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Abstract. Given the complexity of real-life event logs, several trace
clustering techniques have been proposed to partition an event log into
subsets with a lower degree of variation. In general, these techniques
assume that the number of clusters is known in advance. However,
this will rarely be the case in practice. Therefore, this paper presents
approaches to determine the appropriate number of clusters in a trace
clustering context. In order to fulfil the objective of identifying the most
appropriate number of trace clusters, two approaches built on similarity
are proposed: a stability- and a separation-based method. The stability-
based method iteratively calculates the similarity between clustered ver-
sions of perturbed and unperturbed event logs. Alternatively, an app-
roach based on between-cluster dissimilarity, or separation, is proposed.
Regarding practical validation, both approaches are tested on multiple
real-life datasets to investigate the complementarity of the different com-
ponents. Our results suggest that both methods are successful in identi-
fying an appropriate number of trace clusters.

Keywords: Stability · Trace clustering · Validity · Log perturbation ·
Process discovery · Separation

1 Introduction

Trace clustering is the partitioning of process instances into different groups,
called trace clusters, based on their similarity. A wide variety of trace cluster-
ing techniques have been proposed, differentiated by their clustering methods
and biases. The driving force behind these proposed techniques is the obser-
vation that real-life event logs are often quite complex and contain a large
degree of variation. Since these event logs are often the basis for further analysis
like process model discovery or compliance checking [29], partitioning dissimilar
process instances into separate trace clusters is deemed appropriate. Although
a wide array of techniques has been proposed, none of them makes any asser-
tions on the correct number of clusters. Therefore, this paper is the first to pro-
pose a suitable approach for determining the most plausible number of clusters.
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Since our approaches can be applied to any trace clustering technique, it raises
the applicability of trace clustering techniques in general, and the validity of
their trace clustering solutions.

Our first approach is based on the stability of trace clustering solutions. Intu-
itively, it can be expected that trace clustering solutions are more stable at the
correct number of clusters. Therefore, we develop a general framework to assess
the stability of trace clustering solutions. When repeatedly applied to an event
log for a range of potential number of clusters, one can compare the stability
scores obtained for each number of clusters. The result with the highest stabil-
ity can be considered the most appropriate number. A number of elements are
conceived to construct this approach: specifically, two approaches are proposed
to resample event logs. Likewise, two methods are provided for calculating the
similarity of clustering solutions. Finally, the concept of normalization and a cal-
culation strategy are supplied. Each of these elements is thoroughly evaluated
on four real-life event logs, resulting in the conclusion that the stability-based
framework configured with model-based similarity metrics and a noise induction-
based resampling strategy can lead to the correct identification of the appropriate
number of clusters1.

Our second approach is based on the concept of separation of a clustering
solution. Conceptually, one prefers a clustering solution where the clusters are
well separated, i.e. were the clusters are not too similar. For this, a component of
the first stability-based approach, a method for calculating the similarity between
trace clustering solutions, is leveraged to capture the separation of a clustering
solution. Like the stability-based approach, it is evaluated on four real-life event
logs.

The remainder of this article is structured as follows: in Sect. 2, the necessary
background on the process mining domain is given, as well an overview of existing
approaches for determining the number of clusters. Our stability-based approach
is outlined in Sect. 3, while Sect. 4 details the separation-based approach. Finally,
both approaches are evaluated in Sect. 5, before finishing with some concluding
remarks in Sect. 6.

2 Background

This section contains the necessary background on the domain of process mining,
as well as an overview of existing general approaches for determining the number
of clusters in traditional clustering.

2.1 Event Logs, Process Discovery and Trace Clustering

Trace clustering, as it is considered in this paper, is a part of the process min-
ing domain. Generally speaking, process mining consists of three distinct parts:

1 This approach is implemented as an experimental ProM-plugin which can be found
on http://www.processmining.be/clusterstability/.

http://www.processmining.be/clusterstability/
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process discovery, conformance checking, and process enhancement [1]. In process
discovery, the starting point is an event log L, from which one wants to discover
a corresponding process model M . Typically, this event log adheres to the IEEE
eXtensible Event Stream (XES) standard2. In conformance checking, an event
log L containing actual behaviour, and a process model M containing prescribed
behaviour are compared to detect deviations between expected and observed
behaviour. Finally, process enhancement is an umbrella term for techniques that
aim to improve processes, for example by suggesting improvements to the as-is
process-model.

One of the main problems surrounding the application of process discov-
ery techniques to real-life datasets, however, is that they typically contain a
wide variety of behaviour. Applying conventional process discovery techniques
on event logs that contain such variation will most likely lead to sub-optimal
results [8]. Therefore, a variety of authors [2,9,16] have proposed to apply clus-
tering on event logs in order to improve the quality of the process models that
can be mined from these event logs. Since an event log is a set of traces, this
sub-discipline is called trace clustering.

2.2 Determining the Number of Clusters

In traditional clustering, numerous approaches have been suggested for assessing
the adequate number of clusters. A taxonomy of approaches for determining the
number of clusters has been presented in [26]. The most straightforward approach
is to incorporate domain knowledge, either by directly adjusting your algorithm
to suit the knowledge of a domain expert or by post-processing the results to
adhere to this knowledge. In general, however, it is unlikely that such domain
knowledge exists and is available for an event log. Creating an approach based on
the specific generation of trace clusters will not be applicable for each existing
trace clustering technique either. Therefore, we propose to adapt approaches
based on the post-processing of partitions.

According to the taxonomy of [26], possible post-processing approaches can
be based on variance, structure, consensus and resampling. The most commonly
known variance-based method is probably the gap statistic [28], which is based on
the within-cluster sum of squares using Euclidean distance. Likewise, structural
approaches use indices to compare within-cluster cohesion to between-cluster
separation [26]. It is clear that one would prefer a number of clusters where the
within-cluster cohesion and the between-cluster separation are both large. As a
third group of approaches, consensus clustering refers to choosing the number
of clusters based on the agreement between different cluster solutions. These
different solutions can be obtained by applying different clustering techniques,
by applying the same clustering technique to perturbed versions of the same data
set, or by randomly resetting initial centroids (in a centroid-based technique).
Intuitively, the consensus between different clustering solutions should be higher
at the true number of clusters. The final group of post-processing approaches

2 For more info on the XES-standard, we refer to http://www.xes-standard.org/.

http://www.xes-standard.org/
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is based on resampling, and is related to consensus clustering in its intuition: a
number of iterations are performed in which sub-sampled, bootstrapped or noisy
versions of the original data set are clustered. The resulting partitions are then
expected to be more similar at the appropriate number of clusters.

With regards to applicability for trace clustering, adapting variance- or
structure-based approaches to trace clustering might not be straightforward,
since a distance measure is needed. To calculate distances between traces, fea-
tures would have to be derived from these traces. Considering that certain trace
clustering techniques deliberately avoid ‘featurizing’ traces [9], this is not deemed
an appropriate route for trace clustering. Rather than using direct trace simi-
larity, a structure-based approach building on the concept of separation is pre-
sented in this paper. Consensus- and resampling-based approaches do not suffer
from this issue as much. Therefore, a consensus- and resampling-based approach
leveraging the concept of stability is described in this paper as well.

3 Stability of Trace Clustering Solutions

The approach proposed in this section is a resampling-based approach, inspired
by a methodology for stability-based validation of clustering solutions in [22],
which was adapted for biclustering solutions in [24]. In [22], it was shown to be an
effective method for discovering the appropriate number of clusters on simulated
and gene expression data. Furthermore, in [6], a similar stability-based approach
is proposed to assess the quality of process discovery techniques.

In [22,24], resampling/perturbation strategies, learning algorithms, and solu-
tion similarity metrics are proposed that are specifically designed for general
(bi)clustering problems. The general intuition is that clustering solutions should
remain more stable at the true number of clusters that at others. As such, this
paper contributes by proposing a stability-based approach for determining the
correct number of trace clusters. Our approach leverages the so-called “log per-
turbation stability”, which is the adaptation of general resampling to the process
mining domain. In Fig. 1, our general stability approach is depicted. Tailoring
the framework to trace clustering entails the configuration of three main compo-
nents, i.e. the perturbation strategy (step 1), the solution similarity computation
(step 3), a stability index calculation (step 4). In addition, a trace clustering tech-
nique should be chosen (step 2). This stability is then normalized with respect
to the stability of a random clustering on the same perturbed event logs (step 5).

The steps of our approach thus become:

1. Step 1: Given an event log L, and a log perturbation function P, create n
perturbed versions of the event log: P1 to Pn.

2. Step 2: Create a clustered log CL by applying a trace clustering technique
TC to the original event log: CL = TC(L) and to the perturbed event logs:
CLi = TC(Pi) with i ∈ {1..n}.

3. Step 3: Given a similarity index I(CLx, CLy), quantify the similarity
between the clustering of the original dataset and the clustering of the per-
turbed dataset as I(CL,CLi) for each i ∈ {1..n}.
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Fig. 1. A visualization of the proposed approach for calculating the stability of a
clustered event log, based on a similar diagram in [24]. The normalized version of
this stability is calculated at different numbers of clusters to determine the optimal
number of clusters.

4. Step 4: Average these similarity measures to create a stability metric for
event log L and trace clustering technique TC as

STC =
1
n

n∑

i=1

I(CL,CLi) (1)

5. Step 5: Normalize with respect to the stability of a random clustering tech-
nique SR over the same set of perturbed event logs:

S̄TC =
STC − SR

1 − SR
(2)

Observe that a higher value for S̄TC indicates a better stability of the solu-
tion. This metric should be evaluated at different numbers of clusters, at which
point the best scoring number of clusters should be chosen. In the remainder
of this section, we describe the three main components of our approach: possi-
ble perturbation strategies based on resampling and noise induction (Sect. 3.1),
computation of solution similarity based on mutual information or process
model similarity metrics (Sect. 3.3), calculation of the stability index based on
a window-based approach (Sect. 3.4), and normalization of the stability with
respect to random stability (Sect. 3.5).

3.1 Step 1: Log Perturbation Strategy

Perturbing event logs essentially boils down to three options: either some behav-
iour is removed, or some behaviour is added, or a combination of both. There are
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many different ways to do this, as argued in [26]: sub-sampling, data-splitting,
bootstrapping and noise induction. Regarding the removal of behaviour, event
log perturbation can be approached through case-level resampling in a random
fashion. Note that here, cases would be process instances or traces. When deal-
ing with event logs, an important consideration is whether to sample based on
process instances or distinct process instances. An alternative to random resam-
pling is systematic leave-one-out cross-validation, which can be considered a form
of ‘data-splitting’.

Finally, regarding the addition of behaviour, slightly perturbing event logs
strongly relates to the concept of adding noise to the log. In [25], four types of
noise were initially defined: remove head, remove tail, remove body, and swap
tasks. In [7], the removal of a single task was added as a noise induction scheme,
together with the combination of all previous noise types. These noise induc-
tion types have already been used to evaluate robustness of process discovery
techniques, for instance in [11,19].

Taking these aspects into consideration, the log perturbation strategy under-
lying our stability assessment framework is as follows. First, behaviour can be
removed through a resampling procedure, which is essentially sub-sampling at
the level of distinct process instances. However, to make the resampling a bit
less naive, the probability that a distinct process instance is removed, is inversely
proportional to the frequency of this distinct process instance in the event log.
Secondly, behaviour can be added through noise induction. Though several noise
types were proposed in [25], we opt to include three types of noise: removing a
single event, swapping two events, and adding a random single event (from the
log activity alphabet) at a random place in the process instance. Example 1
presents the effects of noise induction on a single process instance. Noise induc-
tion is performed at the process instance level. For both removal of behaviour
(sub-sampling at the distinct process instance level) and addition of behaviour
(noise induction at the process instance level), a percentage of affected instances
needs to be chosen.

Example 1. Given a process instance ABBCD, some potential effects of
noise induction could be removal: ABCD, swapping: ABCBD, or addition:
ABBCCD.

3.2 Step 2: Trace Clustering Technique

In the next step, a certain trace clustering algorithm is applied. An overview of
existing trace clustering techniques is provided in Table 1. In general, trace clus-
tering techniques can be classified according to three dimensions. Firstly, what
they consider as input: a propositional representation or an event log. Secondly,
which kind of clustering approach is used: for example k-means, hierarchical,
model-driven. Thirdly and most importantly, the clustering bias they employ.
Two broad categories exist: those that map traces onto a vector space model
or quantify the similarity between two traces directly; and those that take the
quality of the underlying process models into account.
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Table 1. Existing trace clustering approaches with their data representation, clustering
approaches and biases

Author Data
representation

Clustering technique Clustering bias

Greco et al. [20] Propositional k-means Instance similarity: alphabet
k-grams

Song et al. [27] Propositional Various Instance similarity: profiles

Ferreira et al. [16] Event log First order Markov

mixture model

Maximum likelihood

Bose and van der

Aalst [2,3]

Event log Hierarchical clustering Instance similarity metrics

Folino et al. [17] Event log Enhanced Markov
cluster model

Maximum likelihood

De Weerdt et al.
[9]

Event log Model-driven
clustering

Combined process model
fitness (ICS)

Ekanayake et al.
[14]

Propositional Complexity-aware
clustering

Instance similarity +
repository complexity

Delias et al. [10] Event log Spectral Robust instance similarity

Evermann et al.
[15]

Event log k-means Instance similarity:
alignment cost

3.3 Step 3: Solution Similarity Computation

In this section, two distinct approaches for computing the similarity between
two clusterings will be described. One is inspired by information metrics from
the consensus clustering domain, and one is inspired by similarity metrics from
the process modelling domain.

On the one hand, we propose a consensus clustering-based metric. It is called
the Normalized Mutual Information (NMI), and was proposed by [18]. It is a
measure for the extent to which two clusterings contain the same information.
Here, this mutual information is conceptually defined as the extent to which
two process instances are clustered together in both clusterings. Let ka be the
number of clusters in clustering a, kb the number of clusters in clustering b, n
the total number of traces, na

i the number of elements in cluster i in clustering
a, nb

j , the number of elements in cluster j in clustering b, and nab
ij the number

of elements present in both cluster i in clustering a and cluster j in clustering b.
The NMI is then defined as:

INMI(a, b) = −2

∑ka

i=1

∑kb

j=1 nab
ij log( nab

ij n

na
i nb

j

)
∑ka

i=1 na
i log(na

i

n ) +
∑kb

j=1 nb
j log(

nb
j

n )
(3)

On the other hand, we propose a metric based on the similarity between
discovered process models. Rather than measuring the similarity by counting the
number of elements that are included in the same cluster in both cluster solutions
(i.e. measuring the consensus between both clusterings), each different cluster
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is used to discover a process model. Then, a process model similarity metric is
used to measure the similarity between these discovered process models. This is
represented conceptually in Fig. 2.

A plethora of process discovery techniques and process similarity metrics
exist that could be leveraged for this purpose. With regards to process discovery
techniques, an efficient and robust technique is preferred. Therefore, we propose
the usage of Heuristics miner [31]. It mines a heuristic net, which is converted
to a Petri net. This technique has demonstrated its efficacy on real-life datasets
[8]. With regards to process model similarity, our preference goes out to the
structural graph-edit distance (GED) similarity metric [12], though behavioural
metrics such as causal footprints [13] or behavioural profiles [30] could be used
as well. Graph-edit distance is a metric that reflects the distance between two
models based on the insertion and deletion of places and transitions in a Petri
net. Finally, our similarity metric for trace clustering solutions is summarized
in Eq. 4, where ni is the number of elements in cluster i of clustering a, and
simHG(i, j) is the graph-edit distance similarity between the converted heuristic
net mined from cluster i of clustering a and the converted heuristic net mined
from cluster j of clustering b.

IHG(a, b) =
∑

i∈a ni maxj∈b(simHG(i, j))∑
i∈a ni

(4)

In [23], it is stated that a high-quality similarity index should have two
characteristics: (1) it should take differences in cluster sizes into account, and
(2) it should be symmetric. Note from Eq. 3 that these properties are ful-
filled for INMI(., .). Likewise, from Eq. 4, it is clear that IHG(a, b) is weighted
for the effects of different cluster sizes. However, it is not symmetric yet, i.e.
IHG(a, b) �= IHG(b, a) due to the combination of weights and the max-operator.
Therefore, we propose a final symmetric variant ĪHG:

ĪHG(a, b) =
IHG(a, b) + IHG(b, a)

2
(5)

Example 2. Figure 3 contains two clustering solutions, each consisting of 2 clus-
ters. To calculate IHG(a, b) for each cluster in clustering A, the most similar
cluster in cluster B is to be chosen, and then the corresponding similarities are
weighted using Eq. 4. Both clusters are most similar to cluster 1 of clustering
B, resulting in a IHG(a, b) of 0.9. Assuming that both clusters in clustering B
contain an equal amount of traces, IHG(b, a) is equal to 0.83, and ĪHG(a, b) is
0.87.

3.4 Step 4: Stability Index Computation

Next, in step 4 of our framework, the stability index is computed as an average
over a number of iterations, as detailed in Algorithm 1 in the ‘Stability’-function.
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Fig. 2. Conceptual representation of the process model-based similarity metric, when
two clusterings of three clusters each are under comparison.

Hereto, three extra input parameters are necessary: a minimal number of itera-
tions rmin, a review window Δr and a maximal stability error εS . Typical values
for these parameters are 20, 10, and 0.005 respectively. This iterative approach
serves a double purpose: on the one hand, it ensures that the final stability is
robust and sufficiently precise; on the other hand, it prevents unnecessary com-
putation. The approach goes as follows (lines 2–8): for each of the number of
clusters, the stability is calculated, as is the stability of a random clustering tech-
nique, which is then used to calculate the normalized stability. The number of
clusters with the highest stability is returned. The stability (lines 10–22) is cal-
culated by clustering the entire log to create a baseline clustered log. Then, the
log is iteratively perturbed, clustered, and the similarity between this clustered
log and the baseline clustered log is computed. The stability is calculated as
the average of these similarities over the iterations. When the minimum amount
of iterations (rmin) has passed, and the stability has not deviated more than
the maximal error (εS) in the review window (last Δr iterations), the stability-
function terminates.

3.5 Step 5: Normalization of the Stability

The final step is the normalization of the stability. This normalization is included
to exclude unwanted information from entering the stability metric: if the ran-
dom stability increases for higher cluster numbers, for example, then this is due
to the inherent structure of the stability metric, rather than an actual improve-
ment in the quality of the clustering. As provided in Algorithm 1, this is done as
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Fig. 3. Example of two clustering solutions and the process models corresponding to
each cluster.

follows, where Sk is the stability of a certain clustering algorithm with k clusters,
and SR

k is the stability of randomly dividing the event log into clusters:

S̄k =
Sk − SR

k

1 − SR
k

(6)

Example 3. Given a hypothetical situation where one is determining whether
3 or 5 clusters is most appropriate, the normalization could have the effect illus-
trated in Table 2, reducing the preference for a number of clusters where even a
random clustering is stable.

Table 2. Example of effect of the normalization.

Clusters Sk SR
k S̄k

3 0.6 0.5 0.2

5 0.6 0.4 0.33

Finally, we remark that a random clustering should cluster event logs
based on their distinct process instances, not process instances. The underly-
ing assumption is that any existing trace clustering technique should at least
group those traces together that contain exactly the same behaviour, even a
random clustering technique.
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Algorithm 1. Stability evaluation
Input: L := Event log, TC := Trace clustering algorithm, P := Perturbation strategy, Is := simi-

larity metric, kmax:= maximum number of clusters;
Input: rmin := 20, Δr := 10, εS := 0.005; % Configuration
Output: k := number of clusters for which the normalized stability is the highest
1: function NumberofClusters( kmax )
2: S̄() := {} % List of normalized stability results per number of clusters
3: for k := 2 ; k <= kmax do
4: Sk:= Stability( L, TC, P , Is,rmin, Δr, εS) % Calculate stability

5: SR
k := Stability( L, Random, P , Is,rmin, Δr, εS) % Calculate random stability

6: S̄k:=
Sk−SR

k
1−SR

k

% Normalize with regards to random stability

7: end for
8: return k := argmax

k
(S̄(k))

9: end function

10: function Stability( L, TC, P , Is,rmin, Δr, εS )
11: r := 1 % Iteration
12: CL := TC(L) % Baseline clustered event log
13: u() := {} % List of similarity results per iteration
14: w() := {} % List of stability results per iteration

15: while (r < rmin) ∨ [maxp,q|w(p) − w(q)| > εS ; ∀p, q : r − Δr < p < q ≤ r)] do
16: Lr := Pr(L) % Perturb the log
17: CLr := TC(Lr) % Cluster event log from perturbed log
18: u(r) := Is(CL, CLr) % Calculate similarity with baseline clustered event log

19: w(r) :=
(r−1)∗w(r−1)+u(r)

r % Calculate stability

20: r := r + 1
21: end while
22: return S := w(r − 1)

23: end function

4 A Cross-Cluster Separation-Based Approach

As detailed in Sect. 2.2, a wide array of different possible directions exist when it
comes to assessing the number of clusters. In the previous section, an approach
based on stability has been detailed. In this section, one of the constructs used
to calculate this stability, IHG(a, b), is leveraged to create an alternative path
for assessing an appropriate number of trace clusters.

Conceptually, cross-cluster separation represents how well the clusters in a
partitioning are separated. Clearly, a quantification of separation can be used
as a metric for the quality of a cluster solution. The most well-known separa-
tion metric is probably the Davies-Bouldin metric [4]. It can be considered a
structural approach in the taxonomy of [26]. The main issue when it comes to
defining such a metric in the trace clustering case, however, lies in the definition
of the similarity between two traces. This can be done by incorporating a direct
similarity between the traces, based on alignment or based on a mapping of the
traces, however, clustering techniques exist that specifically aim to avoid such a
mapping. Therefore, in this section, we propose a similarity metric based on the
process models that represent each cluster, as in Sect. 3.3. Each different cluster
is used to discover a process model. Then, a process model similarity metric is
used to measure the similarity between these discovered process models. This
similarity can then be used to calculate the separation of the clusters. While a
number of process discovery techniques and process model similarity techniques
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exist which could be used for this task, we apply the Heuristics miner and the
structural graph-edit distance, as before.

More specifically, we propose to use an internal version of the IHG(a, b) simi-
larity index as a measure of cluster separation, where ni is the number of elements
in cluster i of clustering a, and simHG(i, j) is the graph-edit distance similarity
between the converted heuristic nets mined from clusters i and j of clustering a.

SepHG(a) = 1 −
∑

i∈a ni max(j∈a) �=i(simHG(i, j))∑
i∈a ni

(7)

Three observations can be made regarding this weighted metric for inter-
cluster separation based on the process model similarity of discovered process
models. First, observe that it is inherently symmetrical, therefore no extra step is
needed to render it symmetrical, in contrast to Eq. 5. Secondly, observe that this
metric will be lower when inter-cluster separation is lower. Therefore, a higher
value of the SepHG metric is preferable, and can be used as an indicator of an
appropriate number of clusters.

Example 4. Figure 3 contains a comparison of 2 clustering solutions, both com-
prised of two clusters. In the top row, both clusters in the 2-cluster solution are
represented by the same discovered process model. Therefore, the separation of
this solution is 0. In the bottom row, the same set of traces is represented by
two different discovered process models, with a separation of 0.16, assuming that
both clusters contain an equal amount of process instances.

5 Experimental Evaluation

This evaluation serves multiple purposes: first, it is meant to show the general
applicability of our techniques. Therefore, our approaches are tested on multiple
real-life datasets in combination with a wide variety of trace clustering tech-
niques. Furthermore, the purpose is to evaluate the different components of our
stability framework: the underlying resampling strategies, the similarity metrics,
and the normalization. Finally, the separation-based approach is demonstrated
here as well, and its results are contrasted with those of the stability-based
approach.

5.1 Setup

This section describes the different event logs and trace clustering techniques
that are used, and the components of the stability-based approach: how the per-
turbation will be applied; which similarity indices will be used for measuring the
similarity between the baseline clustering and the clusterings on the perturbed
event logs.

General. Four real-life event logs [8] are subjected to our approach. The number
of process instances, distinct process instances, number of distinct events and
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average number of events per process instance are listed in Table 3. Observe
that no exact number of clusters is known upfront for these event logs: the
starting point is that applying process mining methods such as process discovery
techniques on the entire event log leads to undesirable results [8]. Hence, this
evaluation shows how our stability measure and separation measure can be used
to determine an appropriate number of clusters, or how they can be used to
show that no appropriate number of clusters can be found.

With regards to trace clustering techniques, we have calculated the results
using 7 different methods: 2 methods based on ‘process-model aware’ clustering
techniques (ActFreq and ActMRA, [9]), and 5 ‘trace featurization’ methods (MR
and MRA [21]; GED an LED [3]; and K-gram [27]).3

Stability. With regards to the calculation of the stability, we have chosen to
apply two strategies. On the one hand, a noise-induction perturbation strategy,
where each process instance has a 10% chance of either having an event removed,
two events swapped, or one event added from the existing activity alphabet. On
the other hand, a sub-sampling approach, where 25% of the distinct process
instances is removed. The probability of removal a distinct process instance is
inversely proportional with its frequency in the event log.

Furthermore, both the Normalized Mutual Information similarity-metric
(INMI) and the symmetrical discovered process model similarity metric based on
Heuristics miner and graph-edit distance (ĪHG) will be employed, as described in
Sect. 3.3. This allows for a comparison of the results of both similarity metrics.

Finally, the maximum number of clusters is set to 10. In addition, the evalu-
ation strategy proposed in Algorithm 1 will deliberately not be used, to prevent
randomization bias. Rather, a fixed number of 20 iterations will be used to cal-
culate the stability, with appropriate seeding to prevent bias.

Table 3. Characteristics of the real-life event logs used for the evaluation: number
of process instances (#PI), distinct process instances (#DPI), number of different
events (#EV) and average number of events per process instance (#EV

PI
).

Log name #PI #DPI #EV #EV
PI

KIM 1541 251 18 5.62

MCRM 956 212 22 11.73

MOA 2004 71 49 6.20

ICP 6407 155 18 5.99

Separation. With regards to separation, the non-normalized version of our pro-
posed separation metric, SepHG, is used, as described in Sect. 4. This approach

3 The first two methods are implemented in the ProM-framework for process mining
in the ActiTrac-plugin. The latter five methods are implemented in the GuideTree-
Miner -plugin.
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is also tested on a number of clusters ranging from 2 to 10, on the same event
logs and with the same clustering techniques as the stability-based approach.

5.2 Results of the Stability-Based Approach

The results are presented in Table 4, which contains the number of clusters with
maximal stability for each combination of similarity metric and perturbation
strategy; in Fig. 4, which visualises the results on the KIM-dataset; and Fig. 5,
which visualises the results on the ICP-dataset. Since no clear cluster structures
were found for the MCRM- and MOA-datasets, these Figures are not included
here4. Note that this does not imply a shortcoming of our approach, these event
logs most likely simply do not contain relevant trace clusters.

Table 4. Number of clusters for which the normalized stability is maximal. Two differ-
ent similarity metrics, two different perturbation strategies and seven different cluster-
ing techniques were used, on four real-life datasets. The number of clusters for which
the stability would have been maximal if no normalization had been applied is included
between brackets.

Similarity Technique Noise induction Sub-Sampling

KIM MCRM MOA ICP KIM MCRM MOA ICP

INMI ActFreq 4(5) 2(2) 2(10) 2(5) 4(4) 2(2) 4(10) 3(3)

INMI ActMRA 2(4) 3(3) 7(7) 4(9) 4(9) 6(6) 3(10) 4(4)

INMI GED 7(7) 3(3) 7(7) 3(3) 9(10) 2(4) 5(7) 3(3)

INMI LED 4(10) 4(4) 2(2) 2(10) 7(8) 4(4) 3(9) 9(10)

INMI MR 2(10) 2(2) 5(5) 10(10) 2(10) 2(2) 3(3) 10(10)

INMI MRA 2(10) 2(2) 2(2) 4(5) 2(10) 2(2) 2(5) 4(5)

INMI K-gram 2(10) 10(10) 2(9) 2(10) 2(10) 10(10) 2(10) 10(10)

ĪHG ActFreq 3(7) 2(2) 10(2) 2(2) 4(4) 4(3) 9(10) 5(3)

ĪHG ActMRA 3(3) 3(2) 7(2) 2(2) 4(4) 6(6) 10(10) 9(9)

ĪHG GED 3(2) 2(2) 10(2) 6(2) 2(2) 10(2) 5(10) 10(10)

ĪHG LED 3(2) 2(2) 3(2) 8(2) 4(2) 2(2) 9(10) 5(4)

ĪHG MR 2(2) 2(2) 10(10) 6(2) 2(2) 2(2) 2(2) 10(10)

ĪHG MRA 3(2) 2(2) 10(2) 5(5) 3(2) 4(2) 5(5) 2(2)

ĪHG K-gram 3(2) 6(2) 6(2) 2(2) 4(2) 2(2) 2(2) 2(2)

Similarity Metrics. In Figs. 4 and 5, the INMI -metric is presented in the
top row, while the ĪHG-metric is presented in the bottom row. For the KIM-
dataset (Fig. 4), no clear peaks are apparent in the plots with the results of the

4 The visual representations of the MCRM- and MOA-event logs are available on
http://www.processmining.be/clusterstability/ToPNoCResults.

http://www.processmining.be/clusterstability/ToPNoCResults
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INMI -metric. In the results of the ĪHG-metric, a peak appears to be present at
a cluster number of 3 when applying a noise induction-perturbation. Similarly,
there appears to be a consensus about 3 or 4 clusters when applying a sub-
sampling perturbation strategy. The same observation holds for dataset ICP
(Fig. 5): there appears to be a peak around 6 clusters when combining the ĪHG-
metric with noise-induction, while no peaks are apparent for the INMI -metric.
These findings are supported by Table 4.

Perturbation Strategy. With regards to perturbation strategy, similar results
are found on the KIM-dataset (Fig. 4) regardless of whether noise induction or
sub-sampling is applied. On the ICP-dataset (Fig. 5), the results seem to be in
favour of a noise-induction approach.

Algorithmic Efficiency. In Fig. 6, the evolution of the stability before normal-
ization over the iterations is visualised, calculated with similarity metric ĪHG and
noise induction, and using the K-gram clustering technique. This set-up is cho-
sen as an example, with other configurations performing similarly. It is clear that
the stability results converge rather quickly over the iterations, and that it was
indeed appropriate to fix the number of iterations at 20 in the other evaluations
in this section of the paper.

In Fig. 7, the evaluation of the computational time (in seconds) over the
number of iterations is presented. These results where obtained in Java SE 8, on a
device running Windows 10 Enterprise, with an Intel Core i7-4712HQ processor.
The K-gram clustering technique is evaluated with similarity metric ĪHG and
noise induction. As expected, the runtime increases linearly over the number of
iterations, with the slope depending on the number of clusters under scrutiny
(the more clusters, the higher). Recall that these are real-life dataset, and that
the ICP-event log is rather large, see Table 3. Nonetheless, even at 40 iterations,
the algorithm terminates in under 4 min.

Normalization. Table 4 contains the number of clusters for which the normal-
ized stability was maximal. The number of clusters for which the stability would
have been maximal if no normalization had been applied is included between
brackets. With regards to the stability without normalization, 16 of the 28 com-
binations combining noise induction with the ĪHG-metric would have had dif-
ferent best cluster numbers if no normalization had been applied. Likewise, 13
out of 28 results combining the INMI -metric with noise induction would have
been different if no normalization had been applied. For sub-sampling, there
would have been 11 and 15 differences with ĪHG and INMI , respectively. The
non-normalized application of ĪHG generally leads to smaller cluster numbers,
whereas the non-normalized application of INMI generally leads to higher clus-
ter numbers. This validates the usefulness of the normalization: it prevents the
results from favouring smaller (as with the ĪHG-metric) or larger numbers of
clusters (as with the INMI -metric).
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Finally, observe from Figs. 4 and 5 that a lot of the normalized stability
results are negative, especially when combining sub-sampling with INMI or noise
induction with ĪHG. This means that these results are less stable than a random
clustering. When combining noise induction with ĪHG on the ICP-dataset, for
example, the clusterings obtained using the GED or LED clustering techniques
are lower than zero for each clustering number, implying that they behave less
stable than a random clustering technique regardless of the number of clusters.

5.3 Results of the Separation-Based Approach

The results of the separation-based approach are visualised in Fig. 8. For each
dataset, the values of SepHG are plotted at a number of clusters ranging from
2 to 10, for 6 different trace clustering techniques. A couple of observations can
be made from these plots. First, observe that most curves display a downward
trend, indicating that the separation of the clusters in terms of process model
similarity declines as the number of clusters increases. This is in line with the
expectations one has when clustering a dataset in which no true clusters are
present. Nonetheless, a different trend is present in the seperation results of the
ICP-event log. Specifically, the clustering solutions obtained when applying an
ActFreq, ActMRA or LED clustering technique, score better on separation with
4 clusters than with 2 or 3 clusters. This is an indication that partitioning this
event log into 4 clusters is appropriate for the ICP-data set.

Table 5. Number of clusters for which the separation metric SepHG is maximal. Seven
different clustering techniques were used, on four real-life datasets.

Technique KIM MCRM MOA ICP

ActFreq 2 2 2 8

ActMRA 2 3 2 4

GED 2 3 2 2

LED 2 2 2 5

MR 2 3 2 2

MRA 2 2 2 2

K-gram 2 3 3 2

Finally, Table 5 contains the exact number of clusters at which the SepHG

metric is maximal. It can be seen as a less nuanced version of Fig. 8. As such,
there is again an indication of a true cluster presence in the application of the
ActFreq, ActMRA or LED clustering techniques on the ICP-dataset, as well as
an indication regarding the application of the ActMRA, GED, MR and K-gram
on the MCRM-dataset, where three clusters appear to be optimal. On the KIM-
and MOA-datasets, no indication of a cluster number higher than 2 is present,
except for the application of the K-gram technique on the MOA-set.
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6 Discussion and Future Work

In this paper, two approaches for determining an appropriate number of trace
clusters is presented. The main contribution is a stability-based approach. All
components of this approach are discussed in detail, and it is evaluated on four
real-life datasets. This evaluation shows that utilizing a process model-based
metric as underlying similarity metric leads to more desirable results than using
a consensus-based similarity metric. This implies that model-driven evaluation
of trace clustering techniques is useful, supporting the claims of [9]. Furthermore,
it is shown that log-perturbation based on noise induction slightly outperforms
log-perturbation based on sub-sampling in this context. Finally, the importance
of normalizing the stability with regards to the stability of a random clustering
is illustrated.

As a contrasting approach to the stability-based one, a separation-driven
approach is proposed as well. It is based on process model-similarity, and is
shown to be a useful alternative approach in the evaluation. Remarkably, the
separation-based approach is shown to lead to different conclusions than the
stability-based approach, suggesting that a true cluster structure is present in
the MCRM-dataset and not in the KIM-dataset. Both approaches lead to similar
conclusions on the two other datasets.

With regards to future work, some options exist. First, it could be useful to
validate our approach in situations where expert knowledge about the number
of trace clusters is present. For the four datasets we utilized, no such knowl-
edge was available. In addition, expert knowledge could even be incorporated in
a trace clustering approach. Secondly, certain clustering approaches, like GED
and K-Gram, were shown to behave in a rather unstable manner, with lower
stability than a random clustering. The cause of this instability should be inves-
tigated more thoroughly, as the perturbation used for resampling is most likely
the cause of this instability: such techniques are likely quite sensitive to noise
or incompleteness, and thus inherently less suited to real-life applications. To
remedy this, techniques from the consensus clustering domain could be useful to
create clustering ensembles, which are expected to behave in a more stable man-
ner. Fourthly, the separation-based approach presented here could be used in a
more traditional structure-based approach according to the taxonomy of [26]. To
achieve this, the cross-cluster separation should be contrasted with the within-
cluster cohesion of a trace clustering. Finally, combining the stability- and the
separation-based approaches into a single, hybrid approach can be considered
an interesting avenue for future work.

Note. This paper extends and enhances [5], in three distinct ways: (1) it builds
on ĪHG to propose a separation-based approach for determining the number of
traces clusters, (2) this approach is evaluated on real-life event logs, and (3) the
number of iterations needed for the calculation of the stability and the needed
computational time are evaluated. These extensions are contained mainly in
Sects. 2.1, 4 and 5.
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