Stubborn Set Intuition Explained

Antti Valmari and Henri Hansen®

Tampere University of Technology, Mathematics,
P.O. Box 553, 33101 Tampere, Finland
{antti.valmari,henri.hansen}@tut.fi

Abstract. This study focuses on the differences between stubborn sets
and other partial order methods. First a major problem with step graphs
is pointed out with an example. Then the deadlock-preserving stubborn
set method is compared to the deadlock-preserving ample set and per-
sistent set methods. Next, conditions are discussed whose purpose is to
ensure that the reduced state space preserves the ordering of visible tran-
sitions, that is, transitions that may change the truth values of the propo-
sitions that the formula under verification has been built from. Finally
solutions to the ignoring problem are analysed both when the purpose is
to preserve only safety properties and when also liveness properties are
of interest.

1 Introduction

Ample sets [1,10,11], persistent sets [5,6], and stubborn sets [15,19] are methods
for constructing reduced state spaces. In each found state, they compute a subset
of transitions and only fire the enabled transitions in it to find more states. We
call this subset an aps set.

The choice of aps sets depends on the properties under verification. Attempts
to obtain good reduction for various classes of properties have led to the devel-
opment of many different methods. Even when addressing the same class of
properties, stubborn set methods often differ from other aps set methods. The
present study focuses on these differences. The goal is to explain the intuition
behind the choices made in stubborn set methods.

To get a concrete starting point, Sect. 2 presents a simple (and non-optimal)
definition of stubborn sets for Petri nets that suffices for preserving all reachable
deadlocks. The section also introduces the ~»j;-relation that underlies many
algorithms for computing stubborn sets, and sketches one good algorithm. This
relation and algorithm are one of the major differences between stubborn set and
other aps set methods. The section also contains a small new result, namely an
example showing that always choosing a singleton stubborn set if one is available
does not necessarily guarantee best reduction results.

With Petri nets, it might seem natural to fire sets of transitions called steps,
instead of individual transitions. Section 3 discusses why this is not necessarily
a good idea. Ample and persistent sets are compared to stubborn sets in Sect. 4,
in the context of deadlock-preservation. Furthermore, the difference between
© Springer-Verlag GmbH Germany 2017

M. Koutny et al. (Eds.): ToPNoC XII, LNCS 10470, pp. 140-165, 2017.
DOI: 10.1007/978-3-662-55862-1_7

Stubborn Set Intuition Explained 141

weak and strong stubborn sets is explained. The verification of many properties
relies on a distinction between wisible and invisible transitions. This distinction
is introduced in Sect.5. Its ample and stubborn set versions are compared to
each other.

Because of the so-called ignoring problem, deadlock-preserving aps set meth-
ods fail to preserve most other classes of properties. For many classes, it suffices
to solve the ignoring problem in the terminal strong components of the reduced
state space. To this end, two slightly different methods have been suggested.
Section 6 first introduces them, and then presents and proves correct a novel
idea that largely combines their best features.

The above-mentioned solutions to the ignoring problem do not suffice for
so-called liveness properties. Section 7 discusses the stubborn set and ample set
methods for liveness. A drawback in the most widely known implementation
of the methods is pointed out. Section 8 discusses problems related to fairness.
Aps set methods have never been able to appropriately deal with mainstream
fairness assumptions. In this section we present some examples that illustrate
the difficulties. They are from [22]. Section9 concludes the study.

2 The Basic Idea of Stubborn Sets

In this section we illustrate the basic idea of stubborn sets and of one good
algorithm for computing them.

We use T to denote the set of (all) transitions of a Petri net. Let M be a
marking. The set of enabled transitions in M is denoted with en(M) and defined
as {t e T| M [t)}. A deadlock is a marking that has no enabled transitions.

In Fig.1 left, only firing ¢; in the initial marking leads to the loss of the
deadlock that is reached by firing t3tstst;. To find a subset of transitions that
cannot lead to such losses, we first define a marking-dependent relation ~»js
between Petri net transitions.

PNd. If =(M [t)), then choose p; € ot such that M (p;) < W (p:,t) and declare
t ~p t' for every ¢ € op; except ¢ itself. (If many such p; are available, only
one is chosen. The correctness of what follows does not depend on the choice.)

PNe. If M [t), then declare t ~»y; ' for every ¢’ € (ot)e except t itself.

On the right in Fig.1, enabled transitions are shown with double cir-
cles, disabled transitions with single circles, and the ~»/-relation with arrows.

P1 Ps
p3 b t1 to ts

t1 ts s
j_—l 2 P4 14 . t:5 t:6
p2 Ps ta @

Fig. 1. A marked Petri net and its ~»as-graph, with p;; = ps.

142 A. Valmari and H. Hansen

For instance, t4 is enabled, oty = {p4,ps}, and {p4, ps}® = {t3,t4,t5}, so PNe
declares t4 ~>ps t3 and t4 ~ s t5. Regarding t5, PINd allows choosing p:, = p3
or pi;, = ps. In the example ps was chosen, spanning the arrow t5 ~ s ts.

Consider any ~+pr-closed set Ty of transitions, that is, for every ¢ and t/,
if t € Thy and t ~>py t/, then also t' € Tyy. Assume that ¢ € Ty, t; ¢ T for
1<i<n,and M [t;---t,) M'. PNd guarantees that if ¢ is disabled in M, then
t is disabled also in M’. This is because every transition that may increase the
number of tokens in p; is in T);. PNe guarantees that if ¢ is enabled in M, then
there is M” such that M’ [t) M" and M [tt; ---t,) M". This is because ¢ does
not consume tokens from the same places as t1 - - t5,.

Let M be the initial marking of a Petri net. Let stubb(M) be a function
that, for any marking M that is not a deadlock, returns an ~»jps-closed set
of transitions that contains at least one enabled transition. This set is called
stubborn. If M is a deadlock, then it does not matter what stubb(M) returns.
Let the reduced state space be the triple (S,,A”M), where S, and A, are the
smallest sets such that (1) M € S, and (2) if M € S,, t € stubb(M), and
M [t) M', then M' € S, and (M,t,M’) € A,. It can be constructed like the
ordinary state space, except that only the enabled transitions in stubb(M) are
fired in each constructed marking M. We have the following theorem.

Theorem 1. The set S, contains all deadlocks that are reachable from M.

Proof. The proof proceeds by induction. Let M € S, and M [ty -+ - t,) Mg, where
My is a deadlock. If n =0, then My = M € S,.

If n > 0, then M [t1). So M is not a deadlock and stubb(M) contains an
enabled transition t. If none of ¢; is in stubb(M), then PNe implies that ¢ is
enabled at My, contradicting the assumption that My is a deadlock. So there is
i such that ¢; € stubb(M) but ¢; ¢ stubb(M) for 1 < j < 4. Let M;_; and M;
be the markings such that M [tl e 'ti—1> Mi—l [tz> Mz [ti—i-l o tn> Md. PNd
implies that t; € en(M), because otherwise t; would be disabled in M;_1. So
PNe implies M [t;ty---t;—1) M; [tiz1---tn) My. Let M’ be the marking such
that M [t;) M’. Then M’ € S, and there is the path M’ [ty -« t;_1t;41 - tn) My
of length n — 1 from M’ to My. By induction, My € S,. O

The next question is how to compute stubborn sets. Clearly only the enabled
transitions in stubb(M) affect the reduced state space. Therefore, we define
Ty T Ty if and only if T) Nen(M) C To Nen(M). If stubby (M) Ejps stubbs (M)
for every reachable marking M, then stubb; yields a smaller or the same reduced
state space as stubby. So we would like to use C j;-minimal stubborn sets.

Each ~»ps-relation spans a directed graph (T, “~»,,”) as illustrated in Fig. 1
right. We call it the ~»;-graph. Let C' be a strong component of the ~»;-graph
such that it contains an enabled transition, but no other strong component that
is reachable from C contains enabled transitions. In Fig. 1, C' = {t3,%4} is such
a strong component. Let C’ be the set of all transitions that are reachable from
C.In Fig. 1, C' = {t3,t4,t5,t6}. Then C’ is an Cps-minimal ~»r-closed set that
contains an enabled transition. That is, we can choose stubb(M) = C".

Stubborn Set Intuition Explained 143

A fast algorithm that is based on this idea was presented in [15,19,26], among
others. It uses Tarjan’s strong component algorithm [14] (see [3] for an improved
version). It has been implemented in the ASSET tool [21] (although not for Petri
nets). Its running time is linear in the size of the part of the ~»j-graph that
it investigates. For instance, if it happens to start at ¢5 in Fig. 1, then it does
not investigate t; and its output arrow. Although in this example the resulting
savings are small, they are often significant.

The algorithm performs one or more depth-first searches in the ~»,;-graph,
until a search finds an enabled transition or all transitions have been tried. The
description above leaves open the order in which transitions are used as the
starting points of the searches. The same holds on the order in which the output
arrows of each transition are investigated. For instance, when in ¢, in Fig. 1,
the algorithm may follow the arrow t4 ~» t5 before or after the arrow t4 ~» t3.
Therefore, the result of the algorithm may depend on implementation details.
Furthermore, it may also depend on the choice of p; if there are more than one
alternatives. This is why we sometimes say that the method may produce some
result, instead of saying that it does produce it.

The conditions PNd and PNe are not the best possible. For instance, t ~» s
t’ need not be declared in PNd, if W (p;,t') > W (t', p;). Extreme optimization
of the ~»ps-relation yields very complicated conditions, as can be seen in [15,
19]. A similar claim holds also with formalisms other than Petri nets. For this
reason, and also to make the theory less dependent on the formalism used for
modelling systems, aps set methods are usually developed in terms of more
abstract conditions than PNd and PNe. We will do so in Sect. 4.

To analyse more properties than just deadlocks, additional conditions on the
choice of stubborn sets are needed. Many of them will be discussed in Sects. 5,
6, and 7.

Until the end of Sect. 5 it will be obvious that if stubb (M) Ty stubby (M),
then stubb; (M) never yields worse but may yield better reduction results than
stubby(M). In Sects.6 and 7, the choices of stubb(M) with different M may
interfere with each other, making the issue less trivial.

Even in the present section, it is not obvious which one to choose when
stubby (M) Zps stubba(M) and stubbs(M) [Zys stubby(M). It was pointed out
already in [16] that choosing the smallest number of enabled transitions does not
necessarily guarantee best reduction results. In the remainder of this section we
demonstrate that always favouring a set with precisely one enabled transition
does not guarantee a minimal result. This strengthened observation is new.

A Petri net is I-safe if and only if no place contains more than one token
in any reachable marking. For simplicity, we express a marking of a 1-safe Petri
net by listing the marked places within { and }.

Consider the 1-safe Petri net in Fig. 2. Initially the only possibility is to fire ¢;
and to, yielding {2,8} and {3,8}. In {2,8}, both {t3,%4} and {tg} are stubborn.
In {3,8}, both {t5,t6} and {tg} are stubborn. We now show that {t3,t4} and
{t5,t6} yield better reduction than {¢o}.

144 A. Valmari and H. Hansen

Fig. 2. A stubborn set with one enabled transition is not always the best choice.

If {ts,t4} is chosen in {2,8} or {t¢s,ts} is chosen in {3,8}, then {4,8} and
{5,8} are obtained. From them, {¢7} and {ts} yield {6,8}, from which {to}
leads to {6,9} which is a deadlock. Altogether seven markings and nine edges
are constructed.

If {t9} is chosen in {2, 8} and {3, 8}, then {2,9} and {3, 9} are obtained. Then
{ts,t4} or {t5,ts} yields {4,9} and {5,9}, from which {¢r} and {ts} produce
{6,9}. Altogether eight markings and ten edges are constructed.

3 Why Not Steps?

Before comparing aps set methods to each other, in this section we compare
them to step graphs. For simplicity, we restrict ourselves to executions that lead
to deadlocks. That is, the goal is to find all reachable deadlocks and for each of
them at least one path that leads to it.

A step is any nonempty subset {ti,...,t,} of Petri net transitions. It is
enabled at M if and only if M(p) > >""_, W(p,t;) for every place p. Then there
is M’ such that M [r) M’ for every permutation 7 of ¢; - - - ¢,,. The idea of a step
graph is to fire steps instead of individual transitions. Unlike the traditional state
space, the order of firing of the transitions within the step is not represented,
and intermediate markings between the firings of two successive transitions in 7
are not constructed. This is expected to yield a memory-efficient representation
of the behaviour of the Petri net.

To maximize the savings, the steps should be as big as possible. Unfortu-
nately, the following example shows that only firing maximal steps is not correct.
By firing tstotsty in Fig. 1, a deadlock is reached where M (p2) = 3. The maximal
steps in the initial marking are {¢1,t3} and {t1,t4}. If only they are fired in the
initial marking, no deadlock with M (py) > 2 is reached.

This problem can be fixed by also firing a sufficient collection of non-maximal
steps. If {t1,¢3}, {t1,t4}, {t3}, and {4} are fired in the initial marking of our
example, then no deadlock is lost although the marking M that satisfies M [t1)
M is not constructed. However, another problem may arise even when it suffices
to fire only maximal steps. We will now discuss it.

Consider the Petri net that consists of the black places, transitions, and arcs
in Fig. 3 left. It models a system of n concurrent processes. It has n!2"™ different
executions, yielding a state space with 3" markings and 2n3"~! edges. Its initial

Stubborn Set Intuition Explained 145

P11 Pn,1
1,1 t1,2 tn,1 tn,2
1,2 P13 ... Pn,2 Pn,3 M, 4

Fig. 3. An example of firing steps vs. aps sets.

marking has 2" different steps of size n, consisting of one transition from each
process. They yield a step graph with 2 + 1 markings and 2" edges.

Any reasonable implementation of any aps set method investigates one
process at a time in this example. That is, the implementation picks some %
such that M(p;1) = 1, and chooses aps(M) = {t;1,t;2}. If there is no such 1,
then aps(M) = (). This yields 1 +2+4 +8 + ...+ 2" = 2" — 1 markings and
27+l _ 2 edges.

We see that both methods yield a significant saving over the full state space,
and step graphs yield approximately 50 % additional saving over aps sets. Step
graphs construct strictly as few markings and edges as necessary in this example.

Assume now that the grey places, transitions, and arcs are added. The step
graph now has 2" + 2 markings and 2"*! edges.

Aps sets may yield many different results depending on what aps(M) returns
for each M. Assume that the algorithm in Sect.2 is used and transitions are
tried as the starting points of depth-first searches in the order t1 1, t1,2, t1,3, t1,4,
to1, ta2, Then aps(M) is either {¢;1,t;2}, {ti s}, or {t;4}, where i is the
smallest index such that either M(p;1) = 1, M(p;2) = 1, or M(p;3) = 1. (If
there is no such 4, then aps(M) = (J.) In that case, the reduced state space shown
at right in Fig.3 is obtained. In M, ;, M(py4) =1 for 1 < k < i, M(p; ;) = 1,
M(pi,1) = 1 for i < k < n, and the remaining places are empty. That is, only
3n+ 1 markings and 4n edges are constructed. This is tremendously better than
the result with step graphs.

There is no guarantee that aps sets yield this nice result. If transitions are
tried in the order tq 1, t21, ..., tn1, ti,2, t2.2, ..., then 3 - 2" — 2 markings and
2"+2 _ 4 edges are obtained.

The point is that in this example, it is guaranteed that step graphs do not
yield a good result, while aps sets may yield a very good result.

Another issue worth noticing in this example is that when aps sets failed
to reduce well, they only generated approximately three times the markings
and twice the edges that the step graphs generated. This is because where
steps avoided many intermediate markings, aps sets investigated only one path
through them and thus only generated a small number of them. For this reason,
even when aps sets lose to step graphs, they tend not to lose much.

This example brings forward a problem with comparing different methods.
Most of the methods in this research field are nondeterministic in the same sense

146 A. Valmari and H. Hansen

as the algorithm in Sect. 2. Therefore, the results of a verification experiment may
depend on, for instance, the order in which transitions are listed in the input of
a tool. Above, the order t1 1, 21, ... gave dramatically worse results than the
order t; 1, t1 2, When comparing verification methods or tools, it might be
a good idea to repeat experiments with transitions in some other order.

4 Deadlocks with Ample vs. Persistent vs. Stubborn Sets

In this section we relate the ample set, persistent set, strong stubborn set, and
weak stubborn set methods to each other when the goal is to preserve all dead-
locks. Details of each method vary in the literature. We use the variant of ample
sets described in [1], persistent sets in [6], and stubborn sets in [19]. These ver-
sions of the methods are mature and widely used.

We will use familiar or obvious notation for states, transitions, and so forth.
A set of states is typically denoted with S, a set of transitions with T, and an
initial state with . Transitions refer to structural transitions such as Petri net
transitions or atomic statements of a program. Transition ¢ is deterministic, if
and only if for every s, t, s1, and sg, s LN s1 and s LN So imply s1 = so.

Ample, persistent, and stubborn set methods compute an aps set aps(s) in
each state s that they encounter. They construct a reduced state space by only
firing the enabled transitions in each aps(s). It is the triple (S, 4, §), where S,
and A, are the smallest sets such that (1) § € S, and (2) if s € S, t € aps(s), and
PA §’, then s’ € S, and (s,t,5") € A,. The full state space (5, 4, §) is obtained
by always choosing aps(s) = T. Obviously § € S, C S and A, C A.

The ample set method relies on the notion of independence between tran-
sitions. It is usually defined as any binary relation on transitions that has the
following property:

Independence. If transitions t; and ¢, are independent of each other, s L, S1,
and s 22 $9, then there is s’ such that s; 2, o and S9 h, g,

Independence is not defined as the largest relation with this property, because
it may be difficult to find out whether the property holds for some pair of tran-
sitions. In such a situation, the pair may be declared as dependent. Doing so
does not jeopardize the correctness of the reduced state space, but may increase
its size. This issue is similar to the use of non-optimal ~»,;-relations in Sect. 2.

Obviously transitions that do not access any variable (or Petri net place) in
common can be declared as independent. (Here also the program counter or local
state of a process is treated as a variable.) Two transitions that both increment
the value of a variable by 42 without testing its value in their enabling conditions
can be declared as independent, if they do not access other variables in common.
A similar claim holds if they both assign 63 to the variable. Reading from a fifo
queue and writing to it can be declared as independent, as can two transitions
that are never simultaneously enabled.

An ample set for deadlocks in state sy is any subset of transitions that are
enabled at sg that satisfies the following two conditions:

Stubborn Set Intuition Explained 147

CO0. If en(sg) # 0, then ample(sq) # 0.

C1. If sq D and none of t1, ..., ty is in ample(sg), then each one of ¢4, ...,
t, is independent of all transitions in ample(so).

We show next that every deadlock of the full state space is present also in
the reduced state space.

Theorem 2. Assume that transitions are deterministic, s € Sy, sq s a deadlock,
and s 2t sq in the full state space. If CO and C1 are obeyed, then there is a

!
1

permutation t) -+ -t of ty---t, such that s — sq in the reduced state space.

Proof. We only present the parts where the proof differs from the proof of The-
orem 1. If n > 0, then ample(s) contains an enabled transition ¢ by CO and

ample(s) C en(s). If none of 4, ..., t, is in ample(s), then sq = by C1, contra-
dicting the assumption that sq is a deadlock. So there is a smallest ¢ such that
t; € ample(s). Let s;_1 and s; be the states such that s Bt Si—1 iR s;. Since
ample(s) C en(s), there is ¢’ such that s L, o By C1, applying independence
i—1 times, there is s such that s’ Arhion, st and s;_1 L, s%. Because transitions

.. t; tyeti—1 tit1tn
are deterministic, s, = s;. As a consequence, s — s’ s — " sq. O

Strong stubborn sets are defined such that they may contain both enabled
and disabled transitions. Deadlock-preserving strong stubborn sets satisfy the
following three conditions. DO is essentially the same as C0. D1 and D2 will
be motivated and related to C1 after the definition.

DO. If en(sg) # 0, then stubb(sg) Nen(sg) # 0.

D1. If ¢t € stubb(sg), t; ¢ stubb(sgp) for 1 < i < n, and sg ftnt, s!, then

tty-tn
So —— S,

D2. If t € stubb(sg), t; & stubb(sg) for 1 <1i < n, sq Lt o and sy -, then
t

Sp —.

This formulation was suggested by Marko Rauhamaa [12]. The most impor-
tant reason for its use is that D1 works well even if transitions are not necessarily
deterministic. (For deadlocks, also D2 can be used as such.) This is important
for applying stubborn sets to process algebras, please see, e.g., [18,23,26]. In
the proof of Theorem 2, the assumption that transitions are deterministic was
explicitly used. Already the definition of independence relies on determinism.
This issue makes ample and persistent set theories difficult to apply to process
algebras.

Second, D1 can be used as such and D2 with a small change in the definition
of weak stubborn sets towards the end of this section.

Third, D1 and D2 are slightly easier to use in proofs than C1. Let s = sg b,

s1 L,y Sp = s4. DO and D2 yield an ¢ such that ¢; € stubb(s) and ¢; ¢

ti-ti—a

stubb(s) for 1 < j < i. Then the existence of s’ such that s Ly g 8; 18

148 A. Valmari and H. Hansen

immediate by D1. This last piece of reasoning is repeated frequently in stubborn
set theory, so it is handy that D1 gives it as a ready-made step. We have proven
the following generalization of Theorem 2.

Theorem 3. Theorem 2 remains valid, if DO, D1, and D2 replace CO and C1.
Then transitions need not be deterministic.

This is a generalization, because it applies to also nondeterministic transitions,
and because, as will be seen in Theorem 5, in the case of deterministic transitions
CO0 and C1 imply DO, D1, and D2.

In the case of deterministic transitions, D1 and D2 have the following equiv-
alent formulation:

Dd. Ift e StUbb(SO)7 _'(SO i}), t; ¢ StUbb(SO) for 1 <i< n, and 50 t1otn S,
then — (s, L)

De. If t € stubb(sg), so :, 8y, ti ¢ stubb(sg) for 1 < i < n, and s Tt Sn,

. t byt
then there is s/ such that s, — s’ and s, —"» s’ .
n n 0 n

Dd says that disabled transitions in the stubborn set remain disabled, while
outside transitions occur. De says that enabled transitions in the stubborn set
commute with sequences of outside transitions. It is immediately obvious that
PNd and PNe imply Dd and De. Let us show that for deterministic transitions,
this formulation indeed is equivalent to D1 and D2.

Theorem 4. If transitions are deterministic, then D1 N D2 is equivalent to
Dd N De.

Proof. Assume first that D1 and D2 hold. Then Dd follows immediately from

D1. If s LN s and sg Lt Sn, then D2 yields an s/, such that s, LN sl after

. . t tty .
which D1 yields an s{j such that sy — s —— s/,. Because transitions are

deterministic, sj = s(, so De is obtained.

Assume now that Dd and De hold. Then D2 follows immediately from De.

t1-tn ¢ ’

If s9 —= s, — s, then Dd yields an sj such that sg 5 sy, after which

. byt t ..
De yields an s/ such that s — s” and s, — s//. Because transitions are
deterministic, s = s/, so D1 is obtained. O

Similarly to the ~»;-relation in Sect. 2, ~»,-relations can be defined for Petri
nets and other formalisms such that they guarantee D1 and D2. Please see
e.g., [19,24,26] for more information. This means that the stubborn set con-
struction algorithm in Sect.2 can be applied to many formalisms. Indeed, its
implementation in ASSET is unaware of the formalism. It only has access to the
~+¢-relation and to the enabling status of each transition.

It would not be easy to describe this algorithm without allowing disabled
transitions in the aps set. Indeed, instead of this algorithm, publications on
ample and persistent sets suggest straightforward algorithms that test whether
some obviously ~»,-closed set is available and if not, revert to the set of all

Stubborn Set Intuition Explained 149

enabled transitions. This means that they waste reduction potential. The running
time is not an important issue here, because, as experiments with ASSET have
demonstrated [20,21,26], the algorithm is very fast.

The first publications on stubborn sets (such as [15]) used formalism-specific
conditions resembling PNNd and PNe instead of abstract conditions such as D1
and D2.

It is now easy to show that every ample set is strongly stubborn.

Theorem 5. If transitions are deterministic, ample(sg) C en(sg), and ample(sp)
satisfies CO and C1, then ample(sg) satisfies DO, D1, and D2.

Proof. Clearly CO implies D0. Dd follows trivially from ample(sy) C en(sp),
and De follows immediately from C1. Now Theorem 4 gives the claim. a

plzﬁm LAt
to o
t
t t (00

Fig. 4. An example where {t} satisfies DO, D1, and D2, but not C1.

Figure4 demonstrates that the opposite does not hold. Clearly {t} satisfies
DO in 21. The only enabled sequences of transitions not containing ¢ are £ and
t1. Checking them both reveals that {¢} also satisfies D1 and D2 in 21. However,
{t} does not satisfy C1, because t is not independent of ¢; because of 11.

To relate strong stubborn sets to persistent sets, the following theorem is
useful.

Theorem 6. Let sy be a state and stubb(sg) be a set of transitions. If stubb(sg)
obeys DO, D1, and D2 in sq, then also stubb(sg) Nen(sg) obeys them in sq.

Proof. That stubb(sp) Nen(sg) obeys DO is immediate from DO for stubb(sg).

Assume that so - where t; ¢ stubb(sg) Nen(sp) for 1 < i < n. We prove
that no ¢; is in stubb(sg). To derive a contradiction, let ¢ be the smallest such that
t; € stubb(sg). So t; € stubb(sg), t; ¢ en(so), So ot , and t; ¢ stubb(sg)
for 1 < j < 4. This contradicts D1 for stubb(sy).

If the if-part of D1 holds for stubb(sg)Nen(sp), then by the above, the if-part
of D1 holds also for stubb(sg). So the then-part for stubb(sg) holds, which is the
same as the then-part for stubb(sg) Nen(sp). Similar reasoning applies to D2. O

Persistent sets also assume that transitions are deterministic. They rely
on independence in a state. If t and t' are independent in s, then the following
hold [6, Def. 3.17]:

t t/ . tt’ t't
1. If s — and s —, then there is s’ such that s — s’ and s — s’.

2. If s L, then s .

150 A. Valmari and H. Hansen

3. If s in then s .

A set pers(sg) is persistent in sp if and only if pers(sg) C en(sp) and for every

t1, ..., t, and sy, ..., s, such that sq h, s1 ST sn and t; ¢ pers(sg) for

1 <i < n, it holds that every element of pers(sg) is independent of ¢; in s;_; [6,
Definition 4.1].

It is worth noticing that the concept of persistency would not change if
items 2 and 3 were removed from the definition of independence in a state. Let
t € pers(sg), and let s(be such that sg SR sy- Repeated application of item 1
yields s}, ..., s, such that s{ ¢ B2, Iy s' and s; & sifor 1 <i<mn.
Because for 1 < ¢ < n, both ¢t and ¢; are enabled in s;_1, the then-parts of items 2
and 3 hold, and thus the items as a whole hold. That is, items 2 and 3 can be
proven for the states s;_1, so they need not be assumed. It seems plausible that
items 2 and 3 were originally adopted by analogy to the independence relation
in Mazurkiewicz traces [9].

The next theorem, from [27, Lemma 4.14], says that persistent sets are equiv-
alent to strong stubborn sets restricted to deterministic transitions.

Theorem 7. Assume that transitions are deterministic. Every mnonempty per-
sistent set satisfies DO, D1, and D2. If a set satisfies D1 and D2, then its set
of enabled transitions is persistent.

Proof. Persistency immediately implies De. Because pers(sg) C en(sg), it also
implies Dd. These yield D1 and D2 by Theorem 4. If a persistent set is not
empty, then it trivially satisfies DO.

Assume that stubb(s) satisfies D1 and D2. Let pers(sg) = stubb(sg) Nen(sp).

By Theorems 4 and 6, pers(sp) satisfies De. Let t € pers(sg), s, be the state such

¢ ¢ ¢ tn) o
that so — s(, sop — 81 — =+ — 8, and t; & pers(sg) for 1 < i < n. De implies

8h Db, et s, ..., s, be the states such that s 4, 4 L, oy sl Let
1 < i < n. By giving De t; - - - t; in the place of ¢ - - - t,, we see that De implies
Si SR st for 1 < i < n. As a consequence, De implies for 1 < i < n that ¢ is
independent of ¢; in s;_1. This means that pers(sg) is persistent. a

Deadlock-preserving weak stubborn sets use D1 and the following condi-
tion D2w, that replaces both D0 and D2.

D2w. If en(sg) # 0, then there is tx € stubb(sg) such that if ¢; ¢ stubb(sg) for

. 1ty t
1<4<nand sy —= s,, then s, —.

By choosing n = 0 we see that sg L, That is, instead of requiring that all
enabled transitions in a stubborn set remain enabled while outside transitions
occur, D2w requires that one of them exists and remains enabled. This one is
called key transition and denoted above with #y.

Every strong stubborn set is also weak but not necessarily vice versa. There-
fore, weak stubborn sets have potential for better reduction results. The first
publication on stubborn sets [15] used weak stubborn sets. The added reduction

Stubborn Set Intuition Explained 151

potential of weak stubborn sets has only recently found its way to tools [4,7,8].
The proof of Theorem 3 goes through with D2w instead of D2 and DO. Indeed,
weak stubborn sets preserve many, but not necessarily all of the properties that
strong stubborn sets preserve.

Excluding a situation that does not occur with most verification tools, if the
system has infinite executions, then all methods in this section preserve at least
one. The nondeterministic case of this theorem is new or at least little known.

Theorem 8. Assume that sg € S, and sg L, $1 L, If transitions are

determanistic or the reduced state space is finitely branching, then there are t},

tth-
th, ... such that sy —>— in the reduced state space.

Proof. If any of the ¢; is in stubb(sp), then, for the smallest such i, by D1, there

tyoti—1tipar

is s(such that sg LN 34 . Otherwise, by D2w, for every j € N

there is s; such that s; LN s;». If transitions are deterministic, then D1 yields
s U, ¢ L2, ... This argument can be repeated at sy and so on without limit,

yielding the claim.

If transitions are not necessarily deterministic, then, for every n € N, D1 can

be applied to 5o - or to s %, This can be repeated n times, yielding

an execution of length n in the reduced state space starting at sq. If the reduced
state space is finitely branching, then Konig’s Lemma type of reasoning yields
the claim. O

Consider a Petri net with two transitions and no places. Any reasonable imple-
mentation of the deadlock-preserving aps set method fires initially one transition,
notices that it introduced a self-loop adjacent to the initial state, and terminates
without ever trying the other transition. Let ¢ be the fired and ¢’ the other transi-

. P N
tion. In terms of Theorem 8, the infinite execution § ——— became represented

by § 2% So it is possible that {t1,ta2,...} N{t},t5,...} = 0 in Theorem 8.

More generally, if an original execution does not lead to a deadlock, then it is
often the case that its representative in the reduced state space does not consist
of precisely the same transitions. As a consequence, in the opinion of the present
authors, when trying to understand aps set methods, Mazurkiewicz traces [9]
and partial orders of transition occurrences are not a good starting point.

5 Visible and Invisible Transitions

Figure 5 shows a 1-safe Petri net, the directed graph that the ~»,;-relation spans
in the shown marking {1,4,9}, and the similar graph for the marking {1, 6,9}
that is obtained by firing ¢3. Please ignore the grey p1s and t7 until Sect. 6. Please
ignore the dashed arrows for the moment. They will be explained soon.

Assume that we want to check whether always at least one of p; and pg is
empty. We denote this property with O((M(p1) = 0) vV (M(ps) = 0)). It does
not hold, as can be seen by firing t3t4ts.

152 A. Valmari and H. Hansen

p1 te ©) te
ta ts t4

t1

p2 P4 t3 Ots

to

Fig. 5. A Petri net with two visible transitions and its ~¢; 4,93~ and ~+{q ¢,93-graphs.
In the latter, ps is chosen as p;,. The dashed arrows arise from V.

According to the theory developed this far, {¢;} is stubborn. Therefore, it
suffices to fire just ¢; in the initial marking. After firing it, p; is permanently
empty. As a consequence, no counterexample to O((M(p1) =0) V (M(ps) = 0))
is found. We see that the basic strong stubborn set method does not preserve
the validity of this kind of properties.

This problem can be solved in two steps. The second step will be described
in Sects. 6 and 7, where systems that may exhibit cyclic behaviour are discussed.
The first step consists of classifying transitions as wvisible and invisible, and
adopting an additional requirement. The atomic propositions of O((M(p1) =
0) V (M(pg) =0)) are M(p1) = 0 and M (ps) = 0. If a transition is known not
to change the truth value of any atomic proposition in any reachable marking,
it is classified as invisible. If the transition is known to change the truth value
in at least one reachable marking or it is not known whether it can change it,
then it is classified as visible. The additional requirement is the following.

V. If stubb(sg) contains an enabled visible transition, then it contains all visible
transitions (also disabled ones).

In the example, the grey transitions are visible and the rest are invisible. V
adds the dashed arrows to the ~»)/-graphs in Fig. 5.

Assume V. Consider D1. Its ¢ is enabled because sg Mt Consider the
sequence of visible transitions within tt; - - - t,,, that is, the projection of tty - - - ¢,
on visible transitions. If ¢ is invisible, then it is obviously the same as the pro-
jection of ¢y ---t,t. If t is visible, then V implies that ¢, ..., t, are invisible,
because they are not in stubb(sg) by the assumption in D1. So again the pro-
jections are the same. This means that when ¢; ---t, and t}---t, are like in
Theorems 2 and 3, the projection of i ---t, is the same as the projection of
t’l .. 't;z .

With Theorem 8, the projection of t1t5--- is a prefix of the projection of
tjth -+ or vice versa. Sections 6 and 7 tell how they can be made the same.

For instance, t3t4tst; leads to a deadlock in Fig. 5. In it, t5 occurs before ¢;.
V guarantees that t5 occurs before t; also in the permutation of t3t4t5t; whose
existence Theorem 3 promises. By executing the permutation to a point where

Stubborn Set Intuition Explained 153

t; has but t; has not yet occurred, a state in the reduced state space is found
that violates O((M (p1) = 0) V (M (ps) = 0)). In this way V makes it possible to
check many kinds of properties from the reduced state space.

Indeed, with the dashed arrow, the ~»p/-graph in Fig.5 middle yields two
stubborn sets: {t1,...,t5} and T. In both cases, t3 is in the stubborn set. By
firing 5, the marking {1,6,9} is obtained whose ~»s-graph is shown in Fig.5
right. This graph yields the stubborn sets {t4,ts}, {t1,%4, 5, %6}, and some others
that have the same enabled transitions as one of these, such as {ts, t4,t5,¢s}. All
of them contain t4. After firing it, each stubborn set contains ¢4, t5, and possibly
some disabled transitions. So the sequence tst4ts is fired in the reduced state
space (after which ¢ is fired).

In the ample set theory, instead of V there is the following condition:

C2. If ample(sg) contains a visible transition, then make ample(sg) = en(sg).

This condition is stronger than V in the sense that C2 always forces at least
the same enabled transitions to be taken as V, but not necessarily vice versa. In
particular, although {t1,...,t5} obeys V in the initial marking of our example,
its set of enabled transitions (that is, {¢;,t3}) does not obey C2. Indeed, C2
commands to fire all enabled transitions in {1, 4,9}, including also 5. Therefore,
ample sets yield worse reduction in this example than stubborn sets.

It is difficult to formulate V without talking about disabled transitions in
the stubborn set. For instance, consider “if the stubborn set contains an enabled
visible transition, then it contains all enabled visible transitions”. It allows to
choose {t1} in {1,4,9}. However, we already saw that {¢1} loses all counterex-
amples to the property. The ability to formulate better conditions than C2 is
an example of the advantages of allowing disabled transitions in stubborn sets.

The basis of the running example of this section (but not most of the details)
is from [26].

6 The Ignoring Problem, Part 1: Finite Executions

Assume that the initially marked place p1o, transition ¢7, and arcs between them
are added to the Petri net in Fig. 5. Before the addition, the state space of the
net is acyclic and has the deadlocks {3,5,11}, {2,8,10}, and {2,6,11}. The

addition adds number 12 and the self-loop M 17, M to each reachable marking.
It adds the stubborn set {¢7} to each reachable marking and otherwise keeps the
C p-minimal stubborn sets the same.

If t; is investigated first in the initial marking {1, 4,9,12}, then the stubborn
set {t7} is chosen. Firing t; leads back to the initial marking. Therefore, the
method only constructs the initial marking and its self-loop—that is, one mark-
ing and one edge. This is correct, because like the full state space, this reduced
state space has no deadlocks but has an infinite execution. As a matter of fact,
from the point of view of checking these two properties, the obtained reduction
is ideal.

154 A. Valmari and H. Hansen

On the other hand, this reduced state space is clearly invalid for disproving
the formula O((M(p1) = 0) V (M(ps) = 0)). This problem is known as the
ignoring problem. After finding out that ¢; causes a self-loop in every reachable
marking, the method stopped and ignored the rest of the Petri net.

k
Let s — & denote that there are Sgy --+, Sp and ty, ..., t, such that
s =80 2 5 2 ... g5 = s and t; is a key transition of stubb(s;_1)

for 1 < i < n.In [17,18], the ignoring problem was solved with the following
condition Sen, and in [18] also with SV:

. k
Sen. For every t € en(sg) there is s; such that sg s, and t € stubb(s;).

.. . ki
SV. For every visible t there is s; such that sg . s, and t € stubb(s;).

With deterministic transitions, D1, D2w, and Sen guarantee that if s € S, and
s tl—t>, then there are ¢, ..., ¢/, such that s Z in the reduced state space
for some permutation 7w of t1---t,t} -t/ . This facilitates the verification of
many properties. For instance, a transition is Petri net live (that is, from every
reachable state, a state can be reached where it is enabled) if and only if it is Petri

net live in the reduced state space. With deterministic transitions, D1, D2w,

V, and SV guarantee that if s € S, and s M, then there is some transition
sequence 7 such that s = in the reduced state space and the projection of 7 on
the visible transitions is the same as the projection of ¢ - - - ¢,,.

With deterministic transitions and strong stubborn sets, Sen can be imple-
mented efficiently as follows [17,19]. Terminal strong components of the reduced
state space can be recognized efficiently on-the-fly with Tarjan’s algorithm [3,14].
(This resembles the algorithm in Sect.2, but the directed graph in question is
different.) If some transition is enabled in some state of a terminal strong com-
ponent but does not occur in the component, then it is enabled in every state
of the component by D2 and D1. When the algorithm is about to backtrack
from the component, it checks whether there are such transitions. If there are, it
expands the stubborn set of the current state (called the root of the component)
so that it contains at least one such transition. The expanded set must satisfy
D1 and D2. To avoid adding unnecessary enabled transitions, it is reasonable
to compute it using the algorithm in Sect. 2 (without entering the transitions in
the original stubborn set).

SV can be implemented similarly, except that the algorithm checks whether
each visible transition is in some stubborn set used in the terminal strong com-
ponent [26]. By V, this is certainly the case if any visible transition occurs in the
component. Let CV(M) denote the ~»ps-closure of the set of visible transitions.
In the negative case, the algorithm expands the stubborn set of the root of the
component with some subset of CV(M) maintaining D1, D2, and V. This is
continued until for each terminal strong component, either a visible transition
occurs in it or the stubborn set of its root is a superset of CV(M).

In the latter case it is certain that no visible transition can occur in the
future, and the analysis may be terminated even if some enabled transitions
were never investigated. This reasoning is valid also in the deadlocks of the

Stubborn Set Intuition Explained 155

reduced state space. In particular, if CV(M) contains no enabled transitions,
then no transitions need to be fired, even if that violates DO0. As a consequence,
it is correct (and good for reduction results) to only use subsets of CV(M) as
stubborn sets.

ps

Fig. 6. Illustrating the nonoptimality of Sen and SV.

SV is nonoptimal in the sense that expanding the stubborn set with CV(M)
may require the addition of enabled transitions that Sen and V together do
not add. Figure6 illustrates this. In it, the task is to find out whether ¢5 can
ever fire. It cannot, because t4 is always disabled in a nontrivial way. We cannot
assume that the stubborn set construction algorithm can detect that t4 is always
disabled, because detecting such a thing is PSPACE-hard in general. To be
realistic, we instead assume that the stubborn set construction algorithm just
uses PNd and PNe like in Sect.2. In any reachable M, PNd declares either
t4 ~ M tl and t4 ~ M t2 or t4 ~ M tg.

Assume that transitions are tried in the order of their indices as the starting
points of the construction of stubborn sets. The stubborn set method first uses
stubb(M) = {t1}. So it fires t; yielding M;. We have t; ~»py t3 ~ar 1,
ts ~opy t2 ~oay ta ~oay ti, and tg ~opg to (the last two via p3). So the
method uses stubb(M;) = {t1,t2,t3,t4} and fires to yielding Ms. Next it fires
t3 closing a cycle, using stubb(Mas) = {ts,t4}, because t3 ~pg, t4 ~pr, t3 (the
latter via po). Because t5 is visible and is not in any of these stubborn sets, the
algorithm expands the root of the terminal strong component, that is, M. The
algorithm is cunning enough to avoid tg, since ts 71»7\/[ts. On the other hand,

t5 ~> yy t4 ~ gy t2. So the algorithm fires 5 at M, making the size of the reduced
state space grow.

Also Sen and V together guarantee that projections on visible transitions
are preserved. Indeed, they were used in [18]. They do not add t, to stubb()
in Fig.6, because t2 € stubb(M;). Unfortunately, they are nonoptimal in the
sense that they unnecessarily solve the ignoring problem also for the invisible
transitions. In Fig. 6, they add tg to stubb(1).

We now present and prove correct a novel condition that is free from both of
these problems. We first rewrite Dd using 7" in the place of stubb(s).

Dd. Ift e T, —=(so L), t; ¢ T for 1 <i<mn,and sy Bitn, Sn, then = (s, i>)

156 A. Valmari and H. Hansen

Let T; C T be any set of transitions. Typical examples of T; are the set of vis-
ible transitions and the set of all transitions. We call its elements the interesting
transitions. The following condition solves the ignoring problem.

S. There is 7" C T such that T} C T, T’ satisfies Dd in sg, and for every
t € T Nen(sp) there is s; such that sg L st and ¢ € stubb(sy).

An often good T' can be computed by first introducing a ~+.-relation only using
PNd or its counterpart in the formalism in question, and then computing the
~»'~closure of Ti. In Fig.6 in M, this yields {t1,ta,t4,t5}. For each root s of
each terminal strong component, the algorithm checks that each element of
T’ Nen(s) occurs within the component. In the negative case, the algorithm
expands stubb(s) with the traditional ~»¢-closure (that is, the one that uses the
counterparts of both PNd and PNe) of some missing element of T/ N en(s).
To obtain an T /-minimal result, Tarjan’s algorithm is used similarly to Sect. 2
also during this step. In Fig.6 in M, we have T" Nen(M) = {t1,t5}. Because
t; € stubb(M) and t, € stubb(M;), S holds. The algorithm terminates, without
expanding stubb(M) and without ever trying ts.

By choosing T} = T we get T/ = T and see that Sen implies S. Together
with the example in Fig. 6, this shows that S is strictly better than Sen.

The comparison of S to SV is more difficult. Therefore, we only compare
their implementations described above. Let T; be the set of visible transitions. If
no visible transition can be made enabled in the future, then the algorithm for
SV ultimately expands the stubborn set stubb(s) of the root s of the terminal
strong component with CV(s). The word “ultimately” refers to the fact that the
algorithm may try subsets of CV(s) before trying CV(s) as a whole, and, as a
consequence, new states may be generated such that the component ceases from
being terminal or s ceases from being its root.

In the same situation, the algorithm for S obtains T’ Nen(s) by computing
the ~»-closure of T; and picking the enabled transitions in it. If none of these
transitions occurs in the component, then the S algorithm ultimately expands
stubb(s) with them. When doing so it computes their ~»s-closures, to satisfy
D1, D2, and V. The union of the computed sets is CV(s). So in this case, the S
algorithm makes the same expansion as the SV algorithm. On the other hand,
if any of these transitions does occur in the component, then the S algorithm
does not use it for expanding stubb(s). Then the S algorithm is better than the
SV algorithm. This is what happened with ¢5 in Fig. 6.

We now prove that S is correct.

Lemma 9. If transitions are deterministic, so € Sy, stubb(sg) obeys S, stubb(s)

obeys D2w in every s € Sy, and s RZLN Sn, where t,, € Ti, then there are s,
tl t2 tm .
oy 8hand tL, ...t such that s = s, s == 8} < - S sl s a
key transition of stubb(Y and {t1,...,tn} Nstubb(s}) =0 for 0 <4 < m, and
{t1,...,tn} Nstubb(s],) # 0.

Proof. Because t, € T; C T', there is 1 < ¢ < n such that ¢; € T" but ¢t; ¢ T”
for 1 < j < i. By Dd ¢; € en(sg). By S there is s, such that t; € stubb(s;,)

Stubborn Set Intuition Explained 157

and sg ey, s¢,. Let the states along this path be called sj, ..., s},. So sy = sq,
s, = s, and t; € {t1,...,t,} Nstubb(s},). Thus there is the smallest m such that
{t1,...,tn} Nstubb(s]) 75 (), completing the proof. O
Theorem 10. Assume that transitions are deterministic and stubb(s) obeys
D1, D2w, and S in every s € S,. Let sg € S, and sg I, $1 L,y Sp-
I

There are t}, ..., t! . and s,, such that so —— sy, in the reduced state space
and each t € T occurs int} - --t,, at least as many times as it occurs in tq - - - ty,.
Furthermore,

- If T, =T, then there are t,y1, ..., tym such that s, Ert1rrtm S and th -t/

18 a permutation of ty -« tpy,.
- If T; is the set of visible transitions and stubb(s) obeys V in every s € S,
then the projections of ty---t, and t}---t, on T; are the same.

Proof. If none of t1, ..., t, is in T;, the first claim holds vacuously with m = 0.
Otherwise let 1 < n’ < n be the biggest such that ¢, € T\. Lemma 9 yields
, tl'wt”L/
s' and ¢}, ..., " such that sy ——— s’ and {t1,...,t, } Nstubb(s’) # 0.
Applying D2w, D1, and determinism m’ times yields s” such that s’ Dt
thetm et

and s,y ——=— 5. D1 produces from s’ D, o o transition occurrence in
the reduced state space that consumes one of tq, ..., t,,. The first claim follows
by induction.

If T, = T, then always n’ = n. The t}, ..., t{* introduced in each application
of Lemma 9 are the t,,41, ..., tm.

In the case of the last claim, each key transition is invisible, because other-
wise t,,» would be in the stubborn set of the key transition by V, contradicting
Lemma 9. Therefore, the applications of D2w neither add visible transitions
nor change the order of the visible transitions. By V, the same holds for the
applications of D1. O

In the literature, S may refer to any condition that plays the role of Sen,
SV, or (from now on) the S of the present study. This is because there is usually
no need to talk about more than one version of the condition in the same publi-
cation. The name S refers to “safety properties”, which is the class of properties
whose counterexamples are finite (not necessarily deadlocking) executions.

In [20,22] it was pointed out that it is often possible and perhaps even desir-
able to modify the model such that from every reachable state, a deadlock is
reachable. Reduction with deterministic transitions, D0, D1, and D2 preserves
this property. Two efficient algorithms were given for checking from the reduced
state space that this property holds. Such systems trivially satisfy S. This solu-
tion to the ignoring problem is simple. As far it is known, it gives good reduction
results. (Little is known on the relative performance of alternative solutions to
the ignoring problem.)

158 A. Valmari and H. Hansen

p1 P4 \ ts t4ﬂ
(10010 10001
t ts t3

tS tl

" " @0

ts ta t
P3 (00110)
Fig. 7. Terminal strong components vs. cycles.

7 The Ignoring Problem, Part 2: Diverging Executions

Figure 7 demonstrates that S does not always suffice to preserve a property.
Consider ©O(M (p2) = 0), that is, from some point on, py remains empty. It
fails because of t5t1t4tsty---. However, the figure shows a reduced state space
that obeys DO, D1, D2, V, and S, but contains no counterexample.

This problem only arises with diverging counterexamples, that is, those which
end with an infinite sequence of invisible transitions. A state is called diverging if
and only if there exists an infinite sequence of invisible transitions from it. When
finite counterexamples apply, the methods in Sect. 6 suffice. If the reduced state
spaces are finite (as they usually are with practical computer tools), they suffice
also for counterexamples that contain an infinite number of visible transitions.
This is because the methods preserve every finite prefix of the projection on
visible transitions, from which Konig’s Lemma type of reasoning proves that
also the infinite projection is preserved.

With stubborn sets, this problem has been solved by two conditions that
together replace S:

I. If en(sp) contains an invisible transition, then stubb(sg) contains an invisible
key transition.

L. For every visible transition ¢, every cycle in the reduced state space (which
is assumed to be finite) contains a state s such that ¢ € stubb(s).

Let ¢1t2 - - - be such that sg Bt and only a finite number of the ¢; are visible.
Assume that t1t5 - -+ contains at least one visible transition ¢,. Similarly to the
proof of Theorem 10, key transitions and D2w are used to go to a state whose
stubborn set contains some t;, and then D1 is used to move a transition occur-
rence from the sequence to the reduced state space. At most |.S;| — 1 applications
of D2w and D1 may be needed before some t; such that i < v is consumed,
because otherwise the reduced state space would contain a cycle without ¢, in
any of its stubborn sets, violating L. As a consequence, each visible transition
of t1to - -+ is eventually consumed.

Stubborn Set Intuition Explained 159

When that has happened, I ensures that the reduced state space gets an
infinite invisible suffix. Without I, it could happen that only visible transitions
are fired immediately after consuming the last ¢,, spoiling the counterexample.

A diverging execution £ is minimal if and only if there is no infinite execution
whose projection on visible transitions is a proper prefix of the projection of &.
Minimal diverging counterexamples are preserved even without L and S. This
implies that if the reduced state space is finite, then D1, V, I, and a variant
of D2w preserve [18,23] the failures—divergences semantics in CSP theory [13].
D2w is replaced by a variant, because CSP uses nondeterministic transitions.

With deterministic transitions D1 and D2w also give an interesting result
for diverging executions, one that is worth commenting here.

Theorem 11. Assume that transitions are deterministic and stubb(s) obeys D1
and D2w in every s € S,. Assume further that sg 4, S1 LN Sg are
invisible key transitions. If sg ———" sy is a sequence in the full state space
such that {uy,...,up} N U;igl(stubb(si) Nen(s;)) = 0, then sj is diverging in

the full state space.

. . . Up Uy
Proof. Proof is by induction on m. sp ——= s{, holds as the base case. Assume

. . . . Uy u ty-t;
as inductive hypothesis that there is some s/ such that s; ——= s/ and s{;, ——

sh. u; ¢ stubb(s;) Nen(s;) for each 1 < j < n. Because uq, if it exists, is enabled
at s;, it must be that u; ¢ stubb(s;), and applying D1 to j = 2,...,n we get
that u; ¢ stubb(s;) for each 1 < j < n. Because t;11 is a key transition, D2w

;) i1 f 3 ’ d U Up . d
guarantees s; —— s, for some state s;,, and s;4+1 — §;, 18 guarantee

t . ..
by D1. Because s,,—1 — s¢, deterministic transitions guarantee that s, = sj.
O

Note that when D2 or De is used instead of D2w, every enabled transition in
any stubborn set is a key transition, so the theorem can be restated so that if a
state is diverging in the reduced state space, then all states reachable by firing
transitions that were ignored in the cycle are likewise diverging.

The theorem works to reinforce the intuition behind L. Consider Fig.7. In
the state in the upper right corner, {ts,t4} is a stubborn set, and the state is
diverging. According to the theorem, t; will lead to a diverging state, but nothing
is guaranteed about the divergence in the part where t3 has been fired. Theo-
rem 11 can be used to make the reduced state space smaller, by not stipulating
I when the presence of a divergence can be obtained with the theorem. More
information on this is in [23].

Ample sets do not mention I, because it follows from CO, C2, and the fact
that all transitions in an ample set are key transitions by C1. Instead of L,
ample sets use the following condition.

C3. For every t and every cycle in the reduced state space, if ¢ is enabled in some
state of the cycle, then the cycle contains a state s such that ¢t € ample(s).

The relation of L to C3 resembles the relation of SV to Sen. This suggests that
an improvement on C3 could be developed similarly to how S improves Sen.
We leave this for future research.

160 A. Valmari and H. Hansen

The recommended implementation of C3 is called C3’ in [1]. It assumes that
the reduced state space is constructed in depth-first order. It also implements L.

C3’. If ample(s) # en(s), then for every ¢t € ample(s) and every s’ such that
s 5 s', s’ is not in the depth-first stack.

Figure 8 illustrates that C3’ sometimes leads to the construction of unnec-
essarily many states. In it, all reachable states are constructed, although the
processes do not interact at all. Better results are obtained if the component
(either {t1,to,t3} or {t4,ts5,t6}) is preferred to which the most recent transition
belongs. Then the sequence titotstststy is fired, after which both ¢o and tg are
fired. This improved idea fails badly with the three-dimensional version of the
example. In [2, Sect. 4, Fig. 4], the bad performance of C3’ was illustrated with
a different example.

P pa (100100) (100010) (0000D)
A_ N _te J
t1 ta t1 t1 t1
(D) 0o) ps (010100) @10010)H5~G1000D)
ts ts
to ts t2 i3 t2 t3
t
(001100)——(001010) ©0100D)

p3 Pe

Fig. 8. Transitions are tried in the order of their indices until one is found that does
not close a cycle. If such a transition is not found, then all transitions are taken.

C3’ fully expands the last state of the cycle it closes. If the first state of the
cycle is expanded instead and if the component is remembered, then the leftmost
column and topmost row of Fig. 8 right are constructed. (Expanding the first or
the last state is correct, but other states are not necessarily safe [23, Lemma
15].) This is better than with C3’, and works well also in the three-dimensional
example, as well as for the example in [2]. There has been very little research on
the performance of cycle conditions besides [2], although the problem is clearly
important.

8 Trouble with Fairness

Fairness refers to assumptions about infinite executions that are used to root out
certain nonsensical counterexamples. For example in Fig. 9, there is an infinite
execution (t1t2)* where t5 is never fired, even though it is constantly enabled.
Weak fairness is an assumption that if a transition is constantly enabled, it will
eventually be fired. This can be understood, for example, so that in a concurrent

Stubborn Set Intuition Explained 161

I i %?
D_’O_’D_’O t5O 4{:;(%_ (l)

151

Fig. 9. All weakly fair non-progress cycles may be lost.

execution of several processes, each process gets processor time, making it a
reasonable assumption to discuss. Strong fairness is a stronger assumption that
if a transition is enabled infinitely often (though it may be disabled infinitely

often also), then it is eventually fired. That is, we say that a cycle sg ivtn, Sn
such that sg = s, is

— weakly fair if and only if for every ¢t € T, either there is some i such that
t; =torté¢en(s;), and

— strongly fair if and only if for every ¢t € T, either there is some i such that
t;=tort¢en(s;) for every 1 < j <n.

In Fig.9 we see a situation where weak fairness and stubborn sets encounter
a problem. The set {¢;} is an aps set in the initial state that satisfies all the
conditions this far. In the second state {ts,t3} satisfies all except C3 and C3’.
In particular, it satisfies L.

The cycle in the reduced state space, indicated by the solid arrows, seems
like a fair cycle in the reduced state space, but in the full state space it has
a constantly enabled transition that is not fired along the cycle. A cycle that
is fair in the reduced state space, but not necessarily in the full state space, is
called a seemingly fair cycle. The full state space has a fair cycle, but this is not
explored, only the seemingly fair cycle above it. The condition C3 is sufficiently
strong in this example, as it guarantees that ¢5 is fired in at least one state of
the seemingly fair cycle. The cycle remains seemingly fair, but the corresponding
fair cycle is also explored.

One is tempted to explore a hypothesis that a seemingly fair cycle exists in
the reduced state space if and only if a corresponding fair cycle exists in the full
state space. In Fig. 10, we see that this hypothesis does not hold. The transition
t3 is constantly enabled, and the transition is fired in one of the states along the
cycle, so that L is satisfied. The cycle itself is not fair, but it is seemingly fair.
This happens even if C3 is used.

Fig. 10. A seemingly weakly fair non-progress cycle may be fake.

162 A. Valmari and H. Hansen

2 o 3
2 t3 i) 4 t3
t1 to — t1 to
() {) _%)
ket QAR

Fig. 11. Two Petri nets illustrating yet another weak fairness problem.

Again, we are tempted to form a hypothesis that some algorithm that makes
use of book-keeping regarding transitions along a cycle could be used to deter-
mine whether a weakly fair cycle was lost or not. The example in Fig. 11 leaves
little hope for the development of such methods. In the leftmost example, the
first cycle is unfair, but becomes seemingly fair when reduced. The second cycle,
consisting of the same transitions, is not explored and the initial state does have
all the enabled transitions in the aps set, so that the reduction satisfies C3. The
full state space has a fair cycle and the reduced state space has a seemingly
fair cycle.

In the rightmost example in the same figure, exactly the same aps sets can
be used. The reduced state space is the same as in the leftmost example, and
the sets of enabled transitions are the same in all the states of the reduced state
space. Now the full state space does not have a fair cycle, but the reduced state
space still has a seemingly fair cycle.

The first state space contains a fair cycle in the unexplored part and the
second does not. Unless a method can use information about the system structure
beyond that expressed by the conditions seen this far, and the part of the state
space that has been explored, it cannot distinguish between the two state spaces.

N
~
w

t1 t2 \;OQ

Fig. 12. Illustrating a strong fairness problem.

None of the cycles in Fig.11 is strongly fair, but a similarly discouraging
example for preserving strong fairness exists, and is shown in Fig. 12. The full
state space has a strongly fair cycle that is never explored by a reduction. Again,
from the point of view of aps sets and the enabled transitions in the reduced
state space, the Petri net is equivalent to the ones in Fig. 11.

Stubborn Set Intuition Explained 163

9 Conclusions

The goal in the development of stubborn sets has been as good reduction as
possible, while ample and persistent sets have favoured straightforward easily
implementable conditions and algorithms. As a consequence, where stubborn
set methods differ from other aps set methods, stubborn sets tend to be more
difficult to implement but yield better reduction results. Very little is known
on the differences of the reduction power between different methods. Reliable
information is difficult to obtain experimentally, because in addition to the issue
that is being experimented, the results may depend on the optimality of the
chosen ~»4- or independence relation, on the order in which the transitions are
listed in the input file (Sect. 3), and other things.

Some stubborn set ideas are difficult to implement efficiently. For instance,
no very fast algorithm is known that can utilize the freedom to choose any one
from among the places that disable a transition (the p; in Sect.2). On the other
hand, the likelyhood of finding good ways of exploiting some reduction potential
decreases significantly, if the existence of the potential is never pointed out.

The algorithm in Sect. 2 seems intuitively very good, and experiments with
the ASSET tool strongly support this view [20,21,26]. The present authors
believe that it deserves more attention than it has received.

The biggest immediate difference between stubborn sets and other aps set
methods is the possibility of disabled transitions in the set. It is difficult to
think of the above-mentioned algorithm without this possibility. Furthermore, in
Sect. 5 it was shown how it facilitates an improvement to the visibility condition.
It is also important that stubborn sets allow nondeterministic transitions.

Perhaps the most important area where more research is needed is the ignor-
ing problem. The example in Fig. 8 may be extreme and thus not representative
of the typical situation. Unfortunately, very little is known on what happens in
the typical situation with each solution.

Acknowledgements. This study is an extended version of [25]. We thank the anony-
mous reviewers of both PNSE and ToPNoC for their comments.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999). 314 p

2. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. Software Tools Technol. Transf. 12(2), 155-170 (2010)

3. Eve, J., Kurki-Suonio, R.: On computing the transitive closure of a relation. Acta
Informatica 8(4), 303-314 (1977)

4. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial
order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 188-203. Springer, Cham (2015). doi:10.1007/
978-3-319-17524-9_14

http://dx.doi.org/10.1007/978-3-319-17524-9_14
http://dx.doi.org/10.1007/978-3-319-17524-9_14

164

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Valmari and H. Hansen

Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E.M., Kurshan, R.P. (eds.) Computer-Aided Verification 1990, AMS-ACM
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
3, pp. 321-340 (1991)

Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996)

Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391-406. Springer, Cham (2014).
doi:10.1007/978-3-319-08867-9_26

Laarman, A., Pater, E., van de Pol, J., Weber, M.: Guard-based partial-order
reduction. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol.
7976, pp. 227-245. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39176-7_15

. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 278-324. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2_30

Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409-423. Springer, Heidel-
berg (1993). doi:10.1007/3-540-56922-7_34

Peled, D.: Ten years of partial order reduction. In: Hu, A.J., Vardi, M.Y. (eds.)
CAV 1998. LNCS, vol. 1427, pp. 17-28. Springer, Heidelberg (1998). doi:10.1007/
BFb0028727

Rauhamaa, M.: A comparative study of methods for efficient reachability analysis.
Lic. Technical Thesis, Helsinki University of Technology, Digital Systems Labora-
tory, Research Report A-14. Espoo, Finland (1990)

Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010).
doi:10.1007/978-1-84882-258-0. 533 p.

Tarjan, R.E.: Depth-first search and linear graph algorithms. STAM J. Comput.
1(2), 146-160 (1972)

Valmari, A.: Error detection by reduced reachability graph generation. In: Pro-
ceedings of the 9th European Workshop on Application and Theory of Petri Nets,
pp. 95-122 (1988)

Valmari, A.: State Space Generation: Efficiency and Practicality. Dr. Technical
Thesis, Tampere University of Technology Publications 55, Tampere (1988)
Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491-515. Springer, Heidelberg (1991).
doi:10.1007/3-540-53863-1_36

Valmari, A.: Stubborn set methods for process algebras. In: Peled, D., Pratt,
V., Holzmann, G. (eds.) Partial Order Methods in Verification, Proceedings of
a DIMACS Workshop, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science vol. 29, pp. 213-231. American Mathematical Society (1997)
Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429-528. Springer, Heidelberg (1998). doi:10.
1007/3-540-65306-6_21

Valmari, A.: Stop it, and be stubborn!. In: Haar, S., Meyer, R. (eds.) 15th Inter-
national Conference on Application of Concurrency to System Design, pp. 10-19.
IEEE Computer Society (2015)

Valmari, A.: A state space tool for concurrent system models expressed in C++. In:
Nummenmaa, J., Sievi-Korte, O., Makinen, E. (eds.) CEUR Workshop Proceedings
of SPLST 2015, Symposium on Programming Languages and Software Tools, vol.
1525, pp. 91-105 (2015)

http://dx.doi.org/10.1007/978-3-319-08867-9_26
http://dx.doi.org/10.1007/978-3-642-39176-7_15
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/BFb0028727
http://dx.doi.org/10.1007/BFb0028727
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/3-540-53863-1_36
http://dx.doi.org/10.1007/3-540-65306-6_21
http://dx.doi.org/10.1007/3-540-65306-6_21

22.

23.

24.

25.

26.

27.

Stubborn Set Intuition Explained 165

Valmari, A.: Stop it, and be stubborn!. ACM Trans. Embed. Comput. Syst. 16(2),
46:1-46:26 (2017)

Valmari, A.: More stubborn set methods for process algebras. In: Gibson-Robinson,
T., Hopcroft, P., Lazié, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol.
10160, pp. 246-271. Springer, Cham (2017). doi:10.1007/978-3-319-51046-0-13
Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundam. Informaticae
113(3-4), 377-397 (2011)

Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Cabac, L., Kristensen,
L.M., Rolke, H. (eds.) CEUR Workshop Proceedings of the International Workshop
on Petri Nets and Software Engineering 2016, vol. 1591, pp. 213-232 (2016)
Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bosnacki, D., Wijs, A.
(eds.) SPIN 2016. LNCS, vol. 9641, pp. 225-243. Springer, Cham (2016). doi:10.
1007/978-3-319-32582-8_16

Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Genera-
tion. Ph.D. Thesis, Helsinki University of Technology, Digital Systems Laboratory
Research Report A-51, Espoo, Finland (1998)

http://dx.doi.org/10.1007/978-3-319-51046-0_13
http://dx.doi.org/10.1007/978-3-319-32582-8_16
http://dx.doi.org/10.1007/978-3-319-32582-8_16

	Stubborn Set Intuition Explained
	1 Introduction
	2 The Basic Idea of Stubborn Sets
	3 Why Not Steps?
	4 Deadlocks with Ample vs. Persistent vs. Stubborn Sets
	5 Visible and Invisible Transitions
	6 The Ignoring Problem, Part 1: Finite Executions
	7 The Ignoring Problem, Part 2: Diverging Executions
	8 Trouble with Fairness
	9 Conclusions
	References

