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Preface by Editor-in-Chief

The 12th issue of LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) contains revised and extended versions of a selection of the best papers from
the workshops held at the 37th International Conference on Application and Theory of
Petri Nets and Concurrency (Petri Nets 2016, Toruń, Poland, 19–24 June 2016), and
the 16th International Conference on Application of Concurrency to System Design
(ACSD 2016, Toruń, Poland, 19–24 June 2016). It also contains one paper submitted
directly to ToPNoC.

I would like to thank the two guest editors of this special issue: Jetty Kleijn and
Wojciech Penczek. Moreover, I would like to thank all authors, reviewers, and orga-
nizers of the Petri Nets 2016 and ACSD 2016 satellite workshops, without whom this
issue of ToPNoC would not have been possible.

July 2017 Maciej Koutny



LNCS Transactions on Petri Nets and Other
Models of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models of
concurrency ranging from theoretical work to tool support and industrial applications.
The foundations of Petri nets were laid by the pioneering work of Carl Adam Petri and
his colleagues in the early 1960s. Since then, a huge volume of material has been
developed and published in journals and books as well as presented at workshops and
conferences.

The annual International Conference on Application and Theory of Petri Nets and
Concurrency started in 1980. For more information on the international Petri net
community, see: http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

All issues of ToPNoC are LNCS volumes. Hence they appear in all main libraries
and are also accessible on SpringerLink (electronically). It is possible to subscribe to
ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– Revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency

– Special issues related to particular subareas (similar to those published in the
Advances in Petri Nets series)

– Other papers invited for publication in ToPNoC
– Papers submitted directly to ToPNoC by their authors

Like all other journals, ToPNoC has an Editorial Board, which is responsible for the
quality of the journal. The members of the board assist in the reviewing of papers
submitted or invited for publication in ToPNoC. Moreover, they may make recom-
mendations concerning collections of papers for special issues. The Editorial Board
consists of prominent researchers within the Petri net community and in related fields.

Topics

The topics covered include: system design and verification using nets; analysis and
synthesis; structure and behavior of nets; relationships between net theory and other
approaches; causality/partial order theory of concurrency; net-based semantical, logical
and algebraic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to nets;
higher level net models; timed and stochastic nets; and standardization of nets.

Also included are applications of nets to: biological systems; security systems;
e-commerce and trading; embedded systems; environmental systems; flexible manu-
facturing systems; hardware structures; health and medical systems; office automation;

http://www.informatik.uni-hamburg.de/TGI/PetriNets/


operations research; performance evaluation; programming languages; protocols and
networks; railway networks; real-time systems; supervisory control; telecommunica-
tions; cyber physical systems; and workflow.

For more information about ToPNoC see: http://www.springer.com/gp/computer-
science/lncs/lncs-transactions/petri-nets-and-other-models-of-concurrency-topnoc-/
731240

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted as
PDF or zipped PostScript files to ToPNoC@ncl.ac.uk. All queries should be addressed
to the same e-mail address.
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Preface by Guest Editors

This volume of ToPNoC contains revised versions of a selection of the strongest
workshop papers presented at satellite events of the 37th International Conference on
Application and Theory of Petri Nets and Other Models of Concurrency (Petri Nets
2016) and the 16th International Conference on Application of Concurrency to System
Design (ACSD 2016).

As guest editors, we are indebted to the Program Committees of the workshops and
in particular to their chairs. Without their enthusiastic support and assistance, this
volume would not have been possible. The papers considered for this special issue were
selected in close cooperation with the workshop chairs. Members of the Program
Committees participated in reviewing the new versions of the papers eventually
submitted.
We received suggestions for papers for this special issue from:

– ATAED 2016: Workshop on Algorithms & Theories for the Analysis of Event Data
(chairs: Wil van der Aalst, Robin Bergenthum, and Josep Carmona),

– PNSE 2016: International Workshop on Petri Nets and Software Engineering
(chairs: Lawrence Cabac, Lars Michael Kristensen, and Heiko Rölke).

The authors of these papers were invited to improve and extend their results where
possible, based on the comments received before and during the workshops. Each
resulting revised submission was reviewed by at least two referees. We followed the
principle of asking for fresh reviews of the revised papers, also from referees not
involved initially in the reviewing of the original workshop contributions. All papers
went through the standard two-stage journal reviewing process, and eventually eight
were accepted after rigorous reviewing and revising. In addition to these first eight
papers, one paper was submitted directly to the Editor-in-Chief of the ToPNoC series
through the regular submission track and handled by him as is usual for journal
submissions.

The main purpose of the paper “Properties of Plain, Pure, and Safe Petri Nets” by
Kamila Barylska, Eike Best, Uli Schlachter, and Valentin Spreckels, is to demonstrate
that it is worthwile and useful to aim for a partial characterization of the state spaces of
plain, pure, and safe Petri nets. It gives a set of necessary conditions for a Petri net to be
plain, pure, and safe, and describes some applications of these conditions both in
practice (for Petri net synthesis) and in theory (e.g., as part of a characterization of the
reachability graphs of live and safe marked graphs).

The paper “Similarity-Based Approaches for Determining the Number of Trace
Clusters in Process Discovery” by Pieter De Koninck and Jochen De Weerdt, considers
trace clustering techniques used to partition an event log into subsets with a lower
degree of variation. It presents approaches to determine the appropriate number of
clusters in a trace clustering context. Two approaches built on similarity are proposed: a
stability- and a separation-based method. Both approaches are tested on multiple



real-life datasets to investigate the complementarity of the different components leading
to results suggesting that both are successful in identifying an appropriate number of
trace clusters.

Imposing access control onto workflows considerably reduces the set of users
authorized to execute the workflow tasks. The paper “Log- and Model-Based
Techniques for Security-Sensitive Tackling of Obstructed Workflow Executions” by
Julius Holderer, Josep Carmona, Farbod Taymouri, and Günter Müller, envisages a
new hybrid approach. The workflow and its authorizations into a Petri net are flattened
and encode the obstruction with a corresponding ‘obstruction marking’. Depending on
whether a log is provided or not, different actions are taken.

Nowadays, distributed storage systems are ubiquitous, very often under the form of
a hierarchy of multiple caches. In their paper “Formal Modelling and Analysis of
Distributed Storage Systems”, Jordan de la Houssaye, Franck Pommereau, and
Philippe Deniel, propose a formal modelling framework to design distributed storage
systems, with the innovating feature of separating the various concerns like data-model,
operations, policy, consistency, topology, etc. They focus on performance analysis.
The potential of the approach is illustrated by an example.

The integrated management of business processes and master data is a fundamental
problem. The paper “DB-Nets: On The Marriage of Colored Petri Nets and Relational
Databases”, by Marco Montali and Andrey Rivkin, studies the foundations of the
problem, arguing that contemporary approaches struggle to find a suitable equilibrium
between data- and process-related aspects. The paper proposes a new formal model,
called db-nets, that balances these two pillars through the marriage of colored Petri nets
and relational databases.

Transition systems are a powerful formalism, which is widely used for process model
representation from event logs. The paper “Transition Systems Reduction: Balancing
between Precision and Simplicity” by Sergey A. Shershakov, Anna A. Kalenkova, and
Irina A. Lomazova, proposes an original approach to discovering transition systems that
perfectly fit event logs and whose size is adjustable depending on the user’s need. The
suggested approach allows the user to achieve the required balance between simple and
precise models.

Partial order reduction is an important method for reducing state spaces. The paper
“Stubborn Set Intuition Explained” by Antti Valmari and Henri Hansen, focuses on the
differences between stubborn sets and other partial order methods. The deadlock-
preserving stubborn set method is compared with the deadlock-preserving ample set
and persistent set methods. Conditions to ensure that the reduced state space preserves
the ordering of visible transitions are discussed and solutions to the ignoring problem
are analyzed, both when only safety properties are to be preserved and when also
liveness properties are relevant.

In the area of process mining, decomposed replay has been proposed to be able to
deal with nets and logs containing many different activities. The paper “Decomposed
Replay Using Hiding and Reduction as Abstraction”, by H.M.W. Verbeek, shows an
example net and log for which the decomposed replay may take much more time, and

XII Preface by Guest Editors



provides an explanation of why this is the case. To mitigate this problem, the paper
proposes an alternative way to abstract the subnets from the single net, and shows that
the decomposed replay using this alternative abstraction is faster than the monolithic
replay.

Finally, the paper “Multiplicative Transition Systems” by Józef Winkowski was
submitted directly to ToPNoC through the regular submission track. This article is
concerned with algebras, called multiplicative transition systems, whose elements can
be used to represent the runs of a system. The paper discusses how these algebras can
represent discrete as well as continuous and partially continuous runs.

As guest editors, we would like to thank all authors and referees who contributed to
this issue. The quality of this volume is the result of the high scientific value of their
work. Moreover, we would like to acknowledge the excellent cooperation throughout
the whole process that has made our work a pleasant task. We are also grateful to the
Springer/ToPNoC team for the final production of this issue.

July 2017 Jetty Kleijn
Wojciech Penczek
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Properties of Plain, Pure, and Safe Petri Nets

Kamila Barylska1, Eike Best2(B), Uli Schlachter2, and Valentin Spreckels2

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
87-100 Toruń, Poland

kamila.barylska@mat.umk.pl
2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg,

26111 Oldenburg, Germany
{eike.best,schlachter,spreckels}@informatik.uni-oldenburg.de

Abstract. A set of necessary conditions for a Petri net to be plain, pure
and safe is given. Some applications of these conditions both in practice
(for Petri net synthesis), and in theory (e.g., as part of a characterisation
of the reachability graphs of live and safe marked graphs) are described.

Keywords: Labelled transition systems · Marked graphs · Petri nets

1 Introduction

In this paper, we examine plain, pure and safe (pps) Petri nets. Such nets are
intimately related to elementary Petri net systems, for which a substantial body
of literature exists (e.g., [11–13,15,16]). Many interesting properties of pps nets
are PSPACE-hard [8], and their synthesis problem is NP-hard [1]. The state
spaces of pps nets are finite due to safeness,1 but they are sufficiently complex
in general, so that a full characterisation of them is presently out of reach.2

This complexity notwithstanding, the main purpose of this paper is to demon-
strate that it is worthwile and useful to aim for a partial characterisation of pps
Petri net state spaces. More specifically, our aim is to demonstrate that a strong
set of properties can be delineated which are necessarily true in the reachability
graphs of pps nets, and to hint at the use of such properties in the design of tar-
getted synthesis [2,17], as well as for the easy recognition of transition systems
which are not synthesisable into a pps Petri net.

The first part of this paper describes a collection of such necessary proper-
ties. We claim that they are useful in at least three ways: (i) for gaining some
insight into the structure of pps net reachability graphs; (ii) for checking the

K. Barylska—Co-funded by project PO KL Information technologies: Research and
their interdisciplinary applications, Agreement UDA-POKL.04.01.01-00-051/10-00
and by the Polish National Science Center (grant No.2013/09/D/ST6/03928).
U. Schlachter—Supported by DFG (German Research Foundation) through grant
Be 1267/15-1 ARS (Algorithms for Reengineering and Synthesis).

1 Unless infinite nets are considered, which we shall exclude in this paper.
2 Characterisations have been obtained for more restricted classes, e.g. in [4].

c© Springer-Verlag GmbH Germany 2017
M. Koutny et al. (Eds.): ToPNoC XII, LNCS 10470, pp. 1–18, 2017.
DOI: 10.1007/978-3-662-55862-1 1



2 K. Barylska et al.

non-synthesisability of such nets before or during synthesis; and (iii) for char-
acterising classes of pps nets. The results in the first part of this paper serve
to corroborate Claim (i), while Claims (ii) and (iii) will be substantiated in the
second part.

The organisation of the paper is as follows. Section 2 contains basic definitions
and a first example. In Sect. 3, we shall prove a set of properties which can be
seen as typical for plain, pure and safe Petri nets. Some of them apply to finite
transition systems in general, others do not. In Sect. 4, our results are applied in
two different ways. Section 4.1 describes a conjecture due to Edward Ochmański
[11], which relates to fairness and has (to our knowledge) not yet been resolved.
One of the properties derived in Sect. 3 will be used in order to show that a
tentative counterexample cannot be synthesised into a pps net. In Section 4.2,
we derive a simplification of a characterisation of the state spaces of live and
safe marked graphs [4,6], using one of the properties examined in Sect. 3. The
paper concludes with Sect. 5.

2 Labelled Transition Systems and Petri Nets

In accordance with Petri net synthesis theory [2], the basic objects of our study
are transition-unlabelled Petri nets and edge-labelled transition systems, where
the labels correspond to transitions, just like in the reachability graph of a net.

Definition 1. Labelled transition systems
A labelled transition system with initial state, abbreviated lts, is a quadruple
TS = (S,→, T, s0) where S is a set of states, T is a set of labels with S ∩ T = ∅,
→ ⊆ (S ×T ×S) is the transition relation, and s0 ∈ S is an initial state.3 A label
t is enabled in a state s, denoted by s[t〉, if there is some state s′ ∈ S such that
(s, t, s′) ∈→, and backward enabled in s, denoted by [t〉s, if there is some state
s′′ ∈ S such that (s′′, t, s) ∈→. For s ∈ S, let s• = {t ∈ T | s[t〉}. For t ∈ T ,
s[t〉s′ iff (s, t, s′) ∈→, meaning that s′ is reachable from s through the execution
of t. The definitions of enabledness and of the reachability relation are extended
to sequences σ ∈ T ∗:

s[ε〉 and s[ε〉s are always true;
s[σt〉 (s[σt〉s′) iff there is some s′′ with s[σ〉s′′ and s′′[t〉 (s′′[t〉s′, respectively).

For any s ∈ S, [s〉 = {s′ ∈ S | ∃σ ∈ T ∗ : s[σ〉s′} denotes the set of
states reachable from s. Two lts with the same label set, (S,→, T, s0) and
(S′,→′, T, s′

0), will be called isomorphic if there is a bijection β : S → S′ such
that s′

0 = β(s0) and (r, t, s) ∈→ iff (β(r), t, β(s)) ∈→′.
For a finite sequence σ ∈ T ∗ of labels, the Parikh vector Ψ(σ) is a T -vector

(i.e., a vector of natural numbers with index set T ), where Ψ(σ)(t) denotes the
number of occurrences of t in σ. A sequence s[σ〉s is called a cycle, or more

3 S can also be considered as a set of vertices and → as a set of edges of a directed
graph, labelled by letters from T .
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precisely a cycle at state s. The cycle is nontrivial if σ 	= ε. An lts is called
acyclic if it has no nontrivial cycles. A nontrivial cycle s[σ〉s is called small if
there is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ), where, by
definition, � equals (≤ ∩ 	=). An lts has property P1 [4] if the Parikh vector of
any small cycle in TS contains each transition exactly once. �� 1

Definition 2. Basic properties of labelled transition systems
A labelled transition system (S,→, T, s0) is called totally reachable if [s0〉 = S
(i.e., every state is reachable from s0); finite if S and T (hence also →) are finite
sets; deterministic, if for any states s, s′, s′′ ∈ [s0〉 and sequences σ, τ ∈ T ∗ with
Ψ(σ) = Ψ(τ): (s[σ〉s′ ∧ s[τ〉s′′) ⇒ s′ = s′′ and (s′[σ〉s ∧ s′′[τ〉s) ⇒ s′ = s′′ (i.e.,
from any one state, Parikh-equivalent sequences may not lead to two different
successor states, nor come from two different predecessor states); reversible if
∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e., s0 always remains reachable); persistent [9] if for all
reachable states s, s′, s′′, and labels t, u, if s[t〉s′ and s[u〉s′′ with t 	= u, then
there is some (reachable) state r ∈ S such that both s′[u〉r and s′′[t〉r (i.e.,
once two different labels are both enabled, neither can disable the other, and
executing both, in any order, leads to the same state); backward persistent if
for all reachable states s, s′, s′′, and labels t, u, if s′[t〉s and s′′[u〉s and t 	=
u, then there is some reachable state r ∈ S such that both r[u〉s′ and r[t〉s′′

(i.e., persistence in backward direction). �� 2

Definition 3. Petri nets
A (finite, initially marked, place-transition, arc-weighted) Petri net is a quadru-
ple N = (P, T, F,M0) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P )) → N, and
M0 is the initial marking, where a marking is a mapping M : P → N. A transi-
tion t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places p ∈ P ,
M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M , leading
to the marking M ′ defined by M ′(p) = M(p) − F (p, t) + F (t, p) (denoted by
M [t〉M ′). The set of markings reachable from M is denoted [M〉. The reachabil-
ity graph of N , RG(N), is the labelled transition system with the set of vertices
[M0〉 and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. �� 3

Note that all notions defined for transition systems are carried over auto-
matically to Petri nets through the fact that reachability graphs are transition
systems.

Notes on notation: In all our propositions and examples, we shall use letters
a, b, c, . . . ∈ T (but also t ∈ T ) for the labels of a transition system (or, respec-
tively, for the corresponding transitions of a Petri net); u, v, w ∈ T ∗ or σ, τ ∈ T ∗

for sequences of transitions; p, q for the places of a net; and M,K,L for the
markings of a net.

Definition 4. Basic structural properties of Petri nets
For a place p and a transition t of a Petri net N = (P, T, F,M0), let •t = {p ∈ P |
F (p, t) > 0} be the preset of t containing pre-places, t• = {p ∈ P | F (t, p) > 0}
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its postset containing post-places, •p = {t ∈ T | F (t, p) > 0} the preset of p,
and p• = {t ∈ T | F (p, t) > 0} its postset. N is called connected if it is weakly
connected as a graph; plain if cod(F ) ⊆ {0, 1}; pure or side-condition free if
p• ∩ •p = ∅ for all places p ∈ P ; and a marked graph if N is plain and |p•| = 1
and |•p| = 1 for all places p ∈ P . �� 4

Definition 5. Basic behavioural properties of Petri nets
A Petri net N = (P, T, F,M0) is k-bounded for some k ∈ N, if ∀M ∈ [M0〉 : ∀p ∈
P : M(p) ≤ k (i.e., the number of tokens on any place never exceeds k); safe
if it is 1-bounded; bounded if ∃k ∈ N : N is k-bounded; persistent (reversible)
if its reachability graph is persistent (reversible, respectively); and live if ∀t ∈
T : ∀M ∈ [M0〉 : ∃M ′ ∈ [M〉 : M [t〉 (i.e., no transition can be made unfireable).
Finally, N is called pps if it is plain, pure, and safe. �� 5

The class of pps Petri nets is closely related to elementary nets [16], as fol-
lows. Elementary Petri nets have a strengthened firing rule: viz., t can occur if
all its pre-places have exactly one token and all its post-places have exactly zero
tokens. Every elementary net with this strengthened firing rule can be turned
into an equivalent pps net with the usual firing rule, by adding appropriate com-
plement places. Conversely, for pps nets, the two firing rules coincide. The next
proposition, definition, and example, are designed to illustrate the relationship
between transition systems and Petri nets.

Proposition 1. Properties of Petri net reachability graphs [14]
The reachability graph RG of a Petri net N is totally reachable and deterministic.
N is bounded iff RG is finite. �� 1

Pictorially, a transition system is represented as a directed graph whose nodes
are states and whose edges are labelled with labels from the set T . As an example,
consider the labelled transition system TS 0 shown on the left-hand side of Fig. 1.
It has six states and five edges.

A Petri net, on the other hand, is represented by circle for places, tokens
inside places to represent markings, squares for transitions, and directed arrows,
inscribed by their weights, for arcs. For simplicity, arcs with weight zero are
omitted altogether, and arcs with weight one are drawn without any explicit
inscription.4 As an example, the net N0 shown on the right-hand side of Fig. 1
has six places, three transitions, 12 arcs with weight 1, and a marking comprising
three tokens.

Definition 6. Solvability and pps-solvability
A Petri net N solves a transition system TS if RG(N) and TS are isomorphic.
A transition system is pps-solvable if there is a pps Petri net solving it. �� 6

As an example, consider Fig. 1. N0 solves TS 0.5 Since N0 is plain and safe,
but not pure, this does not imply that TS0 is pps-solvable. As we develop our set
4 In this paper, no arc weights greater than 1 will be considered.
5 This can be verified easily by playing the “token game” in the latter.
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TS0

M0 M1 M2 M3 M4 M5c b a c a

N0

a b c

Fig. 1. A transition system TS0 (l.h.s.) and a plain, safe Petri net N0 solving it (r.h.s.).

of properties, we will eventually be in a position to verify that TS0 can, in fact,
not be pps-solved, i.e., that there is no pps Petri net whose reachability graph is
isomorphic to TS0; that is, the non-pureness around transition a is intrinsic.

Finally, we define the effect of a sequence of transitions on a given place. For
pps nets, this notion generalises the notion of pre- and post-places of transitions
introduced in Definition 4, and it turns out to be useful in proofs.

Definition 7. The effect of a transition sequence
Let N = (P, T, F,M0) be a Petri net. The effect of w ∈ T ∗ on a place p is

ef p(w) =
∑

t∈•p

Ψ(w)(t) −
∑

t∈p•
Ψ(w)(t)

This is the token difference w would generate on p if it were executed. For
w ∈ T ∗, define •w = {p ∈ P | ef p(w) < 0} and w• = {p ∈ P | ef p(w) > 0}. �� 7

Lemma 1. General properties of • and the effect function
Let p be a place of a Petri net and let w, v etc. be sequences in T ∗.

(a) •ε = ∅ = ε•

(b) If Ψ(w1) = Ψ(w2), then •w1 = •w2 and w•
1 = w•

2.
(c) If Ψ(w) = Ψ(w′) and Ψ(v) = Ψ(v′) then ef p(wv) = ef p(w′) + ef p(v′).

Proof:
(a): The empty sequence ε acts neutrally on any place.
(b): For any place p, the number of transitions of •p (and in p•) is the same in
w1 and in w2.
(c): By (b) and by induction. �� 1

In the pps case, because of plainness and pureness, the • notation for
sequences is consistent with the pre- and postset notation introduced in Def-
inition 4. That is, for any one-letter sequence w = t ∈ T , the dot notation intro-
duced in Definition 7 reduces to the one introduced in Definition 4. Moreover, in
a pps net, there are exactly three, mutually exclusive, possibilities for the effect
of w ∈ T ∗ on a given place p when there is a marking M with M [w〉: ef p(w) = −1
(then p ∈ •w, and w removes a token from p if executed); ef p(w) = +1 (then
p ∈ w•, and w puts a token on p if executed); or ef p(w) = 0 (then p /∈ (•w∪w•),
and the effect of w on p is neutral).
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3 Some Necessary Conditions for pps Petri Nets

We distinguish two types of properties of Petri net reachability graphs. The
distinctive criterion is whether sets mentioning • are used (or not) in their for-
malisations. In the former case, a property will be called hybrid (Sect. 3.1), since
it refers both to the structure of a Petri net and to its behaviour in the shape
of its reachability graph. In the latter case, a property will be called dynamic
(Sect. 3.2), since it does not refer to a generating Petri net, but only to its behav-
iour, i.e., the reachability graph. Dynamic properties can be checked directly on
any arbitrary transition system, while hybrid ones cannot. Section 3.3 focuses
on the relationship between hybrid and dynamic properties, and on potential
exploitation.

3.1 Hybrid Conditions for Plain, Pure, and Safe Petri Nets

Let us introduce, in this section, a number of properties related both to a tran-
sition system and a generating Petri net.

Proposition 2. Hybrid properties of pps nets
Let N = (P, T, F,M0) be a pps net, let a, b be (not necessarily different) tran-
sitions in T , let M,M1,M2,M3 be reachable markings, and let u, v, v1, v2, v3, w,
w1, w2, w3 be sequences of transitions. Then

(H1) If M [wv〉 or M [vw〉, then •w ∩ •v = ∅ = w• ∩ v•.
(H2) If M [v〉 and M [w〉, then v• ∩ •w = ∅ = •v ∩ w•.
(H3) If [v〉M and [w〉M , then v• ∩ •w = ∅ = •v ∩ w•.
(H4) If M [awb〉 then (•a ∩ •b) ⊆ w• and (a• ∩ b•) ⊆ •w.
(H5) – If M1[x1w1y1〉, M2[x2w2y2〉, and M3[x3w3y3〉

with x1, y1, x2, y2, x3, y3 ∈ {a, b}, and there exist v1, v2, v3 such that
Ψ(w1) = Ψ(v1) + Ψ(v2), Ψ(w2) = Ψ(v2) + Ψ(v3), Ψ(w3) =
Ψ(v3) + Ψ(v1),

– then •a ∩ •b = ∅ and a• ∩ b• = ∅.

Proof:
(H1): Let us assume for a contradiction that p ∈ (•w ∩ •v) ∪ (w• ∩ v•). We have
ef p(v) = ef p(w) 	= 0. Thus ef p(vw) = ef p(wv) = 2 · ef p(v) 	∈ {−1, 0, 1}. This
contradicts M [wv〉 or M [vw〉.
(H2): Assume p ∈ w•∩•v. By the definition of effects, we have p 	∈ •w ∪ v•. This
would lead to a contradiction if w = v, so w 	= v. By p ∈ w• and safeness, we
get M(p) = 0. By p ∈ •v and the Petri net firing rule, M(p) ≥ 1. Contradiction.
(H3): The proof is similar to (H2).
(H4): Suppose that M [a〉M1[w〉M2[b〉M ′ and that p ∈ (•a∩•b). Then M(p) = 1,
M1(p) = 0, M2(p) = 1, and M ′(p) = 0, so that w acts positively on p, that
is, p ∈ w•. Similarly for p ∈ (a• ∩ b•): M(p) = 0, M1(p) = 1, M2(p) = 0 and
M ′(p) = 1 w acts negatively on p, that is, p ∈ •w.
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(H5): Assume for a contradiction that p ∈ •a ∩ •b exists.
Because of M1[x1w1y1〉, there is no token on p before w1 and a token after-

wards, i.e., ef p(w1) = 1. In a similar way, we can observe that ef p(w2) = 1 and
ef p(w3) = 1. We can now write ef p(w1) = ef p(v1v2) = ef p(v3v1) + ef p(v2v3) −
2ef p(v3) = ef p(w3) + ef p(w2) − 2ef p(v3). Inserting the previously computed
values and solving for ef p(v3) yields ef p(v3) = 1

2 , which is not possible in a
Petri net.

Similarly, p ∈ a• ∩ b• leads to ef p(v3) = − 1
2 . �� 2

Example: TS0, as shown in Fig. 1, is not pps-solvable, because in any assumed
plain, pure and safe solution, Property (H4) is violated. Indeed, from M2[aca〉,
we deduce, by (H4), that •a ⊆ c• and a• ⊆ •c in the purported pps solution,
which implies that after each execution of c, every input place of a is marked
and every output place of a is unmarked. Hence a is enabled at M1 in any
pps solution; but ¬M1[a〉 in TS 0. Note that we cannot use this argument in an
automatic verification of the non-pps-solvability of TS0, since we would need to
construct pps solutions in the first place.

3.2 Dynamic Conditions for Plain, Pure, and Safe Petri Nets

In order to eliminate the need for constructing solutions before properties can be
checked, Proposition 3 below can be used. It describes a set of dynamic properties
of pps-solvable transition systems which are independent of any generating net.
These properties can smoothly be interpreted on any arbitrary labelled transition
system, and hence tested directly on any such input.

Proposition 3. Dynamic properties of pps nets
Let N = (P, T, F,M0) be a pps net, let a, b, c be (not necessarily different) tran-
sitions in T , let M,M ′,K,K1,K2, . . . , L0, L1, . . . be reachable markings, and let
u, v, v1, v2, . . . , w, w1, w2, . . . be sequences of transitions. Then

(D1) If M ′[a〉M and M ′′[b〉M , then [b〉M ′ ⇐⇒ [a〉M ′′.
(D2) If M [ava〉, K[v′〉K ′ and Ψ(v) = Ψ(v′), then K ′[a〉.
(D3) If M [w〉M ′ and M [a〉 and K ′[w′〉K[a〉 with Ψ(w) = Ψ(w′), then M ′[a〉

and K ′[a〉.
(D4) If M [w〉M ′ and M [a〉 and K[a〉K ′[w′〉K ′′ with Ψ(w) = Ψ(w′), then M ′[a〉.
(D5) – If, for some n ∈ N and v ∈ T ∗, L0[a〉, L0[v1〉L1 . . . [vn〉Ln[a〉 and

[wi〉Ki[a〉 or [a〉Ki[wi〉 with Ψ(wi) = Ψ(vvi) (for 1 ≤ i ≤ n),
– then Li[a〉 for all 1 ≤ i < n.

(D6) – If, for some n ∈ N and v ∈ T ∗, L0[a〉, L0[v1〉L1 . . . [vn〉Ln[a〉 and
Ki[wi〉 ∧Ki[a〉 or [wi〉Ki ∧ [a〉Ki with Ψ(wi) = Ψ(vvi) (for 1 ≤ i ≤ n),

– then Li[a〉 for all 1 ≤ i < n.
(D7) – If L1[x1w1y1〉, L2[x2w2y2〉, and L3[x3w3y3〉

with x1, y1, x2, y2, x3, y3 ∈ {a, b}, and there exist v1, v2, v3 such that
Ψ(w1) = Ψ(v1)+Ψ(v2), Ψ(w2) = Ψ(v2)+Ψ(v3), Ψ(w3) = Ψ(v3)+Ψ(v1),
and M [a〉 and M [b〉,
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– then M [ab〉.
(D8) If M [w〉M ′[v〉M ′′ and Ψ(v) = Ψ(w), then M = M ′ = M ′′.

Proof:
(D1): Suppose that K[b〉M ′[a〉M and M ′′[b〉M , for some reachable K. We will

show [a〉M ′′. By (H3), we get •a ∩ b• = ∅. By (H1), we get •a ∩ •b = ∅. By
combining this, we get •a ∩ (•b ∪ b•) = ∅. Hence b cannot activate or deactivate
a. Thus a is also enabled in K. Determinism (see Proposition 1) gives K[a〉M ′′.
The other direction of the equivalence can be shown in the same way.

(D2): From (H4) and Lemma 1(b), we have •a ⊆ v• = v′• and a• ⊆ •v = •v′;
hence every time after v′ a is enabled.

(D3): By (H2) and M [w〉, together with M [a〉, we get •a ∩ w• = ∅ = a• ∩ •w.
By (H1) and K ′[w′a〉, we get •a ∩ •w′ = ∅ = a• ∩ w′•. Therefore, with
Lemma 1(b), we get (•a ∪ a•) ∩ (•w ∪ w•) = ∅ = (•a ∪ a•) ∩ (•w′ ∪ w′•), i.e.,
w and w′ are unable to enable or disable a. Thus, from M [a〉 and K[a〉, the
conclusions follow.

(D4): Similarly to (D3), having M [a〉, M [w〉, K[aw′〉 and using (H1) and (H2),
we show that w or w′ cannot disable or enable a; hence M ′[a〉.
(D5): Assume for a contradiction that there is some marking Li (1 ≤ i < n)
with ¬Li[a〉. Assume that i is the minimal index with this property and let
p ∈ •a be a place which prevents a in Li, i.e., satisfies Li(p) = 0. This implies
that Li−1(p) = 1 (because of Li−1[a〉). Thus, the effect of vi on p is negative,
i.e., ef p(vi) = −1. Since, by assumption, Ln[a〉, and thus Ln(p) = 1, there is also
some sequence vj , with i < j ≤ n, such that the effect of vj on p is positive, i.e.,
ef p(vj) = 1. Since either [wi〉Ki[a〉 or [a〉Ki[wi〉, we have, by (H1), that p /∈ •wi,
i.e., ef p(wi) ≥ 0.

By 0 ≤ ef p(wi) = ef p(vvi) and ef p(vi) = −1, we get ef p(v) = 1. Thus
ef p(wj) = ef p(vvj) = 1 + 1, which contradicts the safeness of p. Hence the
assumption that ¬Li[a〉 for some i was wrong.

(D6): We can deduce, analogously to the proof of (D5), that ef p(vi) = −1 and
ef p(vj) = 1. The changed conditions on the marking Kj give us 0 ≥ ef p(wj).
Therefore, we can now use 0 ≥ ef p(wj) = ef p(vvj) = ef p(v) + 1 in order to
derive ef p(v) = −1. This gives us ef p(wi) = ef p(vvi) = −1 − 1 = −2, again a
contradiction to safeness.

(D7): By (H5), we get •a∩ •b = ∅ = a• ∩ b•. Thus a and b are independent, and
M [a〉 and M [b〉 yield M [ab〉.
(D8): Because of (H1), •v ∩ •w = ∅ = v• ∩ w•. Because of Ψ(v) = Ψ(w) and
Lemma 1(b), •w = •v and w• = v•. Combining this gives •w = •v = ∅ = w• =
v•. Thus firing w or v does not change the marking, i.e., M = M ′ = M ′′. �� 3

Example: The transition system TS0 shown in Fig. 1 satisfies all hybrid prop-
erties defined so far, except (H4). TS 0 is solvable (even by a plain, safe net)
but not pps-solvable. Now, instead of proving this fact indirectly through
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Property (H4), we can do so more directly. Indeed, (D2) is not satisfied for
TS 0 (setting M = M2, v = v′ = c, K = M0 and K ′ = M1) and thus, Part (D2)
of Proposition 3 implies that TS 0 is not pps-solvable. Note that, as opposed to
(H4), Property (D2) can be used in an automatic verification, since it can be
tested directly on a given lts, without needing to construct a net first.

The properties defined in Proposition 3 are independent of each other, in
the sense that none of them is implied by the rest. This is demonstrated by the
examples displayed in Fig. 2. The following list shows how to choose transitions,
sequences and markings in order to construct a violation:

(a) violates (D1), because of [a〉M ′′ and ¬[b〉M ′.
(b) violates (D2) with v = v′ = x, because of ¬K ′[a〉.
(c) violates (D3) with w = yx, w′ = xy.
(d) violates (D4) with w = a.
(e) violates (D5) with v = e1e2, v1 = c1c2, v2 = d1d2, w1 = e1c1e2c2, and

w2 = d1e1d2e2, and with n = 2, because of L0[a〉 and L2[a〉, but ¬L1[a〉.
(f) violates (D6) with the same sequences as in (e).
(g) violates (D7) with v1 = c1c2, v2 = d1d2, v3 = e1e2, w1 = c1c2d1d2, w2 =

d1e1d2e2, and w3 = e1c1e2c2, because of ¬M [ab〉.
(h) violates (D8) with v = w = a.

Due to the previous proposition, none of the transition systems depicted in Fig. 2
is pps-solvable. However, it turns out that all of them have a Petri net solution.
APT [5] is useful in confirming this.

3.3 Relationship Between Hybrid and Dynamic Properties

In the preceding sections, we have concentrated on properties enjoyed by a pps
solution for a given lts, if such a solution exists. The three properties – plainness,
pureness and safeness – are strictly related to a possible solution (of course,
together with its behaviour). That is why, on the one hand, we first introduced
hybrid properties, as they constitute a natural answer to the question about the
existence of a pps solution. On the other hand, it is not possible to check hybrid
properties on a pre-synthesis level, i.e., without actually carrying out synthesis.
For this reason, we introduced a set of dynamic properties as well. Dynamic
properties may be checked in a pre-synthesis stage. As such, they may be useful
for quick-fail purposes, since any lts not satisfying one of these properties may
be rejected straight away in the context of pps synthesis.

The above proofs of dynamic properties already make use of hybrid proper-
ties; hence dynamic properties are consequences of the hybrid ones. From the
proofs of these facts, every violation of a dynamic property allows us to draw
conclusions about some violation of a particular hybrid one. For instance:

• if (D1) is violated, then (H1) and/or (H3) is/are violated;
• if (D2) is violated, then (H4) is violated;
• if (D3) or (D4) is violated, then (H1) and/or (H2) is/are violated;
• if (D5) or (D6) is violated, then (H1) is violated;
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Fig. 2. Labelled transition systems violating only (Di), for i ∈ {1, . . . , 8}.
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• if (D7) is violated, then (H5) is violated;
• if (D8) is violated, then (H1) is violated.

In designing Properties (D1)–(D8), we took care to find a set which is both
strong (in the sense of explaining as large as possible a set of non-pps-solvable
lts) and small (in the sense of containing only mutually independent properties).
These two aspects will next be discussed, in order.

First, we stress that (D1)–(D8) are by no means strong enough in order to
guarantee the actual pps-solvability of a given labelled transition system. To
see this, consider the lts shown in Fig. 3. It satisfies all dynamic properties of
Proposition 3, but is still not pps-solvable. The problem is that transition a
cannot be prevented at L1. Assume for a contradiction that a is not enabled
at L1. Then there must be a place p ∈ •a with L1(p) = 0. Let us look at the
effects of different firing sequences on p. Because of L0[a〉 we know L0(p) = 1
and can conclude from this and L0[c1c2〉 that ef p(c1c2) = −1. From K2[a〉, we
get K2(p) = 1, which results, together with [e1c1e2c2〉K2, in

0 ≤ ef p(e1c1e2c2) = ef p(c1c2) + ef p(e1e2) = ef p(e1e2) − 1

Therefore ef p(e1e2) = 1. Similarly, we get K3(p) = 1 from K3[a〉. Together with
K3[d1e1d2e2〉, this results in

0 ≥ ef p(d1e1d2e2) = ef p(d1d2) + ef p(e1e2) = ef p(d1d2) + 1

Hence ef p(d1d2) = −1. By combining this with L1[d1d2〉L2, we get L2(p) =
L1(p) + ef p(d1d2) = −1. Thus such a place p cannot exist.

L0 L1 L2

K2

K3

h1

h2

h3

a

c1 c2 d1 d2

e1 c1 e2 c2 a

a

d1

e1 d2 e2

Fig. 3. An lts which satisfies all dynamic properties but is not pps-solvable.

Secondly, and to end this section, recall that (D1)–(D8) are independent of
each other. In the implementation of a pps-oriented quick-fail mechanism which
eliminates as many unsuitable lts as possible prior to synthesis, all of them
should be incorporated. In practice, however, some of them are easier to test
than others. For instance, Property (D1) would only need a single pass along
the states of a transition system, while Properties (D2), (D3) and (D4) would also
involve the examination of paths between them. Such paths could become quite
long, leading to a considerable slow down. Properties (D5) and (D6) are even
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harder to check, since they involve the checking of a non-fixed number of paths.
Therefore, for practical reasons, it may be reasonable to examine some simpler
dynamic properties which do not involve too many paths and are, hopefully,
computationally more amenable than, say, (D5/6). We offer a – slightly arbitrary
but small – candidate list of such properties.

Proposition 4. More dynamic properties of pps nets
Let N = (P, T, F,M0) be a pps net, let a, b, c be (not necessarily different)
transitions in T , let M,M ′,K, . . . be reachable markings, and let w, v, u, . . . be
sequences of transitions. Then the following properties are true:

(D9) If M [aw〉 and M [v〉 and Ψ(w) = Ψ(v) then M [va〉.
(D10) If M [a〉 and M [b〉 and K[ab〉, then M [ab〉 and M [ba〉 and K[ba〉.
(D11) If M [ava〉 and K[v〉K ′, then we have K ′[a〉.
(D12) If M1[x1 w1 y1〉, M2[x2 w2 y2〉, M3[x3 w3 y3〉 for x1, y1, x2, x3, y2, y3 ∈

{a, b}, Ψ(w1) = Ψ(w2) + Ψ(w3), M [a〉, and M [b〉, then M [ab〉.
(D13) If M [w〉M ′[w〉M ′′, then M = M ′ = M ′′.
(D14) If M [w〉M ′ and M [a〉 and K ′[w〉K[a〉, then M ′[a〉 and K ′[a〉.
(D15) If M [w〉M ′ and M [a〉 and K[a〉K ′[w〉, then M ′[a〉.
Proof (Sketch).

(D9) Follows from (D4) with M = K.
(D10) From (D3) and (D4).
(D11) From (D2) with v = v′.
(D12) From (D7) with v3 = ε (implying Ψ(w2) = Ψ(v2) and Ψ(w3) = Ψ(v1)).
(D13) From (D8) with v = w.
(D14) From (D3) with w′ = w.
(D15) From (D4) with w′ = w.

4 Applications

We discuss two instances in which the dynamic properties defined in the pre-
vious section – in particular, Property (D10) – play a useful role. Notice that
(D10) follows from (D3) and (D4) but is much easier to verify than the latter.
Section 4.1 describes a conjecture about fair sequences, due to Ochmański [11],
which applies to elementary Petri nets [15]. We use (D10) in order to show that
a tentative counterexample fails to be pps-solvable. Section 4.2 describes how
(D10) can be used in order to simplify an existing characterisation [4] of live and
safe marked graph reachability graphs [6].

4.1 A Conjecture Relating to Fair Persistent Sequences

Ochmański’s conjecture will be stated in terms of pps nets, rather than ele-
mentary nets as in [11]. This is actually a slightly strengthened version of the
conjecture, since if it turns out to be true for pps nets, then it is also true for
elementary nets (with an immediate proof). In order to be able to state the
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conjecture, we need to define persistent sequences and fair sequences. In the fol-
lowing, let N = (P, T, F,M0) be a Petri net and let T∞ denote the set of finite
or infinite sequences of transitions.

Definition 8. Persistence of firing sequences [11]
A finite or infinite firing sequence M0[t1〉M1[t2〉 . . . is called persistent if for every
i > 0 and a 	= ti, if Mi−1[a〉 then also Mi[a〉. �� 8

This means that no single step Mi−1[ti〉Mi may disable some transition a 	= ti.
We are interested in the case that firing sequences are permutation-equivalent
to persistent firing sequences.

Definition 9. Permutation-equivalence of firing sequences [3]
The relation ≡0 between two firing sequences M0[. . .〉 is defined as follows:

M0[αtiti+1β〉 ≡0 M0[αti+1tiβ〉 where α ∈ T ∗ and β ∈ T∞

Let σ1, σ2 ∈ T∞. Define M0[σ1〉 ≡ M0[σ2〉 if either M0[σ1〉 ≡∗
0 M0[σ2〉, or for

every n ≥ 0 there are M0[σ′
1〉,M0[σ′

2〉 such that M0[σ1〉 ≡∗
0 M0[σ′

1〉 and σ′
1 and

σ2 agree on the prefix of length n, as well as M0[σ2〉 ≡∗
0 M0[σ′

2〉 and σ′
2 and σ1

agree on the prefix of length n. �� 9

The next definition uses modified existential and universal quantifiers: ∃∞
i

(“there are infinitely many i with . . .”) and ∀∞
i (“for all but finitely many i, . . .”).

Definition 10. Fairness [10]
Finite sequences are fair. An infinite firing sequence M0[t1〉M1[t2〉M2[t3〉

M3[t4〉 . . . is fair with respect to t ∈ T if

(∃∞
i : (t = ti)) ∨ (∀∞

i : ¬Mi[t〉)

and it is fair if it is fair with respect to every transition t ∈ T . �� 10

Definition 11. Persistent permutation equivalents [11]
The net N is called SPE (S for “short”) if every finite firing sequence starting
from M0 has a persistent equivalent, and FPE (F for “fair”) if every fair firing
sequence starting from M0 has a persistent equivalent. �� 11

Conjecture (based on [11]): Let a finite transition system be pps-solvable.
Then it satisfies SPE if and only if it satisfies FPE.

Note first that the conjecture is well-formed because Definitions 8–11 apply
equally well to transition systems as to Petri nets. Next, note that FPE ⇒
SPE is immediate, since all finite sequences are fair by definition. It remains to
investigate whether SPE ⇒ FPE or not.

Figure 4 shows that the implication SPE ⇒ FPE is not true in general.
Indeed, any finite firing sequence can be permuted equivalently in such a way
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Fig. 4. An lts satisfying SPE but not FPE (l.h.s.) and a generating Petri net (r.h.s.).

that the last M ′ in it is reached via y rather than a1, and M ′′ (which can occur
at most once) is reached via x rather than b. Hence SPE is satisfied. However,
consider the infinite firing sequence M0[y(xa1a2bc)∞〉. This sequence is fair but
has no persistent equivalent, since the marking M cannot be avoided and the
firing M [a1〉M ′ is non-persistent (as M enables b but M ′ does not). Hence FPE
is not satisfied.

Note that the Petri net shown on right-hand side of Fig. 4 solves this tran-
sition system. However, the net is not safe; indeed, at L′, place p carries two
tokens.6 We use Property (D10) in order to show that there is no pps solution.
At L, we have both L[y〉 and L[b〉, but at K (and also at M0), only yb, but not
by, is enabled. Therefore, (D10) does not hold, and as a consequence, the lts
shown in Fig. 4 cannot be solved by a pps net.

4.2 The Reachability Graphs of Safe Marked Graphs

In this section, we present a novel characterisation of the reachability graphs
of safe, connected and live marked graphs, based on (D10). We recall the main
result of [4].

Theorem 1. Marked graph synthesis - Theorem 40 in [4]
An lts TS is isomorphic to the reachability graph of a bounded, connected and
live marked graph MG(TS ) iff it is totally reachable, deterministic, persistent,
backward persistent, reversible, finite, and satisfies P1.7 �� 1

A characterisation of the bound of MG(TS ) can also be found in [4]. However,
this characterisation is somewhat complicated, because it relies on various tech-
nical notions. We outline the main ideas. Throughout the following (up to and
including Proposition 5), assume TS = (S,→, T, s0) to be a transition system
which is finite, totally reachable, deterministic, persistent, backward persistent,
reversible, and satisfies P1.
6 Note that p is the only unsafe place (with bound 2), and that L′ is the only non-safe

reachable marking. In this sense, the example demonstrates that the conjecture is
sharp. We also believe that it is the smallest example with this property.

7 For P1 and the other properties, see Definitions 1 and 2.
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Definition 12. Short paths - Definition 24 in [4]
Let r, s be two states of TS . A path r[τ〉s, with τ ∈ T ∗, is short if |τ | ≤ |τ ′| for
every path r[τ ′〉s, where |τ | denotes the length of τ . �� 12

By Lemmata 26 and 28 of [4], there is a short path between any pair of
reachable states of TS , and if s[τ〉s′ and s[τ ′〉s′ are both short, then Ψ(τ) =
Ψ(τ ′). Hence the following definition is sound.

Definition 13. Distance - Definition 29 of [4]
Let s, s′ be two states of TS , the Parikh vector of some short path from s to s′

is called the distance between s and s′, and denoted by Δs,s′ . �� 13

By Proposition 31 of [4], for every x ∈ T , there is a unique state sx enabling
only x (and no other label). By Lemma 33 of [4], on any short path ending at
state sx, there is no label x (the proof uses P1). The set of states that do not
enable x, but for which x is necessarily enabled after one further step, is defined
as follows.

Definition 14. Sequentialising states - Definition 35 of [4]
For any x ∈ T , Seq(x) = {s ∈ S | ¬s[x〉 ∧ (∀a ∈ s• : s[ax〉)}. �� 14

Now we can cite the characterisation of the bounds of MG(TS ):

Proposition 5. Exact bounds – Lemma 42 in [4]
The bound of MG(TS ) is max{Δsy,sx(y) | x, y ∈ T, sy ∈ Seq(x)}. �� 5

As an example, consider the transition system depicted in Fig. 5. It satisfies
all the conditions given in Theorem 1, and can therefore be solved by a bounded
and live marked graph. However, no safe marked graph is capable of doing this
job. Let us check why the condition of Proposition 5 – for bound 1 – is violated.

0=sa 1 2

3

4 5

6=sb 7

8

9

10

a c

a

d

d

a c b a
b b

a

e

e

e e

Fig. 5. An lts which has a 2-bounded but not a safe marked graph solution.

Consider the short path

6 = sb [ b 〉 7 [ e 〉 2 [ d 〉 4 [ b 〉 9 [ e 〉 sa = 0

It contains b twice. Moreover, sb ∈ Seq(a). According to the proofs of Theorem 1
and Proposition 5 in [4], any marked graph Petri net solution must necessarily
have a non-safe place with bound ≥ 2 leading from transition b to transition a.8

8 Note that there is also a short path sa[a〉1[c〉2[d〉4[a〉5[c〉sb containing a two times.
However, this path is not indicative of an unsafe place from a to b, since sa /∈ Seq(b).
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This characterisation uses distances Δ, the special elements sx and sy asso-
ciated with labels x and y, and sequentialising state sets. Our aim is to replace
the characterisation given in Proposition 5 – in case the maximum is 1 – by a
more direct one, using some suitable dynamic property. It turns out that (D10)
can be used:

Theorem 2. Characterisation of safe marked graphs
A labelled transition system is isomorphic to the reachability graph of a safe, con-
nected and live marked graph iff it is totally reachable, deterministic, persistent,
backward persistent, reversible, finite, and satisfies P1 as well as (D10).

As an illustration of this result, note how (D10) is violated in Fig. 5. Consider
x = a, y = b, K = 6, and M = 4. We have M [a〉 and M [b〉, as well as K[ba〉.
According to (D10), we should also have K[ab〉, but, by contrast, a is not enabled
at state 6.

Proof:
(⇒): All claimed properties (except (D10)) are established using Theorem 1 (⇒).
(D10) follows with Proposition 4.
(⇐): Suppose that a transition system TS is totally reachable, deterministic,
persistent, backward persistent, reversible, finite, and satisfies Properties P1
and (D10). We claim that the maximum in Proposition 5 does not exceed 1.

Consider a short path sy[y〉s[α〉sx, with sy ∈ Seq(x), which contains another
y in α (yielding a maximum ≥ 2). Consider the second y on such a path and
a y-free prefix α′ of α with sy[y〉s[α′〉s′[y〉. By Lemma 33 of [4] (explained just
before Definition 14), α (and thus α′) is x-free. Let M = s′ and K = sy.

Because K ∈ Seq(x), we get ¬K[x〉 as well as K[yx〉. Along α′, transition
x never gets disabled because it is not contained in α′, and because of persis-
tence. Hence M [x〉. Thus, we get M [x〉 and M [y〉 and K[yx〉 and ¬K[xy〉 (hence
¬(D10)).

In other words, if the maximum in Proposition 5 exceeds 1, then (D10) fails
to hold. This proves the claim, by contraposition.

The entire result (⇐) then follows in combination with Theorem 1(⇐). �� 2

5 Concluding Remarks

In the first part of this paper, we have derived a collection of properties of plain,
pure and safe Petri nets. The ambition is that these properties encompass (or
imply) many generally known properties of pps nets and – by proxy – elementary
nets. Normally, in prior papers such as [13,15,16], far weaker necessary proper-
ties have been considered. We have made a distinction between hybrid proper-
ties (referring to a net and its reachability graph, viewed as a labelled transition
system) and dynamic properties (referring only to a labelled transition system).
The latter, but not the former, can be used in a pps net synthesis algorithm as a
quick-fail mechanism. Amongst the dynamic properties, we have further identified
a subset of properties which can – hopefully – relatively effectively be tested.
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In the second part of the paper, we have shown how these properties can help
checking a given labelled transition system for non-pps-solvability (Sect. 4.1), and
how they can contribute to the characterisation of a class of pps-solvable tran-
sition systems (Sect. 4.2). It so happened that Property (D10) was instrumental
in both cases, but this seems to be accidental.

The context of this paper is the exact synthesis of unlabelled Petri nets from
labelled transition systems. If one allows transition labels, the synthesis problem
changes. In unrestricted cases, it becomes trivial, because every finite lts can
also be viewed as a labelled Petri net by identifying states with places, edges
with transitions, and edge inscriptions with transition labels. To our knowledge,
there are very few papers about the exact characterisation of the reachability
graphs of classes of (pps) Petri nets (e.g., [4]), and also, very few papers about the
exact synthesis of such classes (e.g., [1,17]). A more widely known approach is to
weaken the exactness condition slightly by allowing partial transition labelling,
through the splitting of transitions, such as, for instance, in the theory expounded
in [7].

In this context, our hopes and aims for medium-term future work are twofold.
It would be nice if the dynamic properties listed here could usefully be imple-
mented in existing synthesis or pre-synthesis tools, to allow sophisticated input
pruning. Also, it would be nice if they could help in yielding further insights into
the structure of pps Petri net reachability graphs, e.g. by obtaining direct char-
acterisations of the state spaces of net classes which are different from marked
graphs, such as live and pps free-choice nets, or reversible, pps, persistent nets.

Acknowledgment. The authors are grateful to the reviewers for their helpful
comments.
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Abstract. Given the complexity of real-life event logs, several trace
clustering techniques have been proposed to partition an event log into
subsets with a lower degree of variation. In general, these techniques
assume that the number of clusters is known in advance. However,
this will rarely be the case in practice. Therefore, this paper presents
approaches to determine the appropriate number of clusters in a trace
clustering context. In order to fulfil the objective of identifying the most
appropriate number of trace clusters, two approaches built on similarity
are proposed: a stability- and a separation-based method. The stability-
based method iteratively calculates the similarity between clustered ver-
sions of perturbed and unperturbed event logs. Alternatively, an app-
roach based on between-cluster dissimilarity, or separation, is proposed.
Regarding practical validation, both approaches are tested on multiple
real-life datasets to investigate the complementarity of the different com-
ponents. Our results suggest that both methods are successful in identi-
fying an appropriate number of trace clusters.

Keywords: Stability · Trace clustering · Validity · Log perturbation ·
Process discovery · Separation

1 Introduction

Trace clustering is the partitioning of process instances into different groups,
called trace clusters, based on their similarity. A wide variety of trace cluster-
ing techniques have been proposed, differentiated by their clustering methods
and biases. The driving force behind these proposed techniques is the obser-
vation that real-life event logs are often quite complex and contain a large
degree of variation. Since these event logs are often the basis for further analysis
like process model discovery or compliance checking [29], partitioning dissimilar
process instances into separate trace clusters is deemed appropriate. Although
a wide array of techniques has been proposed, none of them makes any asser-
tions on the correct number of clusters. Therefore, this paper is the first to pro-
pose a suitable approach for determining the most plausible number of clusters.
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Since our approaches can be applied to any trace clustering technique, it raises
the applicability of trace clustering techniques in general, and the validity of
their trace clustering solutions.

Our first approach is based on the stability of trace clustering solutions. Intu-
itively, it can be expected that trace clustering solutions are more stable at the
correct number of clusters. Therefore, we develop a general framework to assess
the stability of trace clustering solutions. When repeatedly applied to an event
log for a range of potential number of clusters, one can compare the stability
scores obtained for each number of clusters. The result with the highest stabil-
ity can be considered the most appropriate number. A number of elements are
conceived to construct this approach: specifically, two approaches are proposed
to resample event logs. Likewise, two methods are provided for calculating the
similarity of clustering solutions. Finally, the concept of normalization and a cal-
culation strategy are supplied. Each of these elements is thoroughly evaluated
on four real-life event logs, resulting in the conclusion that the stability-based
framework configured with model-based similarity metrics and a noise induction-
based resampling strategy can lead to the correct identification of the appropriate
number of clusters1.

Our second approach is based on the concept of separation of a clustering
solution. Conceptually, one prefers a clustering solution where the clusters are
well separated, i.e. were the clusters are not too similar. For this, a component of
the first stability-based approach, a method for calculating the similarity between
trace clustering solutions, is leveraged to capture the separation of a clustering
solution. Like the stability-based approach, it is evaluated on four real-life event
logs.

The remainder of this article is structured as follows: in Sect. 2, the necessary
background on the process mining domain is given, as well an overview of existing
approaches for determining the number of clusters. Our stability-based approach
is outlined in Sect. 3, while Sect. 4 details the separation-based approach. Finally,
both approaches are evaluated in Sect. 5, before finishing with some concluding
remarks in Sect. 6.

2 Background

This section contains the necessary background on the domain of process mining,
as well as an overview of existing general approaches for determining the number
of clusters in traditional clustering.

2.1 Event Logs, Process Discovery and Trace Clustering

Trace clustering, as it is considered in this paper, is a part of the process min-
ing domain. Generally speaking, process mining consists of three distinct parts:

1 This approach is implemented as an experimental ProM-plugin which can be found
on http://www.processmining.be/clusterstability/.

http://www.processmining.be/clusterstability/
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process discovery, conformance checking, and process enhancement [1]. In process
discovery, the starting point is an event log L, from which one wants to discover
a corresponding process model M . Typically, this event log adheres to the IEEE
eXtensible Event Stream (XES) standard2. In conformance checking, an event
log L containing actual behaviour, and a process model M containing prescribed
behaviour are compared to detect deviations between expected and observed
behaviour. Finally, process enhancement is an umbrella term for techniques that
aim to improve processes, for example by suggesting improvements to the as-is
process-model.

One of the main problems surrounding the application of process discov-
ery techniques to real-life datasets, however, is that they typically contain a
wide variety of behaviour. Applying conventional process discovery techniques
on event logs that contain such variation will most likely lead to sub-optimal
results [8]. Therefore, a variety of authors [2,9,16] have proposed to apply clus-
tering on event logs in order to improve the quality of the process models that
can be mined from these event logs. Since an event log is a set of traces, this
sub-discipline is called trace clustering.

2.2 Determining the Number of Clusters

In traditional clustering, numerous approaches have been suggested for assessing
the adequate number of clusters. A taxonomy of approaches for determining the
number of clusters has been presented in [26]. The most straightforward approach
is to incorporate domain knowledge, either by directly adjusting your algorithm
to suit the knowledge of a domain expert or by post-processing the results to
adhere to this knowledge. In general, however, it is unlikely that such domain
knowledge exists and is available for an event log. Creating an approach based on
the specific generation of trace clusters will not be applicable for each existing
trace clustering technique either. Therefore, we propose to adapt approaches
based on the post-processing of partitions.

According to the taxonomy of [26], possible post-processing approaches can
be based on variance, structure, consensus and resampling. The most commonly
known variance-based method is probably the gap statistic [28], which is based on
the within-cluster sum of squares using Euclidean distance. Likewise, structural
approaches use indices to compare within-cluster cohesion to between-cluster
separation [26]. It is clear that one would prefer a number of clusters where the
within-cluster cohesion and the between-cluster separation are both large. As a
third group of approaches, consensus clustering refers to choosing the number
of clusters based on the agreement between different cluster solutions. These
different solutions can be obtained by applying different clustering techniques,
by applying the same clustering technique to perturbed versions of the same data
set, or by randomly resetting initial centroids (in a centroid-based technique).
Intuitively, the consensus between different clustering solutions should be higher
at the true number of clusters. The final group of post-processing approaches

2 For more info on the XES-standard, we refer to http://www.xes-standard.org/.

http://www.xes-standard.org/
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is based on resampling, and is related to consensus clustering in its intuition: a
number of iterations are performed in which sub-sampled, bootstrapped or noisy
versions of the original data set are clustered. The resulting partitions are then
expected to be more similar at the appropriate number of clusters.

With regards to applicability for trace clustering, adapting variance- or
structure-based approaches to trace clustering might not be straightforward,
since a distance measure is needed. To calculate distances between traces, fea-
tures would have to be derived from these traces. Considering that certain trace
clustering techniques deliberately avoid ‘featurizing’ traces [9], this is not deemed
an appropriate route for trace clustering. Rather than using direct trace simi-
larity, a structure-based approach building on the concept of separation is pre-
sented in this paper. Consensus- and resampling-based approaches do not suffer
from this issue as much. Therefore, a consensus- and resampling-based approach
leveraging the concept of stability is described in this paper as well.

3 Stability of Trace Clustering Solutions

The approach proposed in this section is a resampling-based approach, inspired
by a methodology for stability-based validation of clustering solutions in [22],
which was adapted for biclustering solutions in [24]. In [22], it was shown to be an
effective method for discovering the appropriate number of clusters on simulated
and gene expression data. Furthermore, in [6], a similar stability-based approach
is proposed to assess the quality of process discovery techniques.

In [22,24], resampling/perturbation strategies, learning algorithms, and solu-
tion similarity metrics are proposed that are specifically designed for general
(bi)clustering problems. The general intuition is that clustering solutions should
remain more stable at the true number of clusters that at others. As such, this
paper contributes by proposing a stability-based approach for determining the
correct number of trace clusters. Our approach leverages the so-called “log per-
turbation stability”, which is the adaptation of general resampling to the process
mining domain. In Fig. 1, our general stability approach is depicted. Tailoring
the framework to trace clustering entails the configuration of three main compo-
nents, i.e. the perturbation strategy (step 1), the solution similarity computation
(step 3), a stability index calculation (step 4). In addition, a trace clustering tech-
nique should be chosen (step 2). This stability is then normalized with respect
to the stability of a random clustering on the same perturbed event logs (step 5).

The steps of our approach thus become:

1. Step 1: Given an event log L, and a log perturbation function P, create n
perturbed versions of the event log: P1 to Pn.

2. Step 2: Create a clustered log CL by applying a trace clustering technique
TC to the original event log: CL = TC(L) and to the perturbed event logs:
CLi = TC(Pi) with i ∈ {1..n}.

3. Step 3: Given a similarity index I(CLx, CLy), quantify the similarity
between the clustering of the original dataset and the clustering of the per-
turbed dataset as I(CL,CLi) for each i ∈ {1..n}.
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Event Log
L

TC(L)

P1

P2

...

CL

Step 1: Resample/
perturb the log

TC(P1)

TC(P2)

TC(Pn)

CL1

Step 2: Apply trace 
clustering technique

......

SIM(CL,CL1) 

Step 3: Compute 
similarity

STAB(CL)

...

AVERAGE

Step 4: Compute 
stability index

Pn

CL2

CLn

SIM(CL,CL2) 

SIM(CL,CLn) 

NORM. 
STAB(CL)

Step 5: Normalize 
w.r.t. stability of 

random clustering

Fig. 1. A visualization of the proposed approach for calculating the stability of a
clustered event log, based on a similar diagram in [24]. The normalized version of
this stability is calculated at different numbers of clusters to determine the optimal
number of clusters.

4. Step 4: Average these similarity measures to create a stability metric for
event log L and trace clustering technique TC as

STC =
1
n

n∑

i=1

I(CL,CLi) (1)

5. Step 5: Normalize with respect to the stability of a random clustering tech-
nique SR over the same set of perturbed event logs:

S̄TC =
STC − SR

1 − SR
(2)

Observe that a higher value for S̄TC indicates a better stability of the solu-
tion. This metric should be evaluated at different numbers of clusters, at which
point the best scoring number of clusters should be chosen. In the remainder
of this section, we describe the three main components of our approach: possi-
ble perturbation strategies based on resampling and noise induction (Sect. 3.1),
computation of solution similarity based on mutual information or process
model similarity metrics (Sect. 3.3), calculation of the stability index based on
a window-based approach (Sect. 3.4), and normalization of the stability with
respect to random stability (Sect. 3.5).

3.1 Step 1: Log Perturbation Strategy

Perturbing event logs essentially boils down to three options: either some behav-
iour is removed, or some behaviour is added, or a combination of both. There are
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many different ways to do this, as argued in [26]: sub-sampling, data-splitting,
bootstrapping and noise induction. Regarding the removal of behaviour, event
log perturbation can be approached through case-level resampling in a random
fashion. Note that here, cases would be process instances or traces. When deal-
ing with event logs, an important consideration is whether to sample based on
process instances or distinct process instances. An alternative to random resam-
pling is systematic leave-one-out cross-validation, which can be considered a form
of ‘data-splitting’.

Finally, regarding the addition of behaviour, slightly perturbing event logs
strongly relates to the concept of adding noise to the log. In [25], four types of
noise were initially defined: remove head, remove tail, remove body, and swap
tasks. In [7], the removal of a single task was added as a noise induction scheme,
together with the combination of all previous noise types. These noise induc-
tion types have already been used to evaluate robustness of process discovery
techniques, for instance in [11,19].

Taking these aspects into consideration, the log perturbation strategy under-
lying our stability assessment framework is as follows. First, behaviour can be
removed through a resampling procedure, which is essentially sub-sampling at
the level of distinct process instances. However, to make the resampling a bit
less naive, the probability that a distinct process instance is removed, is inversely
proportional to the frequency of this distinct process instance in the event log.
Secondly, behaviour can be added through noise induction. Though several noise
types were proposed in [25], we opt to include three types of noise: removing a
single event, swapping two events, and adding a random single event (from the
log activity alphabet) at a random place in the process instance. Example 1
presents the effects of noise induction on a single process instance. Noise induc-
tion is performed at the process instance level. For both removal of behaviour
(sub-sampling at the distinct process instance level) and addition of behaviour
(noise induction at the process instance level), a percentage of affected instances
needs to be chosen.

Example 1. Given a process instance ABBCD, some potential effects of
noise induction could be removal: ABCD, swapping: ABCBD, or addition:
ABBCCD.

3.2 Step 2: Trace Clustering Technique

In the next step, a certain trace clustering algorithm is applied. An overview of
existing trace clustering techniques is provided in Table 1. In general, trace clus-
tering techniques can be classified according to three dimensions. Firstly, what
they consider as input: a propositional representation or an event log. Secondly,
which kind of clustering approach is used: for example k-means, hierarchical,
model-driven. Thirdly and most importantly, the clustering bias they employ.
Two broad categories exist: those that map traces onto a vector space model
or quantify the similarity between two traces directly; and those that take the
quality of the underlying process models into account.
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Table 1. Existing trace clustering approaches with their data representation, clustering
approaches and biases

Author Data
representation

Clustering technique Clustering bias

Greco et al. [20] Propositional k-means Instance similarity: alphabet
k-grams

Song et al. [27] Propositional Various Instance similarity: profiles

Ferreira et al. [16] Event log First order Markov

mixture model

Maximum likelihood

Bose and van der

Aalst [2,3]

Event log Hierarchical clustering Instance similarity metrics

Folino et al. [17] Event log Enhanced Markov
cluster model

Maximum likelihood

De Weerdt et al.
[9]

Event log Model-driven
clustering

Combined process model
fitness (ICS)

Ekanayake et al.
[14]

Propositional Complexity-aware
clustering

Instance similarity +
repository complexity

Delias et al. [10] Event log Spectral Robust instance similarity

Evermann et al.
[15]

Event log k-means Instance similarity:
alignment cost

3.3 Step 3: Solution Similarity Computation

In this section, two distinct approaches for computing the similarity between
two clusterings will be described. One is inspired by information metrics from
the consensus clustering domain, and one is inspired by similarity metrics from
the process modelling domain.

On the one hand, we propose a consensus clustering-based metric. It is called
the Normalized Mutual Information (NMI), and was proposed by [18]. It is a
measure for the extent to which two clusterings contain the same information.
Here, this mutual information is conceptually defined as the extent to which
two process instances are clustered together in both clusterings. Let ka be the
number of clusters in clustering a, kb the number of clusters in clustering b, n
the total number of traces, na

i the number of elements in cluster i in clustering
a, nb

j , the number of elements in cluster j in clustering b, and nab
ij the number

of elements present in both cluster i in clustering a and cluster j in clustering b.
The NMI is then defined as:

INMI(a, b) = −2

∑ka

i=1

∑kb

j=1 nab
ij log( nab

ij n

na
i nb

j

)
∑ka

i=1 na
i log(na

i

n ) +
∑kb

j=1 nb
j log(

nb
j

n )
(3)

On the other hand, we propose a metric based on the similarity between
discovered process models. Rather than measuring the similarity by counting the
number of elements that are included in the same cluster in both cluster solutions
(i.e. measuring the consensus between both clusterings), each different cluster
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is used to discover a process model. Then, a process model similarity metric is
used to measure the similarity between these discovered process models. This is
represented conceptually in Fig. 2.

A plethora of process discovery techniques and process similarity metrics
exist that could be leveraged for this purpose. With regards to process discovery
techniques, an efficient and robust technique is preferred. Therefore, we propose
the usage of Heuristics miner [31]. It mines a heuristic net, which is converted
to a Petri net. This technique has demonstrated its efficacy on real-life datasets
[8]. With regards to process model similarity, our preference goes out to the
structural graph-edit distance (GED) similarity metric [12], though behavioural
metrics such as causal footprints [13] or behavioural profiles [30] could be used
as well. Graph-edit distance is a metric that reflects the distance between two
models based on the insertion and deletion of places and transitions in a Petri
net. Finally, our similarity metric for trace clustering solutions is summarized
in Eq. 4, where ni is the number of elements in cluster i of clustering a, and
simHG(i, j) is the graph-edit distance similarity between the converted heuristic
net mined from cluster i of clustering a and the converted heuristic net mined
from cluster j of clustering b.

IHG(a, b) =
∑

i∈a ni maxj∈b(simHG(i, j))∑
i∈a ni

(4)

In [23], it is stated that a high-quality similarity index should have two
characteristics: (1) it should take differences in cluster sizes into account, and
(2) it should be symmetric. Note from Eq. 3 that these properties are ful-
filled for INMI(., .). Likewise, from Eq. 4, it is clear that IHG(a, b) is weighted
for the effects of different cluster sizes. However, it is not symmetric yet, i.e.
IHG(a, b) �= IHG(b, a) due to the combination of weights and the max-operator.
Therefore, we propose a final symmetric variant ĪHG:

ĪHG(a, b) =
IHG(a, b) + IHG(b, a)

2
(5)

Example 2. Figure 3 contains two clustering solutions, each consisting of 2 clus-
ters. To calculate IHG(a, b) for each cluster in clustering A, the most similar
cluster in cluster B is to be chosen, and then the corresponding similarities are
weighted using Eq. 4. Both clusters are most similar to cluster 1 of clustering
B, resulting in a IHG(a, b) of 0.9. Assuming that both clusters in clustering B
contain an equal amount of traces, IHG(b, a) is equal to 0.83, and ĪHG(a, b) is
0.87.

3.4 Step 4: Stability Index Computation

Next, in step 4 of our framework, the stability index is computed as an average
over a number of iterations, as detailed in Algorithm 1 in the ‘Stability’-function.
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Clustering A
Cluster 1

Clustering A
Cluster 2

Clustering A
Cluster 3

Clustering B
Cluster 1

Clustering B
Cluster 2

Clustering B
Cluster 3

Clustering B
Process Model 1

Clustering B
Process Model 2

Clustering B
Process Model 3

Discover Process Model Discover Process Model Discover Process Model

Clustering A
Process Model 1

Clustering A
Process Model 2

Clustering A
Process Model 3

Discover Process Model Discover Process Model Discover Process Model

Calculate Process 
Model Similarity

Fig. 2. Conceptual representation of the process model-based similarity metric, when
two clusterings of three clusters each are under comparison.

Hereto, three extra input parameters are necessary: a minimal number of itera-
tions rmin, a review window Δr and a maximal stability error εS . Typical values
for these parameters are 20, 10, and 0.005 respectively. This iterative approach
serves a double purpose: on the one hand, it ensures that the final stability is
robust and sufficiently precise; on the other hand, it prevents unnecessary com-
putation. The approach goes as follows (lines 2–8): for each of the number of
clusters, the stability is calculated, as is the stability of a random clustering tech-
nique, which is then used to calculate the normalized stability. The number of
clusters with the highest stability is returned. The stability (lines 10–22) is cal-
culated by clustering the entire log to create a baseline clustered log. Then, the
log is iteratively perturbed, clustered, and the similarity between this clustered
log and the baseline clustered log is computed. The stability is calculated as
the average of these similarities over the iterations. When the minimum amount
of iterations (rmin) has passed, and the stability has not deviated more than
the maximal error (εS) in the review window (last Δr iterations), the stability-
function terminates.

3.5 Step 5: Normalization of the Stability

The final step is the normalization of the stability. This normalization is included
to exclude unwanted information from entering the stability metric: if the ran-
dom stability increases for higher cluster numbers, for example, then this is due
to the inherent structure of the stability metric, rather than an actual improve-
ment in the quality of the clustering. As provided in Algorithm 1, this is done as
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Fig. 3. Example of two clustering solutions and the process models corresponding to
each cluster.

follows, where Sk is the stability of a certain clustering algorithm with k clusters,
and SR

k is the stability of randomly dividing the event log into clusters:

S̄k =
Sk − SR

k

1 − SR
k

(6)

Example 3. Given a hypothetical situation where one is determining whether
3 or 5 clusters is most appropriate, the normalization could have the effect illus-
trated in Table 2, reducing the preference for a number of clusters where even a
random clustering is stable.

Table 2. Example of effect of the normalization.

Clusters Sk SR
k S̄k

3 0.6 0.5 0.2

5 0.6 0.4 0.33

Finally, we remark that a random clustering should cluster event logs
based on their distinct process instances, not process instances. The underly-
ing assumption is that any existing trace clustering technique should at least
group those traces together that contain exactly the same behaviour, even a
random clustering technique.
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Algorithm 1. Stability evaluation
Input: L := Event log, TC := Trace clustering algorithm, P := Perturbation strategy, Is := simi-

larity metric, kmax:= maximum number of clusters;
Input: rmin := 20, Δr := 10, εS := 0.005; % Configuration
Output: k := number of clusters for which the normalized stability is the highest
1: function NumberofClusters( kmax )
2: S̄() := {} % List of normalized stability results per number of clusters
3: for k := 2 ; k <= kmax do
4: Sk:= Stability( L, TC, P , Is,rmin, Δr, εS) % Calculate stability

5: SR
k := Stability( L, Random, P , Is,rmin, Δr, εS) % Calculate random stability

6: S̄k:=
Sk−SR

k
1−SR

k

% Normalize with regards to random stability

7: end for
8: return k := argmax

k
(S̄(k))

9: end function

10: function Stability( L, TC, P , Is,rmin, Δr, εS )
11: r := 1 % Iteration
12: CL := TC(L) % Baseline clustered event log
13: u() := {} % List of similarity results per iteration
14: w() := {} % List of stability results per iteration

15: while (r < rmin) ∨ [maxp,q|w(p) − w(q)| > εS ; ∀p, q : r − Δr < p < q ≤ r)] do
16: Lr := Pr(L) % Perturb the log
17: CLr := TC(Lr) % Cluster event log from perturbed log
18: u(r) := Is(CL, CLr) % Calculate similarity with baseline clustered event log

19: w(r) :=
(r−1)∗w(r−1)+u(r)

r % Calculate stability

20: r := r + 1
21: end while
22: return S := w(r − 1)

23: end function

4 A Cross-Cluster Separation-Based Approach

As detailed in Sect. 2.2, a wide array of different possible directions exist when it
comes to assessing the number of clusters. In the previous section, an approach
based on stability has been detailed. In this section, one of the constructs used
to calculate this stability, IHG(a, b), is leveraged to create an alternative path
for assessing an appropriate number of trace clusters.

Conceptually, cross-cluster separation represents how well the clusters in a
partitioning are separated. Clearly, a quantification of separation can be used
as a metric for the quality of a cluster solution. The most well-known separa-
tion metric is probably the Davies-Bouldin metric [4]. It can be considered a
structural approach in the taxonomy of [26]. The main issue when it comes to
defining such a metric in the trace clustering case, however, lies in the definition
of the similarity between two traces. This can be done by incorporating a direct
similarity between the traces, based on alignment or based on a mapping of the
traces, however, clustering techniques exist that specifically aim to avoid such a
mapping. Therefore, in this section, we propose a similarity metric based on the
process models that represent each cluster, as in Sect. 3.3. Each different cluster
is used to discover a process model. Then, a process model similarity metric is
used to measure the similarity between these discovered process models. This
similarity can then be used to calculate the separation of the clusters. While a
number of process discovery techniques and process model similarity techniques
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exist which could be used for this task, we apply the Heuristics miner and the
structural graph-edit distance, as before.

More specifically, we propose to use an internal version of the IHG(a, b) simi-
larity index as a measure of cluster separation, where ni is the number of elements
in cluster i of clustering a, and simHG(i, j) is the graph-edit distance similarity
between the converted heuristic nets mined from clusters i and j of clustering a.

SepHG(a) = 1 −
∑

i∈a ni max(j∈a) �=i(simHG(i, j))∑
i∈a ni

(7)

Three observations can be made regarding this weighted metric for inter-
cluster separation based on the process model similarity of discovered process
models. First, observe that it is inherently symmetrical, therefore no extra step is
needed to render it symmetrical, in contrast to Eq. 5. Secondly, observe that this
metric will be lower when inter-cluster separation is lower. Therefore, a higher
value of the SepHG metric is preferable, and can be used as an indicator of an
appropriate number of clusters.

Example 4. Figure 3 contains a comparison of 2 clustering solutions, both com-
prised of two clusters. In the top row, both clusters in the 2-cluster solution are
represented by the same discovered process model. Therefore, the separation of
this solution is 0. In the bottom row, the same set of traces is represented by
two different discovered process models, with a separation of 0.16, assuming that
both clusters contain an equal amount of process instances.

5 Experimental Evaluation

This evaluation serves multiple purposes: first, it is meant to show the general
applicability of our techniques. Therefore, our approaches are tested on multiple
real-life datasets in combination with a wide variety of trace clustering tech-
niques. Furthermore, the purpose is to evaluate the different components of our
stability framework: the underlying resampling strategies, the similarity metrics,
and the normalization. Finally, the separation-based approach is demonstrated
here as well, and its results are contrasted with those of the stability-based
approach.

5.1 Setup

This section describes the different event logs and trace clustering techniques
that are used, and the components of the stability-based approach: how the per-
turbation will be applied; which similarity indices will be used for measuring the
similarity between the baseline clustering and the clusterings on the perturbed
event logs.

General. Four real-life event logs [8] are subjected to our approach. The number
of process instances, distinct process instances, number of distinct events and
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average number of events per process instance are listed in Table 3. Observe
that no exact number of clusters is known upfront for these event logs: the
starting point is that applying process mining methods such as process discovery
techniques on the entire event log leads to undesirable results [8]. Hence, this
evaluation shows how our stability measure and separation measure can be used
to determine an appropriate number of clusters, or how they can be used to
show that no appropriate number of clusters can be found.

With regards to trace clustering techniques, we have calculated the results
using 7 different methods: 2 methods based on ‘process-model aware’ clustering
techniques (ActFreq and ActMRA, [9]), and 5 ‘trace featurization’ methods (MR
and MRA [21]; GED an LED [3]; and K-gram [27]).3

Stability. With regards to the calculation of the stability, we have chosen to
apply two strategies. On the one hand, a noise-induction perturbation strategy,
where each process instance has a 10% chance of either having an event removed,
two events swapped, or one event added from the existing activity alphabet. On
the other hand, a sub-sampling approach, where 25% of the distinct process
instances is removed. The probability of removal a distinct process instance is
inversely proportional with its frequency in the event log.

Furthermore, both the Normalized Mutual Information similarity-metric
(INMI) and the symmetrical discovered process model similarity metric based on
Heuristics miner and graph-edit distance (ĪHG) will be employed, as described in
Sect. 3.3. This allows for a comparison of the results of both similarity metrics.

Finally, the maximum number of clusters is set to 10. In addition, the evalu-
ation strategy proposed in Algorithm 1 will deliberately not be used, to prevent
randomization bias. Rather, a fixed number of 20 iterations will be used to cal-
culate the stability, with appropriate seeding to prevent bias.

Table 3. Characteristics of the real-life event logs used for the evaluation: number
of process instances (#PI), distinct process instances (#DPI), number of different
events (#EV) and average number of events per process instance (#EV

PI
).

Log name #PI #DPI #EV #EV
PI

KIM 1541 251 18 5.62

MCRM 956 212 22 11.73

MOA 2004 71 49 6.20

ICP 6407 155 18 5.99

Separation. With regards to separation, the non-normalized version of our pro-
posed separation metric, SepHG, is used, as described in Sect. 4. This approach

3 The first two methods are implemented in the ProM-framework for process mining
in the ActiTrac-plugin. The latter five methods are implemented in the GuideTree-
Miner -plugin.
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is also tested on a number of clusters ranging from 2 to 10, on the same event
logs and with the same clustering techniques as the stability-based approach.

5.2 Results of the Stability-Based Approach

The results are presented in Table 4, which contains the number of clusters with
maximal stability for each combination of similarity metric and perturbation
strategy; in Fig. 4, which visualises the results on the KIM-dataset; and Fig. 5,
which visualises the results on the ICP-dataset. Since no clear cluster structures
were found for the MCRM- and MOA-datasets, these Figures are not included
here4. Note that this does not imply a shortcoming of our approach, these event
logs most likely simply do not contain relevant trace clusters.

Table 4. Number of clusters for which the normalized stability is maximal. Two differ-
ent similarity metrics, two different perturbation strategies and seven different cluster-
ing techniques were used, on four real-life datasets. The number of clusters for which
the stability would have been maximal if no normalization had been applied is included
between brackets.

Similarity Technique Noise induction Sub-Sampling

KIM MCRM MOA ICP KIM MCRM MOA ICP

INMI ActFreq 4(5) 2(2) 2(10) 2(5) 4(4) 2(2) 4(10) 3(3)

INMI ActMRA 2(4) 3(3) 7(7) 4(9) 4(9) 6(6) 3(10) 4(4)

INMI GED 7(7) 3(3) 7(7) 3(3) 9(10) 2(4) 5(7) 3(3)

INMI LED 4(10) 4(4) 2(2) 2(10) 7(8) 4(4) 3(9) 9(10)

INMI MR 2(10) 2(2) 5(5) 10(10) 2(10) 2(2) 3(3) 10(10)

INMI MRA 2(10) 2(2) 2(2) 4(5) 2(10) 2(2) 2(5) 4(5)

INMI K-gram 2(10) 10(10) 2(9) 2(10) 2(10) 10(10) 2(10) 10(10)

ĪHG ActFreq 3(7) 2(2) 10(2) 2(2) 4(4) 4(3) 9(10) 5(3)

ĪHG ActMRA 3(3) 3(2) 7(2) 2(2) 4(4) 6(6) 10(10) 9(9)

ĪHG GED 3(2) 2(2) 10(2) 6(2) 2(2) 10(2) 5(10) 10(10)

ĪHG LED 3(2) 2(2) 3(2) 8(2) 4(2) 2(2) 9(10) 5(4)

ĪHG MR 2(2) 2(2) 10(10) 6(2) 2(2) 2(2) 2(2) 10(10)

ĪHG MRA 3(2) 2(2) 10(2) 5(5) 3(2) 4(2) 5(5) 2(2)

ĪHG K-gram 3(2) 6(2) 6(2) 2(2) 4(2) 2(2) 2(2) 2(2)

Similarity Metrics. In Figs. 4 and 5, the INMI -metric is presented in the
top row, while the ĪHG-metric is presented in the bottom row. For the KIM-
dataset (Fig. 4), no clear peaks are apparent in the plots with the results of the

4 The visual representations of the MCRM- and MOA-event logs are available on
http://www.processmining.be/clusterstability/ToPNoCResults.

http://www.processmining.be/clusterstability/ToPNoCResults
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INMI -metric. In the results of the ĪHG-metric, a peak appears to be present at
a cluster number of 3 when applying a noise induction-perturbation. Similarly,
there appears to be a consensus about 3 or 4 clusters when applying a sub-
sampling perturbation strategy. The same observation holds for dataset ICP
(Fig. 5): there appears to be a peak around 6 clusters when combining the ĪHG-
metric with noise-induction, while no peaks are apparent for the INMI -metric.
These findings are supported by Table 4.

Perturbation Strategy. With regards to perturbation strategy, similar results
are found on the KIM-dataset (Fig. 4) regardless of whether noise induction or
sub-sampling is applied. On the ICP-dataset (Fig. 5), the results seem to be in
favour of a noise-induction approach.

Algorithmic Efficiency. In Fig. 6, the evolution of the stability before normal-
ization over the iterations is visualised, calculated with similarity metric ĪHG and
noise induction, and using the K-gram clustering technique. This set-up is cho-
sen as an example, with other configurations performing similarly. It is clear that
the stability results converge rather quickly over the iterations, and that it was
indeed appropriate to fix the number of iterations at 20 in the other evaluations
in this section of the paper.

In Fig. 7, the evaluation of the computational time (in seconds) over the
number of iterations is presented. These results where obtained in Java SE 8, on a
device running Windows 10 Enterprise, with an Intel Core i7-4712HQ processor.
The K-gram clustering technique is evaluated with similarity metric ĪHG and
noise induction. As expected, the runtime increases linearly over the number of
iterations, with the slope depending on the number of clusters under scrutiny
(the more clusters, the higher). Recall that these are real-life dataset, and that
the ICP-event log is rather large, see Table 3. Nonetheless, even at 40 iterations,
the algorithm terminates in under 4 min.

Normalization. Table 4 contains the number of clusters for which the normal-
ized stability was maximal. The number of clusters for which the stability would
have been maximal if no normalization had been applied is included between
brackets. With regards to the stability without normalization, 16 of the 28 com-
binations combining noise induction with the ĪHG-metric would have had dif-
ferent best cluster numbers if no normalization had been applied. Likewise, 13
out of 28 results combining the INMI -metric with noise induction would have
been different if no normalization had been applied. For sub-sampling, there
would have been 11 and 15 differences with ĪHG and INMI , respectively. The
non-normalized application of ĪHG generally leads to smaller cluster numbers,
whereas the non-normalized application of INMI generally leads to higher clus-
ter numbers. This validates the usefulness of the normalization: it prevents the
results from favouring smaller (as with the ĪHG-metric) or larger numbers of
clusters (as with the INMI -metric).
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Finally, observe from Figs. 4 and 5 that a lot of the normalized stability
results are negative, especially when combining sub-sampling with INMI or noise
induction with ĪHG. This means that these results are less stable than a random
clustering. When combining noise induction with ĪHG on the ICP-dataset, for
example, the clusterings obtained using the GED or LED clustering techniques
are lower than zero for each clustering number, implying that they behave less
stable than a random clustering technique regardless of the number of clusters.

5.3 Results of the Separation-Based Approach

The results of the separation-based approach are visualised in Fig. 8. For each
dataset, the values of SepHG are plotted at a number of clusters ranging from
2 to 10, for 6 different trace clustering techniques. A couple of observations can
be made from these plots. First, observe that most curves display a downward
trend, indicating that the separation of the clusters in terms of process model
similarity declines as the number of clusters increases. This is in line with the
expectations one has when clustering a dataset in which no true clusters are
present. Nonetheless, a different trend is present in the seperation results of the
ICP-event log. Specifically, the clustering solutions obtained when applying an
ActFreq, ActMRA or LED clustering technique, score better on separation with
4 clusters than with 2 or 3 clusters. This is an indication that partitioning this
event log into 4 clusters is appropriate for the ICP-data set.

Table 5. Number of clusters for which the separation metric SepHG is maximal. Seven
different clustering techniques were used, on four real-life datasets.

Technique KIM MCRM MOA ICP

ActFreq 2 2 2 8

ActMRA 2 3 2 4

GED 2 3 2 2

LED 2 2 2 5

MR 2 3 2 2

MRA 2 2 2 2

K-gram 2 3 3 2

Finally, Table 5 contains the exact number of clusters at which the SepHG

metric is maximal. It can be seen as a less nuanced version of Fig. 8. As such,
there is again an indication of a true cluster presence in the application of the
ActFreq, ActMRA or LED clustering techniques on the ICP-dataset, as well as
an indication regarding the application of the ActMRA, GED, MR and K-gram
on the MCRM-dataset, where three clusters appear to be optimal. On the KIM-
and MOA-datasets, no indication of a cluster number higher than 2 is present,
except for the application of the K-gram technique on the MOA-set.
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6 Discussion and Future Work

In this paper, two approaches for determining an appropriate number of trace
clusters is presented. The main contribution is a stability-based approach. All
components of this approach are discussed in detail, and it is evaluated on four
real-life datasets. This evaluation shows that utilizing a process model-based
metric as underlying similarity metric leads to more desirable results than using
a consensus-based similarity metric. This implies that model-driven evaluation
of trace clustering techniques is useful, supporting the claims of [9]. Furthermore,
it is shown that log-perturbation based on noise induction slightly outperforms
log-perturbation based on sub-sampling in this context. Finally, the importance
of normalizing the stability with regards to the stability of a random clustering
is illustrated.

As a contrasting approach to the stability-based one, a separation-driven
approach is proposed as well. It is based on process model-similarity, and is
shown to be a useful alternative approach in the evaluation. Remarkably, the
separation-based approach is shown to lead to different conclusions than the
stability-based approach, suggesting that a true cluster structure is present in
the MCRM-dataset and not in the KIM-dataset. Both approaches lead to similar
conclusions on the two other datasets.

With regards to future work, some options exist. First, it could be useful to
validate our approach in situations where expert knowledge about the number
of trace clusters is present. For the four datasets we utilized, no such knowl-
edge was available. In addition, expert knowledge could even be incorporated in
a trace clustering approach. Secondly, certain clustering approaches, like GED
and K-Gram, were shown to behave in a rather unstable manner, with lower
stability than a random clustering. The cause of this instability should be inves-
tigated more thoroughly, as the perturbation used for resampling is most likely
the cause of this instability: such techniques are likely quite sensitive to noise
or incompleteness, and thus inherently less suited to real-life applications. To
remedy this, techniques from the consensus clustering domain could be useful to
create clustering ensembles, which are expected to behave in a more stable man-
ner. Fourthly, the separation-based approach presented here could be used in a
more traditional structure-based approach according to the taxonomy of [26]. To
achieve this, the cross-cluster separation should be contrasted with the within-
cluster cohesion of a trace clustering. Finally, combining the stability- and the
separation-based approaches into a single, hybrid approach can be considered
an interesting avenue for future work.

Note. This paper extends and enhances [5], in three distinct ways: (1) it builds
on ĪHG to propose a separation-based approach for determining the number of
traces clusters, (2) this approach is evaluated on real-life event logs, and (3) the
number of iterations needed for the calculation of the stability and the needed
computational time are evaluated. These extensions are contained mainly in
Sects. 2.1, 4 and 5.
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Abstract. Imposing access control onto workflows considerably reduces
the set of users authorized to execute the workflow tasks. Further con-
straints (e.g. Separation of Duties) as well as unexpected unavailability
of users may finally obstruct the successful workflow execution. To still
complete the execution of an obstructed workflow, we envisage a hybrid
approach. We first flatten the workflow and its authorizations into a
Petri net and analyse for or encode the obstruction with a corresponding
“obstruction marking”. If a log is provided, we partition its traces into
“successful” or “obstructed” by replaying the log on the flattened net.
An obstruction should then be solved by finding its nearest match from
the list of successful traces. If no log is provided, the structural theory
of Petri nets shall be used to provide a minimized Parikh vector, that
may violate given firing rules, but reach a complete marking and by that,
complete the workflow.

Keywords: Workflow satisfiability · Authorization · Obstruction ·
Petri nets

1 Introduction

From the Société Générale scandal with loss of nearly five billion Euro caused
by shuffling transactions [8] to more recent scandals, for instance in the automo-
tive industry (e.g. the “Dieselgate” [23]) — the increasing number of corporate
fraud cases underline the growing demand for security and control in enterprises
and their corresponding information systems. Such systems increasingly adapt
to a process-oriented view to reach the intended business goals. These so called
process-aware information systems (PAIS) [18] can help to mitigate such fraud-
ulent behaviour by enhancing workflows with authorization constraints. In this
respect security in business processes gains more and more importance [1,28].
Classic computer security [4] usually follows the CIA triad, trying to achieve or
sustain confidentiality, integrity and availability, or simply “keeping bad things
c© Springer-Verlag GmbH Germany 2017
M. Koutny et al. (Eds.): ToPNoC XII, LNCS 10470, pp. 43–69, 2017.
DOI: 10.1007/978-3-662-55862-1 3
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from happening”. Security in business processes, however, should also consider
to “make good things happen” by reaching the intended business goals in com-
pleting corresponding processes.

The interplay of security in business processes and this notion of process
availability can be shown by analysing the impact of introducing authorization
in PAIS to achieve confidentiality and integrity. First, access control policies
are added on top of users contributing in the process, controlling who is autho-
rized to perform which task. On top of that, further constraints are defined,
for instance “separation of duties” (SoD) constraints [5] or contrary “binding of
duties” (BoD) constraints. Moreover, users can be on vacation or become ill. In
this way, the set of authorized users to execute tasks in a process is drastically
reduced and can result in a state where no user can be found to execute the
given task at hand, obstructing the workflow execution.

In this setting, an obstruction describes a state of a workflow instance where
the enforcement of the authorization policy conflicts with the business objectives.
In the control-flow level, the business objectives can be achieved by executing
a task t, but in the task-execution level there is no user who is authorized to
execute t without violating the given authorization policy [2].

1.1 Running Example

Figure 1 illustrates a simplified payment workflow and a user-task assignment.
Now, we add an SoD constraint for t1 and t2, meaning that the preparation of
payment needs to be done by a different user than the one who approves the
payment. Given the user-task assignment in Fig. 1(b), if u2 executes t1, t2 can
be performed by u1. If u1 executes t1, she can not execute t2 due to the imposed
SoD constraint, although she basically is authorized to perform this task. u2

can neither execute t2, since he is not authorized at all. This situation indicates
an obstruction of the workflow resulting from given authorization constraints
[2,3,16].

Fig. 1. Simplified payment workflow based on [6].

1.2 Related Work

Literature regarding satisfiability of authorization constrained workflows mainly
offers theoretical approaches so far [16]. In particular, research related to the
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so called workflow satisfiability problem (WSP) (see Sect. 2) shows that (under
the assumption that P �= NP) the NP-complete WSP is efficiently solvable for a
growing number of constraint types. Regarding access control systems in gen-
eral, there mainly exist two approaches for the case when no user is available to
access a certain object [11]: either alternative constraints are defined (“Break-
the-Glass”) or another user is empowered to access the object by use of delega-
tion. However, classic delegation requires the delegator to be available to perform
the delegation and involves the danger that delegation capabilities are misused
(e.g. collusion [27]). Considering these deficits, the approach of Crampton et al.
given in [11] suggests the concept of auto-delegation, in which qualifications are
introduced that indicate a potential delegatee. Examples on how the qualifica-
tion hierarchy may be computed based on an access control model are reported
in [11]. However, the auto-delegation mechanism only exists as a first concept
so far, which seems promising for the use in PAIS. In summary, the state of
the art on workflow satisfiability only scarcely solves the consequent practical
problems in terms of obstructions in workflow executions at runtime. Therefore,
we envisage to develop an approach that caters for the detection of obstructions
and policy-wise sound workarounds that allow their execution.

1.3 Structure

We first state Petri nets, events logs, authorization and structural theory formally
and introduce the corresponding terminology in Sect. 2. To tackle an obstructed
state in a workflow, we envisage a hybrid approach, depending on the existence
of historical information. The basis for the subsequent approaches builds the
flattening of a workflow and its authorization data into a Petri net, which is
presented in Sect. 3. In case no historical information is provided, we propose a
model-based exploration approach in Sect. 4 that suggests the minimal amount
of resources to be added into the model to escape from an obstructed state. When
historical information is provided in form of an event log, the method presented in
Sect. 5 could be used, which simply detects the most similar historical successful
trace. In both approaches the solutions propose which users shall be assigned
to which tasks to resolve the obstructions with least security violations. The
experimental evaluation at the end of each section show specific solutions to given
obstructions. We conclude in Sect. 6, draw the potential practical applications
of the presented work and show further research steps on the topic.

2 Preliminaries

We first give the definition of a Petri net to model workflows with a clear execu-
tion semantics. Then, we introduce users, user-task authorization and define SoD
and BoD constraints. In this way, we are able to grasp unsatisfiability in work-
flows formally, leading us to introduce structural theory as a way to encounter
this (see Sect. 4.1).
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2.1 Petri Nets and Event Logs

Definition 1 (Petri net). A Petri net [19] is a 4-tuple N = 〈P, T,F ,m0〉,
where P is the set of places, T is the set of transitions, satisfying P ∩T = ∅ and
F : (P × T ) ∪ (T × P ) → {0, 1} is the flow relation, and m0 is the initial
marking. A marking is an assignment of a non-negative integer to each place.
If k is assigned to place p by marking m (denoted m(p) = k), we say that p is
marked with k tokens. Given a node x ∈ P ∪ T , its pre-set {y|〈y, x〉 ∈ F} and
post-set {y|〈x, y〉 ∈ F} are denoted by •x and x• respectively. A transition t is
enabled in a marking m when all places in •t are marked. When a transition t
is enabled, it can fire by removing a token from each place in •t and putting a
token to each place in t•. A marking m′ is reachable from m if there is a sequence
of firings t1t2 . . . tn that transforms m into m′, denoted by m[t1t2 . . . tn〉m′. A
sequence of transitions t1t2 . . . tn is a feasible sequence if it is firable from m0.

Workflow processes can be represented in a simple way by using workflow
nets (WF-nets) [24]. A WF-net is a Petri net with a place start (denoting the
initial state of the system) with no incoming arcs and a place end (denoting the
final state of the system) with no outgoing arcs, and every other node is within
a path between start and end. The transitions in a WF-net represent tasks.
For the sake of simplicity, the techniques of this paper assume that models are
specified with WF-nets.

Definition 2 (System net, full firing sequences). A system net defines a
set of sequences, each one starting from the initial marking and ending in the
final marking. A system net is a tuple SN = (N,mstart,mend), where N is a
WF-net and the two last elements define the initial and final marking of the
net, respectively. The set {σ | (N,mstart)[σ〉(N,mend)} denotes all the full firing
sequences of SN .

Definition 3 (Trace, event log, Parikh vector). Given an alphabet of events
T = {t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite sequence of
events. An event log L ∈ B(T ∗) is a multiset of traces. |σ|a represents the number
of occurrences of a in σ. The Parikh vector of a sequence of events is a function
̂: T ∗ → N

n defined as σ̂ = (|σ|t1 , . . . , |σ|tn). For simplicity, we will also represent
|σ|ti as σ̂(ti). The support of a Parikh vector σ̂, denoted by supp(σ̂) is the set
{ti|σ̂(ti) > 0}.

Analogous to full firing sequences, full traces indicate a sequence of events
that are fully replayable on a WF-net, taking the net from the initial to the end
marking. Further, we adapt and extend the sequence definitions from [25]:

Definition 4 (Sequence to set operation, concatenation, set of log
events). For any sequence σ = 〈t1, t2, ..., tn〉 over T , ∂set(σ) = {t1, t2, ..., tn}.
∂set converts a sequence into a set, e.g., ∂set〈d, a, a, a, a, a, a, d〉 = {a, d}. a is
an element of σ, denoted as a ∈ σ , if and only if a ∈ ∂set(σ). σ

⊕

t′ =
〈t1, ..., tn, t′〉 is the sequence with element t′ appended at the end. Similarly,
σ1

⊕

σ2 appends sequence σ2 to σ1 resulting a sequence of length |σ1| + |σ2|.
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For any log L = {σ1, σ2, ..., σn}, L⊕ = σ1

⊕

σ2

⊕

...
⊕

σn concatenates all
traces in one sequence of length |σ1| + |σ2| + |...| + |σn|. Hence, ∂set(L⊕) gives
the set of all events that occur in all sequences contained in the log.

2.2 Security in Workflows

To connect WF-nets with users and authorization, we adapt the definitions
from [26]. Further constraints regarding workflow satisfiability analysis have
already been investigated [10]. However, in this paper we focus on the SoD/BoD
related binary constraints, which are sufficient to reach an obstructed state.

Definition 5 (Authorization). A configuration is given by a tuple 〈U,B〉,
where U ⊆ U is a set of users and B = {ρ1, · · · , ρm} ⊆ B is a set of binary
relations such that ρi ⊆ U × U(i ∈ [1, m]). Furthermore, we assume that B
contains two predefined binary relations = and �=, which denote equality (for
BoD) and inequality (for SoD), respectively. A configuration 〈U,B〉 defines the
environment in which a workflow is to be run.

A workflow is represented as a tuple 〈N,TA,C〉, where N is a WF-net, TA ⊆
U × T is the user-task authorization where (u, t) ∈ TA indicates that a user u
is authorized to perform task t, and C is a set of constraints, that is explained
below.

Definition 6 (Constraints). Each of the constraints takes one of the following
forms:

1. 〈ρ(t1, t2)〉: the user who performs t1 and the user who perform t2 must satisfy
the binary relation ρ.

2. 〈ρ(∃X, t)〉: there exists a task t′ ∈ X such that 〈ρ(t′, t)〉 holds, i.e., the user
who performs t′ and the user who performs t satisfy ρ.

3. 〈ρ(t, ∃X)〉: there exists a task t′ ∈ X such that 〈ρ(t, t′)〉 holds.
4. 〈ρ(∀X, t)〉: for each task t′ ∈ X, 〈ρ(t′, t)〉 must hold.
5. 〈ρ(t, ∀X)〉: for each task t′ ∈ X, 〈ρ(t, t′)〉 must hold.

Consider the simplified payment workflow in Fig. 1a. Let t1prepare
, t2approve

denote
the two tasks in the workflow. The SoD constraint of the workflow can be rep-
resented in tuple-based specification 〈�= (t1prepare

, t2approve
)〉.

A plan Pl for workflow W = 〈N,TA,C〉 is a subset of U × T such that,
for every task ti ∈ T , there is exactly one tuple (ua, ti) in Pl, where ua ∈ U .
Intuitively, a plan assigns exactly one user to every task in a workflow.

Given a workflow W = 〈N,TA,C〉 and a configuration Γ = 〈U,B〉, we say
that a plan Pl is valid for W under Γ if and only if for every (u, t) ∈ Pl, u
is an authorized user of t and no constraint in C is violated. We say that W
is satisfiable under Γ if and only if there exists a plan Pl that is valid for W
under Γ .

The workflow satisfiability problem (WSP) checks whether a workflow W is
satisfiable under a configuration Γ . Given configuration 〈U,B〉, checking whether
W is satisfiable under Γ is equivalent to checking whether there is a valid plan
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for W under Γ . Note that there can be multiple valid plans for a workflow
W under a configuration. In fact, it is the existence of multiple valid plans
that makes it possible for W to be completed even if a number of users are
absent. Therefore, the notion of resilience in workflows is introduced [26]: Given
a workflow W and an integer n ≥ 0, a configuration 〈U,B〉 is resilient for W
up to n absent users if and only if for every size-n subset U ′ of U , W is satisfiable
under 〈(U −U ′), B〉. In our example, the absence of either u1 or u2 would result
in an unsatisfiable workflow therefore it is not resilient for n > 0 absent users.
We show how we capture the aforementioned obstructions based on a WF-net
with an “obstruction marking” in Sect. 3.

2.3 Structural Theory of Petri Nets

Let N = 〈P, T,F ,m0〉 be a Petri net. Given a feasible sequence m0
σ→ m, the

number of tokens for a place p in m is equal to the tokens of p in m0 plus the
tokens added by the input transitions of p in σ minus the tokens removed by the
output transitions of p in σ:

m(p) = m0(p) +
∑

t∈•p

|σ|t F(t, p) −
∑

t∈ p•
|σ|t F(p, t)

The marking equations for all the places in the net can be written in the
following matrix form (see Fig. 2(c) as an example): m = m0 + N · σ̂, where N
∈ Z

P×T is the incidence matrix of the net: N(p, t) = F(t, p) − F(p, t).
If a marking m is reachable from m0, there exists a sequence σ such that

m0
σ→ m and the following system of equations has at least the solution X = σ̂

m = m0 + N · X (1)

If (1) is infeasible, m is not reachable from m0. The inverse does not hold
in general: there are markings satisfying (1) which are not reachable. Those
markings are said to be spurious [22]. Figures 2(a)–(c) present an example of
a net with spurious markings: the Parikh vector σ̂ = (2, 1, 0, 0, 1, 0) and the
marking m = (0, 0, 1, 1, 0) are a solution to the marking equation, as shown
in Fig. 2(c). However, m is not reachable by any feasible sequence. Figure 2(b)
depicts the graph containing the reachable markings and the spurious markings
(shadowed). The numbers inside the states represent the tokens at each place
(p1, . . . , p5). This graph is called the potential reachability graph. The initial
marking is represented by the state (1, 0, 0, 0, 0). The marking (0, 0, 1, 1, 0) is
only reachable from the initial state by visiting a negative marking through
the sequence t1t2t5t1, as shown in Fig. 2(b). Therefore, Eq. (1) provides only a
sufficient condition for reachability of a marking.

For well-structured Petri nets, e.g. when the net is free-choice [19], live,
bounded and reversible, Eq. (1) together with a collection of sets of places (called
traps invariants) of the system completely characterizes reachability [12]. For the
rest of cases, the problem of the spurious solutions can be palliated by the use
of trap invariants [14], or by the addition of some special places named cutting
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Fig. 2. (a) Petri net, (b) Potential reachability graph, (c) Marking equation.

implicit places [22] to the original Petri net that remove spurious solutions from
the original marking equation.

3 Flattening of Authorization Data

We first flatten the workflow and the corresponding authorization data into
one net, which builds the basis for the model and the log-based approach we will
present in Sects. 4 and 5. We start with an example to explain the flattening of the
different types of authorization/users constraints. For the sake of simplicity and
efficiency, we then first describe the generalized encoding on acyclic nets. Then
we proceed with nets containing cycles, which have a more complex encoding,
but preserves the idea of the encoding described in the acyclic case.

Given the example workflow in Fig. 1(a), we flatten the authorization and
constraints into a WF-net step by step. First, because of the absence of ambigu-
ous gateways in the model in Fig. 1(a), we can easily transform the workflow
into the Petri net in Fig. 3.

Fig. 3. Simplified payment workflow as WF-net with initial marking.

To model access control, we assume the simple access control model with-
out roles from Fig. 1(b). The user-task allocation is noted by the corresponding
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transitions (e.g. u1t1 in Fig. 4(a)). Firing u1t1 for instance represents the deci-
sion of who shall execute a specific task.

Fig. 4. Flattening access control and SoD into simplified payment workflow.

3.1 Generalizing Flattening

Given a workflow with authorization W = 〈N,TA,C〉, our aim is to flatten the
user-task authorization TA and the set of constraints C into a net N ′ to be able
to encode an obstructed marking directly into the net N ′.

We first take the user-task authorization TA and encode it into the net NTA.
Afterwards, we flatten further SoD and BoD constraints into the net NTA+SoD

and NTA+BoD.

Flattening of User-Task Assignment: The user-task assignment is flattened
with the intuition that for every possible user-task assignment, we introduce a
transition denoted by user and transition name (e.g. u1t1), that consumes a
token from one single place for the regarded transition to execute. By that, it is
guaranteed, that the transition can only be executed once by a specific user.

Definition 7 (Flattening user-task assignment). Given a workflow with
authorization W = 〈N,TA,C〉, flattening the user-task authorization TA into
N is as follows:

1. For each transition ti in N , create a place pti− and a place pti+ representing
the state that no user is assigned (−) or a user was assigned (+) to execute
ti respectively, and mark each of the pti− places with one token.

2. For each user-task authorization (uj , ti) ∈ TA, create a transition tujti .
3. For every place pti− and its corresponding transition(s) tujti , create an arc

〈pti−,tujti
〉.

4. For every transition tujti and its corresponding place pti+, create an arc
〈tujti , pti+〉.

5. For every place pti+ and its dedicated transition ti, create an arc 〈pti+, ti〉.
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After performing these steps, we obtain the net NTA = 〈PTA, TTA,FT A,mTA0〉,
where PTA = P ∪ {pt1−, pt2−, . . . , pti−} ∪ {pt1+, pt2+, . . . , pti+}, TTA =
T ∪ {tu1t1 , tu1t2 , tu2t1 , tu2t2 , . . . , tujti}, FTA = F ∪ {〈pt1−,tu1t1

〉, 〈pt2−,tu1t2
〉,

〈pt1−,tu2t1
〉, 〈pt2−,tu2t2

〉, . . . , pti−,tujti
〉} ∪{〈tu1t1 , pt1+〉, 〈tu1t2 , pt2+〉, 〈tu2t1 , pt1+〉,

〈tu2t2 , pt2+〉, . . . , tujti , pti+〉} ∪ {〈pt1+, t1〉, 〈pt2+, t2〉, . . . , 〈pti+, ti〉} and the mark-
ing mTA0 = 〈1, 0, 0, . . . , 0, 1, 0, 1, 0, . . . , 1, 0〉 with mTA0 according to the order
p1, p2, . . . , pi, pt1−, pt1+, pt2−, pt2+, . . . , pti−, pti+.

For example, we apply these five steps from Definition 7 to our running
example based on the net N and the user-task authorization: First, for the
transitions t1 and t2 we create the places pt1−, pt1+, pt2−, and pt2+ and mark
pt1− and pt2− with one token. Secondly, we create the user-task transitions
tu1t1 , tu2t1 , and tu1t2 , based on the user-task authorization. Thirdly, for pt1−
and its corresponding transitions tu1t1 and tu2t1 we create the arcs 〈pt1−,tu1t1

〉
and 〈pt1−,tu2t1

〉; for pt2− and its corresponding transition tu1t2 we create the
arc 〈pt2−,tu1t2

〉. Fourthly, for transitions tu1t1 and tu2t1 and its corresponding
place pt1+ we create the arcs 〈tu1t1 , pt1+〉 and 〈tu2t1 , pt1+〉; for tu1t2 and its
corresponding place pt2+ we create the arc 〈tu1t2 , pt2+〉. The fifth and last step
is then to connect all the created Petri net parts with the initial net, which is
realized by adding arcs from 〈pt1+, t2〉 to 〈pt2+, t2〉.

By this we finally merge N and TA of the running example into NTA,
where P = {p1, p2, p3, pt1−, pt1+, pt2−, pt2+}, T = {t1, t2, tu1t1 , tu2t1 , tu1t2},
F = {〈p1, t1〉, 〈p1, t2〉 〈t2, p3〉〈pt1−,tu1t1

〉, 〈pt1−,tu2t1
〉, 〈pt2−,tu1t2

〉, 〈tu1t1 , pt1+〉,
〈tu2t1 , pt1+〉, 〈tu1t2 , pt2+〉} and the marking mTA0 = 〈1, 0, 0, 1, 0, 1, 0〉 with mTA0

according to the order p1, p2, p3, pt1−, pt1+, pt2−, pt2+.

Flattening of SoD Constraints: In a further step, we model the SoD con-
straint by introducing a choice place for all users authorized for both tasks (see
Fig. 4(b)). A generalized way to model SoD is depicted in Fig. 5a.

Note that only for user-task assignments that are in conflict with each other
a SoD choice place is introduced (see SoDu1 and SoDu2). Notice that the restric-
tion on the sequential execution of ti and tj can be dropped, e.g. ti and tj can
be concurrent (as shown in Fig. 5a).

Definition 8 (Flattening SoD constraints). Given a workflow with autho-
rization W = 〈N,TA,C〉, after transforming the user-task authorization TA
into N resulting in NTA, flattening of SoD constraints cSoD ∈ C of the form
〈�= (tk, tl)〉 into NTA is as follows:

1. For each pair of user-task transitions tujtk and tujtl of each transition tk and
tl of each SoD constraint 〈�= (tk, tl)〉, create a place SoDujtktl and mark it
with one token.

2. For every created place SoDujtktl and its corresponding user-task transitions
tujtk and tujtl , create the arcs 〈SoDujtktl , tujtk〉 and 〈SoDujtktl , tujtl〉.

After performing these steps, we get the net NTA+SoD, which can be written
down similarly to NTA, but is avoided here for the sake of space.
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Fig. 5. Generalized SoD with application to simplified payment workflow.

Given the SoD Constraint from the running example 〈�= (t1, t2)〉, we apply
these two steps. First, we create an SoD place SoDu1t1t2 for the user-task-
transition pair tu1t1 and tu1t2 and add one token to it. Secondly, we create
the arcs 〈SoDu1t1t2 , tu1t1〉 and 〈SoDu1t1t1 , tu1t2〉 to make the SoD place act as a
choice place (see Fig. 4b).

By this we finally merge NTA of the running example into NTA+SoD, where
P = {p1, p2, p3, pt1−, pt1+, pt2−, pt2+, SoDu1t1t2}, T = {t1, t2, tu1t1 , tu2t1 , tu1t2},
F = {〈p1, t1〉, 〈p1, t2〉 〈t2, p3〉〈pt1−,tu1t1

〉, 〈pt1−,tu2t1
〉, 〈pt2−,tu1t2

〉, 〈tu1t1 , pt1+〉,
〈tu2t1 , pt1+〉, 〈tu1t2 , pt2+〉〈SoDu1t1t2 , tu1t1〉, 〈SoDu1t1t1 , tu1t2〉} and the marking
mTA+SoD0 = 〈1, 0, 0, 1, 0, 1, 0, 1〉 with mTA+SoD0 according to the order p1,
p2,p3, pt1−, pt1+, pt2−, pt2+, SoDu1t1t2 . Figure 5b depicts this net, which is basi-
cally the net of Fig. 4a with additional place annotations.

Flattening of BoD Constraints: Figure 6a depicts how we encode BoD con-
straints. Here, also choice places are added, however the arcs are connected
differently. Every choice place aims to prevent firing of a user-task transition
containing another user than the one first started with. Therefore, for each user-
task transition for one task a choice place is introduced and this place is con-
nected to the respective transition. Then, from each choice place, arcs are added
to every user-task transition for the other task, that does not contain the user
for which the choice place has been introduced. Notice that, just like in SoD
flattening, ti and tj can be concurrent.

Definition 9 (Flattening BoD constraints). Given a workflow with autho-
rization W = 〈N,TA,C〉, after transforming the user-task authorization TA
into N resulting in NTA, flattening of BoD constraints cBoD ∈ C of the form
〈= (tk, tl)〉 into NTA is as follows:
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Fig. 6. Generalized BoD with application to simplified payment workflow.

1. For each user-task transition tujtk or tujtl of each transition tk and tl of each
BoD constraint 〈= (tk, tl)〉, create a place BoDujtktl and mark it with one
token. If the respected user-task transition is already connected to a BoD place
regarding the respective constraint, proceed to the next user-task transition or
terminate if there are none left.

2. For every created place BoDujtktl and its corresponding user-task transition
tujtk create an arc 〈BoDujtktl , tujtk〉. For every user-task transition for tl
except tujtl create an arc 〈BoDujtktl , tuxtl〉.

After performing these steps, we obtain the net NTA+BoD, which can be written
down similarly to NTA, but is avoided here for the sake of space.

The running example does not contain an SoD constraint, however, we could
replace the SoD constraint with the BoD constraint 〈= (t1prepare

, t2approve
)〉.

Applying the first step of Definition 9 then creates the place BoDu1t1t2 for the
user-task transition tu1t1 , and BoDu2t1t2 for tu2t1 . Secondly, we create the arcs
〈BoDu1tk11 , tu1t1〉, here we can not create the second arc because of no other
user-task transitions for t2 than tu1t2 . Then we create the arcs 〈BoDu2tk11 , tu2t1〉
and 〈BoDu2tk11 , tu1t2〉.

This finally results in the net NTA+BoD, where P = {p1, p2, p3, pt1−, pt1+,
pt2−, pt2+, BoDu1t1t2 , BoDu2t1t2}, T = {t1, t2, tu1t1 , tu2t1 , tu1t2}, F = {〈p1, t1〉,
〈p1, t2〉 〈t2, p3〉 〈pt1−,tu1t1

〉, 〈pt1−,tu2t1
〉, 〈pt2−,tu1t2

〉, 〈tu1t1 , pt1+〉, 〈tu2t1 , pt1+〉,
〈tu1t2 , pt2+〉 〈BoDu1t1t2 , tu1t1〉, 〈BoDu2t1t2 , tu2t1〉, 〈BoDu2t1t2 , tu1t2〉} and the
marking mTA+BoD0 = 〈1, 0, 0, 1, 0, 1, 0, 1, 1〉 with mTA+BoD0 according to the
order p1, p2, p3, pt1−, pt1+, pt2−, pt2+, BoDu1t1t2 , BoDu2t1t2 . Figure 6b depicts
this net graphically.
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Fig. 7. Obstructed marking in flat-
tened WF-net.

Obstruction Marking: Given the running
example with the SoD constraint and the ini-
tial marking represented in Fig. 5b. After t1
has been executed by u1, we are running in
an obstructed state. This obstructed marking
mTA+SoDobs

= 〈0, 1, 0, 0, 0, 1, 0, 0〉 according
to the order p1, p2,p3, pt1−, pt1+, pt2−, pt2+,
SoDu1t1t2 is represented in Fig. 7.

3.2 Dealing with Loops

We assume process models that are well-
structured, and have clean constructions
which avoid “short circuits” between loops. In this regard, we moreover assume
single entry and single exit points for the respective cycle in a net [17]. For
every block of SoD or BoD and its corresponding user-task assignment encod-
ing, we “recharge” the corresponding SoD/BoD and (un)assignment places, i.e.
we produce tokens into all these places, when a loop involving them is entered.

The cyan part in Fig. 8 shows how we implement this “charging”. We
first introduce a transition “enter charging” that produces a token into the

Fig. 8. Loop charging. (Color figure online)
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place “cancellation control”. From there, we add for every SoD/BoD and
(un)assignment place a transition that is able to consume leftover tokens in them
(“cancel-transitions”). After all leftover tokens in regarded places are erased,
the“charge” transition can be fired to put one token back in each of them.
To control that this “charging” can only be performed when all corresponding
SoD/BoD and (un)assignment places are empty, we need to bound their capac-
ity to 1. Based on the “complementary-place transformation” that can be found
in [19], we introduce complementary places for this, labelled with the place it
is complementing followed by “ c1c” (“capacity 1 complement”). Further, we
add arcs to the transitions which are connected to the regarded places, so that
the sum of tokens for each pair of place and its place-complement equals always
the capacity (which is 1 in our case) before and after executing the regarded
transitions.

Fig. 9. Connecting charging elements into a given loop.

Figure 9 illustrates how to connect the “recharging” into a given loop. For
this, we add a transition “prepare loop” after the loop entry-point, which pro-
duces a token into a further place that is connected to “enter charging”. Now,
all “charging blocks” that are involved with the transitions of the regarded loop
can be concatenated. When the final charging transition is executed, a token is
produced into a newly introduced place that indicates that “charging finished”.

Fig. 10. Collateral evaluation workflow from [2].
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Fig. 11. Collateral evaluation workflow (blue) with the user-task flattening (green),
the SoD or BoD flattening (red) and loop-recharging (cyan). (Color figure online)
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Finally, this place is connected to the“enter loop” transition, that can only be
fired if the “enter charging” transition has been executed before producing a
token into the “loop running” place.

3.3 Comprehensive Example

To show the applicability of our generalization, we now introduce an example
based on the IBM Information Framework for collateral evaluation workflow
which has been modelled in BPMN in [2]. It is executed by a financial institution
to evaluate, accept, and prepare the safeguarding of the collateral that a borrower
pledges in return for a secured loan.

Here, the SoD and BoD constraints are noted right in the BPMN model.
Therefore, the authors in [2] also introduced the concept of release points (see
o1, o2, o3) to be able to look at SoD/BoD constraints in the scope of each loop
separately. To show the applicability of our flattening to different models, our
intention was to leave the model as it is, although release points are not necessary
for our encoding of SoD or BoD. Besides, we have the user-task assignment shown
in Fig. 12.

Fig. 12. User-task assignment.

According to [13] we first trans-
form the BPMN model into a P/T-
Net. Then, we flatten the user-task
assignment, the two SoD constraints
and one BoD constraint into the net
according to our presented theory.
Finally we add the charging for loops.
Figure 11 depicts the resulting net,
with colours highlighting the differ-
ent parts of the net. This net also
contains obstructions, for which we
will provide solutions in the experimental evaluation. in the subsequent sec-
tions, that present the approaches to solve obstructions based on the presented
flattening.

4 Model-Based Obstruction Solving

If only the model of a workflow with its authorizations and constraints are given,
we intend to solve an obstructed state not by changing the semantics of the
model (cf. [3]), but by finding the best path with minimal violation. Importantly,
by flattening the workflow with its authorizations and users into a Petri net
according to Sect. 3, we can regard obstruction states as deadlocked markings.
Hence, encoding the obstruction with a corresponding marking, the marking
equation can be used to provide a minimized Parikh vector to reach a completed
marking, which if it is fired from the obstruction state will violate the firing rules.
We now explain the use of the structural theory of Petri nets [22] to provide a
solution.
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4.1 Approach Using the Marking Equation

Given an obstruction marking mobs and a final marking mend, we use the mark-
ing equation m = m0 + N · X to find the Parikh vector X, indicating which
transitions has to be fired to reach the final marking. To enable the transitions
proposed by X, first, a live marking has to be reached by adding tokens from
variable Δ to the obstructed marking. With the help of a cost function cost(X,Δ)
considering trace length, the amount of tokens, and user-defined costs (e.g. for
security violations), the optimized solution with minimal cost for X and Δ shall
be proposed. The integer linear programming (ILP) [7] model below sketches
our approach for using the marking equation:

�

�

�

�

ILP model for completing an obstruction state mobs

Min cost(X,Δ) subject to:
mlive = mobs + Δ
mend = mlive + N · X
X,Δ ≥ 0 X ∈ N

|T | Δ ∈ N
|P |

After an obstructed marking mobs has been reached, the necessary tokens will
be added to the deadlocked model in order to take the current obstructed mark-
ing to a final state. The ILP model above has two sets of variables1: Δ is the
addition of tokens to mobs that takes to an unobstructed marking mlive, and
X is the Parikh vector that will take from mlive to mend. A solution to the
ILP model will then jointly decide the necessary amount of tokens and the con-
sequent firings to be made to reach mend. Remarkably, the cost function is a
minimization that considers both the length of the trace completing the work-
flow (through the Parikh vector X) and the amount of tokens needed to escape
from the obstruction marking (the variables Δ), thus globally optimizing these
two decisions. We consider the cost as a user-defined function, since different
costs could be assigned depending on the context, e.g., if a shortest path is pre-
ferred independently of the violations performed then one can set cost to 0 (or
significantly less than X variables) to Δ variables. On the other hand, if the
amount of violations should be reduced, the opposite cost can be set. Also, the
cost for variables in the X vector may differ, e.g., if the firing of certain activities
should be incentivized or avoided. The same holds for the Δ variables.

For instance, for the Petri net in Fig. 7, the given ILP model (assigning
unitary costs to both X and Δ) will find the solution Δ = (0, 0, 0, 1, 0, 0, 0, 0),
i.e., putting a token in the SoD place, and X = (0, 1, 0, 0, 1), with X according
to the order t1, t2, u1t1, u2t1, u1t2.

Clearly, the assignment on Δ and X variables defines the violations to make
in order to complete the workflow. Assessing the impact and meaning of these
violations for the authorization, constraints and users is a further challenge here,
representing a next step in our research dealing with security.

1 mlive can be computed from mobs and Δ.
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4.2 Model-Based Obstruction Solving Experiments

The theory presented in Sect. 4.1 was implemented and conducted on the inputs
given from the net in Fig. 11.

Implementation: The tool for model-based obstruction solving has been devel-
oped under Python 2.7, and Gurobi [15] was used as ILP solver. All the imple-
mentations were run on a Microsoft Windows 7 machine with 6 GB of RAM
and an Intel Core i7 2.6 GHZ CPU. The tool accepts the input files in PNML
standard format and returns the optimal solution as a list which contains an
encoding of the Δ and X vectors.

To assign costs in the implementation, we extended the Petri net type def-
inition (PNTD) of Place/Transition nets with the optional adding of costs to
places or transitions, resulting in P/T cost Petri nets (P/TCost-nets)2. This
PNTD redefines the value of P/T-nets with costs for places and transitions and
inherits the marking and annotations from the official PNML P/T-net definition.

Remarks on Cost and Results: Note that, no matter how costly, there
may be places (e.g. the SoD place from the simple payment workflow) to which
a token must be added to reach the final marking constraint. If there is a
choice between multiple transitions or places (e.g. SoD places to violate) to
reach the final marking, different costs assigned are crucial. The implementation
can handle both, unitary and differing costs. The optimal solution is obtained
when the constraint regarding the final marking is satisfied. Solutions provided
in the experiments are not unique. It is possible to have many optimal solutions
and all of them are correct.

Experiment Preparation: To facilitate for the tool to detect the final mark-
ing as a unique place holding a token, we needed to introduce further cancel-
lation transitions at the end of the process, consuming of all the remaining
tokens in the places that were put on top of the initial workflow before the
flattening, i.e. (un)assignment, SoD/BoD, and their corresponding capacity-1-
complement places. Therefore, similar to the introduction of new elements to deal
with loops, we inserted the following construct right before the end place: a tran-
sition “reach end”, that produces a token into a place to which all cancellation
transitions are connected, similar to the cancellation in the “loop-charging” (see
Fig. 8). However, the 1-boundedness restriction is not necessary here, because no
tokens have to be added to the respected places again. This construct allows the
cancellation of remaining tokens if needed. In this way, we were able to simply
change the obstruction marking without the need to consider changes in the final
marking (i.e. changes in the marking for the places resulting from the flattening).

2 https://github.com/iig-uni-freiburg/SEPIA/blob/ptcnet/res/pntd/ptcnet.pntd.

https://github.com/iig-uni-freiburg/SEPIA/blob/ptcnet/res/pntd/ptcnet.pntd
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Experiment Setting and Solution: Based on the net in Fig. 11 with unitary
costs assigned (cost = 1.0 for each place and transition), given an arbitrary
obstruction marking and a final marking to reach, our tool was able to provide
a solution. To demonstrate this, we show an interesting obstruction markings
which was reached after executing the following trace:
σobs = 〈ts, m1, f1, dt1, t1compute market value, at2, t2control computation,
Computation correct?yes, o3, bt3, t3Evaluate Safeguarding Requirements,
Safeguarding Required?yes, bt4, t4Prepare Safeguarding, m2, j1〉

The obstruction marking resulting from this trace is shown below, listing only
places which contain m(p) > 0. For reasons of clarity and understandability, the
marked places were categorized:
Workflow places (with m(p) = 1) = Pj1,t5

SoD places with (with m(p) = 1) = SoDct1t2, SoDat5t1, SoDdt5t3, SoDdt5t4,
SoDdt5t2

C1C places with (with m(p) = 1) = SoDat1t2 c1c, SoDdt1t2 c1c, BoDbt3t4 c1c,
BoDdt3t4 c1c, SoDat5t2 c1c, SoDdt5t1 c1c

The solution provided required to put one token into SoDat5t2 (Δ)
and provided the Parikh vector X containing the following transitions:
Approved?yes, reach end, at5, Approve Acquisition, te3. However, running the
tool again on the same obstruction marking and net provided a differ-
ent optimal solution, adding one token into SoDdt5t1 and with the Parikh
vector X containing the following transitions: Approved?yes, reach end,dt5,
Approve Acquisition, te. Hence there are multiple correct solutions obtained
by our approach. The replayability for both of the Parikh vectors on the net was
checked with an extension to the same tool.

Experiments with Bigger Nets: We then stepwise concatenated the same
net (again with equal costs) up to 6 times (see Fig. 14 for the 6th concatenation)
and encoded the upper obstruction marking into it. For all cases, the solution
proposed the addition of one token into SoDat5t2 or SoDdt5t1.

The obstruction marking was always encoded in the first of the concatenated
nets. Therefore, the solutions assigning values to the X vector to reach the final
marking increased. Table 1 represents some statistics of the ILP which we solved.
Gurobi also computed the corresponding costs. Note here that some transitions
in the computed solution happened more than one time because of the loops
in the net. Figure 13 represents a perfect linear relationship (i.e., R2 = 99%)
between the required execution time and the size of the problem.

Replayability: Since the solutions provided by the X vector do not provide the
real ordering of transition executions, we explored all the possible linearizations
to assess whereas a solution obtained denoted (in some of its possible lineariza-
tions) a real trace. We could only do this checking for the first four experiments

3 We omit the cancellation transitions here for the sake of clarity.
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Table 1. ILP statistics.

Places Transitions Variables ILP-Constraints Runtime Size of supp(Δ) supp(X) Total cost

69 82 151 220 0.117 1 17 30

138 165 303 441 0.269 1 51 74

207 248 455 662 0.352 1 85 118

276 331 607 883 0.440 1 119 162

345 414 759 1104 0.564 1 153 206

414 497 911 1325 0.643 1 187 250

(since for the rest, the exploration of possible solutions was very large). It is
remarkable that for these four models, the solutions obtained represented a real
trace, i.e., there was a linearization replayable in the model.

Fig. 13. Runtime of experiments.

Obstruction Position and Differing Costs: To check, whether the position
of the obstruction in the net has an impact on runtime, we also implemented an
obstruction in the last of the concatenated nets for the 6th concatenation (cf.
Fig. 14). The regarded net with 911 variables took 0.725 s to be solved, although
the solution contained only 18 instead of 188 variables. Hence, there were no
significant runtime differences to the same net with same size but different posi-
tion of obstruction marking. Obviously, the position of the obstruction has no
impact on the tools runtime.
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In a further experiment we assigned different costs to SoDdt5t1 (cost = 3.0)
and SoDat5t2 (cost = 5.0) to the net from the first experiment (with 151 Vari-
ables). Consequently, now, the second solution containing SoDdt5t1 became the
only one, resulting in a total cost of 32.0. Hence, the solution with least cost,
i.e. least violations was proposed.

5 Log-Based Obstruction Solving

If there is historical information of the process, i.e. an event log, we exploit this
information and divide the cases of the log into successful and obstructed ones,
based on the analysis of obstructions with the given model. Given such partition
of cases in the log, we intend to take an obstructed trace and find its nearest
match to the successfully executed traces by applying a k-nearest neighbour
(kNN) algorithm [9]. The nearest match would then propose the partial sequence
for the rest of execution to reach a completed state.

5.1 Approach Using Nearest Neighbour Search

Figure 15 illustrates the steps of the log-based approach and gives an example
with traces of an arbitrary model, categorized as successful or obstructed. Based
on the given model, its user-task assignment and corresponding SoD/BoD con-
straints, we can conduct the flattening on the workflow according to the theory
presented in the model-based approach and replay the regarded traces, thereby
identifying successful or obstructed executions.

To do this, the traces need to consist of events containing the name of the
executed task ti and the user uj who executed it. In case the traces are not easy
to map and to replay on the flattened model, we first show how the replaying
can be conducted. For this, we map such an event < ti, uj > to the transitions
of the model:

Definition 10 (Replay preparation). For each event < ti, uj > of the traces
σtu occurring in the log Ltu, the corresponding transitions of the flattened net
NTA+SoD+BoD, i.e. the corresponding user-task transition tujti assigning the
user to its task, and the transition ti indicating the task itself afterwards are
mapped to each other. By doing this, each event < ti, uj > of the trace σtu is
transformed to the sequence 〈tujti , ti〉. The resulting trace is notated as σutt, indi-
cating the event order of the transformed events. Analogously, the log is denoted
as Lutt.

Replay Analysis: To replay the resulting traces σutt, we use the log replay
algorithm [21]. The transformation from the BPMN model into a P/T-Net [13]
and the conducted flattening introduces transitions, which are not visible in the
log. Such invisible tasks are considered to be lazy, i.e., they might fire to enable
one of their succeeding visible tasks, in our regard the tasks from the BPMN
model (ti) or the user-task transitions (tujti), but will never be fired directly in
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Fig. 14. Concatenated net.
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Fig. 15. Log-based approach with example traces.

the course of log replay since they do not have a log event associated [21]. If
a trace σutt is replayable by applying the log replay algorithm and reaches the
final marking (with only one token left in the end place of the WF-net) the trace
is considered to be successful. Therefore, its corresponding original trace σtu is
added to the set of successful traces Ltu s. If the trace σutt is replayable but
does not reach the final marking, it is considered to represent an obstruction.
Therefore, its corresponding original trace σtu is classified as obstructed σtu obs.
Not fully replayable traces are neglected.

Find Nearest Match: Now, based on the performed classification of logs,
given the obstructed trace (cf. Fig. 15) containing the executed tasks and its
executor (e.g. σtu obs = 〈< t1, u1 >,< t2, u4 >,< t3, u2 >〉) we search for the
nearest match to the successful traces, to find a partial sequence to complete the
execution.

Definition 11 (Find k-nearest neighbours). Given a set of successful traces
Ltu s, an obstructed trace σtu obs and a positive integer k, finding the k nearest
traces to σtu obs is as follows:

1. For each trace σi in Ltu s, assign its Parikh vector σ̂i to the n-dimensional
space Rn, where n = |{∂set(Ltu s

⊕) ∪ ∂set(σtu obs)}|.
2. Find the k nearest Parikh vectors of successful traces {σ̂1, σ̂2, ..., σ̂k} with min-

imal distance to the Parikh vector of the obstructed trace
mink

σ̂i∈Ltu s
⊕

d(σ̂i, σ̂tu obs),

where d is the Euclidean distance metric d(a, b) =
√

∑n
i=1(ai − bi)2.
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Given {σ̂1, σ̂2, ..., σ̂k}, the partial sequences of the corresponding traces
{σ1|σtu obs|, σ2|σtu obs|,..., σk|σtu obs|} contain all the events after the |σtu obs|-th
position of the trace, presenting k potential sequences to complete from σtu obs.

If we find more than one candidate, we need to select one of them by an objective
function considering the length of the partial sequence to complete or the num-
ber of violations taken into account. For instance, the two successful candidates
σtu s1 = 〈< t1, u1 >,< t2, u1 >,< t3, u2 >,< t4, u6 >,< t5, u8 >,< t6, u9 >〉
and σtu s2 = 〈< t1, u1 >,< t2, u1 >,< t3, u2 >,< t4, u6 >,< t5, u7 >〉 are
chosen as the nearest match, both having the same first three events < t1, u1 >,
< t2, u1 >,< t3, u2 > in which only the executor of t2 (u1) differs to the executor
of t2 in the obstructed trace (u4). Then the potential partial sequences to com-
plete the execution σtu s1|σtu obs| = 〈< t4, u6 >,< t5, u8 >,< t6, u9 >〉 and
σtu s2|σtu obs| = 〈< t4, u6 >,< t5, u7 >〉 are compared by the objective function.
If we would like to minimize the length of the partial sequence, we would choose
σtu s2 part to complete σtu obs. Implications from choosing the closest trace regard-
ing security violations need further investigation.

5.2 Log-Based Obstruction Solving Experiments

We implemented the log-based approach and conducted experiments on the basis
of the comprehensive example presented in Fig. 10.

Implementation: The implementation of the log-based obstruction solving
approach was done in Java 8, using the Apache Commons math library to calcu-
late the Euclidean distance for the kNN algorithm. The tool takes two CSV files
for the successful and the obstructed traces as input plus a positive integer value
of k, which encodes the vicinity to look at when finding the closest matches to a
given obstructed trace. The experiments were conducted on a MacBook Pro OS
X El Capitan V 10.11.2 Machine, with 8 GB RAM and an Intel Core i7 3 Ghz
CPU.

Getting Traces: In Sect. 5.1 we presented how to classify traces into successful
or obstructed ones by replaying them on a flattened model. Since we did not have
real traces with a corresponding model and all the authorization data required
to perform the described analysis, we generated successful and obstructed traces
by playing the flattened Petri net from Fig. 11 (i.e. stepwise firing of enabled
transitions until an obstructed or a final marking is reached). By this, both eval-
uations build upon the same model, allowing us to compare the results. After
generating the traces, we mapped the events of the traces to the users who exe-
cuted them according to the flattened user-task assignment and filtered only the
relevant user-task events (in a real log, such event would contain the task name
with a user/originator who executed it (cf. Definition 10)). In this way, we gen-
erated successful and obstructed traces conforming to the user-task assignment
and SoD/BoD constraints. For each trace σ, the corresponding Parikh vector σ̂
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Table 2. Encoding of successful traces in 12-dimensional space

at1 ct1 dt1 at2 ct2 dt2 bt3 dt3 bt4 dt4 at5 dt5

0 0 1 0 1 0 0 1 0 1 1 0

1 0 0 0 1 0 1 0 1 0 0 1

0 1 0 1 0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 1 0 1 1 0

0 1 0 0 0 1 0 1 0 0 1 0

0 1 0 0 0 1 1 0 1 0 1 0

0 0 1 0 1 0 1 0 0 0 1 0

0 1 0 1 0 0 1 0 1 0 0 1

0 0 1 0 1 0 0 1 0 0 1 0

1 0 0 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 1 0 0 0 0 1

was build and assigned to the n-dimensional space. Table 2 displays the success-
ful traces which are assigned to a 12-dimensional space, based on all possible
user-task assignments.

Experiment Setting and Solution: Based on the Euclidean distance mea-
sure, we then computed the nearest-neighbour of the successful traces to the
regarded obstructed trace. For comparability, we chose the obstructed trace σobs

from the model-based experiments (encoded as (0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0)). The
solution for k = 5 is depicted in Table 3.

Table 3. Solution for k = 5 with highlighted partial sequence.

Distance Closest vector Related trace

1.732 0,1,0,1,0,0,1,0,1,0,0,1 〈< t1, c >, < t2, a >, < t3, b >, < t4, b >,< t5, d >〉
2.0 0,1,0,1,0,0,1,0,0,0,0,1 〈< t1, c >, < t2, a >, < t3, b >,< t5, d >〉
2.0 0,0,1,0,1,0,1,0,0,0,1,0 〈< t1, d >, < t2, c >, < t3, b >,< t5, a >〉
2.236 1,0,0,0,1,0,1,0,1,0,0,1 〈< t1, a >, < t2, c >, < t3, b >, < t4, b >,< t5, d >〉
2.236 0,1,0,0,0,1,1,0,1,0,1,0 〈< t1, c >, < t2, d >, < t3, b >, < t4, b >,< t5, a >〉

Clearly, if k = 1 there would be no need to make a decision which partial
sequence to choose (interestingly < t5, d > would then be proposed, although
the majority of successful traces for k = 5 in Table 2 ends with < t5, a >). Aside
from the Euclidean distance, the k = 5 solution requires an objective function to
be able to choose a partial trace that considers security violations or the minimal
length of the partial trace. However, because of the same length of all partial
traces the latter measure was neglected. To assess the security violations, the
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obstructed trace was checked against the different solutions and their impact on
given SoD and BoD constraints. Similarly to the model based approach, both
solutions violate one SoD constraint so that either < t5, a > or < t5, d > can be
chosen. However, looking onto the set of partial sequences provided in Table 3,
there is a majority for < t5, d >.

Experiment Outlook: The investigation of these and further factors to be
considered in the objective function is subject to future work. Moreover, the
features in the space of the kNN algorithm could be connected to the weight
of executing certain places or transitions, which could also be derived from a
corresponding P/TCost-net. Besides, different distance measures like the edit
distance could be implemented as well. Eventually, we want to conduct the tool
on real logs to show its applicability. For this, we tested the tools performance
and conducted it also on a bigger data set with 65-dimensional space and 247192
traces. Finding the 5 nearest neighbours for one trace took only 0.31 s. Therefore,
we are confident that the tool can handle big log files.

6 Conclusion and Future Work

Our work is located in the tension between security controls on the one hand
and maintaining flexibility in terms of process availability on the other. The
intention is to take a certain degree of violation into account to still succeed the
workflow. The presented approach provides a range of practical applications.
For example, it could be used to recommend who shall perform which tasks, for
example in a break glass situation, or as an assisted delegation, showing poten-
tial best delegates (with least violation) to the delegator. The core idea behind
the approach however is to enable automated delegation. Moreover, obstruction
analysis techniques and the visualization of authorizations and workflow in one
model could also help policy designers to better understand and improve their
policies.

Regarding the presented model-based approach there is the limitation that
the Parikh vector does not describe the execution order of the transitions. In
this regard, results need to be investigated further which can trade efficiency
by precision, i.e., incorporating ordering constraints in the marking equation.
Moreover, to better assess the violations taken into account, future work will
also aim to use profiling techniques based on logs.

Another line of research would be devoted to estimate resilience by using
structural theory of Petri nets: by estimating the minimal amount of users needed
to successfully complete a workflow, we will be able to provide an insight on the
resilience of the workflow.

Finally, we want to integrate the presented tools into the Security Workflow
Analysis Toolkit (SWAT) [20] to provide more specific evidence on how a reliable
solution in an organizational software system should be constituted.
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Abstract. Distributed storage systems are nowadays ubiquitous, very
often under the form of a hierarchy of multiple caches. While a lot of
effort has been dedicated to design, implement and optimise such sys-
tems, there exists to the best of our knowledge no attempt to use formal
modelling and analysis in this field. This paper proposes a formal mod-
elling framework to design distributed storage systems, with the inno-
vating feature to separate the various concerns they involve like data-
model, operations, policy, consistency, topology, etc. A model can then
be analysed through model-checking to prove properties, or through sim-
ulation to assess its performance. In this paper, we define the framework
and focus on performance analysis. We illustrate this on a simple yet
realistic example, a LRU cache (least recently used, possibly the most
known cache algorithm), showing that our proposal has the potential to
be used to make design decisions before the real system is implemented.

1 Introduction

Nowadays technologies make intensive use of distributed storage systems. A
particular and prominent form of such systems is caches. They can be found
embedded in almost every piece of hardware or software system that involves
information storage at some point. This results in overwhelmingly complex sys-
tems in which we cannot even be sure that caches actually improve the global
performance. One reason for this situation is the lack of tools to analyse such sys-
tems during their design stages. In particular, to the best of our knowledge, there
exists no attempt to formally model and analyse distributed storage systems.

Our main contribution in this paper is thus to propose a modelling framework
that can be applied to design distributed storage systems. Moreover, the overall
performance depends on a very large number of intricate aspects that cannot
easily be considered separately from each other in most implementations. An
important and innovative part of our contribution is to provide a clear separation
of various concerns with an explicit link between them:

– a generic data model is defined, allowing to consider a variety of operations
applicable to data;
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– topology is defined independently, describing how states are arranged in the
distributed system and how its nodes communicate;

– policy-related questions like placement strategy, organisation of nodes (typ-
ically hierarchically), collaboration between nodes, interpretation of the dis-
tributed state as a global state, etc., are considered and defined separately;

– properties like data consistency (e.g. cache coherence), correctness and ter-
mination of operations, deadlock-freeness, worst/best/mean-time execution,
etc., can be studied separately on the modelled systems.

The next section starts by defining the static aspects of the framework,
including: data model, operations on data, topology model, communication
between nodes, interpretation of the distributed data as a global state and pol-
icy. This is then enriched in Sect. 2.5 by defining the processes executed on each
node, in particular the actors that generate activity yielding executions (for
instance, a CPU in a memory hierarchy is an actor). Section 3 illustrates this
on a three levels cache hierarchy, showing how it can be modelled and how its
performance can be analysed. The last section concludes and gives perspectives,
together with a survey of related work. Finally, Appendix A describes the Petri
nets that implement the processes presented in Sect. 2.5.

2 The Modelling Framework

From a static point of view, a model consists of three aspects: (1) a data model
that defines states and operations on them; (2) a topology model that defines
a notion of nodes storing data, together with a communication model between
nodes. This leads to a notion of interpretation of a distributed state into a global
state; (3) a policy that decides how to manage the storage on nodes and where
each piece of state has to be located.

Each of these aspects is described in a dedicated subsection below; two more
subsections describe the dynamic aspects of the framework: (1) the management
of jobs (i.e. tasks) that each node has to execute in order to perform the expected
operations; (2) the processes run on each node in order to actually execute the
jobs. We shall distinguish particular nodes called actors that initiate all the
activity in a distributed storage, while other nodes are reacting to their requests.

2.1 Data

We consider three pairwise disjoint nonempty sets: K is the set of keys that
can be thought of as addresses; V is the set of values stored at these addresses;
L is the set of labels used to relate keys. For instance, for a Unix filesystem,
K would be the inodes addresses, V their content and L could model relations
like directory membership. For a memory model, V would hold all the possible
memory blocks whose addresses would be in K, and L would not be used.

Definition 1. A state σ is a pair (σ.h, σ.r) such that σ.h ∈ 2K×V and σ.r ∈
2L×2K×2K . We note by ΣK,V,L the set of all states, and define dom(σ.h) df= {k |
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∃v ∈ V, (k, v) ∈ σ.h}. A state σ ∈ ΣK,V,L is well-formed iff it satisfies the
following conditions:

– σ.h is a map: ∀k ∈ dom(σ.h), |{(k, v) ∈ σ.h}| = 1;
– all the keys in σ.r are mapped by σ.h:

⋃
(l,K1,K2)∈σ.r K1 ∪ K2 ⊆ dom(σ.h).

Such a state σ shall be depicted vertically as: ( σ.h
σ.r ). Intuitively, a state is

a map from related keys to the corresponding data. For instance, consider an
extremely simplified filesystem containing the following objects: the root direc-
tory “/”, sub-directories “/bin”, “/usr” with nested sub-directory “/usr/bin”,
and files “/bin/sh” and “/usr/bin/sh”. These objects could be represented as
a state σ as follows:

σ.h
df=

{
(0, /), (1, bin), (2, usr), (3, sh), (4, bin), (5, sh)

}

σ.r
df=

{
(root, {0}, ∅), (dir, {0}, {1}), (dir, {0}, {2}), (dir, {2}, {4}),
(file, {1}, {3}), (file, {4}, {5})

}

where σ.h stores the identifiers of the filesystem objects associating them to
their names, and σ.r stores links between the objects, allowing to identify a root
directory (root label) and the children of each directory, which may be directories
themselves (dir label) or files (file label).

States are equipped with various compositions and operations. For σa, σb ∈
ΣK,V,L, we define union (∪), intersection (∩) and difference (\) as component-
wise extensions of their sets counterparts. For instance, we have σa∪σb

df= (σa.h∪
σb.h, σa.r ∪ σb.r). For k ∈ K, σ ∈ ΣK,V,L, we note by σ/k the restriction of σ
from which any element involving k has been removed.

Prior to the definition of operations, we define an effect as a pair of states
[e.plus, e.minus] ∈ Σ2

K,V,L. It is interpreted as a patch (i.e. a collection of
additions and removals) that can be applied to a state in order to obtain a
new state. This application is a called a projection, noted 	 (or 
 is used
the other way round), and is defined for e ∈ Σ2

K,V,L and σ ∈ Σk,V,L as
e 	 σ

df= (σ\e.minus)∪e.plus. We also extend states restriction/component-wise
on effects.

In order to compose effects (and by consequence, operations), we introduce
operator � (sequence). Let σ, e, f be respectively a state, and two effects, we
define: (e � f) df= [(e.plus \ f.minus) ∪ f.plus, e.minus ∪ f.minus]. So that it is
easy to show we have: (e � f) 	 σ = f 	 (e 	 σ).

We can now associate a state with an effect as a pair (σ, e). These kind of
historicised states are needed to model distributed storage. Consider indeed a
simple case where a cache lies between a process and a storage. If the process
requests to delete the resource associated with a key k, this may be made in the
cache only. But just dropping the information associated with k in the cache is
not correct. Indeed, by definition, the cache holds only a subset of the information
that the storage holds. The absence of k in the cache is thus not a sufficient
information to know that k has to be deleted in the storage too, it may as well
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mean that k has never been stored in the cache. Moreover, if later k is allocated
again, the cache may store the new value associated with k and forget about
the fact that k has been deleted previously. So, a history allows a cache to hide
operations to the storage, which is exactly what one wants from a cache.

Projection is used to compute the effect of operations on states. Consider
for instance our example of a simplified filesystem presented above, and take an
initial state where only “/” and “/bin” exist. The creation of “/usr” can be
computed through a projection as follows:

( {(0, /), (1, bin)}
{(root, {0}, ∅), (dir, {0}, {1})}

)
�

[ {(2, usr)}
{(dir, {0}, {2})} ,

{}
{}
]

=

( {(0, /), (1, bin), (2, usr)}
{(root, {0}, ∅), (dir, {0}, {1}), (dir, {0}, {2})}

)

Operations. An operation is a request a user of the storage system might perform.
So a system definition includes the definition of its available operations. We want
any operation to have a parametrised effect (possibly neutral) and a result.
To apply an operation, one provides a valuation in K ∪ V ∪ L of the input
parameters, which we call a binding, then the result is a binding of the output
parameters. If no output parameters can be found, the operation fails. Otherwise,
the actual effect of the operation is computed by binding its parameters and
applying the result onto the state. A binding is a mapping from variables to
values, usually noted by β, possibly with subscripts or superscripts. We note by
keys(β) df= img(β)∩K the set of keys referenced in β, where img is the image (or
codomain) of the binding.

Definition 2. Let vars(e) be the set of variables involved in an expression e. An
operation is a 4-tuple op df= (op.name, op.guard , op.effect , op.params) such that:

– op.name is a name used to refer to the operation (any string);
– op.guard is a Boolean expression that guards the application of op;
– op.effect is an expression that can be evaluated to an effect;
– op.params is a set of (input) variables such that op.params ⊆ vars(op), where

vars(op) df= vars(op.guard) ∪ vars(op.effect);
– we have vars(op.effect) ⊆ op.params ∪ vars(op.guard);
– there exists at least one binding such that both op.effect and op.guard can be

actually evaluated ( i.e. both are actually computable together).

We note by OPS the set of all operations.

The role of the guard is to prevent operations to be applied on incompatible
states (e.g. one cannot read from an unallocated address). Thus the guard is
always evaluated on the state on which the operation is meant to be applied for
a given binding of the input parameters. Then, if the guard is true and output
parameters can be computed, the effect is evaluated and projected onto the state.
Given an operation op, we note by:

– Bop,K,V,L the set of all bindings β : vars(op) → K ∪ V ∪ L;
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– Bin
op,K,V,L the set of all bindings β : op.params → K ∪ V ∪ L;

– Bout
op,K,V,L the set of all bindings β : vars(op) \ op.params → K ∪ V ∪ L.

It should be stressed that we intentionally avoid to define a precise syntax
for expressions because we do not want to fix K, V and L, nor do we want to
restrict the scope of our definitions. The last item in Definition 2 is sufficient
to ensure that a concrete implementation of the framework has to provide a
concrete syntax (possibly a typing) for expressions as well as an effective way to
evaluate them.

For two bindings βa, βb ∈ Bop,K,V,L such that dom(βa) ∩ dom(βb) = ∅, we
define their composition β

df= βa + βb : dom(βa) ∪ dom(βb) → K ∪ V ∪ L as
follows:

∀x ∈ dom(β), β(x) df=
{

βa(x) if x ∈ dom(βa),
βb(x) otherwise, i.e. if x ∈ dom(βb)

For convenience, we introduce some more notations. Let σin ∈ ΣK,V,L, op ∈
OPS, and βin ∈ Bin

op,K,V,L, we define:

– op.guard(σin, β) is the evaluation of op.guard through β + {σ �→ σin} (i.e., β
extended with name σ being bound to σin), where σ refers to the input state
and can be used to access it from the guard;

– op.effect(β) is the evaluation of op.effect through a binding β;
– op.candidates(σin, βin) df= {βout ∈ Bout

op,K,V,L | op.guard(σin, βin + βout) ∧
op.effect(βin + βout) ∈ Σ2

K,V,L} is the set of possible output bindings that,
combined with βin, allow to validate the guard and to fully evaluate the
effect to a pair of valid states;

– op is called elligible for σin and βin iff op.candidates(σin, βin) �= ∅.

Then, when op is elligible for some input state and input binding, the set
of output states and output bindings is computed by applying op with every
possible candidate binding, which is made using a projection as follows.

Definition 3. The application of operation op ∈ OPS onto input state σin ∈
ΣK,V,L given an input binding βin ∈ Bin

op,K,V,L results in the subset of Bout
op,K,V,L×

ΣK,V,L defined by op(σin, βin) df= {(βout, op.effect(βin + βout) 	 σin) | βout ∈
op.candidates(σin, βin)}.

The part of the model defined so far can be used on its own to study the
data model itself. For instance, one can check the correctness of operations, or
sequences of operations, on a chosen set of states and input bindings.

2.2 Topology

A distributed storage consists of a set of nodes that communicate through buses
and store local states as state-effect pair (σ, e) ∈ ΣK,V,L ×Σ2

K,V,L. This topology
of nodes with states, and buses is formalised as an hypergraph as follows.
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Definition 4. Let N be a set of nodes, a topology T on N is a pair T
df=

(T.nodes , T.buses) where T.nodes df= N is the set of nodes and T.buses ⊆ 2N \ ∅
is the set of hyperedges. For i, j ∈ T.nodes, we define T [i, j] df= {b ∈ T.buses |
{i, j} ⊆ b}.

The (historicised) state of a topology is a function T.nodes → ΣK,V,L ×
Σ2

K,V,L = Σ3
K,V,L that maps each node to its (historicised) local state.

Given a topology T , nodes in T.nodes are allowed to communicate by
exchanging frames over the buses in T.buses. We assume that a bus can transmit
only one message at a time, i.e. a sender is blocked until a previously sent mes-
sage has been received. Moreover reading on a bus is a blocking operation, i.e. a
receiver attempting to get a message is blocked until a message is actually sent
for it. A non-limitative list of possible frames is presented in Fig. 1; other may be
considered, in particular non-blocking requests as in [7–9] that we omitted here
for the sake of simplicity. Each frame is a 4-tuple formed with the bus on which
the communication is made, the sender and recipient nodes identities, and the
message itself that can be of two types:

– block this type of message transmits a 〈request〉. It is blocking in that there
can be no further message between source and destination until the destina-
tion has responded with a return message holding the expected 〈response〉;

– return this type of message transmits a 〈response〉 to a 〈request〉, which
comes as a pair (return, 〈response〉).
We present here only one type of 〈request〉, but others can be easily consid-

ered. A request req df= (operate, op, β) is parametrised by an operation req .op
and an input binding req .β for this operation. The corresponding answer is a
〈response〉 that can be a success or a failure. In the former case, it comes
with the output binding (noted resp.β) chosen by the system; in the latter case,
it comes with a message to explain the failure.

Interpretations and integration. As soon as states are distributed over a topol-
ogy, we need to define how to compose these local states into a unique global
state. This must be user-defined together with the topology. Moreover we must
define how a node integrates the information about states it can deduce from its
exchanges with other nodes. For instance, consider a memory hierarchy with a
cache that receives a request to read a block a. If it forwards the request to the

〈frame〉 ::= (bus, source, destination, 〈message〉)
〈message〉 ::= (block, 〈request〉) | (return, 〈response〉)
〈request〉 ::= (operate, op, βin)

〈response〉 ::= (success, βout) | (failure, text)

Fig. 1. The frames exchanged between the nodes of a topology T , where bus ∈ T.buses,
source, destination ∈ T.nodes, op ∈ OPS, βin ∈ Bin

op,K,V,L, βout ∈ Bout
op,K,V,L and text

is a string. Special typesettings denote 〈non terminals〉 and symbols (i.e. constants).
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next level in the hierarchy and eventually receives the value v in the response,
it knows that (a, v) could be added to its local state. More generally, because of
the way operations are defined, knowing the operation together with the input
and output bindings is enough to evaluate op.effect . The latter may be com-
posed with the local historicised state. How this composition must be made (or
avoided) is dependent on how the distributed state is interpreted and must be
user-defined as well.

Definition 5. An interpretation IT of a topology T is a pair of functions:

IT
df=

{
globalview : (T.nodes → Σ3

K,V,L) → Σ3
K,V,L

integrate : T.nodes × T.nodes → (Σ5
K,V,L → Σ3

K,V,L)

In this definition, globalview is responsible for computing a single pair (σ, e)
from the distributed historicised state. Function integrate is more complex: it
takes a pair of nodes (a, b) and returns another function (ΣK,V,L × Σ2

K,V,L) ×
Σ2

K,V,L → ΣK,V,L × Σ2
K,V,L. This one takes a historicised state (σa, ea) and an

effect eb and combines them into a single historicised state (σ′
a, e′

a) that can
be understood as the integration on a of the effect eb on the state σa, for an
operation that was actually computed on node b.

2.3 Job Management

We have described a notion of request, transporting operations to be applied
by a node on its local state (according to its local policy as shown below). This
implies a way for a given node to keep track of these requests.

Therefore, at the core of each node is the job manager : when a 〈request〉
is received by a node, it is first stored in the job manager and associated with a
handler from a set H; then it is kept there until it is fully processed. Dependencies
can occur between requests: two requests r1 and r2 are dependent iff keys(r1.β)∩
keys(r2.β) �= ∅, otherwise they are independent. The job manager handles these
dependencies and provides the following methods:

last (key ∈ K) → H � {✗}
Returns the handler of the last request added with a domain including key if
any, or a dummy value ✗ if no request is associated with key .

add (request ∈ 〈request〉) → H
Adds request into the manager and returns a fresh handler for it. The added
request is recorded as dependent on the lastly added request for every key
in keys(request). We assume that H is large enough (e.g. infinite) to assign a
unique handler for every request added.

next () → 〈request〉 × H
Returns a pair (request , handler) that is ready to be proceeded (no pending
dependencies). The caller is blocked until such a job is actually available.

deps (handler ∈ H) → (〈request〉 × H)∗

Returns the list of pairs (r, h) corresponding to all the requests r and handler h
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the request rhandler associated with handler it depends on. This list is ordered
consistently with dependencies, its last item being (rhandler , handler), and it
is computed deterministically.

done (handler ∈ H)
Marks every information associated with handler as disposable (i.e. not
needed anymore) and clears from the job manager any such information.

2.4 Policy

A major challenge for our framework is to allow to define policy independently of
a particular data model and of a particular topology as well. This is addressed
in two ways: (1) the policy may consider only the presence or absence of the
data, as well as its internal relations, and (2) it may consider only a particular
interpretation IT , and not a specific topology.

The policy’s duties for a given node are to answer to the received requests and
to manage the available space. It may resort to a number of different strategies
and procedures to do so, including but not limited to: searching for a local
solution, searching for a remote solution (i.e. sending new requests to other
nodes), recording in its local state a solution that has been found (locally or
remotely), freeing storage space locally (i.e. making room).

Let us assume a variable me, global to each node, that is the identity of this
node. Its policy Pme

IT
for an interpretation IT is provided as a set of methods:

space (keys ⊆ K,σin ∈ ΣK,V,L) → N

Returns the number of values currently stored on node me that need to be
deleted in order to be able to store locally the values associated with keys.

update (keys ⊆ K, handler ∈ H)
This method does not return any value but is called on node me whenever
a request identified by handler has just been received. It is used to update
the current knowledge about the situation that may be maintained by the
policy. For instance it may update the MRU (most recently used) keys in a
LRU (least recently used) cache. Notice that the set H is exactly the same
set of handlers as used by the job manager described above.

purge () → K
Returns a resource currently stored on node me, which should be chosen as
the one which is the least useful when purge is called. For instance, a LRU
cache will precisely chose the least recently used key.

close (handler ∈ H, outcome ∈ {success, failure})
This method is called to commit (on a success) or cancel (on a failure)
the changes that occurred when update has been called.

trigger (string) → (req ∈ 〈request〉, handler ∈ H) → resp ∈ 〈response〉
This method returns a procedure associated with an event name. This pro-
cedure takes a request and its handler and returns the response. In this
paper, only event operate is considered, it corresponds to the processing
of an operate request. Other events and the corresponding procedures are
considered in [7], which leads to significantly more complex definitions as also
discussed in the appendix.



78 J. de la Houssaye et al.

Methods update and close work together: calling update allows to advertise
about an incoming processing of some keys, then calling close allows to commit or
cancel the possible changes made by update . The reason for such a mechanism is
that many operations on a node cannot be realised atomically and in particular
may require to communicate with other nodes. During this process, the node may
receive and proceed other requests, some of which may be completed locally. So
we cannot rely on a mechanism that would lock the whole node during the
processing of a request. Instead, we have this notion of transactions that we can
commit or rollback.

Note that several methods are expected to have side effects on the node,
both on its state and on meta-data it may maintain. For instance, a LRU cache
has to maintain a LRU-to-MRU ordered list of keys, which needs to be updated
typically on update .

2.5 Processes

We present now how our framework exploits all the objects presented so far to
actually model a distributed storage. To do so, each node executes a process and
we distinguish two kind of nodes: those that model the distributed storage itself
and that all run a copy of the same process (but not necessarily with the same
policy), and those that exploit the distributed storage and run a specific process
to model a particular user behaviour. The latter nodes are called actors and we
discuss them at the end of this subsection.

Node process are currently specified as code that generates a coloured Petri
net according to the policy. Appendix A shows the fixed parts of this net. Here,
we provide pseudo-code that describes in a more generic fashion how every such
generated net will work. Let us consider the following objects:

– me is the node on which the current process instance is executed;
– jobsme is the job manager for node me;
– T and IT are respectively the topology and its interpretation, they are shared

by all nodes;
– Pme

IT
is the policy and is specific to the node;

– (σme, eme) is the historicised state (i.e. a state and an effect) for node me.

Moreover, keyword atomic denotes a section of code that is executed atom-
ically and is actually implemented by a single Petri net transition.

Communications. We will use communication channel, like chan, that corre-
spond to Petri net places, in which we can produce, consume, or check for
the presence of messages, which is blocking until the expected message arrives.
These operations are noted respectively by chan.put (msg) (produce a message
implemented as a Petri net token), chan.get (msg) (consumes a message), and
chan.wait (msg) (both consumes and reproduces the same message). We note by
chanme a channel that is local to node me, otherwise it is a global channel.

Let io and buses be two channels, respectively holding ∅ and T.buses ini-
tially. Figure 2 shows how communications are modelled. Procedures SND and
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Fig. 2. Messages passing between nodes.

Fig. 3. Main processes on generic nodes.

RCV at the top ensure that only one message msg transits on a bus b at
once. Then, to implement blocking communications we introduce a channel
idleme and a channel waiterme for each node of T . We initialise idleme with
{n ∈ T.nodes | T [me, n] �= ∅} and waiterme with ∅. Note that SND and RCV
defined above are only used here and thus, always in the context of an atomic
block. Note also that sendRequest and receiveResponse will be used only in the
next section within nodes policies.

Node processes. Figure 3 defines two processes: listener and dispatcher . The for-
mer waits for the arrival of a new request to activate procedure receiveRequest
that adds it to the job manager and notifies the policy. The latter takes a request
from the job manager, selects the procedure to apply using the policy, applies it,
notifies the policy and the job manager of the result, and returns the response
to listener through a local channel returnsme. Noting by p! the infinite paral-
lel replication of a process p, each node runs a process consisting of two such
replications composed in parallel listener ! ‖ dispatcher !, which is executed in a
context that provides the previously defined global variables.



80 J. de la Houssaye et al.

Actors. To produce activity, we need to introduce dedicated nodes, called actors,
whose only role is to send messages and receive the corresponding answers. For
instance, a processor is the actor in a memory hierarchy. It could behave in many
different ways depending on what kind of programs it is supposed to execute.
As an illustration, we design in the next section an actor that models a CPU
with a LRU-friendly activity. The process executed by an actor is based on that
for generic nodes and complemented with an additional component that runs in
parallel to inject requests into the job manager, simulating the particular profile
of activity of the considered actor.

3 Application Example

3.1 A Simple Hierarchical System with a LRU Cache

To illustrate our framework, we model now a simple hierarchical system: an actor
A requests memory blocks to a storage S through a LRU cache C. These nodes
are arranged on topology T

df= ({A,C, S}, {{A,C}, {C,S}}) and, assuming that
the set of keys K is {k1, . . . , kszK

}, their initial states are:

(σA, eA) df= (σC , eC) df=
(( ∅

∅
)
,
[ ∅

∅ , ∅
∅
])

, and (σS , eS) df=
(
( α

∅ ) ,
[ ∅

∅ , ∅
∅
])

,

where α
df= {ki → vi | ki ∈ K} is randomly generated. Note that szK is here a

parameter to control the size of the system, i.e. its number of key/value pairs.
This system uses two operations defined as follows:

Name Guard Effect Params

read (k, v) ∈ σ.h
[
(k,v)

∅ , ∅
∅
]

{k}
write (k, v1) ∈ σ.h

[
(k,v2)

∅ , (k,v1)
∅

]
{k, v2}

Operation read gets the value v associated with a given key k. Operation write
replaces the value v1 associated with key k with value v2 also passed as argument.

We have here a hierarchical system in which state interpretation is straight-
forward: the global state is obtained by projecting effects top-down and integra-
tion projects an observed state onto the local state (except for A that maintains
an empty local state). Thus, interpretation IT is defined as follows:

globalview {(A, σA, eA), (C, σC , eC), (S, σS , eS)} �→ (eA 	 eC) 	 σS

integrate me, pos �→
{

σme , epos �→ σme if me = A,
σme , epos �→ epos 	 σme otherwise.

Modelling storage S. The policy PS for S is basically to answer the requests
itself, i.e. apply the operate it receives and return the result. This is detailed
in Fig. 4, where nop is a procedure that does nothing.



Formal Modelling and Analysis of Distributed Storage Systems 81

Fig. 4. Policy PS for storage S. Name tryLF stands for “try locally else fail”.

Fig. 5. Policy PA for actor A. Name tryTF stands for “try to transfer else fail”.

Modelling actor A. To observe the impact of cache C, we have to design an
actor that generates requests in a LRU-friendly way. It maintains a MRU-to-
LRU ordered list of szA < szK recently used keys and randomly generates
requests following an exponential law such that MRU keys are more likely to be
chosen, and a key that is not in the list may be chosen with a probability Pν .
Moreover, read requests are randomly chosen with a probability Pr and write
requests with a probability 1 − Pr. Policy PA for A amounts to keep its state
empty and to forward all its requests to the cache. This is detailed in Fig. 5.

Modelling cache C. We call szC < szK the capacity of cache C, and assume
that C maintains a MRU-to-LRU ordered list � of the keys it has most recently
used. Let a and b be two lists, we define the following notations: a[−1] is the
last element of a; a \ b is the list a from which all the elements also present in b
have been removed; |a| is the length of a; a ⊕ b is the list a extended by b \ a.
The cache policy is detailed in Fig. 6.
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Fig. 6. Policy PC for cache C. Name tryLT stands for “try locally else transfer”.

3.2 Analysis of the Example

To validate our model, we have created a reference implementation of our case
study, i.e. we have built a program that could be instrumented to observe its
execution. This allowed to compare the behaviour of the model with that of the
reference implementation. The result of this comparison is shown in Fig. 7.

From these plots we can observe that the model and the reference imple-
mentation have exactly the same hit ratio, and transfer almost exactly the same
amount of requests to the storage. The small difference on the latter measure
is due to our simulation that did not exclude some runs that perform correct

Fig. 7. Comparison of the modelled cache and the reference implementation.
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Fig. 8. Estimated cost of a request (lower is better) with respect to cache size; 95%
confidence intervals are depicted as vertical segments (and the gray zone).

but unnecessary actions (in particular, synchronising cached blocks with the
storage). It is interesting to have such behaviour in the model for correctness
analysis, but they introduce bias in performances simulations, fortunately with
a very limited effects as shown by our example. Future works should investigate
how to avoid such undesirable runs during performances simulations.

Then, choosing szK = 10, we have run 100 executions of the model for every
szC ∈ {0, . . . , 12}. For each run we have measured its duration by weighting
events as follows: communication events cost 0 on A, 40 on C and 400 on S;
other events cost 0 on A, 1 on C and S. Figure 8 shows the mean value of these
runs durations (estimated cost) with respect to the size of the cache. Because
the actor is LRU friendly, costs decrease with the cache size, until szK where
we reach the number of available keys. This closely matches the shape of curves
one can obtain from exercising a real LRU like our reference implementation.
However, comparing both costs would have required a tedious fine tuning of the
events weighting while it would have not provided more information. Note finally
that curves obtained with larger values of szK are closely similar as well.

This example shows how easy it is to use simulations of modelled systems
to analyse the impact of various parameters on the timed performance of the
system. We have considered here a simple system with a simple analysis, but
it is easy to see that we could have considered many other analyses of the
already numerous parameters of this system. A more complex case study can be
found in [7, chap. 4] where the demote distributed cache protocol (see below) is
analysed. Both these studies are done within a prototype implementation of the
framework presented in this paper. Using the SNAKES toolkit [13], it defines
all the classes and methods that correspond to the definitions as well as those
necessary to build the Petri net actually used to compute runs or state spaces.
In particular, the LRU case study presented in this section requires about 120
straightforward lines of Python to be implemented.
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4 Conclusion, Related Work and Perspectives

We have presented what is, to the best of our knowledge, the first attempt to
provide a generic modelling framework for distributed storage systems, and in
particular cache systems. Our proposal has the original feature to allow for a sep-
aration of usually intricate concerns. Moreover, it can be applied to qualitative
or quantitative analysis. We have illustrated on a simple yet realistic example
how a system can be modelled and its performance can be analysed. A more
complex case study with a detailed analysis is proposed in [7, Chap. 4].

We have thoroughly surveyed the literature about caches and distributed
storage systems and found no work directly related to ours. However, among
others, several papers are worth citing. [1] is probably the first paper to intro-
duce the notion of cache (not yet named this way) using a FIFO eviction algo-
rithm. Later, in [4], LRU (least recently used) is introduced, which is further
generalised in [15] that considers a hierarchy of caches. A recent evolution is
ARC, defined in [12], that is a sophisticated dynamic eviction algorithm which
adapts with respect to frequently or recently used blocks. Regarding analysis
aspects, [15] presents a simulation driven design of an efficient cache algorithm
(called demote). However, it is not implemented because it involves extensions
of existing low-level APIs of storage. This work also introduces the idea of dis-
tributed storage by partitioning the key domain across the caches in a hierarchy.
Another proposal is [6] that defines promote to fix costs problems of demote.
An interesting contribution is to introduce a notion of optimality of a cache
algorithm, showing that promote approaches it. Moreover, this work introduces
ideas to address multi-path hierarchies. [11] explores the idea of exploiting the
relations between resources, which are discovered through statistical analysis of
accesses. Our proposal makes these relations explicitly available in σ.r. Finally,
an interesting paper is [3] that surveys majors multi-level cache systems, with a
classification with respect to collaboration between levels, eviction algorithm and
local optimisation strategies. It also shows an analysis of the algorithm through
simulation and actual implementation of widely used benchmarks. These bench-
marks could be rendered as dedicated actors in our proposal.

Future work will be dedicated to explore performance analysis directly on the
state space, instead of resorting to simulated traces. It may be more accurate
than our current simulation-based method in the presence of rare but dramati-
cally slow runs. But it will be also less efficient if non trivial actors are considered
(leading to larger state spaces). To cope with this, we shall consider symbolic
techniques to reduce the cost of model-checking on models in our framework.
In particular, symmetries reductions on keys like in [5] and finite abstraction
of values on infinite domain like in [2] should be easy to adapt to our case and
would allow to consider realistic storage sizes. Combining both is a more chal-
lenging problem that we would like to address on the long term. Note however
that this is needed for state-space analysis only, indeed, traces are always fast
to compute, even with large number of keys as we have experienced using var-
ied parameters of the case study presented in Sect. 3. Moreover, we observed
that usually few traces are required in order to obtain smooth curves and small
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confidence intervals like that of Fig. 8. Another perspective would be to experi-
ment with evaluating runs duration using non-fixed costs functions when to take
into account some variability, in particular in communications. Finally, we con-
sider to replace direct Petri nets usage with a modelling language like ABCD [14].
Indeed, we have used quite complex programs to generate our nets at a higher
level of abstraction, which is the purpose of languages like ABCD. But our pro-
grams are not easily readable while ABCD code is way more readable and could
be presented itself, not necessarily through the Petri nets it allows to generate.

A Petri Nets Implementation

To allow their actual execution, the processes presented above are implemented
as coloured Petri nets. We present them here to illustrate their complexity but
we lack space to give fully detailed explanations and refer to [7] for such details.
We have used the SNAKES toolkit [13] to generate Petri nets for the various
processes and assemble them into a single net, then to run traces for performance
analysis and comparison with the reference implementation.

A.1 Notations

The Petri net modelling a complete system is split into sub-nets with shared
places that are merged later on. Figure 10 shows the most important sub-nets. We
depict shared places with thick borders and give them names; non-shared places
are depicted with thin borders and are unnamed. For the sake of readability, we
do not draw all the places. Instead we introduce some notations. For instance,
the policies are stored in a place Policy as pairs (me,Pme

IT
) for each node me.

This place and the arcs to read and write back these pairs are not depicted;
possibly an updated value of Pme

IT
is wrote back if we have called a method

with a side effect. We also use assignment on transitions guards to denote the
computation of a value that we bound to a variable to reuse it in the guard or
on the output arcs.

In the model, handlers for new requests are created by the job manager.
Our implementation makes use a feature of the SNAKES framework: dynamic
process identifiers. This feature has initially been created to handle systems that
can dynamically start/stop processes, see [5,10]. We use here the same notations
as in these papers to create requests handlers while being able to record by which
node each was created: each node is identified by me that is implemented as a pid
(process identifier); given a pid p, ν(p) creates a new pid that has a parent-child
relation with p, and χ(p) destroys pid p from the system.

A.2 Implementing Communications

Communications are modelled with two shared places used together: io and
buses. Every sent message is produced as a token in place io, from where it will
be consumed by a transition of the destination node. When a message is sent on
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a bus b, the token b is also consumed by the sender from place buses and it is
produced back by the receiver of the message. This way, only one message can
transit at a time on a bus. To further simplify the pictures, Fig. 9 also introduces
a notation for communications. Communications are implemented in such a way
that they could be replaced with variants without changing the rest of the model.
To do so, we define four shared places (see Fig. 10):

– reqs is the starting point of messages to be sent, it stores the requests to be
sent, its source and destination, and the bus to be used;

– resps is similar to reqs for the responses;
– pend stores received requests awaiting to be processed on the node;
– finally, when a response is received, it is placed into rets.

Fig. 9. Graphical notations for communications.

Process listener is implemented by the sub-net around transition B1 that
(with C1) corresponds to procedure receiveRequest and transition B2 that cor-
responds to sendResponse. Place idle is used to prevent node me from commu-
nicating with another node n while a response has not been received, imple-
menting the channels idleme. It is initialised with all the pairs corresponding
to the buses starting from me: {(me, n) | me, n ∈ T ∧ T [me, n] �= ∅}. Chan-
nels waiterme are implemented by the unnamed places below the two copies of
idle. Similarly, transitions A1 and A2 correspond to procedure sendRequest and
receiveResponse respectively.

The infinite replication of listener is obtained by the concurrency within this
sub-net: each message in reqs is processed concurrently to the others as long as
the corresponding buses are all available.

A.3 Implementing Processes

Place pend is filled either when a request is received by listener firing B1, or
directly by an actor (this is how activity is injected in its job manager).

A node starts its activity with transition C1 that picks a task in pend and
adds it to the job manager, from which transition C2 (first instruction of dis-
patcher) picks jobs, then asks the policy to select the appropriate processing
through place i(onreq) (abstracted by the call to a trigger procedure) and waits
for the result on transition C3 (atomic block in dispatcher). The latter puts back
the result in rets so that it is retrieved by listener with transition B2.
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Fig. 10. Petri net implementation of the processes. The two nets at the bottom
right are similar to that at the bottom center with S1/S2/i(LTL) being replaced
by S3/S4/i(TLF ) (top net) and S5/S6/i(TTF ) (bottom net) respectively. Arcs and
transitions labels are defined in Figs. 11 and 12 respectively.
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Fig. 11. Arcs labels of the Petri net depicted in Fig. 10.

Fig. 12. Transitions labels of the Petri net depicted in Fig. 10.



Formal Modelling and Analysis of Distributed Storage Systems 89

The mechanism with trigger procedures presented above is similar to the
late binding of method calls in object programming langages. A procedure is
chosen dynamically and called with the appropriate arguments by putting its
name in i(onreq) and its result is awaited for in o(onreq). The sub-nets that
perform this dynamic call are generated from the events specification, we have
presented above only event operate but others exist, in particular for internal
use. Look in particular to the sub-net around transitions S3 and S4: the former
picks in i(onreq) a call to tryLT and puts in i(TLT ) the appropriate arguments
to execute this procedure (req and h). Its result is retrieved by S4 (resp, h, and
i, where i is the node that actually performed the operation) and sent back to
dispatcher through place o(onreq).

Each procedure is implemented by its own sub-net and all the calls are han-
dled similarly. Procedure tryLF (try locally else fail) is implemented by the
sub-net around transitions D	 and called through the sub-net around S5 and
S6. Procedure tryTF (try to transfer else fail) is implemented by the sub-net
around transitions E	 and called through S7 and S8. Moreover, the while loop
in UpdateLRU is actually implemented by a needroom event that triggers a
procedure makeRoomOperate implemented by the sub-net around G1 and G2
through S1, we can observe in particular how the call to syncOperate that occurs
in the middle of the loop is implemented by G1 putting a token in i(SO) to trig-
ger the sub-net around transitions H	 which corresponds to the execution of
syncOperate.

As we have seen, the pseudo-code presented earlier on in the paper specifies
processes that are intrinsically sequential, and concurrency has been rendered
using an infinite parallel replication. But the Petri net implementation handles
concurrency through multiple tokens identified by node identifiers (me) and tasks
handlers (h).
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Abstract. The integrated management of business processes and mas-
ter data is being increasingly considered as a fundamental problem, by
both the academia and the industry. In this position paper, we focus on
the foundations of the problem, arguing that contemporary approaches
struggle to find a suitable equilibrium between data- and process-related
aspects. We then propose a new formal model, called db-nets, that bal-
ances such two pillars through the marriage of colored Petri nets and
relational databases. We invite the research community to build on this
new model, discussing in particular its potential in conceptual modeling,
formal verification, and simulation.

1 Introduction

In contemporary organizations, the integrated management of business processes
(BPs) and master data is being increasingly considered as a fundamental prob-
lem, both by academia and the industry. From the practical point of view, it
has been widely recognized that the traditional isolation between process and
data management induces fragmentation and redundancies in the organizational
structure and its underlying IT solutions, with experts and tools solely centered
around data, and others only focusing on process management [19,30,31]. This
isolation falls short, especially when it comes to knowledge-intensive and human-
empowered processes [4,21,23].

State-of-the-art BP management systems (BPMSs), such as Bizagi BPM,
Bonita BPM, Activiti, Camunda, and YAWL1, actually provide clean conceptu-
alizations for the process control flow as well as the “touching joints” between
control flow and data: (i) process instances (also called cases) carry local data,
(ii) a database backend is typically used to store global, persistent data, (iii) the
decision logic queries local and persistent data to choose which path to select
among multiple alternatives, (iv) the task logic dictates how to update local and
persistent data. However, as argued in [17], no well-established approach exists
to express the decision and task logic, which is in fact handled in an ad-hoc
way, usually combining tool-specific languages with general purpose program-
ming languages such as Java. The result is that the interaction of the process
and its data becomes a sort of “procedural attachment” that is exploited during
1 bizagi.com, bonitasoft.com, activiti.org, camunda.com, yawlfoundation.org.
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the process enactment, but that is not conceptually well-understood [11]. As
an effect, the verification tasks offered by such systems become either disabled
when data are present, or produce misleading answers, since they do not take
into account that the presence of data subtly affects the behaviors described by
the process [17]. For example, seemingly concurrent behavior in the process may
be in fact sequenced due to the presence of data constraints, which implicitly
induce an order on the allowed data updates. More generally, non-executable
paths and deadlocks may emerge only when the interplay between the process
and its data is considered.

Foundational research has also witnessed a similar separation, with non-
interacting areas of research either focused on data management or dynamic
concurrent systems, with database theory and Petri net theory being the two
most prominent representatives of each field. Over the years, both fields actually
entered into the problem of combining data and processes, with quite comple-
mentary approaches. A first series of approaches stem from Petri nets, the refer-
ence formalism to represent the control-flow of BPs. All such models are more or
less directly inspired by Colored Petri nets (CPNs) [3,22], where colors abstractly
account for data types, and where the control threads (i.e., tokens) traversing
the net carry data conforming to colors. Verification in this setting is tackled
by severely restricting the contribution of data. This is done by requiring colors
to have a finite domain, thus realizing a form of a-priori propositionalization of
the data, or by limiting the way tokens can carry data. This latter approach has
led to the identification of several CPN fragments that are amenable to formal
analysis even in the case of infinite color domains, ranging from nets where tokens
carry single data values (as in data- and ν-nets [25,32]), to nets where tokens are
associated to more complex data structures such as nested relations [20], nested
terms [34], or XML documents [8]. However, the common limitation of all such
approaches is that data are still subsidiary to the control-flow dimension: data
elements are “locally” attached to tokens, while no native support for global, per-
sistent relational data is provided. In this light, CPNs naturally support cases
and case data through the abstraction of colored tokens [33]. However, they do
not lend themselves to modeling, querying, updating, and ultimately reasoning
on persistent, relational data, like those typically maintained inside an enterprise
information system. For this reason, they are unable to impact contemporary
BPMSs, which, as argued above, all support the explicit linkage of BPs and an
underlying persistent relational layer [17].

The second group of foundational approaches to data-aware processes has
emerged at the intersection of database theory, formal methods and conceptual
modeling, and specularly mirrors the advantages and lacks of CPN-based solu-
tions. Such proposals go under the umbrella term of data-centric approaches [11],
and gained momentum during the last decade, in particular due to the develop-
ment of the business artifact paradigm [15], which also lead to concrete languages
and implementations [16,23]. The common denominator of all such approaches
is that processes are centered around an explicit, persistent data component
maintaining information about the domain of interest, and possibly capturing
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also its semantics in terms of classes, relations, and constraints. Atomic tasks
induce CRUD (create-ready-update-delete) operations over the data component,
in turn supporting the evolution of the master data maintained therein. Propos-
als then differ in terms of the adopted data model (e.g., relational, tree-shaped,
graph-structured), and on the nature of information (e.g., whether it is complete
or not). For example, [9,18] focus on relational databases, while [7] on XML and
tree-shaped data models. The main downside of data-centric process models is
that they disregard an explicit representation of how tasks have to be sequenced
over time, only implicitly representing the control flow via (event-)condition-
action rules [9,16,18]. Hence, they are too distant from contemporary BPMSs,
which all rely on Petri net-inspired languages to define the process control flow.

We believe that this lack of equilibrium is a major obstacle towards the
adoption of such foundational results into contemporary BPMSs, and that a
more balanced formal model will pave the way towards simulation, verification,
monitoring, and mining techniques that more effectively reflect, and exploit,
the main abstractions offered by contemporary BPMSs, and their interrelation-
ships. Technically, this in turn calls for the development of a formal model that
natively establishes intimate, synergic connections between CPNs and data-
centric approaches. To the best of our knowledge, the only existing proposal
that makes an effort in this direction is [17]. However, it employs workflow nets
[1] for capturing the process control flow, without leveraging the sophistication
of CPNs. Taking inspiration from [17], we then propose db-nets , a new, balanced
formal model for data-aware processes, rooted in CPNs and relational databases.
We rigorously describe the abstractions offered by the model, and formalize its
execution semantics. We finally invite the research community to build on this
new model, discussing its potential impact on modeling, verification, and simu-
lation. In particular, although preliminary, the verification results here presented
introduce conditions that could not be singled out in previous formal models.

Fig. 1. A Petri net (a) and an informal diagram (b) respectively capturing the process
and the data for our taxi booking example

2 The DB-Net Model: A Gentle Introduction

We discuss a concise, yet meaningful example that serves a twofold purpose:
illustrating the issues arising when separating data and process modeling, and
providing a gentle introduction to our proposal.
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An airport website offers a door-to-door taxi shuttle service that can be
booked on-line without any registration. To book a taxi, one only needs to leave
a phone number, a pickup address and a desired pickup time. Once all the
necessary data have been provided, the client confirms the booking and a free
taxi driver is assigned to execute the order. In a typical industrial setting where
business process experts and master data managers operate within separate silos
[12,31], capturing this scenario would require to independently gather process
and data requirements about the booking process. The process expert uses Petri
nets (see Fig. 1(a)) to capture the process requirements as the basis for the con-
struction of a web application. The application consists of the following steps.
Whenever a client enters a taxi booking page, a booking is created, by non-
deterministically picking a free taxi driver that will serve the booking (this is
done by consuming a token from the resource place FreeDrivers). The process
then demands the user to provide the relevant booking data (phone number and
pickup data). After that, the booking is finalized, entering into the phase of the
process where the booking is actually served, eventually leading to free the taxi
driver (this is modeled by feeding a token back to the FreeDrivers place).

On the other hand, the master data expert typically gathers requirement
about relevant data in the domain, and how to structure them in terms of classes,
relationships, and constraints that must hold in each system snapshot. This cre-
ates the basis for building a corresponding database schema. Figure 1(b) sketches
the resulting diagram informally, showing that a booking requires a combina-
tion of taxi, pickup data, and phone number, while, on the other hand, at any
moment a taxi may be associated to one or no booking (i.e., busy or free).

Both models are reasonable in their respective contexts. However, their com-
bination may lead to an overall faulty solution. For example, once the process
in Fig. 1(a) is deployed on top of the database obtained from the diagram in
Fig. 1(b), the process expert may be tempted to program the task logic underly-
ing Create Booking by actually creating a new instance of class Booking. However,
this update would be rejected by the underlying database, since its schema stip-
ulates that a booking can exist only if all the information related to taxi, pickup
data, and phone number is provided all at once.

Fixing this mismatch is possible only by simultaneously understanding the
process and the data schema. One possible solution is to let the process create a
booking during the execution of Create Booking, relaxing to “0...1” all multiplicity
constraints of type “1” in Fig. 1(b). This would in fact allow the data model
to store an incomplete booking where only some booking-related information
is known. Another possible solution would instead require to change the task
logic of the process, for example introducing local data variables to keep track
of the reserved taxi, provided phone number, and provided pickup data, then
creating a booking entry in the underlying database during the execution of the
Finalize Booking task.

To enable this form of integrated modeling and analysis, we propose db-nets.
The main idea is to maintain both the data and the process model intact, and to
enrich them with an interface that conceptually interconnects them. This three-
layered approach, applied to the booking example, may lead to the solution
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Fig. 2. A db-net representing the taxi booking process

shown in Fig. 2. The first layer, shown at the bottom, is the persistence layer,
a full-fledged relational database with constraints (in the figure, primary and
foreign keys) that faithfully mirrors the data model of Fig. 1(b). The second
layer, shown at the top, is the control layer, which captures the process logic
using a sophisticated variant of a CPN, which supports: (i) typing of tokens, so
as to account for local variables attached to execution threads; (ii) injection of
possibly fresh data values via special so-called ν-variables (leveraging the ν-PN
model [32]); (iii) accessing the content of the underlying data layer via special
view-places; (iv) updating the underlying data layer by attaching a database
update logic to its transitions.

Intuitively, sid – a variable used to manage booking sessions (resembling the
classical notion of “case id” in BPM) – will have a type int, while the PickupData
place will host tokens carrying data of type int× string×date. The only view-
place FreeDrivers accesses the underlying data layer to know which free taxies
do exist when the Create Booking transition is fired. The connection between the
view place and the transition is a read arc: to realize a clean update logic for the
data, tuples obtained from the data layer are not consumed at the level of the
net, but are manipulated via the update logic attached to the net transitions.

Such query and update functionalities are offered by a third, intermediate
layer in our framework, called data logic layer. On the one hand, view places
exploit the data logic layer to query the underlying data layer. E.g., the Free
Drivers place exploits a query that returns the IDs of taxis whose isFree column
is true. This realizes the fact that Create Booking cannot fire if no ID of this kind
exists. On the other hand, the two transitions Create Booking and Finalize Booking
exploit the data logic layer to update the persistent data depending on the
current state of the net, the data locally carried by tokens, and additional data
obtained from the external world via additional variables. Using this information,
the transitions call corresponding parametric actions that are exposed by the
data logic layer, and that encapsulate the update logic. In our example, whenever
Create Booking fires, action Reserve will update selected taxi setting its isFree
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column to false, thus realizing a form of “pre-booking” for the taxi. From now on,
the corresponding taxi ID will not be returned anymore by the query feeding the
Free Drivers view place. Finally, when Finalize Booking fires, all booking-related
data, so far only locally attached to tokens, are fed to action AddBooking,
creating a new persistent booking into the persistence layer.

Notice that this solution preserves the intention of the original models from
Fig. 1: the data are kept within the net until the point when they can be combined
into a proper tuple to be inserted into the underlying database, without violating
its foreign key constraints. In addition, the db-net clearly separates the control
flow of the process from persistent resources. While in Fig. 1(a) the taxi resources
have to be explicitly defined in advance and enumerated in the net, in our db-
net they are delegated to the databases, and whenever the actual fleet of taxis
changes, this change will be simply recorded in the data layer.

3 The db-net Formal Model

In this section, we formalize db-nets going through the three layers informally
introduced in Sect. 2: persistence layer, data logic layer, and control layer.

3.1 Persistence Layer

The persistence layer maintains the relevant data in the domain of interest. To
this end, we rely on standard relational databases equipped with constraints,
in the spirit of [9]. First-order (FO) constraints allow for the formalization of
conventional database constraints, such as keys and functional dependencies, as
well as semantic constraints reflecting the domain of interest. Differently from
[9], though, we also consider data types, on the one hand resembling concrete
logical schemas of relational databases (where table columns are typed), and on
the other reconciling the persistence layer with the notion of “color” in CPNs.

Definition 1. A data type D is a pair 〈ΔD, ΓD〉, where ΔD is a value domain,
and ΓD is a finite set of predicate symbols. Each predicate symbol S ∈ ΓD
comes with an arity nS and an n-ary predicate SD ⊆ Δn

D that rigidly defines its
semantics. A type domain is a finite set of data types. �

In the following, we use D to denote a type domain of interest, assuming that
types in D are pairwise disjoint, that is, their domains do not intersect, and
their predicate symbols are syntactically distinguished. This guarantees that a
predicate symbol S defined in some type of D, is defined only in that type, which
can be then unambiguously denoted, with slight abuse of notation, by type(S).
We also employ ΔD =

⋃
D∈D ΔD. Examples of data types are:

• string : 〈S, {=s}〉, strings with the equality predicate;
• real : 〈R, {=r, <r}〉, real numbers with the usual comparison operators;
• int : 〈Z, {=int, <int, succ}〉, integers with the usual comparison operators, as

well as the successor predicate.
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Definition 2. A D-typed relation schema is a pair 〈R, �D〉, where R is a relation
name, and �D is a tuple of elements from D, indicating the data types associated
to each component of R. A D-typed database schema R is a finite set of D-typed
relation schemas. �

For compactness, we represent a typed relation schema 〈R, 〈D1, . . . ,Dn〉〉 using
notation R(D1, . . . ,Dn).

Definition 3. Given a D-typed database schema R, a D-typed database instance
I over R is a finite set of facts of the form R(o1, . . . , on), such that (i)
R(D1, . . . ,Dn) ∈ R and (ii) oi ∈ ΔDi

, for each i ∈ {1, . . . , n}. Given a type
D ∈ D, the D-active domain of I, written AdomD(I), is the set of values in ΔD
such that o ∈ AdomD(I) if and only if o ∈ ΔD and o occurs in I. We also define
AdomD(I) =

⋃
D∈D AdomD(I). �

Example 1. The relation schema for a taxi in Fig. 1 is Taxi(int, string,bool).
Then, Taxi(1, 123AB, false) is a fact for Taxi denoting that taxi number 1 has
plate number 123AB and is currently busy. �

We now turn to queries. As query language, we resort to standard first-order
logic (FOL), interpreted under the active domain semantics [26]. This means
that quantifiers are relativized to the active domain of the database instance
of interest, guaranteeing that queries are domain-independent (actually, safe-
range): their evaluation only depends on the values explicitly appearing in the
database instance over which they are applied. Recall that this query language
is equivalent to the well-known SQL standard [6]. Since the relational structures
we consider are typed, the logic is typed as well.

Given a type domain D, we fix a countably infinite set VD of variables.
Each variable is typed. To this end, we introduce a variable typing function
type : VD → D mapping variables to their types. The typing function prescribes
that x may be substituted only by values taken from Δtype(x). For compactness,
the variable type may be explicitly shown using a colon notation x :type(x).

Definition 4. A (well-typed) FO(D) query over a D-typed database schema R
is a formula of the form:

Q ::= S(�y) | R(�z) | ¬Q | Q1 ∧ Q2 | ∃x.Q, where

• for �y = 〈y1, . . . , yn〉, we have that S/n is a predicate defined in ΓD for some
D ∈ D, and for each i ∈ {1, . . . , n}, we have that yi is either a value o ∈ ΔD,
or a variable x ∈ VD with type(x) = D;

• for �z = 〈z1, . . . , zm〉, we have that R(D1, . . . ,Dm) is a relation defined in R,
and for each i ∈ {1, . . . , m}, we have that zi is either a value o ∈ ΔDi

, or a
variable x ∈ VD with type(x) = Di.

We use standard abbreviations Q1∨Q2 = ¬(¬Q1∧¬Q2), and ∀x.Q = ¬∃x.¬Q. �
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Definition 5. A variable x ∈ VD is free in a FO(D) query Q, if x occurs in
Q but is not in the scope of any quantifier. By Free(Q) we denote the set of
variables occurring free in Q. A boolean query is a query without free variables.
�

Given a query Q such that Free(Q) = {x1, . . . , xn}, we employ notation
Qname(x1, . . . , xn):- Q to emphasize the free variables of Q, and to fix a natural
ordering over them.

Example 2. Consider the Taxi relation schema of Example 1. Query
QFreeTaxiId(x):- ∃p.Taxi(x, p, true) returns the set of ids associated to free
taxies. �

As usual, queries are used to extract answers from a database instance.

Definition 6. Given a set X = {x1, . . . , xn} of typed variables, a substitution
for X is a function θ : X → ΔD mapping variables from X into values, such that
for every x ∈ X, we have θ(x) ∈ Δtype(x). A substitution θ for a FO(D) query Q
is a substitution for the free variables of Q. �

As customary, we may view a substitution θ for a query Q simply as a tuple of val-
ues, assuming the natural ordering over the free variables of Q. We denote by Qθ
the boolean query obtained from Q by replacing each free variable x ∈ Free(Q)
with the corresponding value θ(x). In the following, we apply substitutions to
any structure containing variables. Substitutions are the basis for capturing the
semantics of query answers, which we tackle next.

Definition 7. Given a D-typed database schema R, a D-typed instance I over
R, A FO(D) query Q over R, and a substitution θ for Q, we inductively define
relation I entails Q under θ with active domain semantics, written I, θ |= Q,
as:

I, θ |= R(y1, . . . , yn) if R(y1, . . . , yn)θ ∈ I
I, θ |= S(y1, . . . , yn) if S(y1, . . . , yn)θ ∈ Stype(S)

I, θ |= ¬Q if I, θ �|= Q
I, θ |= Q1 ∧ Q2 if I, θ |= Q1 and I, θ |= Q2

I, θ |= ∃x.Q if there exists o ∈ Adomtype(x)(I) such that I, θ[x/o] |= Q

where θ[x/o] denotes the substitution obtained from θ by assigning o to x.2 �

Definition 8. Given a D-typed database schema R, a D-typed instance I over
R, and a FO(D) query Q(x1, . . . , xn) over R, the set of answers to Q in I, written
ans(Q, I), is the set of substitutions θ from the free variables of Q to the active
domain of I, such that Q holds in I under θ:

ans(Q, I) = {substitution θ : Free(Q) → AdomD(I) | I, θ |= Q}
�

2 If θ(x) is defined, its value is replaced by o, otherwise θ is extended so that θ(x) = o.
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When Q is boolean, we write ans(Q, I) ≡ true if 〈〉 ∈ ans(Q, I), or ans(Q, I) ≡
false if ans(Q, I) = ∅.

Example 3.
Let It = {Taxi(1, 123AB, false),Taxi(2, 432CD, true),Taxi(3, 456DA, true)} be a
database instance for taxies, and consider query QFreeTaxi(x, y):-Taxi(x, y, true),
which extracts the id and plate number of all free taxies. We then have
ans(QFreeTaxi(x, y), It) = {{x �→ 2, y �→ 432CD}, {x �→ 3, y �→ 456DA}}. �

We are finally ready to define the persistence layer.

Definition 9. A D-typed persistence layer is a pair 〈R, E〉 where: (i) R is a
D-typed database schema; (ii) E is a finite set {Φ1, ..., Φk} of boolean FO(D)
queries over R, modeling constraints over R. �

Example 4. Boolean query ∀x, y1, y2, z1, z2.Taxi(x, y1, z1) ∧ Taxi(x, y2, z2) →
y1 = y2 ∧ z1 = z2 expresses that the first component of Taxi (i.e., the taxi id) is
a key for the Taxi relation schema. �

The presence of constraints calls for a definition of which database instances are
compliant by a given persistence layer, i.e., satisfy its constraints.

Definition 10. Given a D-typed persistence layer P = 〈R, E〉 and a D-typed
database instance I, we say that I complies with P if: (i) I is defined over R;
(ii) I satisfies all constraints in E , that is, ans(

∧
Φ∈E Φ, I) ≡ true. �

Example 5. The persistence layer P = 〈R, E〉 is a fragment of an information
system used by a company to handle the submission of tickets, and their man-
agement by employees. R employs types string and int to define the following
relation schemas:

• Emp(string) lists employee (names);
• Ticket(int, string) models ticket (ids) and their description;
• Resp(string, int) models which employees handle which tickets: Resp(e, 1)

indicates that the employee named e is responsible for ticket number 1.
• Log(int, string, string) represents a log table storing information about all

the tickets processed so far, also listing their responsible employees and their
description.

The persistence layer is also equipped with a set of constraints over R, express-
ing (primary) keys, foreign keys, functional dependencies, and multiplicity con-
straints. E.g., the ticket number provides the primary key for Ticket , the second
component of Resp references the primary key of Ticket , and each employee
can handle at most one ticket at a time. It is well-known that such constraints
can be formalized in FO [6]. E.g., the latter constraint may be formalized as:
∀e, t1, t2.Resp(e, t1) ∧ Resp(e, t2) → t1 = t2. �
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3.2 Data Logic Layer

The data logic layer provides a bidirectional “interface” to interact with a data-
base instance complying with a persistence layer of interest. On the one hand, the
data logic allows one to extract data from the database instance using queries.
On the other hand, it allows one to update the database instance, adding and
deleting possibly multiple facts at once, with a transactional semantics: if the
new database instance obtained after the update is still compliant with the per-
sistence layer, the update is committed, otherwise it is rolled back. This approach
is in line with how database management systems operate in practice.

To query the database instance, we use FO(D) queries as in Definition 4. To
update the database instance, we instead resort to the literature on data-centric
processes [11,35], where actions are typically used to apply CRUD (create-read-
update-delete) operations over a relational database. Specifically, we adopt a
minimalistic approach, keeping the actions as simple as possible. The approach
is inspired by the well-known STRIPS language for planning, which has been
adopted also in for data-centric processes [5]. More sophisticated forms of actions,
as those in [9], can be seamlessly introduced.

Definition 11. A (parameterized) action over a D-typed persistence layer
〈R, E〉 is a tuple 〈n, �p, F+, F−〉, where: (i) n is the action name; (ii) �p is a
tuple of pairwise distinct typed variables from VD, denoting the action (formal)
parameters. (iii) F+ and F− respectively represent a finite set of R-facts over
�p, to be added to and deleted from the current database instance. Given a typed
relation R(D1, . . . ,Dn) ∈ R, an R-fact over �p has the form R(y1, . . . , yn), such
that for every i ∈ {1, . . . , n}, yi is either a value o ∈ ΔDi

, or a variable x ∈ �p
with type(x) = Di. An R-fact is an R-fact for some relation R from R. �
To access the different components of an action α = 〈n, �p, F+, F−〉, we use a dot
notation: α·name = n, α·params = �p, α·add = F+, and α·del = F−.

Example 6. Consider the Reserve action from Fig. 1. It takes as input two
parameters, respectively denoting a taxi id and its plate number, and has the
effect of switching its status from free to busy. This is modeled as follows:

Reserve·params = 〈id, pn〉 Reserve·del = {Taxi(id, pn, true)}
Reserve·add = {Taxi(id, pn, false)} �

We now turn to the semantics of actions. Actions are executed by grounding
their parameters to values. Given an action α and a (parameter) substitution
θ for α, we call action instance αθ the (ground) action resulting from α by
substituting its parameters with corresponding values, as specified by θ.

Definition 12. Let P = 〈R, E〉 be a D-typed persistence layer, I be a D-
typed database instance I compliant with D, α be an action over P, and
θ be a substitution for action·params. The application of αθ on I, written
apply(αθ, I), is a database instance over R obtained as (I \ F−

αθ) ∪ F+
αθ, where:

(i) F−
αθ =

⋃
R(�y)∈α·del R(�y)θ; (ii) F+

αθ =
⋃

R(�y)∈α·add R(�y)θ. We say that αθ can
be successfully applied to I if apply(αθ, I) complies with P. �
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The application of an action instance amounts to ground all the facts contained
in the definition of the action as specified by the given substitution, then apply-
ing the update on the given database instance, giving priority to additions over
deletions (this is a standard approach, which unambiguously handles the situa-
tion in which the same fact is asserted to be added and deleted).

Example 7. Consider the data layer shown in Fig. 2, the database instance
It from Example 3, and action Reserve from Example 6. The applica-
tion of Reserve[id/2, pn/432CD] is successful, and leads to the new database
instance I ′

t = {Taxi(1, 123AB, false),Taxi(2, 432CD, false),Taxi(3, 456DA, true)},
where taxi number 2 is in fact busy. �

The data logic simply exposes a set of queries and a set of actions that can
be used by the control layer to obtain data from the persistence layer, and to
induce updates on the persistence layer.

Definition 13. Given a D-typed persistence layer P, a D-typed data logic layer
over P is a pair 〈Q,A〉, where: (i) Q is a finite set of FO(D) queries over P; (ii)
A is a finite set of actions over P. �

Example 8. We make the scenario of Example 5 operational, introducing a
data logic layer L over P. L exposes two queries to inspect the persistence layer:

• Qe(e):-Emp(e) ∧ ¬∃t.Resp(e, t), to extract idle employees;
• Qt(t, d):-Ticket(t, d), to extract tickets and their description.

In addition, L provides three main functionalities to manipulate tickets in the
persistence layer: ticket registration, assignment/release, and logging. Such func-
tionalities are realized through four actions (where, for simplicity, we blur the
distinction between an action and its name). The registration of a new ticket
is managed by an action reg that, given an integer t, and two strings e and
d, (reg·params = 〈t , e, d〉), simultaneously creates a ticket identified by t and
described by d into the persistence layer, and assigns the employee identified by
e to such ticket (thus making her busy):

reg·del = {Emp(e)} reg·add = {Ticket(t , d),Resp(e, t)}
Two specular actions assign and release assign or release a ticket to/from an
employee, making her busy or idle. Both actions take as input a string for the
employee nameandan integer for a ticket it (assign·params = release·params =
〈e, t〉), and update e by removing or adding that e is responsible of t:

release·del = assign·add = {Resp(e, t)} release·add = assign·del = ∅
Finally, action log with log·params = 〈t , e, d〉 is used to flush all the informa-
tion of a ticket into a log table. The action erases all information about the ticket,
and logs that it has been processed, also recalling its employee and description:

log·del = {Ticket(t , d),Resp(e, t)} log·add = {Log(t , e, d)}
�
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3.3 Control Layer

The control layer employs a variant of CPNs to capture the process control flow,
and how it interacts with an underlying persistence layer through the function-
alities provided by the data logic. The spirit is to conceptually ground CPNs
by adopting a data-oriented approach. This is done by introducing dedicated
constructs exploiting such functionalities, as well as simple, declarative patterns
to capture the typical token consumption/creation mechanism of CPNs.

Before introducing the different constitutive elements of the control layer
together with their graphical appearance, we fix some preliminary notions. We
consider the standard notion of a multiset. Given a set A, the set of multisets
over A, written A⊕, is the set of mappings of the form m : A → N. Given
a multiset S ∈ A⊕ and an element a ∈ A, S(a) ∈ N denotes the number of
times a appears in S. Given a ∈ A and n ∈ N, we write an ∈ S if S(a) = n.
We also consider the usual operations on multisets. Given S1, S2 ∈ A⊕: (i)
S1 ⊆ S2 (resp., S1 ⊂ S2) if S1(a) ≤ S2(a) (resp., S1(a) < S2(a)) for each
a ∈ A; (ii) S1 + S2 = {an | a ∈ A and n = S1(a) + S2(a)}; (iii) if S1 ⊆ S2,
S2 − S1 = {an | a ∈ A and n = S2(a) − S1(a)}; (iv) given a number k ∈ N,
k · S1 = {akn | an ∈ S1}.3

Places. The control layer contains a finite set P of places, which in turn are
classified in two groups. On the one hand, so-called control places play the role
of standard places in classical Petri nets: they represent conditions/states of a
dynamic system. On the other hand, so-called view places are used as an interface
to the underlying persistence layer, so as to make the persistent data available
to the control layer. We then have P = Pc � Pv, where Pc and Pv respectively
denote the set of control and view places.

In the spirit of CPNs, the control layer assigns to each place a color, which
in turn combines one or more data types from a type domain D. Formally, a
D-color is a cartesian product D1 × . . . × Dm, where for each i ∈ {1, . . . , m}, we
have Di ∈ D. We denote by Σ the set of all possible D-colors.

Definition 14. A D-color assignment over places P is a function color : P →
Σ mapping each place p ∈ P to a corresponding D-color. �

As for control places, it is well-known that the coloring mechanism can be
exploited to realize a plethora of conceptual abstractions on top of the control
flow. We mention here the two most important abstractions in our setting: (i)
cases and their data, and (ii) resource. A case represents a specific process
instance, and its case data [33] are local data whose scope is the case itself,
and that are used to store important information for the progression of the
case. Such data may be either extracted from the underlying persistence layer,
or obtained by interacting with the external environment (e.g., human users,
external services, or data generators). Resources represent actors able to handle
the execution of tasks. They are also typically associated to data attributes
(e.g., id, role, group). Tasks typically consume (certain kinds of) resources when

3 Hence, given a multiset S, we have 0 · S = ∅.
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executed, and this implicitly affect the degree of concurrency in the progression
of cases, as well as the possibility of spawning new cases.

The fact that control places are colored implies that whenever a token is
assigned to a control place, it must carry a data tuple whose types match
component-wise the place color. It is worth noting that a colored place may
be interchangeably considered as a specific state/condition within the control
layer, or as a special relation schema used to enrich the persistence layer with
control-related information. Similarly, a token distributed over a place may be
interchangeably seen as a thread of control located in that state, or as a tuple
assigned to the relation schema represented by that place.

As discussed above, control places host tokens carrying local data. Obviously,
the control layer also requires to query persistent data, using them to decide how
to route tokens when it comes to business decisions, or to assign them to case
data. We want to support both possibilities, but clearly separating the data
retrieved from the persistence layer, from those carried by tokens. This is why
we distinguish view places from control places. Each view place exposes to the
control layer a portion of the data stored in the persistence layer. Formally, this
is done by equipping the view place with a query defined in the data logic layer.

Definition 15. Given a data logic layer L = 〈Q,A〉, a query assignment from
view places Pv to queries Q is a function query : Pv → Q mapping each view
place p ∈ Pv with color(p) = D1 × . . . × Dn to a query Q(x1, . . . , xn) from
Q, such that the color of p component-wise matches with the types of the free
variables in Q: for each i ∈ {1, . . . , n}, we have Di = type(xi). �

A view place may be seen as a normal place, whose color is implicitly obtained
by the types of the free variables of the query, considered with their natural
ordering. However, tokens are not arbitrarily attached to it: at a given time, the
tokens it contains represent the answers to the query it is associated to. All such
tokens are only “virtually” present in the control layer, and in fact they cannot
be consumed within the control layer itself, but only accessed in a read-only way.
Notice, however, that the content of the view place is not immutable: it changes
whenever the data it fetches from the persistence layer are updated.

Example 9. Consider the db-net of Fig. 2. Place FreeDrivers is a view place,
connected to the query QFreeTaxi shown in Example 3. At a given time, such a
place “inspects” the content of the underlying persistence layer and retrieves
all pairs 〈tid, pn〉, where tid is the id of a free taxi, and pn is its plate num-
ber. Such pairs are seen as tokens “virtually” present in the view place. Place
ReservedTaxi is a normal, control place, used to store session ids together with
their corresponding reserved taxi id. �

Transitions. As customary, in our model transitions represent atomic units of
work within the control layer, thus providing the fundamental building block to
describe the dynamics of a process. In our setting, they simultaneously account
for three different aspects: the token consumption/production mechanism of
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CPNs, the injection of possibly fresh data from the external environment a là
ν-Petri nets [32], and the impact on the underlying persistence layer.

We start with the consumption of tokens. This is modeled through input arcs
connecting places to transitions, together with inscriptions that declaratively
match tokens and their data. To this end, we build on the approach adopted in
variants of data nets [5,25,32]: an inscription is just a multiset of tuples over
a given set of typed variables. Each tuple nondeterministically matches a token
from the input place, and the variables therein are bound, component-wise, to
the data carried by that token. Upon firing, the token is consumed if the input
place is a control place, whereas it is only inspected if the place is a view place.

The overall consumption/inspection of tokens and the data they carry along
all arcs incoming into a transition constitutes a firing mode for that transition.
In the context of a transition definition, we call inscription a tuple of typed
variables (and, possibly, values). We denote the set of all possible inscriptions
over set Y as ΩY , and the set of variables appearing inside an inscription ω ∈ ΩY
as Vars(ω), extending such notation to sets and multisets of inscriptions.

Definition 16. An input flow from places P to transitions T is a function Fin :
P × T → Ω⊕

VD
assigning multisets of inscriptions (over variables VD) to input

arcs, such that all such inscriptions are compatible with their input places. An
inscription 〈x1, . . . , xm〉 is compatible with a place p if color(p) = D1× . . .×Dm,
such that for every i ∈ {1, . . . , m}, we have type(xi) = Di. �

Graphically, we do not depict input arcs whose inscription is ∅. We define the
input variables of t, written InVars(t) as the set of all variables occurring on
input arc inscriptions for t:

InVars(t) = {x ∈ VD | there exists p ∈ P such that x ∈ Vars(Fin(〈p, t〉))}.

The set InVars(t) gives an indication about which input data elements are
accessed when a transition fires. The multiple usage of the same variable in an
inscription, or in inscriptions attached to different arcs incident to a transition,
captures the requirement of matching the same data object in different tokens,
allowing the transition to fire only if the accessed tokens carry the same data
value. This mirrors the notion of join used when querying relational data. In
general, though, the modeler may require to specify additional constraints over
such input data to allow firing the transition. To this end, we introduce guards.

Definition 17. A D-typed guard is a formula of the form:

ϕ ::= true | S(�y) | ¬ϕ | ϕ1 ∧ ϕ2

where, for �y = 〈y1, . . . , yn〉 ⊆ VD, we have that S/n is a predicate defined in ΓD
for some D ∈ D, and for each i ∈ {1, . . . , n}, we have that yi is either a value
o ∈ ΔD, or a variable xi ∈ VD with type(xi) = D. �

We denote by FD the set of all possible D-typed guards. Additionally, with a
slight abuse of notation, given guard ϕ we denote by Vars(ϕ) the set of vari-
ables occurring in ϕ. Guards may be seen as the quantifier- and relation-free
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fragment of FO(D) queries (cf. Definition 4). Consequently, their semantics is
inherited from Definition 7 (considering the empty database instance). Guards
are attached to transitions, and defined over their input variables, thus being an
additional filter on the data that can be matched to the input inscriptions.

Definition 18. A D-typed transition guard assignment over transitions T is a
function guard : T → FD assigning to each transition t ∈ T a D-typed guard ϕ,
such that Vars(ϕ) ⊆ InVars(t). �

We now concentrate on the effect of firing a transition, which may simul-
taneously impact the control layer and the underlying persistence layer. Such
an effect is tuned by the input variables attached to the transition, as well as
additional data obtained from the external environment. Injection of external
data is crucial for two reasons [5,11,28]. First, during the execution of a case,
input data may be dynamically acquired from human users or external services,
and used later on; this is, e.g., what happens when a user form needs to be filled
before continuing with the case execution, then deciding how to route the case
depending on the inserted data. Second, fresh ids may be injected into the sys-
tem, e.g., to explicitly distinguish tokens via certain data attributes, or to insert
a new tuple in the underlying database instance (which typically requires to cre-
ate a distinctive primary key for that tuple). We call these two types of external
inputs arbitrary external inputs and fresh external inputs. To account for arbi-
trary external inputs in the context of a transition, we just employ “normal”
variables distinct from those used in the input inscriptions. To account for fresh
external inputs, we employ the well-known mechanism adopted in ν-Petri nets
[29,32]. In particular, we introduce a countably infinite set ΥD of D-typed fresh
variables. To guarantee an unlimited provisioning of fresh values, we impose that
for every variable ν ∈ ΥD, we have that Δtype(ν) is countably infinite.

From now on, we fix a countably infinite set of D-typed variable XD, obtained
as the disjoint union of “normal” variables VD and fresh variables ΥD. In formu-
lae, XD = VD � ΥD. Let us first focus on the impact of transition firing on the
underlying persistence layer. This is, again, mediated by the data logic, exploit-
ing in particular the actions it exposes. Specifically, a transition can bind to an
action, using variables from XD as “actual” parameters. In this light, data pass-
ing from the control to the persistence layer is captured by re-using the same
variable inside an input inscription and an action binding for the same transi-
tion. When the transition fires, actual parameters are substituted with concrete
data values, instanating the action and allowing for its further invocation.

Definition 19. Given a data logic layer L = 〈Q,A〉, an action assignment from
transitions T to actions A is a partial function act : T → A × ΩXD∪ΔD

, where
act(t) maps t to an action α ∈ A together with a (binding) inscription com-
patible with α. An inscription 〈y1, . . . , ym〉 is compatible with α if α·params =
〈z1, . . . , zm〉 and, for each i ∈ {1, . . . , m}, we have type(yi) = type(zi) if yi is a
variable from XD, or yi ∈ Δtype(zi) if yi is a value from ΔD. �

The action assignment provides a distinctive feature of our model, namely the
ability of the control layer to invoke an action applied to the underlying persis-
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tence layer. This, however, does not in general guarantee that the action invo-
cation will actually turn into an update over the persistence layer. Recall in fact
that an action instance is applied transactionally: if it produces a new database
instance that is compliant with the persistence layer, the action instance suc-
ceeds and the update is committed; if, instead, some constraints is violated, the
action instance fails and the update does not take place.

Lastly, we consider the effect of transitions on the control layer itself, defining
which tokens have to produced, together with the data they will carry, and to
which places such tokens have to be assigned. This is done by mirroring the def-
inition of input flow (cf. Definition 16), with two distinctions. First, output arcs
connect transitions to control places only, as view places cannot be explicitly
modified within the control layer. Second, the inscriptions attached to output
arcs may mention not only input variables, but also: (i) values, allowing for con-
structing tokens that carry explicitly specified data; (ii) fresh variables, allowing
for constructing tokens that carry data not already present in the net, nor in the
underlying database instance.

Definition 20. An output flow from transitions T to control places Pc is a
function Fout : T × Pc → Ω⊕

XD∪ΔD
assigning multisets of inscriptions to output

arcs, such that all such inscriptions are compatible with their output places (as
defined in Definition 16). �

We do not depict output arcs graphically when their inscription is ∅. We define
the output variables of t, written OutVars(t), as the set of variables occurring in
the action assignment for t (if any), and in its output arc inscriptions:

OutVars(t) = {x ∈ XD | act(t) is defined as 〈α, ω〉, and x ∈ Vars(ω)}
∪ {x ∈ XD | there exists p ∈ P such that x ∈ Vars(Fout(〈t, p〉))}.

With this notion at hand, we can obtain the external variables of transi-
tion t as OutVars(t) \ InVars(t). Each such variable x is not bound by any
input inscription, and can consequently be assigned arbitrarily (if x ∈ VD),
or to a fresh value (if x ∈ ΥD). Among such variables, we explicitly refer to
the fresh variables attached to t, using notation FreshVars(t). Mathematically,
FreshVars(t) = OutVars(t) ∩ ΥD.

Example 10. Consider the FinalizeBooking transition in Fig. 2. It has three
input arcs, used to consume three tokens respectively belonging to three places
ReservedTaxi , PhoneNumber , and PickupData. The inscriptions on the input
arcs indicate that whenever three tokens from such places are consumed, they
have to agree on their first data component, i.e., they must belong to the same
session. This realizes a sort of join, and ensures that only tokens produced within
the same session are considered upon firing. The so-obtained data are then fed
to the AddBooking action, which uses the session id sid, the reserved taxi id
tid, the phone number n, the address a and the time t to create a new booking.
However, since the creation of a new booking also requires to provide a fresh id
for a new tuple to be inserted in the Pickup Data relation schema, an additional
fresh variable νpdid is also used when invoking that action. �
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As discussed before, firing a transition may incur in the instantiation and
invocation of an action from the data logic layer, and the so-obtained action
instance may or not result in an actual update. To raise awareness of the control
layer about these two radically different outcomes, we introduce two separate
output flows: a normal output flow, capturing the actual effect of a transition on
the control flow when its attached action succeeds, and a rollback flow, capturing
the actual effect of a transition on the control flow when its attached action
fails. With this distinction, the control layer can fine-tune its own behavior in
accordance with the transactional semantics of the persistence layer, e.g., taking
a standard or a compensation route depending on the outcome of the action. To
graphically distinguish normal output arcs from rollback output arcs, we proceed
as follows. We depict the former as usual: . Instead, we decorate the
latter with an “x”: .

Definition 21. A D-typed control layer over a data logic layer L = 〈Q,A〉 is a
tuple 〈P, T, Fin, Fout, Frb, color, query, guard, act〉, where:

• P = Pc � Pv is a finite set of control places constituted by control places Pc

and view places Pv;
• T is a finite set of transitions, such that T ∩ P = ∅;
• Fin is an input flow from P to T (cf. Definition 16);
• Fout and Frb are two output flows from T to Pc (cf. Definition 20), respectively

called normal output flowand rollback flow ;
• color is a color assignment over P (cf. Definition 14);
• query is a query assignment from Pv to Q (cf. Definition 15);
• guard is a transition guard assignment over T (cf. Definition 18);
• act is an action assignment from T to A (cf. Definition 19). �

3.4 DB-nets

We now put the three layers together, providing a formal definition for db-nets.

Definition 22. A db-net is a tuple 〈D,P,L,N〉, where:

• D is a type domain (cf. Definition 1);
• P is a D-typed persistence layer (cf. Definition 9);
• L is a D-typed data logic layer over P (cf. Definition 13);
• N is a D-typed control layer over L (cf. Definition 21). �

Example 11. Figure 3 shows the control layer of a db-net B, using the per-
sistence layer P defined in Example 5 and the data logic layer L defined in
Example 8. The control layer realizes a simple ticket processing workflow, where
tickets are created, manipulated, and finally resolved. In spite of its simplicity,
B already shows many distinctive features of our model. We intuitively describe
the control layer moving from left to right and from top to bottom. Each case
of this process is constituted by a ticket and its responsible employee. A ticket
is created by the Create Ticket transition, which requires the presence of an idle
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Fig. 3. The control layer of a db-net for ticket management. In CreateTicket, νt is a
fresh input variable, and descr is an arbitrary input variable.

employee to be fired. Since this condition needs to inspect the persistence layer
so as to retrieve idle employees, we model it through a view place associated to
query Qe from L. Notice that if no employee is currently idle, then Create Ticket is
not enabled. Upon firing Create Ticket for a given idle employee, a fresh ticket id
is generated using fresh variable νt, and a ticket description is obtained through
the “external” input variable descr. All such data are bound to action register,
which is applied when the transition fires. Among the effects of register, there
is one asserting that the selected employee becomes responsible for the newly cre-
ated ticket. This indirectly implies that such an employee is not present anymore
in the view place for idle employees. The ticket id, together with its responsible
employee, represent the case and its data. The two control places Active Tickets
and Stalled Tickets have color int × string, and model two distinct states in
which tickets may be. Such states are important only within the evolution of
cases, and are therefore not propagated to the underlying persistence layer. An
active ticket may be “stalled” if the employee is currently unable to resolve it.
Executing the Stall transition has a twofold effect. Within the control layer, the
ticket is moved from active to stalled. Within the persistence layer, its responsi-
ble employee is released. Interestingly, the relation of responsibility is now only
recalled within the control layer. A stalled ticket may be revived, by inserting
such a relation back into the persistence layer. This is captured by the Awake
transition, which mirrors the effect of the Stall transition. However, there is a
particularly interesting aspect here. When a ticket t1 is stalled, its responsible
employee e is released and becomes idle. She may be then selected as responsible
of a newly created ticket t2. Due to the constraints present in P, the indirect
effect of this situation is that t1 cannot be awaken unless t2 is either stalled or
resolved. In fact, awakening t1 in a situation where t2 is active would violate
the requirement that e is responsible of at most one ticket. For this reason, we
enrich the Awake transition with a rollback output arc, which brings back the
ticket to the stalled state if it is awaken in the “wrong” moment. For example,
if t1 is awaken while t2 is active, the application of assign applied to 〈t1, e〉
will fail, consequently bringing t1 back to stalled. Finally, an active ticket may
be resolved. This has a twofold effect. On the one hand, the token carrying the
ticket and its responsible employee is removed from the net. On the other hand,
the case information is logged into the persistence layer. However, logging also
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requires to retrieve the description of the ticket. To this end, we employ a second
view place accessing tickets and their description by exploiting Qt from L. By
using the same variable tid in the two input inscriptions of the Resolve transition,
we realize a join, thus inspecting the view place and extracting the description
of tid.

4 Execution Semantics

The execution semantics of a db-net simultaneously accounts for the progression
of a database instance compliant with the persistence layer of the net, and for
the evolution of a marking over the control layer of the net. Such two infor-
mation sources affect each other via the data logic layer: the database instance
exposes its own data through view places, influencing the current marking and
the enabled transitions; the marking over the control layer determines which
transitions may be fired, in turn triggering updates the database instance. As
customary in process analysis, the execution semantics considers the db-net of
interest in isolation, hence assuming that the persistence layer of the db-net is
updated only through its associated control layer, without any form of inter-
ference from external, unpredictable updates. Notice that external updates can
be simulated in the db-net by means of additional, always enabled transitions,
which may nondeterministically fire and modify the content of the persistence
layer.

We start by formalizing the notion of marking over the control layer of the
db-net. A marking distributes tokens over the places of the net, so that each
token carries data that are compatible with the color of the place in which that
token resides. In this light, tokens are nothing else than tuples of values over the
place colors. In addition, the marking of a view place must correspond to the
answers obtained by issuing its associated query over the underlying database
instance.

Definition 23. A marking of a D-typed control layer N = 〈P, T, Fin, Fout, Frb,
color, query, guard, act〉 is a function m : P → Ω⊕

D mapping each place p ∈ P
to a corresponding multiset of p-compatible tuples using data values from D. A
tuple 〈o1, . . . , on〉 is p-compatible if color(p) is of the form 〈D1, . . . ,Dn〉, and
for every i ∈ {1, . . . , n}, we have oi ∈ ΔDi

. Given a database instance I, we say
that m is aligned to I via query if the tuples it assigns to view places exactly
correspond to the answers of their corresponding queries over I: for every view
place v ∈ P and every v-compatible tuple �o, we have that �o ∈ m(v) if and only
if �o ∈ ans(query(v), I). �

We mirror the notion of active domain as provided in Definition 3 to the
case of markings. Given a type D ∈ D, the D-active domain of a marking m,
written AdomD(m), is the set of values in ΔD such that o ∈ AdomD(m) if and
only if there exists p such that o occurs in m(p). From the practical point of
view, one may consider the marking of control places to be initially defined by



110 M. Montali and A. Rivkin

the modeler, and then evolved by the control layer, while the marking of view
places computed on-the-fly from the underlying database instance when needed.

In db-nets, then, both the persistence layer and the control layer are stateful:
during the execution, the persistence layer is associated to a database instance,
while the control layer to a marking aligned with that database instance.

Definition 24. A snapshot of a db-net B = 〈D,P,L,N〉 (also called B-
snapshot) is a pair 〈I,m〉, where I is a database instance compliant with P,
and m is a marking of N aligned to I via query. �

As customary for CPNs, the firing of a transition t in a snapshot is defined
w.r.t. a so-called binding for t, that is, a substitution σ : Vars(t) → ΔD, where
Vars(t) = InVars(t) ∪ OutVars(t). However, to properly enable the firing of t,
the binding σ must guarantee a number of properties:

1. agreement with the distribution of tokens over the places, in accordance with
the inscriptions on the corresponding input arcs;

2. satisfaction of the guard attached to t;
3. proper treatment of fresh variables, guaranteeing that they are substituted

with values that are pairwise distinct, and also distinct from all the values
present in the current marking, as well as in the current database instance.

To formalize these conditions, we need a notion of inscription binding. Given an
inscription (i.e., multiset of tuples of variables) ω ∈ Ω⊕

XD∪ΔD
, and a substitution

θ over a set X of variables containing all variables from ω, the inscription binding
of ω under θ is a multiset θ⊕(ω) from Ω⊕

D defined as follows: 〈o1, . . . , on〉m ∈
θ⊕(ω) if and only if 〈y1, . . . , yn〉m ∈ ω, such that for every i ∈ {1, . . . , n}, we
have oi = yi if yi ∈ ΔD, or oi = θ(yi) if yi ∈ XD. For example, given ω =
{〈x, y〉2, 〈x, 1〉} and θ = {x �→ 1, y �→ 2}, we have θ⊕(ω) = {〈1, 2〉2, 〈1, 1〉}.

Definition 25. Let B be a db-net with control layer 〈P, T, Fin, Fout, Frb,
color, query, guard, act〉. A transition t ∈ T is enabled in a B-snapshot 〈I,m〉,
written 〈I,m〉[t, σ〉, if:

1. for every place p ∈ P , m(p) provides enough tokens matching those required
by inscription ω = Fin(〈p, t〉) once ω is bound by σ, i.e., σ⊕(ω) ⊆ m(p);

2. guard(t)σ is true;
3. σ is injective over FreshVars(t), thus guaranteeing that fresh variables are

assigned to pairwise distinct values by σ, and for every fresh variable ν ∈
FreshVars(t), σ(ν) /∈ (Adomtype(ν)(I) ∪ Adomtype(ν)(m)). �

Definition 26. Let N = 〈P, T, Fin, Fout, Frb, color, query, guard, act〉 be a D-
typed control layer, and let t ∈ T be a transition of N such that act(t) = 〈α, ω〉,
with α·params = 〈x1, . . . , xn〉 and ω = 〈y1, . . . , yn〉. The action instance induced
by transition t ∈ T under binding σ, written actσ(t), is the action instance ασ′,
where σ′ : α·params → ΔD is a substitution for the formal parameters of α,
defined as: for every i ∈ {1, . . . , n}, if yi ∈ ΔD, then σ′(xi) = yi; if instead
yi ∈ XD, then σ′(xi) = θ(yi). �
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The firing of an enabled transition under some mode has then a threefold effect.
First, all tokens present in control places that are used to match the input
inscriptions are consumed. Second, the action instance induced by the firing is
applied on the current database instance. If the application is successful, the
database instance is updated (commit); if not, it is kept unaltered (rollback).
Third, tokens built from the inscriptions on output arcs are produced and put
into target places, considering either normal output arcs or rollback arcs depend-
ing on whether the action instance has been committed or rolled back.

Definition 27. Let B = 〈D,P,L,N〉 be a db-net with N = 〈P, T, Fin, Fout,
Frb, color, query, guard, act〉, and s1 = 〈I1,m1〉, s2 = 〈I2,m2〉 be two B-
snapshots. Let t ∈ T be a transition of N , and σ be a binding for t, such that
s1[t, σ〉. We say that t fires in s1 with binding σ producing s2, written s1[t, σ〉s2,
if the following conditions hold: given I3 = apply(actσ(t), I1),

• if I3 is compliant with P, then I2 = I3, otherwise I2 = I1;
• For every control place p ∈ P , given ωin = Fin(〈p, t〉), ωout = Fout(〈t, p〉),

and ωrb = Frb(〈t, p〉), we have

m2(p) = (m1(p) − σ⊕(ωin)) + kout · σ⊕(ωout) + (1 − kout) · σ⊕(ωrb),

where kout = 1 if I3 is compliant with P, and kout = 0 otherwise. �

The execution semantics of a db-net is captured by a possibly infinite-state
labeled transition system (LTS) that accounts for all possible executions of the
control layer starting from an initial snapshot. States of this transition systems
are db-net snapshots, and transitions model the effect of firing db-net transitions
under given bindings. Formally, given a db-net B = 〈D,P,L,N〉 with N =
〈P, T, Fin, Fout, Frb, color, query, guard, act〉, and given a snapshot s0 over B
(called the initial B-snapshot), the execution semantics of B starting from s0 is
given by the LTS ΓB

s0
= 〈S, s0,→〉, where:

• S is a possibly infinite set of B-snapshots;
• →⊆ S × T × S is a transition relation over states, labeled by transitions T ;
• S and → are defined by simultaneous induction as the smallest sets such that:
(i) s0 ∈ S; (ii) given a B-snapshot s ∈ S, for every transition t ∈ T , binding
σ, and B-snapshot s′, if s[t, σ〉s′ then s′ ∈ S and s

t→ s′.

Example 12. Consider the db-net B in Fig. 3, with the initial B-snapshot s1
that contains two idle employees Paul and Jane. Figure 4 shows a possible,
finite execution of B starting from s1, which actually corresponds to a portion
of the LTS ΓB

s1
. For example, to reach s2 from s1, Create Ticket has to be fired

with binding σ = {νt �→ 12, emp �→ Jane, descr �→ ☎}. The resulting snapshot
contains the generated ticket, and is such that Jane is not idle anymore. Notably,
along the run we encounter a situation that concretely demonstrates the rollback
semantics. This is the case of snapshot s4, where Jane is responsible of an active,
but also associated to a currently stalled ticket. Due to the constraints present
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Fig. 4. A finite execution of the db-net from Example 11. Here we use the following
abbreviations: AT = Active T ickets, IE = Idle Employees, ST = Stalled T ickets.

in the persistence layer of B, this implies that Jane cannot awake the stalled
ticket unless the active one is either stalled or resolved. Hence, if Jane chooses
to awake the stalled ticket, the system ends up into an inconsistent state due
to the violation of the database constraint imposting that an employee can be
responsible of at most one ticket (cf. Example 5). This leads to the rollback
of assign, and to the consequent activation of the corresponding rollback arc
(marked in red in Fig. 4). In this specific example, the rollback arc has the effect
of bringing the consumed ticket back to the stalled state, thus concretely realizing
a simultaneous rollback for the persistence and the control layers.

5 Modeling and Verification

We discuss some key features of db-nets, considering the problem of modeling
data-aware business processes, and that of verification, where we provide some
initial results on the boundaries of decidability for the formal analysis of db-nets.

5.1 Modeling

From the modeling point of view, db-nets incorporate all typical abstractions
needed in data-aware business processes, reconstructing all the distinctive fea-
tures of various Petri net classes enriched with data, as well as those of data-
centric processes. More formally, in terms of expressiveness, we observe the fol-
lowing correspondences. First of all, db-nets subsume ν-PNs [32], and become
expressively equivalent to ν-PNs when: (i) there is only one unary color assign-
ing places to the only one unordered countably infinite data type, (ii) the data
logic layer is empty. With such a restrictions, the only modeling construct not
natively provided by ν-PNs is that of arbitrary external input, which can be
however simulated using ν-PNs by following the strategy defined in [5]. Sec-
ond, db-nets are expressively equivalent to recently introduced formal models
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for data-centric business processes, like DCDSs [9] and DMSs [5]. To transform
those models into a db-net, it is sufficient to realize a control layer that simulates
the application of condition-action rules. The translation of a db-net into those
models, instead, is more convoluted, but can be attacked by leveraging the tech-
nique introduced in [29] to encode ν-PNs into DCDSs, with the only difference
that while the transformation from ν-PNs into DCDSs requires the introduction
of binary relations for places (keeping track of token ids and their pure names),
in the case of db-nets the arity of place relations depend on the place colors.

Since DCDSs and DMSs are expressively equivalent to the richest models for
business artifacts, such a correspondence paves the way towards the study of
CPN-based business artifacts, making approaches like that of [27] data-aware.
We also stress that db-nets go beyond the aforementioned approaches, since they
conceptually componentize the different aspects of a dynamic system, giving
first-class citizenships to relations, constraints, queries, database access points
in the process, database updates triggered by the process, external inputs, and so
on. This creates the basis for studying db-nets from the conceptual and method-
ological point of view, and exploit them to formalize concrete process-aware
information systems like Bizagi, Bonita, and Camunda, in the style of [17].

5.2 Formal Verification

Formal verification of db-nets is obviously of utmost importance. As usual, ver-
ification may range from the analysis of fundamental properties such as reacha-
bility, to model checking temporal logics.

In the case of data-aware dynamic systems, such formal properties have also
to incorporate a “first-order” component, consequently allowing one to inspect
the data present in the system, and express properties about the (un)desired
evolutions of such data [11,29]. We consider here a very pristine form of reacha-
bility, namely reachability of a nonempty place. Formally, this decision problem
is defined as follows:

Input: A db-net B, an initial B-snapshot s0, and a control place p from B
Question: starting from s0, is it possible to reach a B-snapshot where p has at

least one token? Formally, given the LTS ΓB
s0

= 〈S, s0,→〉, does there exist
a finite sequence of B-snapshots of the form s0 → . . . → sn = 〈In,mn〉, such
that |mn(p)| ≥ 1?

We show next that, as expected, db-nets are Turing-powerful even when the
different layers are severely restricted, basic verification tasks such as reachability
of a nonempty place remain undecidable.

Theorem 1. Reachability of a nonempty place is undecidable:

1. for db-nets whose control layer only employs unary, string types, and whose
data logic and persistence layers are empty;

2. for db-nets whose control layer consists of a state machine, and whose per-
sistence layer contains only two unary relations.
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Proof (sketch). The first case corresponds to reachability in ν-PNs, which is
undecidable [32]. The second case can be proved by reducing into the state reach-
ability problem for deterministic two-counter automata. In fact, it is sufficient
to show how to simulate an increment transition and a conditional decrement
transition of a two-counter automaton. Figure 5 shows two fragments of a db-net
whose control layer is a simple state machine, respectively simulating increment
and conditional decrement transitions for a counter. We assume that the under-
lying persistence layer contains two initially empty unary relations C1 and C2

of type string. The size of such relations (i.e., the number of string values they
contain) simulates the value of the two corresponding counters. In this light,
incrementing the first counter amounts to inserting a fresh string into C1; this
is done by the action Insert1. As for conditional decrement, we proceed as fol-
lows. We create two view places for the first counter. The first view place is called
NonEmptyC1 and used to retrieve the values contained in relation C1. If there
is at least one such value, it means that the counter is positive. The second view
place, called EmptyC1 , is a boolean view place associated to a query that tests
whether relation C1 does not contain any value. So, if there is a token in such
a view place, it means that the first counter is zero. The conditional decrement
transition is then easily realized by choosing which transition to take depending
on the content of such view places. In the case of decrement, one value from C1

is nondeterministically picked and passed as parameter to the Remove1 action,
which removes it from C1. This two fragments are simply replicated to handle
increment and conditional decrement using relation C2. ��

To contrast this undecidability proof, we consider the case where the “size” of
information maintained by the control layer and the persistence layer is suitably
controlled.

Definition 28. Let B be a db-net, s0 a B-snapshot, and ΓB
s0

= 〈S, s0,→〉 the
corresponding LTS. We say that B is bounded w.r.t. s0 if

– B is width-bounded, i.e., there exists b1 ∈ N such that for every B-snapshot
〈I,m〉 reachable from s0 through →, the number of distinct values assigned
by m to the places of B is bounded by b1:

– B is depth-bounded, i.e., there exists b2 ∈ N such that for every B-snapshot
〈I,m〉 reachable from s0 through →, the number of tokens (possibly with the
same values) assigned by m to the places of B is bounded by b2.

– B is state-bounded, i.e., there exists b3 ∈ N such that for every B-snapshot
〈I,m〉 reachable from s0 through →, we have |⋃D∈D AdomD(I)| ≤ b3. �

The first two conditions lift the two notions of boundedness introduced in [32]
to the case of db-nets, while the third one is borrowed from the notion of state-
boundedness in DCDSs [9]. Notice that a bounded B may still give raise to an
infinite-state LTS, due to the insertion of fresh values into the boundedly many
information slots available, and the fact that no restriction is imposed on the
size of the type domains, from which external inputs are borrowed. In spite of
this infinity, we are able to prove the following key result.
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Fig. 5. Simulation of an increment and conditional decrement transition of a two-
counter machine using db-nets

Theorem 2. Reachability of a nonempty place is decidable for bounded db-nets
using string and real types.

Proof (sketch). The proof is obtained by reconstructing, step-by-step, the trans-
lation technique proposed in [29], which encodes a ν-PN into a corresponding
DCDS [9]. On the one hand, the translation has to be generalized to the case of
tokens carrying tuples of data, and on the other hand, it has to merge the DCDS
resulting from the translation, with the one natively provided by the data logic
layer of the db-net of interest. In [29], it is shown that the translation does not
only preserve the execution semantics of the original net, but also guarantees that
if the input ν-PN is width- and depth-bounded, then the corresponding DCDS
is state-bounded. This holds also in our setting, and consequently we inherit the
decidability result for model checking first-order μ-calculus properties as consid-
ered in [29], which are clearly able to express reachability properties. Finally, the
case of reals is handled as shown in [13], extending the abstraction technique of
[9,29] so as to deal with dense orders. ��
Interestingly, decidability holds not only for reachability, but also for the variant
of first-order μ-calculus considered in [29], thus allowing one to check data-
aware soundness [29] over db-nets. In addition, we conjecture that decidability
can be strengthened to the case where the db-net of interest is width- and state-
bounded, but not depth-bounded (the first two notions being essential towards
decidability, as a consequence of Theorem 1).

Such initial undecidability and decidability results pave the way towards a
refine analysis of the boundaries of decidability for the formal analysis of db-
nets, taking advantage from the fact that the different sources of complexity
are clearly separated in our model. For example, decidability could be studied
by restricting the query language used in the data logic layer, or by leveraging
recent dychotomic results on the analysis of data-aware extensions of Petri nets
with ordered vs. unordered data types, and in presence or absence of (globally)
fresh inputs, which are intimately connected to the boundaries of decidability
for reachability [25]. In this light, it is important to notice that the technique
mentioned in the proof sketch of Theorem 2 cannot be lifted to the case of
integers, for which reachability turns out to be undecidable when the db-net is
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bounded (as a consequence of the undecidability result for orders with successor
shown in [13]). Another interesting line could be to leverage techniques based on
under-approximations [5]. Since our first decidability result is intimately linked
with boundedness of db-nets, it opens up another interesting line of investigation
on how to check, or guarantee using modeling strategies, that a db-net is state-
bounded, leveraging recent results [10,28,29,32].

Finally, db-nets pave the way towards the formal analysis of additional prop-
erties, which only become relevant when CPNs are combined with relational
databases. We mention in particular two families of properties. The first is related
to rollbacks, so as to check whether it is always (or never) the case that a tran-
sition induces a failing action. The second is related to the true concurrency
present in a db-net, which may contain transitions that appear to be concurrent
by considering the control layer in isolation, but have instead to be sequenced
due to the interplay with the persistence layer (and its constraints).

6 Conclusion

We have introduced a formal model for data-aware business processes that, for
the first time, combines an approach based on colored Petri nets with the stan-
dard relational model and transactional updates over it. We hope that db-nets
will attract attention of researchers interested in the formal analysis of data-
aware dynamic systems, as well as that of those interested in providing strong
foundations for process-aware information systems and their concrete languages.
We close by mentioning a further area of research that we consider of particu-
lar relevance for the database community. Since the control layer of db-nets is
grounded on CPNs, all simulation techniques developed for CPNs can be seam-
lessly lifted to our setting. The result of a db-net simulation produces, as a
by-product, a final database instance, populated through the execution of the
control layer. The so-obtained database instance implicitly reflects the footprint
of the control layer, which inserts data as the result of the execution of a process.
This makes the obtained database instance much more intriguing than one syn-
thetically generated without considering how data are produced over time. In
this light, simulation of db-nets has the potential of providing novel insights
into the problem of data benchmarking [24], especially in the context of data
preparation for process mining [2,14].
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Abstract. Transition systems are a powerful formalism, which is widely
used for process model representation. A number of approaches were pro-
posed in the process mining field to tackle the problem of constructing
transition systems from event logs. Existing approaches discover tran-
sition systems that are either too large or too small. In this paper we
propose an original approach to discover transition systems that per-
fectly fit event logs and whose size is adjustable depending on the user’s
need. The proposed approach allows the ability to achieve a required
balance between simple and precise models.

Keywords: Transition systems · Process mining · Model reduction ·
Process model quality

1 Introduction

Process mining is a relatively new discipline, whose basic research and practical
purpose is to extract process models from data given in the form of event logs,
checking existing models for conforming to actual processes and improving them.
Transition systems are extensively used to formalize processes extracted from
event logs. A transition system can be constructed from an event log by using
prefix-based techniques in a very natural way [3]. We consider several metrics
that describe the model’s quality [11]. Replay fitness quantifies the extent to
which a process model can reproduce the behavior recorded in a log. Complexity
of the model is estimated by simplicity and precision (the metrics, which shows
how precise the model is in respect to the event log).

The major weakness of models constructed from real-life event logs is their
size. Despite the fact that there are a number of approaches aimed to reduce
the size of transition systems [3], application of the existing approaches results
in either too large or too small models. In the former case the model size is too
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big to be readable. Beyond this point, it becomes difficult or even impossible to
apply existing transition system analysis techniques that are sensitive to the size
of input models. Despite the fact that there are polynomial synthesis algorithms
for some classes of Petri nets, such as elementary nets [6], in general, the problem
of synthesizing Petri nets is NP-complete [7]. Thus, the applicability of the state-
based regions algorithm [12] is limited to fairly small models. In the latter case,
due to states merging, a rather small model facilitates too much behavior that
cannot be observed in the log, which makes the model less precise and thus less
applicable.

A problem of a significant impact of the size of a transition system on the
execution time of the regions algorithm was examined in detail in a number
of papers, for example in [17,18]. Despite the fact that in this paper we do not
immediately consider the task of synthesizing Petri nets from transition systems,
such a task, however, is meant to be the final goal of this research. This paper
is positioned as an intermediate step, which focuses precisely on the reduction
of transition systems.

Several approaches for the reduction of transition systems were proposed
previously. In this paper, we present an original reduction approach based on
the frequency characteristics of traces. Unlike in the previous studies, efficiency
of the proposed method is not estimated on the basis of the execution time
of algorithms, but based on quality metrics obtained during the reduction. To
this end, for calculating quality metrics of transition systems we propose new
algorithms that have not previously been described.

The main goal of our study is to develop an approach for reducing the size
of a transition system mined from an event log in a flexible manner. This paper
describes an original 3-step algorithm achieving the goal by using a variable-size
window based on a state frequency characteristic. The approach preserves the
(perfect) fitness of a model and balances between its simplicity and precision by
introducing a set of adjustable parameters.

Thus, the main contributions are as follows: (1) an original method for reduc-
ing transition systems and justification of its applicability; (2) a set of experi-
mental results which show the advantages of the proposed approach as compared
with existing methods; an openly available proof of the concept through imple-
mentation in a set of ProM plug-ins.

The remaining part of the paper is organized as follows. Section 2 gives an
overview of related work in the context of inferring transition systems and their
application in the process mining domain. Section 3 introduces basic concepts
used further in this paper. A detailed description of the proposed algorithm is
given in Sect. 4. A novel precision calculation algorithm, some significant imple-
mentation details, and experimental results are discussed in Sect. 5. Finally,
Sect. 6 concludes the paper and discusses some directions for future work.

2 Related Work

A number of works concerning inferring transition systems from event traces
exist. Biermann and Feldman in their work [10] proposed a k-tails algorithm
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which merges states of FSMs by basing on the similarity of behavior of the states.
The algorithm falls into the class of prefix tree merging methods. Angluin [5] pro-
posed a method of prefix tree states merging based on a notion of k-reversibility.
In [15], Lorenzoli et al. proposed a GK-tail approach, an extension of the k-tail
algorithm, dealing with parametrized finite state automata.

Cook and Wolf in their work [13] introduced process discovery, a new data
analysis technique in the context of software engineering processes. They consid-
ered automatic generation of a formal model describing an ongoing process from
captured event data. A new Markov method was developed specifically for this
purpose. Moreover, two existing methods, the k-tail and RNet (based on neural
networks) ones, were adopted for the process discovery technique.

Process discovery along with conformance checking and process enhance-
ment form the basis of process mining [4], which deals with various types of
process models including Petri nets, transition systems, fuzzy maps, C-nets,
BPMN and others. In the context of process mining, transition systems are con-
sidered both a self-independent model and an intermediate model for building
another type of model on this basis. In the latter case, one should mention
region-based approaches discussed in [8,12,14,18].

The leading role of a transition system as an intermediate representation of
a process is discussed in [3]. The paper considers a number of different strategies
to construct a transition system that is more suitable to be a base for a resulting
final Petri net model with respect to desirable metrics. Nevertheless, all discussed
strategies are based on inferring algorithms with a fixed window.

Besides the strategies above, a number of other approaches for the transition
system reduction were proposed. Most of them are based on merging of related
states. In [17] authors consider an abstraction technique named common final
marking (CFM). The technique involves merging all states without outgoing arcs
(so-called sink states) into a single state.

In [18] authors propose an approach for compacting a transition system
based on aggressive folding techniques. The proposed technique allows state
space reduction through the detection of unfolded cycles in an acyclic transi-
tion system and its subsequent folding. Distinctive features of our approach are
discussed in Sect. 5.3.

Another approach for the process discovery involves language-based methods
which are applied directly to logs without constructing intermediate models [9,
20]. We do not consider these methods here.

3 Preliminaries

This section introduces basic concepts related to event logs, transition systems
and some other notations that are needed for explaining the approach.

B(X) is the set of all multisets over some set X. For some multiset b ∈ B(X),
b(x) denotes the number of times element x ∈ X appears in b. Thus, x ∈ b iff
b(x) > 0. By b = [x1, x

3
2, x

5
3] we denote that elements x1, x2, x3 ∈ X appear in b

one, three and five times respectively. We say that b′ ⊆ b iff ∀x ∈ X : b′(x) ≤ b(x).
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The size of a multiset b over set X is denoted by |b| and defined as |b| =
∑

x∈X

b(x).

For a given set Y , Y + is the set of all non-empty finite sequences over Y .

Definition 1 (Trace, Event Log). Let A be a set of activities. A trace is
a finite sequence σ = 〈a1, a2, ..., ai, ..., an〉 ∈ A+. By σ(i) = ai we denote i-th
element of the trace. The [i, k]-subtrace of trace σ ended at the i-th activity ai

is defined as

σ[i, k] =

⎧
⎪⎨

⎪⎩

〈σ(1), σ(2), ..., σ(i)〉, if k > i;
〈σ(i − k + 1), ..., σ(i)〉, if 1 ≤ k ≤ i;
〈〉, if k = 0.

(1)

The complete subtrace of the trace σ ended at i-th event ai is σ[i] = σ[i, i].
By |σ| we denote trace length. For k ≤ i, k denotes the length of the subtrace.
L ∈ B(A+), such that |L| > 0, is an event log. Here, |L| is the number of all
traces.

We assume, that event logs do not contain process states explicitly. This
way, we need to deduce the desirable states from an event log based on some
approach.

In [3], four approaches to determine the state in a log were proposed. They
are past, future, past and future and explicit knowledge. In this paper we consider
only the past approach, according to which a state is constructed based on the
prefix of a trace. Then, the order of activities is important. Hence, we apply
sequence policy [3] for determining a state.

Definition 2. A labeled transition system is a tuple TS = (S,E, T, s0, AS),
where S is a finite state space, E is a finite set of labels, T ⊆ S × E × S is a
set of transitions, s0 ∈ S is an initial state, and AS ⊆ S is a set of accepting
(final) states. We denote the set of output ( input) transitions of a state s ∈ S
as s• = {t = (s, e, s′) ∈ T | e ∈ E, s′ ∈ S} (•s = {t = (s′, e, s) ∈ T | e ∈ E, s′ ∈
S}).

By TS(L) = (S,E, T, s0, AS), where L ∈ B(A+) is an event log, we denote a
transition system, such that E = A.

Let σ = 〈a1, ..., an〉 be a trace (σ ∈ L) and n = |σ|. We say that trace σ can be
replayed in the transition system TS(L) if there is a sequence of states 〈s0, ..., sn〉
such that ∃t1 = (s0, a1, s1), t2 = (s1, a2, s2), ..., tn = (sn−1, an, sn), where
s0, s1, ..., sn ∈ S, t1, t2, ..., tn ∈ T . We denote this as s0

a1−→ s1
a2−→ ...

an−−→ sn.
We say that trace σ can be partially replayed by its prefix in a transition system
TS(L) if ∃k < n : s0

a1−→ s1
a2−→ ...

ak−→ sk and �sk
ak+1−−−→ sk+1

ak+2−−−→ ...
an−−→ sn.

We denote σ+(TS(L)) = 〈a0, a1, ..., ak〉 and σ−(TS(L)) = 〈ak+1, ..., an〉. Hence,
σ(TS(L)) = σ+(TS(L)) + σ−(TS(L)) where + denotes concatenation of two
sequences.
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Definition 3 (k-window transition system). Let L ∈ B(A+) be a log over
set of activities A and let k ∈ N be a natural number called window size.
TS(L) = (S,E, T, s0, AS) is a k-window (labeled) transition system built for
log L and window size k, where S = {σ[i, k] | σ ∈ L, 0 ≤ i ≤ |σ|, k ≤ i},
s0 = σ[0]1, T = {(σ[i − 1, k], σ(i), σ[i, k]) |σ ∈ L, 1 ≤ i ≤ |σ|}, AS = {s ∈
S | s = σ[|σ|, k], σ ∈ L}.
Definition 4 (Full transition system). Let L ∈ B(A+) be a log over set A
of activities. The full transition system TS(L) = (S,E, T, s0, AS) for log L is a
labeled transition system built for log L, where S = {σ[i] | σ ∈ L, 0 ≤ i ≤ |σ|},
s0 = σ[0], T = {(σ[i − 1], σ(i), σ[i]) |σ ∈ L, 1 ≤ i ≤ |σ|}, AS = {s ∈ S | s =
σ[|σ|], σ ∈ L}.

To measure the quality of transition systems we consider three quality met-
rics. We based them primarily on the work [11], where metric definitions are
given for process trees. In this paper we adopted them for transition systems.
Fitness quantifies the extent to which a transition system can reproduce traces
recorded in a log. Simplicity quantifies the complexity of a model. Simplicity
is measured by comparing the size of a given transition system TS(L) with the
simplest possible transition system, which is the flower model (Fig. 1a). Precision
compares the transition system TS(L) with the full transition system built for
log L, considering the latter to be the most precise. Such a comparison is done
through a simulation of the full transition system by TS(L) (for further details
see Sect. 5.1).

Definition 5 (Metrics). Let L be an event log and let TS(L) =
(S,E, T, s0, AS) be a transition system built for L. Fitness is defined to be the
ratio of the number of traces from log L that can be fully replayed in transition
system TS(L) to the total number of all traces. Log L perfectly fits transition
system TS(L) iff all traces of L can be fully replayed in TS(L).

Simplicity of TS(L) is:

Simpl(TS(L)) =
|E| + 1
|T | + |S| .

Precision of TS(L) is:

Prec(TS(L)) =
1

|S| ·
∑

s∈S

Prec(s), Prec(s) =
1

NoV (s)
·

NoV (s)∑

i=1

|s • | − |ŝ•i|
|s • | ,

where Prec(s) is a partial precision for a state s, NoV (s) is a number of all
visits of state s during a simulation of the reference full transition system by
TS(L). ŝ•i is a set of such output transitions of state s that cannot be activated
(“fired”) during the i-th visit of state s. These transitions do not have active
counterparts in the reference full transition system.

1 Note, that s0 ∈ S, since event log L contains at least one trace by Definition 1.
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Fig. 1. (a) “Flower” model for log L1; (b) TS1(L1) built for log L1; (c) transition
system built for log L1 with a fixed window of size 1. In the figures, each transition is
labeled by an activity and its corresponding frequency characteristic (see. Definition 6)

4 Algorithm Description

For the clarification of the approach, the following motivating example is con-
sidered. Let L1 be an event log that is defined as follows:

L1 = [〈a, b, c, d, e, f〉, 〈a, b, c,d, e, g〉, 〈a, b, c, d, f, e〉, 〈a, b, c, d, f, g〉, (2)
〈a, b, d〉, 〈a, b, d, g〉, 〈a, b, d, e, f〉, 〈a, b, d, e, g〉]

In addition to the previously discussed flower model, one can build a number
of other models that perfectly fit log L1. A model built with unlimited window
size is depicted in Fig. 1b. This model is a full transition system by the definition.
Another model built by an algorithm with a fixed window of size 1 is depicted in
Fig. 1c. Although all these models perfectly fit log L1, none of them is satisfactory
in simplicity and precision at the same time. Thus, we are interested in a trade
off between these metrics.

The proposed approach incorporates a 3-steps algorithm sequentially building
3 transition systems. The first transition system, TS1, is built from an event log.
The second (TS2) and the third (TS3) transition systems are built from TS1 and
TS2, respectively. Finally, TS3 is considered as a desirable result.

The main point of the proposed approach is dynamic variation of the win-
dow used for deducing states. For this very purpose, two adjustable parameters
are involved in the approach. The first one, Threshold, affects the size of the
intermediate transition system (TS2). The second one, Vwsc, is a linear factor
used for the dynamic calculation of a variable window size while building the
resulting model (TS3). Each step of the algorithm along with both parameters
is thoroughly discussed in the following sections.
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4.1 Constructing a Full Transition System (Step 1)

The first step of the approach is to construct a full transition system and define
a special labeling function mapping every transition to a natural number that
determines its frequency characteristic.

Definition 6 (Frequency characteristic). Let L ∈ B(A+) be a log over set
of activities A and let TS(L) = (S,E, T, s0, AS) be the full transition system for
L. The frequency characteristic of TS(L) is a function f : T → N defined for
t = (σ[j − 1], σ(j), σ[j]) as f(t) = |L′|, where L′ is the maximum multiset over
A∗, such that L′ ⊆ L and ∀σ′ ∈ L′ σ′[j] = σ[j].

Fig. 2. TS2(L1)
(condensed) built
from TS1(L1) with
Threshold = 0.33

Frequency characteristic determines for every transition
t a number of traces in log L that start with prefixes σ[j].
The entire procedure of building a full transition system is
presented in Algorithm 1.

From now on, we denote the full transition system for a
given log L as TS1(L).

TS1(L1) built for log L1 with function f is depicted
in Fig. 1b; it is a tree by construction. It is easy to see
that fitness of the full transition system (TS1(L)) is perfect
(equals 1). This is inherent in the algorithm, since it builds
for each trace in, a log a full chain of states following one
after another, that corresponds to a sequence of activities
in the trace.

4.2 Constructing a Condensed Transition System
(Step 2)

The second step of our approach involves cutting some branches of the full
transition system with frequency values which are less than a cutting threshold
parameter. We refer to it as f1. Once f1 is set, all the states and transitions
corresponding to a rarely observed behavior in the event log can be removed
from the model. This results in simplifying the tree structure and reduction of
the number of states and transitions.

Definition 7 (Condensed Transition System). Let TS1(L) = (S1, E1, T1,
s0, AS1) be a full transition system constructed for log L and let f be a frequency
characteristic. The Threshold is a real number from [0; 1] determining a cutting
threshold f1 as follows: f1 = round(|L| · Threshold) − 1. The value f1 + 1 =
round(|L| · Threshold) is a minimum preserved frequency for TS1(L).

A condensed transition system TS2(L) built for a TS1(L) with func-
tion f and a given cutting threshold f1 is the transition system TS2(L) =
(S2, E2, T2, s0, AS2), where S2 ⊆ S1, E2 = E1, T2 ⊆ T1, AS2 ⊆ AS1 and
T2 = {t | t ∈ T1 ∧ f(t) > f1}, S2 = {s0} ∪ {s | s ∈ S1 ∧ ∃t = (s′, a, s) ∈ T2},
AS2 = AS1 ∩ S2.
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Algorithm 1. Building a full
transition system for a given log L
Input : an event log L
Output : a full transition system;
TS1(L) = (S, E, T, s0, AS); f is a

frequency characteristic;

begin
S ← {s0};
for σ ∈ L do

s ← s0;
for i ← 1 to |σ| do

s′ ← σ[i];
t ← (s, σ(i), s′);
if t /∈ T then

T ← T ∪ {t};
f(t) ← 1;

else
f(t) ← f(t) + 1;

S ← S ∪ {s′};
E ← E ∪ {σ(i)};
if i = |σ| then

AS ← AS ∪ {s};
s ← s′;

Algorithm 2. Building a con-
densed transition system TS2(L)
Input : an event log L;

a full transition system

TS1(L) = (S1, E1, T1, s0, AS1); f is a

frequency characteristic;

Threshold is a real number

determining a cutting threshold and a

minimum preserved frequency;

Output : TS2(L) =

(S2, E2, T2, s0, AS2) is a

condensed transition

system;

begin

f1 = round(|L| · Threshold) − 1;

for t ∈ T1 do

if f(t) > f1 then

T2 ← T2 ∪ {t};

S2 ← {s0};
for t = (s, a, s′) ∈ T2 do

S2 ← S2 ∪ {s′};
E2 ← E1;

Note that the frequencies of transitions diminish on the way to the leaves of
TS1(L) and TS2(L). Hence, the exclusion of transition tk from TS1(L) implies
the exclusion of a total subtree that has state sk as a root. Thus, TS2(L) obtained
as a result of cutting with a given threshold, cannot be disconnected.

The entire procedure of constructing a condensed transition system is pre-
sented in Algorithm 2. For log L1 with the size |L| = 8 and Threshold = 0.33,
we have f1 = 2. A TS2(L) built for the log L1 and f1 = 2 is depicted in Fig. 2.
It is easy to see that not all the traces from the log can be replayed on TS2(L)
as its fitness is not perfect. Therefore, we cannot consider this model as a final
result.

4.3 Constructing a Reduced Transition System (Step 3)

In this section, we propose an approach to convert TS2(L) to a model with
perfect fitness and a size that is less than the size of TS1(L).

Our proposal is to construct a new transition system TS3(L) = (S3, E3, T3, s0,
AS3) based on TS2(L) by adding missing states and transitions in order to fully
replay all the traces. Unlike building the full transition system, in this case we
use partial subtrace σ[i, k] for representing newly added states of TS3(L). The
important point here is that parameter k, is proportional to the frequency of a
corresponding input transition.
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Fig. 3. (a) TS3 under a restoring algorithm: temporary states and transitions after
the first stage; (b) restored states and transitions after the second stage (c) TS3(L1)
(reduced) built from TS2(L1) with Threshold = 0.33 for log L1

The main part of the algorithm implementing the proposed approach is repre-
sented in Algorithm 3. In the beginning, we create a full copy of TS2(L), which
is denoted as TS3(L). TS3(L) is a target transition system that is iteratively
reconstructed by the following two stages of the algorithm.

At the first stage, implemented as function ReplayTrace, the algorithm tries
to replay as many traces σ from event log L as possible. If all traces can be
fully replayed, the algorithm successfully stops. Otherwise, if there is at least
one trace that cannot be fully replayed, the second stage is performed. This
stage is implemented as RestateTS procedure which tries to reconstruct the
unreplayable parts of traces by adding new states and transitions to the target
TS3(L).

The algorithm defines some auxiliary objects as follows. A special function ξ
maps every trace σ onto number j that determines element σ(j) splitting σ into
σ+ and σ−, where σ(j) is the first element of trace σ−. A set TT of temporary
transitions. A set of completely replayed traces CompleteTraces ⊆ L.

The stages of the algorithm are discussed below in more detail. For log L1,
we consider transition system TS3(L1) copied from TS2(L1) (Fig. 2). Then, the
algorithm tries to replay log L1 over TS3(L1) and perform its transformation.

First stage ( ReplayTrace ). Let σ = 〈a, b, c, d, e, f〉. The longest prefix of σ that
can be successfully replayed is σ+(TS3(L1)) = 〈a, b, c, d〉. Correspondingly, the
only suffix of σ that cannot be replayed is σ−(TS3(L1)) = 〈e, f〉.

Algorithm 4 replays a single trace σ over transition system TS3(L) and also
gets as its input a frequency characteristic f (discussed above). The algorithm
starts with initial state s0 as a current state s and the first element σ(1) of a
trace as a current element σ(i). Then it tries to find an appropriate transition t
starting with current state s and marked by symbol σ(i).
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Algorithm 3. Building a reduced transition system TS3(L)
Input : an event log L;
a condensed transition system TS2(L) = (S2, E2, T2, s0, AS2); a frequency
characteristic f ; a multiplicative factor V wsc ∈ R for fixed window size;
Output : a reduced transition system TS3(L) = (S3, E3, T3, s0, AS3);
Data: a set of completely replayed traces CompleteTraces ⊆ L;
a function mapping each trace to a number of first unreplayable symbol ξ;
a set of temporary transitions TT ;

/* Main part of the algorithm */

begin
TS3(L) ← TS2(L);
repeat

unreplayableTraces ← false;
for σ ∈ L do

if ReplayTrace(σ, TS3(L), f , CompleteTraces, ξ, TT) = false
then

unreplayableTraces ← true;

if unreplayableTraces = true then
RestateTS (L, TS3(L), f , CompleteTraces, ξ, V wsc, TT );

until unreplayableTraces = false;

Figure 3 contains an example to illustrate the proposed approach. Next, there
are three possible cases. In the first case (for instance, during the replay σ =
〈a, b, d〉), transition t = (s, σ(i), s′) exists with some state s′ ∈ S3 and this is
a regular state (t /∈ TT ). In this case current state s is changed to s′ and the
next element σ(i + 1) is processed. In Fig. 3a, transition t = (〈a〉, b, 〈a, b〉) is an
example of such a case2.

In the second case (if σ = 〈a, b, d, g〉), t does not exist. For that case a new
temporary transition t = (s, σ(i), ŝ) is added to both the set of transitions T3

and the set of temporary transitions TT . The end state ŝ is a special temporary
state, too. It is not marked by any substring and is unique for any temporary
transition. For the newly added transition t, the frequency characteristic f is
defined to be equal to 1; it means transition t “fired” only once. In Fig. 3a,
transition t = t̂3 = (〈a, b, d〉, g, ŝ3) is an example of such a case.

In the third case, t exists and it is a temporary one (t ∈ TT ). This is the case
when transition t “fires” one more time; hence, its frequency should be increased
by one.

In both the second and the third cases, replaying of the current trace σ is
broken and ξ(σ) is set to the position of the first unreplayable element. This is
the reason why the temporary state ŝ cannot be marked with any subtrace by
this moment.

2 To be precise, transition t is marked in the figure not only with activity b but also
with its frequency b/8.
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Algorithm 4. Function
ReplayTrace of the algo-
rithm of building a reduced
transition system TS3(L)
Input : trace σ;
reduced transition system
TS3(L) = (S3, E3, T3, s0, AS3);
frequency characteristic f ; set
of completely replayed traces
CompleteTraces ⊆ L; function
ξ mapping each trace to a
number of the first
unreplayable symbol ; set of
temporary transitions TT ;
Output : true, if a trace

is replayed
completely, false otherwise

/* Replays a trace */

Function ReplayTrace(σ,
TS3(L), f , CompleteTraces,
ξ, TT): Boolean

/* Already completed */

if σ ∈ CompleteTraces
then

return true;

s ← s0;
for i ← 1 to |σ| do

if ∃s′ : t =
(s, σ(i), s′) ∈ T3 then

if s′ = ŝ then
f(t) ← f(t) + 1;
ξ(σ) = i;
return false;

s ← s′;

else
S3 ← S3

⋃ {ŝ};
t ← (s, σ(i), ŝ);
T3 ← T3

⋃ {t};
TT ← TT

⋃ {t};
f(t) = 1;
ξ(σ) = i;
return false;

/* Trace’s complete */

ξ(σ) = |σ| + 1;
return true;

Algorithm 5. Procedure RestateTS
of the algorithm of building a reduced
transition system TS3(L)
Input : log L;
reduced transition system
TS3(L) = (S3, E3, T3, s0, AS3); frequency
characteristic f ; set of completely
replayed traces CompleteTraces ⊆ L;
function ξ mapping each trace to a
number of the first unreplayable symbol;
multiplicative factor for fixed window size
V wsc ∈ R; set of temporary transitions
TT ;

/* Converts temporaries */

Procedure RestateTS(L, TS3(L), f ,
CompleteTraces, ξ, V wsc, TT)

for σ ∈ L do
i ← ξ(σ);
/* If the trace is already

complete */

if i = |σ| + 1 then
return ;

s ← σ[i − 1];
t ← (s, σ(i), ŝ);
if t /∈ TT then

return ;

maxWndSize ← max
σ∈L

(|σ|);
wndSize ← round(maxWndSize ·
f(t) · V wsc ÷ |L|);

/* a special ‘trash’ state */

if wndSize = 0 then
s′ ← s0ws;

else
s′ ← σ[i, wndSize];

t′ ← (s, σ(i), s′);
/* Replace the temporary

transition and the state by

regular ones */

S3 ← S3 \ {ŝ} ∪ {s′};
T3 ← T3 \ {t} ∪ {t′};
TT ← TT \ {t};
f(t′) ← f(t);
if i = |σ| then

AS3 ← AS3 ∪ {s′};
return ;
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This way, at each iteration Algorithm 3 tries to replay as many traces from
the log as possible. For each state the first unreplayable element is determined
and a new temporary transition for the element, along with a temporary state,
is built. TS3(L1) with temporary transitions and states marked by symbols e,
f , g and e are depicted in Fig. 3a. Note that the sum of the total frequencies
for all temporary transitions is equal to the number of traces that could not be
replayed in the first iteration.

Trace σ5 = 〈a, b, d〉 from log L1 is an example of a trace that can be replayed
at the very first iteration. Once all the traces from the log can be replayed, the
reconstruction of TS3(L) has successfully ended.

Second stage ( RestateTS ). As long as there is at least one temporary tran-
sition/state in TS3(L), it has to be converted to a regular one. This is done
by Algorithm 5, which enumerates all uncompleted traces. For each such trace
σ, the last regular state s, temporary transition t and temporary state ŝ are
obtained; they correspond to the first unplayable element σ(ξ(σ)). Then state ŝ
is converted to a regular state by being marked with subtrace σ[ξ(σ),m] of trace
σ ended by element σ(ξ(σ)) with length m that is proportional to the frequency
of temporary transition t. In this way, such a state is marked with a subtrace
which is shorter than that of the corresponding state in the full transition sys-
tem. Note that temporary states and transitions are always converted to regular
ones.

In Fig. 3b, transition t = (〈a, b, d〉, g, 〈g〉) is obtained from the former tran-
sition t̂3. Unlike the original (full) transition system, the target state here is
labeled by a shorter subtrace 〈g〉 instead of 〈a, b, d, g〉. It makes the state more
“abstract” and facilitates the emergence of other states with the same label.

If a temporary state is marked with the same subtrace as one of the states
existing in the model, both states are merged and the total number of states and
transitions in the resulting transition system is decreased. Figure 3b shows how
two states marked with subtrace 〈d, e〉 are merged to one state.

The frequency characteristic of some transitions can be relatively small for
producing a window size equal to 0. In such situation the algorithm uses a
dedicated state3 s0ws. This state accumulates all rare behavior patterns and
prevents the appearance of unwanted states and transitions.

An important consequence of the presence of state s0ws is that it is possible
to obtain even simpler model than a model built with a fixed window of a size
equal to 1 (Fig. 1c), and at the same time more precise one (see comparision in
Sect. 5.3). Here, simplicity is achieved by removing a number of unimportant
arcs and closing them as self-loops in state s0ws. The maximum number of such
self-loop arcs is limited by the number of all activities. A similar approach was
applied in CFM method [17] by merging all sink states (states without outgoing
arcs) into a single state s.

After the algorithm is finished, no temporary transitions and states are
present in TS3(L) anymore. Moreover, all previously unreplayable elements in
3 Formally, for a trace 〈〉, a state s0 should be considered. Nevertheless, we explicitly
distinguish the initial state s0 and the rare-behavior state s0ws.
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the traces can now be replayed in TS3(L) as new states for them have been
established. At the end of an iteration of the algorithm each trace from the log
can be replayed at least by one more element than before the iteration. Since
the length of each trace is finite, the number of iterations is also finite. Thus,
the algorithm eventually stops. The resulting TS3(L1) is depicted in Fig. 3c.

In Algorithm 3 Vwsc is an additional parameter used to combine a varying
window size approach with a classical fixed window size approach. It is a real
value from [0, 1] determining a maximum size of a state window during the
reconstruction phase of TS3(L).

Finally, considering the fitness of reduced transition system TS3(L), one can
postulate the following proposition.

Theorem 1. Let L be a log and let TS3(L) be a reduced transition system based
on condensed transition system TS2(L). Then, TS3(L) perfectly fits L.

Proof. Let σ = 〈a1, a2, ..., an〉 ∈ A∗ be a trace of log L and σ = σ+(TS2(L)) +
σ−(TS2(L)), where σ+(TS2(L)) is a trace prefix that can be “replayed” on
TS2(L) and σ−(TS2(L)) is a trace suffix that cannot be “replayed” on TS2(L).
σ+(TS2(L)) can be “replayed” on TS3(L) by the construction. Now we need to
prove that the entire sequence σ can be “replayed” on TS3(L). We will prove
that iteratively for sequences 〈σ(1), ..., σ(i)〉, where i varies from |σ+(TS2(L))|
to |σ|. Basis of induction: the proposition is valid for i = |σ+(TS2(L))|, since
σ+(TS2(L)) can be “replayed” on TS3(L). Step of induction: the trace 〈σ(1), ...,
σ(i)〉 can be “replayed”. Now let us prove that the trace 〈σ(1), ..., σ(i+1)〉 can be
“replayed” as well. According to Algorithms 4 and 5, we “replay” 〈σ(1), ..., σ(i)〉
and add a new state ŝ (if it has not been added previously) and a new edge
t = (s, σ(i + 1), ŝ) correspondingly. Thus, trace 〈σ(1), ..., σ(i + 1)〉 now can be
replayed, and that proves the step of induction. �

5 Evaluation and Discussion

In this section we evaluate the proposed approach as applied to real-life event
logs. In the beginning of the section, an algorithm for precision calculation is
introduced.

5.1 Metrics Calculation

Calculation of metrics for all three transition systems is performed throughout
their building.

As we have shown above, fitness of TS1(L) and TS3(L) is perfect. Further,
simplicity of a model is easily calculated on the basis of the number of model’s
elements.

We propose an algorithm calculating precision metrics for a given transition
system TS(L) based on an idea of simulation [16]. The algorithm assumes that
TS(L) perfectly fits log L. Suppose that TS(L) can simulate TS1(L). The behav-
ior which is present in TS(L) but not observed in the log is penalized. Finally, a
normalized total penalty forms the basis of a precision value.
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Fig. 4. Transition systems built for log L2: (a) 1-window size (fixed) TSf (L2);
(b) unfolding graph obtained after TSf (L2) simulated TS1(L2); (c) full TS1(L2)

The approach for calculation of precision is described in Algorithm 6. The
algorithm consists of two main steps. First, the algorithm iteratively calculates
so-called partial precisions for every state in TS(L) (Algorithm 9). Second, the
algorithm sums partial precisions (Algorithm 7) and calculates the average over
the number of states.

To get an illustration of this idea, consider the following log:

L2 = [〈a, b, c〉, 〈a, b, d〉, 〈b, c, d〉, 〈b, d, c〉]
Full transition system TS1(L2) for the log is depicted in Fig. 4c. It is con-

sidered to be the most precise reference model. Transition system TSf (L2) in
Fig. 4a is built with a fixed window size (equal to 1). As a more general model
than TS1(L2) it allows more behavior than the reference model, which is penal-
ized since it impacts precision.

The calculation of precision invokes a simulation routine implemented as a
recursive procedure (Algorithm 8). For the example above, TS(L) = TSf (L2)
and TS1(L) = TS1(L2). Initially s = s0 ∈ TS(L) and s1 = s01 ∈ TS1(l) are
passed as parameters to the procedure. For each output transition of a current
state s, the algorithm tries to find a transition labeled with the same event
among output transitions of a current state s1. Note, that all transition systems
considered in the paper are deterministic by construction, i.e. it is not possible
for a state to have more than one outgoing transition labeled by the same event.

For example, consider transition (s0, a, 〈a〉) in TSf (L2). It has a matching
transition (s0, a, 〈a〉) in TS1(L2). The procedure is recursively called with para-
meters s = 〈a〉 and s1 = 〈a〉. This step also produces an input edge to vertex
a in an unfolding graph depicted in Fig. 4b. This step has to be repeated for
transitions (〈a〉, b, 〈b〉) and (〈a〉, b, 〈a, b〉) (obtains b1 in the unfolding graph) and
transitions (〈b〉, c, 〈c〉) and (〈a, b〉, c, 〈a, b, c〉) (obtains c1 in the unfolding graph).
Here, 〈c〉 in TSf (L2) is an accepting state; it contains a virtual output transition
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(depicted as a gray dashed arrow) to a virtual final state. Similarly, 〈a, b, c〉 from
TS1(L2) also has a virtual final transition, which maintains balance (depicted
as a dashed output edge in the unfolding graph).

Together with that, 〈c〉 has transition (〈c〉, d, 〈d〉) to state 〈d〉, which has no
counterpart in TS1(L2) (edge (c1, d4) in the graph). The algorithm penalizes
this extra transition and calculates partial precision for state 〈c〉 as a difference
between the number of output transitions and the number of penalized output
transitions divided by the total number of output transitions.

Since state 〈a, b, c〉 of TS1(L2) does not allow any further moves, the algo-
rithm leaves the current iteration of the procedure and, thereby, returns to a
higher level, to state 〈b〉 of TSf (L2) and 〈a, b〉 of TS1(L2). Then, the algorithm
repeats the same steps for all unvisited output transitions.

During its work, the algorithm can normally visit some states of a more
general model (TSf (L2) in the example) more than once. For each such visit a
value of partial precision for the state is recalculated (Algorithm 9).

Finally, after all states of the reference model have been visited during the
simulation, values of ultimate partial precision for each state of TS(L) are repre-
sented by η. The last step is to calculate an average value (Algorithm 7), which
is the required value of the model’s precision.

Algorithm 6. Calculating preci-
sion for transition system TS(L)

Input : general (perfectly fit)

transition system

TS(L) = (S, E, T, s0, AS) built for log L;

reference full transition system

TS1(L) = (S1, E1, T1, s01, AS1);

Output : value of precision

Prec(TS(L)) for TS(L);

Data: partial function η mapping each

state of TS(L) to a real number

determining the state’s “partial

precision”; partial function θ mapping

each state s ∈ TS(L) to a natural

number determining how many times

state s has been visited;

/* Main part of the algorithm */

begin
CalcStatePrecision (s0, s01, TS(L),

TS1(L), η, θ);

Prec(TS(L)) ←SumPartialPrecisions

(TS(L), η);

Algorithm 7. Function
SumPartialPrecisions cal-
culating total precision of
TS(L)

Input : general (perfectly fit)

transition system

TS(L) = (S, E, T, s0, AS) built for

log L; function η mapping each state

of TS(L) to a real number

determining state’s “partial

precision”;

Output : value of precision

Prec(TS(L)) for TS(L);

Function

SumPartialPrecisions(TS(L), η):

Real

sum ← 0;

for s ∈ S do

sum ← sum + η(s);

res ← sum/|S|;
return res;
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Algorithm 8. Procedure CalcStatePrecision calculating “partial preci-
sion for entire states” as function η

Input : current state s of TS(L);
current state s1 of TS1(L); general (perfectly fit) transition system
TS(L) = (S, E, T, s0, AS) built for log L; reference full transition system
TS1(L) = (S1, E1, T1, s01, AS1); partial function η mapping each state of TS(L)
to a real number determining the state’s “partial precision”; partial function θ
mapping each state s ∈ TS(L) to a natural number determining how many
times state s has been visited;

Procedure CalcStatePrecision(s, s1, TS(L), TS1(L), η, θ)
pen ← 0;
for t = (s, a, s′) ∈ s• do

/* If no matching trans. */

if ∃t1 = (s1, a, s′
1) ∈ TS1(L) then

CalcStatePrecision (s′, s′
1, TS(L), TS1(L), η);

else
pen ← pen + 1;

/* Number of output trans-s */

otn ← |s • |;
if s ∈ AS then

otn ← otn + 1
if s1 /∈ AS1 then

pen ← pen + 1;

if otn 	= 0 then
partPartPrec = (otn − pen)/otn;
RecalcStatePrecision (s, partPartPrec);

Algorithm 9. Procedure RecalcStatePrecision refines the value of a
state’s “partial precision”
Input : state s ∈ S of TS(L) = (S, E, T, s0, AS);
function η mapping each state of TS(L) to a real number determining the
state’s “partial precision”; partial function θ mapping each state s ∈ S to a
natural number determining how many times state s has been visited; new
state’s partial precision pprec for refining;

Procedure RecalcStatePrecision(s, η, θ, pprec)
/* If either η or θ is not defined for this state */

if η(s) is not defined then
η(s) ← 0;

if θ(s) is not defined then
θ(s) ← 0;

stPrec ← η(s) · θ(s);
θ(s) ← θ(s) + 1;
η(s) ← (stPrec + pprec)/θ(s);
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5.2 Implementation Details

To evaluate the proposed approach, we have developed a number of routines for
the ProM toolkit [19]. The routines are implemented as plug-ins with several
entry points intended for different sets of input parameters.

The “Build and reduce transition systems (xi)” plug-in combines
routines for building TS1(L), TS2(L), TS3(L) for a given input log L, along
with calculation metrics for each transition system built. In the simplest case,
the plug-in obtains as its input only event log L and provides the ability to con-
figure the settings as follows. (1) Specify a maximum window size for building
TS1(L). The default size is unlimited (that is set at a value of −1). By setting the
size to a natural number, one can make the algorithm act with a fixed window.
We use this option for building reference models with fixed windows. (2) Specify
the value of the Threshold parameter used for building TS2(L). (3) Specify the
value of the multiplicative factor Vwsc used when building TS3(L).

Once successfully finished, the plug-in produces as its output three transition
systems, and, what is the most important for analyzing the results, a hierarchical
report. The report represents a set of characteristics organized in a tree structure.
They include metrics for each built transition system and additional attributes
calculated during the algorithm’s operation. We created a special “view” plug-in
for browsing such reports, which allows information to be exported as a JSON-
structure or HTML-formatted text.

Both plug-ins are openly available to download on http://pais.hse.ru.

5.3 Experiments and Discussion

We evaluated our approach on a set of event logs, both artificial and real-life. In
the following sections we consider “BPI challenge” logs [1] prepared for a Disco
project [2] L3 (11 traces, 89 activities) and L4 (251 traces, 247 activities). Full
transition systems built for the logs have the following frequency characteristics:

– TS1(L3): Maximum Window Size: 71; 514 states; 513 transitions;
– TS1(L4): Maximum Window Size: 83; 8088 states; 8087 transitions.

Our goal is to compare metrics of models built with an existing fixed window
algorithm and models built with the algorithms proposed in this paper.

Table 1 shows metrics of condensed and reduced models constructed with
unlimited window size. Metrics of k-window models for the logs are presented in
Table 2. Comparing the results from both tables, one can consider the following
outcome. By using a fixed window approach based on [3] the maximum reduction
is reached for a parameter k = 1. This is the smallest model that can be built by
any algorithm using h-tail approach [18]. Moreover, Table 2 shows that increasing
window size (k) to a value greater than 7 does not significantly impact simplicity
and precision.

In our algorithms, there are two parameters affecting model size: Threshold
and Vwsc. Parameter Threshold has a limited impact on the model size. As it is

http://pais.hse.ru
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shown in Table 1, dependence of the model size from Threshold is nonlinear in
the entire domain of Threshold. For log L4, better simplicity results are in the
vicinity of the points 0.2 and 0.8 and worse in the range ends. This is because in
the case of negligibly small Threshold values, TS2(L) model is similar to TS1(L);
so, the application area of a variable size window lies near the tree leaves. In this
situation, a noticeable reduction of a model is achievable only for traces with
similar suffixes.

Table 1. Dependence of model’s metrics on parameters Threshold and Vwsc with an
unlimited window size

Table 2. Metrics of k-window models

k (wnd size) L3 L4

States # Transs # Simpl Prec States # Transs # Simpl Prec

1 90 273 0,2479 0,6117 248 1755 0,124 0,3791

2 274 371 0,1395 0,8574 1756 3602 0,046 0,7607

3 372 418 0,1139 0,9457 3603 4838 0,029 0,8892

4 419 437 0,1051 0,9828 4839 5600 0,024 0,946

5 438 451 0,1012 0,9882 5601 6129 0,021 0,9671

7 464 474 0,0959 0,9914 6515 6806 0,019 0,9836

10 492 497 0,091 0,9961 7228 7392 0,017 0,9929

15 508 508 0,0886 0,999 7840 7905 0,016 0,9968

20 513 513 0,0877 0,999 8037 8054 0,015 0,9991
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When Threshold values come closer to 1, a smaller TS2(L) model is built.
Consequently, at the stage of building TS3(L) model, most of it is to be recon-
structed. Preliminary experiments show that selecting Threshold from a range
[0.2; 0.8] leads to better results; nevertheless, further elaboration of the parame-
ter’s impact is needed. We consider Threshold = 0.33 as a reference value. For
such a value, only the states and transitions with frequencies that equal at least
1/3 of the total number of traces are preserved in the condensed transition sys-
tem. Hence, all other states are reconstructed in a more abstract manner. The
results for Threshold = 0.33 are highlighted in blue in Table 1.

By decreasing the value of Vwsc parameter from 1 to 0, significant reduction
of a resulting model size is achieved (last two rows of Table 1). For example,
for log L3 and a value of Vwsc = 0.05 we have Simpl(TS3(L3)) = 0.3516 and
Prec(TS3(L3)) = 0.676 versus Simpl(TSf (L3)) = 0.2479 and Prec(TSf (L3)) =
0.6117 for the case of one window size model. Generally, by adjusting the value of
Vwsc, one can obtain a resulting model in a wide range of sizes. Unlike parameter
Threshold, parameter Vwsc gives a linear dependence of the model size. More-
over, by varying both values Threshold and Vwsc it is possible to enhance the
mutual influence of the parameters on each other. That allows flexible balancing
between precision and simplicity.

Comparision with existing approaches to transition systems reduction. By com-
paring the proposed approach with existing approaches we can make the follow-
ing conclusions. Most of the existing methods are based on different approaches
used to determine a state representation function [4].

In this paper, we proposed an essentially new adaptive state representation
function, which was not considered before. While inferring a transition system
from an event log, the function takes into account the frequency of an individual
event and varies the size of the window that determines the current state. Gen-
erally, the use of a fixed window allows improving simplicity of a model while
the use of an unlimited window improves its precision. Our approach combines
both and allows balancing between these two metrics in a flexible manner.

Intuitively, the bigger the number of events in a log corresponding to a state
is, a more specific (and, correspondly, less abstract) the state is. The more specific
state is marked by a longer subtrace, which reduces the probability of merging
the state with another state. In contrast, a big number of states corresponding
to rare behavior patterns can be easily merged, which dramatically impacts the
size of the transition system (and, correspondly, increases its simplicity). The
precision still slightly suffers.

The proposed approach implies an important corollary: the method is essen-
tially insensitive to noise. This is a big advantage of the method over some
existing methods, e.g. [18], where a comprehensive preprocessing of input logs is
needed.

The experiments on both artificial and randomly chosen real-life logs sup-
ported the proposed approach.
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6 Conclusion

This paper presented a new approach for reducing transition systems, based on
an inference algorithm with a varied window size. In contrast to the existing
approaches, the approach presented in this paper shows the advantage of allow-
ing flexible adjustments of the size of the resulting model. The evaluation of a
model’s quality is made by measuring its metrics. For calculation of the preci-
sion metric, an original algorithm has been developed. This way, estimation of
achievability of the main goal is made on the basis of numerical characteristics
of resulting models. The experiments with artificial and real-life logs justified
the proposed approach.

Future work is aimed at further investigation of impacts of various algorithm
coefficients on time costs of the region-based algorithm applied to resulting tran-
sition systems obtained during more comprehensive experiments. Moreover, we
plan to investigate the quality metrics of Petri nets synthesized from transition
systems obtained as an outcome of the algorithm.
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Abstract. This study focuses on the differences between stubborn sets
and other partial order methods. First a major problem with step graphs
is pointed out with an example. Then the deadlock-preserving stubborn
set method is compared to the deadlock-preserving ample set and per-
sistent set methods. Next, conditions are discussed whose purpose is to
ensure that the reduced state space preserves the ordering of visible tran-
sitions, that is, transitions that may change the truth values of the propo-
sitions that the formula under verification has been built from. Finally
solutions to the ignoring problem are analysed both when the purpose is
to preserve only safety properties and when also liveness properties are
of interest.

1 Introduction

Ample sets [1,10,11], persistent sets [5,6], and stubborn sets [15,19] are methods
for constructing reduced state spaces. In each found state, they compute a subset
of transitions and only fire the enabled transitions in it to find more states. We
call this subset an aps set.

The choice of aps sets depends on the properties under verification. Attempts
to obtain good reduction for various classes of properties have led to the devel-
opment of many different methods. Even when addressing the same class of
properties, stubborn set methods often differ from other aps set methods. The
present study focuses on these differences. The goal is to explain the intuition
behind the choices made in stubborn set methods.

To get a concrete starting point, Sect. 2 presents a simple (and non-optimal)
definition of stubborn sets for Petri nets that suffices for preserving all reachable
deadlocks. The section also introduces the �M -relation that underlies many
algorithms for computing stubborn sets, and sketches one good algorithm. This
relation and algorithm are one of the major differences between stubborn set and
other aps set methods. The section also contains a small new result, namely an
example showing that always choosing a singleton stubborn set if one is available
does not necessarily guarantee best reduction results.

With Petri nets, it might seem natural to fire sets of transitions called steps,
instead of individual transitions. Section 3 discusses why this is not necessarily
a good idea. Ample and persistent sets are compared to stubborn sets in Sect. 4,
in the context of deadlock-preservation. Furthermore, the difference between
c© Springer-Verlag GmbH Germany 2017
M. Koutny et al. (Eds.): ToPNoC XII, LNCS 10470, pp. 140–165, 2017.
DOI: 10.1007/978-3-662-55862-1 7
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weak and strong stubborn sets is explained. The verification of many properties
relies on a distinction between visible and invisible transitions. This distinction
is introduced in Sect. 5. Its ample and stubborn set versions are compared to
each other.

Because of the so-called ignoring problem, deadlock-preserving aps set meth-
ods fail to preserve most other classes of properties. For many classes, it suffices
to solve the ignoring problem in the terminal strong components of the reduced
state space. To this end, two slightly different methods have been suggested.
Section 6 first introduces them, and then presents and proves correct a novel
idea that largely combines their best features.

The above-mentioned solutions to the ignoring problem do not suffice for
so-called liveness properties. Section 7 discusses the stubborn set and ample set
methods for liveness. A drawback in the most widely known implementation
of the methods is pointed out. Section 8 discusses problems related to fairness.
Aps set methods have never been able to appropriately deal with mainstream
fairness assumptions. In this section we present some examples that illustrate
the difficulties. They are from [22]. Section 9 concludes the study.

2 The Basic Idea of Stubborn Sets

In this section we illustrate the basic idea of stubborn sets and of one good
algorithm for computing them.

We use T to denote the set of (all) transitions of a Petri net. Let M be a
marking. The set of enabled transitions in M is denoted with en(M) and defined
as {t ∈ T | M [t〉}. A deadlock is a marking that has no enabled transitions.

In Fig. 1 left, only firing t1 in the initial marking leads to the loss of the
deadlock that is reached by firing t3t2t3t1. To find a subset of transitions that
cannot lead to such losses, we first define a marking-dependent relation �M

between Petri net transitions.

PNd. If ¬(M [t〉), then choose pt ∈ •t such that M(pt) < W (pt, t) and declare
t �M t′ for every t′ ∈ •pt except t itself. (If many such pt are available, only
one is chosen. The correctness of what follows does not depend on the choice.)

PNe. If M [t〉, then declare t �M t′ for every t′ ∈ (•t)• except t itself.

On the right in Fig. 1, enabled transitions are shown with double cir-
cles, disabled transitions with single circles, and the �M -relation with arrows.

p1

t1

p2

t2

p3

t3
p4 t4

p5

t5

p6

t6
t1 t2 t3

t4
t5 t6

Fig. 1. A marked Petri net and its �M -graph, with pt5 = p5.
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For instance, t4 is enabled, •t4 = {p4, p6}, and {p4, p6}• = {t3, t4, t5}, so PNe
declares t4 �M t3 and t4 �M t5. Regarding t5, PNd allows choosing pt5 = p3
or pt5 = p5. In the example p5 was chosen, spanning the arrow t5 �M t6.

Consider any �M -closed set TM of transitions, that is, for every t and t′,
if t ∈ TM and t �M t′, then also t′ ∈ TM . Assume that t ∈ TM , ti /∈ TM for
1 ≤ i ≤ n, and M [t1 · · · tn〉 M ′. PNd guarantees that if t is disabled in M , then
t is disabled also in M ′. This is because every transition that may increase the
number of tokens in pt is in TM . PNe guarantees that if t is enabled in M , then
there is M ′′ such that M ′ [t〉 M ′′ and M [tt1 · · · tn〉 M ′′. This is because t does
not consume tokens from the same places as t1 · · · tn.

Let M̂ be the initial marking of a Petri net. Let stubb(M) be a function
that, for any marking M that is not a deadlock, returns an �M -closed set
of transitions that contains at least one enabled transition. This set is called
stubborn. If M is a deadlock, then it does not matter what stubb(M) returns.
Let the reduced state space be the triple (Sr,Δr, M̂), where Sr and Δr are the
smallest sets such that (1) M̂ ∈ Sr and (2) if M ∈ Sr, t ∈ stubb(M), and
M [t〉 M ′, then M ′ ∈ Sr and (M, t,M ′) ∈ Δr. It can be constructed like the
ordinary state space, except that only the enabled transitions in stubb(M) are
fired in each constructed marking M . We have the following theorem.

Theorem 1. The set Sr contains all deadlocks that are reachable from M̂ .

Proof. The proof proceeds by induction. Let M ∈ Sr and M [t1 · · · tn〉 Md, where
Md is a deadlock. If n = 0, then Md = M ∈ Sr.

If n > 0, then M [t1〉. So M is not a deadlock and stubb(M) contains an
enabled transition t. If none of ti is in stubb(M), then PNe implies that t is
enabled at Md, contradicting the assumption that Md is a deadlock. So there is
i such that ti ∈ stubb(M) but tj /∈ stubb(M) for 1 ≤ j < i. Let Mi−1 and Mi

be the markings such that M [t1 · · · ti−1〉 Mi−1 [ti〉 Mi [ti+1 · · · tn〉 Md. PNd
implies that ti ∈ en(M), because otherwise ti would be disabled in Mi−1. So
PNe implies M [tit1 · · · ti−1〉 Mi [ti+1 · · · tn〉 Md. Let M ′ be the marking such
that M [ti〉 M ′. Then M ′ ∈ Sr and there is the path M ′ [t1 · · · ti−1ti+1 · · · tn〉 Md

of length n − 1 from M ′ to Md. By induction, Md ∈ Sr. ��
The next question is how to compute stubborn sets. Clearly only the enabled

transitions in stubb(M) affect the reduced state space. Therefore, we define
T1 �M T2 if and only if T1 ∩ en(M) ⊆ T2 ∩ en(M). If stubb1(M) �M stubb2(M)
for every reachable marking M , then stubb1 yields a smaller or the same reduced
state space as stubb2. So we would like to use �M -minimal stubborn sets.

Each �M -relation spans a directed graph (T, “�M”) as illustrated in Fig. 1
right. We call it the �M -graph. Let C be a strong component of the �M -graph
such that it contains an enabled transition, but no other strong component that
is reachable from C contains enabled transitions. In Fig. 1, C = {t3, t4} is such
a strong component. Let C ′ be the set of all transitions that are reachable from
C. In Fig. 1, C ′ = {t3, t4, t5, t6}. Then C ′ is an �M -minimal �M -closed set that
contains an enabled transition. That is, we can choose stubb(M) = C ′.
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A fast algorithm that is based on this idea was presented in [15,19,26], among
others. It uses Tarjan’s strong component algorithm [14] (see [3] for an improved
version). It has been implemented in the ASSET tool [21] (although not for Petri
nets). Its running time is linear in the size of the part of the �M -graph that
it investigates. For instance, if it happens to start at t2 in Fig. 1, then it does
not investigate t1 and its output arrow. Although in this example the resulting
savings are small, they are often significant.

The algorithm performs one or more depth-first searches in the �M -graph,
until a search finds an enabled transition or all transitions have been tried. The
description above leaves open the order in which transitions are used as the
starting points of the searches. The same holds on the order in which the output
arrows of each transition are investigated. For instance, when in t4 in Fig. 1,
the algorithm may follow the arrow t4 � t5 before or after the arrow t4 � t3.
Therefore, the result of the algorithm may depend on implementation details.
Furthermore, it may also depend on the choice of pt if there are more than one
alternatives. This is why we sometimes say that the method may produce some
result, instead of saying that it does produce it.

The conditions PNd and PNe are not the best possible. For instance, t �M

t′ need not be declared in PNd, if W (pt, t
′) ≥ W (t′, pt). Extreme optimization

of the �M -relation yields very complicated conditions, as can be seen in [15,
19]. A similar claim holds also with formalisms other than Petri nets. For this
reason, and also to make the theory less dependent on the formalism used for
modelling systems, aps set methods are usually developed in terms of more
abstract conditions than PNd and PNe. We will do so in Sect. 4.

To analyse more properties than just deadlocks, additional conditions on the
choice of stubborn sets are needed. Many of them will be discussed in Sects. 5,
6, and 7.

Until the end of Sect. 5 it will be obvious that if stubb1(M) �M stubb2(M),
then stubb1(M) never yields worse but may yield better reduction results than
stubb2(M). In Sects. 6 and 7, the choices of stubb(M) with different M may
interfere with each other, making the issue less trivial.

Even in the present section, it is not obvious which one to choose when
stubb1(M) ��M stubb2(M) and stubb2(M) ��M stubb1(M). It was pointed out
already in [16] that choosing the smallest number of enabled transitions does not
necessarily guarantee best reduction results. In the remainder of this section we
demonstrate that always favouring a set with precisely one enabled transition
does not guarantee a minimal result. This strengthened observation is new.

A Petri net is 1-safe if and only if no place contains more than one token
in any reachable marking. For simplicity, we express a marking of a 1-safe Petri
net by listing the marked places within { and }.

Consider the 1-safe Petri net in Fig. 2. Initially the only possibility is to fire t1
and t2, yielding {2, 8} and {3, 8}. In {2, 8}, both {t3, t4} and {t9} are stubborn.
In {3, 8}, both {t5, t6} and {t9} are stubborn. We now show that {t3, t4} and
{t5, t6} yield better reduction than {t9}.
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p1

p7

t1

t2

p2

p3

p8

t3

t4
t5

t6
t9
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p5

p9

t7

t8

p6

Fig. 2. A stubborn set with one enabled transition is not always the best choice.

If {t3, t4} is chosen in {2, 8} or {t5, t6} is chosen in {3, 8}, then {4, 8} and
{5, 8} are obtained. From them, {t7} and {t8} yield {6, 8}, from which {t9}
leads to {6, 9} which is a deadlock. Altogether seven markings and nine edges
are constructed.

If {t9} is chosen in {2, 8} and {3, 8}, then {2, 9} and {3, 9} are obtained. Then
{t3, t4} or {t5, t6} yields {4, 9} and {5, 9}, from which {t7} and {t8} produce
{6, 9}. Altogether eight markings and ten edges are constructed.

3 Why Not Steps?

Before comparing aps set methods to each other, in this section we compare
them to step graphs. For simplicity, we restrict ourselves to executions that lead
to deadlocks. That is, the goal is to find all reachable deadlocks and for each of
them at least one path that leads to it.

A step is any nonempty subset {t1, . . . , tn} of Petri net transitions. It is
enabled at M if and only if M(p) ≥ ∑n

i=1 W (p, ti) for every place p. Then there
is M ′ such that M [π〉 M ′ for every permutation π of t1 · · · tn. The idea of a step
graph is to fire steps instead of individual transitions. Unlike the traditional state
space, the order of firing of the transitions within the step is not represented,
and intermediate markings between the firings of two successive transitions in π
are not constructed. This is expected to yield a memory-efficient representation
of the behaviour of the Petri net.

To maximize the savings, the steps should be as big as possible. Unfortu-
nately, the following example shows that only firing maximal steps is not correct.
By firing t3t2t3t1 in Fig. 1, a deadlock is reached where M(p2) = 3. The maximal
steps in the initial marking are {t1, t3} and {t1, t4}. If only they are fired in the
initial marking, no deadlock with M(p2) > 2 is reached.

This problem can be fixed by also firing a sufficient collection of non-maximal
steps. If {t1, t3}, {t1, t4}, {t3}, and {t4} are fired in the initial marking of our
example, then no deadlock is lost although the marking M that satisfies M̂ [t1〉
M is not constructed. However, another problem may arise even when it suffices
to fire only maximal steps. We will now discuss it.

Consider the Petri net that consists of the black places, transitions, and arcs
in Fig. 3 left. It models a system of n concurrent processes. It has n!2n different
executions, yielding a state space with 3n markings and 2n3n−1 edges. Its initial
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· · ·
· · ·
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Fig. 3. An example of firing steps vs. aps sets.

marking has 2n different steps of size n, consisting of one transition from each
process. They yield a step graph with 2n + 1 markings and 2n edges.

Any reasonable implementation of any aps set method investigates one
process at a time in this example. That is, the implementation picks some i
such that M(pi,1) = 1, and chooses aps(M) = {ti,1, ti,2}. If there is no such i,
then aps(M) = ∅. This yields 1 + 2 + 4 + 8 + . . . + 2n = 2n+1 − 1 markings and
2n+1 − 2 edges.

We see that both methods yield a significant saving over the full state space,
and step graphs yield approximately 50 % additional saving over aps sets. Step
graphs construct strictly as few markings and edges as necessary in this example.

Assume now that the grey places, transitions, and arcs are added. The step
graph now has 2n + 2 markings and 2n+1 edges.

Aps sets may yield many different results depending on what aps(M) returns
for each M . Assume that the algorithm in Sect. 2 is used and transitions are
tried as the starting points of depth-first searches in the order t1,1, t1,2, t1,3, t1,4,
t2,1, t2,2, . . . . Then aps(M) is either {ti,1, ti,2}, {ti,3}, or {ti,4}, where i is the
smallest index such that either M(pi,1) = 1, M(pi,2) = 1, or M(pi,3) = 1. (If
there is no such i, then aps(M) = ∅.) In that case, the reduced state space shown
at right in Fig. 3 is obtained. In Mi,j , M(pk,4) = 1 for 1 ≤ k < i, M(pi,j) = 1,
M(pk,1) = 1 for i < k ≤ n, and the remaining places are empty. That is, only
3n+1 markings and 4n edges are constructed. This is tremendously better than
the result with step graphs.

There is no guarantee that aps sets yield this nice result. If transitions are
tried in the order t1,1, t2,1, . . . , tn,1, t1,2, t2,2, . . . , then 3 · 2n − 2 markings and
2n+2 − 4 edges are obtained.

The point is that in this example, it is guaranteed that step graphs do not
yield a good result, while aps sets may yield a very good result.

Another issue worth noticing in this example is that when aps sets failed
to reduce well, they only generated approximately three times the markings
and twice the edges that the step graphs generated. This is because where
steps avoided many intermediate markings, aps sets investigated only one path
through them and thus only generated a small number of them. For this reason,
even when aps sets lose to step graphs, they tend not to lose much.

This example brings forward a problem with comparing different methods.
Most of the methods in this research field are nondeterministic in the same sense
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as the algorithm in Sect. 2. Therefore, the results of a verification experiment may
depend on, for instance, the order in which transitions are listed in the input of
a tool. Above, the order t1,1, t2,1, . . . gave dramatically worse results than the
order t1,1, t1,2, . . . . When comparing verification methods or tools, it might be
a good idea to repeat experiments with transitions in some other order.

4 Deadlocks with Ample vs. Persistent vs. Stubborn Sets

In this section we relate the ample set, persistent set, strong stubborn set, and
weak stubborn set methods to each other when the goal is to preserve all dead-
locks. Details of each method vary in the literature. We use the variant of ample
sets described in [1], persistent sets in [6], and stubborn sets in [19]. These ver-
sions of the methods are mature and widely used.

We will use familiar or obvious notation for states, transitions, and so forth.
A set of states is typically denoted with S, a set of transitions with T , and an
initial state with ŝ. Transitions refer to structural transitions such as Petri net
transitions or atomic statements of a program. Transition t is deterministic, if
and only if for every s, t, s1, and s2, s

t−→ s1 and s
t−→ s2 imply s1 = s2.

Ample, persistent, and stubborn set methods compute an aps set aps(s) in
each state s that they encounter. They construct a reduced state space by only
firing the enabled transitions in each aps(s). It is the triple (Sr,Δr, ŝ), where Sr

and Δr are the smallest sets such that (1) ŝ ∈ Sr and (2) if s ∈ Sr, t ∈ aps(s), and
s

t−→ s′, then s′ ∈ Sr and (s, t, s′) ∈ Δr. The full state space (S,Δ, ŝ) is obtained
by always choosing aps(s) = T . Obviously ŝ ∈ Sr ⊆ S and Δr ⊆ Δ.

The ample set method relies on the notion of independence between tran-
sitions. It is usually defined as any binary relation on transitions that has the
following property:

Independence. If transitions t1 and t2 are independent of each other, s
t1−→ s1,

and s
t2−→ s2, then there is s′ such that s1

t2−→ s′ and s2
t1−→ s′.

Independence is not defined as the largest relation with this property, because
it may be difficult to find out whether the property holds for some pair of tran-
sitions. In such a situation, the pair may be declared as dependent. Doing so
does not jeopardize the correctness of the reduced state space, but may increase
its size. This issue is similar to the use of non-optimal �M -relations in Sect. 2.

Obviously transitions that do not access any variable (or Petri net place) in
common can be declared as independent. (Here also the program counter or local
state of a process is treated as a variable.) Two transitions that both increment
the value of a variable by 42 without testing its value in their enabling conditions
can be declared as independent, if they do not access other variables in common.
A similar claim holds if they both assign 63 to the variable. Reading from a fifo
queue and writing to it can be declared as independent, as can two transitions
that are never simultaneously enabled.

An ample set for deadlocks in state s0 is any subset of transitions that are
enabled at s0 that satisfies the following two conditions:
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C0. If en(s0) �= ∅, then ample(s0) �= ∅.
C1. If s0

t1···tn−−−−→ and none of t1, . . . , tn is in ample(s0), then each one of t1, . . . ,
tn is independent of all transitions in ample(s0).

We show next that every deadlock of the full state space is present also in
the reduced state space.

Theorem 2. Assume that transitions are deterministic, s ∈ Sr, sd is a deadlock,
and s

t1···tn−−−−→ sd in the full state space. If C0 and C1 are obeyed, then there is a

permutation t′1 · · · t′n of t1 · · · tn such that s
t′
1···t′

n−−−−→ sd in the reduced state space.

Proof. We only present the parts where the proof differs from the proof of The-
orem 1. If n > 0, then ample(s) contains an enabled transition t by C0 and
ample(s) ⊆ en(s). If none of t1, . . . , tn is in ample(s), then sd

t−→ by C1, contra-
dicting the assumption that sd is a deadlock. So there is a smallest i such that
ti ∈ ample(s). Let si−1 and si be the states such that s

t1···ti−1−−−−−→ si−1
ti−→ si. Since

ample(s) ⊆ en(s), there is s′ such that s
ti−→ s′. By C1, applying independence

i−1 times, there is s′
i such that s′ t1···ti−1−−−−−→ s′

i and si−1
ti−→ s′

i. Because transitions

are deterministic, s′
i = si. As a consequence, s

ti−→ s′ t1···ti−1−−−−−→ si
ti+1···tn−−−−−→ sd. ��

Strong stubborn sets are defined such that they may contain both enabled
and disabled transitions. Deadlock-preserving strong stubborn sets satisfy the
following three conditions. D0 is essentially the same as C0. D1 and D2 will
be motivated and related to C1 after the definition.

D0. If en(s0) �= ∅, then stubb(s0) ∩ en(s0) �= ∅.
D1. If t ∈ stubb(s0), ti /∈ stubb(s0) for 1 ≤ i ≤ n, and s0

t1···tnt−−−−→ s′
n, then

s0
tt1···tn−−−−→ s′

n.
D2. If t ∈ stubb(s0), ti /∈ stubb(s0) for 1 ≤ i ≤ n, s0

t1···tn−−−−→ sn, and s0
t−→, then

sn
t−→.

This formulation was suggested by Marko Rauhamaa [12]. The most impor-
tant reason for its use is that D1 works well even if transitions are not necessarily
deterministic. (For deadlocks, also D2 can be used as such.) This is important
for applying stubborn sets to process algebras, please see, e.g., [18,23,26]. In
the proof of Theorem 2, the assumption that transitions are deterministic was
explicitly used. Already the definition of independence relies on determinism.
This issue makes ample and persistent set theories difficult to apply to process
algebras.

Second, D1 can be used as such and D2 with a small change in the definition
of weak stubborn sets towards the end of this section.

Third, D1 and D2 are slightly easier to use in proofs than C1. Let s = s0
t1−→

s1
t2−→ · · · tn−→ sn = sd. D0 and D2 yield an i such that ti ∈ stubb(s) and tj /∈

stubb(s) for 1 ≤ j < i. Then the existence of s′ such that s
ti−→ s′ t1···ti−1−−−−−→ si is
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immediate by D1. This last piece of reasoning is repeated frequently in stubborn
set theory, so it is handy that D1 gives it as a ready-made step. We have proven
the following generalization of Theorem 2.

Theorem 3. Theorem 2 remains valid, if D0, D1, and D2 replace C0 and C1.
Then transitions need not be deterministic.

This is a generalization, because it applies to also nondeterministic transitions,
and because, as will be seen in Theorem 5, in the case of deterministic transitions
C0 and C1 imply D0, D1, and D2.

In the case of deterministic transitions, D1 and D2 have the following equiv-
alent formulation:

Dd. If t ∈ stubb(s0), ¬(s0
t−→), ti /∈ stubb(s0) for 1 ≤ i ≤ n, and s0

t1···tn−−−−→ sn,
then ¬(sn

t−→).
De. If t ∈ stubb(s0), s0

t−→ s′
0, ti /∈ stubb(s0) for 1 ≤ i ≤ n, and s0

t1···tn−−−−→ sn,
then there is s′

n such that sn
t−→ s′

n and s′
0

t1···tn−−−−→ s′
n.

Dd says that disabled transitions in the stubborn set remain disabled, while
outside transitions occur. De says that enabled transitions in the stubborn set
commute with sequences of outside transitions. It is immediately obvious that
PNd and PNe imply Dd and De. Let us show that for deterministic transitions,
this formulation indeed is equivalent to D1 and D2.

Theorem 4. If transitions are deterministic, then D1 ∧ D2 is equivalent to
Dd ∧ De.

Proof. Assume first that D1 and D2 hold. Then Dd follows immediately from
D1. If s0

t−→ s′
0 and s0

t1···tn−−−−→ sn, then D2 yields an s′
n such that sn

t−→ s′
n, after

which D1 yields an s′′
0 such that s0

t−→ s′′
0

t1···tn−−−−→ s′
n. Because transitions are

deterministic, s′′
0 = s′

0, so De is obtained.
Assume now that Dd and De hold. Then D2 follows immediately from De.

If s0
t1···tn−−−−→ sn

t−→ s′
n, then Dd yields an s′

0 such that s0
t−→ s′

0, after which
De yields an s′′

n such that s′
0

t1···tn−−−−→ s′′
n and sn

t−→ s′′
n. Because transitions are

deterministic, s′′
n = s′

n, so D1 is obtained. ��
Similarly to the �M -relation in Sect. 2, �s-relations can be defined for Petri

nets and other formalisms such that they guarantee D1 and D2. Please see
e.g., [19,24,26] for more information. This means that the stubborn set con-
struction algorithm in Sect. 2 can be applied to many formalisms. Indeed, its
implementation in ASSET is unaware of the formalism. It only has access to the
�s-relation and to the enabling status of each transition.

It would not be easy to describe this algorithm without allowing disabled
transitions in the aps set. Indeed, instead of this algorithm, publications on
ample and persistent sets suggest straightforward algorithms that test whether
some obviously �s-closed set is available and if not, revert to the set of all
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enabled transitions. This means that they waste reduction potential. The running
time is not an important issue here, because, as experiments with ASSET have
demonstrated [20,21,26], the algorithm is very fast.

The first publications on stubborn sets (such as [15]) used formalism-specific
conditions resembling PNd and PNe instead of abstract conditions such as D1
and D2.

It is now easy to show that every ample set is strongly stubborn.

Theorem 5. If transitions are deterministic, ample(s0) ⊆ en(s0), and ample(s0)
satisfies C0 and C1, then ample(s0) satisfies D0, D1, and D2.

Proof. Clearly C0 implies D0. Dd follows trivially from ample(s0) ⊆ en(s0),
and De follows immediately from C1. Now Theorem 4 gives the claim. ��

p1 p2

t t1

t1 t1

t t

t

Fig. 4. An example where {t} satisfies D0, D1, and D2, but not C1.

Figure 4 demonstrates that the opposite does not hold. Clearly {t} satisfies
D0 in 21. The only enabled sequences of transitions not containing t are ε and
t1. Checking them both reveals that {t} also satisfies D1 and D2 in 21. However,
{t} does not satisfy C1, because t is not independent of t1 because of 11.

To relate strong stubborn sets to persistent sets, the following theorem is
useful.

Theorem 6. Let s0 be a state and stubb(s0) be a set of transitions. If stubb(s0)
obeys D0, D1, and D2 in s0, then also stubb(s0) ∩ en(s0) obeys them in s0.

Proof. That stubb(s0) ∩ en(s0) obeys D0 is immediate from D0 for stubb(s0).
Assume that s0

t1···tn−−−−→, where ti /∈ stubb(s0)∩en(s0) for 1 ≤ i ≤ n. We prove
that no ti is in stubb(s0). To derive a contradiction, let i be the smallest such that

ti ∈ stubb(s0). So ti ∈ stubb(s0), ti /∈ en(s0), s0
t1···ti−1ti−−−−−−→, and tj /∈ stubb(s0)

for 1 ≤ j < i. This contradicts D1 for stubb(s0).
If the if-part of D1 holds for stubb(s0)∩en(s0), then by the above, the if-part

of D1 holds also for stubb(s0). So the then-part for stubb(s0) holds, which is the
same as the then-part for stubb(s0) ∩ en(s0). Similar reasoning applies to D2. ��

Persistent sets also assume that transitions are deterministic. They rely
on independence in a state. If t and t′ are independent in s, then the following
hold [6, Def. 3.17]:

1. If s
t−→ and s

t′
−→, then there is s′ such that s

tt′
−→ s′ and s

t′t−→ s′.

2. If s
tt′
−→, then s

t′
−→.
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3. If s
t′t−→, then s

t−→.

A set pers(s0) is persistent in s0 if and only if pers(s0) ⊆ en(s0) and for every
t1, . . . , tn and s1, . . . , sn such that s0

t1−→ s1
t2−→ · · · tn−→ sn and ti /∈ pers(s0) for

1 ≤ i ≤ n, it holds that every element of pers(s0) is independent of ti in si−1 [6,
Definition 4.1].

It is worth noticing that the concept of persistency would not change if
items 2 and 3 were removed from the definition of independence in a state. Let
t ∈ pers(s0), and let s′

0 be such that s0
t−→ s′

0. Repeated application of item 1
yields s′

1, . . . , s′
n such that s′

0
t1−→ s′

1
t2−→ · · · tn−→ s′

n and si
t−→ s′

i for 1 ≤ i ≤ n.
Because for 1 ≤ i ≤ n, both t and ti are enabled in si−1, the then-parts of items 2
and 3 hold, and thus the items as a whole hold. That is, items 2 and 3 can be
proven for the states si−1, so they need not be assumed. It seems plausible that
items 2 and 3 were originally adopted by analogy to the independence relation
in Mazurkiewicz traces [9].

The next theorem, from [27, Lemma 4.14], says that persistent sets are equiv-
alent to strong stubborn sets restricted to deterministic transitions.

Theorem 7. Assume that transitions are deterministic. Every nonempty per-
sistent set satisfies D0, D1, and D2. If a set satisfies D1 and D2, then its set
of enabled transitions is persistent.

Proof. Persistency immediately implies De. Because pers(s0) ⊆ en(s0), it also
implies Dd. These yield D1 and D2 by Theorem 4. If a persistent set is not
empty, then it trivially satisfies D0.

Assume that stubb(s0) satisfiesD1 andD2. Let pers(s0) = stubb(s0) ∩ en(s0).
By Theorems 4 and 6, pers(s0) satisfies De. Let t ∈ pers(s0), s′

0 be the state such
that s0

t−→ s′
0, s0

t1−→ s1
t2−→ · · · tn−→ sn, and ti /∈ pers(s0) for 1 ≤ i ≤ n. De implies

s′
0

t1···tn−−−−→. Let s′
1, . . . , s′

n be the states such that s′
0

t1−→ s′
1

t2−→ · · · tn−→ s′
n. Let

1 ≤ i ≤ n. By giving De t1 · · · ti in the place of t1 · · · tn we see that De implies
si

t−→ s′
i for 1 ≤ i ≤ n. As a consequence, De implies for 1 ≤ i ≤ n that t is

independent of ti in si−1. This means that pers(s0) is persistent. ��
Deadlock-preserving weak stubborn sets use D1 and the following condi-

tion D2w, that replaces both D0 and D2.

D2w. If en(s0) �= ∅, then there is tk ∈ stubb(s0) such that if ti /∈ stubb(s0) for
1 ≤ i ≤ n and s0

t1···tn−−−−→ sn, then sn
tk−→.

By choosing n = 0 we see that s0
tk−→. That is, instead of requiring that all

enabled transitions in a stubborn set remain enabled while outside transitions
occur, D2w requires that one of them exists and remains enabled. This one is
called key transition and denoted above with tk.

Every strong stubborn set is also weak but not necessarily vice versa. There-
fore, weak stubborn sets have potential for better reduction results. The first
publication on stubborn sets [15] used weak stubborn sets. The added reduction
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potential of weak stubborn sets has only recently found its way to tools [4,7,8].
The proof of Theorem 3 goes through with D2w instead of D2 and D0. Indeed,
weak stubborn sets preserve many, but not necessarily all of the properties that
strong stubborn sets preserve.

Excluding a situation that does not occur with most verification tools, if the
system has infinite executions, then all methods in this section preserve at least
one. The nondeterministic case of this theorem is new or at least little known.

Theorem 8. Assume that s0 ∈ Sr and s0
t1−→ s1

t2−→ . . .. If transitions are
deterministic or the reduced state space is finitely branching, then there are t′1,

t′2, . . . such that s0
t′
1t′

2···−−−−→ in the reduced state space.

Proof. If any of the ti is in stubb(s0), then, for the smallest such i, by D1, there

is s′
0 such that s0

ti−→ s′
0

t1···ti−1ti+1···−−−−−−−−−→. Otherwise, by D2w, for every j ∈ N

there is s′
j such that sj

tk−→ s′
j . If transitions are deterministic, then D1 yields

s′
0

t1−→ s′
1

t2−→ · · · . This argument can be repeated at s′
0 and so on without limit,

yielding the claim.
If transitions are not necessarily deterministic, then, for every n ∈ N, D1 can

be applied to s0
t1···tn−−−−→ or to s0

t1···tntk−−−−−→. This can be repeated n times, yielding
an execution of length n in the reduced state space starting at s0. If the reduced
state space is finitely branching, then König’s Lemma type of reasoning yields
the claim. ��
Consider a Petri net with two transitions and no places. Any reasonable imple-
mentation of the deadlock-preserving aps set method fires initially one transition,
notices that it introduced a self-loop adjacent to the initial state, and terminates
without ever trying the other transition. Let t be the fired and t′ the other transi-

tion. In terms of Theorem 8, the infinite execution ŝ
t′t′t′···−−−−→ became represented

by ŝ
ttt···−−−→. So it is possible that {t1, t2, . . .} ∩ {t′1, t′2, . . .} = ∅ in Theorem 8.

More generally, if an original execution does not lead to a deadlock, then it is
often the case that its representative in the reduced state space does not consist
of precisely the same transitions. As a consequence, in the opinion of the present
authors, when trying to understand aps set methods, Mazurkiewicz traces [9]
and partial orders of transition occurrences are not a good starting point.

5 Visible and Invisible Transitions

Figure 5 shows a 1-safe Petri net, the directed graph that the �M -relation spans
in the shown marking {1, 4, 9}, and the similar graph for the marking {1, 6, 9}
that is obtained by firing t3. Please ignore the grey p12 and t7 until Sect. 6. Please
ignore the dashed arrows for the moment. They will be explained soon.

Assume that we want to check whether always at least one of p1 and p8 is
empty. We denote this property with �((M(p1) = 0) ∨ (M(p8) = 0)). It does
not hold, as can be seen by firing t3t4t5.
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Fig. 5. A Petri net with two visible transitions and its �{1,4,9}- and �{1,6,9}-graphs.
In the latter, p2 is chosen as pt2 . The dashed arrows arise from V.

According to the theory developed this far, {t1} is stubborn. Therefore, it
suffices to fire just t1 in the initial marking. After firing it, p1 is permanently
empty. As a consequence, no counterexample to �((M(p1) = 0) ∨ (M(p8) = 0))
is found. We see that the basic strong stubborn set method does not preserve
the validity of this kind of properties.

This problem can be solved in two steps. The second step will be described
in Sects. 6 and 7, where systems that may exhibit cyclic behaviour are discussed.
The first step consists of classifying transitions as visible and invisible, and
adopting an additional requirement. The atomic propositions of �((M(p1) =
0) ∨ (M(p8) = 0)) are M(p1) = 0 and M(p8) = 0. If a transition is known not
to change the truth value of any atomic proposition in any reachable marking,
it is classified as invisible. If the transition is known to change the truth value
in at least one reachable marking or it is not known whether it can change it,
then it is classified as visible. The additional requirement is the following.

V. If stubb(s0) contains an enabled visible transition, then it contains all visible
transitions (also disabled ones).

In the example, the grey transitions are visible and the rest are invisible. V
adds the dashed arrows to the �M -graphs in Fig. 5.

Assume V. Consider D1. Its t is enabled because s0
tt1···tn−−−−→. Consider the

sequence of visible transitions within tt1 · · · tn, that is, the projection of tt1 · · · tn
on visible transitions. If t is invisible, then it is obviously the same as the pro-
jection of t1 · · · tnt. If t is visible, then V implies that t1, . . . , tn are invisible,
because they are not in stubb(s0) by the assumption in D1. So again the pro-
jections are the same. This means that when t1 · · · tn and t′1 · · · t′n are like in
Theorems 2 and 3, the projection of t1 · · · tn is the same as the projection of
t′1 · · · t′n.

With Theorem 8, the projection of t1t2 · · · is a prefix of the projection of
t′1t

′
2 · · · or vice versa. Sections 6 and 7 tell how they can be made the same.
For instance, t3t4t5t1 leads to a deadlock in Fig. 5. In it, t5 occurs before t1.

V guarantees that t5 occurs before t1 also in the permutation of t3t4t5t1 whose
existence Theorem 3 promises. By executing the permutation to a point where
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t5 has but t1 has not yet occurred, a state in the reduced state space is found
that violates �((M(p1) = 0) ∨ (M(p8) = 0)). In this way V makes it possible to
check many kinds of properties from the reduced state space.

Indeed, with the dashed arrow, the �M -graph in Fig. 5 middle yields two
stubborn sets: {t1, . . . , t5} and T . In both cases, t3 is in the stubborn set. By
firing t3, the marking {1, 6, 9} is obtained whose �M -graph is shown in Fig. 5
right. This graph yields the stubborn sets {t4, t6}, {t1, t4, t5, t6}, and some others
that have the same enabled transitions as one of these, such as {t3, t4, t5, t6}. All
of them contain t4. After firing it, each stubborn set contains t1, t5, and possibly
some disabled transitions. So the sequence t3t4t5 is fired in the reduced state
space (after which t1 is fired).

In the ample set theory, instead of V there is the following condition:

C2. If ample(s0) contains a visible transition, then make ample(s0) = en(s0).

This condition is stronger than V in the sense that C2 always forces at least
the same enabled transitions to be taken as V, but not necessarily vice versa. In
particular, although {t1, . . . , t5} obeys V in the initial marking of our example,
its set of enabled transitions (that is, {t1, t3}) does not obey C2. Indeed, C2
commands to fire all enabled transitions in {1, 4, 9}, including also t6. Therefore,
ample sets yield worse reduction in this example than stubborn sets.

It is difficult to formulate V without talking about disabled transitions in
the stubborn set. For instance, consider “if the stubborn set contains an enabled
visible transition, then it contains all enabled visible transitions”. It allows to
choose {t1} in {1, 4, 9}. However, we already saw that {t1} loses all counterex-
amples to the property. The ability to formulate better conditions than C2 is
an example of the advantages of allowing disabled transitions in stubborn sets.

The basis of the running example of this section (but not most of the details)
is from [26].

6 The Ignoring Problem, Part 1: Finite Executions

Assume that the initially marked place p12, transition t7, and arcs between them
are added to the Petri net in Fig. 5. Before the addition, the state space of the
net is acyclic and has the deadlocks {3, 5, 11}, {2, 8, 10}, and {2, 6, 11}. The
addition adds number 12 and the self-loop M

t7−→ M to each reachable marking.
It adds the stubborn set {t7} to each reachable marking and otherwise keeps the
�M -minimal stubborn sets the same.

If t7 is investigated first in the initial marking {1, 4, 9, 12}, then the stubborn
set {t7} is chosen. Firing t7 leads back to the initial marking. Therefore, the
method only constructs the initial marking and its self-loop—that is, one mark-
ing and one edge. This is correct, because like the full state space, this reduced
state space has no deadlocks but has an infinite execution. As a matter of fact,
from the point of view of checking these two properties, the obtained reduction
is ideal.
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On the other hand, this reduced state space is clearly invalid for disproving
the formula �((M(p1) = 0) ∨ (M(p8) = 0)). This problem is known as the
ignoring problem. After finding out that t7 causes a self-loop in every reachable
marking, the method stopped and ignored the rest of the Petri net.

Let s
key−−→ s′ denote that there are s0, . . . , sn and t1, . . . , tn such that

s = s0
t1−→ s1

t2−→ · · · tn−→ sn = s′ and ti is a key transition of stubb(si−1)
for 1 ≤ i ≤ n. In [17,18], the ignoring problem was solved with the following
condition Sen, and in [18] also with SV:

Sen. For every t ∈ en(s0) there is st such that s0
key−−→ st and t ∈ stubb(st).

SV. For every visible t there is st such that s0
key−−→ st and t ∈ stubb(st).

With deterministic transitions, D1, D2w, and Sen guarantee that if s ∈ Sr and
s

t1···tn−−−−→, then there are t′1, . . . , t′m such that s
π−→ in the reduced state space

for some permutation π of t1 · · · tnt′1 · · · t′m. This facilitates the verification of
many properties. For instance, a transition is Petri net live (that is, from every
reachable state, a state can be reached where it is enabled) if and only if it is Petri
net live in the reduced state space. With deterministic transitions, D1, D2w,
V, and SV guarantee that if s ∈ Sr and s

t1···tn−−−−→, then there is some transition
sequence π such that s

π−→ in the reduced state space and the projection of π on
the visible transitions is the same as the projection of t1 · · · tn.

With deterministic transitions and strong stubborn sets, Sen can be imple-
mented efficiently as follows [17,19]. Terminal strong components of the reduced
state space can be recognized efficiently on-the-fly with Tarjan’s algorithm [3,14].
(This resembles the algorithm in Sect. 2, but the directed graph in question is
different.) If some transition is enabled in some state of a terminal strong com-
ponent but does not occur in the component, then it is enabled in every state
of the component by D2 and D1. When the algorithm is about to backtrack
from the component, it checks whether there are such transitions. If there are, it
expands the stubborn set of the current state (called the root of the component)
so that it contains at least one such transition. The expanded set must satisfy
D1 and D2. To avoid adding unnecessary enabled transitions, it is reasonable
to compute it using the algorithm in Sect. 2 (without entering the transitions in
the original stubborn set).

SV can be implemented similarly, except that the algorithm checks whether
each visible transition is in some stubborn set used in the terminal strong com-
ponent [26]. By V, this is certainly the case if any visible transition occurs in the
component. Let CV(M) denote the �M -closure of the set of visible transitions.
In the negative case, the algorithm expands the stubborn set of the root of the
component with some subset of CV(M) maintaining D1, D2, and V. This is
continued until for each terminal strong component, either a visible transition
occurs in it or the stubborn set of its root is a superset of CV(M).

In the latter case it is certain that no visible transition can occur in the
future, and the analysis may be terminated even if some enabled transitions
were never investigated. This reasoning is valid also in the deadlocks of the
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reduced state space. In particular, if CV(M) contains no enabled transitions,
then no transitions need to be fired, even if that violates D0. As a consequence,
it is correct (and good for reduction results) to only use subsets of CV(M) as
stubborn sets.

t3

p1 p2

t1 t2

22
p3 t4 p4 t5

p5

t6 t7

p6

Fig. 6. Illustrating the nonoptimality of Sen and SV.

SV is nonoptimal in the sense that expanding the stubborn set with CV(M)
may require the addition of enabled transitions that Sen and V together do
not add. Figure 6 illustrates this. In it, the task is to find out whether t5 can
ever fire. It cannot, because t4 is always disabled in a nontrivial way. We cannot
assume that the stubborn set construction algorithm can detect that t4 is always
disabled, because detecting such a thing is PSPACE-hard in general. To be
realistic, we instead assume that the stubborn set construction algorithm just
uses PNd and PNe like in Sect. 2. In any reachable M , PNd declares either
t4 �M t1 and t4 �M t2 or t4 �M t3.

Assume that transitions are tried in the order of their indices as the starting
points of the construction of stubborn sets. The stubborn set method first uses
stubb(M̂) = {t1}. So it fires t1 yielding M1. We have t1 �M1 t3 �M1 t1,
t3 �M1 t2 �M1 t4 �M1 t1, and t4 �M1 t2 (the last two via p3). So the
method uses stubb(M1) = {t1, t2, t3, t4} and fires t2 yielding M2. Next it fires
t3 closing a cycle, using stubb(M2) = {t3, t4}, because t3 �M2 t4 �M2 t3 (the
latter via p2). Because t5 is visible and is not in any of these stubborn sets, the
algorithm expands the root of the terminal strong component, that is, M̂ . The
algorithm is cunning enough to avoid t6, since t5 ��∗

M̂
t6. On the other hand,

t5 �M̂ t4 �M̂ t2. So the algorithm fires t2 at M̂ , making the size of the reduced
state space grow.

Also Sen and V together guarantee that projections on visible transitions
are preserved. Indeed, they were used in [18]. They do not add t2 to stubb(M̂)
in Fig. 6, because t2 ∈ stubb(M1). Unfortunately, they are nonoptimal in the
sense that they unnecessarily solve the ignoring problem also for the invisible
transitions. In Fig. 6, they add t6 to stubb(M̂).

We now present and prove correct a novel condition that is free from both of
these problems. We first rewrite Dd using T ′ in the place of stubb(s0).

Dd. If t ∈ T ′, ¬(s0
t−→), ti /∈ T ′ for 1 ≤ i ≤ n, and s0

t1···tn−−−−→ sn, then ¬(sn
t−→).
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Let Ti ⊆ T be any set of transitions. Typical examples of Ti are the set of vis-
ible transitions and the set of all transitions. We call its elements the interesting
transitions. The following condition solves the ignoring problem.

S. There is T ′ ⊆ T such that Ti ⊆ T ′, T ′ satisfies Dd in s0, and for every
t ∈ T ′ ∩ en(s0) there is st such that s0

key−−→ st and t ∈ stubb(st).

An often good T ′ can be computed by first introducing a �′
s-relation only using

PNd or its counterpart in the formalism in question, and then computing the
�′

s-closure of Ti. In Fig. 6 in M̂ , this yields {t1, t2, t4, t5}. For each root s of
each terminal strong component, the algorithm checks that each element of
T ′ ∩ en(s) occurs within the component. In the negative case, the algorithm
expands stubb(s) with the traditional �s-closure (that is, the one that uses the
counterparts of both PNd and PNe) of some missing element of T ′ ∩ en(s).
To obtain an �M -minimal result, Tarjan’s algorithm is used similarly to Sect. 2
also during this step. In Fig. 6 in M̂ , we have T ′ ∩ en(M̂) = {t1, t2}. Because
t1 ∈ stubb(M̂) and t2 ∈ stubb(M1), S holds. The algorithm terminates, without
expanding stubb(M̂) and without ever trying t6.

By choosing Ti = T we get T ′ = T and see that Sen implies S. Together
with the example in Fig. 6, this shows that S is strictly better than Sen.

The comparison of S to SV is more difficult. Therefore, we only compare
their implementations described above. Let Ti be the set of visible transitions. If
no visible transition can be made enabled in the future, then the algorithm for
SV ultimately expands the stubborn set stubb(s) of the root s of the terminal
strong component with CV(s). The word “ultimately” refers to the fact that the
algorithm may try subsets of CV(s) before trying CV(s) as a whole, and, as a
consequence, new states may be generated such that the component ceases from
being terminal or s ceases from being its root.

In the same situation, the algorithm for S obtains T ′ ∩ en(s) by computing
the �′

s-closure of Ti and picking the enabled transitions in it. If none of these
transitions occurs in the component, then the S algorithm ultimately expands
stubb(s) with them. When doing so it computes their �s-closures, to satisfy
D1, D2, and V. The union of the computed sets is CV(s). So in this case, the S
algorithm makes the same expansion as the SV algorithm. On the other hand,
if any of these transitions does occur in the component, then the S algorithm
does not use it for expanding stubb(s). Then the S algorithm is better than the
SV algorithm. This is what happened with t2 in Fig. 6.

We now prove that S is correct.

Lemma 9. If transitions are deterministic, s0 ∈ Sr, stubb(s0) obeys S, stubb(s)
obeys D2w in every s ∈ Sr, and s0

t1···tn−−−−→ sn where tn ∈ Ti, then there are s′
0,

. . . , s′
m and t1k, . . . , tmk such that s′

0 = s0, s′
0

t1k−→ s′
1

t2k−→ · · · tmk−−→ s′
m, ti+1

k is a
key transition of stubb(s′

i) and {t1, . . . , tn} ∩ stubb(s′
i) = ∅ for 0 ≤ i < m, and

{t1, . . . , tn} ∩ stubb(s′
m) �= ∅.

Proof. Because tn ∈ Ti ⊆ T ′, there is 1 ≤ i ≤ n such that ti ∈ T ′ but tj /∈ T ′

for 1 ≤ j < i. By Dd ti ∈ en(s0). By S there is sti such that ti ∈ stubb(sti)
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and s0
key−−→ sti . Let the states along this path be called s′

0, . . . , s′
h. So s′

0 = s0,
s′

h = sti and ti ∈ {t1, . . . , tn}∩ stubb(s′
h). Thus there is the smallest m such that

{t1, . . . , tn} ∩ stubb(s′
m) �= ∅, completing the proof. ��

Theorem 10. Assume that transitions are deterministic and stubb(s) obeys
D1, D2w, and S in every s ∈ Sr. Let s0 ∈ Sr and s0

t1−→ s1
t2−→ · · · tn−→ sn.

There are t′1, . . . , t′m, and sm such that s0
t′
1···t′

m−−−−→ sm in the reduced state space
and each t ∈ Ti occurs in t′1 · · · t′m at least as many times as it occurs in t1 · · · tn.
Furthermore,

– If Ti = T , then there are tn+1, . . . , tm such that sn
tn+1···tm−−−−−−→ sm and t′1 · · · t′m

is a permutation of t1 · · · tm.
– If Ti is the set of visible transitions and stubb(s) obeys V in every s ∈ Sr,

then the projections of t1 · · · tn and t′1 · · · t′m on Ti are the same.

Proof. If none of t1, . . . , tn is in Ti, the first claim holds vacuously with m = 0.
Otherwise let 1 ≤ n′ ≤ n be the biggest such that tn′ ∈ Ti. Lemma 9 yields

s′ and t1k , . . . , tm
′

k such that s0
t1k ···tm′

k−−−−−→ s′ and {t1, . . . , tn′} ∩ stubb(s′) �= ∅.

Applying D2w, D1, and determinism m′ times yields s′′ such that s′ t1···tn′−−−−→ s′′

and sn′
t1k ···tm′

k−−−−−→ s′′. D1 produces from s′ t1···tn′−−−−→ s′′ a transition occurrence in
the reduced state space that consumes one of t1, . . . , tn′ . The first claim follows
by induction.

If Ti = T , then always n′ = n. The t1k , . . . , tm
′

k introduced in each application
of Lemma 9 are the tn+1, . . . , tm.

In the case of the last claim, each key transition is invisible, because other-
wise tn′ would be in the stubborn set of the key transition by V, contradicting
Lemma 9. Therefore, the applications of D2w neither add visible transitions
nor change the order of the visible transitions. By V, the same holds for the
applications of D1. ��

In the literature, S may refer to any condition that plays the role of Sen,
SV, or (from now on) the S of the present study. This is because there is usually
no need to talk about more than one version of the condition in the same publi-
cation. The name S refers to “safety properties”, which is the class of properties
whose counterexamples are finite (not necessarily deadlocking) executions.

In [20,22] it was pointed out that it is often possible and perhaps even desir-
able to modify the model such that from every reachable state, a deadlock is
reachable. Reduction with deterministic transitions, D0, D1, and D2 preserves
this property. Two efficient algorithms were given for checking from the reduced
state space that this property holds. Such systems trivially satisfy S. This solu-
tion to the ignoring problem is simple. As far it is known, it gives good reduction
results. (Little is known on the relative performance of alternative solutions to
the ignoring problem.)
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Fig. 7. Terminal strong components vs. cycles.

7 The Ignoring Problem, Part 2: Diverging Executions

Figure 7 demonstrates that S does not always suffice to preserve a property.
Consider ��(M(p2) = 0), that is, from some point on, p2 remains empty. It
fails because of t5t1t4t4t4 · · · . However, the figure shows a reduced state space
that obeys D0, D1, D2, V, and S, but contains no counterexample.

This problem only arises with diverging counterexamples, that is, those which
end with an infinite sequence of invisible transitions. A state is called diverging if
and only if there exists an infinite sequence of invisible transitions from it. When
finite counterexamples apply, the methods in Sect. 6 suffice. If the reduced state
spaces are finite (as they usually are with practical computer tools), they suffice
also for counterexamples that contain an infinite number of visible transitions.
This is because the methods preserve every finite prefix of the projection on
visible transitions, from which König’s Lemma type of reasoning proves that
also the infinite projection is preserved.

With stubborn sets, this problem has been solved by two conditions that
together replace S:

I. If en(s0) contains an invisible transition, then stubb(s0) contains an invisible
key transition.

L. For every visible transition t, every cycle in the reduced state space (which
is assumed to be finite) contains a state s such that t ∈ stubb(s).

Let t1t2 · · · be such that s0
t1t2···−−−−→ and only a finite number of the ti are visible.

Assume that t1t2 · · · contains at least one visible transition tv. Similarly to the
proof of Theorem 10, key transitions and D2w are used to go to a state whose
stubborn set contains some ti, and then D1 is used to move a transition occur-
rence from the sequence to the reduced state space. At most |Sr|−1 applications
of D2w and D1 may be needed before some ti such that i ≤ v is consumed,
because otherwise the reduced state space would contain a cycle without tv in
any of its stubborn sets, violating L. As a consequence, each visible transition
of t1t2 · · · is eventually consumed.
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When that has happened, I ensures that the reduced state space gets an
infinite invisible suffix. Without I, it could happen that only visible transitions
are fired immediately after consuming the last tv, spoiling the counterexample.

A diverging execution ξ is minimal if and only if there is no infinite execution
whose projection on visible transitions is a proper prefix of the projection of ξ.
Minimal diverging counterexamples are preserved even without L and S. This
implies that if the reduced state space is finite, then D1, V, I, and a variant
of D2w preserve [18,23] the failures–divergences semantics in CSP theory [13].
D2w is replaced by a variant, because CSP uses nondeterministic transitions.

With deterministic transitions D1 and D2w also give an interesting result
for diverging executions, one that is worth commenting here.

Theorem 11. Assume that transitions are deterministic and stubb(s) obeys D1

and D2w in every s ∈ Sr. Assume further that s0
t1−→ s1

t2−→ · · · tm−−→ s0 are
invisible key transitions. If s0

u1···un−−−−→ s′
0 is a sequence in the full state space

such that {u1, . . . , un} ∩ ⋃m−1
i=0 (stubb(si) ∩ en(si)) = ∅, then s′

0 is diverging in
the full state space.

Proof. Proof is by induction on m. s0
u1···un−−−−→ s′

0 holds as the base case. Assume
as inductive hypothesis that there is some s′

i such that si
u1···un−−−−→ s′

i and s′
0

t1···ti−−−→
s′

i. uj /∈ stubb(si) ∩ en(si) for each 1 ≤ j ≤ n. Because u1, if it exists, is enabled
at si, it must be that u1 /∈ stubb(si), and applying D1 to j = 2, . . . , n we get
that uj /∈ stubb(si) for each 1 ≤ j ≤ n. Because ti+1 is a key transition, D2w

guarantees s′
i

ti+1−−→ s′
i+1 for some state s′

i+1 and si+1
u1···un−−−−→ s′

i+1 is guaranteed

by D1. Because sm−1
tm−−→ s0, deterministic transitions guarantee that s′

m = s′
0.

��
Note that when D2 or De is used instead of D2w, every enabled transition in
any stubborn set is a key transition, so the theorem can be restated so that if a
state is diverging in the reduced state space, then all states reachable by firing
transitions that were ignored in the cycle are likewise diverging.

The theorem works to reinforce the intuition behind L. Consider Fig. 7. In
the state in the upper right corner, {t3, t4} is a stubborn set, and the state is
diverging. According to the theorem, t1 will lead to a diverging state, but nothing
is guaranteed about the divergence in the part where t3 has been fired. Theo-
rem 11 can be used to make the reduced state space smaller, by not stipulating
I when the presence of a divergence can be obtained with the theorem. More
information on this is in [23].

Ample sets do not mention I, because it follows from C0, C2, and the fact
that all transitions in an ample set are key transitions by C1. Instead of L,
ample sets use the following condition.

C3. For every t and every cycle in the reduced state space, if t is enabled in some
state of the cycle, then the cycle contains a state s such that t ∈ ample(s).

The relation of L to C3 resembles the relation of SV to Sen. This suggests that
an improvement on C3 could be developed similarly to how S improves Sen.
We leave this for future research.
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The recommended implementation of C3 is called C3’ in [1]. It assumes that
the reduced state space is constructed in depth-first order. It also implements L.

C3’. If ample(s) �= en(s), then for every t ∈ ample(s) and every s′ such that
s

t−→ s′, s′ is not in the depth-first stack.

Figure 8 illustrates that C3’ sometimes leads to the construction of unnec-
essarily many states. In it, all reachable states are constructed, although the
processes do not interact at all. Better results are obtained if the component
(either {t1, t2, t3} or {t4, t5, t6}) is preferred to which the most recent transition
belongs. Then the sequence t1t2t4t5t3t1 is fired, after which both t2 and t6 are
fired. This improved idea fails badly with the three-dimensional version of the
example. In [2, Sect. 4, Fig. 4], the bad performance of C3’ was illustrated with
a different example.
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Fig. 8. Transitions are tried in the order of their indices until one is found that does
not close a cycle. If such a transition is not found, then all transitions are taken.

C3’ fully expands the last state of the cycle it closes. If the first state of the
cycle is expanded instead and if the component is remembered, then the leftmost
column and topmost row of Fig. 8 right are constructed. (Expanding the first or
the last state is correct, but other states are not necessarily safe [23, Lemma
15].) This is better than with C3’, and works well also in the three-dimensional
example, as well as for the example in [2]. There has been very little research on
the performance of cycle conditions besides [2], although the problem is clearly
important.

8 Trouble with Fairness

Fairness refers to assumptions about infinite executions that are used to root out
certain nonsensical counterexamples. For example in Fig. 9, there is an infinite
execution (t1t2)ω where t5 is never fired, even though it is constantly enabled.
Weak fairness is an assumption that if a transition is constantly enabled, it will
eventually be fired. This can be understood, for example, so that in a concurrent
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t1
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Fig. 9. All weakly fair non-progress cycles may be lost.

execution of several processes, each process gets processor time, making it a
reasonable assumption to discuss. Strong fairness is a stronger assumption that
if a transition is enabled infinitely often (though it may be disabled infinitely
often also), then it is eventually fired. That is, we say that a cycle s0

t1···tn−−−−→ sn

such that s0 = sn is

– weakly fair if and only if for every t ∈ T , either there is some i such that
ti = t or t /∈ en(si), and

– strongly fair if and only if for every t ∈ T , either there is some i such that
ti = t or t /∈ en(sj) for every 1 ≤ j ≤ n.

In Fig. 9 we see a situation where weak fairness and stubborn sets encounter
a problem. The set {t1} is an aps set in the initial state that satisfies all the
conditions this far. In the second state {t2, t3} satisfies all except C3 and C3’.
In particular, it satisfies L.

The cycle in the reduced state space, indicated by the solid arrows, seems
like a fair cycle in the reduced state space, but in the full state space it has
a constantly enabled transition that is not fired along the cycle. A cycle that
is fair in the reduced state space, but not necessarily in the full state space, is
called a seemingly fair cycle. The full state space has a fair cycle, but this is not
explored, only the seemingly fair cycle above it. The condition C3 is sufficiently
strong in this example, as it guarantees that t5 is fired in at least one state of
the seemingly fair cycle. The cycle remains seemingly fair, but the corresponding
fair cycle is also explored.

One is tempted to explore a hypothesis that a seemingly fair cycle exists in
the reduced state space if and only if a corresponding fair cycle exists in the full
state space. In Fig. 10, we see that this hypothesis does not hold. The transition
t3 is constantly enabled, and the transition is fired in one of the states along the
cycle, so that L is satisfied. The cycle itself is not fair, but it is seemingly fair.
This happens even if C3 is used.

t1 t2

t3

Fig. 10. A seemingly weakly fair non-progress cycle may be fake.
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Fig. 11. Two Petri nets illustrating yet another weak fairness problem.

Again, we are tempted to form a hypothesis that some algorithm that makes
use of book-keeping regarding transitions along a cycle could be used to deter-
mine whether a weakly fair cycle was lost or not. The example in Fig. 11 leaves
little hope for the development of such methods. In the leftmost example, the
first cycle is unfair, but becomes seemingly fair when reduced. The second cycle,
consisting of the same transitions, is not explored and the initial state does have
all the enabled transitions in the aps set, so that the reduction satisfies C3. The
full state space has a fair cycle and the reduced state space has a seemingly
fair cycle.

In the rightmost example in the same figure, exactly the same aps sets can
be used. The reduced state space is the same as in the leftmost example, and
the sets of enabled transitions are the same in all the states of the reduced state
space. Now the full state space does not have a fair cycle, but the reduced state
space still has a seemingly fair cycle.

The first state space contains a fair cycle in the unexplored part and the
second does not. Unless a method can use information about the system structure
beyond that expressed by the conditions seen this far, and the part of the state
space that has been explored, it cannot distinguish between the two state spaces.

t1 t2

2 t3

3

Fig. 12. Illustrating a strong fairness problem.

None of the cycles in Fig. 11 is strongly fair, but a similarly discouraging
example for preserving strong fairness exists, and is shown in Fig. 12. The full
state space has a strongly fair cycle that is never explored by a reduction. Again,
from the point of view of aps sets and the enabled transitions in the reduced
state space, the Petri net is equivalent to the ones in Fig. 11.
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9 Conclusions

The goal in the development of stubborn sets has been as good reduction as
possible, while ample and persistent sets have favoured straightforward easily
implementable conditions and algorithms. As a consequence, where stubborn
set methods differ from other aps set methods, stubborn sets tend to be more
difficult to implement but yield better reduction results. Very little is known
on the differences of the reduction power between different methods. Reliable
information is difficult to obtain experimentally, because in addition to the issue
that is being experimented, the results may depend on the optimality of the
chosen �s- or independence relation, on the order in which the transitions are
listed in the input file (Sect. 3), and other things.

Some stubborn set ideas are difficult to implement efficiently. For instance,
no very fast algorithm is known that can utilize the freedom to choose any one
from among the places that disable a transition (the pt in Sect. 2). On the other
hand, the likelyhood of finding good ways of exploiting some reduction potential
decreases significantly, if the existence of the potential is never pointed out.

The algorithm in Sect. 2 seems intuitively very good, and experiments with
the ASSET tool strongly support this view [20,21,26]. The present authors
believe that it deserves more attention than it has received.

The biggest immediate difference between stubborn sets and other aps set
methods is the possibility of disabled transitions in the set. It is difficult to
think of the above-mentioned algorithm without this possibility. Furthermore, in
Sect. 5 it was shown how it facilitates an improvement to the visibility condition.
It is also important that stubborn sets allow nondeterministic transitions.

Perhaps the most important area where more research is needed is the ignor-
ing problem. The example in Fig. 8 may be extreme and thus not representative
of the typical situation. Unfortunately, very little is known on what happens in
the typical situation with each solution.
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Abstract. In the area of process mining, decomposed replay has been
proposed to be able to deal with nets and logs containing many differ-
ent activities. The main assumption behind this decomposition is that
replaying many subnets and sublogs containing only some activities is
faster then replaying a single net and log containing many activities.
Although for many nets and logs this assumption does hold, there are
also nets and logs for which it does not hold. This paper shows an exam-
ple net and log for which the decomposed replay may take way more time,
and provides an explanation why this is the case. Next, to mitigate this
problem, this paper proposes an alternative way to abstract the subnets
from the single net, and shows that the decomposed replay using this
alternative abstraction is faster than the monolithic replay even for the
problematic cases as identified earlier. However, the alternative abstrac-
tion often results in longer computation times for the decomposed replay
than the original abstraction. An advantage of the alternative abstraction
over the original abstraction is that its cost estimates are typically better.

1 Introduction

The area of process mining [1] is typically divided into process discovery, process
conformance, and process enhancement. In the context of big data, a decom-
position approach [2] has been introduced that includes both process discovery
(decomposed discovery) and process conformance (decomposed replay). In this
paper, we take this decomposed replay for process conformance as a starting
point. The main assumptions for this decomposed replay are that (1) checking
conformance using a monolithic replay (that is, by replaying a single net and
log, which contain many different activities) takes prohibitively much time, and
that (2) checking conformance using a decomposed replay (that is, by replaying
a series of abstracted subnets and sublogs, which each contain far less different
activities than the single net and log) takes far less time. The decomposition
approach as introduced in [2] abstracts from a single Petri net a collection of
subnets with shared transitions on their borders, and guarantees that (1) the
result of the decomposed replay is perfect if and only if the result of the mono-
lithic replay is perfect, and (2) the result of the decomposed replay provides a
lower bound for the result of the monolithic replay otherwise.
c© Springer-Verlag GmbH Germany 2017
M. Koutny et al. (Eds.): ToPNoC XII, LNCS 10470, pp. 166–186, 2017.
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Fig. 1. Computation times for the monolithic and decomposed replay with the nets as
provided by the data sets.

Figure 1 supports this assumption by showing typical computation times for
the nets and logs as found in a number of data sets [7–9]. These data sets contain
in total 59 cases of varying size, ranging from 12 to 429 activities, from 500 to
2000 traces, with varying numbers of mismatching traces (from 0% to 50%).
This figure shows that if the monolithic replay would take more than a second,
the decomposed replay would be faster. Furthermore, it shows that some replays
do not finish within 10 min (see [9] why we use a timeout here of 10 min) using
the monolithic replay, whereas all replays finish well within 10 min using the
decomposed replay.

However, Fig. 2 paints a different picture. It shows the typical computation
times for replaying the log as found in the data sets on the net as discovered
using the Inductive miner [6] from that log. As for this replay we only require a
log (and not a net), we included some additional data sets [4,5] for this figure.
This figure shows that in some cases the decomposed replay actually requires
much more time than the monolithic replay. For example, the monolithic replay
requires less than 10 s for the a22f0n05 case, where the decomposed replay takes
more than 10 min.
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Fig. 2. Computation times for the monolithic and decomposed replay with the nets
discovered using the Inductive Miner from the logs as provided by the data sets.

In this paper, we investigate the root cause of this problem. Based on these
findings, we propose an alternative abstraction to mitigate the problem. This
alternative abstraction is based on the well-known concepts of hiding transitions
and reducing nets. We show that, in almost all cases that take more than 10 s for
the monolithic replay the decomposed replay using this hide-and-reduce abstrac-
tion is indeed faster. However, we will also show that the original decomposed
replay (that is, the decomposed replay using the original abstraction) is often
faster than the hide-and-reduce decomposed replay (that is, the decomposed
replay using the hide-and-reduce abstraction). But, whereas the original decom-
posed replay does take more time for some of the observed cases, the hide-and-
reduce decomposed replay does not. Finally, we show that the hide-and-reduce
decomposed replay has an extra advantage, as it may provide a better estimate
for the replay costs than the original decomposed replay.

The remainder of this paper is organized as follows. First, Sect. 2 introduces
the necessary concepts, like accepting Petri nets and alignments. Second, Sect. 3
shows that there is a possible problem with the original decomposed replay, and
proposes the hide-and-reduce abstraction to mitigate this problem. Third, Sect. 4
evaluates the hide-and-reduce decomposed replay using the existing data sets,
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which shows that it can handle more cases than the monolithic and/or original
decomposed replay, and that it returns a better lower bound for the costs as the
original decomposed replay. Last, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Logs

In this paper, we consider activity logs, which are an abstraction of the event
logs as found in practice. An activity log is a collection of traces, where every
trace is a sequence of activities [1]. Table 1 shows the example activity log L1,
which contains information about 20 cases, for example, 4 cases followed the
trace 〈a1, a2, a4, a5, a8〉. In total, the log contains 13 + 17 + 9 + 2 × 9 + 9 + 4 ×
5 + 9 + 9 + 5 + 5 + 17 + 3 × 5 + 5 + 5 = 156 activities.

Table 1. An example activity log L1 in tabular form.

Trace Frequency

〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a7〉 1

〈a1, a2, a4, a5, a6, a3, a4, a5, a8〉 2

〈a1, a2, a4, a5, a6, a4, a3, a5, a7〉 1

〈a1, a2, a4, a5, a8〉 4

〈a1, a3, a4, a5, a6, a4, a3, a5, a7〉 1

〈a1, a3, a4, a5, a6, a4, a3, a5, a8〉 1

〈a1, a3, a4, a5, a8〉 1

〈a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8〉 1

〈a1, a4, a2, a5, a7〉 3

〈a1, a4, a2, a5, a8〉 1

〈a1, a4, a3, a5, a7〉 1

〈a1, a4, a3, a5, a8〉 1

Definition 1 (Universe of activities). The set A denotes the universe of
activities.

To capture an activity log, we use multi-sets. If S is a set of objects, then
B(S) is a multi-set of objects, that is, if B ∈ B(S) and o ∈ S, then object o
occurs B(o) times in multi-set B.

Definition 2 (Activity log). Let A ⊆ A be a set of activities. An activity log
L over A is a multi-set of activity traces over A, that is, L ∈ B(A∗).
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2.2 Nets

In this paper, we assume that a net is an accepting Petri net, that is, a labeled
Petri net with an initial marking and a set of final markings. The transition
labels are used to denote the activity a transition corresponds to. Transitions
that do not correspond to an activity are labeled τ , and are henceforth called
invisible. The other (activity-labeled) transitions are henceforth called visible
transitions. The initial marking and final markings are needed for the replay,
which needs to start at the initial marking and needs to end in a final marking.

Definition 3 (Petri net). A Petri net is a 3-tuple (P, T, F ) where P is a set of
places, T is a set of transitions such that P ∩T = ∅, and F ⊆ (P ×T )∪ (T ×P )
is a set of arcs.

Definition 4 (Accepting Petri net). Let A ⊆ A be a set of activities. An
accepting Petri net over the set of activities A is a 6-tuple (P, T, F, l, I, O) where
(P, T, F ) is a Petri net, l ∈ T → (A ∪ {τ}) is a labeling function that links
every transition onto an activity (possibly the dummy activity τ), I ∈ B(P ) is
an initial marking, and O ⊆ B(P ) is a set of final markings.

a1

a4 a5a6

a2

a3

a7

a8

p3 p5

p2

p4 p6

p7

p8

p9

p10
t2

t1

t8

t3

t4

t5 t7

t10

t11

t6 t9
p1

Fig. 3. An accepting Petri net N1. (Color figure online)

Figure 3 shows an accepting Petri net containing 10 places {p1, . . . , p10}, 11
transitions {t1, . . . , t11} of which 8 labeled with activities {a1, . . . , a8} and 3
invisible, and 24 arcs. The initial marking consists of a single token in place p1
(indicated by the light green color), and the only final marking consists of a
single token in place p10 (indicated by the darker red color). Please note that,
although this example does not show this, multiple transitions can be labeled
by the same activity.

2.3 Alignments

Assume that on the example net N1 we want to replay the trace
〈a1, a2, a3, a4, a5, a6, a7, a8〉, that is, we want to find the best transition sequence
that starts in the initial marking, ends in a final marking, and that has the
given trace as activity sequence. Basically, the activity sequence corresponds to
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the transitions sequence which every transitions replaced by its label and all
τ labels removed afterwards. Finding the best transition sequence is done by
first finding a transition sequence, and second to impose some notion of costs to
every found transition sequence. By keeping these costs minimal while finding a
transition sequence, we then obtain the best transition sequence.

To find a transition sequence, the replayer [3] creates a number of possible
moves, and assigns costs to every move. A move can be a synchronous move,
a log move, a visible model move, or an invisible model move. A synchronous
move consists of a transitions and its label, that is, its corresponding activity.
As an example, the move (t3, a2) is a synchronous move for net N1, indicating
that transition t3 was fired which matched activity a2 in the trace. A log move
consists of a dummy transition (indicated by 
) and an activity. As an example,
the move (
, a2) is a log move for net N1, indicating that activity a2 could not
be matched to any enabled transition. A visible model move consists of a visible
transition and a dummy activity (also indicated by 
). As an example, the move
(t3,
) is a visible model move for net N1, indicating that visible transition t3
was fired but could not be matched to any activity in the trace. An invisible
model move consists of an invisible transition and the τ label. As an example,
the move (t2, τ) is an invisible model move for net N1, indicating that invisible
transition t2 was fired.

Definition 5 (Legal moves). Let A ⊆ A be a set of activities, let σ ∈ A∗ be
an activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri net
over A. The set of legal moves of A and N is the union of the sets {(a, t)|a ∈
A ∧ t ∈ T ∧ l(t) = a} (synchronous moves), {(a,
)|a ∈ A} (log moves),
{(
, t)|t ∈ T ∧ l(t) ∈ A} (visible model moves), and {(τ, t)|t ∈ T ∧ l(t) = τ}
(invisible model moves).

Log moves and visible model moves hint at mismatches, as these indicate
that either some activity could not be matched by a proper enabled transition,
or that the firing of the transition could not be matched to its activity in the
trace. For this reason, the costs of these moves are typically set to positive values,
whereas the costs for the other moves are set to 0. For sake of completeness, we
mention that in this paper we have used costs 10 for every log move and costs
4 for every visible model move. Although these values are quite arbitrary, they
were inspired by (1) the fact that by default the monolithic replay uses costs 5
for every log move and costs 2 for visible model move, and (2) the fact that the
decomposed replay needs to divide the costs over multiple (often one or two)
subnets. So, we kept the ratio 5:2, but used even numbers1.

Definition 6 (Costs structure). Let A ⊆ A be a set of activities, and let
N = (P, T, F, l, I, O) be an accepting Petri net over A. A cost structure $ for A

1 A complicating factor here is that the current implementation of the monolithic
replayer takes costs with an integer value. As a result, we cannot evenly split the
costs 5 of a model move over two subnets. Therefore, we initially set out with costs 10
and 4. Later on, we implemented a more elaborate scheme to have the decomposed
replayer support a costs divided by any number of subnets.
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and N is a function that maps every legal move of A and N onto a (non-negative)
natural number.

Using these moves and these costs, the question for the replayer is then to find
a sequence of moves such that (1) the activities correspond to the given activity
sequence, (2) the transitions correspond to a possible transition sequence in the
net that starts in the initial marking and ends in the final marking, and (3)
has minimal costs. This sequence of moves is henceforth called an optimal trace
alignment.

Definition 7 (Trace alignment). Let A ⊆ A be a set of activities, let σ ∈ A∗

be an activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri
net over A. A trace alignment h for trace σ on net N is a sequence of legal moves
(a, t) ∈ ((A ∪ {τ,
}) × (T ∪ {
})) such that:

– σ = h�1A and
– For some o ∈ O it holds that I[h�2T 〉o,
where

h�1A=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈a〉 · h�1A if h = 〈(a, t)〉 · h and a ∈ A;
h�1A if h = 〈(a, t)〉 · h and a �∈ A

and

h�2T=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈t〉 · h�2T if h = 〈(a, t)〉 · h and t ∈ T ;
h�2T if h = 〈(a, t)〉 · h and t �∈ T .

Definition 8 (Costs of trace alignment). Let A ⊆ A be a set of activities,
let σ ∈ A∗ be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting
Petri net over A, let h = 〈(a1, t1), . . . , (an, tn)〉 be a trace alignment (of length
n) for σ and N , and let $ be a cost structure for A and N . The costs of trace
alignment h, denoted $h, is defined as the sum of the costs of all legal moves in
the alignment, that is, $h =

∑
i∈{1,...,n} $(ai, ti).

Definition 9 (Optimal trace alignment). Let A ⊆ A be a set of activities,
let σ ∈ A∗ be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting
Petri net over A, let h be a trace alignment for σ and N , and let $ be a cost
structure for A and N . The trace alignment h is called optimal if there exists no
other trace alignment h′ such that $h′ < $h.

Figure 4 shows an optimal trace alignment for the trace 〈a1, . . . , a8〉 and net
N1. Please note that an optimal trace alignment may not be unique. In the
example, we could also have chosen to do a synchronous move on a3 and a log
move on a2. The resulting alignment would also be optimal.
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t1 t2 t3 t5 t6 t7 t9 t10

a1 τ a2 a4 τ a5 τ a7a3 a6 a8

0 0 0 0 0 0 0 010 10 10

Fig. 4. A trace alignment for the trace 〈a1, . . . , a8〉 and net N1. Every column cor-
responds to a move, where the top row contains the activities, the middle row the
transitions, and the bottom row the costs of every move.

2.4 Decomposed Replay

For small number of activities (like 8 as in the example), computing an optimal
trace alignment on the entire net may be possible within 10 min, but for larger
numbers (say 200 or more), the replay will take considerable more time. To
alleviate this, decomposed replay has been proposed in [2]. In decomposed replay,
we first decompose the net into subnets, where the following restrictions are taken
into account:

– Every place ends up in a single subnet.
– Every invisible transition ends up in a single subnet.
– Every arc ends up in a single subnet.
– If multiple visible transitions share the same label, then these transitions end

up in a single subnet.

As a result, only visible transitions that have a unique label can be distributed
over the subnets. Figure 5 shows how the example net N1 can be decomposed
into 5 subnets.

a1

a4a6

a2

a3

a4 a5

a2

a3

a5

a7

a8

a6

a1
a7

a8

N1a N1b N1c N1d N1e

Fig. 5. The decomposed nets obtained by decomposing the net N1. Subnets N1b, N1c,
N1d, and N1e have the empty marking as initial marking, while the subnets N1a, N1b,
N1c, and N1d have the empty marking as the only final marking.

The costs associated to the various moves are also decomposed (see also [2]).
For example, the activity a1 appears in two subnets (N1a and N1b). As a result,
a log move on a1 in N1a costs 10/2 = 5 and a log move on a1 in N1b costs 5 as
well. Note that, by coincidence, all activities appear in two subnets, therefore,
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all log moves in all subnets now cost 5. If some activity would have appeared
in three subnets, then the costs for a log move for every subnet would be 10/3.
As a result of this decomposition, if all subalignments in the decomposed replay
agree on a log move for a1, then the costs are identical to a log move in the
monolithic replay. Likewise, a visible model move on transition t1 in N1a costs
4/2 = 2 and a visible model move in N1b costs 2 as well. In theory, the costs
for the synchronous moves and invisible model moves are also decomposed in a
similar way, but as both are typically 0, we typically ignore them.

Second, we decompose the trace into subtraces, and replay every subtrace on
the corresponding subnet. Figure 6 shows the resulting subalignments.
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t10

h1c h1d h1e

Fig. 6. Possible optimal decomposed alignments. h1b is an optimal alignment for sub-
trace 〈a1, a2, a3, a4, a6〉 and the subnet N1b, etc.

Third, we accumulate the costs of these subalignments, which are the costs as
reported by the decomposed replay. Note that the optimal alignment h1d includes
a model move on transition t7 instead of a log move on a7. As the model move is
cheaper than the log move, doing the log move would not be optimal. This shows
that the costs as reported by the decomposed replay (5 + 5 + 5 + 2 + 5 + 5 =
27) can indeed be lower than the (correct) costs of the monolithic alignment
(10 + 10 + 10 = 30).

As indicated in the Introduction, the decomposed replay is often much faster
than the monolithic replay. Because of the formal guarantees as provided by
[2], we know that the decomposed replay only returns costs 0 if and only if the
monolithic replay returns costs 0, and that otherwise the decomposed replay
returns less costs than the monolithic replay (that is, the decomposed replay
provides a lower bound for the correct costs of the monolithic replay). As such,
we can use the decomposed replay as a fast way to check whether there are any
costs involved, and to obtain a lower bound for the correct costs.
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3 Hide and Reduce

In the Introduction, we have shown that for some cases, the decomposed replay
actually takes way more time than the monolithic replay. As an example, if we
take the log from the a22f0n05 case [7], discover a net for it using the Inductive
Miner, and replay the log on the discovered net, then the monolithic replay
requires less than 10 s, whereas the decomposed replay fails to finish within
10 min. In this section, we use the a22f0n05 case to find the root cause of this
problem. After having found that root cause, this section proposes an alternative
way of abstracting subnets from the single net for the decomposed replay to
mitigate this root cause.

Figure 7 shows the net as discovered by the Inductive Miner from the
a22f0n05 log. This net can be decomposed into 9 subnets. Two of these subnets
contain a single activity (S+complete, E+complete), 6 contain two activities,
and the last subnet contains 20 activities (only the activities S+complete and
t+complete are not included in this subnet). The time to replay the first 8

Fig. 7. The net as discovered by the Inductive Miner from the a22f0n05 log.
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sublogs on the subnets range from 9 to 65 ms, but the replay on this last subnet
turns out to require more than 10 min.

Figure 8 shows this problematic subnet, which immediately shows the root
cause of the problem: This subnet contains five source transitions (transitions
without incoming arcs), and a fair number (13) of places. Because the source
transitions are always enabled, they can be fired at any possible reachable state.
While checking for the optimal path through the search space of alignments,
the replayer needs to investigate all enabled transitions in every state. For this
subnet, the fact that 5 transitions are enabled in every state is too much for the
replayer.

Fig. 8. Problematic subnet for a22f0n05 case. The five source transitions (a+complete,
p+complete, s+complete, u+complete, and v+complete) lead to a huge search space
for the replay.

Apparently, by removing parts of the net in the subnet, information that was
vital for the replayer may have been lost. As an example, in the net, the transition
labeled s+complete can only fire after the transition labeled p+complete has
been fired, and both have to fire exactly once. In the subnet, both transitions
can be fired any number of times, and in any order, which leads to the replay to
require more than 10 min.

For this reason, this paper presents an alternative decomposed replay. Instead
of removing places, transitions, and arcs that do not belong to a subnet, this
decomposition simply keeps these places and arcs while hiding (making invisible)
all visible transitions. Please note that this alternative abstraction does not
change the number of subnets or the visible transitions present in a subnet. As
a result, the sublogs are still the same as with using the original abstraction.

Definition 10 (Hiding abstraction). Let A ⊆ A be a set of activities, let
N = (P, T, F, l, I, O) be an accepting Petri net over A, and let Ai ⊆ A be a
subset of the set of activities. Then the net obtained by the hiding abstraction for
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N and Ai, denoted N(Ai), is the accepting Petri net (P, T, F, l(Ai), I, O) such
that

l(Ai)(t) =
{

l(t) if l(t) ∈ Ai;
τ if l(t) �∈ Ai.

As a result, the structure of the otherwise-removed parts is maintained, and
hence the inter-transition relations as described before are maintained.

We now first show that the optimal costs when using the hiding abstraction
is a lower bound for the optimal monolithic costs. Second, we show that the
optimal costs when using the original abstraction is a lower bound for the optimal
costs when using the hiding abstraction. Third, we conclude that optimal costs
when using the hiding abstraction offers a better lower bound for the optimal
monolithic costs.

Theorem 1 (Hiding abstraction preserves trace alignments). Let A ⊆ A
be a set of activities, let N = (P, T, F, l, I, O) be an accepting Petri net over A,
let σ ∈ A∗, let h be a (monolithic) trace alignment for σ and N , and let Ai ⊆ A
be a subset of the set of activities. Then h�Ai

is a (decomposed) trace alignment
for σ�Ai

and N(Ai), where

h�A′=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈(a′, t)〉 · h�A′ if h = 〈(a′, t)〉 · h and a′ ∈ A′;
〈(
, t)〉 · h�A′ if h = 〈(a′, t)〉 · h and a′ �∈ A′.

and

σ�A′=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈a′〉 · σ�A′ if h = 〈a′〉 · h and a′ ∈ A′;
σ�A′ if h = 〈a′〉 · h and a′ �∈ A′.

Proof. By construction. By applying the hiding abstraction, visible transitions
not contained in Ai are made invisible, while the rest remains as-is. Hence the
moves in the monolithic trace alignment become invisible model moves in the
decomposed trace alignment.

Corollary 1 (The optimal decomposed costs when using the hiding
abstraction is a lower bound for the optimal monolithic costs). If we
assume that only log moves and visible model moves have non-zero costs, then
the optimal decomposed costs when using the hiding abstraction is a lower bound
for the optimal monolithic costs.

Proof. For every subnet, a decomposed trace alignment can be constructed from
the optimal monolithic trace alignment. The combined costs of these constructed
decomposed trace alignments for all subnets is identical to the costs of the mono-
lithic trace alignment. The costs for an optimal decomposed trace alignment of
all subnets is a lower bound for these decomposed costs, and hence for the mono-
lithic costs.
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Theorem 2 (Original abstraction preserves trace alignments). Let A ⊆
A be a set of activities, let N = (P, T, F, l, I, O) be an accepting Petri net over
A, let σ ∈ A∗, let Ai ⊆ A be a subset of the set of activities, let h be an
(alternative decomposed) trace alignment for σ �Ai

and N(Ai), and let N ′ =
(P ′, T ′, F ′, l′, I ′, O′) be the subnet obtained from N for Ai by using the original
abstraction. Then h�T ′ is an (original decomposed) trace alignment for σ�Ai

and
N ′, where

h�T ′=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈(a, t′)〉 · h�T ′ if h = 〈(a, t′)〉 · h and t′ ∈ T ′;
h�T ′ if h = 〈(a, t′)〉 · h and t′ �∈ T ′.

Proof. By construction. The net N ′ is a subnet of net R(Ai), and on the interface
between N ′ and N(Ai) there are only visible transitions. As a result, the behavior
of R(Ai) is more restrictive than the behavior of N ′.

Corollary 2 (The optimal decomposed costs using the original
abstraction is a lower bound for the optimal costs using the hid-
ing abstraction). If we assume that only log moves and visible model moves
have non-zero costs, then the optimal decomposed costs when using the origi-
nal abstraction is a lower bound for the optimal costs when using the hiding
abstraction.

Proof. If we have an optimal decomposed trace alignment using the hiding
abstraction, we can construct a trace alignment using the original abstraction.
These trace alignments have identical costs, as all transitions present in N(Ai)
but not present in N ′ are invisible. The costs for an optimal decomposed trace
alignment when using the original abstraction is a lower bound for the costs of
the constructed trace alignment, and hence for the costs of the optimal decom-
posed trace alignment using the hiding abstraction.

As a result of both Corollaries, if we assume that only log moves and visible
model moves have non-zero costs, than the decomposed costs using the hiding
abstraction offers a better lower bound for the monolithic costs than the decom-
posed costs using the original abstraction.

Corollary 3 (Hiding abstraction preserves costs 0). An optimal mono-
lithic trace alignment has costs 0 if and only if the optimal decomposed trace
alignment using the hiding abstraction has costs 0.

Proof. (⇒) If the optimal monolithic trace alignment has costs 0, then the opti-
mal decomposed trace alignment using the hiding abstraction also has costs 0, as
it is a lower bound. (⇐) From [2] we know that the original abstraction preserves
costs 0. Hence, if the optimal monolithic trace alignment has costs >0, then the
decomposed trace alignment using the original abstraction has costs >0. As the
costs of the optimal decomposed trace alignment using the original abstraction
is a lower bound for the costs of the optimal decomposed trace alignment using
the hiding abstraction, these latter costs also have to be >0.
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This hiding abstraction step is then optionally followed by a reducing abstrac-
tion step using well-known Petri-net-reduction rules [10]. This makes the net as
small as possible for the replayer. Figure 9 shows an overview of these reduction
rules when applied to accepting Petri nets. From this figure, it is clear that these
rules preserve the branching activity behavior of the net:

– The rules cannot remove any visible transition.
– The FPT rule can only remove an invisible transition if there exists another

invisible transition.

FST
∗

∗
∗

FST∗ ∗ ∗ ∗

∗ ∗
∗

∗ ∗
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and every final marking (where x > 0)

∗
∗

∗

Fig. 9. Standard reduction rules extended for accepting Petri nets, and limited to
preserve the branching activity behavior.



180 H.M.W. Verbeek

– The FPP rule can only remove an unmarked place (that is, a place not
involved in the initial or any final marking) if there exists another unmarked
place.

– The ESP rule can only remove a marked place which has x tokens in the
initial and every final marking, where x > 0.

– If a marked place is removed, the initial and final markings are updated
accordingly.

Definition 11 (Reducing abstraction). Let A ⊆ A be a set of activities,
and let N = (P, T, F, l, I, O) be an accepting Petri net over A. Then the net
obtained by the reducing abstraction for N , denoted R(N), is the accepting Petri
net (P ′, T ′, F ′, l, I ′, O′) that results from applying the rules as shown in Fig. 9
over and over again until no rule can be applied anymore.

Theorem 3 (Reducing abstraction preserves costs). Let A ⊆ A be a set of
activities, let N = (P, T, F, l, I, O) be an accepting Petri net over A, let R(N) =
(P ′, T ′, F ′, l, I ′, O′) be the net obtained by the reduction abstraction for N , let
σ ∈ A∗ be an activity trace over A, and let the cost function $ be such that only
log moves and visible model moves have non-zero costs. Then a trace alignment
h for σ and N has costs X if and only if the trace alignment h�T ′ for σ and
R(N) has costs X, where

h�T ′=

⎧
⎨

⎩

〈〉 if h = 〈〉;
〈(a, t′)〉 · h�T ′ if h = 〈(a, t′)〉 · h and t′ ∈ T ′;
h�T ′ if h = 〈(a, t′)〉 · h and t′ �∈ T ′.

Proof. As these rules preserve the branching activity behavior of the net (see
Fig. 9, and as moves that have non-zero costs are not affected by these reductions,
they preserve the costs of any alignment.

If we assume that only log moves and visible model moves have non-zero costs,
applying the reduction abstraction does not affect the costs of any alignment. In
other words, the costs of the decomposed replay using the hiding and reduction
abstraction is also a better lower bound for the costs of the monolithic replay
than the costs of the decomposed replay using the original abstraction.

As an illustration, Fig. 10 shows the hidden-and-reduced subnet N ′
1b =

R(N({a1, a2, a3, a4, a6})) for the original subnet N1b as shown in Fig. 5. Note
that the subnet N ′

1b requires, for example, the transition labeled a1 to be fired
exactly once, whereas it could be fired any number of times in the subnet N1b.
This may reduce the search space for the replayer drastically. Nevertheless, there
is also a downside, as this hiding-and-reducing may result in additional invisible
transitions, which need to be replayed as well.

Figure 11 shows the subnet obtained by the hiding and reducing abstractions
from the net as shown in Fig. 7 and the set of activities as shown in Fig. 8.
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a1

a4a6

a2

a3

Fig. 10. Hidden-and-reduced subnet N ′
1b = R(N({a1, a2, a3, a4, a6})).

Fig. 11. Hidden-and-reduced subnet for a22f0n05 case.

We expect this hide-and-reduce decomposed replay (that is, the decomposed
replay using the hide-and-reduce abstractions) to be faster than the monolithic
replay, and to provide a better (higher) lower bound for the correct replay costs
as the original decomposed replay. In the next section, we will evaluate these
assumptions.

4 Evaluation

We have evaluated the hide-and-reduce decomposed replay on the same data
sets as we used in the Introduction. First, this section will evaluate the com-
putation times of the hide-and-reduce decomposed replay by comparing them
to the computation times of the monolithic replay. Second, it will evaluate the
lower bounds for the correct replays costs as obtained by the hide-and-reduce
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decomposed replay by comparing them to the costs as obtained by both the
monolithic replay and the original decomposed replay.

Figure 12 shows the results of the hide-and-reduce decomposed replay using
the nets as discovered by the inductive Miner. Note the contrast with Fig. 2,
which shows similar times for the (original) decomposed replay.

Recall that the original decomposed replay requires more than 10 min for
a number of cases which required less than 10 min with the monolithic replay.
The hide-and-reduce replay required more than 10 min for only one single case
(prFm6 [9]), which also requires more than 10 min with the monolithic replay. If
the monolithic replay takes more than 10 s, then the hide-and-reduce decomposed
replay is likely to be faster. There is only a single case in the data sets for which
this does not hold: a32f0n50 [7]. For this case, the monolithic replay takes 49.1 s
and the hide-and-reduce decomposed replay takes 49.2 s. The fact that the hide-
and-reduce decomposed replay is not faster for this case is caused by a similar
effect as with the a22f0n05 case: The largest subnet contains almost all (28 of
the 32) activities, and requires 48 s to be replayed. Of the remaining 1.2 s, half
a second is required for replaying the other 15 subnets and 1.2 s are required for
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Fig. 12. Computation times for the monolithic and hide-and-reduce decomposed replay
with the nets discovered using the Inductive Miner from the logs as provided by the
data sets.
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splitting the log and net and merging the alignments. In contrast, the original
decomposed replay requires more than 10 min for this and 13 other cases, and
takes way longer for another three.

As a result we conclude that for the nets as discovered by the Inductive Miner,
the hide-and-reduce decomposed replay requires less than 10 min for more cases
than the other two replays. As such, it is an improvement over these other
replays. Furthermore, it is typically faster than the monolithic replay when the
latter takes more than 10 s. As such, it is an improvement over this replay.

Figure 13 shows the results of the hide-and-reduce decomposed replay using
the nets as provided by the data sets. Like the original decomposed replay, the
hide-and-reduce decomposed replay requires less than 10 min for all data sets
and it is typically faster than the monolithic replay. Exceptions to this are the
prAm6 and prBm6 cases [9]. In both cases, the nets and logs are decomposed in
more than 300 subnets and sublogs, the replay of these sublogs on these subnets
requires only 2 s (where the monolithic replay requires almost 40 s), but the
reduction step takes about 60 and 40 s. For the other five cases for which the
hide-and-reduce decomposed replay takes more than 10 s, this reduction step is
also the bottleneck. For all these cases, the replay requires at most 5 s, but the
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Fig. 13. Computation times for the monolithic and hide-and-reduce decomposed replay
with the nets and logs as provided by the data sets.
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reduction requires from 25 to 167 s. Apparently, the reduction step is a possible
bottleneck for the hide-and-reduce decomposed replay.

With regard to the computation times, we can conclude that both the orig-
inal and hide-and-reduce decomposed replays can handle more cases than the
monolithic replay, that they are typically faster than the monolithic replay, and
that the net at hand largely determines whether the original decomposed or
the hide-and-reduce decomposed replay should be used. If every subnet contains
only very few source transitions, then the original decomposed replay would be
fastest, but this replay may take more than 10 min if some subnet contains more
than a few source transitions. Therefore, in case one does not know whether
some subnet contains more than a few source transitions, the prudent approach
would be the hide-and-reduce decomposed replay.

Apart from evaluating the differences in computation times, we also need
to evaluate the reported costs of the three replays. We know that the mono-
lithic replay provides the correct costs, and that the hide-and-reduce decom-
posed replay provides a better lower bound than the original decomposed replay.
Figure 14 shows the costs as reported by all replays on all nets (either provided
or discovered) and all logs from the data sets. This figure shows that indeed the
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Fig. 14. Costs for all replays and all nets (provided or discovered) and logs as provided
by the data sets.
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costs as reported by hide-and-reduce decomposed replay (on average, 59% of the
correct costs) are a better lower bound than the costs as reported by the original
decomposed replay (on average, 38% of the correct costs). To emphasize this, we
have highlighted in the figure those costs that are at least half (Above 50%) of
the correct costs. Most of these highlighted costs are reported by the hide-and-
reduce decomposed replay, only a few by the original decomposed replay.

5 Conclusions

In this paper, we have shown that, for some cases, the (original) decomposed
replay [2] may take longer than the monolithic replay. Although for many nets
this is typically not the case, it may very well be the case for nets that result in
subnets having more than a few source transitions and more than a few places.
As such, a user who wants to check conformance on a log and an unknown net
may want to think twice to use the original decomposed replay, as the mono-
lithic replay may be faster (less than 10 s) while providing correct costs, while
the original decomposed replay may take longer (more than 10 min) while only
providing a lower bound for the correct costs.

We have also shown that a root cause of this problem of the original decom-
posed replay is the fact that the decomposition may result in a subnet with a
fair amount of places and more than a few source transitions. As a result of the
fair amount of places, the state space will contain a fair amount of states as
well. As a result of the more than a few source transitions, the replayer needs to
investigate from every reachable state at least all source transitions, which may
all lead to new states that again need to be investigated. We have shown that
the replay of a subnet with 13 places and 5 source transitions may require more
than 10 min for the original decomposed replayer.

To mitigate this problem with the source transitions, we have proposed a
hide-and-reduce decomposed replay, which uses the same collection of sublogs
but maintains the structure of the original net in the subnets, and hence does
not introduce source transitions. We have shown that this new replay requires
less than 10 min for all-but-one of the cases in the data sets used, and that
this case required more than 10 min for the monolithic and original decomposed
replays as well. As such, the hide-and-reduce decomposed replay offers a replay
that can handle more situations than either of the other replays can. For this
reason, if it is possible that the net at hand results in some subnet that contains
a fair amount of places and more than a few source transitions, then using the
new hide-and-reduce decomposed replay is the best approach. Granted, it may
be slower than the original decomposed replay, but chances are that the case at
hand simply requires more than 10 min for the original decomposed replay.

Furthermore, we have shown that the costs as reported by the hide-and-
reduce decomposed replay are at least as good as the costs as reported by the
original decomposed replay, but possibly better. Therefore, if it is important
to the user to have an as-good-as-possible estimate for the correct costs, then
using the hide-and-reduce decomposed replay is better than using the original
decomposed replay.



186 H.M.W. Verbeek

Finally, we have shown that in some cases the required reduction step in the
hide-and-reduce replay is the bottleneck of the entire replay. Whereas the entire
replay on the subnets would take only 2 s, the required reduction of these subnets
may have taken 60 s. As a result of this bottleneck, the hide-and-reduce replay is
sometimes slower than the monolithic replay. For this reason, we aim to improve
in the near future on the reduction rules [10] as used by the hide-and-reduce
replay. Possibly, the rules may be simplified as they only need to preserve the
costs of any trace replayed on the net, and not the entire behavior.
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Abstract. The paper is concerned with algebras whose elements can be
used to represent runs of a system. These algebras, called multiplicative
transition systems, are partial categories with respect to a partial binary
operation called multiplication. They can be characterized by axioms
such that their elements and operations can be represented by partially
ordered multisets of a certain type and operations on such multisets.
The representation can be obtained without assuming a discrete nature
of represented elements. In particular, it remains valid for systems with
elements which can represent continuous and partially continuous runs.

1 Introduction

This paper is an attempt to develop a universal framework for describing systems
that may exhibit arbitrary combinations of discrete and continuous behaviours.

There are reasons for which we need such a universal framework.
First, in order to describe and analyse systems including computer compo-

nents, which operate in discrete steps, and real-world components, which operate
in a continuous way, we need a framework including ideas from both computer
science and control theory (cf. [4]). Consequently, we need a simple language
to describe in the same way and to relate behaviours of systems of any nature,
including discrete, continuous, and hybrid systems. Second, we need basic axioms
valid for systems of any nature such that every particular subclass of systems
could be characterized by only adding to the list of basic axioms the respec-
tive specific axioms. Third, we need a representation theorem resulting in a
representation of system runs by well defined mathematical structures and in a
representation of the composition of system runs by a composition of such struc-
tures. In particular, we need runs of discrete, continuous, and hybrid systems
to be represented by structures of the same type. This will allow us to avoid
inventing a special representation in every particular case.

Our idea of a universal framework for describing systems consists in a gen-
eralization of the concept of a transition system.

Transition systems are models of systems which operate in discrete indivisible
steps called transitions (cf. [7–10]). They specify system states and transitions.
Consequently, they have means to represent implicitly partial and complete sys-
tem runs viewed as sequences of successive transitions, including one-element
sequences representing states. They can be provided in a natural way with a
c© Springer-Verlag GmbH Germany 2017
M. Koutny et al. (Eds.): ToPNoC XII, LNCS 10470, pp. 187–215, 2017.
DOI: 10.1007/978-3-662-55862-1 9
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composition of runs of which one starts from the final state of the other, and
this results in the structure of a partial category.

Models more precise than simple transition systems are needed to reflect that
some system steps can be executed in parallel (parallel independent steps) or in
arbitrary order (sequentially independent steps). Consequently, the correspond-
ing simple transition systems must be provided with information reflecting the
independence of transitions and the fact that some sequences of transitions may
represent the same run.

Finally, together with runs of entire system also runs of subsystems can be
considered and partially ordered by inclusion. Consequently, the corresponding
transition systems can be provided with a partial order.

In the case of systems with continuous behaviour runs cannot be viewed as
sequences of discrete indivisible steps. Nevertheless, the concept of a run still
makes sense, and there is a natural composition of runs of which one starts from
the resulting state of the other. Then the continuity reflects in an infinite divisi-
bility of runs with respect to such a composition, and the existing independence
of transitions can be defined using the composition.

Moreover, together with runs of entire system also runs of subsystems can be
considered and partially ordered by inclusion. Consequently, a partially ordered
partial category of states and runs of the possible subsystems is obtained, called
a transition structure.

Thus the partial category consisting of system runs and of the respective com-
position is a good candidate for a universal structure allowing one to represent
both discrete and continuous behaviour. We call it a multiplicative transition
system and call system runs represented in it transitions.

Note that the concept of a multiplicative transition system generalizes the
standard concept of a transition system in the sense that every usual transition
system can be regarded as the set of generators of the multiplicative transition
system of the respective runs.

The paper is organized as follows. In Sect. 2 we present formal tools exploited
in the paper. In Sect. 3 we introduce multiplicative transition systems. In Sect. 4
we define regions. In Sect. 5 we represent transitions as labelled posets. In Sect. 6
we represent multiplicative transition systems as a partial category of pomsets.
In Sect. 7 we describe a partial order of transitions. The paper is an essential
extension of [13]. In the paper we exploit the concepts and properties of processes
and operations on processes described in [11,12,14].

2 Preliminaries

In this section we represent the necessary tools related to partial categories and
labelled partially ordered sets exploited in the paper.

Transitions of a system such that one transition starts from the final state of
the other can be concatenated with a result which can also be regarded as a tran-
sition. If also transitions without an initial or a final state are considered then the
resulting structure looks like a category which is partial in the sense that some
arrows are lacking a source or a target (cf. example at the end of section).
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Formally, a partial category can be defined in exactly the same way as an
arrows-only category in the sense of [6], except that sources and targets may be
not defined for some arrows that are not identities, and that it may restrict the
composability of arrows.

Let A = (A, ; ) be a partial algebra with a binary partial operation (α, β) �→
α;β called composition, where α;β is written also as αβ. An element ι ∈ A is
called an identity if ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is
defined. We call elements of A arrows or morphisms and say that A is a partial
category if the following conditions are satisfied:

(1) For every α, β, and γ in A, if αβ and βγ are defined then α(βγ) and (αβ)γ
are defined and α(βγ) = (αβ)γ; if α(βγ) is defined then αβ is defined; if
(αβ)γ is defined then βγ is defined.

(2) For every identity ι ∈ A, ιι is defined.

The conditions (1) and (2) imply the following properties.

(3) For every α ∈ A, there exists at most one identity ι ∈ A, called the source
or the domain of α and written as dom(α), such that ια is defined, and at
most one identity κ ∈ A, called the target or the codomain of α and written
as cod(α), such that ακ is defined.

(4) For every α and β in A, αβ is defined if and only if cod(α) = dom(β). If αβ
is defined then dom(αβ) = dom(α) and cod(αβ) = cod(β).

A morphism α with the source dom(α) = s and the target cod(α) = t is
represented in the form s

α→ t, and it is said to be closed.
Note that α �→ dom(α) and α �→ cod(α) are definable partial operations

assigning to a morphism α respectively the source and the target of this mor-
phism, if such a source or a target exists.

Dealing with arrows-only categories rather than with categories in the usual
sense is sometimes more convenient since it allows us to avoid two sorted struc-
tures and more complicated denotations.

Given a morphism α, a morphism β such that α = γβε or α = βε or α = γβ
is called a segment of α. If α = γβε then β is said to be a closed segment of α.
A segment of a segment β of α is said to be a subsegment of α.

Given a partial category A = (A, ; ), let A′ be the set of quadruples (α, σ, τ, β)
where σατ is defined and σατ = β, or dom(α) and σ are not defined and ατ
is defined and ατ = β, or cod(α) and τ are not defined and σα is defined and
σα = β, or dom(α) and cod(α) are not defined and α = β. The set A′ thus
defined and the partial operation

((α, σ, τ, β), (β, σ′, τ ′, γ)) �→ (α, σ′σ, ττ ′, γ)

form a category occ(A), called the category of occurrences of morphisms in mor-
phisms of A.

Given a partial category A = (A, ; ) and its morphism α, let A′
α be the set

of triples (ξ1, δ, ξ2) such that ξ1δξ2 = α. The set A′
α thus defined and the partial

operation
((η1, δ, εη2), (η1δ, ε, η2)) �→ (η1, δε, η2)
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form a category decα, called the category of decompositions of α. In this category
each triple (ξ1, δ, ξ2) in which δ is an identity, and thus δ = cod(ξ1) = dom(ξ2),
is essentially a decomposition of α into a pair (ξ1, ξ2) such that ξ1ξ2 = α and it
can be identified with this decomposition.

Given partial categories A = (A, ; ) and A′ = (A′, ;′ ), a mapping f : A → A′

such that f(α);′ f(β) is defined and f(α);′ f(β) = f(αβ) for every α and β
such that αβ is defined, and f(ι) is an identity for every identity ι, is called a
morphism or a functor from A to A′. Note that such a morphism becomes a
functor in the usual sense if A and A′ are categories.

Diagrams, limits and colimits in partial categories can be defined as in usual
categories.

A direct system is a diagram (ai
αij→ aj : i ≤ j, i, j ∈ I), where (I,≤) is a

directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all i ≤ j ≤ k.
The inductive limit of such a system is its colimit, i.e. a family (ai

αi→ a : i, j ∈ I)

such that αi = αijαj for all i ∈ I and for every family (ai
βi→ b : i, j ∈ I) such

that βi = αijβj for all i ∈ I there exists a unique a
β→ b such that βi = αiβ for

all i ∈ I.
A projective system is a diagram (ai

αij← aj : i ≤ j, i, j ∈ I), where (I,≤) is a
directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all i ≤ j ≤ k.
The projective limit of such a system is its limit, i.e. a family (ai

αi← a : i, j ∈ I)

such that αi = αjαij for all i ∈ I and for every family (ai
βi← b : i, j ∈ I) such

that βi = βjαij for all i ∈ I there exists a unique a
β← b such that βi = βαi for

all i ∈ I.
A bicartesian square is a diagram (v α1← u

α2→ w, v
α′

2→ u′ α′
1← w) such that

v
α′

2→ u′ α′
1← w is a pushout of v

α1← u
α2→ w and v

α1← u
α2→ w is a pullback of

v
α′

2→ u′ α′
1← w, i.e. such that for every v

β1→ u′′ β2← w such that α1β1 = α2β2

there exists a unique u′ β→ u′′ such that β1 = α′
2β and β2 = α′

1β, and for every
v

γ1← t
γ2→ w such that γ1α

′
2 = γ2α

′
1 there exists a unique u

γ← t such that
γ1 = γα1 and γ2 = γα2.

As transitions of a system need not to be indecomposable, they have a natural
internal structure which can be reflected in a representation of a transition by
a labelled partially ordered set. Hence the partial categories of transitions are
related to some partial categories of isomorphism classes of labelled partially
ordered sets (cf. example at the end of section).

Formally, a partial order on a set X is a binary relation ≤ between elements
of X that is reflexive, anti-symmetric and transitive.

Given a partial order ≤ on a set X, the pair P = (X,≤) is called a partially
ordered set, or briefly a poset. Given a partial order ≤ on a set X and a function
l : X → W that assigns to every x ∈ X a label l(x) from a set W , the triple
L = (X,≤, l) is called a labelled partially ordered set, or briefly an lposet. A
subset Y ⊆ X is said to be downwards-closed iff x ≤ y for some y ∈ Y implies
x ∈ Y , upwards-closed iff y ≤ x for some y ∈ Y implies x ∈ Y , bounded iff it has
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an upper bound, i.e. an element z ∈ X such that y ≤ z for all y ∈ Y , directed
iff for every x, y ∈ Y there exists in Y an upper bound z of {x, y}, a chain iff
x ≤ y or y ≤ x for all x, y ∈ Y , an antichain iff x < y does not hold for any
x, y ∈ Y , and L is said to be directed complete or a directed complete partial
order (a DCPO) iff every of its directed subsets has a unique least upper bound.
A Scott topology on the underlying set X of L is the topology in which a subset
U ⊆ X is open iff it is upwards-closed and does not contain the least upper
bound of any directed subset of X − U .

A cross-section of L is a maximal antichain Z of P = (X,≤) such that, for
every x, y ∈ X for which x ≤ y and x ≤ z′ and z′′ ≤ y with some z′, z′′ ∈ Z,
there exists z ∈ Z such that x ≤ z ≤ y.

The concept of a cross-section is defined independently of the properties of
partially ordered sets called N -density and K-density (cf. [8]). Its main role is
to reflect how a partial order on L consists of the partial orders on parts of L.

More precisely, if Z is a cross-section of L then the relation ≤ is the transitive
closure of the union of the restrictions of the relation ≤ to the subsets Z− =
{x ∈ X : x ≤ z for some z ∈ Z} and Z+ = {x ∈ X : z ≤ x for some z ∈ Z}.

A cross-section Z ′ is said to precede a cross-section Z ′′, written as Z ′ � Z ′′,
iff Z ′− ⊆ Z ′′−. The relation � is a partial order on the set of cross-sections of L.

For every two cross-sections Z ′ and Z ′′ of L there exist the greatest lower
bound Z ′ ∧ Z ′′ and the least upper bound Z ′ ∨ Z ′′ of Z ′ and Z ′′ with respect to
�, where

Z ′ ∧ Z ′′ = {z ∈ Z ′ ∪ Z ′′ : z ≤ z′ and z ≤ z′′ for some z′ ∈ Z ′ and z′′ ∈ Z ′′},

Z ′ ∨ Z ′′ = {z ∈ Z ′ ∪ Z ′′ : z′ ≤ z and z′′ ≤ z for some z′ ∈ Z ′ and z′′ ∈ Z ′′}.

Moreover, the set of cross-sections of L with the operations thus defined is a
distributive lattice.

A partially ordered subset K of L such that K is the restriction L|[Z ′, Z ′′] of
L to subset [Z ′, Z ′′] = Z ′′− − Z ′− for some cross-sections Z ′ and Z ′′ such that
Z ′ � Z ′′, or the restriction L|Z− to the subset Z− for a cross-section Z, or to the
restriction L|Z+ to the subset Z+ for a cross-section Z, is said to be a segment of L.
A segment L|Z− (resp.: L|Z+) is said to be initial (resp.: final). If K = L|[Z ′, Z ′′]
then it is said to be a closed segment of L. A segment of a segment K of L is said
to be a subsegment of L. Given a function f defined on L, an initial segment of f
is defined as the restriction of f to an initial segment of L.

Given a cross-section c of L, the restrictions of L to the subsets c− = {x ∈
X : x ≤ z for some z ∈ c} and c+ = {x ∈ X : z ≤ x for some z ∈ c} are called
respectively the head and the tail of L with respect to c, and written respectively
as head(L, c) and tail(L, c).

The sequential decomposition of L at a cross-section c is the pair s(c) =
(head(L, c), tail(L, c)) and L is said to consist of head(L, c) followed by tail(L, c).

A splitting of L is a pair p = (pF , pS) of disjoint subsets pF and pS of X such
that pF ∪pS = X and x′ ≤ x′′ only if x′ and x′′ are both in one of these subsets.

Given a splitting p = (pF , pS) of L, the restrictions of L to the subsets pF

and pS are called respectively the first component and the second component of
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L with respect to p, they are written respectively as first(L, p) and second(L, p),
and called independent components of L. The pair (first(L, p), second(L, p)) is
called the parallel decomposition of L corresponding to the splitting p, and L is
said to consist of parallel first(L, p) and second(L, p).

Note that L itself is an independent component of L.
A fragment or a component of L is an independent component C of a segment

S of L such that the set of minimal elements of C is a cross-section of C and it
is contained in the cross-section of P that consists of minimal elements of S.

An lposet L′ is said to occur in L if it is a fragment of L.
If the set of elements of L = (X,≤, l) that are minimal (resp., maximal) with

respect to ≤ is a cross-section of L then we call the restriction of L to this set the
origin (resp., the end) of L, write it as origin(L) (resp., as end(L)). If origin(L)
and end(L) exist then L is said to be closed.

By LPOSETS we denote the category of lposets and their morphisms, where
a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′) is defined
as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff b(x) ≤′ b(y),
and, for all x, l(x) = l′(b(x)). In the category LPOSETS a morphism from
L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is bijective, and it is
an automorphism iff it is bijective and L = L′. If there exists an isomorphism
from an lposet L to an lposet L′ then we say that L and L′ are isomorphic. A
partially ordered multiset, or briefly a pomset, is defined as an isomorphism class
ξ of lposets. Each lposet that belongs to such a class ξ is called an instance of
ξ. The pomset corresponding to an lposet L is written as [L].

A pomset γ is said to consist of a pomset α followed by a pomset β, written
as γ = α;β, iff γ has an instance G with a cross-section c and a sequential
decomposition of this instance at c into G1 ∈ α and G2 ∈ β.

A pomset γ is said to consist of two parallel pomsets: a pomset α and a pomset
β, written as γ = α ‖ β, iff γ has an instance G with a parallel decomposition
into G1 ∈ α and G2 ∈ β.

Example 2.1. Define a transition system without a distinguished initial state as
M = (S,E, T ) such that S is a set of states, E is a set of events, and T ⊆
S × E × S is a set of transitions, where (s, e, s′) ∈ T stands for the transition
from the state s to the state s′ due to the event e. Assume that E contains
a distinguished element ∗ standing for “no event”, and assume that for every
state s ∈ S the set T contains an idle transition (s, ∗, s) standing for “stay in
s”. Then M can be represented by the structure G(M) = (T, dom, cod), where
dom(s, e, s′) = (s, ∗, s) and cod(s, e, s′) = (s′, ∗, s′) for every (s, e, s′) ∈ T .

Write s
e→ s′ to indicate that (s, e, s′) ∈ T . Denote by Lts the set of finite

and infinite sequences α = ..., t1, t2, ..., tm, ... of elements of T such that for
every subsequence ti, ti+1 the final state of ti is the initial state of ti+1. Define
dom(α) = dom(t1) for α = t1, ... and cod(α) = cod(tj) for α = ..., tj . For α1 =
..., t1, ..., ti and α2 = tj , tj+1, ... such that the final state of ti is the initial state
of tj define the result of composing α1 and α2 as α1α2 = ..., t1, ..., ti, tj , tj+1, ....
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The set Lts with the composition thus defined is a partial category LTS (M).
In this partial category every arrow α has the natural linear order and (v α1←
u

α2→ w, v
α′

2→ u′ α′
1← w) is a bicartesian square iff α1 and α′

1 are identities or α2

and α′
2 are identities.

Consider the transition system M , a symmetric irreflexive relation I ⊆ (E −
{∗})2 in M , called an independence relation, and the least equivalence relation ‖I

between elements of Lts such that words uabv and ubav are equivalent whenever
(a, b) ∈ I. The equivalence classes of such a relation are known in the literature
as Mazurkiewicz traces with respect to I (see [5]). Denote by Ts the set of
classes of equivalent elements of Lts replaced by the corresponding traces with
respect to I. Define dom and cod and the composition as before, but with the
concatenation of sequences replaced by the induced concatenation of traces.

The set Ts with the composition thus defined is a partial category TS (M, I),
and that this partial category is a homomorphic image of the partial category
LTS (M). However, in this partial category there exist non-trivial bicartesian

squares, namely, the squares (v α1← u
α2→ w, v

α′
2→ u′ α′

1← w) such that α1 = u
x1→ v,

α2 = u
x2→ w, α′

1 = w
x1→ u′, α′

2 = v
x2→ u′ with (a, b) ∈ I for all (a, b) such that a

occurs in x1 and b occurs in x2. �

3 Basic Notions

Basic axioms characterizing multiplicative transition systems can be formulated
regarding transitions as abstract entities and expressing their properties with
the aid of a partial operation of composing transitions, called multiplication.

Let A be the set of transitions representing runs of a system, some transitions
possibly without an initial or a final state. Then A = (A, ; ) is a partial algebra
that consists of the set A and of the multiplication (α, β) �→ αβ, where αβ
denotes α;β. It is reasonable to assume that this algebra is a partial category
and that it enjoys some natural properties.

First, it is natural to expect that the multiplication satisfies the following
cancellation laws.

(A1) If α is closed then σα = σ′α implies σ = σ′.
(A2) If β is closed then βτ = βτ ′ implies τ = τ ′.

Second, identities are expected to represent states and to be indecomposable
into transitions which do not represent states.

(A3) If στ is an identity then σ and τ are also identities.

Third, transitions which are not identities are expected to be essentially
different from their proper segments.

(A4) If σατ is defined, it has a source and a target, and the category decσατ of
decompositions of σατ is isomorphic to the category decα of decomposi-
tions of α then σ and τ are identities.
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Fourth, the independence of transitions α1 and α2, transitions α1 and α′
2,

and transitions α2 and α′
1 is expected to be represented by the existence of a

bicartesian square (v α1← u
α2→ w, v

α′
2→ u′ α′

1← w), and it is expected to imply the
independence of transitions represented by segments of α1 and α2.

(A5) If (v α1← u
α2→ w, v

α′
2→ u′ α′

1← w) is a bicartesian square then for every

decomposition u
α1→ v = u

α11→ v1
α12→ v (resp. w

α′
1→ u′ = w

α′
11→ w1

α′
12→ u′)

there exist a unique decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ (resp.

u
α1→ v = u

α11→ v1
α12→ v), and a unique v1

α′′
2→ w1, such that (v1

α11← u
α2→

w, v1
α′′

2→ w1
α′

11← w) and (v α12← v1
α′′

2→ w1, v
α′

2→ u′ α′
12← w1) are bicartesian

squares.

Fifth, the independence of segments of a transition is expected to be the only
reason of a representation of such a transition by two different expressions.

(A6) For all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η1η2 there exist unique σ1, σ2, and a

unique bicartesian square (v α1← u
α2→ w, v

α′
2→ u′ α′

1← w), such that ξ1 = σ1α1,
ξ2 = α′

2σ2, η1 = σ1α2, η2 = α′
1σ2.

Finally, every transition is expected to be an inductive limit of its closed
segments.

(A7) Every direct system D in the category occ(A) of occurrences of morphisms
in morphisms in A such that elements of D are closed in the sense that
they possess sources and targets has an inductive limit (a colimit).

(A8) Every α ∈ A is the inductive limit of the direct system of its closed seg-
ments.

Thus we have come to the following definition.

Definition 3.1. A multiplicative transition system, or briefly an MTS, is a
partial category A = (A, ; ) with a set A of morphisms and with a composition
(α1, α2) �→ α1;α2 such that the axioms (A1)–(A8) hold. �

In A two partial unary operations α �→ dom(α) and α �→ cod(α) are definable
that assign to an element a source and a target, if they exist.

An element α of A is said to be a atom of A iff it is not an identity, has a
source and a target, and for every α1 ∈ A and α2 ∈ A the equality α = α1α2

implies that either α1 is an identity and α2 = α or α2 is an identity and α1 = α.
We say that A is discrete if every α ∈ A that is not an identity can be

represented in the form α = α1...αn, where α1,...,αn are atoms.
Note that if A is discrete then its every element has a source and a target

and thus A is a category.
By a cut of α ∈ A we mean a pair (α1, α2) such that α1α2 = α.
Cuts of every α ∈ A are partially ordered by the relation �α, where x �α y

with x = (ξ1, ξ2) and y = (η1, η2) means that η1 = ξ1δ with some δ. Due to
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(A1)–(A2) for x = (ξ1, ξ2) and y = (η1, η2) such that x �α y there exists a
unique δ such that η1 = ξ1δ, written as x → y.

The partial order �α makes the set of cuts of α a lattice LTα.
Indeed, let α = ξ1ξ2 = η1η2, ξ1 = σ1α1, ξ2 = α′

2σ2, η1 = σ1α2, η2 = α′
1σ2

with α1, α′
1, α2, α′

2, σ1, σ2 as in (A6). The least upper bound of x = (ξ1, ξ2) and
y = (η1, η2) can be defined as z = (ξ1α′

2, σ2) = (η1α′
1, σ2). To see this consider

any u = (ζ1, ζ2) such that x �α u and y �α u. Then ζ1 = ξ1δ and ζ1 = η1ε for
some δ and ε. As α′

1 and α′
2 form a pushout of α1 and α2, there exists a unique ϕ

such that δ = α′
2ϕ and ε = α′

1ϕ. Hence ζ1 = ξ1α
′
2ϕ = η1α

′
1ϕ and, consequently,

z �α u.
Similarly, due to the fact that α1 and α2 form a pullback of α′

1 and α′
2, we

obtain that t = (σ1, α1α
′
2σ2) is the greatest lower bound of x and y.

The lattice LTα is obviously an MTS.
Given two cuts x and y, by x�α y and x�α y we denote respectively the least

upper bound and the greatest lower bound of x and y. From (A6) it follows that
(x ← x �α y → y, x → x �α y ← y) is a bicartesian square.

Given α ∈ A and its cuts x = (ξ1, ξ2) and y = (η1, η2) such that x �α y, by
a segment of α from x to y we mean β ∈ A such that ξ2 = βη2 and η1 = ξ1β,
written as α|[x, y]. A segment α|[x′, y′] of α such that x �α x′ �α y′ �α y is
called a subsegment of α|[x, y]. If x = x′ (resp. if y = y′) then we call it an initial
(resp. a final) subsegment of α|[x, y]. An initial segment ι of α is called also a
prefix of α, written as ι pref α.

In the set As−closed of those α ∈ A which are semiclosed in the sense that
they have a source dom(α), one can define as follows a relation �, where α � β
whenever every prefix of α is a prefix of β, and this relation is a partial order,
i.e. (As−closed,�) is a poset.

Elements of A are called transitions of A. Transitions of A which are identi-
ties of A are called states of A. Transitions which are atomic identities are called
atomic states. A transition α is said to be closed if it has the source dom(α) and
the target cod(α). For every closed transition α, the existing states u = dom(α)
and v = cod(α) are called respectively the initial state and the final state of α.

Partial categories described in Example 2.1 are multiplicative transition sys-
tems. Some interesting multiplicative transition systems are described in the
following example.

Example 3.2. Imagine a tank v to keep a liquid. Imagine transitions of the level
of liquid in intervals of real time. Suppose that the flow of real time cannot be
observed. Then only the flow of intrinsic time that can be derived from what
happens in the tank is available. Consequently, a concrete transition during
which the level of liquid at a moment t in an interval [t′, t′′] of real time is
f(t) must be represented by a modified version s �→ ̂f(s) of the correspondence
t �→ f(t), where ̂f(s) is the variation of f in the interval [t′, t], and where the
variation of f in the interval [u′, u′′], var(f ;u′, u′′), is defined as the least upper
bound of the set of quantities |f(t1)−f(t0)|+...+|f(tn)−f(tn−1)|, each quantity
corresponding to a partition t0 = u′ < t1 < ... < tn = u′′ of the interval
[u′, u′′]. Such a transition can be represented by the labelled ordered set P =
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(XP ,≤P , lP ), where XP = {v} × domain( ̂f), (v, s) ≤P (v, s′) iff s ≤ s′, and
lP (v, s) = ̂f(s). When considered up to isomorphism and then called an abstract
transition it can be represented by the isomorphism class [P ] that contains P .
An abstract transition π = [P ] in v and an abstract transition ρ = [R] in another
tank v′ are illustrated in Fig. 1.

Let Av be the set of abstract transitions in v of this kind. The composition of
abstract transitions in v is a partial operation (π1, π2) �→ π1;v π2 where π1;v π2 is
defined as [P ] for a concrete transition P that consists of a segment P1 ∈ [P1] =
π1 and a segment P2 ∈ [P2] = π2 such that the maximal element of P1 is the
minimal element of P2. The partial category Av = (Av, ;v ) is a multiplicative
transition system.

In the case of the system of two tanks v and v′ such that there is no pouring of
liquid from v to v′ or from v′ to v the set of abstract transitions, Av,v′ , consists of
the sets Av and Av′ of abstract transitions in v and v′, and of the set of abstract
transitions τ where τ is defined as [T ] = π ‖ ρ for a concrete transition T that
consists of two parallel concrete transitions: a concrete transition P ∈ [P ] = π ∈
Av and a concrete transition R ∈ [R] = ρ ∈ Av′ . The composition is the partial
operation (τ1, τ2) �→ τ1;v.v′ τ2 where (τ1, τ2) �→ τ1;v.v′ τ2 is (τ1, τ2) �→ τ1;v τ2
if τ1, τ2 ∈ Av, (τ1, τ2) �→ τ1;v.v′ τ2 is (τ1, τ2) �→ τ1;v′ τ2 if τ1, τ2 ∈ Av′ , and
(τ1, τ2) �→ τ1;v.v′ τ2 = [T ] for a concrete transition T that consists of two parallel
concrete transitions: a concrete transition P ∈ [P ] ∈ [P1]; [P2] and a concrete
transition R ∈ [R] ∈ [R1]; [R2] if τ1, τ2 ∈ Av,v′ , τ1 = [T1] with T1 consisting of two
parallel concrete transitions P1 ∈ [P1] ∈ Av and R1 ∈ [R1] ∈ Av′ , and τ2 = [T2]
with T2 consisting of two parallel concrete transitions P2 ∈ [P2] ∈ Av and
R2 ∈ [R2] ∈ Av′ . The partial category Av,v′ = (Av,v′ , ;v,v′ ) is a multiplicative
transition system.

In the case of the system of two tanks v and v′ such that from time to time
a quantity of liquid is poured from v to v′ the set of abstract transitions, A′

v,v′ ,
consists of the sets Av and Av′ of abstract transitions in v and v′, of the set Av,v′

of abstract transitions of the system of v and v′ running independently, and of the
set of abstract transitions corresponding concrete transitions K = (XK ,≤K , lK),
each K consisting of a sequence ..., T1, S1, T2, S2, ... of segments ..., T1, T2, ... and
..., S1, S2, ... such that x is a maximal element of Ti iff it is a minimal element
of Si and y is a maximal element of Si iff it is a minimal element of Ti+1, where
each Si is a concrete pouring of an amount m of liquid represented by an lposet
S = (XS ,≤, lS) with XS = {x1, x2, x3, x4}, x1 <S x3, x1 <S x4, x2 <S x3,
x2 <S x4, lS(x1) = (d, r), lS(x2) = (p, q), lS(x3) = (d, r+m), lS(x4) = (p, q−m).

Abstract transitions corresponding to segments of a concrete transition K
are illustrated in Fig. 2. The abstract transition corresponding to a concrete
transition K is illustrated in Fig. 3.

The composition is the extension (κ1, κ2) �→ κ1;′v,v′ κ2 of (κ1, κ2) �→ κ1;v.v′ κ2

such that κ1;′v,v′ κ2 is defined as [K] with a concrete transition K that consists
of K1 ∈ κ1 followed by K2 ∈ κ2. The partial category A′

v,v′ = (A′
v,v′ , ;′v,v′ ) is

a multiplicative transition system. In this system an abstract transition which
corresponds to a concrete transition K, where K consists of S′ = S1 followed
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by T and followed by S′′ = S2, where T consists of parallel P and R, can
be represented as σ′;′′ (π ‖ ρ);′′ σ′′, where σ′ = [S′], π = [P ], ρ = [R], and
σ′′ = [S′′]. �

The concept of a bicartesian square can be used to define a sequential and a
parallel independence of transitions similar to the concepts introduced in [3].

Definition 3.3. Transitions u
α1→ v and u

α2→ w are said to be parallel inde-

pendent iff there exist unique transition v
α′

2→ u′ and w
α′

1→ u′ such that

(v α1← u
α2→ w, v

α′
2→ u′ α′

1← w) is a bicartesian square. �

�������������������������������������������������������������

(v, q0) (v, q1)
�

[P [] R]

��������������������������������������������������������������(v′, r0) (v′, r1)

Fig. 1. The abstract transitions π = [P ] and ρ = [R]

Fig. 2. The abstract transitions σ = [S] and τ = [T ]

Fig. 3. The abstract transition κ = [K]
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Definition 3.4. Transitions u
α1→ v and v

α′
2→ u′ are said to be sequential

independent iff there exist unique transition u
α2→ w and w

α′
1→ u′ such that

(v α1← u
α2→ w, v

α′
2→ u′ α′

1← w) is a bicartesian square. �

Example 3.5. In the MTS LTS (M) in Example 2.1 transitions u
α1→ v and u

α2→ w
are parallel independent only if one of them is an identity. Similarly, transitions

u
α1→ v and v

α′
2→ u′ are sequential independent only if one of them is an identity.

In the MTS TS (M) in Example 2.1 transitions u
α1→ v and u

α2→ w are parallel
independent iff (a, b) ∈ I for all a occurring in α1 and all b occurring in α2.

Similarly, transitions u
α1→ v and v

α′
2→ u′ are sequential independent iff (a, b) ∈ I

for all (a, b) such that a occurs in α1 and b occurs in α′
2. In the MTS A′

v,v′

in Example 3.2 transitions π ‖ dom(ρ) and dom(π) ‖ ρ are parallel indepen-
dent, transitions π ‖ dom(ρ) and cod(π) ‖ ρ are sequential independent, and
transitions dom(π) ‖ ρ and π ‖ cod(ρ) are sequential independent. �

The concept of a bicartesian square can also be used to define a natural equiv-
alence of transitions of multiplicative transition systems similar to the equiva-
lence of transitions in transition systems with independence considered in [15].
This will allow us to adapt and study the concept of a region similar to that
introduced in [2].

Definition 3.6. By the natural equivalence of elements of an MTS A = (A, ; )
we mean the least equivalence relation ≡ in A such that α1 ≡ α′

1 whenever in

this MTS there exists a bicartesian square (v α1← u
α2→ w, v

α′
2→ u′ α′

1← w). �

Example 3.7. In the MTS A′
v,v′ in Example 3.2 transitions π ‖ dom(ρ) and

cod(ρ) ‖ π are equivalent in the sense of Definition 3.6. In the MTS LTS (M) in
Example 2.1 the natural equivalence coincides with the identity relation. In the

MTS TS (M) in Example 2.1 we have α1 ≡ α′
1 whenever (v α1← u

α2→ w, v
α′

2→ u′ α′
1←

w) with α1 and α′
1 representing the same trace t1, and α2 and α′

2 representing
the same trace t2, for (a, b) ∈ I for all (a, b) such that a occurs in t1 and b occurs
in t2. �

The definitions of notions related to multiplicative transition systems are ade-
quate in subalgebras of multiplicative transition systems provided that bicarte-
sian squares in such subalgebras are bicartesian squares in the original multi-
plicative transition systems. This appears to be true if the respective subalgebras
are inheriting in the following sense.

Definition 3.8. A subalgebra A′ of an MTS A is said to be inheriting if it is
closed with respect to components of its elements in the sense that arrows α and
β of A are also arrows of A′ whenever αβ is an arrow of A′. �
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The following proposition reflects the crucial property of inheriting subalge-
bras of multiplicative transition systems.

Proposition 3.9. If A′ is an inheriting subalgebra of an MTS A then:

(1) each bicartesian square of A whose arrows are in A′ is a bicartesian square
in A′,

(2) each bicartesian square in A′ is a bicartesian square in A. �

Proof. The first part of this proposition is immediate. For the second part it
suffices to exploit the property (A6) of A and the fact that A′ is an inheriting
subalgebra of A. �

Multiplicative transition systems are richer models of concurrent system
than usual transition systems in the sense that they specify not only states,
indecomposable transitions, and independence of indecomposable transitions of
the modelled systems, but also their runs which may be continuous, and how
runs compose. Moreover, the independence becomes a definable notion, and it
can be defined not only for indecomposable transitions, but also for compound
transitions.

4 Regions

The existence in multiplicative transition systems of the natural equivalence of
transitions allows us to adapt and exploit the concept of a region similar to those
introduced in [2] and exploited in the context of Petri nets and automata in [1].
The fact that such an equivalence is closely related to the algebraic structure
of partial categories is an essential novelty of our approach that makes this
approach different from the others.

Definition 4.1. By a region of an MTS A = (A, ; ) we mean a nonempty subset
r of the set of states of A such that:

dom(α) ∈ r and cod(α) /∈ r and α′ ≡ α

implies dom(α′) ∈ r and cod(α′) /∈ r,

dom(α) /∈ r and cod(α) ∈ r and α′ ≡ α

implies dom(α′) /∈ r and cod(α′) ∈ r. �

Example 4.2. Consider the MTS A′
v,v′ in Example 3.2. In this MTS the sets

[(v, q)] = {(v, q)} ∪ ({v′} × [0,+∞)) with q ≥ 0, the sets [(v′, r)] = {(v′, r)} ∪
({v} × [0,+∞)) with r ≥ 0, and disjoint unions of such sets are regions. �
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M ′

�

� u �a v �a1 z

b
�

b
�

b
�

b1

w �a u′ �a1 v′

b1
�

b1
�

t �a w′

a1

Fig. 4. The transition system M ′

Example 4.3. Consider the transition system M ′ in Fig. 4.
Consider the independence relation I ′ = {(a, b), (a, b1), (a1, b), (a1, b1)} and

the MTS TS (M ′, I ′). In this MTS we have transitions

α = u
[a]→ v, β = u

[b]→ w,α′ = w
[a]→ u′, β′ = v

[b]→ u′α′′ = t
[a]→ w′,

β′′ = z
[b]→ v′, α1 = u′ [a1]→ v′, β1 = u′ [b1]→ w′, α′

1 = w′ [a1]→ u, β′
1 = v′ [b1]→ u

α′′
1 = v

[a1]→ z, β′′
1 = w

[b1]→ t,

where [a], [a1], [b], [b1] are traces corresponding to a, a1, b, b1, and compositions
of these transitions. For example,

αβ′ = βα′ = γ = u
[ab]→ u′, α1β

′
1 = β1α

′
1 = γ1 = u′ [a1b1]→ u,

transitions α, α′ are equivalent, transitions β, β′ are equivalent, and we have
regions

E = {u,w, t, v′, z}, F = {u, v, z, t, w′}, G = {v, u′, w′},

H = {w, u′, v′}, E ∪ G,F ∪ H, and {u, v, w, z, t, u′, v′, w′}. �

From the definition of a region we obtain the following proposition.

Proposition 4.4. If A = (A, ; ) is an MTS, r is a region of A, and (v α1← u
α2→

w, v
α′

2→ u′ α′
1← w) is a bicartesian square in A, then v ∈ r implies that u ∈ r or

u′ ∈ r. �
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Due to the property (A5) of multiplicative transition systems we obtain the
following proposition.

Proposition 4.5. If A = (A, ; ) is an MTS, r is a region of A, and (v α1← u
α2→

w, v
α′

2→ u′ α′
1← w) is a bicartesian square in A with morphisms which are not

identities, then for every decomposition u
α1→ v = u

α11→ v1
α12→ v such that u, v ∈ r

we have v1 ∈ r, and for every decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ such that
w, u′ ∈ r we have w1 ∈ r. �

The following three propositions follow from the definition of a region.

Proposition 4.6. The set of all states of A is a region of A. �

Proposition 4.7. If p and q are disjoint regions of A then p ∪ q is a region
of A. �

Proposition 4.8. If p and q are different regions of A such that p ⊆ q then
q − p is a region of A. �

Moreover, we are also able to prove the following proposition.

Proposition 4.9. Every state of a region of A belongs to a minimal region. �

Proof. Let r be a region of A and let x be an element of r. Given a chain (ri : i ∈
I) of regions of A that are contained in r and contain x, for r′ =

⋂

(ri : i ∈ I) and
a transition α such that dom(α) ∈ r′ and cod(α) /∈ r′, there exists i0 ∈ I such
that dom(α) ∈ ri and cod(α) /∈ ri for i > i0. Consequently, for every transition
α′ such that α′ ≡ α we have dom(α′) ∈ ri and cod(α′) /∈ ri for i > i0, and
thus dom(α′) ∈ r′ and cod(α′) /∈ r′. Similarly, for α such that dom(α) /∈ r′ and
cod(α) ∈ r′ and for α′ ≡ α. So, r′ is a region. Consequently, according to the
Lemma of Zorn and Kuratowski (cf. [16]), in the set of regions that are contained
in r and contain x there exists a minimal region. �

The Propositions 4.8 and 4.9 imply the following properties.

Proposition 4.10. Every region of A contains a minimal region. �

Proposition 4.11. If a state s of A does not belong to a region r then there
exists a minimal region r′ such that r ∩ r′ = ∅ and s belongs to r′. �

Proposition 4.12. Every region of A can be represented as a disjoint union of
minimal regions. �

Proof. Let m be the disjoint union of a family M of minimal regions of A. Then
m is a region of A and if it does not cover A then A − m is a region of A and
the family M can be extended by a minimal region of A that contains a given
element of A − m as in the proof of Proposition 4.9. Consequently, a family of
disjoint minimal regions of A can be defined such that its union covers A. �
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5 Transitions as Labelled Posets

Now we shall show that elements of multiplicative transition systems can be
interpreted as posets.

Let A = (A, ; ) be an MTS.

Definition 5.1. Given α ∈ A and a cut x = (ξ1, ξ2) of α, by a state corre-
sponding to such a cut x we mean cod(ξ1) = dom(ξ2), and we write such a state
as stateα(x). �

It is easy to see that the lattice LTα of cuts of α viewed as a category is an
MTS and that the obvious extension of the correspondence x �→ stateα(x) to the
mapping mpα from LTα to A preserves the composition. Given two cuts x and
y, by x �α y and x �α y we denote respectively the least upper bound and the
greatest lower bound of x and y. The diagram (x ← x�α y → y, x → x�α y ← y)
is a bicartesian square in LTα. From (A6) it follows that the image under the
mapping mpα of such a diagram is a bicartesian square in A.

Example 5.2. Consider the MTS A′
v,v′ in Example 3.2. For the transition κ =

σ′(π ‖ ρ)σ′′ of this MTS we have the MTS LTκ shown in Fig. 5 and its minimal
regions

i = {(u, κ)},

j = {(σ′, (π ‖ ρ)σ′′), ..., (σ′(π ‖ dom(ρ)), (cod(π) ‖ ρ)σ′′)}, ...,

j′ = {(σ′(dom(π) ‖ ρ), (π ‖ cod(ρ))σ′′), ..., (σ′(π ‖ ρ), σ′′)}, ...,

k = {(σ′, (π ‖ ρ)σ′′), ..., (σ′(dom(π) ‖ ρ), (π ‖ cod(ρ))σ′′)}, ...,

k′ = {(σ′(π ‖ dom(ρ)), (cod(π) ‖ ρ)σ′′), ..., (σ′(π ‖ ρ), σ′′)},

l = {(κ, u)}. �

Example 5.3. Consider the MTS TS (M ′, I ′) in Example 4.3. For the transition
δ = γγ1 = αβ′α1β

′
1 of this system we have the MTS LTδ shown in Fig. 6 and its

minimal regions

LTκ

(u, κ) � (σ′, (π ‖ ρ)σ′′) � ... � (σ′(π ‖ dom(ρ)), (cod(π) ‖ ρ)σ′′)

� �

(σ′(π ‖ ρ), σ′′) � (κ, u( )σ′(dom(π) ‖ ρ), (π ‖ cod(ρ))σ′′) � ... �

Fig. 5. The lattice LTκ
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LTδ

(u, δ) �α (α, β′γ1) �α′′
1 (αα′′

1 , β′′β′
1)

β
�

β′
�

β′′
�

(β, α′γ1) �α′
(γ, γ1) �α1 (γα1, β

′
1)

β′′
1

�
β1

�
β′
1

�

(ββ′′
1 , α′′α′

1) �α′′
(γβ1, α

′
1) �α′

1 (δ, u)

Fig. 6. The lattice LTδ

e = {(u, δ), (β, α′γ1), (ββ′′
1 , α′′α′

1)}, g = {(α, β′γ1), (γ, γ1), (γβ1, α
′
1)},

e′ = {(αα′′
1 , β′′β′

1), (γα1, β
′
1), (δ, u)}, f = {(u, δ), (α, β′γ1), (αα′′

1 , β′′β′
1)},

h = {(β, α′γ1), (γ, γ1), (γα1, β
′
1)}, f ′ = {(ββ′′

1 , α′′α′
1), (γβ1, α

′
1), (δ, u)}. �

Let A = (A, ; ) be an arbitrary MTS.
Given an element α of A, by Rα we denote the set of minimal regions of the

multiplicative transition system LTα.
Using regions of A we want to assign to each transition α of A a labelled

partially ordered set (an lposet) Lα = (Xα,≤α, lα). Each element x ∈ Xα is
supposed to play the role of an occurrence in α of a minimal region lα(x) of A.
The partial order ≤α is supposed to reflect how occurrences of minimal regions
arise from other minimal occurrences.

The underlying set Xα of Lα is supposed to be defined referring to the set
Rα of minimal regions of the MTS LTα and to a relation �α between minimal
regions of LTα and minimal regions of A.

We are going to show how to define the respective lposet Lα for every element
of A.

Proposition 5.4. Every minimal region r ∈ Rα is convex in the sense that
w ∈ r for every w such that u �α w �α v for some u ∈ r and v ∈ r. �

Proof. Suppose that r ∈ Rα and a �α c �α b for a, b ∈ r and c /∈ r. Define
r− to be the set of u ∈ r such that u �α c or u′ �α c for some u′ that can be
connected with u by a side of a bicartesian square with the nodes of the opposite
side not in r. Define r+ to be the set of u ∈ r such that c �α u or c �α u′ for
some u′ that can be connected with u by a side of a bicartesian square with the
nodes of the opposite side not in r. There is no bicartesian square with a side
connecting some u ∈ r and v ∈ r such that u �α c �α v and with the nodes
of the opposite side not in r because by (A5) it would imply c ∈ r. By (A5)
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there are no bicartesian squares with sides connecting some u′ with u ∈ r and
v ∈ r such that u �α c �α v and with the nodes of the opposite sides not in r.
Consequently, the sets r− and r+ are disjoint. On the other hand, r is a minimal
region of LTα and thus r ⊆ r− ∪ r+. Moreover, there is no bicartesian square
connecting an element of r− with an element of r+ and with the nodes of the
opposite side not in r. Consequently, r cannot be a minimal region of LTα as
supposed. �

In Rα there exists a partial order that can be defined as follows.

Definition 5.5. Given x, y ∈ Rα, we write x �α y iff for every v ∈ y there
exists u ∈ x such that u �α v, for every u ∈ x there exists v ∈ y such that
u �α v, and the following conditions are satisfied:

(1) t ∈ x iff w ∈ y, for every bicartesian square (u ← t → w, u → v ← w) with
u ∈ x and v ∈ y,

(2) t′ ∈ x iff w′ ∈ y, for every bicartesian square (t′ ← u → v, t′ → w′ ← v)
with u ∈ x and v ∈ y. �

Proposition 5.6. If minimal regions x, y ∈ Rα are not disjoint and different
then neither x �α y nor y �α x. �

Proof. Suppose that x and y are different minimal regions of LTα such that
x ∩ y �= ∅. Then x − y and y − x are nonempty and there exist u ∈ x − y,
v ∈ y −x, and w, z ∈ x∩y such that u and w are adjacent nodes of a bicartesian
square U , z and v are adjacent nodes of a bicartesian square V , and the nodes
of the bicartesian square W = (w ← w �α z → z, w → w �α z ← z) are in x ∩ y.

Consider the case in which w = u �α u′ for some u′ not in x and z = v �α v′

for some v′ not in y, as it is depicted in Fig. 11. Then u′ ∈ y, v′ ∈ x, and the
condition (1) is not satisfied for z �α v and the bicartesian square (v ← z →
v′, v → v �α v′ ← v′). Consequently, x �α y does not hold.

Similarly, in the other possible cases we come to the conclusion that neither
x �α y nor y �α x (Fig. 7). �

Proposition 5.7. If minimal regions x, y ∈ Rα are disjoint then either x �α y
or y �α x. �

Proof. It is impossible that u and v are incomparable for all u ∈ x and v ∈ y
since one of the regions x or y contains u �α v or u �α v.

Suppose that u �α v for u ∈ x and v ∈ y. As x and y are disjoint and convex,
it suffices to prove that every element of y has a predecessor in x. Consider
w ∈ y. If v �α w then u �α w. If w �α v then u′ �α w for u′ = u �α w and by
considering the bicartesian square (u ← u′ → w, u → w′ ← w) we obtain that
w′ ∈ y because y is convex. Hence u′ ∈ x. If w and v are incomparable then
either v�α w ∈ y and we may replace w by v�α w and proceed as in the previous
case, or v �α w ∈ y and we may replace v by v �α w ∈ y and proceed as in the
previous case. On the other hand, u �α v for u ∈ x and v ∈ y excludes v′ �α u′

for u′ ∈ x and v′ ∈ y since x and y are convex. Hence x �α y.
Similarly, in the case v �α u we obtain y �α x. �
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Fig. 7. Two minimal regions x, y ∈ Rα

Proposition 5.8. The relation �α is a partial order on Rα. �

Proof. The transitivity of the relation �α follows from the definition of
this relation. The antisymmetry follows from the transitivity and from the
Propositions 5.6 and 5.7. �

The relation �α between minimal regions of LTα and minimal regions of A
can be defined as follows.

Proposition 5.9. For every minimal region m of LTα there exists a minimal
region r of A such that the set stateα(m) = {stateα(u) : u ∈ m} is contained in
r, and we write m �α r. �

Proof. Given a minimal region m of LTα, let r be a minimal element of the set
of regions of A containing the set stateα(m). As the image of every bicartesian
square of LTα under the mapping mpα from LTα to A is a bicartesian square in
A, and for every partition of m into two disjoint nonempty subsets m′ and m′′

there exists in LTα a bicartesian square connecting m′ and m′′, the same holds
true for r. Consequently, r is a minimal region of A. �

Finally, the lposet Lα = (Xα,≤α, lα) can be defined by defining Xα as the set
of pairs (m, r) such that m ∈ Rα and m �α r, the relation ≤α as the partial order
on Xα such that x ≤α x′ for x = (m, r) and x′ = (m′, r′) whenever m �α m′,
and lα(x) as r for x = (m, r) ∈ Xα.

Example 5.10. Consider the MTS A′
v,v′ described in Example 3.2, its mini-

mal regions [(v, q)], [(v′, r)] described in Example 5.2, and the minimal regions
i, j, ..., j′, k, ..., k′, l of LTκ for κ = σ′(π ‖ ρ)σ′′ as in Example 5.2. We obtain
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Lκ = (Xκ,≤κ, lκ), where

Xκ = {(i, [(p, q0 + m)]), (i, [(d, r0 − m)]), (j, [(p, q0)]), ..., (j′, [(p, q1)]),
(k, [(d, r0)]), ..., (k′, [(d, r1)]), (l, [(p, q1 − m′)]), (l, [(d, r1 + m′)])},

(i, [(p, q0 + m)]), (i, [(d, r0 − m)]) ≤κ

{(j, [(p, q0)]) ≤κ ... ≤κ (j′, [(p, q1)])}, {(k, [(d, r0)]) ≤κ ...

≤κ (k′, [(d, r1)])}
≤κ (l, [(p, q1 − m′)]), (l, [(d, r1 + m′)]),

lκ((i, [(p, q0 + m)])) = [(p, q0 + m)], lκ((j, [(p, q0)])) = [(p, q0)],
lκ((j′, [(p, q1)])) = [(p, q1)], lκ((k, [(d, r0)])) = [(d, r0)], ...,
lκ((k′, [(d, r1)])) = [(d, r1)], lκ((l, [(p, q1 − m′)])) = [(p, q1 − m′)],
lκ((l, [(d, r1 + m′)])) = [(d, r1 + m′)].

The corresponding [Lκ] is essentially as that in Fig. 3. �

Example 5.11. Consider the MTS TS (M ′, I ′) described in Example 4.3, its min-
imal regions E,F,G,H, and the minimal regions e, g, e′, f , h, f ′ of LTδ for
δ = γγ1 = αβ′α1β

′
1 as in Example 5.3. We obtain Lδ = (Xδ,≤δ, lδ), where

Xδ = {(e,E), (g,G), (e′, E), (f, F ), (h,H), (f ′, F )},

(e,E) ≤δ (g,G) ≤δ (e′, E), (f, F ) ≤δ (h,H) ≤δ (f ′, F ),
lδ((e,E)) = lδ((e′, E) = E, lδ((g,G)) = G,

lδ((f, F )) = lδ((f ′, F )) = F, lδ((h,H)) = H.

Note that (e,E) and (e′, E) are different instances of E, and (f, F ) and (f ′, F )
are different instances of F . The corresponding [Lδ] is presented in Fig. 8. �

Proposition 5.12. For every element u of LTα, and for every x, y ∈ Rα such
that x �α y, and x �α x′ for some x′ ∈ Xα such that u ∈ x′, and y′ �α y for
some y′ ∈ Xα such that u ∈ y′, there exists z ∈ Xα such that u ∈ z, and x �α z,
and z �α y. �

Proof. For x′ = x it suffices to define z as x. For y′ = y it suffices to define z as
y. Consider the case in which x′ �= x and y′ �= y. By Proposition 5.6 in this case x
and y are disjoint, x′ and x are disjoint, and y′ and y are disjoint. Consequently,
u does not belong to x, u does not belong to y, and, by Proposition 4.11, there
exists z ∈ Xα that is disjoint both with x and with y, as required. �

Crucial for a representation of behaviour-oriented partial categories are the
properties of A described in Proposition 5.12 and in the following propositions.

Proposition 5.13. Every two different minimal regions x and y of LTα such
that x �α r and y �α r for a minimal region r of A are disjoint. �
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Fig. 8. The labelled partially ordered set Lδ

Proof. The correspondence between u
δ→ v such that u = (ξ1, ξ2), v = (η1, η2),

η1 = ξ1δ, ξ2 = δη2 and mpα(u) δ→ mpα(v) is a functor Fα from LTα to A. Due
to (A6) this functor preserves bicartesian squares and, consequently, mp−1

α (r)
is a region in LTα. Indeed, the image of a bicartesian square D = (v ← t →
w, v → u ← w) of LTα under Fα is a bicartesian square E = (v′ ← t′ → w′, v′ →
u′ ← w′) of A since otherwise due to (A5) there would be a bicartesian square
E′ = (v′ ← t′′ → w′, v′ → u′′ ← w′) that would be the image of a diagram
D′ = (v ← t → w, v → u ← w) with t �= t or u �= u, what is impossible in LTα.

Say that elements u, v ∈ mp−1
α (r) are connected if in LTα there exists a

bicartesian square S with one side with the vertices u and v and with the opposite
side with the images of vertices under Fα not in r. Divide mp−1

α (r) into parts such
that different parts have no connected vertices and consider maximal decreasing
chains of parts thus obtained. Each part is a region of LTα and for every element
x of this part the intersection of a chain of regions contained in this part and
containing x is a region as in the proof of Proposition 4.9. Consequently, there
exists a minimal region of LTα that is contained in the considered part and
contains x. Consequently, mp−1

α (r) can be represented in a unique way as the
union of disjoint minimal regions of LTα. As these are the only minimal regions
contained in mp−1

α (r), the required conclusion follows. �

Proposition 5.14. For every α in A and for x, y ∈ Xα, the equality lα(x) =
lα(y) implies x ≤α y or y ≤α x. �

Proof. It suffices to take into account Propositions 5.7 and 5.13. �
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6 Towards a Representation

We have defined multiplicative transition systems, equivalence of their elements,
their subsets called regions, and we have shown that elements of such systems
define labelled partially ordered sets with certain properties. Now we are pre-
pared to show that isomorphism classes of such sets can be regarded as processes
in a universe of objects in the sense of [14].

In [14] a universe of objects has been defined as a structure U = (V,W, ob)
where V is a set of objects, W is a set of instances of objects from V , and ob is a
mappings that assigns the respective object to each of its instances. A concrete
process in such a universe U has been defined as a labelled partially ordered set
L = (X,≤, ins), where

(1) X is a set (of occurrences of objects from V ),
(2) ins : X → W is a mapping (a labelling that assigns an object instance to

each occurrence of the respective object),
(3) ≤ is a partial order on X (the flow order or the causal dependency relation

of L) such that
(3.1) for every object v ∈ V , the set X|v = {x ∈ X : ob(ins(x)) = v} is either

empty or it is a maximal chain and has an element in every cross-section,
(3.2) every element of X belongs to a cross-section,
(3.3) no segment of L is isomorphic to one of its proper subsegments.

and an abstract process has been defined as an isomorphism class of concrete
processes. In [11,14] it has been shown that for every abstract processes α and
β such that the source of β is the target of α there exists exactly one abstract
process γ such that α;β defined as γ consist of α followed by β, and that the
set of processes in U with the operation (α, β) �→ α;β is a partial category (a
behaviour oriented partial category). It has been shown that for every abstract
processes α and β in disjoint sets of objects there exists exactly one abstract
process γ such that α ‖ β defined as γ consists of parallel abstract processes α
and β.

The construction of the labelled poset Lα = (Xα,≤α, lα) for every element α
of an MTS A is such that due to the properties (A1)–(A4) of A we obtain that
no segment of Lα is isomorphic to its subsegment. This suggests that elements
of MTSs represent processes in a universe of objects in the sense of [14].

To see this, consider the universe U(A) = (V (A),W (A), ob(A)) of objects,
where V (A) is the set of decompositions of the set of states of A into disjoint
unions of minimal regions of A, W (A) is the set of pairs w = (v, r) consisting
of a decomposition v of the set of states of A into a disjoint union of minimal
regions of A and of a minimal region r ∈ v, and (ob(A))(w) = v for every
w = (v, r) ∈ W (A). Due to Proposition 4.12 the sets V (A) and W (A) are
nonempty. Given α ∈ A, consider the lposet L∗

α = (X∗
α,≤∗

α, l∗α), where X∗
α is the

set of triples (m, v, r) such that such that m ∈ Rα and m �α r and (v, r) ∈ W (A),
the relation ≤∗

α is the partial order on X∗
α such that x ≤∗

α x′ for x = (m, r, v)
and x′ = (m′, r′, v′) whenever m �α m′ and r = r′ implies v = v′ and m = m′

implies r = r′, and l∗α(x) = (v, r) for x = (m, r, v) ∈ X∗
α. As the minimal regions
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of every decomposition v ∈ V (A) are disjoint, due to Propositions 4.6, 4.12, 5.6
and 5.7 we obtain that the set X∗

α|v = {x ∈ X∗
α : (ob(A))(l∗α(x)) = v} is a chain

and has an element in every cross-section of L∗
α. Moreover, X∗

α|v is a maximal
chain since otherwise every x = (m, r, v) ∈ X∗

α|v would be comparable with
x′ = (m′, r′, v′) for some v′ �= v and, consequently, there would be r = r′ for
every x = (m, r, v) ∈ X∗

α|v and this would imply v = v′. Hence, taking into
account (A4), we obtain that L∗

α is a concrete process in U(A).
Thus we obtain the following proposition.

Proposition 6.1. Given a multiplicative transition system A, the correspon-
dence α �→ [L∗

α] = [(X∗
α,≤∗

α, l∗α)] between elements of A and pomsets is a
mapping from A to the partial category of processes in the universe U(A) =
(V (A),W (A), ob(A)) in the sense of [14]. �

Example 6.2. Consider the MTS represented by the diagram in Fig. 9, where

αβ′ = βα′ �= ϕ. In this diagram (q α← p
β→ r, q

β′
→ s

α′
← r) is a bicartesian

square, the sets pq = {p, q}, pr = {p, r}, qs = {q, s}, rs = {r, s} are minimal
regions, and X = {pq, rs}, Y = {pr, qs} are decompositions of the set of states
into disjoint unions of minimal regions. For the transition ϕ the lattice LTϕ of
decompositions of this transition consists of the least element a = (p, ϕ) and the
greatest element b = (ϕ, s). Consequently, L∗

ϕ is a transition as shown in Fig. 10
and it is identical with L∗∗

ϕ . �

Fig. 9. A diagram

Note that the correspondence α �→ [L∗
α] = [(X∗

α,≤∗
α, l∗α)] need not be a

homomorphism. To see this, it suffices to consider a MTS A that is the reduct
of an algebra of transitions, and in this MTS a transition γ = αβ, where α =
dom(ϕ) ‖ ψ and β = ϕ ‖ cod(ψ). It is easy to see that [L∗

γ ] �= [L∗
α][L∗

β ].
However, every transition L∗

α can be transformed into a process L∗∗
α such

that the correspondence α �→ [L∗∗
α ] is a homomorphism. This can be done as

follows.
The fact that all (m, r, v) ∈ X∗

α with the same r and v form a chain implies
the following proposition.
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Fig. 10. The transition L∗
ϕ

Proposition 6.3. The following relation between elements of X∗
α is an equiva-

lence relation: (m, r, v) �α (m′, r′, v′) iff v′ = v, r′ = r, m �α r, m′ �α r, and
m′′ �α r for all m′′ such that m �α m′′ �α m′ or m′ �α m′′ �α m. �

Due to this proposition we obtain the following proposition.

Proposition 6.4. The triple L∗∗
α = (X∗∗

α ,≤∗∗
α , l∗∗

α ) with X∗∗
α = X∗

α/ �α, x ≤∗∗
α

x′ iff (m, r, v) ≤∗
α (m′, r′, v′) for all (m, r, v) ∈ x and (m′, r′, v′) ∈ x′, and

l∗∗
α (x) = l∗α(m, r, v) for (m, r, v) ∈ x, is a concrete process in U(A). �

Example 6.5. Consider a system M consisting of machines M1 and M2 which
work independently as shown in Fig. 11 and execute jointly an action γ that is
not shown in Fig. 11 and leads M1 to the state a and M2 to the state c if M1

comes to the state b and M2 comes to the state d.

Fig. 11. Machines M1 and M2

In this system we have among others the following transitions:

– a, b, c, d are transitions reducing to their initial (and final) states,
– a ‖ c, a ‖ d, b ‖ c, b ‖ d are transitions identical with their initial and final

states,
– α is an atomic transition with the initial state a and the final state a,
– β is an atomic transition with the initial state a and the final state b,
– γ is an atomic transition with the initial state b ‖ c and the final state a ‖ d,
– δ is an atomic transition with the initial state c and the final state d,
– α ‖ δ is a transition with the initial state a ‖ c and the final state a ‖ d that

consists of parallel transitions α and δ,
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– an execution of α twice is a transition with the initial state a and the final
state a that consists of α followed by α,

– an infinite repetition of α that begins but never ends is a transition with the
initial state a and no final state, etc.

In particular, we have transitions a ‖ c, a ‖ d, b ‖ c, b ‖ d, αc = α ‖ c, αd = α ‖ d,
βc = β ‖ c, βd = β ‖ d, γ, δa = δ ‖ a, δb = δ ‖ b,

The system is an MTS with bicartesian squares

(a ‖ c
αm

c← a ‖ c
δa→ a ‖ d, a ‖ c

δa→ a ‖ d
αm

d← a ‖ d),

(b ‖ c
βc← a ‖ c

δa→ a ‖ d, b ‖ c
δb→ b ‖ d

βd← a ‖ d),

minimal regions

A = {a ‖ c, a ‖ d}, B = {b ‖ c, b ‖ d}, C = {a ‖ c, b ‖ c},D = {a ‖ d, b ‖ d},

and decompositions P = {A,B}, Q = {C,D} of the set of states into disjoint
unions of minimal regions.

The respective universe of objects is U(A1) = (V (A1),W (A1), ob(A1)),
where W (A1) = {A,B,C,D}, V (A1) = {P,Q}, (ob(A1))(A) = (ob(A1))(B) =
P , (ob(A1))(C) = (ob(A1))(D) = Q.

For every transition π of we have the corresponding lattice LTπ of decom-
positions of π, the corresponding set Rπ of minimal regions of this lattice, the
corresponding partial order �π on Rπ, and the corresponding transition L∗

π in
U1. For example, for π = αcβcδbγβc we have the lattice of decompositions of π
shown in Fig. 12 and we have the set

Rπ = {x, y, z, p, q, r, s} of minimal regions, where
x = {(a ‖ c, π)} �π A,C,

y = {(αc, βcδbγβc), (αcδa, βdγβc)} �π A

z = {(αcβc, δbγβc), (αcβcδb, γβc)} �π B

p = {(αc, βcδbγβc), (αcβc, δbγβc)} �π C

q = {(αcδa, βdγβc), (αcβcδb, γβc)} �π D

r = {(αcβcδbγ, βc)} �π A,C

s = {(π, b ‖ c)} �π B,C

the process L∗
π in U1 shown in Fig. 13, and the corresponding process L∗∗

π in U1

shown in Fig. 14. �

Now we want to prove that the correspondence α �→ [L∗∗
α ] = [(X∗∗

α ,≤∗∗
α

, l∗∗
α )] between elements of an MTS A and processes in the universe U(A) =

(V (A),W (A), ob(A)) of objects enjoys the following property.

Proposition 6.6. If γ = αβ with cod(α) = dom(β) = c then L∗∗
γ is the pushout

object in the category LPOSETS of the injections of L∗∗
c in L∗∗

α and in L∗∗
β . �
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Fig. 12. The lattice of decompositions of π

Fig. 13. The transition L∗
π

Fig. 14. The corresponding process L∗∗
π

Proof. Let d ∈ LTγ be the cut (α, β) of γ. The correspondence iα : (α1, α2) �→
(α1, α2β) is an isomorphism between the lattice LTα and the sublattice LTγ,α

of LTγ consisting of the cuts between (dom(γ), γ) and (α, β). Similarly, the
correspondence iβ : (β1, β2) �→ (αβ1, β2) is an isomorphism between the lattice
LTβ and the sublattice LTγ,β of LTγ consisting of the cuts between (α, β) and
(γ, cod(γ)).

Let r be a region of LTγ and let rα and rβ be respectively the part of r in
LTγ,α and the part of r in LTγ,β . Every bicartesian square that is contained in
LTγ,α and has a side outside of rα must be disjoint with rα or must have the
entire opposite side in rα. Consequently, rα is a region of LTγ,α. Similarly, rβ is
a region of LTγ,β .
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Due to (A6) every bicartesian square that is contained in LTγ and has a
side in rα and the opposite side disjoint with r can be decomposed into two
bicartesian squares of which one has a side in rα and the opposite side disjoint
with rα. Consequently, rα is a minimal region of LTγ,α whenever r is a minimal
region of LTγ , and rα ⊆ m for every minimal region of LTγ that contains m.
Similarly, every bicartesian square that is contained in LTγ and has a side in
rβ and the opposite side disjoint with r can be decomposed into two bicartesian
squares of which one has a side in rβ and the opposite side disjoint with rβ .
Consequently, rβ is a minimal region of LTγ,β whenever r is a minimal region of
LTγ , and rα ⊆ n for every minimal region of LTγ that contains n.

Thus every minimal region r of LTγ has a part rα in LTγ,α and a part rβ

in LTγ,β , these parts are minimal regions of LTγ,α and LTγ,β , respectively, and
they determine r uniquely. Moreover, if both rα and rβ are nonempty then, due
to the convexity of minimal regions of LTγ , the cut d = (α, β) belongs to r.

Exploiting these facts we can verify that (L∗∗
α

kγ,α→ L∗∗
γ

kγ,β← L∗∗
β ) is a pushout

of (L∗∗
α

jα,c← L∗∗
c

jβ,c→ L∗∗
β ) with

jα,c : [m, r, v] �→ [m′, r, v] for m containing (c, c) and m′ containing (α, c)
jβ,c : [m, r, v] �→ [m′, r, v] for m containing (c, c) and m′containing (c, β)
kγ,α : [m, r, v] �→ [m′, r, v] for m containing (α1, α2) and m′ containing (α1, α2β)
kγ,β : [m, r, v] �→ [m′, r, v] for m containing(β1, β2) and m′ containing (αβ1, β2).

�

Consequently, we obtain the following result.

Proposition 6.7. Given a multiplicative transition system A, the correspon-
dence α �→ [L∗∗

α ] = [(X∗∗
α ,≤∗∗

α , l∗∗
α )] between elements of A and processes in the

universe U(A) = (V (A),W (A), ob(A)) of objects is a homomorphism from A
to the partial category of processes in U(A). �

This proposition is the main result of the paper. It tells that every algebraic
structure which satisfies the axioms characterizing multiplicative transition sys-
tems is essentially the partial category of processes in a universe of objects in
the sense of [14]. Put in another way, such processes and their partial categories
seem to be the most natural models of concurrent systems and their runs.

7 Partial Order of Transitions

The representation of each transition α of a multiplicative transition system A
by an lposet L∗

α = (X∗
α,≤∗

α, l∗α) can be exploited as a basis of a formal definition
of the parallel composition of transitions and of the corresponding partial order
of transitions. To this end it suffices to define the parallel composition of abstract
transitions in disjoint sets of objects from V (A) as the partial operation (α, β) �→
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α ‖ β, where α ‖ β consists of parallel pomsets α and β. Then the inclusion of an
abstract transition α in an abstract transition β can be defined as the relation �
that is satisfied iff α is an independent component of β. Due to 5.14 the relation
� is a partial order such that

(1) there exists the least element 0,
(2) every two elements α and β have a greatest lower bound α � β,
(3) some elements α and β have a least upper bound α � β,
(4) the partial operations (α, β) �→ α � β and (α, β) �→ α � β are commutative

and associative (the latter as it is defined for partial operations),
(5) α � (β � γ) = (α � β) � (α � γ) whenever either side is defined,
(6) for every α1, α2, β1, β2 such that α1;α2 and β1;β2 are defined also (α1 �

β1); (α2 � β2) is defined and (α1;α2) � (β1;β2) = (α1 � β1); (α2 � β2),
(7) the least upper bound α�β exists iff α and β have segments α′ and β′ such

that α′ and β′ have the least upper bound α′ � β′.

Moreover, if in a multiplicative transition system A there exists a partial
order � which enjoys the properties (1)–(7) then α ‖ β can be defined as α � β
for α and β such that α � β = 0.

The possibility of studying an MTS A together with is partial order � is
important because together with runs of entire represented systems also runs of
subsystems of such systems can be considered.

8 Concluding Remarks

Making use of the fact that runs of a system and a composition of such runs
form a partial algebra satisfying a set of axioms, we have defined a multiplica-
tive transition system, MTS, as an arbitrary partial algebra satisfying this set
of axioms, and we have shown that every MTS can be viewed as a partial cat-
egory of processes in a universe of objects. As elements of an MTS may repre-
sent decomposable runs, algebras of this type become a universal framework for
describing systems that may exhibit any combination of discrete and continu-
ous behaviour. As every MTS can be viewed as a partial category of processes
in a universe of objects, such processes become universal basic structures for
representing arbitrary system runs.

The fact that every MTS is an algebraic structure has also practical con-
sequences. Using the concept of homomorphism it is possible to relate easily
systems which simulate one another, to define a refinement of a system, and to
verify system properties.

Acknowledgements. The author is grateful to the referees for their remarks which
helped to improve the final version of the paper.
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