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Geoffrey Ingram Taylor (∗March 7th, 1886 in
St. John’s Wood, England; †June 27th, 1975 in
Cambridge, England, UK) was a physicist and
mathematician with main contributions to fluid
dynamics and wave theory.

Early Life and Education

His father, Edward Ingram Taylor, was an artist,
and his mother, Margaret Boole, came from a
family of mathematicians (his aunt was Alicia
Boole Stott introducing the term polytope for a
convex solid in four or more dimensions, and

Geoffrey Ingram Taylor

his grandfather was George Boole working in the
field of algebraic logic). It was not surprising that
the young Geoffrey Ingram Taylor was fascinated
by natural sciences and mathematics after attend-
ing the Royal Institution Christmas Lectures. He
entered the university college in 1899, and, after
winning a scholarship, he moved to Trinity Col-
lege, Cambridge, in 1905 (up to 1908). He started
with studies in mathematics; later his focus was
on physics. He won the Smith’s prize with a
work on shock waves and continued his career at
Cambridge.

Professional Career

From 1910, he was a Fellow of Trinity College.
His research focus was on turbulence and
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accepted the position of a reader in the field of
dynamical meteorology. In 1915, he got for his
scientific results the Adams’ prize. After World
War I, he was appointed as a lecturer at Trinity
College, and from 1923, he was nominated
as a Royal Society Research Professor. From
this time, his focus was on research. In 1952,
he retired, but he continued research up to
1972.

Scientific Achievements

Many scientific achievements were made in fluid
and solid mechanics, among them are results
on the deformation of crystalline materials and
on turbulent flow, where he introduced a new
approach through a statistical study of velocity
fluctuations. In 1934, Taylor, roughly contem-
porarily with Michael Polanyi and Egon Orowan,
realized that the plastic deformation of ductile
materials could be explained in terms of the
theory of dislocations developed by Vito Volterra
in 1905.

Honors

In 1919 he was elected as a Fellow of the Royal
Society; in 1925, corresponding member of the
Göttingen Academy of Sciences; in 1945, mem-
ber of the National Academy of Sciences (USA);
in 1955, member of the American Philosophical
Society; and in 1956, member of the American
Academy of Arts and Science. He was also a
member of the Academy of Sciences (Soviet
Union) and Royal Dutch Academy of Sciences.
He was awarded by the following medals: 1933,
Royal Medal; 1944, Copley Medal; 1954, Wil-
helm Exner Medal; 1958, Timoshenko Medal;
1962, Franklin Medal; 1965, James Watt Medal;
and 1969, Theodore von Kármán Medal. In 1972,
he was the first recipient of the Theodore von
Kármán Prize.

To his honor, the G. I. Taylor Medal of Society
of Engineering was established in 1984.
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Definition

Let (Ω,F,P) be a probability space, i.e., Ω is
a set, F is a σ -field of subsets of Ω , and P is
a probability measure on F. Let V be a finite-
dimensional linear space consisting of tensors,
and let B(V) be the σ -field of Borel sets of V.
A mapping T : Ω → V is called a random tensor
if it is measurable, i.e., for any Borel set B we
have T−1(B) ∈ F. If V consists of scalars, the
term random variable is then used instead of
random scalar. A tensor random field on a real
finite-dimensional affine space E is a function
of two variables T : E × Ω → V such that for
any A ∈ E the function T(A, ω) is a random
tensor.

Why Tensor Random Fields in
Continuum Mechanics?

In this article, by continuum physics we under-
stand continuum mechanics and other classical
(non-quantum, nonrelativistic) field theoretic
models such as continuum thermomechanics
(e.g., thermal conductivity, thermoelasticity,
thermodiffusion), electromagnetism, and electro-
magnetic interactions in deformable media (e.g.,

piezoelectricity). Most tensor fields appearing
in these models fall into two categories:
fields of dependent quantities (displacement,
velocity, deformation, rotation, stress,. . . ) and
constitutive responses (conductivity, stiffness,
permeability,. . . ). All of these fields are tensors
of first or higher rank and, generally, of random
nature (i.e., displaying spatially inhomogeneous,
random character), indicating that the well-
developed theory of scalar random fields has
to be generalized to tensor random fields (TRFs).

In deterministic theories of continuum
physics, we typically have an equation of the
form

Lu = f,

defined on some subset D of the d-dimensional
affine Euclidean space E

d , where L is a differ-
ential operator, f is a source or forcing func-
tion, and u is a solution field. This needs to
be accompanied by appropriate boundary and/or
initial conditions. [We use the symbolic (u) or,
equivalently, the subscript (ui . . . ) notations for
tensors, as the need arises; also an overdot will
mean the derivative with respect to time, d/dt .]

A field theory is stochastic if either the oper-
ator L is random, or there appears an apparent
randomness of u due to an inherent nonlinear-
ity of L, or the forcing and/or boundary/initial
conditions are random. While various combina-
tions of these basic cases are possible, in this
paper we focus on the first and second cases;
the first case is typically due to the presence
of a spatially random material microstructure,
e.g., Ostoja-Starzewski (2008). For example, the
coefficients of L (ω), such as the elastic moduli
C, form a tensor-valued random field, and the
stochastic equation

L (ω) u = f

governs the response of a random medium B.
The second case is exemplified by solutions of the
Navier–Stokes equation, which become so irreg-
ular in turbulence as to be treated in a stochas-
tic way (Batchelor 1951; Monin and Yaglom
2007a,b; Frisch 1995). In both cases B is taken as
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a set of all the realizations B (ω) parameterized
by sample events ω of the Ω space

B = {B (ω) : ω ∈ Ω} . (1)

In principle, each of the realizations follows
deterministic laws of classical mechanics; proba-
bility is introduced to deal with the set (1). The
ensemble picture is termed stochastic continuum
mechanics/physics. Formally speaking, we have
a triple (Ω,F,P), where Ω is the space of ele-
mentary events, F is the σ -field, and P is the
probability measure defined on it.

Going back to the first case, the stochastic
continuum physics was necessary to replace the
deterministic picture in problems of stochastic
wave propagation: elastic, acoustic, and electro-
magnetic. A paradigm of wave propagation in
random media is offered by the wave equation for
a scalar field ϕ in a domain D

∇2u = 1

c2 (ω, x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D.

Here c is the wave speed in a linear
elastic, isotropic medium, so that, effec-
tively, B is described by a random field
{c (ω, x) : ω ∈ Ω, x ∈ D}. Given that we simply
have a Laplacian on the left-hand side, this model
accounts for spatial randomness in mass density
ρ only.

In order to also account for randomness in the
elastic response, we could consider this partial
differential equation

∇ · [C (x, ω)∇u] = ρ (ω, x)
∂2u

∂t2
,

ω ∈ Ω, x ∈ D. (2)

Clearly, we now deal with two scalar random
fields: C and ρ. This model’s drawback, how-
ever, is the assumption of an inhomogeneous but
locally isotropic second-rank stiffness tensor field
C = CI instead of C (= Cij ei ⊗ ej ) with full
anisotropy. In fact, extensive studies on upscaling
of various mechanical and physical phenomena
have shown (Ostoja-Starzewski et al. 2016) that
the local anisotropy goes hand in hand with
randomness: as the smoothing scale (i.e., scale

on which the continuum is set up) increases, the
anisotropy and random fluctuations in material
properties jointly go to zero. Thus, (2) should be
replaced by

∇·(C (x, ω) ·∇u) = ∂2u

∂t2
, ω ∈ Ω, x ∈ D,

(3)

where C is the second-rank tensor random field.
The same arguments apply to a diffusion equa-

tion of, say, heat conduction

∇ · (K (x, ω) ·∇T ) = Cε (ω, x) ρ (ω, x)
∂T

∂t
,

ω ∈ Ω, x ∈ D,

in which K is the thermal conductivity tensor
(again with anisotropy present), while the specific
heat (in reference state) Cε and mass density ρ

jointly premultiply the first derivative of temper-
ature T on the right-hand side.

This line of reasoning also applies to ellip-
tic problems: consider Fig. 1 showing a planar
Voronoi tessellation of E2 which serves as a pla-
nar geometric model of a polycrystal (although
the same arguments apply in E

3); each cell may
be occupied by a differently oriented crystal, with
all the crystals belonging to any specific crystal
class. Examples of the latter include:

• transverse isotropy modelling, say, sedimen-
tary rocks at long wavelengths;

• tetragonal modelling, say, wulfenite
(PbMoO4);

• trigonal modelling, say, dolomite
(CaMg(CO3)2);

• orthotropic modelling, say, wood;
• triclinic modelling, say, microcline feldspar.

Thus, we need to be able to model fourth-rank
tensor random fields, point-wise taking values in
any crystal class. While the crystal orientations
from grain to grain are random, they are not spa-
tially independent of each other – the assignment
of crystal properties over the tessellation is not a
white noise. This is precisely where the two-point
characterization of the random field of elasticity
tensor is needed. While the simplest correla-
tion structure to admit would be white noise,
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Fig. 1 (a) A realization of a Voronoi tesselation (or mosaic); (b) placing a mesoscale window leads, via upscaling, to a
mesoscale random continuum approximation in (c)

a (much) more realistic model would account
for any mathematically admissible correlation
structures as dictated by the statistically wide-
sense homogeneous and isotropic assumption. A
specific correlation can then be fitted to physical
measurements.

Note that it may also be of interest to work
with a mesoscale random continuum approxima-
tion defined by placing a mesoscale window at
any spatial position as shown in Fig. 1b. Clearly,
the larger is the mesoscale window, the weaker
are the random fluctuations in the mesoscale
elasticity tensor: this is the trend to homogenize
the material when upscaling from a statistical
volume element (SVE) to a representative vol-
ume element (RVE). A simple paradigm of this
upscaling, albeit only in terms of a scalar random
field, is the opacity of a sheet of paper held
against light: the further away is the sheet from
our eyes, the more homogeneous it appears. Simi-
larly, in the case of upscaling of elastic properties,
on any finite scale, there is (almost surely) an
anisotropy, and this anisotropy, with mesoscale
increasing, tends to zero hand in hand with the
fluctuations, and it is in the infinite mesoscale
limit (i.e., RVE) that material isotropy is obtained
as a consequence of the statistical isotropy.

Another motivation for development of TRF
models is to have a realistic input of elastic-
ity random fields into stochastic field equations
such as stochastic partial differential equations
(SPDE) and stochastic finite elements (SFE). The
classical paradigm of SPDE can be written in
terms of the anti-plane elastostatics (with u= u3)
as Eq. (2) with zero on the right-hand side. Such

an equation is well justified for a piecewise-
constant description of realizations of a random
medium such as a multiphase composite made
of locally isotropic grains. However, in the case
of an elliptic boundary value problem set up
on coarser (i.e., mesoscales) scales, having con-
tinuous realizations of properties, a second-rank
tensor random field (TRF) of material properties
would be much more appropriate, Fig. 1b. The
field equation should then read as (3) where C
is the second-rank tensor random field.

Moving to the in-plane or 3D elasticity, the
starting point is the Navier equation of motion
[written in symbolic and tensor notations]

μ∇2u+ (λ+ μ)∇ (∇ · u) = ρü or

μui,jj + (λ+ μ) uj ,ji = ρüi . (4)

Here u is the displacement field, λ and μ are
two Lamé constants, and ρ is the mass density.
This equation is often (e.g., in stochastic wave
propagation) used as an Ansatz, typically with the
pair (λ, μ) taken ad hoc as a “vector” random
field with some simple correlation structure for
both components. However, in order to properly
introduce the smooth randomness in λ and μ, one
has to go one step back in the derivation of (4)
and write

μ∇2u+ (λ+ μ)∇ (∇ · u)
+∇μ

(∇u+ (∇u)�
)+∇λ∇ · u = ρü

or
μui,jj + (λ+ μ) uj ,ji +μ,j

(
uj ,i +ui,j

)

+λ,i uj ,j = ρüi .

(5)
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While two extra terms are now correctly present
on the left-hand side, this equation still suffers
from the drawback (just as (2)) of local isotropy
so that, again by micromechanics upscaling argu-
ments, it should be replaced by

∇·(C∇ · u)� =ρü or
(
Cijklu(k,l)

)
,j =ρüi .

(6)

Here C (= Cijklei ⊗ ej ⊗ ek ⊗ el), which, at any
scale finitely larger than the microstructural scale,
is almost surely anisotropic. Clearly, instead of
(5) one should work with this SPDE (6) for u.

The foregoing arguments outline the setting
of TRFs: to obtain explicit representations
of correlation functions of TRFs of ranks 1
through 4 so as to enable their simulation,
subject to the restrictions imposed by the
field equations dictated by physics. Briefly,
in the case of dependent TRFs, we have,
say, the linear momentum equation restricting
the Cauchy stress or the angular momentum
equation restricting the Cauchy and couple
stresses. In the case of material property fields
(elasticity, diffusion, permeability,. . . ), there
are conditions of positiveness of either the
energy density or the entropy production, as
the case may be. In turn, any such conditions
lead to restrictions on the respective correlation
functions.

Representations of Rank 1 and
Rank 2 TRFs

We begin with V , a finite-dimensional real
Hilbert space with norm ‖ · ‖. Then, we let
T(x), x ∈ R

3 be a random field taking values
in (a subset of) V : there is a probability space
(Ω,F,P), and T is a function of two variables

T(x, ω) : V ×Ω → V,

such that for any fixed x0 ∈ V the function
T(x0, ω): Ω → V is measurable. We assume
that E[‖T(x)‖2] < ∞ and T(x) is mean-square
continuous, i.e.,

lim‖x−x0‖→0
E[‖T(x)− T(x0)‖2] = 0 ∀x0 ∈ R

3.

Next, we let E(x) = E[T(x)] be the expectation
of the field and let B(x, y) = E[T(x) ⊗ T(y)]
be the two-point correlation function of the ran-
dom field T(x). The group R

3 acts on itself by
translations. Assume that the above functions are
invariant with respect to this action, i.e., for all
x, y, z ∈ R

3,

E(x+ z) = E(x),
B(x+ z, y+ z) = B(x, y).

∀x, y, z ∈ R
3.

It follows that E(x) = E ∈ V is constant, while
B(x, y) ∈ V ⊗ V depends only on the difference
x− y.

Let K = O(3) be the group of rotations and
reflections in R

3, and let (V , γ ) be an orthogonal
representation of K . Suppose that for all k ∈ K

and for all x ∈ R
3 we have

E(kx) = γ (k)E(x),
B(kx) = γ (k)B(x)γ−1(k).

Our first objective is to find a general form for the
expectation and two-point correlation function
of such a field. We now consider two particular
cases:

Rank 1 TRF
V has dimension 3, γ (k) = k. Then E(x) = 0
and

Bij (x, y) := E
{
[Ti(x)− 〈Ti(x)〉]

[
Tj (y)−

〈
Tj (x)

〉]}

is represented in terms of two continuous func-
tions K0, K2: [0,∞)→ R with K2(0) = 0, such
that

Bij (x) = δijK0(‖x‖)+ xixjK2(‖x‖). (7)

This representation has been known since the
classical paper by Robertson (1940), where it was
proved using the invariants. This line of research
goes back to Sir Geoffrey Ingram Taylor (1935).
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Rank 2 TRF
V is the space of all symmetric second rank ten-
sors over R3, and the representation is γ (k)T =
kTk−1. Then Eij (x) = Cδij with C ∈ R. Using
the theory of invariants (e.g., Spencer 1971),
Lomakin (1964) proved that

Bijlm(x, y) := E{ [Tij (x)−
〈
Tij (x)

〉]

[Tlm(y)− 〈Tlm(x)〉]}

is represented in terms of five continuous func-
tions K1, . . . , K5: [0,∞) → R with K3(0) =
K4(0) = K5(0) = 0, such that

Bij�m(x) =
5∑

n=1

Ln
ij�m(x)Kn(‖x‖). (8)

Here

L1
ij�m(x) = δij δ�m,

L2
ij�m(x) = δi�δjm + δimδjl,

L3
ij�m(x) =

xjx�

‖x‖2
δim + xixm

‖x‖2
δj�

+ xix�

‖x‖2 δjm +
xjxm

‖x‖2 δi�,

L4
ij�m(x) =

xixj

‖x‖2 δ�m +
x�xm

‖x‖2 δij ,

L5
ij�m(x) =

xixj x�xm

‖x‖4 .

(9)

Malyarenko and Ostoja-Starzewski (2014b)
found five functions M1

ij�m(x) such that

M1
ij�m(x) =

1

3
L1
ij�m(x),

M2
ij�m(x) = −

1

3
√

5
L1
ij�m(x)

+ 1

2
√

5
L2
ij�m(x),

M3
ij�m(x) = −

1

3
L1
ij�m(x)+

1

2
L4
ij�m(x),

M4
ij�m(x) =

2
√

2

3
√

7
L1
ij�m(x)−

1√
14

L2
ij�m(x)

+ 3

2
√

14
L3
ij�m(x)−

√
2√
7
L4
ij�m(x),

M5
ij�m(x) =

1

2
√

70
L1
ij�m(x)+

1

2
√

70
L2
ij�m(x)

−
√

5

2
√

14
L3
ij�m(x)

−
√

5

2
√

14
L4
ij�m(x)+

√
35

2
√

2
L5
ij�m(x).

(10)

and the representation

Bij�m(x) =
5∑

n=1

Mn
ij�m(x)Kn(‖x‖). (11)

It has been proved in the aforementioned ref-
erence that the representation (11) is equivalent
to (8), according to the transformation (10).

Note: On the one hand, Lomakin’s func-
tions (9) are simpler than functions (10). On
the other hand, (9) lead to spectral expansions
(Malyarenko and Ostoja-Starzewski 2016)
of tensor-valued homogeneous and isotropic
random fields similar to those in Yaglom (1957).

Note: Given that T has diagonal and off-
diagonal components, there are five special cases
of Bijkl which shed light on the physical meaning
of Kn’s:

1. E[Tij (0)Tkl(x)]|i=j=k=l ; i.e., auto-
correlations of diagonal terms:

E[T11(0)T11(x)] = K1 + 2K2 + 2x2
1K3

+ 4x2
1K4 + x4

1K5

and then E[T22(0)T22(x)] and
E[T33(0)T33(x)] by cyclic permutations
1 → 2 → 3.

2. E[Tij (0)Tkl(x)]|i=j �=k=l ; i.e., cross-
correlations of diagonal terms:

E[T11(0)T22(x)] = K1 +
(
x2

2 + x2
1

)
K3

+ x2
2x

2
1K5

and then E[T22(0)T33(x)] and E[T33(0)T11(x)]
by cyclic permutations 1 → 2 → 3.
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3. E[Tij (0)Tkl(x)]|i=k �=j=l ; i.e., auto-correlations
of off-diagonal terms:

E[T12(0)T12(x)] = K2 +
(
x2

1 + x2
2

)
K4

+ x2
1x

2
2K5

and then E[T23(0)T23(x)] and E[T31(0)T31(x)]
by cyclic permutations 1 → 2 → 3.

4. E[Tij (0)Tkl(x)]|j �=i=k �=l �=j ; i.e., cross-
correlations of off-diagonal terms:

E[T12(0)T13(x)] = x2x3K4 + x2
1x2x3K5

and then E[T13(0)T32(x)] and E[T32(0)T12(x)]
by cyclic permutations 1 → 2 → 3.

5. E[Tij (0)Tkl(x)]|i=j=k �=l �=j ; i.e., cross-
correlations of diagonal with off-diagonal
terms, such as

E[T11(0)T12(x)] = x1x2 (K3 + 2K4)

+ x1x
3
2K5

and

E[T12(0)T13(x)] = x2x3K3 + x2
1x2x3K5

and the other ones by cyclic permutations
1 → 2 → 3.

In principle, we can determine these five cor-
relations for a specific physical situation. For
example, when T is the anti-plane elasticity ten-
sor for a given resolution (or mesoscale), we
can use micromechanics or experiments (Ostoja-
Starzewski 2008; Sena et al. 2013) and then
determine the best fits of Kn (n = 1, . . . , 5)
coefficients.

Spectral Expansions of
Homogeneous and Isotropic TRFs

In a line of research different from that introduced
above, Yaglom (1957) proved that the correlation
tensor (2) has the following spectral expansion:

Rij (ξ) =
∫ ∞

0

[
j1(λρ)

λρ
δij − j2(λρ)

ξiξj

ρ2

]
dΦ1(λ)

+
∫ ∞

0

[(
j0(λρ)− j1(λρ)

λρ

)
δij + j2(λρ)

ξiξj

ρ2

]
dΦ2(λ), (12)

where Φ1 and Φ2 are two finite measures on
[0,∞) with Φ1({0}) = Φ2({0}) and where
ji(t) are spherical Bessel functions. In particular,

Robertson’s functions A(ρ) and B(ρ) [i.e., our
K0 and K2 in (7)] have the form

A(ρ) = 1
ρ2

(∫∞
0 j2(λρ) dΦ2(λ)−

∫∞
0 j1(λρ) dΦ1(λ)

)
,

B(ρ) = ∫∞0 j1(λρ)
λρ

dΦ1(λ)+
∫∞

0

(
j0(λρ)− j1(λρ)

λρ

)
dΦ2(λ).

In Malyarenko and Ostoja-Starzewski (2016)
we have established spectral expansions of homo-
geneous and isotropic random fields taking values
in the three -dimensional Euclidean space R3 and

in the space S2(R3) of symmetric rank 2 tensors
over R

3, whereby we found a link between the
theory of random fields and the theory of finite-
dimensional convex compacta.
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The Spectral Expansion of the
Elasticity Random Field

Here we consider planar classical elasticity. Let
E = R

2 be a two-dimensional Euclidean space
with an inner product (·, ·) (the space domain).
The Hooke law in the theory of elasticity says that
σ(x) = H(x)ε(x), where σ(x) is the stress tensor
of a deformable body and ε(x) its strain tensor
and where H(x) is a symmetric linear operator
on the space S2(E) of the symmetric rank 2
tensors over E called the elasticity (or stiffness)
tensor. It is taken as a random field: there is a
probability space (Ω,F,P), and H is a function
of two variables

H(x, ω) : E ×Ω → S2(S2(E)),

such that for any fixed x0 ∈ E, the function
H(x0, ω) : Ω → S2(S2(E)) is measurable. In
Malyarenko and Ostoja-Starzewski (2014a) we
have reported two results:

1. The expected value of the elasticity random
field H(x) is

Eij�m(x)=C1δij δ�m+C2(δi�δjm+δimδj�),
C1, C2 ∈ R,

where C1 and C2 are recognized as the
Lamé constants λ and μ, respectively. The
correlation tensor of the above field has the
form

Ri···m′(ρ, ϕr) =
2∑

t=1

∫ ∞

0

4∑

n=0

i2nJ2n(λρ)

m2n∑

q=1

N2n,q,t (λ)M
2n,q
i···m′(ϕr) dΦt(λ),

where Φ1 and Φ2 are two finite measures on
[0,∞) satisfying the condition

Φ1({0}) ≥ 2Φ2({0}).

Here J2n(λρ) are the Bessel functions of
the first kind of order 2n, m0 = 5; m2 =
m4 = 3, m6 = M8 = 1, and N2n,q,t (λ)

(0 ≤ n ≤ 4, 1 ≤ q ≤ m2n, t = 1, 2)
are the functions given in Table 2 in Mal-
yarenko and Ostoja-Starzewski (2014a); and
M

2n,q
i···m′(ϕr) are tensor-valued functions similar

to (10).
2. The elasticity random field H(x) has the spec-

tral expansion

Hij�m(ρ, ϕr) = C1δij δ�m + C2(δi�δjm + δimδj�)

+∑4
n=0

∑m2n
q=1

∑∞
s=0

∑2
t=1

(∫∞
0

√
N2n,q,t (λ)Js(λρ) sin(2sϕr) dZnqst−

ij�m (λ)

+ ∫∞0
√
N2n,q,t (λ)Js(λρ) cos(2sϕr) dZnqst+

ij�m (λ)
)
,

where the centered scattered random measures
Z
nqst±
ij�m are defined by

Z
nqst±
ij�m (A) =

∑

(i′j ′�′m′n′q ′s′±′)≤(ij�mnqs±)
(Lt )

i′j ′�′m′n′q ′s′±′
ij�mnqs± W

nqst±
ij�m (A),
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and where W
nqst±
ij�m is the sequence of uncor-

related scattered random measures with Φt as
their control measures, i.e.,

E[Wnqst±
ij�m (A)W

nqst±
ij�m (B)] = Φt(A ∩ B).

TRFs Dependent Fields

Having explicit representations of correlation
functions of TRFs, one can turn to applications
in specific physical settings, assuming they
are wide-sense homogeneous and isotropic and
possess generally anisotropic realizations. Two
basic research directions are (i) material property
fields such as conductivity or elasticity and (ii)
dependent fields such displacement, velocity,
stress, strain, rotation, etc. With reference to
physics and the discussion in the first section,
the direction (i) requires imposition of a positive
definiteness property on tensors of second or
fourth rank. Another approach to the construction
of random elasticity tensor fields, with special
attention to information-theory methodology, is
given in Guilleminot and Soize (2019).

The direction (ii) requires imposition of a
governing equation relevant for a particular
physics, such as first done in terms of a
zero-divergence condition for incompressible
turbulent fluids (Batchelor 1951). That line of
research was continued in Lomakin (1964),
Shermergor (1971) and Ostoja-Starzewski et al.
(2015). Working within the constraints of small
strains, attention is given to anti-plane elasticity,
thermal conductivity, classical elasticity, and
micropolar elasticity, all in quasi-static setting
albeit without making any specific statements
about the Fourier and Hooke laws. The field
equations (such as linear and angular momentum
balances and strain-displacement relations) lead
to consequences for the respective dependent
fields involved. In effect, these consequences
are restrictions on the admissible forms of the
correlation functions describing the TRFs. The
derivations have not involved the Fourier and
Hooke laws, so that those restrictions may also

apply to other constitutive behaviors providing
they involve small gradients and strains.
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Synonyms

Coordinate-independent quantities; Dyadics;
Elements of tensor spaces

Definition

Tensor analysis is a branch of mathematics con-
cerned with entities that remain invariant under
change of basis, their properties, and the transfor-
mation laws satisfied by their components under
change of basis. The entities are called tensors;
they include scalar quantities as zero-order ten-
sors, vector quantities as first-order tensors, linear
transformations on n-dimensional vector spaces
as second-order tensors, and various other quan-
tities important in mechanics.

Originating in mechanics with the vectorial
laws for force resultants (Simon Stevin, 1548–
1620), tensor analysis was extended to the ele-
ments of general linear spaces and their linear
transformations. The introduction of the inertia
tensor for a solid and of the Cauchy stress and
strain tensors σ and ε in elasticity, which turned
out to be of the same mathematical nature as
linear transformations, prompted consideration of
nth-order tensors. In particular, the elastic prop-
erties of linearly elastic bodies are described by a
fourth-order tensor.

The tensor concept finds extensive applica-
tion in many areas of natural science includ-
ing mechanics, electromagnetism, relativity, and
crystallography.

Second-Order Tensors

This article features tensors of order two,
although the method of constructing tensors of
higher order is analogous. Just as vectors are
objective quantities independent of the basis,
so are the linear mappings (transformations,
operators) of the vectors, provided the image
of any vector x is required to be a vector y
that is independent of the basis as well. Linear
algebra uses column vectors containing the
components of vectors and square matrices to
represent linear transformations; the result of
a transformation is given by the product of a
matrix and a column vector. If one changes
the basis for representing x, the matrix is
also subject to certain transformation rules to

https://doi.org/10.1007/978-3-662-55771-6_300129
https://doi.org/10.1007/978-3-662-55771-6_300201
https://doi.org/10.1007/978-3-662-55771-6_300225
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guarantee that the same y is produced. The
set of second-order tensors introduced below
is such that, like vectors, they can be represented
in terms of components relative to a basis in
the initial space of x. As in the article on
vectors, the discussion is mostly restricted to
R

3. In this case the components of a linear
transformation can be exhibited in a 3×3 matrix.
Moreover, if one adheres to a canonical basis,
the tensorial transformation rules again manifest
as matrix multiplication (the matrix of tensor
components premultiplying a column vector).
Linear transformations are quite important in
physics but are not the only objects describable
by second-order tensors: many quantities of
mechanics and physics in general, by their
nature being invariant quantities specified by
3 × 3 matrices, are also second-order tensors.
Examples are the stress and strain tensors
specifying the elastic states of a deformable body
and the inertia tensor for a rigid body. The process
of introducing second-order tensors (or second-
rank tensors, as they are sometimes called) starts
with the dyad concept.

Dyads
It bears emphasis that many statements pertaining
to tensors in R

3 can be extended to tensors in
R
n for any positive integer n. Still, the present

discussion will use R
3 as the context. For vectors

a,b ∈ R
3, the tensor product

a⊗ b

is known as a dyad. The symbol ⊗ will be
retained in this article but is often omitted for
brevity (yielding simply ab). If a �= b then

a⊗ b �= b⊗ a ;
i.e., the tensor product is not commutative. Using
the set of all possible dyads, rules for actions
with dyads are introduced in such a way that
a linear space is produced. This space, denoted
as R

3 ⊗ R
3, has elements called second-order

tensors. The rules are summarized next.
The concept of linear space requires notions

of addition and multiplication of elements by
scalars. Here scalars will be denoted by Greek

letters α, β, etc. The product of a dyad a⊗ b and
a scalar α, written as αa⊗ b, is posited to satisfy

(α + β)a⊗ b = αa⊗ b+ βa⊗ b, (1)

0a⊗ b = 0⊗ b = a⊗ 0 = 0⊗ 0, (2)

where 0 is the zero vector of R3 and 0⊗ 0 is the
zero dyad. For the dyad product, we also require
that

(a+ b)⊗ c = a⊗ c+ b⊗ c, (3)

a⊗ (b+ c) = a⊗ b+ a⊗ c. (4)

Finally, to establish R
3 ⊗ R

3 as a linear space,
linear combinations of dyads such as αa ⊗ b +
βc ⊗ d must be considered. These entail the
additional properties

αa⊗ b+ βc⊗ d = βc⊗ d+ αa⊗ b,
(5)

α(a⊗ b+ c⊗ d) = αa⊗ b+ αc⊗ d,
(6)

(α + β)(a⊗ b+ c⊗ d) = α(a⊗ b+ c⊗ d)

+ β(a⊗ b+ c⊗ d).
(7)

The space R3⊗R
3 is required to contain all linear

combinations of dyads. It is easily shown that
the set of all dyads having the above properties
and containing the zero dyad constitutes a linear
space. As mentioned above, the elements of R3⊗
R

3 are called second-order tensors. In this article
they will be mostly denoted by bold uppercase
letters (A, B, and so on); however, some tensors
(such as the strain and stress tensors of elasticity)
are denoted otherwise.

Components of a Second-Order Tensor
Let ei be a basis of R3 and let ej be its reciprocal
basis. Using the above properties of the dyads
and spans of the vectors, the dyad a ⊗ b can be
spanned in four forms:

a⊗ b = ai bj ei ⊗ ej = ai bj ei ⊗ ej

= ai bj ei ⊗ ej = ai b
j ei ⊗ ej . (8)
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As this can be done for any dyad, any second-
order tensor is representable through nine dyads
of each of the four sets

ei ⊗ ej, ei ⊗ ej, ei ⊗ ej, ei ⊗ ej,

which constitute bases of the space of second-
order tensors. Any second-order tensor A can be
represented in four ways,

A = aij ei ⊗ ej = aij ei ⊗ ej

= ai··j ei ⊗ ej = a
·j
i· ei ⊗ ej , (9)

with uniquely defined components. The com-
ponents aij are said to be contravariant, the
components aij are covariant, and the remain-

ing components ai··j and a
·j
i· are mixed. (The

position-holding dots in the mixed components
are included to clarify the order of the indices
when one index is a superscript and the other
is a subscript.) It is clear that the components
of A relative to a given basis can fill a 3 × 3
matrix. This matrix, denoted [A], will be called
the representative matrix of A in the given basis.
Although there are infinitely many representative
matrices for A, the representative matrix relative
to a given, fixed basis is unique.

The various components of A are interrelated.
The chain of equations

A = aij ei ⊗ ej

= aij gik ek ⊗ ej = a
·j
k· ek ⊗ ej

= aij gik ek ⊗ gmj em = akm ek ⊗ em

= aij ei ⊗ gmj em = ai··m ei ⊗ em

implies that

a
·j
k· = aij gik,

akm = aij gik gjm,

ai··m = aij gjm.

Similarly, aij = akm gki gmj , etc. This procedure
is called the raising and lowering of indices.

Dot Product of a Second-Order Tensor by a
Vector
The dot product is a key operation used to relate
tensors and vectors with the well-known actions
in vector spaces that involve matrix operations.
The dot products of a dyad a⊗ b with a vector x
are defined as follows:

(a⊗ b) · x = a(b · x), (10)

x · (a⊗ b) = (x · a)b. (11)

So x is dotted with the nearest vector of the
dyad. Extension to linear combinations of dyads
is straightforward:

(∑

i

ciai ⊗ bi

)
· x =

∑

i

ci(bi · x)ai ,

x ·
(∑

i

ciai ⊗ bi

)
=
∑

i

ci(x · ai )bi .

This rule permits dot multiplication of a second-
order tensor A = aij ei ⊗ ej with a vector x =
xiei in various bases. The product A · x can take
several forms,

A · x = aij ei ⊗ ej · xk ek = aij xk (ej · ek) ei

= aij xk δ
k
j ei = aij xj ei

= aij ei ⊗ ej · xk ek = aij x
k ei (ej · ek)

= aij x
k δ

j
k ei = aij x

j ei

= aij ei ⊗ ej · xk ek = aij xk ei (ej · ek)
= aij xk gjk ei = ai··k x

k ei

= aij ei ⊗ ej · xk ek = aij xk ei (ej · ek)
= aij xk g

jk ei = a ·ki· xk ei ,

and there are analogous expressions for x · A.
With a canonical basis, these sorts of expres-

sions appear somewhat simpler. Let B = bij ii ⊗
ij and y = yk ik where ij is a canonical basis of
R

3. Recalling that for canonical bases the sum-
mation convention applies to repeated subscripts,
one has
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B · y = bij ii ⊗ ij · yk ik = bij yk (ij · ik) ii

= bij yk δjk ii = bij yj ii .

Note that the components bij yj of the vector
B · y are obtained by the rule for multiplying
the matrix [B] = (bij ) by the column vector
[y]T = (y1 y2 y3)

T .
The operation A · x yields a vector which

can be represented in any basis. This issue is
considered further next.

Representation of a Linear Transformation.
Any linear transformation of vectors from R

3 can
be represented as a dot product from the left with
a uniquely defined second-order tensor. Indeed,
a linear transformation f acting in R

3 has the
property

f (αx+ βy) = αf (x)+ βf (y). (12)

Expansion of x in a basis ei produces

f (x) = f (xk ek) = f (ek) xk.

With fk = f (ek) and xk = ek · x, this becomes
f (x) = fk(ek · x) so that

f (x) = (fk ⊗ ek) · x.

Hence the required tensor is

F = fk ⊗ ek (13)

and the indicated representation is

f (x) = F · x for any x ∈ R
3. (14)

This fact extends to R
n.

The Unit or Metric Tensor
In linear algebra there is a unit matrix I with
ones along its main diagonal and zeros elsewhere.
When I acts on a vector x, the result is just x:

I [x]T = [x]T .

Among the tensors there is also the unit tensor E
such that for every x

E · x = x = x · E. (15)

Guided by the matrix situation one quickly posits
that

E = ek ⊗ ek (16)

and finds that indeed

E · x = (ek ⊗ ek) · xi ei = xi ek(ek · ei )
= xi ek δki = xi ei = x,

x · E = xi ei · (ek ⊗ ek) = xi (ei · ek)ek

= xi δ
i
k ek = xk ek = x.

As these relations hold in mixed components,
they will hold for any component representations
of E and x. By (16) and a little index manipula-
tion,

E = ek⊗ek = gkiei⊗ek = gkiek⊗ei = ei⊗ei .
(17)

So the contravariant and covariant components of
E are the metric coefficients; for this reason E is
also called the metric tensor.

The representative matrix of E in mixed com-
ponents is [E] = I , the unit matrix; this is true
for any initial basis ei .

Dot Product of Tensors
Next consider the dot product of tensors A =
aij ei ⊗ ej and B = bij ei ⊗ ej :

A · B = aij ei ⊗ ej · bkm ek ⊗ em

= aij bkm (ej · ek) ei ⊗ em

= aij bkm gjk ei ⊗ em.

Note that one dot multiplies the vectors nearest
the dot. (Also note the renaming of indices in the
second factor.) Other forms of the dot product are
obtained similarly:

A · B = aij bkm gjk ei ⊗ em

= aij b
jm ei ⊗ em = a

·j
i· b

·k
j · ei ⊗ ek,
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and so on. For a canonical basis where C =
cij ii ⊗ ij and D = dij ii ⊗ ij , the result

C · D = (cij ii ⊗ ij ) · (dkm ik ⊗ im)

= cij dkm δjk ii ⊗ im = cij djm ii ⊗ im

yields components obtainable by multiplying the
representative matrices [C] and [D]: (i.e., by
computing the matrix (cij djm)). It is straightfor-
ward to show that any composition of two linear
mappings in R

3 can be uniquely represented by
the dot product of the two corresponding tensors.

One easily verifies that for any second-order
tensor A,

A · E = E · A = A. (18)

So E is the unit mapping among the second-order
tensors as well.

Finally, powers of a tensor A can be defined in
the expected manner:

A2 = A · A, A3 = A · A · A, etc.

In practice, tensorial relationships are often
studied in the context of canonical bases. But
it is crucial to note that if such a relationship
can be written in component-free form using
the dot product, then it holds in any basis. This
observation is often used when treating tensorial
relationships among physical quantities.

It is worth stressing that linear mappings
are not the only objects representable through
second-order tensors. The latter are also used to
describe mechanical deformations, stresses, and
so forth.

Double Dot Product. Given two dyads a⊗b and
c⊗ d, the operation defined by

(a⊗ b) ·· (c⊗ d) = (b · c)(a · d) (19)

is called double dot multiplication. It extends in
straightforward fashion to more general second-
order tensors A and B, e.g.,

A ·· B = aij ei ⊗ ej ·· bkm ek ⊗ em

= aij bkm (ej · ek)(ei · em)
= aij bkm gjk gim.

Trace of a Second-Order Tensor
The trace of a dyad a⊗b is computed by changing
the tensor product operation to the dot product
operation:

tr(a⊗ b) = a · b. (20)

This idea extends directly to the case of a general
second-order tensor:

tr A = tr(aij ei ⊗ ej ) = aij ei · ej = aij gij .

The trace of A is one of the principal invariants
of A; it does not depend on the choice of basis.
Direct calculation also reveals that

tr A = E ·· A. (21)

The simplest component form for the trace occurs
in mixed components where

tr A = a
·j
j · = ai··i . (22)

Another principal invariant of A is the determi-
nant covered next.

Determinant of a Second-Order Tensor
This quantity also takes its simplest form when A
is in mixed components:

det A = |a ·ji· | (23)

where |a ·ji· | is the determinant of the representa-
tive matrix for the mixed basis. The value of the
determinant does not depend on the basis. It can
also be expressed in the forms

det A = |ai··j | = g|aij | = g−1|aij |

where | · | again denotes the determinant of a
matrix and g is the determinant of the matrix of
metric coefficients (gij ).

The following properties of determinants
known from linear algebra also hold for tensor
determinants:

det A = det AT ,

det(A · B) = det A det B,

det E = 1.
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The tensor transpose operation appearing in the
first property is discussed below.

A tensor having nonzero determinant is said
to be nonsingular. Such a tensor A has an inverse
tensor A−1 such that

A · A−1 = A−1 · A = E.

In this case, for each given vector y ∈ R
3, the

equation A · x = y has a unique solution x =
A−1y.

Tensor Transposition
Let A = aij ei ⊗ ej . Its transpose AT is the
second-order tensor

AT = (aij ei ⊗ ej )T = aji ei ⊗ ej .

In other representations,

AT = aji ei ⊗ ej = a ·ij · ei ⊗ ej = a
j ·
·i ei ⊗ ej .

It is straightforward to verify

(AT )T = A,

the equality familiar for matrices in linear alge-
bra.

Symmetric and Antisymmetric Parts of a
Second-Order Tensor. Clearly

A = 1
2 (A+ AT )+ 1

2 (A− AT ), (24)

and furthermore

(A+ AT )T = AT + (AT )T = A+ AT ,

(A− AT )T = AT − (AT )T = −(A− AT ).

A tensor A for which A = AT is said to be
symmetric. A tensor B for which B = −BT is
antisymmetric. The equations immediately above
show that any second-order tensor A can be
resolved into a sum of a symmetric tensor 1

2 (A+
AT ) and an antisymmetric tensor 1

2 (A−AT ). This
decomposition is used to construct the tensor of
small deformations.

Because the components of a symmetric ten-
sor A satisfy aij = aji , only the six components
a11, a12, a13, a22, a23, and a33 can be specified
independently. An antisymmetric tensor whose
components satisfy bij = −bji can have only
three independent components b12, b13, and b23;
the diagonal components b11, b22, and b33 all
vanish.

For a symmetric tensor A and an antisymmet-
ric tensor B, the following are easily verified:

A ··B = 0, A ·x = x ·A, B ·x = −x ·B.

Conjugate Vector
Let B be an antisymmetric second-order tensor.
In a canonical basis ij ⊗ ik , it is represented as

B =b12 i1 ⊗ i2 + b13 i1 ⊗ i3 + b23 i2 ⊗ i3

− b12 i2 ⊗ i1 − b13 i3 ⊗ i1 − b23 i3 ⊗ i2.

With

ω = −b23 i1 + b13 i2 − b12 i3

one may easily check that for arbitrary x the two
relations

B · x = ω × x, x · B = x× ω,

hold. But these are in component-free form so
they hold in any frame. The vector ω is said to
be conjugate to the tensor B.

Scalar Product of Second-Order Tensors
As the second-order tensors constitute a nine-
dimensional linear space, one can define a scalar
product operation A� B for any A and B:

A� B = A ·· BT . (25)

For dyads this takes the form

(a⊗b)�(c⊗d) = (a⊗b)··(d⊗c) = (b·d)(a·c).

Verification of the inner product axioms is
straightforward. In component form the scalar
product appears variously as



Tensors 2447

T

A� B = aij b
ij = aij bij = ai··j b

·j
i· = a

·j
i· b

i·
·j .

It induces a norm in the usual manner:

‖A‖ = √A� A =
√
aij aij =

√
ai··j a

·j
i· . (26)

Orthogonal Tensors
Some tensors act on vectors in such a way that
magnitudes are preserved; i.e., a second-order
tensor Q may have the property that for each
a ∈ R

3,
|Q · a| = |a|. (27)

Such a tensor is said to be orthogonal and will
also preserve dot products in the sense that

(Q · a) · (Q · b) = a · b. (28)

Indeed, (27) applied to the difference b− a gives

|Q · (b− a)|2 = |b− a|2.

Now |x|2 = x · x, so

[Q · (b− a)] · [Q · (b− a)] = (b− a) · (b− a)

and simple manipulations yield

|Q·b|2−2(Q·a)·(Q·b)+|Q·a|2=|b|2−2a·b+|a|2.

But |Q · b|2 = |b|2 and |Q · a|2 = |a|2, so (28)
holds for any a,b ∈ R

3.
The inverse of an orthogonal tensor Q is its

transpose QT :

QT ·Q = E, i.e., QT = Q−1. (29)

The proof is straightforward. Any a,b sat-
isfy (28), which can be rewritten as

(a ·QT ) · (Q · b) = a · E · b

or
a · (QT ·Q− E) · b = 0.

It is easy to see that if a · A · b = 0 for any a and
b, then A = 0. Indeed, let A = aij ei ⊗ ej . The
choices a = ek and b = em yield akm = 0. Hence
QT ·Q− E = 0, which is (29).

If Q is orthogonal, then det Q = ±1 because

(det Q)2 = det QT det Q

= det(QT ·Q) = det E = 1.

If det Q = +1, then Q is called a proper orthogo-
nal tensor; otherwise it is an improper orthogonal
tensor. Proper orthogonal tensors correspond to
rotations of solid bodies in R

3.

Eigenproblem for a Second-Order Tensor
It has been noted that a linear operator acting in
R

3 can be represented by a second-order tensor.
In linear algebra, the eigenvalue problem for a
linear operator is a central topic. Fortunately the
results of that study can be transferred directly to
the algebra of tensors. One calls a pair (λ, x �= 0)
an eigenpair of a tensor A if

A · x = λx, (30)

where λ is an eigenvalue and x an eigenvector.
This equation also can be written as (A−λE)·x =
0; by expressing it in matrix form, one can use
the results of linear algebra to conclude that a
nontrivial solution x exists only if

det(A− λE) = 0.

This is the characteristic equation for A.
Although the above presents no difficulty, another
approach proves instructive. In component
form, (30) reads

aij ei ⊗ ej · xk ek = λxm δnm en

where the relation em = δnm en has been used. It
follows that

aij gjk x
k ei = λxm δnm en.

Because the ek constitute a basis, the equality
holds if and only if the coefficients of the same
ek match, and this leads to three equations in the
three unknowns xk:

(ai··k − λδik)x
k = 0 (i = 1, 2, 3).
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The necessary and sufficient condition for x to be
nontrivial is that the determinant of the matrix
(ai··k − λδik) vanishes. This is the characteristic
(cubic) equation for A, which has the form

−λ3 + I1(A)λ2 − I2(A)λ+ I3(A) = 0. (31)

The three quantities Ik(A) are the principal
invariants of A; they are independent of the
choice of basis. Two were encountered above –
namely, the trace and determinant of A:

I1(A) = tr A,

I2(A) = 1
2 (tr

2 A− tr A2),

I3(A) = det A.

Solution of the characteristic equation yields
three eigenvalues λ. They may be distinct or
repeated and real or complex and are also invari-
ant quantities for A. Rather than studying all the
cases that can occur here, the present article will
focus on a case important in mechanics.

Eigenproblem for a Second-Order Symmetric
Tensor. The first crucial fact is

(1) All the eigenvalues of a symmetric tensor A
are real.

Indeed, permitting λ to be complex (so that the
eigenvector x in (30) can be complex as well),
one may dot multiply both sides of (30) with the
complex conjugate x of x:

(A · x) · x = λx · x.

Here x · x > 0 and attention can be turned to
the left-hand side. By the symmetry property and
real-valued nature of A,

(A · x) · x = x · (A · x) = (A · x) · x.

Hence (A · x) · x is real and so is λ.

(2) Eigenvectors x1, x2 corresponding to distinct
eigenvalues λ1, λ2 (λ1 �= λ2) are orthogonal.

By hypothesis,

A · x1 = λ1x1, A · x2 = λ2x2.

Dot multiplying the first equation by x2 and the
second by x1 from the left, one obtains

x2 ·A ·x1 = λ1x2 ·x1, x1 ·A ·x2 = λ2x1 ·x2.

By symmetry of A, the left-hand sides of the two
equalities are equal and

λ1x2 · x1 = λ2x1 · x2.

This is possible only if

x1 · x2 = 0.

Moreover, it is seen that

x1 · A · x2 = 0 ;

this and similar relations in the problems of linear
elasticity are known as generalized orthogonality
relations.

(3) There exists a set of three eigenvectors of
A which is orthonormal and hence a basis
of R3.

If all three λk are unequal, one has three eigen-
vectors xk that are mutually orthogonal. Mul-
tiplication of xk by any nonzero number again
produces an eigenvector. So an orthonormal set
of eigenvectors can be obtained by scaling the
xk to unit magnitude. However, it may turn out
that an eigenvalue is repeated. If λ1 = λ2 �= λ3,
say, then for the eigenvectors x1 and x2, one may
select any two perpendicular vectors from a two-
dimensional subspace of R3 situated orthogonal
to the eigenvector x3. The resulting eigenvector
triplet can be scaled to produce an orthonormal
basis. If all three eigenvalues are equal, any
nonzero vector of R

3 is an eigenvector; in this
case an arbitrary canonical basis of R

3 can be
used.
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Spectral Representation of a Symmetric
Second-Order Tensor. Let xk be an orthonor-
mal basis of eigenvectors of A as constructed
above. Its reciprocal basis is composed of the
same vectors xk . Let A be represented in terms of
this basis:

A = aij xi ⊗ xj (summation understood).

Now
aij = xi · A · xj .

Since A · xj = λj xj (here and below there is no
summation over j ) one gets

aij = xi · (λj xj ) = λj δij ,

so the aij are nonzero only on the main diagonal
of the matrix. The expansion

A = λ1 x1 ⊗ x1 + λ2 x2 ⊗ x2 + λ3 x3 ⊗ x3 (32)

is called a spectral or orthogonal representation
of A. The process of obtaining it is known as
diagonalization, and the xk are the principal axes
of A. (Note that the latter are nonunique; even
when the λk are all distinct, the ek are defined
only up to a sign.) When λ1 = λ2 = λ3 = λ, the
tensor A is a ball tensor proportional to E such
that A = λE.

Using (32) one easily sees that

A2 = (λ1x1 ⊗ x1 + λ2x2 ⊗ x2 + λ3x3 ⊗ x3)

· (λ1x1 ⊗ x1 + λ2x2 ⊗ x2 + λ3x3 ⊗ x3)

= λ2
1 x1 ⊗ x1 + λ2

2 x2 ⊗ x2 + λ2
3 x3 ⊗ x3.

Similarly, for any integer m

Am = λ1
m x1⊗ x1+ λ2

m x2⊗ x2+ λ3
m x3⊗ x3.

(33)

In the case of a positive symmetric tensor A (i.e.,
when λk ≥ 0), a positive square root of A can be
introduced:

A1/2 = λ
1/2
1 x1⊗x1+λ1/2

2 x2⊗x2+λ1/2
3 x3⊗x3.

(34)

There are other square roots of such a tensor A
that are not positive.

A symmetric second-order tensor A is called
positive definite if all λk > 0. In this case A is
nonsingular.

Positivity of a symmetric second-order tensor
A can also be expressed in terms of the quadratic
form with respect to x:

x · A · x ≥ 0.

A positive tensor A is positive definite if x · A ·
x = 0 implies x = 0. Equivalence of this with
the earlier definition is easily established. For a
positive definite symmetric tensor A, its positive
square root A1/2 is also positive definite.

Cayley–Hamilton Theorem. The Cayley–
Hamilton theorem states that a second-order
tensor A satisfies its characteristic equation (31).

Included here will be a simplified proof hold-
ing when A is symmetric. (The more general
result follows from the corresponding theorem
for a linear operator, covered in any textbook on
linear algebra.) Denote the characteristic polyno-
mial by

P(λ) = −λ3 + I1(A)λ2 − I2(A)λ+ I3(A).

Then represent A in the spectral form (32) and
apply P(λ) to both sides:

P(A) = P(λ1) x1 ⊗ x1 + P(λ2) x2 ⊗ x2

+ P(λ3) x3 ⊗ x3.

But the λk are the roots of P(λ), and it follows
that

−A3 + I1(A)A2 − I2(A)A+ I3(A)E = 0 (35)

as needed.
The Cayley–Hamilton theorem permits A3 to

be expressed as a second-degree polynomial in A:

A3 = I1(A)A2 − I2(A)A+ I3(A)E.
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Using this and multiplying (35) by A, similar
formulas for A4,A5, and so on can be obtained.
Moreover, if A is nonsingular (det A �= 0), one
finds A−1 by multiplying (35) by A−1:

A−1 = 1

I3(A)
[A2 − I1(A)A+ I2(A)E].

It is similarly possible to express any negative
integer power of A as a second-degree polyno-
mial in A. The same holds for any finite poly-
nomial in A and A−1 (if det A �= 0): it can be
represented as a second-degree polynomial in A.

Polar Decomposition of a Nonsingular Tensor.
It is important in mechanics that any nonsingular
second-order tensor A can be written as a dot
product of an orthogonal tensor Q and a positive
definite symmetric second-order tensor S:

A = S ·Q. (36)

This is known as the left polar decomposition of
A. Also available is the right polar decomposition

A = Q · R (37)

where Q is the same as in (36) and R is a positive
definite symmetric tensor.

The decomposition (36) follows from the
spectral representation (32). Its construction
starts by establishing properties of the tensor
A · AT ; this turns out to be symmetric because

(A · AT )T = (AT )T · AT = A · AT,

and also positive definite. Next one shows that
all of its eigenvalues λ are positive. Indeed one
can dot multiply both sides of the eigen-equation
(A · AT ) · x = λx with x from the left:

x · (A · AT ) · x = λx · x.

As x · x > 0 (strictly positive since x is an
eigenvector), attention can be turned to the left-
hand side:

(x ·A) · (AT · x) = (x ·A) · (x ·A) = |x ·A|2 ≥ 0.

But x · A cannot be zero for A nonsingular.
Therefore λ > 0.

The symmetric, positive definite tensor A ·AT

has spectral representation

A · AT =
3∑

k=1

λk ik ⊗ ik

with λk > 0 and an orthonormal basis ik consist-
ing of its eigenvectors. It follows that

S = (A · AT )1/2 =
3∑

k=1

λ
1/2
k ik ⊗ ik

is symmetric and positive definite, and this is the
tensor S needed in (36). It remains only to show
that

Q = S−1 · A
is orthogonal. One can start by noting that S−1

exists; it can be constructed explicitly as

S−1 =
3∑

k=1

1√
λk

ik ⊗ ik

and the result verified by multiplication with S.
Orthogonality of Q is established as

Q ·QT = (S−1 · A) · (S−1 · A)T

= (S−1 · A) · [AT · (S−1)T ]

= S−1 · (A · AT ) · (ST )−1

= S−1 · S2 · S−1

= E.

It is easy to see that tensor R from (37) is R =
QT · S · Q, which is symmetric and positive
definite.

Ball Tensor and Deviator Representation. A
ball tensor has all three eigenvalues λ equal. It
takes the form λE. Corresponding to any second-
order tensor A, there is a ball tensor 1

3I1(A)E,
often regarded as a sort of “average value" of A.
The difference A − 1

3I1(A)E, showing how A
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deviates from its “average ball tensor," is called
the deviator and is denoted dev A:

A = 1
3 (tr A)E+ dev A. (38)

It should be recalled that I1(A) = tr A = λ1 +
λ2 + λ3. Whereas A has eigenvalues λ1, λ2, λ3,
the tensor-deviator dev A has eigenvalues μi =
λi − 1

3 tr A.

Cross Product of Vectors and Tensors
The cross product for tensors is introduced sim-
ilarly to the dot product. There are left and right
cross products of a vector by a tensor. The rule
is that one cross multiplies the vector with the
nearest vectors in the dyad representation of the
tensor, replacing this dyad vector by the cross
product:

x× A = xk ek × [aij ei ⊗ ej ]
= xk aij [(ek × ei )⊗ ej ],

A× x = [aij ei ⊗ ej ] × xk ek

= xk aij [ei ⊗ (ej × ek)].

The metric tensor E has the special property

x× E = E× x.

An important application of the cross product
is the representation of a proper orthogonal tensor
Q. If Q is realized as the rotation through an angle
α about an axis e, then

Q = E cosα + (1− cosα)e⊗ e− e× E sinα.

A Few Words About Higher-Order
Tensors; Isotropic Tensors

Just as with dyads, one can introduce triads of
vectors

a⊗ b⊗ c,

tetrads of vectors

a⊗ b⊗ c⊗ c,

and so forth. Such products should have the
property of linearity with respect to each vector

entering in this structure, but not the property
of commutativity. Using linear combinations of
such entities with equal quantities of vectors, lin-
ear spaces of higher-order tensors are generated.
A basis of such a space is expressed through the
basis of the underlying space of vectors (here R3).
Third-order tensors have the form

aijk ei ⊗ ej ⊗ ek,

fourth-order tensors have the form

aijkm ei ⊗ ej ⊗ ek ⊗ em,

etc. Of course, any basis vector of a polyad such
as ei⊗ej⊗ek can be transformed to its reciprocal
basis vector, resulting in such forms as ei⊗ej⊗ek

or ei ⊗ ej ⊗ ek . But this must be accompanied
by complementary changes in the components
(which in this case fill a three-dimensional array)
sufficient to ensure that the tensor itself remains
an objective entity.

For higher-order tensors, as with second-order
tensors, one can introduce dot and cross products,
applying them to the near-standing vectors in the
decompositions of the tensors. In the case of the
dot product, the resulting tensor has order two
less than the sum of the orders of the tensors
participating in the product:

A · B = (aijk ei ⊗ ej ⊗ ek) · (bmn em ⊗ en)

= aijk bmn(ek · em) ei ⊗ ej ⊗ en.

For the cross product, the result is of order one
less than the sum of the orders of the factors:

A× B = (aijk ei ⊗ ej ⊗ ek)× (bmn em ⊗ en)

= aijk bmn ei ⊗ ej ⊗ (ek × em)⊗ en.

Because the cross product of vectors is an axial
vector, the cross product of polar tensors is a
pseudotensor. An important example is the pseu-
dotensor −E × E known as the Levi–Civita ten-
sor. With components consisting of the Levi–
Civita symbols εijk , it is expressed as

−E× E = εijk ei ⊗ ej ⊗ ek.
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Isotropic Tensors. A tensor is isotropic if its
individual components do not change when the
basis is rotated. The rotation is specified by an
arbitrary orthogonal tensor Q; so if ek is a given
basis, the rotated basis is ẽk = Q · ek .

The zero-order tensors (scalars) are all
isotropic. The only first-order isotropic tensor
is the zero vector. Let A be a second-order tensor
represented in the initial and rotated frames as

A = aij ei ⊗ ej = ãij ẽi ⊗ ẽj .

If A is isotropic, then aij = ãij and

A = ãij ẽi ⊗ ẽj = aij (Q · ei )⊗ (Q · ej )
= Q · (aij ei ⊗ ej ) ·QT .

Therefore A is isotropic if and only if

A = Q · A ·QT

for any orthogonal tensor Q. It can be shown that
a second-order tensor A is isotropic if and only if
it is a ball tensor.

Isotropic tensors of higher order also exist.
An important isotropic tensor of fourth order is
the tensor of elastic moduli in linear elasticity.
All of its components can be presented through
two elastic constants, of which the most popular
in engineering are the Lamé coefficients and the
pair consisting of Young’s modulus and Poisson’s
ratio.

Equation Recap

This section lists selected equations from the
present article. It is hardly a comprehensive cata-
log of such results; more can be found in, e.g.,
Zhilin (2001), Lurie (2005, 2012), Simmonds
(1997), Zubov and Karyakin (2006), Danielson
(2003), Dmitrienko (2002), Filho (2016), Itskov
(2015), and Lebedev et al. (2010).

Notation Lowercase Greek letters (α, β) denote
scalars. Lowercase bold Arabic letters (a, b, c)

denote vectors. Uppercase bold Arabic letters
(A, B, C) denote second-order tensors.

ab = a⊗ b

(α + β)a⊗ b = αa⊗ b+ βa⊗ b (a+ b)⊗ c = a⊗ c+ b⊗ c

0a⊗ b = 0⊗ b = a⊗ 0 = 0⊗ 0 a⊗ (b+ c) = a⊗ b+ a⊗ c

αa⊗ b+ βc⊗ d = βc⊗ d+ αa⊗ b α(a⊗ b+ c⊗ d) = αa⊗ b+ αc⊗ d

(α + β)(a⊗ b+ c⊗ d) = α(a⊗ b+ c⊗ d)+ β(a⊗ b+ c⊗ d)

a⊗ b = ai bj ei ⊗ ej = ai bj ei ⊗ ej = ai bj ei ⊗ ej = ai b
j ei ⊗ ej

A = aij ei ⊗ ej = aij ei ⊗ ej = ai··j ei ⊗ ej = a
·j
i· ei ⊗ ej

a
·j
k· = aij gik, akm = aij gik gjm, ai··m = aij gjm

(a⊗ b) · x = a(b · x)
x · (a⊗ b) = (x · a)b
A · x = aij xj ei = aij x

j ei = ai··j x
j ei = a

·j
i· xj ei

x · A = xi a
ij ej = xi aij ej = xi a

i·
·j ej = xi a

·j
i· ej
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f (αx+ βy) = αf (x)+ βf (y) =⇒
{
f (x) = F · x for any x ∈ R

3

F = f (ek)⊗ ek

E · x = x = x · E A · E = E · A = A

E = ek ⊗ ek = gki ei ⊗ ek = gki ek ⊗ ei = ei ⊗ ei

A · B = aij bkm gjk ei ⊗ em = aij bkm gjk ei ⊗ em = aij b
jm ei ⊗ em = a

·j
i· b

·k
j · ei ⊗ ek

A2 = A · A, A3 = A · A · A, . . .

(a⊗ b) ·· (c⊗ d) = (b · c)(a · d)
tr(a⊗ b) = a · b

tr A = aij gij = a
·j
j · = ai··i = E ·· A

det A = |a ·ji· | = |ai··j | = g|aij | = g−1|aij |
det A = det AT det(A · B) = det A det B det E = 1

det A �= 0 =⇒ A · A−1 = A−1 · A = E

AT = aji ei ⊗ ej = aji ei ⊗ ej = a ·ij · ei ⊗ ej = a
j ·
·i ei ⊗ ej

(AT )T = A

A = 1
2 (A+ AT )+ 1

2 (A− AT )

BT = −B =⇒
{

B · x = ω × x and x · B = x× ω

ω = −b23 i1 + b13 i2 − b12 i3

(a⊗ b)� (c⊗ d) = (b · d)(a · c)
A� B = A ·· BT = aij b

ij = aij bij = ai··j b
·j
i· = a

·j
i· b

i·
·j

‖A‖ = √A� A =
√
aij aij =

√
ai··j a

·j
i·

|Q · a| = |a| =⇒

⎧
⎪⎨

⎪⎩

(Q · a) · (Q · b) = a · b
QT = Q−1

det Q = ±1
A · x = λx (x �= 0)

−λ3 + I1(A)λ2 − I2(A)λ+ I3(A) = 0

I1(A) = tr A I2(A) = 1
2 (tr

2 A− tr A2) I3 = det A

A = AT =⇒ A = λ1 x1 ⊗ x1 + λ2 x2 ⊗ x2 + λ3 x3 ⊗ x3

−A3 + I1(A)A2 − I2(A)A+ I3(A)E = 0

A−1 = 1

I3(A)
[A2 − I1(A)A+ I2(A)E]

A = 1
3 (tr A)E+ dev A
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x× A = xkaij [(ek × ei )⊗ ej ]
A× x = xkaij [ei ⊗ (ej × ek)]

x× E = E× x

aijk ei ⊗ ej ⊗ ek︸ ︷︷ ︸
order 3

· bmn em ⊗ en︸ ︷︷ ︸
order 2

= aijk bmn(ek · em) ei ⊗ ej ⊗ en︸ ︷︷ ︸
order (3+2)−2=3

aijk ei ⊗ ej ⊗ ek︸ ︷︷ ︸
order 3

× bmn em ⊗ en︸ ︷︷ ︸
order 2

= aijk bmn ei ⊗ ej ⊗ (ek × em)⊗ en︸ ︷︷ ︸
order (3+2)−1=4
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Synonyms

Thermal conduction and thermal radiation by
means of generalized continuum; Thermal phe-
nomena by means of continuum with microstruc-
ture; Thermal processes by means of micropolar
continuum; Thermodynamic processes by means
of continuum with rotational degrees of freedom

Definition

A model of thermal effects in a conventional
material is based on an idea to introduce two-
component Cosserat continuum and to interpret
characteristics of motion and interactions asso-
ciated with the rotational degrees of freedom as

mechanical analogies of thermodynamic quan-
tities. The material under consideration has no
microstructure, inclusions, etc. Motion associated
with the rotational degrees of freedom has no
relation to the real motion of the material parti-
cles. This model is not similar to the models used
in kinetic theories, and it is not based on statistical
methods. This model is constructed within the
framework of continuum mechanics and by using
the methods of continuum mechanics.

Introduction

A mechanical model, which can be a basis for
description of thermal processes within the
framework of continuum mechanics and by
using the methods of continuum mechanics,
is developed since 2010. It is discussed in
a number of publications (see Ivanova 2010,
2011, 2012, 2013, 2017). This model is based
on an idea to introduce a continuum with
an internal structure and additional degrees
of freedom and to interpret characteristics of
motion and interactions associated with the
internal structure as mechanical analogies of
temperature and other thermodynamic quantities.
It is important to note that a physical object under
consideration is a conventional material without
microstructure, inclusions, etc. This material
has elastic and thermodynamic properties. The
internal structure and internal rotational degrees
of freedom inherent in the model are used for
simulating thermal processes in the material.
Motion associated with the internal degrees of
freedom has no relation to the real motion of
the material particles. Characteristics of motion
associated with the internal rotational degrees of
freedom, as well as characteristics of interactions
associated with the internal rotational degrees of
freedom, should be considered as analogies of
thermodynamic quantities.

There are the kinetic theories that include
rotational degrees of freedom (see, e.g., Warner
and Harold 1972; Giesekus 1985; Bird et al.
1987) as well as the kinetic theories that take into
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account internal degrees of freedom (see, e.g.,
Jehring 1984). The model of thermal processes
under discussion is not similar to these models. It
is based on quite different ideas and approaches
without using statistical methods and concepts of
kinetic theories.

The idea of mathematical description of
various physical phenomena in microcosm
by using models based on a continuum with
rotational degrees of freedom was repeatedly
asserted by Pavel Andreevich Zhilin (1942–
2005), and this idea was realized by him as
applied to the description of electromagnetic
and quantum mechanical phenomena (see Zhilin
2001, 2003, 2006a,b, 2012, 2015). The model
considered in the present paper is a realization
of Zhilin’s ideas as applied to the description of
thermal phenomena.

Different Views on the Nature of Heat

Starting from antiquity, there exist different
viewpoints on the nature of heat (see Rosenberger
1887; Whittaker 1910; Gliozzi 1965; Müller
2007). According to one point of view, heat is
a state of a body. For example, Roger Bacon
(1214–1292) and Johannes Kepler (1571–1630)
adhered to this opinion. In accordance with
another point of view, heat is a substance. Galileo
Galilei (1564–1642) formulated the hypothesis
of existence of the imponderable fluid accounting
for heat. Afterward, this imponderable fluid
was called the caloric fluid. Antoine Laurent de
Lavoisier (1743–1794), Pierre Simon de Laplace
(1749–1827), and Jean Baptiste Joseph Fourier
(1768–1830) were adherents of the caloric fluid
theory. The success and popularity of the caloric
fluid in the seventeenth to eighteenth centuries
was caused by the fact that predictions of the
theory were verified by the experiments carried
out at that time. The caloric fluid theory was
recognized to be erroneous only in the nineteenth
century when, due to the works by Julius
Robert Mayer (1814–1878), James Prescott Joule
(1818–1889), Hermann Helmholtz (1821–1894),
and William Thomson, Lord Kelvin (1824–
1907), the principle of equivalence of heat and

energy became firmly established and the heat
conservation law, which had dominated earlier,
was completely replaced by the energy balance
equation (the first law of thermodynamics).
Robert Boyle (1627–1691) assumed heat to
be associated with the molecular motion. In
fact, his assumption was the start of the kinetic
theory, which was further developed by Rudolf
Clausius (1822–1888), James Clerk Maxwell
(1831–1879), Ludwig Boltzmann (1844–1906),
and Josiah Willard Gibbs (1839–1903). Besides
the caloric fluid theory and the kinetic theory of
gas, a number of different mechanical models of
thermal processes were suggested by outstanding
scientists of past centuries, namely, Leonhard
Euler (1707–1783), Mikhail V. Lomonosov
(1711–1765), Benjamin Thompson (1753–
1814), Humphry Davy (1778–1829), Thomas
Young (1773–1829), and Augustin Louis Cauchy
(1789–1857). Nevertheless, the interpretation
of temperature as the average kinetic energy of
the chaotic motion of atoms and molecules has
been generally accepted up to now. The question
whether this interpretation is a reflection of some
physical reality can be clarified by Maxwell’s
remark toward the kinetic theory (see Maxwell
1860, p. 378):

. . . If the properties of such a system of bodies are
found to correspond to those of gases, an important
physical analogy will be established, which may
lead to more accurate knowledge of the properties
of matter. If experiments on gases are inconsistent
with the hypothesis of these propositions, then our
theory, though consistent with itself, is proved to be
incapable of explaining the phenomena of gases.
In either case it is necessary to follow out the
consequences of the hypothesis.

It is important to note that temperature cannot be
measured directly. In order to measure tempera-
ture, we have to measure a physical quantity, a
change of which is a sign of the change in tem-
perature. Then, we have to calculate the value of
temperature taking into account the fixed points
of temperature scale and using a formula that
relates the change in chosen physical quantity
and the change in temperature. Thus, there is
no reason to believe that measuring temperature
we measure the average kinetic energy of the
chaotic motion of atoms and molecules. Thus,
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the interpretation of temperature adopted in the
kinetic theory is rather a mathematical model
than a physical reality. That is why any alternative
model of thermal processes, the mathematical
description of which is reduced to the known
equations, is of interest from a theoretical point
of view.

The Physical Meaning of the Model

According to the concepts of modern physics,
atoms have a very complex internal structure. For
example, they can be in different energy states
and possess the ability to radiate and absorb the
energy quanta and elementary particles. These
facts should be taken into account when the
properties of a single atom or a molecule con-
sisting of several atoms are studied. When mod-
eling a medium which consists of millions of
atoms, many properties of atoms can be ignored
or taken into account integrally, and it should
be done so. For example, when modeling crys-
tal lattices, very simple models of atoms are
used, namely, atoms are assumed to be mass
points or infinitesimal rigid bodies. For modeling
a medium with a combination of various physi-
cal properties (mechanical, thermal, electric, and
magnetic), more complicated models of atoms
should be used. These are the models consid-
ering atoms as complex particles with internal
structure and internal degrees of freedom. There
are two different types of particles with an inter-
nal structure: particles with internal translational
degrees of freedom (deformable particles) and
particles with internal rotational degrees of free-
dom (multi-spin particles). Continua consisting
of particles of the first type are called micromor-
phic continua. Continua consisting of particles of
the second type are called micropolar continua.
In principle, both deformable particles and multi-
spin ones can be used to model atoms, and, con-
sequently, both the micromorphic and micropolar
continua can be used to model a medium with
some nonmechanical properties.

In the model under consideration, atoms are
assumed to be multi-spin particles like a quasi-
rigid body (see Fig. 1a). The quasi-rigid body

a b

Fig. 1 A quasi-rigid body and its approximate model
(the one-rotor gyrostat), which are equivalent in a first
approximation

is a rigid body in the sense that the distances
between any two points of this particle are kept
unchanged under arbitrary motions of the quasi-
rigid body. However, unlike the standard rigid
body, the quasi-rigid body contains several rotors
inside. Each rotor can rotate independently, and
the rotation of rotors does not change the inertia
tensor of the quasi-rigid body. In fact, the quasi-
rigid body is a multi-rotor gyrostat that consists
of a carrier body and a number of rotors rotat-
ing independently relative to the carrier body.
For the first time, the multi-spin particles were
introduced in Zhilin (2001, 2003, 2006a,b, 2012,
2015). The idea to consider the multi-spin par-
ticles (the multi-rotor gyrostats) as models of
atoms was also stated in the cited works.

When modeling atoms by the multi-
rotor gyrostats, the motion of carrier bodies
characterizes the motion of atoms as rigid
bodies. It is the motion of atoms that causes
mechanical strains and mechanical stresses in the
material medium. The rotors simulate elementary
particles constituting the atoms. Pursuant to
this model, the motion of rotors simulates the
change in the internal state of atoms, and the
internal state of atoms determines all the physical
processes occurring in the material medium,
namely, electrical, magnetic, and thermal. The
multi-rotor gyrostat is rather complicated model
with a large number of parameters. Therefore,
for modeling a heat-conducting elastic medium,
a simpler model of atom, namely, a one-rotor
gyrostat (see Fig. 1b) is used instead of the
multi-rotor gyrostat. It is important to note that
the one-rotor gyrostat retains key features of
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the multi-rotor gyrostat since the expressions
for the kinetic energy, the linear momentum,
and the angular momentum of the one-rotor
gyrostat coincide with those of the multi-rotor
gyrostat in a first approximation. In a continuum
theory, the physical characteristics averaged
over a representative volume are used. The
dynamic properties of a representative volume
of the continuous medium have no qualitative
difference from the dynamic properties of
particles in the representative volume.

The Basic Ideas of the Approach

The one-rotor gyrostat continuum is considered.
The one-rotor gyrostat is a particle that consists
of the carrier body and the rotor (see Fig. 2).
The rotor can rotate independently of the carrier
body rotation, but it cannot execute translatory
motion relative to the carrier body. Thus, the one-
rotor gyrostat has nine degrees of freedom, three
translational ones, and six rotational ones. Free
space between the gyrostats is filled up by the
ether. The ether is shown in Fig. 2 as the body-
points in the space between the gyrostats.

The main ideas of the description of ther-
moelastic processes by means of the mechanical
model with internal rotational degrees of freedom
consist in the following:

• The one-rotor gyrostat continuum is used for
modeling solids, liquids, and gases. This con-
tinuum is considered to be elastic. The interac-
tion of carrier bodies of gyrostats is attributed
to the mechanical processes. The interaction

of rotors of gyrostats models thermal pro-
cesses. The interaction of the carrier bod-
ies and the rotors provides the interplay of
mechanical and thermal processes.

• The gyrostats (which model material parti-
cles) are considered to be embedded into some
medium occupying the whole infinite space.
This medium represents the physical vacuum,
the field, the ether, or something like that.

• It is assumed that all gyrostats interact with the
ether by means of elastic moments associated
with the rotational degrees of freedom. Due to
the fact that the ether fills the whole infinite
space and interacts with all gyrostats, it plays
a double role in the model.

• On the one hand, it is assumed that all inter-
actions of gyrostats with each other are per-
formed by the instrumentality of the ether.
To be exact, the carrier bodies of different
gyrostats interact through the agency of the
ether, and the rotors belonging to different
gyrostats interact also via the ether. From a
mathematical point of view, this means that
the constitutive equations for all quantities
characterizing the stress state of the one-rotor
gyrostat continuum depend not only on the
properties of the carrier bodies and the rotors
of the gyrostats but also on the elastic prop-
erties and the stress–strain state of the ether
filling the space between the gyrostats.

• On the other hand, it is assumed that the ether
provides a dissipation of gyrostats energy.
Since the gyrostats interact with the ether,
their motion causes appearance of waves
in the ether. As a result, certain part of the
gyrostats energy is spent on formation of the

Fig. 2 An elementary volume of the continuum of one-rotor gyrostats together with the continuum of body-points in
the space between the gyrostats (on the left-hand side) and the one-rotor gyrostat (on the right-hand side)
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waves. Since the ether is considered to be
infinite, waves carrying away the gyrostats
energy do not come back. The result is the
dissipation of the gyrostats energy into the
ether.

• The dissipation of the gyrostats energy into
the ether becomes apparent in the material
medium in the form of the heat conduction
and the internal damping. The heat conduction
mechanism is supposed to be provided only
by the moment interactions between the rotors
and the ether. The internal damping mecha-
nism can be provided in different ways, both
due to the kinematic connection between the
rotors and the carrier bodies and thanks to
the interaction of the carrier bodies with the
ether.

A Model of the Ether

Initially, a two-component medium that consists
of the one-rotor gyrostat continuum simulating
the conventional substance and the body-point
continuum simulating the ether is considered.
This two-component medium is assumed to
be conservative. The following assumptions are
made with respect to the ether:

• The ether particles are much smaller than
elementary particles of the conventional sub-
stance. The structure of the ether particles
coincides with the structure of the rotors that
belong to the gyrostats.

• The ether is assumed to be a medium that
is less dense than the conventional substance.
The ether particles fill the space between ele-
mentary particles of the conventional sub-
stance, and the elementary particles interact
with each other via the ether particles.

• The interactions of ether particles with each
other and the interactions of ether particles
with the elementary particles of the conven-
tional substance are based only on the rota-
tional degrees of freedom and the principle of
moment interactions. There are no interactions
between these particles by means of forces.

Thus, from a continuum mechanics point of
view, the model of ether is the special case of
the Cosserat continuum.

• The ether is an infinite medium, i.e., it occu-
pies the whole space. The ether is assumed
to be an elastic medium. However, due to
its infinite extent, the ether carries away the
energy of rotational motion of material par-
ticles located in it. When the particles inter-
act with the ether, their motion disturbs the
ether and causes appearance of waves in it.
Since the ether is infinite, the waves cannot
be reflected from the boundaries, and hence,
they cannot come back. Thus, the part of
the material particles’ energy, which is spent
on formation of the waves in the ether, is
irretrievably lost.

The Interaction of the Ether with
Material Particles

Interacting with the material particles via the
rotational degrees of freedom, the boundless
ether creates a moment of viscous damping
acting on the material particles. A structure of
the moment of viscous damping is chosen in
accordance with the results obtained by solving
two model problems (see Ivanova 2011, 2012).
The model considered in Ivanova (2011) consists
of the semi-infinite inertial elastic rod (a one-
dimensional model of the ether) that is connected
with the rotor by means of the inertialess spring
working in torsion (rotation about the axis of
the rod) see Fig. 3, on the left-hand side). The
rotation of the rotor disturbs the elastic rod and
causes the torsion waves in it. If the rod had a
limited size, the waves would be reflected from
the boundary and come back. In this case, the
system would be conservative. The dissipation of
the rotor energy occurs only due to the infinite
length of the rod and the absence of sources
at infinity. As shown in Ivanova (2011), after
eliminating the variables that characterize the
rod motion, the problem is reduced to the set of
equations describing the rotor motion. In the set
of equations, there is the equation that contains
the moment of viscous damping characterizing
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Fig. 3 Two models of interaction between the rotors and the ether: the 1D model on the left-hand side and the 3D
model on the right-hand side

the energy radiation in the ambient medium. It
is proved that the moment of viscous damping
is proportional to the angular momentum of the
rotor, and the coefficient of damping depends
on the parameters of the rod and the torsional
stiffness of the spring connecting the rotor
and the rod. The spherically symmetric three-
dimensional model is considered in Ivanova
(2012). It consists of the spherical source (the
spherical surface each point of which is the
rotor) and the infinite inertial elastic continuum
modeling the ether (see Fig. 3, on the right-
hand side). All rotors of the spherical source
are connected with the continuum by means
of the inertialess springs working in torsion
(rotation about a radius of the spherical source).
As shown in Ivanova (2012), after eliminating
the variables characterizing the ether motion,
the problem is reduced to the set of equations
that contain the dissipative term proportional
to the angular momentum. The coefficient of
viscous damping has the same dependence on the
model parameters as in the one-dimensional case
discussed above.

It is important to note that, in essence, the
model problems considered above demonstrate
the description of a heat wave radiation. The
heat transfer by radiation can be represented in
different ways. On the one hand, it is gener-
ally accepted that only electromagnetic waves
propagate and it is precisely these waves that
cause heating of matter when interacting with it.
On the other hand, one can assume that waves
of different nature, namely, heat waves, propa-
gate together with electromagnetic waves. The

model problems considered above are the realiza-
tion of the latter viewpoint. A similar approach
is developed in Ivanova et al. (2007) where it
is suggested an original method of description
of the rotational molecular spectra lying in the
infrared range and associated with the thermal
radiation. This method is based on the continuum
mechanics model with the rotational degrees of
freedom.

The One-Rotor Gyrostat Continuum

Further, only the continuum of one-rotor
gyrostats is considered. In this case, the ether
plays the role of an external factor with respect to
the continuum under study. The influence of the
ether on the one-rotor gyrostats is modeled by
the moment of viscous damping the structure
of which is chosen in accordance with the
results obtained by solving the model problems
considered above. Thus, by eliminating the ether,
a nonconservative model of the one-rotor gyrostat
continuum is obtained.

Below the following notations are used: r is
a position vector of some point in space; ρ∗ is
the mass density at the reference configuration;
I = IE and J = JE are the mass densities of
inertia tensors of the carrier bodies and the rotors,
respectively, where E is the unit tensor; u(r, t)
is the displacement vector; v(r, t) is the velocity
vector; ϕ(r, t) and ω̃(r, t) are the rotation vector
and the angular velocity vector of the carrier
bodies; and θ(r, t) and ω(r, t) are the rotation
vector and the angular velocity vector of the
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rotors. The linear theory is considered. Therefore,
the kinematic relations have the form

v = du
dt

, ω̃ = dϕ

dt
, ω = dθ

dt
. (1)

The balance equations of the linear momen-
tum for the gyrostats and of the angular momen-
tum for the carrier bodies of gyrostats are

∇ · τ + ρ∗f = ρ∗
dv
dt

,

∇ · μ+ τ× + ρ∗m = ρ∗I
dω̃

dt
. (2)

Here ∇ is the gradient operator; τ is the stress
tensor; μ is the moment stress tensor modeling
the interaction of the carrier bodies of gyrostats;
f is the mass density of external forces; and m
is the mass density of external moments acting
on the carrier bodies of gyrostats. The balance
equation of the angular momentum for the rotors
of gyrostats has the form

∇ · T+ ρ∗L = ρ∗J
dω

dt
, (3)

where T is the moment stress tensor modeling the
interaction of the rotors of gyrostats and L is the
mass density of external moments acting on the
rotors.

In view of Eqs. (2) and (3), the energy balance
equation is written as

d(ρ∗U)
dt

= τT · ·dε

dt
+μT · ·dκ

dt
+TT · ·dϑ

dt
, (4)

where U is the internal energy density per unit
mass and the double scalar product is defined as
ab · ·cd = (b · c)(a · d). The strain tensors ε, κ ,
and ϑ are determined by the formulas

ε = ∇u+ E× ϕ, κ = ∇ϕ, ϑ = ∇θ .

(5)

The Main Hypotheses

Further a special case of the theory of one-rotor
gyrostat continuum based on two hypotheses is
considered.

Hypothesis 1. Vector L is a sum of the moment
Lh characterizing external actions of all sorts and
the moment of linear viscous damping

Lf = −βJω, (6)

where β is the coefficient of damping. The
moment Lf models the influence of the ether (the
body-points positioned in the space between the
gyrostats) that causes the dissipation of the rotors
energy. The moment Lh models the influence
of external ponderable bodies that is passed by
means of the ether. It can model actions of various
physical nature, e.g., heat supply, electromagnetic
excitation, or some kind of radiation. The main
difference between the moment Lh and the
moment Lf is the fact that the moment Lh occurs
only when there are some ponderable bodies,
whereas the moment Lf occurs regardless of
the presence or absence of other bodies. The
structure of moment (6) is chosen in accordance
with the results obtained by solving the model
problems considered above.

Hypothesis 2. The moment stress tensor T
characterizing the interactions between the rotors
is the spherical part of tensor

T = T E. (7)

Assumption (7) is based on the following
interpretations. The interaction of the carrier bod-
ies of gyrostats is attributed to the mechani-
cal processes. The interaction of the rotors of
gyrostats models thermal processes, and the inter-
action of the carrier bodies and the rotors pro-
vides the interplay of mechanical and thermal
processes. The moment interaction between the
rotors is considered to be analogy of temperature.
Since temperature is a scalar, the moment stress
tensor T must be characterized by one scalar
quantity. Hence, it must be the spherical part of
tensor (see Eq. (7)).

Thermodynamic Analogies

In view of Eq. (7), the energy balance equa-
tion (4) is reduced to the form
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d(ρ∗U)
dt

= τT · ·dε

dt
+ μT · ·dκ

dt
+ T

dϑ

dt
,

ϑ = tr ϑ . (8)

If Eq. (8) is considered to be the energy bal-
ance equation for the classical medium, then the
last term on the right-hand side of this equation
should be interpreted as the thermodynamic one.
Since the quantity T has the sense of temperature
analogy, the quantity ϑ acquires the meaning of
volume density of entropy analogy. The units
of measurement of the temperature analogy and
the entropy analogy that are introduced within
the framework of the considered model are dif-
ferent from the standard units of measurement
of temperature and entropy. Indeed, the unit of
measurement of T is N/m, whereas the unit of
measurement of temperature is kelvin; the unit
of measurement of ϑ is 1/m, whereas the unit
of measurement of volume density of entropy
is J/(m3 K). This obstacle can be overcome by
introducing a normalization factor a and chang-
ing the variables:

T = aTa, ϑ = 1

a
ϑa, θ = 1

a
θa,

ω = 1

a
ωa, Lh = aLa

h, J = a2Ja. (9)

Here Ta is the temperature that can be measured
by a thermometer. Its unit of measurement is
kelvin. Correspondingly, ϑa is the volume density
of entropy. Its unit of measurement is J/(m3 K).
In the case of the linear theory, the normalization
factor a can be eliminated from all equations.

A Model of Heat-Conductive Elastic
Material

Now the model of continuum satisfying the
hypotheses stated above is considered. In view
of the hypotheses, the balance equation of the
angular momentum for rotors takes the form

∇Ta − ρ∗βJaωa + ρ∗La
h = ρ∗Ja

dωa

dt
. (10)

In view of Eqs. (1), (5), (8), and (9), from
Eq. (10), it follows one of the forms of the heat
conduction equation, namely,

ΔTa − ρ∗βJa
dϑa

dt
− ρ∗Ja

d2ϑa

dt2
= −ρ∗∇ · La

h,

(11)

where the term ρ∗∇ · La
h plays the role of a

heat supply. The heat conduction Eq. (11) can
be reduced to the conventional form. In order to
do this, it is necessary to express ϑa in terms
of temperature and strain tensors by using the
constitutive equations that are given below.

According to the energy balance equation (8),
the internal energy density is a function of the
strain tensors ε, κ and the scalar strain measure
ϑ (or the volume density of entropy ϑa that is
the same thing). In the linear theory, the internal
energy density ρ∗U is assumed to be a quadratic
form of the quantities listed above. In this case,
the constitutive equations are written as

τT = τT0 + 4C1 · ·ε + 4C2 · ·κ
+ C4 (ϑa − ϑ∗a ),μT = μT

0 + ε · · 4C2

+ 4C3 · ·κ + C5 (ϑa − ϑ∗a ),

Ta = T ∗a + ε · ·C4 + κ · ·C5 + C6 (ϑa − ϑ∗a ).

(12)

Here τ 0 and μ0 are the initial stresses; T ∗a is
the value of absolute temperature at which the
thermodynamic parameters are determined; ϑ∗a
is the corresponding value of volume density of
entropy; 4C1, 4C2, and 4C3 are the fourth-rank
stiffness tensors; C4 and C5 are the second-rank
tensors characterizing the interplay of mechan-
ical and thermodynamic processes; and C6 is
the scalar quantity characterizing the specific
heat.

In view of the foregoing analogies between the
mechanical and thermodynamic quantities, the
set of Eqs. (1), (2), (5), (9), (11), and (12) can be
considered as the mathematical description of a
conventional material which possesses elastic and
thermodynamic properties.
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An Isotropic Chiral Medium

The model of continuum discussed above con-
tains both polar and axial material tensors. The
fourth-rank tensors 4C1 and 4C3 and the second-
rank tensor C5 are polar. The fourth-rank tensor
4C2 and the second-rank tensor C4 are axial. In

the case of an isotropic chiral medium, polar and
axial tensors have the same structure. To be exact,
the fourth-rank tensors and the second-rank ones
have the form

4C1 = C1EE+ C2

3∑

i=1

eiE ei

+ C3

3∑

i=1

3∑

j=1

eiejeiej ,

C4 = C4E, (13)

where e1, e2, and e3 are the mutually orthogonal
unit vectors. In the case of an isotropic non-chiral
medium, the polar tensors 4C1, 4C3, and C5

have the form (13), and the axial tensors 4C2

and C4 are equal to zero. At the same time, it is
known that tensor C4 characterizing the thermal
expansion is not equal to zero. That is why, the
isotropic media that are chiral with respect to
the microstructure are considered in the presented
theory.

The question is, what sorts of engineering
materials can be qualified as chiral media? It
is obvious, it depends on what properties of a
material and what processes in the material are
that we want to study. If we want to study only
the mechanical properties and processes, then
almost all materials can be qualified as non-
chiral media. The only exceptions are materials
consisting of sufficiently large particles that do
not have a mirror symmetry, such as materials
consisting of large polymer molecules having a
helical structure or materials containing the DNA
molecules. If we want to model a conventional
material taking into account not only its mechan-
ical properties but in addition some other its
physical properties, then a representative volume
of the continuum must reflect the properties of the

material at the microlevel, i.e., the properties of
the material that are conditioned by the state of
its atoms. Atoms consist of elementary particles
with spin. The presence of spin eliminates the
mirror symmetry. That is why, in order to model
a conventional material taking into account not
only its mechanical properties but in addition
some other its physical properties, we should con-
sider this material as a chiral medium. Certainly,
the foregoing assertion concerns only the method
of modeling that is based on using the Cosserat
continuum with the microstructure.

The Hyperbolic Thermoelasticity and
the Classical One

It is known that when describing mechanical
processes in three-dimensional media, the
moment interactions and the rotation inertia can
be neglected. In accordance with this fact, it is
assumed that μ = 0, m = 0, I = 0, and hence,
τ = τT . For the medium that is chiral with
respect to the microstructure, in view of Eq. (13),
the constitutive equations (12) take the form

τ = τ 0 + C1εE+ (C2 + C3)ε
s

+ C4 (ϑa − ϑ∗a )E, ε = tr εs ,

Ta = T ∗a + C4ε + C6 (ϑa − ϑ∗a ),

εs = 1

2

(
∇u+∇uT

)
. (14)

The parameters of the model are chosen as fol-
lows:

C1 = Kad − 2

3
G, C2 + C3 = G,

C4 = −αKizT
∗
a

ρ∗cv
, C6 = T ∗a

ρ∗cv
,

βJa = T ∗a
ρ∗λ

. (15)

where Kiz and Kad = Kiz + α2K2
izT

∗
a /(ρ∗cv)

are the isothermal and adiabatic modules of com-
pression, G is the shear modulus, α is the vol-
ume coefficient of thermal expansion, cv is the
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specific heat at constant volume, and λ is the
heat conduction coefficient. It is easy to see
that the inverse coefficient of heat conduction is
directly proportional to the dynamic coefficient
of damping ρ∗βJa , the inverse specific heat is
directly proportional to the angular stiffness C6

characterizing the moment interaction between

the rotors, and the volume coefficient of thermal
expansion is directly proportional to the stiffness
C4 characterizing the dependence of the stress
tensor on the angular strains and the dependence
of the moment stress tensor on the linear strains.

In view of Eq. (15), the set of Eqs. (2), (11),
and (14) can be reduced to the form

∇ · τ + ρ∗f = ρ∗
d2u
dt2

,

τ = τ 0 +
(
Kiz − 2

3
G
)
εE+ 2G εs − αKiz(Ta − T ∗a )E, (16)

ΔTa − ρ∗cv
λ

(
dTa

dt
+ 1

β

d2Ta

dt2

)
= αKizT

∗
a

λ

(
dε

dt
+ 1

β

d2ε

dt2

)
− ρ∗∇ · La

h.

The parameter β−1 is usually called the heat flux
relaxation time. If the parameter β−1 becomes
zero on conditions that the product βJa remains
finite, then the set of Eqs. (16) is equivalent to
the classical statement of coupled problem of
thermoelasticity (see, e.g., Nowacki 1976). If the
parameter β−1 is not equal to zero, then Eq. (16)
is the statement of problem of the hyperbolic type
thermoelasticity (see Lord and Shulman 1967).

Nonlinear Models of Heat Transfer:
State of the Art

Nonlinear thermal processes are actively studied
and discussed in the modern literature. Without
claiming to be an exhaustive literature review, we
indicate the main research areas in the field of
nonlinear thermal conductivity and denote a place
of the presented theory among the other models.

Many papers covering only mathematical
questions are regularly published for several
decades. Various aspects of constructing
analytical, semi-analytic, and numerical solutions
of the nonlinear heat conduction equations
are discussed in such papers see, e.g., Campo
(1982), Jordan et al. (1987), Polyanin et al.
(2000), Ebadian and Darania (2008), and Habibi
et al. (2015). Such works usually deal with the
simplest nonlinear heat conduction equations.

The nonlinearity of these equations consists
in the fact that the material constants of the
linear equations are replaced by some functions
of temperature (more often by polynomials).
Among the mathematical works, it is worth
mentioning the papers where the authors consider
laser heat sources (see, e.g., Fong et al. 2010), as
this type of thermal influences is most often
found in the modern literature. Another large
group of publications consists of applied works,
which are devoted to modeling nonlinear thermal
processes in technical devices (see, e.g., Grudinin
et al. 2011; Chaibi et al. 2012; Huang et al. 2012;
Markides et al. 2013). In such works, the mutual
influence of thermal processes and processes
of other physical nature (optical, electrical,
magnetic) is usually taken into account. Other
distinctive features of applied works are the use
of numerical methods, the use of parameters of
specific technical devices in calculations, and
the comparison of modeling results with the
experimental data. The models of nonlinear
thermal processes in the widest scale range,
from geophysical processes (see, e.g., Mottaghy
and Rath 2006), up to biological processes
at the molecular level (see, e.g., LeMesurier
2008), are presented in the modern literature.
There are a large number of papers devoted
to studying nonlinear effects associated with
thermal radiation (see, e.g., Khandekar et al.
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2015; Ananth et al. 2015). There exist a variety
of mathematical models used to describe various
thermal processes. Some of them are based
on classical concepts, and others are based on
quantum-mechanical concepts. However, purely
empirical relations, which are not based on any
models, play an important role in the majority of
nonlinear theories.

The main feature of the linear theory presented
in this paper and its nonlinear analogue presented
in Ivanova (2017) is that these theories provide
the description of two fundamentally different
processes of heat transfer (heat conduction and
thermal radiation) within the framework of one
model. Another feature of the present approach is
the fact that it is based on the mechanical model
different from those used in statistical physics and
quantum mechanics.
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Definition

Piezoelectricity is the ability of some materials to
generate an electric charge in response to applied
mechanical stress.

Cross effects of heat and mass diffusion
exchange with the environment arising from and
inside nuclear reactors influence their design and
operations. Thermoelastic diffusion material is
an elastic deformable solid allowing for changes
in temperature and mass diffusion. Diffusion can
be defined as the random walk of an ensemble
of particles from regions of high concentration to
regions of lower concentration. Thermodiffusion
in an elastic solid is due to coupling of the
fields of temperature, mass diffusion, and that of
strain.

Green and Naghdi theory of types I, II,
and III are three thermomechanical theories
of deformable continua. The type I coincides
with the classical heat conduction based on
Fourier’s law. The type II and III models are
based on entropy balance law rather than the
usual entropy inequality and formulated by the
thermal displacement. The type II and III models
overcome the unnatural property of type I model
(based on Fourier’s law) of infinite propagation
speed and imply finite wave propagation.

Overview

Since the discovery of the piezoelectric effect
by the Curie brothers (Curie and Curie 1880),
considerable research activity has been focused
on understanding the origins of the piezoelectric
effect and in developing materials with desirable
piezoelectric characteristics for applications as
sensors and actuators. The theory of thermo-
piezoelectricity was first proposed by Mindlin
(1961, 1979). The physical laws for the thermo-
piezoelectric materials have been explored by
Nowacki (1978, 1979). It is well-known that
heat conduction based on the classical Fourier’s
law allows the phenomena of “infinite diffusion
velocity.” This is not well accepted from a physi-
cal point of view. Nonclassical thermal laws came

into existence during the last decades to eliminate
these shortcomings. One of these theories may be
mentioned that of Green and Naghdi (1991, 1993,
1995).

However, the effects of the elastic, electric,
thermal, and diffusion fields together have never
been studied simultaneously. By combining all
these fields, three nonlinear and linear models are
derived here in the frame of Green-Naghdi mod-
els of types I, II, and III (Green and Naghdi 1991,
1993, 1995). The general equations of motion and
constitutive equations are derived for a general
anisotropic piezoelectric thermoelastic diffusion
material. The type I model coincides with the
classical one, where heat and diffusion waves
propagate with infinite velocity. In type II model,
the heat and diffusion waves allowed to propa-
gate with finite velocity but without dissipating
energy. The type III model permits propagation of
both thermal and diffusion waves at finite speeds
with dissipating energy.

Nonlinear Theory

A continuous body is considered that at time τ0

occupies a bounded region Ω of the Euclidean
three-dimensional space with smooth boundary
∂Ω . The configuration Ω is taken as reference
configuration and refers the motion of the contin-
uum to the reference configuration. Fixed system
of rectangular cartesian axes, Xi denotes the
coordinates of a point in the reference configu-
ration and with xi the coordinates of the same
point at time t , where xi = χi(X1, X2, X3, t) is
continuously differentiable.

As in theories of single materials, in mixture
theory, each constituent can be assigned a refer-
ence configuration and a motion x = χa(Xa, t),
where χa is the deformation function for the ath
constituent, Xa is the position of a particle of the
ath constituent in its reference configuration, and
x is the spatial position occupied at the time t by
the particle labeled Xa . The velocity of Xa at time
t is defined by x′a = ∂χa(Xa, t)/∂t, where the
prime denotes the material derivative following
the motion of the ath constituent.
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According to the mixture theory (Bowen
1976), an immobile parent and N mobile
constituents occupy a volume B with surface ∂B.
Denote xp(X, t) and xm(X, t) as the locations of
the constituent where the subscript p refers to the

immobile parent part with density ρ̃p(X, t) and
m refers to the mobile constituents with density
ρ̃m(X, t). Thus the mixture density, relative
velocity of the constituents, and the mixture
mean velocity are

ρ̃ = ρ̃p +
N∑

m=1

ρ̃m, x′p = 0, x′m =
∂xm
∂t

(Xm, t), ẋ = 1

ρ̃

N∑

m=1

ρ̃mx′m, (1)

where

ρ̃dṽ = ρdv, ρ̃pdṽ = ρpdv, ρ̃mdṽ = ρmdv.

(2)
Here the quantities with “ ˜ ” are used for the
current configuration. The quantities without “ ˜ ”
are used for reference configuration.

In the material description, the balance of
mass for each constituent and the balance of mass
for the mixture (as a whole) may be expressed, in
the current configuration, as

∂

∂t

∫

B̃

ρ̃mdṽ = −
∫

∂B̃

ñ · (x′m − ẋ)ρ̃mdã,
∂

∂t

∫

B̃

ρ̃pdṽ =
∫

∂B̃

ñ · ẋ ρ̃p dã, (3)

where we have neglected the rate of mass sup-
plied to the mth constituent per unit volume
caused by chemical reactions. The balance equa-
tion for ρ̃ follows from Eqs. (1) and (3). It has the
form

∂

∂t

∫

B̃

ρ̃dṽ = 0. (4)

Introducing the reference mass densities by
means of relations (2) and taking into account

the known relation between the unit normal ñ
to the boundary ∂B̃ in the current configuration
and the unit normal n to the boundary ∂B in the
reference configuration, namely,

ñdã = n · grad x
ρ

ρ̃
da

we can write Eqs. (3) and (4) in the reference
configuration as

∂

∂t

∫

B

ρmdv = −
∫

∂B

n · grad x · (x′m − ẋ)ρmda,
∂

∂t

∫

B

ρpdv =
∫

∂B

n · grad x · ẋ ρp da,
∂

∂t

∫

B

ρdv = 0.

Using the divergence theorem, we obtain

ρ̇m + div(ρmgrad x · (x′m − ẋ)) = 0, ρ̇p − div(ρpgrad x · ẋ) = 0, ρ̇ = 0, (5)
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where

ρ̇m = ∂ρm

∂t
(X, t),

ρ̇p = ∂ρp

∂t
(X, t),

ρ̇ = ∂ρ

∂t
(X, t).

If ρ does not depend of space coordinates, Eq.
(5)1 can be rewritten as

Ċm = −div(Cmgrad x · Vm), (6)

where Cm is the mass concentration of the mobile
constituents defined as Cm = ρm/ρ and Vm =
x′m − ẋ. If we define the constituent mass flux by
ηm = Cmgrad x ·Vm, then the balance of mass for
each constituent requires that (balance law)

Ċm = −div ηm or Ċ = −ηk,k. (7)

Moreover, following the arguments of Green
and Naghdi (1991, 1993, 1995), for every sub-
region B of Ω and every time t , the balance
equations for the energy and the entropy are

∫

B

ρ(ẋi ẍi + ė)dv =
∫

B

ρ(fi ẋi + sT )dv +
∫

B

EiḊidv +
∫

∂B

(ti ẋi − q)da,

∫

B

ρṠdv =
∫

B

ρ(s + ξ)dv −
∫

∂B

Φda. (8)

Here e, fi , s, S, and ξ are the internal energy, the
body force, the external rate of supply of entropy,
the entropy, and the internal rate of production
of entropy, respectively, per unit mass. T is the
absolute temperature, Di the electric displace-
ment field, Ei the electric intensity, ti is the stress
vector, and q and Φ are the internal flux of heat
and entropy, respectively, per unit mass measured
per unit area of the surface ∂B.

By using the invariance property under super-
posed rigid translations, from Eq. (8), it follows
the momentum balance equation

∫

B

ρẍidv =
∫

B

ρfidv +
∫

∂B

tida (9)

and the angular momentum balance equation

T̂ik = T̂ki

where T̂ik is the second Piola-Kirchhoff stress
tensor, whereas the first Piola-Kirchhoff stress
tensor satisfies the relation xi,j Tjk = xk,j Tji .

The first and second Piola-Kirchhoff stress ten-

sors are related as T̂ik = xi,j Tjk . Moreover, under
suitable hypotheses of regularity, the classical
technique of the Cauchy tetrahedron applied to
Eqs. (7)2, (8) and (9) yields

Φ = Φknk,

ti = Tiknk,

q = qknk,

η = ηknk, (10)

where Φk are the components of the entropy
flux vector, qk are the components of the heat
flux vector, ηk are the components of the flux
of mass diffusion, and ni are the components
of the unit outward normal to ∂B. The electric
field that develops in piezoelectrics can assumed
to be quasi-static because the velocity of the
elastic waves is much smaller than the velocity of
electromagnetic waves. Therefore, the magnetic
field M , due to the elastic waves is negligible.
This fact implies that rotE = ∂M

∂t
≈ 0; hence the
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Maxwell’s equations for the quasi-static electric
fields become

Dj,j = ϕ, Ek = −φ,k, (11)

where Ei are the components of the electric field,
Di are the components of the electric displace-
ment, ϕ is the density of free charge, and φ is
the electric potential. Thanks to the arbitrariness
of B, we obtain the following local form for the
balance equations:

ρẍi = Tki,k + ρfi, ρṠ = ρ(s + ξ)−Φk,k, Ċ = −ηk,k,
ρė = Tki ẋi,k + EiḊi + ρsT − qk,k, Dk,k = ϕ, Ek = −φ,k. (12)

We consider the following specific Helmholtz
free energy per unit mass

Ψ = e − T S − 1

ρ
EiDi. (13)

According to Lebon et al. (2006), we assume the
following relation

TΦk = qk − Pηk, (14)

where P is the chemical potential. Combin-
ing (12), (13) and (14), we obtain

ρ(Ψ̇ + Ṫ S) = Tki ẋi,k − ρξT −ΦkT,k

− ηkP,k + P Ċ − ĖkDk. (15)

In the following, we distinguish the three types
of the Green-Naghdi theory.
(1) Type I – classical theory

In the classical context of heat conduction
based on Fourier’s law, we assume ξ = 0 and
the following entropy production inequality

ρṠ +
(qi
T

)

,i
−
(
Pηi

T

)

,i

− ρs ≥ 0. (16)

Inserting (12)2,3, (14), and (15) into (16), we
obtain the Clausius-Duhem inequality

−ρ(Ψ̇ + Ṫ S)+ Tki ẋi,k − 1

T
qkT,k − ηkP,k + P Ċ + 1

T
PηkT,k − ĖkDk ≥ 0. (17)

From (17), one can conclude that the response
functions Ψ, Tkj , S, P, Dk are assumed to
depend on the set of the independent variables
A0 = (xi,k, T , C,Ek) and function Ψ must
satisfy

xi,j
∂Ψ

∂xk,j
= xk,j

∂Ψ

∂xi,j
.

Thus, the constitutive equations are taken in
the form F = F̂(A0) and the response functions
are assumed of C1−class. The chain rule gives

Ψ̇ = ∂Ψ

∂xj,k
ẋj,k+ ∂Ψ

∂T
Ṫ + ∂Ψ

∂C
Ċ+ ∂Ψ

∂Ek

Ėk. (18)

The comparison of Eqs. (17) and (18) yields

−ρ
(
∂Ψ

∂T
+ S

)
Ṫ −

(
ρ
∂Ψ

∂xj,k
− Tkj

)
ẋj,k −

(
ρ
∂Ψ

∂C
− P

)
Ċ −

(
ρ
∂Ψ

∂Ek

+Dk

)
Ėk

− 1

T
qkT,k − ηkP,k + 1

T
PηkT,k ≥ 0. (19)
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From this inequality, we deduce the following
constitutive equations:

S = −∂Ψ

∂T
, Tkj = ρ

∂Ψ

∂xj,k
,

P = ρ
∂Ψ

∂C
, Dk = −ρ ∂Ψ

∂Ek

,

− 1

T
qkT,k − ηkP,k + 1

T
PηkT,k ≥ 0. (20)

(2) Type II – dissipationless theory
Green and Naghdi (1991, 1993, 1995)

introduced the thermal displacement α whose

derivative coincides with the absolute tem-
perature, i.e., α̇ = T . This scalar, on the
macroscopic scale, is regarded as representing
some “mean” thermal displacement magnitude
on the molecular scale. In a similar way, we
introduce a scalar function β related to the
chemical potential by the equation β̇ = P .

The response functionsΨ, Tkj , S, P, Φk, ηk ,
Dk, ξ are assumed to depend on the set of the
independent variables A1 = (xi,k, T , C, α,k,

β,k, Ek). Thus, the constitutive equations are
taken in the form F = F̂(A1) and the response
functions are assumed of C1−class. Using the
chain rule

Ψ̇ = ∂Ψ̂

∂xj,k
ẋj,k + ∂Ψ̂

∂T
Ṫ + ∂Ψ̂

∂C
Ċ + ∂Ψ̂

∂α,k
α̇,k + ∂Ψ̂

∂β,k
β̇,k + ∂Ψ̂

∂Ek

Ėk, (21)

the comparison of Eqs. (15) and (21) yields

(
ρ
∂Ψ̂

∂T
+ ρS

)
Ṫ +

(
ρ
∂Ψ̂

∂xj,k
− Tkj

)
ẋj,k +

(
ρ
∂Ψ̂

∂α,k
+Φk

)
α̇,k +

(
ρ
∂Ψ̂

∂β,k
+ ηk

)
β̇,k

+
(
ρ
∂Ψ̂

∂C
− P

)
Ċ +

(
ρ
∂Ψ̂

∂Ek

+Dk

)
Ėk + ρT ξ = 0. (22)

The compatibility of the constitutive equations
with the energy equation gives

Ψ = Ψ̂ (A1), S = −∂Ψ̂ (A1)

∂T
, Tkj = ρ

∂Ψ̂ (A1)

∂xj,k
, Φk = −ρ ∂Ψ̂ (A1)

∂α,k

ηk = −ρ ∂Ψ̂ (A1)

∂β,k
, P = ρ

∂Ψ̂ (A1)

∂C
, Dk = −ρ ∂Ψ̂ (A1)

∂Ek

, ξ = 0. (23)
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Equation ξ = 0 means that conduction occurs
without internal entropy production. For this,
type II model is called without energy dissipation.

(3) Type III – dissipation theory
For type III, we add the dependency on the

temperature gradient α̇,k and on the chemical
potential gradient β̇,k . Hence, the previous

response functions (of type II) are assumed to
depend on the set of the independent variables:

A2 = (xi,k, T , C, α,k, β,k, α̇,k, β̇,k, Ek)

= (xi,k, T , C, α,k, β,k, T,k, P,k, Ek).

In this case, using the chain rule

Ψ̇ = ∂Ψ̂

∂xj,k
ẋj,k + ∂Ψ̂

∂T
Ṫ + ∂Ψ̂

∂C
Ċ + ∂Ψ̂

∂α,k
T,k + ∂Ψ̂

∂β,k
P,k + ∂Ψ̂

∂T,k
Ṫ,k + ∂Ψ̂

∂P,k
Ṗ,k + ∂Ψ̂

∂Ek

Ėk, (24)

the comparison of Eqs. (15) and (24) yields

∂Ψ̂

∂T,k
= 0 ,

∂Ψ̂

∂P,k
= 0,

that is Ψ = Ψ̂ (xi,k, T , C, α,k, β,k, Ek) =
Ψ̂ (A1), and

S = −∂Ψ̂ (A1)

∂T
, Tkj = ρ

∂Ψ̂

∂xj,k
(A1), P = ρ

∂Ψ̂

∂C
(A1), Dk = −ρ ∂Ψ̂

∂Ek

(A1) (25)

(
ρ
∂Ψ̂

∂α,k
+Φk

)
T,k +

(
ρ
∂Ψ̂

∂β,k
+ ηk

)
P,k + ρT ξ = 0. (26)

It is clear that the type III model relies on an
entropy balance law, given by (26), rather than
an entropy inequality. Equation (26) is imposed
to ensure that conduction occurs with internal
entropy production, ξ �= 0. For this, type III
model is called with energy dissipation.

Linear Theory

The deformations and the changes of temper-
ature, concentration, and electric potential are
assumed to be very small with respect to the
reference configuration

xi −Xi = ui = εu′i ,

T − T0 = θ = εθ ′,
C − C0 = γ = εγ ′,

φ − φ0 = ψ = εψ ′,

where T0, C0, and φ0 are, respectively, the (con-
stant) absolute temperature, concentration, and
electric potential in the reference configuration,
ε is a constant small enough for squares and
higher powers to be neglected, and u′i , θ ′, γ ′, and
ψ ′ are independent on ε. The linearized version
of the balance equations (12)1,3,5,6, (14) and the
strain tensor are, respectively,

ρüi = Tij,j + ρfi, γ̇ = −ηi,i , Di,i = ϕ, Ek = −ψ,k, T0Φk = qk, eik = 1

2
(ui,k + uk,i). (27)
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(1) Green-Naghdi theory of type I
We consider a free energy Ψ in the quadratic

approximation

ρΨ0 = −ρcE

2T0
θ2 + 1

2
νγ 2 + 1

2
Aijkleij ekl

− 1

2
χijEiEj + aij eij θ + bij eij γ −�θγ

+HijkeijEk − aiEiθ − biEiγ, (28)

where cE is the specific heat at constant strain,
Aijkl is the tensor of elastic constants, χij is the
tensor of electric constants, and aij and bij are
the tensors of thermal and diffusion expansions,
respectively. The constants � and ν are measures
of thermodiffusion and diffusive effects, respec-
tively. Using (28), the relations (20) yield

Tij = Aijklekl +HijkEk + aij θ + bij γ, ρS = −aij eij + aiEi + ρcE
T0

θ +�γ,

P = bij eij − biEi −�θ + νγ, Dk = −Hkij eij + χkjEj + akθ + bkγ.

(29)

Replacing (29)3 into the other equations, we
obtain

Tij = αijklekl +MijkEk + γij θ + βijP,

ρS = −γij eij + ciEi + cθ + κP,

γ = −βij eij + diEi + κθ +mP,

Dk = −Mkij eij + ζkjEj + ckθ + dkP, (30)

where P is considered in (30) as a state variable
instead of γ and

αijkl = Aijkl − 1

ν
bij bkl, γij = aij + �

ν
bij , βij = 1

ν
bij , c = ρ0cE

T0
+ � 2

ν
, κ = �

ν
,

m = 1

ν
, di = bi

ν
, Mijk = Hijk + bij

bk

ν
, ci = ai + �

ν
bi, ζkj = χkj + 1

ν
bkbj , (31)

satisfying the following symmetry relations

αijkl = αklij , Mijkl = Mklij , ζij = ζji, γij = γji, βij = βji . (32)

In the following, we assume that cm − κ2 > 0.
This condition implies that cθ2+2κθP +mP 2 >

0, which is needed to stabilize the following

evolutive equations. In the context of the linear
theory, the inequality (20) becomes
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− 1

T
qkθ,k − ηkP,k ≥ 0, (33)

which leads to the linear approximations for qi
(Fourier’s law) and ηi (Fick’s law), respectively,

qi = −kij θ,j , ηi = −hijP,j , (34)

where kij and hij are the tensors of thermal and
diffusion conductivity, respectively. The combin-
ing of (12)2 (with ξ = 0) and (27)5 gives the

linear entropy equation

ρṠ = − 1

T0
qi,i + ρs. (35)

By inserting (30)1 into (27)1, (30)2 into (35)
combined with (34)1, (30)3 into (27)2 combined
with (34)2, we obtain the (classical) evolutive
equations (for thermoelastic diffusion piezoelec-
tric materials) of type I

ρüi = (αijklekl −Mijkψ,k + γij θ + βijP ),j + ρfi,

cθ̇ + κṖ = γij ėij + ciψ̇,i + 1
T0
(kij θ,j ),i + ρs,

mṖ + κθ̇ = βij ėij + diψ̇,i + (hijP,j ),i ,

ϕ = (−Mkij eij − ζkjψ,j + ckθ + dkP
)
,k
.

(36)

(2) Green-Naghdi theory of type II
The set of the independent variables

for the Green-Naghdi model of type II
(without energy dissipation) becomes Ã2 =
(eik, θ, γ, τ,k, ℘,k, Ek), where

τ =
∫ t

t0

θds, ℘ =
∫ t

t0

Pds.

The free energy Ψ can be expanded in a power
series of the independent variables

ρΨ = ρΨ0 + 1

2
Kij τ,iτ,j + 1

2
Lij℘,i℘,j + cij τ,i℘,j + Aijkeij τ,k + Bijkeij℘,k

+ fkτ,kθ + gk℘,kθ + pkτ,kγ + rk℘,kγ + σjkEkτ,j + υjkEk℘,j , (37)

where Ψ0 is given by (28) and Kij and Lij

are tensors of thermal and diffusion conductivity,
respectively. The tensor cij is the measure of ther-

modiffusion gradient displacement. From (23)
and (37), we obtain the following linear consti-
tutive equations:

Tij = Aijklekl +HijkEk + aij θ + bij γ + Aijkτ,k + Bijk℘,k,

ρS = −aij eij + aiEi + ρcE
T0

θ +�γ − fkτ,k − gk℘,k,

P = bij eij − biEi −�θ + νγ + pkτ,k + rk℘,k,

qk = T0Φk = −T0(Aijkeij + σjkEj + fkθ + pkγ +Kkj τ,j + ckj℘,j ),

ηi = −Bijkekj − υikEk − giθ − riγ − cij τ,j − Lij℘,j ,

Dk = −Hijkeij + χkjEj + akθ + bkγ − σjkτ,j − υjk℘,j ,

ξ = 0.

(38)
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Substituting (38)3 into the other equations, we
obtain the following constitutive equations where

P is a state variable instead of γ :

Tij = αijklekl +MijkEk + γij θ + βijP + χijkτ,k + ωijk℘,k,

ρS = −γij eij + ciEi + cθ + κP − ukτ,k − vk℘,k

γ = −βij eij + diEi + κθ +mP − wkτ,k − zk℘,k,

qk = T0Φk = −T0(χijkeij + πjkEk + ukθ + wkP + k̃kj τ,j + dkj℘,j ),

ηi = −ωijkekj − ςikEk − viθ − ziP − dij τ,j − h̃ij℘,j ,

Dk = −Mkij eij + ζkjEj + ckθ + dkP − πjkτ,j − ςjk℘,j ,

ξ = 0,

(39)

where

χijk = Aijk − 1

ν
bijpk, ωijk = Bijk − 1

ν
bij rk, uk = fk + �

ν
pk, vk = gk + �

ν
rk,

wk = 1

ν
pk, zk = 1

ν
rk, πjk = σjk + 1

ν
bkpj , ςjk = υjk + 1

ν
bkrj

k̃ij = Kij + 1

ν
pipj , dij = cij + 1

ν
pirj , h̃ij = Lij + 1

ν
rirj (40)

satisfying the following symmetry relations

χijkl = χklij , ωij = ωji, πij = πji, ςij = ςji, dij = dji, k̃ij = k̃j i , h̃ij = h̃j i . (41)

The other coefficients in (39) are defined by (31)
and (32). By substituting (39) into (27) and (12)2

(with ξ = 0), we obtain the following evolutive
equations of type II:

ρüi = (αijklekl −Mijkψ,k + γij θ + βijP + χijkτ,k + ωijk℘,k),j + ρfi,

cτ̈ + κ℘̈ = γij ėij + ciψ̇,i + (χijkeij − πjkψ,j + ukθ + wkP + k̃kj τ,j + dkj℘,j ),k

+ ukτ̇,k + vk℘̇,k + ρs,

m℘̈ + κτ̈ = βij ėij + diψ̇,i + (ωijkekj − ςikψ,k + viθ + ziP + dij τ,j + h̃ij℘,j ),i

+ wkτ̇,k + zk℘̇,k,

ϕ = (−Mkij eij − ζkjψ,j + ckθ + dkP − πjkτ,j − ςjk℘,j ),k.

(42)

(3) Green-Naghdi theory of type III
The set of the independent variables for the

Green-Naghdi model of type III (with energy
dissipation) becomes

Ã2 = (eik, θ, γ, τ,k, ℘,k, θ,k, P,k).

According to (25), Ψ is given by (37) and the
constitutive equations Tij , S, γ , and Dk are equal
to (39)1,2,3,6, respectively, while the condition
(26) leads to
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(
ρ
∂Ψ̂

∂τ,k
+ Φ̂k

)
θ,k +

(
ρ
∂Ψ̂

∂℘,k

+ η̂k

)
P,k + ρT0ξ̂ = 0. (43)

In the context of linear theory, the condition (43)
is satisfied if we choose

qk = T0Φk = −T0

(
χijkeij + πjkEk + ukθ + wkP + k̃kj τ,j + dkj℘,j + K̃kj θ,j + c̃kjP,j

)
,

ηi = −
(
ωijkekj + ςikEk + viθ + ziP + dij τ,j + h̃ij℘,j + H̃ijP,j + c̃ij θ,j

)
,

ρξ = H̃ijP,iP,j + K̃ij θ,iθ,j + 2c̃ijP,j θ,i

(44)

where H̃ij , K̃ij , and c̃ij are characteristic tensors
of type III model satisfying

K̃ij = K̃ji , H̃ij = H̃ji c̃ij = c̃j i .

Using the chemical potential as a state vari-
able instead of the concentration, we obtain the
following evolutive equations of type III:

ρüi = (αijklekl −Mijkψ,k + γij θ + βijP + χijkτ,k + ωijk℘,k),j + ρfi,

cτ̈ + κ℘̈ = γij ėij + ciψ̇,i + (χijkeij − πjkψ,j + ukθ + wkP + k̃kj τ,j + dkj℘,j ),k

+ (K̃kj θ,j + c̃kjP,j ),k + ukτ̇,k + vk℘̇,k + ρs,

m℘̈ + κτ̈ = βij ėij + diψ̇,i + (ωijkekj − ςikψ,k + viθ + ziP + dij τ,j + h̃ij℘,j ),i

+ (H̃ijP,j + c̃ij θ,j ),i + wkτ̇,k + zk℘̇,k,

ϕ = (−Mkij eij − ζkjψ,j + ckθ + dkP − πjkτ,j − ςjk℘,j ),k.

(45)

Remark that the evolutive equations (42)
of type II (without energy dissipation) can be
deduced from the evolutive equations (45) of
type III (with energy dissipation) by taking
K̃ij = H̃ij = c̃ij = 0.

To the field of equations of type I, II, and
III we add boundary and initial conditions. Sum-

marizing, the following initial boundary value
problems are to be solved:

(1) Type I problem: Find (ui, u̇i , θ, P ) solution
to (36) subject to the initial conditions

ui(·, 0) = u0
i , u̇i (·, 0) = v0

i , θ(·, 0) = θ0, P (·, 0) = P 0, in Ω,

and the boundary conditions

Tjinj=f̃i on ∂Ωσ ×I, qini=q̃ on ∂Ωq ×I, ηini=η̃ on ∂Ωη ×I, Dini = D̃ on ∂ΩD ×I,

(46)

ui = ũi on ∂Ωu ×I, θ = θ̃ on ∂Ωθ ×I, P = P̃ on ∂ΩP ×I, φ = φ̃ on ∂Ωφ ×I,
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where I = (0,∞), ũi , θ̃ , P̃ , and φ̃ are
prescribed functions, u0

i , v0
i , θ0, and P 0 are

given, and

∂Ω = ∂Ωu ∪ ∂Ωσ = ∂Ωθ ∪ ∂Ωq = ∂ΩP ∪ ∂Ωη = ∂Ωφ ∪ ∂ΩD,

∂Ωu ∩ ∂Ωσ = ∂Ωθ ∩ ∂Ωq = ∂ΩP ∩ ∂Ωη = ∂Ωφ ∩ ∂ΩD = ∅.

(2) Type II problem: Find (ui, u̇i , τ, θ, ℘, P )

solution to (42) subject to the initial
conditions

ui(·, 0) = u0
i , u̇i (·, 0) = v0

i , τ (·, 0) = τ 0,

θ(·, 0) = θ0, ℘ (·, 0) = ℘0, P (·, 0) = P 0 in Ω,

(47)

and the boundary conditions (46) and

ui = ũi on ∂Ωu ×I, τ = τ̃ on ∂Ωτ ×I, ℘ = ℘̃ on ∂Ω℘ ×I, φ = φ̃ on ∂Ωφ ×I (48)

where ũi , τ̃ , ℘̃, φ̃, f̃i , q̃, η̃, and D̃ are pre-
scribed functions, u0

i , v0
i , τ 0, θ0, ℘0, and P 0

are given, and

∂Ω = ∂Ωu ∪ ∂Ωσ = ∂Ωτ ∪ ∂Ωq = ∂Ω℘ ∪ ∂Ωη = ∂Ωφ ∪ ∂ΩD,

∂Ωu ∩ ∂Ωσ = ∂Ωτ ∩ ∂Ωq = ∂Ω℘ ∩ ∂Ωη = ∂Ωφ ∩ ∂ΩD = ∅ .

(3) Type III problem: Find (ui, u̇i , τ, θ, ℘, P )

solution to (45) subject to the initial condi-
tions (47) and the boundary conditions (46)
and (48).

Conclusion

Nonlinear as well as linear theories are
derived for thermoelastic diffusion piezoelectric
materials within Green-Naghdi theory of type

I (Fourier’s law), II, and III. It is shown that
there exists coupling between piezoelectricity,
temperature, and chemical potential. Only
models of types II and III permit propagation
of thermal and diffusion waves at finite speeds.
Keeping in view the increasing interest of
heat and mass exchange with the environment
in piezoelectric elastic materials, the three
derived models will be of great importance in
many engineering applications as well as the
mathematical study of their qualitative properties.
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Illinois at Urbana-Champaign, Urbana, IL, USA

Synonyms

Hyperbolic theories; Maxwell-Cattaneo; Relax-
ation times; Thermoelasticity; Waves

Definition

Thermoelastic waves are disturbances involving
thermal and elastic fields, typically stemming
from the coupling of constitutive equations at
the local continuum level. Depending on basic
postulates and physical applications, there exist
various types of such waves.

Introduction

Thermoelastic waves can be viewed as an exten-
sion of elastic waves of isothermal elastody-
namics accounting for the interactions between
thermal and mechanical fields in the interior of
a body due to an external thermomechanical
load. From a mathematics’ perspective, they can
also be defined as solutions to initial-boundary
value problems of a hyperbolic thermoelastody-
namics (HT). Various theories of HT have been
proposed in the literature since the late 1960s,
followed by a milestone book of Nowacki (1975),
the first fundamental monograph on dynamic
thermoelasticity. Both the linear and nonlinear
thermoelastic waves have been discussed since
then by publishing the original papers and mono-
graphs devoted to the subject. In the follow-
ing, five theories of thermoelastic waves are dis-
cussed:

(i) Thermoelasticity proposed in 1967 by Lord
and Shulman (L-S Theory)

(ii) Temperature-Rate Dependent Thermoelastic-
ity introduced in 1972 by Green and Lindsay
(G-L Theory)

(iii) Low-Temperature Thermoelasticity pro-
posed in 1996 by Hetnarski and Ignaczak
(H-I Theory)

(iv) Thermoelasticity Without Energy Dissipa-
tion formulated in 1993 by Green and Naghdi
(G-N Theory)

(v) Dual-Phase-Lag Thermoelasticity proposed
in 1998 by Chandrasekharaiah and Tzou
(C-T Theory)
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Thermoelastic Waves Propagating
in the L-S Model

The hyperbolic L-S model is described by the
field equations, in which, by a comparison to
the governing equations of classic hyperbolic-
parabolic thermoelasticity, the Fourier law of
heat conduction is replaced by the Maxwell-
Cattaneo equation involving a single relaxation
time (Ignaczak and Ostoja-Starzewski 2010,
section 1.2). Accordingly, a thermoelastic wave
is defined as an ordered array of functions [u, E,
S, θ , η, q], in which u, E, S, θ , η and q denote the
displacement, strain, Cauchy stress, temperature,
entropy, and heat flux fields, respectively, that
comply with the governing equations of the L-S
theory. These fields are defined on a Cartesian
product B × [0,∞) where B is a domain
occupied by the model and [0,∞) is the time
interval. By eliminating four functions from
the six that define a thermoelastic wave, one
can obtain the field equations of L-S theory
in terms of various mechanical and thermal
variables, such as (u, θ ), (u, q), (S, θ ), and
(S, q). Thus, a pair of thermomechanical
variables (,) formed from the variables that
define a thermoelastic wave corresponds to the
wave if the remaining variables of the wave
can be restored from the pair. For example,
a pair (u, θ ) that satisfies the displacement-
temperature equations of the L-S theory, subject
to suitable initial and boundary conditions, is
a pair corresponding to a thermoelastic wave
because it generates the fields E, S, η, and q in
such a way that the ordered array of functions
[u, E, S, θ , η, q] represents a thermoelastic wave
corresponding to an external thermomechanical
load applied to the body B over the time interval
[0,∞).

An initial-boundary value problem for a
pair (u, θ ) in which the initial conditions

are imposed on u,
·
u, θ and

·
θ , and the mixed

thermomechanical boundary conditions are
postulated, is called a mixed displacement-
temperature problem (MDTP) of the L-S theory.
For an inhomogeneous anisotropic thermoelastic

body of that theory, the physical properties of a
wave are represented by the set of constitutive
variables {θ0, t0; ρ, cE;K,M;C} in which θ0

and t0 are a fixed uniform reference temperature
and a constant relaxation time, respectively;
ρ = ρ(x) and cE = cE(x) are the mass density
and the specific heat for zero strain (scalar) fields,
respectively; K = K(x) and M = M(x) are the
conductivity and the stress-temperature (second-
order) tensor fields, respectively; and C = C (x)

is the elasticity (fourth-order) tensor field; while
the external thermomechanical load in the MDTP
of L-S theory is represented by an ordered array

of functions

[
b, r;u0,

·
u0;ϑ0,

·
ϑ0;u′, s′; θ ′, q ′

]

in which b = b(x, t) and r = r(x, t) are the body
force and heat supply fields, respectively; (u0, ϑ0)

and

(
·
u0,

·
ϑ

)
are the initial values of (u, ϑ) and

(
·
u,

·
ϑ

)
, respectively; and u′, s′, θ, and q′ denote

the boundary displacement, traction, temperature,
and normal heat flux fields, respectively.

Clearly, the MDTP of L-S theory is an
extension of the mixed displacement problem
of the classical hyperbolic isothermal elastody-
namics (Hetnarski and Ignaczak 2011, p. 232),
and a number of theorems of L-S theory that
generalize those of classic elastodynamics have
been obtained in the literature. In particular,
the domain of influence theorem of L-S theory
that generalizes that of classical elastodynamics
(Gurtin 1972, p. 257) holds true:

Theorem 1 (Domain of influence theorem for
the mixed displacement-temperature problem of
L-S theory). Let (u, θ ) be a solution to the MDTP
of L-S theory. Let B(t) denote a support of the
thermomechanical load for a fixed time t, i.e., the
set of points of B on which the load does not
vanish over the time interval [0, t]. Let c be a
constant of the velocity dimension that satisfies
the inequality

c ≥ max (c1, c2), (1)
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where

c1 = sup
B,|m|=1

[
|M∗| +

(
|A| + |M∗|2

)1/2
]

c2 = sup
B

[
|M∗| +

(
t−1
0 |K∗| + |M∗|2

)1/2
]

(2)

Here, A=A(x, m) is the (second-order) “acoustic
tensor in the propagation direction m” which is
defined for any unit vector m and for arbitrary
vector a by the relation

A (x,m) a = ρ−1 (x) C [a⊗m] m (3)

while

M∗(x) = 1

2

[
θ0

ρ(x) cE(x)

]1/2

M(x) (4)

and

K∗(x) = c−1
E (x) K(x) (5)

Let B∗ (t) be the set

B∗(t) = { x ∈ B : B(t) ∩Σ (x, ct) �= ∅
}

(6)

where $(x, ct) is an open ball of the radius ct and
center at x. Then

u = 0, θ = 0 on
{
B − B∗(t)

}× [0, t]
(7)

Proof of Theorem 1, in which B∗ (t) is the
domain of influence of the data at time t, is given
in Ignaczak et al. (1986).

Theorem 1 implies that for a finite time t
and for a bounded set B(t), the thermoelastic
disturbance generated by a pair (u, θ ) vanishes
outside of a bounded set B∗ (t) the diameter of
which depends on the load support, the bounds
on the thermomechanical constitutive fields, and
the relaxation time t0. This theorem also shows
that the thermoelastic disturbance propagates as
a wave from the domain B(t) with a finite speed
equal to or less than the speed c; in particular, a

thermoelastic disturbance produced by an exter-
nal thermomechanical load of a bounded support
cannot invade an unbounded body in a finite time.

An analysis of the velocities c1 and c2

indicates that c1 is finite and c2 → ∞ as
t0 → 0 + 0; hence, c → ∞ as t0 → 0 + 0.
Therefore, if the relaxation time goes to zero, the
disturbance gains an infinite speed, as should
be expected, since in this limiting case, the
mixed displacement-temperature problem of
L-S theory reduces to a mixed displacement-
temperature problem of classical hyperbolic-
parabolic thermoelasticity. An analysis of the
velocities c1 and c2 also shows that for a weakly
acoustic and heat-conductive L-S model, the
maximum speed of a thermoelastic wave is given
by the simple formula

c0 = 2sup
B

( ∣∣M∗∣∣) (8)

Notably, for the finite values of |A|, |M∗ |, and
|K∗ |, the velocities c1and c2, respectively, rep-
resent upper bounds on the velocities of quasi-
elastic and of quasi-thermal waves propagating in
the body, since for |M∗ | = 0 the velocities c1 and
c2 reduce to a maximum speed of an elastic wave
(Gurtin 1972, p. 257) and a maximum speed of a
heat wave (Ignaczak and Ostoja-Starzewski 2010,
p. 82), respectively.

The speed formulas (2) and (8) could be used
to determine the physical properties of a thermoe-
lastic material in a lab experiment in which both
a quasi-elastic wave and a quasi-thermal wave are
observed.

Finally, note that the other results on ther-
moelastic waves of L-S theory that should prove
useful for both mechanical engineers and applied
mathematicians may be found in Ignaczak and
Ostoja-Starzewski (2010).

Thermoelastic Waves Propagating
in the G-L Model

The G-L model is characterized by a system of
PDEs in which, in comparison to the relations
of hyperbolic-parabolic thermoelasticity, the
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constitutive relations for the stress tensor and
the entropy are generalized by introducing two
different relaxation times into consideration. A
displacement-temperature wave propagating in
the G-L model complies with the system of field
equations for a pair (u, θ ) subject to the initial
and boundary conditions similar to those of L-S
theory. The domain of influence theorem for a
mixed displacement-temperature problem of the
G-L theory that is similar to Theorem 1 holds
true:

Theorem 2 (Domain of influence theorem for
MDTP of G-L theory). Let (u, θ ) be a solution to
MDTP of G-L theory. Let B(t) denote a support
of the thermomechanical load for the problem.
Let c be a constant of the velocity dimension that
satisfies the inequality

c ≥ max
(
c′1, c′2

)
(9)

in which

c′1 = sup
B,|m|=1

[∣∣M∗∣∣+
(
|A| + ∣∣M∗∣∣2

)1/2
]

c′2 = sup
B

[
(t1/t0)

∣∣M∗∣∣+
(
t−1
0

∣∣K∗
∣∣

+(t1/t0)2
∣∣M∗∣∣2

)1/2
]

(10)

Here, t0 and t1 are the relaxation times that satisfy
the inequalities t1 ≥ t0 > 0; and the tensor fields
A, M∗ , and K∗ are given by Eqs. (3), (4), and (5),
respectively. Let B∗ (t) be the set defined by (6) in
which c satisfies the inequality (9). Then

u = 0, θ = 0 on
{
B − B∗(t)

}× [0, t]
(11)

Proof of Theorem 2 is given in Carbonaro and
Ignaczak (1987).

A physical interpretation of Theorem 2 is
similar to that of Theorem 1. Moreover, the def-
inition of c implies that the velocities c′1 and c′2
correspond, respectively, to the maximum speed

of a quasi-elastic and a quasi-thermal wave prop-
agating in the G-L model; and for |M∗ | = 0 they
reduce to the maximum speed of a pure elastic
and a pure thermal wave, respectively.

Also, for a weakly acoustic and heat-
conductive L-G model, the maximum speed of a
thermoelastic wave is determined by the simple
formula

c′0 = 2 (t1/t0) sup
B

( ∣∣M∗∣∣) (12)

In addition, since t1 ≥ t0 > 0,

(
c′1, c′2

) = (c1, c2) and c′0 = c0 (13)

if t1 = t0 > 0 and t0 of the G-L model is identified
with t0 of the L-S model.

For a spherically symmetric Cauchy prob-
lem of the G-L theory, a thermoelastic wave
(u, θ ), corresponding to an instantaneous heat
source concentrated at the origin of spherical
coordinates (r, ϑ, γ ) [0 ≤ r ≤ ∞, 0 ≤ ϑ ≤ π ,
0 ≤ γ < 2π ], takes the form

(u, θ) =
(
u(1), θ (1)

)
+
(
u(2), θ (2)

)
(14)

where (u(1), ϑ(1)) and (u(2), ϑ(2)) are the outgoing
spherical quasi-elastic and quasi-thermal waves
propagating with the velocities c(1) and c(2),
respectively. The associated domain of influence
is to be identified with a ball $(0, ct) where
c = max (c(1), c(2)) (Ignaczak and Ostoja-
Starzewski 2010, section 7.4).

An attempt to verify the G-L theory in a lab
experiment has been made in Suh and Burger
(1998a, b), where laser-induced waves propagat-
ing in a plate are compared with those of the
L-G theory. Since, in general, the G-L theory
has not been verified successfully by a laboratory
experiment, to discuss numerically the solutions
to particular initial-boundary value problems of
G-L theory, a virtual set of physical constants is
used, which reduces to that of classical theories
such as the elastodynamics and heat wave theory
when t1/t0 → 1 and t0 > 0.
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Thermoelastic Waves Propagating
in the H-I Model

The H-I model proposed by Hetnarski and
Ignaczak in 1990s has been introduced in an
attempt to describe low-temperature soliton-like
thermoelastic waves (Ignaczak 1990; Hetnarski
and Ignaczak 1996, 1997). The model is
characterized by a system of nonlinear field
equations in which, in comparison to the
system of classical hyperbolic-parabolic linear
thermoelasticity, both the free energy and the
heat flux vector depend not only on the absolute
temperature and the strain tensor but also on
“elastic” heat flow that satisfies a nonlinear
evolution equation and enters a modified Fourier
law and a modified free energy formula,
respectively, through linear and quadratic
terms.

For a one-dimensional case in which the body
is homogeneous, isotropic, and of infinite extent
(|x| ≤ ∞), a thermoelastic wave can be described
by a pair of functions (u,Φ) satisfying the non-
linear dimensionless field equations

(
%tt −%xxt + ω %2

xt

)
exp (−ω %t)− ω %x%xt

−%xx − ω−1uxtexp (−ω %t) = 0

ω−1
(
uxx − ζ 2utt

)+ ∈ %xtexp (−ω %t) = 0

for |x| ≤ ∞, t ≥ 0
(15)

In Eq. (15) the usual index notation for partial
derivatives is introduced; while ωΦ and u denote
an elastic heat flow potential and a displacement
in the x-direction, respectively; moreover, ω, ε,
and ζ stand for a low-temperature parameter
(ω < < 1), a thermoelastic coupling constant, and
an inertia coefficient, respectively.

The absolute temperature T = T(x, t), the total
heat flux q= q(x, t), and the stress Σ =Σ(x, t) in
the x-direction are given in terms of (u,Φ) by

T (x, t) = exp (−ω %t) (16)

q (x, t) = ω %x + ω %xtexp (−ω %t) (17)

$ (x, t) = ux− ∈ [exp (−ω %t)− 1] (18)

Equations (15)1 and (15)2 represent, respectively,
the balance of energy and the equation of motion
of the one-dimensional H-I model. The exponen-
tial form of T = T(x, t) in (16) is selected in such a
way that the one-dimensional nonlinear evolution
equation of the model is satisfied. Equation (17)
represents a modified Fourier law in which ωΦx

is the elastic heat flow and the second term on
RHS of (17) stands for a heat flux of classic type.
Finally, (18) represents a one-dimensional stress-
strain-temperature relation.

Note that Eq. (15) forms a highly nonlinear
coupled system of PDEs involving a small param-
eter ω, so an asymptotic analysis may be used to
obtain approximate solutions to these equations.
The case ω = 0 corresponds to a thermodynam-
ical equilibrium at which T = 1, q = 0, u = 0,
and Σ = 0. Also, when u = 0 and ε = 0, Eqs.
(15), (16), (17), and (18) reduce to those of a low-
temperature nonlinear rigid heat conductor.

A class of closed-form solutions to Eq. (15)
may be obtained by looking for a pair (u, Φ) in
the form

u=u(s), %=%(s); s=x−vt, |x| ≤∞, t≥0
(19)

where v is a positive constant. Such a pair then
represents a plane progressive wave propagating
with the velocity v in the x-direction.

A soliton-like thermoelastic wave of H-I the-
ory is defined as a triplet [T(s), q(s),Σ(s)] gener-
ated by a pair [u(s),Φ(s)] that satisfies Eq. (15)
for |s| ≤ ∞ subject to the boundary conditions

T (−∞)=T (+∞) = 1; q(−∞)=q(+∞)=0;
$ (−∞) = $ (+∞) = 0

(20)

The following two-part theorem holds true:

Theorem 3 (i) If ζ̂ = ζ ω−1/2 ≥ 1 and
∈ > 0, then there are two soliton-like thermoe-
lastic waves (T, q,$)1 and (T, q,$)2 propagating
with the velocities v1 and v2, respectively, in the
x-direction, where
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v1=ω−1/2ζ̂−1/2

{
1+∈+ζ̂

2̂ζ
−
[(

1+∈+ζ̂
2̂ζ

)2−1

]1/2
}1/2

v2=ω−1/2ζ̂−1/2

{
1+∈+ζ̂

2̂ζ
+
[(

1+∈+ζ̂
2̂ζ

)2−1

]1/2
}1/2

(21)

(ii) If ω and ζ are both independent of each
other and relatively small, there are two fast-
moving soliton-like thermoelastic waves, each
revealing a fountain effect in a neighborhood of
the moving front and each close to the thermo-
dynamical equilibrium far from the front; two
self-equilibrated forces parallel to the direction of
motion and applied to the wall in a neighborhood
of the moving front secure the thermodynamical
equilibrium of the wave.

Proof of Theorem 3 is given in Hetnarski and
Ignaczak (1996).

An alternative form of the one-dimensional
governing equations of the H-I theory is the
matrix PDE (Ignaczak and Domanski 2017)

∂

∂t
u+ A (u)

∂

∂x
u+ B

∂2

∂x2 u = 0 (22)

for an unknown vector field

u = [T , b, ut , ux] ; u = u (x, t),

|x| ≤ ∞, t ≥ 0
(23)

where b = b(x, t) is the elastic heat flow in the x-
direction; while A(u) and B are the 4× 4 matrices
defined by

A (u) =

⎡

⎢⎢
⎣

−b/T 1 T 0
1/T 0 0 0
∈ /ζ 0 0 −1/ζ 2

0 0 −1 0

⎤

⎥⎥
⎦ (24)

and

B =

⎡

⎢
⎢
⎣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ (25)

Clearly, the matrix A(u) becomes singular in the
neighborhood of absolute zero temperature.

The matrix PDE (22) can be used to find
an asymptotic solution to the associated Cauchy
problem with a weakly perturbed initial condi-
tion:

Find uε = uε(x, t) that satisfies the field
equation

∂

∂t
uε + A

(
uε
) ∂

∂x
uε + B

∂2

∂x2
uε = 0

for |x| <∞, t > 0

(26)

subject to the initial condition

uε (x, 0) = u0 + ε u∗ (ε x)+ 0
(
ε2
)

for |x| <∞
(27)

where ε is a small positive number, u0 = [T0, 0, 0,
0]T with T0 > 0, and u∗ = u∗ (y) is a prescribed
function for |y| <∞.

With regard to the problem (26) and (27), the
following theorem holds true.

Theorem 4 An asymptotic solution to the
Cauchy problem, described by Eqs. (26) and (27),
which represents a nonlinear low-temperature
and small-strain thermoelastic wave propagating
along the x-axis, takes the form

uε (x, t) = u0 + ε

4∑

i=1

ai (ηi) ri (u0)+ 0
(
ε2
)

for |x| ≤ ∞, t ≥ 0
(28)

where ai = ai(ηi) for |ηi| ≤ ∞ is a solution to
the nonlinear transport equation

d

dηi

[
Hia

2
i (ηi)+

d

dηi
ai (ηi)

]
= 0,

ηi = ε (x − λit)

(29)

Here, ri(u0) stands for the unit right eigenvec-
tor of the matrix A(u0) corresponding to the
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real-valued eigenvalue λi = λi(u0), ηi is a slow
variable of the function ai = ai(ηi), and Hi is
defined by

Hi = −1

2

[(
ri3 − ri2

T0

)
− ri1

T 2
0

li2

li1

]

(30)

where rik(lik) denotes the kth component of the
unit right (left) eigenvector ri(li) of the matrix
A(u0) for i, k = 1, 2, 3, 4.

Proof of Theorem 4 is given in Ignaczak and
Domanski (2017).

It is also shown in Ignaczak and Domanski
(2017) that, for a particular Cauchy problem
described by Eqs. (26) and (27) in which the
initial data are generated by a closed-form solu-
tion to the transport Eqs. (29), the principal part
of the asymptotic solution (28) is a sum of four
traveling thermoelastic waves admitting blow-up
amplitudes.

Thermoelastic Waves Propagating
in the G-N Model

The G-N model, proposed by Green and Naghdi
(1993), is described by a system of PDE in
which, in comparison to classic thermoelasticity
system, the Fourier law of heat conduction is
replaced by a heat flux rate-temperature gradi-
ent relation. As a result, a thermoelastic wave
propagating in G-N model and corresponding
to the displacement-temperature initial-boundary
value problem is characterized in terms of a pair
(u, θ ) that satisfies the displacement-temperature
field equations in which the energy equation

does not contain the temperature rate
·
θ . As a

result, a solution (u, θ ) to the problem rep-
resents an undamped thermoelastic wave, and
this motivates the name of G-N theory as ther-
moelasticity without energy dissipation (TWED).
For the L-S model the displacement-temperature

energy equation does contain
·
θ ; similarly,

·
θ is

included in the displacement-temperature energy
equation of the G-L theory. This is a reason
why the L-S and G-L models represent materials
transmitting damped thermoelastic waves. The
existence of damped thermoelastic waves in the

L-S and G-L theories has been revealed in a
number of papers devoted to theoretical (Achen-
bach 1968; Ignaczak 1978) and applied aspects
(Ignaczak 1989; Hetnarski and Ignaczak 1993,
1994) of these theories.

A Saint-Venant’s principle associated with
an initial-boundary value problem of the G-
N theory is presented in Nappa (1998). A
uniqueness theorem for a natural stress-entropy
flux initial-boundary value problem of G-N
theory is proved in Chandrasekharaiah (1996a),
while the continuous dependence of a solution
to the displacement-temperature initial-boundary
value problem on the thermomechanical load
in G-N theory is established in Iesan (1998).
The undamped character of one-dimensional
thermoelastic waves propagating in the G-
N model is discussed in Chandrasekharaiah
(1996b).

Thermoelastic Waves Propagating
in the C-T Model

The C-D model, proposed by Chandrasekharaiah
and Tzou in 1998 (Tzou 1995; Chandrasekhara-
iah 1998), is an extension of the classical
hyperbolic-parabolic thermoelastic model in
which the Fourier law is replaced by an
approximation to a modified Fourier law with
two different time translations: a phase lag of the
heat flux τ q and a phase lag of the temperature
gradient τ θ . A Taylor series approximation of
the modified Fourier law together with the
remaining field equations leads to a complete
system of equations describing a dual-phase-
lag thermoelastic model. The model transmits
thermoelastic disturbances in a wave-like manner
if the approximation is linear with respect to
τ q and τ θ and 0 ≤ τ θ < τ q. In this case, the
linear approximation of the modified Fourier
law together with the energy balance equation
for a rigid heat conductor leads to Jeffreys-type
hyperbolic heat conduction equations (Joseph
and Preziosi 1989, 1990; Tamma and Zhou
1998).

For a C-T model based on the Taylor series
approximation of the modified Fourier law
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which is quadratic in τ q and linear in τ θ , a
displacement-temperature initial-boundary value
problem involving the third order time derivatives
of an unknown solution can be formulated.
Such a problem is then a natural extension of
the displacement-temperature problem of the
L-S theory. Similarly to the case of the L-S and
G-L models, no combined experimental data are
available that might be used to determine τ q and
τ θ as well as the remaining thermomechanical
properties of the C-T model. Finally, note that
the principle of Saint-Venant’s type in terms of
a pair (S, q) for the dual-phase-lag thermoelastic
model has not been obtained up to date.

Closure

The five models described by the L-S, G-L, H-
I, G-N, and C-T theories have been a stepping
stone for a number of researchers in the field
of wave propagation problems in solids from the
beginning of the twenty-first century up to this
day. For example, a unified presentation of the L-
S, G-L, and G-N theories is proposed in Bagri
and Eslami (2007a, b); while a phase-lag Green-
Naghdi thermoelasticity is published in Kara-
many and Ezzat (2016). A thermoelasticity with
a memory-dependent derivative that includes as
particular cases the L-S, G-L, and C-T theories
is presented in Ezzat et al. (2016); and a spa-
tial behavior of solutions to the three-phase-lag
heat conduction equation is discussed in Quin-
tanilla (2009). Also, a scale-dependent homog-
enization is applied to the G-L theory where
conductivity and stiffness are wide-sense station-
ary ergodic random fields in Ostoja-Starzewski
et al. (2015). The L-S and G-L have also pro-
vided a basis for an extension of thermoelasticity
with finite wave speeds to account for viscous
effects in solids (Ostoja-Starzewski 2014) and
fluids (Ostoja-Starzewski and Khayat 2017). Less
attention has been paid to the H-I model for
which a method of weakly nonlinear asymptotics
to solve the one-dimensional Cauchy problem
with a weakly perturbed, the initial condition, is
presented in this survey (Ignaczak and Domanski
2017).

The results presented in this survey extend
those of Hetnarski and Ignaczak (2000) and also
make use of the entries from the Encyclopedia of
Thermal Stresses (Ignaczak 2014; Ignaczak and
Hetnarski 2014).

This brief review ends with a note that many
effects of coupled generalized thermoelastic vis-
à-vis classical responses have been examined in
a number of problems involving interaction of
one or two half-spaces: rigid die sliding on a
deformable body, surface or interface wave prop-
agation, and dynamic thermoelastic fracture, e.g.,
Brock (2005, 2006, 2008).
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Synonyms

Lord-Shulman thermoelasticity; Propagation of
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Definition

Thermoelastic waves are the solutions of the
equations of coupled thermoelasticity. In the case
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of hyperbolic thermoelasticity, the solution is the
sum of two traveling waves. The first terms are
called quasithermal components, and the second
terms are quasielastic components. These com-
ponents of thermoelastic waves propagate in the
medium with different velocities, dispersion, and
attenuation rate.

Introduction

Propagation of thermoelastic waves may be
useful for determining the thermomechanical
characteristics of micro- and nanoscale objects,
such as thin plates and rods, which are used
in micro- and nanoelectromechanical devices
(MEMS and NEMS). Temperature substantially
affects the thermomechanical properties of
layered nanomaterials, since the thinner the
layer, the more it is sensitive to temperature
effects (Haque and Saif 2005). A number of
experimental (Poletkin et al. 2012) and theoret-
ical papers (Wang et al. 2011) are dedicated to
the thermoelastic wave propagation processes in
nanometer-sized films. Some numerical studies
of the hyperbolic thermoelasticity problems
were done in Yu et al. (2006), Melnik (2001),
and Youssef (2005). An extensive review
on the hyperbolic thermoelasticity is given
in Igna and Ostoja-Starzewski (2010) and
Chandrasekharaiah (1998).

The second half of the century brought a
surge of interest in the hyperbolic theory of
thermal conductivity. The topic was thoroughly
researched, and the numerous studies devoted to
the theory were published (Chandrasekharaiah
1998; Jou et al. 1996; Wang 1965; Engelbrecht
and Maugin 1996; Tzou 1997). Over recent
decades, the problems of coupled hyperbolic
thermoelasticity have drawn a certain attention
(see, e.g., Igna and Ostoja-Starzewski 2010;
Ivanova 2010, 2011, 2012, 2014). The following
article illustrates how the boundary conditions
influence the contribution of the wave terms of
the hyperbolic heat conduction equation to the
overall solution of a coupled thermoelasticity
problem.

The Equations of the Hyperbolic
Thermal Conductivity and
Thermoelasticity

One of the most well-known approaches describ-
ing the wave nature of the heat propagation
processes in an elastic medium was proposed
by Lord and Shulman (1967). This approach is
based on the generalized Fourier law, taking into
account the relaxation time of the heat flux τ :

τ ḣ+ h = −λ∇T , (1)

where h is the heat flux, λ is the coefficient of
thermal conductivity, ∇ is the Hamiltonian oper-
ator, and T is the temperature. The heat equation
using generalized Fourier’s law (1) can be derived
as follows. The energy balance equation for the
undeformable medium has the form

ρU̇ = −∇ · h+ ρq, (2)

where ρ is the density, U is the mass density of
the internal energy, and q is the mass density of
the internal heat sources. Since the medium is
undeformable, ρ = const.

If the temperature deviation from its initial
value T ∗ is small, the mass density of the internal
energy can be represented as follows:

U = cvT̃ , T̃ = T − T ∗, (3)

where cv is the specific heat at a constant volume.
After introducing (3) into (2) and applying

generalized Fourier’s law (1) to eliminate the
heat fluxes, the Maxwell-Cattaneo equation is
obtained:

λΔT̃ − ρcv

( ˙̃
T + τ

¨̃
T
)
= −ρ (q + τ q̇) (4)

A deformable medium taking into account the
thermal effects is considered.

The continuum dynamics equation in the local
form is as follows:

∇ · σ + ρf = ρü, (5)

where σ is the stress tensor, f is the body forces
vector, and u is the displacement vector.
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The relation between the stress, strain, and
temperature, known as the Duhamel-Neumann
law, can be written as follows:

σ =
(
K − 2

3
G

)
εE + 2Ge − αKT̃E, (6)

where K the isothermal bulk modulus, G is the
shear modulus, e is the strain tensor (ε = tr e),
E is the unit tensor, and α is the volumetric
coefficient of thermal expansion.

Introducing (6) to equation of motion (5) with-
out taking into account bulk forces:

(
K − 2

3
G

)
∇ε+2G∇ · e−αK∇T̃ = ρü. (7)

Calculating the divergence of (7), one obtains
an equation describing three-dimensional defor-
mation of a thermoelastic medium:

(
K + 4

3
G

)
Δε − αKΔT̃ = ρε̈ (8)

Calculating the curl of (5), one obtains an
equation for the shear waves. The temperature
terms are absent from this equation. However, the
temperature change may affect the shear strain,
because the shear and bulk strain are coupled by
boundary conditions. Hereinafter, such boundary
conditions are considered under which shear and
bulk strain are independent.

In order to obtain the analytical solution, it’s
convenient to operate the equation of motion in
terms of stress. To do that, one can calculate
the trace of (6) and express the strain tensor in
terms of the stress and temperature. The equa-
tions of coupled hyperbolic thermoelasticity for
bulk deformations can be written:

(
K + 4

3
G

)
Δσ − αKρ

¨̃
T − ρσ̈ = 0

λΔT̃ −
(
α2K2T ∗

K + 4
3G

+ ρcv

)( ˙̃
T + τ

¨̃
T
)
− αKT ∗

K + 4
3G

(σ̇ + τ σ̈ ) = −ρ (q + τ q̇),

(9)

where σ = 1/3 trσ .
If the heat-flux relaxation time τ in (9) tends

to zero, then the solution of this system will tend
to the solution of the classical problem of the
thermoelasticity of the parabolic type.

Thermoelastic Waves in a Layer with
Internal Heat Sources

Problem Statement
An infinite layer, which is exposed to the laser
radiation, is considered (Vitokhin and Babenkov
2016a,b). If the layer is irradiated uniformly over
the entire surface, waves will propagate only
along the x axis. The interaction of a laser and
a medium is modeled by the Beer-Lambert law
(Fig. 1):

J (x) = J0e
−γ x,

where J0 is the laser intensity and γ is the
attenuation coefficient of the medium. Eventu-
ally, the value of J0 depends not only on the

Fig. 1 The hyperbolic thermoelasticity problem for an
infinite layer under the influence of a laser impulse
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T

properties of the laser but also on the properties of
a surface. A part of the incident radiation reflects
from the surface; with this in mind, the value of
J0 is considered to have the sense of the laser
radiation intensity absorbed by the material. The
dependence of the laser intensity on time is quite
difficult and, therefore, J0 is assumed to be an
average characteristic. Generally, there are two
characteristics of the short laser impulse found in
the literature: exposure duration δ0 and energy E0

absorbed per unit area. Thus, the laser intensity is
considered to be a function of the form

J̃ (x, t) =
{
J0e

−γ x, 0 ≤ t ≤ δ0;
0, t > δ0.

And

E(x) ≡
∫ ∞

0
J̃ (x, t)dt = J0δ0e

−γ x

⇒ E0 ≡ E(0) = J0δ0.

The Dirac delta function δ(t − 0) is usually
adopted to model the time dependence of the laser
intensity, because such an approximation allows
to obtain an exact analytical solution. The scale
factor is selected so that full energy E0 absorbed
per unit area during the time of exposure would
be consistent with the experimental data. It is
readily seen that function J (x, t) satisfying the
above conditions has the form

Ĵ (x, t) = E0e
−γ xδ(t − 0). (10)

Subsequently,

E(x) ≡
∫ ∞

0
Ĵ (x, t)dt = E0e

−γ x.

Hereinafter, formula (10) will be used for the
laser intensity. The relation between heat sup-
ply rate per unit volume ρq(x, t) and the laser
intensity is determined by the energy balance
equation:

Ĵ (x, t)− ρq(x, t)dx − Ĵ (x + dx, t) = 0.

Expanding function Ĵ (x + dx, t) in the Taylor
series and taking into account (10):

E0e
−γ xδ(t − 0)− ρq(x, t)dx − E0e

−γ x

δ(t − 0)(1− γ dx) = 0.

From the last equation, it follows that

q(x, t) = E0γ

ρ
e−γ xδ(t − 0), E0 = J0δ0.

(11)
At the initial moment of time the layer is

unperturbed, the thermal and mechanical loads
are absent:

u̇
∣∣
t=0 = 0; u

∣∣
t=0 = 0; (12)

˙̃
T
∣∣
t=0 = 0; T̃

∣∣
t=0 = 0; (13)

If the problem is formulated in terms of the
stresses, then the initial conditions must be for-
mulated for the stress instead of the strain:

σ̇
∣∣
t=0 = 0; σ

∣∣
t=0 = 0; (14)

A Constant Temperature Kept at the
Unconstrained Boundaries of the Layer
The boundary conditions have the form

σ
∣∣
x=0 = 0; σ

∣∣
x=l = 0;

T̃
∣∣
x=0 = 0; T̃

∣∣
x=l = 0; (15)

Solution is shown in Fig. 2; the curves are plotted
for the moments of time τ , 3τ , and 5τ . The left
curves are plotted for γ > γ0; the right curves
are plotted for γ < γ0, where γ0 = √ρcv/(4λτ).
Jumps and discontinuities arise in the presented
solutions because of the Dirac delta function is
adopted to approximate a time dependence of the
laser intensity while impacting the specimen and,
as well, the form of the non-Fourier source term
containing the first time derivative of the Dirac
delta function.

A cooling region can be observed under the
boundary conditions of the first kind if γ > γ0

(Babenkov and Ivanova 2014) due to the ampli-
tude of the wave reflected from the irradiated
border with the opposite sign is sufficient to alter
the sign of the original wave in the vicinity of the
irradiated surface.
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Fig. 2 The analytical solution of the heat conduction problem. The temperature at the boundaries is kept constant. Solid
lines show the solution of the hyperbolic heat conduction problem; dashed lines show the solution of the classical heat
conduction problem
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Fig. 3 The analytical solution of the semi-coupled thermoelasticity problem. The temperature at the unconstrained
boundaries is kept constant. The solid lines show the solution of the hyperbolic thermoelasticity problem; the dashed
lines show the solution of the classical thermoelasticity problem

0
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u

x

γ > γ0
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Fig. 4 The analytical solution of the semi-coupled thermoelasticity problem with the constrained borders kept at a
constant temperature. Solid lines represent curves of the hyperbolic thermoelasticity; dotted lines represent classical
curves

Curves in Fig. 3 and Fig. 4 show solution for
the layer exposed to the short laser pulse (11).

The curves are obtained for the case if the
velocities of thermal and acoustic waves are
equal. The solution is plotted at the following
times: τ , 3τ , and 5τ . The left curves are plotted
for γ > γ0; the right curves are plotted for γ <

γ0. With the growth of the absorption constant γ ,

the difference between the displacements in clas-
sical and hyperbolic thermoelasticity problems
increases.

The graph in Fig. 3 illustrates the hyperbolic
thermoelasticity problem solution. It has two
salient points, while the graph plotted using
the classical thermoelasticity is smooth. Under
these boundary conditions, the most noticeable
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Fig. 5 The numerical solution of the coupled thermoelasticity problem with the constrained borders kept at a constant
temperature. The solid lines represent curves of the hyperbolic thermoelasticity; the dotted lines represent classical
curves

difference between the hyperbolic and classical
uncoupled thermoelasticities is achieved. The
velocities of the quasiacoustic and quasithermal
fronts in a coupled problem are not equal to
the sound and heat velocities in an uncoupled
problem due to the influence of the coupling
effects on the dispersion law (Babenkov 2013).

A Constant Temperature Kept at the
Constrained Boundaries of the Layer
The boundary conditions have the form

u
∣
∣
x=0 = 0; u

∣
∣
x=l = 0;

T̃
∣∣
x=0 = 0; T̃

∣∣
x=l = 0; (16)

Figure 5 shows the numerical solution of the
coupled thermoelasticity problem. The copper
layer is exposed to a short laser pulse (11). At
the initial moment time, the layer was in the
unperturbed state. Curves on the left are built at
t = τ = 0.1 ns, graphics right at t = 2τ . In
the hyperbolic thermoelasticity at the front of the
quasithermal wave, the minimum displacement
values are observed; the maximum displacements
are observed at the quasiacoustic front. In the
classical thermoelasticity, the displacement val-
ues on quasiacoustic and quasithermal fronts are
lower than in the hyperbolic thermoelasticity. The

maximum difference between the displacements
in the classical and hyperbolic thermoelasticity is
observed at the quasiacoustic front.

The Insulated and Constrained Boundaries
of the Layer
The boundary conditions have the form

u
∣∣
x=0 = 0; u

∣∣
x=l = 0;

h
∣∣
x=0 = 0; h

∣∣
x=l = 0; (17)

Solution at the moments of time τ , 2τ , and 5τ
is presented in Fig. 6. The curves on the left are
plotted for γ > γ0; the curves on the right are
plotted for γ < γ0. If γ > γ0, the temperature
maximum is located at the wave front, coinciding
with the salient point (the observation time is of
the order of τ ). If γ < γ0, then the temperature
maximum is located at the irradiated boundary
(x = 0).

Figure 7 illustrates solution at the following
times: τ , 2τ , and 5τ . The curves are obtained for
the case if the velocities of thermal and acoustic
waves are equal. The curves on the left are plotted
for γ > γ0; the curves on the right are plotted for
γ < γ0.

Starting from a certain moment of time, if
γ < γ0, one can observe a displacements
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Fig. 6 The analytical solution of the thermal conductivity problem with the thermally insulated boundaries. Solid
lines represent curves for the hyperbolic thermal conductivity; the dotted lines represent curves for the Fourier thermal
conductivity
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Fig. 7 The analytical solution of the semi-coupled thermoelasticity problem with the thermally insulated and
constrained boundaries. Solid lines represent curves of the hyperbolic thermal conductivity; dotted lines represent curves
for the Fourier thermal conductivity

extremum located to the left of the wavefront.
In the semi-coupled thermoelasticity problem, if
γ > γ0, the displacement extremum is always
located on the wave front.

The numerical solution of the coupled
thermoelasticity problem for the copper layer is
shown in Fig. 8. The curves on the left are built at
t = τ = 0.1 ns; the curves on the right are built at
t = 2τ . The most noticeable difference between
the displacements of the classical and hyperbolic
thermoelasticities is achieved at the quasithermal
front.

The curves in Figs. 6 and 8 show that over the
time the temperature of the irradiated border in
the hyperbolic problem of thermoelasticity can be
either larger or smaller than in the classical one.
However, the temperature difference is small in
these cases. Also, the displacement obtained via
the hyperbolic and classical thermoelasticity does

not have qualitative differences, and the observed
quantitative differences are neglectable.

The Insulated and Unconstrained
Boundaries of the Layer
The boundary conditions have the form

σ
∣∣
x=0 = 0; σ

∣∣
x=l = 0;

h
∣∣
x=0 = 0; h

∣∣
x=l = 0; (18)

Figure 9 illustrates solution at the following
times: τ , 2τ , and 5τ . The curves are obtained for
the case if the velocities of thermal and acoustic
waves are equal. The curves on the left are plotted
for γ > γ0; the curves on the right are plotted for
γ < γ0.

Figure 9 shows that the difference between
the displacements calculated via the classical
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Fig. 8 The numerical solution of the semi-coupled thermoelasticity problem with the thermally insulated and
constrained boundaries. Solid lines represent curves of the hyperbolic thermal conductivity; dotted lines represent curves
for the Fourier thermal conductivity
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Fig. 9 The analytical solution of the semi-coupled thermoelasticity problem with the thermally insulated and
unconstrained boundaries. Solid lines represent curves of the hyperbolic thermal conductivity; dotted lines represent
curves for the Fourier thermal conductivity

and hyperbolic theories increases with attenua-
tion coefficient γ . The temperature extremums
in Fig. 6 do not qualitatively affect the displace-
ments shown in Fig. 9.

Numerical solution for the copper layer is
shown in Fig. 10. The curves on the left are plot-
ted for t = τ = 0.1 ns; the curves on the right are
plotted for t = 2τ ns. As in the previous case, the
most noticeable difference between the displace-
ments calculated via classical and hyperbolic
theories is achieved at the quasithermal front.
As seen from a comparison of Figs. 8 and 10,
the mechanical boundary conditions have little
effect on the temperature distribution in the layer,

due to the smallness of the thermal expansion
coefficient.

As can be seen in Fig. 9, the difference
between the classical and hyperbolic solutions
under the chosen boundary conditions is less
noticeable, than in the previously considered
cases.

The numerical solution of the coupled
problem and the analytical solution of the
semi-coupled problem demonstrate negative
displacements extremum, which disappears over
a short period of time. This means that at the
initial time period, the points of the layer are
moving toward the radiation source. The same



2494 Thermoelastic Waves in a Medium with Heat-Flux Relaxation

Fig. 10 The numerical solution of the coupled thermoelasticity problem with the thermally insulated and unconstrained
boundaries. Solid lines represent curves for the hyperbolic thermal conductivity; dotted lines represent curves for the
Fourier thermal conductivity

effect is observed in the solution of the classical
problem.

The displacements peak values in the semi-
coupled hyperbolic thermoelasticity (Fig. 9,
solid lines) are greater than in the classical
thermoelasticity problem (Fig. 9, dashed lines).
On the contrary, the displacements peak values
in the coupled hyperbolic thermoelasticity
(Fig. 10) are less than in classical one. Such
effect is observed because the solution presented
in Fig. 9 is obtained if quasithermal and
quasielastic wave components propagate with
an equal speed. The resulting thermoelastic
wave is formed of these components by adding
up its amplitudes. However, in the coupled
statement, the component’s velocities cannot
be equal. In this case, the numerical solution
reflects the actual behavior of the material
better.

The Stress Distribution

If the boundaries are unconstrained, a jump is
observed at the acoustic front (Fig. 11a, d). The
compression zone is observed before the front,

and the extension zone is observed after the front.
If the boundaries are constrained, one can observe
a salient point at the acoustic front and a compres-
sion zone in its neighborhood (Fig. 11b, c).

Conclusion

In linear problems, increasing the heating pulse
amplitude can achieve arbitrarily high temper-
atures in the solution. In order to use the lin-
ear theory, it is necessary that the deviation of
the temperature from its reference value does
not exceed appr. 10 ◦C (Nowacki 1975), so the
material parameters could be treated as constants.
On the other hand, the minimum temperature
deviation that can be captured by the modern
experimental equipment is near 0.3 ◦C (Magunov
2002). At times not exceeding the heat-flux relax-
ation time t ≈ τ or t < τ (τ > 10−12 s,
the theoretical estimates are made for metals),
the difference in the temperature peaks obtained
within each of the theories is large enough that
the results of measurements can determine which
theory models the thermoelastic wave propaga-
tion process more accurately.
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c d

Fig. 11 Numerically evaluated displacements in the layer subjected to the laser pulse under the various boundary
conditions at t = τ = 0,1 ns. Unconstrained boundaries of the layer are kept at a constant temperature (a); the boundaries
of the layer are constrained and kept at a constant temperature (b); the boundaries of the layer are constrained and
insulated (c); the boundaries of the layer are thermally insulated and unconstrained (d)

If the time resolution of the measurement
equipment is less than the heat-flux relaxation
constant τ , then the effects of hyperbolic ther-
moelasticity are supposed to be observed exper-
imentally.
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Synonyms

Crystal plasticity; Thermomechanical treatment
of polycrystals

Definition

Technological processes of thermomechanical
treatment consist of heating, cooling, and
inelastic deformation operations which are
applied one by one or in some combinations. The
main goal of the thermomechanical processing
is putting the material structure to a state which
insures that the products gain certain required
operational physical and mechanical properties.
The multilevel models of materials are effective
in simulating and improving the processes of
thermomechanical treatment. These models make
it possible to explicitly describe a changing
structure of materials at different scale levels.

Introduction

Physical and mechanical properties of poly-
crystalline materials are determined by their
internal structure at different scale levels.
Thermomechanical processing which includes
heating, cooling, and inelastic deformation
is operated successively or in a combined
way; it is oriented on the material structure
changing (grain form and size, defect structures,
phase composition) aiming to improve the
operational physical and mechanical properties.
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The majority of the processes which lead to the
material structure changing take place during
thermomechanical processing. Some of them
are caused by the temperature change, such as
recovery, polygonization, and recrystallization;
other processes are caused by inelastic defor-
mation (depending on temperature), such as the
intragranular sliding of dislocations, rotation of
the crystallite lattice, grain boundary sliding,
crystallite fragmentation, etc.

To describe some particular processes of ther-
momechanical treatment (with strictly stipulated
processing conditions and for a certain initial
state of materials), it is possible to use the empir-
ical methods or theoretical methods based on
the macrophenomenological theory of thermo-
elasto-plasticity. However, if it is necessary to
create models which describe processes in a wide
range of impacts, it is impossible to use the
latter ones. The reason is that there is a great
variety of scenarios describing material structure
changing, thus a great variety of parameters at the
macroscale level which are determined by this
structure. So, to determine the rational regimes
of thermomechanical processing, it is necessary
to develop the constitutive models which include
an explicit description of the structure evolution
at meso- and microscale levels of polycrystalline
materials.

When it comes to creating models able to
describe the structure evolution of polycrystalline
materials, the approach based on the explicit
introduction of special parameters (internal vari-
ables) into the structure of constitutive relations
is becoming generally recognized. These parame-
ters describe the state and evolution of meso- and
microstructures; and evolutional (kinetic) equa-
tions are formulated for them (McDowell 2005;
Guo et al. 2005; Zhao and Sheng 2006; Trusov
et al. 2010; Saï 2011; Maugin 2015, etc.). Within
the framework of this approach, the hypothesis
is accepted which states that the reaction of the
material at each time-moment is determined by
the values of the tensor’s thermomechanical char-
acteristics of the material, the finite set of internal
variables, the parameters of thermomechanical
impacts, and their time derivatives by the required
order at the moment of time under study. It is

necessary to note that in this case the history
of the impacts is not forgotten and its “carriers”
are the internal variables which are added into
the structure of the model. In recent decades the
multilevel models which are based on crystal
plasticity (elastoviscoplasticity) are widely used
to implement this approach (Ghoniem et al. 2003;
McDowell 2008, 2010; Roters et al. 2010; Trusov
and Shveykin 2013a,b, etc.). Soon the develop-
ment of functional materials will become one of
the major prospects of material processing, such
as creating new materials with certain charac-
teristics that are optimal for a specific industrial
problem (or function). Thus, it is possible to
use the multilevel models of materials to achieve
these goals.

Multilevel Constitutive Models of
Materials

Within the multilevel approach, each material
point (representative volume) at a scale level 1
is associated with an inhomogeneous region at
a lower scale level 2 (Fig. 1) and so on for the
subsequent scale levels. Thus, only two levels
(e.g., macro- and mesolevels) can be introduced
to describe the approach and its algorithms. The
scale level 1 will be the upper one, and the scale
level 2 will be the lower one.

Parameters of the evolving structure, current
physical and mechanical properties, damage, and
inelastic strains are determined at the lower scale
level by an explicit description of the physical
mechanisms of inelastic deformation under the
effects that are determined at the upper scale level
(from the solution of the boundary value problem
at the macrolevel). The changed values of the
evolving internal parameters are considered when
clarifying the material response at the upper scale
level.

In modeling researchers determine the num-
ber of levels based on the considered process
analysis, the required detailing, and known or
supposed deformation mechanisms. For exam-
ple, in simulating the inelastic deformation of
polycrystalline metals, the hierarchy of the scale
levels is determined as macrolevel-mesolevel (the
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Scale level 1

Representative
volume of level 2

Physical and mechanical properties,
inelastic strains, 

damage

Parameters of actions

Material point
(representative volume of level 1)

Scale level 2

Fig. 1 The scheme of the scale level interaction

level of a crystallite (grain, subgrain, fragment))-
microlevel (dislocation structure).

The type of the relations connecting the
parameters from different scale levels (the choice
of the loading parameters at the upper scale
level to be used in the model of the lower scale
level and, contrariwise, the way of determining
the explicit internal variables of the upper scale
level using the model of the lower scale level)
is one of the key classification features of the
multilevel models. According to this feature,
three main groups of models can be specified,
such as statistical, self-consistent, and direct
ones.

Statistical models (Asaro and Needleman
1985; Bronkhorst et al. 1992; van Houtte 2009;
Dancette et al. 2010; Trusov et al. 2013, etc.)
are based on considering mesolevel elements
(individual grains or aggregates of grains,
subgrains) being relatively independent from
each other. The aggregation of the mesolevel
elements with the macrolevel element (the
representative macrovolume) is carried out by
some characteristics and some kinematic or static
hypotheses accepted a priori (usually the Taylor
hypothesis about deformation homogeneity
is accepted (Taylor 1938); such models are
usually called the Taylor-type models). As for
other characteristics, the statistical averaging is
performed.

In the self-consistent models (Wagner et al.
1991; Habraken 2004; M’Guil et al. 2009; Bey-
erlein et al. 2011, etc.) at the mesolevel, one

describes the behavior of single mesolevel ele-
ments in the surrounding matrix with the effective
characteristics of the material which are deter-
mined iteratively according to the properties of
the mesolevel elements using a particular averag-
ing procedure for the latter ones.

As for direct models (Cailletaud et al. 2003;
Anand 2004; Roters 2011; Ardeljan et al. 2014,
etc.), the physical models are used as constitutive
ones for each grain (subgrain, fragment) being a
part of the investigated material volume. In the
majority of papers, the finite element method is
used to implement the direct models. This model
is even more resource-intensive than the self-
consistent one.

The key part of multilevel models is a set of
relations for the mesolevel individual crystallites
(the well-known term called “crystal plasticity”
is caused by this fact). One of the most popular
definitions of the mesolevel constitutive model
says that it is a combination of the constitutive
equations given below (Bronkhorst et al. 1992;
Kalidindi et al. 1992; Anand 2004; Horstemeyer
et al. 2005; Khadyko et al. 2016, etc.) which
describe the main mechanisms at the level of
crystallites, i.e., intragranular dislocation sliding
and rotation of crystallite lattices.

The classical multiplicative decomposition of
the deformation gradient f is used (Kröner 1960;
Lee 1969):

f ≡ o∇ xT = fe · fp. (1)
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In (1)
o∇ is the Hamilton operator determined in

the reference configuration, x is the radius vector
of the material particle, and fe and fp are the
elastic and plastic constituents of the deformation
gradient.

The plastic constituent fp of the deformation
gradient f is determined from the following equa-
tion:

ḟ
p · fp−1 =

K∑

k=1

γ̇(k)
o(k)

b
o(k)
n , (2)

where
o(k)

b and
o(k)
n are the unit vectors of the

sliding direction and normals to the slip plane
of the edge dislocations (in the reference con-
figuration), γ̇(k) is the shear rate of the k-th slip
system, (γ(k) is the accumulated shear in the k-th
slip system), and K is the number of slip systems
for the type of crystallites being considered. The
slip planes and Burgers’ vector orientation, along
which the translational motion (slip) of the edge
dislocations is carried out, are known in the crys-
tallites. These are the most densely packed planes
and directions. For example, in the FCC metals,
the sliding of the edge dislocations is carried out
in the planes of the {111}-system along the direc-
tion <110>. It is assumed that in the two-level
models, the motion of the dislocations which
are homogeneously distributed in the volume is
uniform. It makes it possible to consider shears
along the slip systems instead of separate dislo-
cations’ motion. One of the prospects in studying
multilevel models is to introduce the microscale
level with the defect structure consideration into
the model structure, i.e., to formulate equations
for the change of dislocation density and other
defects (Beyerlein and Tome 2008; Austin and
McDowell 2011; Barton et al. 2011, etc.).

To determine the shear rate γ̇(k) in the slip
systems, the viscoplastic equation (probably, it
was first proposed in the following works (Asaro
1983; Asaro and Needleman 1985)) is used in
many models (Ghoniem et al. 2003; McDow-
ell 2008, 2010; Roters et al. 2010; Trusov and
Shveykin 2013a,b, etc.):

γ̇(k) = γ̇0

(
τ(k)/τ(k)c

)m
H
(
τ(k) − τ(k)c

)
, (3)

where τ(k) and τ
(k)
c are the shear and critical shear

stresses in the k-th slip system, γ̇0 is the shear
rate along the slip system at the moment when
the shear stress reaches the critical value, m is
the rate sensitivity of the material, and H(·) is
the Heaviside function. The shear stress in the
k-th slip system is determined according to the

relation τ(k) = (J feT · σ · fe−T) : (
0(k)
n

0(k)

b ),
where σ is the Cauchy stress tensor and J = det f.
In a general case, the critical shear stresses τ

(k)
c

are the functions of shear along the slip systems
accumulated by a current instant of time and the
history of their changes. The equations which
describe their changes are of major importance
in the constitutive models, and the corresponding
relations for the evolution τ

(k)
c have been pro-

posed in many studies (Holmedal et al. 2008;
Gérard et al. 2013; Khadyko et al. 2016, etc.).
The alternative ones are the elastic-plastic models
(Lin 1957; Weng 1980; Tokuda and Kratochvil
1984; Anand and Kothari 1996; McGinty and
McDowell 2006, etc.) where it is required that the
shear stresses should be equal to the critical ones
for all the active slip systems.

In order to determine stresses, many works use
relations in a “classical” unloaded configuration
gained from the actual one by the affine transfor-
mation fe−1:

k = π0:ce (4)

where k = J fe−1 · σ · fe−T is the second Piola-
Kirchhoff stress tensor, ce = 1/2

(
feT · fe − I

)
is

the elastic Cauchy-Green strain tensor, and π0

is the fourth-rank elasticity tensor defined in an
unloaded configuration.

Within this popular statement, the rotations of
the crystallite lattice are supposed to be deter-
mined by the orthogonal part of Re from the
polar decomposition fe. An alternative way is the
Taylor full-constrained model (van Houtte et al.
2005) which is largely used in rigid-plastic and
elastic-plastic models. If the elastic strains are
small, the mentioned models give similar results
(Horstemeyer et al. 2005). This fact is confirmed
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by the similar simulation results of the texture
formation, when these models are used in the
studies of different authors.

Thus, to determine stress Eqs. (1), (2), (3),
and (4) are used. They are supplemented by the
equations used to describe the change of the
critical stress of shears along the slip systems
τ
(k)
c , as well as for the crystallite lattice rotation.

This formulation is proposed for the case of large
displacement gradients. In fact, it is unacceptable
to describe the majority of thermomechanical
treatment processes for metals and alloys by
using the hypothesis about the small displace-
ment gradients, as in this case large displacement
gradients are found experimentally, so the geo-
metrically nonlinear formulation is necessary for
the corresponding boundary value problems.

The equilibrium (momentum) equations and
force boundary conditions become nonlinear,
when the problem is formulated in terms of the
reference configuration (in case of using the
second Piola-Kirchhoff stress tensor). Apart from
it, it is difficult to utilize the contact boundary
conditions. In view of this fact, it is preferable
to formulate the boundary value problem in
terms of the current (or unloaded) configuration
using the rate form for this purpose which is
convenient for numerical simulation. In this case
it is possible to find a stepwise solution entailing
the reconfiguration of the computational domain
(including contact surfaces). The system of the
constitutive relations in terms of the current
configuration can be written as follows:

κcr = dκ/dt + κ · ω− ω · κ = π :
(

l − ω̄−
K∑

k=1

γ̇(k)b(k)n(k)
)

, (5)

γ̇(k) = γ̇0

(
τ(k)/τ(k)c

)m
H(τ(k) − τ(k)c ), k = 1, . . . ,K, (6)

τ(k) = κ : b(k)n(k), k = 1, . . . ,K, (7)

τ̇(k)c =
〈
equation to determine τ̇(k)c

〉
, k = 1, . . . ,K, (8)

ω = 〈equation to determine ω
〉
. (9)

In the simultaneous Eqs. (5), (6), (7), (8), and (9)

κ = o
ρ /ρ̂ σ is the weighted Kirchhoff stress

tensor, ω is the spin of the moving coordinate
system which is connected to the lattice, π is the
tensor of elastic properties (its components are
constant in the basis of the moving coordinate
system), l is the velocity gradient, b(k) and n(k)

are the unit vectors of the sliding direction and
normals to the slip plane of the edge dislocations
(in the reference configuration), and “cr” index
designates the corotational derivative. The same
equation (8) is used to determine the critical
shear stress rate τ̇

(k)
c . The critical shear stresses

satisfied the additivity property for various mech-
anisms of hardening and softening (see comment
after formula (3); variant of equation (8) can
be found in Trusov et al. 2012, 2013). Equa-

tion (9) is used to determine the lattice spin ω;
it can be found in Trusov et al. (2016). As for
the lattice spin, it defines the moving coordi-
nate system rotation rate. The moving coordinate
system should be connected with the symmetric
elements of the material. In Mandel (1973) the
author states that it is necessary to determine the
corotational derivative for a crystallite related to
the crystallographic direction and plane. In this
case, for an observer these tensors will change
as indifferent ones in a fixed laboratory coor-
dinate system; and it results in satisfying the
material indifference principle in contrast to the
case when the linear constitutive relation is for-
mulated in the current configuration by accepting
that the material property tensor is constant, i.e.,
the necessity of complying with this principle
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implies that the tensor of properties can only
be isotropic (Truesdell 1977). The improvement
of the models which describe crystallite lattice
rotations by accounting for the occurrence of
the force (momentum) factors due to the defects
interaction (Trusov et al. 2012) is considered as
a prospect in developing the models based on the
crystal plasticity approach.

When elastic strains are small (which is char-
acteristic for metals and alloys), it can be shown
that the formulation in (5), (6), (7), (8), and (9) is
similar to the one that is described above for the
case of using similar rotation models (Shveykin
and Trusov 2016). As mentioned before the equa-
tion system (5), (6), (7), (8), and (9) in the statisti-
cal models is used for the number of crystallites;
the response at the macrolevel (for the integration
point in solving the boundary value problem) is
determined by averaging. In the direct models,
the equation system (5), (6), (7), (8), and (9) is
used for each integration point.

The mesolevel equations that are given here
as an example can be used to describe only the
“simplest” processes of inelastic deformation. It
is necessary to take into account the temperature
and all important physical processes (including
phase transformations) in the model structure
during the simulation of most thermomechanical
treatment processes.

Main Physical Mechanisms Occurring
in the Processes of
Thermomechanical Treatment

The main “carriers” of the inelastic deformation
mechanisms in mono- and polycrystals are the
linear defects of the crystal lattice, i.e., dislo-
cations (Hirth and Lothe 1968). Scientists used
these defects to argue against the assumption
which referred to the beginning of the twenti-
eth century concerning the shift of the atomic
planes of an ideal crystal with respect to each
other (Taylor 1934; Orowan 1934; Polanyi 1934).
There is no need for a simultaneous failure of all
the bonds between the neighboring atoms along
the shear plane in inelastic deformation; the local
failure and reconstruction of such bonds in the

neighborhood of the dislocation line by the relay
mechanism are enough. There are two main types
of dislocations, such as edge and screw ones. The
mixed type of dislocations having the form of the
dislocation loops dominates in real crystals (Hirth
and Lothe 1968). Burgers’ vector is the main
characteristic of a dislocation which is deter-
mined by the difference between a closed circle in
the defect-free crystal and a closed circle includ-
ing the dislocation line (Burgers’ contour). Dislo-
cations possessed with such Burgers’ vector can
be complete, and magnitude of this vector equals
to the atomic spacing in the closest-packed direc-
tion. Motions of these dislocations lead to the
identity transition of the crystal lattice, otherwise
the dislocations are called incomplete or partial.
Stacking fault energy is the main characteristic of
a crystal material which describes the dislocation
ability to be decomposed onto split dislocations
(two partial dislocations and a stacking fault
between them). Numerically, the stacking fault
energy is equal to the repulsive force of the
partial dislocations (per unit length) or the surface
tension force of the stacking fault. The dislo-
cation splitting and/or branching is determined
by Frank’s energetic criterion (Frank 1949) and
the condition that the sum Burgers’ vector of the
reacting dislocations should be equal to the sum
Burgers’ vector of the formed dislocations (Hirth
and Lothe 1968). The occurrence of partial dis-
locations initiates the twinning dislocations and
implements the appropriate twinning mechanism
(Cottrell and Bilby 1951), while their interaction
leads to the formation of the dislocation barriers
(Hirth 1961). In the process of inelastic defor-
mation, the dislocations interact with defects of
different types, and it provides strengthening. The
increased temperatures cause the formation of
jogs and kinks at the dislocation line, the activa-
tion of the diffusion processes by contributing to
metals’ softening.

The other important mechanism of inelastic
deformation is twinning which does not prevail
in metals with a big amount of slip systems
(cubic lattice crystals). Twinning takes place in
metals in which dislocation sliding along some
slip systems is limited (hexagonal close-packed
crystals). But it is experimentally confirmed that
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the deformation by twinning is also found in
metals with a cubic crystal lattice at low homo-
logical temperatures in materials with the low
stacking fault energy and under increased rates of
deformation (Honeycombe 1984). The appearing
twins initiate a significant change in the material
response, since they form effective barriers for
the motion of the edge dislocations. Thus, in sim-
ulation of elastic-plastic deformation processes,
it is necessary to take into consideration not only
the motion of the edge dislocations but also the
twinning as the mechanism of inelastic defor-
mation and hardening. In crystal plasticity the
representation of deformation by a combination
of shears is usually used to describe twinning.
The magnitude of a shear is fixed for each type
of a crystal lattice. In this case, the shear strains
are determined by the volume fraction of twins.
The directions and planes of shear depend on
the temperature of deformation (Hirth and Lothe
1968). It is known from the experiments that
the propensity of a material to twinning rises
when the temperature starts to decrease. Together
with the temperature impacts, the strain rate has
a significant influence on the twinning process.
In deformation with rates that are lower than
a critical value, twinning is not found in the
samples (Hirth and Lothe 1968).

Inelastic deformation leads to the creation of
defects at different scale levels. The temperature
rise in inelastic deformation activates a number
of processes which result in a significant change
of the defect structure. Among them the “recov-
ery” process has the lowest temperatures. As a
result of the temperature rise during the “recov-
ery,” there comes the decrease of the defects’
concentration appearing during inelastic defor-
mation. The activation energy of such transfor-
mations has the minimum value. As a result,
certain processes are in progress at the stage of
“recovery,” such as the point defect annihilation
(vacancies and interstitial atoms) and the cluster-
ing of interstitial atoms (extrinsic stacking fault)
and point defects (intrinsic stacking fault) and the
flux of point defects to dislocations, dislocation
structures, boundaries of grains/phase/twins, and
external surfaces which decreases the concentra-
tion of point defects.

A further increase of the heat treatment tem-
perature activates the “polygonization” process
with the motion and redistribution of the disloca-
tions that lead to their partial annihilation, as well
as to the formation of the small-angle boundaries.
The term of “polygonization,” as noted in the
works of Cahn (Cahn 1949, 1950), was proposed
by E. Orowan; the works (Orowan 1954; Beck
1954, etc.) are also dedicated to studying polygo-
nization.

At increased temperatures the dislocations of
opposite signs start to annihilate; the rest of the
dislocations are attracted or repulsed by their
elastic fields. Finally, the dislocations form the
“walls” which separate the crystal into the blocks
that are disoriented relatively to each other by
small angles. To arrange the edge dislocations
into the walls, besides conservative movement
(dislocation glide), some edge dislocations
should go over into the neighboring planes
by the diffusion way (dislocation climb). In
case of the multiple glide, the formation of
low-angle boundaries due only to gliding and
climbing is impossible. The motion of screw
dislocations is added to the process. As a result,
the cellular structure and the volume dislocation
tangles (“cell walls”) are formed. The driving
force of such a process is the interaction of
the elastic fields of dislocations which leads
to the formation of the boundaries encircling the
cells. During further heating these boundaries
become thinner and transform into flat low-angle
sub-boundaries, while the cells transform into
subgrains. At the same time, some dislocations
from the cell volume are involved into the formed
sub-boundaries influenced by the elastic forces.

Recrystallization is the next stage of the struc-
ture changing for deformable metals and alloys
under higher temperatures. Recrystallization is a
process of a complete or partial replacement of
some grains of a certain phase which contain
various structural imperfections by other grains
of the same phase which possess more ideal struc-
ture (Lakhtin and Leontieva 1980). The process
is effected by the process of generation, or both
by generation and motion, or only by motion
of high-angle boundaries (Friedel et al. 1964;
Lakhtin and Leontieva 1980; Honeycombe 1984;
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Gorelik et al. 2005). As a result of heating, when
a certain temperature level (temperature threshold
of recrystallization) reaches a given preliminary
intensity of the plastic strain, the nucleations
of new grains start to form and grow at the
areas where the lattice distortion is higher (the
boundaries of the deformed grains, twin bound-
aries, intersections of slip planes, shear bands,
and other defects). The lattice of new grains is
almost undistorted, it has a much smaller density
of the defects, and, as a rule, it is separated
from the other part of the matrix by the high-
angle boundaries. The growth of “new” grains is
predominantly carried out by the diffusion way
(the atoms of “old” deformed grains are attached
to the nucleation). The process of recrystalliza-
tion is more energetically advantageous than the
process of “recovery,” as it is accompanied by the
free energy decrease. There is a certain classifi-
cation of recrystallization based on the type of
applied loads in scientific literature (Gorelik et al.
2005). The preliminary plastic strain and further
temperature impacts without active deformation
loadings initiate a so-called static recrystalliza-
tion. In the process of hot plastic deformation (a
simultaneous influence of external loadings and
temperature), the dynamic recrystallization takes
place. Postdynamic recrystallization occurs after
hot deformation and, in case of the absence of
deformation loading, by a rapid growth of the
recrystallization centers prepared during defor-
mation. When the primary recrystallization is
finished in the process of further heating, the
collective recrystallization can take place, i.e.,
the growth of some recrystallized grains due to
others. This occurs as a result of the migra-
tion of high-angle boundaries, when the grains
with convex boundaries “are eaten” by the grains
with concave boundaries (Lakhtin and Leontieva
1980). The reason for such recrystallization is the
decrease of the grain boundary (surface) energy,
as the boundary length decreases in the pro-
cess of grains’ growth; and larger grains start
to appear. The result of heating after primary
recrystallization can be different, i.e., some grains
have the crystallographic orientation which is
favorable for further growth, the concentration of
defects (the value of the volume density of inter-

nal energy) which is smaller than other grains
have, and a higher mobility of the grain bound-
aries due to the inhomogeneous distribution of
the solute. In view of the foregoing, the majority
of the fine-grained crystals and a small number of
coarse-grained ones are formed. Such process is
called the secondary recrystallization.

The solid-state phase transformations which
take place in the material as a result of the
thermomechanical impact and entail the change
of the material crystal structure play an impor-
tant role in the processes of thermomechani-
cal treatment of steels and alloys (Kurdumov
et al. 1977; Kashchenko et al. 1996; Kouznetsova
and Geers 2008; Bhadeshia and Honeycombe
2017). If a material can exist in different crystal
modifications, then its most stable phase is that
corresponding to the lower level of free energy
under fixed conditions. Herewith the crystal lat-
tice type resulting from phase transformation
depends on complex interaction of atoms and
electrons. The use of the thermodynamics the-
ory allows connecting the stability of one or
another crystal modification with the connecting
forces, amplitude, and frequency of atom fluc-
tuations which are naturally determined by the
structure and state of the atoms. The solid-state
phase transformations comply with the common
laws of crystallization related to the occurrence
and growth of new phase nucleuses. Solid-state
phase transformations are effected in the solid
anisotropic medium; therefore, during transfor-
mation the atoms (belonging to different modifi-
cations) on the contiguous facets of the initial and
new phases take their positions according to the
principle of the structural and dimensional con-
formity, i.e., a nucleus of a new phase in the solid
anisotropic medium should be oriented in such a
way that it contacts the initial (“old”) phase by
its crystal planes which have most similar struc-
tural sizes (Dankov 1943; Konobeevsky 1943;
Kurdumov et al. 1977; Bhadeshia and Honey-
combe 2017). Solid-state phase transformations
take place in such a way that a stable nucleus is
formed in the conditions which correspond to the
thermodynamic stability of the new phase due to
the fluctuations of energy, configuration, or den-
sity (concentration); the nucleus is characterized
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with a different arrangement of atoms determin-
ing a new crystal lattice. According to the princi-
ple of the structural and dimensional conformity,
the order of atoms’ arrangement is changing by
their regular displacement in the lattice of the ini-
tial phase; under this displacement the energy of a
given volume of the transformed material reaches
its minimum (Entin 1960). This mechanism of
a new phase formation during transformation at
the solid anisotropic medium creates the situation
when the crystals of a new modification become
regularly oriented toward the initial crystals. In
the solid-state phase transformation, the grain
structure of the material starts to change, and it
is connected to the formation of new phase grains
which differ from the grains of the initial phase in
their shape and sizes. Such microstructure change
in solid-state phase transformations is used in a
number of technological processes related to the
thermomechanical treatment of alloys (annealing
of the second kind, hardening, etc.).

All the available solid-state phase transitions
which result from the cooling of austenite (per-
litic, bainitic, and martensitic ones (Kurdumov
et al. 1977; Bhadeshia and Honeycombe 2017))
are found in steels. Austenite is an interstitial
solid solution of carbon in γ− Fe (face-centered
cubic lattice). Martensite is a supersaturated
solid solution of the substitution in α−Fe (body-
centered cubic (tetragonal) lattice) appearing
as a result of γ − α transformation in case
of a lack of carbon diffusion. Perlite is an
eutectoid mixture of ferrite (α − Fe) and
cementite (or special carbides). A bainitic
structure can consist of ferrite, carbides, and
residual austenite. Thus, depending on the
conditions of the process, a transformation can
be fulfilled either by the normal (diffusive)
mechanism (if the interphase boundary is non-
coherent) or by the martensitic (diffusionless)
mechanism (if the interphase boundary is
coherent). An important feature of the diffusion
phase transformations is the formation of a new
phase that is accompanied by the redistribution
of the alloying elements and carbon and requires
the diffusive redistribution of atoms for long
distances. Various phase transformations under
thermomechanical impacts and their kinetics

depend on the composition of the steel and
parameters of the thermomechanical influence
such as temperature, heating conditions, duration
of exposure, cooling rate, mechanical loading,
etc.

The description of the phase transformation
process is based on using the thermodynamic
approach. The determination of the thermody-
namic driving forces of phase transformations is
based on the dissipation inequality. Different
thermodynamic potentials such as internal
energy, Helmholtz free energy, Gibbs free energy,
and entropy can be used wherein. The choice
of the thermodynamic potential depends on
the distinctive features of the problem under
consideration. The phase transformation criteria
are formulated in terms of the thermodynamic
driving force when the phase transformation
is there, if the thermodynamic force reaches
some critical value, which is the parameter
of the material. The kinetic equations are
formulated for the fractions of all the coexisting
phases in the structure of the material which
describe the phase fraction changing (velocity of
changing) depending on the parameters of the
process.

About the Multilevel Models of Steels
and Alloys Aiming to Describe
Thermomechanical Processing

The multilevel approach with internal variables is
quite promising for the simulation of the recrys-
tallization processes (Raabe and Becker 2000).
As a rule, the crystal plasticity-based models
that are integrated into the software realization
of the finite element method are used herewith
(Bate 1999; Roters et al. 2010; Takaki and Tomita
2010). In this case the position of a boundary
for the recrystallized grains is determined by the
Monte Carlo method, the cellular automation, or
the phase field method. Two stages can be dis-
tinguished in the recrystallization simulation, i.e.,
the simulation of new grains’ nucleation and of
the motion of the boundaries of the recrystallized
grains. In order to simulate the nucleation stage
of grains, the statistical methods are actively
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utilized which use the physical analysis of the
preferable positions of new grain generations.
The additional internal variable is introduced into
the structure of the constitutive model during
the simulation of the motion of new high-angle
boundaries. The most important of them is the
driving force which acts on the boundary of a
new grain, the boundary normal growth rate,
and the boundary mobility. For many polycrys-
talline materials, especially for the chemically
clear ones, the boundary motion rate is deter-
mined as a multiplication of the driving force and
mobility value (Rollett et al. 2004). The mobility
parameter is a function of temperature; and it is
characterized by the Arrhenius-type equation. For
many polycrystalline materials, the main driving
force for the normal boundary motion is the
difference of the stored energy (in inelastic defor-
mation) between two neighboring grains. The
driving force also depends on the intergranular
energy, the atomic structure of the boundary, the
misorientation between the neighboring grains,
the location of the boundary, the curvature of
the boundary, triple junctions, and the density of
vacancies in the neighboring grains. Disperse par-
ticles, the presence of other phases, micropores,
and the impurity atoms initiate the deceleration
of the boundary migration.

It is one of the priority objectives to consider
phase transformations which occur in materials
during the simulation of the thermomechanical
treatment of steels and alloys. A correct descri-
ption of how materials change their structure
(including those which are caused by the phase
transformations occurring in the material, when
it is under treatment) using the multilevel con-
stitutive modeling provides an effective instru-
ment aiming to develop new methods of creat-
ing materials with a given set of properties, as
well as optimizing the already available mate-
rials and technologies of their treatment. It is
quite resource-intensive to have an experimental
study of this issue, especially in case of the
complex thermomechanical loading; therefore, it
is important for solid mechanics to develop the
constitutive models which will describe the state
and evolution of the material structure taking
into account solid phase transformations occur-

ring in the material (Bhadeshia and Honeycombe
2017).

Traditionally, there are two main approaches
to the modeling of the solid phase transfor-
mations. The first approach is based on an
explicit consideration of interphase boundaries
with regard to the conditions at the boundary
of the phases in the deformed material and the
kinetics of a new phase development. The second
approach is connected with the elaboration
of models based on the introduction of the
additional state parameters which characterize
particular features of the material structure “on
average” (e.g., the concentration of a new phase)
and the formulation of the constitutive equations
for these parameters.

An explicit introduction of interphase
boundaries into consideration (Grinfeld et al.
1990; Yeremeyev et al. 2007, etc.) allows to
describe the phase transformations from the point
of view of solid mechanics using many ideas of
the classical theory of phase transformations by
J. Gibbs. The material microstructure changing in
the process of the phase transformation generates
the intrinsic strains of the transformation and
leads to the elasticity modules’ changing. In this
case, the boundary of the phases in the elastic
material is considered as a surface where the
strain field is discontinuous, while the stress field
is continuous. The occurrence of an equilibrium-
discontinuous strain field in the elastic body
requires the availability of the areas in the strain
field where Hadamard’s inequality is broken,
which is a necessary condition of the stability
under small strains. In this case, to ensure the
balance at the boundary of the phases, certain
conditions are set, such as the preservation of the
material continuity, force continuity, and the con-
dition which is the analog of the chemical poten-
tials’ equality in Gibbs’ theory. So, there comes
the limitation in determining the phase boundary
form and appropriate strains at the boundary. This
entails the concept of the phase transition zone
which boundary determines the ultimate surface
of transformation in the strain field.

It is quite often that the phase field method
is applied to simulate both the diffusion phase
transformations and the diffusionless (marten-
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sitic) transformations at the mesolevel (when the
simulation is fulfilled for the volume consist-
ing of several grains) (Cahn and Hilliard 1958;
Chen and Khachaturyan 1991; Wang et al. 1993;
Karma and Olabi 2001; Steinbach and Apel 2006;
Yamanaka et al. 2010; Bellon 2012; Choudhury
2017, etc.). This approach assumes the availabil-
ity of a “fuzzy” “diffusion” boundary between
the phases in contrast to the classical methods
that use the concept of a “sharp boundary.” In
the approach of the “diffusion boundary,” the
form and mutual arrangement of the regions of
single phases are described by an aggregate of the
parameters determining their volume fractions ϕi .
The value of the parameter can change from 0
to 1; ϕi = 0 corresponds to the region without
i phase, and ϕi = 1 means that the region
is a single-phased one. So, the microstructure
(except for grain boundaries, defects, etc.) can
be described by a set of single-phase domains
separated by the boundaries, where more than one
value of ϕi differs from zero. So, in the approach
of the “diffusional boundary,” the form changing
(and hence, the position of the boundary) in time
is determined implicitly by changing the phase
fractions. The change of the phase fractions in
time is described by the kinetic equation which is
received in the framework of the thermodynamics
of irreversible processes, i.e., the linear connec-
tion between the phase fractions’ changing rate
and the derivative of the thermodynamic potential
with respect to this parameter is used. The phase
transformations which occur in isothermal con-
ditions are investigated more often. And in this
case, the free energy is used as a thermodynamic
potential. But there are works aiming to study
the non-isothermal processes, when the entropy is
chosen as a thermodynamic potential (Loginova
et al. 2001). Free energy is usually determined
as a sum of chemical, elastic, and “gradient”
parts. In case of describing the diffusion phase
transformations (besides the kinetic equation for
the phase fractions), the equations of diffusion are
solved to determine the change of concentrations
for the alloying elements and carbon. In this case
the chemical energy of the system depends on
the concentration of the alloying elements and
carbon.

The macrophenomenological approach that is
based on using the kinetic equations to describe
the new phase fraction, nascent as a result of
a solid phase transformation at the level of the
sample (Avrami 1940; Koistinen and Marburger
1959), is rather widespread in describing the ther-
momechanical processing of steel constructions.
Within the framework of this approach in deter-
mining the volume fraction of martensite, the
phenomenological exponential relation by Koisti-
nen and Marburger is often used:

ξ = ξ0
A

(
1− e−k(MS−θ)

)
, (10)

where ξ0
A is a volume fraction of austenite at

the initial moment, k is the material parameter,
MS is the temperature of the martensite transfor-
mation beginning, and θ is temperature. For the
volume fraction of the phase (formed by the dif-
fusion mechanism), the Johnson-Mehl-Avrami-
Kolmogorov equation is usually used:

ξ = ξmax
(

1− e−btn
)
, (11)

where ξmax is a limit fraction of a new phase
and b and n are the material parameters. In
this case all the material parameters are deter-
mined upon the diagram of the isothermal trans-
formation for the modeled steel. The described
macrophenomenological relations (10) and (11)
determining the phase fractions are formulated
based on the hypothesis that the nucleuses of the
new phase are supposed to be randomly allocated
in the area; the growth rate is supposed to be
independent from the degree of transformation,
and the growth goes with an equal rate in either
direction. There is a great number of works which
offer different modifications of kinetic equations
(10) and (11). As a rule, these modifications
are based on adding the functional dependences
of the material parameters from the parameters
of the external impact such as temperature and
applied loading.

Unlike the traditional macrophenomenologi-
cal approaches to the simulation of phase trans-
formations which have been described in short
earlier, the use of the multilevel approach allows
to describe the mechanisms connected with the
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phase transformations at that scale level, where
they take place in the real material. Multilevel
modeling allows supplementing the structure of
the model with the relations describing different
processes affecting each other, such as inelastic
deformation at the level of crystallites, chang-
ing the phase composition of the material, and,
consequently, changing its properties in the pro-
cess of the thermomechanical impact, changing
the temperature conditions, etc. To describe the
solid phase transformations, the additional inter-
nal variables are entered into the structure of the
multilevel constitutive model (1), (2), (3), (4), (5),
(6), (7), (8), and (9) which have been provided
earlier. These internal variables characterize the
material structure changing at various scale levels
in the process of phase transformation, for exam-
ple, the fractions of all the phases coexisting in
the material in the fixed conditions of the process
under consideration. The evolutional equations
which are based on the physical concept about the
modeled process are formulated for the internal
variables of the model.

As a rule, in simulation of the phase trans-
formations at the mesolevel, when the modeled
area is a single grain or an aggregate of grains,
one uses the models which are based on crystal
plasticity with the introduction of some addi-
tional parameters considering the phase trans-
formations occurring in the material (Olson and
Cohen 1975; Cherkaoui et al. 1998; Iwamoto
2004; Turteltaub and Suiker 2006; Kouznetsova
and Geers 2008; Tjahjanto et al. 2008; Lee et al.
2010; Fischlschweiger et al. 2012; Yadegari et al.
2012, etc.). In case of modeling the thermo-
mechanical processing using this approach, the
phase composition for the material representa-
tive volume of some scale level is determined
depending on the influencing external conditions.
As a result of phase transformations, the material
volume under consideration can be partially or
completely turned into a new phase. Each phase
is characterized by a certain complex of the
homogenous properties and known microstruc-
ture. Particularly, the phases can differ in their
composition and the type of the material crys-
tallite lattice (or the parameters of the crystallite
lattice).

As a rule, the extended multiplicative decom-
position of the deformation gradient is used in
such models which includes (besides the elastic
and the plastic constituents) the part character-
izing the configuration change due to the phase
transformation. Therefore, relation (1) is trans-
formed into the following one:

f = fe · fp · ftr, (12)

where ftr is the transformation part of the defor-
mation gradient. To determine the transformation
constituent of the deformation gradient, we use
all the available information and the physically
based hypothesis about the new nascent phase of
the material. For example, in the simulation of
the martensite transformation, the transformation
part of the deformation gradient can be deter-
mined upon the Bain deformation for each variant
of the martensite.

As a rule, the description of a phase trans-
formation in the structure of a multilevel model
is based on using the thermodynamic approach.
Wherein, each phase can be described as an area
having a specific thermodynamic potential in
the equilibrium state which is different from the
potentials of other phases. Within the framework
of the representative volume of the material,
the phase transformations are executed under
the influence of the thermodynamic driving
forces. The thermodynamic driving force of
the transformation can be determined based on
the approaches of the classical thermodynamics
of the irreversible processes (de Groot 1951;
Christian 2002; Kondepudi and Prigogine
2015; Winterbone and Turan 2015). As a rule,
the common structure of the thermodynamic
driving forces of phase transformations can be
determined based on the dissipation inequality.
Depending on the features of the solved problem,
different thermodynamic potentials can be
used therein (internal energy, Helmholtz free
energy, Gibbs free energy, entropy). More often
the criteria of phase transformations are also
formulated in terms of the thermodynamic force,
i.e., the phase transformation is there, if the value
of the thermodynamic driving force reaches the
critical level which is the material parameter.
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The kinetic equations are formulated for the
fractions of all the coexisting phases in the
structure of the material representative volume
at the scale level. These equations describe
the change of the phase fraction (velocity of
changing) depending on the process parameters.

So, the evolutional equations for the phase
fractions are added to the system of Eqs. (5), (6),
(7), (8), and (9):

ξ̇ (j)=
〈
equation to determine ξ̇ (j)

〉
, j=1, . . .,M,

(13)
where ξ (j) is the j -phase fraction formed as a
result of the phase transformation and M is a
common quantity of the phases which can be
formed as a result of the phase transformation. As
a rule, the rate of changing for the phase fraction
j is a function depending on the temperature and

thermodynamic driving force of the transforma-
tion of the initial phase to the phase j .

Inelastic strains of the representative volume
element at a scale level in Eq. (5) for the case
of the phase transformation can be determined
by averaging the inelastic strains of the sep-
arate phases weighted with their fractions. To
describe the non-isothermal processes, the depen-
dence from the temperature is also added to the
structure of the relations (5), (6), (7), (8), and (9).
Besides, the additional constituent characteriz-
ing the transformational strains connected to the
phase transformation in the material is added to
the right part of the relation (5). Thus, to describe
the processes of the material thermomechanical
treatment, the system of Eqs. (5), (6), (7), (8),
and (9) for the element of a scale level can be
reorganized in the following way, for example:

κcr = dκ/dt + κ · ω− ω · κ = π :
(

l − ω−
N∑

i=1

ξ (i)
K∑

k=1

γ̇(k)b(k)n(k) − lth − ltr
)

,

γ̇(k) = γ̇0

(
τ(k)/τ(k)c

)m
H
(
τ(k) − τ(k)c

)
, k = 1, . . . ,K,

τ(k) = κ : n(k)b(k), k = 1, . . . ,K,

τ̇(k)c =
〈
equation to determine τ̇(k)c

〉
, k = 1, . . . ,K,

ω = 〈equation to determine ω
〉
,

ξ̇ (j) =
〈
equation to determine ξ̇ (j)

〉
, j = 1, . . . ,M,

(14)

where lth is the thermal component of the velocity
gradient which can be found as lth = αθ̇ (where
α is the thermal expansion tensor determined
for the multiphase material volume by weighing
the thermal expansion tensors of the separate
phases with fractions of these phases, respec-
tively); ltr is the transformation component of the
velocity gradient which appears due to the phase
transformation in the considered material volume
which can be determined from the relation ltr =
M∑

j=1
ξ̇ (j)f∗j , where f∗j is the transformation veloc-

ity gradient describing the transformation of the

initial phase to the phase j and determined by
the type of the current phase transformation. The
tensor of elastic properties π of the multiphase
representative volume is determined similarly by
the rule of mixture. Of course, the structure of the
constitutive model relations at the mesolevel (14)
can also be expanded by taking into consideration
other mechanisms of inelastic deformation.

So, the authors have shortly characterized the
multilevel constitutive models and described cer-
tain approaches to their application in order to
specify the processes of thermomechanical treat-
ment.
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�Elastic Shells, Linear Shear-Deformable
Theory

Thin Bodies Embedded in
Fractional Derivative
Viscoelastic Medium,
Dynamic Response

Yury A. Rossikhin and Marina V. Shitikova
Research Center on Dynamics of Solids and
Structures, Voronezh State Technical University,
Voronezh, Russia
Research Center for Wave Dynamics of Solids
and Structures, Voronezh State Technical
University, Voronezh, Russia

Synonyms

Dynamic response; Fractional derivative
viscoelastic medium; Thin plates and shells

Definition

Damped vibrations of such elastic thin bodies
as plates and circular cylindrical shells embed-
ded into a viscoelastic medium, the rheological
features of which are described by fractional
derivatives, are considered in this entry.

Backgrounds

Interest in fractional calculus has quickened
profoundly in the past few decades, resulting in
a large body of articles devoted to this challenge,
which is clearly emphasized in a set of review
papers published in the field (Rossikhin and
Shitikova 1997a, 2010; Gaul 1999; Shimizu and
Zhang 1999). The most recent state-of-the-art
article Rossikhin and Shitikova (2010) is devoted

Yury A. Rossikhin: deceased.

to the analysis of new trends and recent results
carried out during the last decade in the field
of fractional calculus application to mechanics
of materials and dynamic problems of structural
mechanics, while the historical survey about
two parallel ways in the progress of fractional
calculus in mechanics of solids can be found in
Rossikhin (2010).

It has been shown in Rossikhin and Shitikova
(2010) that during the last decade fractional
calculus entered the mainstream of engineering
analysis and has been widely applied to
structural dynamics problems both in discrete
and continuous equations. However, the majority
of papers are mainly concerned with investigation
of vibrations of one-degree-of-freedom systems.

In this entry, it will be shown how the
utilization of the Rayleigh hypothesis together
with the modal analysis in dynamic problems of
the systems with an infinite number of degrees
of freedom, such as thin plates and shells, could
be useful in reducing to the dynamic response
of a finite or infinite set of uncoupled linear
oscillators, the theory of which is well developed.

Damped Vibrations of
N -Degree-of-Freedom Mechanical
Systems

It is known (Clough and Penzien 1975) that
during the analysis of linear damped vibrations of
N -degree-of-freedom mechanical systems, their
equations of motion could be reduced to a finite
set of uncoupled equations in the generalized
coordinates, each of which describes damped
vibrations of a mechanical oscillator. The equa-
tion of motion of such systems in the vector form
could be written as

mV̈+ cV̇+ kV = P(t), (1)

where V is the displacement vector, an overdot
denotes the derivative with respect to the time
t , m is the matrix of lumped masses with the
elements mn, k is the stiffness matrix with the
elements kn, c is the damping matrix with the
elements cn, and P(t) is the force vector.

https://doi.org/10.1007/978-3-662-55771-6_194
https://doi.org/10.1007/978-3-662-55771-6_300203
https://doi.org/10.1007/978-3-662-55771-6_300274
https://doi.org/10.1007/978-3-662-55771-6_300680


Thin Bodies Embedded in Fractional Derivative Viscoelastic Medium, Dynamic Response 2513

T

Suppose that

c = a0m+ a1k, (2)

where a0 and a1 are certain coefficients, and
represent the solution of Eq. (1) and the force
P(t) in terms of the expansions in eigenvectors
ϕi (i = 1, . . . , N) of the given problem, i.e.,

V = ϕ1Y1 + ϕ2Y2 + . . .+ ϕNYN , (3)

P(t) = ϕ1P1 + ϕ2P2 + . . .+ ϕNPN ,

then substituting (3) in (1) with account for the
orthogonality conditions of the eigenvectors

ϕT
mmϕn = ϕT

mkϕn = ϕT
mcϕn = 0 (m �= n),

ϕT
mmϕn = Mn , ϕT

mkϕn = ω2
nMn ,

ϕT
mcϕn = τnω

2
nMn (m = n), (4)

and then applying the Laplace transformation
yield

(
p2 + ω2

nτnp + ω2
n

)
Ȳn = F̄n (i = 1, . . . , N),

(5)
where p is the Laplace transform parameter,
F̄n = P̄nM

−1
n , and an overbar denotes the

Laplace transform; a0 and a1 are the coefficients
of proportionality; Yi and Pi (i = 1, . . . , N)

are the generalized displacements and forces,
respectively; an upper index T denotes the
transposed vector; ωn is the n−th frequency of
natural vibrations; and τn is the retardation time
for the n−th mode.

Each equation from (5) describes the damped
vibrations of a mechanical oscillator, damping
features of which are described by the classical
Kelvin-Voigt model.

If the Kelvin-Voigt model involves fractional
derivative, then Eq. (5) is written as (Rossikhin
and Shitikova 1997a,b)

(
p2 + ω2

nτ
γ
n p + ω2

n

)
Ȳn = F̄n (i = 1, . . . , N),

(6)
where γ (0 < γ ≤ 1) is the order of the fractional
derivative (fractional parameter).

Reference to Eqs. (5) and (6) shows that vis-
cosity of the mechanical system has the modal
character, which is verified by experimental data
Abdel-Ghaffar and Scanlan (1985).

From Eq. (6) it follows

Ȳn = F̄n

f̄n
(i = 1, . . . , N), (7)

f̄n = p2 + æ2
np + ω2

n, (8)

where æ2
n = ω2

nτ
γ
n .

In order to convert from the Laplace domain to
the time domain via the Mellin-Fourier inversion
formula

Yn(t) = 1

2πi

∫ c+i∞

c−i∞
Ȳn(p)e

ptdp , (9)

it is needed to find all particular points of the
function Ȳn(p). This function possesses the
branch points p = 0 and p = −∞ and has
the simple poles at the same magnitudes of p,
which are the roots of the characteristic equation

f̄n = 0 . (10)

Since for the multivalued functions possessing
branch points the inversion formula is valid only
for the first sheet of the Riemann surface, then for
calculating the integral in (9) the closed contour
of integration with a cut along the real negative
axes should be used (Rossikhin and Shitikova
1997a,b). Applying Jordan’s lemma and the main
theorem of the residue theory, integral (9) can be
written in the form

Yn(t) = Y drift
n (t)+ Y vibr

n (t), (11)

Y drift
n (t) = 1

2πi

∫ ∞

0

[
Ȳn(se

−iπ )

−Ȳn(seiπ )
]
e−stds, (12)

Y vibr
n (t) =

∑

k

res
[
Ȳn(pk)e

pkt
]
, (13)



2514 Thin Bodies Embedded in Fractional Derivative Viscoelastic Medium, Dynamic Response

where the summation is carried out along all
isolated singular points (poles) p = pk .

The first term (12) of (11) describes the drift
of the equilibrium position of the n−th oscilla-
tor and is governed by the relaxation-retardation
processes occurring in the mechanical system,
while the second term (13) describes its damped
vibrations around the drifting position of equilib-
rium and is determined by the inertia forces and
dissipative forces.

For utilizing (11), (12), and (13) to construct
the final expression for Yn(t), it is needed to
investigate the root pn = −rne±iψ = αn ± iΩn

locus of the characteristic equation (10), where
αn and Ωn are the damping coefficient and the
vibration frequency of the n−th oscillator. This
procedure is described in detail in Rossikhin and
Shitikova (1997a,b), as well as in entry �Linear
and Nonlinear Vibrations: Fractional Oscillators
in Encyclopedia of Continuum Mechanics.

Knowing the roots of the characteristic equa-
tion, it is possible to construct the Green function
Gn(t) based on (11), (12), and (13) if put F̄n = 1
in (7) (Rossikhin and Shitikova 2010)

Gn(t) = A0n(t)+ Ane
−αnt sin(Ωnt − ϕn),

(14)

An = 2
[
4r2

n + γ 2æ2
nr

2(γ−1)
n

+4γænr
γ
n cos(2− γ )ψ

]−1/2
, (15)

tanϕn = −2rn cosψ + γænr
γ−1
n cos(1− γ )ψ

2rn sinψ − γænr
γ−1
n sin(1− γ )ψ

,

(16)

A0n(t) =
∫ ∞

0
r−1Bn(τ) exp(−t/τ )dτ, (17)

and

Bn(τ) = sinπγ

π

τ(1+ τ 2ω2
n)
−1

(1+ τ 2ω2
n)æn

−1τ
γ−2
n + (1+ τ 2ω2

n)
−1ænτ

2−γ
n + 2 cosπγ

(18)

is the function of distribution of the retardation
times corresponding to the n−th oscillator.

Knowing the Green function, Yn(t) is found as

Yn(t) =
∫ t

0
Gn(t − t ′)Fn(t ′)dt ′. (19)

Below it will be shown how an infinite set
of uncoupled equations in the generalized dis-
placements could be found for thin plates and
cylindrical shells, i.e., for systems with infinite
degrees of freedom.

Free Vibrations of an Elastic Plate in a
Viscous Medium

Dynamic response of an elastic rectangular plate
vibrating in a viscous medium, damping features
of which are modeled by fractional derivatives,
could be analyzed using the equations describing
in-plane and transverse vibrations of such a plate

written in the dimensionless form as (Rossikhin
and Shitikova 2006)

∂2u1

∂x2
+ 1− ν

2
β2

1
∂2u1

∂y2
+ 1+ ν

2
β1

∂2u2

∂x∂y

= ü1 + μDγ u1 − q1 (20)

β2
1
∂2u2

∂y2 +
1− ν

2

∂2u2

∂x2 +
1+ ν

2
β1

∂2u1

∂x∂y

= ü2 + μDγ u2 − q2 (21)

β2
2

12

(
∂4u3

∂x4
+ 2β2

1
∂4u3

∂x2∂y2
+ β4

1
∂4u3

∂y4

)

= −ü3 − μDγ u3 + q3, (22)

where u1(x, y, t), u2(x, y, t), and u3(x, y, t) are
displacements of the points of the plate’s median
surface in three mutually orthogonal directions
x, y, z, two of which, x and y, lie in the plate
surface, and the third one, z, is out of the plate
plane; q1, q2, and q3 are the intensities of the

https://doi.org/10.1007/978-3-662-55771-6_80
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given external loads applied in the x−, y−,
and z−directions, respectively; ν is the Poisson’s
ratio; μ is the damping coefficient; β1 = a/b and
β2 = h/a are the parameters depending on the
plate’s dimensions; a and b are the plate’s dimen-
sions along the x− and y−axes, respectively; h is
the plate thickness; and the fractional derivative is
defined as (Rossikhin and Shitikova 1997a)

DγZ = d

dt

∫ t

0

Z(τ)dτ

Γ (1− γ )(t − τ)γ
.

From reference to Eqs. (20), (21), and (22) it
follows that in-plane and out-of-plane vibrations
of such a plate are uncoupled, while the in-plane
motions are described by a set of two linear cou-
pled Eqs. (20) and (21). That is why the behav-
ior of each mode of the coupled equations was
modeled in Rossikhin and Shitikova (2006) by
the behavior of a two-mass oscillator (Rossikhin
and Shitikova 2001); in so doing the oscillators
corresponding to different modes are separated
from each other.

Below another approach resulting in decou-
pling of the equations for the in-plane vibrations
and utilizing equations of one-mass oscillators
is proposed following (Rossikhin and Shitikova
2012).

Thus, assume for simplicity that Eqs. (20),
(21), and (22) are subjected to the boundary
conditions of the Navier type. Then the displace-
ments and the external loads can be represented
in the form

ui(x, y, t) =
∞∑

m=1

∞∑

n=1

xi mn(t)ηi mn(x, y),

(i = 1, 2, 3) (23)

qi(x, y, t) =
∞∑

m=1

∞∑

n=1

yi mn(t)ηi mn(x, y),

(i = 1, 2, 3), (24)

where m and n are integers; xi mn and yi mn are
the generalized displacements and forces, respec-
tively; and ηi mn(x, y) are the eigenfunctions of
the given problem:

η1 mn(x, y) = cosπmx sinπny,

η2 mn(x, y) = sinπmx cosπny, (25)

η3 mn(x, y) = sinπmx sinπny

at 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
Substituting (23) and (24) in Eqs. (20), (21),

and (22), using the conditions of orthogonality
of the eigenfunctions (25) on the segments 0 ≤
x, y ≤ 1, and applying the Laplace transform to
the resulting set of equations yield

p2x̄α mn + Smnαβ x̄β mn + pγμmn
αβ x̄β mn

= ȳα mn, (26)

(p2 + μmnp
γ + Pmn)x̄3 mn

= ȳ3 mn, (27)

where Greek letters take on the magnitudes of
1 and 2, the summation is carried out over two
repeated indices, the elements of the matrix Smnαβ

and Pmn are defined as follows:

Smn11 = π2
(
m2 + 1− ν

2
β2

1n
2
)
,

Smn12 = Smn21 = π2 1+ ν

2
β1mn,

Smn22 = π2
(

1− ν

2
m2 + β2

1n
2
)
,

Pmn = π4 β2
2

12

(
m2 + β2

1n
2
)2

,

and the modal viscosity μmn is assumed to satisfy
the Rayleigh hypothesis, i.e., μmn = æmnS

mn
αβ

with the value æ taken for convenience as æmn =
τ
γ
mn.

Then Eq. (26) can be rewritten as

p2x̄α mn+Smnαβ x̄β mn(1+pγ τγmn) = ȳα mn. (28)

Since the matrix Smnαβ is symmetric, then it
possesses two real eigenvalues

p2
i = −ω2

i mn, ω2
1 mn = π2(m2 + β2

1n
2),

ω2
1 mn = π2 1− ν

2
(m2 + β2

1n
2), (29)
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which are in correspondence with two mutually
orthogonal eigenvectors:

lImn

{
lI1 mn =

πm

ω1 mn

, lI2 mn =
πβ1n

ω1 mn

}
, (30)

lIImn

{
lII1 mn =

πβ1n

ω1 mn

, lII2 mn = −
πm

ω1 mn

}
.

(31)

Thus, the matrix Smnαβ and the vectors x̄α mn

and ȳα mn can be expanded in terms of the vectors
(30) and (31) as

Smnαβ = ω2
1 mnl

I
α mnl

I
β mn + ω2

2 mnl
II
α mnl

II
β mn,

x̄α mn = X̄1 mnl
I
α mn + X̄2 mnl

II
α mn, (32)

ȳα mn = Ȳ1 mnl
I
α mn + Ȳ2 mnl

II
α mn.

Substituting (32) in Eqs. (28) and multiply-
ing the net relationships successively by lIα mn

and lIIα mn, the two following equations could be
found

[
p2 + ω2

1 mn(1+ pγ τ
γ
mn)
]
X̄1 mn = Ȳ1 mn,

(33)
[
p2 + ω2

2 mn(1+ pγ τ
γ
mn)
]
X̄2 mn = Ȳ2 mn.

(34)

Equation (27) rewritten in the similar form

[
p2 +Ω2

mn(1+ pγ τ1 mn)
]
X̄3 mn = Ȳ3 mn

(35)

should be added to (33) and (34), where Ω2
mn =

Pmn is the natural frequency of the out-of-plane
vertical vibrations.

Reference to Eqs. (33), (34), and (35) shows
that these equations differ from Eq. (6) only by
notations of the values entering in these equa-
tions, and thus, further procedure for the con-
struction of the solution should be the same as for
the Kelvin-Voigt fractional one-mass oscillator
(see details in Sec.2, as well as in Rossikhin and
Shitikova 1997a,b).

Linear Vibrations of a Circular
Cylindrical Shell Being in a Viscous
Medium

Now let us consider an elastic circular cylindrical
shell of radius R and length l being in a viscous
medium. Equations describing vibrations of such
a shell in the dimensionless form can be written
as (Rossikhin and Shitikova 2010, 2012)

∂2u1

∂x2 +
1− ν

2
β2

1
∂2u1

∂ϕ2 +
1+ ν

2
β1

∂2u2

∂x∂ϕ

− νβ1
∂u3

∂x
= ü1 + μ11D

γu1 − q1, (36)

β2
1
∂2u2

∂ϕ2
+ 1− ν

2

∂2u2

∂x2
+ 1+ ν

2
β1

∂2u1

∂x∂ϕ

− β2
1
∂u3

∂ϕ
= ü2 + μ22D

γu2 − q2, (37)

β2
2

12

(
∂4u3

∂x4 + 2β2
1

∂4u3

∂x2∂ϕ2 + β4
1
∂4u3

∂ϕ4

)

+ β2
1u3 − νβ1

∂u1

∂x
− β2

1
∂u2

∂ϕ

= −ü3 − μ33D
γu3 + q3, (38)

where the x−axis is directed along the axis of the
cylinder; ϕ is the polar angle in the plane perpen-
dicular to the x−axis; u1(x, ϕ, t), u2(x, ϕ, t), and
u3(x, ϕ, t) are the dimensionless displacements
of the points of the shell’s median surface in three
mutually orthogonal directions x, ϕ, r; r is the
polar radius; q1, q2, and q3 are the intensities of
the given external loads applied in the x−, ϕ−,
and r−directions, respectively; ν is Poisson’s
ratio; μii are the damping coefficients; β1 = l/R

and β2 = h/l are the parameters depending
on the shell’s dimensions; and h is the shell
thickness.

The set of Eqs. (36), (37), and (38) also admits
the solution of the Navier type (23) and (24),
where the variable y should be substituted by ϕ.

Substituting then (23) and (24) in (36), (37),
and (38), using the conditions of orthogonality of
eigenfunctions within the domains of 0≤ x ≤ 1
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and 0 ≤ ϕ ≤ 2π , and applying the Laplace
transformation to the resulting equations yield

[
p2δij + μmn

ij pγ + Smnij

]
x̄j mn = q̄i mn, (39)

where Latin indices take on the magnitudes of 1,
2, and 3; the summation is carried out over two
repeated indices, μmn

ij = τγ Smnij ; and the ele-
ments of the matrix Smnij are defined as follows:

Smn11 = π2
(
m2 + 1− ν

2
β2

1n
2
)
,

Smn12 = Smn21 = π2 1+ ν

2
β1mn ,

Smn13 = Smn31 = νβ1πm,

Smn23 = Smn32 = β2
1πn ,

Smn22 = π2
(

1− ν

2
m2 + β2

1n
2
)
,

Smn33 = π4 β2
2

12

(
m2 + β2

1n
2
)2

.

Since the matrix Smnij is symmetric, then it has
three real eigenvalues

p2
i = −Ω2

i mn, (i = 1, 2, 3) (40)

which are in correspondence with three mutually
orthogonal eigenvectors

LI
mn

{
LI
i mn

}
, LII

mn

{
LII
i mn

}
, LIII

mn

{
LIII
i mn

}
.

(41)
Thus, the matrix Smnij and the vectors x̄i mn and

q̄i mn can be expanded in terms of the vectors (41)
as

Smnij = Ω2
1 mnL

I
i mnL

I
j mn+Ω2

2 mnL
II
i mnL

II
j mn

+Ω2
3 mnL

III
i mnL

III
j mn, (42)

x̄i mn = X̄1 mnL
I
i mn + X̄2 mnL

II
i mn

+ X̄3 mnL
III
i mn, (43)

q̄i mn = Q̄1 mnL
I
i mn + Q̄2 mnL

II
i mn

+ Q̄3 mnL
III
i mn. (44)

Substituting (42), (43), and (44) in (39) yields

[
p2δij +

(
1+ pγ τγ

) (
Ω2

1 mnL
I
i mnL

I
j mn

+Ω2
2 mnL

II
i mnL

II
j mn +Ω2

3 mnL
III
i mnL

III
j mn

)]

×
(
X̄1 mnL

I
j mn+X̄2 mnL

II
j mn+X̄3 mnL

III
j mn

)

= Q̄1 mnL
I
i mn+Q̄2 mnL

II
i mn+Q̄3 mnL

III
i mn.

(45)

Multiplying (45) successively by LI
i mn, LII

i mn,
and LIII

i mn and considering that

LI
i mnL

II
i mn = LI

i mnL
III
i mn = LII

i mnL
III
i mn = 0,

LI
i mnL

I
i mn = LII

i mnL
II
i mn = LIII

i mnL
III
i mn = 1,

(46)

the three following equations could be found

[
p2 +Ω2

1 mn(1+ pγ τ
γ
mn)
]
X̄1 mn = Q̄1 mn,

(47)
[
p2 +Ω2

2 mn(1+ pγ τ
γ
mn)
]
X̄2 mn = Q̄2 mn,

(48)
[
p2 +Ω2

3 mn(1+ pγ τ
γ
mn)
]
X̄3 mn = Q̄3 mn.

(49)

Reference to Eqs. (47), (48), and (49) shows
that these equations differ from Eq. (6) only by
notations of the values entering in these equa-
tions, and thus, further procedure for the con-
struction of the solution should be the same as
that for mechanical oscillators.

Conclusion

It has been shown that the introduction of the
modal viscosity, i.e., the assumption that each
mode of vibrations has its own damping coeffi-
cient and its own retardation time, together with
the Rayleigh hypothesis allows one to reduce
the problem of linear vibrations of such thin
elastic bodies as a rectangular plate and a cir-
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cular cylindrical shell in a fractional derivative
viscoelastic medium to the problem of vibra-
tions of an infinite set of viscoelastic oscillators
based on the fractional derivative Kelvin-Voigt
model.

The suggested approach for decoupling
equations of motion could be generalized for
solving dynamic problems of nonlinear weakly
damped vibrations of thin bodies (see entry
�Linear and Nonlinear Vibrations: Fractional
Oscillators).

Cross-References

�Classical Beams and Plates in a Fractional
Derivative Medium, Impact Response

� Fractional Operator Models of Viscoelasticity
�Linear and Nonlinear Vibrations: Fractional

Oscillators
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Gdańnsk, Poland

Synonyms

Kirchhoff-Love nonlinear shell model;
Small-strain thin shell theory

Definition

The Lagrangian nonlinear theory of thin elastic
shells is a special case of geometrically non-
linear theory of elasticity. Here the shell thick-
ness is assumed to be much smaller than the
smallest radius of curvature of the shell middle
surface. As a result, the shell deformation can
approximately be described only by stretching
and bending of its middle surface. As compared
with the classical linear theory of thin elastic
shells discussed in another entry in this Ency-
clopaedia (Pietraszkiewicz 2018b), in this case
only strains in the shell space are assumed to be
small, while rotations are initially not restricted.
Due to nonlinearity of deformation, one can for-
mulate the nonlinear thin shell relations in var-
ious descriptions: Eulerian, Lagrangian, mixed,
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etc. The most important for applications in shell
structures are the Lagrangian shell relations for-
mulated entirely in the undeformed midsurface
base. This base is usually the only one known in
advance.

Introduction

The quite general Lagrangian thin shell rela-
tions were proposed already by Galimov (1951)
applying two steps. First, the corresponding sim-
ple Eulerian equilibrium equations and boundary
conditions were given in the unknown deformed
midsurface base. Then appropriate transforma-
tion rules were applied to express the vectorial
Eulerian quantities in terms of the Lagrangian
ones. Unfortunately, under such transformations
the fourth scalar (rotational) boundary condi-
tion was still referred to the deformed lateral
boundary surface. Only much later, it was proved
(Makowski and Pietraszkiewicz 1989) that such a
transformation of the fourth kinematic boundary
condition does not lead, in general, to the fourth
Lagrangian displacemental boundary condition,
because some differential one-form associated
with the virtual rotation parameter referred to
the deformed boundary is not integrable in terms
of translation surface derivatives. This was the
reason why no variational principles could be
constructed for such quasi-Lagrangian shell the-
ory even for conservative surface and boundary
loadings.

The entirely Lagrangian thin shell relations
were worked out by Pietraszkiewicz and
Szwabowicz (1981) using a modified tensor
of change of curvature. These relations were
reworked for the classical tensor of change
of curvature (Pietraszkiewicz 1984) together
with several consistently simplified versions of
shell relations under small strains and restricted
rotations as well as two incremental formulations
of the relations in the total Lagrangian and
updated Lagrangian descriptions.

In this note, the entirely Lagrangian nonlinear
theory of thin elastic shells is outlined. It is based
on the following three assumptions:

1. The strains in the shell space are small, but
rotations of material elements are initially not
restricted.

2. The material elements, which are normal to
the shell middle surface in the undeformed
placement, remain normal to the deformed
shell midsurface and do not change their
lengths. This assumption allows one to
approximately describe the nonlinear shell
deformation only by stretching and bending
of its middle surface.

3. The state of elastic stress in the shell space
is approximately plane. This means that the
effects of transverse shear stresses and of nor-
mal stresses, acting on surfaces parallel to the
middle surface, may be neglected in the elastic
strain energy density.

To be concise, the assumptions 2. and 3.
are used to derive the approximate equilibrium
equations and boundary conditions from the
postulated principle of virtual displacements
for the shell midsurface. The resulting shell
relations are initially formulated for unrestricted
surface deformation measures and unrestricted
displacements. Then consistently approximated
relations under small elastic strains are discussed.
Finally, several simplified sets of shell relations
under additional consistently restricted rotations
of material elements are given.

Geometry and Deformation
of the Shell Base Surface

Let P be the region of three-dimensional
Euclidean point space E occupied by the shell in
the undeformed placement. The position vector
of any point P ∈ P relative to a reference point
O ∈ E can be given by

p
(
θα, ξ

) = pi
(
θα
)

ii = r
(
θα
)+ ξn

(
θα
)
, (1)

where ii, i = 1, 2, 3, are three orthonormal
vectors, θα , α = 1, 2, are the curvilinear surface
coordinates, − h / 2 ≤ ξ ≤ + h / 2 is the distance
from the shell midsurface M defined by the posi-
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tion vector r(θα), n(θα) is the unit normal vector
orienting M, and h is the shell thickness. In thin
shell theory, it is understood that h be constant
and small as compared with the smallest radius
of curvature R of M and with linear dimensions
of P.

Geometry of the base surface M is described
by the following fields (Pietraszkiewicz 2018a):
the natural base vectors aα = ∂r/∂θα ≡ r,α ,
the covariant components aαβ = aα · aβ of
the surface metric tensor with determinant
a = det (aαβ ), the dual (contravariant) base

vectors aβ such that aα · aβ = δ
β
α , where

δ1
1 = δ2

2 = 1, δ1
2 = δ2

1 = 0, the unit normal
vector n = a1 × a2/ | a1 × a2|, and the covariant
components bαβ = − aα · n,β = − n,α · aβ
of the surface curvature tensor. The contravariant
metric components aαβ = aα · aβ are used to
raise indices of surface vectors and tensors, for
example, aβ = aβαaα , bαβ = aαλbλβ etc., where
the summation convention over the repeated
indices is used.

The shell base surface in the deformed place-
ment M is described by the position vector
r (θα) = r (θα) + u (θα), where θα are the
surface curvilinear convective coordinates and
u= uαaα + wn is the translation vector field. The
geometric quantities describing M are analogous
to those describing M, only now they are marked
by the overbar: aα = r,α , aαβ = aα · aβ ,

a = det
(
aαβ

)
> 0, aβ · aα = δ

β
α , n = a1 × a2/

| a1 × a2 |, bαβ = −n,α · aβ = −aα · n,β ,
aαβ = aα · aβ , etc. The barred quantities can
be expressed through analogous unbarred ones
and the vector u by the relations (Pietraszkiewicz
1980, 1989)

aα = aα + u,α = lλ·αaλ + ϕαn,

n = 1
2j ε

αβaα × aβ = nλaλ + nn,
(2)

where

lαβ = aαβ + uα|β − bαβw, ϕα = w,α + bλαuλ,

(3)

εαβ = (aα × aβ
) · n, j =

√
a
a
,

nμ = 1
j
εαβελμϕαl

λ·β, n = 1
2j ε

αβελμl
λ·αl

μ
·β.

(4)

The metric and curvature tensor components
of M are given by

aαβ = aαβ + 2γαβ, bαβ = bαβ − καβ, (5)

γαβ = 1

2

(
aα · aβ − aαβ

)

= 1

2

(
lλ·αlλβ + ϕαϕβ − aαβ

)
,

καβ = aα · n,β + bαβ

= lλα

(
nλ
∣∣
β
− bλβn

)
+ ϕα

(
n,β + bλβnλ

)

+bαβ.
(6)

Here γ αβ are the Lagrangian components of
the surface strains while καβ are the Lagrangian
components of the surface changes of curvatures
(briefly bendings). Both surface deformation
measures are symmetric: γ αβ = γ βα , καβ = κβα .
The components γ αβ are quadratic polynomials
of uα , w and their first surface derivatives, while
the καβ are nonrational functions of uα , w and
their first as well as second surface derivatives.
The nonrationality of καβ is caused by the
invariant j, where

j2 = 1+ 2γ αα + 2
(
γ αα γ

β
β − γ αβ γ

β
α

)
. (7)

The boundary contour ∂M of M consists
of the finite set of piecewise smooth curves
r(s) = r[θα(s)], where s is the arc length
along ∂M. In each regular point M ∈ ∂M
two unit vectors are defined: the tangent
τ = dr/ds ≡ r′ = aατα and the outward normal
ν = τ × n = aανα ≡ r,ν , να = εαβτβ , where
r,ν means the outward normal derivative of r at
∂M.

The position vector of the deformed boundary
contour ∂M is given by r(s) = r(s) + u(s),
where s is the convective coordinate. The follow-
ing relations are satisfied along ∂M:

r ′ = aατ
α = τ + u′ = aττ ,

r,ν = aαν
α = ν + u,ν,

n = j−1r,ν × r ′,

(8)
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aτ =| r ′ |=
√

1+ 2u′ · τ + u′ · u′,
j2 = |r,ν |2

∣∣r ′
∣∣2 − ∣∣r,ν · r ′

∣∣2.
(9)

All the barred quantities appearing in (2), (5),
(6), (8), and (9) are understood to be expressed
through components of the translation vector u
and its surface derivatives in the undeformed
bases aα , n or ν, τ , n, respectively.

Lagrangian Equilibrium Conditions

Let the shell be loaded by the surface force
f = f αaα + f n and the surface couple m =
n × (mαaα) vector fields, both measured per
unit area of M, as well as by the boundary
force n∗ = n∗νν + n∗ττ + n∗n and the boundary
couple m∗ = n × (m∗νν +m∗ττ

)
vectors, both

given per unit length of ∂M. Then for any addi-
tional kinematically admissible virtual translation
δu = δuαaα + δw n the following Lagrangian
principle of virtual displacements should be sat-
isfied (Pietraszkiewicz 1984, 1989):

∫∫

M
(
Nαβδγ αβ +Mαβδκαβ

)
da

=
∫∫

M
(f · δu+m · δω) da

+
∫

∂Mf

(
n∗ · δu+m∗ · δωτ

)
ds.

(10)

In (10), Nαβ and Mαβ are symmetric com-
ponents of the internal 2nd Piola-Kirchhoff type
surface stress and couple resultant tensors, δω
and δωτ are the virtual rotation vectors on M
and ∂M, respectively, while the virtual surface
deformation measures are given by

δγ αβ =
1

2

(
δu,α · aβ + aα · δu,β

)
,

δκαβ = 1

2

(
n,α · δu,β + n,β · δu,α

+ aα · δn,β + aβ · δn,α
)
.

(11)

Variating the three constraints n · aα = 0,
n · n = 1 satisfied on M, one obtains δn · aα =
−n·δu,α , δn·n = 0, so that δn = −aα (n · δu,α).

On the other hand, δω on M should satisfy δn =
δω × n. As a result, in (10) one has m · δω =
−mαn · δu,α on M.

Introducing (11) and the above relation for
m · δω to (10) and applying the surface diver-
gence theorem (Pietraszkiewicz 2018a), one can
transform (10) into

−
∫∫

M
[ (

T α +mαn
)∣∣
α
+ f

] · δu da

+
∫

∂Mf

{[(
T α +mαn

)
να − n∗

] · δu

+ (Mαβναaβ
) · δn−m∗ · δωτ

}
ds

+
∫

∂Md

[ (
T α +mαn

)
να · δu

+ (Mαβναaβ
) · δn

]
ds = 0,

(12)

where

T α = Nαβaβ +Mαβn,β

+
[(
Mκρaρ

)
|κ · aα

]
n,

(13)

and ∂Md = ∂M\∂Mf is the complementary part
of ∂M along which the displacement boundary
conditions are prescribed.

The vector n(s) along ∂M satisfies only two
constraints r ′ ·n = 0, n ·n = 1. This means that
in order to establish the unique position of ν, τ ,n

relative to ν, τ , n one has to know not only three
components of u(s) (thus also u′(s)) but addition-
ally one scalar function ϕ(s) = ϕ[u,ν(s), u′(s)]
describing the rotational deformation between the
bases. The meaning of ϕ(u,ν , u′) is not unique
and depends on how the rotational deformation
is defined.

The structure of the Lagrangian boundary
conditions along ∂M has been discussed by
Makowski and Pietraszkiewicz (1989) with
the help of integrability conditions of some
differential one-forms. It has been found, in
particular, that the general relation for δn

(
ϕ,u′

)

at the boundary contour can be given in the form

δn = q δϕ + Lδu′. (14)
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Since δn = δωτ × n along the boundary
contour, one obtains m∗ · δωτ = (m∗ × n) · δn.
Introducing this relation together with (14) into
the curvilinear integrals of (12), after integration
by parts one can transform them into

∫

∂Mf

[(
P+mνn−P ∗

) · δu+ (M−M∗) δϕ
]
ds

+
∑

Mn∈∂Mf

(
F n − F ∗n

) · δun

+
∫

∂Md

[(P +mνn) · δu] ds

+
∑

Mn∈∂Md

F n · δun = 0,

(15)

where

F=− LT
(
Mαβaβνα

)
, F ∗= − LT (m∗ × n),

P=T ανα+F ′, P ∗ = n∗+F ∗′, mν=mανα,

M=q · (Mαβaβνα
)
, M∗=q · (m∗ × n),

F n=F n (sn + 0)−F n (sn − 0), un=u (sn).

(16)

Kinematically admissible virtual displace-
ments satisfy δu = 0, δϕ = 0, and δun = 0 along
∂Md, so that the second integral in (15) identi-
cally vanishes. This requires the displacement
boundary conditions u−u∗ = 0, ϕ−ϕ∗ = 0
along ∂Md to be satisfied and un − u∗n = 0
should be assured at each point of irregularity
Mn ∈ ∂Md, where the starred symbols mean the
prescribed quantities.

Then with (15)1 as the second row of (12),
the principle of virtual displacements requires
the following local Lagrangian equilibrium con-
ditions to be satisfied:

• The equilibrium equations

(
T α +mαn

)∣∣
α
+ f = 0 in M, (17)

• The natural force static boundary conditions

P +mνn− P ∗ = 0,

M −M∗ = 0 along ∂Mf ,
(18)

• The concentrated forces F n − F ∗n applied to
each point of irregularity Mn ∈ ∂Mf .

Particularly simple useful expression for ϕ

was proposed in Pietraszkiewicz and Szwabow-
icz (1981) as

ϕ ≡ nν = n · ν = 1

j

(
u′ × ν − n

) · u,ν (19)

following from (8). Varying the two constraints
along ∂M, one obtains −δn · r ′ = n · δu′, δn ·
n = 0 from which it follows that δn×(r ′ × n

) =
n
(
n · δu′). The vector product of this formula

by ν from the left side after transformations
leads to

δn = 1

eν

[(
r ′ × n

)
δnν + (ν × n)n · δu′] ,

eν = ν · (r ′ × n
)
,

(20)

so that in the formula (14) one has

q = 1

eν

(
r ′ × n

)
, L = 1

eν
(ν × n)⊗ n, (21)

where ⊗ is the tensor product.
Other particular cases of ϕ suggested in

Makowski and Pietraszkiewicz (1989) are: the
function ϑν = a−2

τ (n− n) · aν proposed by
Novozhilov and Shamina (1975) and the angle
ωτ of total rotation of the boundary element
defined in Pietraszkiewicz (1979) by the relation
2cosωτ = ν ·ν+τ ·τ +n ·n−1. Corresponding
formulas for q, L and for the boundary conditions
were given in Pietraszkiewicz (1989, 1993).

The Lagrangian vector shell relations derived
above have their natural scalar representations in
terms of translations uα , w in the known unde-
formed base aα , n of M, displacements uν , uτ ,
w, ϕ in the known undeformed base ν, τ , n along
∂M and the surface stress resultants and stress
couples Nαβ , Mαβ (Pietraszkiewicz 1984, 1989).
These scalar relations are very complex, because
they are still valid for unrestricted surface defor-
mation measures γ αβ , καβ and unrestricted dis-
placements u on M and u, ϕ along ∂M.
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Small Elastic Strains

When the strains in the shell space are assumed
to be small, i.e., max(γ αβ , hκαβ ) = η� 1, some
shell relations derived so far can be consistently
simplified. In particular, in M one has

j � 1, aαβ � aαβ − 2γ αβ � aαβ,

nμ�ϕλl
λ·μ−ϕμlλ·λ, n� 1

2

(
lλλ l

μ
μ − lλ·μl

μ
·λ
)
.

(22)

With (22) the surface bendings defined in (6)2

become the third-degree polynomials in uα , w as
well as their surface first and second derivatives.

Along ∂M one can simplify some relations
into

j�1, n � r,ν × r ′, nν �
(
u′ × ν − n

) · u,ν,
(23)

so that nν becomes the quadratic polynomial in
the displacement derivatives.

With (22) the simplified scalar equilib-
rium equations (17) were explicitly given in
Pietraszkiewicz (1989), while with (23) the
simplified scalar static boundary conditions were
formulated in Pietraszkiewicz (2001).

When the shell is made of an elastic material,
the principle (10) requires the existence of the
surface strain energy density Σ(γ αβ , καβ ), per
unit area of M, such that Nαβ = ∂Σ /∂γ αβ and
Mαβ = ∂Σ /∂καβ . The explicit expression for Σ
depends on the shell material properties, but also
on the undeformed shell geometry: its thickness,
curvatures of M, the internal structure across the
thickness, etc.

In case of a homogeneous isotropic shell
undergoing small elastic strains, already (Love
1927) used Σ(γ αβ , καβ ) consisting of the sum of
two quadratic functions describing stretching and
bending energies of the shell. The error of such
approximation was analyzed in several papers. In
particular, according to Koiter (1960, 1966, 1980)
and John (1965) the consistently approximated
strain energy density is given indeed by the sum
of two quadratic functions

Σ = h

2
Hαβλμ

(
γαβγλμ + h2

12
καβκλμ

)

+O
(
Ehη2θ2

)
,

Hαβλμ = E

2 (1+ ν)

(
aαλaβμ + aαμaβλ

+ 2ν

1− ν
aαβaλμ

)
.

(24)

Here E is the Young modulus and ν is the Pois-
son ratio of the linearly elastic isotropic material,
while the small parameter θ is defined by

θ = max

(
h

b
,
h

l
,
h

L
,

√
h

R
,
√
η

)

, (25)

where b is the distance from the lateral shell
boundary surface, l is the smallest wave length
of geometric patterns of M, L is the smallest
wave length of deformation patterns on M, and
O(.) means “of the order of”. The material tensor
Hαβλμ corresponds to the plane stress state in
the shell in accordance with the assumption 3.
indicated in Introduction.

With (24)1, the constitutive equations are
defined by

Nαβ = ∂Σ

∂γαβ

= Eh

1− ν2

[
(1− ν) γ αβ + νaαβγ κκ

]

+O
(
Ehηθ2

)
,

Mαβ = ∂Σ

∂καβ

= Eh3

12
(
1− ν2

)
[
(1− ν) καβ + νaαβκκκ

]

+O
(
Eh2ηθ2

)
.

(26)

Summarizing, the boundary value Lagrangian
equilibrium problem of thin isotropic shells
undergoing small elastic strains can be
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formulated in terms of three translations uα ,
w of M as the basic independent field variables.
The BVP consists of three scalar equilibrium
equations (17) in M, the four natural static
(18) and/or four work-conjugate displacement
boundary conditions along ∂Mf or ∂Md, the
concentrated forces F n − F ∗n applied to each
point of irregularity Mn ∈ ∂Mf , the constitutive
equations (26), and the kinematic relations (6)
in which the approximate relations (22) and (23)
have been used. Unfortunately, these consistently
simplified relations are still too complex for
engineering applications.

Restricted Rotations

According to the Cauchy theorem, the shell
deformation about a point of M can be exactly
decomposed into a rigid-body translation,
a pure stretch along principal directions of
strain and a rigid-body rotation. Since in the
previous section the shell relations have been
consistently simplified under small elastic strains,
several simpler versions of the displacement
shell relations can be constructed by imposing
consistent restrictions upon the rotations of the
shell material elements (Pietraszkiewicz 1977,
1980, 1984).

A finite rotation may be described by an angle
of rotation ω about an axis of rotation fixed in
space by a unit vector e. In mathematics, the
rotation is usually defined by the second-order
tensor R(ω, e) such that RT = R−1, det R = + 1.
Alternatively, for �ω� < π /2 the rotation can
be uniquely described by some finite rotation
vector such as Ω = esinω or θ = e 2tanω/2.
The magnitude of the rotation can be classified
in terms of the small parameter θ defined in
(25) as follows: (a) ω ≤ O(θ2) – the small
rotation, (b) ω = O(θ ) – the moderate rotation,

(c) ω = O
(
θ
√
θ
)

– the large rotation, and (d)

ω = O(1) – the finite rotation. However, the shell
structures are usually quite rigid for in-surface
deformation being flexible for out-of-surface
deformation. To account this property, one can

associate the names “small, moderate, large,
finite” rotation with the particular components
Ωα = Ω · aα and Ω = Ω · n of Ω .

In the geometrically nonlinear theory of thin
shells Ω is expressed through translations of M
by the consistent reduction of the exact formula
(Pietraszkiewicz 1977, f. (3.7.17) or 1984, f.
(2.3.11)):

Ω � εβα
[
ϕα

(
1+ 1

2
θκκ

)
− 1

2
ϕλ (θλα − ωλα)

]
aβ

+ φn,

(27)

θαβ = 1
2

(
uα|β + uβ|α

)− bαβw,

ωαβ = 1
2

(
uβ|α − uα|β

)
,

φ = 1
2ε

αβuβ|α, φ = εβαϕα + φn.

(28)

Here θαβ are components of the linearized
strains while ϕα , φ describe the linearized rota-
tion vector φ.

For any restriction imposed on Ω the esti-
mates for ϕα , φ follow from (27) and those for
θαβ follow from solving (6)1 with γ αβ = O(η).
Then the consistently simplified expressions for
γ αβ and καβ can be established taking account
of accuracy of Σ in (24)1. In such estimation
procedure covariant surface derivatives are esti-
mated dividing their maximal value by the large
parameter

λ = h

θ
= min

(
b, l, L,

√
hR,

1√
η

)
. (29)

Within small rotations ϕα = O(θ2), ωαβ =
O(θ2), θαβ = O(θ2), and the shell deforma-
tion measures are consistently approximated by
γ αβ = θαβ + O(ηθ2), καβ = − 1/2(ϕα�β +
ϕβ�α) + O(ηθ /λ). These characterize the linear
bending theory of thin elastic shells treated in
many books and papers, see for example Koiter
(1961).

Within moderate rotations ϕα = O(θ ),
ωαβ = O(θ ), θαβ = O(θ2), and the consistently
reduced shell relations are
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γαβ = θαβ + 1

2
ϕαϕβ + 1

2
ωλ·αωλβ

− 1

2

(
θλαωλβ + θλβωλα

)
+O

(
ηθ2

)
,

καβ = −1

2

(
ϕα|β + ϕβ|α − bλαωλβ − bλβωλα

)

+O

(
ηθ

λ

)
,

(30)

T α =
{
Nαλ − 1

2

(
bαβM

λβ + bλβM
αβ
)

+ 1

2
Nκ
κ ω

αλ − 1

2

(
Nα
β ω

λβ +Nλ
βω

αβ
)

+ 1

2

(
Nα
β θ

λβ −Nλ
βθ

αβ
)}

aλ

+ (Nαβϕβ +Mβα|β
)

n, (31)

n = −ϕαaα + n, nν = −ϕν,
F = Mντn, M = Mνν,

F ∗ = m∗τn, M∗ = m∗ν .

(32)

If additionally the rotation about normal Ω
is restricted to be small then also ωαβ = O(θ2).
For such moderate/small rotation theory of thin
elastic shells the relations (30) and (31) can be
considerably simplified to

γαβ = θαβ + 1

2
ϕαϕβ +O

(
ηθ2

)
,

καβ = −1

2

(
ϕα|β + ϕβ|α

)+O

(
ηθ

λ

)
,

T α = Nαλaλ +
(
Nαβϕβ +Mβα|β

)
n.

(33)

The nonlinear relations (30) and (31) (or (33))
with (32) and (26), when introduced into the
equilibrium conditions (17) and (18), and the sur-
face couples m conventionally omitted, describe
the boundary value problem in displacements of
the Lagrangian geometrically nonlinear theory
of thin elastic shells undergoing moderate (or
moderate/small) rotations. This version of shell
equations contains as special cases a number
of simpler versions of nonlinear shell equations

proposed in the literature. A detailed review of
those simpler versions was given in Schmidt and
Pietraszkiewicz (1981), where also a set of six-
teen basic free functionals and several functionals
with subsidiary conditions were constructed for
conservative dead-load type surface and bound-
ary loadings.

The simplest case of the moderate/small
rotation theory is the nonlinear theory of
shallow shells proposed by Mushtari (1939) and
Marguerre (1939). In this case, one additionally
assumes that the tangential surface forces f α

are also small and can be ignored. As a result,
the tangential translations can be expected to
be one order smaller than the normal ones,
uα = w · O(θ ), so that ϕα = w,α[1 + O(θ2)]
and the surface deformation measures become
extremely simple

γαβ � θαβ + 1

2
w,αw,β, καβ � −w|αβ. (34)

In the tangential equilibrium equations, the
terms −bλαT α are small as compared with Nαλ|α
and can be omitted. As a result, the equilibrium
equations become extremely simple as well,

Nαβ |α = 0,

Mαβ |αβ +
(
bαβ + w|αβ

)
Nαβ + f = 0.

(35)

The equilibrium equations (35) together with
the constitutive relations (26), the kinematic
relations (34) and corresponding boundary
conditions form the boundary value problem
of the nonlinear theory of shallow elastic shells
expressed in terms of translations of M as the
independent variables.

It can be proved that the approximate
expression (34)2 for καβ satisfies approximately
two tangential compatibility conditions, which
suggests that within this approximation the
order of covariant differentiation is unimportant.
This allows one to approximately satisfy
(35)1 by Nαβ = εαλεβμΨ �λμ, where Ψ is
the stress function. Then (35)2 and the third
compatibility condition for γ αβ , καβ leads to
the set of two equations



2526 Thin Elastic Shells, Lagrangian Geometrically Nonlinear Theory

Eh3

12(1−ν2)
w|αβαβ−εαλεβμ

(
b
β
α + w

β
α

)
Ψ |μλ−f=0,

1
Eh

Ψ |αβαβ + εαλεβμ

(
b
β
α + 1

2w
β
α

)
w|μλ = 0.

(36)

These two equations usually written in the
orthogonal lines of principal curvatures of M,
together with corresponding boundary conditions
expressed in w, Ψ , are given in many books
and papers, for example (Mushtari and Galimov
1961, Brush and Almroth 1975), where also
many numerical examples are presented.

The consistent relations of the large/small
rotation Lagrangian nonlinear theory of shells
have been presented in detail in Pietraszkiewicz
(1984, 1989). These relations are more involved
than those of the moderate rotation theory. As
a result, they have been used to solve some
engineering shell problems in only limited
number of papers.
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Thin Elastic Shells, Linear
Theory
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Faculty of Civil and Environmental Engineering,
Department of Mechanics of Materials and
Structures, Gdańnsk University of Technology,
Gdańnsk, Poland

Synonyms

Classical shell theory; Kirchhoff-Love shell
model

Definition

The linear theory of thin elastic shells is a special
case of linear theory of elasticity. Here the shell
thickness is assumed to be much smaller than the
smallest radius of curvature of the shell middle
surface. As a result, the shell deformation can
approximately be described only by stretching
and bending of its middle surface.

Introduction

The linear theory of thin elastic shells belongs
to the classical fields within linear elasticity.
It was originated by Love (1888), developed
subsequently in many thousands of papers and
summarized in dozens of monographs. Among
the most important books in the field, one might
mention Love (1927), Goldenveizer (1961),
Novozhilov (1964), Bas,ar and Krätzig (1985),
and Novozhilov et al. (1991).

Initially, the linear thin shell relations were
developed in orthogonal coordinates coinciding
with lines of principal curvatures on the
shell middle surface. However, such a shape-
dependent description was found to be too
complex and inefficient due to a large variety
of shell shapes appearing in technology and
everyday life. Lurie (1940) proposed to describe
the linear shell relations in the invariant tensor

notation. These relations were valid for any
geometry of the shell midsurface. This compact
description was then applied in many papers and
books, for example, by Green and Zerna (1954),
Koiter (1960), Naghdi (1963), Chernykh (1964),
Flügge (1972), Bas,ar and Krätzig (1985, 2001),
and Ciarlet (2000).

In this note, basic relations of the linear theory
of thin isotropic elastic shells are briefly derived
and discussed. The formulation is based on the
following simplifying assumptions:

1. The material elements, which are normal to
the shell middle surface in the undeformed
placement, remain normal to the deformed
shell midsurface and do not change their
lengths. This assumption allows one to
approximately describe the shell deformation
only by stretching and bending of its middle
surface.

2. The state of elastic stress in the shell space
is approximately plane. This means that the
effects of transverse shear stresses and of nor-
mal stresses, acting on surfaces parallel to the
middle surface, may be neglected in the elastic
strain energy density.

To be concise, these assumptions are used to
derive the approximate equilibrium equations and
boundary conditions from the postulated princi-
ple of virtual displacements for the shell midsur-
face. In deriving the basic shell relations, the ten-
sor notation for description of surface geometry
is applied according to Pietraszkiewicz (2018).

Geometry and Small Deformation
of a Thin Shell

Let P be the region of three-dimensional
Euclidean point space E occupied by the shell in
the undeformed placement. The position vector
of any point P ∈ P relative to a reference point
O ∈ E can be given by

p
(
θα, ξ

) = pi
(
θα
)

ii = r
(
θα
)+ ξn

(
θα
)
, (1)

https://doi.org/10.1007/978-3-662-55771-6_300089
https://doi.org/10.1007/978-3-662-55771-6_300363
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where ii , i = 1, 2, 3, are the three orthonormal
vectors, θα , α = 1, 2, are the curvilinear surface
coordinates, −h/2≤ ξ ≤+h/2 is the distance
from the shell middle surface M defined by the
position vector r(θα), n(θα) is the unit normal
vector orienting M, and h is the shell thickness.
In thin shell theory it is understood that h be
constant and small as compared with the smallest
radius of curvature R of M, i.e., h/R � 1, and
with linear dimensions of P.

Geometry of the middle surface M is
described by the following fields (Pietraszkiewicz
2018): the natural base vectors aα = ∂r/∂θα ≡ r,α ,
the covariant components aαβ = aα · aβ of
the surface metric tensor with determinant
a = det (aαβ ), the dual (contravariant) base

vectors aβ such that aα · aβ = δ
β
α , where

δ1
1 = δ2

2 = 1, δ1
2 = δ2

1 = 0, the unit normal
vector n = a1 × a2/|a1 × a2|, and the covariant
components bαβ = − aα · n,β = − n,α · aβ of
the surface curvature tensor. The contravariant
metric components aαβ = aα · aβ are used
to raise indices of surface vectors and tensors,
for example, aβ = aβαaα , bαβ = aαλbλβ ,
etc.

The boundary contour ∂M of M consists
of the finite set of piecewise smooth curves
r(s) = r[θα(s)], where s is the arc length
along ∂M. In each regular point M ∈ ∂M,
two unit vectors are defined: the tangent
τ = dr/ds ≡ r ′ = aατα and the outward normal
ν = τ × n = aανα ≡ r,ν , να = εαβτβ , where
r,ν means the outward normal derivative of r at
∂M and εαβ are contravariant components of the
surface alternation tensor.

The shell midsurface in the deformed
placement M is described by the position
vector r (θα) = r (θα) + u (θα), where
θα are the surface curvilinear convective
coordinates and u = uαaα + wn is the surface
translation field. The geometric quantities
describing M are analogous to those of M,
only now they are marked by the overbar,
for example, aα,n, aαβ, bαβ, etc. The barred
quantities can be expressed through analogous
unbarred ones and the vector u. In the
linear theory of shells, these relations are
approximated by linear functions of u. In

particular, one has (Koiter 1960, Pietraszkiewicz
1980)

aα=aα+u,α= (aλα+θλα − ωλα) a
λ + ϕαn,

n = n− ϕαa
α, θαβ = 1

2

(
uα|β + uβ|α

)− bαβw,

ωαβ = 1
2

(
uβ|α − uα|β

)
, ϕα = w,α + bλαuλ,

(2)

aαβ = aα · aβ = aαβ + 2θαβ, bαβ = −aα · n,β
= bαβ + ϕα|β + bλβ (θλα − ωλα),

bαβ = −aβ · n,α = bαβ + ϕβ|α
+ bλα

(
θλβ − ωλβ

)
,

(3)

where (.)�α denotes the covariant surface
differentiation of (.).

In the linear theory of shells, the surface defor-
mation measures are linear functions of the sur-
face translations and their surface derivatives, and
are defined by

γαβ= 1

2

(
aαβ−aαβ

)=1

2

(
uα|β+uβ|α

)− bαβw,

καβ = −
(
bαβ − bαβ

) = −w|αβ − bλαuλ|β
− bλβuλ|α − bλα |βuλ + bλαbλβw.

(4)

The components γ αβ describe the linearized
surface strains while καβ are the linearized sur-
face changes of curvatures (briefly bendings).
Both surface deformation measures are symmet-
ric: γ αβ = γ βα , καβ = κβα . Please note that καβ
are given through the surface translations as well
as their first and second surface derivatives.

Equilibrium Conditions

Let the shell base surface M be loaded by the
distributed force field f = f αaα + f n per unit
area of M, as well as by the boundary force
n∗ = n∗νν + n∗ττ + n∗n and the boundary couple
m∗ = n× (m∗νν +m∗ττ

)
, both per unit length of

the boundary contour ∂Mf . If the shell is to be in
equilibrium, then, within the simplifying assump-
tions of the linear thin shell model, for a virtual
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displacement field δu = δuαaα + δwn subjected
to kinematic constraints the following principle
of virtual displacements should be satisfied:

∫∫

M
(
Nαβδγ αβ +Mαβδκαβ

)
da

=
∫∫

M
f ·δu da+

∫

∂Mf

(
n∗·δu+m∗·δωτ

)
ds.

(5)

Here Nαβ and Mαβ are symmetric components
of the internal surface stress and couple resul-
tants, ∂Mf is that part of ∂M along which the
forces n∗ and couples m∗ are prescribed, and ωτ

is the linearized rotation vector of the shell lateral
boundary element.

The first surface integral of (5) indicates the
internal virtual work Gint performed by Nαβ , Mαβ

on the respective virtual strains and bendings
δγ αβ , δκαβ given according to (2), (3) and (4)
by

δγ αβ =
1

2

(
δuα|β + δuβ|α

)− bαβδw,

δκαβ = −δw|αβ − bλαδuλ|β − bλβδuλ|α
− bλα |βδuλ + bλαbλβδw.

(6)

The last two integrals of (5) indicate the exter-
nal virtual work Gext performed by f on δu within
M as well as by n∗ and m∗ on the corresponding
δu and δωτ along ∂Mf , respectively. The virtual
fields should satisfy the kinematic constraints,
that is, δu = 0 and δωτ = 0 along ∂Md, where
∂M = ∂Mf ∪ ∂Md.

With the help of some tensor identities, the
Gint in (5) with (6) can be transformed into

Gint=−
∫∫

M

{[(
Nαβ−bβλMλα

)
|α−bβλMλα|

α

]
δuβ

+
[
Mαβ

∣∣
αβ
+ bαβ

(
Nαβ − bαλM

λβ
)]

δw

−
[(
Nαβ − b

β
λM

λα
)
δuβ

−Mαβ
(
δw,β + bλβδuλ

)

+Mαβ |βδw
]
|α
}
da.

(7)

Introducing the vector

nα =
(
Nαβ − b

β
λM

λα
)

aβ +Mαβ |β n, (8)

and applying the divergence theorem to the last
term of (7) in brackets, relation (7) can be written
in the compact form

Gint = −
∫∫

M
nα|α · δu da

+
∫

∂M
(
nα · δu−Mαβδϕβ

)
να ds,

(9)

where δϕβ are tangential components of variation
of the linearized rotation vector of M,

φ = εβα
(
ϕαaβ + 1

2
uα|βn

)
. (10)

Along ∂M, the virtual translations and rota-
tions can be expanded into physical components

δu = δuνν + δuττ + δwn,

δϕβ = δϕννβ + δϕτ τβ,

δϕτ = δϕβτ
β = d

ds
(δw)+ στ δuτ − ττ δuν,

δuν = δuβν
β, δuτ = δuβτ

β,

στ = bαβτ
ατβ, ττ = −bαβνατβ.

(11)

The first term in (11)3 allows one to integrate
by parts the last expressions in the line integral
(9) leading to

−∫
∂M

[
Mννδϕν +Mντ

(
d
ds
(δw)

+στ δuτ − ττ δuν
)]

ds = ∫
∂M

[
d
ds
(Mντn) · δu−Mννδϕν

]
ds

+∑N
n=1 [Mντ (sn + 0)

−Mντ (sn − 0)] δw (sn).

(12)

The linearized rotation vector ωτ of the
shell lateral boundary element is related to
the linearized rotation vector φ of M by
ωτ = φ − γ ντn (Chernykh 1964, Pietraszkiewicz
1980). But within the assumptions of the linear
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thin shell theory, m∗ does not have the normal
component, so it is always m∗ ·n ≡ 0. As a result,
m∗ · δωτ = m∗ · δφ and the last term in (5) can
be transformed similarly as in (12) leading to

∫
∂Mf

m∗ · δωτ ds

= ∫
∂Mf

[
d
ds

(
m∗τn

) · δu−m∗νδϕν
]
ds

+∑N
n=1

[
m∗τ (sn + 0)−m∗τ (sn − 0)

]
δw (sn).

(13)

Summarizing, the principle of virtual displace-
ments (5) with (6), (7), (8), (9), (10), (11), (12),
and (13) requires the following local relations to
be satisfied:

• The equilibrium equations

nα
∣∣
α
+ f = 0 in M. (14)

• The force static boundary conditions

nανα + d

ds
(Mντn) = n∗ + d

ds

(
m∗τn

)
,

Mνν = m∗ν along ∂Mf .

(15)

• The concentrated forces applied in each singu-
lar point Mn ∈ ∂Mf ,

{[
Mντ (sn + 0)−m∗τ (sn + 0)

]

− [Mντ (sn − 0)−m∗τ (sn − 0)
]}

n (sn).

(16)

• The corresponding work-conjugate displace-
ment boundary conditions are

u = u∗, ϕν = ϕ∗ν along ∂Md . (17)

In components, some of these relations are:
• The equilibrium eguations in M,

T αβ |α − b
β
λQ

λ + f β = 0,

Mαβ |αβ + bαβT
αβ + f = 0,

(18)

where the following abbreviations have been
used:

T αβ = Nαβ − b
β
λM

λα, Qλ = Mαλ|
α
.

(19)

• The force static boundary conditions along
∂Mf ,

Tνν+ττMντ =n∗ν+ττm∗τ in direction of ν,

Tντ−στMντ =n∗τ−στm∗τ in direction of τ,

Qν+ d
ds
Mντ =n∗+ d

ds
m∗τ in direction of n,

(20)

where the following abbreviations of the phys-
ical components have been used:

Tνν = T αβνανβ, Tντ = T αβνατβ,

Mντ = Mαβνατβ, Qν = Qανα,

Mνν = Mαβνανβ.

(21)

Compatibility Conditions

Six components γ αβ and καβ are expressed by
only three components of u on M. Thus, the sur-
face deformation measures have to satisfy three
compatibility conditions.

Two smooth and differentiable vector dis-
placement fields on the regular shell midsurface
M satisfy the obvious identities u,12 = u,21 and
φ,12 = φ,21, which can equivalently be written as

εαβu|αβ = 0, εαβφ|αβ = 0. (22)

Differentiation of u with the use of (10) leads
to

u,α = γαλa
λ + φ × aα. (23)

Differentiating (10), one obtains

φ,α = ελμμαλaμ + ζαn,

μαλ = −ϕλ|α − ελρb
ρ
αφ,

ζα = φ,α + ερλϕλbαρ.

(24)
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Then

εαβu|αβ =
(
εαβγαλ|β + ζλ

)
aλ

+ εαβ
(
γαλb

λ
β + μαβ

)
n = 0,

εαβφ|αβ = εαβ
(
ερλμαρ|β + bλαζβ

)
aλ

+ εαβ
(
ζα|β + ελρμαλbβρ

)
n = 0.

(25)

Using the relations (3) and (4), after some
transformations, one obtains

μαβ = καβ + bλαγβλ. (26)

This indicates that the second expression of
(25)1 identically vanishes. Then one can solve the
first expression in (25)1 for ζ λ and introduce the
result into (25)2. By changing some indices, the
remaining three compatibility conditions become

(
εαρεβλμρλ

) |α − b
β
λ

(−εαρεβλγρλ
)|α = 0,(−εαρεβλγρλ

)|αβ + bαβ
(
εαρεβλμρλ

) = 0.
(27)

Static-Geometric Analogy
and Complex Shell Relations

Between the equilibrium equations (18) and the
compatibility conditions (27) there exists the fol-
lowing correspondence:

T αβ ⇐⇒ εαρεβλμρλ,

Mαβ ⇐⇒ −εαρεβλγρλ.
(28)

When the surface stress measures in (18) are
replaced by the surface deformation measures
according to (28), the homogeneous equilibrium
equations (27) are converted into the compatibil-
ity conditions (27). The correspondence is known
as the static-geometric analogy in the linear the-
ory of thin shells.

The analogy (28) allows one to introduce three
stress functions uα,w by the relations

T αβ = T
αβ∗ + Ehcεαρεβλμρλ,

Mαβ = M
αβ∗ − Ehcεαρεβλγ ρλ,

c = h
√

12(1− ν2)
.

(29)

Here T
αβ∗ and M

αβ∗ are some particular solu-
tions of the inhomogeneous equilibrium equa-
tions (18), and the expressions γ ρλ and μρλ

are similar to (4)1 and (26), respectively, only
now constructed by corresponding stress func-
tions uα,w.

With (29), one can introduce the surface com-
plex stress measures

T̃ αβ = T
αβ∗ − i Ehcεαρεβλμ̃ρλ,

M̃αβ = M
αβ∗ + i Ehcεαρεβλγ̃ρλ, i = √−1,

(30)

where γ̃ρλ and μ̃ρλ are expressions similar to (4)1

and (26) only now constructed by the complex
translations ũα = uα + i uα, w̃ = w + i w.
When the compatibility conditions (27) are mul-
tiplied by i Ehc and added with the corresponding
equilibrium equations (18), this gives the follow-
ing set of three equations for the complex stress
measures:

T̃ αβ |α − b
β
λ M̃

αλ|α + f β = 0,

M̃αβ |αβ + bαβT̃
αβ + f = 0.

(31)

When expressed in terms of complex transla-
tions, the above system of PDEs for the complex
independent variables is of the 4th order to be
solved in the complex domain, while the system
(18) of PDEs for the real translations is of the 8th
order in the real domain.

The complex formulation of the linear thin
shell theory was used to solve analytically a
number of linear shell problems presented, for
example, in the books by Novozhilov (1964),
Chernykh (1964), and Novozhilov et al. (1991).
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Constitutive Equations

When the shell is made of an elastic material,
the principle (5) requires the existence of the
surface strain energy density Σ(γ αβ , καβ ), per
unit area of M, such that Nαβ = ∂Σ /∂γ αβ and
Mαβ = ∂Σ /∂καβ . The explicit expression for Σ
depends on the shell material properties, but also
on the undeformed shell geometry: its thickness,
curvatures of M, the internal structure across the
thickness, etc.

In case of a homogeneous isotropic shell
undergoing small elastic strains, already (Love
1888, 1927) used Σ(γ αβ , καβ ) consisting of
the sum of two quadratic functions describing
stretching and bending energies of the shell.
The error of such approximation was analyzed
in Novozhilov and Finkel’stein (1943) and in
several later papers. In particular, according to
Koiter (1960), the consistently approximated
strain energy density is given by

Σ = h
2H

αβλμ
(
γαβγλμ + h2

12καβκλμ

)

+O (Ehη2θ2
)
,

Hαβλμ = E
2(1+ν)(

aαλaβμ + aαμaβλ + 2ν
1−ν a

αβaλμ
)
.

(32)

Here E is the Young modulus and ν is the Pois-
son ratio of the linearly elastic isotropic mate-
rial, while the small parameter θ is defined as
θ = max

(
h/L,

√
h/R,

√
η
)
, where L is the

smallest length of geometric and deformation
patterns on M. The form (32)1 of Σ(γ αβ , καβ )
was subsequently justified by asymptotic analysis
of the equations of 3D linearized elasticity as
indeed the consistent first approximation to the
3D strain energy density of the shell (see review
by Ciarlet 2000). The material tensor Hαβλμ in
(32)2 corresponds to the plane stress state in the
shell space in accordance with the assumption 2.
indicated in Introduction.

With (32)1, the constitutive equations of
isotropic elastic shells are given by

Nαβ = ∂Σ
∂γαβ

= Eh
1−ν2

[
(1− ν) γ αβ + νaαβγ κκ

]

+O (Ehηθ2
)
,

Mαβ = ∂Σ
∂καβ

= Eh3

12(1−ν2)

[
(1− ν) καβ + νaαβκκκ

]

+O (Eh2ηθ2
)
.

(33)

Summarizing, the boundary value equilibrium
problem of thin isotropic elastic shells can be
formulated in terms of three translations uα , w
of M as the basic independent field variables.
The BVP consists of three scalar equilibrium
equations (18) with (19), four natural static (20)
and (15)2 and/or four work-conjugate displace-
ment boundary conditions (17), the constitutive
equations (33), and the kinematic relations (4).

The error indicated in (32)1 suggests that,
within the accuracy of the first approximation
to the strain energy function, one can apply
various alternative definitions of the bending
tensor, provided that they differ from καβ
by terms of the type bλαγλβ . In particular,
Koiter (1960) used the bending tensor ραβ =
−καβ − 1/2

(
bλαγλβ + bλβγλα

)
and (Budiansky

and Sanders 1963) by several additional criteria
found it to be the “best” bending tensor for the
linear theory of thin elastic shells. Unfortunately,
some shell relations compatible with ραβ become
more complex and less convenient in general
discussions.

According to (26), the nonsymmetric tensor
μαβ may also be used as the bending tensor of the
linear theory of thin elastic shells. In this case, the
constitutive equations (33)2 of an isotropic elastic
shell are given by

Mαβ = ∂Σ

∂μαβ

= Eh3

12
(
1− ν2

)

[
(1− ν) μαβ+νaαβμκ·κ

]+O
(
Eh2ηθ2

)
.

(34)
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Conclusions

The limited space for this entry does not allow
one to discuss here many other important prob-
lems of the linear theory of thin isotropic elastic
shells. The literature in the field is numerous and
some early important contributions are inaccessi-
ble through Internet. The interested reader should
consult references given in the books referred to
below.
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Synonyms

Dimensional reduction; First-order shear defor-
mation theory; Plate model or theory; Reissner or
Hencky or Reissner-Mindlin thick plate theory

Definition

Thin plate model: A model where the only
kinematic d.o.f. is the transverse deflection. It
neglects the shear energy.

Thick plate model: A model including also two
in-plane rotation d.o.f. and including shear
deflection.

Introduction

Plates are three-dimensional structures with a
small dimension compared to the other two
dimensions. Numerous approaches were sug-
gested in order to replace the three-dimensional
problem by a two-dimensional problem while
guaranteeing the accuracy of the reconstructed
three-dimensional fields. Turning the 3D problem
into a 2D plate model is known as dimensional
reduction.

The approaches for deriving a plate model
from 3D elasticity may be separated in two main
categories: axiomatic and asymptotic approaches.
Axiomatic approaches start with ad hoc
assumptions on the 3D field representation of the
plate, separating the out-of-plane coordinate from
the in-plane coordinates. The limitation of these
approaches comes from the educated guess for
the 3D field distribution. Asymptotic approaches
come often after axiomatic approaches. They
are based on the explicit introduction of the
plate thickness, which is assumed to go to 0, in
the equations of the 3D problem. Following a
rather well-established procedure, they enable
the derivation of plate models, often justifying
a posteriori axiomatic approaches, and are the
basis of a convergence result.

The very first and simplest model is the
Kirchhoff-Love plate model or thin-plate model
(Kirchhoff 1850; Love 1888), where the out-of-
plane deflection is the only kinematic degree of
freedom. In this model, it is assumed that the fiber
normal to the plate mid-surface remains normal
during the motion. In order to take into account
the influence of shear energy on the deflection,
several thick plate models were suggested almost
simultaneously (Reissner 1944; Hencky 1947;
Bollé 1947). In these models, gathered here
under the common denomination Reissner-
Hencky models, two in-plane rotations are added
to the kinematics. Note that the denomination
Reissner-Mindlin is also very common in the
literature. It comes from Mindlin’s contribution
based on dynamic considerations (Mindlin 1951).
Whereas all these models were historically
derived axiomatically, they also have close
relations with asymptotic considerations.

This chapter is dedicated to the case of a
homogeneous and linear elastic plate with static
loading which was the foundation of many
extensions to heterogeneous plates. It recalls in
detail the derivation of the thick plate model from
Hencky (1947) as well as the one from Reissner
(1944). Both approaches are related but yield
different plate models. This choice is motivated
by the following considerations. First, Reissner-
Hencky models are the most widely used plate
models in engineering applications. Indeed, their
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https://doi.org/10.1007/978-3-662-55771-6_300262
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boundary conditions seem more natural than
those of the Kirchhoff-Love plate model. They
also relax the higher regularity of the Kirchhoff-
Love displacement required for finite elements
implementations. Second, the Kirchhoff-Love
model may be directly retrieved from these
models by means of the Kirchhoff kinematic
restriction “Direct Derivation of Plate Theories”.

Two modifications are made with respect to
the historical contributions. First, the membrane
model is also included in the present derivation
at very little price. Second, the applied load is a
body force uniformly distributed through the
thickness instead of a force per unit surface
applied only on the upper face of the plate.
This choice leads to a more compact derivation
and removes a higher-order coupling between
the membrane and bending problems widely
ignored in the historical literature. Finally, all
mathematical developments are purely formal
and the reader is referred to (“Mathematical
Justifications of Plate Models” and Ciarlet 1997)
for rigorous justifications.

The 3D Problem

The plate is the cylindrical body ' = ω × T
where ω denotes the midplane surface of the plate
and T = [−h

2 ,
h
2

]
is the transverse coordinate

range. The boundary, ∂', is decomposed into
three parts (Fig. 1):

∂' = ∂'lat ∪ ∂'+3 ∪ ∂'−3 , (1)

with:

∂'lat = ∂ω × T and ∂'±3 =ω×{±h
2

}
. (2)

It is assumed that the plate follows a pre-
scribed displacement ud on its lateral boundary,
∂'lat, and is subjected to body forces f(x) in ' of
the form:

f = (f1(x1, x2), f2(x1, x2), hf3(x1, x2)). (3)

In the third component of the body force, the
thickness is factored out in order to follow the
usual scaling of applied forces when the thickness
goes to 0 and will be motivated in the following.
It is assumed that the fourth-order stiffness tensor
C characterizing the elastic properties of the
constituent material at every point x= (x1, x2, x3)

of ' is uniform on the whole body. The tensor C
follows the classical minor and major symmetries
of linear elasticity and is positive definite. In
addition, monoclinic symmetry with respect to a
plan of normal e3 is assumed:

C3αβγ = Cα333 = 0, (4)

where it is recalled that for Greek indices α, β,
γ . . . = 1, 2 (in-plane components), while for
Latin indices i,j ,k . . .= 1, 2, 3 (in-plane and out-
of-plane components).

Thus, the constitutive equation writes:

⎧
⎨

⎩

σαβ = Cαβγ δεδγ + Cαβ33ε33,

σα3 = 2Cα3β3ε3β,

σ33 = C33αβεβα + C3333σ33,

(5)

or conversely,

⎧
⎨

⎩

εαβ = Sαβγ δσδγ + Sαβ33σ33,

εα3 = 2Sα3β3σ3β,

ε33 = S33αβσβα + S3333σ33,

(6)

Fig. 1 The 3D problem for a homogeneous plate

https://doi.org/10.1007/978-3-662-55771-6_131
https://doi.org/10.1007/978-3-662-55771-6_138
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where σ = (σij ) is the stress tensor, ε = (εij )

is the strain tensor, and S is the inverse of C and
has the same properties (4) as the tensor C. In
the above equation and in the remainder of this
chapter, Einstein’s summation convention is used.

The full 3D linear elastic problem, P3D, is to
find in ' a displacement vector field u3D, a strain
tensor field ε3D, and a stress tensor field σ 3D such
that the static conditions:

SC3D :

⎧
⎪⎪⎨

⎪⎪⎩

σαj,j + fα = 0 on ', (7)

σ3j,j + hf3 = 0 on ', (8)

σi3 = 0 on ∂'±3 , (9)

for regular enough σ , the kinematic conditions:

KC3D :
{

2εij = ui,j + uj,i on ', (10)

ui = udi on ∂'lat, (11)

for regular enough u, and the constitutive law (5)
are satisfied.

Kinematic Derivation of Hencky’s
Plate Model

In this section, the kinematic derivation of a
thick plate model from Hencky (1947) and Bollé
(1947) is presented. It delivers the correct plate
generalized variables. However, the constitutive
equations are incorrect. It starts with the
assumption of a 3D kinematically compatible
displacement field. The plate model is derived
from the application of the minimum potential
energy principle.

Plate Kinematics
The following 3D kinematics is assumed for the
plate:

uHα (xi) = Uα(xη)+ x3φα(xη) and

uH3 (xi) = U3(xη).
(12)

Here, Uα is the membrane in-plane displacement,
U3 is the out-of-plane displacement, and φα is
the material inclination of the fiber normal to

the midplane of the plate. The corresponding in-
plane rotation vector is θ , where θ1 = −φ2 and
θ2 = φ1.

With proper scaling, it may be demonstrated
that this kinematics is related to the asymptotic
expansion of the 3D displacement solution of
P3D with respect to the thickness of the plate
h. The membrane displacement and the out-of-
plane displacement are the leading-order terms of
the expansion. The material rotation is related to
the next-order term of the expansion (Ciarlet and
Destuynder 1979).

As a consequence of this choice of kinematics,
it must be assumed in this section that the pre-
scribed 3D displacement ud on the boundary is
as follows:

udα = Ud
α + x3φ

d
α and

ud3 = Ud
3 on ∂'lat,

(13)

where Ud
α , φdα , and Ud

3 are prescribed generalized
displacements on the boundary.

The corresponding plate boundary condi-
tions are:

Uα = Ud
α , φα = φdα and

U3 = Ud
3 on ∂ω.

(14)

The 3D strain derived from Hencky’s kinematics
writes as:

εHαβ = Eαβ + x3χαβ,

2εHα3 = γα and εH33 = 0.
(15)

Here the plate generalized strains are
defined as follows:

2Eαβ = Uα,β + Uβ,α,

2χαβ = φα,β + φβ,α,

γα = φα + U3,α.

(16)
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Fig. 2 Hencky’s kinematics

The symmetric second-order tensor Eαβ

is the membrane strain. The symmet-
ric second-order tensor χαβ is the mate-
rial curvature. The in-plane vector γα is
the generalized shear strain. It measures
the difference between the normal to the
deformed plate mid-surface U3,α and the
material inclination φα (Fig. 2).

Finally the plate kinematically compatible
fields are gathered as:

KCP = {(Uα, φα,U3) s.t. (16) and (14)} . (17)

Formulation of Hencky’s Plate Model

Minimum Potential Energy
The minimum potential energy principle states
that the strain solution ε3D of P3D is the one
that minimizes the potential energy among all
kinematically compatible strain fields:

ε3D= arg min
ε∈KC3D

{∫

'

1

2
ε:C:ε−hf3u3−fαuα d'

}
,

(18)

The stationarity condition – also known as prin-
ciple of virtual work – writes for the solution as:

∀û ∈ KC3D,0,
∫

'

σ
(

u3D
)
: ε(û)− hf3û3 − fαûα d' = 0,

(19)

where KC3D,0 is the set of 3D kinematically
compatible fields with vanishing prescribed dis-
placement.

Plate Generalized Stresses
Specifying (19) for Hencky’s kinematics yields

∀
(
Ûα, φ̂α, Û3

)
∈ KCP,0

∫

ω

〈
σαβ
〉
Êαβ +

〈
x3σαβ

〉
χ̂αβ + 〈σα3〉 γ̂a

− h2f3Û3 − hfαÛαdω = 0, (20)

where integration through the thickness is

denoted: 〈f (x3)〉 =
∫ h

2

− h
2
f (x3)dx3

This suggests the following definition of
plate generalized stresses:

Nαβ =
〈
σαβ
〉
,

Mαβ =
〈
x3σαβ

〉
,

Qα = 〈σα3〉 .

(21)

Nαβ is the membrane stress in duality
with the membrane strain Eαβ , Mαβ is the
bending moment tensor in duality with the
material curvature χαβ , and Qα is the shear
force in duality with the generalized shear
strain γα .

Plate Equilibrium
Integrating by parts Eq. (20) over the domain ω

and taking into account plate boundary condi-
tions yields:

∫

ω

− (Nαβ,β + hfα
)
Ûα −

(
Qα,α + h2f3

)
Û3

− (Mαβ,β −Qa

)
φ̂αdω = 0. (22)
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This leads to the following plate equilib-
rium equations:

SCP=

⎧
⎪⎨

⎪⎩

Nαβ,β+hfα = 0 on ω, (23)

Qα−Mαβ,β = 0 on ω, (24)

Qα,α+h2f3 = 0 on ω, (25)

Equation (23) is the in-plane or mem-
brane equilibrium equation. Equation (25)
is the out-of-plane equilibrium equation.
Equation (24) is the bending equilibrium
equation.

These equilibrium equations are almost iden-
tical to those obtained from the direct derivation
“Direct Derivation of Plate Theories”. Here the
drilling moment vanishes, and the membrane
stress and bending moment tensors are symmetric
because the plate is originally assumed as a 3D
Cauchy medium.

Natural Scaling of Stresses in Plates
Because the upper and lower face of the plate are
actually free of stress, there is a natural scaling of
stresses when, for a fixed in-plane dimension L,
the thickness h goes to 0.

Indeed, from the out-of-plane part of the 3D
equilibrium equation (7), it appears that the nor-
mal stress scales like σ33 ∼ h2f3 and that the
transverse shear stress scales like σα3 ∼ Lhf3.
Furthermore, the bending equilibrium equation
(24) ensures the following relation between the
in-plane stress and the transverse shear stress:
σα3 ∼ h

L
σαβ . Hence σαβ ∼ L2f3 is of order

h0. This is also in agreement with the in-plane
equilibrium which yields σαβ ∼ Lfα also of order
h0 and motivates the initial scaling of the load.

Finally, the in-plane stresses are of order
h0, the transverse shear stresses are of order
h1, and the normal stress is of order h2.
A direct consequence of this observation is
that at leading order in h, the plate is in a
state of plane-stress.

Constitutive Equations
Once plate kinematically as well as statically
compatible fields are derived, there remains to
establish plate constitutive equations. This is usu-
ally performed, integrating through the thickness
the strain energy related to the approximation of
strains (15). However, whereas Hencky’s kine-
matics is correct asymptotically when h goes to
0, the corresponding strain field is not the leading
order of the expansion of the 3D solution. Indeed,
εH

33 = 0 corresponds to a plane-strain state. It
is in contradiction with the natural scaling of
stresses in the plate and does not satisfy the free
boundary conditions on the upper and lower face
of the plate. A small out-of-plane displacement is
required to release out-of-plane Poisson’s effect
(see Braess et al. 2010 among others).

In most textbooks, it is arbitrarily assumed at
this stage that the correct constitutive equations
are those derived in a previous work from Reiss-
ner following static considerations and detailed
below.

Static Derivation of Reissner Plate
Model

In this derivation, Hencky’s kinematics relating
plate generalized displacements and 3D displace-
ment is dropped and another interpretation of
the plate kinematics will be derived. Reissner’s
model is obtained from the derivation of a
statically compatible 3D stress distribution and
the application of the minimum complementary
energy principle.

Derivation of a Statically Compatible
Stress Field
While the out-of-plane components of the strain
εH
i3 are not correct asymptotically, the in-plane

components of the strain εH
αβ are correct. They

are taken as the starting point for deriving an
approximation of the in-plane stress:

εαβ(x1, x2, x3) =
Eαβ(x1, x2)+ x3χαβ(x1, x2), (26)

https://doi.org/10.1007/978-3-662-55771-6_131
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Using plane-stress constitutive equation, the in-
plane stress writes as:

σαβ = Cσ
αβγ δ

(
Eδγ + x3χδγ

)
, (27)

where Cσ
αβγ δ = Cαβγ δ − Cαβ33C33γ δ/C3333 =

(Sαβγ δ)
−1 is the plane-stress stiffness tensor.

Computing the membrane stress and the bend-
ing moment for this stress distribution leads to the
following leading-order relations between gener-
alized stress and strains:

Nαβ =
〈
σαβ
〉 = hCσ

αβγ δEδγ , and

Mαβ =
〈
x3σαβ

〉 = h3

12
Cσ
αβγ δχδγ .

(28)

These equations are leading-order plate constitu-
tive equations. The exact ones will be derived in
the following. From these relations and Eq. (27),
it is found:

σαβ = 1

h
Nαβ + 12x3

h3 Mαβ. (29)

Note that Reissner (1944) started directly from
this in-plane stress distribution. However, (29)
would not hold in case the plate is heterogeneous,
whereas the in-plane strain distribution (26)
remains true at leading order “Homogenization
of Thin Periodic Plates”.

From this in-plane stress distribution, a com-
plete statically compatible stress distribution is
now derived by successively integrating through
the thickness of the 3D equilibrium equation (7).

The transverse shear distribution is derived by
integrating with respect to x3 the 3D equilibrium
equations σαβ,β + σα3,3 + fα = 0 and by taking
into account the free boundary conditions (9) as
well as plate equilibrium equations (23) and, (24).
This yields:

σα3 = 3

2h

(

1− 4x2
3

h2

)

Qα. (30)

Note that both upper and lower free boundary
conditions are satisfied simultaneously.

Similarly, the normal traction σ33 is derived by
integrating with respect to x3 the 3D equilibrium

equations σα3,α + σ33,3 + hf3 = 0 and by taking
into account the free boundary conditions (9)
as well as the out-of-plane equilibrium equation
(25). This yields:

σ33 = f3
hx3

2

(

1− 4x2
3

h2

)

. (31)

Again, upper and lower free boundary conditions
are satisfied simultaneously.

Finally, the following Reissner stress distri-
bution was derived:

σR(N,M,Q; f3) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σR
αβ= 1

h
Nαβ+ 12x3

h3 Mαβ,

σR
α3= 3

2h

(
1− 4x2

3
h2

)
Qα,

σR
33=f3

hx3
2

(
1− 4x2

3
h2

)
.

(32)

This stress distribution is in the set of 3D
statically compatible stress fields SC3D iff
(N, M, Q) satisfy the plate equilibrium
equations (23), (24), and (25). It delivers
a much better approximation of 3D stress
fields than the one obtained from the 3D
constitutive equation and the strains (15).

Formulation of the Reissner Plate Model

Minimum of the Complementary Energy
The minimum complementary energy principle
states that the stress solution σ 3D of the 3D prob-
lem P3D is the one that minimizes the comple-
mentary energy among all statically compatible
stress fields:

σ 3D = arg min
σ∈SC3D

{∫

'

1

2
σ : S : σ d'

−
∫

∂'lat

(σ · n) · uddS

} (33)

where n is the outer normal to ∂'lat.

https://doi.org/10.1007/978-3-662-55771-6_137
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Inserting stress distributions of the form (32)
following plate equilibrium equations (23), (24),
and (25) in the principle of minimum comple-
mentary energy yields the following minimiza-
tion problem:

(N,M,Q)R = arg min
(N,M,Q)∈SCP

{
P ∗R(N,M,Q)

}
,

(34)
where the plate complementary energy writes as:

P ∗R(N,M,Q) =
∫

ω

w∗R(N,M,Q; f3) dS

−
∫

∂ω

Ud
αNαβnβ + φdαMαβnβ + Ud

3 Qαnα ds.

(35)

The generalized stress energy density is:

w∗R =
〈

1

2
σR : S : σR

〉
, (36)

and the generalized displacements on the bound-
ary are defined as:

Ud
α =

1

h

〈
udα

〉
, φdα =

〈
12x3

h3
udα

〉
and

Ud
3 =

〈
3

2h

(

1− 4x2
3

h2

)

ud3

〉 (37)

This minimization problem fully determines
Reissner’s plate theory, and the corresponding
details may be found in “Direct Derivation
of Plate Theories”. The plate kinematically
compatible and statically compatible fields
found from this formulation are the same
as those obtained from Hencky’s derivation
((23), (24), (25), and (17)). However, the
constitutive equations are different and the plate
kinematics may be interpreted differently.

Plate Kinematics

The definition of the generalized displace-
ment on the boundary (37) encourages the
following interpretation of the plate kine-

matics as projections of the 3D displace-
ment:

Uα ≈ 1

h
〈uα〉, φα ≈

〈
12x3

h3 uα

〉
and

U3 ≈
〈

3

2h

(

1− 4x2
3

h2

)

u3

〉

. (38)

The membrane displacement Uα is the
average through the thickness of the plate
of the in-plane displacement. The material
inclination φα is the odd part of the in-plane
displacement. Finally, the plate deflection
U3 appears as a weighted average of the
out-of-plane displacement.

Remarkably, Hencky’s kinematics (12) is in
agreement with the projections (38).

Constitutive Equations
From the plate stress energy density (36), the
following constitutive equations are derived:

Eαβ = 1

h
Sαβγ δNδγ ,

χαβ = 12

h3 Sαβγ δMδγ + pαβhf3,

γα = fαβQβ,

(39)

where the shear force compliance f is:

fαβ = 6

5h
4Sα3β3, (40)

and p is a prescribed curvature related to the
applied load:

pαβ = −Sαβ33

5
. (41)

It must be noted that p depends on the way the
load is applied on the 3D body. Indeed, loading
the plate on the upper and lower faces leads to a
different value of p.

https://doi.org/10.1007/978-3-662-55771-6_131
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These equations may be inverted and lead
to the following constitutive equations:

N=A : E, M=D : (χ − ph f3) and

Q = F · γ ,
(42)

where:

Aαβγ δ = hCσ
αβγ δ,

Dαβγ δ = h3

12
Cσ
αβγ δ and

Fαβ = 5h

6
Cα3β3.

(43)

Note that the membrane problem for Uα

generalized displacements is fully uncoupled
from the bending problem for U3 and φα
generalized displacements. This is because of
the monoclinic symmetry assumed in (4) and the
mirror symmetry with respect to the midplane
of the plate. For heterogeneous plates, this
uncoupling is not always true “Anisotropic and
Refined Plate Theories”.

Finally, the so-called “shear correction fac-
tor” 5/6 taking into account the nonuniform dis-
tribution of the out-of-plane shear stress was
obtained. Note that, when dealing with heteroge-
neous plates, this definition is meaningless since
several shear stiffness moduli may be involved in
the shear force constitutive equation.

Static Boundary Conditions
It is also possible to enforce static boundary
conditions on the lateral boundary of the plate.
However, whereas kinematic boundary condi-
tions are satisfied weakly on the boundary, the
static derivation from Reissner requires that static
boundary conditions are satisfied strongly on the
boundary. Hence, considering the form of the
stress approximation (32), only stress distribu-
tions through the thickness of the following form:

T d
α =

1

h
Nd
α +

12x3

h3 Md
α and

T d
3 =

3

2h

(

1− 4x2
3

h2

)

Qd,

(44)

may be enforced on the lateral boundary ∂ωσ×T.
Here, ∂ωσ denotes the portion of the boundary
where static conditions may apply. They cor-
respond to the following plate static boundary
conditions:

Nαβnβ = Nd
α ,Mαβnβ = Md

α and

Qαnα = Qd on ∂ωσ ,
(45)

where Nd
α is an in-plane traction, Md

α is an in-
plane couple, and Qd is a shear force enforced
on the boundary. A direct consequence is that
traction free boundary conditions are strongly
satisfied with Reissner plate model.

Conclusion

The approaches from Hencky and Reissner for
deriving a thick plate theory are often confused
in the literature. Whereas they are closely related,
they actually yield different plate models which
suffer from different limitations.

The kinematic derivation from Hencky is
probably the most straightforward but leads
to incorrect estimates of the local stresses as
well as the plate’s constitutive equations. The
constitutive equations derived by Reissner are
commonly used to correct Hencky’s model.

The extension of this model to the case of
laminated plates was early performed (Yang et al.
1966). This approach is referred to as first-order
shear deformation theory and suffers even more
critically from the inconsistencies encountered
for homogeneous plates. The advantage of this
approach is that its kinematics may be extended
to large displacements and rotations.

A natural strategy for solving these incon-
sistencies is to enrich the plate kinematics so
that it can accommodate free boundaries at
the upper and lower face of the plate. This is
the main concept behind hierarchical models

https://doi.org/10.1007/978-3-662-55771-6_136
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(Babuška and Li 1992; Paumier and Raoult
1997; Alessandrini et al. 1999) where the 3D
displacement is assumed as a polynomial of
the out-of-plane coordinate and each monomial
is multiplied by an in-plane function being a
generalized plate displacement. However, this
requires more plate kinematic degrees of freedom
than those of Reissner-Hencky models.

The static derivation from Reissner leads to a
very accurate model in the framework of static
linear elasticity and it was observed empirically
that it converges faster than Kirchhoff-Love
model in some specific configurations (Lebée
and Sab 2017b). However, its rigorous extension
to laminated plates requires the introduction of
numerous additional plate degrees of freedom
and is impractical for engineering applications
(Lebée and Sab 2017a).
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Jacek Chróścielewski and Wojciech Witkowski
Faculty of Civil and Environmental Engineering,
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Definition

Time-stepping algorithms serve as the tool of
temporal approximation of evolution equations of
dynamical systems. The algorithms are divided
into one-step and multistep methods depending
on the number of the required preceding time
steps. If the sought variable appears as explicit
or implicit, the scheme is classified as explicit or
implicit, respectively.

Introduction

While formulating the numerical schemes
the following three criteria must be taken
into account: consistency (relation between
the differential equation and its discrete
formulation); stability (relation between the
computed solution and the exact solution of the
discretized equations); convergence (connects
the computed solution to the exact solution of the
differential equation). In nonlinear dynamics of
structures, where the interest is focused on the
range of low values of natural frequencies in long
time span, often one-step implicit algorithms
are used. Such schemes in the nonlinear shell
dynamics are additionally required to satisfy the
conservation of energy (ECA). In 6-parameter
nonlinear shell theory with the drilling rotation,
the rotation tensor field Q ∈ SO(3) requires
special nonclassical approach to singular-free
approximation procedure both in space and time,
since SO(3) does not admit the structure of the
linear space. Due to its special properties, the
Cayley parameterization of the rotation group
plays an important role.

The problem of conservation of energy is
an important field of interest in the numerical
integration of equations of motion in nonlinear
computational mechanics still pursued in the
literature, e.g., Campello et al. (2011), Betsch
and Janz (2016), and Gebhardt and Rolfes
(2017). Graham and Jelenić (2003) classify the
conservation of energy and momenta as the
features that make the given time integration
method successful. This is due to the fact that

classical methods of temporal approximation,
e.g., Newmark, HHT, or θ -Wilson (Armero
2008), may lead to the unstable behavior when
applied directly in nonlinear problems. A lot of
research has been devoted to this topic, e.g., Simo
and Tarnow (1994), Simo et al. (1995), Romero
and Armero (2002), Ibrahimbegović et al.
(2000), Chróścielewski and Witkowski (2010).
At least three methods may be efficient (Zolghadr
Jahromi and Izzuddin 2013) in attempting to
preserve the conservation: numerical dissipation,
enforced energy conservation, and algorithmic
energy control, cf. also e.g. Armero and Romero
(2003), Kuhl and Ramm (1996), or Kuhl and
Crisfield (1999). As formulated in the latter
paper, the sufficient condition for stability of the
time integration method in the nonlinear regime
is the conservation (or decay) of the total energy
within a time step. That is, kinetic K and potential
U components of the energy related to work done
by external forces Gext at the beginning and
the end of the time interval should satisfy the
equation

Kn+1 −Kn + Un+1 − Un ≤ *Gext . (1)

In case of a Hamiltonian system

Kn+1 −Kn + Un+1 − Un = 0. (2)

In the present study the formulation of time
integration algorithm is discussed within the
framework of 6-parameter nonlinear shell theory
with the drilling rotation. The kinematics of
the shell theory has features of the Cosserat
continuum. Some reference works that may
be useful for in-depth formulation are Chróś-
cielewski et al. (1997, 2004b), Witkowski (2009),
and Pietraszkiewicz (2017). The exposition
of the problem is divided into three parts:
the statement of the initial boundary value
problem, then extended Newmark time-stepping
algorithm is formulated, and finally energy-
conserving algorithm is presented. Readers
interested in dynamics of the Cosserat rods
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Fig. 1 Irregular shell

may consult for, e.g., Simo et al. (1995),
Ibrahimbegović et al. (2000), or Armero and
Romero (2003).

Initial-Boundary Value Problem

Following Chróścielewski et al. (2000) or
Lubowiecka and Chróścielewski (2002), an
irregular shell as shown in Fig. 1 is considered.
The structure is acted upon by the external
resultant force and couple vector fields f(x, t)
and c(x, t) on x ∈ M\Γ , n∗ (x, t) and m∗ (x, t)
along ∂Mf , fΓ (x, t) and cΓ (x, t) along the singular
curve Γ ⊂M, and the initial values of translation

and rotation fields respectively denoted as u0(x),
Q0(x) along with their time derivatives u̇0 (x),
Q̇0 (x) at time t = 0.

Define: the translation vector u(x, t) =
y(x, t) − x, the linear velocity vector υ (x, t) =
ẏ (x, t) = u̇ (x, t), p(x, t) and m(x, t) as the
translational and rotational momenta vectors,
nβ (x, t) and mβ (x, t) as the internal stress and
couple resultant vectors, respectively. Then the
IBVP may be stated as follows: find a curve
u(x, t) = (u(x, t), Q(x, t)) on the configuration
space C( M, E3 × SO(3) ) such that for any
continuous, kinematically admissible virtual
vector field w(x)≡ (v(x), w(x)) ∈ VA(M, E3 × E3)
the following variational statement is satisfied:

G [u, t; w] = ∫∫M\Γ (ṗ· v + (π̇ + υ × p) ·w) da + ∫∫
M\Γ

(
nβ · (v,β + y,β × w

)+mβ ·w,β
)

da

− ∫∫
M\Γ (f · v+c·w) da+∫

∂Mf
(n∗· v+m∗·w) ds+∫

Γ

(
f Γ · vΓ +cΓ ·wΓ

)
ds=0.

(3)

Here vΓ = v |Γ , wΓ = w |Γ denote values
of w(x) along Γ ⊂ M. In Eq. 3 it is implicitly
assumed that the kinematic boundary conditions
u(x, t) = u∗ (x, t) and Q(x, t) = Q∗ (x, t) are satis-
fied on the complementary part ∂Md = ∂M\∂Mf ,
and the virtual vector fields are kinematically
admissible if v(x) = 0 and w(x) = 0 on ∂Md.
The expressions for the momenta p and π were
suggested by Simmonds (1984):

p = m0υ = ρ0h0υ,

π = I0ω = 1

12
ρ0 h

3
0 ω,

ω × 1 = Q̇ QT,

(4)

where ρ0(x) is the initial mass density, h0(x)
is the initial shell thickness, and ω(x, t) is the
network spin vector in the spatial representation.
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The components of energy in Eq. 1 read

U =
∫∫

M\Γ
W da,

K = 1

2

∫∫

M\Γ
(p·υ + π ·ω) da = 1

2

∫∫

M\Γ
(m0υ·υ + I0ω·ω) da,

*Gext=
∫ tn+1

tn

{∫∫

M\Γ
(f ·υ+c·ω)da+

∫

∂Mf

(
n∗·υ+m∗·ω)ds+

∫

Γ

(
f Γ ·υΓ+cΓ ·ωΓ

)
ds

}

dt,

(5)

where W(εβ , κβ ; x) is the 2D strain energy func-
tion defined by expressions for stretching strains
and bending strains given respectively as

εβ = y,β − Q x,β, Kβ = κβ × 1 = Q,βQT.

(6)

For the purposes of this work the constitutive
relations of the shell material are given by

nβ = ∂W
∂εβ

, mβ = ∂W
∂κβ

. (7)

The temporal approximation of Eq. 3 is based
on standard argumentation that the time interval
[0, T] is partitioned by a finite number of time
instants 0 ≡ t0 < t1 < . . . < tn < tn + 1 < . . . < tN
≡ T such that [0, T ] = ∪N−1

n=0 [tn, tn+1] and
[tn − 1, tn] ∩ [tn, tn+1] = tn with Δt = tn+1 − tn
a typical time step. Then, the weak form of the

IBVP at the time instant tn+1 reads

Gn+1 ≡ G [un+1, tn+1; wn+1] = 0,

∀wn+1 ∈ Tun+1C ∼ VA.
(8)

With iterative solution of the nonlinear
problem with the time-stepping algorithm,
the solution of the nonlinear problem (8)
is constructed by the incremental-iterative
procedure based on the Newton-Kantorovich
method (Krasnosel’skii et al. 1972) applied
in the configuration space C( M, E3 × SO(3) ).
Let an i–th approximation u(i)n+1 to the solution
un+1 ≡ u(tn+1) has been found. In order to
calculate the correction *u(i+1)

n+1 , which yields

the successive approximation u(i+1)
n+1 to the

unknown solution un+1, Eq. 8 is linearized at
the approximation u(i)n+1:

G
[
u(i)n+1, tn+1; w(i)

n+1

]
+δG

[
u(i)n+1, tn+1; w(i)

n+1,*u(i+1)
n+1

]
=0, ∀w(i)

n+1 ∈ Tu(i)n+1
C∼VA. (9)

The second term in Eq. 9 denotes a directional
derivative of the functional Eq. 8 taken at the
point u(i)n+1 ∈ C in the direction *u(i+1)

n+1 ∈
Tu(i)n+1

C ∼ VA. This term yields the so-called

tangent operator of the nonlinear problem, calcu-
lated at the approximation u(i)n+1. The first term
in Eq. 9 represents unbalanced forces at the
approximation point u(i)n+1.

In the remainder of the paper the variables
in spatial representation such as vectors, e.g.
(ω, w, a) and tenors, e.g. (Ω , W, A) are denoted

by boldface italic characters, their counterparts
in the material representation are written with
boldface font, e.g. (ω, w, a, �,W, A).

Extended Newmark Algorithm

The implicit one-step Newmark (1959) formula
with the Newton iterations, in which the actual
state at time tn+1 is calculated from the former
state at time tn alone, is one of the most
popular time integration methods. However,
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due to the fact that here the configuration space
C( M, E3 × SO(3) ) does not have the structure
of the linear space, the original approach must
be extended to accommodate the rotation group
SO(3). In the context of the present shell theory,
this issue has been discussed in Chróścielewski
et al. (2000) or Lubowiecka and Chróścielewski
(2002).

The physical meaning of external loads is
well defined only in the spatial representation.
Consequently, the generalized momentum bal-
ance is formulated in the spatial representation
as well. The linearized dynamic equations are
written relative to an instantaneous configura-
tion u(i)n+1, that is at the i–th approximation to
un+1, and not relative to un. This eliminates
the need of applying the transformation rela-

tion Y n

(
Q

(i)
n+1

)
: T

Q
(i)
n+1

SO(3) → TQn
SO(3),

compare Cardona and Geradin (1988) or Simo
and Vu-Quoc (1988), since in the present case

Y |(i)n+1

(
Q

(i)
n+1

)
≡ 1. Furthermore, as argued by

Simo and Wong (1991), the angular velocities
and accelerations from different time instants
can directly be added only in the material rep-
resentation. As a result, temporal approxima-
tions of these fields are carried out in the mate-
rial representation. Then the obtained results are
transformed into the spatial representation and
substituted into the linearized dynamic equations
(9).

In the iterative solution of the linearized
problem equations (9), it is assumed that the
i–th correction of the incremental generalized

displacements *u(i+1)
n+1 =

(
*u

(i+1)
n+1 ,*w

(i+1)
n+1

)

is known. Here *w
(i+1)
n+1 ∈ T

Q
(i)
n+1

SO(3)

(Δw × 1 = ΔW = ΔQ QT) denotes the i–th
correction of the incremental rotation vector in
the spatial representation. The part of algorithm
associated with the translatory motion (u, u̇, ü)

is standard, see for instance Hughes (2000).
The part of algorithm associated with the
rotational motion (Q, ω, a) may be summarized
as follows:

1. Update the rotation tensor in the spatial repre-
sentation

Q
(i+1)
n+1 = exp

(
*W

(i+1)
n+1

)
Q

(i)
n+1,

*W
(i+1)
n+1 = *w

(i+1)
n+1 × 1,

i = 0, 1, 2, 3, . . . ,

(10)

where Q
(0)
n+1 ≡ Qn, *w

(1)
n+1 ≡ *w

(1)
n denote

the starting values in iterative correction.
2. Calculate the complete (accumulated) incre-

ment of the rotation vector *w(i+1)
n in the

material representation

exp
(
*W(i+1)

n

)
= QT

nQ
(i+1)
n+1 ,

*W(i+1)
n = *w(i+1)

n × 1.
(11)

3. Calculate angular accelerations and velocities
in the material representation according to the
extended Newmark scheme

a(i+1)
n+1 = 1

β(*t)2

[
*w(i+1)

n −*t ωn

−(*t)2
(

1

2
− β

)
an

]
,

ω
(i+1)
n+1 = γ

β*t
*w(i+1)

n +
(

1− γ

β

)
ωn

+*t

(
1− γ

2β

)
an.

(12)

4. Transform the vectors (12) to the spatial rep-
resentation

ω
(i+1)
n+1 = Q

(i+1)
n+1 ω

(i+1)
n+1 ,

a
(i+1)
n+1 = Q

(i+1)
n+1 a(i+1)

n+1 .

(13)

5. Formulate the problem linearized equations at
the new iteration step i → i + 1 and calculate
the new correction of Δw.
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The angular accelerations and velocities are
calculated from:

in the material representation

Ω = QTQ̇ = ω× 1,

A = Ω̇ = QTQ̈−ΩΩ = a× 1
, (14)

or in the spatial representation

Ω = Q̇QT = ω × 1,

A = Ω̇ = Q̈QT −�� = a × 1.
(15)

The parameters 0 ≤ β ≤ 1
2 and 0 ≤ γ ≤ 1

in Eq. 12 are free parameters of the Newmark
algorithm. Different values of β and γ yield
variety of time integration schemes known in E3

and to various extensions into E3 × SO(3).

Energy Conserving Algorithm (ECA)

For the discussed shell theory the energy con-
serving algorithm has been presented in Chróś-
cielewski et al. (2004a, 2005) and Lubowiecka
and Chróścielewski (2005). While the previous
algorithm was independent of parameterization
of the rotation group, the ECA uses the Cayley
parameterization of ΔQ = cay(ΔC) ≡ cay(Δc),
ΔC = Δc × 1 which in the material representa-
tion takes the form

*Q = cay (*c)

= 1+ 1

1+ 1
4*c·*c

(
*C+ 1

2
*C2

)

=
(

1− 1

2
*C

)−1 (
1+ 1

2
*C

)

=
(

1+ 1

2
*C

)(
1− 1

2
*C

)−1

.

(16)

The inversion of Eq. 16 reads

*C = 2

1+ tr*Q
(− (tr*Q) 1

+ (1+ tr*Q)*Q−*Q2
)

= 2 (1−*Q) (1+*Q)−1

= 2(1+*Q)−1 (1−*Q) .

(17)

The Cayley parameterization possesses unique
features, not present in other parameterizations,
important for ECA (Fig. 2). Namely, for any
orthogonal tensor Q ∈ SO(3) the Cayley trans-
form cay : so(3) → SO(3) or equivalently
cay : E3 → SO(3), which follows from the
isomorphism so(3) ∼ E3, the following relations
are true:

Fig. 2 Concept of overall
increment of rotation in the
iterative procedure
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Q cay (*C) QT = cay (Q *c)

= cay (*c) = *Q,

*c = Q *c,

(18)

cay (*C) *c = *c,

cay (*C) cay (−*C) = 1.
(19)

Here the exponential map plays an auxiliary
role

*Q = exp (*W) = cay (*C) ,

*c = 2 tan

(
1

2
‖*w ‖

)
e,*W = *w× 1,

e = *c
‖*c ‖ =

*w
‖*w ‖ .

(20)

Now, the evolution equations ([0, T ] =
∪N−1
n=0 [tn, tn+1]) are introduced as

yn+1 − yn = un+1 − un = *u,

Qn+1 −Qn =
1

2

(
Qn+1 +Qn

)
*C

= H
n+ 1

2
*C = 1

2
*C

(
Qn+1 +Qn

)

= *C H
n+ 1

2
,

(21)

where

*u = 1

2
*t (υn+1 + υn) ,

*c = 1

2
*t (ωn+1 + ωn) ,

*C = *c× 1,

H
n+ 1

2
= 1

2

(
Qn+1 +Qn

)
.

(22)

The increment of the rotation tensor field
ΔQ, together with ΔQ, yields the transformation
between the configuration tn and tn+1:

Qn+1 = *Q Qn = Qn *Q. (23)

Then from Eq. 23 follows the formula

*Q = cay (*C) = cay
(
Qn *c

)

= Qn cay (*C) QT
n = Qn *Q QT

n.

(24)

The algorithmic approximation of the weak
form (3) of the BVP, based for ECA on the
mid-point approximation, leads to local relations
between the configuration and the velocity fields
Eq. 21 within the time interval [tn, tn+1]:

1

Δt

∫

M\Γ

((
pn+1 − pn

) ·Δu

+ (πn+1 − πn) ·Δc) da

+
∫

M\Γ

(
nβ ·

(
Δu,β + y

n+ 1
2
,β ×Δc

)

+mβ ·Δc,β
)

da = Gext [u, t; w] ,

(25)

where translations and rotations are defined
according to the formulae

y
n+ 1

2
= 1

2

(
yn+1 + yn

)
,

H
n+ 1

2
= 1

2

(
Qn+1 +Qn

)
,

H
n+ 1

2
/∈ SO(3),

(26)

with the following transformations of the resul-
tant forces

nβ = H−1
n+ 1

2
nβ,

mβ = H ∗ −1
n+ 1

2
mβ,

H ∗
n+ 1

2
= det

(
H

n+ 1
2

)
H−T

n+ 1
2
.

(27)

In addition, to satisfy Eq. 2, it is necessary
that the constitutive equations must be replaced
with the algorithmic constitutive equations in the
material representation, i.e.,

nβ = Cεε
1

2

(
εβn+1 + εβn

)
,

mβ = Cκκ
1

2

(
κβn+1 + κβn

)
.

(28)
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With Eqs. 4 and 22, the increment of the
kinetic energy per unit surface Eq. 25 in mid-

point approximation takes the form

*K = 1
*t

[(
pn+1 − pn

) ·*u+ (πn+1 − πn) ·*c
]

= 1
*t

[
m0 (υn+1 − υn) ·*u+ I0 (ωn+1 − ωn) ·Qn+1*c

]

= 1
2

[
m0 (υn+1 − υn) · (υn+1 + υn)+ I0 (ωn+1 − ωn) ·Qn+1 (ωn+1 + ωn)

]

= 1
2 [m0υn+1·υn+1 + I0ωn+1·ωn+1 −m0υn·υn − I0ωn·ωn]

= Kn+1 −Kn.

(29)

Relations (6) and (21) yield the formula for an
increase of the internal energy per unit surface in
mid-point approximation

*U = nβ ·
(
*u,β + y

n+ 1
2
,β ×*c

)

+ mβ ·*c,β =
(
εβ n+1 − εβ n

) ·nβ

+ (
κβ n+1 − κβ n

) ·mβ.
(30)

The use of εβ = QTεβ together with Eq. 26,
Eq. 21 leads to the following relations

εβ n+1 − εβ n = QT
n+1εβ n+1 −QT

nεβ n = QT
n+1yn+1,β − QT

nyn,β =
= 1

2

(
QT

n+1 +QT
n

) (
yn+1,β − yn,β

)+ (Qn+1 −Qn

)T 1
2

(
yn+1,β + yn,β

)

= HT
n+ 1

2

(
yn+1 − yn

)
,β +

(
Qn+1 −Qn

)T
y
n+ 1

2
,β

= HT
n+ 1

2
*u,β −HT

n+ 1
2
*Cy

n+ 1
2
,β = HT

n+ 1
2

(
*u,β + y

n+ 1
2
,β ×*c

)
.

(31)

Since κβ × 1 = Kβ = QTQ,β , Kβ = QTKβ Q,
κβ = QTκβ and taking into account (21), (26) the

expressions entering the kinetic energy read

Kβ n+1 −Kβ n = QT
n+1Qn+1,β − QT

nQn,β

= 1
2

(
QT

n+1 +QT
n

) (
Qn+1,β −Qn,β

)+ (Qn+1 −Qn

)T 1
2

(
Qn+1 +Qn

)
,β

= HT
n+ 1

2

(
Qn+1 −Qn

)
,β +

(
Qn+1 −Qn

)T
H

n+ 1
2
,β

= HT
n+ 1

2

(
*C H

n+ 1
2

)
,β +

(
*C H

n+ 1
2

)T
H

n+ 1
2
,β

= HT
n+ 1

2
*C,β H

n+ 1
2
+ H T

n+ 1
2
*CH

n+ 1
2
,β − HT

n+ 1
2
*C H

n+ 1
2
,β

= HT
n+ 1

2
*C,β H

n+ 1
2
.

(32)

Relation (32), employing an isomorphism
between skew-symmetric tensors (ΔC) and their

axial vectors (Δc), can be rephrased as

Kβ n+1 −Kβ n = HT
n+ 1

2
*C,β H

n+ 1
2
⇒ κβ n+1 − κβ n = H ∗ T

n+ 1
2
*c,β, (33)
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An increase ΔU of the internal energy, fol-
lowing Eqs. 31 and 33 with Eq. 27 and the

expressions (28), is described as follows:

*U =
(
*u,β + y

n+ 1
2
,β ×*c

)
·nβ + *c,β ·mβ

= H−T
n+ 1

2

(
εβ n+1 − εβ n

) ·nβ + H ∗ −1
n+ 1

2

(
κβ n+1 − κβ n

) ·mβ

= (εβ n+1 − εβ n

) ·H−1
n+ 1

2
nβ + (

κβ n+1 − κβ n

) ·H ∗ −1
n+ 1

2
mβ

= (εβ n+1 − εβ n

) ·nβ + (
κβ n+1 − κβ n

) ·mβ

= 1
2

(
εβ n+1 − εβ n

) ·Cεε

(
εβ n+1 + εβ n

)+ 1
2

(
κβ n+1 − κβ n

) ·Cκκ

(
κβ n+1 + κβ n

)

= 1
2εβ n+1·Cεε + 1

2κβ n+1·Cκκκβ n+1 − 1
2εβ n·Cεεεβ n − 1

2κβ n·Cκκκβ n

= Un+1 − Un.

(34)

The results obtained in Eqs. 29 and 34 imply
that the discrete approximation of the problem
also ensures the energy conservation (2) in the
absence of external forces Gext[u, t; w] = 0, cf.
for instance, Ibrahimbegović et al. (2000).

Example

Large overall motion of the flexible cylindrical
panel with change of the curvature sign, rein-
forced by an orthogonally placed shell rib, is
analyzed (see Fig. 3). Nonlinear static analy-
sis of this example can be found, for instance,
in Chróścielewski et al. (1997) and Witkowski
(2009). Dimensions and material data are: L = 2,
α = 0.4, R = 1, H = 0.4, h0 = 0.01, E = 105,

Fig. 3 Flexible cylindrical panel with change of the cur-
vature sign, reinforced by an orthogonally placed shell rib:
geometry and loads

ν = 0.25, Pref = 1, ρ0h0 = 1. The pair of forces,
described by the ramp time function, is initially
applied to the structure during a short time period.
After 2 s the shell is free from external loading
and moves freely in space. Figure 4 depicts the
obtained time histories of energy. It is visible that
at approximately 4.5 s the time histories obtained
with the help of extended Newmark algorithm
show sudden break due to energy explosion.

Conclusions

In nonlinear dynamics, the use of standard time-
stepping algorithms of Newmark type does not
guarantee the stability of solution. In Hamiltonian
systems, the unstable behavior appears in the
course of simulation as the sudden unbounded
growth of the total energy of the system (Fig. 4).
One of the ways to overcome this problem is
the application of the time-stepping algorithm
that conserves the energy by assumption in
Hamiltonian setup. When the configuration space
includes the proper orthogonal rotation group
SO(3), the Cayley parameterization of rotation
group is crucial in formulation due to its special
properties.

Cross-References

�Elastic Shells, Resultant Nonlinear Theory
� Junctions in Irregular Shell Structures
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Fig. 4 Flexible cylindrical panel with change of the curvature sign, reinforced by an orthogonally placed shell rib:
results
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Chróścielewski J, Lubowiecka I, Witkowski W (2005)
Dynamics of six-field shells in the context of
energy-conserving scheme, In: Pietraszkiewicz W,
Szymczak C (eds) Shell structures: theory and
applications. Taylor & Francis/Balkema London,
pp 303–307

Gebhardt CR, Rolfes R (2017) On the nonlinear dynamics
of shell structures: combining a mixed finite element
formulation and a robust integration scheme. Thin-
Walled Struct 118:56–72
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�Computational Dynamics

Timoshenko, Stepan
Prokofievitch

Isaac Elishakoff
Department of Ocean and Mechanical
Engineering, Florida Atlantic University, Boca
Raton, FL, USA

Stephan Prokopovych Timoshenko was a world -
renown scientist in applied mechanics, who
worked in Russia, Ukraine, and United States.
He was born in the village Shpotovka in the
Chernigov Governorate on December 23, 1878,
in Ukraine, then part of the Russian Empire.
At every turn, good fortune has found its way
to Stephen Timoshenko. The blessings started
before his birth. His father was a serf. The
nobleman and the landowner fell in love with
Timoshenko’s aunt, his father’s sister, and then
married her. As a result, Timoshenko’s father
became part of the land owner’s family, rather
than spending his life in serfdom, or near slavery.

Stepan (Stephen) Prokofievich Timoshenko

Russian Empire Period

In 1901, he graduated from the St. Petersburg
Institute of Engineers of Ways of Commu-
nication. He continued to teach in this same
institute during years 1901–1903 as a teaching
assistant and then moved to St. Petersburg
Polytechnic Institute under Professor Viktor

https://doi.org/10.1007/978-3-662-55771-6_22
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Kirpichev (1845–1913) where he was employed
in years 1903–1906. In 1905, the university
was closed due to the first Russian Revolution
when czarist troops opened fire on a group of
workers marching to the winter palace in St.
Petersburg to petition their grievances to Czar
Nicolas II. Timoshenko was sympathetic to the
workers’ cause. Fortuitously, Karl Marx’s book
Das Kapital was “much too heavy” for him,
according to his testimony. He then leaves for
Germany, where many Russian students pursued
postgraduate studies. There he attends lectures
by the famous mechanician and author August
Föppl (1854–1924) in Munich, as an auditor. He
also attends lectures by Ludwig Prandtl (1875–
1953) in Göttingen. The city of Göttingen at
that time was perhaps the scientific center of the
entire world, not unlike present day Cambridge,
Massachusetts. There Prandtl assigns him the
topic for his dissertation which Timoshenko
completes in St. Petersburg and publishes alone.

Victor Kirpichev (1845–1913) played a
major role in the life of Timoshenko. Kirpichev
greatly appreciated the works of Lord Rayleigh
(1842–1919) and recommended engineers to
use the methods exposed in his book Theory
of Sound. Timoshenko eagerly started to
study this classic book. Fortunately for S.P.
Timoshenko, Kirpichev was the founder and
first provost of Kyiv Polytechnic Institute
(currently called National Technical University
of Ukraine or “Igor Sikorsky Kyiv Polytechnic
Institute”) that was established in 1898. In
1906, a position opened at Kyiv Polytechnic
for the Chairperson of Strength of Materials
Department. Timoshenko applied for the job and
not without the help of Kirpichev Timoshenko
got the position. This was despite the fact that he
never, prior to that, served as a lecturer.

Upon recommendation of his teacher Victor
Kirpichev, he was appointed the Chairman of
Strength of Materials at the Kyiv Polytechnic
Institute. In 1909, he was promoted to the dean-
ship. In 1911, he was fired from Kyiv Polytechnic
Institute due to “political reasons” as he writes
in his essay about his school-time friend Abram
Ioffe (1880–1960). In 1911, he returned to St.
Petersburg where, luckily, he meets Paul Ehren-
fest who came to Russia following his mathe-

matician wife. According to his own testimony
in his book on theory of elasticity, they jointly
developed the beam theory that incorporates both
rotary inertia and shear deformation, published in
his 1916 book, in the Russian, as well as in his
nearly identical papers in English published in
1920 and 1921, respectively. His joint work with
P. Ehrenfest S. P. Timoshenko also mentions in
his 1922 paper. Due to S. P. Timoshenko’s own
testimony of cooperation, it appears that this cel-
ebrated theory ought to be called Timoshenko–
Ehrenfest beam theory (Elishakoff, 2019a). For
detailed discussion of this beam theory in the
past century, the interested reader can consult
papers by Han et al. (1999) and Elishakoff et al.
(2015). In the past one hundred years, thousands
of papers appeared on this theory but not even a
single book was published. This gap was closed
recently by Elishakoff (2019d).

In 1918, after the February and November
Revolutions that took place a year earlier in
Russia, he returns to Ukraine, which then
declared independence. In Kyiv, he participated
in the establishment of the Ukraine Academy of
Sciences, assisting its first President, Vladimir
Ivanovich Vernadsky (1863–1945).

European and American Period

In 1919, Timoshenko moved to Rostov-on-Don.
He decided to leave his country and in 1920
arrived, through Constantinople (present-day
Istanbul), to the Kingdom of Serbs, Croats, and
Slovenes. Luckily for Timoshenko, in Zagreb,
the new Polytechnic Institute was established,
and Timoshenko was offered professorship.
There too, destiny treated him well; students
did not protest his lectures being given in the
language representing a mixture of Russian
and Croatian. Again, he had good fortune: His
former student arranged him getting a job at
the Vibration Specialty Company in Pittsburgh,
United States, in 1922. Later Timoshenko
moved to the Westinghouse Electric Corporation
from 1923 to 1927, after which he became a
professor in the University of Michigan where he
created the bachelor’s and doctoral programs in
engineering mechanics.
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It is said that Napoleon Bonaparte had
observed that “Ability is of little account
without opportunity.” The United States offered
Timoshenko great opportunities. The University
of Michigan offered him a professorship with
little time allotted for teaching, primarily for
graduate students, at a salary that was double
of other faculty members in his position. He
was allowed to spend large amounts of time
during the day at home, composing his textbooks.
In 1936 Timoshenko moved to the Stanford
University. In 1938 a special conference was
held in his honor as well as book was published
dedicated to his 60th birth anniversary (Lessells
et al., 1938). In 1957 ASME established a medal
named after Stephen Timoshenko; he became its
first recipient. In 1964 he moved to Wuppertal,
Federal Republic of Germany, to be with his
daughter, Anna. He died in 1972; his ashes are
buried in Alta Mesa Memorial Park, Palo Alto,
California. In 1982 obituary, Soderberg wrote
about Timoshenko’s “love-hate” relationship
with America (See also Elishakoff 2019b, c).

In a tribute written in October 1972, the year
of Prof. Timoshenko’s death, Prof. Chia-Shun
Yih, then Stephen P. Timoshenko Distinguished
University Professor of University of Michigan,
wrote (see Elishakoff 2019d): “The strong char-
acter and inflexible set of values he held sustained
him and his work; in regard to America, of which
his judgements were severe, they also blinded
his vision. To live and work for 42 years in
a country, to have tremendous influence there
through his work, to be honored there till summer
had o’erbrimmed the honeyed cells, and yet not
to feel an attachment to it: What would one
call it, in point of sentiment? A failure or mis-
fortune? The golden sunset that was his would
have had as much warmth as brilliance if he
had been able to find joy and solace from the
beauty of the wilderness of America, to hold
dear the native generosity, kindness, enthusiasm
of its inhabitants (as he held the kindness of
Germans), and thus to have a feeling of home
during those long years.” Jacob Peter Den Hartog
(1901–1989) wrote about Timoshenko’s book As
I Remember, in Science magazine: “There is no
question that Timoshenko did much for America.
It is an equally obvious truth that America did

much for Timoshenko, as it did for millions of
other immigrants for all over the world. However,
our autobiographer has never admitted as much
to his associates and pupils who, like myself
often have been painted by his casual statements
in conversation. That pain is not diminished by
reading these statements on the printed page and
one would have wished for a little less acid and
a little more human kindness.” Soderberg (1982)
wrote “ . . . a strange love-hate relationship of his
feelings toward America, which never left him
and sometimes stood in the way of full utilization
of his talents. In reading As I Remember, one is
astonished at the absence of a single world in
grateful recognition of his debt to America, which
had awarded him such a rare opportunity.”

Truesdell (1984, p. 253), remarked, perhaps
overly critically, that Timoshenko was “relying
heavily on the scantiness of American engineers’
education. . . although [Timoshenko’s] books are
almost totally devoid of originality, they served
to acquaint American mechanical and civil engi-
neers with theory and history they were otherwise
unlikely to encounter.”

Timoshenko’s Books

The books written by him during his life’s Amer-
ican period include:

1. Applied Elasticity, with J.M. Lessels, 1925
2. Vibration Problems in Engineering, 1928,

1937, 1955 (third edition with D.H. Young)
3. Strength of Materials, Parts I and II, 1930,

1940, 1955
4. Theory of Elasticity, 1934, 1951 (with J.N.

Goodier)
5. Elements of Strength of Materials, 1935,

1940, 1949 (with G.H. MacCullough), 1962
(with D.H. Young)

6. Theory of Elastic Stability, 1936, 1961 (with
J.M. Gere)

7. Engineering Mechanics (with D.H. Young),
1937, 1940, 1951, 1956

8. Theory of Plates and Shells, 1940, 1959
(with S. Woinowsky-Krieger)

9. Theory of Structures (with D.H. Young),
1945, 1965
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10. Advanced Dynamics (with D.H. Young),
1948

11. Mechanics of Materials (with J.M. Gere),
1972

He also wrote a book on history of strength of
materials (1953a) as well as a book on engineer-
ing education in Russia (1959). His autobiogra-
phy appearal in several languages (1963, 1968,
1993, 2006, 2014).

Archibald (see Howard, 1967) characterized
S. P. Timoshenko on “the patron saint of the
American engineering” Laura et al. (1992) desig-
nate shear deformable beam vibration theory as
‘epoch making.’ Soderberg (1982) wrote about
S. P. Timoshenko’s “highly developed pragmatic
skill in using fragments of exact solutions for a
variety of approximate solutions to difficult prob-
lem in applied mechanics” and “Timoshenko’s
great influence upon applied science and technol-
ogy in America.”
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Xu Guo, Weisheng Zhang, and Zongliang Du
State Key Laboratory of Structural Analysis for
Industrial Equipment, Department of
Engineering Mechanics, International Research
Center for Computational Mechanics, Dalian
University of Technology, Dalian, China

Synonyms

B-spline curve; Explicit geometry description;
Moving Morphable Component (MMC); Moving
Morphable Void (MMV); Sensitivity analysis;
Topological derivative; Topology optimization

Definition

Topology optimization based on explicit
geometry description is defined as a struc-
tural topology optimization paradigm where
structural topology/geometry is described in an
explicit way. The so-called Moving Morphable
Components/Voids (MMC/MMV) method,
geometry projection method, and B-spline based
topological derivative method can all be ascribed
to this solution paradigm. Since these methods
have the potential to reduce the number of design
variables associated with numerical optimization
and establish a direct link with the computer
aided design/engineering (CAD/CAE) systems,
recent years witnessed a growing interest in
developing topology optimization methods based
on explicit geometry description.

Introduction

Traditional topology optimization approaches,
for example, Solid Isotropic Material with
Penalization approach (SIMP) (Bendsøe 1989;
Zhou and Rozvany 1991) and level set approach
(LSM) (Wang et al. 2003; Allaire et al. 2004),
are established based on implicit geometry
description, where optimized structural topology
is extracted from a binary pixel/voxel image or
the nodal values of a level set function. Although
remarkable achievements have been made with
these approaches, it is worth noting that the
numerical implementation of these approaches
often leads to a large number of design variables,
and it is not an easy task to establish a seamless
link between the optimized results obtained
by these methods with CAD/CAE systems.
Moreover, it is also not straightforward to
consider geometry-related objective/constraint
functions in these approaches.

In order to circumvent the aforementioned dif-
ficulties, some topology optimization approaches
based on explicit geometry description have
been proposed recently. The central idea of these
approaches is to use some structural components
as the basic building blocks of topology opti-
mization and adopt the parameters for describing
their geometries as design variables. Figure 1
illustrates the basic idea of the so-called Moving
Morphable Component (MMC)-based explicit
topology optimization approach (Guo et al. 2014)
schematically. In this approach, a set of structural
components with explicit geometry description
is initially deployed in the design domain, then
optimization algorithm is applied to find the
optimized sizes, shapes, and layout of the com-
ponents. Finally, an optimized structural topology
can be obtained through the deforming, overlap-
ping, and merging of these components. Besides
components made of solid materials, void can
also be viewed as a specific type of structural
component and the so-called Moving Morphable
Void (MMV)-based explicit topology optimiza-
tion approach, where a set of voids is used as the
basic building blocks of topology optimization,
had also been developed in the literature
(Zhang et al. 2017c). Besides the MMC/MMV
approaches mentioned above, the readers are
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Fig. 1 The basic idea of the MMC-based topology opti-
mization approach

referred to Norato et al. (2015) and Hur et al.
(2017) for other forms of explicit geometry-based
topology optimization approaches.

Compared with the implicit geometry-based
topology optimization framework, the explicit
geometry-based solution framework has the
following advantages: (1) Direct link with the
computer aided design (CAD) modeling systems,

since the geometries of the whole structural
topology are described explicitly by a set of
parameters. (2) Capability of integrating shape,
size, and topology optimization or even structural
type optimization in a unified framework.
(3) Great potential to share the merits of both
Lagrangian and Eulerian topology optimization
approaches. (4) The optimized structures
obtained are pure black-and-white and there is no
need to introduce special techniques to eliminate
numerical instabilities such as checkerboard
phenomenon and mesh-dependent solutions.
(5) Great potential to reduce the computational
efforts associated with topology optimization.

These distinct advantages over other topol-
ogy optimization approaches based on implicit
geometry description render the MMC/MMV-
based explicit topology optimization approaches
become a hot topic in topology optimization
field. Nowadays, numerous MMC/MMV-based
methods have been developed to solve topology
optimization problems based on explicit geome-
try description.

Theory

In this section, the theoretical aspects of the
MMC approach, which is a representative explicit
geometry-based topology optimization approach,
will be introduced.

Geometry Description
In the MMC-based approach, the material dis-
tribution of a structure can be descripted in the
following form:

⎧
⎨

⎩

χ s (x) > 0, if x ∈ 's,

χ s (x) = 0, if x ∈ ∂'s,

χ s (x) < 0, if x ∈ D\ ('s ∪ ∂'s) ,

(1)

respectively. In the above equations, D represents
a prescribed design domain. 's ⊂ D is a subset
of D comprised by n components made of
solid material. As shown in Guo et al. (2014),
χ s(x) = max(χ1(x), . . . ,χn(x)) with χ i(x)
denoting the topology description function (TDF)
of the i-th component. For two-dimensional (2D)
case, the function χ i(x) can be adopted as:
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χi (x, y) = 1−
(
x′

ai

)p
−
(

y′

bi (x′)

)p
, (2)

with

{
x′
y′
}
=
[

cos θi sin θi
− sin θi cos θi

]{
x − x0i

y − y0i

}
(3)

and p is a relatively large even integer number
(p = 6 is often adopted in the MMC approach).
In the above equations, the symbols (x0i, y0i), ai,
bi(x ′) and θ i denote the coordinate of the center,
the half-length, the variable half width, and the
inclined angle (measured from the horizontal axis
anticlockwisely) of the i-th component. It should
be noted that the variation of the width of the
component bi(x ′) is measured with respect to
local coordinate system and can take different
forms (Guo et al. 2016), such as the linearly
varying thicknesses as follows:

bi
(
x′
) = t1i + t2i

2
+ t2i − t1i

2ai
x′, (4)

where t1i and t2i are parameters used to describe
the thicknesses of the component.

For three-dimensional (3D) case, the follow-
ing TDF can be used to characterize the region
occupied by the i-th component:

χi (x, y, z) = 1−
(
x′

L1
i

)p
−
(

y′

gi (x′)

)p

−
(

z′

fi (x′, y′)

)p
(5)

with

⎧
⎨

⎩

x′
y′
z′

⎫
⎬

⎭
=
⎡

⎣
R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤

⎦

⎧
⎨

⎩

x − x0i

y − y0i

z− z0i

⎫
⎬

⎭
(6)

and

⎡

⎣
R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤

⎦ =
⎡

⎣
cb · ct −cb · st sb

sa · sb · ct + ca · st −sa · sb · st + ca · ct −sa · cb
− ca · sb · ct + sa · st ca · sb · st + sa · ct ca · cb

⎤

⎦ , (7)

respectively. In the above equations, sa =
sinα, sb = sinβ, st = sin θ, ca =
√

1− s2
a , cb =

√
1− s2

b and ct =
√

1− s2
t

with α, β, and θ denoting the rotation angles of
the component from a global coordinate system
Oxyz to the local coordinate system O ′x ′y ′z ′,
respectively. The central coordinate and the half-
length of the component are represented by the
coordinate (x0i, y0i,z0i) and L1

i , respectively.
Furthermore, the functions gi(x ′) and fi(x ′, y ′)
in the above equation are used to describe the
thickness profiles of the component in y ′ and z ′
directions, respectively. The functions gi(x ′) and
fi(x ′, y ′) can be simply chosen as

gi
(
x′
) = L2

i , fi
(
x′, y′

) = L3
i . (8)

The readers are referred to Fig. 2 for the
reference of the above components descriptions.

With use of the above expressions, the region
's
i occupied by the i-th component (composed of

solid material) can be described as:

⎧
⎪⎨

⎪⎩

χi (x) > 0, if x ∈ 's
i ,

χi (x) = 0, if x ∈ ∂'s
i ,

χi (x) < 0, if x ∈ D\ ('s
i ∪ ∂'s

i

)
.

(9)

Optimization Formulation
Under the above geometry representation
scheme, the layout of a structure can be solely
determined by a design vector D = ((D1)T, . . . ,
(Di)T, . . . , (Dn)T)T, where Di contains the design
variables associated with the i-th component.
It can be observed that under the MMC-based
solution framework, a topology optimization
problem, which intends to seek the optimal
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Fig. 2 The geometry description of a structural component

material distribution in a prescribed design
domain, is transformed to a shape optimization
problem.

Under the MMC-based solution framework,
a typical topology optimization problem can be
formulated as follows:

Find D =
((

D1
)T
, . . . ,

(
Di
)T
, . . . , (Dn)T

)T

Minimize I = I (D)

S.t.
gk (D) ≤ 0, k = 1 . . . , m,
D ⊂ UD,

(10)

where I(D), gk, k = 1, . . . , m are the
objective function/functional and constraint
functions/functionals. UD is the admissible set
of D. For example, if structures are designed to
minimize the structural compliance under the
volume constraint of available solid material,
the corresponding problem formulation can be
specified as:

Find D =
((

D1
)T
, . . . ,

(
Di
)T
, . . . ,

(
Dn
)T
)T

,

u(x) ∈ H 1 ('s)

Minimize C =
∫

D

H
(
χ s (x;D)

)
f · udV

+
∫

+t

t · udS

S.t.
∫

D

H
(
χ s (x;D)

)
ε (u) : E : ε (v) dV

=
∫

D

H
(
χ s (x;D)

)
f · vdV+

∫

+t

t · vdS,

∀v ∈ Uad
∫

D

H
(
χ s (x;D)

)
dV ≤ V ,

D ⊂ UD,

u = u, on +u,

(11)
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where D, f, t, u, ε = sym (∇u) and u are
the design domain, the body force density,
the prescribed surface traction on Neumann
boundary +u, the displacement field, the linear
strain tensor, and the prescribed displacement
on Dirichlet boundary +t, respectively. The
symbol H = H(s) denotes the Heaviside function
with H = 1 if s > 0 and H = 0 otherwise.
E = Es/(1 + v)[I+vs/(1 − 2vs)δ ⊗ δ] is the
fourth order elasticity tensor of the isotropic
solid material with Es, vs, I, and δ denoting
the Young’s modulus as well as the Poisson’s
ratio of the solid material, symmetric part of the
fourth order identity tensor, and the second order
identity tensor, respectively. The symbol Uad ={
v|v ∈ H 1 ('s) , v = 0 on +u

}
represents the

admissible set of virtual displacement vector v
and V is the upper limit of the volume of the
available solid material.

Sensitivity Analysis
In the section, the sensitivity analysis of the
objective and constraint functions/functionals
under the MMC-based solution framework will
be discussed. Generally speaking, the well-
established adjoint approach can be used to
obtain the corresponding sensitivity information.
The sensitivity of a general structural shape-
related functional I = I(D) with respect to a
design variable a associated with χ i (i.e., the
TDF of the i-th component) can be written as

∂I

∂a
=
∫

D

f (u,w)
∂Hε (χi)

∂a
dV, i = 1, . . . , n,

(12)

where u and w are the primary and adjoint dis-
placement fields, Hε(x) is the regularized Heavi-
side function (Zhang et al. 2016b), respectively.
When I is the structural compliance, it yields that
f (u, w) = E:ε(u) : ε(w) with w = −u while
f (u, w) = 1 when I is the volume of the structure.
Furthermore

∂Hε (χi)

∂a
= δiε

(
χ s) ∂χi

∂a
(13)

with δε(s) = dHε(s)/ds denoting the regu-
larized Dirac delta function and δiε (χ

s) =
min (δε (χi) , δε (χ

s)). The expressions of the
sensitivities of χ i with respect to each design
variable are trivial and will not be repeated here.
The readers are referred to Guo et al. (2014) and
Zhang et al. (2016b) for the details.

Examples

In order to illustrate the effectiveness of the
MMC-based method for topology optimization,
a torsion beam example shown in Fig. 3 is con-
sidered. The geometry of the design domain, the
boundary condition, and the external load are
all depicted in Fig. 3. Four loads are imposed
on four vertices of the right side of the design
domain, respectively. The goal of this problem
is to minimize the structural compliance con-
sidering the volume constraint (it is assumed
V ≤ 0.15 × |D| = 28.8 in this example).

The initial designs of the problem shown
in Fig. 4 consist of 128 components. The
total number of design variables in the MMC
is only 1152, while there are about 98,304
design variables in traditional methods (if the
design domain is discretized by 96 × 32 × 32
meshes). Figure 5 plots the corresponding
optimized structures obtained with use of MMC-
based method. It is worth noting that the
optimized structures obtained with MMC-based
approach are actually pure black-and-white and
contain no grey elements which are unavoidable
in traditional approaches especially for 3D
problems. Furthermore, since the optimized
structures are described by a set of parameters of
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Fig. 3 The torsion beam example
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Fig. 4 The initial design for the torsion beam example by
the MMC approach
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Fig. 5 Optimized structure for the torsion beam example
obtained by the MMC approach

Fig. 6 Optimized structure obtained by the MMC
approach plotted in CAD system

geometric meanings, the final results can import
to CAD system directly as shown in Fig. 6.

Some Extensions

Topology optimization based on explicit geom-
etry description has received more and more
attention since the MMC approach was proposed
by Guo et al. (2014). As a dual method of MMC,
the MMV method was also developed by Zhang
et al. (2017c). Takalloozadeh and Yoon (2017)
proposed a topological derivative based method
under the MMC-based solution framework. Due
to the big potential in reducing the computational
cost and providing explicit geometry informa-
tion, MMC and MMV methods had also been
extended to solve 3D topology optimization prob-
lems in Zhang et al. (2017a, b). Bujny et al.
(2018) proposed to solve the crashing problem
under the MMC framework with use of evolu-
tionary algorithms. Zhang et al. (2016a), Hoang
and Jang (2017), and Guo et al. (2017) solved
the length scale control problem and the overhang
angle control problem in additive manufacturing
by the MMC/MMV methods, respectively. A suc-
cessfully generalization of the MMC method was
proposed by Sun et al. (2018a, b). In these works,
the authors took the full advantages of the MMC
method to solve topology optimization problems
in flexible multibody systems. Inspired by the
MMC method, Deng and Chen (2016) devel-
oped a connected morphable components (CMC)
method to design flexible structures. Recently,
Hou et al. (2017) introduced the isogeometric
analysis scheme into the MMC-based solution
framework to obtain higher accuracy structural
response analysis. Zhang et al. (2018b) proposed
a MMC-based method for solving the topol-
ogy optimization problem with multiple materi-
als. Topology optimization problem considering
stress constraints was also discussed under the
MMV-based framework in Zhang et al. (2018a).

Conclusions

Compared with the traditional SIMP and LSM
approaches for structural topology optimization
where a fixed ground structure is adopted,
the MMC/MMV-based explicit topology
optimization approaches actually represent a
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new type of paradigm for structural topology
optimization using adaptive ground structures.
These approaches, in some sense, revival the
classical shape optimization since in principle
we can now use Lagrangian description-based
shape optimization methods to solve topology
optimization problems under the MMC/MMV-
based solution framework. Possible future
directions for developing explicit topology
optimizations can be summarized as follows: (1)
Topology optimization considering uncertainty.
Since one has explicit boundary description in the
MMC/MMV approaches, it is straightforward to
consider the perturbation of structural boundary
(possibly due to manufacturing error) by simply
allowing the uncertainty of shape parameters
describing the profiles of the components/voids.
It is also more natural to considered fail-
safe design (Zhou and Fleury 2016) in the
MMC-based solution framework. (2) Data
driven topology optimization. Since in the
MMC/MMV-based solution framework the
number of design variables is relatively small, the
computational time associated with supervised
learning or network construction can also be
saved substantially as shown in Lei et al.
(2019). (3) Topology optimization via hybrid
explicit/implicit approaches. As demonstrated
in Liu et al. (2018), the explicit MMC-based
approach can be degenerated into the classical
SIMP approach if multidomain strategy is
employed. Therefore, it is highly promising
to develop some hybrid approaches which
can take both advantages of the explicit and
implicit geometry description-based solution
frameworks.
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Discontinuity

� Surface Wave Propagation in 3D Medium
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�Dynamic Equations, Verification of Hyperbol-
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Synonyms

Micropolar elasticity; Pseudo-continuum Cosserat;
Thin-walled beams of open profile

Definition

The theory of propagation of transient waves
(surfaces of strong discontinuity) in thin-walled
beams of open profiles with Cosserat-type
microstructure is presented, resulting in the data
comparable with those corresponding to transient
wave propagation in the three-dimensional
Cosserat continuum.

Backgrounds and Some Historical
Remarks

It is well known that in order to gen-
eralize the Bernoulli-Euler beam model,
Stephen Timoshenko in his Russian publication
(Timoshenko 1916), which is more known
worldwide by its English publication (Timo-
shenko 1921), introduced into consideration two
independent functions, namely, the displacement
of the center of gravity of the cross section and
the rotation of the cross section with respect to
the longitudinal central axis, i.e., he suggested
to consider the angle of transverse shear as an
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independent variable. It was a starting point
for deduction of two hyperbolic differential
equations describing the dynamic behavior
of a beam. As a result, two transient waves
propagate in the Timoshenko beam with finite
velocities: the longitudinal wave with the velocity
GL = √

E/ρ and the wave of transverse shear
with the velocity GT = √

kμ/ρ, where E and
μ are elastic moduli, ρ is the density, and k is
the so-called shear coefficient, which, generally
speaking, depends on the geometry of the beam’s
cross section and could not be determined
experimentally. In the Bernoulli-Euler beam,
the wave of transverse shear does not propagate.

Since there are a lot of difficulties in the
coefficient k experimental measurement, then dif-
ferent researchers accepted different magnitudes
of this value (Grigoluk and Selezov 1973). Thus,
Reissner (1944) and Ambartsumyan (1967) used
the magnitude of 5/6, Timoshenko (1916, 1921)
accepted 2/3 or 8/9, Uflyand (1948) utilized 2/3,
Mindlin (1951) suggested to vary the coefficient
k from 0.76 to 0.91 with the variation of Poisson’s
ratio from 0 to 0.5, some researchers prefer to use
the value of k = π2/12, and so on.

The secret of persistence of S.P. Timoshenko
ideas lies in the fact that in engineering practice,
it is often necessary to face with dynamic pro-
cesses occurring in thin bodies which are dealing
with the propagation of transient strain waves.
The matter in question is the strain initiated by
the impact response or by other means in some
domain of a thin body and then transmitted in
different directions along the medium surface. In
these problems it is very important to consider the
influence of transverse forces, the transmission
of which occurs by virtue of waves of transverse
shear. These waves are absent in classical models
describing the dynamic response of thin bodies.

All enumerated above nonclassical theories
(Grigoluk and Selezov 1973) involve the shear
coefficient k, which is not determined experi-
mentally, but this coefficient allows one to define
the velocity of the transient wave of transverse
shear. An engineer could bear with one uncertain
coefficient and one shear wave. But when Korbut
and Lazarev (1974) decided to extend the ideas
of S.P. Timoshenko on thin-walled beams of
open profile, then their attempts resulted in the

generation of three types of transient shear waves
propagating with different velocities depending
on geometric characteristics of cross sections of
thin-walled beams. Then the question arises of
whether such a theory is practical. It significantly
complexifies the solution of engineering prob-
lems. As for the experimental verification of this
theory, then it occurs to be intricate due to the
presence of three types of transient shear waves,
the velocities of which depend on the choice
of the beam’s cross section. Note that, despite
of shear waves, in a thin-walled beam of open
profile, there exists only one longitudinal wave,
which is a longitudinal-flexural-warping wave
propagating with the velocity

√
E/ρ independent

on the geometry of the beam’s cross section.
Contradictions brought to light in Korbut-

Lazarev approach (Korbut and Lazarev 1974),
as well as in approaches by other researchers,
the detailed analysis of which is presented in
Chap. 2 of Rossikhin and Shitikova (2011), point
out their inconsistency. The critical review of
different approaches for constructing hyperbolic
equations for thin-walled beams of open cross
section has been done in Rossikhin and Shitikova
(2011), wherein a simple method of checking the
correctness of equations for different dynamic
systems was suggested for the first time using the
theory of discontinuities.

This brings up a question: whether it is possi-
ble to develop such a theory of dynamic behav-
ior of thin-walled beams of open profile which
admits the propagation instead of three shear
waves only of one rotational-shear wave propa-
gating with the velocity

√
μ/ρ independent on

the geometric characteristics of the beam’s cross
section, as in the case of the longitudinal-flexural-
warping wave.

Such a theory considering the rotary inertia
and transverse shear deformations, as well as
variations in the width of a beam, has being
carried out since 2009 by Rossikhin and Shi-
tikova. Contrary to the approaches based on the
Timoshenko ideas, this new theory of thin-walled
beams is based only on physical and mechanical
constants of the material, from which the beam
is made of, and it is not burdened by additional
“artificial” coefficients. The results were pub-
lished in the SpringerBrief Series (Rossikhin and
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Shitikova 2011). In 2012 it has been generalized
for the dynamic response of a thermoelastic spa-
tially curved thin-walled beam of an open pro-
file with coupled strain and temperature fields
(Rossikhin and Shitikova 2012).

The authors of the new theory started from
the three-dimensional theory of linear elasticity,
but unlike the classical approach, wherein the
solution is represented as a sum of infinite power
series in terms of a coordinate measured along
the normal to the middle surface, they utilized
the theory of discontinuities and the ray series
constructed behind the fronts of transient waves
(surfaces of strong discontinuities). In order to
determine the ray series coefficients for thin-
walled bodies, the recurrent sets of first-order
differential equations with respect to derivatives
along the rays were deduced with the help of
the modified Hadamard-Thomas conditions of
compatibility (Rossikhin and Shitikova 1995).
Arbitrary functions obtained during integration
of recurrent equations and involved in the
coefficients of the ray series are determined by
initial and boundary conditions. The developed
approach allows one to solve boundary-value
problems dealing with nonstationary excitations
on thin bodies, such as impacts, different kinds
of force and velocity excitations, and so on.

The creation of a simple calculating scheme
for the strength analysis of thin bodies and first
of all of thin-walled beams of open profile under
transient dynamic loads is a serious problem,
which is under consideration by researchers over
a century. Since in our daily life we are sur-
rounded by structures involving thin bodies as
elements, overlapping plates, train metals, sus-
pension bridges and roofs, and different types of
bridges and viaducts as examples, then the study
of their dynamic response and development of a
calculating procedure for their strength analysis
is of fundamental importance.

In the present entry, a new wave theory of
thin-walled beams of open profile with Cosserat-
type microstructure is presented based on the
approach proposed in Rossikhin and Shitikova
(2011) for prestressed spatially curved elastic
thin-walled beams of open profile. The aim is
to create the theory of propagation of transient
waves (surfaces of strong discontinuity) in thin-

walled beams of open profile, which should be
quite different from Timoshenko-like theories,
resulting in the data comparable with those cor-
responding to transient wave propagation in the
three-dimensional Cosserat continuum.

Problem Formulation

The dynamical behavior of a three-dimensional
Cosserat continuum is described by the following
set of equations (Nowacki 1962, 1986):

σij = λuk,kδij + μ(ui,j + uj,i)

+ α(ui,j − uj,i − 2 ∈kij ψk), (1)

μij = βψk,kδij+γ (ψi,j+ψj,i)+ε(ψi,j−ψj,i),

(2)

σij,j = ρv̇i, (3)

μij,j+ ∈ijk σjk = J ω̇i, (4)

where σij is the stress tensor; μij is the moment
stress tensor; ∈kij are the Levi-Civita tensor com-
ponents; ui is the displacement vector; vi = u̇i is
the velocity vector; a dot denotes a time deriva-
tive; an index after a coma labels a derivative
with respect to the corresponding coordinate; ψi

is the angular rotation vector; ωi = ψ̇i is the
angular velocity vector; ρ is the density; δij is
Kronecker’s symbol; J is the moment of inertia;
λ,μ, α, β, γ , and ε are material constants; and xi
(i = 1, 2, 3) are Cartesian coordinates.

Suppose now that a wave surface of strong
discontinuity propagates with a normal velocity
G in a thin-walled beam of open profile with
a Cosserat-type microstructure (Fig. 1), i.e., the
wave surface at each instant of moment is normal
to the axial line of the beam.

For the ease of further treatment, let us intro-
duce two sets of coordinates: λ , τ , ξ with the
unit vectors λ {λi}, τ {τi}, and ξ {ξi} and λ, x, y
with the unit vectors λ, k {ki}, and s {si}. The axes
λ, τ, ξ are the natural axes for the curved axis of
the beam; in so doing the λ-axis is the tangent
to the beam’s axis, the τ -axis is its binormal,
the ξ -axis is its main normal, and s is the arc



2566 Transient Waves in Cosserat Beams: Ray Expansion Approach

Fig. 1 Scheme of a spatially curved thin-walled beam of open profile of arbitrary cross section

length calculated from a certain point with the
coordinate s0 along the beam axis (Fig. 1), while
the x− and y−axes are the main central axes of
the beam’s normal section, and ϕ(s) is the angle
between the x- and τ -axes (y- and ξ -axes).

In order to obtain the dynamic condition of
compatibility, it is necessary to use equations of
motion (3) and (4), as well as the conditions of
compatibility of the mixed type which are derived
from the geometric conditions of compatibility
(Thomas 1961)

[Z,i ] = Bλi + ∂[Z]
∂x

ki + ∂[Z]
∂y

si, (5)

and kinematic conditions of compatibility
(Thomas 1961)

[Ż] = −BG+ δ[Z]
δt

, (6)

where Z is the desired value, [Z] = Z+ −
Z−, “+” and “−” denote that the given value
is calculated ahead of and behind the surface of
discontinuity, respectively, B = [Z,i ]λi , λi are
components of the unit vector normal to the wave
surface, kj and sj are components of the unit
vectors tangential to the wave surface (Fig. 1),

and δ/δt is the Thomas δ-derivative (Thomas
1961) which could be represented as follows:

δ[Z]
δt

= G
d[Z]
ds

.

After eliminating B from (5) and (6), the con-
dition of compatibility of the “mixed” type could
be obtained (Rossikhin and Shitikova 1995):

[Z,i ] = −G−1 [Ż
]
λi + d[Z]

ds
λi

+ ∂[Z]
∂x

ki + ∂[Z]
∂y

si . (7)

Substituting the value Z in formula (7) with
the values σij , μij , ui , and ui,j yields

[
σij,l

] = −G−1 [σ̇ij
]
λl + d[σij ]

ds
λl

+ ∂
[
σij
]

∂x
kl + ∂[σij ]

∂y
sl, (8)

[
μij,l

] = −G−1 [μ̇ij

]
λl + d[μij ]

ds
λl

+ ∂
[
μij

]

∂x
kl + ∂[μij ]

∂y
sl, (9)
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[eil] =
[
ui,l
] = −G−1 [u̇i] λl + d [ui]

ds
λl

+ ∂ [ui]

∂x
kl + ∂ [ui]

∂y
sl, (10)

[
eil,j

] = [ui,lj
] = −G−1 [ėil] λj + d[eil]

ds
λj

+ ∂ [eil]

∂x
kj + ∂ [eil]

∂y
sj . (11)

Determination of Transient Wave
Velocities Propagating in Thin-Walled
Beams with Cosserat-Type
Microstructure

Since the dynamic stability of thin-walled beams
is often studied with respect to nonstationary
excitations and particularly under impact loads
which originate transient waves (surfaces
of strong discontinuity), then in the further
treatment, it is convenient to interpret the wave
surface as a layer of small width δ, inside which
the desired values Z change monotonically
and continuously from the magnitudes Z− to
magnitudes Z+.

Further it is assumed that the forward front of
the shock layer arrives at the fixed point M with
the coordinate s at the moment t while the back
front at the moment t+Δt . Then with due account
for (8), (9), (10), and (11), Eqs. (3) and (4) take
the form

−G−1σ̇ij λj+ dσij

ds
λj+ ∂σij

∂x
kj+ ∂σij

∂y
sj=ρv̇i,

(12)

−G−1μ̇ij λj + dμij

ds
λj + ∂μij

∂x
kj + ∂μij

∂y
sj

+ εkjiσjk = J ω̇i . (13)

Equations (12) and (13) have been derived
considering that Rossikhin and Shitikova (2011)

dλi

ds
= −kiæ sinϕ(s)+ siæ cosϕ(s), (14)

dki

ds
= −si(K + τ)+ æλi sinϕ(s), (15)

dsi

ds
= ki(K + τ)− æλi cosϕ(s), (16)

where K = dϕ/ds, æ(s) and τ(s) are the
curvature and the torsion of the beam’s axis,
respectively.

In order to obtain relationships (14), (15), and
(16), it is sufficient to differentiate with respect
to s the relationships coupling the vector compo-
nents ξi , τi with ki , si :

ξi = −ki sinϕ + si cosϕ, (17)

τi = ki cosϕ + si sinϕ, (18)

and to consider the Frenet formulas (Rossikhin
and Shitikova 2011):

dξi

ds
= ττi −æλi,

dτi

ds
= −τξi, dλi

ds
= æξi .

(19)
Integrating Eqs. (12) and (13) over t from t to

t +Δt , tending then Δ→ 0 and considering that

[ui] = 0, (20)

it could be found that

[σij ]λj = −ρG[vi], (21)

[μij ]λj = −JG[ωi]. (22)

Now let us add components of the force
and moment stresses to dynamic conditions of
compatibility utilizing the following conditions
of compatibility involving the terms considering
transverse deformations resulting in changes
in the thickness of a thin body (which could
be named as the compatibility conditions for
thin bodies) (Rossikhin and Shitikova 2011,
2007):

[
ui,j

] = −G−1 [vi] λj +
[
∂uikj

∂x

]

+
[
∂uisj

∂y

]
, (23)
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[
ψi,j

] = −G−1 [ωi] λj +
[
∂ψikj

∂x

]

+
[
∂ψisj

∂y

]
, (24)

which are distinct from the Hadamard conditions
of compatibility:

[
ui,j

] = −G−1 [vi] λj , (25)
[
ψi,j

] = −G−1 [ωi] λj . (26)

The difference between the Hadamard
compatibility conditions (25) and (26) and the
compatibility conditions (23) and (24) has the
principal character depending on an object under
investigation. In the first case, a transient wave
propagates in a three-dimensional unbounded
medium. In the second case, a transient wave
propagates in a thin body, wherein longitudinal
deformations could generate transverse deforma-
tions, resulting in changes in the thickness of the
thin body. Allowance for the transverse deforma-
tions is carried out by the new additional terms in
(23) and (24) as compared with (25) and (26).

As a result of utilization of (23) and (24) in
Eqs. (1) and (2), it is found

[σij ] = −λG−1ζ δij − μG−1 ([vi]λj + [vj ]λi
)

+ αG−1 ([vj ]λi − [vi]λj
)

+ μ

([
∂uikj

∂x

] [
∂uj ki

∂x

]

+
[
∂uisj

∂y

]
+
[
∂uj si

∂y

])

+ λ
([Ex] + [Ey]

)
δij

+ α

([
∂uikj

∂x

]
−
[
∂uj ki

∂x

]

+
[
∂uisj

∂y

]
−
[
∂uj si

∂y

])
, (27)

[μij ] = −βG−1ωλδij−γG−1 ([ωi]λj + [ωj ]λi
)

+ εG−1 ([ωj ]λi − [ωi]λj
)

+ γ

([
∂ψikj

∂x

]
+
[
∂ψjki

∂x

]

+
[
∂ψisj

∂y

]
+
[
∂ψj si

∂y

])

+ β
([ex] + [ey]

)
δij

+ ε

([
∂ψikj

∂x

]
−
[
∂ψjki

∂x

]

+
[
∂ψisj

∂y

]
−
[
∂ψj si

∂y

])
, (28)

where ζ = [vi]λi , ωλ = [ωi]λi ,

[Ex] =
[
∂uiki

∂x

]
=
[
∂ux

∂x

]
,

[Ey] =
[
∂uisi

∂y

]
=
[
∂uy

∂y

]
,

[ex] =
[
∂ψiki

∂x

]
=
[
∂ψx

∂x

]
,

[ey] =
[
∂ψisi

∂y

]
=
[
∂ψy

∂y

]
.

Assume that the lateral surface of a thin-
walled beam of open profile is free from stresses
and moment stresses. In this case, the following
relationships are valid:

[σij ]kikj = [σij ]sisj =[σij ]sikj =0, (29)

[μij ]kikj = [μij ]sisj =[μij ]sikj =0. (30)

From relationships (29), it could be obtained

(λ+ 2μ)[Ex] + λ[Ey] = λG−1 ζ, (31)

λ[Ex] + (λ+ 2μ)[Ey] = λG−1 ζ, (32)

[
∂uisi

∂x

]
=
[
∂uy

∂x

]
= 0,

[
∂uiki

∂y

]
=
[
∂ux

∂y

]
= 0. (33)

The solution of Eqs. (31) and (32) has the form

[Ex] = [Ey] = G−1 λ

2(λ+ μ)
ζ. (34)
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From relationships (30), it could be found

(β + 2γ )[ex] + β[ey] = βG−1 ωλ, (35)

β[ex] + (β + 2γ )[ey] = βG−1 ωλ, (36)

[
∂ψisi

∂x

]
=
[
∂ψy

∂x

]
= 0,

[
∂ψiki

∂y

]
=
[
∂ψx

∂y

]
= 0. (37)

The solution of the set of Eqs. (35) and (36)
has the form

[ex] = [ey] = G−1 β

2(β + γ )
ωλ. (38)

Substituting (34) in Eq. (27) and then multi-
plying by λiλj yield

[
σij
]
λiλj = − μ(3λ+ 2μ)

λ+ μ
G−1ζ,

or [
σij
]
λiλj = −EG−1ζ. (39)

From the dynamic condition of compatibility
(21), it follows that

G
[
σij
]
λiλj = −ρG2ζ. (40)

From relationships (39) and (40), the velocity
of the first wave could be obtained:

G1 =
√
E

ρ
, ζ = [vi] λi �= 0, (41)

where E is the elastic modulus.
Multiplying Eq. (27) sequentially by λjki and

λj si and multiplying the dynamic condition of
compatibility (21) sequentially ki and si with due
account for (34) and (38), the following equations
could be derived:

[
σij
]
λjki = −(μ+ α)G−1ξ, (42)

G
[
σij
]
λjki = −ρG2ξ, (43)

[
σij
]
λj si = −(μ+ α)G−1η, (44)

G
[
σij
]
λj si = −ρG2η, (45)

whence it follows that

G2 =
√
μ+ α

ρ
, ξ = [vi] ki �= 0,

η = [vi] si �= 0. (46)

Substituting (38) in Eq. (28) and then multi-
plying by λiλj yield

[
μij

]
λiλj = − γ (3β + 2γ )

β + γ
G−1ωλ

or

[
μij

]
λiλj = −eG−1ωλ, e = γ (3β + 2γ )

β + γ
.

(47)
From the dynamic condition of compatibility

(22), it follows that

G
[
μij

]
λiλj = −JG2ωλ. (48)

From relationships (47) and (48), it could be
finally obtained the velocity of the third wave:

G3 =
√
e

J
, ωλ = [ωi] λi �= 0. (49)

Multiplying Eq. (28) sequentially by λjki and
λj si and multiplying the dynamic condition of
compatibility (22) sequentially ki and si with due
account for (34) and (38) yield the following
equations:

[
μij

]
λjki = −(γ + ε)G−1ωx, (50)

G
[
μij

]
λjki = −JG2ωx, (51)

[
μij

]
λj si = −(γ + ε)G−1ωy, (52)

G
[
μij

]
λj si = −JG2ωy, (53)
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whence it follows that

G4 =
√
γ + ε

J
, ωx = [ωi] ki �= 0,

ωy = [ωi] si �= 0. (54)

Thus, the four types of waves, the character-
istics of which are defined by relationships (41),
(46), (49), and (54), have been found. The first
wave propagating with the velocity G1 is a quasi-
longitudinal wave, the second is a quasi-shear
wave propagating with the velocity G2, and the
third is a quasi-rotational wave travelling with
the velocity G3, while the fourth one is a quasi-
flexural wave propagating with the velocity G4.
The prefix “quasi-” in the name of the wave
points to the fact that the enumerated waves are
the waves of the “mixed” type, i.e., along to
the main components characterizing the type of
the wave, other admixed components could be
distinct from zero; however, they are at least of
the higher order than the main components.

Note that for an elastic thin-walled beam of
open profile, the coefficients α, β, γ , and ε are
equal to zero, and thus from four waves only two
waves remain, i.e.,

G1 =
√
E

ρ
, G2 =

√
μ

ρ
,

with which two transient waves propagate,
namely, the quasi-longitudinal-flexural-warping
wave wherein the values ζ , ωx , and ωy are
nonzero and the quasi-shear-rotational wave
on which the values ξ , η, and ωλ are nonzero
(Rossikhin and Shitikova 2011).

Determination of Transient Wave
Velocities Propagating in a Cosserat
Continuum

In Rossikhin and Shitikova (2015), it has been
shown that velocities of the four transient waves
propagating in the Cosserat continuum (1), (2),

(3,) and (4) could be found using the same proce-
dure which has been described above, but in this
case with the help of the Hadamard conditions of
compatibility (25) and (26):
For the quasi-longitudinal wave

G1 =
√
(λ+ 2μ)/ρ, [vλ] �= 0, (55)

[vx] = [vy] = [ωλ] = [ωx] = [ωy] = 0;

For the quasi-shear wave

G2 =
√
(μ+ α)/ρ, [vx] �= 0, [vy] �= 0,

(56)

[vλ] = [ωλ] = [ωx] = [ωy] = 0;

For the quasi-rotational wave

G3 =
√
(β + 2γ )/J , [ωλ] �= 0, (57)

[vx] = [vy] = [vλ] = [ωx] = [ωy] = 0;

For the quasi-flexural wave

G4 =
√
(γ + ε)/J , [ωx] �= 0, [ωy] �= 0,

(58)

[vλ] = [ωλ] = [vx] = [vy] = 0.

From the comparison of velocities of transient
waves propagating in thin-walled spatially curved
beams of open profile and in the Cosserat contin-
uum, it is seen that velocities G2 and G4 in both
cases are the same, while velocities G1 and G3

are different.
Travelling waves in a three-dimensional

Cosserat continuum were studied in Pal’mov
(1964), wherein phase velocities were found.
Asymptotic magnitudes of the phase velocities
were defined for small and large magnitudes of
the frequency. It has been shown that when the
frequency tends to infinity, four waves propagate
with the velocities of transient waves (55), (56),
(57) and (58).
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Table 1 Magnitudes of transient wave velocities in the Cosserat 3D continuum and Cosserat-type thin-walled structures

3D Cosserat continuum (Pal’mov
1964; Rossikhin and Shitikova 2015)

Thin-walled Cosserat shells
(Rossikhin and Shitikova 2018)

Thin-walled Cosserat beams of open
profile (Rossikhin and Shitikova 2015)

Quasi-longitudinal wave Quasi-longitudinal wave Quasi – longitudinal – flexural –
warping wave

G1 =
√

λ+2μ
ρ

G1 =
√

4μ(λ+μ)
ρ(λ+2μ) =

√
E′
ρ

G1 =
√

E
ρ

Quasi-shear wave Quasi-shear wave Quasi-shear-rotational wave

G2 =
√

μ+α
ρ

G2 =
√

μ+α
ρ

G2 =
√

μ+α
ρ

Quasi-torsional wave due to
microstructure

Quasi-torsional wave
due to microstructure

Quasi-torsional wave
due to microstructure

G3 =
√

β+2γ
J

G3 =
√

4γ (β+γ )
J (β+2γ ) =

√
e′
J

G3 =
√

e
J

Quasi-flexural wave due to
microstructure

Quasi-flexural wave due to
microstructure

Quasi-flexural wave due to
microstructure

G4 =
√

γ+ε
J

G4 =
√

γ+ε
J

G4 =
√

γ+ε
J

Conclusion

A new theory of thin-walled beams of open
profile with Cosserat-type microstructure has
been suggested based on the approach proposed
in Rossikhin and Shitikova (2011) for prestressed
spatially curved elastic thin-walled beam of
open profile. The aim to create the theory of
propagation of transient waves (surfaces of strong
discontinuity) in thin-walled beams of open
profile, which should be quite different from
Timoshenko-like theories, resulting in the data
comparable with those corresponding to transient
wave propagation in the three-dimensional
Cosserat continuum, has been achieved. The
advantage of the developed approach lies in the
fact that the found wave velocities depend only
on material constants and are independent of any
additional coefficients involving the geometry of
thin bodies.

This conclusion is supported by Table 1,
wherein the velocities of the transient waves
propagating in the three-dimensional Cosserat
continuum (Pal’mov 1964; Rossikhin and
Shitikova 2015), in the Cosserat-type shell
(Rossikhin and Shitikova 2018), and in thin-
walled beams of open profile made of Cosserat-
type materials (Rossikhin and Shitikova 2015,
2017) are presented. From Table 1 it is seen that

all velocities depend only on material constants.
Note that the micropolar longitudinal modulus
e = γ (3β+2γ )

β+γ was suggested in Rossikhin and
Shitikova (2017) as the analog of the elastic
longitudinal modulus E = μ(3λ+2μ)

λ+μ , and the

reduced micropolar modulus e′ = 4γ (β+γ )
β+2γ

was introduced in Rossikhin and Shitikova
(2018) as the analog of the reduced modulus
E′ = E

1−ν2 = 4μ(λ+μ)
λ+2μ frequently used in the

theory of elastic shells.
From the comparison of velocities of tran-

sient waves propagating in Cosserat-type thin
shells and thin-walled spatially curved beams
with those in the Cosserat continuum, it is seen
that velocities G2 and G4 in all cases are the
same, while velocities G1 and G3 are different.
The same situation takes place for the case of
the transient wave velocities in elastic shells and
beams, which could be obtained from the cor-
responding magnitudes presented in Table 1 by
vanishing to zero all additional Cosserat con-
stants except Láme constants.

The knowledge of the velocities of transient
waves in thin-walled beams of open profile made
of Cosserat-type material will allow one to solve
boundary-value transient dynamic problems
resulting in the propagation of surfaces of strong
and weak discontinuity. This could be carried out
by the utilization of the theory of discontinuities
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and further construction of the ray series behind
the fronts of transient waves (surfaces of strong
discontinuities). In order to determine the ray
series coefficients for thin-walled bodies, the
recurrent sets of first-order differential equations
with respect to derivatives along the rays could be
deduced with the help of the modified Hadamard-
Thomas conditions of compatibility. Arbitrary
functions obtained during integration of recurrent
equations and involved in the coefficients of the
ray series could be determined from initial and
boundary conditions. The developed approach
will allow one to solve boundary-value problems
dealing with nonstationary excitations on thin
bodies, such as impacts (Rossikhin and Shitikova
2017), different kinds of force and velocity
excitations, and so on.
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Clifford Ambrose Truesdell III (∗February 18th,
1919 in Los Angeles, CA, USA; †January 14th,
2000 in Baltimore, MD, USA) was a mathe-
matician, natural philosopher, and historian of
science.

Clifford Ambrose Truesdell III

Education

After high school, Truesdell spent 2 years in
Europe learning French, German, and Italian and
improving his Latin and Greek. At Caltech he was
deeply influenced by the teaching of Harry Bate-
man. In particular, a course in partial differential
equations “taught me the difference between an
ordinary good teacher and a great mathematician,
and after that I never cared what grade I got in
anything” (Truesdell 1984). He obtained a B.Sc.
in mathematics and physics in 1941 and a M.Sc.
in mathematics in 1942. In 1943, he completed a
Ph.D. in mathematics at Princeton University. For

the rest of the decade, the US Navy employed him
to do mechanics research.

Professional Career

Truesdell taught at Indiana University from 1950
to 1961, where his students included James Ser-
rin, Jerald LaVerne Ericksen, and Walter Noll.
From 1961 until his retirement in 1989, he was
professor of rational mechanics at Johns Hopkins
University.

Scientific Achievements and Honors

Truesdell and Noll contributed to foundational
rational mechanics and thermodynamics, whose
aim is to construct a mathematical model for
treating continuous mechanical phenomena (Noll
2003). Truesdell was the founder and editor-
in-chief of the journals Archive for Rational
Mechanics and Analysis and Archive for History
of Exact Sciences, which were unusual in
several ways. Following Truesdell’s criticisms
of awkward style in scientific writing (Truesdell
1984), the journals accepted papers in English,
French, German, and Latin.

In addition to his original work in mechanics,
Truesdell was a major historian of science and
mathematics, editing or coediting six volumes of
the collected works of Leonhard Euler.

During his life, Truesdell liked to criticize and
thus was criticized by others. He became, e.g.,
famous for his attacks on Onsager and related sci-
entists. As Ingo Müller (2007) reported: “Trues-
dell’s outspoken partisanship of rational ther-
modynamics and his flamboyant style fuelled
some lively controversies between adherents of
TIP (thermodynamics of irreversible processes)
and the protagonists of rational thermodynam-
ics, chiefly Truesdell himself. His attacks on
Onsagerism were advanced with much satirical
verve, that makes them fun to read for those who
were not targeted. However, the defenders of TIP
tried their best to pay Truesdell back in his own
coin.” And Ronald Samuel Rivlin (1915–2005)
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delighted a worldwide audience with a frequently
repeated humorous lecture under the title: “On
red herrings and other sundry unidentified fish in
modern continuum mechanics”.

Truesdell obtained the following awards:

• Euler Medal of the USSR Academy of Sci-
ences, 1958 and 1983;

• Bingham Medal of the Society of Rheology,
1963;

• Birkhoff Prize of the American Mathematical
Society and Society for Industrial and Applied
Mathematics, 1978;

• Honorary doctorate from the Faculty of Math-
ematics and Science at Uppsala University,
Sweden 1979;

• Theodore von Kármán Medal, 1996

Further Reading

The article is based partly on Ball and James
(2002).
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Synonyms

Constitutive equations; Coleman-Noll procedure;
Entropy production; Reduced equation of
energy balance; Second law of thermodynamics;
Temperature and entropy introduction

Definition

Truesdell’s method of entropy and temperature
introduction is based on the second law of
thermodynamics in a form of Clausius-Duhem
inequality and starts with choosing a subset
of independent variables in which constitutive
equations are formulated. In Zhilin’s approach
the independent variables emerge from the
reduced equation of energy balance; the second
law represents the set of Fourier and Planck
inequalities that impose restrictions on the
heat flux and dissipative part of stress tensors
correspondingly.

Introduction

There are many different ways of entropy intro-
duction and constitutive equation formulation.
Truesdell’s and Zhilin’s approaches are among
them. Although these methods show many
similarities, they also exhibit a number of
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distinctions. In order to provide a comparative
analysis of these approaches, an inelastic
micropolar continuum is considered. Note that
in inelastic processes, the neighboring particles
can separate and travel significant distances from
one another. It means that it is more preferable
to use a spatial description, since, in contrast to
the material description, it does not impose strict
constraints on the motion of material points.

Balance Equations for the Micropolar
Continuum

Within the spatial description, motion is
described by focusing on a specific location
of space r through which the matter moves as
time passes on. It is assumed that an elementary
particle of the matter is a body point that occupies
zero volume and has both translational and
angular degrees of freedom. The angular velocity
field ω(r, t) is independent of the linear velocity
field v(r, t) in a micropolar body, and, in addition
to the momentum balance, the balance of angular
momentum has to be taken into account. Due to
the presence of traction couples or body couples,
the stress tensor becomes an antisymmetric one.
Further the balance equations for a micropolar
continuum within the spatial description are
formulated.

The control volume V fixed in the inertial
reference system and containing some amount of
body points is observed.

The local form of the mass conservation law is

δρ

δt
+ ρ ∇ · v = 0. (1)

Here δ/δt is the material derivative (see Ivanova
et al. 2016), ρ(r, t) is a mass density, and ∇
denotes the independent on time nabla operator.

For a micropolar medium, it is natural to
postulate the existence of the kinetic energy, K ,
as an additive function of mass:

K =
∫

V

ρκ dV. (2)

The specific kinetic energy density κ serves as
a potential for the specific linear momentum K1

and for the dynamic spin L:

κ = 1

2
v · v+ 1

2
ω · J · ω, K1 = ∂κ

∂v
= v,

L = ∂κ

∂ω
= J · ω (3)

where J is the mass density of the inertia tensor
of the body point.

Euler’s first dynamical law (the momentum
balance equation) for the control volume V

bounded by smooth surface Σ is

d

dt

∫

V

ρv dV =
∫

V

ρf dV+
∫

Σ

(Tn − ρn · vv) dΣ,

(4)
where d/dt is the total time derivative, f is an
external force per unit mass, Tn is a stress vector
acting upon an elementary surface, and n is the
surface normal.

The local form of Euler’s first dynamical
law is

ρ
δ

δt
v = ∇ · T+ ρf, (5)

where T is the Cauchy stress tensor (Tn = n ·T).
Euler’s second dynamical law (the equation

for balance of the angular momentum) with
respect to the origin is

d

dt

∫

V

ρ(r× v+ L) dV =
∫

V

ρ (r× f+m) dV+

(6)
∫

Σ

(r× Tn +Mn − ρn · v(r× v+ L)) dΣ,

where m is an external moment per unit mass and
Mn is a moment acting upon a surface with the
normal n.

Owing to Euler’s first law and the mass bal-
ance, the local form for Euler’s second dynamical
law for a generalized continuum has the form

ρ
δ

δt
(J · ω) = ∇ ·M+ T× + ρm, (7)
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where M is the couple-stress tensor introduced by
analogy with the stress tensor (Mn = n ·M) and
T× is a vector invariant of a second rank tensor.
For a dyad it is defined by (ab)× = a× b.

The first law of thermodynamics (the energy
balance equation) states that there is a function
of state U (called internal energy) satisfying the
equation

d

dt
(K + U) = N +Q, (8)

where N is the mechanical power or total rate
of working of the mechanical actions upon the
matter within the volume and Q is a rate of
energy supply to the control volume.

For a continuum the mechanical power N is
the rate of working of the assigned forces and
couples within the body plus the rate of working
of the stress vector and the couple stress on the
boundary:

N =
∫

V

ρ (f · v+m · ω) dV +
∫

Σ

(Tn · v+Mn · ω) dΣ (9)

The energy supply per unit time, Q, is deter-
mined by the adding (or removing) of new par-
ticles to the control volume and by the rate of
nonmechanical transfer of energy from external
sources which is expressed in terms of a flux of
energy h through the boundary and a supply of
energy q within the volume:

Q =
∫

V

ρq dV−
∫

Σ

n·h dΣ−
∫

Σ

n·v(ρκ+ρu)dΣ.

(10)
Being an additive set function, the internal

energy may be expressed in terms of a
specific internal energy. Generally, in chemical
thermodynamics or studies involving structure
transformations, the internal energy is an
additive function of the number of particles
(e.g., Prigogine 1955; Müller and Ruggeri

1998; Zhilin 2003), https://meteor.springer.com/
chapter/contribute.jsf?id=108543. However, if
the number of particles is not changing, then the
density of particle distribution is proportional
to the mass density, and the internal energy
becomes an additive function of the mass as it
is usually assumed in most continuum mechanics
applications (see, e.g., Truesdell and Toupin
1960; Truesdell 1965; Müller and Müller 2009).
Thus it is accepted that

U =
∫

V

ρu dV, (11)

where u is the specific internal energy per unit
mass.

Taking into account Gauss’ theorem, balance
laws (1), (5), and (7), the local form of energy
balance equation can be written as

ρ
δu

δt
= Nex +Qex, (12)

Nex = TT ·· (∇v+ I× ω)+MT ··∇ω, Qex = −∇ · h+ ρq,

where I is a unit tensor and the double dot product
is defined by (ab) ·· (cd) = (b · c)(a · d).

To proceed further it is necessary to
introduce the notions of temperature and entropy,

obtain the heat conduction equation, and per-
form the so-called closure which equalizes the
number of variables with the number of equa-
tions. The latter is done in the form of constitu-

https://meteor.springer.com/chapter/contribute.jsf?id=108543
https://meteor.springer.com/chapter/contribute.jsf?id=108543
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tive relations which limit the applicability of the
model.

Temperature and Entropy
Introduction

Truesdell’s Approach
In Truesdell and Toupin (1960), the temperature
and entropy introduction starts with choosing
parameters υ = υ1 . . . υN which are regarded as
influencing the internal energy. The assignment
of these parameters is made a priori; their totality
is the thermodynamic substate. Then the basic
assumption of thermodynamics is the substate
plus a single scalar parameter suffices to deter-
mine the internal energy. Thus

u = u(υ, η). (13)

The parameter η is called the specific entropy.
Here it is assumed that the entropy, like the
internal energy, is a continuous function of mass.
Thus the role of entropy is that of a specifying
parameter.

The temperature θ and the thermodynamic
tensions τα are defined from (13) by

θ = ∂u

∂η
, τα = ∂u

∂υα
. (14)

Thus the temperature measures the sensitivity of
energy to changes in entropy and the tensions to
changes in the corresponding parameters.

As a result the balance of the internal energy
can be written in the form

ρ
δu

δt
= Ni +Qi,

Ni = ρ

N∑

α=1

τα
δυα

δt
,

Qi = ρθ
δη

δt
. (15)

Index “i” stays for internal. Elimination of δu/δt
between (15) and (12) yields

Nex −Ni +Qex −Qi = 0, (16)

an equation stating that the difference of external
and internal working cancels the difference of

external and internal supplies of nonmechanical
energy.

Taking into account the definition of the
internal nonmechanical supply of energy (15)3,
Eq. (16) can be rewritten in a form of equation
for production of specific entropy:

ρθ
δη

δt
= Nex −Ni +Qex (17)

The work done by the thermodynamic
tensions is said to be recoverable, so only
the dissipative parts of the stress and moment
tensors contribute to the entropy. The further
transformation of the (17) depends on the choice
of the parameters υ.

Zhilin’s Approach
In some way Zhilin’s approach is similar to the
one before. It results in obtaining the reduced
equation of the energy balance and starts with
Eq. (12). The right-hand side of this equation
contains the power of forces and moments. A part
of this power leads to the change of the internal
energy. The remaining part of the power is partly
conserved within the body as heat and is partly
emanated into the external medium. In order to
separate these parts, the following decomposition
is introduced:

T = −(pe + pf )I+ τ e + τf ,

M = Me +Mf ,

tr τ e = tr τf = 0, (18)

where the quantities with the index “e” are
independent of rates. These quantities always
affect the internal energy. The quantities with
the index “f” account for an internal friction.
These quantities may have an influence on the
internal energy but, as we shall see, only by
means of additional parameters like entropy. In
view of (18), the energy balance equation has the
form
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ρ
δu

δt
= −pe∇ · v+ τTe ·· (∇v+ I× ω)+MT

e ··∇ω (19)

+ ρq −∇ · h− pf∇ · v+ τTf ·· (∇v+ I× ω)+MT
f ··∇ω.

Note that the left-hand side of this equation
consists of a material differential. Hence the
right-hand side should also have this property and
consist of terms showing material differentials
of the state variables the internal energy

density depends upon. Some of these terms
are straightforward to obtain formally, as
follows. The part of the power of forces and
moments, which does not depend on rates, can be
represented as

τTe ·· (∇v+ I× ω)+MT
e ··∇ω = −

(
g−1 · τTe + g−1 · � ·MT

e

)
·· δg
δt

(20)

+MT
e ·· δ�

δt
+ 1

2

[
(MT

e · � − τ e)× ×Q
]T ·· δQ

δt
.

Here the strain measure � and the spatial defor-
mation gradient g are determined by

∇Q = � ×Q, g = I−∇u (21)

where u is a displacement field and Q is a
rotational tensor. In view of Eqs. (1) and (19), the
energy balance equation takes the form

ρ
δu

δt
= pe

ρ

δρ

δt
−
(

g−1 · τTe + g−1 · � ·MT
e

)
·· δg
δt

+MT
e ·· δ�

δt
+ 1

2

[
(MT

e · � − τ e)× ×Q
]T ·· δQ

δt

+ρq −∇ · h− pf∇ · v+ τTf ·· (∇v+ I× ω)+MT
f ··∇ω. (22)

Obviously the underlined terms do not show
the desired form of material derivatives yet, a
form which was referred to as reduced equa-
tion of the energy balance by Zhilin. In order
to reach this state, the concepts of temperature
and entropy have to be defined. In Zhilin (2001,
2002, 2003, 2004, 2006, 2012) and Altenbach
et al. (2003), the temperature θ(r, t) and entropy
η(r, t) are introduced by the following equation,
which in fact formally coincides with (17) for
a certain choice of the thermodynamical sub-
state:

ρθ
δη

δt
= ρq − ∇ · h− pf∇ · v

+ τTf ·· (∇v+ I× ω)+MT
f ··∇ω.

(23)

Here the (theoretical) temperature θ is considered
to be some characteristic of the medium, which is
assigned as an experimental temperature through
a thermometer. Moreover, the specific entropy
density η is introduced as a quantity conjugate
to theoretical temperature. The function η has to
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be defined by means of constitutive equations in
such a manner that the theoretical and experimen-
tal temperatures coincide. From this it follows
that entropy itself is not the meaning of an objec-
tive (measurable) quantity. If the meaning of tem-
perature is changed, then the meaning of entropy
will change as well. Also note that this definition

of temperature and entropy is consistent with the
introduction of these quantities for equilibrium
processes even though Eq. (23), being the heat
conduction equation, describes nonequilibrium
processes.

Because of (23) the reduced energy balance
equation now takes the form

ρ
δu

δt
= pe

ρ

δρ

δt
−
(

g−1 · τTe + g−1 · � ·MT
e

)
·· δg
δt

(24)

+ MT
e ·· δ�

δt
+ 1

2

[
(MT

e · � − τ e)× ×Q
]T ·· δQ

δt
+ ρθ

δη

δt

Thus the internal energy is a function of the
following independent arguments:

u = u(ρ, η, g,�,Q). (25)

Note that the definition of temperature and
entropy (23) is also a definition of the internal
energy since it determines on what variables the
internal energy depends. Different variants of the
introduction of variables within Zhilin’s approach
can be found in https://meteor.springer.com/
chapter/contribute.jsf?id=108543. As a result,
the constitutive equations for the elastic part
of the stress and couple-stress tensors and the

temperature can be obtained from (24) as

pe = ρ2 ∂u

∂ρ
,

τ e = −ρ ∂u
∂g
· gT − ρ

∂u

∂�
· �T ,

Me = ρ
∂u

∂�
,

θ = ∂u

∂η
(26)

with the following constraints for the internal
energy:

(
∂u

∂g

)T
·· g+

(
∂u

∂�

)T
··� = 0, (27)

(
∂u

∂g

)T
·· (A · g)+

(
∂u

∂Q

)T
·· (A ·Q)+

(
∂u

∂�

)T
·· (A · � − � · A) = 0,

where A is an arbitrary antisymmetric tensor.
These constraints follow from the fact that the
rotational tensor has to be related to the angular
velocity by means of the so-called Poisson rela-
tion:

δQ
δt
= ω ×Q (28)

In conclusion of this section, note that the
introduction of temperature and entropy by
means of Eq. (23) is always possible from a
mathematical point of view. However, it can

happen that the theory based on (23) fails
to describe a particular experimental data. It
means that the introduction of one entropy is
not enough and some other variables have to be
introduced.

Second Law of Thermodynamics

In general there are almost as many “second
laws” as there are different thermodynamics.

https://meteor.springer.com/chapter/contribute.jsf?id=108543
https://meteor.springer.com/chapter/contribute.jsf?id=108543
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Here only Truesdell’s approach resulting in the
Clausius-Duhem inequality and Zhilin’s point of
view are considered.

Derivation of the Clausius-Duhem inequality
starts with introduction of the internal dissipation
δ̃, which is defined as being the amount by which
the increase of entropy multiplied by the temper-
ature exceeds the local rate of the energy supply
(see Truesdell 1984):

δ̃ = θ
δη

δt
− 1

ρ
(−∇ · h+ ρq) . (29)

The equation of energy balance (12) permits to
interpret (29) also as the amount by which the
increase of entropy times temperature exceeds
the increase of energy not produced by working
or taking into account (16) as the difference of
external and internal working

ρδ̃ = Ne −Ni. (30)

It is said that the internal dissipation cannot be
negative:

δ̃ ≥ 0. (31)

It is called the Planck inequality and it is not
considered as an axiom.

In the classical theory of Fourier, heat conduc-
tion is associated with differences of temperature.
Heat is said to flow from hot to cold, and the
classical a priori inequality, which is also called
the Fourier inequality, is

h · ∇θ ≤ 0. (32)

If both the Planck and the Fourier inequalities
hold, then

ρδ̃ − 1

θ
h · ∇θ ≥ 0. (33)

That by (29) is equivalent to

ρ
δη

δt
+∇ ·

(
h
θ

)
− ρq

θ
≥ 0 (34)

Integrating this inequality over the control vol-
ume yields to the condition
∫

V

ρ
δη

δt
dV ≥ −

∫

Σ

n ·
(

h
θ

)
dΣ +

∫

V

ρq

θ
dV,

(35)

which is called in Truesdell (1984) the Clausius-
Duhem inequality. The derivation of the
Clausius-Duhem inequality makes it clear that
it is equivalent to the local inequality (33) and,
conversely, the Planck inequality and the Fourier
inequality do not follow from it in general.
That is, heat can flow from cold to hot, if the
process is accompanied with a significant internal
dissipation.

Then the energy balance Eq. (12) can be used
to eliminate the quantities associated with tem-
perature and heat from (34). It leads to the so-
called reduced dissipation inequality:

ρθ
δη

δt
− ρ

δu

δt
+ TT ·· (∇v+ I× ω)+MT ··∇ω − h · ∇θ

θ
≥ 0. (36)

Using the decomposition

T = −pI+ τ , tr τ = 0 (37)

together with Eq. (19), the dissipation inequal-
ity (36) reduces to the form

ρθ
δη

δt
− ρ

δu

δt
+ p

ρ

δρ

δt
−
(

g−1 · τT + g−1 · � ·MT
)

·· δg
δt
+MT ·· δ�

δt
(38)

+1

2

[
(MT · � − τ )× ×Q

]T ·· δQ
δt
− h · ∇θ

θ
≥ 0,
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where the strain measures are given by Eq. (21).
If the chosen thermodynamical substate coin-

cides with the independent variables determined

by (25), inserting (25) into (38) and making use
of the chain rule for δu/δt yields

ρ

(
θ − δu

δη

)
δη

δt
+ ρ

(
p

ρ2
− δu

δρ

)
δρ

δρ
(39)

−
(

g−1 · τT + g−1 · � ·MT + ρ

(
δu

δg

)T)

·· δg
δt

+
(

MT − ρ

(
δu

δ�

)T)

·· δ�
δt

+
(

1

2

[
(MT · � − τ )× ×Q

]T − ρ

(
δu

δQ

)T)

·· δQ
δt
− h · ∇θ

θ
≥ 0.

Equation (39) must hold for every admissible
thermodynamic process. In a case when the factor
in front of the rate of the independent variable
does not depend on this rate (e.g., the thermoe-
lastic material), then it is necessary and suffi-
cient that the constitutive equations for the elastic
part of the stress tensors and the temperature
fulfill (26) and h satisfies the thermal conduction
inequality (32).

The internal dissipation of a thermoelastic
material is always zero. Thus (29) becomes the
heat conduction equation:

ρθ
δη

δt
= ρq −∇ · h, (40)

which together with (26) and a constitutive equa-
tion for the heat flux, say in a form of linear
Fourier law (see Fourier 1822), forms a closed
system of equations.

If a medium possesses inelastic properties,
then the reduced dissipation inequality (39) does
not allow to obtain the constitutive equations in
the formal way without additional assumptions
even for the elastic parts of the stress tensors and
only makes it possible to eliminate those consti-
tutive equations which contradict the second law
of thermodynamics in the form of the Clausius-
Duhem inequality. Moreover, in that case, the
form of the heat conduction equation remains an
open question.

Zhilin’s formulation of the second law of ther-
modynamics represents the set of the Fourier

and Planck inequalities (see Zhilin 2003, 2012),
which in the problem under consideration have
the forms

h · ∇θ ≤ 0, −pf∇ · v+ τTf ·· (∇v+ I× ω)

+MT
f ··∇ω ≥ 0, (41)

The first one imposes a restriction on the constitu-
tive equation for the heat flux, and the second one
is associated with the statement that the dissipa-
tive forces and moments cannot perform positive
work and imposes a restriction of the constitutive
equations for the dissipative components of stress
tensors. Note that within Zhilin’s approach, the
constitutive relations for the elastic parts of stress
tensors (26) are obtained independently of the
second law of thermodynamics. In addition, (23)
is the heat conduction equation independently of
the medium’s rheology. Thus, in order to have
a closed system of equations, constitutive equa-
tions for the heat flux and dissipative components
of stress tensor have to be proposed.

Constitutive Equations for Inelastic
Components of the Stress Tensors

According to Altenbach et al. (2003) and Zhilin
(2001, 2002, 2003, 2004, 2006, 2012) for microp-
olar media, the components of stress tensors
connected with inelastic behavior and internal
dissipation can be related to antisymmetric ten-
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sors. Some examples of constitutive equations for
the dissipative stress tensor components are given
below.

To describe the inelastic behavior of solids,
for example, plasticity and dynamics of granular
media, Zhilin (2001, 2002, 2003, 2004, 2006,
2012) proposed the following constitutive equa-
tions:

pf = 0,

τf = I× t,

Mf = 0, (42)

where vector t is determined by analogy with the
Coulomb dry friction and takes the form

t = k |n · τ e · n| σ(n · τ e · n) 2ω −∇ × v
|2ω −∇ × v| ,

ω �= 1

2
∇ × v. (43)

Here k > 0 is the parameter of friction, and the
function σ(n · τ e · n) is

σ(n · τ e · n) =
{

1, n · τ e · n < 0,

0, n · τ e · n ≥ 0.
(44)

The unit vector n in Eq. (43) depends on τ e and
is determined by the conditions

n · τ e ·m = max,

∀ n, m : |n| = |m| = 1,

n ·m = 0. (45)

The uniqueness of the solution of (45) was proved
in Zhilin (2001, 2012).

It is easy to see that the constitutive Eqs. (42)
and (43) satisfy the second law of thermodynam-
ics in the form of Eq. (41)2. Indeed,

τTf ·· (∇v+ I× ω) ≡ 2t·
(

ω − 1

2
∇ × v

)
. (46)

Hence, in view of Eqs. (43) and (44) and the fact
that k > 0 it follows:

τTf · · (∇v+ I× ω) = k |n · τ e · n|
σ(n · τ e · n) |2ω − ∇ × v| ≥ 0. (47)

All aforesaid relates to sliding. In the absence of
sliding, i.e., if the condition 2ω = ∇ × v holds,
the vector t is found from the equation of the
angular momentum balance. Note that if there is
no sliding, the friction force is conservative and
there is no energy dissipation. In this case the
constitutive Eqs. (42) also satisfy the second law
of thermodynamics in the form of Eq. (41)2.

Also Zhilin (2003, 2012) noted that in many
cases Coulomb dry friction can be replaced by
viscous friction, i.e., instead of Eq. (43), the con-
stitutive equation

t = k

(
ω − 1

2
∇ × v

)
, (48)

can be used. Here k > 0 is the coefficient of
viscous friction.

To describe the behavior of a two-component
micropolar medium consisting of fluid particles
(liquid constituent) and immersed particles-
fibers (solid-liquid constituent), Zhilin (2006,
2012) and Altenbach et al. (2003) proposed the
constitutive equations for inelastic components
of stress tensors containing both symmetric and
antisymmetric parts.

The constitutive equations for the fluid com-
ponent are

p′f = 0, τ ′f = 2μ··D+t′×I, M′
f = 0,

(49)
where

D = 1

2

(
∇v1 +∇vT1 −

2

3
(∇ · v1)I

)
. (50)

Vector t′ characterizes the viscous friction
between the solid particles and the fluid and
depends on the particle distribution density of the
solid-liquid component n2:

t′ = n2μ1 ·
(

ω − 1

2
∇ × v1

)
. (51)
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The first term in Eq. (49) is a standard term for
a viscous fluid; the second term characterizes
friction due to the presence of a solid-liquid
component.

The constitutive equations for the viscous
stresses in the solid-liquid component are

p′′f = 0, τ ′′f = t′′ × I, M′′
f = m′′ × I,

(52)
where vectors t′′ and m′′ are

t′′ = n2μ2 ·
(

ω − 1

2
∇ × v2

)
,

m = − n2μ3 (∇ × ω) . (53)

The tensors of viscous friction coefficients
must satisfy the restrictions

∀ a,b, c with c = −cT : a · ·μ · · a ≥ 0,

b · μ1 · b ≥ 0, μ3 ≥ 0, a · ·μ = μ · · a,
c · ·μ = 0, I · ·μ = 0, b · μ1 = μ1 · b.

(54)

Besides, if the particle density n2 vanishes, then
the vector t′ must be zero.

Thus in accordance with Zhilin’s constitutive
equations, the transfer of energy into heat is
associated with the motion by rotational degrees
of freedom, i.e., by degrees of freedom with
inelastic interactions.

Summary and Comparison

In Truesdell’s approach all state variables need
to be defined a priori, and entropy, introduced
as a primitive quantity, is one of them. This set
of state variables is required to determine the
internal energy, which then serves as a potential
for temperature.

In Zhilin’s approach the state variables emerge
from rewriting the energy balance such that
material derivatives of them appear successively.
To do that quantities are additively decomposed
into rate-independent and rate-dependent ones.
Rewriting the energy balance in terms of

material derivatives is possible up to a remaining
part, which is then defined as the product of
(theoretical) temperature and material derivative
of entropy. By imposing the constraint that an
experimentally measured temperature has to
agree with the theoretical one, entropy must be
redefined accordingly.

As far as the second law of thermodynamics is
concerned, Zhilin’s arguments are based on two,
namely, the Fourier and the Planck inequality.
Both can be combined to result in the Clausius-
Duhem inequality, which forms the basis for
Truesdell’s constraint arguments. In general,
however, the former two do not follow from
the latter one. At the same time, Zhilin does
not consider the second law of thermodynamics
as a fundamental law. The inequalities (41) are
based on experimental observations and practical
experiences on a macro level and can be violated,
say, on a micro level or for nonlocal materials.

In Zhilin’s approach, these two inequalities
(the second law) impose restrictions on the heat
flux and the dissipative part of stress tensors,
while the constitutive equations for the rate-
independent parts of the stress tensors follow
from the material derivative character of the
internal energy. Truesdell believes that Clausius-
Duhem inequality is the correct mathematical
form of the second law of thermodynamics. The
later theory of Coleman and Noll states that the
constitutive equations, which characterize the
material properties of continuous media, must
be assigned in such a way that the Clausius-
Duhem inequality holds for all thermodynamic
processes. Thus, the Clausius-Duhem inequality
becomes a restriction on all constitutive relations.
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