
Chapter 9
Electron and Phonon Scattering

9.1 Electron Scattering

The thermal properties of solid materials depend on the availability of carriers and
on their scattering rates. In the previous chapters, we focused on the carriers and their
generation. In this Chapter we focus on the relevant electron and phonon scattering
mechanisms.

Electron scattering brings an electronic systemwhich has been subjected to exter-
nal perturbations back to equilibrium. Collisions also alter the momentum of all the
carriers, as the electrons are brought back into equilibrium. Electron collisions can
occur through a variety of mechanisms, such as electron-phonon, electron-impurity,
electron-defect, electron-boundary and electron-electron scattering processes. Elec-
tron scattering is handled here by considering the collision term in the Boltzmann
equation.

In principle, the collision rates can be calculated from using scattering theory in
single form.Todo this,we introduce a transition probability S(k,k′) for scattering the
electron from a statek to a statek′. Since electrons obey the Pauli principle, scattering
will occur from an occupied to an unoccupied state. The process of scattering from k
to k′ decreases the distribution function f (r,k, t) depending on the probability that
k is occupied and that k′ is unoccupied. The process of scattering an electron from
k′ to k increases the distribution function f (r,k, t) and depends on the probability
that state k′ is occupied and state k is unoccupied. We will use the following notation
for describing a general scattering process:

• fk is the probability that an electron occupied with initial state k
• [1 − fk] is the probability that state k is unoccupied
• S(k,k′) is the probability per unit time that an electron in state k will be
scattered to state k′

• S(k′,k) is the probability per unit time that an electron in state k′ will be
scattered back into state k.
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186 9 Electron and Phonon Scattering

Using these definitions, the rate of change of the distribution function in the
Boltzmann equation (see (7.4)) due to collisions can be written as:

∂ f (r,k, t)

∂t

∣
∣
∣
∣
collisions

=
∫

d3k ′[ fk ′(1 − fk)S(k′,k) − fk(1 − fk ′)S(k,k′)] (9.1)

where d3k ′ is a volume element ink′ space. The integration in (9.1) is over k space and
the spherical coordinate system is shown in Fig. 9.1, together with the arbitrary force
F responsible for the scattering event that introduces a perturbation described by

fk = f0k + ∂ f0k
∂E

�

m∗ k · F + . . . (9.2)

where f0k denotes the equilibrium distribution. Using Fermi’s Golden Rule for the
transition probability per unit time between states k and k′ we can write

S(k,k′) � 2π

�
|Hkk′ |2{δ[E(k)] − δ[E(k′)]} (9.3)

where the matrix element of the Hamiltonian coupling states k and k′ is

Hkk′ = 1

N

∫

V
ψ∗

k (r)∇Vψk′(r)d3r, (9.4)

in which N is the number of unit cells in the sample and ∇V is the perturbation
Hamiltonian term responsible for the scattering event associated with the force F.

At equilibrium fk = f0(E) and the principle of detailed balance applies

S(k′,k) f0(E
′)[1 − f0(E)] = S(k,k′) f0(E)[1 − f0(E

′)] (9.5)

so that the distribution function does not experience a net change via collisions when
in the equilibrium state:

Fig. 9.1 Coordinate system
in reciprocal space for an
electron with wave vector k
(along the kz axis) scattering
into a state with wavevector
k′ in an arbitrary force field
F. The scattering center is at
the origin of the coordinate
system. For simplicity the
event is rotated so that F has
no ky component

http://dx.doi.org/10.1007/978-3-662-55922-2_7


9.1 Electron Scattering 187

(∂ f (r,k, t)/∂t)|collisions = 0. (9.6)

We define collisions as elastic collisions when E(k′) = E(k) and in this case
f0(E ′) = f0(E) so that S(k′,k) = S(k,k′). Collisions for which E(k′) �= E(k) are
termed inelastic collisions. The term quasi-elastic is used to characterize collisions
where the percentage change in energy is small. For our purposes here, we shall con-
sider S(k,k′) as a known function which can be calculated quantum mechanically
by a detailed consideration of the scattering mechanisms which are important for
a given practical case; this statement is true in principle, but in practice S(k,k′) is
usually specified in an approximate way.

The return to equilibrium depends on the frequency of collisions and the effec-
tiveness of a scattering event in randomizing the motion of the electrons. Thus, small
angle scattering is not as effective in restoring a system to equilibrium as for the case
of large angle scattering. For this reason we distinguish between τD , the time for
the system to be restored to equilibrium, and τc, the time between collisions. These
times are related by

τD = τc

1 − cos θ
(9.7)

where θ is themean change of angle of the electron velocity on collision (see Fig. 9.1).
The time τD is the quantity which enters into Boltzmann’s equation as the relaxation
time, while 1/τc determines the actual scattering rate.

The mean free time between collisions, τc, is related to several other quantities of
interest: the mean free path � f , the scattering cross section σd , and the concentration
of scattering centers Nc by

τc = 1

Ncσdv
(9.8)

where v is the drift velocity given by

v = � f

τc
= 1

Ncσdτc
(9.9)

and v is in the directionof the electron transport. From (9.9),we see that � f = 1/Ncσd .
The drift velocity is of course very much smaller in magnitude than the instan-
taneous velocity of the electron at the Fermi level, which is typically of magnitude
vF ∼ 108 cm/s. Electron scattering centers include phonons, impurities, dislocations,
vacancies, the crystal surface, etc.

The most important electron scattering mechanism for both metals and semicon-
ductors is electron-phonon scattering (scattering of electrons by the thermal motion
of the lattice), though the scattering processes for metals differs in detail from those
in semiconductors. In the case of metals, much of the Brillouin zone is occupied by
electrons, while in the case of semiconductors, most of the Brillouin zone is unoc-
cupied, and represents states into which electrons can be scattered. In the case of
metals, electrons are scattered from one point on the Fermi surface to another point
on the Fermi surface, and a large change in momentum occurs, corresponding to a
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large change in k. In the case of semiconductors, changes in wave vector from k to
−k normally correspond to a very small change in wave vector, and thus changes
from k to −k can be accomplished much more easily in the case of semiconductors.
By the same token, small angle scattering (which is not so efficient for returning the
system to equilibrium) is especially important for semiconductors where the change
in wavevector is small. Since the scattering processes in semiconductors and metals
are quite different, they will be discussed separately in the next sections.

Scattering probabilities for more than one scattering process are taken to be addi-
tive and therefore so are the reciprocal scattering times and scattering rates. For the
total reciprocal scattering time (τ−1)total we write:

(τ−1)total =
∑

i

τ−1
i (9.10)

since 1/τ is proportional to the scattering probability. Equation (9.10) is commonly
referred to as “Matthiessen’s rule” Metals have large Fermi wavevectors kF , and
therefore large momentum transfersΔk can occur as a result of electronic collisions.
In contrast, for semiconductors, kF is small and so also is Δk on collision.

9.2 Scattering Processes in Semiconductors

9.2.1 Electron-Phonon Scattering in Semiconductors

Electron-phonon scattering is the dominant scatteringmechanism in crystalline semi-
conductors except at very low temperatures where the phonon density is low. Con-
servation of energy in the scattering process, which creates or absorbs a phonon of
energy �ω(q), is written as:

Ei − E f = ±�ω(q) = �
2

2m∗ (k2i − k2f ), (9.11)

where Ei is the initial energy, E f is the final energy, ki the initial wavevector, and
k f the final wavevector. Here, the “+” sign corresponds to the creation of phonons
(the phonon emission process), while the “−” sign corresponds to the annihilation
of phonons (the phonon absorption process). Conservation of momentum in the
scattering of an electron by a phonon of wavevector q yields

ki − kf = ±q. (9.12)

For semiconductors, the electrons involved in the scattering event generally remain
in the vicinity of a single band extremum and involve only a small change in k and
hence only low phonon q vectors participate. The probability that an electron makes
a transition from an initial state i to a final state f is proportional to:
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(a) the availability of final states for electrons,
(b) the probability of absorbing or emitting a phonon,
(c) the strength of the electron-phonon coupling or electron-phonon interac-

tion.

The first factor, the availability of final states, is proportional to the density of
final electron states ρ(E f ) times the probability that the final state is unoccupied.
This occupation probability for a semiconductor is assumed to be unity since the
conduction band is essentially empty. For a simple parabolic band, ρ(E f ) is (from
(7.64)):

ρ(E f ) = (2m∗)3/2E1/2
f

2π2�3
= (2m∗)3/2

[Ei ± �ω(q)]1/2
2π2�3

, (9.13)

where (9.11) has been employed and the “+” sign corresponds to absorption of a
phonon and the “−” sign corresponds to phonon emission.

The probability of absorbing or emitting a phonon is proportional to the electron-
phonon couplingG(q) and to the phonon density n(q) for absorption, and the phonon
density [1 + n(q)] for emission, where n(q) is given by the Bose-Einstein factor

n(q) = 1

e�ω(q)/kBT − 1
. (9.14)

Combining the terms in (9.13) and (9.14) gives a scattering probability (or 1/τc)
proportional to a sum over final states

1

τc
∼ (2m∗)3/2

2π2�3

∑

q

G(q)

[ [Ei + �ω(q)]1/2
e�ω(q)/kBT − 1

+ [Ei − �ω(q)]1/2
1 − e−�ω(q)/kBT

]

(9.15)

where the first term in the big bracket of (9.15) corresponds to phonon absorption
and the second term to phonon emission. If Ei < �ω(q), only the phonon absorption
process is energetically allowed.

The electron-phonon coupling coefficientG(q) in (9.15) depends on the electron-
phonon coupling mechanism. There are three important coupling mechanisms in
semiconductors which we briefly describe below: electromagnetic coupling, piezo-
electric coupling, and deformation-potential coupling.

Electromagnetic Coupling

This coupling is important only for semiconductors where the charge distribution has
different signs on neighboring ion sites when two species of atoms are involved. In
this case, the oscillatory electric field can give rise to oscillating dipolemoments asso-
ciatedwith themotion of neighboring ion sites in the opticalmodes (see Fig. 9.2). The
electromagnetic coupling mechanism is important in coupling electrons to optical
phonon modes in III-V and II-VI compound semiconductors, but does not contribute
in the case of silicon. To describe the optical modes we can use the Einstein approxi-

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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Fig. 9.2 Displacements u(r)
of atoms in a diatomic chain
for longitudinal optical (LO)
and transverse optical (TO)
phonons at a the center and
b the edge of the Brillouin
zone. The lighter mass atoms
are indicated by open circles.
For zone edge optical
phonons, only the lighter
atoms are displaced

mation, sinceω(q) is only weakly dependent on q for the optical modes of frequency
ω0. In this case �ω0 � kBT and �ω0 � E where E is the electron energy, so that
from (9.15) the collision rate is proportional to

1

τc
∼ m∗3/2(�ω0)

1/2

e�ω0/kBT − 1
. (9.16)

Thus, the collision rate depends on the temperature T , the optical phonon frequency
ω0 and the electron effectivemassm∗. The correspondingmobility for optical phonon
scattering is

μ = e〈τ 〉
m∗ ∼ e(e�ω0/kBT − 1)

m∗5/2(�ω0)1/2
(9.17)

Thus for optical phonon scattering, the mobility μ is independent of the electron
energy E and decreases with increasing temperature.

Piezoelectric Coupling

As in the case of electromagnetic coupling, piezoelectric coupling is important in
semiconductors which are ionic or partly ionic. If these crystals lack inversion sym-
metry, then acousticmode vibrations generate regions of compression and rarefaction
in a crystal which in here lead to the generation of electric fields (see Fig. 9.3). The
piezoelectric scattering mechanism is thus associated with the coupling between
electrons and phonons arising from these electromagnetic fields. The zincblende
structure of the III–V compounds (e.g., GaAs) lacks inversion symmetry. In this case
the perturbation potential is given by

ΔV (r, t) = −ieεpz

ε0q
∇ · u(r, t) (9.18)
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Fig. 9.3 Displacements u(r)
of atoms on a diatomic chain
for longitudinal acoustic
(LA) and transverse acoustic
(TA) phonons at a the center
and b the edge of the
Brillouin zone. The lighter
mass atoms are indicated by
open circles. For zone edge
acoustic phonons, only the
heavier atoms are displaced

where εpz is the piezoelectric coefficient and u(r, t) = u exp(iq · r − ωt) is the dis-
placement during a normalmode oscillation.Note that the phase ofΔV (r, t) in piezo-
electric coupling is shifted by π/2 relative to the case of electromagnetic coupling.

Deformation-Potential Coupling

The deformation-potential coupling mechanism is associated with energy shifts of
the energy band extrema caused by the compression and rarefaction of crystals dur-
ing acoustic mode vibrations. The deformation potential scattering mechanism is
important in crystals like silicon which have inversion symmetry (and hence no
piezoelectric scattering coupling) and have the same species on each site (and hence
no electromagnetic coupling). The longitudinal acoustic modes are important for
phonon coupling in n-type Si and Ge where the conduction band minima occur away
from k = 0.

For deformation potential coupling, it is the LA acoustical phonons that are most
important, though contributions by LO optical phonons still make some contribution.
For the acoustic phonons, we have the condition �ω � kBT and �ω � E , while for
the optical phonons it is usually the case that �ω � kBT at room temperature. For the
range of acoustic phonon modes of interest, G(q) ∼ q, where q is the phonon wave
vector and ω ∼ q for acoustic phonons. Furthermore for the LA phonon branch, the
phonon absorption process will depend on n(q) in accordance with the Bose factor

1

e�ω/kBT − 1
� 1

[

1 + �ω
kBT

+ · · ·
]

− 1
∼ kBT

�ω
∼ kBT

q
, (9.19)

while for phonon emission

1

1 − e−�ω/kBT
� 1

1 −
[

1 − �ω
kBT

+ · · ·
] ∼ kBT

�ω
∼ kBT

q
. (9.20)
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Therefore, in considering both phonon absorption and phonon emission, the respec-
tive factors

G(q)[e�ω/kBT − 1]−1

and
G(q)[1 − e−�ω/kBT ]−1

are both independent of q for the LA branch. Consequently for the acoustic phonon
scattering process, the carrier mobility μ decreases with increasing T according to
(see (9.15))

μ = e〈τ 〉
m∗ ∼ m∗−5/2E−1/2(kBT )−1. (9.21)

For the optical LO contribution, we have a G(q) independent of q but an E1/2 factor
is introduced by (9.15) for both phonon absorption and emission, leading to the
same basic dependence as given by (9.21). Thus, we find that the temperature and
energy dependence of the mobility μ is different for the various electron-phonon
coupling mechanisms. These differences in the E and T dependences can thus be
used to identify which scattering mechanism is dominant in specific semiconducting
samples. Furthermore, when explicit account is taken of the energy dependence of
τ , then departures from the strict Drude model σ = ne2τ/m∗ can be expected.

9.2.2 Ionized Impurity Scattering

As the temperature is reduced, phonon scattering becomes less important so that in
this regime, ionized impurity scattering and other defect scattering mechanisms can
become dominant. Ionized impurity scattering can also be important in heavily doped
semiconductors over a wider temperature range because of the larger defect density.
This scattering mechanism involves the deflection of an electron with velocity v by
the Coulomb field of an ion with charge Ze, as modified by the dielectric constant
ε of the medium and by the screening of the impurity ion by free electrons (see
Fig. 9.4). Most electrons are scattered through small angles as they are scattered by
ionized impurities. The perturbation potential is given by

ΔV (r) = ±Ze2

4πε0r
(9.22)

and the± signs denote the different scattering trajectories for electrons and holes (see
Fig. 9.4). In (9.22) the screening of the electron by the semiconductor environment
is handled by the static dielectric constant of the semiconductor ε0. Because of the
long-range nature of the Coulomb interaction, screening by other free carriers and
by other ionized impurities could be important. Such screening effects are further
discussed in Sect. 9.2.4.
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Fig. 9.4 Trajectories of
electrons and holes in
ionized impurity scattering.
The scattering center is at the
origin

The scattering rate 1/τI due to ionized impurity scattering is given to a good
approximation by the Conwell–Weisskopf formula

1

τI
∼ Z2NI

m∗1/2E3/2
�n

{

1+
[

4πεE

Ze2N 1/3
I

]2
}

(9.23)

inwhich NI is the ionized charged impurity density. TheConwell–Weisskopf formula
works quite well for heavily doped semiconductors. We note here that τI ∼ E3/2, so
that it is the low energy electrons that aremost affected by ionized impurity scattering
(see Fig. 7.10).

Neutral impurities also introduce a scattering potential, but it is much weaker
than that for the ionized impurity. Free carriers can polarize a neutral impurity and
interact with the resulting dipole moment, or can undergo an exchange interaction.
In the case of neutral impurity scattering, the perturbation potential is given by

ΔV (r) � �
2

m∗

(
rB
r5

)1/2

(9.24)

where rB is the ground state Bohr radius of the electron in a doped semiconductor
and r is the distance of the electron to the neutral impurity scattering center.

9.2.3 Other Scattering Mechanisms

Other scattering mechanisms in semiconductors include:

(a) neutral impurity centers — these make contributions at very low temper-
atures, and are mentioned in Sect. 9.2.2. Neutral impurity centers can also
cause local strain effects which scatter carriers.

http://dx.doi.org/10.1007/978-3-662-55922-2_7
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(b) dislocations — these defects give rise to anisotropic scattering at low
temperatures.

(c) boundary scattering by crystal surfaces— this scattering becomes increas-
ingly important, the smaller the crystal size. Boundary scattering can
become a dominant scattering mechanism in nanostructures (e.g., quan-
tum wells, quantum wires and quantum dots), when the sample size in the
confinement direction is smaller that the bulk mean free path. These elec-
trons do not reach equilibrium and are therefore called ballistic electrons
(or holes).

(d) intervalley scattering from one equivalent conduction band minimum to
another. This scattering process requires a phonon with large q and con-
sequently results in a relatively large energy transfer.

(e) electron-electron scattering – similar to charged impurity scattering in
being dominated by a Coulomb scattering mechanism, except that spin
effects become important for spin–spin scattering. This mechanism can
be important in distributing energy and momentum among the electrons in
the solid and thus can act in conjunction with other scattering mechanisms
in establishing equilibrium.

(f) electron-hole scattering — depends on having both electrons and holes
present. Because the electron and hole motions induced by an applied
electric field are in opposite directions, electron-hole scattering tends to
reverse the direction of the incident electrons and holes. Radiative recom-
bination, i.e., electron-hole recombination with the emission of a photon,
must also be considered.

(g) ballistic carriers — charge carriers passing through sample without scat-
tering and not coming to equilibrium with the lattice.

9.2.4 Screening Effects in Semiconductors

In the vicinity of a charged impurity or an acoustic phonon, charge carriers are
accumulated or depleted by the scattering potential, giving rise to a charge density

ρ(r) = e[n(r) − p(r) + N−
a (r) − N+

d (r)] = en∗(r) (9.25)

where n(r), p(r), N−
a (r), N+

d (r), and n∗(r) are, respectively, the electron, hole,
ionized acceptor, ionizeddonor, and effective total carrier concentrations as a function
of distance r to the scatterer. We can then write expressions for these quantities in
terms of their excess charge above the uniform potential in the absence of the charge
perturbation

n(r) = n + δn(r)
N+
d (r) = N+

d + δN+
d (r),

(9.26)
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and similarly for the holes and acceptors. The space charge ρ(r) is related to the
perturbing potential by Poisson’s equation

∇2φ(r) = −ρ(r)
ε0

. (9.27)

Approximate relations for the excess concentrations are

δn(r)/n � −eφ(r)/(kBT )

δN+
d (r)/N+

d � eφ(r)/(kBT )
(9.28)

and similar relations for the holes. Substitution of (9.25) into (9.26) and (9.28) yield

∇2φ(r) = − n∗e2

ε0kBT
φ(r). (9.29)

We define an effective Debye screening length λ such that

λ2 = ε0kBT

n∗e2
. (9.30)

For a spherically symmetric potential (9.29) becomes

d2

dr2

(

rφ(r)

)

= rφ(r)

λ2
(9.31)

which yields a solution

φ(r) = Ze2

4πε0r
e−r/λ. (9.32)

Thus, the screening effect produces an exponential decay of the scattering potential
φ(r) with a characteristic length λ that depends through (9.30) on the effective
electron concentration.When the concentration gets large, λ decreases and screening
becomes more effective.

When applying screening effects to the ionized impurity scattering problem, we
Fourier expand the scattering potential to take advantage of the overall periodicity
of the lattice

ΔV (r) =
∑

G

AG exp(iG · r) (9.33)

where the Fourier coefficients are given by

AG = 1

V

∫

V
∇V (r) exp(−iG · r)d3r (9.34)
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and the matrix element of the perturbation Hamiltonian in (9.4) becomes

Hk,k′ = 1

N

∑

G

∫

V
e−ik·ru∗

k(r)AGe
−iG·reik

′ ·ruk ′(r)d3r. (9.35)

We note that the integral in (9.35) vanishes unless k − k′ = G so that

Hk,k′ = AG

N

∫

V
u∗
k(r)uk ′(r)d3r (9.36)

within the first Brillouin zone so that for parabolic bands uk(r) = uk ′(r) and

Hk,k′ = Ak−k′ . (9.37)

Now substituting for the scattering potential in (9.34) we obtain

AG = Ze2

4πε0V

∫

V
exp(−iG · r)d3r (9.38)

where d3r = r2 sin θdθdφdr so that, for φ(r) depending only on r , the angular
integration gives 4π and the spatial integration gives

AG = Ze2

ε0V |G|2 (9.39)

and

Hk,k′ = Ze2

ε0V |k − k′|2 . (9.40)

Equations (9.39) and (9.40) are valid for the scattering potential without screening.
When screening is included in considering the ionized impurity scattering mecha-
nism, the integration becomes

AG = Ze2

4πε0V

∫

V
e−r/λe−iG·rd3r = Ze2

ε0V [|G|2 + |1/λ|2] (9.41)

and

Hk,k′ = Ze2

ε0V [|k − k′|2 + |1/λ|2] (9.42)

so that screening clearly reduces the scattering due to ionized impurity scattering.
The discussion given here also extends to the case of scattering in metals, which is
treated below.
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Fig. 9.5 Typical temperature dependence of the carrier mobility in semiconductors, showing the
effect of the dominant scattering mechanisms and the temperature dependence of each

Combining the various scattering mechanisms discussed above for semiconduc-
tors, the picture givenbyFig. 9.5 emerges.Herewe see the temperature dependence of
each of the important scatteringmechanisms and the effect of each of these processes
on the carrier mobility. Here it is seen that screening effects are important for carrier
mobilities at low temperature.

9.3 Electron Scattering in Metals

Basically the same scatteringmechanisms are present inmetals as in semiconductors,
but because of the large number of occupied states in the conduction bands of metals,
the temperature dependences of the various scatteringmechanisms are quite different.

9.3.1 Electron-Phonon Scattering in Metals

In metals as in semiconductors, the dominant scattering mechanism is usually
electron-phonon scattering. In the case of metals, electron scattering is mainly asso-
ciated with an electromagnetic interaction of ions with nearby electrons, the longer
range interactions being screened by the numerous mobile electrons. For metals,
we must therefore consider explicitly the probability that a state k is occupied f0(k)

or unoccupied [1 − f0(k)]. The scattering rate is found by explicit consideration of
the scattering rate into a state k and the scattering out of that state. Using the same
arguments as in Sect. 9.2.1, the collision term in Boltzmann’s equation is given by
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Table 9.1 Debye temperature of several metals

Symbol Metal ΘD(K)

⊕ Au 175

◦ Na 202

� Cu 333

� Al 395

• Ni 472

∂ f
∂t

∣
∣
∣
collisions

∼ 1
τ

�

∑

q G(q)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

scattering into k
︷ ︸︸ ︷

[1 − f0(k)]
[

f0(k − q)n(q)
︸ ︷︷ ︸

phonon absorption

+ f0(k + q)[1 + n(q)]
︸ ︷︷ ︸

phonon emission

]

−

scattering out of k
︷ ︸︸ ︷

[ f0(k)]
[

[1 − f0(k + q)]n(q)
︸ ︷︷ ︸

phonon absorption

+[1 − f0(k − q)][1 + n(q)]
︸ ︷︷ ︸

phonon emission

]

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(9.43)

Here the first term in (9.43) is associated with scattering electrons into an element of
phase space at k with a probability given by [1 − f0(k)] that state k is unoccupied
and has contributions from both phonon absorption processes and phonon emission
processes. The second term arises from electrons scattered out of state k and here,
too, there are contributions from both phonon absorption processes and phonon
emission processes. The equilibrium distribution function f0(k) for the electron is
the Fermi distribution function while the function n(q) for the phonons is the Bose
distribution function (15.10). Phonon absorptiondepends on the phonondensityn(q),
while phonon emission depends on the factor {1+n(q)}. These factors arise from
the properties of the creation and annihilation operators for phonons (to be further
discussed in the Problem set). The density of final states for metals is the density
of states at the Fermi level which is consequently approximately independent of
energy and temperature. In metals, the condition that electron scattering takes place
to states near the Fermi level implies that the largest phonon wave vector in an
electron collision is 2kF where kF is the electron wave vector at the Fermi surface.

Of particular interest is the temperature dependence of the phonon scattering
mechanism in the limit of lowandhigh temperatures. Experimentally, the temperature
dependence of the resistivity of metals can be plotted on a universal curve (see
Fig. 9.6) in terms of ρT /ρΘD vs. T/ΘD where ΘD is the Debye temperature. This
plot includes data for several metals, and values for the Debye temperature of these
metals are given with the figure (Table9.1).

In accordance with the plot in Fig. 9.6, T � ΘD defines the low temperature
limit and T � ΘD the high temperature limit. Except for the very low temperature

http://dx.doi.org/10.1007/978-3-662-55922-2_15
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Fig. 9.6 Universal curve of
the temperature dependence
of the ideal resistivity of
various metals normalized to
the value at the Debye
temperature as a function of
the dimensionless
temperature T/ΘD

defect scattering limit, the electron-phonon scatteringmechanism dominates, and the
temperature dependence of the scattering rate depends on the product of the density
of phonon states and the phonon occupation, since the electron-phonon coupling
coefficient is essentially independent of T . The phonon concentration in the high
temperature limit becomes

n(q) = 1

exp(�ω/kBT ) − 1
≈ kBT

�ω
(9.44)

since (�ω/kBT ) � 1, so that from (9.44) we have 1/τ ∼ T and σ = neμ ∼ T−1.
In this high temperature limit, the scattering is quasi-elastic and involves large-angle
scattering, since phonon wave vectors up to the Debye wave vector qD are involved
in the electron scattering, where qD is related to the Debye frequency ωD and to the
Debye temperature ΘD according to

�ωD = kBΘD = �qDvq (9.45)

where vq is the velocity of sound.
We can interpret qD as the radius of a Debye sphere in k-space which defines

the range of accessible q vectors for scattering, i.e., 0 < q < qD . The magnitude of
wave vector qD is comparable to the Brillouin zone dimensions but the energy change
of an electron (ΔE) on scattering by a phonon will be less than kBΘD � 1/40eV
so that the restriction of (ΔE)max � kBΘD implies that the maximum electronic
energy change on scattering will be small compared with the Fermi energy EF . We
thus obtain that for T > ΘD (the high temperature regime), ΔE < kBT and the
scattering will be quasi-elastic as illustrated in Fig. 9.7a.

In the opposite limit, T � ΘD , we have �ωq � kBT (because only low frequency
acoustic phonons are available for scattering) and in the low temperature limit there
is the possibility that ΔE > kBT , which implies inelastic scattering. In the low
temperature limit, T � ΘD , the scattering is also small-angle scattering, since only
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Fig. 9.7 a Scattering of electrons on the Fermi surface of a metal. Large angle scattering dominates
at high temperature (T > ΘD) and this regime is called the “quasi-elastic” limit. b Small angle
scattering is important at low temperature (T < ΘD) and is in general an inelastic scattering process

Fig. 9.8 Geometry of the
scattering process, where θ is
the scattering angle between
the incident and scattered
electron wave vectors ki and
k f , respectively, and q is the
phonon wave vector

low energy (low q wave vector) phonons are available for scattering (as illustrated
in Fig. 9.7b). At low temperature, the phonon density contributes a factor of T 3 to
the scattering rate (9.43) when the sum over phonon states is converted to an integral
and q2dq is written in terms of the dimensionless variable �ωq/kBT with ω = vqq.
Since small momentum transfer gives rise to small angle scattering, the diagram in
Fig. 9.8 involves Fig. 9.7. Because of the small energy transfer we can write,

|ki − kf | ∼ k f (1 − cos θ) ≈ 1

2
k f θ

2 ≈ 1

2
k f (q/k f )

2 (9.46)

so that another factor of q2 appears in the integration over qwhen calculating (1/τD).
Thus, the electron scattering rate at low temperature is predicted to be proportional
to T 5 so that σ ∼ T−5 (Bloch–Grüneisen formula). Thus, when phonon scattering
is the dominant scattering mechanism in metals, the following results are obtained:

σ ∼ ΘD/T T � ΘD (9.47)

σ ∼ (ΘD/T )5 T � ΘD (9.48)
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Fig. 9.9 Schematic diagram
showing the relation between
the phonon wave vector q
and the electron wave
vectors k and k′ in two
Brillouin zones separated by
the reciprocal lattice vector
G (umklapp process)

In practice, the resistivity of metals at very low temperatures is dominated by other
scattering mechanisms, such as impurities, boundary scattering, etc., and at very low
T , electron-phonon scattering (see (9.48)) is relatively unimportant.

The possibility of umklapp processes further increases the range of phononmodes
that can contribute to electron scattering in electron-phonon scattering processes. In
an umklapp process, a non-vanishing reciprocal lattice vector can be involved in the
momentum conservation relation, as shown in the schematic diagram of Fig. 9.9.

In this diagram, the relation between the wave vectors for the phonon and for the
incident and scattered electrons G = k + q + k′ is shown when crystal momentum
is conserved for a non-vanishing reciprocal lattice vectorG. Thus, phonons involved
in an umklapp process have large wave vectors with magnitudes of about 1/3 of
the Brillouin zone dimensions. Therefore, substantial energies can be transferred
on collision through an umklapp process. At low temperatures, normal scattering
processes (i.e., normal as distinguished from umklapp processes) play an important
part in completing the return to equilibrium of an excited electron in a metal, while
at high temperatures, umklapp processes become more important.

The discussion presented up to this point is applicable to the creation or absorption
of a single phonon in a particular scattering event. Since the restoring forces for lattice
vibrations in solids are not strictly harmonic, anharmonic corrections to the restoring
forces give rise tomultiphonon processeswheremore than one phonon can be created
or annihilated in a single scattering event. Experimental evidence for multiphonon
processes is provided in both optical and transport studies. In some cases, more
than one phonon at the same frequency can be created (harmonics), while in other
cases, multiple phonons at different frequencies (overtones and combination modes
comprising phonons with two different frequencies) are involved.

9.3.2 Other Scattering Mechanisms in Metals

At very low temperatures where phonon scattering is of less importance, other scat-
tering mechanisms become important, and we can write

1

τ
=

∑

i

1

τi
(9.49)
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where the sum is over all the scattering processes, according to Matthiessen’s rule.

(a) Charged impurity scattering — The effect of charged impurity scattering
(Z being the difference in the charge on the impurity site as compared
with the charge on a regular lattice site) is of less importance in metals
than in semiconductors, because of the strong screening effects by the free
electrons in metals.

(b) Neutral impurities — This process pertains to scattering centers having
the same charge as the host. Such scattering has less effect on the transport
properties than scattering by charged impurity sites, because of the much
weaker scattering potential.

(c) Vacancies, interstitials, dislocations, size-dependent effects — the effects
for these defects on the transport properties are similar to those for semi-
conductors. Boundary scattering can become very important in metal
nanostructures when the sample length in some direction becomes less
than the mean free path in the corresponding bulk crystal. In this case bal-
listic transport can occur by electrons that remain out of equilibrium until
reaching the boundary of the sample.

For most metals, phonon scattering is relatively unimportant at liquid helium
temperatures, so that resistivity measurements at 4K provide one sensitive method
for the detection of impurities and crystal defects. In fact, in characterizing the
quality of a high purity metal sample, it is customary to specify the resistivity ratio
ρ(300K)/ρ(4K). This quantity is usually called the residual resistivity ratio (RRR),
or the residual resistance ratio. In contrast, a typical semiconductor is characterized
by its conductivity and Hall coefficient at room temperature and at 77K.

9.4 Phonon Scattering

Whereas electron scattering is important in electronic transport properties, phonon
scattering is important in thermal transport, particularly for the case of insulators
where heat is carried mainly by phonons. The major scattering mechanisms for
phonons are phonon-phonon scattering, phonon-boundary scattering, defect-phonon
scattering, and phonon-electron scattering which are briefly discussed in the follow-
ing subsections.

9.4.1 Phonon-Phonon Scattering

The dominant phonon scattering process in crystalline materials is usually phonon-
phonon scattering. Phonons are scattered by other phonons because of anharmonic
terms in the restoring potential. This scattering process permits:
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• two phonons to combine to form a third phonon or
• one phonon to break up into two phonons.

In these anharmonic processes, energy and wavevector conservation apply:

q1 + q2 = q3 normal processes (9.50)

or
q1 + q2 = q3 + Q umklapp processes (9.51)

where Q corresponds to a phonon wave vector of magnitude equal to a non-zero
reciprocal lattice vector. Umklapp processes are important when q1 or q2 are large,
i.e., comparable to a reciprocal lattice vector (see Fig. 9.10).Whenumklapp processes
(see Fig. 9.10) are present, the scattered phonon wavevector q3 can be in a direction
opposite to the energy flow, thereby giving rise to thermal resistance. Because of the
high momentum transfer and the large phonon energies that are involved, umklapp
processes dominate the thermal conductivity at high T .

The phonon density is proportional to the Bose factor so that the scattering rate
is proportional to

1

τph
∼ 1

(e�ω/(kBT ) − 1)
. (9.52)

At high temperatures T � ΘD , the scattering time thus varies as T−1 since

τph ∼ (e�ω/kBT − 1) ∼ �ω/kBT (9.53)

while at low temperatures T ∼ ΘD , an exponential temperature dependence for τph
is found

τph ∼ e�ω/kBT − 1. (9.54)

These temperature dependences are important in considering the lattice contribution
to the thermal conductivity (see Sect. 2.4).

Fig. 9.10 Phonon-phonon umklapp processes. Here Q is a non-zero reciprocal lattice vector, and
q1 and q2 are the incident phonon wavevectors involved in the scattering process, while q3 is the
wavevector of the scattered phonon. The vertical dashed line denotes the Brillouin’s zone boundary
(Z.B.)

http://dx.doi.org/10.1007/978-3-662-55922-2_2
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Fig. 9.11 For insulators, we
often plot both the thermal
conductivity κ and the
temperature T on log scales.
The various curves here are
for LiF with different
concentrations of Li isotopes
6Li and 7Li. For highly
perfect crystals, it is possible
to observe the scattering
effects due to Li ions of
different masses, which act
as lattice defects but have
little effect on the electronic
properties. Reproduced with
permission from Physical
Review, vol. 156, pp.
975–988 Copyright (1967)
American Physical Society

9.4.2 Phonon-Boundary Scattering

Phonon-boundary scattering is important at low temperatures where the phonon
density is low. In this regime, the scattering time is independent of T . The ther-
mal conductivity in this range is proportional to the phonon density which is in
turn proportional to T 3. Phonon-boundary scattering is also very important for low
dimensional systems where the sample size in some dimension is less than the corre-
sponding phonon mean free path in the bulk 3D crystal. Phonon-boundary scattering
combined with phonon-phonon scattering results in a thermal conductivity κ for
insulators with the general shape shown in Fig. 9.11 (see Sect. 8.2.4). The lattice
thermal conductivity follows the relation

κL = CpvqΛph/3 (9.55)

where the phonon mean free path Λph is related to the phonon scattering probability
(1/τph) by

τph = Λph/vq (9.56)

in which vq is the velocity of sound and Cp is the heat capacity at constant pres-
sure. Phonon-boundary scattering becomes more important as the crystallite size

http://dx.doi.org/10.1007/978-3-662-55922-2_8
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decreases. The scattering conditions at the boundary can be specular (where after
scattering only q⊥ is reversed and q‖ is unchanged) for a very smooth sample surface,
or the scattering conditions can be diffuse (where after scattering the q is random-
ized) for a rough sample surface. Periodic corrugations on a surface can also give
rise to interesting scattering effects for both electrons and phonons.

9.4.3 Defect-Phonon Scattering

Defect-phonon scattering includes a variety of crystal defects, charged and uncharged
impurities and different isotopes of the host constituents. The thermal conductivity
curves in Fig. 9.11 show the scattering effects due to different isotopes of Li. The
low mass of Li makes it possible to see such effects clearly. Isotope effects are
also important in graphite and diamond which have the highest thermal conductivity
of any solid, and also have several isotopes with large fractional mass differences
between one another.

9.4.4 Electron-Phonon Scattering

If electrons scatter from phonons, the reverse process also occurs. When phonons
impart momentum to electrons, the electron distribution is affected. Thus, the elec-
trons will also carry energy as they are dragged also by the stream of phonons. This
phenomenon is called phonon drag. In the case of phonon drag, we must simultane-
ously solve the Boltzmann equations for the electron and phonon distributions which
are coupled by the phonon drag interaction term.

9.5 Temperature Dependence of the Electrical
and Thermal Conductivity

For the electrical conductivity, at very low temperatures, impurity, defect, and bound-
ary scattering dominate. In this regime σ is independent of temperature. At some-
what higher temperatures but still far belowΘD the electrical conductivity for metals
exhibits a strong temperature dependence (see (9.48))

σ ∝ (ΘD/T )5 T � ΘD. (9.57)

At higher temperatures where T � ΘD , scattering by phonons with any q vector
is possible and the formula

σ ∼ (ΘD/T ) T � ΘD (9.58)
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applies. We now summarize the corresponding temperature ranges for the thermal
conductivity.

Although the thermal conductivity was formally discussed in Chap. 8, a mean-
ingful discussion of the temperature dependence of κ involves scattering processes
because of the different temperature dependence of the various scattering processes.
The total thermal conductivity κ in general depends on the lattice and electronic
contributions, κL and κe, respectively. The temperature dependence of the lattice
contribution is discussed in Sect. 8.2.4 with regard to the various phonon scattering
processes and their temperature dependence. For the electronic contribution, wemust
consider the temperature dependence of the electron scattering processes discussed
in Sect. 9.2.

At very low temperatures, in the impurity/defect/boundary scattering range, σ is
independent of T , and the same scattering processes apply for both the electronic
thermal conductivity and the electrical conductivity, thus κe ∝ T in the impurity
scattering regime where σ ∼ constant and the Wiedemann–Franz law is applicable.
From Fig. 8.1 we see that for copper, defect and boundary scattering are dominant
below ∼20K, while phonon scattering becomes important at higher T .

At low temperatures T � ΘD , butwith T in a regimewhere phonon scattering has
already become the dominant scattering mechanism, the thermal transport depends
on the electron-phonon collision rate which in turn is proportional to the phonon
density. At low temperatures the phonon density is proportional to T 3. This follows
from the proportionality of the phonon density of states arising from the integration
of

∫

q2dq. From the dispersion relation for the acoustic phonons ω = qvq we obtain

ω/vq = xkT/�vq (9.59)

where x = �ω/kBT . Thus in the low temperature range of phonon scattering where
T � ΘD and the Wiedemann–Franz law is no longer satisfied, the temperature
dependence of τ is found from the product T (T−3) so that now κe ∝ T−2. One
reason why the Wiedemann–Franz law is not satisfied in this temperature regime
is that κe depends on the collision rate τc, while σ depends on the time to reach
thermal equilibrium, τD . At low temperatures where only low q phonons participate
in scattering events, the times τc and τD are not the same, and τD can be very long.

At high T where T � ΘD and the Wiedemann–Franz law applies, κe approaches
a constant value corresponding to the regime where σ is proportional to 1/T . This
occurs at temperatures much higher than those shown in Fig. 8.1. The decrease in κ

above the peak value at ∼17K follows a 1/T 2 dependence quite well.
In addition to the electronic thermal conductivity, heat can be carried by the

lattice vibrations or phonons. The phonon thermal conductivity mechanism is in
fact the principal mechanism operative in semiconductors and insulators, since the
electronic contribution in this case is negligibly small. Since κL contributes also
to metals, the total measured thermal conductivity for metals should exceed the
electronic contribution (π2k2BTσ)/(3e2). In good metallic conductors of high purity,
the electronic thermal conductivity dominates and the phonon contribution tends
to be small. On the other hand, in conductors where the thermal conductivity due

http://dx.doi.org/10.1007/978-3-662-55922-2_8
http://dx.doi.org/10.1007/978-3-662-55922-2_8
http://dx.doi.org/10.1007/978-3-662-55922-2_8
http://dx.doi.org/10.1007/978-3-662-55922-2_8
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to phonons makes a significant contribution to the total thermal conductivity, it is
necessary to separate the electronic and lattice contributions before applying the
Wiedemann–Franz law to the total κ .

With regard to the lattice contribution, κL at very low temperatures is dominated
by defect and boundary scattering processes. From the relation

κL = 1

3
CpvqΛph (9.60)

we can determine the temperature dependence of κL , since Cp ∼ T 3 at low T , while
the sound velocity vq and phonon mean free path Λph at very low T are independent
of T . In this regime the number of scatterers is also independent of T .

In the regime where only low q phonons contribute to transport and to scattering,
only normal scattering processes contribute. In this regime Cp is still increasing
as T 3, vq is independent of T , but 1/Λph increases in proportion to the phonon
density of states. With increasing T , the temperature dependence ofCp becomes less
pronounced and that forΛph becomes more pronounced as more scatters participate,
leading eventually to a decrease in κL . We note that it is only the inelastic collisions
that contribute to the decrease in Λph and the inelastic collisions are of course due
to anharmonic forces.

With increasing temperature, eventually phonons with wavevectors large enough
to support umklapp processes are thermally activated. Umklapp processes give rise
to thermal resistance and in this regime κL decreases as exp(−ΘD/T ). In the high
temperature limit T � ΘD , the heat capacity and phonon velocity are both indepen-
dent of T . Thus, the κL ∼ 1/T dependence arises from the 1/T dependence of the
mean free path, since in this limit the scattering rate becomes proportional to kBT .

Problems

9.1 By using simple physical arguments, demonstrate the relation given by (9.7).

τD = τc

1 − cos θ
(9.61)

9.2 The optical phonon energies of GaAs and AlAs are 36 and 50meV, respectively,
at the Brillouin zone center.

(a) What is the occupation probability of these optical phonons at 77 and 300K?
(b) Estimate the relative importance of optical phonon absorption and phonon emis-

sion for scattering electrons in GaAs and AlAs at 100K.
(c) Calculate the Debye temperature for GaAs where the sound velocity is 5.6× 105

cm/s. Assume that the volume of the unit cell is 4.39× 10−23 cm−3.

9.3 In limiting the electrical transport in Si, the intervalley scattering is very impor-
tant. In particular, two kinds of intervalley scatterings are important: in a g-scattering
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Fig. 9.12 Electron pockets
in Si over the Brillouin zone.
The schematic drawing
highlights the g and f
scattering processes listed in
Sect. 9.2.3

event an electron goes from one valley (say a (0,0,Δ) valley) to an opposite valley
(0,0,−Δ), while in an f -scattering event, the electron goes to a perpendicular valley
((00Δ) to (0Δ0), for example). The extra momentum for the transitions is provided
by a phonon and may include a reciprocal lattice vector. Remember that Si val-
leys are not precisely at the X-point (Δ = 0.85). The speed of sound in silicon is
8433m/s.(See Fig. 9.12)

(a) Calculate the phonon wavevectors which allow these two scatteringmechanisms
to occur.

(b) Estimate the temperatures at which inter-valley scattering becomes important
for electron conduction in Si, for both the g- and f -scattering mechanisms.

9.4 The phonon mean free path in bulk silicon is approximately λm f p = 30nm
at room temperature. This results in a lattice thermal conductivity of 1.38W/cm·K,
based on a heat capacity ofCv=1.66 J/K·cm3 and a speed of sound vg=8.3× 105 cm/s.
In silicon nanowires with diameters smaller than the bulk phonon mean free path,
surface scattering can modify the phonon mean free path significantly. What is the
lattice thermal conductivity of nanostructured silicon with a phonon mean free path
of 10nm?

9.5 Bi2Te3 has a lattice thermal conductivity of 1.5W/m·K, heat capacity of
1.2× 106 J/K·m3, and speed of sound vg = 3 × 103m/s. Based on these values,
what is the approximate size of a Bi2Te3 nanostructure (i.e., nanowire) below which
a substantial reduction in the thermal conductivity can be achieved through surface
phonon scattering?

9.6 Isotopic doping can be used to increase the scattering of phonons in crystalline
materials. Consider three graphite samples prepared with 1.1% 13C (natural abun-
dance), 50% 13C, and 99% 13C. Of these samples, which material has the lowest
thermal conductivity? Explain why.
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9.7 What is the minimum electron energy that is needed to create a 50meV phonon
of maximum wave vector (from the zone center to the zone boundary) in a semicon-
ductor with the diamond structure where the nearest neighbor distance is 2Å?

9.8 (a) Assuming a 1D carrier concentration of 106 electrons/cm, how many con-
duction electrons are contained per cm3 in a quantum wire if a = 25 Å?

(b) Suppose that you have a Si sample and you would like to know the temperature
below which defect scattering dominates over the intrinsic phonon scattering,
how would you proceed?

(c) How would you distinguish between the relative importance between phonon
absorption andphonon emission processes for scattering electrons in an electrical
conductivity measurement in the 70–80K temperature range in a high quality
Si sample with few defects, other than the dopants used to generate the electron
carrier concentration in making the sample n–type?

9.9 Why is optical phonon scattering not important for electron transport in copper?

9.10 Estimate the relative importance of phonon absorption to phonon emission for
scattering electrons in an intrinsic GaAs sample at 100K.
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