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Wolfgang Zerna (∗October 11th, 1916 in Berlin,
German Empire; †November 14th, 2005 in Celle,
Germany) was a civil engineer with focus on
mechanics and construction.

Wolfgang Zerna

Early Years and Education

Wolfgang Zerna, after secondary school in
Berlin, studied civil engineering at the Tech-
nische Hochschule Berlin-Charlottenburg. Even
if he was called to military service, he managed
to complete his studies with a diploma in 1940.
After 4 years of military service and 2 years
as prisoner of war in the USA, where together
with other German scientists he organized a
camp university, Zerna returned home in 1947.
The same year, he became an assistant to Alf
Pflüger at the chair of statics at the Technische
Hochschule Hannover and finished his PhD
thesis (On the membrane theory of general
shells of revolution – Zur Membrantheorie der
allgemeinen Rotationsschalen, Zerna 1949).
In1948, he habilitated (On the basic equations
of the theory of elasticity – Allgemeine
Grundgleichungen der Elastizitätstheorie, Zerna
1950). In 1949 he followed an invitation of Albert
E. Green as visiting scientist to the University of
Durham. This was the starting point of a long-
term cooperation resulting in the monograph
on Theoretical Elasticity (Green and Zerna
1954), which for a long time became a standard
monograph for tensor calculus and theory of
elasticity.

Professional Career

Back from the UK, Zerna started working in
the German building industry in 1950, first at
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Polensky and Zöllner in Cologne and then at Ph.
Holzmann in Frankfurt, where he was responsible
for the entire prestressed concrete construction.
During these postwar reconstruction years, he
developed the Holzmann prestressing method,
was involved in many reinforced concrete
and prestressed concrete constructions, and
influenced bridge and engineering structures of
both companies.

At the same time, since 1950, he was
appointed as a professor (extraordinaire) in
Hannover. Since 1957 he was a full professor
for solid construction. Here he laid the basis
for the introduction of electronic computing, as
computer science was called at that time into the
civil engineering sector and combined it with
model static measuring techniques. His chair
was the first engineering institute in Germany to
receive an “electronic calculator” (Zuse Z 22R).

From 1963 he was a member of the found-
ing committee of the Ruhr University Bochum.
He was appointed as full professor in this new
university in 1967 (up to his retirement in 1983).
Zerna was thus the first civil engineer of the then
Faculty of Mechanical Engineering and Struc-
tural Engineering in Bochum. He organized this
engineering faculty like in the UK combining
theoretical, numerical, and experimental chairs.

Pioneering work for large natural draft cool-
ing towers and nuclear power plants began in
1964. Through practical engineering activities as
a consulting engineer, test engineer, and scientific
expert, he gave the impetus for the founding
of two still very successful engineering bureaus
in Bochum, which remain connected to him in
gratitude even after his death.

Scientific Achievements and Honors

During the first term of collaboration with A.E.
Green, he developed a tensor-based theory of
thin shells. Together with his collaborator Her-
mann Flessner (who later became professor at
the University of Hamburg), he introduced and
developed the use of computers in civil engi-
neering (static problems and measurements) in
Germany. From 1983 at his chair in Bochum was

established the first Unix computer at the Ruhr
University.

Since 1963 Wolfgang Zerna was a member
of the Braunschweigische Wissenschaftliche
Gesellschaft. He was a founding member of the
International Association for Shell and Spatial
Structures (IASS) and since 1988 honorary
member of this association. Wolfgang Zerna was
awarded doctor honoris causa at the Universities
of Stuttgart and Essen.

He was a member of the Verein Deutscher
Ingenieure (Association of German Engineers)
and the chairman of the civil engineering depart-
ment. In 2014 the Verein Deutscher Ingenieure
established in honor of the achievements of Wolf-
gang Zerna the Wolfgang Zerna honorary medal
for engineers with outstanding contributions in
the field of civil engineering.
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Pavel Andreevich Zhilin (∗February 8, 1942, in
Velikiy Ustyug, Vologda region, Soviet Union;
†December 4, 2005, in St. Petersburg, Russian
Federation) was a scientist in the field of rational
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mechanics, shell theory, and tensor calculus. His
scientific interests covered various branches of
mechanics and theoretical physics. In his research
he strived to pave a way based on rational
mechanics to areas which are traditionally not
associated with mechanics, such as physics of
microstructures and electrodynamics.

Family and Education

Pavel Andreevich Zhilin was born in Velikiy
Ustyug (Vologda region, Soviet Union), where
his family found themselves during the World
War II. He spent his childhood in Volkhov and
Podporozhie, where his father, Andrey Pavlovich
Zhilin, has been employed as a chief engineer
at the coordinated hydroelectric system of Svir
river. Zoya Alexeevna Zhilina, the mother of P.A.
Zhilin, was bringing up the sons and kept the
house.

In 1956 the family moved to Leningrad. In
1959 P.A. Zhilin left the secondary school and
entered the Leningrad Polytechnic Institute. Yet
at school Pavel Zhilin met his future wife, Nina
Alexandrovna, who was his faithful friend and
helpmate all his life long. While studying at
the institute, P.A. Zhilin became keen on table
tennis and was a captain of the student and later
institute team for many years. P.A. Zhilin got a

qualification of the candidate master of sports
(the highest qualification in this sport discipline
at that time).

Professional Carrier

In the period of 1959–1965, P.A. Zhilin studied
at Leningrad Polytechnic Institute in the Depart-
ment of Mechanics and Control Processes at the
Faculty of Physics and Mechanics. Later on his
daughter, Olga Zhilina, graduated from the same
department (in addition, she got her Candidate of
Physical and Mathematical Sciences degree for
the thesis On the influence of the elasticity of bod-
ies, which are in contact, on the development of
dynamical effects under wear conditions). After
graduation, P.A. Zhilin got the qualification of
engineer-physicist (specialization Dynamics and
Strength of Machines), and from 1965 to 1967,
he worked as an engineer at the Water Turbine
Strength Department in the Central Boiler Tur-
bine Institute in Leningrad.

In 1967 he accepted a position of assistant pro-
fessor at the Department of Mechanics and Con-
trol Processes; later he worked there as a senior
researcher, as an associate professor, and as a full
professor. The founder of the Department was
the corresponding member of the Academy of
Sciences of the USSR Prof. Anatoliy Isaakovich
Lurie, worldwide recognized scientist in Mechan-
ics and Control Processes. P.A. Zhilin became
the closest disciple of A.I. Lurie and spent many
hours working together with him. Scientific ide-
ology of P.A. Zhilin was developing to a great
extent under the influence of A.I. Lurie. He got
his Candidate degree (CSc) in Physical and Math-
ematical Sciences in 1968 (the topic of his thesis
was The theory of ribbed shells) and his Doctor
degree (DSc) in Physical and Mathematical Sci-
ences in 1984 (the topic of his DSc-thesis was
The theory of simple shells and its applications).
In 1989 he was appointed as a professor of ratio-
nal mechanics at the Department of Mechanics
and Control Processes.

In 1974–1975 P.A. Zhilin worked as a visiting
researcher at the University of Technology of
Denmark. While working at the Department of
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Mechanics and Control Processes, P.A. Zhilin
delivered lectures on analytical mechanics,
theory of oscillations, theory of shells, tensor
analysis, and continuum mechanics. In 1988 he
was invited in the Yarmouk University (Jordan)
to present a course on continuum mechanics
at the Faculty of Physics. From 2001 he was
several times a visiting scientist at the Martin-
Luther-Universität Halle-Wittenberg (Chair of
Engineering Mechanics). At the same time, P.A.
Zhilin actively carried out scientific work in the
field of the theory of plates and shells, nonlinear
theory of rods, theory of elasticity, and continuum
mechanics. He gained three certificates of
invention in the area of vibroinsulation and
hydroacoustics; he was awarded with the Inventor
of the USSR insignia.

Since 1989 P.A. Zhilin was the head of the
Department of Theoretical Mechanics at the
Leningrad Polytechnic Institute (now Peter the
Great State Polytechnic University). In the period
of his direction, five of his colleagues defended
their DSc-theses; for the four of them, P.A.
Zhilin was a scientific advisor. While working
in the Department of Theoretical Mechanics,
P.A. Zhilin read original courses on tensor
algebra, rational mechanics, and the rod theory.
During this period P.A. Zhilin worked hard
in the field of investigating and developing
foundations of mechanics. His investigations
on spinor motions in mechanics and physics,
phase transitions and phenomena of inelasticity,
binary media (suspensions), electrodynamics
from the positions of the rational mechanics, and
logical foundations of mechanics relate to this
period.

Since 1994 P.A. Zhilin was the head of
Dynamics of Mechanical Systems laboratory
at the Institute for Problems in Mechanical
Engineering of the Russian Academy of
Sciences. From 1999 he was a member of the
Scientific Committee of the Annual International
Summer School-Conference Advanced Problems
in Mechanics, held by the Institute for Problems
in Mechanical Engineering.

Pavel Andreevich Zhilin was a member of the
Russian National Committee for Theoretical and
Applied Mechanics, a member of the Society of

Applied Mathematics and Mechanics (GAMM),
and a member of Guidance Board Presidium for
Applied Mechanics (Ministry of Higher Educa-
tion of Russian Federation).

Academic Pupils

P.A. Zhilin prepared many PhD students.
Sixteen PhD theses (Candidate of Science)
and six Professorial theses (Doctor of Science)
were defended under his supervision and
advisory. Among his pupils are Anton M.
Krivtsov (corresponding member of the Russian
Academy of Sciences, professor and head of
the Department of Theoretical Mechanics, Peter
the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation), Vitaly R.
Skvortsov (professor of State Marine Technical
University of St. Petersburg), Elena Grekova
(senior researcher of the Institute of the Problems
of Mechanical Engineering, Russian Academy
of Sciences, St. Petersburg), Sergei Gavrilov
(leading researcher of the Institute of the
Problems of Mechanical Engineering, Russian
Academy of Sciences, St. Petersburg), Alexander
D. Sergeev (leading researcher of the Institute
of the Problems of Mechanical Engineering,
Russian Academy of Sciences, St. Petersburg),
Dmitri P. Goloskokov (professor of Admiral
Makarov State University of Maritime and Inland
Shipping), and both authors of this entry.

Scientific Achievements

P.A. Zhilin obtained original and fundamental
results in continuum mechanics, rational
mechanics, shell theory, and tensor calculus.
On these topics he published several monographs
(Zhilin 2001, 2003, 2006, 2007, 2012, 2015). A
collection of his papers was published in English
(Indeitsev et al. 2006). Special problems of the
direct approach in the shell theory were published
in Zhilin (1976), on the theory of invariants;
in Altenbach et al. (2006), on binary media;
in Zhilin (2003), on rigid body mechanics; in
Zhilin (1996), on rigid body oscillators; in Zhilin
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(2000); and in Ivanova et al. (2007), on general
problems of rational mechanics. Together with
A.I. Lurie, he edited the Russian edition of
Truesdell’s A First Course in Rational Continuum
Mechanics (see � “Truesdell, Clifford Ambrose
III”). A detailed description of his scientific
achievements was published in Altenbach et al.
(2009). In honor a special issue of the ZAMM
(Zeitschrift für angewandte Mathematik und
Mechanik) was prepared by his friends and
colleagues in 2007 (Altenbach et al. 2007).
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Definition

The main idea of the method consists in transfor-
mation of the energy balance equation to a spe-
cial form called the reduced equation of energy
balance. This form is obtained by separation
of the stress tensors into elastic and dissipative
components and introduction of quantities char-
acterizing the physical processes associated with
neglected degrees of freedom. As a result the
energy balance equation is divided into two or
more parts: one of them is the reduced equation
of energy balance and the rest carrying the mean-
ing of heat conduction equation and equation of
structural transformations.

Introduction

To describe inelastic processes associated with
phase transitions and structural transformations,
plastic flow, dynamics of bulk solids, dynamics
of granular media, fragmentation and defrag-
mentation of materials, particle diffusion, chem-
ical reactions, etc., it is important to introduce
additional state variables such as temperature,
entropy, chemical potential, and particle distri-
bution density. In fact, the introduction of these
quantities in continuum mechanics should be
considered as an attempt to take into account the
microstructural processes at the macro level by
means of some integral characteristics.

Usually the concepts of temperature, entropy,
internal energy, and chemical potential are sup-
posed to be well-known. However, in fact, there
are no satisfactory definitions for them in con-
tinuum mechanics. Partly the problem is that it
is impossible to prove that the temperature as it
is introduced in thermodynamics or in statistical
physics coincides with the temperature definition
as it is used in continuum mechanics. A situation
with the definition of unmeasurable variables
such as the entropy, internal energy, or chem-
ical potential is even more complicated. Such
quantities are characteristics of a mathematical
model, and they are necessary for obtaining some
relations connecting measurable quantities. Con-

sequently, the preference of this or that definition
is determined by specific features of problems
under consideration.

There are different ways of entropy introduc-
tion (see, e.g., Boltzmann 1874; Clausius 1960,
reprint; Maugin 1999; Nowacki 1975), and it is
difficult to say unambiguously which of them is
more preferable. In fact, entropy is introduced
as an attempt to take into account a dependence
of the internal energy on the velocities of the
ignored degrees of freedom. Another thermody-
namical quantity – chemical potential – is intro-
duced to describe a change of density of particles.
Usually in thermodynamics the chemical poten-
tial is defined as the derivative of the internal
energy with respect to the number of particles,
(see Gibbs 1875; Prigogine 1955). However there
exist other definitions of the chemical poten-
tial. For example, Baierlein (2001) proposed to
introduce the chemical potential by describing
its properties instead of explaining the chemical
potential by relating it to an energy change. These
ideas have a further development in Job and
Herrmann (2006).

Zhilin suggested a new concept of the entropy
and chemical potential introduction as a conju-
gate variables to the temperature and number
of particles correspondingly, for example Zhilin
(2003, 2006, 2012). As a result, the definitions
of the chemical potential and entropy are given
by means of pure mechanical arguments, which
are based on using a special form of the energy
balance equation.

Balance Equations for a Continuum
with Microstructure

Consider an arbitrary volume V (control volume)
at a fixed position r in space. The local form of
the mass conservation law can be written as:

δρ

δt
+ ρ ∇ · v = 0. (1)

Here δ/δt is the material derivative (Ivanova et al.
2016), ρ(r, t) is a mass density, v(r, t) is the
velocity field, and ∇ denotes the nabla operator.
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In addition to the mass density, a particle
density n(r, t) is introduced as an independent
variable. Consideration of this quantity indepen-
dently of mass density allows to take into account
microstructural changes in media. Such differ-
entiation is important, for example, when the
material tends to fragmentation, as in this case
the mass is preserved but the number of particles
changes. In other words considering the particle
density as an independent characteristic corre-
sponds to introducing an additional degree of
freedom which accounts for structural changes.
As a result an additional balance equation for the
new variable has to be formulated. This equation
can be written by analogy to Eq. (1) with a source
term. Thus, the particle balance equation takes
the form (see Altenbach et al. 2003; Zhilin 2012;
Vilchevskaya et al. 2014)

δn

δt
+ n∇ · v = χ. (2)

Here χ is the rate of particle production per unit
volume.

From the combination of Eqs. (1) and (2), it
follows that

δz

δt
= −χ(r, t)

n(r, t)
, z ≡ ln

(
ρ(r, t)n0(r)
ρ0(r)n(r, t)

)
, (3)

where n0(r) and ρ0(r) are reference distributions
of densities of particles and mass.

The local form of Euler’s first dynamical law
is

ρ
δv
δt

= ∇ · T + ρf, (4)

where f is an external specific body force and
T is the symmetric Cauchy stress tensor. The
symmetry of the stress tensor is related to the
balance of angular momentum in the general
nonpolar case (i.e., in the case where there are no
assigned traction couples or body couples and no
couple stresses).

The first law of thermodynamics (the energy
balance equation) states that there is a function
of state U (called internal energy) satisfying the
equation

d

dt
(K + U) = Ne + Q, (5)

where K is the kinetic energy of the substance in
the control volume, Ne is the power of external
forces, and Q is the energy supply from external
sources per unit time.

The kinetic energy is assumed to be a
quadratic form of velocities. As usual it is an
additive function of the mass and thus can be
written in terms of the mass density of the kinetic
energy κ

K =
∫
V

ρκ dV. (6)

The definition of internal energy is less formal
than that of the kinetic energy. As a matter of fact,
the internal energy is the energy of motion with
respect to degrees of freedom that are ignored
in the model under consideration. Indeed, the
momentum balance equation and the angular
momentum balance equation are obtained by
choosing the kinetic energy as a quadratic form
of velocity. Other degrees of freedom that are
ignored in the kinetic energy are taken into
account by means of the internal energy. As a
rule the sense of the internal energy depends on
the mathematical model used for description of
the system. For example, in classical equilibrium
thermodynamics, the internal energy of the ideal
gas is an additive function of the number of
particles and proportional to the temperature
(Müller and Ruggeri 1998; Prigogine 1955). In
statistical thermodynamics, the internal energy
is determined by the elastic interactions of the
particles, for example, Laurendeau (2005). The
difference between the approaches cannot give
the cause for doubts about their correctness. The
fact is that the internal energy is a quantity that
cannot be measured, and so there are no physical
experiments that let us know what the internal
energy of the system under consideration is.

Usually in many continuum mechanics appli-
cations, the internal energy is an additive function
of the mass (see Truesdell and Toupin 1960;
Truesdell 1965; Müller and Müller 2009). To take
into account the structure changes in the media
caused by a change of the number of particles in
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the medium, it is supposed in Zhilin (2003) that
the internal energy is an additive function of the
number of particles,

U =
∫
V

nu dV, (7)

where u is the internal energy per one particle.
The power of external forces can be repre-

sented in the following form:

Ne =
∫
V

ρ · v dV +
∫
Σ

Tn · v dΣ, (8)

where Tn is a stress vector acting upon an ele-
mentary surface of the volume boundary Σ , Tn =
n · T, and n is normal to this surface.

The energy supply per unit time is determined
due to the entering (to the leaving) of new par-
ticles into (out of) the control volume and by the
heat supply per unit time t which is the sum of the
heat supply per unit time directly in the volume
and through the volume boundary,

Q =
∫
V

nq dV −
∫
Σ

n · h dΣ −
∫
Σ

n · v(ρκ+nu)dΣ,

(9)
where q is the energy supply per unit time into the
particles of the medium and h is the heat flow.

Taking into account Gauss’ theorem and bal-
ance laws (1), (2), and (4), the local form of
energy balance equation is obtained:

n
δu

δt
= nu

δz

δt
+ T · · (∇v)s − ∇ · h + nq. (10)

Here (∇v)s = 1/2(∇v + v∇) is a symmetric
part of the spatial gradient of the velocity, and the
double dot product is defined by (ab) · · (cd) =
(b · c)(a · d).

However this form of the energy balance equa-
tion does not allow to see on which arguments
the internal energy depends. The basic idea of
Zhilin’s method is to transform the energy bal-
ance equation (10) into a special form called
reduced equation of energy balance (see Zhilin
2012; Altenbach et al. 2003). During this trans-

formation, the stresses are represented as a sum of
elastic and dissipative components; the temper-
ature, entropy, and chemical potential are intro-
duced, and the energy balance equation is divided
into two or more parts: one of them is the reduced
energy balance equation which shows clearly on
which variables the internal energy depends, and
the rest have a sense of heat conduction equation,
diffusion equation, equation of structural trans-
formations, etc.

Transformation of the Energy Balance
Equation

The right-hand side of Eq. (10) contains the
power of forces and moments. A part of this
power leads to the change of the internal energy.
The remaining part of the power is partly
conserved within the body as heat and is partly
emanated into the external medium. In order to
separate these parts, the following decomposition
is introduced:

T = −(pe + pf )I + τ e + τf ,

tr τ e = tr τf = 0, (11)

where I is the identity tensor. The quantities with
the index “e” are independent of rates. These
quantities always affect the internal energy. The
quantities with the index “f” account for an inter-
nal friction. These quantities may have an influ-
ence on the internal energy but only by means
of additional parameters like entropy or chemical
potential. Because of (11) it follows that:

n
δu

δt
= nu

δz

δt
− pe∇ · v + τ e · · (∇v)s

+ nq − ∇ · h − pf ∇ · v + τf · · (∇v)s.

(12)

The part of the power of forces that does not
depend on rates can be represented as:

τ e · · (∇v)s = −1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

.

(13)
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Here the deformation measures are determined
by

g = I − ∇u, I3(g) = det g,

G = I
−2/3
3 (g) gT · g, (14)

where u is a displacement field and G describes
the shape deformation. From the mass balance, it
follows that

∇ · v = ρ

ρ0

δς

δt
, ς = ρ0

ρ
(15)

and as a result the energy balance equation takes
the form:

n
δu

δt
= nu

δz

δt
− pe

ς

δς

δt

−1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

+nq − ∇ · h − pf ∇ · v + τT
f · · (∇v)s .

(16)

A transformation of the underlined terms is
not as formal as the above ones. In order to
state the full form of the reduced equation of
the energy balance, the concepts of tempera-
ture, entropy, and chemical potential have to be
introduced. Zhilin’s idea is to introduce them in
such a way that the material derivative of the
internal energy in terms of independent variables
(natural variables) has, as coefficients, the other
thermodynamic variables. Zhilin’s method toler-
ates various modifications of the definitions of
entropy and chemical potential as well as other
unmeasurable state variables.

Different Ways of Entropy and
Chemical Potential Introduction

In classical thermodynamics, the internal energy
of a system is expressed in terms of pairs of
conjugate variables. Equation (16) partly has the
desired structure. Further terms may be expressed
as time derivatives of set functions by adding fur-

ther assumptions. The underlined terms comprise
of the nonmechanical energy supply and dissipa-
tive stress power and may lead to change of the
temperature and/or particle density which conju-
gate variables are entropy and chemical potential,
respectively. When the particle density changes
due to diffusion, then in many thermodynamic
approaches, a chemical potential is considered as
a force that pushes changes in the particle num-
ber, and its introduction is required. Alternatively,
the change of the particle density can be due
to internal structure transformations like cracks
or voids appearing or particle consolidation in
granular and powderlike materials. In these cases
the necessity of a chemical potential introduction
is not obvious, since other thermodynamical vari-
ables can have the exact meaning of the chemical
potential. Below different variants, with and with-
out an explicit chemical potential introduction,
are considered.

Variant 1
Let the temperature θ(r, t) and entropy η(r, t) be
introduced by the following equation:

nθ
δη

δt
= nq − ∇ · h − pf ∇ · v + τf · · (∇v)s .

(17)

Similar equation can be found in Truesdell and
Toupin (1960), and Altenbach et al. (2003). The
definition (17) brings about a few remarks. First,
the temperature θ is considered to be a char-
acteristic of the medium that is measured by a
thermometer, and the entropy η related to one
particle is introduced as a quantity conjugate
with the temperature. Second, it is assumed that
the entropy, as well as the internal energy, is
an additive function of the number of particles.
Note that this definition of entropy is different
from the definition used, for example, in classical
thermodynamics, where an inequality is intro-
duced and the equality holds for a reversible pro-
cess only (e.g., Truesdell 1984; Wilmanski 2008;
Müller 2007; Gurtin et al. 2010). Equation (17)
is the heat conduction equation, i.e., an equation
describing a non-equilibrium process.
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Owing to Eq. (17) Eq. (16) reads:

n
δu

δt
= nu

δz

δt
− pe

ρ

ρ0

δς

δt

− 1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

+ nθ
δη

δt
(18)

It is seen that the internal energy is a function of
the following arguments:

u = u(z, ς, η, G) (19)

Note that in Zhilin’s method, the set of the nat-
ural variables is determined by the reduced equa-
tion of the energy balance in contrast to the usual
approach where the assignment of these param-
eters is made a priori. In fact, within Zhilin’s
approach, the definition (17) is also a definition
of the internal energy.

From (19) and (18), it follows that

u = ∂u

∂z
. (20)

In thermodynamics the derivative of the internal
energy with respect to the number of particles is
usually called chemical potential (see, e.g., Gibbs
1875; Prigogine 1955). Thus, introduction of the
temperature and entropy by (17) means that the
internal energy can play the role of the chemical
potential.

At the same time, in that case, the variable
z can be excluded from the arguments of the
internal energy. Indeed from (20) it follows that

u = u∗(ς, η, G)
ρ0

n0
exp z ⇒ u = ρ

n
u∗,

(21)

where u∗ is a mass density of the internal energy.
It should be noted that the last equation is valid
only if there are no massless particles in the
system.

Insertion of (20) into (18) gives

ρ
δu∗
δt

= −pe

ς

δς

δt
+ nθ

δη

δt

− 1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

.

(22)

Thus, in the case of the temperature and
entropy definition by means of (17), ς, θ ,
and G are the natural variables of the internal
energy, and other thermodynamic properties
of the system can be found by taking partial
derivatives of the internal energy with respect to
its natural variables. From the reduced energy
balance equation, one can derive the following
equations of state:

pe = −∂(ρ0u∗)
∂ς

, θ = 1

ςn

∂(ρ0u∗)
∂η

,

τ e = 2

3ς

(
G · ·

∂(ρ0u∗)
∂G

)
I

−2I
−2/3
3 (g)

ς
g ·

∂(ρ0∂u∗)
∂G

· gT . (23)

Note that the function ρ0u∗ is independent
of z. It means that only the constitutive equation
for the temperature depends on the particle den-
sity. The heat conduction equation (17) depends

on n only by means of nθ
δη

δt
, and the chemical

potential does not appear in any equation.
Considering the function ρ0u∗ implies that the

internal energy is an additive function of mass. In
this case it is natural to assume that the entropy
is also additive by mass. Thus instead of (17), the
temperature and entropy η∗ can be introduced by
means of

ρθ
δη∗
δt

= ρq∗ − ∇ · h − pf ∇ · v + τf · · (∇v)s .

(24)
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Then the reduced equation of the energy bal-
ance has the form

ρ
δu∗
δt

= −pe

ς

δς

δt
+ ρθ

δη∗
δt

− 1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

.

(25)

All relations (23) are still valid except the one for
the temperature, which now has the form

θ = ∂u∗
∂η∗

. (26)

It is seen that the heat conduction equation
(24) and the state equations (23) do not depend
on the particle density. Thus the influence of
the mechanical and thermal processes on the
change of the particle distribution can be taken
into account only by means of the source term in
the particle balance equation (2). So the stress-
strain state and the temperature conditions can
affect the changes of particle distribution density
since the source term in the particle balance
equation can depend on all these factors. Hence,
this method of temperature and entropy introduc-
tion can be used to describe the structure trans-
formations and phase transitions which occur
without the release or absorption of heat and
are not accompanied by significant changes in
the mechanical and thermodynamical character-
istics but only leads to changes in other physical
characteristics such as, for example, electrical or
magnetic properties.

Variant 2
An alternative form of the reduced energy bal-
ance equation makes use of the particle balance
equation. Insertion of (3) into (16) gives

n
δu

δt
= −pe

ρ

ρ0

δς

δt
− 1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

− χu − ∇ · h

+nq − pf ∇ · v + τf · · (∇v)s (27)

and as a result the source term in the particle
balance equation χ appears in the energy balance
equation.

Now let us define the temperature and entropy
by the equation

nθ
δη

δt
= −χu−∇ · h+nq−pf ∇ · v+τf · · (∇v)s .

(28)
This equation differs from (17) only due to the
term χu standing for the rate of energy supply
caused by the structural transformation of the
medium. Then the reduced energy balance equa-
tion takes the form

n
δu

δt
= −pe

ς

δς

δt

− 1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

+ nθ
δη

δt
. (29)

Thus the internal energy is a function of the
following independent arguments:

u = u(ς, η, G) (30)

and the state equations are

pe = −nς
∂u

∂ς
, θ = ∂u

∂η
,

τ e = 2n

3

(
G · ·

∂(ρ0u∗)
∂G

)

I − 2nI
−2/3
3 (g) g ·

∂(ρ0∂u∗)
∂G

· gT . (31)

Note that now the internal energy does not
play the role of a chemical potential as it was in
Variant 1. At the same time, the heat conduction
equation (28) has a term connected with particle
distribution changes, and this term depends on the
internal energy. Thus, this method of temperature
and entropy introduction can be used to describe
structure transformations and phase transitions
accompanied by the release or absorption of heat.
Note that the first and second variants of deriva-
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tion of the constitutive equations and the heat
conduction equation are correct both in the case
when the mass density and the particle distribu-
tion density are independent quantities and in the
case when they are linearly related (i.e., when
the source term in the particle balance equation
is equal to zero).

Variant 3
Now consider an explicit way of the chemical
potential introduction. Then, instead of Eq. (17),
a more general equation containing an additional
term that accounts for structural transformation
can be used.

nθ
δη

δt
+ψ

δn

δt
= nq−∇ · h−pf ∇ · v+τf · · (∇v)s .

(32)
Analogously to the temperature and entropy, n

and ψ appear in Eq. (32) as the conjugate vari-
ables. Equation (32) is the combined equation
of structural transitions (e.g., fragmentation) and
heat conduction.

Substitution of Eq. (32) into Eq. (16) leads
after some transformation to the following form
of the reduced energy balance equation:

δ(n u)

δt
= pe + n u

ρ

δρ

δt

− 1

2
I

2/3
3 (g)

(
g−1 · τ e · g−T

)
· ·

δG
δt

+ nθ
δη

δt
+ ψ

δn

δt
. (33)

It should be particularly emphasized that such a
form of the reduced energy balance equation is
valid only if the mass density and the density of
particle distribution are independent variables.

From Eq. (33) there follow the state equations

pe = ρ2 ∂

∂ρ

(
n u

ρ

)
, θ = 1

n

∂(n u)

∂η
,

ψ = ∂(n u)

∂n
, τ e = 2

3

(
G · ·

∂(ρ0u∗)
∂G

)

I − 2I
−2/3
3 (g) g ·

∂(ρ0∂u∗)
∂G

· gT . (34)

From Eq. (34)3 it is seen that ψ is the chemical
potential. Similar expressions to (34)3 are given
in the classical textbooks (see Kondepudi and
Prigogine 1998; Müller 2007; Müller and Müller
2009; Prigogine 1955).

Note that Eq. (32) characterizes only overall
influence of the entropy and chemical potential
on the internal energy. To clarify their roles in
the considered processes, it is necessary to split
Eq. (32) into two equations: the heat conduction
equation and the equation of structural transi-
tions.

nθ
δη

δt
+ Q̃ = nq1 − ∇ · h1 − p1∇ · v

+τT
f · · (∇v)s,

ψ
δn

δt
− Q̃ = nq2 − ∇ · h2 − p2∇ · v (35)

where the following decompositions are used:

h = h1 + h2, q = q1 + q2, pf = p1 + p2

(36)

The equivalence of Eqs. (32) and (35) is deter-
mined by the presence of the undefined quantity
Q̃ characterizing the rate of energy exchange in
the processes of the heat conductivity and the
structural transitions.

The definition (35) given above brings about a
necessity to formulate constitutive equations for
all new quantities: hi , qi , pi (i = 1, 2), and Q̃.
The following circumstances have to be taken
into account. First, suppose that the expression
for the internal energy u and the source term
χ are given. Then n and ψ can be determined
from the particle balance equation and equation

of state (34)3. It means that the term ψ
δn

δt
in the

equation of structural transformations is known.
Therefore the constitutive equations for h2, q2,
p2, and Q̃ cannot be independent. Second, arbi-
trarily given constitutive equations for h2, q2, p2,
and Q̃ together with the equation of structural
transitions and corresponding equation of state,
determine the quantities n and ψ . Then the source
term χ can be found from the particle balance
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equation. Finally a third variant exists. The con-
stitutive equations for h2, q2, p2, Q̃, and χ can be
arbitrarily chosen, but then there is no freedom in
internal energy choosing.

Note that instead of (32), the equation

nθ
δη

δt
+ nψ̄

δz

δt
= nq − ∇ · h − pf ∇ · v

+ τf · · (∇v)s (37)

or

nθ
δη

δt
+n

δψ̃

δt
= nq−∇ · h−pf ∇ · v+τf · · (∇v)s.

(38)

can be considered. The quantities ψ , ψ̄ , and
ψ̃ have, in general, a different physical sense.
However, ψ̄ or ψ̃ , being the variable conjugate
to the number of particles (or to z closely allied
to n), can be treated as a chemical potential. The
introduction of the chemical potential by means
of (32) can be found in Altenbach et al. (2003)
and Zhilin (2012) and by means of (37) in Zhilin
(2012) and Vilchevskaya et al. (2014). Note that
in contrast to the definition (28), the introduction
of the chemical potential by means of (37) is valid
also in a case where mass density and the density
of particle distribution are dependent variables.

Closing Remarks

Sometimes the mass density and particle density
can be considered as independent variables with-
out the chemical potential introduction. In some
cases the role of the chemical potential can be
played by the internal energy or the source term
in the particle balance equation. Of course there
is no reason to say that there is no necessity for
the chemical potential introduction in general.
The preference of this or that approach is deter-
mined by specific features of the problems under
consideration. For example, if experimental data
allow to formulate the constitutive equation for
the quantity Q̃ characterizing the rate of energy
exchange in the processes of the heat conductiv-
ity and the structural transitions, then the third

variant of unmeasurable parameters introduction
looks more preferable. In the opposite case, an
approach based on smaller amounts of constitu-
tive equations should be chosen. The first and the
second approaches require only the source term χ

specification and do not impose any constraints
on the internal energy definition. Thus they are
easier in this sense, but of course a number of
problems stays beyond the consideration.

Also it is important to emphasize the fact that
the equations of structural transitions and heat
conduction (24), (28), and (32) define not only
the entropy and chemical potential but also the
internal energy. Thus all these quantities should
be introduced simultaneously.

Finally, note that the different forms of the
reduced energy balance equation (18), (22),
(29), or (33) used in Zhilin’s method allow to
obtain the equations of state for the temperature,
chemical potential, and the elastic component of
the stress tensor in the both cases of an elastic
and inelastic medium. In order to obtain a closed
system of equations, additional constitutive equa-
tions relating the remaining thermodynamical
variables have to be formulated. Some examples
of constitutive relations for the inelastic part
of the stress tensor can be found in Ivanova
and Vilchevskaya (2013) or https://meteor.
springer.com/chapter/contribute.jsf?id=108542.
Also a relation between the heat flux and the
temperature gradient in a form of linear Fourier
law (see Fourier 1822) or Maxwell-Cattaneo law
(e.g., Cattaneo 1958; Vernotte 1958) has to be
considered.
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Education

Olgierd C. Zienkiewicz had a Polish father and
an English mother. His early life was greatly
influenced by the turbulence of European history
over the first half of the twentieth century. In 1917
Zienkiewicz’s father, Casimir, held the post of
consul in Birmingham for the Russian Kerensky
government. Toward the end of World War I, the
Bolsheviks finally overthrew the revolutionaries
who formed the government under Alexander
Kerensky. Therefore, in 1922, the Zienkiewicz
family returned to Poland, first to Warsaw and
then to Łódź, before moving in 1926 to Katowice,
where his father held the post of district judge up
to the outbreak of World War II.

The young Zienkiewicz completed his high
school studies in June 1939, planned to com-
pete for admission to the Warsaw Polytechnic in
September, and moved to Warsaw in preparation
for the examination. The outbreak of World War
II on 1 September 1939 stopped his plans. War-
saw was soon under siege. Many exciting days
were to follow, including wandering through the
countryside for 10 days, a return to Warsaw, and,
eventually, a reuniting of the family in Katowice.
The family finally managed to obtain a visa to
Italy and then subsequently travelled onto France,
where Casimir Zienkiewicz worked for the Polish
government in exile. With the fall of France in
June 1940, the family was able to escape to
England.

With a special scholarship for Poles, he opted
for a course in civil engineering at Imperial Col-
lege. Placed first in his studies at the end of the
first year, he got two scholarships for the remain-
ing time at Imperial College. He graduated in
1943, one of two recipients of a first-class honors
degree. On graduation, Zienkiewicz started his
research work with Alfred John Sutton Pippard
and Richard Vynne (later Sir Richard) Southwell
on a dam analysis project. Southwell and Pippard
were two of the principal figures in the develop-
ment of structural mechanics in the 1930s and
1940s. Southwell’s relaxation method bridged
the gap between the classical methods developed
over the century before 1930 and the large-scale

computational methods of today, which emerged
in the late 1950s. He was awarded the PhD degree
in 1945 at the Imperial College with his thesis
title: “Classical Theories of Gravity Dam Design
in the Light of Modern Analytical Methods.”

Professional Career

After his PhD in 1945, Zienkiewicz moved
directly into engineering practice. He approached
the consultancy firm of W. Halcrow and was
offered a post leading a survey party on a dam
project in Scotland. In 1949, he accepted a
lectureship in the Department of Engineering at
Edinburgh. Toward the end of 1956, he accepted
a position as associate professor of civil engi-
neering at Northwestern University, Evanston,
Illinois. In 1961, the chair of civil engineering
became vacant at Swansea, and Zienkiewicz
was successful in the ensuing competition. He
relished the attraction of a professorship in the
UK system at that time, in which it was possible
to influence the work and professional develop-
ment of many others. Moreover, it was a time of
unprecedented expansion of higher education in
the UK. He remained at Swansea until his retire-
ment at the age of 67 years in 1988 and subse-
quently became professor emeritus of the Univer-
sity of Wales, as well as held the UNESCO Chair
of Numerical Methods in Engineering at the Uni-
versity of Technology of Catalunya, Barcelona,
for 15 years. Although formally retired, he
remained active in finite element research.

Scientific Achievements and Honors

Over his lifetime, Zienkiewicz published close to
600 papers. In 1967, he published his famous
monograph The Finite Element Method in
Structural Mechanics (Zienkeiwiecz and Cheung
1967).

Zienkiewicz received 28 honorary degrees. He
was elected to a number of the Royal Society,
Royal Academy of Engineering, US National
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Academy of Engineering (foreign member),
Polish Academy of Science, Italian National
Academy of Sciences, and Chinese Academy
of Sciences. He has been the recipient of
many honors, awards, and medals including the
Commander of the Order of the British Empire,
Royal Medal (Royal Society), Carl Friedrich
Gauß Medal, Nathan Newmark Medal (American
Society of Civil Engineers), Newton Gauß Medal
(International Association for Computational
Mechanics), Gold Medal (Institution for
Mathematics and its Applications), Gold Medal
(Institution of Structural Engineers), Timoshenko
Medal (American Society of Mechanical
Engineers), and Prince Philip Medal (Royal
Academy of Engineering). The ISI Web of
Knowledge, Thomson Scientific Company, has
listed Zienkiewicz as an ISI Highly Cited Author
in Engineering. He was instrumental in setting
up the association of computational mechanics
in engineering (ACME) for the United Kingdom

in 1992 and was the honorary president for the
association for the rest of his life.
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