasions it must either be that (1) the number of occurrences of
the same atomic contradiction makes a difference, or be that (2) the number of
distinct atomic contradictions makes a difference.

In the end, we propose a set of basic postulates that can be viewed as an
alternative to the core set introduced by Hunter and Konieczny. Among these
are two postulates expressing that changing the form of a belief base through e.g.
exchanging the order of disjuncts in a disjunction or using fresh propositional
symbols should be of no consequence when it comes to inconsistency measuring.
We have also discussed a postulate along the lines of the rather uncontroversial
(Monotony) postulate, to the effect that extending a belief base cannot make
the amount of inconsistency to decrease, regardless of whether extra information
comes in the form of an extra formula or of an extra conjunct. A major avenue
for future work is exhaustiveness, both through providing further postulates and
through offering criteria to fix bounds to the introduction of basic postulates for
inconsistency measures.

Basic Postulates for Inconsistency Measures 11

References

1. Ammoura, M., Raddaoui, B., Salhi, Y., Oukacha, B.: On an MCS-based inconsis-
tency measure. J. Approximate Reasoning 80, 443–459 (2017)

2. Belnap, N.D.: Display logic. Philos. Logic 11, 375–417 (1982)
3. Besnard, P.: Revisiting Postulates for Inconsistency Measures. In: Fermé, E., Leite,

J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 383–396. Springer, Cham (2014).
doi:10.1007/978-3-319-11558-0 27

4. De Bona, G., Hunter, A.: Localising iceberg inconsistencies. Artif. Intell. 246, 118–
151 (2017)

5. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise
inconsistency resolution. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol.
6717, pp. 362–373. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22152-1 31

6. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In: Brewka, G., Lang, J. (eds.) 11thConference onPrinciples of KnowledgeRep-
resentation and Reasoning (KR 2008), pp. 358–366, Sydney, Australia, September
16–19, 2008. AAAI Press (2008)

7. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency val-
ues. Artif. Intell. 174(14), 1007–1026 (2010)

8. Hunter, A., Parsons, S., Wooldridge, M.: Measuring inconsistency in multi-agent
systems. Künstliche Intelligenz 28, 169–178 (2014)

9. Jabbour, S., Ma, Y., Raddaoui, B., Säıs, L., Salhi, Y.: A MIS partition based
framework for measuring inconsistency. In: Baral, C., Delgrande, J.P., Wolter, F.
(eds.) 15th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2016), pp. 84–93, Cape Town, South Africa, April 25–29,
2016. AAAI Press (2016)

10. Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction in
propositional logic through epistemic tests. In: Gottlob, G., Walsh, T. (eds.) 18th
International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 106–111,
Acapulco, Mexico, August 9–15, 2003. Morgan Kaufmann (2003)

11. Liu, W., Mu, K. eds.: Special Issue on Theories of Inconsistency Measures and
their Applications. Journal of Approximate Reasoning (to appear, 2017)

12. McAreavey, K., Liu, W., Miller, P.C.: Computational approaches to finding and
measuring inconsistency in arbitrary knowledge bases. J. Approximate Reasoning
55(8), 1659–1693 (2014)

13. Kedian, M., Liu, W., Jin, Z., Bell, D.: A syntax-based approach to measuring the
degree of inconsistency for belief bases. J. Approximate Reasoning 52(7), 978–999
(2011)

14. Kedian, M., Wang, K., Wen, L.: Approaches to measuring inconsistency for strat-
ified knowledge bases. J. Approximate Reasoning 55(2), 529–556 (2014)

15. Potyka, N., Thimm, M.: Probabilistic reasoning with inconsistent beliefs using
inconsistency measures. In: Yang, Q., Wooldridge, M., (eds.) 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 3156–3163, Buenos
Aires, Argentina, July 25–31, 2015. AAAI Press (2015)

16. Schütte, K.: Proof Theory. Springer, Heidelberg (1977)
17. Thimm, M.: Measuring inconsistency in probabilistic knowledge bases. In: Bilmes,

J.A., Ng, A.Y. (eds.) 25th Conference on Uncertainty in Artificial Intelligence (UAI
2009), pp. 530–537, Montreal, QC, Canada, June 18–21, 2009. AUAI Press (2009)

18. Thimm, M.: Inconsistency measures for probabilistic logics. Artif. Intell. 197, 1–24
(2013)

http://dx.doi.org/10.1007/978-3-319-11558-0_27
http://dx.doi.org/10.1007/978-3-642-22152-1_31

12 P. Besnard

19. Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234, 120–
151 (2016)

20. Thimm, M.: Measuring inconsistency with many-valued logics. J. Approximate
Reasoning 86, 1–23 (2017)

21. Thimm, M.: On the compliance of rationality postulates for inconsistency mea-
sures: a more or less complete picture. Künstliche Intelligenz 31(1), 31–39 (2017)

22. Thimm, M.: Stream-based inconsistency measurement. J. Approximate Reasoning
68, 68–87 (2017)

23. Ulbricht, M., Thimm, M., Brewka, G.: Measuring inconsistency in answer set pro-
grams. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021,
pp. 577–583. Springer, Cham (2016). doi:10.1007/978-3-319-48758-8 42

http://dx.doi.org/10.1007/978-3-319-48758-8_42

Batch Composite Transactions
in Stream Processing

K. Vidyasankar(B)

Department of Computer Science, Memorial University,
St. John’s, Newfoundland A1B 3X5, Canada

vidya@mun.ca

Abstract. Stream processing is about processing continuous streams
of data by programs in a workflow. Continuous execution is discretized
by grouping input stream tuples into batches and using one batch at a
time for the execution of programs. As source input batches arrive con-
tinuously, several batches may be processed in the workflow simultane-
ously. Ensuring correctness of these concurrent executions is important.
As in databases and several advanced applications, the transaction con-
cept can be applied to regulate concurrent executions and ensure their
correctness in stream processing. The first step is defining transactions
corresponding to the executions in a meaningful way. A general require-
ment in stream processing is that each batch be processed completely in
the workflow. That is, all the programs triggered by the batch, directly
and transitively, in the workflow must be executed successfully. Then,
considering each program execution as a transaction, all the transactions
involved in processing a batch can be grouped into a single batch compos-
ite transaction, abbreviated as BCT, and transactional properties applied
to these BCTs. This works well when a batch is processed individually
and completely in isolation. However, when the batches are split, merged
or overlapped along the workflow computation, the resulting BCTs will
have some transactions in common and applying transactional properties
for them becomes complicated. We overcome the problems by defining
nonblocking BCTs that have disjoint collections of transactions. They
satisfy some properties analogous to those of the database transactions
and facilitate (i) defining correctness of concurrent executions in terms
of equivalent serial executions of composite transactions and (ii) process-
ing each batch either completely or not at all, and rolling back partially
processed batches without affecting the processing of other batches. We
also suggest an appropriate roll back mechanism.

1 Introduction

Stream processing is about processing continuous streams of data arriving from
external sources by programs in a workflow. Continuous execution is discretized

This research is supported in part by the Natural Sciences and Engineering Research
Council of Canada Discovery Grant 3182.

c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 13–32, 2017.
https://doi.org/10.1007/978-3-662-55947-5 2

14 K. Vidyasankar

by grouping (input) stream tuples into batches and using one batch at a time for
the execution of programs. As source input batches arrive continuously, several
batches may be processed in the workflow simultaneously. Ensuring correctness
of these concurrent executions is important.

As in databases and several advanced applications, the transaction concept
can be applied to regulate concurrent executions and ensure their correctness in
stream processing. To do this, the first step is defining transactions correspond-
ing to the executions in a meaningful way. A general requirement in stream
processing is that each batch be processed completely in the workflow. Each
batch will trigger a set of programs in the workflow. Considering each execution
of a program as a transaction, all the transactions involved in processing a batch
can be grouped into a composite transaction, called batch composite transac-
tion, abbreviated as BCT, for that batch. Then, transactional properties can be
applied to the BCTs.

In the database context, a transaction is a partially ordered set of operations,
but any such set does not qualify as a transaction. Certain properties and con-
ventions are followed in the definition and execution of database transactions.
We look at applying these properties to BCTs. In this paper, we focus on the
following four properties, denoted Transaction Properties, abbreviated as TPs.

TP1. A transaction is a partially ordered set of operations such that any two
conflicting operations are ordered.

TP2. The operations of each transaction are distinct. That is, no two transac-
tions have any operations in common.

TP3. Each transaction can be executed independently of other transactions.
TP4. Partial execution of a transaction can be rolled back without affecting

other transactions.

Denoting the operations of a transaction T as op(T) and partial order as ≺t,
TP1 states that conflicting operations in T are ordered by ≺t. Two operations are
non-conflicting if their effects are the same in whichever order they are executed;
they are conflicting otherwise. For example, a read and a write of a data item
are conflicting. TP2 states that op(T)∩op(T ′) is empty for any two transactions
T and T ′. Note that both T and T ′ may have similar operations like read(x),
for the same data item x, but the operations are different, not shared by both
the transactions.

We now look at applying these properties to BCTs. They can be stated as
follows, replacing ‘transaction’ by ‘BCT’ and ‘operation’ by ‘transaction’ in the
above.

BP1. A BCT is a partially ordered set of transactions such that any two con-
flicting transactions are ordered.

BP2. The transactions of each BCT are distinct. That is, no two BCTs have
any transactions in common.

BP3. Each BCT can be executed independently of other BCTs.
BP4. Partial execution of a BCT can be rolled back without affecting other

BCTs.

Batch Composite Transactions in Stream Processing 15

We note that conflicts among the transactions of a BCT are to be determined by
the semantics of the operations in the transactions and the data items accessed
by them in the application.

In many applications, all processing pertaining to an input batch is done in
isolation. That is, if a transaction T (which is an execution of a program P)
takes as input a batch a and produces as output a batch a′, and the output is
fed to another transaction T ′ (an execution of program P ′), then a′ constitutes
the input batch b for T ′. In such cases, BCTs defined as consisting of all transac-
tions triggered by the individual batches satisfy the above properties. However,
when the batches are merged or overlapped along the workflow computation, the
resulting BCTs may not satisfy the above properties. For example, in the case
of a merge, when b contains tuples from the outputs of two executions of P , on
two source input batches, the BCTs of both batches will contain T ′ and so will
not satisfy BP2-BP4. In this paper, to overcome this problem, we propose a new
notion called nonblocking BCTs (NBCTs) which satisfy the properties BP1-BP4
and, in addition, the following requirements for processing batches.

B1. Completion: Each batch must be processed completely. If it is not possible,
then partial processing, if any, must be rolled back non-intrusively, that is,
without affecting the processing of other batches.

B2. Monotonic execution: At any time, for each batch, the amount of processing
done on that batch should be a prefix of the workflow.

We describe a procedure for composing NBCTs, that is, figuring out the trans-
actions of each NBCT, in a simple manner. We also describe a non-intrusive roll
back mechanism.

With the new notion, the correctness of concurrent executions of the batches
can be described in terms of equivalent serial executions of their NBCTs. Rolling
back the executions pertaining to a batch can be accomplished by rolling back
the NBCTs that process the batch.

The transaction concept was introduced first in the context of (centralized)
database systems, characterized by ACID (Atomicity, Consistency, Isolation and
Durability) properties, and then adopted in various advanced database and other
applications, for example, in transactional processes [12], Web services [17], and
electronic contracts [16]. In all these applications, the composite/nested trans-
actions defined corresponding to the executions satisfy the properties BP1-BP4.
There have been several studies on the application of the transaction concept in
stream processing, including [2,3,6,9,18]. We elaborate the approaches in the
Related Works section. Some of them define composite transactions for batches
consisting of single tuples or batches executed in isolation. To our knowledge,
none of them define composite transactions when the batches are split, merged
or overlapped along the workflow computation.

We start with core definitions of compositions and transactions in stream
processing environments in Sect. 2. We study the executions involving splits,
merges and overlapping of batches and arrive at the definition of the NBCTs
in Sect. 3. A recovery mechanism that supports BP4 and B1 for the NBCTs is

16 K. Vidyasankar

given in Sect. 4. We initially consider only one source input stream. Inputs from
multiple source streams are considered in Sect. 5. Concurrent execution of BCTs
is dealt with in Sect. 6. We discuss related work in Sect. 7 and conclude in Sect. 8.

2 Executions in Stream Processing

A stream processing workflow is a composition of programs. Formally, a compo-
sition C is (P, ≺p), where P is a set of transaction programs {P1, P2, . . . , Pn},
simply called programs, and ≺p is a partial order, called program order, among
them. The partial order consists of dataflow order (of the streams) and control
order. We also include conflict order. We discuss conflict order in Sect. 6. We call
the (acyclic) graph representing the partial order the composition graph GC(C).
Stream data are sequences of tuples. Streams coming from outside the composi-
tion are called source streams. The output streams (of any program) are called
derived streams. Each execution of a program yields a transaction.

T1,i

T2,i

T3,i

ai

a’ibi

b’ici

(a) (b)

Fig. 1. A schema example

We use the simple composition, shown in Fig. 1, to illustrate the definitions.
It is a workflow consisting of a sequence of three programs P1, P2 and P3. Input
batches will be denoted by unprimed variables xi and the corresponding outputs
by primed variables x′

i. Stream inputs/outputs for P1, P2 and P3 will be denoted
by a, b and c, respectively. The sequence of input batches for P1 is a1, a2, . . . ,
and the executions are transactions T1,1, T1,2, . . . (the first index is that of the
program and the second index is that of the input batch), producing the output
sequence a′

1, a
′
2

The processing of a source input batch will involve executions of some of the
programs in the workflow, resulting in a set of transactions with a partial order
≺t, called transaction order. We call this a batch composite transaction, BCT,

Batch Composite Transactions in Stream Processing 17

denoted as T = ({T1, T2, . . . , Tm}, ≺t). We denote {T1, T2, . . . , Tm} as set(T).
The graph representing ≺t is called transaction graph GT (T). The transaction
graphs are acyclic. We note that each Ti is an execution of some program Pj . It is
possible that T has more than one execution of some Pj . The transaction partial
order ≺t reflects the program partial order ≺p, that is, if Ti is an execution of
Pj , Tk is an execution of Pl and Pj ≺p Pl, then Ti ≺t Tk. In addition, ≺t will
contain triggering relationships, if any. (We note that, in this paper, we use the
term ‘transaction’ exclusively to denote some Ti; a T always denotes a ‘batch
composite transaction’, that is, BCT.) We denote the BCT that is executed for
source input batch b as T (b). In the execution shown in Fig. 1, the BCT for
batch ai, T (ai), is {T1,i, T2,i, T3,i} (omitting the transaction order for brevity).

Stream input batches arrive in sequence, for example, as b1, b2, The batch
order is denoted ≺b. The batch b2 and a few more batches may arrive before
all the transactions in T (b1) are completely executed. Thus many BCTs may be
executed concurrently.

General requirements for concurrent executions of BCTs can be stated as
follows [14].

1. Unit of atomicity: Each BCT is executed either completely or not at all. That
is, the entire T is an atomic unit for each T .

2. Serializability: The execution is equivalent to a serial execution of the BCTs.
3. Transaction order: The effective execution order of the transactions of T

should obey the partial order ≺t. That is, for any i, j, if Ti ≺t Tj , then Ti

should precede Tj in the serial execution.
4. Batch order: The serial execution should reflect the batch order ≺b. That is,

for i < j, (all the transactions in) T (bi) should precede (the transactions of)
T (bj) in the equivalent serial execution.

We define nonblocking BCTs in the next section.

3 Batch Composite Transaction Model

Batch composite transactions are initiated by arrival of batches of tuples from
source streams. Batch sizes vary. A batch may contain all the tuples with the
same timestamp (time-based) or a certain number of tuples (count-based). A
program may process one tuple at a time (as in selection and projection opera-
tions) or all the tuples in the batch together (as in join). We stipulate only that
each execution of a program is a transaction. Therefore, with the all-or-nothing
atomicity property, the result of the execution will be known only after the entire
batch is processed. The intermediate results and states of the program will not
be available. In general, smaller batches will reduce latency while larger ones,
resulting in fewer executions of the program, may improve efficiency. Batch sizes
may also be different for different programs, and even for different executions of
the same program.

Batches may be split, merged or overlapped along the workflow computa-
tion [4,7]. For example, splitting may occur for processing the batches in parallel.

18 K. Vidyasankar

Subsequently, the resulting output batches may be merged. Merging and overlap-
ping will also occur in aggregates computation. We assume arbitrary splitting,
merging and overlapping in this paper. We consider several examples and come
up with a definition of nonblocking BCTs and an execution model underlying
the definition.

We first consider only one source input stream. (Note that in many appli-
cations where multiple input streams are involved, the tuples from the different
streams are combined and input as one stream.) We consider multiple source
streams in Sect. 5.

Details of the model are itemized with label M. Though we are dealing with
concurrent processing of the batches and hence concurrent executions of their
BCTs, we assume in this paper that:

M1. Each program in the workflow is executed serially.

It follows that each transaction in a BCT is executed atomically, akin to each
operation in a database transaction being executed atomically.

We have identified the composite transaction to be executed for batch b as
the BCT T (b). Suppose b is input to transaction T . Then we define T (b) as the
union of {T} and all the transactions triggered directly or indirectly by T in
the composition, with the corresponding partial order. Suppose Ti precedes Tj .
If the precedence is due to dataflow order, the execution of Tj will start only
after the execution of Ti finishes. The same can be assumed for control order.
We also assume an implementation such that if Ti triggers Tj , the triggering is
done only after Ti commits. Then, in all cases, for Ti preceding Tj , the execution
of Tj starts only after the execution of Ti finishes. This is true whether Ti and
Tj are conflicting or not. If Ti and Tj are executions of the same program, then
the assumed serial execution of programs (M1) induces an ordering between the
two transactions. Thus, BP1 will be satisfied for T (b). In the following, we look
at the properties BP2-BP4 for various cases. We use the composition shown in
Fig. 1 to illustrate the cases.

M2. We model the dataflow, from an output stream of one program Pi to an
input stream of another program Pj , with a FIFO (first-in-first-out) queue
Qi,j ; Pi enqueues its output into Qi,j and Pj dequeues its input from that
queue. Both enqueueing and dequeueing a batch are assumed to be done
atomically.

In the execution shown in Fig. 1, the dataflow between P1 and P2 is such that
bi = a′

i, that is, P2 empties the queue Q1,2 (in a serial execution of the batches),
and similarly P3 empties the queue Q2,3 resulting in ci = b′

i. Here, the BCT for
batch ai, T (ai), is {T1,i, T2,i, T3,i}. Rolling back partially executed T (ai) involves
rolling back the corresponding transactions in this set. Clearly, the BCT T (ai),
for each i, satisfies all the properties BP1-BP4.

We note that, in a serial execution of the batches, all the queues are empty
before the processing of ai starts, and all of them are empty after the processing

Batch Composite Transactions in Stream Processing 19

is completed. This property captures the notion of the batch being processed in
isolation.

In the following, we consider splits, merges, and overlapping of batches.

P1

P2

P3

a1

a'1

b13
b12
b11

b'13

b'12

b'11

c132
c131
c122
c121
c112
c111

a1

a'1

b11 b12 b13

b'11 b'12 b'13

c111 c112 c121 c122 c131 c132

(b)(a) T1,1

T2,11 T2,12 T2,13

T3,111 T3,112 T3,121 T3,122 T3,131 T3,132

Fig. 2. Splitting of the batches

(a) Splits: Consider the following with respect to our composition example,
depicted in Fig. 2. (In all the figures, horizontal edges denote batch order.)

– Input batch a1 for P1 results in execution of T1,1, producing output batch a′
1.

– The batch a′
1 is split into three batches b11, b12, b13, and each b′

1j is split into
two batches c1j1 and c1j2.

– Then the corresponding executions of P2 are T2,11, T2,12, T2,13. The batch
order among the three batches translates to T2,11 ≺b T2,12 ≺b T2,13.

– The executions of P3 are T3,111, T3,112, T3,121, T3,122, T3,131, T3,132.

Here, T (a1) consists of all the transactions listed above. Again, to satisfy
BP1, all conflicting transactions must be ordered. Imposing batch order on the
split batches will guarantee this property. (We assume that any two executions
of the same program are conflicting.) The other three properties, BP2-BP4, are
clearly satisfied. We note that, here also, (again in a serial execution of the
batches) all the queues are empty before the processing of a1 starts and are
empty after the processing is complete. That is, the batch a1 is processed in
isolation.

(b) Merges: Merging of the batches is depicted in Fig. 3:

– Input batches a1, a2, . . . , a6, for P1, result in executions of T1,1, T1,2, . . . , T1,6,
producing output batches a′

1, a
′
2, . . . , a

′
6, respectively.

20 K. Vidyasankar

P1

P3

a6
a5
a4
a3
a2
a1

a’6
a’5
a’4
a’3
a’2
a’1

b3
b2
b1

b'3
b’2
b’1

c1

T1,1 T1.2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3

T3,1

a1 a2 a3 a4 a5 a6

a'3 a'4 a'5 a'6

b1 b2 b3

b'1 b'2 b'3
c1

(a) (b)

a'1 a'2

Fig. 3. Merging of batches

– Batch b1 is a′
2 · a′

1, b2 is a′
4 · a′

3, and b3 is a′
6 · a′

5 and the executions of P2 are
T2,1, T2,2, T2,3. Here “.” indicates concatenation, of the batches in the order
of their arrival, that is, from right to left.

– Batch c1 is b′
3 · b′

2 · b′
1, and the execution of P3 yield T3,1.

Here, T (a1) is {T1,1, T2,1, T3,1} and T (a2) is {T1,2, T2,1, T3,1}. We note that
these two sets have {T2,1, T3,1} in common. Thus BP2 is not satisfied.

To satisfy BP2, keeping in mind the completion and monotonic execution
requirements, B1 and B2, of the batches, we choose an appropriate prefix1 of T (b)
as a composite transaction for batch b. We can interpret that in the executions of
a program where merges occur, on arrival of an earlier batch, the program waits
(blocks) for further batches. For instance, in Fig. 3, after a′

1 arrives, P2 waits
for a′

2 for execution of T1,2. We take this as the execution of the BCT for a1 is
complete when it cannot proceed any farther by itself, that is, once a′

1 is sent to
P2. Therefore, eliminating waiting for batches from other transactions, we can
close the composition of the BCT with {T1,1}. We call this nonblocking BCT,
abbreviated as NBCT and denoted ˜T (a1). Arguing along the same lines, the
nonblocking batch composite transactions for other batches will be as follows.

– ˜T (a2) is {T1,2, T2,1}.
– ˜T (a3) is {T1,3}.
– ˜T (a4) is {T1,4, T2,2}.
– ˜T (a5) is {T1,5}.
– ˜T (a6) is {T1,6, T2,3, T3,1}.

1 A subgraph H of an acyclic graph G is a prefix of G if all the edges from H to the
rest of the graph are outdirected.

Batch Composite Transactions in Stream Processing 21

This approach is captured in the following definition.

Definition 1. For a batch a, the nonblocking batch composite transaction ˜T (a)
is the maximal prefix of T (a) that is executed without inputs from subsequent
batch composite transactions.

We note that with this definition, referring to the above example, the prop-
erties BP1-BP3 will be satisfied. Now, BP4 requires that roll back of any par-
tial execution can be done without affecting other NBCTs. We describe a non-
intrusive roll back mechanism that will accomplish this in the next section. As
an example, in Fig. 3, suppose T1,1, T1,2 and T1,3 have been executed by P1, and
P2 has not yet executed T2,1. Now, to roll back ˜T (a2), the state of P1 is rolled
back to the one before T1,2 and a3 is processed again. That is, we roll back the
processing of subsequent batches also and then reprocess them. We note that
the completion requirement for each batch is fulfilled jointly by the NBCTs of
all batches.

Fig. 4. Overlapping batches

(c) Overlapping batches: In the previous examples, the batches input to the
executions of a program are disjoint. In some applications, the batches may
overlap. For example, in the problem of computing an aggregate function every
5 min where the batch consists of the tuples received in the preceding 10 min,
every two consecutive batches will overlap. Figure 4 depicts overlapping batches
in our composition example. The transactions and batches used for them are:

– Input batches of T1,1, T1,2 and T1,3 are a3 · a2 · a1, a4 · a3 · a2, and a5 · a4 · a3;
the respective output batches are b1, b2 and b3.

22 K. Vidyasankar

– Input batches of T2,1 and T2,2 are b2 · b1, and b3 · b2; the respective output
batches are c1 and c2;

– Input batches of T3,1 and T3,2 are c1 and c2, respectively.

Here, we can interpret as (i) an input batch is made up of several smaller batches
and (ii) each such batch is input multiple times in the executions of a program.
We can then consider BCTs of the smaller batches.

We extend our execution model to accommodate overlapping input batches
as follows.

M3. With each program, for each stream input, we associate a local FIFO win-
dow. At the beginning of an execution, the input batches used for the com-
putation are dequeued from the queues and placed (enqueued, let us say on
top) in the respective windows. In the next execution of the program, either
all or a part of the content (always from the bottom) is used. At the end of
that execution, a part of the content, again from the bottom, is dequeued
and discarded if and only if it is not used in any further executions. Then,
in an overlapping window, some contents are removed and some are added,
dequeued from the queue. It is also possible that an entire window content is
used for the next computation, without adding a batch from the queue.

M4. The main point is that any batch (tuple) is dequeued from the queue (just
once), but kept in the window for using in one or more executions of the
program.

Considering the example in Fig. 4, P1, to execute T1,2, will have a2 and a3,
concatenated as a3 · a2 in its window, dequeue a4 from its input queue to form
the input batch a4 ·a3 ·a2. The program P2 would have b1 in its window, dequeue
b2 after the execution of T1,2, and merge them to get b2 · b1 for the execution of
T2,1, and then clear b1 but keep b2 for the next execution T2,2.

Here, by Definition 1, ˜T (a4) will have {T1,2, T2,1, T3,1} and ˜T (a5) will have
{T1,3, T2,2, T3,2}. Clearly, BP1-BP3 are satisfied. Let us consider BP4. Suppose
after the execution of T1,2 and T2,1, but before the execution of T3,1, it is decided
that ˜T (a4) needs to be rolled back. Assume that T1,3 and T2,2 have been executed
with a5, and also, T1,4 has been executed with a6 (not shown in the figure). With
the roll back of ˜T (a4), P1 has to be reset to its state before T1,2, and P2 to its
state before T2,1.

M5. We define the states of the programs to include the states (that is, contents)
of their windows also.

Thus, when P1 is reset, its window will contain a3 · a2 and when P2 is reset,
its window will have b1. Then, we want P1 to process a5 again, and then a6

again. With the resulting outputs, P2 should execute (new) T2,1, and then (new)
T2,2. This way, we achieve non-intrusive roll back. Here also, the completion
requirement of each batch is satisfied jointly by several NBCTs.

Batch Composite Transactions in Stream Processing 23

4 A Roll Back Mechanism

In general, we assume that splits, merges and overlapping of batches could occur
arbitrarily in an execution. The source input batches that transactions process
can be kept track of as follows.

M6. 1. Index the source input batches serially.
2. For a batch b, we denote the source input batch set from which b is

derived as sb-set, denoted ψ(b). If b itself is a source input batch, then
ψ(b) contains just b.

3. We define sb-sets for transactions also. For a transaction T , let ψ(T)
denote the source input batch set that T processes. It will be the union
of ψ(b) of all batches b input to T .

4. Each of the output batches of T will have sb-set equal to that of ψ(T).

We observe that, for a batch bi, set(T (bi)) is the set of all the transactions T

whose sb-set contains bi. An alternate definition of ˜T (bi) is the following.

Definition 2. For a batch bi, ˜T (bi) is the subgraph of T (bi) with all the trans-
actions T such that i is the largest index of the batches in ψ(T).

We note that if bi is in ψ(T) of a transaction T , then bi is in ψ(T ′) of all
descendents T ′ of T also. Therefore, it follows that ˜T (bi) is a prefix of T (bi).

The roll back mechanism is as follows.

Preliminaries:

M7. 1. (a) We denote the completion of a BCT by committing it once all its
transactions are successfully executed.

(b) A source input batch b can be committed when all the BCTs process-
ing b have been committed, that is, all the transactions in T (b) (not
˜T (b)) have been executed successfully.

(c) The batches are committed serially, in the order of their indices.
2. For each transaction T of program P , we denote the state of P before

the execution of T as prev(P, T). Rolling back T amounts to resetting P
to this state. Resetting will also roll back changes, if any, made by T to
objects in persistent storage.

3. We require each program P to remember prev(P, T) for T s correspond-
ing to all the BCTs that are currently executed and not yet committed
in the workflow. These are for transactions T whose ψ(T) contains an
uncommitted batch; if all the batches in ψ(T) are committed, then the
prev(P, T) can be discarded. Since we consider serial execution of the
programs, a sequence of previous states can be kept corresponding to the
executions.

4. In addition, we require P1, the first program that processes source input
batches, remembering (temporarily) all the uncommitted batches them-
selves. A batch is kept until it commits.

24 K. Vidyasankar

Mechanism:

1. Rolling back an NBCT ˜T (bi), of batch bi is done by resetting the programs of
each of the transactions in that NBCT to the previous states corresponding
to the first execution of that batch. This amounts to rolling back all the
subsequent transactions of that program too, that is, a cascade roll back.

2. A subsequent batch might have been processed by a program that does not
process bi. Therefore, all the programs that have executed a transaction whose
sb-set contains a batch with index greater than or equal to i are rolled back.

3. The program P1, after rolling back its state to the one prior to the first
execution of the batch bi, resumes executions of the successor batches, one
by one. All other programs simply roll back their states to the ones prior to
the first execution of that batch. Then they wait for normal execution.

4. Some derived batches of the ones that are rolled back may arrive to the other
programs in the mean time. They should be ignored. To facilitate this, the
reprocessed batches could be given new indices (that are greater than any
previous index).

5. Each transaction could have modified different variables and thus state of the
program differently. All these changes have to be rolled back, in reverse order.

A Stream Processing Engine (SPE) can regulate the executions.

M8. 1. The SPE will index the source input batches.
2. It will keep track of the transactions executed by programs, and their

sb-sets.
3. Therefore, the SPE can figure out the composition of the NBCTs, that is

the set of transactions in each NBCT. Note that this set can be completed
only after the sb-sets of all transactions have been received.

4. It will determine commitment of the batches.
5. When a decision to roll back an NBCT is made, the SPE will figure out

the programs that need to be rolled back and inform them. The actual
roll back will be done by the programs themselves. Likewise, the previous
states will also be maintained by the programs themselves.

6. The SPE, instead of P1, could keep the uncommitted source batch sets.

We note that since ˜T (bi) is a prefix of T (bi), rolling back ˜T (bi) amounts
to rolling back T (bi) itself, and thus rolling back the batch bi, and it is done
non-intrusively.

Stream tuples are usually not stored persistently. They are used in the com-
putation and then discarded. Typically, as we have assumed, the tuples arriving
from a source or derived by some transaction are written into a queue and read
by the next program (transaction) in the workflow. Once the tuples are used,
they are not available anymore. However, many recovery considerations require
that the tuples are available for a while [8]. The duration of their availablity
may vary from (i) only until they are used by the successor program(s), (ii) until
a certain amount of downstream computations have been carried out, (iii) until

Batch Composite Transactions in Stream Processing 25

the corresponding BCT commits, or (iv) until some time later or when a cer-
tain number of subsequent batches have been processed. Some of the (source or
derived) batches may even be stored persistently as part of a checkpoint or for
archival purposes. The recovery mechanism described above assumes the avail-
ability of source input batches until they are committed, and the availability of
the previous states of transactions executed by programs. The previous states
can be stored in terms of before-images of the changes each transaction makes.
Then, resetting to a previous state of a transaction would amount to installing
before-images of all the transactions up to that transaction in reverse order.

In some applications, source input streams, also called raw streams, should
only be processed (by edge devices) and not stored anywhere, for example, for
privacy reasons. In such cases, the derived batches at some downstream level
can be stored for reprocessing. For example, in our composition schema, instead
of remembering ai’s at P1, bi’s can be remembered at P2. Then, when aj , for
some j, needs to be rolled back, bj can be rolled back instead (and subsequent
bi’s reprocessed from P2). This would amount to dropping aj , literally after P1

but semantically at P1 itself.
We discuss another semantic adjustment in the following. In many applica-

tions, a source input batch is processed for several functionalities. We may find
that a batch should be rolled back with respect to some functionality, but used
for others. This will redefine the NBCT of that batch. We illustrate with an
example.

P1

P2 P3 P4

P6 P5

Fig. 5. A composition example

A simple composition is shown in Fig. 5, and its execution on input batch a1,
that is, the NBCT ˜T (a1), is shown in Fig. 6. In this example, T1,1, the execution
of P1 on input a1, produces two stream outputs b1 and c1. The batch c1 is input
to P3. It is also input to P4 split into two batches c11 and c12. The outputs

26 K. Vidyasankar

b1

T1,1

T2,1 T3,1 T4,1 T4,2

T6,1 T5,1

a1

c1 c11
c12

d1 e1 f11 f12

Fig. 6. A batch composite transaction

from the two executions of P4, namely, T4,1 and T4,2, are merged and fed to one
execution T5,1 of P5. The programs P2 and P3 process b1 and c1 respectively, and
produce d1 and e1 which are processed together by P6. Suppose that after T4,1

and T4,2 are executed but before T5,1 is executed, it is decided to drop c11. Then,
P4 has to be reset to prev(P4, T4,1) and it has to reprocess c12. Then P5 could
execute just with (new) f12. It is possible that c11, and hence c1, is processed for
different functionality by P3 and T3,1 is still valid. Thus, wherever reprocessing
is allowed, the batches that are processed must be stored until their source input
batches are committed.

5 Multiple Source Streams

So far, we have considered only one source input stream. We now consider mul-
tiple streams. We start with an example with two streams to illustrate the prob-
lem. Consider the composition and one of its executions shown in Fig. 7. Here,
program P1 processes batches a1 and a2, in T1,1 and T1,2, P2 processes batch b1
from a different source, and their outputs are processed by P3 as shown.

In some applications that have inputs from multiple source streams, it may
be appropriate to define NBCTs for combinations of batches of different source
inputs. For the example shown, ˜T (a1, b1) and ˜T (a2, b1) would be appropriate.
However, when the batch a2 arrives at the source input level, we may not know
whether it will be processed downstream with b1 or some other batch b. This
problem arises even when batches from both sources are input to the same (first)
program. Irrespective of how the NBCTs are identified, we would like to compose
them as per Definitions 1 and 2. We resolve the issue as follows.

M9. We introduce a hypothetical program P0 and let batches from all source
streams be input to this program. This will be a filter program sorting out
batches to be fed to the original source programs.

Batch Composite Transactions in Stream Processing 27

T1,2

b1a1

a’1 b’1 b’1

a2

T1,1 T2,1

T3,1 T3,2

a’2

a

a’

b

b’

P1 P2

P3

(a) (b)

Fig. 7. Inputs from multiple source streams

The construction for the composition in Fig. 7 is shown in Fig. 8 with the hypo-
thetical program in grey box. We identify the executions of P0 first with a1 and
b1, and then with a2. In Fig. 8, we extend the execution in Fig. 7 with input b2
next and then with a3 and b3. Now we can identify the NBCTs with the sets
of new batches used in the executions of P0; as per our notion, they will con-
tain all the transactions triggered directly or transitively, but executed without
waiting for subsequent batches. The NBCTs and their transactions are shown in
the figure in part (i), omitting the transactions (hypothetically) executed by P0.
(The first and the third NBCTs are in one line, and the second and the fourth in
the next line.) We apply this idea for any number of source streams. We stipulate
only that each execution of P0 will have a new batch that is dequeued from the
appropriate queue, from at least one source. It may have new batches from any
number of sources. Also, once dequeued into its window, a batch could be used
for any number of executions.

Again, for each ai and bj , ˜T (ai, bj) would contain all transactions T such
that its sb-set contains ai but not ak, for k > i, and similarly for bj . Note that
in ˜T (ai, bj), P0 is executed with ai and bj , and hence all the transactions in the
NBCT will have both ai and bj . Hence, ˜T (ai, bj) could as well be identified as
˜T (ai), and similarly as ˜T (bj). The execution of the hypothetical program P0 can
be managed by the SPE.

We note that each of the source input batches can be rolled back; the NBCT
of that batch as per Definition 2 will be rolled back, with the result that the batch
is not used for any NBCT at all. The roll back mechanism described in the last
section is applicable here also. When the NBCT has several (new) batches in the
execution of P0, any number of those batches can be rolled back, and subsequent
batches of the respective streams are reprocessed. We note that the reprocessing
may produce different NBCTs, compared to the execution without roll back. For
instance, in the example of Fig. 8, suppose a1 is rolled back. Then we might end

28 K. Vidyasankar

up with ˜T (a2, b1) with the transactions T1,2, T2,1 and T3,2, which would not be
present if a1 is not rolled back.

We have illustrated the application of the idea of composing a batch com-
posite transaction with all the transactions triggered by arrival of new batches
and executed independently without waiting for subsequent batches to different
executions where batches are not processed in isolation. Part (ii) in Fig. 8 dis-
plays another interesting case. Here, each time, new pairs of batches from the two
source streams are processed. However, P3 accumulates the previous batches and
uses them with the new batches for the next execution. This type of processing
is described in [1]. The NBCTs are shown in the figure.

Fig. 8. Nonblocking batch composite transactions for multiple source streams

6 Concurrent Executions

In this section, we consider concurrent executions of NBCTs. Let T be a set of
NBCTs. We define an execution graph GE(T) as the graph whose vertex set is
the union of set(˜T)’s of all ˜T in T, and edges for the following:

– the transaction partial order ≺t of each ˜T in T;
– the serial order among the transactions of the same program, for each program

in the workflow; and
– the conflict order among the transactions, as described below.

We associate conflicts between programs in a composition. Conflicts are to be
determined based on the semantics of the operations executed by the programs
and the data items that are operated on. In general, the execution order is
important for conflicting operations and irrelevant for non-conflicting ones. We
assume that the conflicts between programs carry over to their executions. For

Batch Composite Transactions in Stream Processing 29

example, suppose programs Pi and Pj , i < j, are conflicting. Then, we assume
that every execution of Pi conflicts with every execution of Pj . These executions
may be for the same source input batch or different source input batches. We also
assume that any two conflicting programs in a composition are related by the
program order ≺p. Then, since the program order will yield transaction partial
order, conflicts between executions of the programs for the same input batch,
that is, transactions of the same NBCT, are taken care of by the transaction
order edges. For example, for executions Ti,m and Tj,m for the same source input
batch am, a conflict edge from Ti,m to Tj,m need not be added since Ti,m ≺t Tj,m

and hence the corresponding transaction order edge will be added. However, for
different source input batches am and an, m < n, the edges from Ti,m to Ti,n,
as well as from Tj,m to Ti,n need to be added. The former edges are already
included in the serial order of the transactions of the same program; only the
latter edges need to be added.

We note that the graph obtained as above is acyclic. There are no edges
directed from a transaction of an NBCT of a batch bj to that of batch bi, for
j > i. (This is certainly true for conflict edges and those between the transactions
of the same program. Consider a transaction order edge of ˜T (bj), say from an
execution T of Pk to an execution T ′ of Pl, for k < l. Now, T ′ could be in T (bi),
but it must be waiting for a batch derived from bj . Then, by definition, T ′ is
not in ˜T (bi). Therefore, by contracting the subgraphs generated by the set of
vertices of NBCTs ˜T (b) into single vertices, we will indeed get a graph consisting
of a single directed path whose vertices are the NBCTs and edges correspond to
the batch order, that is, a serial execution of the NBCTs in T, according to the
batch order.

Again, note that the vertices of the execution graph GE(T) are the transac-
tions, not the NBCTs, in T. Therefore the graph can be constructed without
waiting to know the composition of the NBCTs.

We note that, in the above discussions, we have insisted on the serial order of
the NBCTs to be the same as the batch order among the batches. With multiple
source input streams, the batch order will be the lexicographic order of the set
(of indices) of the batches as they arrive for processing.

7 Related Work

Composite transactions have been defined in different ways in different heteroge-
neous distributed environments depending on the required/relaxed ACID prop-
erties appropriate to the applications. In most cases, they are defined as sagas
and then the properties of the transactions constituting a saga are explored.
With respect to atomicity (all-or-nothing property of composite transactions),
an early proposal [10] was the schema c∗[p]r∗ denoting a partially ordered set
of compensatable transactions followed by at most one pivot (which is non-
compensatable) and then followed by a partially ordered set of retriable (assured)
transactions. This schema has been extended, allowing multiple pivots, for Trans-
actional processes [12], and then for Web services [17], Electronic contracts

30 K. Vidyasankar

[16] and recently for Internet of Things services [13]. In the latter applications,
nested transactions were considered. The properties BP1-BP4, as applicable to
sagas, were satisfied by the (high level) transactions. Our NBCTs are also nested
transactions but treated as non-nested ones, capturing the top level of the nest-
ing only.

The works in the context of stream processing include the following. A uni-
fied transaction model, called UTM, is proposed in [2]. It treats events also as
transactions. It discusses splitting continuous executions into transactions. Iso-
lation and atomicity properties are relaxed. Events and triggers in the context of
Complex Event Processing over Event Streams are discussed in [18]. They also
define stream ACID properties for transactions. The stream atomicity notion
requires “all operations stimulated by a single input event should occur in their
entirety”. In S-Store [9], the unit of atomicity is the entire composite transaction.
The batches are executed in isolation. In [6,11], entire read-only composite trans-
actions reflecting “continuous queries reading updatable resources” are taken as
units of atomicity. Such considerations are very useful especially in IoT environ-
ments, where monitoring and actuations are predominant and monitoring should
be consistent. Reprocessing upstream batches is also considered in [11]. Other
papers discussing stream transactions and compositions include [3,5]. None of
these papers deal with executions arising with splitting, merging or overlapping
of the batches and defining composite transactions satisfying properties consid-
ered in this paper. Splitting batches for parallel execution and merging them
later have been considered in the literature, for example in [4,7].

This paper is closely related to [15]. There, the source input batches b for
which T (b) satisfies BP1-BP4 and B1-B2 are called atomic batches. (The prop-
erties BP1-BP4 are not brought out explicitly in that paper.) As observed in
this paper, when splits, merges and overlapping of the batches occur in an exe-
cution, some source input batches may not be atomic. The contribution in [15]
is showing that several source input batches can be grouped into a single atomic
batch. In contrast, the goal in this paper is to define an NBCT for each source
input batch individually to satisfy the properties BP1-BP4, at the expense of
satisfying the completion requirement of batches jointly by several NBCTs and
achieving non-intrusive roll back by rolling back some subsequent batches also
and reprocessing them.

8 Conclusion

In stream processing, input stream tuples are processed in batches by programs
in a workflow. Several batches are processed concurrently and the batches may
be split, merged or overlapped along the workflow. In this paper, we have iden-
tified the executions corresponding to the batches in terms of nonblocking batch
composite transactions (NBCTs) that satisfy some basic transactional properties
BP1-BP4.

When BP1 is satisfied, the conflicting transactions in each NBCT are ordered.
If the transactions that are ordered are executed strictly serially (as can be

Batch Composite Transactions in Stream Processing 31

expected in stream processing), then all conflicts during the execution are
between transactions of different NBCTs, and not between those of the same
NBCT. Therefore, conflict-serializability of the NBCTs can be checked with a
conflict graph consisting of nodes corresponding to NBCTs and directed edges
representing conflicts among them. That is, there is no need to construct a graph
with individual transactions of the NBCTs as vertices. Therefore, management
of conflict graphs, and concurrency control, will be simpler.

In this paper, we have considered roll back of partially processed batches only.
We have not considered compensation of the BCTs, after their commitment, at
a later time. As in sagas, we can consider compensating BCTs. Further, these
BCTs could be of compensating batches. Then, these BCTs could be executed like
any other BCTs. The availability of compensating batches will be application-
dependent.

References

1. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma,
R.J., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt, E., Whittle, S.: The
dataflow model: a practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow.
8(12), 1792–1803 (2015). http://dx.doi.org/10.14778/2824032.2824076

2. Botan, I., Fischer, P.M., Kossmann, D., Tatbul, N.: Transactional stream process-
ing. In: Proceedings of the 15th International Conference on Extending Database
Technology EDBT 2012, pp. 204–215. ACM, New York (2012). http://doi.acm.
org/10.1145/2247596.2247622

3. Conway, N.: Transactions and data stream processing. In: Online Publication, pp.
1–28 (2008). http://neilconway.org/docs/stream txn.pdf

4. De Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators
on data streams: an algorithmic skeleton approach. Int. J. Parallel Prog., pp. 1–20
(2016)

5. Golab, L., Özsu, M.: Issues in data stream management. ACM SIGMOD Rec.
32(2), 5–14 (2003)

6. Gürgen, L., Roncancio, C., Labbé, S., Olive, V.: Transactional issues in sensor
data management. In: Proceedings of the 3rd International Workshop on Data
Management for Sensor Networks (DMSN 2006), Seoul, South Korea, pp. 27–32
(2006)

7. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. 46(4), 46: 1–46: 34 (2014).
http://doi.acm.org/10.1145/2528412

8. Hummer, W., Satzger, B., Dustdar, S.: Elastic stream processing in the cloud.
Wiley Interdisc. Rev. Data Min. Knowl. Disc. 3, 333–345 (2013)

9. Meehan, J., Tatbul, N., Zdonik, S., Aslantas, C., Cetintemel, U., Du, J., Kraska, T.,
Madden, S., Maier, D., Pavlo, A., Stonebraker, M., Tufte, K., Wang, H.: S-store:
streaming meets transaction processing. Proc. VLDB Endow. 8(13), 2134–2145
(2015)

10. Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H.F.: A transaction model for-
multidatabase systems. In: Proceedings of the 12th International Conference on
Distributed Computing Systems 1992, pp. 56–63. IEEE (1992)

http://dx.doi.org/10.14778/2824032.2824076
http://doi.acm.org/10.1145/2247596.2247622
http://doi.acm.org/10.1145/2247596.2247622
http://neilconway.org/docs/stream_txn.pdf
http://doi.acm.org/10.1145/2528412

32 K. Vidyasankar

11. Oyamada, M., Kawashima, H., Kitagawa, H.: Continuous query processing with
concurrency control: reading updatable resources consistently. In: Proceedings of
the 28th Annual ACM Symposium on Applied Computing SAC 2013, pp. 788–794.
ACM, New York (2013). http://doi.acm.org/10.1145/2480362.2480514

12. Schuldt, H., Alonso, G., Beeri, C., Schek, H.: Atomicity and isolation for transac-
tional processes. ACM Trans. Database Syst. 27, 63–116 (2002)

13. Vidyasankar, K.: Transactional properties of compositions of internet of things
services. In: 2015 IEEE First International Smart Cities Conference (ISC2), pp.
1–6, October 2015

14. Vidyasankar, K.: A transaction model for executions of compositions on internet
of things services. In: Procedia Computer Science, pp. 195–202. Elsevier (2016)

15. Vidyasankar, K.: Atomicity of batches in stream processing. J. Ambient Intell.
Humanized Comput. (2017)

16. Vidyasankar, K., Krishna, P.R., Karlapalem, K.: A multi-level model for activ-
ity commitments in e-contracts. In: Meersman, R., Tari, Z. (eds.) OTM
2007. LNCS, vol. 4803, pp. 300–317. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76848-7 20

17. Vidyasankar, K., Vossen, G.: Multi-level modeling of web service compositions with
transactional properties. Database Manag. 22(2), 1–31 (2011)

18. Wang, D., Rundensteiner, E.A., , Ellison III, R.T.: Active complex event processing
over event streams. In: Proceedings of the VLDB Endowment, pp. 634–645. ACM
Press (2011)

http://doi.acm.org/10.1145/2480362.2480514
http://dx.doi.org/10.1007/978-3-540-76848-7_20
http://dx.doi.org/10.1007/978-3-540-76848-7_20

Enhancing User Rating Database Consistency
Through Pruning

Dionisis Margaris1 and Costas Vassilakis2(&)

1 Department of Informatics and Telecommunications,
University of Athens, Athens, Greece

margaris@di.uoa.gr
2 Department of Informatics and Telecommunications,

University of the Peloponnese, Tripoli, Greece
costas@uop.gr

Abstract. Recommender systems are based on information about users’ past
behavior to formulate recommendations about their future actions. However, as
time goes by the interests and likings of people may change: people listen to
different singers or even different types of music, watch different types of
movies, read different types of books and so on. Due to this type of changes, an
amount of inconsistency is introduced in the database since a portion of it does
not reflect the current preferences of the user, which is its intended purpose.
In this paper, we present a pruning technique that removes old aged user

behavior data from the ratings database, which are bound to correspond to
invalidated preferences of the user. Through pruning (1) inconsistencies are
removed and data quality is upgraded, (2) better rating prediction generation
times are achieved and (3) the ratings database size is reduced. We also propose
an algorithm for determining the amount of pruning that should be performed,
allowing the tuning and operation of the pruning algorithm in an unsupervised
fashion.
The proposed technique is evaluated and compared against seven aging

algorithms, which reduce the importance of aged ratings, and a state-of-the-art
pruning algorithm, using datasets with varying characteristics. It is also vali-
dated using two distinct rating prediction computation strategies, namely col-
laborative filtering and matrix factorization. The proposed technique needs no
extra information concerning the items’ characteristics (e.g. categories that they
belong to or attributes’ values), can be used in all rating databases that include a
timestamp and has been proved to be effective in any size of users-items
database and under two rating prediction computation strategies.

Keywords: DB consistency � Recommender systems � Collaborative filtering �
Matrix factorization � Pruning � Data quality � Evaluation

1 Introduction

An increasing number of applications and data sources continuously produce a massive
amount of data. Examples of such applications and sources range from websites [7, 32]
to smartphones and wearable computing [30, 31]. The collection of these data can be

© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 33–64, 2017.
https://doi.org/10.1007/978-3-662-55947-5_3

used to promote the formulation of successful personalized suggestions over a wide
range of domains, from movies and restaurants [32, 33] to smartphone apps [30] and
from consumer products to travel and leisure [10, 12].

As far as recommender systems are concerned, collaborative filtering (CF) formu-
lates personalized recommendations on the basis of ratings expressed by people having
similar tastes to the user for whom the recommendation is generated; taste similarity is
computed by examining the resemblance of already entered ratings [1]. CF works on
the assumption that if users have similar tastes regarding choosing an item in the past
then they are likely to have similar interests in the future too. Typically, for each user a
set of “nearest neighbor” users is found, i.e. those users that display the strongest
correlation to the target user. Scores for unseen items are predicted based on a com-
bination of the scores given from the nearest neighbors [14]. Research has proven that
the CF-based recommendation approach is the most successful and widely used
approach for implementing recommender systems [2]. More recently, recommender
systems have employed methods based on matrix factorization [35]. In its basic form,
matrix factorization characterizes both items and users by vectors of factors inferred
from item rating patterns. High correspondence between item and user factors leads to a
recommendation. These methods have become popular in recent years by combining
good scalability with prediction accuracy.

Within the recommendation process, typical recommender systems assume that the
rating time is not relevant and ignore how old each user-item rating is. However, rating
age can be exploited to substantially enhance recommendation quality, due to phe-
nomena such as shift of interest [3, 4]. For instance, in domains such as music, users
continuously listen to and rate songs. In this setting, user neighborhoods based on song
ratings rapidly lose their validity; indeed the time span in which a user-based neigh-
borhood remains valid is too short because new users –who are potential neighbor
candidates- continuously join the system, and new user preferences are constantly
added to the user rating database [11]. This necessitates the re-computation of the user
neighborhood, which may be an excessively costly action if all rating data are retained
and matched in the neighborhood re-computation process.

Another major issue that CF systems front is the storing and management of rating
data (user ratings). On one hand, maintaining all ratings in an extensive primary
database offers the advantage of reducing the “gray sheep” probability [15], i.e. the
probability that some user’s recorded preferences are unusual, as compared to the rest
of the community, which leads to low quality recommendations. However, maintaining
and processing the whole data bulk increases storage demands, as well as the time
needed to generate recommendations (since computing the neighborhoods for all data
and all users is costly); hence most of the times we either resort to techniques such as
clustering [16–18] or we opt for small nearest neighbors’ (NNs) number, and actually
trade off recommendation quality for better online recommendation time.

In this paper, we contribute to the state of the art of recommender systems dataset
quality enhancement by:

1. presenting a novel pruning algorithm to eliminate elements that have a high
probability of being inconsistent with the current user preferences and likings, from
the user rating database.

34 D. Margaris and C. Vassilakis

2. introducing an algorithm for determining the amount of pruning that should be
performed, allowing thus the configuration and execution of the pruning algorithm
in an unsupervised fashion.

3. validating the performance of the pruning algorithm by comparing the results
produced by the two aging and one pruning algorithms presented in [34], as well as
with the five aging algorithms described in [47], in terms of (i) prediction quality,
(ii) execution performance, (iii) storage size gains and (iv) recommendation quality
in the context of recommender systems. The tested algorithms exploit user rating
timestamps in the rating prediction formulation process; user rating timestamps
exist in many datasets, such as Movielens [7, 23] and Amazon [42]. The
aging-based algorithms decrease the significance of old-aged ratings, while the
presented pruning based algorithm removes user rating histories from the primary
online database, based on their timestamps. We also compare the performance of
our work against works on temporal dynamics, in terms of rating prediction quality.

4. showing that the proposed pruning algorithm can be used by different rating pre-
diction formulation strategies, by evaluating its performance in user-user collabo-
rative filtering-based and matrix factorization-based approaches.

The results show that the pruning algorithm presented in this work achieves the best
results in all the evaluation datasets, leading to increased prediction accuracy and
reduced prediction formulation times and storage size, at the same time.

Increased prediction accuracy is achieved through the increased consistency of the
rating database, since pruning removes from the database data about user behavior
which are inconsistent with the user’s current preferences. The removed portions of the
data have been found to effectively be aged and noisy ratings, which contribute to the
computation of predictions with high absolute errors. On the contrary, aging of ratings
in some cases marginally improves prediction quality, and in some others degrades it,
without introducing any savings in prediction formulation time or database size gains.
Additionally, the suggested pruning technique can be applied as a preprocessing step to
any rating prediction algorithm, including algorithms that consider social network data
(e.g. [13, 19]).

The rest of the paper is structured as follows: Sect. 2 overviews related work.
Section 3 briefly reviews the aging algorithms presented in [34, 47] (which are used in
our performance benchmarks), while Sect. 4 presents the proposed pruning algorithm,
together with the pruning algorithm presented in [34] (which is again used in our
performance benchmarks). In Sect. 5, the results of the conducted benchmarks are
presented and discussed. Finally, Sect. 6 concludes the paper and outlines future work.

2 Related Work

The accuracy of CF systems is a topic that has attracted considerable research efforts.
[8] proposes a new neighborhood-based model, which is based on formally optimizing
a global cost function and leads to improved prediction accuracy, while maintaining
merits of the neighborhood approach such as explainability of predictions and ability to
handle new ratings (or new users) without retraining the model. In addition, it suggests

Enhancing User Rating Database Consistency Through Pruning 35

a factorized version of the neighborhood model, which improves its computational
complexity while retaining prediction accuracy. [9] proposes a filtering technique that
applies to both unfairly positive and unfairly negative ratings in Bayesian reputation
system. It is based on a reputation system and integrates a reputation systems filtering
method, under the assumption that ratings provided by different raters on a given agent
will follow more or less the same probability distribution.

Previous work [5, 6, 43] has identified the possibility that users may have changed
preferences and likings, a phenomenon that has been termed as concept drift. [43]
presents a survey of related models and algorithms. In this survey, concept drift han-
dling methods are classified according to two dimensions, data management and
forgetting mechanism. Regarding the data management dimension, two approaches are
identified: the first is the single example approach where only the most recent input for
each subject is stored in memory, and the subject model is updated taking into account
only the current state of the subject model and the last input. The second approach is
the multiple examples approach, where a set of recent inputs is maintained per subject,
typically implemented as a sliding window. The subject model is then updated taking
into account the current state of the subject model and the inputs within the subject’s
sliding window. Concerning the forgetting mechanism, it is again distinguished into
two approaches. The first approach is abrupt forgetting, where a window is defined per
subject and all data about the subject not included in the window is discarded, while the
second approach is gradual forgetting, in which no data about subjects is discarded, but
a fading factor is used to reduce the importance of old-aged data. Works such as [5, 6]
address concept drift in an attempt to identify how user interests change, however
without using the identified interests to generate recommendations.

[20] proposes an adaptation of the item-based CF algorithm to incorporate rating
age influence in predictions, in order to analyze time influence in final prediction
quality, following the gradual forgetting approach. The proposed approach is applied
on a small-sized books-related dataset, exploring different values for the two fading
factors used in their algorithm, also examining the temporal granularity at which ratings
age should be measured. Results show that (a) prediction quality can be improved
when using coarser temporal granularities (year instead of semesters), (b) it is beneficial
to use only the ratings of the recent years and (c) active user preferences are closer to
the most recent rated books than to older ones.

[34] presents two algorithms for aging (which follow the gradual forgetting
approach) and one algorithm for pruning user histories (which follows the abrupt
forgetting approach) in collaborative filtering systems. The algorithms presented in [34]
exploit rating timestamps in the rating prediction formulation process, with the
aging-based algorithm assigning weights to ratings based on their age (ratings with
older ages are given smaller weights), and the pruning algorithm retaining only the
N newest ratings of each user (same N for all dataset users).

[47] explores when the consideration of the temporal dimension is beneficial for
traditional CF and also investigates the effect that the application of different
time-decay functions have on the quality of rating prediction in the context of social
tagging. Time decay can be applied either in the K-NN step, in which case it is termed
pre-filtering or at the moment of picking the relevant items, in which case it is termed
post-filtering. Post-filtering has been shown to outperform pre-filtering: pre-filtering

36 D. Margaris and C. Vassilakis

achieves better rating prediction quality only in one case (user-based CF with linear
decay), but this is achieved at the cost of reducing coverage by 20%, approximately.
Considering the decay functions, the pow function [41] was found to exhibit the best
performance.

[44] creates a model tracking the time changing behavior throughout the life span
of the data, aiming to make better distinctions between transient effects and long term
patterns. This model is incorporated into a user-user based recommender and a matrix
factorization-based recommender and evaluated against the Netflix dataset.

[45] explores a sliding window-based mechanism (which follows the abrupt change
paradigm) and a fading factor-based mechanism (which follows the gradual forgetting
paradigm). The results suggest that CF algorithms that use sliding windows, when
compared to their versions using a growing window, reduce computational require-
ments, while not negatively affecting—and in some situations improving—predictive
ability. Results also suggest that incremental algorithms (user-based algorithms that
incrementally update user similarities every time new data is available) benefit from the
use of fading factors, although the fading factor approach has more subtle improve-
ments in time requirements. It is also confirmed that incremental algorithms are more
scalable than non-incremental algorithms. However, the datasets tested are either
artificial datasets (ART1 and ART2) or very small datasets, not typically employed in
recommender system research (ELEARN and MUSIC). Finally, the experimental
results were limited to abrupt change detection, either due to the data sets used in the
experimental procedure or due to limitations of the presented approach.

Regarding the performance of CF-based systems, these have been proved to exhibit
degraded performance in the presence of large volumes of data: clustering schemes
have been proposed as a method to alleviate this problem [16–18]. Clustering schemes
organize users and/or items into clusters based on appropriate characteristics, and in the
rating prediction process firstly the similarity between the target user/item and the
formulated clusters is computed, allowing for rapidly locating similar elements and
limiting processing to elements within the identified clusters only.

[11] proposes a strategy to arbitrarily split the computation of user-to-user distances
and neighbors into an off-line and on-line task which can temporarily satisfy the on-line
time requirements, until a significant number of new users and ratings join the system.
Additionally, in order to alleviate the scalability problem and to obtain a performance
similar to that observed in ranking tasks, inverted indexes to evaluate queries efficiently
were used. [46] proposes a multi-core CPU and a GPU implementation for the alter-
nating least-squares algorithm, to compute recommendations based on implicit feedback
datasets. One central feature of the reported implementation is an algorithm-specific
kernel achieving compute-bound performance for the multiplication of two dense
matrices scaled by a sparse diagonal matrix. Furthermore, it proposes to reorder the
sequential system generation and system solve into a batched system generation and a
batched solve, to compute many systems simultaneously.

None of the above mentioned works provides the following features: (a) improve-
ment in prediction quality by cutting off rating predictions with high error, (b) reduction
of the rating database size, as well as rating prediction formulation time, by pruning old
and unhelpful user ratings and (c) the ability to be combined with other online
time-reducing methods, e.g. clustering, as a preprocessing step.

Enhancing User Rating Database Consistency Through Pruning 37

This paper extends the work presented in [34] by (1) introducing a more successful
pruning algorithm, (2) proposing an algorithm for determining the amount of pruning
that should be performed, allowing thus the configuration and execution of the pruning
algorithm in an unsupervised fashion, (3) validating the performance against widely
used datasets with diverse characteristics and (4) showing that pruning can be used by
different rating prediction computation strategies, by evaluating its performance in
user-user collaborative filtering-based and matrix factorization-based approaches.

The newly introduced algorithm has been found to provide more accurate rating
predictions and reduce storage requirement due to elimination of a portion of the
ratings database (a portion contributing to the formulation of rating predictions with
high errors). Moreover, the proposed algorithm achieves significant gains regarding the
rating prediction formulation time, especially as compared to “full database” variants
(i.e. executing a rating prediction algorithm without applying any pruning or aging) and
to aging-based algorithms.

3 The Aging Algorithms

As presented in [34, 47], aging algorithms follow the general flow of standard CF
algorithms [22], except for the fact that in some phase of the prediction computation,
each rating is assigned a weight based on its age: recent ratings are assigned higher
weights, while older ratings are assigned lower ones. This is based on the rationale that
aged ratings may not accurately reflect the current state of users regarding their pref-
erences, while recent ratings form a better basis for deriving user preferences.

The algorithms presented in [34] exploit rating timestamps by incorporating a
weight for ratings in the user similarity computation process, adapting the standard
user-user similarity computation as shown in Eq. 1:

sim u; vð Þ ¼
P

i2Iu \ Iv ru;i � ru
� � � rv;i � rv

� � � w ru;i
� � � wðrv;iÞffiP

i2Iuv ru;i � ru
� �2q

�
ffiP

i2Iuv rv;i � rv
� �2q ð1Þ

In the formula above, Iu \ Iv denotes the set of items that have been rated by both
u and v, ru,i represents the rating assigned by user u to item i and ru denotes the mean
value of ratings given by user u. Finally, w(ru,i) represents the weight assigned to rating
ru,i. Two weight calculation functions are used in [34], the standard normalization
function [27], which results to a variant termed aging-N and a sigmoid function [21],
which results to a variant termed aging-S. This approach is based on the rationale that
the users are “more similar” if the most recent ratings they have entered are alike. For
more details on these functions and the setting of their parameters, the interested reader
is referred to [34].

In [47], two ways for considering rating timestamps in the prediction computation
process are explored. The first one is pre-filtering, which takes into account rating
timestamps in the user similarity computation process, similarly to the case of [34]. The
second option is post-filtering, user similarity computation is performed as in standard

38 D. Margaris and C. Vassilakis

CF algorithms [22], but when computing a prediction pu.x for the rating of user u on
item x, the computation formula is modified as shown in Eq. 2:

pu;x ¼ ru þ
P

u02U sim u; u0ð Þ � ru0;i � ru0
� � � f Dt r0u;i

� �� �
P

u02U sim u; u0ð Þ � f Dt r0u;i
� �� � ð2Þ

In Eq. 2, f tð Þ is a time decay function and Dt r0u;i
� �

is the time that has elapsed since

the posting of rating r0u;i. The options for the time-decay function f tð Þ explored in [47]
are: exponential (exp), power (pow), linear (lin), logistic (log) and base-level learning
(bll). All these functions involve a parameter k which controls the time-decay rate of
the value assigned to ratings. For more information on the time-decay functions and the
settings of their parameters, the interested reader is referred to [47].

Since [47] asserts that for the algorithms discussed therein, the post-filtering
approach yields always better results than pre-filtering, in the evaluation section of this
paper only the post-filtering approach will be considered for those algorithms.

In all cases, a set of users constituting the nearest neighborhood of user u is
required; regarding the size of the nearest neighborhood, we have used the value 20,
suggested in [28]. Some users however have no nearest neighbors, due to the grey
sheep problem [15], i.e. the fact that their ratings do not match with those of any other
user within the ratings database. Since we want to offer a recommendation for all users,
for these users we compute the prediction of item X as the average item rating for item
X over the whole dataset.

4 The Pruning Algorithms

The pruning algorithms operate similarly to a standard rating prediction algorithm
(such as a user-user CF algorithm [22] or a matrix factorization-based algorithm [35]),
however they apply an offline preprocessing step to the dataset: this step retains only
the more recent ratings per user, dropping all older ones. Then, prediction computation
and recommendation formulation proceed as specified in the respective recommen-
dation approach (user-user CF or matrix factorization).

Each pruning technique uses a criterion to select the data to be pruned. Ideally, the
criterion should provide for removing from the database only those ratings that are
inconsistent with the current preferences of the user.

Note that the removal of ratings from the database will increase the sparsity of the
user-item matrix. In user-user CF based systems, this will decrease the number of users
for whom it will be possible to generate rating predictions due to the gray sheep
problem [15]. For instance, let us assume that user X has rated 5 items, which have also
been rated by users Y and Z, but these ratings belong in Y’s and Z’s early histories (as
earliness is defined by the current pruning technique). After pruning has been applied,
X has no ratings in common with other users, and therefore no rating can be produced
for X, while prior to pruning, formulation of a rating prediction was possible, based on
other ratings entered by Y and Z. Rating predictions that could not be formulated due to

Enhancing User Rating Database Consistency Through Pruning 39

pruning will be termed as abolished. It is worth noting however that the formulation of
abolished predictions would have been based on inconsistent data, hence their absolute
error metric would be high (and their actual usefulness for users would be low).

Increase of data sparsity also affects matrix factorization-based techniques [36],
although it is manifested differently. Matrix factorization-based techniques always
produce a prediction for a user’s u rating on an item i, through the formula

r̂ui ¼ qTi � pu ð3Þ

[35], where qTi captures the relationship between item i and the vector of latent factors
identified by the matrix decomposition process and pu reflects the relationship between
user u and the latent factors. However, users who rate only a small portion of items
could not get proper recommendations, and items with few ratings may not be rec-
ommended well [37]. This is owing to the fact that when a user u has rated few items,
there is a high probability that when computing a recommendation r̂ui the set of the
latent factors related to the user u and the set of latent factors related to item i is empty;
and similarly for items with few ratings. When implementing a matrix
decomposition-based prediction system using the LIBMF library (Matrix Factorization
Library for Recommender Systems) [38, 39], predictions involving users or items
having very few ratings degenerate to a dataset-dependent constant value. These pre-
dictions effectively convey no information, and will be considered as equivalent to the
“no prediction” cases of user-user CF. Under this view, pruning leads to abolished
predictions for matrix factorization-based techniques as well.

In practice, any pruning method would suffer from the existence of both false
positives (i.e. removing from the ratings database elements that are consistent with the
current user preferences) and false negatives (i.e. failing to remove from the ratings
database elements that are inconsistent with the current user preferences). If the
selectivity of the criterion for choosing the ratings to be removed is too low, the amount
of false negatives would be high and henceforth some of the inconsistent data will
remain in the database and will contribute to the formulation of rating predictions with
high absolute error. At this point, increasing the selectivity factor of the pruning
technique criterion is expected to remove from the database mainly inconsistent ele-
ments. Removal of these elements will lead to increased database sparsity and hence in
some cases the rating prediction algorithm will be unable to generate rating predictions,
due to the lack of nearest neighbors. However, the majority of these recommendations
will have high absolute errors, because they would have been based on inconsistent
data; some predictions with low absolute errors may also be abolished, due to the
existence of false positives, yet their number will be significantly smaller than the
abolished predictions with high absolute errors.

If, on the other hand, the selectivity of the criterion of the pruning algorithm is too
high, the amount of false positives will increase and, effectively, the amount of data
which are consistent with the current preferences of the users and will be removed, will
be high. This will lead to the abolishment of a high number of predictions whose
absolute error would be low. At this point, it would be beneficial to reduce the selectivity
of the criterion of the pruning algorithm, so as to decrease the number of false positives.

40 D. Margaris and C. Vassilakis

Taking into account the above observations, we can conclude that there exists a
specific setting for the pruning algorithm’s selectivity criterion where any lower value
will allow in the database more inconsistent ratings than consistent ones, whereas any
higher value will remove from the database more consistent ratings than inconsistent
ones. We use this conclusion to formulate an algorithm for automatically determining
the optimal value for each pruning method’s selectivity criterion. The algorithm pro-
ceeds as follows:

1. We compute Pred(FullDB), i.e. the initial set of predictions generated by the rating
prediction algorithm (with a non-pruned ratings database), their absolute errors and
the respective MAE, which we denote as MAE(FullDB). All predictions are gen-
erated during the testing phase. We then initialize the criterion selectivity factor
cur_sel_fact to zero.

2. we increase the criterion selectivity factor by a step d(sel_fact), computing sel_fact′
= cur_sel_fact + d(sel_fact). d(sel_fact) is pruning method-dependent and will be
discussed in the following subsections, where pruning strategies are described. We
then formulate the predictions Predðsel fact0Þ and examine the absolute errors of
the predictions that are abolished in the new state of the algorithm, i.e. the set
Predabolished(sel_fact′) = Pred(FullDB) − Pred(sel_fact′). If the majority of these
predictions has an absolute error higher than MAE(FullDB) –or more formally

jp 2 Predabolishedðsel fact0Þ : abs error pð Þ[MAEðFullDBÞj[jPredabolishedðsel fact0Þj
2

–then the increment of the selectivity factor is considered beneficial; we then set
cur_sel_fact = sel_fact′ and step 2 is repeated.

If, however, the majority of the abolished predictions has an absolute error lower
than MAE(FullDB), then the increment in the selectivity factor leads to an unde-
sirable state; then the algorithm terminates, returning cur_sel_fact as its result.

It is also possible that a threshold Thabolished is set, to exclude settings for sel_fact′
where the percentage of abolished predictions is deemed excessive. Then, the result of
the algorithm will be selected among the values of selfact′ for which

jPredabolished sel
fact

0

� �
j

jPred FullDBð Þj � Thabolished . The value for Thabolished will be chosen by the recom-

mender system administrators, so as to guarantee that an adequate percentage of the
recommender system’s users will receive recommendations. In the experimental
evaluation section, we will consider Thabolished = 15%; recommender system admin-
istrators may use different values to suit the needs of their installations. It has to be
noted here that abolished predictions are compensated by providing “default” values
for gray sheep users (as an average of all ratings regarding the particular item);
therefore the Thabolished threshold does not affect the percentage of users for which
predictions can be computed, but it does determine the amount of users for which
personalized (non-default) predictions can be calculated. Clearly, it is expected that in

Enhancing User Rating Database Consistency Through Pruning 41

the context of a recommender system personalized predictions are indispensable, hence
the Thabolished threshold is an important setting of the system.

In the following subsections, we provide details on the two pruning strategies
considered in this paper.

4.1 Keeping the Last K Ratings of Each User

As presented in [34], the first pruning algorithm retains in the primary database only the
last k ratings for each user. Effectively, this strategy applies the p-core pruning strategy
[24, 25], exploiting however the age of ratings to select the ratings to be pruned. The
number k depends on the particular dataset that the algorithm is applied on: our
experiments, reported in Sect. 5, have shown that different values may be suitable for
different datasets. In general, lower values introduce more significant space and time
savings and improve prediction quality, at the expense of reducing the percentage of
users for whom a recommendation can be generated, due to the gray sheep problem
[15]. In the following, we will denote this algorithm as keep-k.

In our experiments, reported in Sect. 5, we explored different values for the k pa-
rameter, which determines the selectivity factor for this pruning method’s criterion to
select the data to be pruned. The goals of this exploration were (a) to gain insight
regarding the effect that each value of k has on the database size, the rating prediction
formulation time and the quality of rating predictions and (b) to validate the algorithm
presented in Sect. 4 regarding the identification of the optimal selectivity factor for the
pruning method.

Regarding step d(sel_fact), this is set so as to lead to decrements of the ratings
database size by 4% in each step, with a tolerance of 1%, i.e. the size reduction can
range from 3% to 5%. Our experiments have shown that such a setting provides an
adequately dense coverage of the search space, closely approximating the actual value
of k that is the optimal setting for the pruning criterion selectivity factor (if such a value
exists, as will be shown in the experimental evaluation section). To identify the values
of k that provide the desired size reduction, we set mink = 5 and maxk = (meanRat-
ingsPerUser * 10), where meanRatingsPerUser is the average number of ratings per
user in the dataset, and then explore the interval [mink, maxk] using binary search, until
all desired values of d(sel_fact) have been found (i.e. a first value k0 leading to a
reduction of the database size by 4%, a second value k1 leading to a further reduction of
the database size by 4% and so forth). The minimum value of k considered is 10, since
this is considered the minimum number of ratings for allowing users to participate in
CF [51].

Similarly to the case of the aging algorithm, in order to offer recommendations for
the “grey sheep” users, we compute for these users the prediction of item X as the
average item rating for item X over the whole dataset.

4.2 Pruning Ratings in Users’ Early Histories

The pruning algorithm proposed in this paper prunes each user’s ratings that belong to
her early history. More specifically, it prunes ratings having timestamp value less than

42 D. Margaris and C. Vassilakis

minðt ru;x
� �Þ

x2RatingsðuÞ
þ kearly% � maxðt ru;x

� �Þ
x2RatingsðuÞ

� minðt ru;x
� �Þ

x2RatingsðuÞ

 !
ð4Þ

and then follows the rating prediction algorithm strategy, without assigning weights
(w(ru,i)) to the users’ ratings. Effectively, this pruning strategy splits each user’s rating
history in two time windows: the first window (old ratings) starts at the time point at
which the user entered her first rating, and extends to the kearly% of the user’s active
rating period length. The second one (recent ratings) covers the remaining rating
period. According to this pruning strategy, users that had been very active in entering
ratings during their first time window but exhibited lower activity within the second
will only have a small percentage of their ratings retained; on the contrary, users that
had not been active in the first time window but have elevated their rating activity
since, will have a high percentage of their ratings retained. For users that have a
uniform level of rating activity, approximately kearly% of their ratings will be retained.
In the following, we will denote this algorithm as kearly-N%.

In our experiments, reported in Sect. 5, we explored different values for the N pa-
rameter, which determines the selectivity factor for this pruning method’s criterion to
select the data to be pruned. Similarly to the previous algorithm variant, the goals of
this exploration were (a) to gain insight regarding the effect that each value of N has on
the database size, the rating prediction formulation time and the quality of rating
predictions and (b) to validate the algorithm presented in Sect. 4 regarding the iden-
tification of the optimal data selection criterion selectivity factor.

Regarding step d(sel_fact), this is set so as to cover the following values of N: 1%,
5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99%. Our experiments have
shown that this setting provides an adequately dense coverage of the search space,
closely approximating the actual value of N that is the optimal setting for the pruning
criterion selectivity factor. Naturally, subspaces of the above listed 10% intervals may
be explored to locate values of N that are closer to the optimum value, if deemed
necessary, by employing techniques such as hill climbing or simulated annealing [40].

Again, for “grey sheep” users, we compute the prediction of item X as the average
item rating for item X over the whole dataset.

5 Performance Evaluation

In this section, we report on our experiments through which we compared (a) the two
aging and the first pruning algorithms presented in [34] (Sects. 3 and 4.1), as well as
the five aging algorithms described in [47], (b) the proposed pruning algorithm
(Sect. 4.2) and (c) the plain CF algorithm which uses the full dataset, taking into
account:

1. The quality of predictions; for this comparison, we used the mean absolute error
(MAE) metric. We also provide a comparison regarding the recall@N metric [48],
to gain insight on the performance of each algorithm in the context of recommender
systems.

Enhancing User Rating Database Consistency Through Pruning 43

2. The database size.
3. The time needed to compute predictions.

To compute the MAE, we employed the standard “hide one” technique [26]: for
each user in the database we hid her last rating, and then predicted its value based on
the ratings on other non-hidden items. The MAE was therefore computed by consid-
ering all users in the database. The rationale behind hiding only the last rating of each
user and then predicting it (as contrasted to hiding in turn each of the user’s ratings) is
owing to the fact that the value of each prediction should be computed based only on
the user’s ratings that existed in the database at the time the rating to be predicted was
submitted. To further validate our results, we conducted an additional experiment, in
each dataset, where the last rating of each user was dropped, and then the new last was
hidden and predicted. The results of this test present negligible deviations from those
obtained by hiding the last rating of each user, and are not presented in the following
subsections due to space limitations.

For our experiments we used a laptop computer equipped with one dual core Intel
CeleronN2840 @2.16 GHz CPU, with 4 GB of RAM and one 240 GB solid state drive
with a transfer rate of 375 MBps, which hosted the datasets and ran the rating pre-
diction formulation algorithms. Regarding the time measurements reported below, we
note that the user-user CF implementation used in the experiments did not employ
indexing or clustering techniques, therefore, the time gains reported may differ in
settings where such techniques are employed. In all cases, the reported time gains
provide a good insight about the speedup potential of the presented solutions. For the
implementation of the matrix factorization-based predictions, we used the LIBMF
library [38, 39].

In our experiments we use three datasets by Movielens [7, 23] as well as one
dataset by Amazon [42], which are widely used in recommender systems research.
These datasets contain “actual” timestamps, i.e. timestamps entered in real rating time
and not in a batch mode. The used datasets vary with respect to the date of publication
(published from 1998 until 2016) and size (from 2 MB to 486 MB). The properties of
these datasets are summarized in Table 1.

In the following paragraphs, we report on our findings regarding the performance of
the algorithm proposed in this work, versus the ones presented in [34, 47]; we also
present our findings on the settings of parameters k and kearly in the pruning-based
algorithms. Due to space limitations, we have not included the results of all pruning
and aging variants that have been examined. In particular:

• For the pruning algorithms, variants with a drop in coverage higher than 15% were
omitted, such an option would lead to the inability to formulate rating predictions
for an excessive number of cases, and would therefore not be selected for any
practical application of a recommender system, Additionally, variants that, due to
low pruning levels, exhibit results almost identical to those of the unpruned variants
are also omitted.

• For the temporal decay algorithms presented in [47], we have conducted experi-
ments for the following values of the k parameter: 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, and report only the results for the setting that has
produced the predictions with the best quality (lowest MAE). Although the work in

44 D. Margaris and C. Vassilakis

[47] has shown that the Pow decay function achieves the best results, our evaluation
includes all decay functions surveyed in [47] (exponential, power, linear, logistic,
BLL), since [47] reports findings on social bookmarking datasets, and it has not
been verified that these results apply to other types of datasets.

5.1 The MovieLens “Latest-Small – Recommended for Education
and Development” Dataset

Table 2 depicts the results obtained from the MovieLens “latest small – recommended
for education and development” dataset, concerning the user-user CF strategy. For each
algorithm, we report only on the variant that has achieved the best results:

• regarding the aging-based algorithms presented in [47] variants correspond to the
value of the k parameter (discussed above), and the best-performing variant is the
one that has produced the smaller value for the MAE metric;

• for the keep-k and kearly-N% algorithms, variants correspond to the amount of
pruning that has been performed, and the method for selecting the best-performing
variant is presented in Sect. 4.

Column “% DB size reduction” depicts the savings in space achieved by the
pruning algorithm. Column “% coverage” corresponds to the percentage of cases for
which the algorithm could compute personalized predictions (for some users, a per-
sonalized prediction could not be formulated due to the “gray sheep” phenomenon
[15], e.g. in a user-user CF strategy, no prediction can be produced for users having no
neighbor with a positive Pearson coefficient, i.e. no candidate recommenders [29];
recall that for each user, a “default” prediction was filled in for any item X, which was
set as the average of all ratings for X in the database). When pruning was employed, the
coverage dropped, due to the increased sparsity of the ratings database. The

Table 1. Datasets Summary

Dataset name #users #ratings #items Avg.
#ratings/user

DB Size (in
text format)

MovieLens “Latest small”
“recommended for education
and development”
http://grouplens.org/datasets/
movielens/latest/

700 100,000 9,000 143 2.19 MB

MovieLens “Latest-20 M”
“recommended for new
research”
http://grouplens.org/datasets/
movielens/20m/

138,000 20,000,000 27,000 145 486 MB

MovieLens “100 K” dataset
http://grouplens.org/datasets/
movielens/100k/

1,000 100,000 1,700 100 2.04 MB

Amazon “Videogames” dataset
http://jmcauley.ucsd.edu/data/
amazon

8,057 157,511 50,210 19.55 3.55 MB

Enhancing User Rating Database Consistency Through Pruning 45

http://grouplens.org/datasets/movielens/latest/
http://grouplens.org/datasets/movielens/latest/
http://grouplens.org/datasets/movielens/20m/
http://grouplens.org/datasets/movielens/20m/
http://grouplens.org/datasets/movielens/100k/
http://grouplens.org/datasets/movielens/100k/
http://jmcauley.ucsd.edu/data/amazon
http://jmcauley.ucsd.edu/data/amazon

aging-based algorithms did not drop any portions of the dataset, hence the coverage
remains the same with the case of the plain CF algorithm using the full dataset.

Column “MAE” corresponds to the mean absolute error of the predictions that each
algorithm was able to formulate. For the computation of MAE, “default” predictions
generated for the grey sheep users were taken into account.

Column “% no REC in MAE” considers the predictions that were abolished due to
the increment in the pruning method’s criterion selectivity factor, and corresponds to
the ratio of the abolished predictions having absolute error lower than the full database
MAE to the total number of abolished predictions. Clearly, these predictions are useful
and it is desirable that the value in this column remains low.

Finally, column “%speedup” corresponds to the savings in time that were achieved,
as a consequence of the database size reduction and mainly affects the user similarity
computation phase.

The aging-based variants described in [34, 47] use the full dataset and perform
minimally more computations (to calculate and use the rating weights), so their per-
formance both space-wise and time-wise is identical to the full version. Contrary, the
pruning-based variants introduce significant savings in both the DB-size and the time
needed to compute the predictions.

In the two aging variants described in [34], the MAE is larger to the full database
version; all the aging-based variants described in [47] achieve a reduction in the MAE,
with the pow@k = 0.1 (i.e. the variant based on the power decay function with
parameter k set to 0.1) variant exhibiting the best results. For the keep-k algorithm, the
best performing variant is keep-300, however the percentage of the predictions that are
abolished and have an absolute error smaller than the respective full DB MAE is 67%
(greater or equal to the 50% threshold), hence the keep-k pruning algorithm is proven
inappropriate for this case. Finally, the best performing variant of the kearly-N%
algorithm is kearly-60%, achieving an improvement in MAE by 1.46% against the full
DB variant.

Table 2. Results for the MovieLens “Latest small – recommended for education and
development” dataset under the user-user CF strategy

Method % DB size
reduction

% coverage MAE (out
of 9)

% no REC in
MAE

% speedup

Full DB – 94.05 1.498 – –

aging-N 0 94.05 1.504 – 0
aging-S 0 94.05 1.515 – 0
exp@k = 0.8 0 94.05 1.487 – 0
pow@k = 0.1 0 94.05 1.479 – 0
lin@k = 0.8 0 94.05 1.491 – 0
log@k = 0.4 0 94.05 1.488 – 0
bll@k = 0.05 0 94.05 1.489 – 0
keep-300 25 91.07 1.527 67 48
kearly-60% 55 87.35 1.476 49 70

46 D. Margaris and C. Vassilakis

Figure 1 illustrates the performance of the different algorithms under the user-user
CF strategy regarding (a) the MAE metric and (b) the coverage (i.e. the ability of the
algorithm to formulate personalized predictions).

Table 3 depicts the results obtained from the MovieLens “latest small – recom-
mended for education and development” dataset, concerning the matrix factorization
CF strategy. Please note that the aging-based algorithms presented in [34, 47] are not
directly applicable in the case of matrix factorization, hence they are not reported in this
table. Again, for each algorithm, we report only on the variant that has achieved the
best results (c.f. Sect. 4). Note also that under the matrix factorization strategy, column
“%speedup” corresponds to the savings in time that were achieved during the matrix
factorization process only, since the rating prediction formulation time is constant.

In Table 3 we notice that the MAE is minimally affected by the application of the
keep-k pruning algorithm, however there is a considerable drop (approximately 9%) in
the coverage, as compared to the coverage of the full database variant. The kearly-N%

(a) (b)

1.44

1.46

1.48

1.50

1.52

1.54
MAE

84

86

88

90

92

94

96 % coverage

Fig. 1. (a) MAE and (b) coverage metrics for the best performing variants under the user-user
CF strategy, using the MovieLens “latest small – recommended for education and development”
dataset

Table 3. Results for the MovieLens “Latest small – recommended for education and develop-
ment” dataset, under the matrix factorization strategy

Method % DB size
reduction

% coverage MAE (out
of 9)

% no REC in
MAE

% speedup

Full DB – 97.47 1.482 – –

keep-300 25 88.54 1.479 29.2 39
kearly-80% 86 90.92 1.466 25.0 57

Enhancing User Rating Database Consistency Through Pruning 47

improves MAE by approximately 1%, while it additionally reduces the database size by
86% and the matrix factorization time by 57%.

Figure 2 illustrates the performance of the different algorithms under the matrix
factorization CF strategy regarding (a) the MAE metric and (b) the coverage.

We performed a two-tailed paired t-test to test the following null hypothesis H0:
“the mean of the absolute errors of predictions produced by the winner pruning
algorithm is equal to the mean of the absolute error of predictions produced by the full
database case”. In the case of user-user CF (winner: kearly-60%) the test yielded a
p-value equal to 0.05092, hence the null hypothesis cannot be rejected (or, equiva-
lently, the benefits observed are not statistically significant) at a confidence level of
95%. No statistical significance was established either when comparing kearly-60% and
pow@k = 0.1 (p-value = 0.0744).

In the case of matrix factorization-based predictions, the statistical significance test
between the winner variant kearly-80% and the runner-up keep-300, yielded a p-value
equal to 0.0497, hence the null hypothesis can be rejected (or, equivalently, the benefits
observed are statistically significant) with a confidence level of 95%.

5.2 The MovieLens “Latest 20 M – Recommended for New Research”
Dataset

Table 4 depicts the results obtained from the MovieLens “latest 20 M – recommended
for new research” dataset, concerning the user-user CF strategy.

The two aging variants presented in [34] prove practically equivalent to the full
database case. All the aging-based variants presented in [47] reduce the MAE, with the
log@k = 0.2 variant achieving the best results. All keep-N variants were found to
deteriorate the MAE, through abolishing a high percentage of predictions having errors
lower than the MAE, therefore the keep-k pruning algorithm is inappropriate for this

(a) (b)

1.45

1.46

1.47

1.48

1.49

Full DB keep-300 kearly-80%

MAE

80

85

90

95

100

Full DB keep-300 kearly-80%

% coverage

Fig. 2. (a) MAE and (b) coverage metrics for the best performing variants under the matrix
factorization CF strategy, using the MovieLens “latest small – recommended for education and
development” dataset

48 D. Margaris and C. Vassilakis

case; the variant with the smaller MAE (which was also the one abolishing the smaller
percentage of low-error ratings) was keep-1200. The variant of kearly-N% that is
selected by the algorithm presented in Sect. 4 is kearly-50%, which is the one achieving
the lowest MAE compared to other algorithms, while also delivering a database size
reduction of 32% and a speedup equal to 60%.

Figure 3 illustrates the performance of the different algorithms under the user-user
CF strategy regarding (a) the MAE metric and (b) the coverage (i.e. the ability of the
algorithm to formulate personalized predictions).

Table 4. Results for the MovieLens “Latest 20 M – recommended for education and
development” dataset under the user-user CF strategy

Method % DB size
reduction

% coverage MAE (out
of 9)

% no REC in
MAE

% speedup

Full DB – 99.96 1.390 – –

aging-N 0 99.96 1.390 – 0
aging-S 0 99.96 1.391 – 0
exp@k = 0.005 0 99.96 1.378 – 0
pow@k = 0.1 0 99.96 1.378 – 0
lin@k = 0.1 0 99.96 1.379 – 0
log@k = 0.2 0 99.96 1.371 – 0
bll@k = 0.7 0 99.96 1.398 – 0
keep-1200 5 99.86 1.393 57 2
kearly-50% 32 99.95 1.364 33 60

1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41

MAE

98.0

98.5

99.0

99.5

100.0
% coverage

(a) (b)

Fig. 3. (a) MAE and (b) coverage metrics for the best performing variants under the user-user
CF strategy, using the MovieLens “latest 20 M – recommended for education and development”
dataset

Enhancing User Rating Database Consistency Through Pruning 49

Table 5 depicts the results obtained from the MovieLens “latest 20 M – recom-
mended for education and development” dataset, concerning the matrix factorization
CF strategy. In Table 5 we notice that the MAE is minimally affected by the appli-
cation of the keep-k pruning algorithm, which is achieved by the keep-200 variant, at
the expense of a drop in the coverage amounting for approximately 0.9%. The
best-performing variant of kearly-N% is kearly-90%, which improves the MAE by 1.16%,
while the drop in coverage in this case is limited to 0.5%. While the gains in terms of
MAE are not significant, benefits regarding the database size and speedup can be
harvested.

Figure 4 illustrates the performance of the different algorithms under the matrix
factorization CF strategy regarding (a) the MAE metric and (b) the coverage.

Figure 4 illustrates the performance of the different algorithms under the matrix
factorization CF strategy regarding (a) the MAE metric and (b) the coverage.

We performed a two-tailed paired t-test to test the following null hypothesis H0:
“the mean of the absolute errors of predictions produced by the winner pruning
algorithm is equal to the mean of the absolute error of predictions produced by the full

Table 5. Results for the MovieLens “Latest small – recommended for education and
development” dataset, under the matrix factorization strategy

Method % DB size
reduction

% coverage MAE (out
of 9)

% no REC in
MAE

% speedup

Full DB – 99.96 1.377 – –

keep-200 30 99.07 1.375 45 32
kearly-90% 56 99.43 1.361 28.3 27

(a) (b)

1.35

1.36

1.37

1.38

Full DB keep-200 kearly-90%

MAE

98.0

98.5

99.0

99.5

100.0

Full DB keep-200 kearly-90%

% coverage

Fig. 4. (a) MAE and (b) coverage metrics for the best performing variants under the matrix
factorization CF strategy, using the MovieLens “latest 20 M – recommended for education and
development” dataset

50 D. Margaris and C. Vassilakis

database case”. In the case of user-user CF (winner: kearly-50%) the test yielded a
p-value equal to 0.04228, hence the null hypothesis can be rejected (or, equivalently,
the benefits observed are statistically significant) at a confidence level of 95%. No
statistical significance was however established when comparing kearly-50% and
log@k = 0.2 (p-value = 0.1037).

In the case of matrix factorization-based predictions, the statistical significance test
between the winner variant kearly-90% and the runner-up keep-200, yielded a p-value
equal to 0.0494, hence the null hypothesis can be rejected (or, equivalently, the benefits
observed are statistically significant) with a confidence level of 95%.

5.3 The MovieLens “100 K” Dataset

Table 6 depicts the results obtained from the MovieLens “100 K” dataset, concerning
the user-user CF strategy.

The two aging variants presented in [34], as well as those presented in [47] have
been found to deteriorate the MAE. The same applies to all keep-N variants; it is worth
noting that the best performing variant is keep-20, however variants that maintain more
ratings per user have been actually found to perform worse than keep-20, abolishing a
large number of predictions with low error; the percentage of predictions with low error
that are abolished is greater than 50% in all cases except keep-20, and because of this
fact the algorithm presented in Sect. 4 would not consider keep-20 at all (since pruning
stops when the percentage of abolished predictions with low error exceeds 50%).

The variant of kearly-N% that is selected by the algorithm presented in Sect. 4 is
kearly-50%, which is the one achieving the lowest MAE compared to other algorithms,
while also delivering a database size reduction of 62% and a speedup equal to 74%.

Figure 5 illustrates the performance of the different algorithms under the user-user
CF strategy regarding (a) the MAE metric and (b) the coverage (i.e. the ability of the
algorithm to formulate personalized predictions).

Table 6. Results for the MovieLens “100 K” dataset under the user-user CF strategy

Method % DB size
reduction

%
coverage

MAE (out
of 4)

% no REC in
MAE

%
speedup

Full DB – 99.79 0.810 – –

aging-N 0 99.79 0.828 – –

aging-S 0 99.79 0.822 – –

exp@k = 0.8 0 99.79 0.833 – –

pow@k = 0.02 0 99.79 0.826 – –

lin@k = 0.9 0 99.79 0.822 – –

log@k = 0.5 0 99.79 0.818 – –

bll@k = 0.4 0 99.79 0.874 – –

keep-20 81 93.63 0.816 44 94
kearly-50% 62 98.73 0.802 33 74

Enhancing User Rating Database Consistency Through Pruning 51

Table 7 depicts the results obtained from the MovieLens “100 K” dataset, con-
cerning the matrix factorization CF strategy. In Table 7 we notice that the keep-50
variant achieves an improvement of 0.32% against the full database variant considering
the MAE, however the winning variant of kearly-N%, which is kearly-80%, attains a
considerably higher improvement, equal to 1.69%. Both pruning algorithms introduce
significant speedups and savings in database size, with the coverage drop being limited
to less than 1%.

Figure 6 illustrates the performance of the different algorithms under the matrix
factorization CF strategy regarding (a) the MAE metric and (b) the coverage.

We performed a two-tailed paired t-test to test the following null hypothesis H0:
“the mean of the absolute errors of predictions produced by the winner pruning
algorithm is equal to the mean of the absolute error of predictions produced by the full
database case”. In the case of user-user CF (winner: kearly-50%) the test yielded a
p-value equal to 0.0543, hence the null hypothesis cannot be rejected (or, equivalently,
the benefits observed are not statistically significant) at a confidence level of 95%. No
statistical significance was established either when comparing kearly-60% and
exp@k = 0.05 (p-value = 0.0531).

(a) (b)

0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86

MAE

90

92

94

96

98

100
% coverage

Fig. 5. (a) MAE and (b) coverage metrics for the best performing variants under the user-user
CF strategy, using the MovieLens “100 K” dataset

Table 7. Results for the MovieLens “100 K” dataset, under the matrix factorization strategy

Method % DB size
reduction

%
coverage

MAE (out
of 4)

% no REC in
MAE

%
speedup

Full DB – 99.96 0.7406 – –

keep-50 60 99.15 0.7382 37.5 33
kearly-80% 80 99.15 0.7281 35.0 36

52 D. Margaris and C. Vassilakis

In the case of matrix factorization-based predictions, the statistical significance test
between the winner variant kearly-80% and the runner-up keep-50, yielded a p-value
equal to 0.0462, hence the null hypothesis can be rejected (or, equivalently, the benefits
observed are statistically significant) with a confidence level of 95%.

5.4 The Amazon “Videogames” Dataset

The Amazon “Videogames” dataset differs from the three previous datasets in regards
to the fact that the number of ratings per user is significantly smaller (19.55 ratings per
user as compared to 100-145 ratings per user in the other three datasets), hence the
probability of “gray sheep” increases. It is therefore important to gain insight into
whether after such a sparse dataset is pruned, (a) the coverage of rating prediction
formulation remains at acceptable levels and (b) benefits in MAE still apply.

Table 8 depicts the results obtained from the Amazon “Videogames” dataset,
concerning the user-user CF strategy. The two aging variants described in [34] increase
the MAE, and so do all five aging-based variants discussed in [47]. All keep-k variants
also deteriorate the MAE, through abolishing a high percentage of predictions having
errors lower than the MAE, therefore the keep-k pruning algorithm is inappropriate for
this case too. The variant of kearly-N% that is selected by the algorithm presented in
Sect. 4 is kearly-20%, which is the one achieving the lowest MAE compared to other
algorithms (improved by 3.2% against the full database variant), while also delivering a
database size reduction of 30% and a speedup equal to 37%.

(a) (b)

0.72

0.73

0.74

0.75

Full DB keep-50 kearly-80%

MAE

98.0

98.5

99.0

99.5

100.0

Full DB keep-50 kearly-80%

% coverage

Fig. 6. (a) MAE and (b) coverage metrics for the best performing variants under the matrix
factorization CF strategy, using the MovieLens “100 K” dataset

Table 8. Results for the Amazon “Videogames” dataset under the user-user CF strategy

Method % DB size
reduction

%
coverage

MAE (out
of 4)

% no REC in
MAE

%
speedup

Full DB – 75.8 0.813 – –

aging-N 0 75.8 0.828 – –

aging-S 0 75.8 0.822 – –

(continued)

Enhancing User Rating Database Consistency Through Pruning 53

Figure 7 illustrates the performance of the different algorithms under the user-user
CF strategy regarding (a) the MAE metric and (b) the coverage (i.e. the ability of the
algorithm to formulate personalized predictions).

Table 9 depicts the results obtained from the Amazon “Games” dataset, concerning
the matrix factorization CF strategy. In Table 9 we notice that the keep-30 variant
achieves an improvement of 1.05% against the full database variant considering the
MAE, however the winning variant of kearly-N%, which is kearly-10%, attains a higher
improvement, equal to 1.40%. Both pruning algorithms introduce speedups and sav-
ings in database size, however the coverage drop in this case is higher, yet tolerable.

Figure 8 illustrates the performance of the different algorithms under the matrix
factorization CF strategy regarding (a) the MAE metric and (b) the coverage.

Table 8. (continued)

Method % DB size
reduction

%
coverage

MAE (out
of 4)

% no REC in
MAE

%
speedup

exp@k = 0.8 0 75.8 0.833 – –

pow@k = 0.02 0 75.8 0.826 – –

lin@k = 0.9 0 75.8 0.822 – –

log@k = 0.5 0 75.8 0.818 – –

bll@k = 0.4 0 75.8 0.874 – –

keep-80 5 73.2 0.816 54 4
kearly-20% 30 65.9 0.787 48 37

(a) (b)

0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90

MAE

60

65

70

75

80
% coverage

Fig. 7. (a) MAE and (b) coverage metrics for the best performing variants under the user-user
CF strategy, using the Amazon “Videogames” dataset

54 D. Margaris and C. Vassilakis

We performed a two-tailed paired t-test to test the following null hypothesis H0: “the
mean of the absolute errors of predictions produced by the winner pruning algorithm is
equal to the mean of the absolute error of predictions produced by the full database
case”. In the case of user-user CF (winner: kearly-20%) the test yielded a p-value equal to
0.05131, hence the null hypothesis cannot be rejected (or, equivalently, the benefits
observed are not statistically significant) at a confidence level of 95%.

In the case of matrix factorization-based predictions, the statistical significance test
between the winner variant kearly-10% and the runner-up (keep-30), yielded a p-value
equal to 0.0923, hence the null hypothesis cannot be rejected (or, equivalently, the
benefits observed are not statistically significant) with a confidence level of 95%.

5.5 Discussion

In this section we summarize and discuss our findings of our experiments which
concern (a) the newly introduced pruning algorithm kearly-N% and (b) the algorithm
presented in this paper for determining an optimal amount of pruning.

Table 10 compares the performance of the kearly-N% variant chosen by the algo-
rithm proposed in this paper, against the performance of the runner-up, under a
user-user CF prediction formulation scheme; and Table 11 presents the same infor-
mation under a matrix factorization prediction formulation scheme. We can see that the
selected variant of the kearly-N% algorithm achieves better results than its contenders in

Table 9. Results for the Amazon “Videogames” dataset, under the matrix factorization strategy

Method % DB size
reduction

%
coverage

MAE (out
of 4)

% no REC in
MAE

%
speedup

Full DB – 68.92 0.571 – –

keep-30 16 59.77 0.565 22.7 6
kearly-10% 23 58.67 0.563 26.7 10

(a) (b)

0.55

0.56

0.57

0.58

Full DB keep-30 kearly-10%

MAE

55

60

65

70

75

Full DB keep-30 kearly-10%

% coverage

Fig. 8. (a) MAE and (b) coverage metrics for the best performing variants under the matrix
factorization CF strategy, using the Amazon “Videogames” dataset

Enhancing User Rating Database Consistency Through Pruning 55

all datasets, improvements range from 0.45% to 1.5%, with performance enhancements
being statistically significant at a 95% confidence interval under all matrix
factorization-based test cases and in one out of four cases where user-user CF is
employed. In the remaining cases, no statistical significance of the improvements could
be established. The ability of the proposed approach to improve the MAE in all datasets
under the matrix factorization approach with statistical significance is considered to be
very important, since matrix factorization clearly achieves better results than user-user
CF, and is thus more prominent to be used in real-world applications.

Besides the improvement in the MAE, the kearly-N% pruning techniques introduces
considerable improvements in the ratings database size and rating prediction formu-
lation time, which are achieved at the expense of a reduction in the coverage, which
ranges from negligible to tolerable.

Figure 9 illustrates how the MAE is affected by the reduction of the database size
(only the pruning-based algorithms are considered, since aging-based algorithms do not
affect the database size). The performance of the full database variant is used as a
yardstick for measuring improvement/deterioration (point 0% on the y-axis). The value
plotted on the figure corresponds to the average value of MAE change among the four
datasets. On this diagram, we observe that the kearly-N% algorithm achieves MAE
improvements (reductions) in all cases, and this improvement scales approximately
linearly with the database size reduction. On the contrary, the keep-k algorithm delivers
some small improvements for low pruning rates under the matrix factorization
(MF) strategy, while for higher pruning rates its performance regarding the MAE is
equivalent to the non-pruned variant. Under the user-user CF rating prediction strategy,
keep-k algorithm leads to MAE performance deterioration in almost any case, indi-
cating that keeping each user’s last ratings, without taking into consideration the rel-
ative time each rating was entered in the DB, leads to a major rating DB inconsistency.

Table 10. Comparison of the MAE achieved by the variant of kearly-N% chosen by the proposed
algorithm, against the runner-up, under user-user CF

Dataset kearly-N% variant
selected by the
proposed algorithm

Best performing variant of all other algorithms

Variant MAE Variant MAE Statistically
significant@a = 0.95?

MovieLens “Latest small”
“Recommended for education and
development”

kearly-60% 1.476 pow@k = 0.1 1.477 No

MovieLens “Latest-20 M”
“recommended for new research”

kearly-50% 1.364 log@k = 0.2 1.371 No

MovieLens “100 K” dataset kearly-50% 0.802 Plain CF 0.810 No
Amazon “Videogames” dataset kearly-20% 0.787 Plain CF 0.813 Yes

56 D. Margaris and C. Vassilakis

Figure 10 depicts how the percentage of the predictions abolished due to pruning
and having absolute error lower than the plain CF MAE varies with the database size
reduction (the average among the four datasets is used). Again, only the pruning-based
algorithms are considered, since in aging-based algorithms coverage remains constant.
We notice that for the range that the “no REC in MAE%” metric remains below 50%
(which is the range of interest, since beyond that threshold too many desired predic-
tions are abolished), the kearly-N% algorithm proposed in this paper clearly outperforms
the keep-k algorithm, dropping less useful predictions. This behavior is consistent
across both rating prediction strategies, i.e. user-user CF and matrix factorization.

Table 11. Comparison of the MAE achieved by the variant of kearly-N% chosen by the proposed
algorithm, against the runner-up, under matrix factorization

Dataset kearly-N% variant
selected by the
proposed algorithm

Best performing variant of all other
algorithms

Variant MAE Variant MAE Statistically
significant@a = 0.95?

MovieLens “Latest Datasets”
“Recommended for education and
development”

kearly-80% 1.466 keep-300 1.479 Yes

MovieLens “Latest-20 M”
“recommended for new research”

kearly-90% 1.361 keep-200 1.375 Yes

MovieLens “100 K” dataset kearly-80% 0.7281 keep-50 0.7382 Yes
Amazon “Videogames” dataset kearly-10% 0.563 keep-30 0.565 No

-6

-4

-2

0

2

4

6

8

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
A

E
ch

an
ge

 %

DB size reduction
keep-k, user-user kearly-N%, user-user

keep-k, MF kearly-N%, MF

Fig. 9. Average MAE change comparison between the keep-k and kearly-N% algorithms, for
both rating prediction strategies

Enhancing User Rating Database Consistency Through Pruning 57

One of the major uses of rating prediction is within recommender systems, with the
latter proposing to the user those items that she has not seen, and which are predicted to
have the highest ratings for the user. Research has asserted that improved prediction
algorithms indicate better recommendations [49]. However, to quantify the perfor-
mance of the proposed algorithms in this context, we have measured the recall@N
metric [48] for all the evaluated techniques. For the recall@N metric, we have set
N = 5, taking into account the results of measurements, which show that the top-5
suggestions by Google account for more than 75% of the click-through rate [50]. To
compute the recall@N metric, we performed cross-validation by first dividing the
dataset in two parts: (i) the training part, which contained, for each user, the 80% of her
earliest-submitted ratings and (ii) the test part, accounting for the remaining 20% of
each user’s ratings. Then, using the training part only, we formulated predictions for
the elements in the test part, and computed how many of the top-5 highest-predicted
items for each user are actually perceived as “good” by the user (within the top 20% of
the user’s ratings within the test part).

The results obtained from this evaluation are depicted in Table 12 for the user-user
CF approach and in Table 13 for the matrix factorization approach. We can see that the
kearly-N% variant selected by the algorithm presented in Sect. 4, consistently outper-
forms the runner-up algorithm, for all datasets and under both user-user CF and matrix
factorization. The performance edge of the selected kearly-N% variant ranges from 26%
to 87% under user-user CF and from 38% to 82% under matrix factorization. Table 14
depicts some example recommendation produced for users by the kearly-N% variants,
for different datasets (one dense and one sparse) and under both the user-user CF and
the matrix factorization approaches. In these examples we can observe that the kearly-N%
variants include in their recommendations items that the corresponding users have rated
in the top 50% of the rating scale (� 3 for 5-star rating scale and � 6 for a 9-star rating
scale), and that the matrix factorization approach formulates better recommendations,

0

10

20

30

40

50

60

70

80

10% 20% 30% 40% 50% 60% 70% 80% 90%

no
 R

EC
 in

 M
A

E
%

DB size reduction
keep-k, user-user kearly-N%, user-user
keep-k, MF kearly-N%, MF

Fig. 10. Average “no REC in MAE%” metric for the keep-k and kearly-N% algorithms, with
respect to the database size reduction

58 D. Margaris and C. Vassilakis

i.e. includes in its recommendations items to which the user has assigned higher marks,
as compared to the items included in the recommendations generated by the user-user
CF approach.

Table 12. Comparison of the recall@5 metric achieved by the variant of kearly-N% chosen by
the proposed algorithm, against the runner-up, under user-user CF

Dataset kearly-N% variant
selected by the proposed
algorithm

Best performing variant of
all other algorithms

Variant recall@5 Variant recall@5

MovieLens “Latest Datasets”
“Recommended for education
and development”

kearly-60% 0.55 pow@k = 0.1 0.41

MovieLens “Latest-20 M”
“recommended for new research”

kearly-50% 0.54 log@k = 0.2 0.43

MovieLens “100 K” dataset kearly-50% 0.15 pow@k = 0.02 0.08
Amazon “Videogames” dataset kearly-20% 0.32 pow@k = 0.02 0.24

Table 13. Comparison of the recall@5 metric achieved by the variant of kearly-N% chosen by
the proposed algorithm, against the runner-up, under matrix factorization

Dataset kearly-N% variant
selected by the
proposed algorithm

Best performing
variant of all other
algorithms

Variant recall@5 Variant recall@5

MovieLens “Latest Datasets”
“Recommended for education and development”

kearly-80% 0.62 keep-300 0.45

MovieLens “Latest-20 M”
“recommended for new research”

kearly-90% 0.61 keep-200 0.41

MovieLens “100 K” dataset kearly-80% 0.31 keep-50 0.17
Amazon “Videogames” dataset kearly-10% 0.39 keep-30 0.26

Table 14. Example recommendations produced by the kearly-N% variants

Dataset Approach/variant Recommendation (item ids with top-5 rating predictions,
together with their original ratings)

MovieLens
“Latest-20 M”
“recommended
for new
research” (max
rating = 9)

user-user/kearly-
50%

User ML1: 104/6, 136/7, 165/7, 78/6, 109/7
User ML2: 67/9, 3497/7, 251/7, 100/7, 576/9
User ML3: 9990/8, 2334/8, 6292/6, 1602/7, 2488/8

User ML4: 7174/8, 3864/8, 1747/6, 1434/7, 6454/7
User ML5: 739/9, 2833/7, 28/8, 80/8, 314/7

(continued)

Enhancing User Rating Database Consistency Through Pruning 59

Considering other works on recommender systems exploiting the ratings’ times-
tamps, the approach presented in [20] achieves an improvement in MAE by 0.2%. In
the work presented by Koren [44] –which to the best of our knowledge is the
top-performing algorithm considering temporal dynamics and concept drift that has
been presented insofar– under the user-user CF rating prediction strategy an
improvement of MAE by 1.3% is achieved. Under the matrix factorization-based
prediction scheme, the SVD++ method proposed in [44] achieves improvements in
MAE from 0.1% to 1.1%, depending on factor dimensionality (higher dimensionalities
perform better), while the timeSVD++ method also proposed in [44] performs better,
achieving improvements in MAE between 1.8% and 2.5%, again depending on factor
dimensionality.

The kearly-N% algorithm presented in this paper achieves improvements in the
MAE ranging from 1% to 2.45% under the user-user CF rating prediction strategy and
from 1.08% to 2.55% under the matrix factorization-based prediction scheme (for both
rating prediction schemes, the reported percentages depict the difference between the
full DB variant and the variant chosen by the algorithm proposed in Sect. 4). In this
respect, the benefits of the proposed algorithm are comparable to those presented in
[44] regarding the MAE; however the algorithm proposed in this paper additionally
achieves considerable reductions in the database size and improvements in execution
time, being at the same time simpler to implement.

Finally, the variant selection algorithm presented in Sect. 4, always achieves to
select an optimal setting for the pruning level.

Table 14. (continued)

Dataset Approach/variant Recommendation (item ids with top-5 rating predictions,
together with their original ratings)

MF/kearly-90% User ML1: 136/7, 165/7, 104/6, 162/7, 62/6

User ML2: 67/9, 3497/7, 576/9, 558/9, 251/7
User ML3: 2334/8, 1352/8, 2488/8, 6981/7, 456/8

User ML4: 7174/8, 3864/8, 8203/7, 12570/8, 6454/7
User ML5: 739/9, 80/8, 125/9, 654/9, 314/7

Amazon
“Videogames”
dataset (max
rating = 5)

User-user/kearly-
20%

User AV1: 38132/5, 47425/4, 10095/4, 40574/5, 35096/4
User AV2 28296/5, 38877/5, 38054/5, 42165/4, 33398/3
User AV3: 6515/5, 6447/3, 5074/4, 4936/3, 1317/4
User AV4: 40425/5, 44756/4, 28243/5, 40744/5, 49447/5
User AV5: 46327/4, 46326/4, 34611/5, 42164/3, 49684/4

MF/kearly-10% User AV1: 38132/5, 40574/5, 10095/4, 35096/4, 28934/4
User AV2 6515/5, 5074/4, 4936/3, 1317/4, 6447/3

User AV3: 6515/5, 6447/3, 5074/4, 4936/34013, 1317/4
User AV4: 40744/5, 40425/5, 44756/4, 26204/5, 49409/5
User AV5: 46327/4, 34611/5, 49684/4, 41783/4, 46206/4

60 D. Margaris and C. Vassilakis

6 Conclusion and Future Work

In this paper we present a new algorithm (kearly-N%) for pruning user histories in rating
prediction systems. The algorithm operates on each individual user’s history, dropping
the oldest ratings, enhancing the rating DB consistency. We present an algorithm for
tuning the parameter of the proposed pruning algorithm, allowing the configuration and
execution of the pruning algorithm in an unsupervised fashion. The proposed pruning
algorithm is evaluated against four datasets in terms of prediction accuracy, storage size
gains and execution speedup, and is compared to the seven aging-based and one
pruning-based algorithm presented in the literature, while it is also verified that the
introduced parameter tuning algorithm correctly selects an optimal parameter setting.
Finally, we show that the proposed algorithm can be used in different rating prediction
strategies, by evaluating its performance in user-user CF-based and matrix
factorization-based approaches. The proposed algorithm is also compared against
works on temporal dynamics and concept drift.

The results show that among aging-based and pruning-based algorithms, only the
pruning algorithm proposed in this work (kearly-N%) increases the rating DB consis-
tency –and consequently prediction quality–, since it achieves to prune old “noisy”
ratings, and at the same time decreases prediction computation time, while achieving
considerable database size gains. On the other hand, both of the aging algorithms
presented in [34] exhibit performance similar to that of a typical CF algorithm, while
the aging algorithms presented in [47] achieve MAE improvements in some cases, yet
inferior to those achieved by the proposed algorithm. It is important to note that none of
the aging-based algorithms can be directly applied in combination with matrix fac-
torization. The pruning algorithm keep-k presented in [34] proved inappropriate, since
by keeping the same number of ratings for each user, actually for some users we keep
all of their history (users with initially less than k ratings), no matter how old each
rating is and for some others (users with many ratings) we may prune many of their
recent ratings, which are consistent with their current interests and preferences. In
relation to the works on temporal dynamics and concept drift that have been presented
in the literature, the proposed approach achieves comparable results, being easier to
implement and also introducing gains in rating database size and rating prediction
formulation time.

Conclusively, the merits of the suggested pruning technique are that (1) it can be
used in all rating databases that include a timestamp, (2) it has been proved to be
effective in any size of user rating dataset, from a few hundreds of users and a few
thousands of ratings to hundreds of thousands of users and millions of ratings and (3) it
can be applied as a preprocessing step to any rating prediction algorithm (including
different rating prediction strategies, clustering techniques, algorithms taking into
account social network data and so forth).

Our future work will focus on further elaborating on the portions of the user
histories that should be kept, employing different pruning settings for each user,
depending on the timestamp distribution and contents of her history. Efficient and
accurate sampling methods for avoiding computing predictions for all users to deter-
mine the MAE of each algorithm will be also examined. Finally, as new ratings are

Enhancing User Rating Database Consistency Through Pruning 61

constantly added in the ratings database, the formulation of triggering conditions for
executing the pruning algorithm will be studied.

References

1. Bakshy, E., Eckles, D., Yan, R., Rosenn, I.: Social influence in social advertising: evidence
from field experiments. In: Proceedings of the 13th ACM Conference on Electronic
Commerce, pp. 146–161 (2012)

2. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender
systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol.
4321, pp. 291–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_9

3. Song, Y., Elkahky, A.M., He, X.: Multi-rate deep learning for temporal recommendation. In:
Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2016 (2016)

4. Li, L., Zheng, L., Yang, F., Li, T.: Modeling and broadening temporal user interest in
personalized news recommendation. Expert Syst. Appl. 41(7), 3168–3177 (2014)

5. Minku, L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE
Trans. Knowl. Data Eng. 24(4), 619–633 (2012)

6. Yin, D., Hong, L., Xue, Z., Davison, B.D.: Temporal dynamics of user interests in tagging
systems. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI
2011), pp. 1279–1285 (2011)

7. MovieLens datasets. http://grouplens.org/datasets/movielens/
8. Koren, Y.: Factor in the neighbors: scalable and accurate collaborative filtering. ACM Trans.

Knowl. Discov. Data (TKDD) 4(1), 1 (2010)
9. Whitby, A., Jøsang, A., Indulska, J.: Filtering out unfair ratings in Bayesian reputation

systems. In: Proceedings of the Workshop on Trust in Agent Societies, at the Autonomous
Agents and Multi Agent Systems Conference (AAMAS 2004), New York, July 2004

10. Nilashi, M., Ibrahim, O.-B., Ithnin, N., Sarmin, N.H.: A multi-criteria collaborative filtering
recommender system for the tourism domain using Expectation Maximization (EM) and
PCA–ANFIS. Electron. Commer. Res. Appl. 14(6), 542–562 (2015)

11. Anthony, V., Ayala, A., Alzoghbi, A., Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.:
Speeding up collaborative filtering with parametrized preprocessing. In: Proceeding of the
6th International Workshop on Social Recommender Systems (SRS 2015), in Conjunction
with the 2015 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
2015), Sydney, Australia, August 2015

12. Margaris, D., Vassilakis, C., Georgiadis, P.: Knowledge-based leisure time recommenda-
tions in social networks. In: Current Trends on Knowledge-Based Systems. Intelligent
Systems Reference Library, vol. 120, pp. 23–48 (2017)

13. Liu, F., Joo Lee, H.: Use of social network information to enhance collaborative filtering
performance. Expert Syst. Appl. Int. J. Arch. 37(7), 4772–4778 (2010)

14. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun.
ACM 40(3), 66–72 (1997)

15. Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adap.
Inter. 12(4), 331–370 (2002)

16. Gong, S.: A collaborative filtering recommendation algorithm based on user clustering and
item clustering. J. Softw. 5(7), 745–752 (2010)

62 D. Margaris and C. Vassilakis

http://dx.doi.org/10.1007/978-3-540-72079-9_9
http://grouplens.org/datasets/movielens/

17. Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online
collaborative filtering. In: Proceedings of the 16th international conference on World Wide
Web, pp. 271–280 (2007)

18. Margaris, D., Georgiadis, P., Vassilakis, C.: A collaborative filtering algorithm with
clustering for personalized web service selection in business processes. In: Proceedings of
RCIS 2015, Athens, Greece, pp. 169–180 (2015)

19. Bakshy, E., Rosenn, I., Marlow, C., Adamic L.: The role of social networks in information
diffusion. In: Proceeding of the 21st international conference on World Wide Web, pp. 519–
528 (2012)

20. Vaz, P.C., Ribeiro, R., de Matos, D.M.: Understanding temporal dynamics of ratings in the
book recommendation scenario. In: Proceeding of the 2013 International Conference on
Information Systems and Design of Communication, pp. 11–15 (2013)

21. Han, J., Morag, C.: The influence of the sigmoid function parameters on the speed of
backpropagation learning. In Mira, J., Sandoval, F. (eds.) From Natural to Artificial Neural
Computation, pp. 195–201 (1995)

22. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems.
Found. Trends Hum.-Comput. Interact. 4(2), 81–173 (2011)

23. Maxwell Harper, F., Konstan, J.A.: The MovieLens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2015)

24. Jaschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommen-
dations in Folksonomies. In: Proceedings of the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD 2007), pp. 506–514 (2007)

25. Parra-Santander, D., Brusilovsky, P.: Improving collaborative filtering in social tagging
systems for the recommendation of scientific articles. In: Proceedings of Web Intelligence
2010, pp. 136–142 (2010)

26. Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.P.: Probabilistic memory-based
collaborative filtering. IEEE Trans. Knowl. Data Eng. 16(1), 56–69 (2004)

27. He, D., Wu, D.: Toward a robust data fusion for document retrieval. In: Proceedings of the
IEEE 4th International Conference on Natural Language Processing and Knowledge
Engineering – NLP-KE (2008)

28. Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Inf. Retrieval 5(4), 287–310 (2002)

29. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “Word of
Mouth”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 210–217 (1995)

30. Frey, R.M., Xu, R., Ilic, A.: A novel recommender system in IoT. In: Proceedings of the 5th
International Conference on the Internet of Things (IoT) (2015)

31. Munoz-Organero, M., Ramirez, G.A., Merino, P.M., Kloos, C.D.: A collaborative
recommender system based on space-time similarities for an Internet of Things. IEEE Perv.
Comput. 9(3), 81–87 (2010)

32. Suggest Movie recommendation system. http://www.suggestmemovie.com/
33. The Table recommendation system. http://thetable.me/
34. Margaris, D., Vassilakis, C.: Pruning and aging for user histories in collaborative filtering.

In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (2016)
35. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.

In: IEEE Computer, pp. 42–49, August 2009
36. Zhang, Y., Zhang, M., Liu, Y., Ma, S., Feng, S.: Localized matrix factorization for

recommendation based on matrix block diagonal forms. In: Proceedings of the 22nd
international conference on World Wide Web (WWW 2013), pp. 1511–1520 (2013)

Enhancing User Rating Database Consistency Through Pruning 63

http://www.suggestmemovie.com/
http://thetable.me/

37. Wen, H., Ding, G., Liu, C., Wang, J.: Matrix factorization meets cosine similarity:
addressing sparsity problem in collaborative filtering recommender system. In: Chen, L., Jia,
Y., Sellis, T., Liu, G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 306–317. Springer, Cham
(2014). doi:10.1007/978-3-319-11116-2_27

38. Chin, W.-S., Zhuang, Y., Juan, Y.-C., Lin, C.-J.: A fast parallel stochastic gradient method
for matrix factorization in shared memory systems. ACM Trans. Intell. Syst. Technol. 6(1),
24 (2015). Article 2

39. Chin, W.-S., Zhuang, Y., Juan, Y.-C., Lin, C.-J.: A learning-rate schedule for stochastic
gradient methods to matrix factorization. In: PAKDD, 2015 (2015)

40. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Section 10.12. simulated
annealing methods. In: Numerical Recipes: The Art of Scientific Computing, 3rd edn.
Cambridge University Press, New York (2007). ISBN 978–0-521-88068-8

41. Wu, D., Yuan, Z., Yu, K., Pan, H.: Temporal social tagging based collaborative filtering
recommender for digital library. In: Proceeding of ICADL 2012, pp. 199–208 (2012)

42. McAuley, J., Targett, C., Shi, J., van den Hengel, A.: Image-based recommendations on
styles and substitutes. SIGIR (2015)

43. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. 46(4), 37 (2014). Article 44

44. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 447–456 (2009)

45. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering. J. Braz.
Comput. Soc. 18(4), 271–282 (2012)

46. Gates, M., Anzt, H., Kurzak, J., Dongarra, J.: Accelerating collaborative filtering using
concepts from high performance computing. In: Proceedings of the 2015 IEEE International
Conference on Big Data (2015)

47. Larrain, S., Trattner, C., Parra, D., Graells-Garrido, E., Nørvåg, K.: Good times bad times: a
study on recency effects in collaborative filtering for social tagging. In: Proceedings of the
9th ACM Conference on Recommender Systems (RecSys 2015), pp. 269–272 (2015)

48. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and
Technology behind Search. Addison-Wesley Professional, New York (2011)

49. Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based prediction
algorithms for recommendation agents. Eng. Appl. Artif. Intell. 18(7), 781–789 (2005)

50. Chitika: The Value of Google Result Positioning. https://chitika.com/google-positioning-
value. Accessed 29 Apr 2017

51. Aggarwal, C.C., Wolf, J.L., Wu, K.-L., Yu, P.S.: Horting hatches an egg: a new
graph-theoretic approach to collaborative filtering. In: Proceeding of the fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 1999), pp. 201–
212. ACM (1999)

64 D. Margaris and C. Vassilakis

http://dx.doi.org/10.1007/978-3-319-11116-2_27
https://chitika.com/google-positioning-value
https://chitika.com/google-positioning-value

A Second Generation of Peer-to-Peer
Semantic Wikis

Charbel Rahhal(B)

Faculty of Science, Lebanese University, Zahlé, Lebanon
charbelrahhal@gmail.com

Abstract. P2P Semantic Wikis (P2PSW) constitute a collaborative
editing tool for knowledge and ontology creation, share and manage-
ment. They ensure a massive collaboration in a distributed manner on
replicated data composed of semantic wikis pages and semantic anno-
tations. P2PSW are an instantiation of the optimistic replication model
for semantic wikis. They ensure eventual syntactical consistency, i.e. that
the wiki pages and semantic annotations store of the peers will eventu-
ally become identical. In spite of their advantages, these Wikis do not
support a mechanism to maintain the quality of their semantic annota-
tions. Thus, the content of the semantic wiki pages could be inconsistent
for many reasons: the merge of the changes is made automatically by
the wiki not by the users, missing information or inconsistent informa-
tion added by the users of the peers. In this paper, I present a semantic
inconsistency detection mechanism (SIDM) developed for P2PSW. SIDM
detects the semantic inconsistency of the annotations in the semantic
pages and improves the quality of the knowledge and the functionality
of P2PSW. It indicates not only the existence of the semantic inconsis-
tency in the wiki pages but also specifies the reason of the inconsistency.
SIDM also facilitates the semantic inconsistency removal by determining
exactly the position of the inconsistent annotations in the wiki pages and
highlighting them via a semantic inconsistency visualization mechanism
we developed.

Keywords: Semantic web · P2P semantic wikis · Semantic consistency

1 Introduction

P2P Semantic Wikis (P2PSW) [1] constitute a collaborative editing tool for
knowledge and ontology creation, share and management. They ensure a mas-
sive collaboration in a distributed manner on a replicated data composed of
semantic wikis pages and semantic annotations. In P2PSW, the number of peers
can be very large, it can grow to thousands of thousands of peers. This happens
without affecting the scalability and the functionality of the wiki. Research aca-
demics can work on common research projects and collaborate to produce their
publications, people of same interests can produce and share same knowledge,

c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 65–91, 2017.
https://doi.org/10.1007/978-3-662-55947-5_4

http://orcid.org/0000-0003-2671-6130

66 C. Rahhal

and domains’ experts can build common taxonomies and ontologies in an easy
way using P2PSW.

P2PSW combine the advantages of P2P wikis and the semantic wikis [2]. The
replication of the semantic wiki pages in a distributed network enhances the per-
formance, scalability, and fault-tolerance. The integration of the semantic aspect
in P2PSW, improves the navigation, the search, and the knowledge extraction in
the wikis. The semantic annotations in the wiki pages can be processed automat-
ically by machines and they are exploited by semantic queries. P2PSW were first
distributed on unstructured P2P networks, a recent work [3] proposed P2PSW
distributed on structured P2P networks.

A P2P semantic wiki is a P2P network of autonomous semantic wiki servers
(called also peers or nodes) that can dynamically join and leave the network.
Every peer of a P2PSW hosts a copy of semantic wiki pages and a store for the
semantic annotations extracted from these pages. As in any wiki system, the
basic element is a semantic wiki page and every semantic wiki page is assigned
a unique identifier PageID, which is the name of the page. A semantic wiki page
is an ordinary wiki page that contains semantic annotations. It can be seen as
an ordered sequence of lines. The semantic annotations can be written as typed
links. For instance, a semantic wiki page about “Jaguar” could be written as
shown in Fig. 1.

Jaguar is a Native American word means "he who kills with one blow".

It is the third biggest cat behind the [isBiggest::Tiger].

Jaguar has many colors such as [hasColor:=Brown] one.

[category::Animal]

Fig. 1. Semantic Wiki Page about Jaguar

It contains four lines and three semantic annotations [isBiggest::Tiger], [has-
Color:= Brown], and [category::Animal] about “Jaguar”. Text and semantic
annotations are stored in separate persistent storages. Text can be stored in
files or a database. The semantic annotations are mapped into RDF statements
where the subject is the page name. For example, the [isBiggest::Tiger] annota-
tion will be stored as <“Jaguar”, “isBiggest”, “Tiger”>. These annotations are
stored in the peer triple store separate from text since relational database is not
an ideal type of storage for semantic data. An RDF triple store organizes infor-
mation in graphs rather than in fixed database tables. It is designed to answer
queries in the SPARQL query language and to provide reasoning features on the
ontological elements they store.

P2PSW are based on an optimistic replication model [4]. When a peer
updates its local replica of a semantic wiki page, the replicas of the peers diverge.
An update of a replica generates the corresponding operations i.e. insert or delete
a line. An operation is processed in four steps: it is executed immediately against
the local replica of the peer, broadcasted through the P2P network to other

A Second Generation of Peer-to-Peer Semantic Wikis 67

peers, received by the other peers and integrated to their local replica. P2PSW
use an optimistic synchronization algorithm to integrate the changes represented
by operations and eventually ensure syntactic consistency. After integrating the
same operations, wikis pages of the peers and their semantic annotations stores
will become identical. The convergence of replicas is reached while preserving
the execution order of the operations, and their intention independently of the
concurrency. Each time the inserted or deleted line contains annotations, these
annotations are extracted from the line, transformed into RDF statements and
the local RDF triple store of the peer is updated. So, the merge of changes in
P2PSW is made automatically by the synchronization algorithm and not by
the users.

The first generation of P2PSW focused on ensuring syntactic convergence.
They do not take in consideration the semantic consistency aspect of their con-
tent. While the syntactic consistency ensures that the semantic wiki pages of the
peers and their stores will converge when integrating the same changes otherwise
they diverge. The semantic consistency will be concerned with the consistency
of the annotations in the semantic wiki pages of the peers. In other words, it
will focus on ensuring that the common understanding of the users about the
annotations is respected. The semantic consistency is not defined in the current
P2PSWs. Current P2PSW do not support a mechanism to check the semantic
consistency of the annotations in the semantic wiki pages. A user on a peer is not
able to detect whether the annotations in a semantic wiki page are consistent
or not. There is difference between the syntactic consistency and the semantic
consistency, we explain it by running an example.

Consider two sites Site1 and Site2 replicating a semantic wiki page about
“Jaguar”, the page could be referring to a car for someone and an animal for
another. Initially, the wiki page contains one line and is the same on both sites as
shown in the Fig. 2. Suppose that a user on Site1 inserts the line “[category::Car]”
at position2. Concurrently, a user on Site2 inserts the line “[category::Animal]” at
the same position. The change on Site1 generates op1 = insert (“[category::Car]”,
2) and the change on Site2 generates op2 = insert (“[category::Animal]”, 2). The
two operations are integrated locally, broadcasted through the network and even-
tually integrated on both sites. In P2PSW, the optimistic replication algorithm
integrates op1 and op2 as follows. On Site1, first it inserts “[category::Car]”
between line at position 1 and the end line of the page. When op2 is received
on Site1, op2 specifies that “[category::Animal]” must be inserted between the
same positions. The replication algorithm serializes op1 and op2 to make the
operations commute and consequently to ensure convergence of the replicas on
both sites. The Woot replication algorithm [5] uses the site identifiers in the
synchronization which are unique and ordered. op2 is received from Site2 having
an identifier greater than Site1, then “[category::Animal]” will be inserted after
“[category::Car]”. The same processing is made on Site2 and “[category::Car]”
will be inserted before “[category::Animal]”. The Logoot replication [6] gener-
ates a unique position between line 1 and the end line for line “[category::Car]”
on Site1 and another unique position for “[category::Animal]” on Site2.

68 C. Rahhal

Fig. 2. Concurrent edition in P2PSW

Consequently, the lines “[category::Car]” and “[category::Animal]” will be
inserted in the same order on both sites. The final result of an optimistic repli-
cation algorithm in P2PSW ensures that both sites ensure that the lines are
inserted in the same order in the wiki pages and the triple stores contain the
same semantic annotations as shown in Fig. 2. Both sites are syntactically con-
vergent. However, a jaguar cannot have two disjoint categories Animal and Car
at the same time. This statement cannot be made in the first generation of
P2PSW. Thus, the obtained result is semantically inconsistent. Based on this
result, running a semantic query to classify jaguars based on their category will
return an erroneous result.

In the current P2PSWs, the result of the automatic merge could be anything
and does not take in consideration the semantic consistency. There is no mech-

A Second Generation of Peer-to-Peer Semantic Wikis 69

anism that helps the users to specify this constraint that the Animal and Car
categories are distinct. The following annotations added by mistake [name:=3.2],
[size:= −13], [birthdate:=2017-02-31], [brother::Apple Inc.] and the page is about
a human and Apple is a company are examples about semantically inconsistent
annotations that can be found in a semantic wiki page of a peer.

In spite the important role that play the semantic annotations in the P2PSW,
working with semantically inconsistent annotations may lead to a loss of those
benefits. Determining whether a semantic wiki page is semantically consistent
requires checking the semantic consistency of its semantic annotations. This
is not currently available in P2PSW. The annotations of a wiki page can be
considered semantically consistent if they satisfy all the semantic rules on which
they apply. For instance, a semantic rule will specify that a semantic wiki page
should not belong to two or more disjoint categories.

The goal of this research work is to provide P2PSW with a generic semantic
inconsistency detection mechanism (SIDM) that detects and proposes a solution
for semantic inconsistency in P2PSW. SIDM will indicate not only the existence
of the semantic inconsistency in the wiki pages but also the violated semantic
rules. In addition, the inconsistency among the pages will also be detected. The
semantic inconsistency is presented using a visualization mechanism we devel-
oped. The outcome of this work is a second generation of P2PSW with
an enhanced quality of content and knowledge. Obviously, ensuring that
the semantic annotations are semantically consistent has a major effect on the
functionality of the P2PSW. It will improve the quality of the structured data
in the different peers of the P2PSW.

The work focused on the design and the build of the semantic inconsistency
detection mechanism. It includes defining semantic consistency in the context of
P2PSW and the semantic rules (i.e. constraints) that determine the consistency
of the annotations in the semantic wiki pages. The appropriate interfaces are
created to write the semantic rules as special semantic wiki pages. The algo-
rithm for the detection of the semantic inconsistency is developed. It detects the
inconsistency existence and the inconsistent annotations. How the SIDM can be
integrated in P2PSW and the semantic inconsistency is visualized follow.

The rest of the paper is organized as follows: Sect. 2 presents a state of
art about the first generation of P2PSW. Section 3 discusses related work.
Section 4 details the proposal that includes the algorithm, and the architec-
ture. It describes the main steps followed in the development of the semantic
inconsistency detection mechanism for P2PSW. Section 5 describes how to inte-
grate SIDM in P2PSWs. Section 6 shows how the entire approach works. The
last section concludes the paper and points to future work.

2 Peer-to-Peer Semantic Wikis

P2P Semantic Wikis constitute a collaborative editing tool for knowledge and
ontology creation, share and management. They combine the advantages of
semantic wikis and P2P wikis, also their technologies. They ensure a massive

70 C. Rahhal

collaboration in a distributed manner by replicating their data composed of
semantic wikis pages and semantic annotations. Their main focus was to ensure
the syntactic consistency of their replicated data.

P2PSW as a wiki constitute an easy to use collaborative editor for any type
of users who aim to collaborate and to produce data and knowledge in a simple
manner. The number of peers in that wiki can be huge, it is variable and can
grow to thousands of thousands. Since these wikis were designed for mass collab-
oration they can generate huge amount of data called nowadays big data by very
large number of users on the peers. The users on the peers can create as many
as they want of semantic wiki pages. These pages will be replicated and their
annotations are stored in triple stores that can handle billion of RDF triples.
The users of these wikis can be researchers and professors or experts in ontology
and taxonomy building or people with no experience in Semantic Web such as
business managers, students, etc. The data in P2PSW can be reused later on as
a reference or as a part in other projects or systems. Data are locally stored at
the users’ side and not on some distant servers owned by private companies.

The semantic aspect in P2PSW improves the organization and the extraction
of knowledge from these data. In addition it enables users to produce a common
understanding and vocabulary. The linked data represented as semantic annota-
tions in the wiki pages are actually manipulated in P2PSW using the Semantic
Web technologies. The annotations are translated into RDF triples, extracted
and stored in the triple stores via SPARQL query language [14].

What distinguishes P2PSW from any other collaborative ontologies/knowl-
edge editors in the Semantic Web is the real nature of collaborative editing.
Many users can edit the wiki at the same time. Concurrent editions are handled
and changes are merged automatically. It is not only about sharing or index-
ing the knowledge as other tools are limited to. There are two ways to build a
P2PSW either by integrating the Semantic Web technologies in a P2P wiki or by
distributing the architecture of a Semantic Wiki. Two P2PSW were developed
SWOOKI and DSMW. SWOOKI followed the first way while DSMW adopted
the second one. Both are based on an instantiation of the optimistic replication
model in the context of semantic wikis. They ensure the CCI consistency model
(Causality, Convergence, Intention) [4] of the replicated data. Next, I will briefly
present these two P2PSW.

2.1 SWOOKI

SWOOKI [9] is the first P2P semantic wiki. A SWOOKI network is a set of
interconnected semantic wiki servers. Each server hosts a replica of semantically
annotated wiki pages and a triple store. It addresses specifically the problems of
scalability and fault tolerance. SWOOKI adopts a total replication of the data
on every peer of the network. Each peer can join and leave the network at any
time. The produced knowledge can be searched, queried and extracted locally
on each peer. SWOOKI uses Woot [5] as an optimistic replication mechanism to
maintain the syntactic consistency of the replicated wiki pages and the replicated
RDF repositories i.e. their convergence. It ensures the CCI consistency model.

A Second Generation of Peer-to-Peer Semantic Wikis 71

SWOOKI was implemented in Java under the GPL license. You can download
and test it last release 0.9 at http://sourceforge.net/projects/wooki.

Fig. 3. Swooki architecture

SWOOKI Architecture. A SWOOKI server is composed of the following
components (see Fig. 3):
– User Interface: The SWOOKI user interface (UI) component (see Fig. 4)

is basically a regular wiki editor. It allows users to edit a view of a page
by getting the page from the SWOOKI manager. Users can disconnect their
peer to work in an off-line mode. They can add new neighbors in their list
to work with. The UI allows users to see the history of a page, to search for
pages having some annotation, to execute semantic queries, and to export the
semantic annotations of the wiki pages in an RDF format.

– SWOOKI Manager: The SWOOKI manager is responsible for the genera-
tion and the integration of the editing patches which are sets of insert/delete
operations. It implements the Woot algorithm. Its main method is to integrate
all operations contained in the patch. Requesting and modifying a page or
resolving a semantic query in the RDF repository pass through this manager.

– Sesame Engine: Sesame 2.0 is the RDF repository used in SWOOKI.
Sesame is controlled by the SWOOKI manager for storing and retrieving RDF
triples. This component allows also generating dynamic content for wiki pages
using queries embedded in the wiki pages. It provides also a feature to export
RDF graphs.

– Diffusion Manager: The diffusion manager is in charge to maintain the
membership of the unstructured network and to implement a reliable broad-
cast.

http://sourceforge.net/projects/wooki

72 C. Rahhal

Fig. 4. Swooki user interface

2.2 Distributed Semantic Media Wiki (DSMW)

DSMW [10] is the second developed P2P Semantic Wiki. It allows to build a
semantic Friend-to-Friend social network and to support multiple collaborative
editing processes. In DSMW, a new model of collaboration called Push/Pull was
developed. It is based on the notion of feeds. The idea was inspired from the work
in Distributed Version Control Systems like Git. A generic ontology that covers
the semantic wikis pages and their annotations, the changes and their history
was proposed. Every DSMW element is an instantiation of this ontology and
can be exploited semantically. DSMW is also based on an optimistic replication
for the semantic wiki pages. It uses Logoot [6] for synchronization and to ensure
the syntactic convergence of the replicated data.

DSWM allows users to build their own cooperation networks, every user
declares explicitly with whom he would like to cooperate. Every user can have a
DSMW server installed on his machine. He can create and edit his own semantic
wiki pages as in a normal semantic wiki system. Later, he can decide to share
or not these semantic wiki pages and decide with whom to share. The replica-
tion of data and the communication between servers is made through channels
(push/pull feeds). These channels contain the changes made in the semantic wiki
pages that can be shared and exchanged among peers. They are implemented as
special semantic wiki pages.

When a semantic wiki page is updated on a multi-synchronous semantic
wiki server, it generates a corresponding operation. This operation is processed
in four steps: (1) it is executed immediately against the page, (2) published
locally to the corresponding channels, (3) pulled remotely by authorized servers,

A Second Generation of Peer-to-Peer Semantic Wikis 73

and (4) integrated to their local replica of the page. If needed, the integration
process merges this modification with concurrent ones, generated either locally
or received from a remote server. DSMW was implemented as an extension of
Semantic MediaWiki which is also an extension of Wikipedia’s wiki engine. The
latest version of DSMW 1.2 can be downloaded and tested at http://momo54.
github.io/DSMW.

Fig. 5. DSMW architecture

DSMW Architecture. The DSMW architecture is illustrated in Fig. 5. Its
components are given below:

– User interface (UI): Each semantic wiki page is associated with a special
page (see Fig. 6) that shows the patches (i.e. the set of operations) integrated
on that page, and the pushfeed to which it belongs.

– Merge Manager: is in charge of the integration of the operations. It syn-
chronizes automatically the changes by implementing Logoot.

– Diffusion manager: This component is responsible for the generation and
the propagation of the operations that represent the changes.

– Data storage: This component is constituted of a database that stores sep-
arately the semantic wiki pages and their annotations. It contains different
namespaces (PullFeed, PushFeed, ChangeSet, Patch, and Operation) to sep-
arate the semantic wiki pages from the special ones.

– Undo mechanism: This component allows undoing changes at any time.

http://momo54.github.io/DSMW
http://momo54.github.io/DSMW

74 C. Rahhal

Fig. 6. DSMW page associated to ‘Hello’ page

3 Related Work

Semantic wikis are wiki engines that use the technologies of the Semantic Web
to embed formalized knowledge in the wiki pages. This knowledge can be used to
enhance the search and the navigation in the wiki or to update content dynam-
ically. Some semantic wikis are dedicated to editing ontologies cooperatively
such as Platypus, Rise, WikiSar, AceWiki, OntoWiki, and BOWiki. Others use
ontologies as a reference for annotating wiki content such as IkeWiki, SWiM,
and SweetWiki. Thus, they require to load/use a background ontology in the
wiki. This provides guidance to the users during the annotations by proposing
only valid completions. Semantic MediaWiki merged both approaches. First, it
allowed users to add various types of ontological information to the wiki and to
export these information later on. Then, it was extended by enabling importing
ontologies in the wiki by authorized users. Based on the ontology, the system
offers automatic classification of articles and supports the user in editing the
wiki knowledge base. Many of the semantic wikis implement RDF and RDFs
layer. Their vocabulary is not domain specific and thus does not allow to infer
about domain specific relations.

Most of the semantic wikis do not check the consistency of the ontology they
produce and do not support a reasoning feature [7]. Reasoning engine can per-
form consistency checks and derive additional implicit knowledge from the facts
entered into the system. It uses predefined or user-defined rules in the knowledge
base. Although reasoning is an important feature, it is only supported by a small
number of wikis. The reasons for this might be that it is time-consuming, mem-
ory intensive, and can yield results that are not expected and/or traceable by
the user. A reasoner may require significant resources (both in terms of process-
ing and memory) which could slow down the wiki considerably. Consequently,
it cannot be used to check the consistency of the P2PSW content which are
designed for massive collaboration.

A Second Generation of Peer-to-Peer Semantic Wikis 75

Some of the semantic wikis export the annotations or the ontologies defined in
the wiki and check them by an external reasoning engine. Semantic MediaWiki
uses external reasoner KAON2 to reason with the ontology it imports. This
offers an automatic classification of its articles by adding a category to articles
inferred from the ontology. It aims also supporting the users in editing the wiki
knowledge base in a logically consistent manner. The users will be warned about
inconsistencies in the wiki knowledge detected by the reasoner.

Semantic wikis are centralized based on servers. In case of concurrent changes
in a semantic wiki, a conflict in the edition is presented to the user. It is up to
him to solve the conflict and to make the merge manually or undoing its changes.
The save of changes generates a new version of the wiki page. In semantic wikis,
handling a semantic inconsistency is possible by either preventing the save of
inconsistent semantic wiki pages or by checking the consistency of the saved
wiki page modified by a user. An example of these wikis is BOWiki [8] that is
destinated for collaborative editing of biomedical ontologies and gene data. It
uses an OWL ontology with a description logic reasoner in order to perform con-
sistency checks and queries. It evaluates newly entered data using an ontology
in OWL-DL format. Only consistent semantic data will be stored in its semantic
store. If an inconsistency is detected, the edited page is rejected with an expla-
nation of the inconsistency. The use of these wikis could be hard for some users
and the way they handle semantic inconsistency cannot be applied in the context
of P2PSW. In P2PSW, the semantic consistency of remote changes can be only
checked after they are received and integrated since the merge is automatically
made by the wiki and not by the users.

4 Semantic Inconsistency Detection Mechanism

This section describes the proposal and is structured as follows. First the seman-
tic consistency in the context of P2PSW and the semantic consistency rules are
defined. Then the semantic inconsistency detection approach and the developed
algorithm are presented.

4.1 Semantic Consistency in Peer-to-Peer Semantic Wikis

I define the semantic consistency in P2PSW as follows: A P2PSW is semantically
consistent if all its semantic wiki pages are semantically consistent. A semantic
wiki page is semantically consistent if its all semantic annotations are semanti-
cally consistent. The semantic annotations of a wiki page are semantically con-
sistent when they are in a state in which all the semantic rules concerning these
annotations are satisfied. Otherwise, the annotations are considered semantically
inconsistent also their pages. So, what actually determines the consistency of the
annotations are the semantic rules. In the absence of those rules, no information
can be given about the consistency of the annotations.

First, we studied the existent constraints and restrictions that can be
expressed in RDF schemas (RDFS) and OWL and then we derived the consis-
tency rules that cover these. The constraints can be extended easily if necessary.

76 C. Rahhal

They can be expressed as semantic annotations and their satisfaction can be
checked using SPARQL queries. Many research works on semantic consistency
checking such in [12,13] focused on defining axioms and checking their consis-
tency. In our approach, we followed the same principle.

In ontological terms, the annotations in a wiki page could represent a part of
the ABox of an ontology i.e. the sets of assertions about the individuals which
are instances of concepts. The semantic rules we define will represent the TBox
of an ontology i.e. the set of concepts and their properties to formally describe
a domain. In our consistency check of the P2PSW content, we are interested
in only one major task of a reasoner which is checking the consistency of ABox
with respect to TBox i.e. determining whether individuals in ABox do not violate
axioms described by TBox.

Before detailing the semantic rules and their use, I will explain how the
annotations in a semantic wiki page will be extracted, mapped into RDF triples
and stored in the triple stores in the second generation of P2PSWs. I clarify
three terms: instance, property, and concept in the context of P2PSW:

1. Instance: Every semantic wiki page that contains the annotation [cate-
gory::Concept] is an instance of the Concept. Like in Object Oriented Pro-
gramming, an instance can be seen as an object of the class Concept. A
semantic wiki page can be an instance of many concepts, i.e. contains many
annotations [category::Concepti]i=1,..,n.

2. Property: In semantic wiki pages, a property or predicate describes a
relation between the semantic wiki page and another page or a character-
istic of that page. It can be written as [property1::SemWikiPage2] or [prop-
erty1:=Value].

3. Concept: Concepts are classes that provide an abstraction mechanism for
grouping with similar characteristics. A concept can be seen as a category
used to group a set of semantic wiki pages.

Example. We illustrate the three previous terms through the example given
below:

Jaguar is the third biggest cat behind the [isBiggest::Tiger].

It has many colors but they are beautiful with [hasColor:=Darkest] one.

It has [hasLegs:=4] legs and runs very fast.

[category::Animal]

1. The semantic wiki page “Jaguar” is an instance of Animal. This annotation
is mapped into an RDF triple and stored in the triple store as follows:
<Jaguar> <rdf:type> <Concepts/Animal>

2. The properties of “Jaguar” page are isBiggest, hasColor, and hasLegs. They
are stored in the triple store with the corresponding objects as follows:
<Jaguar><Properties/isBiggest><Tiger>
<Jaguar><Properties/hasColor>“Darkest”
<Jaguar><Properties/hasLegs>“4”

3. There is the “Animal” concept to which belongs the “Jaguar” instance.

A Second Generation of Peer-to-Peer Semantic Wikis 77

4.2 Semantic Consistency Rules

I define semantic consistency rules in P2PSW as the constraints that can applied
on the semantic annotations. They are similar to integrity constraints applied to
data in databases. These rules represent the constraints defined on the properties
and the concepts. The rules on properties concern the domain and the range
of the Properties, while the rules on concepts concern the cardinality of the
properties in a Concept and the relations between Concepts. To be integrated
in P2PSWs, first the properties and the concepts pages should be created. Then
the annotations that represent the constraints are inserted in these pages.

Semantic Consistency Rule on Properties. I decided to use domain and
range as semantic consistency rules on properties as shown in Table 1. I borrowed
the idea from RDF Schema that uses them to associate constraints to properties.
rdfs:domain and rdfs:range allow making statements about the contexts in which
certain properties “make sense”. The role of these constraints is:

– rdfs:range is used to constrain property values.
– rdfs:domain is used to specify a class on which a property may be used.

To define these constraints on a property, we create a special semantic wiki page
for that property. The namespace Properties will be used for all the property
pages.

Table 1. Property constraints

Constraints on properties

P2PSW annotations RDF

[domain::URI] rdfs:domain

[range::URI |Literal] rdfs:range

We insert the annotations [domain::URI] ([range::URI |Literal] respectively)
in the semantic wiki page property1 to specify that property1 has a domain URI
(has range a URI or a literal respectively). Each annotation has its equivalent
in RDF as shown in Table 1. When saved, the annotations of the property1 are
updated in the triple store. First, the triples of that property are removed from
the store and then the annotations of the saved page are mapped into RDF
triples and stored in the triple store.

We map these annotations into RDF triples as shown below:

<Properties/property1><rdfs:domain><Concepts/URI>
<Properties/property1><rdfs:range><Concepts/URI> Or
<Properties/property1><rdfs:range>

<http://www.w3.org/2000/01/rdf-schema#Literal>.

78 C. Rahhal

In fact, the range of a property could be an URI i.e. some concept or a literal
i.e. one of the datatypes: an integer, a float, a boolean, a string, a symbol, etc.

Example of Constraints Definition on Properties. To define the domain
and range of isBiggest property, we create a semantic wiki page “isBiggest” in
the Properties namespace and insert the appropriate annotations as illustrated
in the following text:

[domain::Animal]
[range::Cat]

Semantic Consistency Rule on Concepts. I define two types of seman-
tic consistency rules on a concept: (1) the cardinality of the concept properties
and (2) the relations between this concept and other concepts. To define these
constraints on a concept, a user on a peer must create a special semantic wiki
page for that concept. The namespace Concepts will be used for all the concept
pages. I defined the semantic annotations that can be added in the concepts.
They express the constraints that can be applied on concepts. These annota-
tions and their equivalence in OWL language [11] are given in Table 2. Actually,
cardinality constraints can be used to make a property required (at least one),
to allow only a specific number of values for that property, or to insist that
a property must not occur. OWL provides three constructs for restricting the
cardinality of properties locally within a class context. owl : minCardinality,
owl : maxCardinality, and owl : cardinality describe a class of all individuals
that have at least N , at most N , and exactly N semantically distinct values for
the concerned property, where N is the value of the cardinality constraint. On
the other hand, C1 rdfs : subClassOf C2, C1 owl : equivalentClass C2, or C1
owl : disjointWith C2 allow to say that the set of instances of C1 is a subset,
the same, or has no instance in common with the set of instances of C2, where
C1 and C2 are two concepts. I map the annotations inserted in concepts into
RDF triples as shown below:

<Concepts/concept1> <owl:equivalentClass> <Concepts/URI>
<Concepts/concept1> <owl:disjointWith> <Concepts/URI>
<Concepts/concept1> <rdfs:subClassOf> <Concepts/URI>
<Concepts/concept1> <property> “value:max”
<Concepts/concept1> <property> “value:min”
<Concepts/concept1> <property> “value:exactly”

When saved, the annotations i.e. the constraints of the concept1 page are inserted
in the triple store.

Example of constraints definition on concepts. We can define an Animal
concept as a class that has at least one color, at least two legs, and one isBiggest
property. We can say also that an Animal is not a Car. To do so, we create a
semantic wiki page “Animal” with the following annotations.

A Second Generation of Peer-to-Peer Semantic Wikis 79

Table 2. Concept constraints

Constraints on concepts

P2PSW annotations OWL

[equivalent::URI] owl:equivalentClass

[disjoint::URI] owl:disjointWith

[property:min=value] owl:minCardinality

[property:max=value] owl:maxCardinality

[property:exactly=value] owl:cardinality

[subClass:URI] rdfs:subClassOf

[hasLegs:min=2] [hasColor:min=1]
[disjoint::Car] [isBiggest:exactly=1]

4.3 Semantic Inconsistency Detection Approach

The semantic inconsistency detection approach I developed is made of many
components shown in the Fig. 7. The semantic inconsistency checker detects
inconsistency on three levels: the semantic wiki page, the concept, and the prop-
erty level. A user can check whether a page is consistent or select a property or
concept to check in order to identify if there are semantic wiki pages that violate
it. The checker works by running SPARQL queries [14] on the triple store of the
P2PSW peer. The result of the query is displayed using a visualization mech-
anism that shows the inconsistency when it exists. In this section, I describe
the possible inconsistencies that can take place, how they are detected on every
level, and the developed algorithm.

Check Consistency on Semantic Wiki Page Level. To check the consis-
tency of a semantic wiki page (SWP), we check the satisfaction of the semantic
consistency rules on concepts and properties associated with the semantic anno-
tations of that page. A semantic inconsistency occurs when one or many semantic
consistency rules are violated. I consider that there is no contradiction in the
semantic consistency rules definition. In addition, checking the inconsistency by
a user on a peer can be made at any time. The inconsistency detection is made
via SPARQL queries since both the semantic annotations and the semantic con-
sistency rules are stored as RDF triples in the triple store of the peer. To detect
the semantic inconsistency in a semantic wiki page SWP, we follow these steps:

1. Select all the semantic annotations in SWP. If there are no annotations in
the result then there is nothing to check. We consider a semantic wiki page
without annotations as a semantically consistent one. Otherwise, go to step2.

2. Check the satisfaction of the semantic consistency rules on the concepts of
SWP. Select the concepts, let SC be the set of these concepts. Two cases
exist:

80 C. Rahhal

Fig. 7. The semantic consistency checker components

2.1. There is no concept found, SC is empty, i.e. SWP does not belong to any
concept. In this case, check the satisfaction of the semantic rules on the
properties of SWP, go to step 5.

2.2. SC is not empty, SC = {C1, C2, ... , Cn}. Check the disjoint constraints
on these concepts go to step 3.

3. Compute SDC the set of disjoint concepts in SC. Two cases exist:
3.1. There are disjoint concepts, i.e. SDC = {Ck}1<=k<=n. Display SWP is

semantically inconsistent and the properties of every concept in SDC. The
semantic inconsistency checker stops.

3.2. There is no disjoint concept, SDC is empty. Check the constraints on
every concept C in SC, go to step 4.

4. For each concept C in SC, select the properties SP in C.
For each property P in SP:

4.1. Check the cardinality constraint of P. It consists of two steps:
4.1.1. Compute the cardinality cp of P in SWP i.e. the number of times P

is present in SWP with different values.
4.1.2. Compare cp with the cardinality constraints on P in the concept C.

If (cp < minCardinality) or (cp > maxCardinality) or (cp <> cardi-
nality) then Display semantic inconsistency on the cardinality of P
in C.

4.2. Check the range constraint of P. It consists of two steps:
4.2.1. Compute the range R of P in SWP.

– If the value of P i.e. the object in SWP is another semantic wiki
page SWP’ then check if SWP’ exists. If SWP’ does not exist then
there is no information whether the range R of that property P
is violated or not. If SWP’ exists, we compute the set of concepts
(i.e. ranges) SR to which belongs SWP’.

– If the value of P in SWP is a literal, let us call it SR.

A Second Generation of Peer-to-Peer Semantic Wikis 81

4.2.2 Compare SR with the range R” of P defined in the semantic wiki page
of the property P only if SR is not empty. If R’ <> SR then Display
semantic inconsistency on the range of P.

5. Check the satisfaction of the semantic rules on the properties of SWP. Here
we check the constraints on the properties that do not belong to any concept
of SWP, i.e. only the unchecked properties. Let us call SUP the set of those
properties.
For each property P in SUP:

5.1. Check the domain constraint on P. If the domain concept DC of P does
not exist i.e. is not defined or the set of concepts SC in SWP is empty
then there is no information else Display there is a possible semantic
inconsistency of the domain of P in SWP.

5.2. Check the range constraint of P, go to step 4.2.

Some choices we made in the SIDM are presented below:

1. The check stops when two or more disjoint concepts are found in a semantic
wiki page. To facilitate solving the inconsistency, we display the concepts
and their properties. Another alternative could be letting the algorithm to
continue checking the semantic inconsistency of the properties in SWP that
belong to the non-disjoint concepts and that do not belong to any concept.

2. We consider the existence of a possible semantic inconsistency when the
domain of a property defined in the property page is different than the cat-
egories of the SWP where the property is used. For instance, consider that
the domain of a property is Bike, and the categories of SWP are Vehicle and
Bicycle. If we compare Bike with the categories, they are different; however
Bike and Bicycle are the same. In the context of Semantic Web, two concepts
are equivalent if there is an explicit statement stating so. In the context of
P2PSW, we can compare the equivalence and the disjoint of the categories
with the domain of the property to possibly detect the inconsistency if it
exists. We decided to leave that to the users.

3. To ensure scalability, we can use the construct SPARQL queries to extract
at once all the required information for the SIDM algorithm from the store.
The result is an RDF graph that will be used to detect the inconsistency and
there is no need to interrogate the triple store again multiple times.

Check Consistency on Concept Level. Four types of constraints can be
defined in concept pages which are subclass, disjoint, equivalent, and the car-
dinality of the properties that could be present in the concept. The constraints
definitions and their violation detection are presented as follows:

1. Subclass constraint: a concept C is a subclass of a concept C’ if every
instance of C is an instance of C’. The constraint is violated when an instance
of C doesn’t belong to C’. An instance is a semantic wiki page. In other words,
the constraint is violated when there exists a semantic wiki page that belongs
to the category C and not to C’.

82 C. Rahhal

2. Disjoint constraint: a concept C is disjoint with a concept C’ if every
instance of C is not an instance of C’. The semantic wiki pages that belong
to disjoint categories with C will be extracted and displayed. In the semantic
consistency checker, we check only the satisfaction of the rules [disjoint::C’]
defined in the Concept C page. We do not consider the case [disjoint::C]
defined in C’.

3. Equivalent constraint: Two concepts C and C’ are equivalent if they have
the same instance set called a class extension. The constraint is violated when
a semantic wiki page belongs to C and not to C’.

4. Cardinality constraint: Three types of constraints can be defined on the
properties cardinality in a concept C. The constraints on the properties cardi-
nality can be minimum cardinality, maximum cardinality, and exact cardinal-
ity. The checker detects the satisfaction or the violation of these constraints.
We defined a function called checkCardinality() that takes as parameter a
concept C and returns the set of pages that contain a property of C with a
violated constraint. The function works as follows: first we extract the prop-
erties present in the concept C, then for each one of them we extract the
pages that belong to C violating the properties cardinality constraints defined
in C. A detailed description of the checkCardinality function is given in
Algorithm 1.

Function checkCardinality (Concept C)
V PS ← {}; //set of violated pages ;
PRS ← {prop ∈ Properties/ [prop:min=V] ∨ [prop:max=V’] ∨
[prop:exactly=V”] ∈ C };

if (PRS = {}) then
return VPS;

else
PGS ← {page ∈ Pages / [category::C] ∈ page};
if (PGS = {}) then

return VPS;
else

for each page ∈ PGS do
for each prop ∈ PRS do

cp ← Cardinality {prop, page};
if ((cp < V) ∨ (cp > V ′) ∨ (cp �= V ′′)) then

VPS = VPS ∪ {page};
end

end

end
return VPS;

end

end
Algorithm 1. The checkCardinality function

A Second Generation of Peer-to-Peer Semantic Wikis 83

Check Consistency on Property Level. In a property page, two types of
constraints can be defined which are the domain and the range constraints of a
property.

Domain constraint: This constraint specifies the concept that represents the
domain of a property. This constraint is violated if the property belongs to a
page that is an instance of one or many concepts disjoint with the domain of
that property. We define the checkDomain() function that takes the property
name as parameter and returns the pages that violate this constraint. A detailed
description of the checkDomain function is given in Algorithm 2.

Function checkDomain (Property P)
V PS ← {}; //set of violated pages ;
D ← Domain(P);
if (� ∃ D) then

return VPS;
else

PGS ← {page ∈ Pages / [P::V] ∨ [P:=V’] ∈ page};
if (PGS = {}) then

return VPS;
else

for each page ∈ PGS do
CS ← {C ∈ Concepts/ [category::C] ∈ page};
if (CS = {}) then

continue;
else

if (D /∈ CS) then
VPS = VPS ∪ {page};

end

end

end
return VPS;

end

end
Algorithm 2. The checkDomain function

Range constraint: This constraint gives the range concept of a property P. It
is violated when [P::v] or [P:=v] is found in the checked semantic wiki page and
v is different than the defined range in P. If v is a literal, we compare directly
the data type of v with the range. However, when v is a URI (a semantic wiki
page), we compute the concepts of that page and compare them with the range.
If they are different, then the page containing P violates the range constraint
of P. We define the checkRange() function that computes the pages that violate
this constraint. A detailed description of the checkRange function is given in
Algorithm 3.

84 C. Rahhal

Function checkRange (Property P)
V PS ← {}; //set of violated pages ;
R ← Range(P);
if (� ∃ R) then

return VPS;
else

PGS ← {page ∈ Pages / [P::V] ∨ [P:=V’] ∈ page};
if (PGS �= {}) then

for each page ∈ PGS do
PV S ← { V ∈ Values / [P::V] ∨ [P:=V’] ∈ page} ;
if (PVS �= {}) then

for each V ∈ PVS do
if (isLiteral(V) ∧ Range(V) �= R) then

VPS ← VPS ∪ {page} ;
break;

end
if (isURI(V)) then

CP ← { C ∈ Concepts/ [category::C] ∈ V};
if ((CP �= {}) ∧ (R /∈ CP)) then

V PS ← VPS ∪ {page} ;
break ;

end

end

end

end

end
return VPS;

end

end
Algorithm 3. The checkRange function

The SIDM was implemented using PHP and JQuery as programming lan-
guages, WAMP as the Web server, and ARC2 as the triple store. The imple-
mentation is a simulation of a P2PSW peer. The prototype can be downloaded
and tested at this address: https://sites.google.com/site/charbelrahhal/home/
developed-softwares.

5 Integrate the Semantic Inconsistency Detection
Mechanism in the First Generation of P2PSW

In this section, I present how the developed SIDM can be integrated in SWOOKI
and DSMW. There are two possible cases, either the users on the peers build
the semantic inconsistency rules incrementally or the set of rules is fixed and is
the same on all the peers.

https://sites.google.com/site/charbelrahhal/home/developed-softwares
https://sites.google.com/site/charbelrahhal/home/developed-softwares

A Second Generation of Peer-to-Peer Semantic Wikis 85

5.1 Variable Set of Semantic Consistency Rules

On every peer, the user can create and edit two types of special semantic wiki
pages: concepts and properties. These pages will contain semantic annotations
that represent the semantic consistency rules. Once the changes are saved, the
pages will be replicated and the annotations will be extracted and stored in the
triple store of the peer. These will be used as an input to the SIDM and later on
to check the semantic inconsistency of the wiki pages on the user’s peer. In this
case, the set of semantic consistency rules will diverge on the peers and will be
handled differently in SWOOKI and in DSMW.

– In SWOOKI: when the user specifies the semantic consistency rules locally
in a concept or a property and saves. These will be integrated locally, prop-
agated through the network, and integrated on the other peers. Hence, the
concepts and the properties will be replicated on the peers (see Fig. 8). A user
on a peer can check if there are changes occurred in the semantic consistency
rules before running the SIDM. Either he agrees with these changes and starts
the checker or he can undo them. Undoing changes exist in SWOOKI. Thanks
to its optimistic replication algorithm, SWOOKI ensures that eventually after
integrating all the changes, the semantic consistency rules will converge on
the peers.

– In DSMW: every user can specify its semantic consistency rules and pub-
lishes them when he is ready. Other peers can create pull feeds and pull the
rules specified by that user (see Fig. 9). The process of publishing and pulling
among the peers can continue until an agreement is reached or stops when
the users decide to. The SIDM can be run at any time. In case of an agree-
ment, the semantic consistency rules will be same on the peers. DSMW also
supports an undo mechanism. An advantage DSMW has over SWOOKI is
that users can be aware when a change occurs in the pushfeed and pull it
afterwards.

5.2 Same Set of Semantic Consistency Rules

Another alternative is to use a fixed set of semantic consistency rules on all the
peers before to start running SIDM (see Fig. 10). First, the users on the peers
will select the same specification/ ontology from a list. An ontology specifies the
semantic consistency rules to be created. The list could be a special semantic
wiki page or interface. It refers to a set of specifications that can be imported
from different locations. Once the ontology is selected, the corresponding concept
and property pages will be created with their semantic annotations. To ensure a
fixed set of rules, these pages could not be directly editable; they are read only
pages. Finally, the annotations are mapped into RDF statements and stored in
the triple store. As a result, the semantic consistency rules will be the same on
all the peers and the SIDM will have the same input everywhere. This process
can apply on both SWOOKI and DSMW.

86 C. Rahhal

Fig. 8. Different semantic rules on SWOOKI

Fig. 9. Different semantic rules on DSMW

6 Running SIDM

This section presents two ways to check the semantic inconsistency either directly
on a semantic wiki page or on a property/concept level. In the later one, it checks
whether there are one or many semantic wiki pages that violate the constraints
on a property or a concept.

A Second Generation of Peer-to-Peer Semantic Wikis 87

Fig. 10. Same set of semantic rules in SWOOKI

Fig. 11. Property and Concept Pages with their constraints

6.1 Check Consistency on a Semantic Wiki Page Level

Consider that in the P2PSW there are only one semantic wiki page “Jaguar”,
three property pages “hasColor”, “hasModel” and “isBiggest”, and two concept
pages “Animal” and “Car”. The property and concept pages are shown in Fig. 11.
We want to check the semantic consistency of the “Jaguar” page. The annota-
tions in “Jaguar” indicate that Jaguar is at the same time a car and an animal.
This is could be obtained by the edition of “Jaguar” page on two different peers
and the current wiki page content is the result of the automatic changes merge.

First, we click on “Check Consistency” tab (see Fig. 12) on the “Jaguar” page.
When the tab is clicked, the SIDM is executed and the result is displayed in a
check consistency page (see Fig. 13). It shows that the “Jaguar” page is inconsis-

88 C. Rahhal

Fig. 12. Jaguar Semantic Wiki Page

Fig. 13. Highlighted annotations in the check consistency page

A Second Generation of Peer-to-Peer Semantic Wikis 89

Fig. 14. The Jaguar page rechecked

tent since it belongs to two disjoint concepts Car and Animal. The inconsistent
concepts are visualized via a treeview. The nodes in the treeview show these
concepts along with their properties, they can be expanded or collapsed. We can
choose to remove all the annotations in the page related to animal. By clicking
on the Animal tree node, all the concerned annotations will be highlighted and
can be easily removed. We can copy the deleted lines into another wiki page that
can be called Jaguar Animal.

Another check of the page consistency (see Fig. 14) shows that the page is
still inconsistent. It points to two types of inconsistency found in the page. The
“Jaguar” page is a Car and has only one color property. However, the semantic
consistency rules in Car Concept page specify that every car should have at least
two colors. In addition, the range of hasColor property is a literal in the “Jaguar”
page ([hasColor:=Brown]) which violates the semantic consistency rule in Color
Property page that determines the range of hasColor property as an instance of
a Color concept. In this case, we can make the necessary changes in the “Jaguar”
page. A last check on the page will show that “Jaguar” is semantically consistent.

6.2 Check Consistency on a Concept/Property Level

We associated with every semantic wiki page a “Check Consistency on high level”
link (see Fig. 12) which will open a special wiki page in the browser that looks like

90 C. Rahhal

Fig. 15. Check consistency high level on concepts/properties

Fig. 15. The “Check consistency high level” page contains two options: Concepts
and properties. In this example, SIDM checks the semantic inconsistency of the
concept Car. It will display the disjoint concepts with Car and the pages that
contain these disjoint concepts via a treeview.

7 Conclusion

This section gives an evaluation of the approach and points to perspectives
and future works. The research work conducted focused on building a second
generation of P2PSW by providing them with a semantic inconsistency detection
mechanism. The SIDM improves the quality of the structured data in P2PSW,
and consequently their functionality and the knowledge extraction.

The development of SIDM followed many steps: (1) defining the semantic
inconsistency in the context of P2PSW, (2) defining the semantic rules and the
way they can be integrated in the wiki, and (3) developing an algorithm for
the detection of the semantic inconsistency on different levels. As a result, we
can detect the inconsistency of the entire P2PSW. The SIDM not only detects
the inconsistency existence but also specifies the inconsistent annotations. At
the end, SIDM was implemented and tests were ran to remove any bugs and
optimize SIDM algorithm.

SIDM is designed for P2PSW but it can be integrated in any semantic wiki
that manipulates the annotations as typed links such as Semantic MediaWiki.
This is can be done easily since SIDM was implemented in PHP which is used
in Semantic MediaWiki.

The complexity of the inconsistency detection algorithm depends on the num-
ber of the annotations in the wiki pages and on the number of semantic wiki
pages checked at the same time. To detect the inconsistency, SIDM can extract
first the required information from the store using a graph in one pass and make
the check on it. It means that every check requires only one request to the triple
store. Triple stores were designed to be very scalable. They can store billions of

A Second Generation of Peer-to-Peer Semantic Wikis 91

triples, handle a large number of requests and answer them in very short time
since they use different indexations. Currently, we are conducting user studies
to evaluate our approach. These studies will help us to enhance the approach
and the functionality in the P2PSW in general.

References

1. Skaf-Molli, H., Rahhal, C., Molli, P.: Peer-to-peer semantic wikis. In: Bhowmick,
S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 196–213.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03573-9 16

2. Meilender, T., Jay, N., Lieber, J., Palomares, F.: Semantic wiki engines: a state of
the art. Semantic Web J. (2010)

3. Rahhal, C., Yactin, H.: Semantic wikis distributed on structured peer-to-peer net-
works. In: CSCEET 2017: The Fourth International Conference on Computer Sci-
ence, Computer Engineering, and Education Technologies, 26–28 April 2017

4. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37, 42–81
(2005). doi:10.1145/1057977.1057980

5. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for P2P Collabora-
tive editing. In CSCW’06: ACM Conference on Computer Supported Cooperative
Work, pp. 259–268, 4–8 November (2006). doi:10.1145/1180875.1180916

6. Weiss, S., Urso, P., Molli, P.: Logoot: a scalable optimistic replication algorithm for
collaborative editing on P2P networks. In: ICDCS 2009: 29th IEEE International
Conference on Distributed Computing Systems, pp. 404–412, 22–26 June 2009.
doi:10.1109/ICDCS.2009.75

7. Buffa, M., Gandon, F., Ereteo, G., Sander, P., Faron, C.: SweetWiki: a semantic
wiki. J. Web Semant. 6, 84–97 (2008). doi:10.1016/j.websem.2007.11.003

8. Hoehndorf, R., et al.: BOWiki: an ontology-based wiki for annotation of data and
integration of knowledge in biology. J. BMC Bioinf. 10, May 2009. doi:10.1186/
1471-2105-10-S5-S5

9. Rahhal, C., Skaf-Molli, H., Molli, P.: Swooki, un wiki sémantique sur réseau pair-
à-pair. Journal Ingénierie des Systèmes d’Information (ISI) 14(1), 117–140 (2009).
doi:10.3166/isi.14.1.117-140, Lavoisier

10. Rahhal, C., Skaf-Molli, H., Molli, P., Weiss, S.: Multi-synchronous collabo-
rative semantic wikis. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE
2009. LNCS, vol. 5802, pp. 115–129. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04409-0 17

11. OWL working group: Web Ontology Language (OWL), 11 December 2012. https://
www.w3.org/OWL,

12. Yang, S., Tan, H., Jinzhao, W.: Semantic Consistency Checking in Building Ontol-
ogy from Heterogeneous Sources. J. Appl. Math. vol. 2014 (2014). doi:10.1155/
2014/181938

13. Han, X., Sun, L.: Semantic consistency: a local subspace based method for distant
supervised relation extraction. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, Baltimore, MD, USA, 22–27 June 2014

14. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C recommendation, 21
March 2013. https://www.w3.org/TR/sparql11-query/

http://dx.doi.org/10.1007/978-3-642-03573-9_16
http://dx.doi.org/10.1145/1057977.1057980
http://dx.doi.org/10.1145/1180875.1180916
http://dx.doi.org/10.1109/ICDCS.2009.75
http://dx.doi.org/10.1016/j.websem.2007.11.003
http://dx.doi.org/10.1186/1471-2105-10-S5-S5
http://dx.doi.org/10.1186/1471-2105-10-S5-S5
http://dx.doi.org/10.3166/isi.14.1.117-140
http://dx.doi.org/10.1007/978-3-642-04409-0_17
http://dx.doi.org/10.1007/978-3-642-04409-0_17
https://www.w3.org/OWL,
https://www.w3.org/OWL,
http://dx.doi.org/10.1155/2014/181938
http://dx.doi.org/10.1155/2014/181938
https://www.w3.org/TR/sparql11-query/

Formalizing a Paraconsistent Logic
in the Isabelle Proof Assistant

Jørgen Villadsen(B) and Anders Schlichtkrull

DTU Compute, Technical University of Denmark,
2800 Kongens Lyngby, Denmark

jovi@dtu.dk

Abstract. We present a formalization of a so-called paraconsistent logic
that avoids the catastrophic explosiveness of inconsistency in classical
logic. The paraconsistent logic has a countably infinite number of non-
classical truth values. We show how to use the proof assistant Isabelle
to formally prove theorems in the logic as well as meta-theorems about
the logic. In particular, we formalize a meta-theorem that allows us to
reduce the infinite number of truth values to a finite number of truth
values, for a given formula, and we use this result in a formalization of
a small case study.

Keywords: Paraconsistent logic · Many-valued logic · Formalization ·
Isabelle proof assistant · Inconsistency · Paraconsistency

1 Introduction

Proof assistants are computer programs that assist users in conducting proofs.
In general, proof assistants are useful tools both for clarifying concepts and
for catching mistakes [14]. In addition, proof assistants are often able to per-
form calculations in different ways using rewriting rules or code generation. We
use the Isabelle proof assistant [28,29], more precisely Isabelle’s default higher-
order logic called Isabelle/HOL, which includes powerful specification tools for
advanced datatypes, inductive definitions and recursive functions.

1.1 Formalization in Proof Assistants

Today’s proof assistants use proof systems with axioms and rules as famously
characterized in the beginning of Kurt Gödel’s seminal paper from 1931 on the
Incompleteness Theorems [15]:

The development of mathematics toward greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can prove
any theorem using nothing but a few mechanical rules.

c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 92–122, 2017.
https://doi.org/10.1007/978-3-662-55947-5 5

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 93

Modern computers are indeed excellent at following such mechanical rules used
in proof systems. A book about “the seventeen provers of the world” included
formalizations of a proof of the irrationality of

√
2 from researchers using various

proof assistants and automatic theorem provers [48]. Arguably the two most used
proof assistants with large mathematical libraries are Coq [4] and Isabelle [28,29]
— both the results of more than 30 years of research in automated reasoning.

The creator of Isabelle, Lawrence C. Paulson, states in a recent paper on the
first formalization of Gödel’s Incompleteness Theorems [30]:

Note that this paper contains no definitions or proofs as conventionally
understood in mathematics; rather, it describes definitions and formal
proofs that have been conducted in Isabelle/HOL, and lessons learned
from them.

A formalization can catch mistakes, small or big, in definitions, theorems and
proofs. Furthermore formalizations bring attention to vague specifications and
make it easier to experiment with variants of definitions and theorems.

We return to the ins and outs of formalization in Isabelle in a moment.

1.2 Paraconsistency

In brief, paraconsistency is about handling contradictions in a coherent way, and
many approaches have been investigated [1,2,9,11,31,32,46]. In classical logic
there are only two truth values and everything follows from a contradiction, but
in a paraconsistent logic not everything follows from a contradiction.

In the present paper we formalize the syntax and semantics of a many-valued
paraconsistent logic with a countably infinite number of truth values [20,40–43].
We do not consider any proof systems for our particular paraconsistent logic, but
we can prove theorems and non-theorems using the semantics like it is done with
truth tables for classical propositional logic. However, since our paraconsistent
logic has infinitely many truth values, it is far from obvious that finite truth
tables suffice.

Although we in the present paper formalize a particular many-valued para-
consistent logic, the logic can be changed or even replaced in the formalization.
Isabelle would then show which formal theorems and proofs need to be adapted.

It is helpful to distinguish between weak and strong paraconsistency, quoting
Weber [46]:

Roughly, weak paraconsistency is the cluster concept that
– any apparent contradictions are always due to human error;
– classical logic is preferable, and in a better world where humans did

not err, we would use classical logic;
– no true theory would ever contain an inconsistency.

This is our view on the matter, however, there is another view, again quoting
Weber [46]:

94 J. Villadsen and A. Schlichtkrull

On the other side, strong paraconsistency includes ideas like
– Some contradictions may not be errors;
– classical logic is wrong in principle;
– some true theories may actually be inconsistent.

The proof assistant Isabelle uses classical logic and it seems hard to adhere to
strong paraconsistency then.

The standard definition of paraconsistency is in terms of non-explosion [46]:
A logic is paraconsistent iff it is not the case for all sentences A, B that
A,¬A � B.

However, in our paraconsistent logic we have nothing on the left-hand side of
the turnstile (�) so we instead consider the following statement:

� A ∧ ¬A → B

In order to illustrate the notion of entailment we introduce a small case study.
Classical logic is problematic in, for example, multi-agent systems, since the
belief base of an agent very well could contain contradictory beliefs and thus be
inconsistent. For example, as a small case study, consider an agent with a set of
atomic beliefs (item 0) and a few simple rules:

0. P ∧ Q ∧ ¬R
1. P ∧ Q → R
2. R → S

This leaves the agent with contradictory beliefs, namely R and ¬R, so the agent
might start behaving in an undesirable way if it uses classical logic. It could now
believe that ¬P , or ¬Q — or even ϕ for any formula ϕ. Using our paraconsistent
logic this is not the case [20]. We return to the case study in Sect. 8.

In multi-agent systems where agents have to take into account the beliefs of
other agents, it can be difficult to use other approaches like belief revision [17]
because belief revision seems to be a rather strong assumption about the capa-
bilities of other agents whereas our many-valued paraconsistent logic is “just” a
generalization of classical logic with respect to both syntax (new operators) and
semantics (more truth values). Think of a judge who has conflicting arguments
of the prosecutor and the defender of a culprit. Such a reasoner needs to take an
unbiased, impartial point of view without the possibility of coercing neither the
prosecutor nor the defender to change their belief in favor of the counterparty.

1.3 Formalization of Logic

We formally prove theorems in the logic as well as theorems about the logic. The
proofs are checked by the Isabelle proof assistant [28,29]. By submission to the
online Archive of Formal Proofs we make sure that the proofs are maintained
continuously against the current stable release of Isabelle [37]:

http://isa-afp.org/browser info/current/AFP/Paraconsistency

http://isa-afp.org/browser_info/current/AFP/Paraconsistency

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 95

The above link provides PDF documents with or without proofs and the theory
file can be browsed online. The Archive of Formal Proofs has mid 2017 almost
100,000 theorems and lemmas in total and covers numerous advanced topics in
mathematics, logic and computer science:

http://isa-afp.org/statistics.shtml

Since the start in 2004 more than 250 authors have contributed. There are 42
entries in the logic category. For example, Paulson’s formalization of Gödel’s
Incompleteness Theorems is in the Archive of Formal Proofs [30] and so are two
recent formalizations of proof systems:

1. Jensen, Schlichtkrull and Villadsen [19] formalize a declarative first-order
prover with equality based on John Harrison’s Handbook of Practical Logic
and Automated Reasoning and the entire prover can be executed within
Isabelle as a very simple interactive proof assistant.

2. Michaelis and Nipkow [25] formalize proof systems for classical propositional
logic and prove the most important meta-theoretic results about semantics
and proofs: compactness, soundness, completeness, translations between proof
systems, cut-elimination, interpolation and model existence.

These formalizations as well as our work on paraconsistency are in the repository
IsaFoL, Isabelle Formalization of Logic, with the goal to develop lemma libraries
and methodology for formalizing modern research in automated reasoning:

https://bitbucket.org/isafol/isafol/

The repository gives an overview of recent formalizations of logics in the Isabelle
proof assistant. A state-of-the-art approach to the formalization of soundness
and completeness results for logics has been developed by Blanchette, Popescu
and Traytel [6] and the formalization is available in the Archive of Formal Proofs,
but paraconsistent and/or many-valued logics are not considered.

1.4 The Isabelle Proof Assistant

One of Isabelle’s central components is the Isar language for writing proofs [47].
The language bears resemblance to logical systems, handwritten mathematical
proofs and programming languages.

It is similar to logical systems, in particular natural deduction, in that formu-
las can be proved by breaking them down into smaller parts using appropriate
inference rules.

It is similar to mathematical paper proofs because an Isar-proof can be writ-
ten as a sequence of sentences, each one following from the previous ones, that
leads us towards a goal. In particular it is very similar to the structured proof
style that Lamport [22,23] recommends for the 21st century.

It is similar to a programing language in that its syntax is structured and
consists of various commands — these commands instruct Isabelle on how to
prove the desired theorems.

http://isa-afp.org/statistics.shtml
https://bitbucket.org/isafol/isafol/

96 J. Villadsen and A. Schlichtkrull

Another important feature of Isar is that it allows one to mix this structured
reasoning with state-of-the-art automatic theorem provers.

We illustrate the language with a simple proof of a — perhaps — surprising
theorem called the drinker’s paradox. The theorem states that in a bar there is
a person such that if he is drinking then everybody is drinking (we use predicate
D for drinking). We have the following Isar proof:

Even for the uninitiated the proof should be at least somewhat readable
because keywords such as theorem, proof, assume, then and have are well
known from mathematical literature. Furthermore, each sentence is written in
Isabelle/HOL, which has a similar notation to e.g. first-order logic (FOL).

Let us describe the Isar-proof in detail. After we state the theorem comes a
proof block starting with proof cases and ending with the qed on the very last
line. This proof block allows us to do proof by cases on whether ∀x.D x is true
or not and in both cases we are obliged to prove the theorem. One can easily
imagine a classical proof system with such a rule.

We start by proving the first case ∀x.D x. This proof starts with assume
∀x.D x and ends with then show ?thesis .. two lines below. The proof is similar
to a paper proof of a sequence of three sentences – each line corresponding to a
sentence. Here ?thesis refers to the theorem we are proving.

Next comes the second case ¬(∀x.D x). Again the proof is a sequence of
sentences. To convince Isabelle that the first sentence follows from the second,

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 97

we apply the proof method called simp, which does simplifications, by writing by
simp. Next we use the obtain command to obtain the element a that the previous
sentence proved exists. After this we prove an implication using an inner proof
block. Notice how the inner proof block is nested in the outer proof block. In this
inner proof block we prove the implication by breaking it down structurally using
the implication introduction rule from natural deduction, which states that to
prove an implication we assume the antecedent and prove the consequent. Notice
also that in the inner proof block we use another proof method called metis and
additionally allow it to use the previously labelled sentence nda. The metis proof
method is an automatic theorem prover.

Note that Isabelle/HOL is written in a curried style. This means that function
application is written without parentheses unless necessary. An example is D x
as we saw above. Additionally n-argument functions are typically given a type

′a1 ⇒ (′a2 ⇒ (′a3 ⇒ (· · · ⇒ (′an ⇒ ′b)···)))

or, if we drop the parentheses

′a1 ⇒ ′a2 ⇒ ′a3 ⇒ · · · ⇒ ′an ⇒ ′b

instead of
(′a1 × · · · × ′an) ⇒ ′b.

Therefore, an application of, e.g., a binary function R to two arguments x and
y is written as R x y.

You can try to write the above proof in Isabelle. You will notice that it is
easy to accidentally introduce some mistake that makes Isabelle unable to finish
the proof. This is the advantage of proving theorems in Isabelle — the system
is very good at catching small and big mistakes.

1.5 Contributions and Overview

All formulas in the present paper have been checked by the Isabelle proof assis-
tant except for the informal presentation in Sect. 2. We must emphasize that the
proofs in the paper are not generated by Isabelle or any other computer pro-
gram. All proofs in the paper are word for word authored by us. Our proofs can
— at least in principle — be read and checked by other Isabelle users and can
also be read and checked by the Isabelle proof assistant — and have therefore
been accepted for the Archive of Formal Proofs.

Our main contributions are as follows.

– In Sect. 3: A formalization of the syntax and semantics of the many-valued
paraconsistent logic with many new definitions.

– In Sects. 4 and 5: A series of theorems and non-theorems of which only a few
have been considered in our previous publications.

– In Sect. 6: A new analysis of the required number of truth values for coun-
terexamples.

98 J. Villadsen and A. Schlichtkrull

– In Sect. 7: A reduction theorem that was originally mentioned without proof
in our extended abstract [20].

– In Sect. 8: A proposal for entailment and verification of the results for the case
study presented in the present section — these results were also mentioned
without proof in our extended abstract [20].

We describe related work in Sect. 9 and conclude in Sect. 10.

2 The Paraconsistent Logic — An Informal Presentation

By “informal” we here mean that we provide a mathematical presentation of
the logic but the formalization in the Isabelle proof assistant is provided in the
following sections. We describe the propositional fragment of our higher-order
many-valued paraconsistent logic [43]. We follow the concise presentation in our
extended abstract [20] but with some additional abbreviations.

2.1 Semantic Clauses and Key Equalities

We have the two classical determinate truth values {•, ◦} for truth and falsity
and a countably infinite set of indeterminate truth values {�,��,���, . . . }.

The indeterminate truth values are not ordered with respect to truth content.
The only designated truth value is • and hence only this truth value yields the
logical truths.

This use of • and ◦ for the classical truth values goes back to our previous
publications [41–43] and the references therein. Note that as usual the corre-
sponding operators are 	 and ⊥ (see below).

The logic is a generalization of �Lukasiewicz’s three-valued logic — originally
proposed 1920–30 — with the intermediate value duplicated many times and
ordered such that none of the copies of this value imply other ones, but the logic
differs from �Lukasiewicz’s many-valued logics as well as from logics based on
bilattices [16].

The motivation for the logical operators is based on key equalities shown
to the right of the semantic clauses. We also have ϕ ⇔ ¬¬ϕ as a key equality.
Negation does not change indeterminate truth values since they are not ordered
with respect to truth content. In the higher-order paraconsistent logic [41–43]
the key equalities are proper equalities = corresponding to ⇔ here. The key
equalities do not provide an axiomatization as such but rather they provide for
each logical operator the semantic clauses except for the default case.

Note that in the semantic clauses several cases may apply if and only if they
agree on the result and that the semantic clauses work for classical logic too.
Atoms are interpreted by the basic semantic clause and 	 by [[]] = •.

[[¬ϕ]] =

⎧
⎨

⎩

• if [[ϕ]] = ◦ 	 ⇔ ¬⊥
◦ if [[ϕ]] = • ⊥ ⇔ ¬	
[[ϕ]] otherwise

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 99

[[ϕ ∧ ψ]] =

⎧
⎪⎪⎨

⎪⎪⎩

[[ϕ]] if [[ϕ]] = [[ψ]] ϕ ⇔ ϕ ∧ ϕ
[[ψ]] if [[ϕ]] = • ψ ⇔ 	 ∧ ψ
[[ϕ]] if [[ψ]] = • ϕ ⇔ ϕ ∧ 	
◦ otherwise

Abbreviations:
⊥ ≡ ¬	 ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

We continue with biimplication (and we then simply obtain implication and
modality as abbreviations). The semantic clauses for ↔ extend the clauses for
⇔, which always give a determinate truth value.

[[ϕ ⇔ ψ]] =
{• if [[ϕ]] = [[ψ]]

◦ otherwise

[[ϕ ↔ ψ]] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

• if [[ϕ]] = [[ψ]] 	 ⇔ ϕ ↔ ϕ
[[ψ]] if [[ϕ]] = • ψ ⇔ 	 ↔ ψ
[[ϕ]] if [[ψ]] = • ϕ ⇔ ϕ ↔ 	
[[¬ψ]] if [[ϕ]] = ◦ ¬ψ ⇔ ⊥ ↔ ψ
[[¬ϕ]] if [[ψ]] = ◦ ¬ϕ ⇔ ϕ ↔ ⊥
◦ otherwise

Abbreviations:

�ϕ ≡ ϕ ⇔ 	 ¬¬ϕ ≡ �¬ϕ ∇ϕ ≡ ¬¬�(ϕ ∨ ¬ϕ)

ϕ ⇒ ψ ≡ ϕ ⇔ ϕ ∧ ψ ϕ → ψ ≡ ϕ ↔ ϕ ∧ ψ

ϕ∧∧ ψ ≡ �(ϕ ∧ ψ) ϕ∨∨ ψ ≡ �(ϕ ∨ ψ)

2.2 Truth Tables

Although we have a countably infinite set of truth values we can investigate the
logic by truth tables since the indeterminate truth values are not ordered with
respect to truth content.

In order to grasp the main properties of the operators we need just the two
indeterminate truth values � and �� as in the following truth tables.

�

• •
◦ ◦
� ◦

∧ • ◦ � ��

• • ◦ � ��

◦ ◦ ◦ ◦ ◦
� � ◦ � ◦
�� �� ◦ ◦ ��

∨ • ◦ � ��

• • • • •
◦ • ◦ � ��

� • � � •
�� • �� • ��

100 J. Villadsen and A. Schlichtkrull

¬
• ◦
◦ •
� �

↔ • ◦ � ��

• • ◦ � ��

◦ ◦ • � ��

� � � • ◦
�� �� �� ◦ •

→ • ◦ � ��

• • ◦ � ��

◦ • • • •
� • � • �

�� • �� �� •

¬¬
• ◦
◦ •
� ◦

⇔ • ◦ � ��

• • ◦ ◦ ◦
◦ ◦ • ◦ ◦
� ◦ ◦ • ◦
�� ◦ ◦ ◦ •

⇒ • ◦ � ��

• • ◦ ◦ ◦
◦ • • • •
� • ◦ • ◦
�� • ◦ ◦ •

∇
• ◦
◦ ◦
� •

∧∧ • ◦ � ��

• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
� ◦ ◦ ◦ ◦
�� ◦ ◦ ◦ ◦

∨∨ • ◦ � ��

• • • • •
◦ • ◦ ◦ ◦
� • ◦ ◦ •
�� • ◦ • ◦

Observe that with respect to validity, viz. the classical determinate truth value •
for truth, the operators ¬ and ¬¬ behave the same and likewise for the operators
⇔ and ↔ and ⇒ and →, respectively.

The truth tables are obtained from the semantic clauses. The formalization
includes features for this calculation but since the truth tables are solely for
informal presentation purposes we have typeset them using the same symbols
as used in the semantics clauses. However, Sect. 6 contains a few truth tables
calculated by Isabelle. The theory file for the formalization includes all calculated
truth tables.

3 Syntax and Semantics

We formalize the syntax and semantics of the many-valued paraconsistent logic
as follows. For the syntax we first define the propositional symbols (id) as a
simple abbreviation for text strings and the formulas (fm) as a recursive datatype
(almost as the productions for a context-free grammar).

type-synonym id = string

datatype fm =
Pro id |
Truth |
Neg ′ fm |
Con ′ fm fm |
Eql fm fm |
Eql ′ fm fm

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 101

We then define the remaining operators as abbreviations. We do this with
Isabelle’s abbreviation command by giving the name of the abbreviated oper-
ator, e.g. Falsity, and thereafter its type, e.g. fm. After the where keyword we
write the equality that defines the abbreviation, e.g. Falsity ≡ Neg ′ Truth.

abbreviation Falsity :: fm where Falsity ≡ Neg ′ Truth

abbreviation Dis ′ :: fm ⇒ fm ⇒ fm
where Dis ′ p q ≡ Neg ′ (Con ′ (Neg ′ p) (Neg ′ q))

abbreviation Imp :: fm ⇒ fm ⇒ fm where Imp p q ≡ Eql p (Con ′ p q)

abbreviation Imp ′ :: fm ⇒ fm ⇒ fm where Imp ′ p q ≡ Eql ′ p (Con ′ p q)

abbreviation Box :: fm ⇒ fm where Box p ≡ Eql p Truth

abbreviation Neg :: fm ⇒ fm where Neg p ≡ Box (Neg ′ p)

abbreviation Con :: fm ⇒ fm ⇒ fm where Con p q ≡ Box (Con ′ p q)

abbreviation Dis :: fm ⇒ fm ⇒ fm where Dis p q ≡ Box (Dis ′ p q)

abbreviation Cla :: fm ⇒ fm where Cla p ≡ Dis (Box p) (Eql p Falsity)

abbreviation Nab :: fm ⇒ fm where Nab p ≡ Neg (Cla p)

The truth values are the two determinate truth values and the countably infinite
number of indeterminate truth values. We also define a useful abbreviation for
negation (eval-neg). This function turns Det False into Det True and vice versa,
but does not change the value of indeterminate truth values. The function is
defined by a case-expression that matches x with the patterns Det False, Det
True and Indet n (where n can be any value), and returns the value to the
right of the corresponding arrow. Finally, we define the semantics as a recursive
function on the structure of the given formula (eval) using the fun command.
The function is defined by a number of equations. In one of the equations we
again use a case expression. This time the case expression contains a number of
dummy variables (wildcard patterns), which are typeset as dashes (-). Each one
of these will independently match with anything.

datatype tv = Det bool | Indet nat

abbreviation (input) eval-neg :: tv ⇒ tv
where

eval-neg x ≡
(

case x of
Det False ⇒ Det True |
Det True ⇒ Det False |
Indet n ⇒ Indet n

102 J. Villadsen and A. Schlichtkrull

)

fun eval :: (id ⇒ tv) ⇒ fm ⇒ tv
where

eval i (Pro s) = i s |
eval i Truth = Det True |
eval i (Neg ′ p) = eval-neg (eval i p) |
eval i (Con ′ p q) =

(
if eval i p = eval i q then eval i p else
if eval i p = Det True then eval i q else
if eval i q = Det True then eval i p else Det False

) |
eval i (Eql p q) =

(
if eval i p = eval i q then Det True else Det False

) |
eval i (Eql ′ p q) =

(
if eval i p = eval i q then Det True else

(
case (eval i p, eval i q) of

(Det True, -) ⇒ eval i q |
(-, Det True) ⇒ eval i p |
(Det False, -) ⇒ eval-neg (eval i q) |
(-, Det False) ⇒ eval-neg (eval i p) |
- ⇒ Det False

)
)

We prove a few useful results about the semantics. We first prove a formulation
of the semantics for Eql′ and Neg′ without the eval-neg abbreviation. We then
prove that a double negation with Neg′ does not change the semantics.

theorem eval-equality :
eval i (Eql ′ p q) =

(
if eval i p = eval i q then Det True else
if eval i p = Det True then eval i q else
if eval i q = Det True then eval i p else
if eval i p = Det False then eval i (Neg ′ q) else
if eval i q = Det False then eval i (Neg ′ p) else
Det False

)
by (cases eval i p; cases eval i q) simp-all

theorem eval-negation:
eval i (Neg ′ p) =

(
if eval i p = Det False then Det True else

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 103

if eval i p = Det True then Det False else
eval i p

)
by (cases eval i p) simp-all

corollary eval i (Cla p) = eval i (Box (Dis ′ p (Neg ′ p)))
using eval-negation
by simp

lemma double-negation: eval i p = eval i (Neg ′ (Neg ′ p))
using eval-negation
by simp

We define the notion of valid formulas by quantifying over all interpretations.

definition valid :: fm ⇒ bool
where

valid p ≡ ∀ i . eval i p = Det True

proposition valid Truth and ¬ valid Falsity
unfolding valid-def
by simp-all

The last proposition shows that the logic is consistent in the sense that there is
a formula which is a theorem and not all formulas are theorems. The proof is
explained in the next section.

4 Various Theorems and Proof Styles

We prove a series of theorems and non-theorems most of which are schemata.
The purpose of the following quite long list is twofold: to investigate our para-
consistent logic, and secondly, to show a number of proof styles.

The first seven propositions are proved by unfolding the definition of validity
and then simplifying the result to a true atomic proposition. The next two propo-
sitions are proved by the metis proof method as explained in Sect. 1. We let metis
use a number of lemmas including eval-equality, eval-negation and two lemmas
about respectively truth values and evaluation, that Isabelle proved implicitly
when we defined these notions. Isabelle’s powerful Sledgehammer tool has been
used to obtain the proofs [5].

The next proposition — P is not valid — is proved by the auto proof method,
which does a combination of simplification and classical reasoning. The following
proposition — ¬P is not valid — is proved by manually providing a counterexam-
ple – unfortunately Sledgehammer cannot find a proof for this proposition. The
counterexample is the interpretation that maps everything to True. It is writ-
ten as a λ-expression as known from the λ-calculus. In general, a λ-expression
λx.F x represents the function that takes any x as input and returns F x.

104 J. Villadsen and A. Schlichtkrull

Hereafter comes a proposition stating that the validity of p implies the non-
validity of Neg′ p. This is written using keywords assumes and shows, which
logically is the same as if we had explicitly written an implication −→, but will
make theorems easier to read when there are many assumptions. Several of the
following propositions are written in the same style.

The remaining propositions are proved using more or less the same proof
methods (one proposition requires the so-called force proof method that can
prove some propositions where auto gives up).

Some propositions have assumptions and in the proof the special fact assms
can be used to refer to the assumptions.

In Isabelle there is no technical difference between the keywords theorem,
corollary, proposition and lemma. We have found it useful to always name
theorems and simply take propositions to be unnamed theorems. Lemmas are
stepping stones and must of course have names in order to be used later in proofs.
A corollary is taken to be readily proved from a theorem; see the theorem named
conjunction (after 14 propositions).

proposition valid (Cla (Box p)) and ¬ valid (Nab (Box p))
unfolding valid-def
by simp-all

proposition valid (Cla (Cla p)) and ¬ valid (Nab (Nab p))
unfolding valid-def
by simp-all

proposition valid (Cla (Nab p)) and ¬ valid (Nab (Cla p))
unfolding valid-def
by simp-all

proposition valid (Box p) ←→ valid (Box (Box p))
unfolding valid-def
by simp

proposition valid (Neg p) ←→ valid (Neg ′ p)
unfolding valid-def
by simp

proposition valid (Con p q) ←→ valid (Con ′ p q)
unfolding valid-def
by simp

proposition valid (Dis p q) ←→ valid (Dis ′ p q)
unfolding valid-def
by simp

proposition valid (Eql p q) ←→ valid (Eql ′ p q)
unfolding valid-def
using eval .simps tv .inject eval-equality eval-negation
by (metis (full-types))

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 105

proposition valid (Imp p q) ←→ valid (Imp ′ p q)
unfolding valid-def
using eval .simps tv .inject eval-equality eval-negation
by (metis (full-types))

proposition ¬ valid (Pro ′′p ′′)
unfolding valid-def
by auto

proposition ¬ valid (Neg ′ (Pro ′′p ′′))
proof −
have eval (λs. Det True) (Neg ′ (Pro ′′p ′′)) = Det False
by simp

then show ?thesis
unfolding valid-def
using tv .inject
by metis

qed

proposition assumes valid p shows ¬ valid (Neg ′ p)
using assms
unfolding valid-def
by simp

proposition assumes valid (Neg ′ p) shows ¬ valid p
using assms
unfolding valid-def
by force

proposition valid (Neg ′ (Neg ′ p)) ←→ valid p
unfolding valid-def
using double-negation
by simp

theorem conjunction: valid (Con ′ p q) ←→ valid p ∧ valid q
unfolding valid-def
by auto

corollary assumes valid (Con ′ p q) shows valid p and valid q
using assms conjunction
by simp-all

proposition assumes valid p and valid (Imp p q) shows valid q
using assms eval .simps tv .inject
unfolding valid-def
by (metis (full-types))

proposition assumes valid p and valid (Imp ′ p q) shows valid q
using assms eval .simps tv .inject eval-equality

106 J. Villadsen and A. Schlichtkrull

unfolding valid-def
by (metis (full-types))

The key equalities from Sect. 2 can also be proved but they are omitted here.
The theory file for the formalization has the details.

The preceding propositions show that our paraconsistent logic is well-behaved
in many ways. For example, the last propositions prove the rule of modus ponens
for both kinds of implication.

5 Counterexamples for Non-theorems

We introduce the possibility for restricting the domain of truth values and use
it for stating counterexamples.

We first define a function domain that, for any given set of natural numbers,
constructs the corresponding domain in our logic. It does so by turning the
natural numbers in the set into indeterminate truth values using Indet and
additionally adding the determinate truth values to the set.

We then prove the theorem universal-domain where the first universal set
{n.True} has type nat set and the second universal set {x.True} has type tv set.
The function domain provides the correspondence.

definition domain :: nat set ⇒ tv set
where

domain U ≡ {Det True, Det False} ∪ Indet ‘ U

theorem universal-domain: domain {n. True} = {x . True}
proof −
have ∀ x . x = Det True ∨ x = Det False ∨ x ∈ range Indet
using range-eqI tv .exhaust tv .inject
by metis

then show ?thesis
unfolding domain-def
by blast

qed

We define the notion of valid formulas restricted to a given set of indeterminate
truth values. We say that a formula p is valid in U if it is valid considering not all
indeterminate truth values, but only those from U . Or more precisely, if p always
evaluates to true in any interpretation i that has domain U as function range.
In the formalization we use Isabelle/HOL’s range function to get the range of i.

definition valid-in :: nat set ⇒ fm ⇒ bool
where

valid-in U p ≡ ∀ i . range i ⊆ domain U −→ eval i p = Det True

abbreviation valid-boole :: fm ⇒ bool where valid-boole p ≡ valid-in {} p

proposition valid p ←→ valid-in {n. True} p

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 107

unfolding valid-def valid-in-def
using universal-domain
by simp

theorem valid-valid-in: assumes valid p shows valid-in U p
using assms
unfolding valid-in-def valid-def
by simp

theorem transfer : assumes ¬ valid-in U p shows ¬ valid p
using assms valid-valid-in
by blast

In particular the above theorem (transfer) is useful in order to prove that a
formula is not valid. As a particular example we will show that P ∧ ¬P → Q is
not valid. First we show that it is valid in the boolean logic. Next we show that it
is not valid in domain {1}. We do this by providing a counterexample. With the
let command we define the counterexample ?i (the let command requires that
we have this question mark). The counterexample is first defined as returning
Indet 1 on any input, and is then modified (using :=) to return Det False on
input q. The proof uses the moreover and ultimately commands. This works
in the way that the statements just before each of the moreover commands are
collected and used to prove the statement after the ultimately command. After
proving this result, we use it together with transfer to prove that the formula is
not valid.

abbreviation (input) Explosion :: fm ⇒ fm ⇒ fm
where

Explosion p q ≡ Imp ′ (Con ′ p (Neg ′ p)) q

proposition valid-boole (Explosion (Pro ′′p ′′) (Pro ′′q ′′))
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

i ′′p ′′ ∈ {Det True, Det False}
i ′′q ′′ ∈ {Det True, Det False}

unfolding domain-def
by auto

then show eval i (Explosion (Pro ′′p ′′) (Pro ′′q ′′)) = Det True
by (cases i ′′p ′′; cases i ′′q ′′) simp-all

qed

lemma explosion-counterexample:
¬ valid-in {1} (Explosion (Pro ′′p ′′) (Pro ′′q ′′))

proof −
let ?i = (λs. Indet 1)(′′q ′′ := Det False)
have range ?i ⊆ domain {1}

108 J. Villadsen and A. Schlichtkrull

unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Explosion (Pro ′′p ′′) (Pro ′′q ′′)) = Indet 1
by simp

moreover have Indet 1 �= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

theorem explosion-not-valid : ¬ valid (Explosion (Pro ′′p ′′) (Pro ′′q ′′))
using explosion-counterexample transfer
by simp

The last theorem shows that the many-valued logic is a paraconsistent logic since
P ∧ ¬P → Q is not valid.

6 On the Number of Truth Values

For the normal two-value boolean propositional logic we can decide if a formula
is valid or not by enumerating all interpretations and checking if they satisfy our
formula. This approach will clearly not work for our many-valued logic since there
are infinitely many truth values and thus also infinitely many interpretations.

However, it turns out that we do not need to consider all possibilities of truth
values. For any formula there is a finite subset that it suffices to check. In this
section we will argue for a lower bound on the size of this subset. Specifically
we will argue that for an arbitrary formula containing n different propositional
symbols, we need to consider interpretations with n different indeterminate truth
values.

We first consider the simple case of formulas with one propositional symbol.
In order to conduct the analysis, we first prove that if the range of an inter-
pretation is a subset of domain U , then any formula will evaluate to a value
in domain U under this interpretation. Then we consider the example of Cla p
where Cla is the unary operator that evaluates to true when its operand evalu-
ates to a Classical truth value. Let us introduce the informal notation Δ for Cla.
We prove that Δp is valid in all boolean interpretations. Next we prove that it
is not valid in domain {1}. Therefore we can conclude that considering 0 inde-
terminate truth values is not enough – we need to consider at least 1. We have
also printed its truth table for illustration. In the calculated truth table below
* is used for • and o is used for ◦. The functions unary and binary return truth
tables as strings for unary and binary operators, respectively, and the theory file
for the formalization has the details (about 50 lines of code, cf. [45]). The proof
method code-simp performs the calculations of the truth table strings.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 109

lemma ranges: assumes range i ⊆ domain U shows eval i p ∈ domain U
using assms
unfolding domain-def
by (induct p) auto

proposition
unary (Cla (Pro ′′p ′′)) [Det True, Det False, Indet 1] = ′′

∗
∗
o

′′

by code-simp

proposition valid-boole (Cla p)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

eval i p ∈ {Det True, Det False}
using ranges[of i {}]
unfolding domain-def
by auto

then show eval i (Cla p) = Det True
by (cases eval i p) simp-all

qed

proposition ¬ valid-in {1} (Cla (Pro ′′p ′′))
proof −
let ?i = λs. Indet 1
have range ?i ⊆ domain {1}
unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Cla (Pro ′′p ′′)) = Det False
by simp

moreover have Det False �= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

We repeat the exercise for a formula with two propositional symbols. This time
we consider the formula Δ2, which is (Δp ∨ Δq) ∨ (p ⇔ q). We prove it valid
in all boolean interpretations as well as in all interpretations with domain {1}.
Next we prove that it is not valid in domain {1, 2}. Therefore it is not enough
to consider 1 indeterminate truth value – we need to consider at least 2.

110 J. Villadsen and A. Schlichtkrull

abbreviation (input) Cla2 :: fm ⇒ fm ⇒ fm
where

Cla2 p q ≡ Dis (Dis (Cla p) (Cla q)) (Eql p q)

proposition
binary (Cla2 (Pro ′′p ′′) (Pro ′′q ′′))

[Det True, Det False, Indet 1 , Indet 2] = ′′

∗∗∗∗
∗∗∗∗
∗∗∗o
∗∗o∗

′′

by code-simp

proposition valid-boole (Cla2 p q)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range: range i ⊆ domain {}
then have

eval i p ∈ {Det True, Det False}
eval i q ∈ {Det True, Det False}

using ranges[of i {}]
unfolding domain-def
by auto

then show eval i (Cla2 p q) = Det True
by (cases eval i p; cases eval i q) simp-all

qed

proposition valid-in {1} (Cla2 p q)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range: range i ⊆ domain {1}
then have

eval i p ∈ {Det True, Det False, Indet 1}
eval i q ∈ {Det True, Det False, Indet 1}

using ranges[of i {1}]
unfolding domain-def
by auto

then show eval i (Cla2 p q) = Det True
by (cases eval i p; cases eval i q) simp-all

qed

proposition ¬ valid-in {1 , 2} (Cla2 (Pro ′′p ′′) (Pro ′′q ′′))
proof −
let ?i = (λs. Indet 1)(′′q ′′ := Indet 2)
have range ?i ⊆ domain {1 , 2}
unfolding domain-def
by (simp add : image-subset-iff)

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 111

moreover have eval ?i (Cla2 (Pro ′′p ′′) (Pro ′′q ′′)) = Det False
by simp

moreover have Det False �= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

We repeat the exercise for a formula with three propositional symbols. This
time we consider the formula Δ3, which is (Δp ∨ Δq ∨ Δr) ∨ ((p ⇔ q) ∨ (p ⇔
r) ∨ (q ⇔ r)). We prove it valid in all boolean interpretations as well as in all
interpretations with domain {1} and domain {1, 2}. Next we prove that it is not
valid in domain {1, 2, 3}. Therefore it is not enough to consider 2 indeterminate
truth values – we need to consider at least 3.

abbreviation (input) Cla3 :: fm ⇒ fm ⇒ fm ⇒ fm
where

Cla3 p q r ≡ Dis (Dis (Cla p) (Dis (Cla q) (Cla r)))
(Dis (Eql p q) (Dis (Eql p r) (Eql q r)))

proposition valid-boole (Cla3 p q r)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

eval i p ∈ {Det True, Det False}
eval i q ∈ {Det True, Det False}
eval i r ∈ {Det True, Det False}

using ranges[of i {}]
unfolding domain-def
by auto

then show eval i (Cla3 p q r) = Det True
by (cases eval i p; cases eval i q ; cases eval i r) simp-all

qed

proposition valid-in {1} (Cla3 p q r)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {1}
then have

eval i p ∈ {Det True, Det False, Indet 1}
eval i q ∈ {Det True, Det False, Indet 1}
eval i r ∈ {Det True, Det False, Indet 1}

using ranges[of i {1}]
unfolding domain-def
by auto

then show eval i (Cla3 p q r) = Det True

112 J. Villadsen and A. Schlichtkrull

by (cases eval i p; cases eval i q ; cases eval i r) simp-all
qed

proposition valid-in {1 , 2} (Cla3 p q r)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {1 , 2}
then have

eval i p ∈ {Det True, Det False, Indet 1 , Indet 2}
eval i q ∈ {Det True, Det False, Indet 1 , Indet 2}
eval i r ∈ {Det True, Det False, Indet 1 , Indet 2}

using ranges[of i {1 , 2}]
unfolding domain-def
by auto

then show eval i (Cla3 p q r) = Det True
by (cases eval i p; cases eval i q ; cases eval i r) auto

qed

proposition ¬ valid-in {1 , 2 , 3} (Cla3 (Pro ′′p ′′) (Pro ′′q ′′) (Pro ′′r ′′))
proof −
let ?i = (λs. Indet 1)(′′q ′′ := Indet 2 , ′′r ′′ := Indet 3)
have range ?i ⊆ domain {1 , 2 , 3}
unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Cla3 (Pro ′′p ′′) (Pro ′′q ′′) (Pro ′′r ′′)) = Det False
by simp

moreover have Det False �= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

You might have noticed that there is a pattern in Δ, Δ2 and Δ3. Let us now
study that pattern.

Δ can be read as follows: its operand evaluates to a classical value. It is easy
to realize that this holds when we have only classical values. It is also clear that
it is not valid already if we allow a single indeterminate value since then the
operand might evaluate to that.

Δ2 can be read as follows: Either p or q evaluates to a classical value, or they
evaluate to the same value. It is easy to realize that this holds when we have
only one indeterminate value since if none of them evaluate to a classical value
then they must both evaluate to the indeterminate one. It is also clear that this
does not hold if we allow two indeterminate values since then p and q might
respectively evaluate to these two values.

Δ3 can be read as follows. Either p, q or r evaluates to a classical value, or
two of them evaluate to the same value. It is easy to realize that this holds when
we only have two indeterminate values, by a similar argument to the one we saw

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 113

for Δ2. It is also clear that this does not hold if we allow three indeterminate
values, again by a similar argument.

It should be clear that this pattern can be extended as necessary for any
number of truth values.

Thus, we now know that in order to check if a formula is valid, we need
to consider interpretations with at least as many indeterminate truth values as
there are propositional symbols in the formula – otherwise we might have missed
an interpretation that falsified the formula. Thus we have found a lower bound
on the number of needed indeterminate truth values. In the next section we will
find an upper bound on the number of needed indeterminate truth values.

7 A Reduction Theorem

We obtain a reduction theorem by considering the number of propositional sym-
bols in a given formula. Several of the proofs are long — about 250 lines — and
are therefore omitted. The theory file for the formalization has the details.

We define a function props that returns the set of identifiers for a formula.
We then prove that only the propositional symbols in the formula are relevant
for the semantics (relevant-props).

fun props :: fm ⇒ id set
where

props Truth = {} |
props (Pro s) = {s} |
props (Neg ′ p) = props p |
props (Con ′ p q) = props p ∪ props q |
props (Eql p q) = props p ∪ props q |
props (Eql ′ p q) = props p ∪ props q

lemma relevant-props:
assumes ∀ s ∈ props p. i1 s = i2 s
shows eval i1 p = eval i2 p
using assms
by (induct p) (simp-all , metis)

The proof is by induction over formulas (induct) followed by simplifications of
all cases (simp-all) — one case is left over and requires the powerful resolution
proof method (metis).

We define a function change-tv that applies a function to the number in an
indeterminate truth value. We then prove that if f is an injection then change-tv f
is also an injection (change-tv-injection).

fun change-tv :: (nat ⇒ nat) ⇒ tv ⇒ tv
where

change-tv f (Det b) = Det b |
change-tv f (Indet n) = Indet (f n)

lemma change-tv-injection: assumes inj f shows inj (change-tv f)
— Proof omitted

114 J. Villadsen and A. Schlichtkrull

The above proof and the next two proofs are available online.
We define a function change-int that takes a function and applies it to an

interpretation to get a new interpretation. We then prove that if we replace each
indeterminate truth value in an interpretation with another one, then it just
changes the result of the formula accordingly (eval-change).

definition
change-int :: (nat ⇒ nat) ⇒ (id ⇒ tv) ⇒ (id ⇒ tv)

where
change-int f i ≡ λs. change-tv f (i s)

lemma eval-change:
assumes inj f
shows eval (change-int f i) p = change-tv f (eval i p)

— Proof omitted

We prove that if our formula is valid when we have at least one indeterminate
value in our domain for each propositional symbol, then it is valid in general
(valid-in-valid).

theorem valid-in-valid : assumes card U ≥ card (props p) and valid-in U p
shows valid p
— Proof omitted

We reformulate the theorem as follows.

theorem reduce: valid p ←→ valid-in {1 ..card (props p)} p
using valid-in-valid transfer
by force

We prove in the final reduction theorem (reduce) that we can decide the validity
of a given formula by considering as many indeterminacies as the number of
propositional symbols in the formula. This also means that the logic is weakened
when additional indeterminate truth values are added. For the atomic formula
P it is clear that � suffices. To see this we use the fact that indeterminate truth
values are not ordered with respect to truth content. If [[P]] = � and we replace
the truth value with �� then the truth value is still indeterminate.

8 Entailment — A Case Study

We propose a definition of entailment and verify the results for the case study
presented in Sect. 1.

The following abbreviation Entail takes a list of formulas (the assumptions)
and a single formula (the conclusion) and returns an equivalent formula with
implication and possibly conjunctions.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 115

abbreviation (input) Entail :: fm list ⇒ fm ⇒ fm
where

Entail l p ≡ Imp (if l = [] then Truth else fold Con ′ (butlast l) (last l)) p

theorem entailment-not-chain:
¬ valid (Eql (Entail [Pro ′′p ′′, Pro ′′q ′′] (Pro ′′r ′′))

(Box ((Imp ′ (Pro ′′p ′′) (Imp ′ (Pro ′′q ′′) (Pro ′′r ′′))))))
proof −
let ?i = (λs. Indet 1)(′′r ′′ := Det False)
have eval ?i (Eql (Entail [Pro ′′p ′′, Pro ′′q ′′] (Pro ′′r ′′))

(Box ((Imp ′ (Pro ′′p ′′) (Imp ′ (Pro ′′q ′′) (Pro ′′r ′′)))))) = Det False
by simp

moreover have Det False �= Det True
by simp

ultimately show ?thesis
unfolding valid-def
by metis

qed

Recall the formulas P ∧ Q ∧ ¬R, P ∧ Q → R and R → S. We introduce B0, B1
and B2 as the corresponding abbreviations.

abbreviation (input) B0 :: fm
where B0 ≡ Con ′ (Con ′ (Pro ′′p ′′) (Pro ′′q ′′)) (Neg ′ (Pro ′′r ′′))

abbreviation (input) B1 :: fm
where B1 ≡ Imp ′ (Con ′ (Pro ′′p ′′) (Pro ′′q ′′)) (Pro ′′r ′′)

abbreviation (input) B2 :: fm
where B2 ≡ Imp ′ (Pro ′′r ′′) (Pro ′′s ′′)

From B0 and B1 we have explosion in classical logic (in the following theorem p
is an arbitrary formula in our paraconsistent logic; however, in the proof of the
theorem the p in double quotes corresponds to the particular p in B0 and B1).

theorem classical-logic-is-not-usable: valid-boole (Entail [B0 , B1] p)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

i ′′p ′′ ∈ {Det True, Det False}
i ′′q ′′ ∈ {Det True, Det False}
i ′′r ′′ ∈ {Det True, Det False}

unfolding domain-def
by auto

then show eval i (Entail [B0 , B1] p) = Det True
by (cases i ′′p ′′; cases i ′′q ′′; cases i ′′r ′′) simp-all

qed

116 J. Villadsen and A. Schlichtkrull

corollary valid-boole (Entail [B0 , B1] (Pro ′′r ′′))
by (rule classical-logic-is-not-usable)

corollary valid-boole (Entail [B0 , B1] (Neg ′ (Pro ′′r ′′)))
by (rule classical-logic-is-not-usable)

proposition ¬ valid (Entail [B0 , B1] (Pro ′′r ′′))
proof −
let ?i = (λs. Indet 1)(′′r ′′ := Det False)
have eval ?i (Entail [B0 , B1] (Pro ′′r ′′)) = Det False
by simp

moreover have Det False �= Det True
by simp

ultimately show ?thesis
unfolding valid-def
by metis

qed

When we consider the full paraconsistent logic, however, everything does not
follow. We illustrate this by showing that the negations of p, q and s do not
follow. Of these three results that use counterexamples we only include the proof
of the last one as they are very similar, but the two others are available in the
theory file.

proposition ¬ valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′p ′′)))
— Proof omitted

proposition ¬ valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′q ′′)))
— Proof omitted

proposition ¬ valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′s ′′)))
proof −
let ?i = (λs. Indet 1)(′′s ′′ := Det True)
have eval ?i (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′s ′′))) = Det False
by simp

moreover have Det False �= Det True
by simp

ultimately show ?thesis
unfolding valid-def
by metis

qed

We do want something to follow – otherwise we would be unable to reason.
Indeed something does follow namely r, its negation and s. Of the three results
that use proof by cases and the reduction theorem (reduce) we only include the
proof of the last one as they are very similar, but the two others are available in
the theory file.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 117

proposition valid (Entail [B0 , Box B1 , Box B2] (Pro ′′r ′′))
— Proof omitted

proposition valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′r ′′)))
— Proof omitted

proposition valid (Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′))
proof −
have {1 ..card (props (Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′)))} =

{1 , 2 , 3 , 4}
by code-simp

moreover have valid-in {1 , 2 , 3 , 4}
(Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′))

unfolding valid-in-def
proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {1 , 2 , 3 , 4}
then have icase:

i ′′p ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
i ′′q ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
i ′′r ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
i ′′s ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
unfolding domain-def
by auto

show eval i (Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′)) = Det True
using icase
by (cases i ′′p ′′; cases i ′′q ′′; cases i ′′r ′′; cases i ′′s ′′) simp-all

qed
ultimately show ?thesis
using reduce
by simp

qed

We hence obtain the following results for the agent using the turnstile symbol
(�) for the entailment given the set of beliefs and rules.

�� ¬P �� ¬Q �� ¬S

� R � ¬R � S

For comparison, due to the catastrophic explosiveness of classical logic, the fol-
lowing results are obtained using classical logic:

� ¬P � ¬Q � ¬S

� R � ¬R � S

9 Related Work

Paraconsistent and/or many-valued logics are occasionally considered in the
proof assistant Isabelle. Krauss [21] considers, in a tutorial for Isabelle/HOL,

118 J. Villadsen and A. Schlichtkrull

a very small example of a three-valued logic only to illustrate pattern matching
in Isabelle/HOL. Brucker, Tuong and Wolff [8] formalize, in Isabelle/HOL, the
four-valued logic OCL, which complements the UML software modelling lan-
guage. Georgescu, Leustean and Preoteasa [13] take an algebraic approach and
formalize, in Isabelle/HOL, the theory of pseudo hoops, which is a generalization
of the BL-algebra and the many-valued BL-logic [10]. Steen and Benzmüller [39]
present a semantic embedding of a many-valued logic in Isabelle/HOL. The truth
values are encoded as particular functions and Isabelle/HOL’s proof methods are
then used directly.

There are several implementations of Dana Scott’s Logic of Computable
Functions (LCF) [26,38]. HOLCF [33] extends Isabelle/HOL with ideas from
LCF, and allows reasoning about functional programs, including programs that
never complete successfully due to errors or non-termination. Regensburger [34]
formalizes, in HOLCF, the type of lifted booleans, which consists of true, false
and a bottom value. The bottom value of the lifted booleans thus represents
a computation of a boolean value that never completes successfully. The type
of lifted booleans in HOLCF is also described by Müller, Nipkow, Oheimb and
Slotosch [27] as well as by Huffman [18].

We deal with a formalization in a proof assistant of the syntax and semantics
of a many-valued paraconsistent logic. Marcos [24] considers another kind of
many-valued logic and describes a special computer program in the functional
programming language ML. This computer program automatically generates
proof tactics to be used by Isabelle. We do not use any computer programs
(well, except Isabelle itself, of course). And we do not generate proof tactics. We
have ourselves authored all proofs. Furthermore our proofs are in higher-order
logic, Isabelle/HOL, which is the default logic in Isabelle. In [24] the default
higher-order logic is not used. Instead it is replaced by certain finite-valued
logics. This is possible since Isabelle is a generic proof assistant but we do not
use this feature at all. More precisely, we formalize the syntax and semantics of
the logic, and this is not done in [24]. We can prove theorems in the logic as
well as meta-theorems about the logic, but in [24] only theorems in the logic can
be proved. Since the logics are rather different it is not possible to compare the
efficiency of the two approaches when it comes to proving theorems.

Here, we have only considered the formalization of propositional logic, but
the formalization of first-order logic or even higher-order logic is also possible.
Several proof systems for classical first-order logic have been proved sound and
complete:

– Sequent calculus [6,35].
– Natural deduction [3,7,12,44].
– Resolution [36].

But even without developing a proof system we can obtain many theorems and
meta-theorems by formalizing the syntax and semantics in a proof assistant like
Isabelle.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 119

10 Conclusion

In this paper we considered a logic with infinitely many truth values (cf. Sect. 3
on the syntax and semantics of the logic). Specifically, we investigated how many
truth values we need to consider in order to decide if a formula is valid or not.
In Sect. 6 we explained that in order to check the validity of a formula with
n different propositional symbols we should consider interpretations that use
n different indeterminate truth values. The reason was that the formula might
be true in any interpretation that uses only n − 1 different indeterminate truth
values but false in one that uses n of them. We gave concrete examples of such
formulas for n = 1, 2, 3. The formulas showed a pattern that we argued would
generalize to any n. Future work includes a formalization of this argument.

Our main theoretic result is the reduction theorem from Sect. 7:

proposition valid p ←→ valid-in {1 ..card (props p)} p
using reduce .

In the above formulation of the reduction theorem, the right-hand side valid p
means that a formula p is true in all interpretations — of which there are infi-
nitely many. The left-hand side valid-in {1 ..card (props p)} p means that p is
true in all the interpretations whose domains are restricted to a finite set con-
sisting of true, false and a number of indeterminate truth values as small as the
number of propositional symbols in p. This important result allows us to reduce
the infinite number of truth values to a finite number of truth values, for a given
formula, and in our case study we use this result. Future work includes further
investigations of the practical applications of the reduction theorem.

Using a proof assistant like Isabelle makes it possible to clarify concepts and
to catch mistakes. However, we have not found errors in our extended abstract
[20]. The formalization of the case study shows the limits since using straight-
forward proof techniques the results can take up to half a minute for Isabelle to
prove using a standard computer. It has been a pleasure to use the Isabelle proof
assistant for the formalization of our paraconsistent logic. We plan to make a
similar formalization in the Coq proof assistant [4] in order to compare the two
systems.

In our extended abstract [20] several of these results were mentioned without
proof and we now have precise definitions and formal proofs. The reduction
theorem was the most difficult proof and large parts of the 1582-lines theory file
for Isabelle2016-1 are omitted in the present paper. After the initial successful
proofs we spent a lot of time improving the definitions, theorems and proofs; this
also involved discussions with other Isabelle users as well as with our students
in order to obtain the most elegant and general results.

Acknowledgements. Thanks to Andreas Halkjær From, Alexander Birch Jensen and
John Bruntse Larsen for comments on drafts of the paper. Also thanks to Hendrik
Decker and the anonymous reviewers for many constructive comments.

120 J. Villadsen and A. Schlichtkrull

References

1. Akama, S. (ed.): Towards Paraconsistent Engineering. Intelligent Systems Refer-
ence Library, vol. 110. Springer, Cham (2016). doi:10.1007/978-3-319-40418-9

2. Batens, D., Mortensen, C., Priest, G., Van-Bendegem, J. (eds.): Frontiers in Para-
consistent Logic. Research Studies Press, Philadelphia (2000)

3. Berghofer, S.: First-Order Logic According to Fitting. Archive of Formal Proofs
(2007). http://isa-afp.org/entries/FOL-Fitting.shtml

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical
Computer Science. Springer, Heidelberg (2004). doi:10.1007/978-3-662-07964-5

5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013)

6. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017)

7. Breitner, J., Lohner, D.: The Meta Theory of the Incredible Proof Machine.
Archive of Formal Proofs (2016). http://isa-afp.org/entries/Incredible Proof
Machine.shtml

8. Brucker, A.D., Tuong, F., Wolff, B.: Featherweight OCL: A Proposal for a Machine-
Checked Formal Semantics for OCL 2.5. Archive of Formal Proofs (2014). http://
isa-afp.org/entries/Featherweight OCL.shtml

9. Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.): Paraconsistency: The
Logical Way to the Inconsistent. Marcel Dekker, New York (2002)

10. Ciungu, L.C.: Non-commutative Multiple-Valued Logic Algebras. Springer Mono-
graphs in Mathematics. Springer, Cham (2014). doi:10.1007/978-3-319-01589-7

11. Decker, H., Villadsen, J., Waragai, T. (eds.) International Workshop on Para-
consistent Computational Logic, vol. 95. Roskilde University, Computer Science,
Technical reports (2002)

12. From, A.H.: Formalized First-Order Logic. B.Sc. thesis, Technical University of
Denmark (2017)

13. Georgescu, G., Leustean, L., Preoteasa, V.: Pseudo Hoops. Archive of Formal
Proofs (2011). http://isa-afp.org/entries/PseudoHoops.shtml

14. Geuvers, H.: Proof assistants: history, ideas and future. Sadhana 34(1), 3–25
(2009). Springer

15. Gödel, K.: On formally undecidable propositions of principia mathematica and
related systems. In: van Heijenoort, J. (ed.) From Frege to Gödel. Harvard Uni-
versity Press (1967)

16. Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock
(2001)

17. Hansson, S.O.: Logic of belief revision. In: Zalta, E.N. et al. (eds.) Stan-
ford Encyclopedia of Philosophy (2016). http://plato.stanford.edu/entries/
logic-belief-revision/. Winter Edition

18. Huffman, B.: Reasoning with Powerdomains in Isabelle/HOLCF. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. Emerging Trends Proceedings,
pp. 45–56. Technical report, Concordia University (2008)

19. Jensen, A.B., Schlichtkrull, A., Villadsen, J.: First-Order Logic According to Har-
rison. Archive of Formal Proofs (2017). http://isa-afp.org/entries/FOL Harrison.
shtml

20. Jensen, A.S., Villadsen, J.: Paraconsistent computational logic. In: Blackburn, P.,
Jørgensen, K.F., Jones, N., Palmgren, E. (eds.) 8th Scandinavian Logic Sympo-
sium: Abstracts, pp. 59–61. Roskilde University (2012)

http://dx.doi.org/10.1007/978-3-319-40418-9
http://isa-afp.org/entries/FOL-Fitting.shtml
http://dx.doi.org/10.1007/978-3-662-07964-5
http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isa-afp.org/entries/Featherweight_OCL.shtml
http://isa-afp.org/entries/Featherweight_OCL.shtml
http://dx.doi.org/10.1007/978-3-319-01589-7
http://isa-afp.org/entries/PseudoHoops.shtml
http://plato.stanford.edu/entries/logic-belief-revision/
http://plato.stanford.edu/entries/logic-belief-revision/
http://isa-afp.org/entries/FOL_Harrison.shtml
http://isa-afp.org/entries/FOL_Harrison.shtml

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 121

21. Krauss, A.: Defining Recursive Functions in Isabelle/HOL. Isabelle Distribution
(2017). http://isabelle.in.tum.de/doc/functions.pdf

22. Lamport, L.: How to write a proof. Am. Math. Mon. 102(7), 600–608 (1995)
23. Lamport, L.: How to write a 21st century proof. J. Fixed Point Theor. Appl. 11(1),

43–63 (2012)
24. Marcos, J.: Automatic generation of proof tactics for finite-valued logics. In: Pro-

ceedings of Tenth International Workshop on Rule-Based Programming, pp. 91–98
(2009)

25. Michaelis, J., Nipkow, T.: Propositional Proof Systems. Archive of Formal Proofs
(2017). http://isa-afp.org/entries/Propositional Proof Systems.shtml

26. Milner, R.: Logic for computable functions: description of a machine implementa-
tion. Stanford University (1972)

27. Müller, O., Nipkow, T., Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. J.
Funct. Program. 9(2), 191–223 (1999)

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi:10.1007/
3-540-45949-9

29. Nipkow, T., Klein, G.: Concrete Semantics — With Isabelle/HOL. Springer, Cham
(2014). doi:10.1007/978-3-319-10542-0

30. Paulson, L.C.: A machine-assisted proof of Gödel’s incompleteness theorems for
the theory of hereditarily finite sets. Rev. Symb. Log. 7(3), 484–498 (2014)

31. Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the
Inconsistent. Philosophia Verlag, Munich (1989)

32. Priest, G., Tanaka, K., Weber, Z.: Paraconsistent logic. In: Zalta, E.N. et al. (eds.)
Stanford Encyclopedia of Philosophy (2016). http://plato.stanford.edu/entries/
logic-paraconsistent. Winter Edition

33. Regensburger, F.: HOLCF: higher order logic of computable functions. In: Schu-
bert, E.T., Windley, P.J., Alves-Foss, J. (eds.) TPHOLs 1995. LNCS, vol. 971, pp.
293–307. Springer, Heidelberg (1995). doi:10.1007/3-540-60275-5 72

34. Regensburger, F.: The type of lifted booleans. Isabelle Distribution (2017). http://
isabelle.in.tum.de/library/HOL/HOLCF/Tr.html

35. Ridge, T.: A Mechanically Verified, Efficient, Sound and Complete Theorem Prover
for First Order Logic. Archive of Formal Proofs (2004). http://isa-afp.org/entries/
Verified-Prover.shtml

36. Schlichtkrull, A.: The Resolution Calculus for First-Order Logic. Archive of Formal
Proofs (2016). http://isa-afp.org/entries/Resolution FOL.shtml

37. Schlichtkrull, A., Villadsen, J.: Paraconsistency. Archive of Formal Proofs (2017).
http://isa-afp.org/entries/Paraconsistency.shtml

38. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor. Com-
put. Sci. 121, 411–440 (1993). Annotated version of an unpublished manuscript
from 1969

39. Steen, A., Benzmüller, C.: Sweet SIXTEEN: automation via embedding into clas-
sical higher-order logic. Log. Log. Philos. 25(4), 535–554 (2016)

40. Villadsen, J.: Combinators for paraconsistent attitudes. In: de Groote, P., Mor-
rill, G., Retoré, C. (eds.) LACL 2001. LNCS, vol. 2099, pp. 261–278. Springer,
Heidelberg (2001). doi:10.1007/3-540-48199-0 16

41. Villadsen, J.: Paraconsistent assertions. In: Lindemann, G., Denzinger, J., Timm,
I.J., Unland, R. (eds.) MATES 2004. LNCS, vol. 3187, pp. 99–113. Springer, Hei-
delberg (2004). doi:10.1007/978-3-540-30082-3 8

http://isabelle.in.tum.de/doc/functions.pdf
http://isa-afp.org/entries/Propositional_Proof_Systems.shtml
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-319-10542-0
http://plato.stanford.edu/entries/logic-paraconsistent
http://plato.stanford.edu/entries/logic-paraconsistent
http://dx.doi.org/10.1007/3-540-60275-5_72
http://isabelle.in.tum.de/library/HOL/HOLCF/Tr.html
http://isabelle.in.tum.de/library/HOL/HOLCF/Tr.html
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Resolution_FOL.shtml
http://isa-afp.org/entries/Paraconsistency.shtml
http://dx.doi.org/10.1007/3-540-48199-0_16
http://dx.doi.org/10.1007/978-3-540-30082-3_8

122 J. Villadsen and A. Schlichtkrull

42. Villadsen, J.: A paraconsistent higher order logic. In: Buchberger, B., Campbell,
J.A. (eds.) AISC 2004. LNCS, vol. 3249, pp. 38–51. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30210-0 5

43. Villadsen, J.: Supra-logic: using transfinite type theory with type variables for
paraconsistency. J. Appl. Non Class. Log. 15(1), 45–58 (2005). Logical approaches
to paraconsistency

44. Villadsen, J., Jensen, A.B., Schlichtkrull, A.: NaDeA: a natural deduction assistant
with a formalization in Isabelle. IFCoLog J. Log. Appl. 4(1), 55–82 (2017)

45. Villadsen, J., Schlichtkrull, A.: Formalization of many-valued logics. In: Chris-
tiansen, H., Jiménez-López, M.D., Loukanova, R., Moss, L.S. (eds.) Partiality
and Underspecification in Information, Languages, and Knowledge, Chap. 7. Cam-
bridge Scholars Publishing (2017)

46. Weber, Z.: Paraconsistent Logic. The Internet Encyclopedia of Philosophy (2017).
http://www.iep.utm.edu/para-log

47. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof
documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). doi:10.
1007/3-540-48256-3 12

48. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-540-30210-0_5
http://www.iep.utm.edu/para-log
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/3-540-48256-3_12

A Proximity-Based Understanding
of Conditionals

Ricardo Queiroz de Araujo Fernandes1,2(B), Edward Hermann Haeusler1,2,
and Luiz Carlos Pinheiro Dias Pereira1,2

1 Systems Development Center, Brazilian Army, Braśılia, DF, Brazil
ricardo.fernandes@eb.mil.br

2 Pontif́ıcia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
{hermann,luiz}@inf.puc-rio.br

Abstract. The aim of the present paper is to introduce a new logic,
PUC-Logic, which will be used to give a systematic account of well-known
counterfactuals conditionals on the basis of a concept of proximity. We
will formulate a natural deduction system for PUC-Logic, the system
PUC-ND, that will be shown to be sound and complete with respect
to the semantics of PUC-Logic. We shall also prove that PUC-Logic
is decidable and that the system PUC-ND satisfies the normalization
theorem.

Keywords: Conditionals · Counterfactual logic · Natural deduction

1 Introduction

Let us consider the following two sentences:

– If Oswald did not kill Kennedy, then someone else did.
– If Oswald had not killed Kennedy, then someone else would have [1].

The first sentence is a clear instance of an indicative conditional while
the second sentence is a clear instance of a subjunctive conditional. In logic,
the indicative conditional is usually associated to material implication, whereas
the natural language subjunctive construction is traditionally studied in phi-
losophy and logic by means of counterfactual conditionals [1,2]. Conditional
propositions involve two components, the antecedent and the consequent. Coun-
terfactual conditionals differ from material implication in a subtle and important
way. The truth of material implication is based on actual state-of-affairs1. Given

R.Q. de Araujo Fernandes—We would like to thank PUC-Rio for the VRac spon-
sorship and DAAD (Germany) for the Specialist Literature Programme.

1 The expression state-of-affairs is here used in an intuititive and very general sense as
a kind of “truth-maker”, as that piece of reality that is responsible for the truth of a
proposition (as Michael Dummett [16] would put it). There’s a long and important
discussion in Philosophy as to the true nature of state-of-affairs, but to get into this
discussion is clearly beyond the scope of the presente paper.

c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 123–152, 2017.
https://doi.org/10.1007/978-3-662-55947-5_6

124 R.Q. de Araujo Fernandes et al.

that Kennedy was killed, we can accept the first sentence as true. On the other
hand, a counterfactual conditional should take into account the truth of the
antecedent, even if this is not the case. The truth of the antecedent is manda-
tory in this kind of analysis. Some approaches to counterfactuals entail belief
revision, particularly those based on Ramsey’s test evaluation [8]. In this type
of analysis, the truth value of a counterfactual is considered in the context of
a minimal change generated by admitting the truth of the antecedent [2]. A
possible way to circumvent belief revision mechanisms is to consider alternative
(possible) state-of-affairs, considered here as worlds, and some accessibility rela-
tion between state-of-affairs that can be used to choose the closest world among
the worlds that satisfy the antecedent. If the consequent is true with respect to
this closest world, then the counterfactual is also true [1]. Both conditionals have
false antecedents and false consequents in the current state-of-affairs. However,
the second conditional is false, since we find no reason to accept that, in the
closest worlds in which Kennedy is not killed by Oswald, Kennedy is killed by
someone else. We have chosen Lewis’ [1] approach to inference systems for coun-
terfactuals because his accessibility relation leaves out the discussion concerning
the definition of similarity among worlds, which is considered as given in his
analysis. Lewis’ analysis also opens the way for another kind of contribution,
which runs in a certain sense in the reverse direction: if we can find some general
properties of his accessibility relation, with respect to the evaluation of formulas
in counterfactual reasoning, maybe we could also find some interesting similarity
properties.

Counterfactual reasoning can be very useful as a purely logical approach to
hypothetical queries in deductive databases. A hypothetical query in a deductive
database D is made under the assumption that an additional fact A holds in D.
Additional means here that one does not derive this fact solely on the basis of
D. The set of answers for this query is computed in D ∪ {A}. Standard logic
programming languages (PLs) that are used in these tasks are based on material
implication and negation-as-failure. Through the use of negation-as-failure, as
in Datalog or Prolog, typical examples of PLs, ¬A can be derived from D, and
hence D ∪ {A} is inconsistent. The usual implementation is based on revisions
of D in order to obtain a consistent subset of D which is relevant and sufficient
to derive a meaningful answer-set to the query. When D is sufficiently big, the
process is computationally quite expensive, due to the algorithmic complexity of
proof-methods. We believe PUC-Logic and its natural deduction system PUC-
ND can contribute to a better understanding of hypothetical queries in deduc-
tive databases as well as to a better implementation of hypothetical reasoning in
deductive databases. As already said, PUC-Logic can express some counterfactu-
als conditionals that can be found in the literature and it may help us to reason
in knowledge bases (deductive databases) without any need to perform revisions
on the base. This seems to be our most promising practical contribution. Any
further application is beyond the scope of the present paper.

In this paper we (1) define the logic PUC-Logic for counterfactuals; (2) dis-
cuss Lewis’ counterfactuals from the unified perspectve of PUC-Logic; (3) define

A Proximity-Based Understanding of Conditionals 125

the natural deduction system PUC-ND for PUC-Logic; (4) show that PUC-ND
is sound and complete with respect to the semantics of PUC-Logic; (5) prove the
normalization theorem for PUC-ND; and (6) we show that PUC-Logic is decid-
able. The paper is organized as follows: in Sect. 2 we present in very general
terms Lewis’ counterfactual analysis. In Sect. 3 we discuss some counterfactual
applications to computer science and the main contribution of the present work
in this area. In Sect. 4 we describe (1) the syntax and semantics of PUC-Logic
and (2) the natural deduction system PUC-ND. In Sect. 6 we prove (i) that the
system PUC-ND is sound and complete for PUC-Logic, (ii) we indicated how to
prove the normalization theorem for PUC-ND, and (iii) we prove the decidability
of PUC-Logic. In Sect. 7 we refer to some related work, and in the final Sect. 8
we present our conclusions and some future work.

2 Lewis’ Counterfactual Analysis

“If kangaroos had no tails, they would topple over, seems to me to mean
something like this: in any possible state-of-affairs in which kangaroos have
no tails, and which resembles our actual state-of-affairs as much as kanga-
roos having no tails permits it to, the kangaroos topple over.” [1]

The expression “resembles” that occurs in the quotation may be seen as a ref-
erence to a concept of similarity between possible state-of-affairs and the actual
state-of-affairs, and the expression “as much as”, that also occurs in the quota-
tion, may be understood as a comparison of similarities among different possible
states-of-affairs and the actual state-of-affairs (even though Lewis himself did not
give any formal definition of similarity in his book [1]). Lewis’ definition for the
basic counterfactual conditional operators is as follows:

– A� B: If it were the case that A, then it would be the case that B;
– A� B: If it were the case that A, then it might be the case that B.
– A � B: It is as possible that A as it is that B.

The comparative possibility operator � was shown to act as a kind of primitive
notion for counterfactuals and, as we shall see later, this operator will simplify
several proofs in the present work. Lewis’ semantical framework is the usual pos-
sible world semantics for intensional logics, with state-of-affairs being treated as
worlds. In order to express the relation of similarity between worlds, he used
some notions of proximity : a world is closer to the actual world in comparison
to other worlds if it is more similar to the actual world than these other consid-
ered worlds. Lewis called the world set to be considered for an evaluation, the
conditional strictness, and pointed out that a counterfactual conditional strict-
ness is based on world similarities. He also showed that counterfactuals can not
be treated by the usual modal operators, because the conditional strictness can
not be given before all evaluations. Lewis constructed examples of connected
sequences of counterfactuals in a single English sentence for which the condi-
tional strictness cannot be given for the evaluation, as in the sentence below:

126 R.Q. de Araujo Fernandes et al.

“If Otto had come, it would have been a lively party, but if both Otto and
Anna had come it would have been a dreary party; but if Waldo had come
as well, it would have been lively; but...”

Counterfactual strictness cannot be defined by the context because this sen-
tence provides a single context for all counterfactual evaluations. If we try to fix
a strictness which makes one counterfactual true, then the next counterfactual
becomes false. Lewis proposed a variable strictness conditional in which different
strictness degrees are given for every world before any counterfactual evaluation.
In order to express this concept, the accessibility relation is defined by a sphere
system which is provided for every world by a nesting function $ which has as
domain a world set W. The nested function attributes a set of non-empty world
sets to each world, and this set of sets is ordered by the inclusion relation. Sphere
systems of any kind are central in most of traditional analysis of counterfactu-
als logics. Given that the systems of spheres are also used in other logics, if we
manage to handle systems of spheres in a satisfactory manner, we will be able
to use our formal system in a broader class of logics. We decided to denote the
spheres by the term neighborhood because it reinforces the connection with the
notion of proximity. In Lewis’ definitions [1], the nesting function is a primitive
notion:

φ� ψ is true at a world i (according to a sphere system $) if and only if
either no φ-world belongs to any sphere S in $i

2, or some sphere S in $i

does contain at least one φ-world and φ → ψ holds at every world in S.

φ � ψ is true at a world i (according to a sphere system $) if and only
if for every sphere S in $i, if S contains any ψ-world, then S contains a
φ-world.

Lewis also provided a set of conditions which may be applied to the nesting
function $. Every combination of these conditions corresponds to a different
counterfactual logic:

– Normality (N): $ is normal iff ∀w ∈ W, $(w) �= ∅;
– Total reflexivity (T): $ is totally reflexive iff ∀w ∈ W, w ∈

⋃
$(w);

– Weak centering (W): $ is weakly centered iff ∀w ∈ W, $(w) �= ∅ and ∀N ∈
$(w), w ∈ N ;

– Centering (C): $ is centered iff ∀w ∈ W, {w} ∈ $(w);
– Limit Assumption (L): $ satisfies the Limit Assumption condition iff for

any world w and any formula φ, if there is some φ-world3 in
⋃

$(w), then
there is some smallest sphere of $(w) which contains a φ-world;

– Stalnaker’s Assumption (A): $ satisfies Stalnaker’s Assumption iff for any
world w and any formula φ, if there is some φ-world in

⋃
$(w), then there is

some sphere of $(w) which contains exactly one φ-world;
2 $i gives the neighborhoods around the world i. They are the available strictness to

evaluate counterfactuals at i.
3 A φ-world is a world in which φ holds.

A Proximity-Based Understanding of Conditionals 127

– Local Uniformity (U-): $ is locally uniform iff for any world w and any
v ∈

⋃
$(w),

⋃
$(w) and

⋃
$(v) are the same;

– Uniformity (U): $ is uniform iff for any worlds w and v,
⋃

$(w) and
⋃

$(v)
are the same;

– Local absoluteness (A-): $ is locally absolute iff for any world w and any
v ∈

⋃
$(w), $(w) and $(v) are the same;

– Absoluteness (A): $ is absolute iff for any worlds w and v, $(w) and $(v)
are the same.

Lewis classified his counterfactual logics on the basis of these conditions on
the $ function. If there is no condition on $, then we have the V -logic, which
is the most basic counterfactual logic presented by Lewis, where “V” stands
for variable strictness conditional. If, for example, we accept the centering con-
dition (C), then we have the V C-logic. Lewis showed in his book a chart of
26 non-equivalent V -logics that arise from combinations of these conditions. We
prefer to call the spheres neighborhoods because this terminology represents more
closely the concept of proximity that Lewis used to express similarity. Neighbor-
hoods provide a relative way to compare distance: the world which is contained
in a neighborhood is closer to the actual world than another world that is not
contained in the same neighborhood. As far as we know, our deductive system
is the only one in the literature which deals with all counterfactual logics con-
sidered by Lewis, starting from the V -logic. In comparison to other approaches,
we avoid using modalities in the syntax to benefit from well-known results from
propositional logic. It is important to emphasize that the notion of closeness is a
topological notion provided by the work of Lewis. The system of spheres is used
to express when a world w is closer to a world v than to a world u. Namely, w
is closer to v than to u if and only if every neighborhood that contains w and v
contains u.

3 A Brief Discussion on the Applications
of Counterfactuals in Computer Science

A counterfactual A � B holds in a given state-of-affairs whenever A is false
in this state-of-affairs and B holds in some of its closest4 state-of-affairs, and
different counterfactual conditionals can be produced depending on the way
“closest” and “some” are defined.

Hypothetical reasoning can be quite useful in computer science and technol-
ogy: knowledge representation, data modelling and agents modelling are good
examples of areas that may require this kind of reasoning. In fact, we find in
these areas the most popular applications of counterfactuals. In this section we
will discuss in more detail one kind of application of this mode of reasoning in
computer science.

4 The notion of closeness or proximity is based on the work of Lewis; it is a topological
notion explained in the end of Sect. 2 and formally defined in Sect. 4.

128 R.Q. de Araujo Fernandes et al.

One of the most popular applications of counterfactual reasoning is in the
area of hypothetical queries answering over a deductive database (DDB). The
expression “hypothetic” query refers here to queries of the form What if John
was not in the city would he go to the meeting? This kind of query is widely used
in scientific practice: for example, [9] describes a very sophisticated application
of hypothetical queries answering over deductive databases in order to discover,
from scientific texts, knowledge correlating the presence of certain proteins to
the Alzheimer disease. In [14], we can find a quite interesting similar application
in business intelligence.

In order to make our discussion more objective, we will compare ordinary and
deductive databases and their respective queries with respect to the potential use
of counterfactuals. Hypothetical queries constitute a key issue for understanding
the difference between databases and deductive databases, A deductive database
is a database which stores a finite set of facts and rules, and from this stock of
information one should be able to derive new facts, i.e., implicit knowledge,
from queries. It can be based on logic programming languages (Prolog, Datalog,
for example) and in these cases it uses negation-as-failure as the only “logical”
negation. The main feature of a DDB is its ability to answer queries of the
kind “what-if.” Besides DDBs that are based on logic programming, we can also
mention DDBs [13,25] that are based on higher-order logic and that do have a
genuine negation. The main difference between databases and DDBs is that the
former can be seen as models and the later cannot.

A relational database B is a tuple 〈B, γ〉. γ is a set of first-order logical
sentences, and B is a finite first-order model of γ, i.e., B |= γ5. The set of
formulas Γ is the integrity constraints of B, in the terminology of databases.
From a logician point of view, a query regarding B can be seen as a formula
α(x1, . . . , xn) with free variables x1, . . . , xn. An answer for this query is a set
s of tuples (b1, . . . , bn), bi ∈ B, i = 1, n, such that, B |= α(b1, . . . , bn)6. In the
relational model, queries are first-order formulas, with some restrictions to ensure
safeness, which is a discussion out of this article scope. Queries answering may
represent the derivation of new facts from the database. This is a consequence of
the fact that an ordinary database is essentially a first-order logic model and the
queries represent relations/concepts defined using formulas with free-variables
in the first-order language of the model. The answering set of a query/formula
is the set of tuples for which the query/formula holds. It should be noted that
Γ is used only when some updating (changing) in B is necessary. Any evolution
of B in time has to satisfy Γ . There is no feasible room inside this approach
to perform hypothetical reasoning. A deductive database, for the purposes of
the level of the present discussion, is a database system that it is able to make
deductions from its facts and rules. In a certain sense it is similar to a logic
program or to a knowledge base.

5 This definition of database which includes a first-order model B and not only the
integrity constraints is similar to the definition of a relational database in [17].

6 α(b1, . . . , bn) is an abuse of notation; it means that bi is assigned to xi by means of
some assignment function.

A Proximity-Based Understanding of Conditionals 129

Let us consider a DDB that represents knowledge on hazard assessment on
chemical research laboratories. This could be modelled by having actions that
must be taken in a laboratory organized according risks, safeness and so on.
Examples of such actions are “clean air”, “exhaust chemicals”, “wash cabinet”,
“control spilling, and etc. The predicate Must(someaction) is used to infer which
action(s) has(have) to be taken. Consider a what-if question such as: “What if
glassware breaks during the reaction?” A way to implement this what-if question
as a (hypothetical) query in the DDB is to obtain the answering set for P � Q,
where P is “glassware breaks” and Q be “Must(x)”, i.e., “what-if” query is
mapped into a hypothetical query of the form P � Q. In this case, the query
could derive Must(controlspilling) providing “control spilling” as the answering
set for the query. Notice that the use of a counterfactual conditional is important,
for P is not derivable/provable from the knowledge base B of the DDB - it is
in general false. Seminal work on this are [4,26]. As a matter of comparison, let
us consider an implementation of this hypothetical query that uses the classical
material implication.

It takes knowledge to update, and revision to remove inconsistencies. Given
that P is not derivable from B, we have two possibilities: either ¬P is not deriv-
able from B too, or ¬P is derivable from B. The first alternative is simpler than
the second in the attempt to answer the conditional query. Using the material
implication we assert p in B and try to derive q. This case is performed in a
consistent B. The second alternative involves fixing the inconsistent knowledge
base B∪{P}. [6] is one of the first works to describe the operations which can be
applied in the knowledge base to remove facts from it and consistently allow a
(possible) derivation of Q. The operations described by [6] suggests to deal with
counterfactual reasoning that uses material implication and involves removing
and updating operations in the knowledge base. It is known as the logic program-
ming approach to deductive and hypothetical databases. A logic programming
mechanism supporting hypothetical updates together with integrity constraints
is the kernel of this approach. It allows updating using sets of atom, and it
uses a kind of revision method to recover consistency whenever some integrity
constraint is violated. Negation as failure is well-known to be the only negation
in logic programming. Thus inside logic programming, when we have a query
P → Q and neither P nor ¬P are derivable, the first alternative plus negation
as failure implies that ¬P is derivable from B. Thus, both cases involve updat-
ing the knowledge base. Summing up, if P is derivable, then we must perform
updates and if P is not derivable, then we must also perform updates in the
DDBs.

Given the main differences between databases and DDBs, one can see how
the research on the implementation of a logic capable to express counterfactual
reasoning is important for the fields of deductive databases and artificial intel-
ligence in general. Consider we have to deal with big deductive databases (or
knowledge bases). In this case, the recovery of a consistent set of facts/rules after
sequences of updates can be a very hard computational task; we just have to

130 R.Q. de Araujo Fernandes et al.

remember that this task involves testing for tautological consequence, which is
a very expensive computational task.

One of the main practical PUC-Logic contributions is to make it possible
to deal with counterfactual queries and updates in a purely logical way. The
fact that PUC-Logic is decidable logic and that PUC-ND satisfies good proof-
theoretical properties clearly indicate that one should try to implement a coun-
terfactual language for hypothetical deductive databases.

Finally, we would like to mention that there is a vast literature on the use
of counterfactuals in modeling agents in a multi-agent system. They are used
to represent (counterfactual) knowledge as well as counterfactual emotions and
morality (see [21]).

4 A Proximity-Based Understanding of Conditionals

In [15] we presented a sequent calculus for counterfactual logic based on Local
Set Theory [3]. In the present work, we avoid the direct use of counterfactual
operators in the inference system. We introduce labels7 in our language to syn-
tactically represent quantifications over two specific domains: neighborhoods and
world and, for this reason a label may be a neighborhood label or a world label.
For example, the (labeled) formula A�,•, where A is a propositional variable,
means that there is some neighborhood of the current state-of-affairs such that in
every world in this neighborhood A holds. The label • quantifies over neighbor-
hoods and the label � quantifies over worlds in this neighborhood. Definition 13
formalizes the semantics of any (labeled) formula. This type of semantics is
called sphere semantics in the literature on conditionals. We take Lewis [1] as
our main reference for the kind of sphere semantics we propose for PUC-Logic.
The main contribution of PUC-Logic is its ability to express sphere semantics
as defined in Definition 13. PUC-Logic defines the many counterfactual condi-
tionals considered in [1]. Our goal is to perform logic programming using con-
ditional counterfactuals. To obtain such logic programming approach, we define
a deductive system for PUC-Logic. PUC-ND is a Natural Deduction deductive
system. It plays the role of an inference system which deals with quantifica-
tion of worlds and neighborhoods using an interplay between formula labels and
inference contexts. These quantifications appear in every definition of counter-
factual operators given by Lewis [1]. In our approach, counterfactual operators
become syntactic sugar of the inference system. As it will be shown, it is nec-
essary to introduce the total order of set inclusion among neighborhoods in the
inference system, because the inclusion relation has an impact on semantics. The
use of labels is essential for obtaining a Natural Deduction with so nice proof-
theoretical properties such as normalization of proofs and sub-formula property.
The later being important regarding the implementation of counterfactuals in
an automatic theorem prover to be built.
7 We are going to use labels in the spirit of labelled deductive systems, as it is used by

Gabbay and Negri. Labels help us to push down semantic notions into the syntax
(see, for example, [22]).

A Proximity-Based Understanding of Conditionals 131

Definition 1. Given a non-empty set W that will be taken as the world set, we
define a nesting function $ which assigns to each world in W a set of nested
subsets of W. A set of nested sets is a set of sets in which the inclusion relation
among sets is a total order.

Definition 2. A frame is a tuple F = 〈W, $,V〉 where V is a (truth assignment)
function that assigns to each atomic formula a subset of W. A model is a pair
M = 〈F , χ〉, where F is a frame and χ a world in W, called the reference world
of the model. A template is a pair T = 〈M, N〉, where N ∈ $(χ). N is called the
reference neighborhood of the template.

Intead of the notion of template, we could have used two types of models: one
for worlds and another for neighborhoods. In the sequel, whenever we present the
components of models and templates, we will use the notations M = 〈W, $,V, χ〉
and T = 〈W, $,V, χ,N〉 for models and templates respectively. We shall use the
term structure as a general term to refer to models and templates.

Definition 3. A structure is finite iff its world set is finite.

We now define a relation between structures in order to represent the perti-
nence of neighborhoods to a neighborhood system of a world and the pertinence
of worlds to a given neighborhood.

Definition 4. Given a model M = 〈W, $,V, χ〉, then for any N ∈ $(χ), the
template T = 〈W, $,V, χ,N〉 is in perspective relation to M. We represent this
by M � T . Given a template T = 〈W, $,V, χ,N〉, then, for any w ∈ N , the
model M = 〈W, $,V, w〉 is in perspective relation to T . We represent this by
T � M.

As the nesting function evaluation may be different for different worlds, each
world may produce different conclusions. For this reason we use the term per-
spective to denote the relation between structures (models and templates), if
they are connected by the local evaluation of the nesting function.

Definition 5. The concatenation of n cases of the perspective relation is called
a path of size n and is represented by the symbol �n. We consider �0 as the
identity.

Remark: if the size of a path is even, then a model is related to another model
or a template is related to another template.

Definition 6. The transitive closure of the perspective relation is called projec-
tive relation, which is represented by the symbol �.

Definition 7. Given a world χ and the nested neighborhood function $, we can
build the following sequence of world sets:
1.

�$
0(χ) = {χ}; 2.

�$
k+1(χ) =

⋃
w∈�$

k(χ)(
⋃

$(w)), k ≥ 0.

132 R.Q. de Araujo Fernandes et al.

Let
̂$�

n

(χ) =
⋃

0≤m≤n

$�

m

(χ)

and
$�

(χ) =
⋃

n∈N

̂$�

n

(χ).

By definition, we may notice that

$�
(χ) = {w ∈ W | 〈W, $,V, χ〉 � 〈W, $,V, w〉}.

We now introduce labels in our language in order to syntactically represent
quantifications over two specific domains: neighborhoods and worlds. We have
labels of two types: neighborhood labels or a world labels. We denote the set of
neighborhood labels by Ln and the set of world labels by Lw. We use the term
ns as an abbreviation for the term neighborhood system.

– Neighborhood labels:
(�) Universal quantifier over neighborhoods of some ns;
(�) Existential quantifier over neighborhoods of some ns;
(N) Variables (capital letters) which denote some neighborhood of some ns.

– World labels:
(∗) Universal quantifier over worlds of some neighborhood;
(•) Existential quantifier over worlds of some neighborhood;
(u) Variables (lower case) which denote some world of some neighborhood.

Definition 8. The language of PUC-Logic consists of:

– countably many neighborhood variables: N,M,L, . . .;
– countably many world variables: w, z, . . .;
– countably many propositional symbols: p0, p1, . . .;
– countably many propositional constants: ↑ N, ↓ N, ↑ M, ↓ M, . . .;
– the propositions �n, ⊥n, �w, ⊥w;
– connectives: ∧,∨,→,¬;
– neighborhood labels: �,�;
– world labels: ∗, •;
– auxiliary symbols: (,).

As in the case of labels, we want to separate the set of well-formed formulas
into two disjoint sets, according to the type of label attached to the formula. We
denote the set of neighborhood formulas by Fn and the set of world formulas
by Fw.

A Proximity-Based Understanding of Conditionals 133

Definition 9. The sets Fn and Fw of well-formed formulas8 are constructed by:

1. �n,⊥n ∈ Fn;
2. �w,⊥w ∈ Fw;
3. α ∈ Fn, for every propositional symbol α;
4. ↑ N, ↓ N ∈ Fw, for every neighborhood variable N ;
5. if α ∈ Fn, then ¬α ∈ Fn;
6. if α ∈ Fw, then ¬α ∈ Fw;
7. if α, β ∈ Fn, then α ∧ β, α ∨ β, α → β ∈ Fn;
8. if α, β ∈ Fw, then α ∧ β, α ∨ β, α → β ∈ Fw;
9. if α ∈ Fn and φ ∈ Lw, then αφ ∈ Fw;

10. if α ∈ Fw and φ ∈ Ln, then αφ ∈ Fn.

We introduced two different formulas for true and false, one pair of true and
false formulas for the set Fw and another pair for the set Fn. This is intended
to make Fw and Fn disjoint sets of formulas. The formula ↑ N is introduced to
represent a neighborhood which contains the neighborhood N and the formula
↓ N represents a neighborhood which is contained in N . The last two rules
of Definition 9 introduce the labeled formulas. Moreover, since we can label a
labeled formula, every formula has a stack of labels which represents nested
labels. We call it the attribute of the formula. The top label of the stack is the
index of the formula. We represent a formula attribute as a letter which appears
to the right of the formula. If the attribute is empty, we may omit it, and the
formula has no index. The attribute of some formula will always be empty if the
last rule used to build the formula is not one of the labeling rules, as in the case of
((α → α)�,•)∨(γ�,∗). In order to read a labeled formula, it is necessary to read its
index first and then the rest of the formula. For example, (α → α)�,• should be
read as there is some world, in all neighborhoods of the considered neighborhood
system, in which it is the case α → α. We may concatenate stacks of labels and
labels using commas to produce a stack of labels which is obtained by respecting
the order of the labels in the stacks and the order of the concatenation, like
αΣ,Δ, where α is a formula, and Σ and Δ are stacks of labels. But we admit no
nesting of attributes and this means that (αΣ)Δ is the same as αΣ,Δ.

Definition 10. Given a stack of labels Σ, we define Σ to be the stack of labels
which is obtained from Σ by reversing the order of the labels in the stack.

Definition 11. Given a stack of labels Σ, its size s(Σ) is the number of labels
in Σ.

Definition 12. Given a world set W, a set of world variables and a set of neigh-
borhood variables, an assignment-function σ is a function that assigns a world
in W to each world variable, and a non-empty set of W to each neighborhood
variable.

8 We use the term wff to denote both the singular and the plural form of the expression
well-formed formula.

134 R.Q. de Araujo Fernandes et al.

Definition 13. Given an assignment-function σ, the relation |= of satisfaction
between formulas, models and templates is given by:

1. If α is atomic, 〈W, $,V, χ〉 |= α iff: χ ∈ V(α).
2. For every world w ∈ W, w ∈ V(�n) and w �∈ V(⊥n);
3. 〈W, $,V, χ〉 |= ¬ (αΣ) iff: ¬ (αΣ) ∈ Fn and 〈W, $,V, χ〉 �|= αΣ;
4. 〈W, $,V, χ〉 |= αΣ ∧ βΩ iff: αΣ ∧ βΩ ∈ Fn and

(〈W, $,V, χ〉 |= αΣ and 〈W, $,V, χ〉 |= βΩ;
5. 〈W, $,V, χ〉 |= αΣ ∨ βΩ) iff: αΣ ∨ βΩ ∈ Fn and

(〈W, $,V, χ〉 |= αΣ or 〈W, $,V, χ〉 |= βΩ);
6. 〈W, $,V, χ〉 |= αΣ → βΩ iff: αΣ → βΩ ∈ Fn and

(〈W, $,V, χ〉 |= ¬(αΣ) or 〈W, $,V, χ〉 |= βΩ);
7. 〈W, $,V, χ〉 |= αΣ,� iff: ∀N ∈ $(χ) : 〈W, $,V, χ,N〉 |= αΣ;
8. 〈W, $,V, χ〉 |= αΣ,� iff: ∃N ∈ $(χ) : 〈W, $,V, χ,N〉 |= αΣ;
9. 〈W, $,V, χ〉 |= αΣ,N iff: 〈W, $,V, χ, σ(N)〉 |= αΣ;

10. 〈W, $,V, χ,N〉 |=↑ M iff: σ(M) ∈ $(χ) and σ(M) ⊂ N ;
11. 〈W, $,V, χ,N〉 |=↓ M iff: σ(M) ∈ $(χ) and N ⊂ σ(M);
12. 〈W, $,V, χ,N〉 |= αΣ,∗ iff: ∀w ∈ N : 〈W, $,V, w〉 |= αΣ;
13. 〈W, $,V, χ,N〉 |= αΣ,• iff: ∃w ∈ N : 〈W, $,V, w〉 |= αΣ;
14. 〈W, $,V, χ,N〉 |= αΣ,u iff: σ(u) ∈ N and 〈W, $,V, σ(u)〉 |= αΣ;
15. 〈W, $,V, χ,N〉 |= ¬ (αΣ) iff: ¬ (αΣ) ∈ Fw and 〈W, $,V, χ,N〉 �|= αΣ;
16. 〈W, $,V, χ,N〉 |= αΣ ∧ βΩ iff: αΣ ∧ βΩ ∈ Fw and

(〈W, $,V, χ,N〉 |= αΣ and 〈W, $,V, χ,N〉 |= βΩ);
17. 〈W, $,V, χ,N〉 |= αΣ ∨ βΩ iff: αΣ ∨ βΩ ∈ Fw and

(〈W, $,V, χ,N〉 |= αΣ or 〈W, $,V, χ,N〉 |= βΩ);
18. 〈W, $,V, χ,N〉 |= αΣ → βΩ iff: αΣ → βΩ ∈ Fw and

(〈W, $,V, χ,N〉 |= ¬(αΣ) or 〈W, $,V, χ,N〉 |= βΩ);
19. 〈W, $,V, χ,N〉 |= �w and 〈W, $,V, χ,N〉 �|= ⊥w, for every template.

The relation of satisfaction will also be used between models, templates and
sets of formulas.

Definition 14. Given Γ ∈ Fn and a model M, M |= Γ iff M satisfies every
formula of Γ . Likewise for templates and subsets of Fw and templates.

Definition 15. Given αΣ , βΩ ∈ Fn, we say the relation of logical consequence
αΣ |= βΩ holds iff M |= αΣ implies M |= βΩ, for any model M. Likewise for
αΣ , βΩ ∈ Fw and templates.

The relation of logical consequence will also be used between formulas and
sets of formulas.

Definition 16. Given Γ ∪ {αΣ} ⊂ Fn, the relation Γ |= αΣ is defined iff for
any model M, M |= Γ implies M |= αΣ. Likewise for subsets of Fw.

Definition 17. αΣ ∈ Fn is a n-tautology iff M |= αΣ, for every model M.
αΣ ∈ Fw is a w-tautology iff T |= αΣ, for every template T .

A Proximity-Based Understanding of Conditionals 135

Lemma 1. αΣ is a n-tautology iff αΣ,∗,� is a n-tautology.

Proof. If αΣ is a n-tautology, ∀z ∈ W, 〈W, $,V, z〉 |= αΣ . In particular, given
a world χ ∈ W, ∀N ∈ $(χ) : ∀w ∈ N : 〈W, $,V, w〉 |= αΣ and, by definition,
〈W, $,V, χ〉 |= αΣ,∗,� for every world of W and αΣ,∗,� is also a n-tautology.
Conversely, if αΣ,∗,� is a n-tautology, then ∀N ∈ $(χ) : ∀w ∈ N : 〈W, $,V, w〉 |=
αΣ for every choice of W, $, V and w. So, given W, V and w, we can choose $
to be the constant function {W}. So, ∀z ∈ W, 〈W, $,V, z〉 |= αΣ and αΣ must
also be a n-tautology.

The relation defined below is motivated by the fact that, if a model M
satisfies a formula like α�,∗, then for every template T such that M � T , T
satisfies α� by definition. In the same way we have that for every model H such
that M �2 H, H satisfies α by definition.

Definition 18. Given a model M, called the reference model, the relation of
referential consequence αΣ |=M:i βΩ is defined iff M |= αΣ implies H |= βΩ,
for any structure M �i H.

We will also use the referential consequence between formulas and sets of
formulas.

Definition 19. Given Γ ∪{αΣ} ⊂ Fn, Γ |=M:i αΣ iff M |= Γ implies H |= αΣ,
for any structure M �i H which H |= Γ .

We shall now start the definition of the natural deduction system PUC-ND
for PUC-Logic. Every PUC-ND rule has a stack of labels, called its context.
The scope is represented by a Greek capital letter at the right of each rule. The
scope of a rule is the top label of its context. Given a context Δ, we denote
its scope by !Δ. If the context is empty, then there is no scope. As in the case
of labels and formulas, we want to separate the contexts into two disjoint sets:
Δ ∈ Cn if !Δ ∈ Ln; Δ ∈ Cw if Δ is empty or !Δ ∈ Lw. The rules are numbered
from 1 to 30. In some rules, we have scopes, namely the Greek capital letter
on the right side of the inference bar. It is worth observing that PUC-ND is
clearly not a logic programming inference system, but it is just an inferential
basis for the development of a logic programming language. The rules in Fig. 1
constitute the Natural System PUC-ND and the restrictions imposed on the
application of each rule are explicitly presented. The last inference bar of each
rule separates premises and deductions of premises from the conclusion. As in
traditional natural deduction systems, each connective in PUC-ND has a set of
introduction and elimination rules. The other rules in PUC-ND concerns the
manipulation of labels in a logically based way. The formulas have contexts,
which are stacks of labels, while inference rules have only scopes, which are only
labels, instead of stacks. In fact, the scope is the topmost label.

136 R.Q. de Araujo Fernandes et al.

Fig. 1. Natural deduction system for PUC-Logic (PUC-ND)

A Proximity-Based Understanding of Conditionals 137

Definition 20. We say a wff αΣ fits in a context Δ iff αΣ,Δ ∈ Fn.

The wff α• → β• and γu,�,∗ fit in the context {�}, because (α• → β•)� ∈ Fn

and γu,�,∗,� ∈ Fn. The wff α• ∨ β∗ and γ∗,N,u do not fit in the context {�, ∗},
because (α• ∨ β∗)∗,� and γ∗,N,u,∗,� are not wff and therefore cannot be in Fn.
There is no wff which fits in the context {∗}, because the label ∗ ∈ Lw and the
rule of labeling can only include the resulting formula into Fw. We can conclude
that if a wff is in Fn, then the context must be in Cw (the same holds for Fw

and Cn). The fit restriction ensures that the conclusion of a rule is always a wff.
Moreover, the definition of fit resembles the attribute grammar approach for
context free languages [5]. This is the main reason to name the stack of labels
of a formula as the attribute of the formula. We present below the names of the
inference rules of PUC-ND and their respective restrictions.

1. ∧-elimination: (a) αΣ and βΩ must fit in the context; (b) Δ has no exis-
tential quantifier; The existential quantifier is excluded to make it possible
to distribute the context over the ∧ operator, what is shown in Lemma 8.

2. ∧-elimination: (a) αΣ and βΩ must fit in the context; (b) Δ has no exis-
tential quantifier; The existential quantifier is excluded to make it possible
to distribute the context over the ∧ operator, what is shown in Lemma 8.

3. ∧-introduction: (a) αΣ and βΩ must fit in the context; (b) Δ has no exis-
tential quantifier; The existential quantifier is excluded because the existence
of some world (or neighborhood) in which some wff A holds and the exis-
tence of some world in which B holds do not implies there is some world in
which A and B holds.

4. ∨-introduction: (a) αΣ and βΩ must fit in the context; (b) Δ has no
universal quantifier; The universal quantifier is excluded to make it possible
to distribute the context over the ∨ operator, what is shown in Lemma 8.

5. ∨-elimination: (a) αΣ and βΩ must fit in the context Δ; (b) Δ has no
universal quantifier; The universal quantifier is excluded because of the fact
that for all worlds (or neighborhoods) A ∨ B holds does not implies for all
worlds A holds or for all worlds B holds.

6. ∨-introduction: (a) αΣ and βΩ must fit in the context; (b) Δ has no
universal quantifier;
The universal quantifier is excluded to make it possible to distribute the
context over the ∨ operator, what is shown in Lemma 8.

7. ⊥-classical: (a) αΣ and ⊥ must fit in the context;
8. ⊥-intuitionistic: (a) αΣ and ⊥ must fit in the context;
9. absurd expansion: (a) Δ must have no occurrence of �; (b) ⊥ must fit in

the context; (c) Δ must be non empty.
The symbol ⊥ is used to denote a formula that may only be ⊥n or ⊥w.
In the occurrence of �, we admit the possibility of an empty neighborhood
system. In that context, the absurd does not mean that we actually reach
an absurd in our world. Δ must be non empty to avoid unnecessary detours,
like the conclusion of ⊥n from ⊥n in the empty context;

138 R.Q. de Araujo Fernandes et al.

10. hypothesis-injection: (a) αΣ must fit in the context.
This rule permits a change of scope before any formula change. It also avoids
combinatorial definitions of rules with hypothesis and formulas inside a given
context;

11. →-introduction: (a) αΣ and βΩ must fit in the context;
12. →-elimination (modus ponens): (a) αΣ and βΩ must fit in the context;

(b) Δ has no existential quantifier; (c) the premises may be in reverse order;
The existential quantifier is excluded because the existence of some world
(or neighborhood) in which some wff A holds and the existence of some
world in which A → B holds do not implies there is some world in which B
holds.

13. context-introduction: (a) αΣ,φ and αΣ must fit in their contexts;
14. context-elimination: (a) αΣ,φ and αΣ must fit in their contexts;
15. world universal introduction: (a) αΣ must fit in the context; (b) u must

not occur in any hypothesis on which αΣ depends; (c) u must not occur in
the context of any hypothesis on which αΣ depends;

16. world universal elimination: (a) αΣ must fit in the context; (b) u must
not occur in αΣ or Δ;

17. world existential introduction: (a) αΣ must fit into the context;
18. world existential elimination: (a) the formula αΣ must fit in the context;

(b) u must not occur in αΣ , Δ, Θ or any open hypothesis on which βΩ

depends; (c) u must not occur in the context of any open hypothesis on
which βΩ depends; (d) the premises may be in reverse order;

19. neighborhood existential introduction: (a) αΣ must fit in the context;
(b) the premises may be in reverse order;

20. neighborhood existential elimination: (a) the formula αΣ must fit in
the context; (b) N must not occur in αΣ , Δ, Θ or any open hypothesis
on which βΩ depends; (c) N must not occur in the context of any open
hypothesis on which βΩ depends; (d) the premises may be in reverse order;

21. neighborhood universal introduction: (a) the formula αΣ must fit into
the contexts; (b) N must not occur in any open hypothesis on which αΣ

depends; (c) N must not occur in the context of any open hypothesis on
which αΣ depends;

22. neighborhood universal wild-card: (a) the formulas αΣ and βΩ must
fit in their contexts; (b) the premises may be in reverse order;
This rule is necessary because a neighborhood system may be empty and
every variable must denote some neighborhood, because of the variable
assignment function σ. The wild-card rule may be seen as a permission
to use some available variable as an instantiation, by making explicit the
choice of the variable.

23. world existential propagation: (a) αΣ,• and ↑ N fit in their contexts;
(b) the premises may be in reverse order;

24. world universal propagation: (a) αΣ,∗ and ↓ N fit in their contexts; (b)
the premises may be in reverse order;

25. transitive neighborhood inclusion: (a) ↑ M and ↑ P fit in their contexts;
(b) the premises may be in reverse order;

A Proximity-Based Understanding of Conditionals 139

26. transitive neighborhood inclusion: (a) ↓ M and ↓ P fit in their contexts;
(b) the premises may be in reverse order;

27. neighborhood total order: (a) ↑ M , ↑ N and αΣ fit in their contexts;
(b) the premises may be in reverse order;

28. neighborhood total order: (a) ↓ M , ↓ N and αΣ fit in their contexts;
(b) the premises may be in reverse order;

29. neighborhood total order: (a) ↑ N , ↓ N and αΣ fit in their contexts. (b)
the premises may be in reverse order;

30. truth acceptance: (a) Δ must have no occurrence of �; (b) � must fit in
the context. The symbol � is used to denote a formula which may only be
�n or �w. If we accepted the occurrence of �, the existence of some neigh-
borhood in every neighborhood system would be necessary and the logic
expressed by PUC-ND should be normal according to Lewis classification
[1]. Δ must be non empty to avoid unnecessary detours, like the conclusion
of �n from �n in the empty context.

We present below an example of a proof in PUC-ND. If there is some neigh-
borhood which has some βΩ-world but no αΣ-world, then, for all neighborhoods,
having some αΣ-world implies having some βΩ-world. The reason is the total
order for the inclusion relation among neighborhoods.

4[(¬(αΣ))∗ ∧ βΩ,•)�]

(¬(αΣ))∗ ∧ βΩ,•)�
�

(¬(αΣ))∗ ∧ βΩ,•

3[(¬(αΣ))∗ ∧ βΩ,•]
N

Π

(αΣ,• → βΩ,•)�
3

(αΣ,• → βΩ,•)�
4

((¬(αΣ))∗ ∧ βΩ,•)� → (αΣ,• → βΩ,•)�

(¬(αΣ))∗ ∧ βΩ,•
N

(¬(αΣ))∗ ∧ βΩ,•
N

βΩ,•

2[↑ N]
M↑ N

M
βΩ,•

M
αΣ,• → βΩ,•

(¬(αΣ))∗ ∧ βΩ,•
N

(¬(αΣ))∗ ∧ βΩ,•
N

(¬(αΣ))∗

2[↓ N]
M↓ N

M
(¬(αΣ))∗

M, ∗
¬(αΣ)

M, u
¬(αΣ)

1[αΣ,•]
M

αΣ,•
M, •

αΣ

M, u
αΣ

M, u⊥
M, u

βΩ

M, •
βΩ

M
βΩ,•

1 M
αΣ,• → βΩ,•

2 M
αΣ,• → βΩ,•

�
αΣ,• → βΩ,•

Π
(αΣ,• → βΩ,•)�

Lemma 2. If Δ ∈ Cn, then s(Δ) is odd. If Δ ∈ Cw, then s(Δ) is even.

140 R.Q. de Araujo Fernandes et al.

Proof. By definition, if Δ is empty, then Δ ∈ Cw and s(Δ) is even. According
to the PUC-ND rules, if Δ is empty, then {Δ,φ} ∈ Cn and s(Δ) is odd. We
conclude that changing the context from Cw to Cn and vice-versa always involves
adding or subtracting one to the label size. As the empty context belongs to Cw,
the even sizes are only for contexts in Cw.

5 Some PUC-Logic Properties

The proofs of soundness and completeness for PUC-Logic are given in [23]. In
this section we give a sort of road map for these proofs. In the case of soundness,
we prove that PUC-ND derivations preserve the relation of resolution, which
generalizes the satisfiability relation.

Definition 21. Given a model M, a context Δ and a wff αΣ, the relation of
resolution M |=Δ αΣ holds iff αΣ fits in the context Δ and M |= αΣ,Δ. Given
Γ ⊂ Fn or Γ ⊂ Fw, then M |=Δ Γ if the resolution relation holds for every
formula of Γ .

Lemma 3. Given a model M = 〈W, $,V, χ〉, if M |=Δ αΣ and αΣ |=M:s(Δ)

βΩ, then M |=Δ βΩ.

Lemma 4. Given a model M = 〈W, $,V, χ〉, if M |=Δ αΣ and αΣ |= βΩ, then
M |=Δ βΩ.

Lemma 5. Given a context Δ without universal quantifiers, if αΣ,Δ ∨ βΩ,Δ is
wff, then αΣ,Δ ∨ βΩ,Δ ≡ (αΣ ∨ βΩ)Δ.

Lemma 6. Given a context Δ without existential quantifiers, if αΣ,Δ ∧βΩ,Δ is
wff, then αΣ,Δ ∧ βΩ,Δ ≡ (αΣ ∧ βΩ)Δ.

Lemma 7. Given a context Δ without existential quantifiers, if (αΣ → βΩ)Δ

is wff, then it implies αΣ,Δ → βΩ,Δ.

Lemma 8. PUC-ND without the rules 5, 7, 11, 18, 20, 27, 28 and 29 preserves
resolution.

Lemma 9. Given a context Δ with no existential label, and a wff αΣ which fits
on Δ, then, for any model, M |=Δ αΣ ∨ ¬(αΣ).

Lemma 10. The rules of PUC-ND preserves resolution.

Definition 22. Given the formulas αΣ and βΩ, the relation of derivability
αΣ �Δ

Θ βΩ holds iff there is a derivation with conclusion βΩ in the context
Θ such that the only open assumption in this derivation is αΣ in the context Δ.
If Γ ⊂ Fn or Γ ⊂ Fw, the relation Γ �Δ

Θ αΣ of derivability is defined iff there is
a derivation with conclusion αΣ in the context Θ such that the open assumptions
of this derivations are formulas of Γ in the context Δ.

A Proximity-Based Understanding of Conditionals 141

Definition 23. αΣ is a theorem iff � αΣ.

Theorem 1. Γ � αΣ implies Γ |= αΣ (Soundness).

Proof. The fit restriction on PUC-ND rules ensures αΣ ∈ Fn, because it appears
in the empty context. The same conclusion follows for every formula in Γ . The
derivability assures there is a derivation with conclusion αΣ whose open hypoth-
esis form a subset of Γ , which we call Γ ′. If we take a model M which satisfies
every formula of Γ , then it also satisfies every formula of Γ ′. So, M |= γΘ,
for every γΘ ∈ Γ ′. But this means, by definition, for every wff of Γ ′, the res-
olution relation holds with the empty context. Then, from Lemma10 we know
M |= αΣ . So, every model which satisfies every formula of Γ , satisfies αΣ and,
by definition, Γ |= αΣ .

In order to prove the converse implication, we use the strategy of maximal
consistent sets to prove completeness for the fragment {∧,→, •,�,�} of the
language. The label � is not definable from � and vice-versa, because the logic
for neighborhoods is a free logic [18]. For the completeness proof we will restrict
the formulas to sentences.

Definition 24. Given αΣ ∈ Fn, if αΣ has no variables in the attributes of its
subformulas, nor any subformula of the shape ↑ N or ↓ N , then αΣ ∈ Sn. By
analogy, we can construct Sw from Fw.

Definition 25. Given Γ ⊂ Sn (Γ ⊂ Sw), we say Γ is n-inconsistent (w-
inconsistent) iff Γ � ⊥n (Γ �N

N ⊥w, where N is a neighborhood variable which
does not occur in Γ) and n-consistent (w-consistent) if Γ �� ⊥n (Γ ��N

N ⊥w).

Lemma 11. Given Γ ⊂ Sn (Γ ⊂ Sw), the three conditions are equivalent:

1. Γ is n-inconsistent;
2. Γ � φΘ, for any formula φΘ which fits into the empty context;
3. There is at least a formula φΘ, such that Γ � φΘ and Γ � φΘ → ⊥n.

Lemma 12. Given Γ ⊂ Sn (Γ ⊂ Sw), if there is a model (template) which
satisfies every formula of Γ , then Γ is n-consistent (w-consistent).

Lemma 13. Given Γ ⊂ Sn: 1. If Γ ∪ {φΘ → ⊥n} � ⊥n, then Γ � φΘ; 2. If
Γ ∪ {φΘ} � ⊥n, then Γ � φΘ → ⊥n. Likewise for Γ ⊂ Sw.

Lemma 14. Sn and Sw are denumerable.

Definition 26. A set Γ ⊂ Sn (Γ ⊂ Sw) is maximally n-consistent (maximally
w-consistent) iff Γ is n-consistent (w-consistent) and it cannot be a proper subset
of any other n-consistent (w-consistent) set.

Lemma 15. Every n-consistent (w-consistent) set is subset of a maximally n-
consistent (w-consistent) set.

142 R.Q. de Araujo Fernandes et al.

Lemma 16. If Γ is maximally n-consistent (w-consistent) set, then Γ is closed
under derivability.

Lemma 17. If Γ is maximally n-consistent (w-consistent), then:

(a) For all ϕΘ ∈ Sn (∈ Sw), either ϕΘ ∈ Γ or ϕΘ → ⊥n ∈ Γ (ϕΘ → ⊥w);
(b) For all ϕΘ, ψΥ ∈ Sn (∈ Sw), ϕΘ → ψΥ ∈ Γ iff ϕΘ ∈ Γ implies ψΥ ∈ Γ .

Corollary 1. If Γ is maximally n-consistent (w-consistent), then ϕΘ ∈ Γ iff
ϕΘ → ⊥n �∈ Γ .

Definition 27. Given the maximally n-consistent set Γ ⊂ Sn and the maxi-
mally w-consistent set Λ ⊂ Sw, we say Γ accepts Λ (Γ ∝ Λ) if αΣ ∈ Λ implies
αΣ,� ∈ Γ . If αΣ ∈ Γ implies αΣ,• ∈ Λ, then Λ ∝ Γ .

Definition 28. Given maximally w-consistent sets Γ and Λ, we say Γ subordi-
nates Λ (Λ � Γ) iff αΣ,• ∈ Λ implies αΣ,• ∈ Γ and αΣ,∗ ∈ Γ implies αΣ,∗ ∈ Λ.

Lemma 18. If Γ is n-consistent, then there is a model M, such that M |= αΣ,
for every αΣ ∈ Γ .

Corollary 2. Γ �� αΣ iff there is a model M, such that M |= φΘ, for every
φΘ ∈ Γ , and M �|= αΣ.

Theorem 2. Γ |= αΣ implies Γ � αΣ (Completeness).

Proof. Γ �� αΣ implies Γ �|= αΣ , by the Corollary 2 and the logical consequence
definition.

The proof of the normalization theorem for PUC-ND is based on the standard
strategy employed in the case of classical propositional logic. In the case of
maximum formulas in derivations with fixed contexts, we can use Prawitz [7]
strategy to reduce applications of the classical absurd to atomic conclusions. In
order to prove this result we must, as in [7], work with the fragment L− which
omits the operator ∨. After this preparatory result, we present the reductions for
the remaining rules. We will follow the normalization algorithm proposed by van
Dalen: given a derivation Π, we start from a subderivation Π ′ of Π which ends
with an application of an elimination rule whose major premiss is a maximum
formula of maximal rank and such that no maximum formula of maximal rank
occurrs above it or above a formula side-connected with it.

Lemma 19. Let Π be a derivation such that the only rules that occur in Π are
the rules from 1 to 8 and from 10 to 12. Then, Π is normalizable.

Proof. The system restricted to these rules can be seen as a natural deduction
system for classical propositional logic, since the context is fixed and the formulas
with labels are treated like atomic formulas. As we said above, we follow here
Prawitz’s strategy [7]. We present the ∧-reductions and the →-reduction in the
case of fixed context and labels:

A Proximity-Based Understanding of Conditionals 143

Π1
Δα

Π2
Δ

β
Δ

α ∧ β
Δα

Δ
Π3

�
Π1

Δα
Δ

Π3

Π1
Δα

Π2
Δ

β
Δ

α ∧ β
Δ

β
Δ

Π3

�

Π2
Δ

β
Δ

Π3

Π1
Δα

[α]
Δ

Π2
Δ

β
Δ

α → β
Δ

β
Δ

Π3

�

Π1
Δα
Δ

Π2
Δ

β
Δ

Π3

We first show that every application of the classical can be restricted to
atomic conclusions. We introduce transformations on the derivation shown in
the left according to the main logical operator of γ. We only present the trans-
formation for ∧ (see [7] for further details).

[¬γ]
Δ

Π1
Δ⊥
Δγ
Δ

Π2

1[α ∧ β]
Δα 2[¬α]

Δ⊥
1 Δ

[¬(α ∧ β)]
Δ

Π1
Δ⊥

2 Δα

3[α ∧ β]
Δα 4[¬β]

Δ⊥
3 Δ

[¬(α ∧ β)]
Δ

Π1
Δ⊥

4 Δ
β

Δ
α ∧ β

Δ
Π2

Lemma 20. Given a derivation Π, if we exchange every occurrence of a world
variable u in Π by a world variable w which does not occur in Π, then the
resulting derivation, which we represent by Π(u | w), is also a derivation.

Proof. By induction on the number of formula occurrences in Π.

Besides maximum formulas, derivations in PUC-ND may contain detours.

Definition 29. A detour in a derivation Π is any subderivation of Π that has a
formula in one context as hypothesis and which concludes with the same formula
in the same context.

Theorem 3. Every derivation in PUC-ND is normalizable.

Proof. We present the argument for the remaining rules. An application of rule
9 cannot produce maximum formulas, but it may produce detours, if we use
it together with the rules 7 and 8, because the subderivation (Π2 below) does
not discharge any hypothesis of the upper subderivation (Π1 below). But such
detours may be replaced by an application of rule 8 as shown below:

144 R.Q. de Araujo Fernandes et al.

Π1
Δ⊥rule 9: ⊥n

Π2
Δ⊥rule 8: Δ

βΩ

Δ
Π3

�

Π1
Δ⊥rule 8: Δ

βΩ

Δ
Π3

[¬(βΩ)]
Δ¬(βΩ)

Π1
Δ⊥rule 9: ⊥n

Π2
Δ⊥rule 7: Δ

βΩ

Δ
Π3

�

Π1
Δ⊥rule 8: Δ

βΩ

Δ
Π3

The rules 13 and 14 produce a detour only if the conclusion of one is taken as
a hypothesis of the other rule for the same context and, as above, the considered
subderivation does not discharge any hypothesis of the upper subderivation. In
this case, if we eliminate such detour, we may produce a new maximum formula of
the case of Lemma 19. We cannot produce new detours by doing this elimination
because if there is any detour surrounding the formula αΣ , it must have existed
before the elimination. If we start from the upper-leftmost detour, we eliminate
the detours until we produce a derivation which contains only maximum formulas
of the case of Lemma 19. The same argument works for the rules 15 and 16 and
for the rules 21 and 22.

Π1
Δ

αΣ,φ

rule 13: Δ,φ
αΣ

Π2 Δ,φ
αΣ

rule 14: Δ
αΣ,φ

Δ
Π3

�

Π1
Δ

αΣ,φ

Δ
Π3

Π1 Δ,φ
αΣ

rule 14: Δ
αΣ,φ

Δ
Π2

Δ
αΣ,φ

rule 13: Δ,φ
αΣ

Δ,φ
Π3

�

Π1 Δ,φ
αΣ

Δ,φ
Π3

A Proximity-Based Understanding of Conditionals 145

Π1 Δ,N
αΣ

rule 21: Δ,�
αΣ

Δ,N
βΩ

rule 22: Δ,N
αΣ

�
Π1 Δ,N
αΣ

Π1 Δ,�
αΣ

Δ,N
βΩ

rule 22: Δ,N
αΣ

rule 21: Δ,�
αΣ

�
Π1 Δ,�
αΣ

Rules 17 and 19 preserves normalization. These rules produce a detour only
if the conclusion of one is taken as a hypothesis of the other rule for the same
context. In this case, if we eliminate such detour, we may produce a new maxi-
mum formula of the case of Lemma 19. We cannot produce new detours by doing
this elimination because if there is any detour surrounding the formula αΣ , it
must have existed before the elimination. If we start from the upper-leftmost
detour, we eliminate the detours until we produce a derivation which contains
only maximum formulas of the case of Lemma 19. We used the representation
(u, v | w, u) for the substitution of all occurrences of the variable u by the vari-
able w that do not occur in Π2, Θ or βΩ , and the subsequent substitution of all
occurrences of the variable v by the variable u. The same argument works for
the rules 18 and 20.

Π1 Δ, N, u
αΣ

rule 17: Δ, N, •
αΣ

[αΣ]
Δ, N, v

Π2
Θ

βΩ

rule 19: Θ
βΩ

�

Π1 Δ, N, u
αΣ

Δ, N, u
Π2(u, v | w, u)

Θ(u, v | w, u)
βΩ(u, v | w, u)

Π1 Δ, N, •
αΣ

[αΣ]
Δ, N, u

αΣ

rule 17: Δ, N, •
αΣ

Π2
Θ

βΩ

rule 19: Θ
βΩ

�

Π1 Δ, N, •
αΣ

Π2
Θ

βΩ

Although rules 23 to 26 cannot produce maximum formula, they can produce
unnecessary detours. We repeat the above arguments to eliminate them. The
reduction for the rule 24 is similar to the reduction for the rule 23, and the
reductions for rule 26 are similar to the reductions for rule 25. For rules 25 and
26, the reductions depend on the size of the cycles built to recover the same
formula in the same context. We present only the case for a cycle of size 3. The
rules 27 to 30 produce no maximum formula nor any unnecessary detour.

146 R.Q. de Araujo Fernandes et al.

Π1
Δ, N

αΣ,•
Π2

Δ, M↑ N
rule 23: Δ, M

αΣ,•
Π3

Δ, N↑ M
rule 23: Δ, N

αΣ,•
Δ, N

Π4

�

Π1
Δ, N

αΣ,•
Δ, N

Π4

Π1
Δ, N↑ M

Π2
Δ, M↑ P

rule 25: Δ, N↑ P

Π3
Δ, P↑ Q

rule 25: Δ, N↑ Q

Π4
Δ, Q↑ M

rule 25: Δ, N↑ M
Δ, N

Π5

�

Π1
Δ, N↑ M
Δ, N

Π5

Definition 30. The label rank ℵ(αΣ) of a wff αΣ is the depth of label nesting:

1. ℵ(αΣ) = ℵ(α) + s(Σ)/2;
2. If αΣ = βΩ ∨ γΘ, then ℵ(αΣ) = max(ℵ(βΩ),ℵ(γΘ));
3. If αΣ = βΩ ∧ γΘ, then ℵ(αΣ) = max(ℵ(βΩ),ℵ(γΘ));
4. If αΣ = βΩ → γΘ, then ℵ(αΣ) = max(ℵ(βΩ),ℵ(γΘ));
5. If αΣ = ¬βΩ, then ℵ(αΣ) = ℵ(βΩ);

Remark: by definition, the rank for a wff in Fn must be a natural number.

Lemma 21. Given a model M = 〈W, $,V, χ〉 and a αΣ ∈ Fn, if ℵ(αΣ) = k,

then we only need to verify the worlds of
�̂$

k(χ) to know if M |= αΣ holds.

Proof. If ℵ(αΣ) = 0, then αΣ is a propositional formula. In this case, we need

only to verify that the formula holds at
�̂$

0(χ) = {χ}. If ℵ(αΣ) = k + 1, then
it must have a subformula of the form (βΩ)φ, where φ is a neighborhood label.
In the worst case, we need to verify all neighborhoods of $(χ) to assure the
property described by βΩ holds in all of them. βΩ must have a subformula of
the form (γΘ)ψ, where ψ is a world label. In the worst case, we need to verify
all worlds of $(χ) to ensure the property described by γΘ holds in all of them.
But ℵ(γΘ) = k and, by the induction hypothesis, we need only to verify in the

worlds of
�̂$

k(w), for every w ∈
�$

1(χ). So we need, in the worst case, to verify

the worlds of ̂
�$

k+1(w).

Lemma 22. If M = 〈W, $,V, χ〉 |= αΣ, then there is a finite model M′ =
〈W ′, $′,V ′, χ′〉, such that M′ |= αΣ.

Proof. In the proof of Lemma 18 we verified the pertinence of the formulas in
maximally n-consistent sets and maximally w-consistent sets based on the struc-
ture of the given formula to establish the satisfiability relation. Each existential
label required the existence of one neighborhood or world for the verification of
a given subformula validity. The universal label for neighborhood required no
neighborhood at all. It only added properties to the neighborhoods which exist
in a given neighborhood system. The procedure is a demonstration that we only
need to gather a finite set of neighborhoods and worlds, for any wff in Fn.

A Proximity-Based Understanding of Conditionals 147

Theorem 4. PUC-Logic is decidable.

Proof. If �� αΣ , then it must be possible to find a template which satisfies the
negation of the formula. By the lemma above, there is a finite template which
satisfies this negation.

Definition 31. Every label occurrence φ inside a formula αΣ is an index of a
subformula βΩ,φ. Every label occurrence φ has a relative label depth defined by
�(φ) = ℵ(αΣ) − ℵ(βΩ,φ).

Lemma 23. Given αΣ ∈ Fn, there is a finite model M = 〈W, $,V, χ〉, such that

M |= αΣ with the following properties: (a) W =
�̂$

k(χ), where k = ℵ(αΣ); (b)
For every world w ∈

�$
n(χ), $(w) has at most the same number of neighborhoods

as labels φ, such that �(φ) = n; (c) Every neighborhood N ∈ $(w) has at most
the same number of worlds as the labels φ, such that �(φ) = n + 1/2, plus the
number of labels ϕ, such that �(ϕ) = n.

Proof. (a) From Lemmas 21 and 22; (b) Every neighborhood existential label φ,
such that �(φ) = 0 contributes, by the procedure of Lemma 18, to one neigh-
borhood to $(χ) for the model M = 〈W, $,V, χ〉. The neighborhood universal
requires no additional neighborhood to $(χ) according to Lemma 22 explanation.
In the worst case, all neighborhood labels φ, such that �(φ) = 0, are existential.
The labels φ, such that �(φ) = n, n ≥ 0, n ∈ N contributes to the systems
of neighborhoods of the worlds of

�$
n(χ). In the worst case, all of this labels

contributes to a neighborhood system of a single world; (c) The same argument
works for the number of worlds in a neighborhood except that the number of
worlds in a neighborhood is bigger than the number worlds in every neighbor-
hoods it contains. In the worst case, the smallest neighborhood contains the same
number of worlds as the number of labels φ, such that �(φ) = n + 1/2. In this
case, we must add at least one world to each neighborhood which contains the
smallest neighborhood in the considered neighborhood system. But the number
of neighborhoods is limited by the number of labels �(φ) = n, n ∈ N. So, the
biggest neighborhood reaches the asserted limit and the number of worlds of the
model is linear in the number of labels.

Theorem 5. The satisfiability problem is NP -complete for PUC-Logic.

Proof. A wff without labels is a propositional formula. It means, by [19], the
satisfiability problem complexity for PUC-Logic must be at least NP -complete.
Given a wff with labels, by Lemma 23, we know there is a directed graph, as
in the proof of Lemma 3 [23]. In this case, the satisfiability problem complexity
depends on the endpoints of the graph. Those endpoints are always proposi-
tional formulas. So, the complexity of the satisfiability problem is the sum of the
complexities of the problems for each endpoint. It means the biggest subformula
dictates the complexity because the model of Lemma 23 has at most a linear
number of worlds and the satisfiability problem is NP -complete. So, the worst
case is the wff without labels.

148 R.Q. de Araujo Fernandes et al.

6 Counterfactual Logics

Lewis presented in [1] several logics for counterfactual reasoning. These logics
were defined and organized on the basis of conditions imposed on the nested
neighborhood function $. The most basic logic is V , which has no condition
imposed on $. The axioms and inference rules of V were defined in terms of
Lewis’ comparative possibility operator (�).

Definition 32. αΣ � βΩ iff (βΩ,• → αΣ,•)�

We now prove that the axioms of V -logic are theorems of PUC-Logic and
that the inference rules of V -logics are derived rules in the system PUC-ND.
This result shows that PUC-Logic is complete with respect to V -logic.

– TRANS axiom:
((α � β) ∧ (β � γ)) → (α � γ);

– CONNEX axiom:
(α � β) ∨ (β � α);

– CPR:
If � α → (β1 ∨ . . . ∨ βn), then � (β1 � α) ∨ . . . ∨ (βn � α), for any n ≥ 1.

We present a proof of the Comparative Possibility Rule (CPR) rule for n = 2.
We omit the attribute representation of the wffs denoted by α, β and γ to
simplify the reading of the derivations. We use Lemma24 below for the theorem
α → (β ∨ γ) and a derivation Ξ of it.

2[γ•] �
γ•

1[(β• → α•)� ∧ (γ• → β•)�]
(β• → α•)� ∧ (γ• → β•)�

(γ• → β•)�
�

γ• → β•
�

β•

1[(β• → α•)� ∧ (γ• → β•)�]
(β• → α•)� ∧ (γ• → β•)�

(β• → α•)�
�

β• → α•
�

α•
TRANS 2 �

γ• → α•
�

(γ• → α•)�
1

((β• → α•)� ∧ (γ• → β•)�) → (γ• → α•)�

1[¬((β• → α•)� ∨ (α• → β•)�)]

¬((β• → α•)� ∨ (α• → β•)�)

2[β•] �
β•

�
α• → β•

(α• → β•)�

(β• → α•)� ∨ (α• → β•)�

⊥n

α•,�
�

α•
2 �

β• → α•

(β• → α•)�
Υ

(β• → α•)� ∨ (α• → β•)�

A Proximity-Based Understanding of Conditionals 149

1[¬((β• → α•)� ∨ (α• → β•)�)]
¬((β• → α•)� ∨ (α• → β•)�)

Υ
(β• → α•)� ∨ (α• → β•)�

⊥nCONNEX 1
(β• → α•)� ∨ (α• → β•)�

α•
N

α•
N, •α

4[α]
N,uα

Ξ N, u
α → (β ∨ γ)

β ∨ γ
N, •

β ∨ γ �, •
β ∨ γ

4 �, •
β ∨ γ �, •
β ∨ γ

[β] �, •
β �
β•

�
β• ∨ γ•

[γ] �, •γ �
γ•

�
β• ∨ γ•

�
β• ∨ γ•

Π �
β• ∨ γ•

α•
N

α•
Ξ

N, u
α → (β ∨ γ)

Π �
β• ∨ γ•

3[β•] �
β•

�
α• → β•

(α• → β•)�

(α• → β•)� ∨ (α• → γ•)�

3[γ•] �
γ•

�
α• → γ•

(α• → γ•)�

(α• → β•)� ∨ (α• → γ•)�
Σ 3

(α• → β•)� ∨ (α• → γ•)�

1[¬((α• → β•)� ∨ (α• → γ•)�)]
¬((α• → β•)� ∨ (α• → γ•)�)

2[α•]
N

α•
Σ

(α• → β•)� ∨ (α• → γ•)�

⊥n

β•,N

N
β•

2 N
α• → β•

�
α• → β•

(α• → β•)�
Ω

(α• → β•)� ∨ (α• → γ•)�

1[¬((α• → β•)� ∨ (α• → γ•)�)]
¬((α• → β•)� ∨ (α• → γ•)�)

Ω
(α• → β•)� ∨ (α• → γ•)�

⊥nCPR 1
(α• → β•)� ∨ (α• → γ•)�

Lemma 24. Given a theorem αΣ, there is a proof of αΣ in the context {N,u},
in which the variables N and u do not occur in the proof.

150 R.Q. de Araujo Fernandes et al.

Proof. If αΣ is a theorem, then, by definition, there is a proof Π without open
hypothesis which ends with the theorem in the empty context. During the proof
Π, the smallest context is the empty context. So, if we can choose variables
which do not occur in Π and add the stack of labels {N,u} at the rightmost
position of each rule context. We end up with a proof of the theorem in the
context {N,u}. This is possible because there is no restriction which could be
applied over the new variables.

We now present some ideas related to the logics V N , V T , V W and V C.
For each logic, PUC-ND may change its rule set to acquire the corresponding
expressiveness provided by the conditions. These changes can be done as follows:

V N • Rule 9 looses restriction (a);
• Rule 19 and 22 loose second premise;

• Introduction of the rule:
Δ,�

αΣ
Δ,N

αΣ

V T • We repeat the system for VN.

• Introduction of the rule:
Δ,�, ∗

αΣ

Δ
αΣ

V W • We repeat the system for VT;

• Introduction of the rule:
Δ,�, ∗

αΣ

Δ
αΣ

V C • We repeat the system for VW;

• Introduction of the rule:
Δ,�, •

αΣ

Δ
αΣ

For all cases, we must apply: Restriction (a) αΣ must fit into the contexts.

7 Related Works

As far as we know, there is only one natural deduction system which deals with
counterfactuals, the system defined by Bonevac [11]. But this system is designed
for the V W -logic, since it contains the rule of counterfactual exploitation (�E),
which encapsulates the weak centering condition. Bonevac’s approach in the
definition of rules for counterfactual operators does provide a better intuition of
counterfactual logic. His systems are expressive enough to deal with modalities
and strict conditionals. The labeling of worlds using formulas makes it easier
to capture the counterfactual mechanics. We also found the work of Sano [12],
who pointed out the advantages of using a hybrid formalism for counterfactual
logic. Sano presented some axioms and rules for the VHC(@)-logic, which is an
extension of the V -logic. Another interesting reference is the article of Gent
[10], which presents a new sequent- or tableaux-style proof system for V C-logic.
His work depends on the operator �� and signed formulas definitions. We have

A Proximity-Based Understanding of Conditionals 151

recently found a sequent calculus provided by Lellmann [20] which treats the
V -logic of Lewis and its extensions. The language used by Lellmann depends
on modal operators, specially on counterfactual operators � and � and the
comparative possibility operator �. Another sequent calculus which is equivalent
to the V C-logic has recently been defined by Negri and Sbardolini [24].

8 Conclusions

In this paper, we proposed a new logic for counterfactuals, PUC-Logic. Lewis’
counterfactual logics can be systematically treated in PUC-Logic. The use of
two types of labels (neighborhood and world labels) gives us the ability to man-
age different types of quantifications which are largely used in the definitions
of counterfactual operators according to Lewis. We also propose a new natural
deduction system, the system PUC-ND, which is proven to be sound and com-
plete with respect to Lewis’ V -logic. Our approach makes it possible to build
the rules for counterfactual operators as derived rules of the system. Another
advantage of our approach is to avoid the use of modalities or strict conditionals
in the formulation of the natural deduction system PUC-ND, making it easier
to reuse well-known proof-theoretical results for propositional logic, such as the
normalization theorem.

The main topic for our future work concerns PUC-Logic applications to hypo-
thetical queries in deductive databases. We have presented a logic that can be
used to express well-known counterfactuals, and it is certainly worth investigat-
ing if, through the use of some of these counterfactual logics, it would be possible
to implement a solution to the problem of the derivation of the answer set of
hypothetical queries in deductive databases in an efficient and purely logical way.
The implementation and viability of our proposal have not been evaluated yet.

References

1. Lewis, D.K.: Counterfactuals. Blackwell Publishing, Oxford (2008)
2. Goodman, N.: Fact, Fiction, and Forecast, 4th edn. Harvard University Press,

Cambridge (1983)
3. Bell, J.L.: Toposes and Local Set Theories. Dover Publications, Mineola (2008)
4. Bonner, A.J.: Hypothetical datalog: complexity and expressibility. Theor. Comput.

Sci. (TCS) 76, 3–51 (1990)
5. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2, 127–146

(1968)
6. Gabbay, D., Giordano, L., Martelli, A., Olivetti, N.: Hypothetical updates, priority

and inconsistency in a logic programming language. In: Marek, V.W., Nerode, A.,
Truszczyński, M. (eds.) LPNMR 1995. LNCS, vol. 928, pp. 203–216. Springer,
Heidelberg (1995). doi:10.1007/3-540-59487-6 15

7. Prawitz, D., Deduction, N.: A Proof-Theoretical Study. Dover, Mineola (2006)
8. Ramsey, F.P.: Philosophical Papers. Cambridge University Press, Cambridge

(1990)

http://dx.doi.org/10.1007/3-540-59487-6_15

152 R.Q. de Araujo Fernandes et al.

9. Malhotra, A., Younesi, E., Bagewadi, S., Hofmann-Apitius, M.: Linking hypothet-
ical knowledge patterns to disease molecular signatures for biomarker discovery in
Alzheimer’s disease. Genome Med. 6, 97 (2014)

10. Gent, I.P.: A sequent- or tableau-style system for Lewis’s counterfactual logic VC.
Notre Dame J. Formal Logic 33(3), 369–382 (1992)

11. Bonevac, D.: Deduction: Introductory Symbolic Logic. Blackwell, Oxford (2003)
12. Sano, K.: Hybrid counterfactual logics. J. Logic Lang. Inform. 18(4), 515–539

(2009)
13. Kifer, M., Swift, T., Grosof, B.: Practical knowledge representation and reasoning

in Ergo. In: Tutorial, RuleML2016 (2016)
14. Golfarelli, M., Rizzi, S.: What-if simulation modeling in business intelligence. Int.

J. Data Warehouse Min. 5(4), 24–43 (2009)
15. Fernandes, R.Q.A., Haeusler, E.H.: A Topos-theoretic approach to counterfactual

logic. In: Pre-proceedings of Fourth Workshop on Logical and Semantic Frame-
works, Braśılia (2009)

16. Dummet, M.A.E.: What is a theory of meaning ? (II). In: Evans, G., McDowell,
J. (eds.) Truth and Meaning, pp. 67–137. Clarendon press (1976)

17. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

18. Lambert, K.: Free Logic: Selected Essays. Cambridge University Press, Cambridge
(2004)

19. Cook, S.A.: The complexity of theorem proving procedures. In: 3rd Annual ACM
Symposium on the Theory of Computation, pp. 151–158 (1971)

20. Lellmann, B., Pattinson, D.: Sequent systems for Lewis’ conditional logics. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp.
320–332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8 25

21. Pereira, L.M., Apaŕıcio, J.N., Alfares, J.J.: Counterfactual reasoning based on
revising assumptions. In: Proceedings of the 1991 Internal Symposium Logic Pro-
gramming. MIT Press (1991)

22. Renteria, C.J., Haeusler, E.H., Veloso, P.A.S.: NUL: natural deduction for ultra-
filter logic. Bull. Sect. Logic 32(4), 191–199 (2003). Univ. of Lodz, Polland

23. Fernandes, R.Q.A., Haeusler, E.H., Pereira, L.C.P.D.: PUC-Logic, ArXiv CoRR
(2014)

24. Negri, S., Sbardolini, G.: Proof analysis for lewis counterfactuals. Rev. Symbolic
Logic 9(01), 44–75 (2016)

25. Li, G.: Knowledge discovery from knowledge bases with higher-order logic. In:
Wong, W.E. (ed.) Proceedings of the 4th International Conference on Computer
Engineering and Networks, pp. 451–457. Springer, Cham (2015). doi:10.1007/
978-3-319-11104-9 53

26. Winslett, M.: Updating Logical Databases, Cambridge Tracts in Theoretical Com-
puter Science, vol. 9. Cambridge University Press, Cambridge (1990)

http://dx.doi.org/10.1007/978-3-642-33353-8_25
http://dx.doi.org/10.1007/978-3-319-11104-9_53
http://dx.doi.org/10.1007/978-3-319-11104-9_53

Inconsistency-Tolerant Database Repairs
and Simplified Repair Checking

by Measure-Based Integrity Checking

Hendrik Decker(B)

PROS, DSIC, Universidad Politécnica de Valencia, Valencia, Spain
hdecker@pms.ifi.lmu.de

Abstract. Database states may be inconsistent, i.e., their integrity may
be violated. Database repairs are updates such that all integrity con-
straints become satisfied, while keeping the necessary changes to a min-
imum. Updates intending to repair inconsistency may go wrong. Repair
checking is to find out if a given update is a repair, i.e., if the updated
state is free of integrity violations and if the changes are minimal. How-
ever, integrity violations may be numerous, complex or opaque, so that
attaining a complete absence of inconsistency is not realistic. We discuss
inconsistency-tolerant concepts of repair and repair checking. Repairs are
no longer asked to be total, i.e., only some but not all inconsistency is
supposed to disappear by a repair. For checking if an update reduces the
amount of inconsistency, integrity violations need to be comparable. For
that, we use measure-based integrity checking. Both the inconsistency
reduction and the minimality of inconsistency-tolerant repair candidates
can be verified or falsified by measure-based integrity checkers that sim-
plify the evaluation of constraints. As opposed to total repair checking,
which evaluates integrity constraints brute-force, simplified repair check-
ing exploits the incrementality of updates.

1 Introduction

This paper is about inconsistency-tolerant database repairs, which relax the
notion of ‘repair’ [3], i.e., of amending database inconsistency, and about using
measure-based integrity checking [23,24] for relaxing the process of repair check-
ing as introduced in [13], i.e., for finding out if a given update is an inconsistency-
tolerant repair.

In this introduction, we informally outline the main ideas of the paper and
their background. In Subsect. 1.1, we distinguish between preventing and repair-
ing inconsistency. We also characterize repairs and their relaxation to incon-
sistency-tolerant repairs. In Subsect. 1.2, we first address conventional repair
checking, and then simplified repair checking, which uses incremental integrity
checking based on inconsistency measures. In Subsect. 1.3, we summarize the
salient points of this paper.

In Sect. 2, we revisit some key issues on which the remainder of this paper is
based. In Sect. 3, we re-define repairs of database inconsistency and discuss that
c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 153–183, 2017.
https://doi.org/10.1007/978-3-662-55947-5_7

154 H. Decker

definition. In Sect. 4, we define a generic concept of repair checking, and unfold
the main results about repair checking by measure-based integrity checking. In
Sect. 5, we first assess the brute-force computation of repair checking, and then
outline two ways of computing inconsistency-tolerant repair checking, one of
them naive, the other simplified. In Sect. 6, we address related work. In Sect. 7,
we conclude.

1.1 Prevention and Reparation of Database Inconsistency

In any given database state, inconsistency may manifest itself as the violation of
one or several integrity constraints that are part of the database schema. Merg-
ing mutually inconsistent databases, trading off consistency for performance or
availability, weakening isolation requirements for concurrent transaction process-
ing, imposing fresh constraints on legacy data, lack of system support for data
integrity, imperfection of data cleansing, faulty application code, DBMS migra-
tion or system upgrades, data hacking, file corruption due to hardware failures
or transmission errors – these, and more, are possible reasons for databases to
be or become inconsistent with the integrity constraints imposed on them.

Even though, as pointed out in [36], there are, in general, fields of reasoning
for which some forms of inconsistency are negligible (e.g., many applications of
naive set theory), or for which inconsistency may have equal status to consistency
(e.g., fake detection, or argumentation), database inconsistency typically is either
unintentional or fraudulent. Hence, database inconsistency is potentially harmful
and thus undesirable for most applications. Hence, methods to either prevent or
repair database states that are inconsistent with their integrity constraints are
called for.

The prevention of integrity violation can be supported by careful database
design [41,57], possibly enhanced by a careful control of concurrency, distri-
bution, parallelism and replication [5,42,50,56], and can be accomplished by
integrity checkers, a.k.a. ‘integrity checking methods’ [28,33,47]. In this paper,
we focus on repairs of integrity violations and repair checking. More precisely, we
are going to relax the conventional notion of repair, and discuss an inconsistency-
tolerant way of checking if a given update is a repair that reduces integrity
violations or not.

According to their definition in [3], repairs are characterized as database
states that are consistent with the integrity constraints imposed on them and
that differ minimally from an inconsistent predecessor state. In principle, each
database state (i.e., each instance of some database schema) can be mapped
into each other database state by some update. Hence, repairs can as well be
understood as updates that eliminate the inconsistency of a given database state:
all constraints in the integrity theory associated to the database schema that had
been violated before the update, are satisfied in the repaired state. Additionally,
the modifications comprised by updates that qualify as repairs are required to be
minimal, in some sense, so that no superfluous changes are effected by a repair,
in compliance with the well-known Occam’s razor principle. We speak of such

Inconsistency-Tolerant Database Repairs 155

repairs as ‘total repairs’, since they are supposed to yield database states that
are totally consistent with their integrity constraints.

As opposed to total repairs, we content ourselves with updates that do not
necessarily eliminate all violations, but only some, while not introducing new
violations that would equal or exceed the previous violations. To distinguish
such updates from total repairs, we call them ‘inconsistency-tolerant repairs’.

1.2 Brute-Force and Simplified Repair Checking

Total repair checking has been studied in [2,4,12,13]. It can be characterized
as the problem to find out if a given update minimally repairs all violations of
database integrity. Analogously, our relaxed concept of repair checking means
to detect if a given update reduces the inconsistency of a given state, without
involving superfluous changes.

Both total and simplified repair checking can be implemented in two phases.
Firstly, check if inconsistency is eliminated or at least reduced. We call that
the inconsistency reduction checking phase. Secondly, check the minimality of
inconsistency reductions. We call that the minimality checking phase.

For the inconsistency reduction phase of total repair checking, the integrity
satisfaction of each constraint is in general checked brute-force. That is to say, in
order to find out if a constraint is satisfied or violated, the brute-force approach
evaluates the full-fledged constraint as a query in the updated database state.

In the field of integrity checking, the adjective ‘brute-force’ is used to dis-
tinguish one of two well-known modes of verifying or falsifying that an update
would preserve the consistency of a state which is modified by some update. As
opposed to brute-force integrity checking, simplified integrity checking exploits
the incrementality of updates, by focusing on the actual changes effected by the
update [14]. Thus, only some simplified forms of constraints that are actually
affected by the update need to be evaluated, instead of an often prohibitively
expensive evaluation of all unsimplified integrity constraints [15,52]. Examples
of known methods for simplified integrity checking are referenced in Subsect. 2.4.

Unfortunately, simplified integrity checking as in [15,52] is not applicable for
total repair checking, since the former requires that the database to be updated
is totally consistent with all of its constraints. That, by definition, is not the
case for repairs. However, as detailed in Subsect. 2.4, simplified integrity check-
ing has been generalized to measure-based integrity checking. Measure-based
integrity checking generalizes simplified integrity checking by defining criteria
which guarantee their applicability to updates of databases that are inconsistent
with their constraints. The measures used by measure-based integrity checking
serve for comparing the inconsistencies of database states before and after an
update. Database states resulting from updates that are accepted by measure-
based integrity checks may remain inconsistent, but are not more inconsistent
than the state before the update [23,24].

As we shall see in Sect. 4, measure-based integrity checkers can be used to
check if an update is an inconsistency-tolerant repair. We speak of inconsistency-
tolerant repair checking by measure-based integrity checking as ‘simplified repair

156 H. Decker

checking’ since, as opposed to a brute-force evaluation of integrity constraints,
it may take advantage of the incrementality of updates.

Note that measure-based integrity checking is not applicable to total repair
checking. The latter requires that the updated state is totally consistent, while
measure-based integrity checking is inconsistency-tolerant, i.e., it only requires
that inconsistency is reduced but not necessarily eliminated completely.

1.3 Survey of Contributions

The essential differences between total repair checking and simplified repair
checking are the following. The main conceptual difference: Simplified repair
checking is measure-based and inconsistency-tolerant, i.e., it accepts measurable
reductions of integrity violations that may not totally eliminate inconsistency.
As opposed to that, total repair checking disqualifies each update that does not
yield total consistency. The main technical difference: Simplified repair checking
is implemented by simplified integrity checking, which exploits the incremental-
ity of updates, while total repair checking evaluates all constraints brute-force.
The main practical difference: Checking inconsistency-tolerant repairs is more
realistic and more feasible than checking total repairs for total inconsistency
elimination, particularly for large databases or for integrity constraints that are
more application-specific than the usual constraints as exacted by database nor-
malization theory.

The three main pillars of our approach are, firstly, inconsistency-tolerant
repairs [21,31], secondly, simplified integrity checking [15] and its inconsistency-
tolerant extension [26,30] and, thirdly, database inconsistency measures
[22,27,29]. The latter two have been combined to measure-based integrity check-
ing in [23,24], which we now propose to use for simplifying the checking of
inconsistency-tolerant repairs.

The main contributions of this paper are the following.

– A refinement of the definition of ‘partial integrity-preserving repair’ in [21,30],
which did not include any notion of minimality, to ‘inconsistency-tolerant
repair’.

– The use of database inconsistency measures for defining the minimality of
inconsistency-tolerant repairs, which generalizes minimality as defined in [3].

– An inconsistency-tolerant relaxation of total repair checking.
– The cost-effective use of simplified measure-based integrity checking, which

normally serves to prevent an increase of inconsistency, for checking its
decrease, and also for checking the minimality of inconsistency reductions.

2 Key Issues

In this section, we recapitulate some key issues that underlie the remainder of
the paper. In Subsect. 2.1, we turn to databases, updates and integrity con-
straints. In Subsect. 2.2, we define, for convenience, a generic class of database

Inconsistency-Tolerant Database Repairs 157

methods called ‘update checkers’. In Subsect. 2.3, we revisit database inconsis-
tency measures. In Subsect. 2.4, we recall integrity checking and in particular
measure-based integrity checking.

As a notational convention, we use the symbols ⇒ and ⇔ for meta-level
entailment and, resp., meta-level equivalence, in definitions and result state-
ments.

2.1 Databases, Updates and Integrity Constraints

We assume a basic familiarity with relational and deductive databases. For
details, the reader may consult, e.g., [1,34,53].

Throughout the paper, let symbols D, IC, U and adornments thereof by
superscripts or subscripts always stand for a database state, an integrity theory
and, resp., an update.

Updates and database integrity are revisited in Subsect. 2.1.1 and, resp.,
Subsect. 2.1.2 Semantic and syntactic restrictions that may apply to triples
(D, IC, U) considered in this paper are addressed in Subsect. 2.1.3.

2.1.1 Updates
Formally, an update is a finite bipartite set of database clauses (i.e., facts or
deductive rules) to be inserted to or, resp., deleted from a given database state.
Thus, updates effect the dynamics of databases. In particular, updates are used
for repairing database inconsistency (see also [61]).

Essentially, the idea behind repair checking by integrity checking is based on
the evidence that it is easier to use integrity checkers for checking the increase
of inconsistency than to use them for checking the decrease of inconsistency.
Thus, we are interested in undos of updates, as defined below, since an update
decreases inconsistency if and only if its undo increases it.

Definition 1 (undo). Let U denote the undo of U : for each element of the form
insert X or deleteY in U , U contains deleteX or, resp., insert Y, and nothing
else.

Let DU denote the updated database state obtained by applying U to D.
We denote consecutive updates U , U ′ of D and then DU by DUU ′

. Hence,
DUU = D. That equality will be used for proving results in Sect. 4.

2.1.2 Database Integrity
An integrity theory is a finite set of first-order predicate logic sentences, known as
integrity constraints (or simply constraints). They capture database properties
that are supposed to remain invariant across state changes. A complementary
viewpoint is that constraints embody semantic conditions that are meant to rule
out states which would be faulty or meaningless. For simplicity, we only consider
integrity theories that are logically satisfiable. Unwarranted unsatisfiability of
integrity theories is dealt with in [8] and subsection 5.5 of [30].

158 H. Decker

Integrity constraints can be interpreted and processed as queries about the
consistency of stored data. If a constraint I evaluates to true in a given database
state D, then we say that I is satisfied in D; if it evaluates to false, then we say
that I is violated in D. If all constraints in an integrity theory IC are satisfied,
then we also say that IC is satisfied in D, or, synonymously, that (D, IC) is
consistent. If any constraint in IC is violated in D, then we also say that IC is
violated in D, or, synonymously, that (D, IC) is inconsistent.

Let us revisit now the definition 3.1 in [30] of ‘cases’, i.e. instances of con-
straints in IC that are of interest for defining database inconsistency measures
(to be addressed in Subsect. 2.3), as well as for simplified integrity checking (to
be addressed in Subsect. 2.4).

Definition 2 (case). Let I be a constraint. A variable x in I is called a global
variable in I if x is ∀-quantified and no quantifier of the form ∃y such that x
would be in its scope occurs left of ∀x in the prenex form of I, obtained by moving
all quantifiers in I leftmost by well-known equivalence-preserving rewrites. For
a substitution σ the domain of which is the set of global variables in I, Iσ is
called a case of I. If σ is a ground substitution, then Iσ is called a basic case
of I. Let basic(IC) be the set of all basic cases I ′ of constraints I in IC.

2.1.3 Syntactic and Semantic Restrictions
In later sections of the paper, certain syntactic or semantic restrictions on tuples
(D, IC) or triples (D, IC, U) may apply, without them being mentioned explicitly.
In particular, the applicability of database inconsistency measures and of meth-
ods for integrity checking or repair checking usually is confined to certain classes
of input tuples (D, IC) or triples (D, IC, U). For instance, common restrictions
are properties such as the range-restrictedness [51] or the safety [60] of data-
base clauses and constraints. However, since our approach to repair checking
by integrity checking applies to generic forms of inconsistency measures and
methods, we do not go into further details with regard to semantic or syntactic
restrictions that may apply to individual measures or methods.

Nevertheless, for simplicity, let us agree on the following general restriction.
It avoids that we’d need to bother with differences between the satisfiability
and the theoremhood of integrity constraints, or with undefined or third truth
values, or with subtle epistemic distinctions. Such issues are dealt with in [54].

Throughout the paper, we assume that the semantics of each triple (D, IC, U)
is binary, i.e., each I ∈ IC, when queried against D, has a unique yes/no answer,
and also the answer of I when queried against DU is always either yes or no.

The semantics of significantly large classes of databases and constraints com-
ply with the binary assumption, for instance all pairs (D, IC) such that D is rela-
tional and IC is range-restricted, and also all deductive databases and integrity
theories that are acyclic [9] and range-restricted.

Inconsistency-Tolerant Database Repairs 159

2.2 Update Checkers

We are going to investigate ways to implement repair checking by integrity check-
ing. For that purpose, it is convenient to have the following generic definition
of methods for checking updates, be it for the preservation or the reduction of
inconsistency.

Definition 3 (update checker). A mapping uc of triples (D, IC, U) to {yes, no}
is called an update checker.

In the literature, various approaches to inconsistency measuring, integrity
checking or repair checking are proposed, each of them for some particular class
of databases, constraints or updates. The approach developed in this paper is
independent of any particular inconsistency measure or update checker. Thus,
whenever, for some mapping mp from tuples (D, IC) or triples (D, IC, U) to
some range of values, we say, “for each tuple (D, IC) . . . ” or “for each triple
(D, IC, U) . . . ”, we actually mean to tacitly add, “. . . such that mp is defined
for the input (D, IC)” or, resp., “. . . (D, IC, U)”.

2.3 Database Inconsistency Measures

For deciding if an update effectively reduces the amount of database inconsis-
tency, the latter needs to be measurable, so that the inconsistency before and
after the update can be compared. That is the purpose of database inconsistency
measures.

In Subsect. 2.3.1, we distinguish database inconsistency measures from classi-
cal inconsistecy measures. In Subsect. 2.3.2, we give examples of database incon-
sistency measures that are of interest in the remainder.

2.3.1 Background and Definition of Database Inconsistency
Measures

Most inconsistency measures in the literature are for quantifying the inconsis-
tency in what is frequently called ‘knowledge bases’, but what effectively corre-
sponds, in most cases, to sets of formulas in the syntax and semantics of propo-
sitional or first-order predicate logic. For convenience, let us call them classical
inconsistency measures.

Classical inconsistency measures have their origin in [37]. For the purpose of
inconsistency-tolerant integrity checking, database inconsistency measures have
been introduced in [27] and further developed in [22,24,29]. The main applica-
tion of database inconsistency measures is not, in the first place, to quantify
the amount of inconsistency in given databases, but to make the inconsistency
of consecutive database states comparable. In fact, the values of inconsistency
between database states before and after updates do not necessarily have to be
computed in order to become comparable. Rather, only the increase, decrease
or invariance of inconsistency between such states is of interest for integrity
checking and repairing.

160 H. Decker

For pairs (D, IC), database inconsistency measures seize or count the amount
of violated integrity constraints or cases thereof, or causes of the violation of
constraints, i.e., those parts of D that are responsible for constraint violations
in IC [19,24,25]. Abstracting away from what exactly is sized for comparing the
inconsistency of states, database inconsistency measures are defined as follows.

Definition 4 (database inconsistency measure). A database inconsistency mea-
sure μ is a mapping from pairs (D, IC) to a partially ordered range of degrees
of inconsistency. We denote the ordering by the infix predicate ≤; X<Y means
that X≤Y and X �=Y . The negation of ≤ is denoted by �, and the negation of
< by ≮.

The literature about inconsistency measures is replete with discussions of
properties and conditions that arguably should be required from inconsistency
measures (cf., e.g., [7,24,39,59]). However, except the property exposed in Defini-
tion 5, below, we do not impose any further condition on database inconsistency
measures, such that they would have ‘nice’ properties. Most of these proper-
ties are elusive and their desirability tends to be application-specific. Moreover,
some of the most popular of such properties do not hold up against the non-
monotonicity of database negation [24,25]. However, it can be argued that the
following property is desirable in general, and indeed, it is widely adopted in the
literature. We also adopt it for each inconsistency measure considered in this
paper.

Definition 5 (positive-definite measure). Let μ be a database inconsistency
measure with a least element in its range, denoted by o. We say that μ is positive-
definite if and only if, for each pair of databases D, D′ and each pair of integrity
theories IC, IC’ such that IC is satisfied in D and IC’ is violated in D′, μ(D, IC)
= o and o < μ(D′, IC’).

Each database inconsistency measure paced in Subsect. 2.3.2 is positive-
definite.

Instead of ‘database inconsistency measure’, we may simply speak of an
‘inconsistency measure’ or just ‘measure’, from now on. Moreover, let the symbol
μ always stand for an inconsistency measure.

2.3.2 Examples of Database Inconsistency Measures
For example, let ι and ζ be mappings of tuples (D, IC) which output the set of
integrity constraints that are violated in (D, IC) and, resp., the set of constraints
in basic(IC) that are violated in (D, IC) [24,29]. It is easy to see that ι and ζ
are database inconsistency measures, and so are the mappings denoted by |ι|
and |ζ|, which output the cardinality of ι(D, IC) and, resp., ζ(D, IC). Clearly,
the range of |ι| and |ζ| is numerical, with least element 0, while the ranges of
ι(D, IC) and, resp., ζ(D, IC), viz. the powersets of IC and, resp., basic(IC), are
not; they are partially ordered by ⊆, and their least element is ∅.

Other examples of a database inconsistency measures are collections or counts
of the causes of integrity violations. For relational databases and range-restricted

Inconsistency-Tolerant Database Repairs 161

constraints in clausal form, causes are sets of ground literals that correspond
to the database facts whose presence or absence violate a basic case of some
constraint [19]. Thus, the measure denoted by κ in [23,24] maps tuples (D, IC)
to the causes in D that are responsible for violating constraints in basic(IC),
and |κ| maps (D, IC) to the cardinality of the union of all causes of constraint
violations in basic(IC). For example, in relational databases, the unique cause
of the violation of some ground instance ← B of a conjunctive denial constraint
precisely consists of the literals in B [19]. For deductive databases and more
general forms of constraints, causes are more involved but can be defined and
processed effectively, as described in [20,24].

A border case example of an inconsistency measure is one with a binary
range, named β in [24], viz. the mapping that outputs β(D, IC) = true if (D, IC)
is totally consistent, else β(D, IC) = false. The range {true, false} of β is ordered
by the relationship true< false.

Besides these measures, also some others have been studied in [23,24,29],
including an adaptation of the inconsistency measure in [38] to pairs (D, IC).

Measures ι, ζ and κ illustrate one of several differences between classical
inconsistency measures and database inconsistency measures. As we have seen,
the range of database inconsistency measures is not necessarily numerical, and
the ordering of that range is not necessarily total. The range of classical inconsis-
tency measures, however, always is numerical and hence totally ordered [59]. All
other essential differences have to do with the classical logic syntax and semantics
underlying classical inconsistency measures, on one hand, and the syntax and
semantics of database logic underlying database inconsistency measures, on the
other. Perhaps the most fundamental difference consists in the non-monotonicity
of database negation, as opposed to the monotonicity of classical logic. These
differences are looked at in more detail in [25].

2.4 Measure-Based Integrity Checking

An update checker, the purpose of which is to filter out updates that would
violate some integrity constraint, is called an integrity checker. If ic(D, IC, U) =
yes, we say that U is accepted by ic. If ic(D, IC, U) = no, we say that U is rejected
by ic. (Btw, neither acceptance nor rejection of U necessarily would determine
or preclude any further action by the database system, its administrator, its
user or its application, of what to do with the output of ic. By default, U is
rejected if ic(D, IC, U) = no. But also a modification of D or IC or U such
that the modified triple becomes acceptable is an option, as in active databases,
belief revision or truth maintenance systems. Or, updates that cause tolerable
violations of “soft” constraints may be waived through. However, any decisions
or actions taken after or triggered by the output of ic are out of the scope of
integrity checking.)

For simplicity, we assume that, for each integrity checker ic, there is a well-
defined domain of triples (D, IC, U) for which ic is defined as a total mapping.

162 H. Decker

Thus, we do not have to be concerned with subtle differences between satisfia-
bility and theoremhood of constraints nor with undefined or non-binary truth
values, nor with non-termination of processing constraints as queries.

Except brute-force integrity checking, conventional integrity checkers are
consistency-based, i.e., they postulate that the database to be updated is totally
consistent with its constraints. They accept updates only if they preserve total
consistency. The idea behind measure-based integrity checking has been to
realize an inconsistency-tolerant form of integrity checking, which allows that
both the database state to be updated and the updated state are inconsistent
[26,27,29,30]. That is captured by the following definition.

Definition 6 (measure-based integrity checker). Let ic be an update checker
and μ an inconsistency measure. ic is called a sound, resp., complete μ-based
integrity checker if (*), resp., (**) holds, for each triple (D, IC, U):

(∗) ic(D, IC, U) = yes ⇒ μ(DU , IC) ≤ μ(D, IC),
(∗∗) μ(DU , IC) ≤ μ(D, IC) ⇒ ic(D, IC, U) = yes.

If ic is applied only to triples (D, IC, U) such that (D, IC) is consistent, then ic
is called a consistency-based integrity checker.

In words, (∗) means that U is accepted by ic only if U either decreases
or does not change the amount of inconsistency as measured by μ. Thus, the
contrapositive μ(DU , IC) � μ(D, IC) ⇒ ic(D, IC, U) = no of (∗) means that
ic rejects U if U neither decreases inconsistency nor does it leave it invariant. In
particular, if μ(D, IC) < μ(DU , IC), i.e., if U increases inconsistency, then each
sound μ-based integrity checker ic outputs ic(D, IC, U) = no.

Conversely, completeness of ic as formalized in (∗∗) means that, whenever
U decreases the amount of consistency or leaves it invariant, then ic accepts
U . If ic is complete and ic(D, IC, U) = no, then, by the contrapositive of
(∗∗), μ(DU , IC) � μ(D, IC) follows. Thus, U is rejected because U would nei-
ther decrease the measured amount of inconsistency nor leave it unchanged. If,
additionally, ≤ is a total order, then μ(DU , IC) � μ(D, IC) is equivalent to
μ(D, IC) < μ(DU , IC). If ic is not complete, then ic might over-cautiously reject
an update U even if U decreases or does not change the amount of integrity
violation in (D, IC).

Obviously, neither consistency-based integrity checking nor brute-force
integrity checking depend on any particular μ. However, by Definitions 5 and 6,
it is easy to see that, for each μ whatsoever, each consistency-based integrity
checker vacuously is a μ-based integrity checker, since it only accepts input triples
(D, IC, U) such that (D, IC) is consistent. Also brute-force integrity checking is
μ-based, since it only accepts totally consistent pairs (DU , IC). In short, Defin-
ition 6 properly generalizes conventional concepts of integrity checking.

By results in [26,27,30], it turns out that, for each μ ∈ {ι, |ι|, ζ, |ζ|, κ, |κ|},
many (though not all) known consistency-based integrity checkers, when applied
to triples (D, IC,U) such that (D, IC) is inconsistent, are sound μ-based
integrity checkers, e.g., the ones in [17,48,52,55].

Inconsistency-Tolerant Database Repairs 163

The completeness of consistency-based integrity checkers is less frequently
preserved when they are applied to triples (D, IC, U) such that (D, IC) is incon-
sistent. In fact, some consistency-based integrity checkers are incomplete already
when applied only to triples (D, IC, U) such that (D, IC) is consistent, e.g., the
one in [40]. However, for relational databases and range-restricted constraints
in clausal form, the method in [52] has been shown in [27,30] to be a complete
ζ-based integrity checker.

Inconsistency in (D, IC) may be complex or opaque or unknown. Hence, the
computation of μ(D, IC) may be unfeasible, in particular if D is big. Thus, we
are interested in integrity checkers that do not have to compute the measure
on which they are based. Fortunately, many such methods are known, such as
those in [17,48,52,55], the domains of which can be soundly extended to triples
(D, IC, U) such that (D, IC) is not necessarily consistent. They accept U only
if U does not introduce any new constraint violation, but are ignorant of the
actual amount of integrity violation in (D, IC), as seen in [26,27,30].

3 Repairs

Inconsistency-tolerant repairs, as defined in Subsect. 3.1, generalize total repairs
since they do not insist that all inconsistency is eliminated. Thus, an inconsistency-
tolerant repair is an update U of a database state that is inconsistent with its con-
straints, such that the updated state becomes less inconsistent, and there is no
subset of U that could achieve the same or a larger amount of inconsistency reduc-
tion. The amount of inconsistency before and after an update intended as a repair
can be compared by using some database inconsistency measure.

In Subsect. 3.1, we characterize total and inconsistency-tolerant repairs by a
definition that covers both. In Subsect. 3.2, some straightforward consequences
of that definition are discussed and illustrated by examples.

3.1 Repairs – Definition

We are going to re-define total repairs as a special kind of updates, in two steps: in
Definition 7a, below, we define total inconsistency reductions, and in Definition 7b,
we characterize total repairs as minimal total inconsistency reductions. It is easy
to see that this definition is equivalent to the original one in [3]. Analogously, we
define inconsistency-tolerant repairs, based on some inconsistency measure μ, in
Definition 7c and d.

Definition 7 (total and inconsistency-tolerant repair). Let D be a database,
IC an integrity theory that is violated in D, U an update and μ a database
inconsistency measure.

(a) U is a total inconsistency reduction of, (D, IC) if each constraint in IC is
satisfied in DU .

(b) U is a total repair of (D, IC) if U is a total inconsistency reduction of (D, IC)
and there is no total inconsistency reduction U ′ � U of (D, IC).

164 H. Decker

(c) U is a μ-based inconsistency reduction of (D, IC) if μ(DU , IC) < μ(D, IC).
(d) U is a μ-based inconsistency-tolerant repair of (D, IC) if U is a μ-based incon-

sistency reduction and there is no U ′ � U such that μ(DU ′
, IC) ≤ μ(DU , IC).

From now on, we may simply speak of an ‘inconsistency-tolerant inconsis-
tency reduction’ or an ‘inconsistency-tolerant repair’ whenever μ is understood
implicitly. We also may speak of a ‘measure-based repair’, or a ‘μ-repair’ when
we want to emphasize the relevance of μ. Moreover, we may generically speak of
a ‘repair’ U if U is a total or an inconsistency-tolerant repair. In fact, the latter
generalizes the former, as we are going to see in Subsect. 3.2.1.

3.2 Repairs – Discussion

As opposed to total repairs, measure-based repairs may tolerate remaining
inconsistency. Otherwise, they are closely related, as will become more obvi-
ous below, where we discuss Definition 7 and illustrate it by several examples. In
Subsect. 3.2.1, we show that inconsistency-tolerant repairs (Definition 7c, d) are
a proper generalization of total repairs (Definition 7c, d), and that the latter
are border cases of the former. In Subsect. 3.2.2, we have a closer look at the
minimality condition imposed on repairs. In Subsect. 3.2.3, we expose some use-
ful properties of inconsistency reductions. In Subsect. 3.2.4, we illustrate that
repairs may depend significantly on the inconsistency measure on which they
are based.

3.2.1 Measure-Based Repairs Generalize Total Repairs
Clearly, Definition 7 excludes that U = ∅, since the empty update does not repair
anything. However, it includes the case μ(DU , IC) = o, i.e., total repairs are
border cases of inconsistency-tolerant repairs. At first, that may seem to be an
oxymoron, but in the end, it only means that Definition 7d properly generalizes
total repairs, as stated in Corollary 1 below.

As opposed to inconsistency-tolerant repairs (Definition 7c, d), the definition
of total repairs (Definition 7a, b) does not recur on any database inconsistency
measure. However, for each inconsistency measure μ whatsoever, each total
repair is a μ-repair, as entailed by the following corollary of Definitions 4, 5
and 7.

Corollary 1. For each triple (D, IC, U) such that IC is violated in D, the fol-
lowing holds.

(a) For each inconsistency measure μ, U is a total repair of (D, IC)
if and only if U is a μ-repair of (D, IC) such that μ(DU , IC) = o.

(b) U is a total repair of (D, IC) if and only if U is a β-repair of (D, IC).

Proof. (a) The ‘if’ part of Corollary 1a is entailed by Definitions 5 and 7a.
For the ‘only-if’ part, let U be a total repair of (D, IC). Since (D, IC) is
inconsistent and, by Definition 7a, (DU , IC) is consistent, o < μ(D, IC) and

Inconsistency-Tolerant Database Repairs 165

μ(DU , IC) = o hold, for each μ, by Definition 5. Hence, μ(DU , IC) < μ(D, IC)
follows. It remains to verify the minimality of U , i.e., to show that there is
no U ′ � U such that μ(DU ′

, IC) ≤ μ(DU , IC). Suppose there were such a U ′.
Since μ(DU , IC) = o, it would follow that μ(DU ′

, IC) = o. That, however,
contradicts the premise that U is a total repair and hence minimal, according
to Definition 7b, i.e., there is no U ′ � U such that μ(DU ′

, IC) = o. Hence, U
is a μ-repair of (D, IC) such that μ(DU , IC) = o. �

(b) For μ = β, part (b) follows from part (a). �

3.2.2 Minimality of Inconsistency-Tolerant Repairs
Clearly, each total and each μ-repair is a total and, resp., μ-based inconsistency
reduction, but not vice-versa, due to the minimality conditions in Definition 7b
and, resp., Definition 7d. The following example features an update U that sat-
isfies μ(DU , IC) < μ(D, IC) as in Definition 7c, but not the minimality condition
of Definition 7d. Typically, updates of that kind contain elements that do not
contribute to the reduction of inconsistency. Example 1 also features an update
that is an inconsistency-tolerant repair of (D, IC).

Example 1. Let D = {p, q, r}, IC = {← q}, U = {delete q, insert s}. It is easy
to verify that, for each μ ∈ {ι, |ι|, ζ, |ζ|, κ, |κ|}, μ(DU , IC) < μ(D, IC) holds,
i.e., U is a μ-based inconsistency reduction. However, U is not a μ-repair of
(D, IC), since its subset U ′ = {delete q} is a μ-repair of (D, IC): it yields the
same amount of inconsistency reduction, since μ(DU ′

, IC) = μ(DU , IC) holds,
but in a minimal way, since the only proper subset of U ′ is ∅.

Note that the minimality condition of inconsistency-tolerant repairs in Defi-
nition 7d must not be weakened, so as to simply require that there is no proper
subset U ′ of U such that μ(DU ′

, IC) < μ(D, IC), as illustrated by Example 2.

Example 2. Let D = {p, q, r, s}, IC = {← q,← r,← s}, U = {delete r, delete s},
and U ′ = {delete r}. Thus, DU = {p, q} and DU ′

= {p, q, s}. It is easy to verify
that, for each μ∈ {ι, |ι|, ζ, |ζ|, κ, |κ|}, both U and U ′ are μ-repairs of (D, IC), i.e.,
inconsistency reductions that are minimal according to Definition 7d, although
U ′ � U . However, also μ(DU , IC) < μ(DU ′

, IC) holds, i.e., U reduces inconsis-
tency more than U ′, i.e., U ′ is not preferable to U .

Instead of the conditions in Definition 7b and d, several other, non-equivalent
definitions of minimality are conceivable. For total repairs, that has been pointed
out, e.g., in [6]. For inconsistency-tolerant repairs, one could, for instance, replace
U ′ � U by |U ′| < |U |, or, more generally, require that there is no U ′ that would
be better than U according to some preference criteria. Such criteria could, e.g.,
be determined by assigning some weights to the cases of constraints, or to the
causes of their violation, in order to differentiate between different degrees of
tolerability associated to the respective inconsistencies. In this paper, we do
not study such alternative minimality conditions, except to note that U ′ � U
entails |U ′| < |U ′|, i.e., requiring minimality of the cardinality of U is strictly
more demanding than subset minimality, and that many preference criteria are
application-dependent, as opposed to subset minimality.

166 H. Decker

3.2.3 Useful Properties of Inconsistency Reductions
The following corollary is useful for computing repairs, as addressed in Sect. 5.

Corollary 2. For each measure μ and each triple (D, IC, U) such that U is a
μ-based inconsistency reduction of (D, IC), some subset of U is a μ-repair of
(D, IC).

Proof. If U is a repair, then we are done. So, suppose that U is not a
repair. Then, by Definition 7, there is a proper subset U ′ of U such that
μ(DU ′

, IC) ≤ μ(DU , IC). Since U is an inconsistency reduction, i.e., μ(DU , IC) <
μ(D, IC), it follows that U ′ is a μ-based inconsistency reduction of (D, IC). If
U ′ is a μ-repair of (D, IC), then we are done. If not, we iterate the preceding
argument inductively, until we arrive at a subset U∗ of U ′ and hence of U that,
by Definition 7d and the transitivity of ≤, is a μ-repair of (D, IC). �

Ad-hoc intents to reduce inconsistency by singleton updates often occur in prac-
tice. The following corollary says that each insertion or deletion of a single data-
base item which is confirmed to be an inconsistency reduction does not have to
be checked for minimality for qualifying as a repair.

Corollary 3. For each measure μ and each triple (D, IC, U), each singleton
μ-based inconsistency reduction U of (D, IC) is a μ-repair of (D, IC).

Proof. We only have to show that U is minimal, according to Definition 7d. The
only proper subset U ′ of U is ∅, for which μ(DU ′

, IC) ≤ μ(DU , IC) never may
hold, since DU ′

= D. �

Inconsistency can often be reduced iteratively, by sequences of singleton
updates so that constraint violations are repaired one by one while the overall
inconsistency does not increase. However, to compose such a sequence into one
atomic transaction does not necessarily yield a repair, as shown by Example 3.

Example 3. Let Df = {s, t, t′} be the fact base of a deductive database D, the
rule base of which consists of the following five clauses: p ← s, t; q ← s, t′;
r ←∼s, t; r ← s,∼t′; r ← t, t′. Further, let IC = {← p,← q,← r}. For
the sequence of updates U1 = {delete t′}, U2 = {delete s}, U3 = {delete t},
we have ι(D, IC) = IC, ι(DU , IC) = {← p,← r}, ι(DU1U2 , IC) = {← r } and
ι(DU1U2U3 , IC) = ∅. By Corollary 3, U1 is a ι-repair of (D, IC), U2 is a ι-repair of
(DU1 , IC) and U3 is a ι-repair of (DU1U2 , IC). However, neither the transactional
update U1 ∪ U2 nor U∗ = U1 ∪ U2 ∪ U3 is a ι-repair of D, since U2 is not only
a ι-repair of (DU1 , IC) but also a ι-repair of (D, IC) such that U2 � U1 ∪ U2

and ι(DU2 , IC) ⊆ ι(DU1U2 , IC), and U = {delete s, delete t } is a total ι-repair
of (D, IC) such that U � U∗.

Inconsistency-Tolerant Database Repairs 167

3.2.4 Repairs Depend on Inconsistency Measures
By Definition 7c, d, repairs are parametrized by the inconsistency measure on
which they are based. The choice of that measure may have a significant influ-
ence on repairs and repair checking. Examples 4a and b illustrate that, for two
measures μ, μ′, a μ-repair U is not necessarily a μ′-repair, since μ and μ′ may
measure the effect of U differently.

Example 4. Let D = {p, q, r} and IC = {← q,← s}.

(a) Let Ua = {delete q, insert s}. Clearly, Ua is a μ-repair of (D, IC) for each
μ that assigns a higher weight of inconsistency to the violation of ← q than
to the violation of ← s. However, Ua is not a |ι|-repair of (D, IC) (recall: |ι|
counts the violated constraints in IC), since |ι|(DUa , IC) = |ι|(D, IC) = 1.

(b) Let Ub = {insert t}, and ξ be the measure that counts the facts in D that
contribute to some integrity violation and then divides that count by the car-
dinality of D. (Similar inconsistency measures have been studied in [38,43].)
Since ξ(DUb , IC) = 1/4 and ξ(D, IC) = 1/3, Ub is a ξ-repair, by Corollary 3.
However, for each μ ∈ {|ι|, |ζ|, |κ|}, Ub is clearly not a μ-repair of (D, IC),
since μ(D, IC) = μ(DUb , IC) = 1.

4 Repair Checking

Difficulties and complications of automated repairing of database inconsistency
by event-condition-action rules are well-documented [11]. Unpredictability of
what may happen tends to increase whenever a database is updated ad-hoc and
‘by hand’ for restoring consistency or for getting rid of some constraint violation.
Thus, repairing may go wrong. Hence, repair checkers, i.e., methods for checking
if an update actually is a repair, are needed.

In Subsect. 4.1, we define repair checking in analogy to integrity checking. In
Subsect. 4.2, we modularize repair checking according to the definition of repairs
as minimal inconsistency reductions into inconsistency reduction checking and
minimality checking. In Subsect. 4.3, we show that inconsistency reduction can be
checked by integrity checking. In Subsect. 4.4, we show that also minimality can
be checked by integrity checking. This leads to the main results of this paper in
Subsect. 4.5, that repair checking can be computed by integrity checking. Repair
checking is simplified by using a simplified measure-based integrity checker to
compute it.

The basic idea is that an update U reduces inconsistency if and only if its
undo increases it. As we have seen in Subsect. 2.4, increase of inconsistency
can be determined by measure-based integrity checking, while not necessarily a
decrease.

4.1 Repair Checking – Definition

The repair checking problem is to find out if an update U is a repair of (D, IC).
Hence, each automated total repair checker can be described as an update

168 H. Decker

checker. The output yes accepts U as a repair in compliance with Definition 7,
and no means that U is not recognized as a repair.

Soundness and completeness of repair checkers are defined below. Defini-
tion 8 abstracts away from the distinction of repair checking of updates that are
either meant to be total or inconsistency-tolerant repairs, in accordance with
Corollary 1.

Definition 8 (repair checker). Let rc be an update checker, and μ an incon-
sistency measure. rc is called a sound, resp., complete μ-repair checker if (*),
resp., (**) holds, for each triple (D, IC, U).

(∗) rc(D, IC, U) = yes ⇒ U is a μ-repair
(∗∗) U is a μ-repair ⇒ rc(D, IC, U) = yes

In words, rc is sound if its output rc(D, IC, U) = yes identifies U as a repair
of (D, IC), and complete if each repair U of (D, IC) is identified by rc.

Below, Corollary 4 highlights close relationships between repair checking and
integrity checking.

Corollary 4. For each inconsistency measure μ, the following holds.

(a) Each sound μ -repair checker is a sound μ-based integrity checker.
(b) Each complete μ-based integrity checker is a complete μ-repair checker.

Proof. By Definitions 6, 7 and 8. �
Neither the converse of Corollary 4a nor the converse of Corollary 4b hold.

4.2 Repair Checking – Modularization

Corresponding to Definition 7, repair checking of an update U proceeds in two
modular phases. First, check if U reduces inconsistency. We call this phase the
inconsistency reduction check. If U has passed the inconsistency reduction check,
the second phase of repair checking is to check if U is minimal. We call this phase
the minimality check. For the first of the two phases of repair checking, the
following definition characterizes sound and complete inconsistency reduction
checking. according to Definition 7c.

Definition 9 (inconsistency reduction checker). Let μ be an inconsistency
measure, and ir an update checker. ir is called a sound, resp., complete, μ-
based inconsistency reduction checker if (*), resp., (**) holds, for each triple
(D, IC, U).

(∗) ir(D, IC, U) = yes ⇒ μ(DU , IC) < μ(D, IC)

(∗∗) μ(DU , IC) < μ(D, IC) ⇒ ir(D, IC, U) = yes

Inconsistency-Tolerant Database Repairs 169

In words, ir is sound if ir(D, IC, U) = yes correctly indicates that U reduces
the inconsistency of (D, IC) measured by μ, and complete if each U that reduces
inconsistency is checked correctly by rc.

Next, we define the soundness and completeness of the second phase, viz.
measure-based minimality checking, according to Definition 7d.

Definition 10 (minimality checking). Let μ be an inconsistency measure, and
mc an update checker. mc is called a sound, resp., complete, μ-based minimality
checker if (*), resp., (**) holds, for each triple (D, IC, U) such that U is an
μ-based inconsistency reduction.

(∗) mc(D, IC, U) = yes ⇒ for each U ′ � U , μ(DU ′
, IC) � μ(DU , IC)

(∗∗) for each U ′ � U , μ(DU ′
, IC) � μ(DU , IC) ⇒ mc(D, IC, U) = yes

In words, mc is sound if mc(D, IC, U) = yes correctly indicates that U is a
minimal inconsistency reduction, and mc is complete if the minimality of each
repair of (D, IC) is acknowledged by mc.

The following result is a straightforward consequence of Definitions 7–10. It
entails that repair checking can be realized modularly by inconsistency reduction
checking and, if the latter was successful, subsequent minimality checking.

Corollary 5 (modularization of repair checking). Let μ be an inconsistency
measure, ir a sound or, resp., complete μ-based inconsistency reduction checker,
mc a sound or, resp., complete μ-based minimality checker, and rc an update
checker. rc is a sound or, resp., complete μ-repair checker if and only if (∗) or,
resp., (∗∗) holds, for each triple (D, IC, U).

(∗) rc(D, IC, U) = yes ⇒ ir(D, IC, U) = yes and mc(D, IC, U) = yes

(∗∗) ir(D, IC, U) = yes and mc(D, IC, U) = yes ⇒ rc(D, IC, U) = yes

4.3 Inconsistency Reduction Checking by Integrity Checking

In this subsection, we show how inconsistency reduction can be implemented by
measure-based integrity checking. Also, we specify conditions that guarantee the
soundness and the completeness of inconsistency reduction checkers.

Part a of Lemma 1, below, shows that U is not a μ-based inconsistency reduc-
tion of (D, IC) if sound μ-based integrity checking of (DU , IC, U) accepts U . Part
b shows that complete inconsistency reduction checking is guaranteed by sound
measure-based inconsistency checking.

Lemma 1. For each measure μ and each sound μ-based integrity checker ic,
(a) and (b) hold.

(a) For each triple (D, IC, U) such that ic(DU , IC, U) = yes, U is not a μ-based
inconsistency reduction of (D, IC).

(b) An update checker ir is a complete μ-based inconsistency reduction checker
if (∗) holds, for each triple (D, IC, U).
(*) ir(D, IC, U) = no ⇒ ic(DU , IC, U) = yes

170 H. Decker

Proof:
(a) We have to show that μ(DU , IC) ≮ μ(D, IC) if ic(DU , IC, U) = yes. If
ic(DU , IC, U) = yes, then the soundness of ic entails μ(DUU , IC) ≤μ(DU , IC),
i.e. μ(D, IC) ≤μ(DU , IC). Hence, μ(DU , IC) ≮ μ(D, IC). �
(b) We have to show that μ(DU , IC) < μ(D, IC) ⇒ ir(D, IC, U) = yes holds,
according to Definition 9, under the premise of (∗). We show the contraposi-
tive, i.e., ir(D, IC, U) = no ⇒ μ(DU , IC) ≮ μ(D, IC). Let ir(D, IC, U) = no.
That, by the contrapositive of (∗), entails ic(DU , IC, U) = yes. The sound-
ness of ic entails μ(DUU , IC) ≤ μ(DU , IC), i.e., μ(D, IC) ≤ μ(DU , IC), hence
μ(DU , IC) ≮ μ(D, IC). �

Part a of Lemma 2, below, shows that U is a μ-based inconsistency reduction
of (D, IC) if complete μ-based integrity checking of (DU , IC, U) rejects U and
the range of μ is totally ordered. Part b shows that sound inconsistency reduction
checking is guaranteed by complete measure-based inconsistency checking if the
range of the measure is totally ordered.

Lemma 2. For each measure μ and complete μ-based integrity checker ic such
that the range of μ is totally ordered, the following holds.

(a) For each triple (D, IC, U) such that ic(DU , IC, U) = no, U is a μ-based
inconsistency reduction of (D, IC).

(b) An update checker ir is a sound μ -based inconsistency reduction checker if
(∗) holds, for each triple (D, IC, U).
(∗) ir(D, IC, U) = yes ⇒ ic(DU , IC, U) = no

Proof:
(a) Under the premise of Lemma 2, we have to show that μ(DU , IC) <
μ(D, IC) if ic(DU , IC, U) = no. Since ic is complete, ic(DU , IC, U) = no entails,
according to Definition 6, that μ(DUU , IC) � μ(DU , IC), which is equivalent to
μ(D, IC) � μ(DU , IC), since DUU = D. Since ≤ is a total order, it follows that
μ(DU , IC) < μ(D, IC). �
(b) We have to show that ir(D, IC, U) = yes ⇒ μ(DU , IC) < μ(D, IC) holds,
according to Definition 9, under the premise of (*). Let ir(D, IC, U) = yes. That,
by (*), entails ic(DU , IC, U) = no. From the completeness of ic, it follows that
μ(DUU , IC) � μ(DU , IC), i.e., μ(D, IC) � μ(DU , IC), i.e., μ(DU , IC) < μ(D, IC),
since ≤ is a total order. �

The condition in Lemma 2 that the range of μ is totally ordered cannot be
waived, as shown by Example 5.

Example 5. Let D = {p, q}, IC = {¬q, ¬r}, U = {insert r, delete q} and
icN be the well-known integrity checker in [52], which, based on ζ, is complete
for relational databases and constraints in clausal form, as mentioned in Sub-
sect. 2.4. Clearly, we have DU = {p, r}, U = {delete r, insert q}, ζ(DU , IC) =

Inconsistency-Tolerant Database Repairs 171

{¬r} and ζ(D, IC) = {¬q}, thus ζ(DU , IC) � ζ(D, IC) and icN (DU , IC, U) =
no. However, U clearly is not a ζ-based inconsistency reduction of (D, IC).

Part a of Lemma 3, below, shows that U is a μ-based inconsistency reduction
of (D, IC) if complete μ-based integrity checking of (DU , IC, U) rejects U and
sound μ-based integrity checking of (D, IC, U) accepts U . Part b shows that
sound and complete inconsistency reduction checking of U can be realized by
sound integrity checking of U and complete integrity checking of U .

Lemma 3. For each measure μ and each sound and complete μ -based integrity
checker ic, the following holds.

(a) For each triple (D, IC, U), U is a μ -based inconsistency reduction of (D, IC)
if and only if ic(DU , IC, U) = no and ic(D, IC, U) = yes.

(b) An update checker ir is a sound, resp., complete μ-based inconsistency
reduction checker if and only if (∗), resp., (∗∗) holds, for each triple
(D, IC, U).
ir(D, IC, U) = yes ⇒ (ic(DU , IC, U) = no and ic(D, IC, U) = yes) (∗)
(ic(DU , IC, U) = no and ic(D, IC, U) = yes) ⇒ ir(D, IC, U) = yes (∗∗)

Proof:
(a) Under the premises of Lemma 3, we have to show that μ(DU , IC) < μ(D, IC)
if and only if ic(DU , IC, U) = no and ic(D, IC, U) = yes. We first show the if-
half. As in the proof of Lemma2, we have that the completeness of ic entails
μ(D, IC) � μ(DU , IC). From ic(D, IC) = yes and the soundness of ic, it fol-
lows that μ(DU , IC) ≤ μ(D, IC). From μ(D, IC) � μ(DU , IC), it follows that
μ(DU , IC) < μ(D, IC).
For showing the only-if half, let U be a μ-based inconsistency reduction of
(D, IC), i.e., μ(DU , IC) < μ(D, IC). That entails μ(DU , IC) ≤ μ(D, IC). From
that and the completeness of ic, it follows that ic(D, IC, U) = yes. It remains to
show that ic(DU , IC, U) = no, which follows from the soundness of ic. �
(b) To prove that ir is sound under the premise of (∗), we have to show that
ir(D, IC, U) = yes ⇒ μ(DU , IC) < μ(D, IC) holds, according to Definition 8.
Suppose that ir(D, IC, U) = yes. By (∗), that entails ic(DU , IC, U) = no and
ic(D, IC, U) = yes. Completeness of ic entails that μ(DUU , IC) � μ(DU , IC),
and soundness of ic entails that μ(DU , IC) ≤ μ(D, IC). That is equivalent to
μ(D, IC) � μ(DU , IC) and μ(DU , IC) ≤ μ(D, IC). That entails μ(D, IC) �=
μ(DU , IC) and μ(DU , IC) ≤ μ(D, IC), hence μ(DU , IC) < μ(D, IC).
To prove that the soundness of ir entails (∗), let ic(D, IC, U) = yes. We have
to show ic(DU , IC, U) =no and ic(D, IC, U) = yes. The soundness of ir entails
μ(DU , IC) < μ(D, IC), hence μ(D, IC) � μ(DU , IC) and μ(DU , IC) ≤μ(D, IC).
Clearly, μ(D, IC) � μ(DU , IC) is the same as μ(DUU , IC) � μ(DU , IC), from
which ic(DU , IC, U) =no is entailed by the soundness of ic. From μ(DU , IC) ≤
μ(D, IC), the completeness of ic entails ic(D, IC, U) = yes.
To prove that ir is complete under the premise of (∗∗), we show the con-
trapositive ir(D, IC, U) = no ⇒ μ(DU , IC) ≮ μ(D, IC) of the implication

172 H. Decker

μ(DU , IC) < μ(D, IC) ⇒ ir(D, IC, U) = yes. Suppose ir(D, IC, U) = no. By
(∗∗), ic(DU , IC, U) = yes or ic(D, IC, U) = no follows. If ic(DU , IC, U) = yes,
then the same argument as in the proof of Lemma 1a applies. So, assume that
ic(D, IC, U) = no. By the completeness of ic, that entails μ(DU , IC) � μ(D, IC),
hence μ(DU , IC) ≮ μ(D, IC).
To prove that the completeness of ir entails (∗∗), let ic(DU , IC, U) =no and
ic(D, IC, U) = yes. Thus, we have to show that ir(D, IC, U) = yes. From
ic(D, IC, U) = yes, the soundness of ic entails μ(DU , IC) ≤ μ(D, IC). From
ic(DU , IC, U) =no, the completeness of ic entails μ(DUU , IC) � μ(DU , IC), i.e.,
μ(D, IC) � μ(DU , IC). From μ(DU , IC) ≤ μ(D, IC) and μ(D, IC) � μ(DU , IC),
it follows that μ(DU , IC) < μ(D, IC). Hence, the completeness of ir entails
ir(D, IC, U) = yes. �

Note that, for U to be recognized as a μ-based inconsistency reduction, both
Lemmata 2 and 3 require to run a complete μ-based integrity checker ic on
U . However, Lemma 2 additionally requires a totally ordered range of μ, while
Lemma 3 additionally requires also the soundness of ic and to run it also on U .

4.4 Minimality Checking by Integrity Checking

In Subsect. 4.3, we have seen how the inconsistency reduction of updates can be
checked by measure-based integrity checking. In Lemma 4 and Corollary 6, below,
we are going to see that also the minimality check of inconsistency reductions
can be accomplished by measure-based integrity checking.

Lemma 4. For each measure μ, each sound or, resp., complete μ-based integrity
checker ic and each triple (D, IC, U) such that U is a μ-based inconsistency
reduction U of (D, IC), (∗) or, resp., (∗∗) holds.

(∗) U is not minimal if there is a proper non-empty subset U ′ of U

such that ic(DU , IC, U
′
) = yes

(∗∗) U is not minmal only if there is a proper non-empty subset U ′ of U

such that ic(DU , IC, U
′
) = yes

Proof:
(∗) Assume U ′ to be a proper subset of U such that ic(DU , IC, U

′
) = yes. Thus

we have to show that U is not minimal. Let U ′′ = U \ U ′. Since U ′ �= U and
U ′ �= ∅, it follows that U ′′ � U . Hence, it suffices to show that μ(DU ′′

, IC) ≤
μ(DU , IC). From ic(DU , IC, U

′
) = yes, it follows that μ(DUU

′
, IC) ≤ μ(DU , IC),

i.e., μ(DU ′′
, IC) ≤ μ(DU , IC), since UU

′
= U ′′. �

(∗∗) Assume that U is not minimal. Thus, by Definition 7d, there is a proper
non-empty subset U ′′ (say) of U such that μ(DU ′′

, IC) ≤ μ(DU , IC). For U ′ =
U \ U ′′, this is equivalent to μ(DUU

′
, IC) ≤ μ(DU , IC), since U ′′ = UU

′
. Since

ic is complete, ic(DU , IC, U
′
) = yes follows, by Definition 6. �

Inconsistency-Tolerant Database Repairs 173

The contrapositive of Lemma 4, together with Definition 7d, yields Corol-
lary 6, below. We state it explicitly, for facilitating the evidence of theorems in
Subsect. 4.5. Informally, it describes how to obtain sound and complete mini-
mality checkers by complete and, resp., sound integrity checkers.

Corollary 6. For each measure μ, each complete or, resp., sound μ-based
integrity checker ic, and each triple (D, IC, U) such that U is a μ-based incon-
sistency reduction U of (D, IC), an update checker mc is a sound or, resp.,
complete μ-based minimality checker if (∗) or, resp., (∗∗) holds.

mc(D, IC, U)=yes ⇒ for each non-empty U ′ � U , ic(DU , IC, U
′
)=no (∗)

for each non-empty U ′ � U , ic(DU , IC, U
′
)=no ⇒ mc(D, IC, U)=yes (∗∗)

Proof: From the premise that ic is complete and (∗) in Corollary 6, the soundness
of mc follows by (∗∗) in Lemma 4. From the premise that ic is sound and (∗∗)
in Corollary 6, the completeness of mc follows by (∗) in Lemma 4. �

4.5 Repair Checking by Integrity Checking

Lemmata 1–4 and Corollary 6 provide handles for unfolding Corollary 5 into the
main results of this paper, as presented in Theorems 1–3, below. They state
how inconsistency-tolerant repairs can be verified or falsified by measure-based
integrity checking.

Theorem 1 devises a way to see that a given update is not a repair. By
requiring that the used integrity checker is not just sound but also complete,
Theorem 3 devises a sound and complete way to check if U is or is not a repair.
While only catering for the soundness of repair checking, Theorem2 additionally
requires that the range of the used inconsistency measure is totally ordered, but
in turn only needs the completeness of integrity checking, and one run of integrity
checking less than repair checking according to Theorem 3.

Theorem 1. For each measure μ and each sound μ-based integrity checker ic,
a) and b) hold.

(a) For each triple (D, IC, U) such that ic(DU , IC, U
′
) = yes for some U ′ ⊆ U ,

U is not a μ-repair of (D, IC).
(b) An update checker rc is a complete μ-repair checker if (∗) holds, for each

triple (D, IC, U).
(∗) rc(D, IC, U) = no ⇒ ic(DU , IC, U

′
) = yes, for some U ′ ⊆ U , U �= ∅.

Proof: By Lemma 1 and (∗) in Lemma 4, we have the following.

(a) For each triple (D, IC, U) such that ic(DU , IC, U) = yes or ic(DU , IC, U
′
) =

yes for some non-empty U ′ � U , U is not a μ-repair of (D, IC).

174 H. Decker

(b) An update checker rc is a complete μ-repair checker if the following holds,
for each triple (D, IC, U).

rc(D, IC, U) = no ⇒ ic(DU , IC, U) = yes, or there is a U ′ � U, U �= ∅
such that ic(DU , IC, U

′
) = yes

From that, Theorem 1 follows. �

Theorem 2. For each inconsistency measure μ with a totally ordered range,
and each complete μ-based integrity checker, the following holds.

(a) For each triple (D, IC, U), U is a μ -repair of (D, IC) if, for each U ′ ⊆ U ,
ic(DU , IC, U

′
) = no.

(b) An update checker rc is a sound μ-repair checker if, for each triple
(D, IC, U) and each U ′ ⊆ U , (∗) holds.
rc(D, IC, U) = yes ⇒ ic(DU , IC, U ′) = no, ic(DU , IC, U

′
) = no (∗)

Proof: By Lemma 2 and (∗) in Corollary 6, we have the following.

(a) For each triple (D, IC, U), U is a μ-repair of (D, IC) if ic(DU , IC, U) = no
and, for each U ′ � U , ic(DU , IC, U

′
) = no.

(b) An update checker rc is a sound μ-repair checker if (∗) holds, for each triple
(D, IC, U).

rc(D, IC, U) = yes ⇒ ic(DU , IC, U) = no, and (∗)

for each U ′ � U, ic(DU , IC, U
′
) = no.

From that, Theorem 2 follows �

Theorem 3. For each measure μ and each sound and complete μ-based
integrity checker ic, the following holds.

(a) For each triple (D, IC, U), U is a μ-repair of (D, IC) if and only if,
for each non-empty U ′ ⊆ U , ic(DU , IC, U

′
) = no, and ic(D, IC, U) = yes.

(b) An update checker rc is a sound, resp., complete μ-repair checker if and
only if, for each triple (D, IC, U), (∗), resp., (∗∗) holds.

rc(D, IC, U) = yes ⇒ for each non-empty U ′ ⊆ U, ic(DU , IC, U
′
) = no

and ic(D, IC, U) = yes (∗)

for each non-empty U ′ ⊆ U, ic(DU , IC, U
′
) = no

and ic(D, IC, U) = yes ⇒ rc(D, IC, U) = yes (∗∗)

Inconsistency-Tolerant Database Repairs 175

Proof: By Lemma 3 and Corollary 6, we have the following.

(a) For each triple (D, IC, U), U is a μ-repair of (D, IC) if and only if

ic(DU , IC, U) = no and ic(D, IC, U) = yes and, for each U ′ � U,

ic(DU , IC, U
′
) = no,

(b) An update checker rc is a sound, resp., complete μ-repair checker if and only
if, for eachtriple (D, IC, U), (∗), resp., (∗∗) holds.

rc(D, IC, U) = yes ⇒ ic(DU , IC, U)) = no and ic(D, IC, U) = yes,

and for each U ′ � U, ic(DU , IC, U
′
) = no (∗)

ic(DU , IC, U) = no and ic(D, IC, U) = yes

and for each U ′ � U, ic(DU , IC, U
′
) = no ⇒ rc(D, IC, U) = yes (∗∗)

From that, Theorem 3 follows. �

5 Computing Repair Checking

We are going to outline how the inconsistency reduction and the minimality
checking phases of total and measure-based repair checking can be computed.
We are also going to assess the costs of these computations.

In Subsect. 5.1, we describe how total repair checking is computed by brute-
force integrity checking. In Subsects. 5.2 and 5.3, we outline how inconsistency-
tolerant repair checking can be computed. The approach in Subsect. 5.2 is ‘naive’,
since it actually computes the values of inconsistency measures. It does not recur
on integrity checking. The approach in Subsect. 5.3 does not need to compute
inconsistency measures. It uses simplified integrity checking, so we call it ‘sim-
plified repair checking’.

Along the way, we compare the three approaches among each other. Since the
objectives of total and measure-based repair checking are not precisely identical,
it may be considered unfair to compare the cost of their computation. However,
a common goal of both is to reduce inconsistency in a minimal way.

In general, we argue that both the naive and the simplified approach process
inconsistency-tolerant repair candidate updates, and thus are more realistic than
total repair checking, which needs to process updates that are supposed to repair
the totality of all integrity violations, without tolerating any remaining inconsis-
tency. Only for relatively simple cases of constraints and updates, and not-too-
large databases, total repair checking and naive measure-based repair checking
seem to be computationally affordable. Simplified repair checking is less costly
than both naive and total repair checking, inasmuch as measures do not need
to be computed, and both the number and the complexity of constraints to be
evaluated are reduced.

176 H. Decker

5.1 Computing Total Repair Checking

First, we describe the computation of total repair checking by brute-force
integrity checking. Then, we indicate how total repairs can be obtained from
a given inconsistency reduction. Last, we assess the cost of total repair checking.

By Definitions 8a and b, total repair checking may verify or falsify, for given
triples (D, IC, U), that (DU , IC) is consistent, and that U is minimal, in two
phases, as described subsequently.

Phase 1 (inconsistency reduction check). Check if U is a total inconsistency
reduction of (D, IC) by querying each I ∈ IC against DU . If some I is not
satisfied in DU , then U is not a total inconsistency reduction and hence not
a total repair of (D, IC). If each I ∈ IC is satisfied in DU , then U is a total
inconsistency reduction, hence proceed to Phase 2.

Phase 2 (minimality check). For each U ′ � U , check if U ′ is a total inconsistency
reduction of (D, IC) by querying each I ∈ IC against DU ′

. If each I is satisfied
in DU ′

, then U ′ is a total inconsistency reduction of (D, IC). Hence, U is not a
total repair of (D, IC), If some I is not satisfied in DU ′

, then U ′ is not a total
inconsistency reduction of (D, IC). If no U ′ � U is an inconsistency reduction
of (D, IC), then U is a total repair of (D, IC).

If, in Phase 1, U has turned out to be an inconsistency reduction of (D, IC),
then, by Corollaries 1b and 2, at least one total repair of (D, IC) exists. From
each inconsistency reduction of (D, IC), a total repair of (D, IC) can obviously
be obtained by iterating Phase 2, as in the proof of Corollary 2.

For assessing the cost of computing Phases 1 and 2, let n be the cardinality
of U , and m = 2n. Thus, there are m subsets U1, . . . , Um of U ; one, say Um,
is the empty set. Hence, if U is a total repair, then m − 1 brute-force integrity
checks of (DUi, IC) (i = 1, . . . , m − 1) are needed for deciding if U is a total
repair of (D, IC). If k is the cardinality of IC, then that amounts to k × (m − 1)
full-fledged evaluations of constraints in IC.

5.2 Computing Naive Inconsistency-Tolerant Repair Checking

First, we describe a naive way of computing inconsistency-tolerant repair check-
ing, by computing the values of inconsistency measures before and after updat-
ing. Then, we indicate how inconsistency-tolerant repairs can be obtained from a
given inconsistency reduction. Last, we assess the cost of the naive computation.

According to Definition 7c and d, μ-based repair checking can be implemented
naively in two phases, as follows.

Phase 1 (inconsistency reduction check). Compute the values of μ(D, IC) and
μ(DU , IC) and then check if μ(DU , IC) < μ(D, IC) holds. If it does, then U is
an inconsistency reduction of (D, IC), else it isn’t.

Phase 2 (minimality check). Compute the measure μ(DU ′
, IC) of each proper

non-empty subset U ′ of U and compare it to μ(D, IC), as already computed in
Phase 1. If, for each such U ′, μ(DU ′

, IC) ≤ μ(DU , IC) does not hold, then U is

Inconsistency-Tolerant Database Repairs 177

a μ-repair of (D, IC). Else, if, for some such U ′, μ(DU ′
, IC) ≤ μ(DU , IC) holds,

then U ′ is a μ-based inconsistency reduction of (D, IC), hence U is not a μ-repair
of (D, IC).

If, in Phase 1, U has turned out to be an inconsistency reduction then, by
Corollary 2, at least one total repair of (D, IC) exists. From each μ-based incon-
sistency reduction of (D, IC), a μ-repair of (D, IC) can obviously be obtained by
iterating Phase 2, as in the proof of Corollary 2.

Clearly, μ(DU ′
, IC) has to be computed for each subset U ′ of U : for subsets

∅ and U in Phase 1, and for proper non-empty subsets in Phase 2. For |U | =n,
that amounts to the computation of 2n measurements, one for each subset U ′ of
U . The cost of the computation of measures obviously depends on the definition
of μ. To compute μ(D, IC) for any of the measures ι, |ι|, ζ, |ζ|, κ, |κ| involves the
evaluation of each I in IC against D, for ζ, |ζ|, κ, |κ| also an analysis of the search
space, for identifying all violated cases or, resp., all causes of integrity violation.
Thus, the order of magnitude of evaluating constraints for naive measure-based
repair checking is roughly the same as for total repair checking. However, depend-
ing on the specific measure to be computed, the total cost of computing naive
repair checking may turn out to be higher than that of total repair checking, for
comparable sizes of candidate updates.

5.3 Computing Simplified Repair Checking

A computation of simplified repair checking by measure-based integrity checking
is suggested by Theorems 1–3. The output ic(DU , IC, U) = yes means that U is
not a μ-repair, by Theorem1. For U to be a μ-repair, the output ic(D, IC, U) =
yes is only necessary, but not sufficient. Sufficient conditions to identify updates
as μ-repairs are given by Theorems 2 and 3, which both require the use of a
complete μ-based integrity checker.

In any case, however, for computing simplified repair checking, a measure-
based integrity checker should be used that simplifies the evaluation of con-
straints, such as the method in [52], or one of the many methods that have been
developed as modifications, refinements or extensions of that approach [47] [49].

We are going to assess simplified repair checking according to Theorem 3,
again by the two phases of inconsistency reduction and minimality checking, as
described below. Note, however, that, if the range of μ is totally ordered, then
the cost of μ-based repair checking according to Theorem 2 is lower than that
of a computation according to Theorem3, since the totally ordered range of μ
enables a less costly inconsistency reduction check.

Phase 1: Check if U is a μ-based inconsistency reduction of (D, IC) by
computing ic(DU , IC, U) and ic(D, IC, U), according to Lemma 3.

Phase 2: Check if U is minimal in the sense of Definition 7d by checking
whether ic(DU , IC, U

′
) = no holds, for each non-empty U ′ � U , according to

Corollary 6.

178 H. Decker

For Phase 1, at most two runs of ic are needed. For Phase 2, at most 2n − 2
runs of ic are needed, where n is the cardinality of U . Hence, maximally 2n

runs of ic are needed for deciding if U is a μ-repair of (D, IC) or not. Thus, the
actual cost of repair checking by integrity checking depends on ic. If a sound and
complete simplified integrity checker is available, then running such a method
tends to be much less costly than brute-force integrity checking, as employed for
total repair checking and for naive measure-based repair checking.

Recall from Subsect. 5.1 that the cost of total repair checking was k×(m−1)
unsimplified constraint evaluations, where m = 2n and k is the cardinality of
IC. For ease of comparison, suppose that all constraints in IC are expressed
by a single constraint formula I (the conjunction of all constraints). Then, for
total repair checking, we’d have in the order of m-1 evaluations of I against DUi

(1 ≤ i ≤ m − 1), where the Ui are the non-empty subsets of U . Compared to
that, m evaluations of a simplification of I for simplified repair checking (one
more against D than as for total repair checking) obviously tends to be much
less costly.

The significant cost savings obtainable by simplified integrity checking have
been noted in many studies in the literature, among them, e.g., [10,14,16,52].
They essentially amount to the difference between having to evaluate univer-
sally quantified formulas, as for brute-force repair checking, and evaluating their
simplified instances obtained from ground substitutions of their global variables,
as for most methods of simplified integrity checking. Often, that corresponds to
the difference of evaluating possibly huge joins of relations and simple lookups
of ground instances of such joins.

The same way as described in Subsect. 5.2, inconsistency-tolerant repairs can
be computed from an inconsistency reduction, which we therefore do not repeat
here. Note, however, that the use of simplified integrity checking for inconsistency
reduction checking and minimality checking as needed in Phase 3 is far less costly
than to compute the values of inconsistency measures, as in Subsect. 5.2.

6 Related Work

Related work on integrity checking, inconsistency measuring, repairing and
repair checking has been duly referred to already.

Conventional work on repairing and repair checking is focused on complexity
issues in relation with consistent query answering (CQA) [3,12]. As opposed to
that, neither our use of measure-based integrity checking for simplified repair
checking nor our alternative to CQA in [20] is hung up in the complexity nexus
between CQA, repairing and repair checking. Much of the discussion of complex-
ity issues refers to certain classes of constraints and databases. However, that
discussion tends to miss the point of where cost issues of integrity checking may
hurt most: Many constraints are universally quantified formulas that may involve
potentially huge joins of database relations, and brute-force evaluation of all of
them may result to be prohibitively expensive. As opposed to that, the use of
simplified integrity checking for inconsistency-tolerant repair checking only has

Inconsistency-Tolerant Database Repairs 179

to evaluate certain instances of those constraints that are affected by the given
update.

Work that remains to be mentioned is concerned with the question how to
obtain promising repair candidates, or how to compute repairs. In Subsects. 5.1,
5.2 and 5.3, we have outlined how to compute repairs from given inconsistency
reductions. What we have not dealt with, however, is the related question of how
to systematically obtain candidate inconsistency reductions. In Subsect. 3.2.3,
we have mentioned attempts of repairing inconsistency by ad-hoc updates or
iterated singleton updates. Repairing by tuple deletions as proposed in [13,62]
only works if there is no non-monotonic database negation. For obtaining total
repairs, the authors of [35,58] propose to identify and explicitly represent all
constraint violations, which however can easily become a prohibitively difficult
task. Instead, the use of abductive logic programming procedures that generate
update hypotheses for satisfying integrity constraints [18,44–46] seems to be a
more promising approach to obtain suitable inconsistency-tolerant repair candi-
dates, or at least inconsistency reduction candidates, which can then be checked
as described in Subsects. 4.3 and 4.4. The use of abduction for repairing remains
to be investigated further.

7 Conclusion

We have simplified repair checking in two ways. Firstly, by relaxing total repairs,
which do not tolerate the least bit of inconsistency, to inconsistency-tolerant
repairs. Secondly, by deploying measure-based integrity checking (which nor-
mally is used for preventing an increase of inconsistency) for simplified checks of
update attempts to decrease inconsistency. Simplified repair checking is based on
inconsistency measures, but does not need to compute such measures. Nor does
total repair checking. However, the latter does check each constraint brute-force.
As opposed to that, simplified measure-based repair checking is inconsistency-
tolerant and less costly than total repair checking.

In general, however, simplified repair checking by integrity checking requires
a complete measure-based integrity checker. Although many known measure-
based integrity checkers are in general incomplete, there are significant classes
of databases, integrity theories, updates and inconsistency measures for which
their completeness can be guaranteed, or relaxed, while preserving the soundness
of measure-based repair checking.

Typically, such classes require a certain form of representing constraints. For
example, the integrity checker icN (say) in [52] is incomplete, e.g., for the non-
clausal constraint representation of IC = {¬q ∧ ¬r} when asked to check the
update U = {delete q, insert r} in a database D that contains q but not r.
Clearly, ζ(DU , IC) = ζ(D, IC) = IC, hence U leaves the amount of inconsistency
invariant. But icN is ignorant of the violation of I in D and considers I vio-
lated in DU due to the insertion of r. Hence, icN (D, IC, U) = no. If icN were
complete for arbitrary representations of constraints, it would have to output
yes in this example. However, as soon as IC is represented in clausal form, by

180 H. Decker

IC′ = {¬q, ¬r} as in Example 5, i.e., by two separate constraints, then we have
ζ(D, IC′) = {¬q} and ζ(DU , IC′) = {¬r}, i.e., ζ(DU , IC′) � ζ(D, IC′), hence
the output icN (D, IC, U) = no becomes correct, and indeed, icN is a complete
ζ-based integrity checker for range-restricted constraints in clausal form, as
already mentioned in Subsect. 2.4.

At this point, it is interesting to mention that, for each database inconsis-
tency measure μ, a complete μ-based integrity checker obviously can be obtained
by actually computing the values of μ(D, IC) and μ(DU , IC) for input triples
(D, IC, U), as described in Subsect. 5.2.

However, for avoiding to have to recur on an expensive computation of mea-
sures, it is desirable to realize repair checking by an integrity checking method
that simplifies constraint evaluation and is sound and complete with regard to
some convenient measure. That is a feasible option for the measure ζ and some
known integrity checkers of updates in relational databases with constraints in
clausal form. Ongoing work is concerned with identifying suitable measures μ
and expressive classes of triples (D, IC, U) of theoretical and practical interest,
such that some measure-based methods can be shown to be sound and complete
μ-based integrity checkers for input from such classes. According to the main
results in this paper, such integrity checkers can then be used for sound and
complete simplified repair checking.

Acknowledgement. Preliminary stages of the work presented in this paper have been
published in [31] and [32]. John Grant had provided valuable comment on early drafts.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Massachusetts (1995)

2. Afrati, F., Kolaitis, P.: Repair checking in inconsistent databases: algorithms and
complexity. In: Proceedings of 12th ICDT, pp. 31–41. ACM Press (2009)

3. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of PODS, pp. 68–79. ACM Press (1999)

4. Arming, S., Pichler, B., Sallinger, E.: Combined complexity of repair checking
and consistent query answering. In: Proceedings 19th International Conference on
Database Theory (ICDT), vol. 48, pp. 21:1–21:18. LIPIcs (2016)

5. Bayer, R.: Integrity, concurrency, and recovery in databases. In: Samelson, K. (ed.)
ECI 1976. LNCS, vol. 44, pp. 79–106. Springer, Heidelberg (1976). doi:10.1007/
3-540-07804-5 24

6. Bertossi, L.: Consistent query answering in databases. SIGMOD Rec. 35(2), 68–76
(2006)

7. Besnard, P.: Basic postulates for inconsistency measures. In: Hameurlain, A. (ed.)
TLDKS 2017. LNCS, vol. 10620, pp. 1–12. Springer, Cham (2017)

8. Bry, F., Decker, H., Manthey, R.: A uniform approach to constraint satisfaction
and constraint satisfiability in deductive databases. In: Schmidt, J.W., Ceri, S.,
Missikoff, M. (eds.) EDBT 1988. LNCS, vol. 303, pp. 488–505. Springer, Heidelberg
(1988). doi:10.1007/3-540-19074-0 69

9. Cavedon, L.: Acyclic logic programs and the completeness of sldnf-resolution.
Theor. Comput. Sci. 86(1), 81–92 (1991)

http://dx.doi.org/10.1007/3-540-07804-5_24
http://dx.doi.org/10.1007/3-540-07804-5_24
http://dx.doi.org/10.1007/3-540-19074-0_69

Inconsistency-Tolerant Database Repairs 181

10. Celma, M., Garcia, C., Mota, L., Decker, H.: Comparing and synthesizing integrity
checking methods for deductive databases. In: Proceedings of 10th ICDE, pp. 214–
222. IEEE Computer Society (1994)

11. Ceri, S., Cochrane, R., Widom, J.: Practical applications of triggers and con-
straints: success and lingering issues (10-year award). In: Abbadi, A.E., Brodie,
M., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., Whang, K.-Y. (eds.)
Proceedings of 26th VLDB, pp. 254–262. Morgan Kaufmann (2000)

12. Chomicki, J.: Consistent query answering: five easy pieces. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg
(2006). doi:10.1007/11965893 1

13. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(12), 90–121 (2005)

14. Christiansen, H., Martinenghi, D.: Incremental integrity checking: limitations and
possibilities. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol.
3835, pp. 712–727. Springer, Heidelberg (2005). doi:10.1007/11591191 49

15. Christiansen, H., Martinenghi, D.: On simplification of database integrity con-
straints. Fundamenta Informaticae 71(4), 371–417 (2006)

16. Das, S.K., Williams, H.: Integrity checking methods in deductive databases:a com-
parative evaluation. In: Proceedings of 7th BNCOD, British National Conference
on Databases, pp. 85–116. CUP (1989)

17. Decker, H.: Integrity enforcement on deductive databases. In: Kerschberg, L. (ed.)
Expert Database Systems, pp. 381–395. Benjamin Cummings (1987)

18. Decker, H.: An extension of SLD by abduction and integrity maintenance for view
updating in deductive databases. In: Maher, M.J. (ed.) Proceedings of the 1996
Joint International Conference and Symposium on Logic Programming, pp. 157–
169. MIT Press (1996)

19. Decker, H.: Toward a Uniform Cause-Based Approach to Inconsistency-Tolerant
Database Semantics. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM
2010. LNCS, vol. 6427, pp. 983–998. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16949-6 23

20. Decker, H.: Answers that have integrity. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2010. LNCS, vol. 6834, pp. 54–72. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23441-5 4

21. Decker, H.: Partial repairs that tolerate inconsistency. In: Eder, J., Bielikova, M.,
Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 389–400. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23737-9 28

22. Decker, H.: Axiomatizing inconsistency metrics for integrity maintenance. In: Pro-
ceedings of 16th KES, pp. 1243–1252. IOS Press (2012)

23. Decker, H.: New measures for maintaining the quality of databases. In: Murgante,
B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan,
B.O. (eds.) ICCSA 2012. LNCS, vol. 7336, pp. 170–185. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31128-4 13

24. Decker, H.: Measure-based inconsistency-tolerant maintenance of database
integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol. 7693,
pp. 149–173. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36008-4 7

25. Decker, H.: Database inconsistency measuring (2017, submitted)
26. Decker, H., Martinenghi, D.: A relaxed approach to integrity and inconsistency in

databases. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol.
4246, pp. 287–301. Springer, Heidelberg (2006). doi:10.1007/11916277 20

http://dx.doi.org/10.1007/11965893_1
http://dx.doi.org/10.1007/11591191_49
http://dx.doi.org/10.1007/978-3-642-16949-6_23
http://dx.doi.org/10.1007/978-3-642-16949-6_23
http://dx.doi.org/10.1007/978-3-642-23441-5_4
http://dx.doi.org/10.1007/978-3-642-23441-5_4
http://dx.doi.org/10.1007/978-3-642-23737-9_28
http://dx.doi.org/10.1007/978-3-642-31128-4_13
http://dx.doi.org/10.1007/978-3-642-36008-4_7
http://dx.doi.org/10.1007/11916277_20

182 H. Decker

27. Decker, H., Martinenghi, D.: Classifying integrity checking methods with regard to
inconsistency tolerance. In: Proceedings of the 10th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, pp. 195–204.
ACM Press (2008)

28. Decker, H., Martinenghi, D.: Database integrity checking. In: Erickson, J. (ed.)
Database Technologies: Concepts, Methodologies, Tools, and Applications, vol. I,
pp. 212–220. IGI Global (2009)

29. Decker, H., Martinenghi, D.: Modeling, measuring and monitoring the quality of
information. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp.
212–221. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04947-7 26

30. Decker, H., Martinenghi, D.: Inconsistency-tolerant integrity checking. IEEE
Trans. Knowl. Data Eng. 23(2), 218–234 (2011)

31. Decker, H., Misra, S.: Measure-based repair checking by integrity checking. In:
Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9790, pp. 530–543. Springer,
Cham (2016). doi:10.1007/978-3-319-42092-9 40

32. Decker, H., Pascual-Miret, L., Misra, S.: Repair checking by integrity checking.
In: 27th International Workshop on Database and Expert Systems Applications,
DEXA 2016 Workshop COIN, pp. 134–138. IEEE Computer Society (2016)

33. Doorn, J.H., Rivero, L.C.: Database Integrity: Challenges and Solutions. Idea
Group Publishing (2002)

34. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 7th edn. Pearson,
London (2016)

35. Fan, W.: Constraint-driven database repair. In: Liu, L., Özsu, M.T. (eds.) Ency-
clopedia of Database Systems, pp. 458–463. Springer, USA (2009)

36. Gabbay, D., Hunter, A.: Making inconsistency respectable: A logical framework for
inconsistency in reasoning, part I — A position paper. In: Jorrand, P., Kelemen, J.
(eds.) FAIR 1991. LNCS, vol. 535, pp. 19–32. Springer, Heidelberg (1991). doi:10.
1007/3-540-54507-7 3

37. Grant, J.: Classifications for inconsistent theories. Notre Dame J. Formal Logic
19(3), 435–444 (1978)

38. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inform.
Syst. 27(2), 159–184 (2006)

39. Grant, J., Hunter, A.: Measuring the good and the bad in inconsistent information.
In: Proceedings of 22nd IJCAI, pp. 2632–2637. IJCAI-AAAI (2011)

40. Gupta, A., Sagiv, Y., Ullman, J.D., Widom, J.: Constraint checking with partial
information. In: Proceedings of PODS 1994, pp. 45–55. ACM Press (1994)

41. Hernandez, M.J.: Database Design for Mere Mortals: A Hands-On Guide to Rela-
tional Database Design, 3rd edn. Addison-Wesley, Boston (2013)

42. Ibrahim, H.: Checking integrity constraints - how it differs in centralized, distrib-
uted and parallel databases. In: 17th International Workshop on Database and
Expert Systems Applications (DEXA 2006), pp. 563–568. IEEE Computer Society
(2006)

43. Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction
in propositional logic through epistemic tests. In: Proceedings of 18th IJCAI, pp.
106–111. Morgan Kaufmann (2003)

44. Kowalski, R., Sadri, F.: Integrating logic programming and production sys-
tems in abductive logic programming agents. In: Polleres, A., Swift, T. (eds.)
RR 2009. LNCS, vol. 5837, pp. 1–23. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05082-4 1

45. Kowalski, R.A., Sadri, F.: Abductive logic programming agents with destructive
databases. Ann. Math. Artif. Intell. 62(1–2), 129–158 (2011)

http://dx.doi.org/10.1007/978-3-642-04947-7_26
http://dx.doi.org/10.1007/978-3-319-42092-9_40
http://dx.doi.org/10.1007/3-540-54507-7_3
http://dx.doi.org/10.1007/3-540-54507-7_3
http://dx.doi.org/10.1007/978-3-642-05082-4_1
http://dx.doi.org/10.1007/978-3-642-05082-4_1

Inconsistency-Tolerant Database Repairs 183

46. Lin, F., You, J.: Abduction in logic programming: a new definition and an abduc-
tive procedure based on rewriting. Artif. Intell. 140(1/2), 175–205 (2002)

47. Ling, T.W., Lee, S.Y.: A survey of integrity constraint checking methods in rela-
tional databases. In: Kim, I.P.W., Kambayashi, Y. (ed.) Database Systems for
Next-Generation Applications. Advanced Database Research and Development
Series, vol. 1, pp. 68–78. World Scientific (1993)

48. Lloyd, J.W., Sonenberg, L., Topor, R.W.: Integrity constraint checking in stratified
databases. J. Logic Program. 4(4), 331–343 (1987)

49. Martinenghi, D., Christiansen, H., Decker, H.: Integrity checking and maintenance
in relational and deductive databases and beyond. In: Ma, Z. (ed.) Intelligent
Databases: Technologies and Applications, pp. 238–285. IGI Global (2007)

50. Muñoz-Escóı, F.D., Ruiz-Fuertes, M.I., Decker, H., Armendáriz-́Iñigo, J.E.,
Mend́ıvil, J.R.G.: Extending middleware protocols for database replication with
integrity support. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331,
pp. 607–624. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88871-0 43

51. Nicolas, J.-M.: A property of logical formulas corresponding to integrity constraints
on data base relations. In: Proceedings of the Workshop on Formal Bases for Data
Bases 1979 (1979)

52. Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta
Informatica 18, 227–253 (1982)

53. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New
York (2003)

54. Reiter, R.: What should a database know? J. Logic Program. 14(1&2), 127–153
(1992)

55. Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In:
Foundations of Deductive Databases and Logic Programming, pp. 313–362. Morgan
Kaufmann (1988)

56. Shave, M.: Problems of integrity and distributed databases. J. Softw. Pract. Expe-
rience 10(2), 135–147 (1980)

57. Sörensen, O., Thalheim, B.: Semantics and pragmatics of integrity constraints.
In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol. 7693, pp. 1–17.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36008-4 1

58. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent
query answering in relational databases. CoRR, abs/0908.0464 (2009)

59. Thimm, M.: On the compliance of rationality postulates for inconsistency mea-
sures: a more or less complete picture. KI 31(1), 31–39 (2017)

60. Topor, R.: Safety and domain independence. In: Liu, L., Özsu, T. (eds.) Encyclo-
pedia of Database Systems, pp. 2463–2466. Springer, USA (2009)

61. Wijsen, J.: Database repairing using updates. Trans. Database Syst. 30(3), 722–
768 (2005)

62. Wijsen, J.: On condensing database repairs obtained by tuple deletions. In: 16th
International Workshop on Database and Expert Systems Applications (DEXA
2005), pp. 849–853. IEEE Computer Society (2005)

http://dx.doi.org/10.1007/978-3-540-88871-0_43
http://dx.doi.org/10.1007/978-3-642-36008-4_1

Author Index

Besnard, Philippe 1

de Araujo Fernandes, Ricardo Queiroz 123
Decker, Hendrik 153

Haeusler, Edward Hermann 123

Margaris, Dionisis 33

Pereira, Luiz Carlos Pinheiro Dias 123

Rahhal, Charbel 65

Schlichtkrull, Anders 92

Vassilakis, Costas 33
Vidyasankar, K. 13
Villadsen, Jørgen 92

	Preface
	Editorial Board
	Contents
	Basic Postulates for Inconsistency Measures
	1 Inconsistency Measures
	2 Postulates
	2.1 Formalities

	3 Restriction on Membership
	4 Independence
	5 Paradigm
	6 Exhibiting Conjunctions
	7 Towards an Alternative Set of Basic Postulates
	8 Conclusion
	References

	Batch Composite Transactions in Stream Processing
	1 Introduction
	2 Executions in Stream Processing
	3 Batch Composite Transaction Model
	4 A Roll Back Mechanism
	5 Multiple Source Streams
	6 Concurrent Executions
	7 Related Work
	8 Conclusion
	References

	Enhancing User Rating Database Consistency Through Pruning
	Abstract
	1 Introduction
	2 Related Work
	3 The Aging Algorithms
	4 The Pruning Algorithms
	4.1 Keeping the Last K Ratings of Each User
	4.2 Pruning Ratings in Users’ Early Histories

	5 Performance Evaluation
	5.1 The MovieLens “Latest-Small – Recommended for Education and Development” Dataset
	5.2 The MovieLens “Latest 20 M – Recommended for New Research” Dataset
	5.3 The MovieLens “100 K” Dataset
	5.4 The Amazon “Videogames” Dataset
	5.5 Discussion

	6 Conclusion and Future Work
	References

	A Second Generation of Peer-to-Peer Semantic Wikis
	1 Introduction
	2 Peer-to-Peer Semantic Wikis
	2.1 SWOOKI
	2.2 Distributed Semantic Media Wiki (DSMW)

	3 Related Work
	4 Semantic Inconsistency Detection Mechanism
	4.1 Semantic Consistency in Peer-to-Peer Semantic Wikis
	4.2 Semantic Consistency Rules
	4.3 Semantic Inconsistency Detection Approach

	5 Integrate the Semantic Inconsistency Detection Mechanism in the First Generation of P2PSW
	5.1 Variable Set of Semantic Consistency Rules
	5.2 Same Set of Semantic Consistency Rules

	6 Running SIDM
	6.1 Check Consistency on a Semantic Wiki Page Level
	6.2 Check Consistency on a Concept/Property Level

	7 Conclusion
	References

	Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant
	1 Introduction
	1.1 Formalization in Proof Assistants
	1.2 Paraconsistency
	1.3 Formalization of Logic
	1.4 The Isabelle Proof Assistant
	1.5 Contributions and Overview

	2 The Paraconsistent Logic --- An Informal Presentation
	2.1 Semantic Clauses and Key Equalities
	2.2 Truth Tables

	3 Syntax and Semantics
	4 Various Theorems and Proof Styles
	5 Counterexamples for Non-theorems
	6 On the Number of Truth Values
	7 A Reduction Theorem
	8 Entailment --- A Case Study
	9 Related Work
	10 Conclusion
	References

	A Proximity-Based Understanding of Conditionals
	1 Introduction
	2 Lewis' Counterfactual Analysis
	3 A Brief Discussion on the Applications of Counterfactuals in Computer Science
	4 A Proximity-Based Understanding of Conditionals
	5 Some PUC-Logic Properties
	6 Counterfactual Logics
	7 Related Works
	8 Conclusions
	References

	Inconsistency-Tolerant Database Repairs and Simplified Repair Checking by Measure-Based Integrity Checking
	1 Introduction
	1.1 Prevention and Reparation of Database Inconsistency
	1.2 Brute-Force and Simplified Repair Checking
	1.3 Survey of Contributions

	2 Key Issues
	2.1 Databases, Updates and Integrity Constraints
	2.2 Update Checkers
	2.3 Database Inconsistency Measures
	2.4 Measure-Based Integrity Checking

	3 Repairs
	3.1 Repairs -- Definition
	3.2 Repairs -- Discussion

	4 Repair Checking
	4.1 Repair Checking -- Definition
	4.2 Repair Checking -- Modularization
	4.3 Inconsistency Reduction Checking by Integrity Checking
	4.4 Minimality Checking by Integrity Checking
	4.5 Repair Checking by Integrity Checking

	5 Computing Repair Checking
	5.1 Computing Total Repair Checking
	5.2 Computing Naive Inconsistency-Tolerant Repair Checking
	5.3 Computing Simplified Repair Checking

	6 Related Work
	7 Conclusion
	References

	Author Index

