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Adhémar-Jean-Claude Barré de Saint-Venant
(*August 23, 1797, Château de Fortoiseau,
Villiers-en-Bière, Seine-et-Marne, France;
†January 6, 1886, Villeporcher, France) was
a civil engineer, scholar and educator, and
an eminent elastician. He made fundamental
contributions to mechanics, most notably to
linear elasticity, but also to fluid mechanics and
plasticity. (This entry is based on an article by
Casey and Kaplan (1997), where additional ref-
erences to primary and secondary sources may be
found.)

Biographical Information, Education,
and Career

Saint-Venant was born into a monarchist,
Catholic family shortly after the French
Revolution. Mathematically gifted, he was
admitted to the École Polytechnique in 1813,
but was forced to leave as a result of political

Adhémar-Jean-Claude Barré de Saint-Venant

disturbances in 1814. He found a position as an
engineer’s assistant in the Service des Poudres et
Salpêtres (i.e., gunpowder). In 1823, he resumed
studies at the École des Ponts et Chaussées,
where he came under the influence of Claude-
Louis Navier. After graduating at the head of his
class in 1825, he worked for many years as a civil
engineer.

In 1837, when Gaspard Coriolis was not
well enough to lecture, Saint-Venant substituted
for him at the École des Ponts et Chaussées
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and delivered a landmark course of lectures
on elasticity, which have been preserved in
lithographic form (Saint-Venant 1837–38;
Todhunter and Pearson 1886: Articles 1561–
1577). In this year also, Saint-Venant married
Julie Rohault de Fleury; the couple had six
children. To supplement his income, Saint-
Venant worked for some time with the city of
Paris on public thoroughfares.

Also proficient in fluid mechanics, Saint-
Venant sought to improve agricultural conditions
in the Sologne, a poor region lying to the south of
Paris. In 1850, he was appointed to the Chair
in Rural Engineering at the newly founded
Institut National Agronomique de Versailles.
There, he lectured on geometry, mechanics,
and agricultural hydraulics until 1852. In 1857,
the Saint-Venant family moved to a château at
Villeporcher (near Vendôme).

During the 1840s, original scientific work by
Saint-Venant, particularly on theoretical elastic-
ity, began to appear. His monumental contribu-
tions on elastic torsion and flexure followed in the
1850s.

Saint-Venant sought to consolidate the
advances he had made in elasticity by working
them into a major revision (Navier 1864) of
the textbook of his beloved teacher. With the
addition of extensive notes and appendices, as
well as a superb historical introduction, the
size of the original increased by about 1000
pages! Appendix III of the new edition contains
a masterly presentation of the theory of linear
elasticity and includes the recently discovered
equations of compatibility.

In the late 1860s, Saint-Venant became aware
of the pioneering experiments of Henri Tresca
on the behavior of ductile materials beyond the
elastic range. He encouraged Tresca to publish
his results, with carefully drawn diagrams,
and he developed a theory to describe these
materials.

Saint-Venant’s last great contribution to elas-
ticity was the translation and revision of Alfred
Clebsch’s treatise on elasticity, originally pub-
lished in German in 1861. By making generaliza-
tions, commentaries, additions, and corrections,
the value of the original edition was greatly

increased. The Annotated Clebsch, as it became
known, is about three times the size of the first
edition and quickly became the standard treatise
on elasticity in the late nineteenth century.

In personality, Saint-Venant was known for
his integrity, independence, generosity, and good
wit. He held conservative religious and political
beliefs. He continued to work up to his final
days. He died surrounded by his large family of
children and grandchildren. His wife had passed
away less than a year before.

Notable among Saint-Venant’s disciples were
Joseph Boussinesq, Maurice Levy, and Alfred
Flamant.

Scientific Accomplishments

Saint-Venant learned theoretical elasticity
directly from its founder Claude-Louis Navier,
benefiting greatly also from the work of
Augustin Cauchy and Siméon-Denis Poisson. He
advanced Navier’s intellectual program, which
aimed to build a rational theory that would
enable structural engineering calculations to be
performed with confidence.

In the mid-1840s, Saint-Venant wrote a num-
ber of papers on elastic beams and rods, through
which he became aware of the shortcomings of
existing theories of torsion and flexure. Pursuing
the torsion problem unrelentingly, he finally came
to realize the necessity of cross-sectional warp-
ing. His investigations culminated in the epoch-
making memoir of 13 June 1853 (Saint-Venant
1856a), 328 pages long. In it, adept use is made
of his clever semi-inverse method. Also, we find
Saint-Venant’s celebrated principle, which may
be stated as: statically equivalent distributions of
loads on the ends of a beam in torsion or flexure
will give rise to strain fields (and stress fields)
that differ little from each other sufficiently far
away from the ends. This powerful, if somewhat
imprecise, principle extends the range of applica-
bility of exact solutions to practical situations in
which the distribution of loads is not known in
detail. The memoir of 1853 also contains many
splendid illustrations which have become part of
the permanent literature on elasticity. The flexure
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problem is elaborated upon in a second classic
memoir (Saint-Venant 1856b). Once again, Saint-
Venant was able to establish which parts of the
older theories are compatible with the equations
of elasticity.

Detailed accounts of Saint-Venant’s prodi-
gious works are given in Todhunter and
Pearson (1886, 1887) and his most important
contributions to elasticity are included in
the standard textbooks (see especially Love
(1927), including the informative Historical
Introduction).

The governing equations for viscous fluids
were obtained first by Navier in the 1820s, using
a complicated molecular argument. While Saint-
Venant was a supporter of molecular models,
he also understood the value of the continuum
approach. In a beautiful short paper (Saint-Venant
1843), he derived the constitutive equations for
viscous fluids by starting with the assumption that
the shearing component of surface traction van-
ishes for the direction in which there is no sliding.
This was two years before the classic paper by
George Gabriel Stokes. Lamb (1932, p. 577) and
Truesdell and Toupin (1960, p. 716) give credit
to both Saint-Venant and Stokes. The history of
the discovery of the Navier-Stokes equations, to
which Cauchy and Poisson also contributed, is
recounted by Darrigol (2005, Chap. 3).

In Paris, during the period 1864–1872, Henri
Édouard Tresca single-handedly initiated the
field of plasticity with extensive experiments
involving punching and extrusion of a variety of
solids using a hydraulic press. He concluded that
under sufficiently high applied pressure, solids
flow in “the manner of fluids.” He determined that
a solid will yield once the maximum shear stress
reaches a characteristic value for the material.
An excellent summary of Tresca’s work may be
found in Bell (1973, pp. 427–449).

Saint-Venant fully appreciated the scientific
value of Tresca’s investigations and set himself
the task of creating an idealized theory that would
model the observed behavior. On March 7, 1870,
he proposed a novel theory for “this new species
of hydro-dynamics” (Saint-Venant 1870). At
first, he called the subject hydrostéréodynamique
(solid hydrodynamics) but soon settled on the

better name plasticodynamique. The salient
assumptions of Saint-Venant’s constitutive theory
are: (a) Tresca’s yield criterion; (b) plastic
incompressibility; and most significantly, (c)
the direction for which the shearing stress is a
maximum is the same as the direction for which
the sliding is a maximum. On June 20, 1870,
Saint-Venant’s disciple, Maurice Levy, extended
Saint-Venant’s theory to three-dimensional flows
(Levy 1870). Much later (in 1913), Richard
von Mises proposed a similar theory having
a mathematically simpler yield criterion. The
St. Venant-Levy-Mises theory of plasticity is
useful when elastic strains can be neglected in
comparison with plastic strains, for example in
metal forming processes.

Mention should also be made of work by
Saint-Venant in the 1840s on the differential
geometry of space curves and on an early vec-
torial system.

Honors and Awards

Saint-Venant was awarded a medal in 1849 by
the Société d’Agriculture for his contributions
to agricultural hydraulics. He was elected to the
Mechanics Section of the Académie des Sciences
in 1868.
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Definition

The concept of a dimensionless scaling function
is introduced and its role is discussed in the
context of multiscale mechanics of random
composites. The proposed scaling function stems
from the scalar contraction of the ensemble
averaged tensors obtained using Dirichlet and
Neumann type boundary conditions. In its most
generic form, the scaling function depends upon
the phase contrast, volume fraction, material
anisotropy, and mesoscale. The scaling function
essentially quantifies the departure of a random
medium from a homogeneous continuum.
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Introduction

Recent advances in computational mechanics
have dramatically changed the landscape of engi-
neering and science. The primary driving force is
due to a rapid decrease in the computational cost
which is estimated as a billion-fold reduction
during the last 40 years (Belytschko et al.
2007). In particular, computational mechanics
has led to technological advancements in
several areas including manufacturing, medicine,
communication, defense, as well as to improved
understanding of natural phenomena such as the
movement of tectonic plates, and astrophysics of
black holes (Oden et al. 2003).

A fertile ground of research within compu-
tational mechanics is the multiscale modeling
of advanced functional materials (for instance,
enhanced fracture toughness Murshed et al. 2016,
superior thermoelasticity Huang et al. 2016). A
versatile approach in multiscale modeling stems
from the use of Hill-Mandel homogenization
condition (Hill 1963 and Mandel 1966) in
which rigorous scale-dependent bounds are
obtained by setting up and solving Dirichlet and
Neumann type boundary value problems. Such
a methodology has been successfully employed
over the past several decades within the context
of elasticity (Murshed and Ranganathan 2017a;
Raghavan and Ranganathan 2014; Ranganathan
and Ostoja-Starzewski 2009, 2008c), thermal
conductivity (Dalaq and Ranganathan 2015;
Dalaq et al. 2013; Ranganathan and Ostoja-
Starzewski 2008a), electrical conductivity
(Raghavan et al. 2015), thermoelasticity (Ostoja-
Starzewski et al. 2015; Khisaeva and Ostoja-
Starzewski 2006; Ostoja-Starzewski 2006), flow
in porous media (Ostoja-Starzewski et al. 2007;
Du and Ostoja-Starzewski 2006), fracture and
damage phenomena in random microstructures
(Ostoja-Starzewski 2007), and nonlinear elastic
and inelastic materials (Ostoja-Starzewski et al.
2016; Ostoja-Starzewski and Ranganathan 2013;
Ranganathan and Ostoja-Starzewski 2008b).
Within this framework, the notion of a scaling
function is introduced that is analogous to the
definition of dimensionless numbers that are
widely used in several fields including fluid

mechanics (White 2003), electromagnetism
(Kuneš 2012), astrophysics (Shore 2012),
medicine (Splinter 2010; Ranganathan et al.
2010a,b), and pharmacy (Gorb et al. 2014).
Recently, a combination of dimensionless
numbers such as nondimensional heat input,
Peclet number (ratio of convective to diffusive
transport Donea and Huerta 2003), Marangoni
number (ratio of surface tension force to viscous
force Panigrahi 2016), and Fourier number (ratio
of heat transfer by conduction to rate of energy
stored Huebner et al. 2008) was used to analyze
the structure-property relationship of 3D printed
materials (see Mukherjee et al. 2017). The scaling
function by definition quantifies the departure
of a random medium from a homogeneous
continuum.

In the subsequent sections, a functional form
for the scaling function will be introduced that is
applicable to a wide range of composite materials
(two-phase checkerboards, two-phase correlated
microstructures, and 3D polycrystals).

Notion of a Scaling Function

The functional form of the scaling function
depends upon the specific microstructure under
investigation. Within the scope of this research,
four microstructures are considered – (i)
uncorrelated random checkerboard (see Fig. 1a),
(ii) correlated two-phase microstructure (see
Fig. 1b), (iii) two-phase viscoelastic composite
(see Fig. 1c), and (iv) random polycrystal
(see Fig. 1d). In order to identify the specific form
of the functions f1 to f4, a methodology based
on the Hill-Mandel homogenization condition
is employed (see Fig. 1). In this approach,
the microstructures are subjected to Dirichlet
and Neumann type boundary conditions that
result in rigorous scale-dependent bounds with
increasing mesoscales (δ, see section “Effect of
Mesoscale, δ, on Scaling Function”). For a given
realization, ω(∈ Ω), the Dirichlet boundary
condition results in a mesoscale random stiffness
tensor Cdδ (ω), and the Neumann boundary
condition results in a mesoscale random
compliance tensor Snδ (ω) for linear elastic
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Fig. 1 Homogenization Methodology: (a) Checkerboard microstructure in thermal conductivity (Dalaq and Ran-
ganathan 2015; Dalaq et al. 2013), elasticity (Raghavan and Ranganathan 2014) and electrical conductivity (Raghavan
et al. 2015); (b) two-phase (Al2O3-Ni) microstructure in thermal conductivity (Kale et al. 2015); (c) microstructure of
a viscoelastic material (mixture of asphalt and concrete) (Zhang and Ostoja-Starzewski 2016); (d) polycrystal in 3D
elasticity (color represents random orientation of each grain) (Murshed and Ranganathan 2017b; Quey et al. 2011)

materials. In the context of heat or electrical
conductivity, Cdδ (ω) [Snδ (ω)] represents the
second-rank conductivity [resistivity] tensors,
and for viscoelastic materials, they represent
the complex modulus [compliance] tensors,
respectively. These tensors are inverse of each
other in the limit δ → ∞. The scaling function
in its most generic form is defined as follows:

f =
〈
Cdδ
〉
: 〈Snδ

〉−
〈
Cd∞
〉
: 〈Sn∞

〉
, (1)

where the operators : and 〈•〉 indicate tensor
contraction and ensemble averaging over the
realization space, respectively. It turns out that
Eq. (1) takes the following generic form for all
microstructures investigated:

f = cf1(k)f2(vf )f3(A)f4(δ), (2)

where c is a constant, k is phase contrast, vf is
volume fraction, A is an anisotropy measure, and
δ is mesoscale. In the subsequent sections, the

functional form of each of the terms appearing
in Eq. (2) will be discussed.

Effect of Phase Contrast, k, on Scaling
Function
The phase contrast (k) quantifies the mismatch in
the material properties of a composite material.
For a 2D microstructure, k = c1

c2
, where c1 and

c2 correspond to the conductivities (thermal or
electrical conductivity) for phase 1 and phase
2, respectively. For 3D polycrystals with uniax-
ial thermal character, k = c1

c3
, where c1 and

c3 correspond to ratio of the two independent
principal conductivities of the single crystal. The
dependence of scaling function on the contrast
can now be expressed as follows:

f1(k) =
(√
k − 1√

k

)2

. (3)

Figure 2 illustrates the phase contrasts (k =
0.01, 0.1, 1, 10, 100) for two-phase checker-
boards, two-phase correlated microstructures,
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Fig. 2 f1(k) vs. Phase
Contrast, k in (i) 2D Two
Phase Checkerboard
(Thermal Conductivity
Dalaq et al. 2013 and
Electrical Conductivity
Raghavan et al. 2015); (ii)
2D Two Phase Correlated
Microstructure (Thermal
Conductivity Kale et al.
2015); (iii) 3D Polycrystals
(Thermal Conductivity
Ranganathan and
Ostoja-Starzewski 2008a)

f 1
 (k

)

k

0.01 0.1 1 10 100

0

8.1

98.01

Thermal Conductivity (2 D Two Phase Checkerboard)
Electrical Conductivity (2 D Two Phase Checkerboard)
Thermal Conductivity (2 D Two Phase Correlated Microstructure)
Thermal Conductivity (3 D Polycrystals)

and 3D polycrystals. It is evident that the phase
contrast has the same effect on scaling function
for all applications. Also, scaling function does
not distinguish between k and k−1, and, therefore,
microstructures with phase contrasts k or k−1

scale identically.

Effect of Volume Fraction, vf , on Scaling
Function
In this section, the effect of volume fraction, vf
(amount of phase 1 in the entire volume), on the
scaling function is examined. Clearly, the volume
fraction always ranges between zero and one (0 ≤
vf ≤ 1), with the limiting values representing
a homogeneous material. The following is the
dependence of scaling function on the volume
fraction:

f2(vf ) = vf (1 − vf ). (4)

Figure 3 illustrates the effect of volume frac-
tion on f2(vf ) for a two-phase checkerboard in
electrical conductivity. It is clear that the scaling
function value is largest [f2(vf ) = 0.25] at
vf = 0.5. This is due to the fact that at 50%
volume fraction, level of heterogeneity is largest
in a given microstructure (see Raghavan et al.
2015).

vf

f 2
 (v

f)

0.0 0.2 0.4 0.6

Electrical Conductivity
(2 D Two Phase Checkerboard)

0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Fig. 3 f2(vf ) vs. Volume Fraction, vf in Electrical Con-
ductivity (Raghavan et al. 2015)

Effect of an Anisotropy Measure, A, on
Scaling Function
Material anisotropy of the microstructure plays
an important role in the definition of the scal-
ing function. The effect of anisotropy, A, on
the scaling function depends upon the specific
microstructure under investigation. For single-
phase 3D polycrystals, this dependance is as
follows:
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f3(A) = AU = 5
GV

GR
+ K

V

KR
− 6, (5)

where AU is the universal anisotropy index (Ran-
ganathan and Ostoja-Starzewski 2008d), G is
shear modulus, K is bulk modulus, V is Voigt
estimate (Voigt 1928), and R is Reuss estimate
(Reuss 1929). Along similar lines, for 2D two-
phase elastic microstructures, f3(A) takes the
following form (see Raghavan and Ranganathan
2014):

f3(A) = 2
GV

GR
+ K

V

KR
− 3. (6)

More recently, (Zhang and Ostoja-Starzewski
2016) examined the scaling of 2D viscoelastic
composites and proposed the following form for
f3(A):

f3(A) = 2μ∗V2D(γ )J
∗R
2D (γ )+ k∗V2D(γ )L

∗R
2D(γ )−3,

(7)
where γ is the frequency, μ∗2D is the relaxation
shear modulus, J ∗2D is the complex shear com-
pliance, k∗2D is the relaxation bulk modulus, and
L∗2D is the complex bulk compliance.

Effect of Mesoscale, δ, on Scaling Function
The mesoscale (δ) can be defined as (see Ran-
ganathan and Ostoja-Starzewski 2008c)

δ = l

d
, (8)

where l is the length scale of observation (domain
size) and d is the characteristic length scale (e.g.,
the grain size). For 3D polycrystals, δ = (NG)1/3.
Under limiting values of the mesoscale, δ, the
scaling function takes an exact form:

f4(δ = ∞) = 0. (9)

In addition, the following rigorous bounds on
scaling function can be established at finite
mesoscales:

f4(δ = ∞) ≤ f4(δ
′) ≤ f4(δ) ≤ f4(δ = 1) ∀1

≤ δ ≤ δ′ ≤ ∞. (10)

Extensive numerical simulations on a variety
of composite materials by several authors (see
Raghavan et al. 2015; Dalaq et al. 2013; Kale
et al. 2015; Ranganathan and Ostoja-Starzewski
2008a; Raghavan and Ranganathan 2014;
Ranganathan and Ostoja-Starzewski 2008c;
Murshed and Ranganathan 2017b; Zhang and
Ostoja-Starzewski 2016) resulted in the following
empirical forms for the function f4(δ):

f4(δ) = exp[B(δ − 1)C], (11a)

f4(δ) = δD, (11b)

f4(δ) = e(
f + δ

λ

)n , (11c)

where B, C, D, e, f , λ, and n are arbitrary
constants relevant to the specific microstructure
being investigated and is discussed in the follow-
ing section (see Fig. 4).

Application Problems
In this section, the functional form of the
scaling function is summarized for a variety
of applications. These include conductivity
in 2D two-phase random and correlated
microstructures, conductivity in 3D polycrystals,
elasticity in 2D two-phase checkerboards,
elasticity in 3D polycrystals, and viscoelasticity
in 2D two-phase checkerboards.

Conductivity in 2D Two-Phase Microstructures
Consider 2D two-phase microstructures either
conducting heat (or electricity) as illustrated in
Fig. 1a, b. One of the microstructures is a ran-
dom checkerboard, and the other is a Gaussian-
correlated microstructure. In order to establish
the functional form of the scaling function, they
were subjected to temperature (electric field) and
heat flux (current density) boundary conditions.
The boundary value problems were then set up
and solved over several realizations to extract the
mesoscale random conductivity and resistivity
tensors. The procedure was repeated for a vari-
ety of material combinations, and, subsequently,
Eq. (1) was used to establish the following form
of the scaling function (see Raghavan et al. 2015;
Dalaq et al. 2013; Kale et al. 2015):
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Fig. 4 f4(δ) vs. Mesoscale, δ for several applications: (a) Electrical Conductivity (2D Two Phase Checkerboard)
(Raghavan et al. 2015); (b) Thermal Conductivity (2D Two Phase Checkerboard) (Dalaq et al. 2013); (c) Thermal
Conductivity (2D Two Phase Correlated Microstructure) (Kale et al. 2015); (d) Thermal Conductivity (3D Polycrystals)
(Ranganathan and Ostoja-Starzewski 2008a); (e) Elasticity (2D Two Phase Checkerboard) (Raghavan and Ranganathan
2014); (f) Elasticity (3D Polycrystals) (Ranganathan and Ostoja-Starzewski 2008c); (g) Elasticity (3D Polycrystals)
(Murshed and Ranganathan 2017b); (h) Viscoelasticity (2D Two Phase Checkerboard) (Zhang and Ostoja-Starzewski
2016)

f = cf1(k)f2(vf )f3(A)f4(δ), (12a)

and

c = 2,

f1(k) =
(√
k − 1√

k

)2

,

f2(vf ) = vf (1 − vf ),
f3(A) = 1, (12b)

f4(δ) = exp[B(δ − 1)C]
(random microstructure),

f4(δ) = e(
f + δ

λ

)n

(correlated microstructure).

(Dalaq et al. 2013) studied random checker-
boards at 50% volume fractions and empirically
determined the constants B and C to be
−0.53 and 0.69, respectively. In a subsequent
study, (Raghavan et al. 2015) accounted for all
volume fractions and proposed B = −0.73
and C = 0.5. In a more recent study,
(Kale et al. 2015) analyzed a correlated
microstructure and obtained the following
constants e = 3.7, f = 1.9, λ = 1, and n = 1.23.

Conductivity in 3D Polycrystals
The microstructure used for determining thermal
conductivity in 3D polycrystals is similar to
Fig. 1d, albeit with cubic-shaped grains. By
applying temperature and heat flux boundary
conditions on the polycrystal, and by employing
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a similar procedure as described in section “Con-
ductivity in 2D Two-Phase Microstructures”,
results in the functional form for the scaling
function (Ranganathan and Ostoja-Starzewski
2008a):

f = cf1(k)f2(vf )f3(A)f4(δ), (13a)

and

c = 2

3
,

f1(k) =
(√
k − 1√

k

)2

,

f2(vf ) = 1,

f3(A) = 1,

f4(δ) = exp[−0.91(δ − 1)0.50]. (13b)

Elasticity in 2D Two-Phase Checkerboards
A two-phase random checkerboard is illustrated
in Fig. 1a. Much of the numerical procedure
remains the same as described in section “Con-
ductivity in 2D Two-Phase Microstructures”.
The main difference is that the temperature
and heat flux boundary conditions are replaced
with the displacement and traction boundary
conditions, respectively. The resulting mesoscale
random stiffness and compliance tensors turn
out to be tensors of rank four unlike the second-
rank conductivity (or resistivity) tensor. Based
on extensive numerical simulations, the scaling
function takes the following form (see Raghavan
and Ranganathan 2014):

f = cf1(k)f2(vf )f3(A)f4(δ), (14a)

and

c = 1,

f1(k) = 1,

f2(vf ) = 1,

f3(A) = 2
GV

GR
+ K

V

KR
− 3,

f4(δ) = exp[−0.58(δ − 1)0.44]. (14b)

Elasticity in 3D Polycrystals
Consider 3D random polycrystals as shown
in Fig. 1d. Microstructures using Voronoi
tessellations were generated in the software
Neper (Quey et al. 2011) by (Murshed and
Ranganathan 2017b), whereas (Ranganathan
and Ostoja-Starzewski 2008c) considered cubic-
shaped grains. Employing a similar procedure as
described in Section “Elasticity in 2D Two-Phase
Checkerboards” results in the following form for
the scaling function:

f = cf1(k)f2(vf )f3(A)f4(δ), (15a)

and

c = 1,

f1(k) = 1,

f2(vf ) = 1,

f3(A) = AU = 5
GV

GR
+ K

V

KR
− 6,

f4(δ) = exp[−0.77(δ − 1)0.50],
f4(δ) = δ−0.89. (15b)

A stretched exponential form was obtained
for f4(δ) by (Ranganathan and Ostoja-Starzewski
2008c) who considered only crystals belonging
to cubic symmetry. However, (Murshed and Ran-
ganathan 2017b) conducted simulations on all
crystal classes (from cubic to triclinic) and pro-
posed a power law relation for f4(δ).

Viscoelasticity in 2D Two-Phase
Checkerboards
The viscoelastic composite material considered
is shown in Fig. 1c. These microstructures were
subjected to displacement and traction bound-
ary conditions. Subsequently, the boundary value
problems were set up and solved over several
realizations in order to extract the mesoscale
random complex modulus and complex compli-
ance tensors. The following form of the scaling
function was then determined (Zhang and Ostoja-
Starzewski 2016):
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f = cf1(k)f2(vf )f3(A)f4(δ), (16a)

and

c = 1,

f1(k) = 1,

f2(vf ) = 1,

f3(A) = f3(A) = 2μ∗V2D(γ )J
∗R
2D (γ )

+ k∗V2D(γ )L
∗R
2D(γ )− 3,

f4(δ) = exp[−0.45(δ − 1)0.66]. (16b)

The scaling functions for all the materials
considered are summarized in Fig. 4. Clearly, it
can be seen that the scaling function approaches
zero with increasing mesoscales.

Conclusion

Dimensionless numbers play an important role in
a variety of problems in physics and engineering.
In this context, the concept of a scaling function
is introduced, and its generic form is proposed
based on the studies of a variety of composite
materials. The extent of heterogeneity (phase
contrast, volume fraction) and anisotropy in
the microstructure contributes significantly to
the scaling function. The scaling function also
strongly depends on the mesoscale, with good
curve-fitting models obtained on the basis of
extensive numerical simulations. In essence,
the scaling function quantifies the departure
of a random medium from a homogeneous
continuum.
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Synonyms

Nonlinear dynamic problems enabling self-
similar solutions

Definition

The solution of equations or a set of equations is
called self-similar if independent variables enter
in it in the form of some combination called the
self-similar variable. In mechanics, self-similar
motion remains mechanically similar to itself
under changes of one or several parameters which
determine this motion.

By a shock wave we mean a special mov-
ing surface, on which the condition of conti-
nuity is satisfied, but at least one first deriva-
tive of the displacements with respect to time
or spatial coordinate (and, therefore, velocity,
density, stress) has a discontinuity of the first
order.

Introduction

Solutions of self-similar problems (Sedov 1993)
constitute an essential part of the theory of gas
dynamics (Cherny 1988). They are used to con-

struct the algorithms of numerical calculations of
transient gas-dynamic flows (Kulikovskii et al.
2001) and, in particular, algorithms for extracting
velocity discontinuities (Godunov et al. 1976).
In nonlinear mechanics of deformable bodies,
their direct use for such purposes has not been
achieved. It is connected with the fact that in
deformable bodies, along with the volume strains,
as in gas dynamics, there also exist strains of the
shape change. Consequently, the discontinuity
surfaces presented as elements of solutions for
such problems turn out to be combined (Godunov
et al. 1976; Burenin and Chernyshov 1978), and
that is why solutions of self-similar problems
(for example, the problem of discontinuity decay
(Godunov et al. 1976)), which are necessary for
numerical calculation methods, turned out to be
difficult to obtain. However, being asymptotic
to a certain degree, quasi-stationary self-similar
solutions (except for their independent value)
allow one in some cases to evaluate the quali-
tative features of the dynamics of deformation
and thereby to facilitate the correct formula-
tion of the corresponding boundary problems of
nonstationary and shock deformation. Advanced
mechanics has a sufficiently large set of self-
similar solutions to problems of the dynamics of
deformable solids, namely, in nonlinear dynamic
theory of elasticity (Kulikovskii and Sveshnikova
1985; Burenin and Lapygin 1986; Agapov et
al. 1990; Dudko and Potyanikhin 2008; Burenin
et al. 2013; Potianikhin and Dudko 2014) and
theory of plasticity (Bleich and Nelson 1966;
Baskakov 1982). In the present entry, only elastic
self-similar solutions are considered. The laws
of propagation of the bulk strains in elastic bod-
ies are in line with those in gas dynamics, and
thus have been studied in more detail. There-
fore, the laws of propagation of the strains of
shape change along the solids will be considered
below. In order to exclude in such a propaga-
tion, the mutual influence of volume strains and
strains of shape change, the simplest self-similar
problem of plane waves in an incompressible
elastic medium will be analyzed first, and then the
peculiarities of the solutions of plane self-similar
problems in a compressible elastic medium will
be evaluated.

https://doi.org/10.1007/978-3-662-55771-6_300463


2212 Self-Similarity Problems in Nonlinear Elastic Media

The System of Model Relationships

In the Cartesian rectangular system of Euler spa-
tial coordinates xi, the dynamics of an elastic
compressible medium in the adiabatic approxi-
mation is described by the equations

σij = ρ

ρ0

∂W

∂dik

(
δkj − 2dkj

)
, dij = 1

2

(
ui,j

+ uj,i − uk,iuk,j
)
, σij,j = ρ d

2ui

dt2
,

υi = dui
dt

= ∂ui
∂t

+ υjui,j , ρ
ρ0

=
(

1 − 2I1

+2I 2
1 − 2I2 − 4

3
I 3

1 + 4I1I2 − 8

3
I3

)
,

I1 = djj , I2 = dij dji , I3 = dij djkdki .
(1)

where ui and υi are components of the displace-
ment and velocity vectors, respectively, σ ij and
dij are components of the stress and Almansi
strain tensors, respectively, ρ and ρ0 is the den-
sity in the current and free state, respectively.

The set of Eq. (1) is closed one if the elastic
potential W = W(dij) (the internal energy divided
by ρ0) will be defined in the deformation region
and the functions entering in Eq. (1) are differen-
tiable.

For the compressible elastic medium, the elas-
tic potential could be represented by expanding
in series the components of the strain tensor in
the vicinity of the free state. The potential of an
isotropic material depends on the invariants of the
strain tensor

W = λ
2
I1 + μI2 + κI1I2 + χI 3

1 + ηI3 + . . .
(2)

where the coefficients of expansion λ and μ are
the Lame parameters, and κ , χ , η are elastic
moduli of the third order.

In the case of an incompressible isotropic
elastic medium, when ρ ≡ ρ0, the potential W
and the Murnaghan formula (the first relationship
of Eq. (1)) could be rewritten in the form

σij = ∂W

∂dik

(
δkj − 2dkj

)− pδij ,

W = (a − μ) I1 + aI 2 + bI 2
1 − κI1I2 − θI 3

1

+ cI 4
1 + dI 2

2 + kI 2
1I2 + . . . . (3)

where p is an unknown additional pressure, and a,
b, κ , θ , c, d, k are elastic constants of the higher
order.

On possible surfaces of discontinuities �, the
dynamic conditions of compatibility are fulfilled

[
σij
]
νj = ρ+

(
υ+j νj −G

)
[υi] ,

[
ρ
(
υjνj −G

)] = 0. (4)

In Eq. (4), square brackets denote the discon-
tinuity in the parameter on the surface of the
discontinuity [f ] = f+ − f−, νj are components
of the unit normal to �, G is the velocity of
moving �, signs « + » and « − » denote the
magnitudes of the function f immediately ahead
of and behind the wave surface, respectively.

The consequence of the second law of thermo-
dynamics for shock waves in an elastic medium
is the thermodynamic condition for the compati-
bility of discontinuities (Burenin and Chernyshov
1978)

σ+ij [υi] νj − 1

2
ρ
(
υ+j νj −G

) [
υj
] [
υj
]

+ ρ
ρ0

(
υ+j νj −G

)
[W ] ≥ 0. (5)

It is an analogue of the Zemplén theorem in gas
dynamics about the impossibility of the existence
of shock unloading waves.

Plane One-Dimensional Shock Waves
in an Incompressible Medium

Shock Wave Velocities
Consider the propagation of waves in an incom-
pressible elastic medium. In the simplest one-
dimensional case, from Eqs. (3) and (4) it follows
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σ11 = −p −
∞∑
k=1

βkm
k, σi1 = ui,1

∞∑
k=0

γkm
k

(i = 2, 3) , m = u2
2,1 + u2

3,1,

β1 =μ+a, γ0 = μ, γ1 = a+ b+ d + κ, . . .
(6)

[σ11] = 0, [σi1] = −ρ+G [υi] ,

[υi] = −Gτi, τi =
[
ui,1
]
, [υ1] = 0. (7)

The first equality in Eq. (7) provides the basis
for calculating [p] on � using the found values
of τ 2 and τ 3, and the second equality in Eq. (7)
with due account for Eq. (6) leads to the set of
equations

τi

∞∑
k=0

γkm
k + (ui,1 − τi

)
[m]

∞∑
k=1

γk

×
k∑
n=1

(−1)nCnkm
k−n[m]n−1 = ρ+G2τi . (8)

The deformed state ui,1 = u+i,1 is considered to
be known. Then Eq. (8) represents a system of
two equations for three unknowns: G, τ 2, and
τ 3. Multiplying the first of them (i = 2) by τ 3,
the second (i = 3) by τ 2 and then subtracting
one from the other, the solvability condition with
respect to τ 2 and τ 3 could be obtained
(
τ3
(
u2,1 − τ2

)− τ2
(
u3,1 − τ3

))
[m] = 0. (9)

Consequently, the plane of discontinuities � in
τ 2 and τ 3 exists only under condition (9). Let it
holds for [m] �= 0. In this case, the plane � = �1

occurs to be plane-polarized, on which

u3,1

u2,1
= u

+
3,1

u+2,1
= u

−
3,1

u−2,1
= τ3
τ2
,

G = G1 =
{
ρ−1

∞∑
k=0

γkm
k + (ρτ 2)

−1 (ui,1 − τi
)

×[m]
∞∑
k=1

γk

k∑
n=1

(−1)nCnkm
k−n[m]n−1

}1/
2
.

(10)

Thus, when u2,1 = u+2,1 �= 0 and u3,1 = u+3,1 =
0, what could be always easily achieved by an
appropriate choice of the coordinate system, then
τ 2 �= 0 and τ 3 = 0 on the plane-polarized discon-
tinuity.

In the case under consideration, on the plane
of discontinuities �1 from Eq. (5) at u3, 1 = 0, it
follows that

∞∑
k=2

2k∑
n=3

(n
3
− 1
) 2k!(−1)n

n! (2k − n)!u
2k−n
2,1 τn2 ≥ 0.

(11)

A sufficient condition for satisfying Eq. (11)
is the requirement for u2, 1τ 2 ≤ 0, i.e., plane-
polarized planes of discontinuities, resulting in
the further development of preliminary shear
deformations, are possible, while unloading
planes of discontinuities are thermodynamically
impossible.

The second case of satisfying condition (9) is
connected with the equality [m] = 0. On such
a plane of discontinuity � = �2, the intensity
of the preliminary shear m remains unchanged,
but only its direction changes. The plane �2

propagates with the velocity

G = G2 =
{
ρ−1

∞∑
k=0

γkm
k

}1/
2
. (12)

This plane of discontinuity is an isentropic one.
The inequality (Eq. 5) on the surface �2 turns
into the identity. Comparison of G2 with G1

shows that �1 always precedes �2.

The Problem of the Shear of the Half-Pace
Boundary
The aforesaid allows one to formulate and to
obtain a solution of the problem of the shock
deformation of an incompressible elastic half-
space x1 > 0. Assume that the preliminary
strains within the half-space are constant and
are given by the values of the dependent
variables: u2, 1 = s20, u3, 1 = s30, p = p0, and
m0 = s2

20 + s2
30. At the moment of time t = 0,

they change on the boundary plane abruptly up
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to the values u2, 1(0, t) = s22, u3, 1(0, t) = s32,
and m2 (0, t) = s2

22 + s2
32, resulting in the

corresponding changes of the stresses on the
boundary plane x1 = 0. To follow the propagation
of the given boundary shock perturbation on the
half-space x1 > 0, it is convenient to introduce
the following variables: ξ = x1/ct, u(ξ ) = u2/ct,
υ(ξ ) = u3/ct, where c2 = μ/ρ. Following the
equation of motion (1) and considering Eq. (6)
yield

{
A1u

′′ + Bυ ′′ = 0,
Bu′′ + A2υ

′′ = 0; (13)

whereA1=−ρc2ξ2+
∞∑
k=0
γkm

k+2
(
u′
)2 ∞∑
k=1
kmk−1,

A2 = −ρc2ξ2 +
∞∑
k=0
γkm

k + 2
(
υ ′
)2 ∞∑
k=1
kmk−1,

and a prime denotes the derivative of the
functions with respect to ξ .

The shear intensity m is now a function
only of the self-similar variable ξ , since
m = (u

′
)2 + (υ

′
)2. The set of Eq. (13)

admits a trivial solution u
′ = s2 = const and

υ
′ = s2 = const, when its determinant is non-

zero. Nontrivial solution of Eq. (13) is possible
only under the condition of A1A2 − B2 = 0.
Direct verification shows that this condition
is satisfied if ξ and m are coupled by the
relationship

ξ2 = 1 +
(
ρc2
)−1 ∞∑

k=1

γk (1 + 2k)mk. (14)

Substituting Eq. (14) into Eq. (13) leads
to the relationship u

′
/υ

′ = u3, 1/u2, 1, which
means that within the domain of a nontrivial
solution, the direction of the preliminary shear
does not change. Consequently, Eq. (14) is
satisfied in the region of a simple Riemann
wave, completely corresponding to the plane-
polarized shock wave �1. The ahead ξ+ and
back ξ− fronts of the simple wave are the
acceleration discontinuity planes (weak waves),
and the variable m decreases in the region
of such a simple wave, which corresponds
to the relationships characteristic to the gas
dynamics.

The boundary impact, resulting in the further
development of the shear strains, propagates in an
incompressible elastic medium in the form of the
shock wave of loading �1, while when it leads to
the decrease in the shear strains, the simple wave,
bounded by the planes ξ+ and ξ−, is generated.

The determinant of the system of Eq. (13) is
also equal to zero at

ξ2 = 1 +
(
ρc2
)−1 ∞∑

k=1

γkm
k. (15)

However, substituting Eq. (15) in Eq. (13) leads
to only one magnitude of ξ = ξn, at which the
deformed state could change. Comparison of Eq.
(15) with Eq. (12) shows that this corresponds
to the plane of discontinuity �2. Thus, the sim-
ple wave does not correspond to �2, that is,
the direction of the pre-shear could only change
abruptly on the plane of discontinuity �2, in so
doing ξn < ξ−. Consequently, �2 moves more
slowly than the back front of the simple wave.
Thus, at m2 > m0, the solution is constructed
using two shock waves �1 and �2. The shock
wave �1 governs the deformed state: u2, 1 = s21;
u3, 1 = s31; s2

21 + s2
31 = m2; s21/s31 = s20/s30. On

the plane of discontinuity�2: τ 2 = s21 − s22 �= 0;
τ 3 = s31 − s32 �= 0, but at the same time
[m] = 0, i.e., m+ = m− = m2. When m2 < m0,
the shock wave �1 should be replaced by the
simple wave, on which the variable m varies from
the magnitude m0 to the magnitude m2. On the
plane of discontinuity �2, following the simple
wave, the variation of the deformation parameters
u2, 1 = s21, u3, 1 = s31 takes place behind the
simple wave front, such that u2, 1 = s22 and
u3, 1 = s32. Thus, the construction of a closed
solution is completed. In case of refusal from the
requirement of incompressibility of the medium,
the solution of the problem becomes more com-
plicated. Either a quasi-longitudinal shock wave
is added under loadings resulting in further com-
pression, or the corresponding simple wave. The
plane of discontinuity corresponding to �1 is
quasi-transverse one with [u1, 1] �= 0, while in the
case of the simple wave the values of u1, 1(ξ ) are
changed, and only the discontinuity surface �2

does not lose its properties.
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Plane Self-Similar Problems

Problem Formulation
Under the conditions of the plane deformed state,
self-similar problems of the nonlinear dynamic
theory of elasticity have been considered repeat-
edly (Burenin and Lapygin 1986; Agapov et al.
1990; Dudko and Potyanikhin 2008; Burenin et
al. 2013; Potianikhin and Dudko 2014). As an
example, the solution of one of them (Dudko and
Potyanikhin 2008) will be considered below in
more detail.

Let the plane shock wave �1 (νi is the normal
to the wave surface) propagate in an undeformed
medium and fall at an angle β1 < 90◦ to the
rigidly fixed boundary of the elastic half-space L.

In the chosen rectangular Cartesian coordinate
system, the displacement vector is parallel to the
coordinate plane Ox1x2:

u1 = u1(x1, x2, x3), u2 = u2(x1, x2, x3), u3 ≡ 0.

If the wave intensity τ 1 = [uν, ν] and,
consequently, its velocity G1 are constant, then
the wave pattern consisting of the incident
and reflected waves will be unchanged, i.e., it
will move parallel to itself with the velocity
S = G1/ sin β1 in the x2-axis direction. This
means that the motion of a continuous medium is
self-similar, and all parameters of the stress-strain
state depend only on the parameter connected
with the angle between the boundary plane L and
the plane intersecting the x3-axis. Choosing the
variable ξ = (x2 − St)/x1 as such a parameter,
nonzero components of the displacement vector
could be represented in the form

u1 = x1 · F (ξ) , u2 = x1 ·�(ξ) . (16)

Substituting Eq. (16) in the equation of motion
(1) leads to a homogeneous system of ordinary
differential equations

{
A · F ′′ (ξ)+ B ·�′′ (ξ) = 0,
C · F ′′ (ξ)+D ·�′′ (ξ) = 0,

(17)

where A, B, C, and D depends on ξ , F, �, F
′
, �

′
,

and elastic moduli of the medium.

The nontrivial solution of Eq. (17) depends on
the condition

AD − BC = 0. (18)

If Eq. (18) is satisfied at a certain value of
ξ = ξ ∗ , then the solution corresponds to a shock
wave. If Eq. (18) is satisfied within the interval
ξ ∈ [ξ+, ξ−], then the solution corresponds to the
Riemann wave, and ξ+ and ξ− define the position
of its ahead and back fronts, respectively.

In the regions of the trivial solution

F (ξ) = aξ + b, � (ξ) = eξ + f, u1,1 = b,
u1,2 = a, u2,1 = f, u2,2 = e,

υ1 = −Sa
(1 − b) (1 − e)− af ,

υ2 = −S (e − be + af )
(1 − b) (1 − e)− af ,

ρ

ρ0
= (1 − b) (1 − e)− af,

d11=b−1

2

(
b2+f 2

)
, d12 = 1

2
(a+f−ab−ef ),

d22 = e − 1

2

(
a2 + e2

)
.

(19)

stresses are expressed in terms of constants of
integration a, b, f and e in a more complex way.
The region of constant parameters of the stress-
strain state of the medium corresponds to the
trivial solution.

The consequence of using the system of Eq.
(1) (obtained under the assumption of the adi-
abatic nature of the deformation process) is the
non-uniqueness of the problem solution. It turns
out that, from a mathematical point of view, dif-
ferent wave patterns could correspond to the same
boundary conditions (Fig. 1). One of the ways
to define the unique physically correct solution
is the simultaneous solution of the problem for
all possible statements and their subsequent com-
parison using two criteria: the thermodynamic
compatibility condition (5) and the evolutionary
condition of the shock waves.
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Fig. 1 Mathematically possible wave patterns of reflection of a plane longitudinal shock wave from the rigid boundary
of an elastic half-space

The Solution of the Boundary Problem
In zone 1 between the wave �1 and the first of
the reflected surfaces, according to the conditions
for compatibility of discontinuities

a1 = f1 = τ1 sinβ1 cosβ1, b1 = τ1cos2β1,

e1 = τ1sin2β1. (20)

Hereinafter, the subscript of the integration
constants a, b, e, f corresponds to the numbering
of the regions in Fig. 1.

The ahead reflected front is either the quasi-
longitudinal shock wave �2, the position of
which is defined by the value ξ2 = − ctgβ2

(Fig. 1a, b), or the Riemann simple wave
ξ ∈ [

ξ+2 , ξ
−
2

]
(Fig. 1c, d), making the main

contribution to the change in volume strains.
Further, after the first wave, either the quasi-
transverse shock wave �3 could propagate,
corresponding to the value ξ3 = − ctgβ3

(Fig. 1a, c), or centered simple wave ξ ∈[
ξ+3 , ξ

−
3

]
(Fig. 1r, b, d), influencing mainly

the produced shear.
Assume that a wave pattern is realized with

the shock wave �2 and the Riemann wave ξ ∈[
ξ+3 , ξ

−
3

]
.

In order to define all the parameters of the
stress-strain state on the shock wave, the conti-
nuity of displacements and the fulfillment of the
dynamic compatibility conditions (4) should be
required:

[u1]|Σ2
= 0, [u2]|Σ2

= 0,

[
σij
]∣∣
Σ2
νj = ρ+

(
υ+j νj −G

)
[υi]|Σ2

= 0,

i = 1, 2. (21)

The solution in the area of the simple wave
is constructed by integrating over a self-similar
parameter ξ of the set of ordinary differential
equations consisting of condition (18) and one of
the equalities (Eq. 17):

⎧
⎪⎪⎨
⎪⎪⎩

A
(
ξ, F,�, F ′,�′) ·F ′′(ξ)+B(ξ, F,�, F ′,�′)
· �′′ (ξ) = 0,

A
(
ξ, F,�, F ′,�′) ·D (ξ, F,�, F ′,�′)
−B(ξ, F,�, F ′,�′) ·C(ξ, F,�, F ′,�′)=0,

(22)

The set of Eq. (22) in terms of unknown functions
F(ξ ) and�(ξ ) could not be reduced to the normal
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form. For its numerical integration, it is proposed
to use an implicit finite-difference scheme with a
three-point template with a constant step h. The
segment ξ ∈ [ξ+3 , ξ−3

]
is divided into n equal

parts by points ξ (i), i = 0 . . . n, therefore F(i) and
�(i) are values of functions F(ξ ) and �(ξ ) in the
corresponding nodes.

Derivatives of the functions in the internal
(i) nodes and boundary points (0) and (n) are
defined, respectively, as follows

F ′(i) =
F(i+1) − F(i−1)

2h
,

F ′′(i) =
F(i+1) − 2F(i) + F(i−1)

h2 ,

�′
(i) =

�(i+1) −�(i−1)

2h
,

�′′(i) =
�(i+1) − 2�(i) +�(i−1)

h2
;

F ′(0) =
−3F(0) + 4F(1) − F(2)

2h
,

F ′(n) =
3F(n) − 4F(n−1) + F(n−2)

2h
,

�′
(0) =

−3�(0) + 4�(1) −�(2)
2h

,

�′(n) =
3�(n)−4�(n−1) +�(n−2)

2h
.

(23)

At the node ξ(0) = ξ+3 (at the ahead front of
the Riemann wave), F(0) = a2ξ

+
3 + b2, �(0) =

e2ξ
+
3 + f2, F ′(0) = a2, �′

(0) = e2, and at the node

ξ(n) = ξ−3 (at the back front), F(n) = a3ξ
−
3 + b3,

�(n) = e3ξ
−
3 + f3, F ′(n) = a3, �′

(n) = e3.
To close the set of equations, the condition of

the fixed boundary [u1]|L = [u2]|L = 0 should be
used.

Solutions with other wave patterns could be
constructed similarly. Having obtained all the
mathematically possible solutions of the bound-
ary value problem (four in the general case),
the comparison of them with each other should
be carried out, with checking two criteria to be
satisfied.

First, on each shock wave, the fulfillment of
the thermodynamic compatibility condition (5)

should be checked. If relation (5) is not satis-
fied at a certain formulation, then such problem
statement should be excluded from the number of
possible solutions.

Another limitation on the existence of shock
waves is the evolutionary condition.

If as the result of comparing the two solutions,
it turns out that the shock wave front occupies an
intermediate position inside the fan of the simple
wave, then the shock wave is considered to be
nonevolutionary, and further the solution with the
Riemann wave should be chosen.

In the conventional hydrodynamics, the
requirement for the evolutionary nature of
shock waves does not lead to any additional
limitations in comparison with the condition of
the entropy increase: the shock waves assumed
by the Zemplén theorem are automatically
evolutionary waves (Landau and Lifshitz
1987). For a nonlinearly elastic medium, in
the general case, this is not true (Kulikovskii
and Sveshnikova 1998). However, for the
considered five-constant model of an elastic
medium in this and a number of other plane
self-similar problems (Dudko and Potyanikhin
2008; Burenin et al. 2013; Potyanikhin and
Dudko 2014), the condition of thermodynamic
compatibility and the evolutionary condition are
equivalent.

As an example, consider a nonlinear elastic
medium with the following dimensionless con-
stants: λ/(λ + 2μ) = 0.4, μ/(λ + 2μ) = 0.3,
κ/(λ + 2μ) = − 1, χ /(λ + 2μ) = − 1.5, and
η/(λ+ 2μ) = − 2. Then the values of the param-
eters of the incident wave could vary in the inter-
vals 0 < β1 ≤ 80◦, 0.001 ≤ τ 1 ≤ 0.03. A series of
computational experiments allows one to propose
that the wave patterns shown in Fig. 1a, c do not
occur. The distribution of the stress-strain state
parameters typical for a wave pattern with the
reflected quasi-longitudinal shock wave �2 and
the centered wave ξ ∈ [

ξ+3 , ξ
−
3

]
(Fig. 1b) is

obtained at β1 = 30◦ and τ 1 = 0.02 and is shown
in Fig. 2.

The quasi-longitudinal shock wave �2 leads
to a further compression of the medium. The
simple wave, on the contrary, expands the
medium (ρ(3) < ρ(2)), reducing the level of the
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Fig. 2 Stress-strain state corresponding to a wave pattern with a reflected quasi-longitudinal shock wave and Riemann
wave

volume strains. There exists some critical angle
of incidence β∗1 , depending on τ 1. At β1 > β

∗
1 ,

the quasi-longitudinal shock wave �2 transforms
into the simple wave ξ ∈ [

ξ+2 , ξ
−
2

]
, i.e., the

wave pattern shown in Fig. 1, d is realized. The
limit values β∗1 increase with the increase in the
wave intensity: at τ 1 = 0.01, β∗1 = 64.54◦, and
at τ 1 = 0.02, β∗1 = 65.70◦. On both simple
waves, the level of the volume strains decreases
(ρ(3) < ρ(2) < ρ(1)). For each magnitude τ 1 of the
intensity, there exists also a limiting value of the
angle of incidence, above which the formulation
of the problem in the self-similar formulation
becomes impossible.

Cross-References

�Ray Expansion Theory

References

Agapov IE, Belogortsev AM, Burenin AA, Rezunov AV
(1990) A self-similar problem dealing with the one-
dimensional collision of two half spaces of a nonlinear-
elastic material. J Appl Mech Tech Phys 30(6):976–980

Baskakov VA (1982) Plastic deformation of a medium
upon the interaction of shear shock waves. J Appl Mech
Tech Phys 23(2):278–284

Bleich HH, Nelson I (1966) Plane waves in an elastic-
plastic half-space due to combined surface pressure and
shear. J Appl Mech 33(1):149–158

https://doi.org/10.1007/978-3-662-55771-6_97


Sensitivity Analysis in Structural and Multidisciplinary Problems 2219

S

Burenin AA, Chernyshov AD (1978) Shock waves in an
isotropic elastic space. J Appl Math Mech 42(4):758–
765

Burenin AA, Lapygin VV (1986) Reflection of a plane
longitudinal shock wave of constant intensity from a
plane rigid boundary with a nonlinear elastic medium.
J Appl Mech Tech Phys 26(5):717–721

Burenin AA, Dudko OV, Potianikhin DA (2013) On the
collision of two elastic solids with plane boundaries.
Comp Continuum Mech 6(2):157–167

Cherny GG (1988) Gas dynamics. Nauka, Moscow (in
Russian)

Dudko OV, Potyanikhin DA (2008) A self-similar problem
of nonlinear dynamic elasticity theory concerning the
interaction between a longitudinal shock wave and
a rigidly clamped boundary. Comp Continuum Mech
1(2):27–37

Godunov SK, Zabrodin AV, Ivanov MI, Kraiko AN,
Prokopov GP (1976) Numerical solution of multidi-
mensional problems of gas dynamics. Nauka, Moscow
(in Russian)

Kulikovskii AG, Sveshnikova EI (1985) A self-similar
problem on the action of a sudden load on the boundary
of an elastic half-space. J Appl Math Mech 49(2):214–
220

Kulikovskii AG, Sveshnikova EI (1998) Nonlinear waves
in elastic media. Moskovskii Litsei, Moscow (in Rus-
sian)

Kulikovskii AG, Pogorelov NV, Semenov AY (2001)
Mathematical aspects of numerical solution of hyper-
bolic systems. Chapman & Hall/CRC, London/Boca
Raton

Landau LD, Lifshitz EM (1987) Fluid mechanics.
Butterworth-Heinemann, Amsterdam

Potianikhin DA, Dudko OV (2014) Self-similar reflection
of longitudinal shock wave from free boundary in
elastic medium. Adv Mater Res 1040:652–657

Sedov LI (1993) Similarity and dimensional methods in
mechanics. CRC Press, Boca Raton

Sensitivity

� Sensitivity Analysis in Structural and Multidis-
ciplinary Problems

Sensitivity Analysis

�Topology Optimization Based on Explicit
Geometry Description

Sensitivity Analysis in
Structural and
Multidisciplinary Problems

Tomasz Lekszycki1 and Fabio Di Cosmo2

1Faculty of Production Engineering, Warsaw
University of Technology, Warszawa, Poland
2International Research Center M&MoCS,
University of L’Aquila, L’Aquila, Italy

Synonyms

Functional derivative; Sensitivity; Variational
derivative

Definition

This entry is an introduction to sensitivity
analysis and some applications in different topics
related to continuum mechanics. Two main
approaches, the direct method and the adjoint
system one, are presented for both discrete and
continuous design parameters. The theoretical
investigation is supported by some illustrative
examples in order to make more clear the
analysis. Some notes on second-order sensitivity
analysis are also included.

Introduction

Many continuous systems are characterized by
parameters, the values of which deeply affect
their resulting mechanical behaviors under dif-
ferent conditions. Therefore, in a smart design
procedure, it is very important to fix these values
in order to fit a certain desired behavior or at least
to investigate what are the effects connected to
these modifications. Such a study is called sensi-
tivity analysis: One is considering some objective
functions which refer to selected properties of
the system under investigation, and sensitivity
analysis provides information about their depen-
dence on the design parameters. The aim of this
entry is to show how to extract this information:
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Firstly the focus will be on continuous design
parameters bringing the so-called variational sen-
sitivity analysis, and then the discussion will
move to discrete sensitivity analysis, which is a
very general case since finite element analysis
always provides discrete systems described in
terms of stiffness matrices and nodal vectors. In
both situations two approaches will be discussed:
the direct method and the adjoint system one.
The choice between the two usually depends on
the ratio of the number of design parameters to
the number of objective functions, as it will be
shown in the next sections. In order to make more
concrete the theoretical discussion, an example
coming from structural mechanics will be pre-
sented and studied in detail. However, already
from these few lines, it is clear that sensitivity
analysis can find interesting applications in any
field, especially when one is interested in realiz-
ing a certain production process and reducing the
associated costs. It plays also an important role in
formulation of optimization problems; see, e.g.,
Lekszycki (2018). The main part of the text will
be dedicated to the so-called first-order sensitivity
analysis. However, a short digression on second-
order sensitivity analysis will also be developed:
such a study can be useful when more accuracy
is required or when the effect of small changes
of optimal values is investigated. For the sake of
compactness, a selection of the topics related to
sensitivity analysis has been performed, and for
more details, the interested reader can refer, for
instance, to the books (Haftka and Gürdal 2012;
Choi and Kim 2006a), which have been the main
sources of this entry.

Variational Sensitivity Analysis

As a starting point let B0 be the reference
configuration of a continuous body, described
as a compact domain of a three-dimensional
Euclidean affine space E 3, with boundary
∂B0 = Ω0. From a kinematical point of view,
the placement of the body is represented by the
field χ : B0 → B ⊂ E 3, which, for the sake of
simplicity, will be supposed twice differentiable.
Its mechanical behavior is described as a Cauchy

continuum governed, therefore, by the balance
equations for mass and momentum (this is just a
simplified assumption, since one could consider
also higher gradient models, i.e., models in which
the energy could depend also on higher gradient
of the placement field and not only on its first
gradient dell’Isola et al. (2018)). In particular, if
one is interested in the equilibrium configurations
of the system, they are solutions of the following
equation:

∇σ + f = 0 (1)

subject to the boundary conditions:

u = u0 on Ω1 (2)

t = σ · n0 = t(e) on Ω2, (3)

where Ω1 is the part of the boundary where the
displacement field, u (X) = χ (X) − X, is pre-
scribed, whereasΩ2 is the region of the boundary
where the external traction is assigned, andΩ0 =
Ω1 + Ω2. Here X denotes the coordinate of a
material particle in the reference configuration
B0, and n0 is the normal vector to the surfaceΩ0.
In order to explain how the procedure progresses,
the relationship between the Green strain tensor E
and the displacement vector u is linearized, that
is, E = 1

2

(
(∇u)T + ∇u

)
, so that the previous

equation can be written according to the principle
of virtual work as follows:

〈δE, σ 〉B0
= 〈δu, f〉B0

+
〈
t(e), δu

〉
Ω0
. (4)

Here and in the rest of the entry, the brackets
〈 ·, ·〉· denote the product between the argument
fields integrated over the domain specified by the
subscript.

At this point a useful digression can be
inserted. Indeed, a wider class of phenomena
can be described by means of a linear differential
operator L, whose action on the displacement
field u will be denoted by L(u). Therefore, one
could replace Eq. 1 by the expression:

L(u) = −f. (5)
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Multiplying the above equation by δu, which
is any kinematically admissible variation of the
field u, and integrating over the domain B0, one
obtains the following chain of results:

〈L(u), δu〉B0
=〈−f, δu〉B0〈

u, La(δu)
〉
B0

− 〈B(u), Ba(δu)〉
Ω0

=〈−f, δu〉B0
,

where La represents the adjoint differential oper-
ator associated withL and the chosen scalar prod-
uct. The linear operators B and Ba are defined
on the boundary of the body B0, and they have
been obtained after integration by parts. A closer
look at the boundary term permits to write it as
follows:

〈
B(u), Ba(δu)

〉
Ω0

= 〈B(u), Ba(δu)〉
Ω1

+ 〈B(u), Ba(δu)〉
Ω2
. (6)

The first term of the right-hand side vanishes
because of the imposed boundary conditions on
the displacement field, whereas the second term
represents the work done by the external traction
on the admissible variation δu along the surface
Ω2.

In the case of a linear elastic body, it is
possible to write:

〈∇ · σ, δu〉B0
= 〈−f, δu〉B0〈

σ,
1

2

(
∇δu + (∇δu)T

)〉

B0

− 〈σ · n0, δu〉Ω2

= 〈f, δu〉B0

〈σ, δE〉B0
=
〈
t(e), δu

〉
Ω2

+ 〈f, δu〉B0
,

which coincides with Eq. (4).
In a big class of sensitivity analysis problems,

one is interested in the dependence of a set of
objective functionals, Kj , which describe some
properties of the body under investigation, with
respect to design variables, which in this section
will be described as continuous fields bp(·) (the
terms design variables or parameters refer to all
the variables which characterize the configura-

tions of the continuous systems and can be mod-
ified during the process). From a mathematical
point of view, this dependence is quantitatively
expressed by means of the first Gateaux deriva-
tive of the functionals Kj with respect to design
parameters, i.e.:

δKj

δbp
= d

dε
Kj
(
bp + εδbp

) |ε=0 .

These quantities are usually called first-order sen-
sitivities. For the sake of simplicity, the case of a
single objective functional,K , will be analyzed in
the rest of the entry. In particular this functional
is written as the sum of four terms:

K =
∫

B0

g0(σ, bp)dV +
∫

B0

g1(u, bp)dV

+
∫

∂BE
0

g2(t)dΣ +
∫

∂BN
0

g3(u)dΣ, (7)

where the dependence on the design variables
bp(·) is both explicit, in g0 and g1, and implicit
through the displacement and the stress fields. In
order to compute the sensitivity of this functional,
there are two approaches which can be adopted:
the direct method and the adjoint system one.

Direct Method for Sensitivity Analysis
The direct method for computing first-order
design sensitivity is the most intuitive one since
it involves the direct evaluation of the sensitivity
of the stress and displacement fields. Indeed,
assuming that the functions g0, g1, g2, g3 are
all differentiable with respect to their arguments,
the first derivative of the functional (7) can be
expressed as follows:

δK

δbp
=
∫

B0

(
∂g0

∂σ

δσ

δbp
+ ∂g0

∂bp

)
dV+

+
∫

B0

(
∂g1

∂u
δu
δbp

+ ∂g1

∂bp

)
dV+ (8)

+
∫

∂BE
0

(
∂g2

∂t
δt
δbp

)
dΣ+

+
∫

∂BN
0

(
∂g3

∂u
δu
δbp

)
dΣ. (9)
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It can be immediately noticed that, in order to
obtain the final result, one needs to know the sen-
sitivities δu

δbp
and δσ

δbp
. Differentiation of the equi-

librium equation (1) with respect to the design
variables leads to the following equation for the
unknown sensitivity of the stress field:

〈
δE,

δσ

δbp

〉

B0

= 0. (10)

The additional information about the relation-
ship between stress and displacement is given by
the constitutive relations and their differentiation
with respect to the design variables. In the case of
linear elasticity, for instance, one has that:

σ = C : E, (11)

where C is the elasticity tensor and the symbol:
denotes the double contraction between tensors.
Therefore, the derivative of the stress tensor can

be written as follows:

δσ

δbp
= C : ∇ δu

δbp
+ δC

δbp
: E. (12)

Substituting Eq. 12 into Eq. 10, one can obtain an
equation for the unknown sensitivity δu

δbp
which

is similar to Eq. 4. The boundary conditions,
instead, become:

δt
δbp

= δσ

δbp
· n = 0 on Ω2 (13)

δu
δbp

= 0 on Ω1. (14)

However, due to the differentiation of the consti-
tutive relationship, some additional terms, which
can be interpreted as mechanical loads, have been
produced. Eventually it is possible to write the
following equations:

〈
δu,∇

(
C : ∇ δu

δbp

)〉

B0

−
〈
δu,
(
C : ∇ δu

δbp

)
· n0

〉

Ω2

=
〈
δu,−∇ ·

(
δC

δbp
: E
)〉

B0

+
〈
δu,
(
δC

δbp
: E
)
· n0

〉

Ω2

, (15)

where the right-hand side contains terms which
can be interpreted as additional loads.

By solving these equations, the final expres-
sion for the first-order sensitivity of the objective
functional K can be eventually computed.
However, despite its simplicity, this method
requires the solutions of P additional equations,
where P is the number of design variables.
Consequently its cost increases as this number
grows up.

Adjoint System Method for Sensitivity
Analysis
The main idea underlying the adjoint system
method for the computation of sensitivity of
objective functionals consists in expressing
the variation of the considered functionals in

terms of two families of fields, one referring
to a primary continuous system and the other
to a fictitious adjoint system. The additional
fields for the adjoint system are introduced
as Lagrange multipliers (see dell’Isola and
Di Cosmo 2018 for an introduction to this
method), in an extended objective functional
which will include also balance equations and
constitutive relations as constraints. In order
to make a more direct comparison with the
method outlined in the previous subsection,
the main focus of the following discussion will
be on a continuous body described as a linear
elastic material, obeying the equations earlier
introduced (see Eqs. 1, 2, 3, and 11). In addition
to the aforementioned sources, the interested
reader can refer also to Dems and Mroz (1983)
and Tortorelli and Michaleris (1994).
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Let H be the following extended functional:

H = K + 〈Ea, (σ − C : E)
〉
B0

+ 〈σa, (E− ∇u)
〉
B0

− 1

2

〈
σ,
(
∇ua + (∇ua

)T )〉
B0

+ 〈f,ua 〉B0
+
∫

∂B0

t · uadΣ,

where the fields with the additional index (·)a
are the fields referring to the adjoint structure
and they are independent of the fields without
this index, which refer to the primary structure.

Therefore, the variation of this functional with
respect to design variables gives the following
result:

δH

δbp
=
∫

B0

[(
∂g0

∂σ
+ Ea − 1

2

(
∇ua + (∇ua

)T )) δσ
δbp

+ (σa − C : Ea
)

+
(
∇σa + ∂g1

∂u

)
δu

δbp
+ Ea : ∂C

∂bp
: E+

(
∂g0

∂bp
+ ∂g1

∂bp

)]
dV

+
∫

∂BE
0

δt
δbp

(
ua − ∂g2

∂t

)
dΣ +

∫

∂BN
0

δu
δbp

(
∂g3

∂u
− n · σa

)
dΣ

+
∫

B0

[
δσ a

δbp

(
E − 1

2

(
∇u + (∇u)T

))
+ δE

a

δbp
(σ − C : E)+ δu

a

δbp
(∇σ + f)

]
dV. (16)

If the primary fields satisfy the equations for
the equilibrium of the elastic body, the last line
in the above variation can be eliminated. On the
other hand, it is possible to choose the adjoint
fields such that they satisfy the following system
of equations:

Ea = ∂g0

∂σ
− 1

2

(
∇ua + (∇ua

)T )

σa = C : Ea

∇σa + ∂g1

∂u
= 0

n · σa = ∂g3

∂u
on ∂BN

0

ua = ∂g2

∂t
on ∂BE

0 .

It can be immediately noticed that ∂g0
∂σ

plays

the role of an initial strain, whereas ∂g3
∂u and

∂g2
∂t provide the two boundary conditions for the

adjoint structure.

Inserting the two solutions of the primary
and adjoint problems in the expression of the
sensitivity, one obtains the final result:

δH

δbp
= δK

δbp

=
∫

B0

[
Ea : ∂C

∂bp
: E+

(
∂g0

∂bp
+ ∂g1

∂bp

)]
dV,

(17)

where all the quantities inside the square brackets
are known. It is clear from the above discussion
that for every additional objective functional
one obtains an additional adjoint system.
Therefore the number of additional solutions
to find increases with the number of objective
functionals, whereas the cost of the direct
method increases with the number of design
variables. Therefore, the choice between the two
methods depends on the ratio of the number of
objective functionals to the number of design
variables.
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Discrete Sensitivity Analysis

Many problems in continuum mechanics require
the introduction of discretizations and the use of
numerical approximation techniques in order to
find a solution. If before the recent advances in
computer technology these methods were rarely
used and other scheme of approximation were
widely spread, nowadays numerical methods and
discretized systems are strictly connected to the
world of continuum mechanics, and computa-
tional mechanics is an extremely active research
field (see, for instance, Kaessmair and Stein-
mann 2018; Turco et al. 2016). Finite element
methods (see de Borst 2018), in particular, have
become a tool which is implemented in all the
softwares which are used for solving mechanical
problems. Therefore, discrete sensitivity analysis
involves many nontrivial situations, being the
proper approach after discretization techniques
have been applied. Furthermore discrete sensi-
tivity analysis can be helpful to understand how
the change of some parameters in a mathematical
model could affect a chosen response functional:
Such a study is, actually, fundamental to fit the
constitutive parameters of suitable mathemati-
cal models. Additional references regarding this
topic are, for instance, the papers (Van Keulen
et al. 2005; Adelman and Haftka 1986).

After applying discretization techniques, the
equilibrium equation can be rewritten in terms of
the nodal displacement vector u as follows:

Ku = f, (18)

where K is the stiffness matrix and f is a vector
load. Let G(u,b) be the objective function for
the considered problem. The sensitivity of G
with respect to the design variables b is made
up of two terms, the explicit dependence on the
variables and the one implicitly contained in the
nodal vector u. In formulas one can write:

dG

dbp
= ∂G

∂bp
+ ∂G
∂u

du
dbp

. (19)

In order to evaluate the sensitivity of the objective
function, the sensitivity du

dbp
of the nodal vector

is required. Also for the discrete analysis, this
quantity can be computed using two different
approaches, the direct method and the adjoint
one.

Direct Method for Discrete Sensitivity
Analysis
Differentiating the equilibrium condition Eq. 18
with respect to the design variables, one obtains
the following equation:

K
du
dbp

= − dK
dbp

u + df
dbp

. (20)

If K is invertible (this is true when K is positive
definite), the solution to this problem can be
easily written as follows:

du
dbp

= K−1
(
df
dbp

− dK
dbp

u
)
. (21)

Finally, by replacing this expression in Eq. 19,
one obtains the following expression for the sen-
sitivity analysis of the function G:

dG

dbp
= ∂G

∂bp
+ ∂G
∂u

K−1
(
df
dbp

− dK
dbp

u
)
. (22)

This very simple method only requires the
invertibility of the stiffness matrix (a condition
which is ensured in finite element analysis) and
the computation of the derivatives of K and G. In
particular, these derivatives could be efficiently
computed also by means of finite difference
methods (this approach is called semi-analytical
method for sensitivity analysis). However, such
an approximation suffers from accuracy problems
as several authors have illustrated in the literature.
These accuracy problems, in particular, becomes
more evident in beam or plate theory, where the
error in the semi-analytical method increases
as the mesh becomes more refined (Cheng and
Olhoff 1993; Pedersen et al. 1989).

Adjoint Method for Discrete Sensitivity
Analysis
The adjoint method for the computation of sen-
sitivity dG

dbp
is based on the introduction of an
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additional field, which plays the role of the dis-
placement nodal vector of an adjoint system. An
equilibrium equation is derived for this adjoint
response vector, the solution of which will be
used for the evaluation of the sensitivity dG

dbp
.

Let H be the extended function:

H = G− λT (Ku − f), (23)

where λ is a Lagrange multiplier introduced for
the equilibrium constraint. The derivative with
respect to the design variables of this extended
function will be written as follows:

dH

dbp
= ∂G

∂bp
+ ∂G
∂u

du
dbp

− dλ
T

dbp
(Ku − f)

− λT
(

K
du
dbp

+ dK
dbp

u − df
dbp

)
(24)

The nodal vector u ca be chosen to satisfy the
equilibrium condition in Eq. 18, whereas the
Lagrange multiplier can be selected in order to
eliminate the coefficient of the sensitivity du

dbp
,

which means:

Kλ = ∂G
∂u
. (25)

According to this choice, the following result
becomes a straightforward consequence:

dH

dbp
= dG

dbp
= ∂G

∂bp
− λT

(
dK
dbp

u − df
dbp

)
.

(26)
It is worth remarking once more that this sensitiv-
ity is expressed only in terms of the vectors u and
λ, which can be interpreted, from a mechanical
point of view, as nodal vectors of the primary and
the adjoint systems.

Nonlinear Sensitivity Analysis
The last part of this section will be devoted
to a short digression about sensitivity analysis
for nonlinear equilibrium equations (more details
can be found in Choi and Kim 2006b; Haftka
and Mroz 1986; Mróz and Piekarski 1998; Car-
doso and Arora 1988, for instance). In nonlinear
mechanical problems, the equilibrium condition
can be expressed as follows:

q(u,b) = μf(b), (27)

where q is the nonlinear internal force, f is the
external load, and μ is a scale parameter which
is explicitly used to take into account for the
whole loading process, starting at zero load. The
objective function remainsG(u,b) and the corre-
sponding sensitivity is written in Eq. 19. In order
to evaluate the quantity du

dbp
, one can differenti-

ate Eq. 27 with respect to the design variables,
obtaining the following equation:

J
du
dbp

= μ df
dbp

− ∂q

∂bp
, (28)

where the tangent stiffness matrix is

J = ∂q
∂u
.

Efficient approximation for the solution u and the
tangent stiffness J can be computed by means
of Newton’s iterative methods (see Haftka and
Gürdal 2012). Therefore one gets:

du
dbp

= J−1
(
μ
df
dbp

− ∂q

∂bp

)
, (29)

and this expression can be replaced in Eq. 19 to
obtain the final expression:

dG

dbp
= ∂G

∂bp
+ ∂G
∂u

J−1
(
μ
df
dbp

− ∂q

∂bp

)
. (30)

Concerning the adjoint method, it proceeds as in
the previous section, but replacing the stiffness
K with the tangent stiffness J. In particular one
obtains the following expression:

dG

dbp
= ∂G

∂bp
+ λT

(
μ
df
dbp

− ∂q

∂bp

)
, (31)

where the vector λ is solution of the adjoint linear
problem:

JT λ = ∂G
∂u
.
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Example: A Vibrating Beam with an
Elastic Foundation

In order to show how the procedure can be imple-
mented, an easy example will be investigated in
this section. The system under investigation is a
linear Euler-Bernoulli beam, clamped at the left
end, over a spring foundation under a cyclic load.
The equation of motion for the system is:

[
EJy′′

]′′ +K(x)y + Aρÿ = F0e
iωt , (32)

where y(x, t) is the vertical displacement of the
beam. In this example the beam will be a steel
beam, so that E and ρ are the Young modulus
and the density of steel, respectively. The cross
section of the beam is a square with side ac =
2 cm and area A = 4 cm2, whereas its length is
L = 2 m. K(x) = K0x(L−x)

L2 is the nonuniform
stiffness of the spring foundation, with K0 =
1e6 N

m2 . The amplitude of the load is F0 = 10N,
and its frequency is ν = ω

2π = 40 Hz.

The time dependence in the problem can be
factorized choosing a solution in the form:

y(x, t) = u(x)eiωt , (33)

which gives the following equation for the ampli-
tude u(x):

d2

dx2

[
EJ
d2u

dx2

]
+K(x)u−Aρω2u = F0. (34)

Let the objective functional be G = u(s) =∫ L
0 δ(x− s)u(x)dx the displacement of the mate-

rial particle occupying the position x = s in
the reference configuration, which is the interval
[0, L], and let the design variable be the value of
the stiffness K(x) at the point x = s0.

The sensitivity of the functional G with
respect to the design variable will be computed
using the adjoint method, in order to show the
mechanical realization of the adjoint system.
Therefore, let H be the extended functional:

H =
∫ L

0
δ(x − s)u(x)dx −

∫ L

0
va(x)

(
d2

dx2

[
EJ
d2u

dx2

]
+K(x)u− Aρω2u− F0

)
,

where the boundary term is not included since the
adjoint field va(·) will satisfy the same boundary
conditions as the primary field (even if, in more
general situations, the boundary conditions could
be different). By performing the variation with
respect to the design variable and imposing the
constraint in Eq. 34 one gets that the sensitivity
δH
δK(s0)

= δG
δK(s0)

can be written as follows:

δH

δK(s0)
=
∫ L

0

(
d2

dx2

[
EJ
d2va

dx2

]
+

+K(x)va − Aρω2va−

− δ(x − s)
)

δu

δK(x0)
dx+

+ u(s0)va(s0). (35)

By choosing as adjoint field va(·) the solution of
the equation:

d2

dx2

[
EJ
d2va

dx2

]
+K(x)va−Aρω2va = δ(x−s),

(36)
the sensitivity of the objective functional has the
following expression:

δG

δK(s0)
= u(s0)va(s0), (37)

which is written only in terms of the primary
and adjoint displacement fields. Let us notice
that, in this situation, the adjoint system is again
a clamped beam with the same features of the
primary one but the load is different: It is a unit
dead load at the material point, which in the
reference configuration occupies the position x =
s, which is also the material point involved in the
definition of the objective functional G = u(s).

The numerical implementation of the problem
has been performed using the weak form package
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of the software Comsol Multiphysics R©, which
uses standard finite element methods for solving
the problem. Both the primary and the adjoint
solutions, u(·) and va(·), respectively, have been
computed, and the results have been plotted in
Figs. 1 and 2. A parametric study has been com-
puted, where both the positions s and s0 have
been varied.

In particular the chart plotted in Fig. 1 shows
the value of the sensitivity as a function of the
position s0 for different values of the parameter s
in the objective functional. Instead, the diagram
in Fig. 2 presents the maximal and minimal val-
ues of the sensitivity over the set of possible s0
as a function of the position s. One can notice
that the values of the sensitivity are higher, in
absolute value, when s is closer to the right
end of the beam, whereas a second lower peak
can be observed between the left end and the
middle point of the beam. From this example, it
is also possible to notice that sensitivity analysis
is important also from another point of view: It
can be used to obtain the direction of maximal
growth, providing useful information for opti-
mization algorithms.

Second-Order Sensitivity Analysis

Under some circumstances, for instance, when
one is interested in the sensitivity of an opti-
mal solution, the information coming from the
first-order sensitivity analysis is not sufficient,
and it is needed the knowledge of second-order
derivatives of the objective functional G. In this
section the discussion will focus on discrete sys-
tem, the variational approach being an immediate
generalization (the interested reader can refer
to Dems and Mroz 1985). The two approaches,
the direct method and the adjoint one, are still
available, but the adjoint method usually requires
a less number of solutions to compute.

Let the discrete system be described by the
nodal displacement vector u obeying the equilib-
rium condition:

Ku = f. (38)

The objective function is G(u,b) and its second
derivative can be easily computed:

d2G
dbpdbr

= ∂2G
∂bp∂br

+ ∂2G
∂uj ∂br

duj
dbp

+ ∂2G
∂uj ∂bp

duj
dbr

+

+ ∂2G
∂uj ∂ul

duj
dbp

dul
dbr

+ ∂G
∂uj

d2uj
dbrdbp

. (39)

Fig. 1 Plot of the sensitivity δG
δK(s0)

for some values of the parameter s and with s0 ranging from s0 = 0.1 to s0 = 1.99 m
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Fig. 2 Plot of the maximal and minimal values of the sensitivity δG
δK(s0)

as the parameters s varies from s = 0.1 to
s = 1.99 m

This expression involves the unknown second-

order sensitivities
d2uj
dbrdbp

which can be computed
by deriving twice the equilibrium condition:

K
du

dbpdbr
= ∂2f
∂bp∂br

+ ∂K
∂bp

du
dbr

+ ∂K
∂br

du
dbp

+

+ ∂2K
∂bp∂br

u. (40)

If the matrix K is invertible, it is straightforward

to find the expression for the unknown d2u
dbpdbr

,
and consequently a simple replacement of the
solution in Eq. 39 provides the desired expression
for the second-order sensitivity of the functionG.
Despite its simplicity, this method is numerically
costly since it grows quadratically in the number
of design variables.

A more efficient approach in this case is the
hybrid direct-adjoint method. Starting from the
expression of the first-order sensitivity analysis:

dG

dbp
= ∂G

∂bp
− λT

(
dK
dbp

u − df
dbp

)
, (41)

and differentiating again with respect to the
design variables, one obtains the following
expression for the second-order sensitivity

analysis:

d2G

dbpdbr
= ∂2G

∂bp∂br
+ ∂G

∂bp∂uj

duj

dbr

− dλ
T

dbr

(
∂K
∂bp

u − df
dbp

)
+

− λT
(
∂K
∂bp

du
dbr

+ ∂2K
∂bp∂br

u

− ∂2f
∂bp∂br

)
.

By deriving Eq. 25 with respect to the design
variables, one obtains the following equation:

K
dλj

dbr
= ∂2G

∂uj∂uk

duk

dbr
− ∂Kj l
∂br

λl, (42)

which can be replaced in the expression of the
second-order sensitivity analysis to write the final
result:

d2G

dbpdbr
= ∂2G

∂bp∂br
+ ∂G

∂bp∂uj

duj

dbr
−

− duj
dbr

∂2G

∂uj∂uk

duk

dbp
+
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− λT
(
∂K
∂bp

du
dbr

+ ∂K
∂br

du
dbp

+ ∂2K
∂bp∂br

u − ∂2f
∂bp∂br

)
.

If the sensitivities du
dbp

are computed by the direct
method, all the quantities that appear in the right-
hand side of the above expression are known,
and this result requires to find P solution of the
direct method (where P is the number of design
variables) and the adjoint field λ. Therefore, this
method is more advantageous with respect to the
direct one from the point of view of numerical
implementation.

Concluding Remarks

The main aim of this entry is to provide an
introduction to the methods of sensitivity analysis
for mechanical problems. This introduction, of
course, cannot be considered exhaustive since
some topics have not been investigated and other
ones have been only marginally approached.
Therefore, some remarks are required in order to
conclude this work.

First of all, even if the entry focused on elas-
ticity, multidisciplinary problems can be treated
as well. In particular, many authors extended
the methods presented in this entry to coupled
systems, like thermoelastic or thermoplastic (see
Dems 1987, 1986; Dems and Mroz 1987), or to
biological systems (see Coelho et al. 2011), or
to thermofluids (see Tortorelli et al. 1991; Smith
et al. 1998a). For instance, dealing with solid-
acoustic interaction phenomena, it is relevant to
study the sensitivity of functionals, like natu-
ral frequencies, eigenvectors and amplitudes, or,
when the domain is unbounded, energy flux and
directivity of the radiation. Indeed, these charac-
teristics of the acoustic vibrations are extremely
important in order to study wave propagation or
to reduce vibrations of systems (see Christensen
et al. 1998a,b).

Another interesting application of sensitivity
analysis to multidisciplinary topics is related to
the work by Smith et al. In some papers, indeed,

sensitivity analysis has been applied to the study
of extrusion of melt polymers (see Smith et al.
1998b,c). The motion of the melt polymer is mod-
eled according to Hele-Shaw flow model, and
sensitivity analysis is applied to functional like
the inlet pressure or the exit velocity, parameters
which deeply affect the cost and the quality of the
extrusion process.

Even if some topics should need more details,
like nonlinear sensitivity analysis and second-
order variations, an entire chapter of sensitiv-
ity analysis, which is shape sensitivity analysis,
has not been discussed, and, consequently, some
remarks concerning this field will be added in this
concluding section. In shape sensitivity analysis,
one is interested in the dependence of objective
functionals on the variation of shape of the body
which constitutes the system. The main tool that
is used to evaluate this variation is the so-called
material derivative: Under a shape variation, the
particles of the body are transported along a flow,
which is parameterized by a time-like parameter
τ . The total derivative of a physical quantity ψ
with respect to this parameter, computed consid-
ering the point x as a material particle moving
along the aforementioned flow, is the material

derivative dψ
dτ

= ∂ψ
∂τ

+ dxj

dτ
∂ψ

∂xj
, where dxj

dτ
play

the role of generalized velocity fields. Replacing
the derivative with respect to design variable with
the material derivative abovementioned, one can
generalize direct and adjoint methods to this more
complex situation. Material derivatives of volume
and surface elements can be computed, producing
additional terms which involve, for instance, the
mean curvature of the boundary. Such a method
has been widely studied in literature (see Dems
and Mroz 1984; Choi and Kim 2006a), and inter-
esting applications to multiphase problems have
been also considered.
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Synonyms

Adaptation (Shakedown)

Definition

Shakedown theory defines the load limits and
respective collapse deformation modes for elas-
tic plastic structures under loading cycles. A

structure made of elastic plastic material under
loading, after an initial stage of possible limited
plastic deformation (of finite total plastic dis-
sipation), may eventually shake down to some
residual stress state, from which it subsequently
responds elastically (hence safely) to the external
agencies. Otherwise, the structure is considered
as having failed, because of the instantaneous
plastic collapse (corresponding to the maximal
static load bearing capacity of the structure), or
the plastic deformation would accumulate unre-
strictively over loading cycles (the mode is called
the ratchetting or incremental collapse one), or
the plastic deformation should be bounded but
vary cyclically and unceasingly (fatigue, cyclic,
rotating plasticity, or alternating plasticity col-
lapse).

In principle shakedown incremental checking
for a structure can be performed for any sophis-
ticated elastic plastic material model in small or
large deformations, following a particular loading
history. Powerful shakedown theorems can be
constructed for certain classes of elastic plastic
materials (Koiter 1963; Pham 2003, 2007, 2008,
2017). The essential advantage of the theorems is
their path independence: the theorems determine
the time-independent boundary in the loading
space, under which a structure is safe regardless
of particular loading histories, while the structure
fails if the boundary is allowed to be violated
unrestrictively. There is a singular point in the
theorems because most usual yield conditions,
including the Mises and Tresca ones, in the gen-
eral case do not restrict the hydrostatic stress,
while the plastic strain is restricted to be devi-
atoric, which requires special treatments. How-
ever, for many practical thin structures, includ-
ing the plane stress ones, there is no kinematic
restriction in a thickness direction for the hydro-
static stress to build up unrestrictively, and the
singularity problem disappears.

Like the plastic limit theorems (the limiting
case of the shakedown ones), the shakedown
static and kinematic theorems are stated as the
nonlinear optimization problems. Second-order
cone programming techniques are especially
effective in solving the elastic plastic plane stress
problems.

https://doi.org/10.1007/978-3-662-55771-6_73
https://doi.org/10.1007/978-3-662-55771-6_195
https://doi.org/10.1007/978-3-662-55771-6_171
https://doi.org/10.1007/978-3-662-55771-6_300017
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Limited Kinematic Hardening
Plasticity Theory

Basic assumptions of classical phenomenological
plasticity theory and plastic limit and shakedown
theorems include the small deformation, the plas-
tic incompressibility, the similarity of the yield
stresses in tension and compression, and the rate
independence of the plastic stress-strain response
ones.

Let σ , εp, ep be the real stress, plastic
strain, and plastic strain rate tensors and σ ∗
be any allowable stress state (i.e., that within
the elastic domain inside the yield surface). The
plastic deformation is supposed to follow Hill’s
principle of maximal dissipation (Koiter 1963;
König 1987; Pham 2017).

Maximal Dissipation Hypothesis

(σ − σ ∗) : ep ≥ 0 or (σ − σ ∗) : dεp ≥ 0,
(1)

which implies normality rule (or associated flow
law) for the plastic strain rate and convexity of the
yield surface. Stronger Drucker postulate, which
implies Hill principle and requires additionally
the material to be stable (softening is not allowed,
in particular dσ : dεp ≥ 0), can also be
assumed.

The general limited kinematic hardening plas-
ticity (the two-yield surface model) is consid-
ered, which involves the classical elastic per-
fectly plasticity as a limiting case. The particular
hardening law relating the back stress α to the
corresponding plastic deformation ε

p
α is generally

nonlinear and plastic deformation path dependent
and needs not to be specified, but the imposing
hypotheses on the two-surface plastic hardening
are stated as follows (needed for the construc-
tion of path-independent shakedown theorems).
A representative material element in homoge-
neous stress-strain state is considered. The size
of the yield surface �α , which envelopes the
elastic domain Yα centered at the (deviatoric)
back stress α in the stress space, is determined by
the initial yield stress σ iY , in particular for Mises
material

‖σ̄ − α‖2
σ =

3

2
(σ̄ − α) : (σ̄ − α) = (σ iY )2 ,

(2)

where σ̄ denotes the deviatoric part of the stress
tensor σ . The elasticity domain Yα bounded by
surface �α is translated in the stress space fol-
lowing its center α without changing size and
form. However, the hardening is supported to
be limited, and the set of all allowable stresses
is restricted by the unmovable ultimate yield
surface �u, which encompasses the respective
ultimate domain Yu and is defined by the ultimate
yield stress σuY , using the Mises criterium

‖σ̄‖2
σ =

3

2
σ̄ : σ̄ = (σuY )2. (3)

A picture of the yield surfaces for the material
element (under homogeneous stress-strain state)
in the deviatoric stress coordinates σ̄ij is pre-
sented in Fig. 1a, with the origin of the coordi-
nates being the center of the ultimate yield hyper-
sphere Yu. Since the stress σ is bounded by the
ultimate surface �u, the domain Yα containing
the recent state σ with back stress at the center
cannot lie entirely outside the domain Yu, and
the back stress is automatically bounded above, at
most by the surface �0α , as can be seen in Fig. 1a.

The usual normality yield rule is assumed on
both yield surfaces �α and �u, but they do not act
simultaneously. When the two criteria attained
simultaneously (the stress state is on both yield
surfaces), the material yields according to that
corresponding to the ultimate yield surface. The
total plastic strain rate ep and plastic strain εp are
composed of those two components:

ep = epα + epu , εp = εpα + ε
p
u . (4)

Strictly Stable Hardening Hypothesis
(Pham 2017)

dα : dεpα ≥ h0dε
p
α : dεpα, (5)

where h0 is some nonvanishing positive value.
The condition indicates that the bending angle
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Fig. 1 Yield surfaces in the deviatoric stress coordinates: �u – the ultimate yield surface; �α – the moving inner
yield surface centered at α (or αI , αII ); �0α , �′u, �′′u – the possible limiting surfaces for the back stress α; σ 1, σ 2, or
σ ′1, σ ′2, σ ′3 – some stress picks on the inner yield surfaces

of the hardening curve against the horizontal
strain coordinate (of the strain-stress system of
coordinates) in an uniaxial experiment should
always be larger than a finite positive value. The
hypothesis, together with the two-surface harden-
ing model, implies the upper bound limitation of
ε
p
α (Pham 2017). It is clear that the strict stability

here requires more than that of Drucker stability;
however, it applies only to ε

p
α , not to ε

p
u and

hence εp generally. Alternatively, the assumption
(5) could also be substituted by

dσ : dεpα ≥ h0dε
p
α : dεpα. (6)

Positive hysteresis hypothesis (Pham 2007,
2017): For any closed cycle of plastic deforma-
tion ε

p
α [over a period 0 ≤ t ≤ θ , εpα(0) = ε

p
α(θ)]

∮
α : dεpα =

θ∫

0

α : epαdt ≥ 0. (7)

Note that, generally, it is not required that α(0) =
α(θ). Condition (7) implicates that the loading-
unloading cycle should mostly follow clockwise
direction along the hysteresis loop, but not anti-

clockwise. Instead of (7), it might also be pre-
sumed, instead, that

∮
σ : dεpα ≥ 0. (8)

In an uniaxial reversed loading experiment,
the Bauschinger effect is observed with perfect
elastic behavior intervals (centered at the
respective back stress α) between the loading
and unloading yield points of the size 2σ iY ,
which shall be referred to as the Bauschinger
diameter. For the full meaning of the two-yield
surface hardening model, the following crucial
assumptions are assumed (Pham 2017).

Multiaxial Bauschinger hypothesis 1: The
Bauschinger diameter keeps the same constant
value 2σ iY for reversal loading in any loading
direction at any place within the ultimate
hypersphere Yu of the two-surface hardening
assumption.

The translation of the hypersphere Yα of
Bauschinger diameter 2σ iY following its center α

without changing size and form in the stress space
has been assumed for the kinematic hardening
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plasticity generally, and this assumption should
allow broad possible back stresses α:

Multiaxial Bauschinger hypothesis 2: All the
back stresses α centered between any two admis-
sible stresses σ 1, σ 2 distanced at Bauschinger
diameter 2σ iY within the ultimate hypersphere Yu
are admissible. Moreover, any back stress center
α of a hypersphere Yα uniquely enclosing the
cycle stress picks σ ′1, σ ′2, σ ′3, . . . of a loading
process, which belong to Yu, is admissible. The
back stress α, if originally positioned otherwise,
should converge toward that central point, as the
stress cycles are repeated.

Two examples of admissible back stress cen-
ters αI and αII with respective hyperspheres Yα
are given in Fig. 1b, which may be not enveloped
by �u, and illustrate the hypothesis.

The reasonable set B of possible back stresses
α, which is – at least – bounded by �0α (see
Fig. 1a), might be the domain enveloped by the
set of all possible midpoints of the chords with
Bauschinger size 2σ iY of the ultimate yield sur-
face �u, which is presented as the surface �′u just
inside �u in Fig. 1b. The finite set B need not
to be specified in proving the path-independent
shakedown theorems.

Shakedown Theorems and Plastic
Collapse Modes

Let σ e(x, t) denote the fictitious elastic stress
response of the body V (under the assumption of
its perfectly elastic behaviour) to external agen-
cies over a period of time (x ∈ V, t ∈ [0, T ]),
called a loading history. The actions of all kinds
of external agencies upon V can be expressed
explicitly through σ e. At every point x ∈ V ,
the elastic stress response σ e(x, t) is confined
to a bounded time-independent domain with pre-
scribed limits in the stress space, called a local
loading domain Lx . As a field over V , σ e(x, t)
belongs to the time-independent global loading
domain L:

L = {σ e | σ e(x, t) ∈ Lx, x ∈ V, t ∈ [0, T ]}.
(9)

In the spirit of shakedown theorems, the bounded
loading domain L, instead of a particular loading
history σ e(x, t), is given a priori. Shakedown of
a body in L means it shakes down for all possible
loading histories σ e(x, t) ∈ L.

Let ks denote the shakedown safety factor: at
ks > 1 the structure will shake down, while it will
not at ks < 1, and ks = 1 defines the boundary of
the shakedown domain.

Shakedown static theorem (Pham 2007, 2017)

ks = min {Ū , C̄} , (10)

where

Ū = sup
ρ∈R

{ k | k(ρ + σ e) ∈ Yu, ∀σ e ∈ L},

(11)

C̄ = sup
ρ′

{ k | k(ρ′ + σ e) ∈ Yi , ∀σ e ∈ L},
(12)

R is the set of admissible time-independent self-
equilibrated residual stress fields ρ(x) that satisfy
homogeneous equilibrium equations on V ; ρ′ is
a time-independent stress field that is not requied
to be self-equilibrated; Yu designates the elastic
domain in the stress space that is bounded by
the yield surface determined by the ultimate yield
stress σuY , while Yi is the respective domain
bounded by the yield surface determined by the
initial yield stress σ iY .

In the case σ iY = σuY = σY , statement (11)
leads to the classical shakedown static theorem
for perfectly plastic body: at Ū > 1 (safe), sum
of the time-independent residual stress ρ and the
elastic stress σ e over the whole body is in a safe
state defined by the yield surface Yu, while at
Ū < 1 (unsafe) no such residual stress should
exist. Statement (12) verifies just the possibility
of the bounded cyclic plasticity mode determined
by the yield stress σ iY : if the range of the varying
part of the stress σ e (from the static part ρ′)
everywhere inside the body should be smaller
than the size of the yield surface Yi (safe with
respect to the mode) or not (unsafe).
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In plane stress problems, it is presumed that
σ33 = σ31 = σ32 = 0, and subsequently ε31 =
ε32 = 0; also σe33 = σe31 = σe32 = 0. The plastic
incompressibility implies εp33 = −εp11 − εp22. The
yield condition (3) has the particular expression
for Mises material

σ 2
11 + σ 2

22 − σ11σ22 + 3σ 2
12 = (σuY )2, (13)

(it is obvious that all the components of the
stresses are bounded by the yield condition in
the case – in contrast with the general three-
dimensional case where the hydrostatic stress is
unlimited by Mises yield condition), while the
dissipation function has the particular expression
for Mises material

D(ep) = σ e : ep = √2/3σY (ep : ep)1/2

= 2√
3
σY [(ep11)

2 + (ep22)
2

+ ep11e
p

22 + ep12e
p

12]1/2, (14)

which is clearly a positive quadratic form of the
two-dimensional plastic strain rate components
that is needed for application of second-order
cone programming techniques to solve the opti-
mization problem based on the kinematic theo-
rem that followed.

Shakedown kinematic theorem (Pham 2007,
2017)

k−1
s = max {U,C}, (15)

where

U = sup
ep∈A;σ e∈L

∫ T
0 dt

∫
V

σ e : epdV

∫ T
0 dt

∫
V

Du(ep)dV
, (16)

C = sup
x∈V ;σ e∈L;êp;ρ′

(σ e + ρ′) : êp

Di(êp)
, (17)

A is the set of compatible-end-cycle plastic strain
rate fields ep over the time cycles 0 ≤ t ≤ T :

A = {ep | εp =
∫ T

0
epdt ∈ C}; (18)

C is the set of compatible plastic strain incre-
ment fields on V ; êp and ρ′ are plastic strain
rate and time-independent stress fields that are
not required to satisfy any compatibility and
equilibrium constraints, respectively;Du(ep) and
Di(ep) are the dissipation functions with σuY and
σ iY taking the places of σY , respectively.

In the case σ iY = σuY = σY , statement
(16) leads to the classical shakedown kinematic
theorem for perfectly plastic body: at U < 1
(safe), the internal plastic dissipation capacity of
the body is greater than the possible mechanical
work of the external agencies, while at U>1
(unsafe), the reverse is true. Statement (17) ver-
ifies just the possibility of the bounded cyclic
plasticity mode determined by the yield stress σ iY :
if the range of the varying part of the stress σ e

around the static part ρ′ everywhere inside the
body should be smaller than the size of the yield
surface Yi (safe with respect to the mode) or not
(unsafe).

In summary, statements (11) and (16) are
identical to those of the shakedown static and
kinematic theorems for elastic perfectly plastic
material with the (ultimate) yield stress σuY , while
statements (12) or (17) are just expressions of
the bounded cyclic plasticity mode determined
by the (initial) yield stress σ iY . In contrast to the
global mode (11) involving the self-equilibrated
residual stress field ρ over V [or (16) involving
the end-cycle-compatible plastic strain rate field
ep over V ], the mode (12) [or (17)] is local
and can be checked at every point x ∈ V

separately. At Ū > C̄ of criterion (10) [or
U < C of criterion (15)], the nonshakedown
collapse mode is cyclic plasticity; otherwise
the incremental plasticity collapse mode
prevails.

For applications, the following reduced kine-
matic theorem is useful (Pham and Stumpf 1994;
Pham 2003, 2008)
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Reduced kinematic theorem

k−1
s ≥ k̂−1

s = max {I, A} , (19)

where

I = sup
σ e∈L;εp∈C

∫
V

max
tx
[σ e(x, tx) : εp(x)]dV
∫
V

Du(εp)dV
,

(20)

A = sup
x∈V ;σ e∈L;ε̂p;t1,t2

[σ e(x, t1)− σ e(x, t2)] : ε̂p(x)
2Di(ε̂

p
)

, (21)

the latest problem (21) can be solved explicitly
for Mises material (σ̄ e is the deviatoric part of
σe):

A = max
x∈V ;t,t ′;σ e∈L

√[σ̄ e(x, t)− σ̄ e(x, t ′)] : [σ̄ e(x, t)− σ̄ e(x, t ′)]
2
√

2
3σ
i
Y

. (22)

The reduced kinematic theorem (19), (20),
(21), and (22) is simpler than the kinematic the-
orem (15), (16), and (17). In particular, as the
incremental collapse criterion (20) is compared to
the criterion (16), the incremental collapse mode
(20) does not involve time integrals and has the
expression almost as simple as that of the respec-
tive plastic limit kinematic theorem, with only the
difference that the underintegral maximum oper-
ation over time parameter t is taken at every point
x ∈ V separately, which makes the incremental
collapse criterion (20) more conservative than
the plastic limit one (Pham and Stumpf 1994;
Pham 2003). Hence available kinematic methods
of plastic limit analysis can be modified to be
used to solve problem (20). Meanwhile, the sim-
ple expression (21) or solution (22), measuring
the size of change of the stresses in alternating
directions against the diameter of the yield sur-
face, indicates the alternating plasticity collapse
mode. For a broad class of practical problems,
where the components of plastic deformations
at every point inside a structure should change
proportionally during loading cycles, the exact
equality ks = k̂s has been proved. Generally k̂s
is expected to provide a very good upper bound
estimate, if not the exact value, of ks . Indeed,
ks = k̂s for most practical examples considered.
Still, certain sophisticated structure and loading

program have been constructed in Le et al. (2016)
to exhibit the strict inequalities ks < k̂s and
A > C, though the differences are small. The
question if k−1

s = max {I, C} still remains an
open problem.

Examples of Application

Besides the semi-analytical solutions of
shakedown problems for certain simple structures
(König 1987; Pham and Stumpf 1994; Pham
2014, etc.), numerical finite element method
has been developed to solve certain, mostly
two-dimensional plane stress, plastic limit and
shakedown problems (Belytschko 1972; Weichert
and Gross-Weege 1988; Gross-Weege 1997;
Zhang et al. 2002; Zhang and Raad 2002; Garcea
et al. 2005; Tran et al. 2010; Nguyen-Xuan et al.
2012, etc.).

For engineering applications, the shakedown
theorems for elastic perfectly plastic structures
(11) and (16) lead to the finite element large-scale
nonlinear convex optimization problems with
large numbers of variables and constraints. Direct
iterative optimization algorithms have been
developed to provide solution of such the nonlin-
ear programming, where the primal-dual interior-
point method (Andersen et al. 2001, 2003) has
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been found to be especially efficient and robust.
The algorithm has been extended to both static
and kinematic shakedown analysis problems (Vu
et al. 2004; Bisbos et al. 2005; Makrodimopoulos
2006; Weichert and Simon 2012; Simon 2013;
Tran et al. 2014; Le et al. 2016).

An effective approach has been developed
to solve numerically the incremental plasticity
collapse mode (20) in Tran et al. (2014) and Le
et al. (2016), though a general appropriate direct
algorithm of solution is still awaited.

The local bounded cyclic mode (12) of
the static theorem has a form of the smallest
enclosing ball problem (Cheng et al. 2006; Nam
et al. 2012), for which majorization-minimization
principle and Nesterov smooth algorithm can be
applied. The algorithm has been implemented
successfully for shakedown analysis in Le et al.
(2016).

Example 1 (Square plate with a circular hole
(Tran et al. 2014)) The first example deals with
a square plate with central circular hole, which
is subjected to quasi-static biaxial uniform loads
(Fig. 2)

0.4p1 ≤ p′1 ≤ p1, 0.4p2 ≤ p′2 ≤ p2. (23)

Due to symmetry, only the upper-right quarter of
the plate is modeled, and symmetry conditions

are enforced on the left and bottom edges. The
input data was assumed as follows: E = 2.1 ×
105. MPa, ν = 0.3, L = 10 m, D/L = 0.2, and
σY = 200. MPa. σuY = σ iY = σY is assumed,
which corresponds to the elastic-perfectly plastic
case. Graphics of the collapse curves are pre-
sented in Fig. 3. As p1/σY increases from 0.4,
the nonshakedown mode switches from the incre-
mental plasticity collapse mode to the alternating
plasticity one and vice versa, at certain values of
the external load limits; the incremental plastic-
ity collapse curve I = 1 of Eq. (20) does not
coincide with the plastic limit ones. The lower
envelope of the incremental plasticity collapse
I = 1 of Eq. (20) and alternating plasticity
collapse A = 1 of Eq. (22) curves agrees with
the result ks = U = 1 of direct application of
Koiter’s theorem (16), using FEM-DUAL method
of Vu et al. (2004). In the case of hardening
plasticity material, the alternating plasticity col-
lapse curve should be lowered according to the
relation σ iY /σY (assuming σuY = σY ). Numerical
application of the static theorem (10) yields the
same results as those of the kinematic theorem
(15) (Le et al. 2016).

Example 2 (Grooved rectangular plate (Tran
et al. 2014)) A grooved rectangular plate
subjected to in-plane tension pN , and bending
pM , as shown in Fig. 4, is considered. The load
domain is given by

p2

p1

L/2

L/2

D/2

Fig. 2 The upper-right quarter of the square plate with a circular hole subjected to quasi-static biaxial uniform loads,
and a finite element mesh
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Fig. 3 The incremental
plasticity collapse curve
I = 1, alternating plasticity
collapse curve A = 1,
proportional plastic limit
curve, plastic limit curve,
and nonshakedown curve
using FEM-DUAL method,
for the square plate with a
circular hole subjected to
biaxial uniform loads
0.4p1 ≤ p′1 ≤
p1, 0.4p2 ≤ p′2 ≤ p2

pM

pN

R R

L

L

Fig. 4 A grooved rectangular plate subjected to varying tension and bending and a finite element mesh

0.035pN ≤ p′N ≤ pN,
0.035pM ≤ p′M ≤ pM. (24)

Graphics of the collapse curves are projected
in Fig. 5. As pM/σY increases from 0.035, the
nonshakedown mode switches from the alternat-
ing plasticity collapse mode to the incremen-
tal plasticity one, at about the middle of the

range; the incremental plasticity collapse curve
I = 1 lies strictly below the plastic limit curve,
the latter coincides with the proportional plastic
limit one. The lower envelope of the incremen-
tal plasticity collapse I = 1 and alternating
plasticity collapse A = 1 curves also agrees
with the result ks = U = 1 of direct appli-
cation of Koiter’s theorem, using FEM-DUAL
method.
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Fig. 5 The incremental
plasticity collapse curve
I = 1, alternating plasticity
collapse curve A = 1,
proportional plastic limit
curve (coincides with the
plastic limit one), and
nonshakedown curve using
FEM-DUAL method, for
the grooved rectangular
plate subjected to varying
tension and bending

Initial Yield Stress
The initial yield stress σ iY defining the cyclic
or alternating plasticity collapse mode and the
ultimate yield stress σuY determining the incre-
mental collapse one are two basic plastic param-
eters for shakedown safety assessment of elastic
plastic structures under variable and cyclic loads.
Plastic deformation often starts from microscopic
through mesoscopic to macroscopic scales with-
out clear boundary. For high-cycle processes, σ iY
should be taken as small as the fatigue limit,
since it defines that mode of collapse. For other
ranges of cycles, σ iY can be given higher values
according to the respective fatigue curve. That
fact is important for practical dynamic loading,
where the number of loading cycles can be high
(Pham 2007, 2008, 2010).
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� Finite Element Methods
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�Limit Analysis of Plates
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Shape Optimization for Direct
and Inverse Problems in
Electromagnetic Casting

Jean Rodolphe Roche
Université de Lorraine, CNRS, IECL, France

Synonyms

Direct an inverse problem in electromagnetic
casting; Electromagnetic shaping of molten
metals

Definition

Shape optimization is a mathematical and opti-
mization method to solve optimal design prob-
lems where the unknown is the shape of the
domain. Electromagnetic casting is a very useful
techniques in metallurgical industry. Electromag-
netic fields are used for contactless heating and
shaping of hot melts. When the position, shape,
and characteristics of inductors are known, the
direct problem is to find the shape of the liquid
metal mass. The inverse problem consists in find-
ing the shape, the number, and the position of
the inductors such that the electromagnetic force
makes a given mass of molten metal acquire a
target shape.

Introduction

Electromagnetic casting in metallurgical industry
allows contactless heating and shaping of chemi-
cal aggressive hot molten metals.

The quasi-static model considered in this
chapter concerns in the two dimensional case
a vertical column of liquid metals falling down
into an electromagnetic field induced by vertical
conductors.

In the three-dimensional case, the model rep-
resents a bubble of liquid metal levitating in an
electromagnetic field.

In both cases the equilibrium configurations
of a prescribed mass of molten metal are the
critical point of an energy involving a relation
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https://doi.org/10.1007/978-3-662-55771-6_300223


Shape Optimization for Direct and Inverse Problems in Electromagnetic Casting 2241

S

between the electromagnetic, superficial, and
gravity forces at the boundary of the liquid metal.
From a practical point of view, the magnetic field
must be created by inductors which are, each one,
a set of bounded insulated strands.

The direct problem in electromagnetic casting
considered in this chapter is very similar to those
studied in Shercliff (1981), Sneyd and Moffatt
(1982), Mestel (1982), Brancher and Séro-
Guillaume (1985), Felici and Brancher (1991),
Sero-Guillaume et al. (1992), and Coulaud
(1998). In those papers the authors have proposed
a physical analysis and simplifying assumptions
that the mathematical model requires.

Shape sensitivity analysis and shape derivative
methods are presented in the followings books:
Sokołowski and Zolésio (1992), Henrot and
Pierre (2005), and Allaire (2007).

Numerical computations of shapes in diverse
situations and with different methods can be
found in the following papers: Brancher et al.
(1983), Gagnoud et al. (1986), Rappaz and
Touzani (1991), Pierre and Roche (1991, 1993),
Coulaud and Henrot (1994), Roche (1997),
Novruzi and Roche (2000), and Eppler and
Harbrecht (2012).

The inverse problem has been considered in
a few number of papers; from the theoretical
point of view, readers can consult in the two-
dimensional case (Henrot and Pierre 1989; Felici
and Brancher 1991) and in the three-dimensional
case (Felici and Brancher 1991; Pierre and Rouy
1996). Numerical methods for the inverse prob-
lem concerning electromagnetic shaping can be
found in Canelas et al. (2008, 2009a,b, 2011,
2014), Shin et al. (2012), and Canelas and Roche
(2013).

The Model Problem

The Direct Problem
The model problem considered in this entry
concerns in the two-dimensional case a vertical
column of molten metal falling down into
an electromagnetic field created by vertical
inductors.

ω

Ω
j0

Γ

Fig. 1 Cross section of the vertical column of molten
metal

The same model in the tridimensional case
represents a bubble of liquid metal levitating in
an electromagnetic fields.

In both cases it is assumed that the frequency
of the imposed current is so high that the mag-
netic field does not penetrate into the metal,
consequently the skin effect is neglected. Then
the electromagnetic forces acting in the interface
are reduced to the magnetic pressure.

Let ω ⊂ IRd , d = 2, 3 be the domain filled by
the molten metal and Γ its boundary. Let denote
Ω the exterior of the domain ω. The domain ω
is assumed simply connected with a boundary
sufficiently smooth.

In the three-dimensional case, the equilibrium
surface is characterized by the following equa-
tions:

∇ × B = μ0j0 in Ω
∇ . B = 0 in Ω
B.ν = 0 on ∂ω = Γ
||B|| → 0 at ∞ (1)

‖B‖2

2μ0
+ σH+ ρg · x3 = p0 on Γ (2)

where j0 is the current density, B the magnetic
field, μ0 the magnetic permeability, ρ the density
of the charge, g the gravitational acceleration, x3

the height, H the mean curvature of Γ , σ the
surface tension, and ν the unit normal directed
toward ω. The constant p0 is an unknown in the
direct problem.

In the two-dimensional case, the most impor-
tant difference is that the equilibrium term in Γ
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does not depend on gravitational force:

‖B‖2

2μ0
+ σC = p0 on Γ

where C is the curvature. The current density
j0 = (0, 0, j0) and j0 = I

∑m
p=1 αpδup . where I

is the intensity of current, δup , with 1 ≤ p ≤ m,
are the Dirac masses at points up in the plane and
αp are dimensionless coefficients (Fig. 1).

The total energy of the system is given by
Brancher et al. (1983) and Descloux (1991):

E(ω) = − 1

2μ0

∫

Ω

||B||2dx + σ
∫

Γ

dγ

+
∫

Ω

ρgx3dx (3)

where B is the solution of system (1). In the two-
dimensional case, we drop the last term in (3).

The variational formulation of the direct
problem consists in considering the equilibrium
domain ω as a stationary point for the total energy
E(ω) under the constraint that measure of ω is
given.

To compute the magnetic field B, we set B =
B1 + ∇φ where B1 is given by the Biot-Savart
law and the scalar potential φ is the solution of
the following problem:

−Δφ = 0 in Ω

∂φ

∂ν
= −B1.ν on Γ

φ(x) = ◦(1) as ||x|| → ∞
(4)

The solution of the exterior problem (4) can be
represented using boundary integral operators,
and an approximation can be computed using
boundary elements.

The Inverse Problem
In this chapter is addressed the inverse problem in
the two-dimensional case. The goal of the inverse
problem is to find a configuration of inductors
around the molten metal such that the solution of
the system (1) and (2) gives a target shape.

In practice the magnetic field has to be cre-
ated using a simple configuration of inductors,

for example, in the present analysis, the electric
current density j0 will take the form:

j0 = I

m∑
p=1

αpδup (5)

where I is the intensity of current, δup , with 1 ≤
p ≤ m, are the Dirac masses at points up in the
plane, and αp are dimensionless coefficients.

In the two-dimensional case, to have existence
results, (Henrot and Pierre 1989), it is necessary
to assume that ω is simply connected, and the
boundary Γ is only one Jordan curve. If j0 is
compactly supported in Ω . and

p0 ≥ 2μ0σ max
x∈Γ C(x) (6)

there exist B if and only if

1. Γ is an analytic curve.
2. If p0 = 2μ0σ maxx∈Γ C(x), this global max-

imum must be attained in an even number of
points.

The magnetic field is well determined in a neigh-
borhood of ω (local uniqueness).

Then if Γ is analytic and σ ≥ 0 the shaping
problem has a solution. We can always find a
current distribution concentrated in a curve inΩ .
But it is not always possible to have a current
distribution j0 given by adding of a finite number
of Dirac masses.

In this paper, two different approaches
to find a numerical solution of the two-
dimensional inverse problem using classical
shape optimization are considered. Let denote ω∗
the target shape and V a regular vector field with
compact support in an open neighborhood of ω∗
and Γ = (I +V )(Γ ∗). Then the first formulation
of the inverse problem is the following:

min
j0

||V ||2
L2(Γ ∗) (7)

with the constraints:

∫

Γ

(
1

2μ0
||B||2 + σC

)
Z.νdγ =

∫

Γ

p0Z.νdΓ

(8)
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for all Z in C1(IR2, IR2), B is solution of sys-
tem (1) and ∫

ω

dx = S0 (9)

An indirect approach of the inverse problem can
be considered if we introduce a slack variable
function Q(x) : Γ ∗ → IR in the equilibrium
equation. Then we obtain the following second
formulation of the problem:

min
j0

||Q||2
L2(Γ ∗) (10)

such that:
∫

Γ ∗

(
1

2μ0
||B||2 + σC+Q

)
Z.νdΓ

=
∫

Γ ∗
p0Z.νdΓ ∀ Z ∈ C1(IR2, IR2) (11)

with B the solution of system (1). In this formu-
lation the shape is no more an unknown of the
problem.

Shape Derivatives

Assume that E is a real-valued function defined
on the following set:

O = {ω ⊂ IRd;ω a bounded and open set

subset of class C 2} (12)

Following (Delfour and Zolésio 2001), let V :
[0, τ ] × IRd → IRd be a given velocity field for
some fixed τ > 0. Assume that :

{
∀x ∈ IRd;V (., x) ∈ C0([0, τ ]; IRd),
∃c > 0,∀x, y ∈ IRd ; ||V (., y)− V (., x)||C0([0,τ ];IRd) ≤ c||y − x||

(13)

where V (., x) denotes the function t → V (t, x)..
Associate to (13) the solution x(t, X) of the
ordinary equation:

dx

dt
(t, X) = V (t, (x(t, X));

t ∈ [0, τ ]; x(0, X) = X ∈ IRd (14)

and introduce the family of homeomorphisms

X→ T Vt (X) = x(t, X) : IRd → IRd (15)

Definition 1 Let V verify the property (13). If
the following limits exists:

lim
t↘0

E(T Vt (ω))− E(ω)
t

(16)

we say that E has an Eulerian semi-derivative,
and we denote it by d(E(ω);V )
The shape functional E is said to be shape differ-
entiable at ω if the Eulerian semi-derivative exists
for all V and the map:V → d(E(ω);V ) is linear
and continuous.

The shape derivative of the total energy has
been obtained applying the given definition to the
electromagnetic casting problem.

Theorem 1 If S(ω) is the volume ofω. Under the
hypotheses (13), the functions ω→ E(ω), S(ω),
are differentiable, for every Λ constant, we have:

d(E(ω)−ΛS(ω);V ) =
∫

Γ

(
1

2μ0
||B||2

+σH+ ρgx3 −ΛS(ω)
)
(V .ν)dγ

(17)

Then (B, ω) is the solution of the of the equilib-
rium system (1) and (2) if and only if there exists
Λ such that for every direction V satisfying (13)
we have:

d(E(ω)−ΛS(ω);V ) = 0 (18)

Consequently the numerical method to solve the
direct problem compute a solution of Eq. (18),
when B verify the system (1).
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Numerical Method

Shape Discretization
We construct a sequence of (Γ k, Bωk , Z

k) such
that:

1. Γ k is a piecewise linear closed surface
approximation of Γ . The nodes of the surface
Γ k are denoted by xi,k , i = 1, . . . , n.

2. If ωk is the domain of boundary Γ k then Bωk
is the numerical solution of the state PDE’s
equation (1).

3. Zk is a continuous piecewise linear vector
field from Γ k in IRd such that:

Zk(x) =
n∑
i=1

uiZ
i,k(x)

and

Zi,k(xj,k) = δi,j Ẑi,k

where Ẑi,k is a vector associated to xi,k .
The updated surface Γ k+1 is then given by:

Γ k+1 =
{
X = x +

n∑
i=1

uiZ
i,k(x);

ui ∈ IR, x ∈ Γ k
}

where ūt = (u1, · · · .un) ∈ IRn are the unknowns
which determine the evolution of the surface Γ k .
Let denote ω(u) = (I +∑n

i=1 uiZ
i)ω.

The numerical approximation Bωk is
computed using boundary finite element.
Consequently the numerical solution of (1) is
characterized by a vector denoted qh = {qi}i=1,n.
This vector is the solution of a linear system:

A(ū)qh = b(ū, up) (19)

where the matrix A(ū) and the second term
b(ū, up) are a function of Γ .

Projection of the Equilibrium Equation
Let up be the vector of xp ∈ IR2;p = 1, . . . , m
the position of the m inductors. If we project the
equilibrium equation in finite dimension space
generated byZi, i = 1, . . .n, the discrete version
of the shape derivative is now the following:

DEi(up, u, qh, p0) = 1

2μ0

∫

Γ

||Bωk ||2 (Zi · ν) dΓ+

+
(
(xi − xi−1)

‖xi − xi−1‖ −
(xi+1 − xi)
‖xi+1 − xi‖

)
· Ẑi −p0

∫

Γ

(Zi · ν) dΓ
(20)

where i = 1, . . . n.
Given up a numerical solution of direct prob-

lem is a solution of the system:

DEi(up, u, qh, p0) = 0, i = 1, . . . n (21)

with the constraint that qh is the solution of (19).
Numerical solution of problem (21) can

be obtained using interior points optimization
methods; see, for example, Herskovits (1998)
and Arora and Wang (2005, 2004) or quasi-
Newton methods; see Roche (1997) and Novruzi
and Roche (2000).

First Inverse Problem Formulation
Let L(u) = ∫

ω(u)
dx and:

DE(up, u, qh, p0)={DEi(up, u, qh, p0)}i=1,...n

(22)
Then the numerical version of the first inverse
problem formulation is the following:

min
up,u,qh,p0

||V ||2
L2(Γ ∗) (23)

with the constraint:
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G(up, u, qh, p0) =
⎛
⎝
A(u)qh − b(up, u)

L(u)− S0

DE(up, u, qh, p0)

⎞
⎠ = 0

(24)
This optimization problem with constraints

can be solved using a quasi-Newton methods
applied to Karush Kuhn Tucker necessary con-
ditions; see, for example, Canelas et al. (2008,
2009a,b, 2011).

Second Inverse Problem Formulation
In order to obtain a numerical version of the
second inverse problem formulation, a projection

onto the piecewise linear polynomials of the slack
function Q can be considered, and then the finite
dimensional formulation is the following:

min
up,qh,p0

||Q||2
L2(Γ ∗) (25)

with the constraint:

G(up, qh, p0,Q) =
(

Aqh − b(up)
DF(up, qh, p0,Q)

)
= 0

(26)
where DF(up, qh, p0,Q) is a vector such that:

DFi(up, qh, p0,Q) = 1

2μ0

∫

Γ ∗
||Bωk ||2 (Zi · ν) dΓ +

(
(xi − xi−1)

‖xi − xi−1‖ −
(xi+1 − xi)
‖xi+1 − xi‖

)
· Ẑi

+
∫

Γ ∗
Qh (Z

i · ν) dΓ −p0

∫

Γ ∗
(Zi · ν) dΓ

(27)

∀ i = 1, . . . n.
The numerical optimization problem associ-

ated to the second formulation of inverse problem
can be solved using the same method imple-
mented for the first formulation.

Numerical Results

The Direct Problem, Three-Dimensional
Case
This section is devoted to present the numerical
simulation of a three-dimensional electro-
magnetic shaping of a bubble where the
magnetic field is created by 11 wires in an
asymmetric configuration. The free boundary
surface was discretized with 722 nodes and 1440
triangles.

The set of figures Figs. 2 and 3 show the evo-
lution of the free boundary for this example. The
initial iteration is not critical to achieve a good
approximation of the free boundary surface. The
obtained asymmetric equilibrium shape is the
consequence of the opposite action of the mag-
netic pressure, the surface tension forces, and the
gravity.

Numerical Results in the Case of the Two
Dimensional Inverse Problem
In the example presented in this section, the goal
is to obtain a distribution of a given number of
inductors in order to build a bar with rectangular
cross section. A number of inductor and the

Fig. 2 Initial free surface
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Fig. 3 Final shape (after 15 iterations)

Fig. 4 Initial distribution of the inductors

Fig. 5 Final distribution of the inductors and final shape
in the case of formulation one

surface S are fixed. The intensity I = 0.075 and
the surface tension σ = 10−4. The coefficients
αp = ±1, in Figs. 4, 5, and 6, + means αp = 1
and ◦ means αp = 1.

In Fig. 4 there are shown the initial position
of the inductors and the target domain ω∗. The
boundary is discretized with 132 nodes.

Figure 5 shows the final position of inductors
after 400 iterations, in the case of the first formu-
lation of the inverse problem.

Fig. 6 Final distribution of the inductors and final shape
in the case of formulation two

Figure 6 portrays the final position of the
inductors after 192 iterations when the second
formulation of the inverse problem is considered.

Conclusion

Classical shape optimization method to simulate
electromagnetic casting is very useful in the case
of the direct problem. These methods can manage
free surface problems in two and three dimen-
sions with symmetric or asymmetric shapes.

In the case of the inverse problem, classical
shape optimization methods do not allow to mod-
ify the number of inductors. Topological shape
optimization methods authorize the creation
of new inductors. Consequently an algorithm
combining classical and topological optimization
can be useful to solve the inverse electromagnetic
casting problem and many others similar
problems.
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Shear Web Theory

Franz G. Rammerstorfer and
Isabella C. Skrna-Jakl
Institute of Lightweight Design and Structural
Biomechanics, TU Wien, Vienna, Austria

Synonyms

Curved shear webs; Post-buckling; Rectangular
shear webs; Shear center; Shear web assemblies;
Shear webs; Tension field theory; Wagner’s ten-
sion field; Web buckling

Definition

In lightweight design quite often structures are
built of a combination of beams, e.g., forming
frames or grids, and a skin, i.e., a typically thin

web, which transfers shear loads and provides the
required shear stiffness to the structure.

The shear web theory represents simplified
methods for roughly calculating stresses in such
components and for determining load-carrying
capabilities even when local instabilities have
appeared. This section provides an overview on
the shear web theory as well as on the ten-
sion field theory. The descriptions are limited
to rectangular webs; for more details and more
general configurations, see, e.g., Magson (2013)
and Peery (2011).

Introduction

The principal idea of the shear web theory is
shown in Fig. 1 and becomes obvious when, as
described now, substantial simplifications in the
analysis of a girder with I-cross section, as typical
in lightweight design, are applied.

Let us start with Bernoulli-Euler beam theory
and successively simplify in order to eventually
come to shear web theory. Here and in the fol-
lowing, it is assumed that all parts (webs, flanges,
and struts) are made of one and the same isotropic
linear elastic material.

Jy ≈ tw h
3

12
+2tf b

h2

4
= 2btf

(h
2

)2(
1+ tw h

6tf b

)

= 2btf
(h

2

)2(
1 + Aw

6Af

)
,

with Aw � Af =⇒ Aw
6Af

� 1 =⇒
Jy ≈ 2Af

(
h
2

)2
,

σmax = My
Jy

h

2
≈ My

Af h

=⇒ My ≈ σmaxAf h = Nf h.

There, Sy, Iy, Aw, and Af stand for the first
and second moments of area with respect to axis
y as well as for the cross-sectional areas of web
and flanges, respectively.

The distribution of the shear stress σxz,
caused by the shear force Qz, reads σxz=τ(z)
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Fig. 1 I-girder simplified by applying shear web theory (Rammerstorfer 1992)

Fig. 2 (a) Simple shear
web assembly; (b) stress
resultants (Rammerstorfer
1992)
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. For Aw�Af , one gets Sy(z)

≈Af −h2 = const. This leads to τ ≈ Qz Af
h
2

2Af
(
h
2

)2
tw

=
Qz
h tw

= const.
Eventually, we end up with the constant shear

flow, q = τ tw = Qz
h
.

From the above derivations, one finds: If tw �
h and Aw � Af (e.g., tw h � b tf ), then
the bending moment is (as approximation) trans-
ferred solely by normal forces in the flanges and
the shear force (as approximation) solely by a
constant shear flow in the web. The simple shear
web theory neglects not only the contribution of
the bending stresses σxx in the web to the bending
moment but neglects these normal stresses at all
and assumes that in the web only shear stresses
σxz act.

The simple shear web theory for plane rectan-
gular shear webs is based on the following rather
rough assumptions (for non-rectangular webs,
see, e.g., Magson 2013):

• The beam-like struts (flanges and stiffeners)
are hinged together and transfer loading by
normal forces only, provided that the load
intensity is subcritical, i.e., no buckling
appears.

• Bending moments are transferred only by nor-
mal forces in the struts and shear forces only
by shear stresses in the web.

• External loads are applied to the hinges only,
which connect the struts.

Plane Rectangular Shear Webs

A simplest shear web assembly is sketched in
Fig. 2a. Applying the method of sectioning (see
Fig. 2b) in combination with the equilibrium
conditions to the individual sections (including
(dN/dx)dx = q dx as equilibrium condition
for an infinitesimally small piece dx of a
strut) leads to results as shown in Fig. 2b with
q1 = q2 = q3 = q4 = q = P/h.
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Fig. 4 (a) Statically indeterminate shear web assembly; (b) (0)- and (1)-systems, respectively; compare (Rammerstorfer
1992)

According to the abovementioned simplifying
assumptions, in each shear web, a constant shear
flow exists, which acts as loading at the struts.
Equilibrium conditions applied to the struts ren-
der the linear normal force distributions in the
struts. Provided that the shear web configuration
is statically determinate, all shear flows in the
webs and normal forces in the struts can be
determined easily by the respective equilibrium
conditions. A necessary condition for static deter-
mination of plane shear web assemblies is

s + b + f = 2 k. (1)

There, s is the number of struts, b is the num-
ber of webs, k is the number of nodes (treated as
hinges), and f is the number of support reactions.

As an example, let us analyze the shear web
assembly shown in Fig. 3.

Counting s = 13, b = 4, k = 10, and f = 3
shows that the assembly is statically determinate.

Global equilibrium requiresA = P1
a+b
2a+b , BH =

P1 , BV = P2−P1
a+b
2a+b . For strut 1, equilibrium

requires BH − q1 a = 0 =⇒ q1 = BH
a

= P1
a

Analogously, for strut 13, q4 a−A = 0 =⇒ q4 =
P1
a
a+b

2a+b , and for strut 10, q3 a − q4 a = 0 =⇒
q3 = q4 = P1

a
a+b
2a+b . Finally, q2 results from the

equilibrium of the cutout combination of struts 2
and 5: q1 b + q2 a + BV − P2 = 0 =⇒ q2 =
P1
a

(
a+b
2a+b − b

a

)

With q1, . . . , q4, the distribution of the normal
forces in the struts can be easily determined.
From the right figure in Fig. 3, one sees that
strut 10 is stress-free. Nevertheless, this strut is
important for stability reasons, as will be shown
later.

Application of Eq. 1 to the shear web assem-
bly shown in Fig. 4 shows that this assembly is
onefold statically indeterminate.

Such systems can be analyzed, for instance,
by applying energy methods – see, e.g., Ziegler
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(1995) – where the original system is replaced
by the superposition of a statically determinate
(0)-system, which is formed by cutting as much
as necessary to come up with a statically deter-
minate system, and to which all external loading
is applied, and n individual (k)-systems, k =
1, 2, . . . , n, to which the unknown, originally
internal stress resultants at the cuts act as external
forces of intensity X(k). There, n is the degree of
the statical indetermination. The unknowns X(k)

are calculated from the compatibility conditions
– according to Menabrea’s theorem – at the posi-
tions of the cuts:

∂U∗

∂X(k)
= 0 for k = 1, 2, . . . , n , (2)

where U∗ stands for the complementary energy
of the loaded system.

In the following, the system given in Fig. 4 is
treated by this procedure; there n = 1.

(i) Cut out one web (here web 1 is chosen) and
get a statically determinate system, the (0)-
system, to which the load is applied. There
you can calculate all stress resultants of the
(0)-system, q(0)2 =q(0)3 =P/(2a), q(0)4 = 0
as well as the normal force distributions in
the struts, i.e.,N(0)j (xj ), j = 1, . . . , 12. The
coordinate xj runs along the full length of
the j -th strut.

(ii) The statically indeterminate quantity q1 is
the shear flow X(1)q

(1)
1 . The quantity q(1)1

results, like q
(1)
2 , . . . , q

(1)
4 , from the

(1)-system, on which q̂(1)1 is applied as exter-
nal loading at that web and that struts, where
in step (i) the cut was made. The intensity
of this loading is q̂(1)1 = “1”. This leads to

q
(1)
1 = 1, q(1)2 = q(1)3 = − 1, q(1)4 = 1 and to

the corresponding normal force distributions
in the struts, i.e., N(1)j (xj ), j = 1, . . . , 12.

Of course, eventually all quantities
calculated in the (1)-system must be
multiplied with the yet unknown factorX(1),
which will be determined in the next step.

(iii) The unknown multiplier X(1) follows
from the compatibility condition between
the cutout web and the struts around it.

Compatibility requires ∂U∗
∂X(1)

= 0, with the
complementary energy

U∗ = 1

2EA

12∑
i=1

[ a∫

0

(
Ni(xi)

)2
dxi

]

+ 1

2G t
a2

4∑
j=1

q2
j ,

with

Ni(xi) = N(0)i (xi)+X(1) N(1)i (xi) ,
qj = q(0)j +X(1) q(1)j .

The above compatibility condition leads to

X(1) = P 2EA+ 5aGt

8aEA+ 16a2Gt

Finally, all stress resultants are determined.
For instance, the shear flows are q1 = q4 = X(1) ,
q2 = q3 = P

2a −X(1).
If the degree of statical indeterminate is n > 1,

X(k) results from Eq. (2), and the stress resultants
are, finally, q(0)j +∑n

k=1X
(k) q

(k)
j .

As will be shown later on, shear web assem-
blies exhibit substantial reserves in load-carrying
capabilities even when the shear webs have buck-
led. However, due to their very low global tor-
sional stiffness, such assemblies are prone to
buckle sideways, i.e., by lateral-torsional buck-
ling.

Curved Shear Webs

When the abovementioned simplifying assump-
tions of the shear web theory are accepted, the
shear flow remains constant, even if the shear web
is curved, and no torsion will appear if the line of
action of the resultant shear forceQ goes through
the shear centerM of the cross section; see Fig. 5.

For the sake of simplicity, symmetry of the
cross section is assumed, and the shear force acts
only in z-direction, i.e., Q = Qz. From the static
equivalence between the action of Qz and the
action of the shear flow q, it follows that
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Fig. 5 Shear web
assembly with curved web
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Qz =
∫
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h
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− h2

q dz = q h

=⇒ q = Qz
h
. (3)

The position ofM follows from

Qz e =
∫
� q g(ξ) dξ = q

∫
� g(ξ) dξ = q 2A

=⇒ e = 2A

h
, (4)

where A is the area enclosed by the web line and
the line linking the upper with the lower girder.

Combined Shear Web Assemblies

Three-dimensional beam-like lightweight struc-
tures quite often consist of a composition of
shear web assemblies. To each of such shear web
assemblies, shear web theory may be applied, as
shown for the example, sketched in Fig. 6.

In order to prevent the beam from twisting, the
line of action of the shear force Q = Qz goes
through the shear centerM , the location of which
is indicated by the distance e on the symmetry
line.

According to the assumption that the bending
moment My is transferred by normal forces in
the stringers only, one gets from My = (N1 +
N2)h with N1/A1 = N2/A2 the normal forces
in the stringers as N1 = My

h
A1

A1+A2
and N2 =

My
h

A2
A1+A2
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Fig. 6 Beam composed from shear web assemblies

The shear flows q1, q2, q3 are determined
from

q(ξ) = −Qz S(ξ)
Jy

with Jy ≈ 2
(A1+A2)h

2

4

and

S1 = S3 ≈ −A1
h

2
, S2 ≈ − (A1 + A2)

h

2

There Si stands for Sy in the ith portion of the
cross section. This leads to

q1 = q3 = Qz
h

A1

A1 + A2
, q2 = Qz

h
.

The position of the shear center results from

q2 h e − q1 b
h

2
− q3 b

h

2

= Qz e − b h
(
Qz

h

A1

A1 + A2

)
= 0

as e = b A1

A1 + A2
.

From Shear Web Theory to Tension
Field Theory

As mentioned above, shear web assemblies
exhibit substantial reserves in load-carrying
capabilities even when the shear webs have



Shear Web Theory 2253

S

Fig. 7 Development of
Mohr’s circle in the deep
post-buckling regime;
compare (Rammerstorfer
and Daxner 2009)
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buckled. Critical in-plane loads of rectangular
plates leading to buckling are calculated by

σ ∗ = kE( t
b

)2
, (5)

where the buckling factor k can be obtained from
buckling factor diagrams in dependence of the
plate’s aspect ratio a/b – with a, b being the edge
lengths of the plate – and the boundary condi-
tions; see, e.g., Hertel (1986) and Wiedemann
(2007).

This way, also that shear stress in the web,
τ = q/tw, which leads to web buckling, i.e.,
τ ∗, can be calculated by τ ∗ = kwE

(
tw
b

)2. The
buckling factor for web buckling, kw, depends
on the way the web is connected to the struts
and how the stiffness of the struts contributes
to clamping conditions. It is somewhere between
the buckling factor for hinged and for clamped
boundaries, respectively; see Hertel (1986).

With the approximating, conservative assump-
tion that after buckling the web’s incremental
membrane stiffness in the direction of the prin-
cipal compression stress vanishes, this principal
stress will not grow anymore with increased load-
ing. Hence, Mohr’s circle moves to the right,
when the shear stress τ > τ ∗ grows; see Fig. 7.

If the ratios τ/τ ∗ are very large, i.e., the ten-
sion fields are well developed, the comparatively
small principal compressive stress |σ2| � σ1 is
neglected, Mohr’s circle according to the classi-
cal Wagner’s tension field, see Wagner (1929),
is reached. Further approximations are charac-
teristic for this simplifying model: The buckling
folds are approximately inclined by 45◦, and from
Mohr’s circle it follows that

H1 H1

V1V1V1
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H1
V1V1 V2

V1V2

V1
H2

σxx

σyy

H1 H2

H2H1
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σxx∼∼

H1 H1

1 2

Fig. 8 Effects at interfaces and in the struts caused by the
tension field in addition to shear due to shear web loading.
Only these additional sectional forces are shown

σ1 = 2 τ , σxx = σyy = τ. (6)

Equation (6) reveals that the buckled web
leads to tensile normal stresses between webs
and struts; both σxx and σyy are always posi-
tive, regardless in which direction the external
shear load acts! As shown in Fig. 8, these normal
stresses lead to extra loading of the interfaces
between webs and struts as well as to additional
normal forces in the struts, i.e., loadings in addi-
tion to those resulting from the shear flows and
normal forces according to shear web theory.
Thus, pullout failure at the interfaces as well
as bending and buckling of the struts must be
considered with care when the ultimate load-
carrying capacity should be determined.

Final collapse is eventually due to either one
of the following failure modes or combinations of
some of them: local plastic deformations, tensile
cracking of the web (cracks running approxi-
mately perpendicularly to the folds), global insta-
bility due to buckling of the struts, failure of
the connections between web and struts (due to
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Fig. 9 Complete failure of a shear web assembly; com-
pare (Rammerstorfer and Daxner 2009)

combined tension and shear), local buckling of
the flanges of the struts, and overall instability by
sideways buckling of the whole assembly, just to
mention some of the typical modes.

Figure 9 shows, as an example, a shear
web assembly, which because of substantial
load increase after web buckling has failed by
pulling out the web from the struts and by plastic
buckling of the inner vertical strut.
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Shell thermomechanics is the study of effects of
heat upon mechanical properties of a thin solid
body. The resultant shell theory is based on the
set of two-dimensional balance laws of mass,
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as the entropy inequality which are formulated on
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tions of corresponding laws of three-dimensional
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constitutive equations, which are experimental
laws anyway.

Introduction

Nonlinear thermomechanic two-dimensional
(2D) models of shells are usually developed
using two main approaches: (1) the so-called
direct formulation and (2) the derived or
deductive formulation from three-dimensional
(3D) continuum thermomechanics. But the final
2D relations of shell thermomechanics and
physical interpretation of their ingredients vary
substantially throughout the literature.

The resultant shell thermomechanics proposed
by Simmonds (1984, 2012) seems to be the most
promising way to formulate shell thermomechan-
ics. All 2D relations were formulated on the
shell base surface by exact through-the-thickness
integration of appropriate 3D fields of rational
continuum thermomechanics. The only approx-
imations were made in the resultant balance of
energy when expressed through the 2D stress and
strain fields alone. The approximations were then
transferred onto the resultant entropy inequality
and the 2D constitutive equations, which are
experimental laws anyway. The mechanical part
of such resultant shell theory, originally proposed
by Reissner (1974), gained considerable attention
in the literature, and many results obtained in the
field are now partly summarized in the books by
Libai and Simmonds (1998) and Chróścielewski
et al. (2004).

In this entry the extended resultant thermo-
mechanics of shells proposed by Pietraszkiewicz
(2011) is briefly presented. The local, resultant
2D balance laws of mass, linear and angular
momentum, and energy as well as the entropy
inequality for shells are constructed as the exact
resultant implications of corresponding 3D laws
of rational continuum thermodynamics. As com-
pared with the results by Simmonds (1984, 2012),
the following refinements are introduced:

• The resultant laws are formulated on the shell
base surface which is taken to be the material
surface during the entire shell motion.

• An additional stress power, called an
interstitial working, is introduced on the
2D level, which completes the initially
approximate resultant 2D balance of energy
expressed through the 2D stress and strain
measures alone.

• The extra surface heat and entropy supplies,
following from nonuniform distribution
of temperature across the thickness, are
accommodated by three extra surface fields.

The kinematic structure of the resultant shell
theory is that of the Cosserat surface with the
translation vector and rotation tensor fields as the
only kinematic field variables (Pietraszkiewicz
2018). The structure of the extended resultant 2D
thermomechanical laws for shells reminds some-
what that of corresponding 3D laws of extended
thermodynamics; see, for example, Müller and
Ruggeri (1998).

Basic Principles

Within 3D continuum thermodynamics, one
assumes that all material bodies possess mass,
sustain forces and torques, and convert energy,
and basic laws of thermodynamics are valid for
any part P of the body B.

To describe the mechanical behavior of P
at any time t ∈ T, one assumes the following
primitive quantities to be meaningful: the mass
M(P, t), the mass production C(P, t), the lin-
ear momentum vector L(P, t), the total force
vector F(P, t), the angular momentum vector
Ao(P, t), and the total torque vector To(P, t).
The latter two quantities are defined in an inertial
frame (o,ei) relative to a point o of the three-
dimensional (3D) physical space E with V as its
translation 3D vector space and where ei ∈ V,
i = 1,2,3, are orthonormal vectors. The primitive
quantities are assumed to satisfy three balance
laws of continuum mechanics: balances of mass,
of linear momentum, and of angular momentum
(Truesdell and Toupin 1960; Truesdell and Noll
1965). When written in the most general, global
integral-impulse form, these laws are
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M
∣∣t2
t1
=

� t2
t1

Cdt,

L
∣∣t2
t1
=

� t2
t1

Fdt,

Ao
∣∣t2
t1
=

� t2
t1

Todt.

(1)

When the theory is designed to account
for thermal effects, one assumes additional
primitive quantities to be meaningful: the total
energy U(P, t), the heating Q(P, t), the entropy
H(P, t), and the entropy flux J(P, t). It is
generally accepted that these quantities have
to satisfy no more than two laws of continuum
thermodynamics. However, while the form of
energy balance is universally accepted, there
is no general agreement which specific form
should take the 2nd law. One may consult
reviews (Muschik et al. 2001; Muschik 2008) and
books (Müller 2007; Badur 2009), where many
references to historic papers and books on various
formulations of continuum thermodynamics are
given.

Within rational thermodynamics developed by
Truesdell and Toupin (1960), Truesdell and Noll
(1965), and Truesdell (1984), which is used here,
the two laws of thermodynamics are the balance
of energy (also called the 1st law) and the entropy
inequality (also called the 2nd law) given by

U
∣∣t2
t1
=

� t2
t1

(
P+Q

)
dt, H

∣∣t2
t1
≥

� t2
t1

Jdt, (2)

where P(P, t) means the mechanical power, and
J(P, t) is taken in the Clausius–Duhem form; see
below.

In continuum mechanics each placement
χ(P, t) of P ∈ B at time t becomes a part P(t)
of the region B(t) = χ (B, t) of E. By y∈ P(t) one
denotes the actual place of material particle and
by y = y − o its position vector in the inertial
frame (o,ei). Then P ⊂ B is the region of E
occupied by P in the reference placement κ(P)
associated here with t = 0, while x ∈ B is the ref-
erence place of material particle and x= x− o its
position vector in the same inertial frame (o,ei).

In the shell-like body, the boundary surface
∂B of the reference region B consists of three

separable parts: the upper M+ and the lower M−
shell faces and the lateral boundary surface ∂B*

such that ∂B=M+ ∪M− ∪ ∂B∗, M+ ∩M− =∅.
Relative to the origin o ∈ E of the inertial
frame, the position vectors x and y are usually
represented by

x (x, ξ) = x(x)+ ξn(x),
y (x, ξ, t) = y (x, t)+ z (x, ξ, t) ,

z (x, 0, t) = 0.

(3)

Here x(x) = x(x, 0) is the position vector of
corresponding point of some reference shell base
surface M ⊂ E, n(x) is the unit normal vector
orienting M, ξ ∈ [−h−(x), h+(x)] is the distance
along n from M to x with h = h− + h+ the initial
shell thickness, y(x,t) is the position vector of the
actual shell base surface M(t), and z(x, ξ , t) is a
deviation of y ∈ B(t) from M(t).

Each placement P(t) of the moving shell-like
body can be represented through a part Π (t) of
the shell base surface M(t) ⊂ E taken here to
be the material surface, i.e., consisting of the
same material particles during the shell motion.
By y ∈ Π (t) one denotes a point of Π (t) and by
y = y − o its position vector in the inertial frame.
ThenΠ ⊂ M represents a part of M, while x ∈Π
is the point ofΠ and x= x − o its position vector
in the same inertial frame.

Under appropriate smoothness requirements,
the mechanical primitive quantities can be
expressed as the following volume and surface
integrals of their densities, written here with
respect to the reference placement:

M =
�

P
ρRdv, C =

�
P

cRdv,

L =
�

P
ρR ẏ dv, Ao =

�
P

y × ρR ẏdv,

(4)

F =
�

P
ρRb dv +

�
∂P

tnda,

To =
�

P
y × ρRb dv +

�
∂P

y × tnda.
(5)

Here ρR(x,t) > 0 and cR(x,t) are the referential
mass and mass production (densities) per unit
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volume of B, b(x,t) is the body force (density) per
unit mass of B, ẏ (x,t) is the 3D velocity field, and
tn(x,t) is the contact force (density) per unit area
of ∂P with the unit normal vector n(x,t) orienting
∂P.

One can define the following resultant 2D
surface fields:

ρ =
� +
− ρRμdξ, c =

� +
− cRμdξ,

l =
� +
− ρR ẏμdξ, k =

� +
− y × ρR ẏμdξ,

(6)

nν =
� +
− tnμdξ, mν =

� +
− z × tnμdξ,

� +
− ≡

� h+
−h− ,

(7)

ρf =
� +
− ρRbμdξ + (tnα)

∣∣+− ,

ρc =
� +
− z × ρRbμdξ + (z × tnα)

∣∣+− ,
(8)

where (x)
∣∣+− ≡ x+ − x− and the geometric

parameters μ, α± are given in Konopińska and
Pietraszkiewicz (2007, A.15–A.17).

In (6), (7), and (8), ρ(x,t) > 0 and c(x,t) are
the referential surface mass and mass production
(densities), l(x,t) and k(x,t) are the surface linear
momentum and angular momentum vectors per
unit area of M, while f(x,t) and c(x,t) are the sur-
face force and couple vectors per unit mass of M,
respectively. Additionally, nν(x,t) and mν(x,t) are
the surface contact stress and couple-stress vec-
tors describing internal mechanical interactions
between the shell parts at the internal boundary
∂Π \∂Mf .

With the help of (6), (7), and (8), the mechan-
ical primitive quantities can also be expressed
through their resultant 2D representatives:

M =
�
Π
ρ da, C =

�
Π
c da, (9)

L =
�
Π

lda, F =
�
Π
ρf da

+
�
∂Π\∂Mf

nν ds +
�
∂Π∩∂Mf

n∗ ds,

(10)

Ao =
�
Π
(k + y × l)

)
da,

To =
�
Π
(ρc + y × f ) da

+
�
∂Π\∂Mf

(mν + y × nν) ds

+
�
∂Π∩∂Mf

(
m∗ + y × n∗

)
ds,

(11)

where n*, m* are just the external resultant
boundary force and couple vectors assigned along
a part ∂Mf ⊂ ∂M, which are statically equivalent
to distribution of external tractions t* applied on
∂B∗

f .
Similarly, the primitive quantities associated

with the 1st and 2nd laws can be expressed with
respect to the reference placement by the follow-
ing integrals:

U =
�

P
ρRu dv, P =

�
P
pdv +

�
∂P

pnda,

H =
�

P
ρRηdv,

(12)

Q =
�

P
ρRr dv −

�
∂P

pnda,

J =
�

P
ρRk dv −

�
∂P

jnda.
(13)

Here u(x,t), η(x,t), r(x,t), and k(x,t) are the 3D
(referential) total energy, entropy, heat supply,
and entropy supply (densities), all per unit mass
of B, p(x,t) is the 3D mechanical power per unit
volume of B, while pn(x,t), qn(x,t), and jn(x,t) are
the 3D contact power, heat, and entropy fluxes
through the boundary ∂P, respectively.

One can again define the resultant surface
fields:

ρu =
� +
− ρRuμdξ, p =

� +
− pμdξ,

pν =
� +
− pnμdξ, ρη =

� +
− ρRημdξ,

(14)

ρr =
� +
− ρRrμdξ − (qnα)

∣∣+− ,

qν =
� +
− qnμdξ,

(15)
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ρk =
� +
− ρRkμdξ − (jnα)

∣∣+− ,

jν =
� +
− jnμdξ.

(16)

In (14), (15), and (16), u(x,t), η(x,t), r(x,t), and
k(x,t) are the resultant total energy, entropy, heat
supply, and entropy supply (densities), all per
unit mass of M, p(x,t) is the resultant mechanical
power per unit area of M, while pν(x,t), qν(x,t),
and jν(x,t) are the resultant contact mechani-
cal power, heat, and entropy fluxes through the
internal boundary ∂Π , respectively.

With the help of (14), (15), and (16), the
quantities (12) and (13) can also be expressed
through their 2D representatives:

U =
�
Π
ρuda, P =

�
Π
pda

+
�
∂Π\∂Mf

pνds +
�
∂Π∩∂Mf

p∗ds,

H =
�
Π
ρηda,

(17)

Q =
�
Π
ρrda −

�
∂Π\∂Mh

qνds

−
�
∂Π∩∂Mh

q∗ds,
(18)

J =
�
Π
ρkda −

�
∂Π\∂Mh

jνds

−
�
∂Π∩∂Mh

j∗ds,
(19)

where p* is the external resultant boundary
power flux assigned along ∂Mf , while q* and
j* are the external resultant boundary heat and
entropy fluxes given along a part ∂Mh ⊂ ∂M,
which are thermally equivalent to distributions
of 3D heat q* and entropy j* fluxes assigned on
∂Bh* ⊂ ∂B*.

By the Cauchy postulate extended to
the 2D thermal fields, the contact surface
quantities nν , mν , qν , and jν can be repre-
sented through the respective surface stress
resultant N(x,t) ∈ V ⊗ TxM and stress couple
M(x,t) ∈ V ⊗ TxM tensors of the first Piola–
Kirchhoff type, as well as the respective

referential heat q(x,t) ∈ TxM and entropy
j(x,t) ∈ TxM flux vectors according to

nν = Nν, mν = Mν, pν = p · ν,
qν = q · ν, jν = j · ν.

(20)

In these relations ν ∈ TxM is the unit vector
externally normal to ∂Π , and TxM is the 2D
vector space tangent to M at x ∈ M.

In what follows one assumes, as is usual in
solid mechanics, that mass is not produced during
the process, C ≡ 0. Hence, the balance of mass
(1)1 is identically satisfied.

If time derivatives of the set functions
L(P, t),Ao(P, t),U(P, t), P(P, t), and H(P, t)
exist for all t ∈ T, one can write

L
∣∣t2
t1
=

� t2
t1

L̇dt, Ao
∣∣t2
t1
=

� t2
t1

Ȧodt,

U
∣∣t2
t1
=

� t2
t1

U̇dt, P
∣∣t2
t1
=

� t2
t1

Ṗdt,

H
∣∣t2
t1
=

� t2
t1

Ḣdt.

(21)

Then using the 2D representations (9), (10), (11),
(17), (18), and (19), one obtains

d

dt

�
Π

lda =
�
Π

l̇da,
d

dt

�
Π
(ρk+y × l)da

=
�
Π

(
ρk̇ + ẏ × l + y × l̇

)
da,

(22)

d

dt

�
Π
ρuda =

�
Π
ρu̇da,

d

dt

�
Π
pda

=
�
Π
ṗda,

d

dt

�
Π
ρηda =

�
Π
ρη̇da,

(23)

and the four remaining laws of mechanics and
thermodynamics for the shell-like body become

�
Π

(
ρf − l̇

)
da +

�
∂Π\∂Mf

nνds

+
�
∂Π\∂Mf

n∗ds = 0,
(24)
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�
Π

{
ρc −(ρk̇ + ẏ×l

)+ y × (ρf−l̇
)}
da

+
�
∂Π\∂Mf

(mν + y × nν) ds

+
�
∂Π∩∂Mf

(
m∗ + y × n∗

)
ds = 0,

(25)
�
Π
(ρu̇− p) da −

�
∂Π\∂Mf

pνds

−
�
∂Π∩∂Mh

p∗ds −
�
Π
ρrda

+
�
∂Π\∂Mh

qνds+
�
∂Π∩∂Mh

q∗ds=0,

(26)

�
Π
ρη̇da −

�
Π
ρkda

+
�
∂Π\∂Mh

jνds +
�
∂Π∩∂Mh

j∗ds ≥ 0.

(27)

In what follows one assumes that M be a reg-
ular geometric surface, so that any kinks, branch-
ings, and self-intersections are excluded. One
also assumes that all surface fields discussed here
are smooth in Π .

To (24), (25), (26), and (27) with (20), one can
apply the surface divergence theorems:

�
∂Π

a · ν ds =
�
Π

Div a da,

�
∂Π

Sν ds =
�
Π

Div S da,

(28)

�
∂Π

a × Sν ds =
�
Π

{
a × Div S

+ ax
[
S(Grad a)T − (Grad a)ST

] }
da,

(29)

valid for any a(x,t) ∈ TxM and S(x,t) ∈ V ⊗ TxM,
where the surface gradient and divergence opera-
tors with respect to x ∈ M are defined as in Gurtin
and Murdoch (1975), and (ax T) ∈ V means the
axial vector of the skew tensor T ∈ V ⊗ V,
TT = − T, so that T = (ax T) × 1, where
1 ∈ V ⊗ V is the 3D identity tensor. Then, after
some transformations one obtains the following
four local laws of resultant shell thermomechan-
ics in the Lagrangian description valid in any Π

∈ M:

Div N + ρf = l̇,

Div M + ax
(
NF T − FNT

)

+ ρc = k̇ + ẏ × l,

(30)

ρu̇− (p + Div p)− (ρr − Div q) = 0, (31)

ρη̇ − (ρk − Divj) ≥ 0, (32)

where F = Grad y ∈ V ⊗ TxM is the surface
deformation gradient.

The corresponding dynamic and thermal
boundary conditions are

n∗ −Nν = 0, m∗ −Mν = 0,

p∗ − p · ν = 0 along ∂Mf ,
(33)

q∗ − q · ν = 0, j∗ − j · ν = 0 along ∂Mh.
(34)

The relations (30), (31), (32), (33), and (34)
are formally exact implications of the global laws
of continuum thermodynamics (1) and (2), with
(21) and 2D representations (9), (10), (11) and
(17), (18), (19), for the shell-like body repre-
sented during motion by the material base surface
M(t), which in the reference placement is M.

Modified Resultant Energy Balance

It was noted in Pietraszkiewicz (2011) that during
the through-the-thickness integration, some part
of the 3D mechanical power following from the
Piola stress tensor P acting on surfaces in B
parallel to M as well as from self-equilibrated
distributions across the shell cross section of
P, body forces b, and boundary tractions t* is
not accounted for. In fact, Pietraszkiewicz et
al. (2006) proved explicitly that the 3D stress
power can be expressed through the resultant
2D stress power plus an additional stress power
not expressible through N, M. As a result, one
can write the resultant 2D balance of mechanical
energy symbolically as Pe − Se = Ke, where
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indices e mean that these quantities are effective
quantities calculated using only the surface fields
defined on the material base surface. In particular,
if S and Se are given through their 2D represen-
tatives, then

S =
�
Π
σda, Se =

�
Π
σeda, σe < σ.

(35)

In continuum mechanics, the total energy
U(P, t) is often decomposed into the kinetic
energy K(P, t) and the internal energy E(P, t):

U = K+ E, E =
�

P
ρRεdv=

�
Π
ρεda,

ρε =
� +
− ρRεμdξ.

(36)

On the other hand, the mechanical power P(P, t)
can be related to K by P = K̇ + S. Then
the balance of energy (2)1 can be stated in the
alternative simpler form:

Ė = S+Q, or E
∣∣t2
t1
=

� t2
t1

(
S+Q

)
dt.

(37)

From (37) follows the simpler form of local,
resultant balance of energy

ρε̇ − σ − (ρr − Div q) = 0. (38)

Thanks to Libai and Simmonds (1983, 1998),
Chróścielewski et al. (2004), and Pietraszkiewicz
et al. (2006), the integrand of Se can also be given
in the following coordinate-free form:

σe = N ·Eo +M·Ko, (39)

E = JF −QI , K = CF −QB, (40)

Eo = Q
d

dt

(
QTE

)
= Grad υ −ΩF ,

Ko = Q
d

dt

(
QTK

)
= Grad ω.

(41)

In definitions (40) of the natural surface stretch
E(x,t) and bending K(x,t) tensors, I ∈ V ⊗ TxM
and J ∈ V ⊗ TyM(t) are the inclusion operators
at x ∈ M and y ∈ M(t) (see Gurtin and Murdoch
1975); B ∈ V ⊗ TxM and C ∈ V ⊗ TyM(t)
are the structure tensors of the shell in the
reference and actual placement, respectively;
and F ∈ TyM(t) ⊗ TxM is the tangential surface
deformation gradient such that dy= Fdx, F= JF.
The co-rotational time derivative (.)o is defined
in (41) through the rotation tensor Q = di ⊗ ti,
QT = Q−1, det Q = +1, where di(x,t) and ti(x),
i = 1,2,3, are the orthonormal base vectors
(directors) in the actual and reference placement,
respectively. Moreover, now

u = y − x, υ = ẏ = u̇,

ω = ax
(
Q̇QT

)
, Ω = ω × 1,

(42)

where u(x,t) is the surface translation vector and
Q(x,t) is the surface rotation tensor. The fields y
(or u) and Q are independent kinematic variables
of the shell motion. Thus, the complementary to
(33) displacement boundary conditions are

y∗−y= 0, Q∗−Q= 0 along ∂Md=∂M\∂Mf .
(43)

In the resultant balance of energy (38), the
resultant stress power σ is required, while only
its effective part σ e is available in (39). Use
of σ e in place of σ in (38) as in Simmonds
(1984, 2012) introduces undefinable error into
the resultant energy balance (38). To compensate
this error, one can introduce an additional stress
power W(P, t) of the shell-like body, called here
the interstitial working after Dunn and Serrin
(1985), such that S = Se+W. For anyΠ ⊂M the
interstitial working may be represented locally as

W =
�
∂Π
wνds =

�
Π

Div wda, (44)

where wν(x,t) is the surface contact interstitial
working (density) and w(x,t) ∈ TxM is the corre-
sponding surface interstitial working flux vector
such that wν =w · ν, so that now σ = σ e +Div w.
Then the local, resultant balance of energy (38) is
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modified into

ρε̇ − (N ·Eo +M·Ko + Div w
)

− (ρr − Divq) = 0.
(45)

The resultant equation (45) can now be
regarded as an exact implication of the global
3D balance of energy (37).

Modified Resultant Entropy
Inequality

The local resultant entropy inequality in the form
(32) is entirely decoupled from other local resul-
tant balance laws (30) and (45).

In continuum thermodynamics, coupling of
the 2nd law (2)2 with other balance laws (1)2,3 and
with (2)1 is achieved by introducing the absolute
3D temperature field θ (x,t) > 0, through which
the fields k(x,t) and jn(x,t) in (13)2 are related
to those r(x,t) and qn(x,t) in (13)1. In rational
continuum thermomechanics, these relations are
taken as k = r/θ and jn = q · n/θ . The 3D entropy
inequality in the form

�
P
ρRη̇dv ≥

�
P
ρR

r

θ
dv −

�
∂P

q · n
θ

da

(46)

is usually called the Clausius–Duhem inequality;
see Truesdell and Toupin (1960) and Truesdell
(1984).

Three different 2D temperature fields appear
naturally in shell thermodynamics: a reference
temperature associated with the base surface
M and two temperatures of the upper and
lower shell faces M+ and M−. Postulating
some reasonable relations between the three
surface temperatures, one can reduce the
number of independent 2D temperature fields
to two or to one, whichever is appropriate. In
particular, Murdoch (1976a) proposed to use
only one common temperature field associated
with M, and this approach has recently been
used by Eremeyev and Pietraszkiewicz (2009).
Temperatures of the upper and lower shell
faces as independent fields were used by Zhilin

(1976) and Eremeyev and Zubov (2008), Naghdi
(1972) and Green and Naghdi (1979) used
the thickness-averaged temperature and its
derivative in the transverse normal direction
evaluated on M as independent fields, while
Simmonds (2012) used the maximal and minimal
temperatures across the thickness and introduced
their average and difference temperatures as
independent variables. Recently Eremeyev and
Pietraszkiewicz (2011) developed the resultant,
thermomechanic, quasistatic model of phase
transitions in shells, where the referential mean
temperature and its deviation suggested by
Murdoch (1976b) were used. Any such proposal
leads to a slightly different structure of the
thermodynamic initial-boundary value problem
for shells. In particular, for two independent 2D
temperature fields, one needs two independent
2D energy balance equations. Since the shell
thermodynamic theories mentioned above are
not entirely resultant ones, they introduce an
indefinable error into the 2D energy balance and
entropy inequality.

In this entry the surface mean referential tem-
perature θ (x,t) is defined by

1

θ
= 1

2

(
1

θ+
+ 1

θ−

)
,

1

θ+
=1

θ
−1

2

(
1

θ−
− 1

θ+

)
,

1

θ−
= 1

θ
+ 1

2

(
1

θ−
− 1

θ+

)
,

(47)

where θ+ and θ− are values of temperature
on the upper and lower shell faces M+ and
M−, respectively. The use of so defined θ itself
does not introduce any approximation. Then the
through-the-thickness integration in (46) with
(47) allows one to represent the Clausius–Duhem
inequality in the resultant form:

�
Π

{
ρη̇ − ρ

( r
θ
+ s
)
+ 1

θ
Div q

− 1

θ2 q · g + Div s

}
da

+
�
∂Π∩∂Mh

{
q∗

θ∗
+ s∗ −

(qν
θ
+ sν

)}
ds ≥ 0,

(48)
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where

g = Grad θ ∈ TxM,
ρr =

� +
− ρRrμdξ − (q · nα)

∣∣+− ,
(49)

ρs =
� +
−

(
1

θ
− 1

θ

)
ρRrμdξ

+ 1

2

(
1

θ−
− 1

θ+

)
(q · nα)

∣∣+− ,
(50)

qν = q · ν =
� +
− q · n∗ μ dξ,

sν = s · ν =
� +
−

(
1

θ
− 1

θ

)
q · n∗μdξ,

(51)

q∗ = q∗ · ν =
� +
− q∗ · n∗ μ dξ,

s∗ = s∗ · ν =
� +
−

(
1

θ∗
− 1

θ∗

)
q∗ · n∗μdξ,

(52)

and the geometric parameters μ, α±, n±, n∗ are
given by Konopińska and Pietraszkiewicz (2007,
A.15–A.17).

With definitions (49), (50), (51), and (52), the
relations between the resultant fields appearing in
(31), (32), and (34) become

k = r

θ
+ s, j = q

θ
+ s, j∗ = q∗

θ
+ s∗.

(53)

The extra surface fields s, s, s∗ in (53) take
into account the extra surface heat and entropy
supplies following from nonuniform distribution
across the shell thickness of the temperature field
θ , which now enters (48) only through its value
θ on the base surface M. Presence of the extra
fields in (48) assures that the resultant form of
Clausius–Duhem inequality (48) still remains an
exact implication of the 3D principle (46).

With usual continuity assumptions, the local
form of (48) is

ρη̇ − 1

θ
(ρr − Div q)− ρs + Div s

− 1

θ2 q · g ≥ 0 in Π ⊂ M,
(54)

q∗

θ∗
+ s∗ −

(q

θ
+ s
)
· ν ≥ 0 along ∂Mh. (55)

One can solve the exact, resultant balance of
energy (45) for ρr − Div q and use the result in
(54), which gives

θρη̇ − ρε̇ + (N ·Eo +M·Ko + Div w
)− θρs

− 1

θ
q · g + θ Div s ≥ 0 in Π ⊂ M.

(56)

Upon introducing the surface free energy
(density) ψ(x,t) by ψ = ε − θη, one has
θη̇ − ε̇ = −ψ̇ − θ̇η, and (56) takes the final
form

− ρψ̇−θ̇ρη+N ·Eo +M·Ko +Div w− θρs

− 1

θ
q · g + θ Div s ≥ 0 in Π ⊂ M.

(57)

The local resultant 2D entropy inequality (57)
can now be regarded as an exact implication of
the global Clausius–Duhem inequality (46) as
well.

Remarks on Constitutive Equations

The local resultant 2D balance laws (30) and
(45) and the inequality (57) are expressed through
16 fields, which together form the shell ther-
momechanic process over the domain M × T.
Different groups of the fields play different roles
in the process. The fields y, Q, θ constitute the
basic thermo-kinematic independent field vari-
ables of the initial-boundary value problem of
shell thermomechanics. That only seven scalar
fields can be taken as independent field variables
here follows from the fact that there are only
seven scalar resultant field equations (30) and
(45) to determine them. The fields N, M, q, ε, η,
w, s, s have to be specified by appropriate mate-
rial constitutive equations and the fields l, k by
appropriate kinetic constitutive equations. When
all the fields above are settled, the fields f, c, r
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are supposed to be adjusted so as to satisfy the
2D balance equations (30) and (45). Every such
process is called an admissible thermomechanic
process; it is completely determined by the evo-
lution of deformation and temperature of the shell
base surface.

In the resultant shell thermomechanics,
specific forms of the constitutive equations can
be established by two main approaches. The
direct approach consists in developing, for a
restricted class of shell-like bodies, a general
structure of 2D constitutive equations satisfying
some reasonable physical and mathematical
requirements. Then one has to devise a suitable
sets of experiments from which the appropriate
material constants or functions entering the
constitutive equations can be established. In the
derived or deductive approach, one has to devise
suitable mathematical methods allowing one to
deduce the 2D constitutive equations for shells
as an exact, asymptotic of otherwise rational
consequence of a given set of corresponding 3D
constitutive equations of the parent theory.

Due to the limited space of this entry, the inter-
ested reader should consult discussion given in
Pietraszkiewicz (2011) on constitutive equations
of the refined resultant 2D thermomechanics of
shells. There one can find some general require-
ments which the shell material constitutive equa-
tions must obey. Several admissible forms of the
response functionals, in which also the possibility
of longer-range spatial interactions is accounted
for, have been proposed for constitutive equations
of viscous shells with heat conduction and of
thermoelastic shells. The procedure of Coleman
and Noll (1963) has been used to analyze restric-
tions imposed by our refined entropy inequality
(57) on the 2D forms of constitutive equations.
Finally, several novel forms of the 2D kinetic
constitutive equations obtained with the help of
heuristic arguments have been provided.
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Synonyms

Surfaces of strong discontinuity in one-
dimensional nonlinearly elastic media

Definition

Ray expansions approach for studying the sur-
faces of strong and weak discontinuity propagat-
ing in nonlinear elastic media.

Introduction

A method for solving dynamic problems of
continuous media in the form of power series
with respect to time behind the moving wave
fronts propagating in a medium was suggested
in Achenbach and Reddy (1967). Subsequently
this approach was called the ray method. For
the same purpose, power series in terms of
the ray coordinate was utilized, measured from
the surface of discontinuities (Babicheva et al.
1973). The effectiveness of the ray method for
investigating the features of boundary waves
propagating in deformable media was later
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confirmed by a number of publications, a review
of which is given in Rossikhin and Shitikova
(1995a) and Podil’chuk and Rubtsov (1986). In
the case, when the shock wave (surface of strain
discontinuity) is the leading front of the boundary
perturbations propagating in the medium, the
approach proposed in Babicheva et al. (1973)
turned out to be inapplicable. A corresponding
generalization of the ray method to such a special
case was proposed by Rossikhin (1991) and
Burenin and Rossikhin (1991). The latter case
will be considered in this entry.

In order to construct the solution, the proper-
ties of shock waves in the deformable medium,
the features of their appearance and the laws of
propagation are need to be formulated and deter-
mined. For the purpose of describing the essence
of the ray method, the one-dimensional case of
plane shock waves in the elastic medium will be
considered, and for one-dimensional cylindrical
surfaces of strain discontinuities certain qualita-
tive features will be specified.

Plane Shock Waves
in an Incompressible Elastic Medium

Let us consider the simplest case of plane one-
dimensional waves appearing in an incompress-
ible elastic isotropic medium under conditions
of its shock loading. In the Euler’s spatial vari-
ables xi, the Almansi strain tensor components dij

dependence of the stresses σ ij is determined by
the Murnaghan formula

σij = −pδij + ∂W

∂dik

(
δkj − 2dkj

)
, (1)

where dij = 1
2

(
ui,j + uj,i − uk,iuk,j

)
, ui, j =

∂ui/∂xj, ui are the components of the dis-
placement vector, W

(
dij
) = W (I1, I2) =

(a − μ) I1 + aI 2 + bI 2
1 − κI1I2 − θI 3

1 + cI 4
1 +

dI 2
2 + kI 2

1I2 + . . . , I1 = dii, I2 = djk dkj, μ
is the shear modulus, a, b, κ , θ , c, d, and k are
the elastic constants of higher orders, p is an
unknown function of the additional hydrostatic
pressure, and δkj is the Kronecker’s symbol.
Since I1 ≤ 0 and I2 ≥ 0 for the incompressible

medium, the minus sign is chosen before some
terms in the expansion of the elastic potential
function W(I1, I2) in the power series in order all
the elastic constants to be positive.

Let us consider a half-space x1 > 0 assuming
that its deformations are homogeneous and one-
dimensional. Then due to the incompressibility,
from the displacement gradient tensor compo-
nents ui, j only u2, 1 and u3, 1 are differ from zero.
According to (1), in this case it follows

σ11 = −p −
∞∑
k=1

βkm
k,

σi1 = ui,1
∞∑
k=0

γkm
k (i = 2, 3) ,

(2)

where m = u2
2,1 + u2

3,1, β1 = μ + a, . . . ,
γ0=μ, γ1 = a + b + d + κ, . . .

Let us define the conditions for the appearance
of surfaces of discontinuities in strains under
the action on the medium on its boundary plane
x1 = 0. For this purpose, the dynamic conditions
of compatibility could be rewritten as

[
σij
]
νj =ρ+

(
υjνj−G

)
[υi] , υi= ∂ui

∂t
+vjui,j ,

(3)

where [f ] = f+ − f−, square brackets denote the
jump in the value on the surface of discontinuity,
indices «+» and «–» denote that the values are
calculated immediately ahead of and behind the
surface of the discontinuity, respectively, νj are
components of the unit vector normal to the
surface of discontinuity, and G is the velocity of
the discontinuity surface. In the case under con-
sideration, the relations take more simple form:

[σ11] = 0, [σi1] = −ρG [υi] , [υi] = −Gτi,

τi =
[
ui,1
]
, [υ1] = 0,

where the index i takes on the magnitude either
i = 2 or i = 3. The first relationship in (3) is used
to calculate the discontinuity in the density [ρ],
while others with due account for (2) are reduced
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to the set of two equations with respect to three
unknowns, namely: τ 2, τ 3, and G:

τi

∞∑
k=0

γkm
k + (ui,1 − τi

)
[m]

∞∑
k=1

γk

k∑
n=1

(−1)n−1

× Cnkmk−n[m]n−1 = ρG2τi .

(4)

The signs «+» at ui, 1 and m are omitted,
since only the values of these variables calculated
ahead the plane of discontinuities are further
utilized. Multiplying the first equation in (4) at
i = 2 by τ 3 and the second at i = 3 by τ 2, and
then subtracting one from the other, the condi-
tions for the solvability of (4) as the conditions
for the existence of the corresponding planes of
discontinuities are obtained

{
τ3
(
u2,1 − τ2

)− τ2
(
u3,1 − τ3

)}
[m] = 0. (5)

At [m] �= 0, from (5) it follows that

u3,1

u2,1
= τ3

τ 2
. (6)

Without loss of generality, it is assumed that
u2, 1 �= 0 ahead of the plane of discontinuity,
while u3, 1 = 0. This is achieved by an appropriate
choice of the Cartesian coordinate system. Then
τ 2 �= 0 and τ 3 = 0 on the plane of discontinuity,
and behind the shock wave u3, 1 remains zero.
The plane defined by the x1- and x2-coordinate
axes turns out to be the plane of polarization of
the shock wave. A plane-polarized shock wave,
for which conditions (6) are valid, is called the
load wave. For its velocity G from (4) it follows

G=G1=
{
ρ−1

∞∑
k=0

γkm
k+(ρτ 2)

−1 (u2,1−τ2
)

× [m]
∞∑
k=0

γk

k∑
n=1

(−1)nCnkm
k−n[m]n−1

}1/2

.

(7)

In addition to the solvability condition of the
set of equations in discontinuities mentioned

above, another limitation on the existence
of shock waves in an elastic medium is the
thermodynamic compatibility condition for
discontinuities. In gas dynamics it is known as
the Zemplen theorem (Chernyii 1988), which
prohibits the existence of shock waves of
expansion. The thermodynamic compatibility
condition for an elastic medium has the form
(Burenin and Chernyshov 1978)

− 1

2
ρ
(
υjνi −G

)
[υi] [υi] + σij [υi] νj

− (υjνj −G
)

[W ] ≥ 0.

The thermodynamic meaning of this inequal-
ity lies in the fact that the shock wave even in
the elastic medium is an irreversible process, and
the entropy on it must increase (the discontinuity
in entropy is less than zero). In the case of the
considered unloading shock wave, this inequality
is reduced to the form

∞∑
k=2

2k∑
n=3

(n
3
− 1
) 2k!(−1)n

n! (2k − n)! s
2k−nτn ≥ 0, (8)

where s = u2, 1, τ = τ 2 = [u2, 1], τ 3 = 0,
u3, 1 = 0.

Inequality (8) is certainly fulfilled if the
medium is not deformed ahead of the plane of
discontinuity. When the strains exist ahead of the
shock wave of loading (s = u2, 1 �= 0), then the
sufficient condition for fulfilling the inequality
(8) is s · τ ≤ 0. This means that the loading shock
wave necessarily increases the preliminary shear
strain.

The condition for the existence of shock waves
(5) represents another opportunity when [m] = 0.
In this case, the intensity of the preliminary shear
in the medium is not changed on the shock wave,
and only the shear strain direction varies abruptly
in accordance with the produced impact. Such a
shock wave is called either a neutral wave or a
shock wave of circular polarization (Kulikovskii
and Sveshnikova 1982). The velocity of propa-
gation of such a plane of discontinuity is found
from (4)
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G = G2 =
√√√√ρ−1

∞∑
k=0

αkmk,

α1 = μ
2
, α2 = γ

4
, . . .

(9)

According to (9) and (7), the velocity of the
load wave is always lager than the velocity of
the neutral shock wave. The neutral shock wave
is isentropic, since the thermodynamic compat-
ibility condition for discontinuities becomes the
identity on this wave. On this plane of discontinu-
ity, the discontinuity in the additional hydrostatic
pressure is absent, i.e. [p] = 0, in contrast to the
load discontinuity plane.

It is convenient to illustrate the mechanical
properties of shock waves by solving the self-
similar problem of impact loading of an elastic
incompressible half-space x1 > 0 subjected to
prestrains. Let us suppose that the load acting
on the boundary plane x1 = 0 is constant, and
only at the moment of time t = 0 its value
changes jump-wise. This is equivalent to the
fact that up to the moment of time t = 0
everywhere in the elastic incompressible body
u2, 1 = s20 = const, u3, 1 = s30 = const, p= p0 =
const, and after that they are changed on the
boundary x1 = 0 to the values u2, 1 = s21 = const,
u3, 1 = s31 = const, and p = p1 = const. Let
us trace the peculiarities of the propagation
of the considered boundary perturbation. For
this purpose let us introduce the variables ξ ,
u(ξ ), υ(ξ ):

ξ = x1

ct
, u (ξ) = u2

ct
,

υ (ξ) = u3

ct
, c2 = μρ−1.

The equations of motion in terms of such
variables are reduced to the set of two ordinary
differential equations

(
ρc2ξ2 + h0 + h1

(
u′
)2)
u′′ + h1u

′υ ′υ ′′ = 0,

h1u
′υ ′u′′ +

(
−ρc2ξ2 + h0 + h1

(
υ ′
)2)
υ ′′ = 0,

(10)

where h0 =
∞∑
k=0
γkm

k, h1 = 2
∞∑
k=1
kγkm

k−1,

m = (u′)2 + (υ ′)2.
The set of Eqs. (10) has a trivial solution

u
′ = s2 = const and υ

′ = s3 = const if its
determinant is different from zero. A nontrivial
solution is possible if the determinant of the
system (10) is equal zero

(
ρc2ξ2 + h0 + h1

(
u′
)2)

×
(
−ρc2ξ2 + h0 + h1

(
υ ′
)2)− (h1u

′υ ′)2 = 0.

(11)

Direct verification shows that (11) becomes an
identity if ξ and m are related as

ξ2=1 +
(
ρc2
)−1 ∞∑

k=1

γk (1 + 2k)mk=1 + f (m).

Substituting this relationship into (10) leads
to the fact that within the area of the nontrivial
solution the following relationship is valid:

υ ′

u′
= u3,1

u2,1
.

Therefore, in this area the direction of the
preliminary shear is not changed. Otherwise, the
area of the nontrivial solution (10) could be
only a plane-polarized simple Riemann wave.
The planes bounding the area of the centered
wave are the planes of discontinuity in acceler-
ations. Position of the head and back fronts of
the simple wave are given by the constant values
of the variable ξ : ξ+ = (1 + f (m0))

1/2, and
ξ− = (1 + f (m1))

1/2, where m0 is the magnitude
of the shear strains ahead of the front of the
centered wave, and m1 is their value behind the
rear front. Since ξ+ > ξ−, then the condition for
the existence of the simple wave is the inequality
m1 < m0. Therefore, the simple wave leads to
the plane-polarized decrease in shear prestrains.
When m1 > m0, this Riemann wave must be
replaced by a shock loading wave, which varies
jump-wisely the value of the shear strains from
m0 to m1. This case is quite similar to that in
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gas dynamics, with the only difference that here
deformations of shape change propagate in the
medium, while in the gas dynamics the volume
deformations do.

Another difference from the gas dynamics is
that Eq. (11) has one more root ξ2 = 1 + (ρc2)−1

h0. Its substitution into (10) leads to the necessity
to consider that m

′
(ξ ) ≡ 0, whence it follows

a single value of the self-similar variable ξ . It
corresponds to the position of the central shock
wave (9). Unlike the shock wave of loading, the
simple central wave does not correspond to a neu-
tral shock wave. Consequently, a change in the
direction of the preliminary shear in accordance
with the impact loading could occur only jump-
wisely on the neutral shock wave.

Now it is not difficult to construct a solu-
tion of the given problem. Depending on the
edge effect, two cases could take place: when
m0 = s2

20 + s2
30 < m1 = s2

21 + s2
31 and

when this inequality has an opposite sign. In the
first case, the front of perturbations propagating
in the medium is the shock wave of loading.
The strain discontinuities on it must satisfy the
condition of plane-polarization of the given plane
of discontinuity, i.e. τ 2 = [u2, 1] = s20 − s2 and
τ 3 = [u3, 1] = s30 − s3 satisfy the condition (6),
but since the intensity of the shear could not be
changed further, then s2 and s3 are connected
by the relationship m1 = s2

21 + s2
31 = s2

2 + s2
3

(s2 �= s21 and s3 �= s31). On the neutral shock
wave, τ 2 = s2 − s21 �= 0 and τ 3 = s3 − s31 �= 0,
but [m] = 0. At m0 > m1, the only difference is
that within the area of the simple polarized wave
the values u2, 1 and u3, 1 vary continuously from
their magnitudes s20 and s30 to new magnitudes
s2 and s3. The neutral shock wave (the wave
of circular polarization) unfolds the preliminary
shearm1 = s2

2 + s2
3 in accordance with the action

produced, i.e. s2
2 + s2

3 = s2
21 + s2

31..
It should be noted that the mentioned

above qualitative features for the plane one-
dimensional waves are valid for one-dimensional
cylindrical waves as well. If the components of
the displacement vector of an incompressible
elastic medium in the cylindrical system of
coordinates r, ϕ, z are represented by the
dependences

ur = r − r cosψ (r, t) , uϕ = r sinψ (r, t) ,

uz = u (r, t) ,

then the analogue of (6) for the shock loading
wave is the proportion

rψ,r

u,r
= τψ
τz
, τψ = [rψ,r

]
,

τz =
[
u,r
]
,
∂ψ

∂r
= ψ,r .

(12)

Applying the dynamic compatibility con-
ditions for the discontinuities, we can obtain
expressions for the velocities of the shock loading
wave and the neutral elastic wave, respectively, as

G1 =
(
h− [h] + u,r

τz
[h]

)1/2

,G2 = h1/2, (13)

where h = c2(1 + χm2 + . . . ), m = (rψ ,r)2 +
(u,r)2, χ = (b − μ)/2μ, and multi dots denote
non-written terms with higher powers of m.

Plane Shock Waves in a Compressible
Elastic Medium

When an elastic medium is compressible, then
along with the deformations of shape change as
a result of the boundary impact action, the defor-
mations of volume change will also propagate
along the medium. The last ones were previously
excluded for the simplicity due to the assumption
of the incompressibility of the medium. Now
let us indicate the main qualitative features in
the propagation of boundary shock perturbations
when the compressibility of the medium is taken
into account. In this case, the elastic potential
could be expanded in the following power series:

W = λ
2
I 2

1 + μI2 + lI 1I2 +mI 3
1 + nI 3 + ξI 2

2

+ ηI 2
1 I2 + κI2I3 + χI 4

1 + . . . ,
(14)

where I1 = dij, I2 = djk dkj, I3 = dij djk dki.
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In Eq. (14) λ, μ, l, m, n, ξ , η, κ , χ are the adi-
abatic constants of the elastic medium, which are
calculated under the conditions of constancy of
entropy rather than temperature, as in the statics
of the nonlinear theory of elasticity. Considering
(14), the stress is calculated by the Murnaghan
formula

σij = ρ

ρ0

∂W

∂dik

(
δkj − 2dkj

)
, (15)

where ρ0 is the density of the medium in its free
state, and ρ is the current density. In the sim-
ple case of plane one-dimensional shock waves,

calculating the components of the stress tensor
with the help of (14) and (15) and substituting
them into the dynamic compatibility conditions
for discontinuities (3), the previously obtained
results could be easily generalized. It turns out
that the ahead front of the boundary perturba-
tions propagating into the medium is a quasi-
longitudinal plane-polarized shock wave. Assum-
ing that the system of coordinate axes is chosen
so that the pre-strains are connected only with
nonzero components u1, 1 and u2, 1 of the dis-
placement gradient tensor, then for such a plane
of discontinuities the following relationships are
valid:

τ1 =
[
u1,1
] �= 0, τ2 =

[
u2,1
] �= 0, τ3 =

[
u3,1
] = 0, τ2 = δu2,1τ1 + . . . .

G = G1 = c1

{
1 + a1u1,1 + c−1

1 u̇1 + a2τ + 1
4

(
6θ
λ+2μ − 2a1 − 1

)
u2

1,1

− 1
2

(
3θ
λ+2μ − 2a1 + 2a1a2 − 1

)
u1,1τ + 1

2

(
θ

λ+2μ + a2 − a2
2
2 − 1

2

)
τ 2

+c−2
1 (u̇1)

2 + (a2 + 1) c−1
1 u̇1τ +

(
a1 + 3

2

)
c−1

1 u̇1u1,1 + 1
2
ϕ+2βδ
λ+2μ u

2
2,1 + . . .

}
,

(16)

where

u̇1 = ∂u1

∂t
, a1 = α(λ+ 2μ)−1,

a2 = −1

2
(a1 − 1) , α = 3 (l +m+ n)

− 7

2
(λ+ 2μ) , β = l

2
+ 3

4
η − λ

2
− 2μ,

δ = 2β

λ+ 2μ
, ϕ = 2ξ + η + 3

2
κ − 11

2
l − 3m

− 27

4
n+ 5

2
λ+ 6μ, θ = 4 (χ + ξ + η + κ)

− 12 (l +m+ n)+ 9

2
(λ+ 2μ) ,

c2
1 = (λ+ 2μ) ρ−1

0 .

Hence it follows that on such a plane of
discontinuities the pre-shear decreases. Behind
the given quasi-longitudinal plane-polarized
wave (only u2, 1 is also nonzero behind the plane
of discontinuity), it follows the analogue of the
shock loading wave considered earlier. It is also
plane-polarized wave, that is in this case on

this wave τ 3 = 0. This wave is called quasi-
transverse, since τ 1 = β(λ+ 2μ)−1(τ 2 − 2u2, 1),
i.e. the longitudinal discontinuity τ 1 is a small
value in terms of the small components of the
displacement gradient tensor in comparison
with τ 2. The velocity of the given plane of
discontinuities is written in the form

G = G2 = c2

{
1 + b1u1,1 + c−1

2 u̇1

+
(
ϕ

2μ
+ b2 − b

2
2

2
− 1

4

)
u2

1,1

+
(
γ

2μ
+ 2b2

)
u2

2,1 − 3b1u2,1τ2

+b1τ
2
2 + (b1 + 1) u1,1c

−1
2 u̇1

+c−2
2 (u̇1)

2 + . . .
}
,

(17)

where γ = ξ − l − 3
2n + λ

2 + μ, b1 = γ
2μ −

β2

μ(λ+μ) , b2 = βμ−1 + 1, c2
2 = μρ−1.

The change in the direction of the preliminary
shear in accordance with the impact produced
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on the half-space, as before, could occur only
on a neutral shock wave. The existence of such
a plane of discontinuities is also the corollary
from the dynamic compatibility conditions for
discontinuities (3). In this case, the neutral shock
wave is the transverse wave, since on it τ 1 = 0,

τ 2 �= 0, and τ 3 �= 0, while
[
u2

2,1 + u2
3,1

]
= 0. The

velocity of its propagation is calculated as

G = G3 = c2

{
1 + b2u1,1 + c−1

2 u̇1

+ 1

4

(
2ϕ

μ
+ 4b2 − 2b2

2 − 1

)
u2

1,1

+ γ

2μ
u2

2,1 + (b1 + 1) u1,1c
−1
2 u̇1

+ c−2
2 (u̇1)

2 + . . .
}
.

(18)

It could be shown, as before, that the
neutral shock wave is isentropic. For the quasi-
longitudinal shock wave, the thermodynamic
restriction on possible discontinuities is reduced
to the following: the production of entropy on the
quasi-longitudinal shock wave is independent
of the preliminary deformed state, and the
condition for the growth of entropy in the first
approximation in terms of small u1, 1 and u2, 1 is
reduced to the inequality

(
l +m+ n− 3

2
(λ+ 2μ)

)
τ 3

1 ≤ 0 (19)

Constants l, m, n, as a rule (Lourier 1980),
are negative. Then we have an analogue of the
Zemplen theorem in gas dynamics about the
existence of only compression shock waves. As
follows from (19), the production of entropy on
the quasi-longitudinal shock wave has a third
order of smallness in deformations. On the quasi-
transverse shock wave, this order increases up to
the fourth order, therefore it is impossible to draw
a definite conclusion due to the lack of qualitative
information on fourth-order elastic moduli ξ , η,
κ , and χ . The same reason makes it necessary,
when solving specific boundary-value problems,
to answer preliminary (in contrast to the case
of an incompressible medium) a question about
what is larger G1 or G2.

Ray Method in the Dynamics of Shock
Waves

The peculiarities in the construction of approx-
imate solutions of shock deformation problems
with the help of the ray method could be consid-
ered for the simplest case of the oblique impact
on an undeformed elastic half-space x1 = x > 0
. It is supposed that starting from the moment of
time t = 0, as a result of the impact, the boundary
plane moves according to the law

u1|
x=

∞∑
n=1

1
n! gntn

=
∞∑
n=1

1

n!gnt
n,

u2|
x=

∞∑
n=1

1
n!hntn

=
∞∑
n=1

1

n!hnt
n.

(20)

Relationships (20) imply that u1(x, t) and
u2(x, t) on the boundary could be represented
in terms of power series with respect to the
time t, wherein g1 > 0 and h1 > 0. The first
of these relationships is connected with the fact
that immediately at the instant t = 0 a shock
wave �1 is generated, which is the longitudinal
wave due to the absence of preliminary strains.
The requirement h1 > 0 could be easy fulfilled
by the appropriate choice of the system of
coordinates, essential only the condition of
h1 �= 0. The second relationship in (20) describes
the propagation of a quasi-transverse shock
wave �2 from the boundary of the half-space,
which is generated at the moment of time
t = 0. In the area of deformation located
between the planes of discontinuities �1 and
�2, u2 ≡ 0 owing to the fact that �1 is the
longitudinal shock wave. The equation of motion
of the medium in this case is reduced to one
equation

u1,11

(
1 − γ1u1,1 + γ2u

2
1,1 + c−1

1 u1,(1) + . . .
)

− c−2
1

[
u1,(2)

(
1 − 2u1,1 + u2

1,1

)

+2u1,(1)u1,1(1)
(
1 − u1,1

)] = 0,
(21)
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where u1,(1) = ∂u1
∂t
, u1,(2) = ∂2u1

∂t2
, γ1 =

2
(

α
λ+2μ − 1

)
, γ2 = 3 θ

λ+2μ−4 α
λ+2μ+1, γkuk1,1

(k > 2), and . . . indicates the terms γkuk1,1 (k > 2).
From hereafter the symbol u1, (s) denotes the

s-order partial derivatives with respect to time.
Calculating σ 11 according to (14) and (15) and
then substituting it in (3) yield

ξ1

{
G−1

1

(
1 + 1

2
γ1G

−1
1 ξ1

+ θ − α
λ+ 2μ

G−2
1 ξ

2
1 + . . .

)
− c−2

1

}
= 0,

ξ1 =
[
u1,(1)

]
.

(22)

Hence, for the velocity propagation G1 of the
plane of discontinuity �1, the following power
series expansion depending on the intensity of the
discontinuity ξ1 could be written:

G1 = c1

(
1 + α1c

−1
1 ξ1 + α2c

−2
1 ξ1

2 + . . .
)
,

(23)

where α1 = 1
4γ1, α2 = 1

2

(
θ

λ+2μ + 3α2

(λ+2μ)2
−

11
2

α
λ+2μ + 15

4

)
. . .

Differentiatingthe equation of motion (21)
s times with respect to time and writing the
obtained result in the form of discontinuities for
�1 lead to the equation in discontinuities

{
G−2

1

(
1 − γ1G

−1
1 ξ1 +

(
G−2

1 γ2 + c−2
1

)
ξ2

1

+ . . . )− c−2
1

(
1 −G−2

1 ξ
2
1

)}
ξs+2

−
{

2G−2
1

(
1 +G−1

1 γ1ξ1

+
(
G−2

1 γ2 + c−2
1

)
ξ2

1 + . . .
)
− 2c−2

1 G
−1
1 ξ1

(
1 −G−1

1 ξ1

)} δξ s+1

δt
+ ζs = 0,

(24)

where ξ s = [u1, (s)], and

ζs = G−2
1

{
G−1

1
δG1

δt

(
ξs+1 − δξ s

δt

)
− δ

2ξs

δt2

}(
1 + γ1G

−1
1 ξ1 + γ2G

−2ξ2
1 + c−2

1 ξ
2
1 + . . .

)

+ γ1G
−3
1

s−1∑
k=0

Cks

{
ξk+2 − 2

δξk+1

δt
+G−1

1
δG1

δt

(
ξk+1 + δξk

δt

)
+ δ

2ξk

δt2

}(
ξs−k+1 − δξ s−k

δt

)
+ . . .

+ c−2
1

{
2G−1

1

s∑
k=0

Cks ξk+2

(
ξs−k+1 − δξ s−k

δt

)
− 2G−1

1

s∑
k=0

Cks ξk+1

(
ξs−k+2 − δξ s−k+1

δt

)
+ . . .

}
.

When writing the equation in discontinuities
(24), the recursive geometric and kinematic com-
patibility conditions for discontinuities in deriva-
tives of the first (Thomas 1964) and higher orders
(Rossikhin 1991; Bykovtsev and Ivlev 1998) of
a function that is discontinuous on �1 have been
utilized. The theory of such restrictions on possi-
ble discontinuities on a moving surface is devel-
oped in Rossikhin (1991), and Rossikhin and Shi-
tikova (1994) for the case of rectangular Carte-
sian coordinates and generalized to the case of
curvilinear coordinates in Rossikhin (1991) and
Rossikhin and Shitikova (1995b). Note that in

(24) the coefficients ahead of the discontinuity
ξ s + 2 and the delta-derivative of the discontinuity
ξ s + 1 do not change with the increase in s, and
only ζ s is recursively calculated with increasing
in s. Assuming that s could take on the magnitude
s = − 1, Eqs. (22) and (24) could be rewritten as
one equation

Ms+2ξs+2 +Ns+1
δξ s+1

δt
+ ζs = 0. (25)

At s=−1, relationship (25) represents
the dynamic compatibility condition for
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discontinuities, at s = 0 it provides the equation
of motion written in the discontinuities on
�1, and further s denotes the number of
differentiations of the equation of motion. It
is obvious that N0 = 0, N1 = N2 = N3 = . . . ,
M2 = M3 = . . . , and ζ 0 = ζ 1 = 0, wherein
the condition M1 �= M2 = M3 = . . . is the
main difference between the shock wave and
the weak wave (the plane of discontinuities
in accelerations). Relationship M1 = 0 could
be utilized, as follows from (22), to calculate
the velocity of motion G1 of the discontinuity
plane �1, and the velocity of propagation of
perturbations within the medium is calculated
from the condition M2 = 0. If G1 were coincided
with the sound speed, then the first term in (25)
would not exist, and therefore the intensity of the
discontinuity ξ1, as well as ξ2, ξ3 . . . , would be
described by an ordinary differential equation (it
is called the attenuation equation). Such a case
was considered in Achenbach and Reddy (1967)
and Babicheva et al. (1973) and in numerous
publications reviewed in Rossikhin and Shitikova
(1995a). Consequently, the problems when
the ahead front of the boundary perturbations
propagates through the medium in the form of
a shock wave could not be solved using “the
traditional ray method” (Achenbach and Reddy
1967; Babicheva et al. 1973). That is why in
1991 the so-called “nonlinear version” of the
ray method was proposed and developed by
Rossikhin (1991) and Burenin and Rossikhin
(1991), and some examples will be considered
below.

First of all note that from (24) and (25) it is
possible to write recurrent dependences in the

form

δnξ1
δtn

= Fn (ξ1, ξ2, . . . , ξs, ξn+1) ;
ξn+1 = Hn

(
ξ1,

δξ1
δ t
,
δ2ξ1
δ t2
, . . . ,

δnξ1
δ tn

)
.

(26)

An approximate solution in the area of
dynamic deformation behind the plane of
discontinuity �1 could be found in the form
of the ray expansion

u
(1)
1 =−

∞∑
n=1

1

n!ξn
∣∣∣∣∣
t=t∗

(
t − t∗)n, t∗ =

x1∫

0

dΘ

G1 (Θ)
.

(27)

The coefficients of the ray series (27), depend-
ing either on time or on the ray coordinate x1,
remain unknown, but the compatibility condi-
tions for discontinuities are fulfilled for them.
They also must comply with the loading condi-
tions (20). Let us represent the intensity ξ1 of the
shock wave �1 in terms of the power series

ξ1 =
∞∑
k=0

1

k!dkt
k; dk = δ

kξ1

δtk

∣∣∣∣∣
t=0

. (28)

Constants dk should be defined by fulfilling
the initial and boundary conditions of the prob-
lem. The loaded boundary does not belong to the
deformation area between �1 and �2, therefore,
its calculation could be considered after the anal-
ysis of another deformation area located between
the plane �2 and the loaded boundary. Within
this area, along with u1(x, t), the displacement
component u2(x, t) is also non-zero. The equation
of motion in this area is written in the form

(
1 + γ1u1,1 + γ2u

2
1,1 + γ3u

2
2,1 + . . .

)
u1,11 +

(
λ1u2,1 + λ2u1,1u2,1 + . . .

)
u2,11

− c−2
1

{
u1,(2)

(
1 − u1,1

)2 + 2u1,(1)u1,1(1)
(
1 − u1,1

)+ u2
1,(1)u1,11

}
= 0,

(
1 + μ1u1,1 + μ2u

2
1,1 + μ3u

2
2,1 + . . .

)
u2,11 +

(
ν1u2,1 + ν2u1,1u2,1 + . . .

)
u1,11

− c−2
2

{
u2,(2)

(
1 − u1,1

)3 + (2 + u1,(1)u2,1(1) + u2,1u1,(2)
) (

1 − u1,1
)2 + u2

1,(1)u2,1u1,11

+2u2,1u1,(1)u1,1(1)
(
1 − u1,1

)+ u2
1,(1)u2,11

(
1 − u1,1

)} = 0,

(29)
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where

γ3 = ϕ + 3n− 4μ

λ+ 2μ
, λ1 = 2β

λ+ 2μ
,

λ2 = 2 (γ3 − λ1) , μ1 = 2β

μ
− 1,

μ2 = μ−1
(
ϕ − l − 3

4
n+ λ+ 5μ

)
,

μ3 = 3μ−1
(
ξ − l − 3

2
n+ λ

)
,

ν1=2βμ−1 + 1, ν2=2μ−1
(
ϕ + 3

4
n

)
+ 14.

Differentiating Eqs. (29) s times with respect
to time and writing the resulting relationships
in discontinuities on �2 result in the analogue
of (24). Using the recursive geometric and kine-
matic compatibility conditions for discontinuities
(Thomas 1964) yields

As+2ηs+2 + Bs+2ωs+2 +Ds+1
δ ηs+1

δ t

+ Es+1
δ ωs+1

δ t
+ Fs = 0,

Ps+2ηs+2 +Qs+2ωs+2

+ Rs+1
δ ηs+1

δ t
+ Ss+1

δ ωs+1

δ t
+ Ts = 0,

(30)

where ηs =
[
u1,(s)

] ∣∣
Σ2

and ωs =
[
u2,(s)

] ∣∣
Σ2

.
As in Eq. (25) it is assumed that in Eq. (30) s

could take on the magnitudes −1, 0, 1, 2, . . . .
At s = − 1, the set of equations in disconti-
nuities (30) gives the dynamic conditions for the
compatibility of discontinuities (it is the corollary
of (3)). Without writing down the expressions for
the coefficients in (30), it could be noted that they
do not change with the change of s at s = 1, 2,
3, . . . . Only free terms of the set of Eqs. (30)
change recurrently under the growth of s, in so
doing F0 = T0 = 0. Consequently, in the case
when �2 is a weak wave (η1 = ω1 = 0), the set
of Eqs. (30) at s = 0 is found to be homogeneous:

A2η2 + B2ω2 = 0,
P2η2 +Q2ω2 = 0.

(31)

The condition of the equality to zero of the
determinant of (31) makes it possible to calcu-
late the velocity of the surface of accelerations
discontinuities. The subsequent steps with s = 1,
2, 3 . . . allows one to obtain ordinary differential
equations for the coefficients of the ray series.

In the case when �2 is the shock wave
(η1 �= 0 and ω1 �= 0), A1 �= A2 = A3 = . . . ,
B1 �= B2 = B3 = . . . , P1 �= P2 = P3 = . . . ,
and Q1 �= Q2 = Q3 = . . . in Eq. (30), while
the recurrence relations for Fs and Ts involve
the discontinuities ηs + 1 and ωs + 1 and the
discontinuities in the lower orders derivatives,
the δ-derivatives of these discontinuities on �2,
as well as the δ-derivatives of u1, 1 and u1, (1)

calculated immediately ahead of the plane �2.
The velocity of the discontinuity plane �2

could be found using the dynamic compatibility
conditions for the discontinuities as

G = G2 = c2
(
1 + β1u1,1 + u1,(1)

× (1 + u1,1
)+ β2u

2
1,1 + β3ω

2
1 + . . .

)
,

η1 = −G−1
1 δω

2
1 + . . . .

(32)

where

δ = (λ+ μ)−1
(
l

2
+ 3

4
n− λ

2
− 2μ

)
,

β1 = 1

2
μ−1

(
l + 3

2
n− λ− 2μ

)
,

β2= 1

2μ

(
2ξ+η+ 3

2
χ−4l−3m− 15

4
n+ λ

2

)

+ 1

8μ2

(
l + 3

2
n− λ− 3μ

)2

+ 13

8
,

β3 = 1

2μ

{
ξ − l − 3

2
n+ λ

2

−δ
(
l + 3

2
n− λ− 3μ

)}
+ δ

2
.
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At the initial step of calculation, i.e. at s = 0
from Eq. (30) it follows

η2 =
(
λ1δc

−1
2 ω1 − λ2u1,1

)
c−1

2 ω1ω2 + . . . ;
δω2

δ t
= 1

2
(δ + 2μ3) c

−2
2 ω

2
1ω2 + . . . ;

δη2

δ t
= −2δc−1

2 ω1
δω1

δ t
+ . . . .

(33)

Considering (33) and putting s = 1, 2, 3 . . . in
(30) yield

ηs+1 = $s+1 (ω1, ω2, . . . , ωs+1) ,

δηs

δ t
= �s (ω1, ω2, . . . , ωs, ωs+1) ,

δωs

δ t
= %s (ω1, ω2, . . . , ωs, ωs+1) .

(34)

Relationships (33) represent$2,�1 and%1 at
s = 1. It is important to note that in such a way
the δ-derivatives of ηs and ωs are connected with
ηs + 1 and ωs + 1, what allows one to calculate
recurrently ηs and ωs in terms of the intensity
of the discontinuity ω1 on the moving plane �2

and the δ-derivatives of a considered function
given on�2. The ray expansions for the solutions
for the displacement components in the domain
behind the plane of the strong discontinuity �2

are written in the form

u
(2)
1 = −

∞∑
n=1

1

n!ξn
∣∣∣∣∣
t=t∗

(
t − t∗)n

−
∞∑
n=1

1

n!ηn
∣∣∣∣∣
t=t∗
(t − t∗)n,

u
(2)
2 = −

∞∑
n=1

1

n!ωn
∣∣∣∣∣
t=t∗
(t − t∗)n,

(35)

where

t∗ =
x1∫

0

dΘ

G1 (Θ)
, t∗ =

x1∫

0

dΘ

G2 (Θ)
.

Supposing that ω1 could be represented in the
form of the power series

ω1 =
∞∑
k=0

1

k!mkt
k, mk = δkω1

δ tk

∣∣∣∣
t=0
, (36)

the constants dk and mk in Eqs. (28) and (36) are
determined according to impact loading condi-
tions (20). However, it is impossible to do this
directly, since the δ-derivatives of the functions
ξ k and ωk with respect to time given on different
moving planes of discontinuity �1 and �2 do
not enter into conditions (20). Therefore, with
such a substitution, they should be excluded from
the series (35) and (36) with the help of the
dependences (26) and (28). From (20) it follows
that

ξ1|t=0 = ξ10 = −
g + δ c−1

2 h
2
1

(
1 − g1c

−1
1

)−1

1 − g1c
−1
1

+ . . . ,

ω1|t=0 = ω10 = −h1

(
1 − g1c

−1
2

)
+ . . . ,

ξ2|t=0 = ξ20 =
g2

(
1 − c−1

1 ξ10

)

(
1 − g1c

−1
2

)2 + . . . ,

ω2|t=0 = ω20 = −
h2 − c−1

2 ω10g2 + 2 c−2
2 g

2
1ω10

(
β1c

−1
1 + c−1

2

)
g2

(
1 − g1c

−1
2

)2
+ . . . .

(37)
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The values of other functions at t = 0, includ-
ing d1, d2, m1 and m2, are calculated with the help
of the found relationships (37) by substituting the
latter into relations valid for discontinuities at any
moment of time

η1 = −δ c−1
2 ω

2
1 + . . . ,

η2 =
(
λ1δ c

−1
2 ω1 − λu1,1

)
c−1

2 ω1ω2 + . . . ,

δξ1

δ t
= α

2 (λ+ 2μ)
c−1

1 ξ1ξ2 + . . . ,
δω1

δ t
= 1

2
(δ + 2μ3) c

−2
2 ω

2
1ω2 + . . . ,

δη1

δ t
= −2δc−1

2 ω1
δω1

δ t
+ . . . .

(38)

The final approximate solution with the accu-
racy up to the two outlined terms of the ray series
takes the form

u
(1)
1 = −ξ10

{
1 + Bc−1

1 ξ20 (t − y1)
}
y1 − 1

2
ξ20y

2
1 + . . . ,

u
(2)
1 = u(1)1 + c−1

2 ω10δ
{

1 + (δ + 2μ3) c
−2
2 ω10ω20 (t − t2)

}
y2

− 1

2

{
λ1δ c

−1
2 ω10 + λ2c

−1
1 ξ10 − λ2ξ20

(
c−1

2 − c−1
1 Bξ10

)
(t − y2)

}
c−1

2 ω10ω20y
2
2 + . . . ,

u
(2)
2 = −ω10

{
1 + 1

2
(δ + 2μ3) c

−2
2 ω10ω20 (t − y2)

}
y2 − 1

2
ω20y

2
2 + . . . ,

(39)

where

y1 = t −
c2

1

(
1 − c−1

1 g1

)

Bα1g1ξ20
ln

⎛
⎝1 + Bα1g1ξ20

c3
1

(
1 + c−1

1 α1ξ10

) (
1 − c−1

1 g1

)x1

⎞
⎠ ,

y2 = t − 1

c2z2
ln

(
1 + z2

z1
x1

)
, z1 = 1 + β1c

−1
1 ξ10 − c−1

2 ξ10 + β3c
−2
2 ω

2
10,

z2 =
(
β1c

−1
1 + c−1

2 + c−1
1

(
β1

(
2c−1

1 − c−1
2

)
− c−1

2

)
Bξ10

)
c−1

2 ξ20,

B = β1c1g
−1
1 + β2c1(1 − z1)

−1g1.

Obviously, such cumbersome but recurrent
procedure could be continued, and it is possible
to obtain an approximate solution within the
required accuracy.

Ray Method in the Case
of One-Dimensional Cylindrical
Waves

Let us consider one more example of the ray
expansion construction for the solution of the
dynamic problem of impact loading, when the

surfaces of discontinuities are cylindrical. Con-
sider an incompressible elastic medium the prop-
erties of which are given by the elastic potential
W = W(I1, I2) in the form (Lourier 1980):

W = W (I1, I2) = −2μI1 + bI 2
1 − μI2 − aI 3

1

− (μ− b) I1I2 + . . . , (40)

where μ is the shear modulus, and a and b are the
elastic constants of higher order.

Assuming that the medium is located between
rigid cylindrical surfaces r= r0 and r= R (R > r0)
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and that the conditions of rigid adhesion are
fulfilled on the boundary surfaces, while there is
no displacement on the surface r = R until the
moment of time t = 0, and a displacement field
uz = u(r, 0) is imported to the medium by the sur-
face r = r0, such that u(r0, 0) = u0 = const. Oth-
erwise, until the time t = 0, the elastic medium is
in an antiplane deformed state. Let the rigid shaft
(r ≤ r0) rotate from the instant t = 0 according to
the law

ψ (r0, t) = ψ1t + ψ2t
2 + . . . , u (r0, 0) = u0.

(41)

For the displacement vector components ur,
uϕ, uz in the cylindrical coordinate system
(r, ϕ, z), in the particular case of motion of a
continuous medium is hold

ur = r (1 − cosψ (r, t)) , uϕ = r sinψ (r, t) ,

uz = u (r, t) .
(42)

The equations of motion of the incompressible
elastic medium could then be written in the form

p,r + r−1
(
μ r2ψ2

,r + θ3u2
,r

)

+ ω (θ1 + 2θ2m)+ · · · = rψ2
,t ,(

1 + χ1m
2
) (
ψ,rr + 3 r−1ψ,r

)

+ 2χ1ωmψ,r + · · · = c−2
2 ψ,tt ,(

1 + χ1m
2
) (
u,rr + r−1u,r

)

+ 2χ1ωmu,r + · · · = c−2
2 u,tt ,

(43)

where indices after comma denote the partial
derivatives with respect to the corresponding
space coordinates and time t, ω = 2(u,rru,r +
r2ψ,rrψ,r + rψ2

,r ), m = (rψ ,r)2 + (u,r)2,
h = c2

2

(
1 + χ1m

2 + . . . ) ,.
θ1 = 1

2 (μ+ b) , θ2 = 3
4 (μ+ a − b) , θ3 =

1
2 (b − μ) , and χ1 = θ2

μ
.

The first equation in (43) is utilized to define
the additional hydrostatic pressure p(r, t) after
solving the other equations for two functions

ψ(r, t) and u(r, t). As before, the higher order
terms of the deformations are denoted by multi-
dots. The dynamic compatibility conditions for
discontinuities make it possible to write the fol-
lowing set of equations in discontinuities:

[σrr ] = 0,
[
σrϕ
] = −ρG [υϕ

]
,

[σrz] = −ρG [υz] .
(44)

This set of equations, after substituting the
strain dependencies of stresses and Hadamard
compatibility conditions for discontinuities
(Thomas 1964), turns out to be a set of three
equations in the unknown discontinuities [p],
[ψ ,r], and [u,r]. The velocity of propagation of
a cylindrical shock wave remains also unknown.
In this case, the first equation in (44) is utilized
for calculation of [p] with the help of the already
calculated [ψ ,r] and [u,r]. For these values the
last two equalities provide the set of equations

h
[
rψ,r

]+ (rψ,r −
[
rψ,r

])
[h] = G2 [rψ,r

]
,

h
[
u,r
]+ (u,r −

[
u,r
])

[h] = G2 [u,r
]
,

h = G2 [m] {χ1 (m− 2 [m])+ . . . } , .
(45)

where, as before, the “+” signs of the values
calculated ahead the surface of the discontinuities
are omitted. Multiplying the first of equalities
(45) by [u,r] and the second by [rψ ,r], and then
subtracting the second such product from the first
result in the condition for the existence of shock
waves in the incompressible elastic medium

[h]
(
rψ,r

[
u,r
]− u,r

[
rψ,r

]) = 0. (46)

Any cylindrical surface of discontinuities
propagates through the medium only if (46) is
fulfilled. This implies the existence of either the
plane-polarized shock wave of loading �1, for
which

rψ,r

u,r
=
[
rψ,r

]
[
u,r
] , G1 =

(
h− [h] + u,r[

u,r
] [h]

)1/2

,

(47)
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or the neutral shock wave �2 under the condi-
tions

[h] = [m] = 0, G2 = h1/2. (48)

It could be shown (Burenin et al. 2011) that
G1 > G2. Thus, the elastic layer is divided by the
surfaces �1 and �2 into three domains (Fig. 1).
In the area I (r1(t) < r < R) the medium is at rest
at uz = u(r, 0), within the area II (r2(t) < r < r1(t))
the medium moves under the conditions ψ = 0
and uz = u(r, t), and in the area III ψ = ψ(r, t)
and uz = u(r, t). An approximate solution could
be found in the form of the ray series:

uII (r, t) = uI (r)+
∞∑
j=1

κj
(t − t1)j
j ! ,

κj =
[
δju

δ tk

]∣∣∣∣
t=t1
, t1 =

r∫

r0

dξ

G1 (ξ)
,

uIII (r, t) = uII (r, t)|t=t2 −
∞∑
j=1

ωj
(t − t2)j
j ! ,

(49)

ψ (r, t)=−
∞∑
j=1

ηj
(t − t2)j
j ! , ηj =

[
δjψ

δ tj

]∣∣∣∣
t=t2
,

ωj =
[
δju

δ tj

]∣∣∣∣
t=t2
, t2 =

r∫

r0

dξ

G2 (ξ)
.

Since the intensities of the discontinuities η1

and ω1 on the neutral shock wave �2 are con-
nected by the relationship [m]= 0, then following
the above discussed method for constructing the
recurrence equations for the coefficients of the
ray series, it is enough to consider

κ1 =
∞∑
k=0

1

k! γkt
k, η1 =

∞∑
k=0

1

k! βkt
k,

βk = δkη1

δ tk

∣∣∣∣
t=0
, γk = δkκ1

δ tk

∣∣∣∣
t=0
.

(50)

Fig. 1 Scheme of propagation of shock waves

For the propagation velocities of the cylin-
drical surfaces of discontinuities �1 and �2, it
follows from (47) and (48) that

G1 = c2

{
1 + χ1u

I
,r (5 − 10ζ + 10ζ2

−5ζ 3 + ζ 4 + . . .
)}
,

G2 = c2

(
1 + χ1u

II
,r + . . .

)
.

(51)

Here one should bear in mind that u,Ir and u,IIr
are calculated immediately ahead of �1 and �2

respectively. The coefficients of the power series
(50) and, consequently, the coefficients of the ray
series (49) should be determined according to the
boundary conditions (41). It was discussed above
that this cannot be done directly, for this purpose
it is necessary to write recurrent relationships in
the form

δκn

δ tn
= bn (κ1, κ2, . . . , κn+1) ,

δηn

δ t
= an (η1, η2, . . . , ηn+1) ,

κn+1 = fn
(
κ1,

δκ1

δ t
, . . . ,

δnκ1

δ tn

)
,

ηn+1 = gn
(
η1,
δη1

δ t
, . . . ,

δnη1

δ tn

)
.

(52)
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δκ1

δ t
= 5

2
u4
,rκ2χ1 + κ1

(
− c

2r
− 10cu3

,ru,rrχ1 +
10u3

,rκ2χ1

c

)

+ κ2
1

(
15u3

,rχ1

2r
− 15u2

,ru,rrχ1 +
15u3

,rκ2χ1

c2

)
+ . . . ,

Restricting in Eq. (52) only by n = 1, 2 yields

δη1

δ t
= u

4
,rη2χ1

2
+ 2u3

,rη1κ2χ1

c
− η1c

(
3

2r
+ 2u3

,ru,rrχ1

)

+ κ1

{
2u3
,rη2χ1

c
+ 6u2

,rη1κ2χ1

c2 + 3η1u
2
,rχ1

(u,r
r
− 2u,rr

)
+ 14r2u,rχ1

5c3 η2
1η2

(
u4
,rχ1 − 1

2

)}

+ κ2
1

{
3u2
,rη2χ1

c2 + 14r2χ1

5c4 η2
1η

2
(

6u4
,rχ1 − 1

)
+ 3η1κ2u,rχ1

c3

(
2 − 79u4

,rχ1

)

+ 3η1χ1u,r

c

(u,r
r
+ 2u,rr

(
32u4

,rχ1 − 1
))}+ . . .

(53)

The coefficients of the series (50) are then
calculated in the form

γ1 = 1

2

r2
0ψ

2
1

c2u,r (r0)
+ . . . ,

γ2 = c2
2u,rr (r0)+ . . . ,

β1 = −ψ1, β2 = −ψ2,

and thus the final approximate expansion of the
solution could be within the accuracy of t2.

Conclusion

The main difficulty in the numerical calculations
of essentially nonstationary problems in contin-
uum mechanics is connected with the generation
and further propagation of surfaces of discon-
tinuities in a medium. The governing features
of motion of these surfaces are determined only
from the solution of the corresponding boundary-
value problem, and therefore the position of such

surfaces, as well as the values of the disconti-
nuities, must necessarily be considered at each
time step of the algorithm. In the gas dynamics,
such algorithms which are called discontinuity-
assignment algorithms have been long and well
known (Godunov et al. 1976; Belotserkovskii
1984). However, most of them cannot be applied
directly in the dynamics of deformation. It is
mainly connected with the fact that two processes
are simultaneously presented in the deformed
medium under dynamic loading conditions: the
propagation of volume deformations (as in gas
dynamics) and the propagation of deformation
of the shape change. These processes are inter-
related and interdependent, therefore discontinu-
ities appear to be combined.

If it is necessary to directly assign disconti-
nuities, for example, when waves interact with
each other and with obstacles, the construction
of numerical algorithms by the known methods
of gas dynamics, as it was mentioned above,
encounters great difficulties. That is why it has
been proposed to include the forward-front ray
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expansions of the solution (Rossikhin 1991;
Burenin and Rossikhin 1991; Rossikhin and
Shitikova 1996) in the numerical difference
scheme for the purpose of algorithmic separation
of discontinuities in numerical calculations
(Burenin and Zinov’ev 2003). The procedure
first applied to the process of plane shock
waves propagation in the one-dimensional
case (Burenin and Zinov’ev 2003) was further
utilized to one-dimensional problems with axial
symmetry (Gerasimenko and Zavertan 2008,
2009).
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Education

Erich Siebel’s father was Eduard Siebel, a
manufacturer of leather goods. His mother was
Theodora Müller. During 1912–1914 and after
the war has ended in 1918, he was educated
in mechanical engineering at the TH Berlin-
Charlottenburg. He was awarded his doctorate
there in 1922 with a thesis on calculation of
power and performance requirements in forging
and rolling (“Grundlagen zur Berechnung des
Kraft- und Arbeitsbedarfs beim Schmieden und
Walzen”).

Professional Career

After a period as maintenance engineer in the
steelworks industry in Dortmund and Krefeld,
in 1925, he became head of department at
the Kaiser Wilhelm Institute (KWI) for Steel
Research in Düsseldorf with focus on metal
forming (“Bildsame Formgebung”). Here Siebel
conducted research on rolling and forging. In
addition, he worked as a private lecturer at the
Mining Academy in Clausthal. There he gave
lectures on metal forming and theory of strength.

Moreover, Siebel carried out extensive inves-
tigations on boiler bottoms, which led to a new
formula for calculating steam boilers. The revi-
sion of the material and construction codes for
large boilers during this period is mainly due to

his research. About his contributions to plasticity
is reported in Bruhns (2019).

In 1931, Siebel was appointed full professor
for materials science and testing, and strength of
materials at the TH Stuttgart. During World War
II in 1940, although he was not a member of the
Nazi Party, he was appointed President of the
Materials Testing Institute (Materialprüfanstalt
– MPA) in Berlin-Dahlem (now BAM). At the
same time, he was linked with a professorship
at the TH Berlin. Siebel reorganized the MPA
providing the basis for its continued existence
after 1945. He remained president of the MPA
even after the war had ended. In 1947, he returned
to his former chair in Stuttgart and headed the
Materials Testing Institute there until his retire-
ment in 1957.

Scientific Achievements and Honors

In 1953, he founded a test field for metal forming,
which investigated sheet metal forming processes
and developed and tested models for these pro-
cesses. Siebel has played a key role in numerous
technical and scientific associations, as president
of the German Standards Committee, among oth-
ers. He was an honorary doctor of the TH Darm-
stadt and was an honorary member of several
associations, including the European Research
Association for Sheet Metal Processing.
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Synonyms

Asymptotic analysis; Double-shearing model;
Infinite strain rate; Maximum friction law;
Maximum friction surface; Rigid perfectly plastic
model; Rigid plastic models; Strain rate intensity
factor; Viscoplastic model

Definition

1. The maximum friction law demands that the
friction stress is equal to the shear yield stress
in the case of pressure-independent models
considered,

2. The maximum friction law demands that the
friction surface coincides with a stress charac-
teristic or an envelope of stress characteristics
in the case of the double-shearing model,

3. The maximum friction surface is a surface
with maximum friction,

4. The strain rate intensity factor is the coeffi-
cient of the leading term in a series expansion
of the quadratic invariant of the strain rate
tensor in the vicinity of maximum friction
surfaces.

The definition for the maximum friction law
above applies at sliding.

Introduction

The successful mathematical modelling of the
material behavior in the vicinity of frictional
interfaces is a difficult problem. The maximum
friction law is of special importance in this
respect. The basic assumption of rigid plastic
models is that elastic strains are neglected.
For several rigid plastic models, the maximum
friction law results in singular behavior of the
velocity field in the vicinity of the friction
surface. In particular, the quadratic invariant
of the strain rate tensor approaches infinity near
the surface. On the other hand, this invariant
has a significant effect on the evolution of
material properties in the course of deformation.
Numerous experimental studies show that there
is a very high gradient of material properties
near frictional interfaces. Therefore, the singular
behavior of the velocity field is in qualitative
agreement with experiment.

Coordinate Systems

It is assumed that the flow is everywhere parallel
to the (x, y) plane of a Cartesian coordinate sys-
tem (x, y, z) and that the motion is independent
of z. The friction surface is represented by a
curve in the (x, y) plane (curve L in Fig. 1). The
asymptotic analysis of solutions in the vicinity
of the friction surface is facilitated by choice of
a plane curvilinear orthogonal coordinate system
(t, s) whose coordinate curve s = 0 coincides
with L. The s – coordinate lines are straight and
are orthogonal to L. The scale factor of s – lines
is unity. The scale factor of t – lines is denoted as
H . The s – axis is directed away from the rigid
tool and toward the plastic material. Therefore, it
is assumed that s ≥ 0 in the asymptotic analysis
presented below.

Fundamental Equations of
Continuum Mechanics

In the case of the quasi-static flow of rigid plas-
tic materials, the system of equations for any

https://doi.org/10.1007/978-3-662-55771-6_258
https://doi.org/10.1007/978-3-662-55771-6_300031
https://doi.org/10.1007/978-3-662-55771-6_300197
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Fig. 1 Coordinate systems

model comprises the equations of equilibrium,
yield criterion, flow rule, and, for some models,
evolution equations for internal variables. The
equations of equilibrium are independent of the
constitutive equations and can be written in the
(t, s) coordinate system as

∂σtt

∂t
+H ∂σts

∂s
+ F1 = 0 and

H
∂σss

∂s
+ ∂σts
∂t

+ F2 = 0.

(1)

Here σtt , σss and σts are the stress components
referred to the (t, s) coordinate system. The
terms F1 and F2 may depend on stress com-
ponents and geometric parameters, but they are
independent of stress derivatives. Let ξtt , ξss , and
ξts be the components of the strain rate tensor
and ωts is the only nonzero spin component.
The relations between these quantities and the
velocity components, ut and us , are also indepen-
dent of the constitutive equations. In the (t, s)
coordinate system, these relations are

ξtt = 1

H

∂ut

∂t
+ usG1, ξss = ∂us

∂s
, (2)

2ξts = 1

H

∂us

∂t
+ ∂ut
∂s

+ utG2,

2ωts = ∂ut

∂s
− 1

H

∂us

∂t
− utG2.

The terms G1 and G2 may depend on geometric
parameters, but they are independent of velocity
derivatives.

Constitutive Equations

Pressure-Independent Plasticity
Any isotropic pressure-independent plane strain
yield criterion can be represented as (Hill 1950)

(σtt − σss)2 + 4σ 2
ts = 4k2. (3)

Here k is the shear yield stress. k is constant
in the case of rigid perfectly plastic solids and
is a monotonically increasing function of the
quadratic invariant of the strain rate tensor in
the case of viscoplastic solids. The flow rule
associated with this yield criterion is

ξtt = λ (σtt − σss) , ξss = −λ (σtt − σss) ,
ξts = 2λσts . (4)

Here λ is a nonnegative multiplier. This flow rule
is usually called the normality rule. Eliminating λ
between the equations in (4) gives

ξtt+ξss = 0 and
ξtt − ξss
ξts

= σtt − σss
σts

. (5)

The quadratic invariant of the strain rate tensor is
defined as

ξeq =
√

2

3

√
ξ2
t t + ξ2

ss + 2ξ2
ts . (6)

Pressure-Dependent Plasticity
Several models of pressure-dependent plasticity
are available in the literature (see “� Planar
Problems in Rigid-Plasticity for Granular
Materials and Soils”). The present entry focuses
on the double-shearing model based on the
Mohr-Coulomb yield criterion (Spencer 1964). A
widely used version of this model assumes that
the material is incompressible. Under plane strain
conditions, the Mohr-Coulomb yield criterion
reads

(σtt+σss) sinφ+
√
(σtt−σss)2+4σ 2

ts=2c cosφ.

(7)

https://doi.org/10.1007/978-3-662-55771-6_267
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Here φ is the angle of internal friction and c
is the coefficient of cohesion. The flow rule of
the double-shearing model for incompressible
materials yields

ξtt + ξss = 0, sin 2ψ (ξtt − ξss)− 2 cos 2ψξts

− 2 sinφ (ωts + dψ/dτ) = 0 (8)

where ψ is the anticlockwise angular rotation of
the direction of the algebraically greater principal
stress σ1 from the t – direction (Fig. 2) and d/dτ
denotes the convected derivative.

Maximum Friction Law

In the case of rigid perfectly plastic materials, the
shear yield stress is the maximum possible shear
stress in the material. Therefore, it is natural to
formulate the maximum friction law as

σts = k (9)

for s = 0. It has been assumed here, with no loss
of generality, that the direction of flow dictates
that σts > 0. The friction law (9) is valid if the
regime of sliding occurs. It is possible to propose
an alternative formulation of the friction law (9).
In particular, the system of equations comprising
equations (1), (2), (3), and (5) is hyperbolic if k is
constant. Equation (9) is satisfied on characteris-
tic curves. Therefore, the alternative formulation
of the maximum friction law is that the friction

surface coincides with a characteristic curve or
an envelope of characteristic curves.

The alternative formulation is useful in the
case of other material models describable by
hyperbolic systems. In particular, this formula-
tion should be adopted for the double-shearing
model.

In the case of viscoplastic materials, k depends
on ξeq . The corresponding system of equations
is not hyperbolic, and the maximum friction law
given by Eq. (9) will be generalized on a class of
viscoplastic models below.

Singularity in Solutions Near a
Maximum Friction Surface

The analysis below is based on the assumptions
that

(i) All stress and velocity components are
bounded everywhere;

(ii) All derivatives with respect to t are bounded
everywhere;

(iii) The solution is represented by Laurent series
with respect to s near maximum friction
surfaces.

Without a loss of generality, it is supposed that
the tool is motionless (Fig. 1). Then,

us = 0 (10)

for s = 0. Substituting (10) into the first equation
in (2) gives

ξtt = 1

H

∂ut

∂t
(11)

on the friction surface.

Rigid Perfectly Plastic Solids
The yield criterion (3) is satisfied by the standard
substitution:

σtt = σ − k sin 2ϕ, σss = σ + k sin 2ϕ,

σts = k cos 2ϕ (12)

where σ is the hydrostatic stress and ϕ is a new
unknown. It follows from (4) and (9) that 0 ≤
ϕ ≤ π/2 in some vicinity of the friction surface.
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Substituting (12) into (5) yields

ξtt + ξss = 0 and ξtt − ξss = 2ξts tan 2ϕ.
(13)

With the substitution from the third equation in
(12) the boundary condition (9) becomes:

ϕ = 0 (14)

for s = 0.
Equations (13) and (14) combine to give ξtt =

ξss = 0 at the friction surface if ξts < ∞. In
this case, the friction surface coincides with a
characteristic curve. This case results in a very
special regime of flow. In particular, it follows
from (11) that ut is constant along the friction
surface. Therefore, in what follows, it is assumed
that

ξts →∞ (15)

as s → 0 and, using the first equation in (13), that

ξtt = −ξss �= 0 (16)

at s = 0. In this case, the friction surface
coincides with an envelope of characteristic
curves. Assumption (ii) and Eq. (2) demand that
the strain rate ξtt is bounded everywhere. Then,
it follows from (16) that the strain rate ξss is also
bounded everywhere. This condition together
with (2), (10), and (16) requires that

us = u(1)s s + o (s) (17)

as s → 0. Using assumption (iii) the velocity ut
is represented as

ut = u0 + u(1)t sβ + o
(
sβ
)

(18)

as s → 0. Assumption (ii) demands β > 0.
Equation (15) together with (2) requires β < 1.
Therefore,

0 < β < 1. (19)

Using (2), (17) and (18) the shear strain rate can
be represented as

2ξts = u(1)t βsβ−1 + o
(
sβ−1

)
(20)

as s → 0. Using (2), (16), and (17), the normal
strain rates at s = 0 are determined as

ξss = −ξtt = u(1)s . (21)

Using this equation and taking into account that
ϕ → 0 as s → 0, the second equation in (13)
reduces to −u(1)s = 2ξtsϕ as s → 0. Then, it
follows from (20) that

ϕ = ϕ0s
1−β + o

(
s1−β) (22)

as s → 0.
Expanding sin 2ϕ and cos 2ϕ in series, one can

rewrite Eq. (12) as

σtt = σ − [2kϕ + o (ϕ)] ,
σss = σ + [2kϕ + o (ϕ)] ,
σts = k

[
1 − 2ϕ2 + o

(
ϕ2
)]

(23)

as ϕ → 0. Equations (22) and (23) combine to
give

σtt = σ −
[
2kϕ0s

1−β + o
(
s1−β)] ,

σss = σ +
[
2kϕ0s

1−β + o
(
s1−β)] ,

σts = k
[
1 − 2ϕ2

0s
2(1−β) + o

(
s2(1−β))] (24)

as s → 0. Using (24) one can find the derivatives
involved in (1) as

∂σtt

∂t
= ∂σ

∂t
−
[

2kdϕ0

dt
s1−β + o

(
s1−β)

]
,

∂σss

∂s
= ∂σ

∂s
+ [2k (1 − β) ϕ0s

−β + o (s−β)] ,

∂σts

∂t
= −4kϕ0

dϕ0

dt
s2(1−β) + o

[
s2(1−β)] , (25)

∂σts

∂s
= −4k (1 − β) ϕ2

0s
(1−2β) + o

[
s(1−2β)

]

as s → 0. Substituting (25) into (1) yields
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∂σ

∂t
−
[

2kdϕ0

dt
s1−β + o

(
s1−β)

]
(26)

−Hk
[
4 (1 − β) ϕ2

0s
(1−2β) + o

(
s(1−2β)

)]
+ F1

= 0,H
∂σ

∂s
+H [2k (1 − β) ϕ0s

−β + o (s−β)]

−k
[

4ϕ0
dϕ0

dt
s2(1−β) + o

(
s2(1−β))

]
+ F2 = 0

as s → 0. The presence of s(1−2β) in the
first equation in (26) requires another term of
this power of s. F1 involves σtt − σss and σts .
Therefore, it cannot supply any term of the order
O
[
s(1−2β)

]
, as follows from (24). It is then

necessary to examine two cases:

β = 1

2
(27)

and

σ = σ0 + σ (1)s1−2β + o
(
s1−2β

)
(28)

as s → 0. Substituting (28) into the second
equation in (26) shows that a term of the order
O
(
s−2β

)
is present in the second equation in

(26). No other term of this order is involved in this
equation. Therefore, one is left with case (27). In
this case, it is seen from (26) that

σ = σ0 + σ (1)√s + o
(√
s
)

(29)

as s → 0. Also, it follows from (18), (24), and
(28) that

ut = u0 + u(1)t
√
s + o (√s) ,

σtt = σ0 +
(
σ (1) − 2kϕ0

)√
s + o (√s) ,

σss = σ0 +
(
σ (1) + 2kϕ0

)√
s + o (√s) ,

σts = k
[
1 − 2ϕ2

0s + o (s)
]

(30)

as s → 0. Substituting (29) into the second equa-
tion in (26) and collecting the terms of the order
O
(
1/
√
s
)

shows that σ (1) = −2kϕ0. Therefore,
(30) becomes

ut = u0 + u(1)t
√
s + o (√s) ,

σtt = σ0 − 4kϕ0
√
s + o (√s) ,

σss = σ0 + o
(√
s
)
,

σts = k
[
1 − 2ϕ2

0s + o (s)
]

(31)

Since the normal strain rates are bounded and
ξts → ∞ as s → 0, it is evident from (6), (20),
and (27) that

ξeq = D√
s
+ o

(
1√
s

)
(32)

as s → 0. Here D is the strain rate intensity
factor (Alexandrov and Richmond 2001). This
factor controls the magnitude of the quadratic
invariant of the strain rate tensor in the vicinity
of maximum friction surfaces.

Summarizing, the solution is represented by
(17) and (31) in the vicinity of a maximum
friction surface if this surface is an envelope of
characteristics.

Viscoplastic Solids
The qualitative behavior of viscoplastic solu-
tions in the vicinity of maximum friction surfaces
depends on the behavior of the function k

(
ξeq
)

as ξeq → ∞. If k
(
ξeq
) → ∞ as ξeq →

∞, then it is always possible to find a solution
satisfying the sticking condition. Such models
are not considered in the present entry because
the corresponding solutions are not singular. A
distinguished feature of the models considered is
k
(
ξeq
) → ks < ∞ as ξeq → ∞ where ks is

constant. Moreover, it is assumed that

k
(
ξeq
) = ks

[
1 − Aξ−αeq

]
+ o

(
ξ−αeq
)

(33)

as ξeq → ∞. Here A > 0 and α > 0 are
constant. It is evident from (3) and (33) that ks
is the maximum possible shear stress. Therefore,
the maximum friction law (9) should be replaced
with

σts = ks (34)

for s = 0. This law demands
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ξeq →∞ (35)

as s → 0.
Equation (12) satisfies the yield criterion (3).

It is evident from (12) and (34) that the boundary
condition (14) is valid. Equations (17), (18), (19),
(20), (21), and (22) do not involve k. Therefore,
these equations are also valid. In particular, it
follows from (6), (20), and (21) that

ξeq = ξ0sβ−1 + o
(
sβ−1

)
(36)

as s → 0.
Using (12), (22), (33) and (36) yields

σtt = σ − 2ksϕ0s
1−β + o

(
s1−β) , (37)

σss = σ + 2ksϕ0s
1−β + o

(
s1−β) ,

σts = ks
[
1−Aξ−1

0 sα(1−β)−2ϕ2
0s

2(1−β)]+o (sn)

as s → 0. Here n = 2 (1 − β) if α ≥ 2 and n =
α (1 − β) if α < 2. This asymptotic expansion of
the shear stress suggests that the cases α ≥ 2 and
α < 2 should be considered separately.

Consider the case α ≥ 2. In this case, Eq. (37)
becomes

σtt = σ − 2ksϕ0s
1−β + o

(
s1−β) ,

σss = σ + 2ksϕ0s
1−β + o

(
s1−β) ,

σts = ks
[
1 − Bs2(1−β)]+ o

[
s2(1−β)] (38)

The only difference between Eqs. (24) and (38) is
that k and 2ϕ2

0 in (24) are replaced with ks and B
in (38). Therefore, Eq. (31) is replaced with

ut = u0 + u(1)t
√
s + o (√s) ,

σtt = σ0 − 4ksϕ0
√
s + o (√s) ,

σss = σ0 + o
(√
s
)
,

σts = ks [1 − Bs + o (s)] (39)

as s → 0. This equation supplies the asymp-
totic representation of solutions in the vicinity

of maximum friction surfaces in the case under
consideration.

Consider the case α < 2. In this case, Eq. (37)
becomes

σtt = σ − 2ksϕ0s
1−β + o

(
s1−β) , (40)

σss = σ + 2ksϕ0s
1−β + o

(
s1−β) ,

σts = ks
[
1 − Aξ−1

0 sα(1−β)
]
+ o

[
sα(1−β)

]

as s → 0. Using (40) one can find the derivatives
involved in (1) as

∂σtt

∂t
= ∂σ

∂t
−
[

2ksdϕ0

dt
s1−β + o

(
s1−β)

]
,(41)

∂σss

∂s
= ∂σ

∂s
+ [2ks (1 − β) ϕ0s

−β + o (s−β)] ,

∂σts

∂t
= −ksAd

(
ξ−α0

)

dt
sα(1−β) + o

[
sα(1−β)

]
,

∂σts

∂s
=−ksAξ−α0 α(1−β)sα(1−β)−1+o

[
sα(1−β)−1

]

as s → 0. Substituting (41) into (1) gives

∂σ

∂t
−
[

2ksdϕ0

dt
s1−β + o

(
s1−β)

]

+H
{
−ksAξ−α0 α(1 − β)sα(1−β)−1

+o
[
sα(1−β)−1

]}
+ F1 = 0,

H

{
∂σ

∂s
+ [2ks (1 − β) ϕ0s

−β + o (s−β)]
}

−
{
ksAd

(
ξ−α0

)

dt
sα(1−β) + o

[
sα(1−β)

]}
+F2=0.

(42)

as s → 0. The second equation in (42) contains a
term of the order O

(
s−β
)
. Since α (1 − β) > 0,

it follows from this equation that

σ = σ0 + σ (1)s1−β + o
(
s1−β) (43)
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as s → 0. Moreover, σ (1) = −2ksϕ0. Then,
Eq. (43) becomes

σ = σ0 − 2ksϕ0s
1−β + o

(
s1−β) (44)

as s → 0. The first equation in (42) contains a
term of the order O

[
sα(1−β)−1

]
. It follows from

(44) that the derivative ∂σ/∂t is of the order
O
(
s1−β). Therefore, it is necessary to examine

two cases:

α (1 − β)− 1 = 0 (45)

and
α (1 − β)− 1 = 1 − β. (46)

Using (19) one can find from (46) that α > 2.
This contradicts the assumption that α < 2.
Therefore, one is left with case (45). In this case,

β = 1 − 1

α
. (47)

This equation together with (19) shows that

1 < α < 2. (48)

Using (47) the asymptotic representation of solu-
tions given in (18), (40), and (44) can be rewritten
as

ut = u0 + u(1)t s(α−1)/α + o [s(α−1)/α
]
,

σtt = σ0 − 4ksϕ0s
1/α + o (s1/α

)
, (49)

σss = σ0+o
(
s1/α

)
,

σts = ks
(

1 − Aξ−1
0 s
)
+ o(s)

as s → 0.
Summarizing, in the vicinity of a maximum

friction surface, the solution is represented by
(17) and (39) if α ≥ 2 and by (17) and (49) if
1 < α < 2. No solution at sliding exists if α ≤ 1
(Alexandrov and Mishuris 2009).

Double-Shearing Model
In general, the equations of the double-shearing
model are not hyperbolic. However, the stress

x 

y 

O 

s 

t 

L 

4 2
4 2

Characteristic
direction 

Characteristic 
direction

Fig. 3 Directions of stress characteristics

equations comprising the yield criterion and the
equilibrium equations are. The two characteristic
directions make angle π/4 + φ/2 with the direc-
tion of the major principal stress σ1 (Fig. 3). The
maximum friction law requires that the friction
surface coincides with a characteristic curve or an
envelope of characteristic curves. It is seen from
the geometry of Fig. 3 that

ψ = π
4
+ φ

2
or ψ = −π

4
− φ

2
(50)

for s = 0. In what follows, it is assumed that the
first equation in (50) is satisfied. The other case
can be treated in a similar manner.

The yield criterion (7) reduces to

σ sinφ + q = c cosφ (51)

where

σ = 1

2
(σtt + σss) , q = 1

2

√
(σtt−σss)2+4σ 2

ts

(52)
and

σtt = σ + q cos 2ψ,

σss = σ − q cos 2ψ, σts = q sin 2ψ. (53)

It is convenient to introduce a new unknown
variable γ as

γ = π
4
+ φ

2
− ψ. (54)
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Then, it follows from (50) that

γ = 0 (55)

for s = 0. Using (54) Eq. (8) can be rewritten as

ξtt + ξss = 0,

cos(2γ − φ) (ξtt − ξss)− 2 sin(2γ − φ)
ξts − 2 sinφ (ωts − dγ /dτ) = 0. (56)

The strain rate ξtt in the second equation can be
eliminated by means of the first equation. Then,
one can use Eq. (2) to get

2 cos (2γ − φ) ∂us
∂s

+ [sin (2γ − φ)+ sinφ]
∂ut

∂s

+ [sin (2γ − φ)− sinφ]

(
∂us

H∂t
+ utG2

)

− 2 sinφ

(
∂γ

∂τ
+ ut
H

∂γ

∂t
+ us ∂γ

∂s

)
= 0. (57)

The coefficient of the derivative ∂ut/∂s vanishes
at γ = 0 and, therefore, at s = 0. If |∂ut/∂s| <
∞, then the solution is not singular. Therefore, in
what follows it is assumed that

∂ut

∂s
→∞ (58)

as s → 0. Then, the term [sin (2γ − φ)+ sinφ]
∂ut/∂s reduces to the expression 0 · ∞ at s = 0.

The solution for the rigid perfectly plastic
model suggests that one seeks an asymptotic
expansion in the form

us = u(1)s s+o(s), ut = u0+u(1)t
√
s+o(√s),

γ = γ0
√
s+o(√s), σ=σ0+σ (1)√s+o(√s),

q = q0 + q(1)√s + o(√s) (59)

as s → 0. It is seen from (51) and (59) that

σ0 sinφ + q0 = c cosφ. (60)

Using (59) one can find that

[sin (2γ−φ)+ sinφ]
∂ut

∂s
= cosφu(1)t γ0 + o (1) ,

us
∂γ

∂s
= u

(1)
s γ0

2

√
s + o (√s) (61)

as s → 0. Then, collecting coefficients of like
powers of s in (57), it is possible to confirm that
this equation is satisfied. The first equation in
(56) is consistent with the assumed expansion if
Hu

(1)
s + du0/dt = 0. It is understood here that

H is calculated at s = 0.
Substituting (59) into (53) and taking into

account (54), one gets

σtt = σ0 − q0 sinφ +
(
σ (1) − q(1) sinφ

)√
s

+ o (√s) ,
σss = σ0 + q0 sinφ +

(
σ (1) + q(1) sinφ

)√
s

+ o (√s) ,
σts = q0 cosφ +

(
2q0γ0 sinφ + q(1) cosφ

)√
s

+ o(s) (62)

as s → 0. Substituting (62) into the first and
second equations in (1) yields

H
(
2q0γ0 sinφ + q(1) cosφ

)

2
√
s

+ o
(

1√
s

)
= 0

(63)
and

H
(
σ (1) + q(1) sinφ

)

2
√
s

+ o
(

1√
s

)
= 0 (64)

as s → 0, respectively. Therefore,

2q0γ0 sinφ+q(1) cosφ = 0, σ (1)+q(1) sinφ=0.
(65)

Then, Eq. (62) becomes

σtt = σ0 − q0 sinφ + 2σ (1)
√
s + o (√s) ,

σss = σ0 + q0 sinφ + o (√s) ,
σts = q0 cosφ + o (s) (66)

as s → 0.
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Summarizing, in the vicinity of a maximum
friction surface, the velocity field is represented
by (59) and the stress field by (66).

Conclusions

Rigid plastic solutions are often describable
by non-differentiable functions in the vicinity
of maximum friction surfaces. This behavior
of solutions is in qualitative agreement with
the presence of narrow layers of severe plastic
deformation in the vicinity of friction surfaces in
machining and deformation processes (Griffiths
1987). Moreover, the presence of singular terms
in exact solutions may cause difficulties with
numerical solutions (Facchinetti and Miszuris
2016).

The existence of singular solutions has been
demonstrated for some rigid plastic models not
considered in the present entry (Alexandrov and
Harris 2006; Alexandrov and Jeng 2013).

Cross-References

� Planar Problems in Rigid-Plasticity for Granu-
lar Materials and Soils
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Size Effect in Nanomaterials

Victor A. Eremeyev
Faculty of Civil and Environmental Engineering,
Gdańsk University of Technology, Gdańsk,
Poland

Synonyms

Size dependence at the nanoscale

Definition

By size effect we mean a dependence of a mate-
rial parameter such as Young’s modulus on a
specimen size which is used for the parameter
determination.

Experimental Observation

In mechanics of materials at the macroscale, the
size effect may appear in many cases as a result
of influence of dislocations, microcracks, voids,
grains, and subgrains (see, e.g., reviews Bažant
1999, 2000; Diebels and Steeb 2002). At the
nanoscale the size effect may appear at the level
of a single crystal, and it is mostly determined
by surface-/interface-related phenomena. Indeed,
a nanostructured material can be characterized by
high ratio of material particles localized in the
vicinity of a surface or interfaces to ones located
in the bulk. A typical dependence of a material
property P on a specimen of characteristic size
L is shown in Fig. 1. Here P∞ corresponds to
the value of P at the macroscale, which formally
corresponds to the limit L → ∞. & denotes a
characteristic length, so the size effect is more
pronounced when L < &. Various examples of
similar to Fig. 1 behavior one can find in the
literature (see, e.g., Cuenot et al. 2004; Jing et al.
2006; Chen et al. 2006).

0

P

P∞

L

fitting curve

experimental data is here

Fig. 1 Size effect: experimental data (green area), fitting
curve (solid curve), and the value at the macroscale
(dashed line)

Scaling Law

As a result of experimental observations, a scal-
ing law was proposed by Wang et al. (2006),
which has the following form:

P(L) = P∞
[

1 + α &
L
+ o

(
&

L

)]
, (1)

where α is a factor, & is a characteristic length,
and o

(
&
L

)
denotes the remainder of higher order.

As an example of (1), one can consider a
melting temperature of a spherical nanoparticle
of radius R

T (R) = T∞
[

1 − 2
&

L

]
; (2)

(see Wang et al. (2006) for more detail).

Concluding Remarks

Among the theories of continuum which can
forecast size effect at the nanoscale, it is worth to
mention the surface elasticity models proposed
by Gurtin and Murdoch (1975, 1978) and by
Steigmann and Ogden (1997, 1999), which found
various applications in nanomechanics (see, e.g.,
Duan et al. (2008), Wang et al. (2011), Javili
et al. (2012, 2013) and Eremeyev (2016) and

https://doi.org/10.1007/978-3-662-55771-6_300592
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the references therein). Other models which
have an intrinsic characteristic length are stress-
and strain-gradient elasticity and plasticity
(Fleck et al. 1994; Hutchinson and Fleck 1997;
Eringen 2002; Forest et al. 2011; Aifantis 1999,
2016), Cosserat (micropolar), couple stress,
and micromorphic media (Eringen 1999; Yang
et al. 2002; Eremeyev et al. 2013; Liebold and
Müller 2015). For these models one can expect
an appearance of size effect.

Cross-References

�Cosserat Media
�Higher Gradient Theories and Their Founda-

tions
�Micromorphic Approach to Materials with

Internal Length
�Nonlocal Theories
� Strain Gradient Plasticity
� Surface Energy and Its Effects on

Nanomaterials
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Synonyms

Active soft tissue modelling; Excitation-contraction
coupling; Hill muscle modelling; Muscle
mechanics; Neuromuscular modelling

Definition

Skeletal muscle modelling focuses on developing
computer models capable of predicting the defor-
mations and the exerted forces of a skeletal mus-
cle that is activated through neural stimulation.

Background

In contrast to smooth or cardiac muscles, skeletal
muscles have the capability to contract upon neu-
ral stimulation in a voluntary fashion. This char-
acteristic together with the presence of joints and

a rather rigid skeleton, to which skeletal muscles
are typically attached via tendons, builds the basis
for the voluntary and controlled motion of our
body. Understanding and modelling the motion of
the body is one of the oldest goals in the field of
biomechanics. The key to understanding motion
is to understand how muscles work – in particular
how muscles generate force and how much force
an individual muscle exerts upon stimulation.
While research on muscle recruitment and con-
trol is a very active and very complex field of
research by itself, the focus herein is on how
to describe and model the mechanical behavior
of skeletal muscle tissue, i.e., skeletal muscle
modelling.

From an anatomical perspective, a skeletal
muscle exhibits hierarchical structures composed
of contractile elements (called sarcomeres) and
connective tissue (mainly collagen). Within a
continuum mechanical framework for modelling
skeletal muscles, the sarcomeres are typically
considered to be the smallest force-producing
units within a muscle. Sarcomeres are connected
in series to each other and form a myofibril.
Multiple myofibrils in parallel form a muscle
fiber. The muscle fiber itself is surrounded by a
connective layer called endomysium. From an
organizational point of view, muscle fibers are
spatially grouped into parallel packets (fascicles)
surrounded by a layer of connective tissue
(perimysium). Multiple packets form the muscle
belly, which is again surrounded by connective
tissue (epimysium) and connected to bony
structures through tendons. A schematic view
is given in Fig. 1 (https://commons.wikimedia.
org/wiki/File%3A1007_Muscle_Fibes_(large).
jpg).

From a physiological, i.e., functional, point
of view, two basic muscle fiber types are distin-
guished, i.e., Type I (slow twitch) and Type II
(fast twitch) of which Type II muscle fibers are
often further characterized into Type IIa, Type
IIb, and Type IIx. The characterization is based
on the isoform of a particular contractile protein
called myosin. The different muscle fiber types
differ in mechanical and metabolic properties.
In contrast to Type II skeletal muscle fibers,
Type I muscle fibers typically produce less force

https://doi.org/10.1007/978-3-662-55771-6_237
https://doi.org/10.1007/978-3-662-55771-6_110
https://doi.org/10.1007/978-3-662-55771-6_300014
https://doi.org/10.1007/978-3-662-55771-6_300242
https://doi.org/10.1007/978-3-662-55771-6_300315
https://doi.org/10.1007/978-3-662-55771-6_300446
https://doi.org/10.1007/978-3-662-55771-6_300457
https://commons.wikimedia.org/wiki/File%3A1007_Muscle_Fibes_(large).jpg
https://commons.wikimedia.org/wiki/File%3A1007_Muscle_Fibes_(large).jpg
https://commons.wikimedia.org/wiki/File%3A1007_Muscle_Fibes_(large).jpg


Skeletal Muscle Modelling 2293

S

Fig. 1 Structure of a
skeletal muscle. (Original
image © by OpenStax
Anatomy and Physiology)

but are more fatigue resistant. From a skeletal
muscle recruitment point of view, several skeletal
muscle fibers (of the same type) are controlled
by the same lower motor neuron through nervous
axons. The lower motor neuron, the axons and the
respective fibers that are innervated by the axons,
are called a motor unit, which is the smallest
unit within a skeletal muscle to voluntarily con-
tract. The lower motor neuron sends rate-coded
impulses called action potentials. To each action
potential corresponds under normal conditions
a single instance of contraction (twitch) from
all the fibers belonging to the same motor unit.
During a voluntary contraction, motor units are
activated in an orderly fashion, starting from the
smallest ones, up until the biggest (recruitment
size principle). In general, the recruitment of
motor units for a given muscle is complete at
a fraction (in some cases down to 60%) of the
maximal voluntary contraction. The remaining

force increment is attributed to an increase of
motor units firing rate.

Taking into account all abovementioned struc-
tural and functional aspects within one computa-
tional model is currently nearly impossible. Too
large are the differences in scales. One would
have to consider small-scale aspects such as the
chemo-electrical processes leading to contraction
dynamics within a sarcomere, i.e., on thems time
scale or the nm length scale, as well as large-scale
aspects such as muscle fatigue (several seconds),
exercise training (weeks), or aging (years) or the
entire musculoskeletal system (m). Hence, differ-
ent modelling approaches have been developed
over the years. On the largest scale (referring
to the musculoskeletal scale and the several-
seconds time scale), movement of the whole or of
parts of the skeleton is typically modelled using
multi-body-based modelling approaches. Within
multi-body simulations, the mechanical behavior
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of skeletal muscles are reduced to a point of
mass, and the exerted skeletal muscle forces are
applied to rigid bodies representing the bones of a
skeleton as forces acting in the direction between
the insertion and origin point of the respective
muscles. Hence, they are often referred to 1-
D models. The 1-D (skeletal muscle) line ele-
ments describe within multi-body simulations the
muscle-tendon complex as a lumped material and
enter the equations of motion (balance of momen-
tum). These models are commonly referred as
Hill-type muscle models, named after Archibald
Vivian Hill, who did pioneering research on the
production of heat and mechanical work in mus-
cle (Hill 1938).

While 1-D formulations allow efficient sim-
ulations and some insights into movement, the
reduction of the complex skeletal muscle’s struc-
ture to a skeletal model consisting of a few
lumped parameters is often an oversimplifica-
tion. Hill-type models, for example, cannot take
into account the heterogeneity of the tissue, e.g.,
fiber directions, varying collagen distributions,
or account for the contact between the muscle
and the surrounding tissues such as bones, other
muscles, or the skin/fat layer. If one wants to
include such properties, continuum-mechanical-
based methods are indispensable. They can pro-
vide full volumetric resolution of the skeletal
muscle tissue at the expense of (substantially)
increased computational requirements.

Standard continuum-mechanical frameworks
for modelling skeletal muscle mechanics include
phenomenological descriptions of the material
(the passive and active mechanical behavior
of skeletal muscle tissue) on the macroscopic
scale. In particular the activation dynamics is also
reduced to a phenomenological quantity, e.g., a
scalar parameter representing the level of activity.
One of the first continuum-mechanical skeletal
muscle models was proposed by Johansson
et al. (2000). More recently, continuum-
mechanical descriptions have been extended to
incorporate more realistic activation dynamics
and characteristics stemming from the fiber or
sarcomere level, e.g., fiber type, motor units,
and recruitment protocols. Such models typically
include the biophysical processes originating

within a sarcomere in order to compute the
propagation of the action potentials and the force
generation. They typically adopt systems biology
approaches, e.g., Huxley-like models. The link
from computing the level of activation or force
generation of a single sarcomere or muscle fiber
to the averaged level of activation on the whole
muscle scale is due to upscaling (averaging).
Such models that incorporate processes on the
sarcomere level within continuum-mechanical
principles on the muscle level are referred
to multi-scale, multi-physics chemo-electro-
mechanical skeletal muscle models, e.g., the
chemo-electro-mechanical models originally
proposed by Röhrle et al. (2008, 2012).

Kinematics and Governing Equations

During contractions, the change in length of a
skeletal muscle can be 50% or more. Hence,
modelling the mechanical behavior of skeletal
muscle within a continuum-mechanical frame-
work should appeal to finite deformation the-
ory. Moreover, since skeletal muscle tissue is
typically considered as a solid, one typically
assumes a Lagrangian description. The key for
modelling solid materials within a continuum-
mechanical framework is to identify a stress-free
configuration, the so-called reference configura-
tion. However, since skeletal muscle tissue is, like
all other biological tissue, naturally grown, it nat-
urally exhibits residual stresses. Therefore, spec-
ifying the reference configuration is not easy and
straightforward. The different ideas and method-
ologies for finding the reference configuration or
applying suitable residual stresses to the refer-
ence configuration are omitted within this contri-
bution.

Once the reference configuration is specified,
a material point within the reference configu-
ration is denoted by its position vector X. If
the tissue is subjected to a load or deforma-
tion, the movement of each material point is
described by the motion or the placement func-
tion, χ(X, t), and the respective position vector
within the actual configuration is denoted by
x(X, t). Following the standard definitions of



Skeletal Muscle Modelling 2295

S

continuum mechanics, the deformation gradient,
F, is a second-order tensor characterizing the
local gradient of material point X, i.e., the defor-
mation of neighboring points, and is defined by
F := ∂ χ(X,t)

∂ X .
Besides the reference and current configura-

tion, specific modelling approaches might also
require the introduction of a third, so-called inter-
mediate, configuration. Details related to this
configuration conform to the general modelling
framework of inelasticity. In this framework, the
deformation gradient is multiplicatively split into
two parts, i.e., into an elastic deformation gradi-
ent Fe and a muscle-specific deformation gradi-
ent Fm describing, for example, growth or active
behavior of skeletal muscle.

In skeletal muscle modelling, one typically
aims to describe overall mechanical behavior
of the skeletal muscle tissue. Hence, only the
mechanical balance laws (balance of mass,
balance of linear momentum, and balance of
moment of momentum) are considered. The
thermodynamical ones (energy and entropy) are
often ignored, although temperature certainly
plays a crucial role within the physiology of
muscles. Ignoring the effects of temperature
and focusing on its mechanical properties, the
material behavior of the skeletal muscle tissue
enters the balance equations through the balance
of linear momentum, i.e.,

ρ ẍ = div [J−1 P FT ] + ρ b, on ΩM (1)

where ρ is the density of the skeletal muscle
tissue, which can differ at each material point
X, ẍ is the acceleration, J is the determinant
of F, P is the first Piola-Kirchhoff stress tensor
describing the stress-strain relationship of skele-
tal muscle tissue, b denotes the body forces, and
ΩM describes the domain of the skeletal muscle
tissue.

Most modelling approaches ignore body
forces (b = 0), which are caused by the
effect of gravitation on the muscle body, and
assume slow movements (ẍ ≈ 0). In this case,
the inertial effects described by the term ρ ẍ
can be neglected and a quasi-static setting can
be assumed. Assuming quasi-static conditions

is, however, for many scenarios involving the
musculoskeletal system an oversimplification.
This is particularly true if one aims to predict the
mechanical behavior of skeletal muscles during
impact, e.g., during running or during a car crash.
Moreover, since relative soft skeletal muscle
tissue is coupled to the rather rigid skeleton,
muscles move relative to the bones and result
in so-called wobbling masses. If one wants to
capture such phenomena, one cannot ignore
the inertia term. A fully dynamic simulation
framework is needed.

Geometry

The mechanical behavior of a muscle strongly
depends on its muscle architecture and its geom-
etry. The ideal source for acquiring information
on a skeletal muscle’s geometry and its struc-
tural characteristics is (nondestructive) imaging.
Such imaging techniques should also be capa-
ble of identifying the muscle fiber directions
and distributions as the fiber direction plays a
crucial role in skeletal muscle mechanics: Due
to the arrangement of the sarcomeres and their
functioning, skeletal muscles can only actively
contract along the fibers. Currently, there exist
two suitable state-of-the-art imaging techniques
that are based on magnetic resonance tomography
(MRI): (high-resolution) conventional MRI for
determining, often in high resolution, the 3-D,
geometrical extend of a skeletal muscle as well
as its composition, e.g., fat inclusion or internal
tendinous structures, and diffusion-tensor MRI
(DT-MRI) for determining the fiber orientation
within a muscle. The DT-MRI method can utilize
in a biological tissue the diffusion sensitization in
six directions and determine from that a diffusion
tensor for each voxel of the image. Assuming
that the diffusion sensitization is the largest along
skeletal muscle fibers, the largest eigenvalue of
the diffusion tensors and its associated Eigenvec-
tor provide, for each voxel, the principal direction
of the averaged fiber direction within the respec-
tive voxel. Hence, DT-MRI is a methodology to
define the fiber field of a muscle and, hence, a
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way to intrinsically describe the local anisotropy
of the tissue.

The collected images need to be segmented to
extract the exact geometry of the muscles. Up
till now, despite the development of automated
methods such as deformable models that achieve
a local optimal segmentation goal, manual seg-
mentation is still the valid option for many clini-
cal settings and researches in the field of skeletal
muscle modelling. This is due to the fact that
skeletal muscles lack distinguishing visual prop-
erties that permit applying simple automatic seg-
mentation methods. This makes automatic seg-
mentation a challenging topic for skeletal muscle
image data, and the (long) process of manually
segmenting images remains a bottle neck in this
research field.

Moreover, the balance of momentum equa-
tions cannot be solved analytically – this even
holds for simple geometries. Hence, a discretiza-
tion scheme has to be employed in order to
transform the continuous equation in a system of
discrete (nonlinear) equations that can numeri-
cally be solved. A familiar method to discretize
the segmented geometry is to utilize the finite
element method. The details of discretization
process including selecting the type of elements
and the mesh fineness are direct results of the
complexity of geometry (and the weak form of
governing equations). The meshing and its asso-
ciated challenges shall not be subject to this entry.

Constitutive Modelling

From a mechanical point of view, skeletal
muscle tissue is a complex biological material
consisting of different components that exhibit
different phenomenons like elasticity, active
deformation/force generation, or history-
dependent material effects. Like most biological
tissues, skeletal muscles are assumed to
exhibit (visco-)elastic, transversely isotropic,
inhomogeneous, and (nearly) incompressible
behavior. Like in each continuum-mechanical
framework, the constitutive equations describing
the mechanical behavior of skeletal muscle tissue
enter the framework through the balance of

linear momentum, which are then discretized
and solved to obtain the respective deformations
and stresses and, hence, the predictions of
the exerted muscle forces. Skeletal muscle
constitutive modelling, however, differs from
modelling classical solid materials by taking into
account the ability to generate force, i.e., by
taking into account its active behavior. The active
force generation depends on many different
aspects, i.e., on the current stretch of the skeletal
muscle, on its contraction velocity, and its level
of activation. As far as the passive material
properties are concerned, one can choose a
suitable phenomenological constitutive law, e.g.,
a Mooney-Rivlin-, Ogden-, or Fung-type law,
and compute the respective material parameters
by fitting the mechanical response of the compu-
tational model to experimental data. It should
be noted that for skeletal muscle modelling,
however, not all of these material properties
are considered at all times. Depending on the
application, different amounts of details can be
reasonable, e.g., if slow movements are assumed,
a force-velocity relationship might be omitted.

Additive Split of the Stress Tensor
The most common approach to model the
mechanical behavior of skeletal muscle is to split
the stress tensor additively into a passive and
an active part. Each term accounts individually
either for its passive or active properties.
Hereby one assumes that the smeared overall
behavior of the muscle tissue can be obtained by
superposition, i.e.,

P = Ppassive + Pactive , (2)

where the active and passive contributions to the
overall first Piola-Kirchhoff stress tensor, P, are
denoted with subscript “active” and “passive.”
Based on its anatomical structure, skeletal muscle
tissue is assumed to be transversal isotropic, i.e.,
muscle tissue has different mechanical properties
in fiber direction than in cross-fiber direction.
Anisotropic material properties are represented
by structure tensors that can be derived from
the fiber direction a0. In detail Mf = a0 ⊗ a0

accounts for specific material properties in fiber
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direction, and Mxf = I − a0 ⊗ a0 accounts for
specific material properties in cross-fiber direc-
tion.

It is known from experiments that passive
skeletal muscle tissue shows viscoelastic
behavior; consequently, the passive stress tensor,
Ppassive, depends on the fiber direction a0, the
deformation gradient tensor F, and the rate of
deformation Ḟ, i.e., Ppassive(F, Ḟ, a0). However,
in continuum mechanical skeletal muscle
models, viscous behavior is often neglected and
passive skeletal muscle tissue is assumed to be
hyperelastic, leading to Ppassive = Ppassive(F, a0).

Hyperelastic materials, also known as green
elastic or conservative materials, behave elasti-
cally when subjected to large deformations. If
thermal effects are neglected, the second Piola-
Kirchhoff stress, S, of hyperelastic materials is
related to the instant Lagrangian Green strain,
E = 1

2 (F
T F − I), by derivation of a scalar

valued function W(E), known as strain or elas-
tic energy per unit volume, through the second
Piola-Kirchhoff stress tensor S = ∂W(E)/∂E
and P = FS. Unlike viscoelastic materials, the
hyperelastic response of these types of materials
is independent of its loading history. Moreover,
due to its high content of water, skeletal muscle
tissue is typically assumed to be incompressible.
The incompressibility constraint, det F = J = 1,
is included by incorporating the incompressible
constraint within the stress tensor via the hydro-
static pressure, p, as a Lagrange multiplier.

The active force generation takes place at
the sarcomeres, which consist of thin actin and
thick myosin filaments. The molecular motor is
based on the cyclic interaction of the myosin
heads and the actin filaments (cross-bridge cycle)
and is controlled by the intracellular calcium
concentration, serving as a second messenger
that is triggered by an electrophysiological stim-
ulus (action potential). A continuum mechani-
cal skeletal muscle does not consider individual
sarcomeres. Rather a more abstract representa-
tion for the active tissue properties is chosen
by introducing an average activation state in a
representative elementary volume, i.e., stochas-
tically distributed fluctuations of the microstruc-
ture state variables vanish. This can either be

realized by purely phenomenological data fitting
or detailed biophysical modelling. In order to
obtain a universally valid material description,
we introduce a generic internal state vector α,
describing the averaged active properties of the
muscle at a material point X. Despite quite spa-
tially heterogeneous activation of skeletal mus-
cles, most continuum mechanical skeletal muscle
models assume a constant value throughout the
muscle. By convention, α = 0 denotes a purely
passive skeletal muscle, while α = 1 defines the
maximally stimulated skeletal muscle.

The amount of force that can be produced by
the muscle is proportional to the overlap between
the thin actin and the thick myosin filaments. This
geometrical consideration on the microstructure
configuration can be summarized in a material
property known as the (active) force-length rela-
tion, which is depicted in Fig. 2.

Further, the active force that can be produced
by the cross-bridges also depends on the con-
traction velocity. Consequently, the constitutive
relation describing the active stress of the muscle
tissue should depend on the fiber direction a0 and
the generalized activation state vector α, which
is a function of the deformation gradient tensor
F and the rate of deformation Ḟ and the fiber
direction a0, i.e., Pactive = Pactive(α,F, Ḟ, a0) .

Taking all abovementioned considerations into
account, the general representation of the overall
first Piola-Kirchhoff stress tensor, P, for skeletal
muscle tissue is given by

P = Ppassive(F, Ḟ, a0)+ Pactive(α,F, Ḟ, a0)

− pJFT−1 . (3)

Within this framework, additional properties,
such as, for example, history-dependent muscle
stiffness, can easily be incorporated by adding up
an additional term to the total stress tensor.

Multiplicative Split
Besides the active stress modelling approach
described above, there also exist active strain
approaches to model the active behavior of
skeletal muscle tissue. Within the active strain
approach, the deformation gradient tensor, F, is
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Fig. 2 Sketch of the force-length relationship motivated by actin-myosin overlap (actin, thin black structures; myosin,
thick blue structures). In transparent green the typical working range of a skeletal muscle

multiplicatively decomposed into an elastic and
an active part,

F = Fe Fa , (4)

where the active deformation gradient tensor Fa

accounts for the muscle’s ability to actively gen-
erate force, while the elastic deformation gradient
tensor Fe = FF−1

a is a virtual measure for
the mechanical distortion induced by the visible
total deformation F and the microscopic active
deformation Fa.

For simplicity, it is assumed that passive mus-
cle tissue behaves in a hyperelastic sense. The
active deformation gradient tensor Fa depends on
the same variables as introduced above, i.e., α, F,
Ḟ, and a0, and is given by

Fa = Fa(α,F, Ḟ, a0) . (5)

The first Piola-Kirchhoff stress tensor, P, can
be derived from the overall elastic energy stored
in the body. The overall stored elastic energy can
be derived from a potential Ψ = Ψ (F,Fa) =
Ψ (Fe). Consequently, the first Piola-Kirchhoff
stress tensor, P, can be directly derived from the
potential Ψ :

P = ∂Ψ (Fe)

∂Fe
FT−1

a . (6)

The active stress approach (additive split)
might be more intuitive as it might be
easier and more straight forward to choose
and fit appropriate constitutive equations
to experimentally gained data. Moreover, it
might be easier and more intuitive to include
further mechanical properties. The active strain
approach (multiplicative split), however, might
be preferable from a mathematical point of view,
as it is easier to guarantee convexity and therefore
finding a stable solution.

Software Tools

In continuum mechanics, the balance of linear
momentum equations is typically discretized
using the finite element method (FEM). Using a
biomechanically inspired constitutive law, a 3-D
geometry and the FEM, to predict the mechanical
behavior of skeletal muscles is not widespread.
As such, no popular software package exists as
a go-to tool to simulate skeletal muscle in three
dimensions. This is not the case, for example, for
simulation of muscle in multi-body dynamics,
where skeletal muscles are typically modelled as
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1-D elements, for which software packages such
as the commercial software AnyBody (AnyBody
Technology) or the open-source software pack-
age OpenSim (NCSRR) are widely used. Another
issue in simulating skeletal muscle using FEM
is that several software packages and codes are
developed in-house to tackle specific problems
and involve specialized work-flows that are either
not immediately available and/or require in-depth
knowledge to set up. In fact, there exist only a
few software packages which provide the func-
tionality to model (active) skeletal muscle within
a generalized continuum-mechanical framework,
for example, FEBiO (Musculoskeletal Research
Lab Utah & Musculoskeletal Biomechanics Lab
Columbia), LS-DYNA (LSTC), and OpenCMISS
(Auckland Bioengineering Institute, Bradley
et al. 2011). Further details are given in Table 1.
These packages provide the ability to model an
active (skeletal) muscle tissue in response to a
stimulation.

While these packages provide perhaps the
simplest way to simulate skeletal muscles, the use
of more generalized FE packages is not precluded
since they can usually be extended via user-
defined material models, which describe (active)
skeletal muscle properties. The implementation
of user materials requires in-depth knowledge
not only of muscle physiology but also about

numerical aspects of the FE method and as such
may not be a viable option for all use cases.
However, prior to implementing user-defined
skeletal muscle material models within FE
packages, one should investigate the package’s
capabilities. To simulate fast movements or
impact, inertial effects are essential. Further
to couple electrophysiological principles to
mechanics or to allow for complex recruitment
principles, one needs to be able to include
complex (electro-)physiological models, which
are typically defined by means of ordinary
differential equations. This, however, is not
standard or easy to include and therefore still
requires custom-build biomechanical software
tools such as OpenCMISS. Some popular open-
source and commercial packages are listed in
Table 1.

The available contact formulation and its
implementation might further influence the
decision for a particular software is the contact
formulation. This is particularly important at
the musculoskeletal system level. In this case,
commercial packages generally provide a more
robust set of contact algorithms and are able
to robustly deal with any nonlinearities which
may arise due to contact between the muscle,
tendon, and bone. Given the nature of muscle
simulations, generally a large number of elements

Table 1 List of popular FE packages which can be used to simulate skeletal muscles

Software package Provider Muscle-model provided? Dynamic

Abaqus unified FEAa Dassault systèmes No Yes

ADINAa ADINA R&D No Yes

ANSYS suitea ANSYS No Yes

CHeartb Kings college London No No

Code_Asterc Électricité de France No Yes

COMSOL multiphysicsa COMSOL No Yes

FEAPc U-California, Berkley No Yes

FEBiOb U-Utah & U-Columbia Yes No

LS-DYNAa LSTC No Yes

Marca MSC software No Yes

OpenCMISSc U-Auckland Yes No

Z88Aurorab U-Bayreuth No Yes
aCommercial
bClosed-source
cOpen-source
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and/or multi-physics are involved, and this may
lead to excessively high computational times.
In this case, the ability of the software package
to efficiently solve the problem in parallel and
on HPC (high performance computing) systems
becomes a deciding factor.

Applications

The modelling of skeletal muscle provides
insights into (neuro-)muscular function in vivo,
which are either difficult or even impossible to
obtain experimentally. For example, modelling
allows the prediction of local stresses and strains
within a muscle, muscle-bone contact pressures,
overall force production due to changing motor
control schemes, or effects of individual muscle
perturbations, just to name a few. In silico
experiments are vital in generating meaningful
and nontrivial data to extend datasets that would
be otherwise too small to reach an adequate
statistical significance, for example, in case of
rare diseases. The applications of skeletal muscle
modelling can be grouped into three broad areas:
(i) clinical applications, (ii) physical health and
safety, and (iii) ergonomics and performance
enhancement.

Clinical applications include diagnosis of neu-
romuscular diseases and evaluation of therapies.
For example, detailed chemo-electromechanical
models provide the basis to model diseases that
specifically target the muscle tissue (either the
muscle fibers directly or the surrounding con-
nective tissues), the neuromuscular junction, the
nerve, or the lower motor neurons. Musculoskele-
tal modelling allows the investigation of trau-
matic as well as degenerative alterations of the
structures related to movement and motor con-
trol. The outcomes of surgical or therapy inter-
ventions can be forecast by simulating muscle
forces, joint moments, and bone loads.

Beyond clinical applications, industrial
applications of skeletal muscle simulations
are useful in improving the physical health
and safety of products and environments. In
the automotive industry, crash simulation with
passive dummies is an industry standard. More

recently, simplified one-dimensional muscle
models have been included to closer reflect real-
life situations, accounting for muscle tension
in preparation for impact. The use of three-
dimensional muscle models would provide
realistic geometry and mass distributions, which
may have a large influence on crash results due
to the extreme accelerations and decelerations
involved. Furthermore, joint torques and resulting
movements would also be more realistically
represented by three-dimensional muscles.

In the area of ergonomics, the use of skeletal
muscle simulations can be used to optimize
products to, for example, reduce muscle fatigue,
reduce short-duration muscle strain, or even
optimize (reduce) the neuromuscular activity
for a given task. This has implications in
industries where physical labor constitutes
a large part of the activity. Using the same
principle as prosthetic or orthotic control design,
exoskeletons could enhance range of motion and
strength. In this case, due to the supramaximal
loads involved, simulation of the underlying
neuromuscular processes would be critical in pro-
viding safe, robust, and quick control algorithms.
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his research papers, he published an impressible
number of influential books, most notably on
integral transform methods.

Ian Naismith Sneddon

Early Life and Education

Ian Naismith Sneddon was born in Renfrew
(near Glasgow, Scotland), on December 8, 1919.
Shortly after he was born, his family moved
to Partick in the West End of Glasgow where
Ian’s father worked as a slater and plasterer.
Ian attended Thornwood Primary School and
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thereafter Hyndland Secondary School. He
excelled at his studies, and his mathematical
talent was recognized by the Principal Teacher
of Mathematics, James Milroy, who provided Ian
with much encouragement. At the early age of 15,
he became Dux of the school (i.e., the top pupil),
and at 16 in 1936, Ian enrolled at the University
of Glasgow, where he studied both mathematics
and physics (which was at that time referred to
as natural philosophy). He graduated with a First
Class Honours BSc in the combined subjects of
mathematics and natural philosophy in 1940. He
then moved to Cambridge University to continue
his studies of mathematics and took Part II of the
Mathematical Tripos, for which he was classified
as a Wrangler, and in 1942 was qualified for a
BA degree. At this point he was preparing to
work in pure mathematics under the supervision
of Professor G. H. Hardy, FRS, but war-related
work called, and Ian was drafted to the Branch for
Theoretical Research at the Armament Research
Department at Fort Halstead in Kent, and this
set the scene for a change in the direction of his
interests.

Professional Life

It was in May 1944 that Ian moved to Fort Hal-
stead, and he worked within the group superin-
tended by the physicist N. F. Mott, FRS (later Sir
Nevill and a Nobel Prize Laureate) in problems of
solid mechanics. His work was closely associated
with indentation problems and the fracture of
steel used in tank armour plates, and this led to
his solution of the problem of a “penny-shaped
crack,” in part based on methods applied in the
Boussinesq problem. Ian rapidly became a lead-
ing international authority in the mathematical
methods used for the solution of indentation and
crack problems, developing expertise in the the-
ory of integral transforms and mixed boundary
value problems and applications within the con-
text of linear elasticity.

After the war, in 1945, Mott returned to his
position at Bristol University as Professor of
Physics in the H.H. Wills Physical Laboratory
and recruited Ian as a research fellow in theoreti-

cal physics. In the period until his departure from
Bristol in 1946, Ian worked with Mott on the writ-
ing of the book Wave Mechanics and Its Appli-
cations (Mott and Sneddon 1948), and this was
published in 1948. In 1946 Ian was appointed as
a lecturer in Department of Natural Philosophy at
his alma mater, the University of Glasgow, where
he undertook research in both theoretical nuclear
physics and elasticity theory and embarked on
a teaching career. He was awarded the degree
of DSc by the University of Glasgow in 1948,
his submitted work for which was awarded the
university’s Kelvin Medal.

During this period in Glasgow, Ian was
working on a major book that focused on Fourier,
Laplace, Mellin, and Hankel transforms and
their applications and was almost completed
when he was appointed, in 1950, to the first
chair of mathematics at the University College
of North Staffordshire in Keele (subsequently
named Keele University). At the age of 30, he
was the youngest professor of mathematics in
the UK. His book, entitled Fourier Transforms
(Sneddon 1951), was published shortly after his
arrival in Keele. It contained the dedication “To
the University of Glasgow on the occasion of its
fifth centenary 1451–1951.”

At Keele Ian took on a heavy administrative
responsibility and was involved in many univer-
sity committees, but he managed to build up a
small but strong group of mathematicians as well
as to maintain his own research. This was in
addition to the production of two undergraduate
textbooks based on his teaching at both Glasgow
and Keele: these widely used texts are entitled
Special Functions of Mathematical Physics and
Chemistry (Sneddon 1956) and Elements of Par-
tial Differential Equations (Sneddon 1957).

After his 5 years at Keele, in 1956 Ian was
invited to accept appointment as the newly
established Simson Professor of Mathematics
at the University of Glasgow, and he duly
accepted and returned to Glasgow in 1957 where
he remained until his retirement in 1985. In
Glasgow Ian took on a heavy teaching load
and introduced applied mathematics into the
mathematics curriculum, which hitherto had
been dominated by pure mathematics as applied
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aspects of the subject were taught within the
Department of Natural Philosophy. He had a
long and distinguished career in Glasgow and
played a major role in the life of the university,
contributing substantially to many university
committees, as well as serving as Head of
the Department of Mathematics, Dean of the
Faculty of Science, and member of the University
Court (the University’s governing body). He
was elected as a Fellow of the Royal Society
of Edinburgh (FRSE) in 1958 and awarded the
Makdougall-Brisbane Prize of the RSE in the
same year. He also served as a member of the
Council of the RSE, including a total of 6 years
as vice president.

In addition to his commitment to the Uni-
versity of Glasgow and the Royal Society of
Edinburgh, Ian travelled extensively outside Scot-
land. In particular, he spent many periods in
the USA, including as a Visiting Professor at
North Carolina, Duke and Indiana Universities,
and the State University of New York. He also
had strong connections with Poland and was
recognized there as a Foreign Member of the
Polish Academy of Science (1968) and as a
Commander of the Order of Polonia Restituta
(1969). He was awarded the Copernicus Medal of
Polish Academy of Sciences (1973) and received
an Honorary Doctorate from Warsaw University
(1973), while in 1979 he became a Commander
of the Polish Order of Merit and, in the same year,
was awarded the Eringen Medal of the Society of
Engineering Science in the USA.

Ian devoted much time to service at the
national level. For example, he spent various
periods as a member of the Scientific Advisory
Council of the Ministry of Defence and was
Chairman of the Mathematics Committee of
the then Science Research Council (SRC, now
EPSRC) and as a member of the Universities
Science and Technology Board. In recognition of
this work, he was awarded the honour of an OBE
(Order of the British Empire) in 1969.

In the UK his academic distinction was rec-
ognized by the conferring on him of honorary
doctorates at Heriot-Watt University (1982), the
University of Hull (1983), and the University
of Strathclyde (1994). The finest accolade he

received was his election as a Fellow of the Royal
Society (FRS) in 1983 just 2 years prior to his
retirement from the University of Glasgow.

Scientific Contributions

Ian’s main contributions were to the applica-
tion of integral transform methods in problems
of the mechanics of solids, particularly mixed
boundary value problems, with a focus on the
linear theories of elastostatics, elastodynamics,
and thermoelasticty. These are exemplified by
contact and surface loading problems and crack
problems highlighted in the books Fourier Trans-
forms (Sneddon 1951); Mixed Boundary Value
Problems in Potential Theory (Sneddon 1966);
Crack Problems in the Classical Theory of Elas-
ticity (Sneddon and Lowengrub 1969); The Use
of Integral Transforms (Sneddon 1972), listed in
chronological order of publication; as well as
The Linear Theory of Thermoelasticity (Sneddon
1974), which was based on lectures given at the
International Centre for Mechanical Sciences in
Udine, Italy, and the set of notes The Use of
Operators of Fractional Integration in Applied
Mathematics (Sneddon 1979), published by the
Polish Academy of Sciences.

He also published An Introduction to the
Mathematics of Medicine and Biology (Defares
and Sneddon 1960), presaging in 1960 what
has become an important area of research in
applied mathematics. In addition to his textbooks
Special Functions of Mathematical Physics and
Chemistry (Sneddon 1956) and Elements of
Partial Differential Equations (Sneddon 1957)
mentioned above, he published the textbook
Fourier Series (Sneddon 1961).

Ian Sneddon’s books have been widely influ-
ential in both research and undergraduate teach-
ing and in total have attracted well over 10,000
citations in Google Scholar. Ian’s research output
has been prodigious, and many of his research
papers have been groundbreaking and are highly
cited: particular mention should be made of the
papers The relation between load and penetra-
tion in the axisymmetric Boussinesq problem for
a punch of arbitrary profile (Sneddon 1965),
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On certain integrals of Lipschitz–Hankel type
involving products of Bessel functions (Eason et
al. 1955), and The distribution of stress in the
neighbourhood of a crack in an elastic solid
(Sneddon 1946), which, at the time of writing,
have attracted, respectively, 3821, 2551, and 1454
citations, and these alone are indicative of his
enormous influence.

Ian was an excellent advisor of PhD students,
and 20 students graduated under his supervision,
many of whom went on to become professors in
various countries of the world, the most noted
being A.J.M. Spencer, FRS, who was a professor
at the University of Nottingham for many years.

Family and the Arts

In September 1943 Ian married Mary Campbell
Macgregor, and Mary joined him in Cambridge
until the move to Fort Halstead. Mary and Ian had
three children, two sons and a daughter. In their
home Ian and Mary offered warm and generous
hospitality to many visitors, who remember such
occasions with affection. Ian was renowned for
the delightful fund of stories he recounted about
famous mathematicians and scientists with whom
he was acquainted.

Ian was an aficionado of the arts and in par-
ticular was heavily involved in the musical life
of Scotland. He was a member of the Board
of the Scottish National Orchestra, the Advisory
Council of Scottish Opera, and was Chairman of
the BBC Scottish Music Advisory Committee for
several years. In addition, he was a member of
the Board of the Citizens Theatre in Glasgow.
Music also featured in his Polish connections
during his many visits to Poland, and he was a
strong supporter of the Scottish Polish Friendship
Society.

Much more about Ian’s life and work can be
found in the excellent biographical memoir writ-
ten by Professor Peter Chadwick, FRS (Chad-
wick 2002) for the Royal Society. His entry in
the MacTutor History of Mathematics (O’Connor
and Robertson 2003) is also a useful source of
information, and, in particular, it contains links

to obituaries in The Times and Scotsman news-
papers and other links of interest.

Cross-References

�Dynamical Contact Problems of Fracture
Mechanics
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�Hill, Rodney
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Synonyms

Impact of soft projectiles; Low-strength projec-
tile impact; Soft body impacts

Definition

Soft impact refers to high kinetic events in
which a collision occurs between an object
and a structure, being the mechanical properties
of the first quite low compared with the later
material. In a “soft impact event,” the projectile
is greatly deformed and even damaged during
the interaction with the impacted structure,
contrary to “rigid impact event” in which the
projectile almost remains intact during the impact
process. The typical examples of soft impacts are
produced in the aerospace sector such as hail or
ice impact, bird strike, and tire fragment impact.

Introduction

During its service life, structures can be sub-
jected to a variety of loading cases. Restricted
to dynamic loading, impact is one of the most
concerning case due to its possible disastrous
consequences. Impacts on structures can be pro-
duced by the accidental or the deliberate hit of
an object into the structure that could be a civil
infrastructure or transport structure. Regarding
the differences between the material properties of
projectile and structure, impacts can be divided
in two main categories: rigid impacts and soft
impacts. In the first, stiffness and strength of
projectile are higher than the structure, and hence
the damage is produced only in the structure,
while the projectile almost remains unalterable.
Soft impacts are those in which the mechanical
properties of the projectile are significantly lower
than the structure. In those both projectile and
structure get deformed and damaged after the
impact. If the properties of projectile and struc-
ture are similar, the case cannot be considered
neither a rigid nor a soft impact event. Neverthe-
less the type of failures is similar to soft impactor
cases, since damage occurred in both elements.

Concerning the relative velocity between
projectile and structure, impacts can be divided
in two categories: high velocity impact and low
velocity. There are many definitions to clarify the
border between these two categories, although
it is commonly accepted that impacts above
40–50 m/s can be considered as high velocity
impacts. The impact of a “rigid” projectile
can be studied for low velocity impacts and
high velocity impacts (González et al. 2011;
Artero-Guerrero et al. 2015; López-Puente et al.
2002). However for soft impact, the study is
only restricted to high velocity impacts since
the low strength and stiffness of the material
cannot affect importantly if the impact is at low
velocity. The study of high velocity impact takes
on particular importance in the aeronautic sector,
and moreover, the impact of soft projectiles is
not uncommon (Mines et al. 2007; Johnson et al.
2009). During certain maneuvers, such as takeoff
and landing, the structural components can be hit
by tire fragments; or during flight birds, hail or
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Fig. 1 Impact hazards in a
commercial aircraft

ice can hit different parts of the aircraft as the
fuselage, wings, stabilizers, radome, or nacelles.
In Fig. 1 it can be seen the main impact hazards
and the most probable impact location on an
aircraft. Nevertheless, of all the different kinds of
impacts, those involving hail and ice are the most
dangerous due to their probability of occurrence
as well as their potential consequences (Pernas-
Sánchez et al. 2012). Other occasional debris
could act as soft impactor such as foams in the
case of the space shuttle accident (Melis et al.
2004; Fasanella et al. 2004; Carney et al. 2004)
or other nonstructural parts but because of its
low probability are less studied. The rain impact
could be classified as a soft impact, considering
the damage provoked by the repetitive impacts
process (Abrate 2016).

Nowadays it has to be remarked that soft
impactors have become even more important due
to the use of composite material in aerospace
structures. Composite materials are being used
more and more in primary structures of aerospace
structures because of its excellent specific prop-
erties which allow to achieve a reduction in the
weight of the structure and hence a less fuel con-
sumption. This main consequence has both eco-
nomical and environmental advantages that have
to be taken into account. Nevertheless it is well
known the poor behavior of these types of mate-
rials when subjected to perpendicular dynamic
loading (López-Puente et al. 2008). These types
of impact could promote the delamination failure
between each composite plies that could affect
the bearing capacity of the structure and even the
operability of the aircraft (Pernas-Sánchez et al.
2016a). So the soft impact event, mainly bird, ice,

and tire fragment, on composite structures is cer-
tainly an area that worth the research. Therefore,
vulnerability to impact has become an important
issue from a regulatory perspective and aeronau-
tical safety. Both the American and European
regulatory certification requirements (FAR and
JAR, respectively) include specific cases for pre-
venting severe failure caused by an impact. This
thread is also included by the European agency,
literally from an EASA 2011 report “A critical
safety issue for the design of primary aircraft
structures is vulnerability and damage tolerance
due to foreign object impact from bird strike,
hail, tire rubber and metal fragments” (Toso and
Johnson 2011), highlighting the impact threat as
a key factor in the design of aircraft structures.

Bird strikes account for around 90% of
all incident related to structural damage due
to impact on aircraft (Meguid et al. 2008).
Therefore the certification program gives a
main importance to the bird impact resistance of
aeronautical structures as radomes, wing leading
edges, fuselage, tail wing, engines, or window
frames. The cost and complexity of this test
are very high; full-sized structures with real-
like boundary condition should be tested raising
the costs. Moreover, there exists an uncertainly
in the behavior of the projectile due to the
variability between bird species, and therefore it
could promote different behaviors increasing the
analysis complexity. Numerical methods are also
very useful in these problems trying to reduce
cost doing virtual testing campaign in which
different designs are tried. A proper validation for
the model with the experimental test is needed for
the successful use of the numerical model. Also
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the numerical model will help to understand the
phenomena occurred in such a complex problem.

The threat of ice has become a subject of
aircraft regulation for the aeronautical authorities
(JAR-E 970), especially in aircraft with
propellers or the ones with open rotor engines
belonging to the new generation of aircraft used
for medium-range routes (Pernas-Sánchez et al.
2012). Different studies, both experimentally
and numerically, have analyzed the damage that
this kind of impacts produces in aluminum
(Chuzel 2009; Combescure et al. 2011) and
CFRP structures (Kim et al. 2003; Johnson
et al. 2006; Park and Kim 2010). It can be seen
that in CFRP structures, these impacts are very
concerned since delamination can be extended
in all the structure(Pernas-Sánchez et al. 2016a).
Researchers have also made an important effort in
reproducing adequately its constitutive behavior
since many different models can be found.

Regarding to tire fragment impact, these cases
reached more importance after the accident of the
supersonic Concorde aircraft in Paris (Authors
2000; Seddon et al. 2004). In that case, the
impact of a tire fragment in the wings, where
the fuel was allocated, generated some structural
damage that added to the fire turned into the
catastrophic failure of the aircraft. Moreover this
accident ended with the era of the supersonic civil
flights. The research effort has been focused also
in the determination of constitutive models that
reproduce adequately the force produced by the
rubber in this impact and the damaged developed
into the structure (Mines et al. 2007; Guégan et al.
2010; Neves et al. 2010).

Bird Strike

When a structure, in this case, an aerospace struc-
ture, is collided by one or more birds, the impact
is known as bird strike. From the beginning of
aeronautic history, bird strike has been a problem
to concern; in fact it was already described by
Wright brothers (MacKinnon 2004) in 1905, and
the first fatal accident occurred in 1912 (Lewis
1995). Up to 2004, it has been reported 242
fatalities related to bird strike incidents (Stoll and

Brockman 1997). Nevertheless there are many
incident per year, some estimation reaches 30000
bird strike (ICAO, 2001, Proposed amendment to
annex 14, unpublished), but the majority cause
little or even no damage. This number can be
increased due to the environmental awareness
that has increased the bird population nowadays
(Eschenfedler 2001). Moreover, the fact that air-
ports are far away from cities and therefore closer
to natural habitats of birds makes increase the
possibility of bird strikes. The impacts are not
restricted only to airports, because the possibility
of finding a large flock of birds at high alti-
tude is not negligible. In this case, the impact is
even more dangerous since the aircraft velocity
is higher. Some calculations provide a value of
$USD 3 billion per year of economical losses for
the aircraft companies (Short et al. 2000).

Bird Strike Experimental Tests
Due to the importance of the problem, both from
a safety and economical point of view, bird strike
tests have to be carried out to proof the via-
bility of aircraft structure against this menace.
Moreover, for certification purposes this impact is
compulsory in certain aircraft components where
the probability of bird strike is high (such as fuse-
lage, windshield, or rotor blades). For example,
Boeing 777 engines are required to produce at
least 75% of full-rated thrust after the impact of
four 1.125 kg birds (Lewis 1995). The structural
parts are required to maintain its integrity once
the impact has taken place. In order to perform
the impact test, the bird has to be accelerated
to the required velocity (50–200 m/s). Usually
this is performed using a pneumatic launcher in
which compressed air impels the projectile and
accelerates it through the cannon barrel. To adapt
the geometry of the bird to the inner diameter of
the barrel, it is needed to use a sabot. The design
requirement of this component is to maintain
the bird integrity during the acceleration process
so that the bird could completely impact the
structure. In addition, the sabot should be light
as well as be easily separated from the projectile
once it exits the barrel, hence avoiding to alter
the impact on the structural components. Due to
the small time of the impact (milliseconds scale),
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special instrumentation has to be used to register
adequately the impact. High-speed cameras have
to be used with an adequate frame rate (10–
20 kfps), and dynamic sensors (usually piezo-
electric) have to be used to register acceleration,
forces, pressures, etc.

The literature regarding experimental bird
strike against aerospace structure is scarce,
because the majority of the research are centered
on studying the impact on rigid plates to analyze
the force produced and obtain data useful to
validate its numerical models. Nevertheless it
has to be remarked the work of Liu et al. (2017)
in which a tail leading edge is impacted by a
3.6 kg bird. Experimental results are compared
with numerical simulation obtaining a good
correlation in terms of damage produced. Also
in the work of Hu et al. (2016), experimental
test is performed to analyze the impact resistance
of a composite helicopter cockpit. A numerical
simulation is used to improve the design of the
cockpit. Aluminum plates impacted against bird
are also analyzed in the work of Liu et al. (2014).

Certification tests require the use of real birds
to perform the impact. Only the mass of the
birds and the impact velocity are the variables
defined in the certification program, varying for
the different aircraft types. The variability of bird
species or even between individuals from the
same kind produces changes in the density and
in the impactor geometry that could affect to the
impact phenomenon and consequences. There-
fore many companies use bird substitutes for
the pre-certification tests in order to obtain more
repeatable and confident results (Budgey 2000).
The design of the bird substitute is focused on
reproducing the pressure loading and not the bio-
metric parameters of real birds. It has been tested
different materials, such as meat, rubber, silicone,
foam, wax, and emulsion, while the best results
are obtained for gelatin (Wilbeck 1978; Nizam-
patnam 2007; Baughn and Graham 1988). Never-
theless it is important to follow the instructions
for the gelatin preparation in order to achieve
a correct pressure loading. Since the impactor
geometry of the artificial bird is not defined, it
has been done an intense work, both experimental
and numerical, to determine the adequate one

(McCallum and Constantinou 2005; Airoldi and
Cacchione 2006; Zhu and Tong 2008). Typically,
bird substitute has been simplified using cylin-
der, cylinder with hemispherical ends, ellipsoid,
or even sphere. It can be concluded that best
results are obtained with the use of cylinders with
hemispherical ends. In these cases, the pressure
pulse history predicted numerically correlated
better with the experimental impacts performed.
Apart from the shape of the substitute bird, it is
necessary to determine the length/diameter ratio
(L/D) of the impactor. Typically the better results
are obtained with (L/D = 2). Recently, it has
been tested more realistic artificial bird geometry,
including the neck and even bones. In those
tests, it can be seen that the impact of the neck,
previously to the impact of the body, can prestress
the structure and therefore modify the damage
generated (McCallum and Constantinou 2005).
Both experimental and numerical academic stud-
ies have appeared in recent years comparing the
impact of real and substitute birds in different
rigid targets (Allaeys et al. 2017) obtaining useful
data that can be used in future research. Never-
theless, it is still needed more experimental test
comparing real bird strike and artificial bird strike
to define adequately the geometry of the bird
substitute.

Numerical Modelling of Bird Strike
Due to the important cost, both on time and
economical, that a bird strike carry, numerical
modelling could be a useful tool to help study
the impact on aircraft structures (Nizampatnam
2007). Usually an incremental step-by-step
methodology is done for this purpose: testing
experimentally one or two configurations of
the bird strike into the structure, validate the
numerical model, and then perform a virtual test
campaign in which different impact conditions
are studied and analyzed. Nowadays the
confidence on numerical methods, and concretely
finite element codes, has increased, and even
it is discussed if the certification can be done
using only numerical methods (“Certification
by analysis”). However, the numerical model
has to rely on material models that represent
adequately the constitutive behavior of the
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Fig. 2 Phases in a bird strike impact according to Wilbeck (1978). (a) Shock regime. (b) Release regime. (c) Steady
flow regime

structure material and the bird material in such
strain rate conditions.

Nevertheless, before the growth of the finite
element codes, there were some more simplified
models that predicted pressure contours of bird
strike. Willbeck developed a theoretical model of
the different stages that occur during an impact
(Wilbeck 1978). The bird strike can be divided
into three main stages: shock regime, release
regime, and steady flow regime. These three
stages can be seen in Fig. 2. During the first
moment of the impact, a compressive shock wave
is generated at the contact surface and transmitted
through the projectile as the impact occurs. The
pressure is very high and can be characterized by
the Hugoniot relationship:

PH = ρ0V0Vshock (1)

where ρ0 is the initial density, V0 is the impact
velocity, and Vshock is the velocity of the shock
wave propagation. The model uses an empirical
linear relation between the shock wave velocity
and the impact velocity:

Vshock = c + kV0 (2)

where c is the sound velocity of the material
and k the empirical constant. The second stage
is the release regime in which a release pressure
wave is generated in the projectile edges limiting
the duration of the shock wave. The last stage
is called steady flow regime. In this case the
pressure and velocity can be considered constant
during this phase. The pressure in the central axis

of the projectile is called stagnation pressure, and
it is obtained using the Bernoulli equation:

Pstg = 1

2
ρ0V

2
0 (3)

As the point is far from the central axis, the
pressure can be obtained using the following
expression (Banks and Chandrasekhara 1963):

P(r) = Pstgexp[−1

2

( r
a

)2] (4)

being r the distance from the impact point and a
the radius of the projectile. During this phase it
can be a radial expansion of the bird particles. In
some cases, a phenomenon that can be considered
also, is the force and therefore, possible damage
on a structure, created by the subsequent impact
of this mass diverted from the first impact. As
it can be seen in Fig. 3, the characteristic curve
shows the high pressure of the shock wave limited
on time due to the release wave and the lasting of
the steady flow pressure.

Since the use of finite element codes increases
in the solid mechanics, bird strike has been a
problem that has been tried to be solved using
these codes. In order to rely on the model, it
is crucial that material models reproduce accu-
rately the behavior of the bird when subjected
to impact. As it is known, birds are mostly com-
posed of water, and in the range of the velocities
at which the impact occurs, it can be considered
that the bird behaves as a fluid. Therefore it is
needed to determine the equation of state of the
bird. Using the Hugoniot linear relation, Wilbeck
(1978) obtained the following EOS:
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Fig. 3 Schematic
representation of a pressure
time history in a bird strike

Hugoniot
pressure

Steady-flow
pressure

P = ρ0c
2
0

ρ(ρ − ρ0)

((1 − k)ρ + kρ0)2
(5)

Other EOS types as polynomial ones have
been used showing that in the range of velocities
considered for the bird strike (V < 200 m/s),
the differences between the EOS are negligible.
Usually the forces of bird strike impact on “rigid”
structure are used to check the adequacy of the
used EOS.

The bird strike problem is a highly nonlinear
problem, and the numerical model has to be able
to handle with large deformation, contact, and
nonlinear behavior of materials. Therefore the
most suitable codes correspond to those that are
called “hydrocodes” based on explicit solvers.
These solvers offer different discretization
schemes that can be used: Lagrangian technique,
Eulerian, Arbitrary Lagrangian Eulerian (ALE),
or smooth particle hydrodynamics (SPH).

• Lagrangian technique. This approach is
not appropriate in the cases in which it is
expected large deformation of the impactor
because it could lead to severe element
distortion since the mesh is fixed to the
material displacements. This problem could
lead to some numerical instabilities (e.g.,
time integration instabilities) (Anghileri

et al. 2005b; Pernas-Sánchez et al. 2012).
Nevertheless there are several techniques
that can handle this problem, as the element
deletion (Stoll and Brockman 1997) or the
use of a remeshing rule (Nizampatnam
2007). Element deletion helps to successfully
terminates the simulation eroding from it the
most deformed elements. However it causes
inaccuracy due to the loss of momentum and
energy that generates artificial oscillations in
the contact force. Remeshing rules are based
on modifying the mesh when deformations
are high in order to alleviate them, but it
increases importantly the computational cost
associated with the simulation. There are
several references that do not recommend
the use of Lagrangian technique for bird strike
(Georgiadis et al. 2008).

• Eulerian technique. Contrary to Lagrangian
technique, in which the mesh is coupled
with the material displacements, the Eulerian
mesh is fixed to the space and the material
flow across it. In the Eulerian technique,
the solver first computes a Lagrangian step,
then mesh moves back to the initial position,
and the method introduces the material in its
correct positions using an advection scheme.
With this methodology element distortion
is avoided, but computational cost increases
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Fig. 4 Different time instants of a substitute bird impacting on a rigid plate in an experimental test and a numerical
simulation using a SPH model

because of the advection step. In addition,
boundaries are not well defined, and therefore
a fine mesh has to be used. Eulerian technique
can handle with accuracy high velocity fluid-
structure interactions (FSI) (Varas et al. 2009,
2012; Artero-Guerrero et al. 2013, 2014)
or fluid-like structure interaction as the bird
strike.

• Arbitrary Lagrangian Eulerian technique. The
ALE technique is a generalization of both pre-
vious ones, in such a way that the numerical
mesh is not coupled to material deformation
but has a particular velocity. There are several
methods to define the movement of the mesh
to be more efficient in avoiding severe element
distortions (Hughes et al. 2013) and, conse-
quently, better handle high deformations.

• Smooth particle hydrodynamics. The smooth
particle hydrodynamics is a meshless method
that discretizes the continuum into particles
that interacts between them through a smooth-
ing kernel definition. This method is suitable
to model soft impact events since no mesh is
presented, and therefore it could handle high
deformations. This method was used previ-
ously giving good correlations with experi-
mental results (Lacome 2004; Zammit et al.
2010; Anghileri et al. 2005a; Liu et al. 2008;

Georgiadis et al. 2008; Wu et al. 2009; Salehi
et al. 2010). In Fig. 4 it can be seen as an
accurate modelling of the impact process of
a bird substitute using the SPH model when
comparing with the experimental results.

There is no clear conclusions about which is the
best method in order to reproduce the problem;
nevertheless the method has to handle appro-
priately the fluid-like behavior of the impactor
during the impact in the most efficient way.

Ice Impact

Ice could impact against an aircraft during its
flight. Due to the differences on the stiffness and
strength between both materials, the impact can
be considered as a soft impact. An example of
this phenomenon is the hail impact that could
be very dangerous when aircraft get into some
hail storms. The size that could reach a hail (up
to 50 mm) could be enough to create important
damage on the structure. Not only hail impact
has to be considered, because ice can grow in
some parts of the aircraft and eventually it can
flung from the component impacting into the
structure. For example, nowadays the aerospace
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industry is studying the possibility of introducing
the open rotor engines in which several propellers
are rotating at high velocity without a casing. It is
known that this technology produces a decrease
in the fuel consumption and therefore in CO2
emissions. However, in open rotor engines, ice
can be accumulated in a propeller, and it can
be released at very high velocity. That’s why all
the fuselage region near to the engine has to be
ice impact resistant. In the space industry, also
it has to be taken into consideration ice impacts
since it can be accumulated also in fuel pipes
and it can eventually hit the structure, in this
case, at hypervelocity. Concerning other transport
industries (car, naval, etc.) or oil and gas trans-
portation industries, the ice impact could be an
important threat to be studied. Nevertheless the
range of velocities considered is much lower, and
the impact cannot be considered as a soft impact.
As it has been shown for bird impact, ice impact
has been studied using experimental tests and
also numerical models.

Ice Impact Experimental Tests
In order to perform ice impact tests, it is required
the use of gas cannons that are able to accelerate
the projectile at the impact velocity. The use of
sabots is needed to adapt the geometry of the
projectile to the inner diameter of the barrel.
Moreover, in these cases, it has a second function
which is to thermally insulate the ice in order to
prevent the melting of the projectile. The brittle
nature of the ice produces that frequently it can
be broken during the acceleration because of
the inertial forces or the vibrations experienced
during it. The sabot has to help also to mitigate
this undesirable effect because the ice has to
reach the structure without losing its integrity.
The manufacturing of ice projectile is also an
aspect that has to be taken into consideration.
Usually it is done following a two-step manu-
facturing process. In the first step, an ice block
in which the air bubbles are concentrated in one
side is manufactured; in the second step, the ice
is melted into the desired shape by means of two
pre-warmed metal blocks and a combination of
gravity load and heat conduction. This melting
process avoids to use any carving process which

can produce cracks inside the ice projectile. It is
worth to mention that the microstructure of the
ice block obtained is columnar granular which is
different from the hailstones formed in nature.

Concerning ice impact experimental test, there
are several works in which ice is impacted against
rigid plates to study the forces and pressures
generated and others where the impact occurs
against an aerospace structure in which also the
damages produced in the structure are analyzed.
Impact on rigid structures has been done using a
“rigid” target supported in a system to measure
the force, which could be a dynamic load cell
or Hopkinson bars-based systems among others
(Pernas-Sánchez et al. 2015; Pereira et al. 2006;
Kim and Kedward 1999; Tippmann et al. 2013).
In all the experimental results, it is shown that as
the impact velocity raises, contact force increases
as it can be seen in other soft impactors as birds. It
has been detected also the effect of the different
crystalline structure is negligible at high impact
velocities. In the work of Pernas-Sánchez et al.
(2015), it has been tested different ice sphere
diameters, and it is concluded that the maximum
contact force is only a function of the kinetic
energy, and not the mass or velocity separately.
Same trends have been observed in other works
(Tippmann et al. 2013; Pereira et al. 2006; Kim
and Kedward 1999). The aforementioned depen-
dence on the projectile kinetic energy could be
explained by attending to the ratio between the
distortion energy density and the kinetic energy
density. The first one (Udist) is related to the
energy needed to deform the material up to failure
and in this case depends on the mechanical prop-
erties of the ice (which are very low). The second
one (Uk) is the kinetic energy of the ice projectile
per unit of mass. This ratio is very small:

Udist

Uk
= 10−3 (6)

which means that the distortion energy density is
negligible when compared to the kinetic energy
density, and hence the impact is dominated by
inertial effects. The impact process of a sphere
into a rigid plate can be seen in Fig. 5. At the
first instant of the impact, it can be seen a frag-
mentation front traveling into the ice sphere pro-
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Fig. 5 Different instant point in an ice sphere impact on a rigid target (Pernas-Sánchez et al. 2015)

duced by the shock compressive wave produced
in the impact and forming brittle cracks on the
ice. It can be seen that the ice sphere becomes
opaque after it. As the impact continues, the
ice starts to deform radially which converts the
ice into a set of small particles behaving as
a fluid, similar to what happened on the bird
strike. A phenomenon that can be considered
also, as in the case of bird strike, is the force
and, therefore, possible damage on a structure,
created by the subsequent impact of the con-
glomeration of ice particles diverted from the first
impact.

Ice projectile has been launched also against
aerospace structural components to analyze the
coupled response of the projectile and target. The
behavior of the projectile does not differentiate
to the one experienced on rigid target, exhibiting
the brittle cracks and then the radial expansion.
Different impactor geometries with different
nose geometries have been used; nevertheless
the sphere is the most used. It is shown that
when an ice projectile with flat ends is launched
normally, it produces the maximum deformations
on aluminum plates (Anghileri et al. 2005c). This
result can be predicted by the theory developed
by Wilbeck (1978) for the impact of low strength
projectiles. Ice impacts have been tested also
into composite structure (Pernas-Sánchez et al.
2016a; Kim and Kedward 1999; Appleby-

Thomas et al. 2011). As it is said before, one
of the main drawbacks of composite materials
is its poor impact performance, and therefore it
is expected that ice impact consequence will
be more catastrophic than on metal plates.
Different composite plate thickness has been
tested in the work of Pernas-Sánchez et al.
(2016a). It has been observed that the main
damage mode is composite delamination;
however, fiber failure and debonding can be
seen at higher kinetic energy. Contrary to
solid projectile impact on composite plates
where delamination increases gradually as the
velocity increases before the penetration (Pernas-
Sánchez et al. 2014), in ice impact delamination
increases drastically from no damage to fully
delamination in a small range of velocity. In
cases where the composite laminates are thinner,
penetration can be produced exhibiting a higher
range of damages, as fiber failure or matrix
cracking.

Experimental tests have been done also to
characterize the ice behavior (Schulson 2001;
Jones 1997; Fasanella and Boitnott 2006; Shazly
et al. 2009). The majority of the tests have been
carried out with ice Ih, the most common ice
on earth. This kind of ice is formed when liquid
water is cooled below 0 ◦C at ambient pres-
sure. Ice Ih possess a hexagonal crystal struc-
ture. Under low strain rate, it has been shown
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Fig. 6 Ice compressive
strength as function of the
strain rate (Pernas-Sánchez
et al. 2012)
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that the mechanical properties of ice depend on
the condition of ice formation (single crystal,
columnar or granular polycrystalline structure,
presence of air bubbles, etc.). Young’s modulus
has been reported to be in the range of 9.7 to
11.2 GPa, and Poisson’s ratio varies from 0.29
to 0.32. In tension, ice shows brittle behavior
due to crack nucleation and cleavage. Tensile
strength varies between 0.7 and 3.1 MPa and
depends on the specimen volume, following a
Weibull statistical distribution. On the other side,
compression increases ductility and strength, like
in other brittle materials, the mechanism usually
hypothesized being intergranular friction. Com-
pressive strength ranges between 5 and 25 MPa.
This property is strongly affected by temperature
as well, so experimental results are commonly
provided for a given set of pre-defined temper-
atures (e.g., −10 ◦C, −20 ◦C, −30 ◦C, −40 ◦C).
However, a change to brittle compressive failure
appears at strain rates higher than 10−2 s−1,
that is, in the range of strain rates that could
appear in a high velocity impact. Therefore it has
to be analyzed the mechanical properties under

these circumstances. It has been used high-speed
universal testing machines (ε̇ ∼ 10 s−1), drop-
weight tower (ε̇ ∼ 102 s−1), or split Hopkin-
son pressure bars (ε̇ ∼ 103 s−1). In those tests
it has been identified several common aspects:
compressive strength increases with strain rates,
and microstructure does not play an important
role under high strain rates. In Fig. 6 it can be seen
the relation between compressive strength and
strain rate with data obtained in different works.
Additionally, it has been reported that as the peak
stress is reached in ice, the residual strength is
not negligible during dynamic compression. All
these tests have been used to characterize the
mechanical behavior of ice.

Numerical Modelling of Ice Impact
Numerical modelling and specially FEM models
of ice impact has been used to reproduce the con-
sequences and damages on a structure, helping to
understand the problem and also to design struc-
tures that could resist to this menace. The main
effort on numerical modelling has been done on
using an appropriate material model to reproduce
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the behavior of ice under high velocity impacts
and also in using the appropriate technique to
reproduce the high deformation experienced on
an ice impact.

Material models have been selected as func-
tion of the mechanical behavior observed on the
characterization tests (Combescure et al. 2011;
Tippmann et al. 2013; Carney et al. 2006; Anghi-
leri et al. 2005c; Pernas-Sánchez et al. 2012).
The first model appeared on the literature uses
a Huber-Mises plastic flow model in combina-
tion with a failure criteria based on maximum
plastic strain and hydrostatic stress. Once the
onset of failure occurs, only hydrostatic pressure
can be carried. Nevertheless this model does not
take into account the pressure and strain rate
dependence of material. These dependencies are
firstly taken into account by Carney et al. (2006)
who propose a modelling in which also various
failure modes are considered: maximum plastic
strain and pressure cutoff in compression and in
tension. Drucker-Prager yield function has been
used also to reproduce ice behavior (Pernas-
Sánchez et al. 2012). In this work, also the strain
rate dependence has been taken into considera-
tion and the residual strength after the onset of
failure. A power law strain rate sensitivity has
been proposed. The model uses a nonassociated
plastic flow rule in order to do not overestimate
the volumetric part of the plastic strain. Finally
the failures are defined by a compressive cutoff
and a tensile cutoff. After the failure only com-
pressive hydrostatic stress can be carried.

Ice material also exhibits high deformation
during the impact process, and therefore it is
required the use of an adequate technique to
tackle this problem. Solutions are very similar
to the ones used for bird strike impact: the use
of a Lagrangian technique in combination with
an appropriate erosion model, the Eulerian tech-
nique, the ALE, or the SPH meshless method. In
the work of Pernas-Sánchez et al. (2012), there is
an interesting comparison between these different
methods. Although the Lagrangian technique is
not able to reproduce the fluid-like behavior of
the ice after the fracture process, in terms of pres-
sure/load and computational cost, the Lagrangian
technique is the most adequate. The previous

Fig. 7 Experimental and numerical delaminated area
obtained in an ice sphere impact

model can be used also to analyze the damage of
composite plates when subjected to high velocity
ice sphere impact. It can be seen in Fig. 7 that the
numerical model is able to reproduce accurately
the delamination area generated in a plate in a
velocity range from 50 to 275 m/s.

Tire Fragment Impact

The tire fragment impact has received less atten-
tion than the other two previous cases by the
aeronautic industry. Nevertheless, since the acci-
dent of Concorde in Paris in the year 2000,
some research has been done to analyze this
problem. In this accident, a metal piece that
was in the runaway produced the Concord tire
explosion during the takeoff maneuver. Some tire
fragments impacted into the aircraft wing where
the fuel tanks are allocated. A high pressure
wave was produced into the fuel tank that gener-
ated important damages on the structure leading
to the catastrophic failure of the aircraft. One
hundred and thirteen people were dead on the
accident causing the end of the supersonic civil
flights.

In this case of impact where the difference in
stiffness between the impactor and the structure
is high, as in the other soft impacts, an important
part of the initial kinetic energy is wasted in the
deformation of the projectile (Karagiozova and
Mines 2007). In the case of the tire fragment, it is
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not observed a massive fragmentation process
as it can be seen in the ice or bird impact.
Nevertheless the complexity of the process
of tire impact (large deformation, nonlinear
behavior, contact problems, inertial effects)
means that experimental methods are needed
both in terms of the mechanical characterization
of materials in impact conditions and to
validate the constitutive and simulation models
developed.

Tire Impact Experimental Tests
In order to reproduce the experimental test of a
tire fragment impact, it is required the use of an
experimental setup similar to the one explained
in the previous cases. The tire fragment has to be
inserted in a sabot that is accelerated in a gas gun.
As it has been said previously, the tire fragment
impact is a problem less studied than other soft
impact due to its low probability of occurrence.
There are only very few experimental tests in
which a tire fragment impact test is carried out
(Mines et al. 2007; Guégan et al. 2010). It has
to be remarked the work of Mines et al. (2007)
in which it is analyzed cubic and parallelepiped
tire fragment launched at different speeds (75–
135 m/s) and angles (0◦, 30◦, 60◦, and 90◦)
against aluminum plates. The results show that
the high velocity normal impacts induce the
higher deformations. However, the low velocity
impact at an oblique angle produce important
bending of the projectile, and a second impact
can occur in the aircraft, producing even more
damages in the structures than the high-speed
case (Guégan et al. 2010).

In combination to the tire impact test, it has
been carried out experimental tests to character-
ize the tire fragment material. Aircraft tires are
designed to withstand high loads during short
periods and to guarantee stability in adverse con-
ditions such as high pressure gradients due to
crosswinds, hydroplaning, as well as high tem-
peratures and brake friction. To guarantee this,
aircraft tires are made of a rubber matrix, usually
natural rubber, with fabric reinforcements which
tend to be nylon. It has been performed uniaxial
quasistatic test both in tension and compres-
sion that have been useful to demonstrate the

nonlinear behavior of tire rubber which expe-
riences high deformation before failure (Mines
et al. 2007). The presence of nylon fabric is
responsible for the anisotropic behavior of the
material. Moreover it is required dynamic exper-
imental tests to fully characterize tire material
under impact conditions. Drop-weight tower and
gas gun test have been used to perform dynamic
compression on the material (Mines et al. 2007).
It has been concluded that the material has not
shown a significant strain rate sensibility, despite
contact force are higher on high velocity impact
due to inertial effects.

Numerical Modelling of Tire Impact
As it was said previously, tire material is complex
because it contains rubber and nylon fragment
reinforcement. Therefore the material has to take
into account the anisotropy and the nonlinear
behavior. Characterization tests explained previ-
ously have been used to correlate the material
models. The majority of the models used for
the rubber are based on hyperelastic material
model in which large deformations takes place
without plastic deformations or any dissipation
mechanisms (Treloar 1975; Ogden 1998; John-
son et al. 2009). In the case of incompressible
material model, the constitutive model can be
expressed on a strain energy function expressed
through a power function of the principal stresses.
If the material is compressible, the strain energy
function can be expressed in terms of the porosity.
In order to model the nylon reinforcement, one
common technique is the introduction of one-
dimensional bar element (Watanabe and Kaldjian
1985; Reese et al. 2001). The nodes of these ele-
ments are linked to those on the matrix, fulfilling
the compatibility conditions.

There are very few simulations in which the
impact of a tire fragment has been taken into con-
sideration. In the work of Johnson et al. (2009),
it has been analyzed the impacts of tire fragments
on composite panels. The numerical results show
that the composite failure is mainly delamination,
while an important part of the kinetic energy of
the impact is absorbed by the projectile deforma-
tion. In any case, the problem of impact caused
by tire fragment is still an open field of research
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both from the experimental and numerical point
of view.

Other Soft Impacts

Soft impact event can referred also to the high
velocity collision of water or another liquid
against a structure (Abrate 2016). The most
studied example is the impact of rain into
aerospace structures. Certainly the erosion that
can provoke the rain in the leading edges of
turbine blades made of composite material is
an issue that has to be taken into consideration.
There are several works in which this problem
has been investigated in composites aerospace
structures (Matthewson and Gorham 1981;
Hancox 1973). Another occasional debris that
could act as soft impactor is the case of
nonstructural parts that could detach and collide
to the structure. An example of this was the
Columbia space shuttle accident where the
impact of foam generates some damage that
has important consequences in the final accident
of the structure (Melis et al. 2004; Fasanella
et al. 2004; Carney et al. 2004). Nevertheless
these cases are less studied because of their low
probability of occurrence.

Finally, another impact that can be taken into
consideration is the impact of composite debris
against composites structures. This phenomenon
raises its importance since the possible use of
open rotor engines. In this case the engine has
composite blades that are not enclosed by a
casing, and one of them it could detach impacting
to the surrounding structure. As it was said previ-
ously in these cases, the stiffness of the projectile
and impacted structure is similar, and therefore it
cannot be considered neither a soft nor a “rigid”
impact event. Nevertheless it can be seen in the
work of Mata-Díaz et al. (2017) that the behavior
of a composite fragment when impacted to a
rigid plate presents several similarities with a
soft impact (highly deformation on the projectile,
massive fragmentation process, etc.). Certainly
this is a case in which it has to be done for further
research.
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Definition

Steady solutions of differential equations may
lose their stability under parameter variations,
and new solution types, e.g., periodic solutions,
may emerge. To explore the dynamics close to the
loss of stability, the originally high-dimensional
system is reduced to a low-dimensional set of
bifurcation equations by center manifold theory.
The reduced system can be simplified further by
normal form theory. These methods are demon-
strated for the Hopf bifurcation, when a pair of
complex eigenvalues crosses the imaginary axis
and a family of periodic solutions branches off
from the static equilibrium.

Introduction

We consider systems of ordinary differential
equations (ODEs)

ẋ = f (t, x;λ), (1)

where x(t) ∈ Rn denotes the state vector, the
time t is the independent variable, and λ ∈
Rm contains the parameters. The right-hand side
f (t, x;λ) depends smoothly on its arguments.

In section “Lyapunov Stability”, conditions
for the stability of equilibria and periodic solu-
tions of system (1) are given. If some parameter
λ is varied, the equilibrium or periodic solution
might become unstable at a critical value λc, and
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new families of solutions could bifurcate from the
original one. In order to study the behavior of the
system close to the loss of stability, the influence
of the noncritical variables on the system dynam-
ics has to be taken care of by the application of
center manifold theory, which allows to reduce
the originally large system to a usually quite
small system for the critical variables, as will
be explained in section “Center Manifolds for
Equilibria”.

Using normal form theory, the reduced system
can be simplified further and the unfolding of the
critical equations can be derived, which allows to
study the system dynamics in a small neighbor-
hood of the critical parameter value λc.

Lyapunov Stability

Let x0(t) be a solution of system (1) on the
interval t ∈ [0,∞) for a fixed vector of parameter
values λ.

Definition 1 (Stability in the sense of Lya-
punov) The solution x0(t) is stable in the sense
of Lyapunov, if for any ε > 0 there exists
some δ > 0, such that for all initial values x1

with ‖x1 − x0(0)‖ < δ, the solution x(t) with
x(0) = x1 satisfies ‖x(t) − x0(t)‖ < ε for all
t > 0.

If in addition limt→∞ ‖x(t)− x0(t)‖ = 0, the
solution x0(t) is asymptotically stable.
This definition applies to all possible solutions of
system (1), and it is in most cases impossible to
give an analytical proof for arbitrary solutions.
However, for equilibria and periodic solutions of
autonomous or time-periodic systems, the estab-
lishment of stability is simple:

Let x0 be a steady solution of the autonomous
ODE

ẋ = f (x;λ), (2)

that is f (x0;λ) = 0, then the neighboring
solutions are governed by the linearized ODE

ẏ = A(λ)y with A(λ) = ∂f (x;λ)
∂x

∣∣∣∣
x0

,

(3)

and the eigenvalues σi of the Jacobian A(λ)
determine the stability of x0 (Hartman 2002):

1. If ℜ(σi) < 0 for all i = 1, . . . , n, x0 is
asymptotically stable.

2. If ℜ(σi) > 0 for any i ∈ {1, . . . , n}, x0 is
unstable.

3. If ℜ(σi) = 0 for some indices i and ℜ(σi)<0
for the remaining ones, the nonlinear terms of
f (x,λ) are needed to decide on stability.

This situation is called the “critical case,”
and the corresponding values of λ are the
“critical parameter values” λc, which form the
stability boundary in parameter space.

Similar results hold for periodic solutions: Let
x0(t) be a T -periodic solution of the T -periodic
system (1) with f (t + T , x;λ) ≡ f (t, x;λ) for
some period T > 0. Then also the Jacobian

A(t;λ) = ∂f (t, x;λ)
∂x

∣∣∣∣
x0(t)

has period T in t and the eigenvalues μi (fre-
quently called “Floquet multipliers”) of the fun-
damental solution matrix (or “Floquet matrix”)
Y(T ), which is obtained by solving the matrix
valued initial value problem

Ẏ(t) = A(t;λ)Y, Y(0) = En, (4)

where En denotes the n×n unit matrix, determine
the stability of x0(t):

1. If |μi | < 1 for all i ∈ {1, . . . , n}, the periodic
solution x0(t) is asymptotically stable.

2. If |μi | > 1 for any i ∈ {1, . . . , n}, x0(t) is
unstable.

3. If |μi | = 1 for some i and |μi | < 1 for
the remaining ones, again nonlinear terms are
needed to decide on stability.

A similar situation occurs, if the T -periodic func-
tion x0(t) is a solution of the autonomous system
(2). Since in this case the phase of the solution is
not determined by the explicit time dependence
of f (t, x;λ), any time-shifted solution x0(t− t1)
is again a solution of (2) with period T . To
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overcome this problem, one either introduces a
Poincaré section or neglects the Floquet mul-
tiplier 1 related to the periodic eigenfunction
v(t) = ẋ0(t). For the remaining multipliers, the
same statements as above apply.

A powerful method to establish stability of
a fixed point x0 is Lyapunov’s direct method
(Chicone 2006): Assume that there exists some
scalar function V (x) satisfying V (x0) = 0 and
V (x) > 0 for x �= x0. If

V̇ (x) = ∂V

∂x
f (x,λ) < 0

for all x in a vicinity of x0, (5)

the fixed point x0 is asymptotically stable. If
the inequality (5) is valid for a given choice
of V and f , it also holds for sufficiently small
perturbations of f , such that the stability persists
for the perturbed system.

It is of course usually difficult to find a proper
function V ; in mechanical systems the total
energy could serve as first guess.

Stability of Equilibria of Conservative
Systems
In mechanical systems one frequently encounters
equilibrium equations for a model loaded by con-
servative forces: Let V (x;λ) denote the potential
energy of a mechanical model. The equilibrium
equations are given by

0 = f (x;λ) := ∂V
∂x
. (6)

Such an equilibrium x0 is stable, if the poten-
tial V is convex in the neighborhood of x0:
V (x;λ) > V (x0;λ) for x �= x0. To lowest order
this condition can be checked by looking at the
Hessian of V at the equilibrium point:

If the Hessian

H = ∂
2V

∂x2 (x0,λ), that is Hij = ∂2V

∂xi∂xj
(x0,λ)

(7)
is positive definite, the equilibrium x0 is stable.
Positive definiteness can be checked by either
calculating the eigenvalues of H – all eigenval-

ues of positive definite matrices are positive –
or by Dirichlet’s criterion, which states, that all
principal minors have to be positive for stability.
In the critical case, that is if some eigenvalues or
principal minors vanish, higher-order derivatives
have to be considered.

Center Manifolds for Equilibria

In this section the autonomous system (2) is
transformed to Jordan Normal Form at the critical
parameter value λc. In order to correctly account
for the contributions of the stable components to
the dynamics of the critical variables, the center
manifold is computed.

Let us assume that at the parameter value
λc, the Jacobian A(λc) in (3) has nc critical
eigenvalues σ with ℜ(σ ) = 0 and the remaining
ns = n− nc stable eigenvalues lie in the left half
plane. Arranging the (generalized) eigenvectors
vi of A(λc) in the matrix

V = [Vc,Vs] = [v1, . . . , vnc , vnc+1, . . . , vn],
(8)

starting with the eigenvectors corresponding
to the critical eigenvalues, and introducing the
change of coordinates

x = x0 + Vy,with

y = (y1, . . . , ync , ync+1, . . . , yn)
T , (9)

where yc = (y1, . . . , ync )
T are called the “crit-

ical” variables, and ys = (ync+1, . . . , yn)
T the

“stable” variables, system (1) is transformed to
its Jordan normal form

ẏ =
(

ẏc
ẏs

)
=
(

Jc 0
0 Js

)(
yc
ys

)
+
(

gc(y,λc)
gs(y,λc)

)
,

(10)
where all eigenvalues of Jc lie on the imaginary
axis and all eigenvalues of Js are stable. The
nonlinear part g(y,λc) is given by

g(y,λc) = V−1f NL(Vy,λc),

where
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f NL(Δx,λc) = f (x0 +Δx,λc)− A(λc)Δx

contains the nonlinear expansion of f about the
steady-state x0.

Next we apply center manifold theory (Carr
1981), to reduce the n-dimensional system (10)
to the essential dynamics governed by the nc
critical variables yc. Whereas in the linear system
the equations for the critical and stable variables
decouple, the contribution of the stable variables
ys to the dynamics of yc in the nonlinear equa-
tions has to be taken into account.

Definition 2 (Invariant Manifold) A set S ⊂
Rn is a local invariant manifold for (2) if for
x0 ∈ S, the solution x(t) of (2) with x(0) = x0 is
in S for |t | < T where T > 0. If we can always
choose T = ∞, then we say that S is an invariant
manifold.

If ys = h(yc) is an invariant manifold for
(10) and h is smooth, then it is called a center
manifold if h(0) = 0 and h′(0) = 0, where h′
denotes the Jacobian of h:

h′(y0) =
∂h

∂yc
(y0).

The existence and the main properties of center
manifolds are summarized in the following theo-
rems (Carr 1981):

Theorem 1 There exists a center manifold for
(10), ys = h(yc), |yc| < δ, where h is C2.

The dynamics on the center manifold is gov-
erned by the nc-dimensional system

u̇ = Jcu + gc(u,h(u),λc). (11)

The next theorem shows that (11) correctly
describes the asymptotic behavior of small
solutions of (10):

Theorem 2 Suppose that the zero solution of
(11) is stable (asymptotically stable) [unstable].
Then the zero solution of (10) is stable (asymp-
totically stable) [unstable].

Suppose that the zero solution of (11) is
stable. Let (yc(t), ys(t)) be a solution of (10)
with (yc(0), ys(0)) sufficiently small. Then there
exists a solution u(t) of (11) such that as t →∞

yc(t) = u(t)+O(exp(−γ t)), (12)

ys(t) = h(u(t))+O(exp(−γ t)), (13)

where γ > 0 is some constant
Equation (13) shows that the stable components
ys(t) do not decay to zero exponentially fast, as
one might conclude from the linearized system,
but their long-time behavior is dominated by
the critical variables yc(t). If for instance yc(t)

converges to a periodic solution, then also ys(t)

will approach a periodic function.
If we substitute ys = h(yc) into the second

equation of (10), we obtain the PDE

h′(yc)(Jcyc + gc(yc,h(yc),λc)) = Jsh(yc)

+ gs(yc,h(yc),λc) (14)

for h(yc), which together with the conditions
h(0) = 0, h′(0) = 0 is the system to be solved
for the center manifold. It is usually solved by a
power series expansion. The next theorem (Carr
1981) shows that the center manifold can be
approximated to any degree of accuracy.

For functions φ : Rnc → Rns , which are C1 in
a neighborhood of the origin, define the nonlinear
operator

(Mφ)(yc) = φ′(yc)(Jcyc + gc(yc,φ(yc),λc))

−Jsφ(yc)− gs(yc,φ(yc),λc).

(15)

Note that by (14) (Mh)(yc) = 0.

Theorem 3 Let φ be a C1 mapping of a neigh-
borhood of the origin in Rnc into Rns , with
φ(0) = 0 and φ′(0) = 0. Suppose that as
yc → 0, (Mφ)(yc) = O(|yc|q), where q > 1.
Then, as yc → 0, |h(yc)− φ(yc)| = O(|yc|q).

Example: Calculation of the Leading
Center Manifold Expansion for a Hopf
Bifurcation
Let us assume that the Jacobian A(λc) has a pair
of purely imaginary eigenvalues σ1,2 = ±iω and
that the remaining eigenvalues σk for k > 2 are
simple and stable. We denote the critical variables
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by z and z and the stable variables by yk and
search for the quadratic approximation of yk =
hk(z, z) using the ansatz

hk(z, z) = hk20z
2 + hk11zz+ hk02z

2. (16)

Inserting (16) into (14), retaining only quadratic
expressions in z and z, and comparing the coeffi-
cients of z2, zz and z2, respectively, we obtain the
equations

2hk20iω = σkhk20 + gk20,

0 = σkhk11 + gk11, (17)

−2hk02iω = σkhk02 + gk02,

for the coefficients hkij , where gkij denotes the
coefficient of zizj in gk . Since all coefficients on
the left hand side of (17) lie on the imaginary
axis, and ℜ(σk) < 0, the equations are regular
and yield the solutions

hk20 = gk20

2iω − σk , hk11 = gk11

−σk ,

hk02 = gk02

−2iω − σk .

Having obtained the quadratic approximation for
yk , we observe that the mixed terms zyk and zyk
introduce new cubic terms in the reduced equa-
tions: If we denote the coefficient of zizj yk in

g1(yc, ys ,λc) by g1ijk , we obtain the following
coefficients for the reduced system gr (yc) =
gc(yc,h(yc),λc):

G130=g130+
n∑
k=3

g110khk20,

G121=g121+
n∑
k=3

(g110khk11+g101khk20) ,

G112=g112+
n∑
k=3

(g110khk02+g101khk11) ,

G103=g103+
n∑
k=3

g101khk02, (18)

where G1ij denotes the coefficient of zizj in the
reduced equation for z.

If higher-order approximations for h are
needed, this calculation also has to be applied
to the coefficients in gs .

For demonstration purposes we also calcu-
late the cubic expansion for the center manifold:
Inserting

yk = hk(z, z) = hk20z
2 + hk11zz+ hk02z

2

+ hk30z
3 + hk21z

2z+ hk12zz
2 + hk03z

3

into (14) and proceeding as before, we obtain the
equations for the new coefficients:

3hk30iω + 2hk20g120 + hk11g220 = σkhk30 +Gk30,

hk21iω + 2hk20g111 + hk11g120 + hk11g211 + 2hk02g220 = σkhk21 +Gk21,

−hk12iω + 2hk20g102 + hk11g111 + hk11g202 + 2hk02g211 = σkhk12 +Gk12,

−3hk03iω + hk11g102 + 2hk02g202 = σkhk30 +Gk30.

The new entries on the left-hand side occur,
because the term h′(yc)gc(yc,h(yc)) in (14)
contributes cubic terms in yc, if both h and g
contain quadratic terms. These cubic terms can be
neglected, when calculating the quadratic terms
in h, but have to be taken into account, as soon as
higher-order terms are needed. The coefficients

Gkij in the right-hand side indicate that the orig-
inal coefficients gkij must be modified according
to (18).

Inserting the cubic expansion of h into the
reduced equations, we find that it leaves the
quadratic and cubic terms unchanged but changes
the terms of fourth and higher order. Therefore,
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if only terms up to third order are required in
the reduced system, the cubic terms in the center
manifold expansion don’t play any role and need
not be calculated.

An inspection of (14) shows that if for a sym-
metric problem the nonlinearities start at third
order, also the center manifold expansion starts at
third order. For these systems it is in most cases
not necessary to calculate the center manifold at
all, unless fifth order terms are required.

Center Manifolds for Perturbed Parameter
Values
In applications one is not only interested in the
behavior of the system at the critical parameter
value λc but also at nearby parameter values.
There is a nice trick, to take this parameter depen-
dency into account: First, we set λ = λc+ε, such
that the perturbation ε is a small parameter vector.
Next, we regard this vector formally as additional
state variables satisfying the trivial ODE

ε̇ = 0.

The new critical state vector is now ŷc = (yc, ε),
and the center manifold is written in the form

ys = h(yc, ε).

With this method it is possible to calculate the
center manifold also for parameter values in the
vicinity of the critical value λc.

It should be noted that in general for varying
λ also the steady state will change; therefore
not only the linear and nonlinear part in the
equations for y will depend on ε, but for every
component εi , there will also be a constant vector
bi proportional to εi , which is given by

bi = εiV−1 ∂f (x,λ)

∂λi
(x0,λc). (19)

Since the matrix Js is regular, the equilibrium
equation

B + Jy + g(y, ε) = 0,

where B = [b1, . . . , bm], can be solved for the
stable components ys of y.

Normal Form Reduction of the
Bifurcation Equations

After reducing the full system (10) to the
nc-dimensional system for the critical variables

ẏc = Jcyc + gr (yc), where

gr (yc) = gc(yc,h(yc),λc), (20)

we apply a series of near-identity coordinate
transformations to simplify it as much as possi-
ble (Arnold 1983; Wiggins 2003; Elphick et al.
1987). With the ansatz

yc = v + h(v) (21)

we try to determine the nonlinear function h(v)

such that in the new variables, the bifurcation
equations become

v̇ = Jcv + g̃r (v), (22)

where g̃r (v) is simpler than the original gr (yc).
Inserting (21) into (20) and using (22), we obtain
the equation

(1 + h′(v))(Jcv + g̃r (v)) = Jc(v + h(v))

+gr (v + h(v)). (23)

At lowest order we get

h′(v)Jcv − Jch(v)+ g̃r (v) = gr (v). (24)

If the homological operator (LJch)(v) =
h′(v)Jcv − Jch(v) is regular, all entries in gr (v)
can be removed, and we obtain the trivial normal
form g̃r (v) = 0. Otherwise we have to choose
a complementary subspace LC to the range of L
and project gr (v) on LC to obtain g̃r (v).

For a diagonal matrix Jc = diag(σ1, . . . , σnc ),
the operator (LJch)(v) acts diagonally on the
monomials

hi(v) = vm = vm1
1 v

m2
2 · · · vmncnc ,

with mi ≥ 0:
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LJcv
m = (m1σ1+m2σ2+· · ·+mncσnc −σi)vm.

(25)
If m · σ − σi �= 0, the term gi,mvm can therefore
be removed from gi(v); otherwise it must be kept
in the normal form.

Normal Form Calculation for the Hopf
Bifurcation
In the previous section, we carried out the cen-
ter manifold reduction for the case of purely
imaginary eigenvalues and obtained the reduced
equation

ż = iωz+G120z
2 +G111zz+G102z

2

+G130z
3 +G121z

2z+G112zz
2 +G103z

3.

(26)

The equation for z is just the complex conjugate
of (26). Starting with the quadratic terms, we use
the ansatz

z = w + h20w
2 + h11ww + h02w

2,

z = w + h20w
2 + h11ww + h02w

2. (27)

With Jc = diag(iω,−iω), we get

LJcw
kwl = (k − l − 1)iωwkwl (28)

in the first row. For the quadratic terms
(k + l = 2), we obtain the coefficients

h20 = G120

iω
, h11 = G111

−iω , h02 = G102

−3iω

(29)

and can eliminate all quadratic entries in gr .
Before proceeding to the cubic terms, we have to
take care of the induced changes of the higher-
order coefficients: For the cubic terms, the prod-
uct h′(w)g̃r (w) on the left-hand side of (23)
doesn’t contribute anything, because of the trivial
quadratic terms in g̃r (w), so we need only con-
sider the cubic terms in the Taylor expansion of
gr (w + h(w)). For the new coefficient of w2w

we obtain the expression,

G̃121 = G121 + 2G120h11 +G111(h11 + h20)

+2G102h02. (30)

Next, we apply the method with a cubic ansatz
for h to eliminate the cubic terms in g̃r and obtain
the equations

2iωh30 = G̃130,
˜̃
G130 = 0,

0 · h21 + ˜̃
G121 = G̃121,

−2iωh12 = G̃112,
˜̃
G112 = 0, (31)

−4iωh03 = G̃103,
˜̃
G103 = 0.

In this case we can eliminate all cubic terms
except G̃121w

2w, which yields the single entry
in the cubic normal form. Proceeding to higher-
order nonlinearities, we observe that all terms
wkwl can be eliminated, except those for which
k−l = 1. Therefore the normal form for the Hopf
bifurcation has the general shape

ż = iωz+
∞∑
l=1

G1,l+1,l(zz)
lz = G(zz)z,

where G(r2) is an arbitrary smooth function.
Since we are usually only interested in the lowest-
order terms, the convergence problems for an
infinite series of coordinate transforms do not
matter in our case.

Unfolding of the Linear System Using
Normal Forms
In order to investigate the influence of parameter
variations on the bifurcation equations, we pro-
ceed as in the previous chapter (Arnold 1983).
For simplicity we assume, that only the parameter
λi is varied. Close to the bifurcation point, the
linear part of the bifurcation equation reads

ẏc = (Jc + εiJ1) yc, (32)

where J1 is the leading (nc×nc)-submatrix of the
Jordan normal form perturbation

Jp = V−1 ∂A(λ)
∂λi

V.



Static and Dynamic Bifurcations 2327

S

Inserting the ansatz yc = v + εiHv into (32) and
comparing the first-order terms in εi , we obtain
the matrix equation

HJc − JcH + J̃1 = J1, (33)

where J̃1 again denotes the linear perturbation
matrix, which should become simpler than J1.

If Jc = diag(σ1, . . . , σnc ), then

(HJc − JcH)kl = (σk − σl)Hkl.

If all critical eigenvalues are different, all entries
in J1 can be removed except the diagonal terms.
If some eigenvalue occurs with (geometric) mul-
tiplicity p, a p×p block survives the normal form
reduction.

Short Discussion of the Hopf Bifurcation
For simplicity we consider a scalar parameter λ,
which becomes critical at λc:

σ1,2 = ±iω, ℜ(σk) < 0 fork > 2.

After performing all preceding steps for the case
of a pair of purely imaginary eigenvalues, we
obtain the cubic complex differential equation

ż = (α + iβ + iω)z+ G̃121z
2z, (34)

where α + iβ = ε(J1)11 is the first entry in the
perturbed Jacobian. The coefficient

ℜ(J1)11 = ∂ℜ(σ1)

∂λ

∣∣∣∣
λ=λc

denotes the “speed,” with which ℜ(σ1) crosses
the imaginary axis, if λ = λc + ε passes the
critical value. We assume that ℜ(J1)11 > 0,
such that the steady-state x0 becomes unstable
for λ > λc “with non-zero speed.” In this case
we can rescale ε, such that α = ε.
Theorem 4 (Hopf bifurcation) If the following
conditions hold

1. The critical eigenvalue σ1 crosses the imagi-
nary axis with non-zero speed at λ = λc,

2. σ1(λc) = iω, with ω > 0,
3. a1 := ℜ(G̃121) �= 0,

then a family of periodic solution bifurcates from
the steady state at λ = λc. If a1 < 0, the periodic
solution exists for λ > λc and is asymptotically
stable.

Proof Rewriting (34) in polar coordinates z =
r exp(iϕ), we obtain the equations

ṙ = (α + a1r
2)r, (35)

ϕ̇ = ω + β + ℑ(G̃121)r
2. (36)

Since we only consider small solutions, ϕ̇ > 0,
so nontrivial steady solutions of (35) correspond
to stationary rotations. The nontrivial steady solu-
tion of (35) is given by

r0 =
√−α/a1,

so this solution exists, if α and a1, the latter is also
known as first Lyapunov number, have different
signs.

The linearization of (35) at r0 is given by

Ṙ = (α + 3a1r
2
0 )R = 2a1r

2
0R.

Since r2
0 > 0, the sign of a1 decides about

stability. � 
Let us finally discuss, what happens, if one

of the conditions for the Hopf bifurcation is not
fulfilled:

1. If ℜ((J1)11) = 0, the critical eigenvalue
touches the imaginary axis. Depending on
higher-order expansions of the eigenvalue
behavior, it will either turn back into the
stable half plane (for ∂2σ1/∂λ

2
1 < 0) or

cross the imaginary axis if ∂2σ1/∂λ
2
1 = 0

and ∂3σ1/∂λ
3
1 > 0. If a second parameter

λ2 is varied, we either obtain zero or two
critical eigenvalues in the first case. The
corresponding bifurcation is known as Isola
bifurcation (Golubitsky et al. 1985). In the
second case we need two further parameters
to unfold the bifurcation.
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2. If the frequency ω becomes zero, a Takens-
Bogdanov bifurcation occurs, which is char-
acterized by a pair of semi-simple zero eigen-
values. The bifurcation is studied in detail in
Wiggins (2003) and Kuznetsov (1995).

3. If the first Lyapunov number a1 = 0, a
Bautin bifurcation (Kuznetsov 1995) occurs.
One has to calculate the second Lyapunov
number a2 = ℜ(g̃132), which involves the
treatment of terms up to order 5.
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Sir George Gabriel Stokes, 1st Baronet (August
13, 1819, in Skreen, County Sligo, Ireland;
February 1, 1901, in Cambridge, England) was a
physicist and mathematician with contributions
to solid mechanics and physical optics. He
popularized the Stokes’ theorem in vector
calculus and the theory of asymptotic expansions.

Early Years and Education

His father, Gabriel Stokes, was a reverend in
Skreen (County Sligo) at the west coast of Ire-
land. His mother, Elizabeth Haughton, was the
daughter of a priest. George Gabriel Stokes grew
up in a religious surrounding as the youngest
of six children. His father was a student of the
Trinity College Dublin, and he educated George
in Latin. In 1832 he moved to the school of
Reverend R.H. Wall in Dublin.

In 1835 he attended the Bristol College in
Bristol. Within 2 years Stokes was prepared for
a study in Cambridge. The vice-chancellor, Dr.
Jerrard, was an Irish, who was in the Cambridge
University. Stokes showed his talent in mathe-
matics, and he was awarded finally some prizes
in mathematics.
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George Gabriel Stokes

Professional Career and Scientific
Achievements

Since 1837 Stokes studied in Pembroke College
(University of Cambridge). In second year he was
a student of William Hopkins, who prepared the
best students for the best in the academic year
(Senior Wrangler). In 1841 Stokes was graduated
as a Senior Wrangler.

William Hopkins advertised Stokes to make
his focus on hydrodynamics (Navier-Stokes
equations). At the same time he got information
on some papers of George Green. Stokes
published in 1842 and 1843 papers on the motion
of incompressible fluids. After that he observed
that Jean Marie Constant Duhamel (1797–1872)
got similar results. The same situation was when
he investigated the inner friction in moving fluids.
He introduced the proper equations, but similar
equations were introduced by Claude Louis
Navier (1785–1836), Siméon Denis Poisson
(1781–1840), and Adhémar Jean Claude Barré de
Saint-Venant (1797–1886). Finally he published

his results in the United Kingdom, where the
results from the continental Europe in that time
where not well known.

The Stoke’s theorem is some generalization of
the fundamental theorem of calculus connecting
n-dimensional volume integrals with (n − 1)-
dimensional surface integrals. The Gauß’ theo-
rem (or Gauß-Ostrogradsky theorem) is a special
case.

In 1849 Stokes became the Lucasian Professor
of Mathematics. This position was not well paid.
So he was employed in addition as a professor
of physics at the Government School of Mines in
London (established in 1851).

Honors

From the Royal Society, of which he became a
fellow in 1851, he received the Rumford Medal
(1852, contribution to the wavelength of light)
and later (1893) the Copley Medal. Since 1854
he was the secretary, and in between 1885 and
1890, he was the president. He was the first after
Newton who combined the Lucasian Professor of
Mathematics, the president of the Royal Society,
and the member of the Parliament of the univer-
sity. From 1883 to 1885, he was Burnett lecturer
at Aberdeen, his lectures on light, which were
published in 1884–1887, dealing with its nature,
its use as a means of investigation, and its bene-
ficial effects. On April 18, 1888, he was admitted
as a Freeman of the City of London. On July
6, 1889, Queen Victoria created him the Baronet
Stokes of Lensfield Cottage in the Baronetage of
the United Kingdom; the title became extinct in
1916. In 1891, as Gifford lecturer, he published
a volume on Natural Theology. He was a mem-
ber of the Prussian Order Pour le Mérite. His
academic distinctions included honorary degrees
from many universities, including:

• Doctor mathematicae (honoris causa) from the
Royal Frederick University on September 6,
1902, when they celebrated the centennial of
the birth of mathematician Niels Henrik Abel.
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The Stokes, a unit of kinematic viscosity, is
named after him.
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Strain Gradient Plasticity

Lorenzo Bardella
Department of Civil, Environmental,
Architectural Engineering and Mathematics,
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Synonyms

Plasticity theory at small scales; Size-dependent
plasticity theory

Definition

Strain gradient plasticity (SGP) is a theory of con-
tinuum solid mechanics which aims at modeling
the irreversible mechanical behavior of materi-
als, with specific focus on metals and on their
response at appropriately small size, typically on
the order of micrometers or less. For such small
metallic components, a variation in size leads
to a peculiar effect, denoted as “smaller being
stronger.”

Background

The term plasticity refers to the irreversible
mechanical behavior of materials, with particular
reference to metals. This behavior occurs when
the stress state is large enough for the material to
yield, thus leading to a permanent deformation,

denoted as plastic deformation. Such deformation
can be observed, and the inherent plastic
strain measured, after removing a suitable,
monotonically applied load which enables
yielding. In simple tests, such as uniaxial tension,
the yield stress is experimentally recognized as
the stress corresponding to the first abrupt change
of slope in the stress-strain curve, limiting the
elastic (i.e., reversible) regime. The slope of the
stress-strain curve after yielding is proportional
to the so-called strain hardening. The plastic
deformation is mainly due to the nucleation,
multiplication, and propagation of dislocations
that are line defects within the metal crystal
lattice.

SGP is a theory of continuum solid mechanics
which aims at modeling the plasticity of metals
at appropriately small scale. Specifically, SGP
theory focuses on the size range between few
tens of nanometers and few tens of micrometers,
in which the peculiar “smaller being stronger”
size effect has been experimentally measured.
The torsion of thin wires (Fleck et al. 1994),
the microindentation (Ma and Clarke 1995), and
the microbending (Stölken and Evans 1998) are
among the pioneering experimental observations
of such size effect about two decades ago. How-
ever, much earlier, Hall (1951) and Petch (1953)
discovered the size effect named after them, pecu-
liar of the polycrystalline microstructure of com-
mon metals, consisting of many grains (each
grain being a single crystal) with randomly dis-
tributed lattice orientation. On the basis of Hall
and Petch experimental results on metals, such as
mild steel and ingot iron, it has been established
that the macroscopically observed yield stress
increases, with respect to that characterizing the
single grain, about proportionally to the inverse
of the square root of the average grain size.

The size effect consisting of an increase of
yield stress accompanied with diminishing
size is referred to as strengthening. Exper-
imental results also show a further size
effect, that is, an increase in strain harden-
ing with diminishing size. As demonstrated
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https://doi.org/10.1007/978-3-662-55771-6_119
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https://doi.org/10.1007/978-3-662-55771-6_125
https://doi.org/10.1007/978-3-662-55771-6_300510
https://doi.org/10.1007/978-3-662-55771-6_300594


Strain Gradient Plasticity 2331

S

Fig. 1 Schematics for the atomistic characterization of edge (left) and screw (right) dislocations (Figure redrawn and
modified from Hayden et al. 1965)

by Ashby (1970), geometrically necessary
dislocations (GNDs) are the main respon-
sible for such size-dependent behavior and,
as illustrated in what follows, are related to
the gradient of the plastic deformation.

GNDs are also denoted as excess or mis-
fit dislocations in contrast to statistically stored
dislocations (SSDs). In fact, in an appropriate
average sense, SSDs annihilate each other. The
propagation of the whole population of disloca-
tions can be associated with the plastic strain
magnitude (Hull and Bacon 2001). Any single
(discrete) dislocation causes a lattice distortion,
as illustrated in Fig. 1 for edge and screw dislo-
cations in a cubic crystal. Figure 1 displays the
Burgers circuits whose closure failure defines the
Burgers vector b, characterizing each dislocation
(Burgers 1939), along with the unit vectors m, n,
and t defining the slip direction, the slip plane
normal, and the direction orthogonal to m on
the slip plane, respectively. The Burgers vector
amplitude |b| is equal to an interatomic spacing.
Edge dislocations represent half-planes of atoms
(black circles in Fig. 1) in an otherwise regular
crystal lattice. Hence, the slip direction is normal
to the edge dislocation line, while in screw dis-
locations (Fig. 1 on the right) the slip direction
coincides with the dislocation line. Glide is the

most relevant component of dislocations’ motion
and occurs on a plane containing both the dislo-
cation line and its Burgers vector.

The distortions represented in Fig. 1 are asso-
ciated with internal stress fields that become very
relevant when many dislocations are present, as in
metal plasticity. Such stress fields sum up when
due to GNDs (which, contrary to SSDs, do not
annihilate each other), thus giving rise to long-
range stress effects.

In polycrystalline metals subject to plastic
deformation, dislocations, locally of the
same sign, pile up against grain boundaries,
thus forming regions of large GND density
referred to as boundary layers.

The size of boundary layers depends on
the crystallography and on the grain boundary
strength (the larger the latter, the longer the
maximum pileup length), while it is not much
influenced by the grain size. As a result,
the stiffening effect of boundary layers is
inversely proportional to the grain size, thus
leading to a size effect in the observed strain
hardening. Moreover, in a polycrystal, with
diminishing grain size, the dislocations’ mean
free path decreases along with the possibility
of dislocations to enucleate and propagate.
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Since nucleation and propagation of dislocations
have to conspicuously occur at (macroscopic)
yield, the above observation offers a qualitative
interpretation of the Hall-Petch size effect.

Individual (discrete) dislocations cannot
enter a continuum theory, which may
instead account for the GND density, that is
related to the incompatibility of the plastic
distortion field, as shown in the next sec-
tion.

A strain field is incompatible if it cannot
be determined from the gradient of a suitably
smooth vector field.

By building on the foregoing concepts, SGP
theory extends the conventional plasticity theory
(see, e.g., Fleck and Hutchinson 1997; Gurtin
et al. 2010), in such a way that for size above
≈100 μm, SGP converges to conventional plas-
ticity. At size below a few tens of nanometers,
continuum theories may become inappropriate,
and the mechanical behavior of metals is domi-
nated by effects neglected by SGP, such as sur-
face effects and dislocation core effects. SGP
theory refers to absolute temperature lower than
about half of the melting point and to strain
rate lower than ≈10/s (Valdevit and Hutchinson
2012).

Notation
Lightface letters are employed for scalars,
whereas boldface letters are used for first-,
second-, third-, and fourth-order tensors,
respectively represented by small Latin, small
Greek, capital Latin, and capital blackboard
letters, unless otherwise specified. When index
notation is employed, it refers to an orthonormal
system of coordinates. The symbol “ ·" represents
the inner product of vectors and tensors (e.g.,
a = b · u ≡ biui , b = σ · ε ≡ σij εij ,
c = T·S ≡ TijkSijk). For any tensor, the modulus
reads |ρ| ≡ √

ρ · ρ. The symbol “⊗” denotes
the tensor product, e.g., (m ⊗ n)ij ≡ minj .
The symbol “×” is adopted for the vector
product: (t)i = (m × n)i ≡ eijkmjnk = ti and
(ζ × n)ij ≡ ejlkζilnk , with eijk = (i − j)(j −

k)(k − i)/2 denoting the Ricci-Curbastro tensor
(or alternating symbol). For the composition of
tensors of different orders, the lower-order tensor
is on the right, and all its indices are saturated,
e.g., (t)i = (σn)i ≡ σijnj = ti , (Tn)ij ≡ Tijknk ,
and (σ )ij = (Lε)ij ≡ Lijklεkl = σij . trγ =
γ · δ ≡ γii is the trace of a second-order tensor,
with δ denoting the second-order identity tensor
(or Kronecker symbol). devσ = σ − δtrσ/3,
(symγ )ij ≡ (γij + γji)/2, and (skwγ )ij ≡
(γij − γji)/2 denote, respectively, the deviatoric,
symmetric, and skew-symmetric parts of second-
order tensors. By referring to a Cartesian system,
(∇ε)ijk ≡ ∂εij /∂xk ≡ εij,k , (divS)ij ≡
Sijk,k , and (curlγ )ij ≡ ejklγil,k designate,
respectively, the gradient, the divergence,
and the curl operators. ε̇ indicates the time
derivative dε/dt , with t denoting the variable
governing the loading history, not necessarily a
physical time.

Theory

Kinematics
Attention is restricted to small strains and rota-
tions. In this framework, the gradient of the
displacement field u can be additively split into
its elastic part, (∇u)el, and its plastic part, γ ,
denoted as the plastic distortion:

∇u = (∇u)el + γ (1)

The total strain, plastic strain, elastic strain, and
plastic spin are, respectively, defined as

ε = sym∇u (2)

εp = symγ (3)

sym(∇u)el = ε − εp

ϑp = skwγ

There exist two main classes of conventional
plasticity, that is, crystal plasticity and phe-
nomenological plasticity. The former accounts
for the crystal lattice, thus being more precise
in the description of the plastic distortion,
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associated with dislocations’ motion. Instead,
phenomenological plasticity neglects the crystal
lattice and is mainly employed to model, in
an appropriate average sense, the mechanical
response of polycrystalline metals, for which the
use of crystal plasticity is computationally much
more expensive.

More specifically, in crystal plasticity, the
plastic distortion is given by the following sum
over the slip systems, whose orientation and
number A depend on the crystallography (e.g.,
A = 12 in face-centered cubic metals, such as
copper, silver, and gold):

γ =
A∑
β=1

γ (β)m(β) ⊗ n(β) (4)

in which γ (β), with β = 1, . . . , A, are the plastic
slips and m(β) and n(β) are the unit vectors defin-
ing, respectively, the slip direction and the slip
plane normal for the slip system β. Definition (4)
implies trγ = 0, meaning that the plastic flow
is isochoric. In crystal plasticity, the basic plastic
variables are the plastic slips, while this is not the
case in phenomenological plasticity, neglecting
the crystallography along with Eq. (4).

While the compatibility of the displacement
field implies

curl(∇u) = 0 , (5)

the incompatibility of γ results, in general, in the
closure failure of its circuit C around any suitably
smooth surface S within the continuum:

bnet =
∮

C

γ dc (6)

in which c is the vectorial coordinate along C
(having pointwise the direction of the tangent to
C) and bnet is the net Burgers vector, thus mim-
icking the characterization of a discrete disloca-
tion in the crystal lattice (see Fig. 1). Given that,
in general, the surface S is pierced by several dis-
locations, only dislocations whose Burgers vec-
tors do not cancel out contribute to bnet. Hence,
Eq. (6) is associated with the GND density.

By applying Stokes’ theorem, Eq. (6) becomes

bnet =
∫

S

curlγ nSdA (7)

where nS is the unit normal to the surface S,
pointing according to the right-hand screw rule,
given the positive sense of C.

Equation (7) suggests the definition of Nye’s
dislocation density tensor α (Nye 1953; Kröner
1962; Fleck and Hutchinson 1997; Arsenlis and
Parks 1999):

α = curlγ (8)

such that

bnet =
∫

S

αnSdA

from which one deduces that

Nye’s dislocation density tensor α is a
continuum representation of geometrically
necessary dislocations such that αij is the i
component of the net Burgers vector related
to GNDs of line vector j .

From Eqs. (1), (5), and (8), one finds a link
between α and the elastic part of ∇u:

α = −curl (∇u)el (9)

In crystal plasticity, by substituting relation (4)
into definition (8), and by making use of the
identity eijkeirs = δjrδks − δjsδkr , one obtains

α =
A∑
β=1

m(β) ⊗
(
ρ
(β)
⊥ t(β) + ρ(β)# m(β)

)

in which t(β) = m(β) × n(β) and ρ(β)⊥ = ∇γ (β) ·
m(β) and ρ(β)# = −∇γ (β) · t(β) are the projec-
tions of the plastic slip gradient onto the slip
and transverse directions, respectively. Given the
above emphasized property of α, by comparison
with the schematics of Fig. 1, one can deduce
that ρ(β)⊥ and ρ(β)# represent, respectively, the
densities of pure edge and screw GNDs for the
slip system β (Arsenlis and Parks 1999). Here,
the adjective “pure” refers to the fact that the
characterization of Fig. 1 is ideal, whereby real
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dislocations consist of loops, generally having,
pointwise, both edge and screw components.

A Quite General Higher-Order Theoretical
Framework
Many SGP theories have been developed in lit-
erature. While there exist gradient extensions
of both phenomenological and crystal plasticity
theories (see, e.g., Gurtin et al. 2010 and ref-
erences therein), here attention is restricted to
phenomenological SGP. Moreover, the focus is
on the so-called higher-order theories.

Higher-order (HO) theories postulate the
existence of HO stresses (often referred to
as microstresses) work-conjugate to appro-
priate combinations of the components of
the plastic distortion gradient, ∇γ . Such
combinations are then assumed as pri-
mal HO kinematic variables, and different
choices of them lead to different SGP theo-
ries.

HO SGP theories are preferred because they
involve HO boundary conditions.

HO boundary conditions are unconven-
tional boundary conditions governing, in
the continuum sense, the behavior of dis-
locations at the boundary. They include
the possibility of imposing that disloca-
tions pile up at the boundary, thus form-
ing boundary layers and triggering a non-
trivial gradient response even in boundary
value problems whose solution would be
spatially homogeneous if predicted by a
conventional theory.

HO SGP theories refer to the mechanical
response of a body occupying a space region
Ω , whose external surface ∂Ω , of outward
unit normal n∂Ω , consists of two couples of
complementary parts, such that ∂Ω = ∂Ωs ∪
∂Ωu = ∂Ωf ∪ ∂Ωh. The conventional tractions
s0 are known on ∂Ωs , while the displacement u0

is assigned on ∂Ωu. Dislocations are free to exit

the body on ∂Ωf , while dislocations are blocked
and may pile up on ∂Ωh.

Most commonly (Dillon and Kratochvíl 1970;
Fleck and Hutchinson 1997, 2001; Huang et al.
2000; Forest and Sievert 2003; Gudmundson
2004; Gurtin 2004; Polizzotto 2009; Fleck and
Willis 2009; Gurtin et al. 2010), HO theories are
founded on postulating a generalized Principle
of Virtual Work (PVW), which requires the
appropriate definitions of the internal and
external virtual works on any region Π of Ω .
Several HO SGP theories may be derived by
assuming that the internal virtual work, under the
constraints given by relations (2) and (3), reads

Wi (Π, δu, δγ ) =
∫

Π

(
σ · (δε − δεp)

+ ς · δγ + S · ∇δγ
)

dV (10)

in which δε = ε̇δt denotes a compatible variation
of the kinematic field ε, σ is the conventional
symmetric Cauchy stress, and the existence is
then admitted of the unconventional stresses ς

and S work-conjugate to γ and ∇γ , respectively.
Note that, because of the assumption of isochoric
plastic flow, trς = Siij = 0.

The external virtual work is then provided
by the contributions of the volume density of
body forces bΠ and the contact actions on the
boundary of Π , ∂Π , consisting of the two fields
s and τ , conjugate to u and γ , respectively:

We(Π, δu, δγ )

=
∫

Π

bΠ · δu dV +
∫

∂Π

(
s · δu + τ · δγ

)
dA

(11)

The generalized PVW equates Wi and We, as
defined in Eqs. (10) and (11). By integrating by
parts, using the divergence theorem, and resorting
to standard arguments of calculus of variations,
one obtains the conventional balance equations:

divσ + bΠ = 0 in Π (12)

σn∂Π = s on ∂Π (13)
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supplemented by

devσ − ς + divS = 0 in Π (14)

Sn∂Π = τ on ∂Π (15)

These equations are referred to as higher-
order balance equations.

An alternative approach to obtain the govern-
ing equations for generalized continua or, more
specifically, for SGP theories has been proposed
by Del Piero (2009). It consists of postulating
the form of the external virtual work only and,
then, resorting to indifference requirements and
to the Cauchy tetrahedron theorem. Such a pro-
cedure allows one to highlight the different role
of Eqs. (12) and (13) with respect to Eqs. (14)
and (15), thus suggesting to denote the latter as
pseudo-balance equations.

SGP theory can alternatively be founded on
the so-called insulation condition in a residual-
based theory (Polizzotto 2009), thus avoiding the
generalized PVW at all.

Particularization to a Nye’s Tensor-Based
SGP and Introduction of Energetic and
Dissipative HO Contributions
The following criteria discriminate among differ-
ent HO SGP theories:

1. the choice of the primal HO kinematic vari-
ables (not necessarily the whole ∇γ );

2. whether the HO stress is associated with ener-
getic (recoverable) or dissipative (unrecover-
able) processes, or both.

Here, Nye’s dislocation density tensor α is
adopted as a primal HO variable because of
its physical meaning previously illustrated.
However, SGP theories based on different primal
HO variables, such as ∇εp and ∇ε̇p, or even
the gradient of the second invariant of ε̇p (in
the effort to develop the simplest HO extension
of von Mises plasticity), have been successfully
proposed in literature (see, e.g., Aifantis 1984;

Zbib and Aifantis 1992; Fleck and Hutchinson
2001; Gudmundson 2004; Fleck and Willis 2009;
Fleck et al. 2015 and references therein). Such
theories, with respect to that illustrated next
(Gurtin 2004; Bardella 2010; Martínez-Pañeda
et al. 2016), have the advantage of allowing a
simpler implementation.

Here, it is assumed that S admits the decom-
position

S = S(def) + T(ε) (16)

in which

S
(def)
ijk = ekjhζih − 1

3
δij ekphζph (17)

T
(ε)
ijk = T (ε)jik (18)

where ζ is called the defect stress and
definition (17) ensures that ζ is work-conjugate to
Nye’s tensor, while T(ε) is work-conjugate to the
plastic strain gradient, because of property (18).
Now, it is crucial to point out that there is no
redundancy in the choice (16), (17), and (18)
because ζ is thought of to be constitutively
dependent on the current (total) value of α, thus
providing an energetic contribution, while T(ε)

has a dissipative nature, being thought of to be
constitutively dependent on the plastic strain
gradient rate, ∇ε̇p. In general, the energetic
HO stress describes the long-range effect of
GNDs at rest, while the dissipative HO stress
aims at capturing the irreversibility inherent
to GND motion. In order to generalize the
conventional flow theory of plasticity, there
must be an unconventional dissipative stress
work-conjugate to the plastic strain. Here, ς

is totally unrecoverable, being constitutively
dependent on γ̇ , as specified later. Adding an
energetic stress contribution dependent on εp

(Gudmundson 2004) would introduce in the
theory the conventional kinematic hardening,
here neglected. However, the energetic HO
stress leads to a “backstress” causing a HO
kinematic hardening. Both dissipative and
energetic HO contributions are employed
because they can describe quite different size
effects.
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The dissipative HO contribution models
the strengthening, in most cases. The size
effect predicted by the energetic HO con-
tribution strongly depends on the specific
constitutive law adopted; it may consist of
an increase in strain hardening with dimin-
ishing size, or strengthening, or a combina-
tion of both effects.

Hence, by substituting Eqs. (16), (17),
and (18) into Eq. (10), the internal virtual work
becomes

Wi (Π) =
∫

Π

(
σ · (δε − δεp)+ ζ · δα︸ ︷︷ ︸

energetic

+ ς · δγ + T(ε) · δ∇εp︸ ︷︷ ︸
dissipative

)
dV

The balance equations along with all the
boundary conditions for the whole body can be
obtained by standard analytical manipulation on
the generalized PVW.

In the absence of conventional body forces
and under quasi-static loading, the conventional
balance reads

divσ = 0 in Ω (19)

σn∂Ω = s0 on ∂Ωs (20)

The HO balance equations are conveniently
written by separating the symmetric and
skew-symmetric parts of Eqs. (14) and (15).
Accordingly, ς is split as

ρ = symς

ω = skwς

thus obtaining

devσ − sym[dev(curlζ )] = ρ − divT(ε) in Ω

(21)

ω + skw(curlζ ) = 0 in Ω (22)

with static boundary conditions:

T(ε)n∂Ω + sym[dev(ζ × n∂Ω)] = 0 on ∂Ωf

skw(ζ × n∂Ω) = 0 on ∂Ωf

The static HO boundary conditions are
homogeneous with the purpose to describe
dislocations free to exit the body at ∂Ωf .
They are referred to as microfree boundary
conditions.

In rate form, the conventional kinematic
boundary condition reads

u̇ = u̇0 on ∂Ωu

Homogeneous HO kinematic boundary
conditions are adopted. They are denoted as
microhard and describe dislocations piling
up at the boundary ∂Ωh.

In the SGP here considered, the form of the
microhard conditions depends on whether the
dissipative stress T(ε) is accounted for or not
(note that it can be easily neglected by setting to
zero a specific material length scale parameter,
as specified later). If T(ε) enters the model, the
microhard boundary conditions read

ε̇p = 0 and ϑ̇
p × n∂Ω = 0 on ∂Ωh

Otherwise, if T(ε) is neglected, one has

γ̇ × n∂Ω = 0 on ∂Ωh
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Nonhomogeneous boundary conditions may be
adopted to model the behavior of polycrystals’
internal grain boundaries, which may become
penetrable to (or emit) dislocations when many
of them pile up, thus leading to a large internal
stress. To this purpose, the jumps of the static
and kinematic unconventional variables at the
boundary can be constitutively related to the
averages of their dual quantities (see, e.g., Gurtin
and Needleman 2005; Fleck and Willis 2009; Poh
and Peerlings 2016). Such use of the phenomeno-
logical SGP here concerned relies on findings on
its suitability to provide also reasonable estimates
of the behaviour of single crystals (Bardella 2009,
2010; Poh and Peerlings 2016).

After substituting the stresses with the kine-
matic variables through the constitutive laws (as
specified next), the HO balance Eqs. (21) and (22)
become second-order partial differential equa-
tions, representing the yield condition. In par-
ticular, in Eq. (21) energetic terms are on the
left-hand side in such a way as to highlight the
HO backstress contribution given by the defect
stress, leading to an unconventional kinematic
hardening.

Helmholtz Free Energy Density and
Dissipation
The free energy density Ψ depends on both the
elastic strain and Nye’s tensor:

Ψ (ε − εp,α) = 1

2
L(ε − εp) · (ε − εp)+D(α)

in which L is the elastic stiffness and D(α) is the
so-called defect energy. Hence, the Cauchy and
defect stresses read, respectively

σ = L(ε − εp)

ζ = ∂Ψ
∂α

= ∂D(α)
∂α

For dimensional consistency, D(α) must involve
at least one material length scale, henceforth
referred to as “energetic length scale.” The form
of the defect energy is of crucial importance for
the modeling.

A one-homogeneous defect energy, e.g.,
D(α) ∝ |α|, models the strengthening
only, while a defect energy quadratic in the
whole Nye’s tensor, that is, D(α) ∝ |α|2,
models the increase in strain hardening
with diminishing size only, with the ener-
getic length scale governing the boundary
layers’ thickness.

The dissipation depends on the following phe-
nomenological effective plastic flow rate extend-
ing the definition characterizing conventional von
Mises plasticity:

Ėp =
√

2

3
|ε̇p|2 + χ |ϑ̇p|2 + 2

3
L2|∇ε̇p|2 (23)

in which χ is the material constant governing
the dissipation due to the plastic spin and L is a
“dissipative” material length scale parameter. Ėp

is work conjugate to the effective flow resistance

Σ =
√

3

2
|ρ|2 + 1

χ
|ω|2 + 3

2L2 |T(ε)|2 (24)

under the following definitions for the unrecover-
able stresses:

ρ = 2

3

Σ

Ėp
ε̇p (25)

ω = χ Σ
Ėp

ϑ̇
p

(26)

T(ε) = 2

3
L2 Σ

Ėp
∇ε̇p (27)

This ensures satisfaction of the second law of
thermodynamics:

ρ · ε̇p+ω · ϑ̇p+T(ε) ·∇ε̇p ≡ ΣĖp > 0 ∀ γ̇ �= 0
(28)

The effective flow resistance is, in general, a
function of both Ėp and Ep, the latter depen-
dence governing the isotropic hardening.

While the strengthening is physically related
to the very small amount of plasticity occurring
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at about the end of what is experimentally recog-
nized as the elastic regime, mathematically, it has
been demonstrated that, in the rate-independent
case with χ = 0 and in the absence of HO
energetic contribution, the constitutive laws (24),
(25), (26), and (27) lead to (dissipative) strength-
ening associated with the loss of stability of
the purely elastic state (Chiricotto et al. 2016).
Here a viscoplasticity framework is adopted, by
properly specifying the dependence of Σ on Ėp.
This allows plasticity to develop at any stress
level such that there is no need to implement
any yield criterion nor special treatment for the
internal evolving boundaries between elastic and
plastic regions, the latter being an issue in rate-
independent formulations (see, e.g., Fleck and
Willis 2009; Nielsen and Niordson 2014 and
references therein). The effective flow stress is
directly given in the form:

Σ(Ėp,Ep) = σY (Ep)V (Ėp)

in which σY (E
p) is the isotropic hardening

law. The following regularization of a unit step
function, admitting convex potential, is adopted
for V (Ėp), as it allows one to obtain results
that are substantially rate-independent, along
with computational efficiency (Panteghini and
Bardella 2016):

V (Ėp) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ėp

2ε̇0
if
Ėp

ε̇0
≤ 1

1 − 1

2

ε̇0

Ėp
if
Ėp

ε̇0
> 1

in which ε̇0 is a positive material parameter. Rate
independence is obtained for ε̇0 → 0; by suitably
approaching this limit, an elastic domain can be
numerically observed.

Minimum Principles
Under the assumption that the following dissipa-
tion potential exists and is convex in Ėp

V(Ėp, Ep) =
∫ Ėp

0
Σ(e,Ep)de

along with a convex defect energy, the following
minimum principles, useful for computational
purposes, hold (Martínez-Pañeda et al. 2016).
Under the kinematic constraints (3), (8), and (23),
the field γ̇ minimizing the functional

H(γ̇ ) =
∫

Ω

[
V(Ėp, Ep)+ ζ · α̇ − σ · ε̇p] dV

(29)
satisfies the HO balance Eqs. (21) and (22).

Moreover, for a given ε̇p, the conventional
balance Eqs. (19) and (20) are satisfied by any
kinematically admissible field u̇ minimizing the
functional

J(u̇) = 1

2

∫

Ω

L

(
sym∇u̇ − ε̇p

)

· (sym∇u̇ − ε̇p
)

dV −
∫

∂Ωs

ṡ0 · u̇ dA (30)

Minimum principles (29) and (30) extend to the
present theory those developed by Fleck and
Willis (2009) for a SGP theory adopting the
plastic strain gradient as HO primal variable for
both the energetic and dissipative contributions.

Example of Application: The Torsion of
Thin Metal Wires
The torsion of thin metal wires is an emblematic
benchmark for the behavior that SGP aims at
modeling. Here, the experimental results of Fleck
et al. (1994) are considered.

The wires are constituted by polycrystalline
copper and are modeled as homogeneous and
isotropic cylinders with circular cross section
of radius a. Hence, in cylindrical coordinates,
with r , θ , and z denoting, respectively, the radial
coordinate, the circumferential coordinate, and
the axis of torsion, the displacement field must
read

uθ = κzr
ur = uz = 0

where κ is the applied twist. σθz is the sole nonva-
nishing Cauchy stress component, providing the
torque T through
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T = 2π
∫ a

0
σθz r

2dr

The sole nonvanishing components of γ and α

are εpθz(r), ϑ
p
θz(r) = −ϑpzθ (r), and

αrr = −ε
p
θz + ϑpθz
r

αθθ = −dεpθz
dr

− dϑpθz
dr

αzz =
ε
p
θz − ϑpθz
r

+ dεpθz
dr

− dϑpθz
dr

All these components represent densities of pure
screw dislocations and suggest to include in the
defect energy a dependence on the invariant trα,
which is a function of the plastic spin only, along
with the essential dependence on |devα|.

The following regularization of the defect
energy proposed by Forest and Guéninchault
(2013) is considered (see also Groma et al. 2007;
Svendsen and Bargmann 2010):

D(α) = μ&1|trα| ln
(
&1|trα|
α1

+ 1

)

+ μ&2|devα| ln
(
&2|devα|
α2

+ 1

)
(31)

with &1 and &2 denoting independent energetic
material length scales and α1 and α2 further
positive material parameters.

A power law is adopted for the isotropic hard-
ening:

σY (E
p) = σ0 +H(Ep)Nh

in which σ0 is the initial yield stress and H and
Nh are nonnegative material parameters.

In the torsion problem, dislocations pile up at
the wire center, where εpθz(0) = ϑ

p
θz(0) = 0,

while they are free to exit the wire at r = a, where
microfree conditions are imposed. The results
reported next have been obtained by Bardella and
Panteghini (2015) by an ad hoc implicit finite
element implementation of this problem.

Figure 2 shows the comparison between the
experimental results and the theoretical predic-

tions, in terms of the normalized torque T/a3 as
a function of the nondimensional twist κa, that
is, the maximum deformation experienced by the
wire for a given κ . If there were no size effects,
the theoretical curves in Fig. 2 would superim-
pose exactly, as well as the experimental ones in
the absence of uncertainty and fluctuations. Even
by neglecting the HO dissipation (i.e., by setting
L = 0) and without resorting to any specific
identification procedure, the following material
parameters lead to a quite good prediction of
the experimentally observed size effect: shear
modulus μ = 45 GPa, σ0 = 68 MPa, H =
150 MPa, Nh = 0.37, ε̇0 = 1.E-5 s−1, &1 =
2.1E-4 μm, &2 = 2.1E-3 μm, α1 ≈ 2.8571E-
4, and α2 ≈ 5.7143E-3, χ = 2/3. Note that
a finite deformation framework would be more
appropriate in order to predict the experimental
results reported in Fig. 2.

Open Problems

Predictions Under Nonproportional
Loading in the Presence of HO Dissipative
Contributions
The SGP here considered is of the non-
incremental type, in the terminology of Fleck
et al. (2014), referring to the constitutive laws
governing the dissipation. In fact, in non-
incremental theories, a finite HO stress is
constitutively related to the rate of the chosen
primal HO kinematic variable. In this case, rate-
independent SGP may lead to an incremental
purely elastic response, referred to as “elastic
gap,” when changing the loading direction after
having conspicuously developed plasticity under
proportional loading (Fleck et al. 2014, 2015;
Bardella and Panteghini 2015; Fleck and Willis
2015; Carstensen et al. 2017). Whether this is
a physical behavior or not should be discerned
by suitable experiments. Non-incremental SGP
theories are employed because their framework
makes it easy to satisfy the second law of
thermodynamics, as in Eq. (28).

In incremental SGP theories (see, e.g., Fleck
and Hutchinson 2001), instead, the rate of the HO
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Fig. 2 Comparison with
the experimental results of
Fleck et al. (1994); void
symbols represent the
theoretical results (Figure
adapted from Bardella and
Panteghini 2015)
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dissipative stress is constitutively related to the
chosen primal HO kinematic variable. This class
of theories is, on the one hand, free from “elastic
gap” under nonproportional loading (Fleck et al.
2014). On the other hand, in such theories, it
is difficult to ensure the satisfaction of the sec-
ond law of thermodynamics for arbitrary loading
history (Gudmundson 2004; Gurtin and Anand
2009; Fleck et al. 2015).

Cyclic Behavior Utilizing a Defect Energy
that Predicts Strengthening
By referring to α as primal HO variable, a defect
energy allowing the prediction of conspicuous
(energetic) strengthening has to be such that at
very low |α| a small increase of |α| provides a
large increase of |ζ | and, then, a much slower
increase of |ζ | with |α| for larger values of |α|.
This is the case of the logarithmic form (31) or, at
the largest extent, of the one-homogeneous form
D = &μ|α|. Under cyclic loading, this turns out
in a stress-strain curve that becomes concave at
a certain point after inverting the load. This has
been explained by resorting to the observation
that the last dislocation piling up is the first
leaving the pileup when inverting the load. Even
though this explanation is perfectly appropriate
for strain gradient crystal plasticity under single
slip (Wulfinghoff et al. 2015), there is the need

of further investigations in multislip and, most of
all, in polycrystalline plasticity.
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Definition

In the context of architected materials, cellular
solids indicate porous materials with cells that fill
the space in either two or three dimensions, such
as in foams. A lattice material is a subclass of
them, where order governs cell arrangement and
solid struts form a reticulated framework of cells,
such as in a truss-system. Homogenization is a
mathematical theory for materials with periodic
or quasi-periodic microstructures, made of two or
more constituent solids, such as in a composite,
or by a single material with voids, such as in a
cellular solid. Homogenization treats a periodic
material as homogenized medium with effective
properties calculated from a limited portion of
it, the Representative Volume Element. Topology
optimization is a structural optimization method
that enables optimal material distribution within
a given domain, subject to volume and possi-
bly other constraints, under a prescribed set of
loads and boundary conditions. Given topology
optimization often leads to structures with high
stress concentrations or even stress singularities,
imposing stress-constraints is essential to delo-
calize stress peak and reduce the global stress
level. This entry proposes a scheme to do so for
lattice materials.

Introduction

Structural optimization has demonstrated
remarkable success in creating lightweight
structures that appeal the industry for their
material saving (Cheng and Guo 1997; Holmberg
et al. 2013). Structural optimization problems
can be broken into four main categories: sizing,
material, shape, and topology optimization.
The differences between them mainly depend
on the definition of the design variables, the
parameters that can be changed during the
optimization process (Bendsøe and Sigmund
2003; Sigmund 2000). In topology optimization,
the main goal is to find the optimal material
distribution in a given domain, subject to volume
and possibly other constraints, under a given

set of loads and boundary conditions (Bendsøe
and Kikuchi 1988; Bendsøe and Sigmund 2003;
Holmberg et al. 2013; Sigmund 2000). In other
words, the goal is to find which elements
are filled with material and which should be
void, so as to minimize one or more objective
function(s). In the traditional formulation of
topology optimization ((Andreassen et al. 2011;
Bendsøe and Sigmund 2003; Sigmund 2001)
among others), one typical objective is structural
compliance, which is typically minimized for a
prescribed amount of volume fraction of material
(Bendsøe and Sigmund 2003; Holmberg et al.
2013). This formulation has been adopted in
a large range of benchmark problems, from
the classical Messerschmidt–Bölkow–Blohm
(MBB) beam, fixed beam, to others with more
complex geometry commonly used, for example,
in MEMS for compliant mechanism design
(Andreassen et al. 2011; De Leon et al. 2015;
Sigmund 1997, 2001).

Satisfying stress requirement is often
paramount in topology optimization, and failing
to do so often results in a material distribution
with low durability and localized stress (Yang
and Chen 1996). Including stress constraints into
an optimization problem often requires to handle
three issues (Bendsøe and Sigmund 2003). The
first is associated with the problem singularity
resulting from design variables approaching zero
(Cheng and Jiang 1992; Cheng and Guo 1997;
Le et al. 2010; Rozvany 2001), the second with
the local nature of stress constraints (Le et al.
2010; Yang and Chen 1996), and the third with
the highly nonlinear dependence of the stress
on the design. While the second issue has direct
impact onto the computational cost, the third
often affects the convergence of the solution
(Le et al. 2010; Yang and Chen 1996). Despite
these challenges, the need to include stress
constraints in topology optimization emerges
from the seminal work of (Bendsøe and Kikuchi
1988), who in discussing their importance paved
the way to subsequent methods handling local
stress constraints (Cheng and Jiang 1992; Da
Silva et al. 2018; De Leon et al. 2015; Duysinx
and Bendsøe 1998; Holmberg et al. 2013; Le et
al. 2010, Lee et al. 2012; Verbart et al. 2017;
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Yang and Chen 1996). For example, Cheng et
al. (Cheng and Guo 1997) proposed a relaxation
technique to solve the singularity problem that
appears with stress constraints. Duysinx and
Bendsøe (1998) also presented two relevant
stress criteria for porous composites to solve
large-scale topology problems with local stress
constraints. Their findings attest the relation
between the number of local stress constraints
and the computation cost; the higher the former,
the larger the latter. Duysinx and Sigmund (1998)
introduced a global stress measure that uses the
well-known p-norm of the von Mises effective
stress, where all stresses are grouped into one
stress constraint, with the goal of reducing the
computational time. While effective compared
to the local constraint method (Holmberg et al.
2013), low control of the local stress was reported
and in some cases the issue was prominent. To
address this problem, stress clustering techniques
were introduced to find a better tradeoff between
the local stress control and the computational cost
(Holmberg et al. 2013; Le et al. 2010; París et al.
2010). With these techniques, the elements are
grouped into clusters and one stress constraint is
applied to each cluster. The result is a reduction
of the number of constraints as compared to a
local constraint approach, with a retainment on
the control of the stress behavior (Holmberg et al.
2013).

Besides solid materials, also cellular solids
(Gibson and Ashby 1988) have been optimized
via topology optimization. In this case, the need
to handle stress constraints is even more acute
because stress peaks typically accrue at the nodes
where struts converge. For example, Seepersad et
al. (2006) presented a robust approach to design
cellular materials that account for imperfections
at the connections between cells, as well as for
wall thickness variations. Recently, Yingjun et
al. (Wang et al. 2017) have proposed a multi-
scale isogeometric topology optimization for 2D
periodic lattice materials and compared its com-
putational cost with the density-based topology
optimization method. Both studies overlooked
the influence of stress constraints on the material
distributions and stress levels within the lattice
domain. Generally, due to manufacturing errors

in the connectivity among cells and wall thick-
ness variations, lattice materials often feature
abrupt changes in their structural geometry that
lead to stress peaks, a detrimental issue not fully
elucidated. These errors promote local failure of
the lattice struts, which in turn might yield to
catastrophic collapse of the macrostructure.

In topology optimization, the inclusion of
stress constraints has not been tackled for lattice
materials with alternative cell topologies. This
chapter presents a scheme for handling stress
constraints in density-based topology optimiza-
tion of 2D graded lattices. The methodology is
applied to two well-known benchmark problems
in topology optimization: the MBB-beam and
the fixed-beam, with the objective function
of minimizing compliance. The structure is
assumed as porous with a periodic tessellation
of the unit cell, here selected a priori from a
set of two candidate topologies. Asymptotic
homogenization (Wang et al. 2017) is used to
computationally characterize the mechanical
properties of the representative volume element
(RVE) as a function of its relative density.
The clustering technique is used to segregate
the stresses of all unit cells into groups using
the modified p-norm. To address the effect of
considering stress constraints and cell topology
on the final design, the stress constrained
formulation is then compared with the classical
formulation with unconstrained stress. In the
next section of this chapter, the methodology to
calculate the effective properties of the lattice unit
cells is presented, and the problem formulation
is given for both stress constrained and classical
topology optimization. In addition, the filtering
method used, stress constraints handling, and
sensitivity calculations are presented. The results
are given for the optimized relative density and
von Mises stress distributions, and a comparison
is put forward for both stress constrained and
classical formulations.

Methodology

This work studies the effect of including
stress constraints in the problem formulation
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Fig. 1 Flow chart illustrating the design scheme used to optimally grade a cellular domain with predefined cell
topologies under stress-constraints

of topology optimization for lattice materials.
Figure 1 briefly depicts the scheme here
presented, where the key steps rely on combining
multiscale mechanics of lattice materials
and stress-constrained density-based topology
optimization, as summarized below:

• Initialization of the design space. The design
domain Ω is constructed and discretized into
mesh elements. Each element represents a unit
cell that makes up the lattice domain.

• Characterization of unit cell topology. Two
unit cells are selected a priori with topol-
ogy of prescribed symmetry (Fig. 1a, b): The
hexagon yielding isotropic in plane proper-
ties, and the square with orthogonal-isotropy.
Asymptotic homogenization (AH) (Arabnejad
and Pasini 2013; Wang et al. 2017) is used

to calculate their effective elastic and yield
properties (see Fig. 2), as a function of relative
density ρ. The design variable is initially uni-
formly distributed within the porous domain.

• Finite element model. Finite element anal-
ysis (FEA) is used to solve the boundary
value problem under given loads and bound-
ary conditions (Fig. 1), a traction t at the
traction boundary Γ t, a displacement d at
the displacement boundary Γ d, and a body
force f.

• Topology optimization with clustered stress
constraints. A density-based topology
optimization is implemented to find the
optimized relative density distribution that
minimizes compliance. The Method of
Moving Asymptotes (MMA) updates the
design variables ρ (Svanberg 1987), which
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are then filtered by means of the density filter
(Bruns and Tortorelli 2001). In addition to
constraining the total amount of material
relative density, the von Mises stress is
restrained in the problem formulation and
a clustering method is used for the purpose
(see “Stress Constraints” section). The
displacements at each node of a mesh element
along with the homogenized properties of
the unit cell are first retrieved to build
the global stiffness tensor, followed by the
calculation of the gradients of the objective
function, through the partial derivative
of the stiffness tensor with respect to its
relative density (see section, “Appendix:
Sensitivity Calculation of the Stiffness
Tensor of the Lattice”), and constraints
(“Sensitivity Analysis” section). The opti-
mization process continues until convergence
is reached, i.e., the attainment of the optimized
relative density distribution that achieves the
objective and satisfies the constraints.

Mechanical Properties of Lattice
Materials

A fully detailed simulation of a porous
domain requires the explicit modeling of all its
microstructural features, a process that can be
expensive and time-consuming (Arabnejad and
Pasini 2013). Here instead, the porous structure
is treated as a homogenized medium, whose
effective elastic properties are obtained from the
Representative Volume Element (RVE). In this
study, two planar topologies are selected for the
unit cell (see Fig. 1a, b), and AH (Hassani and
Hinton 1998) is used to calculate their elastic
properties as a function of relative density as
described below.

RVE Elastic Properties
The basic assumption of AH theory is that each
field quantity depends on two different scales:
one at the macroscopic (global) level x and the
other at the microscopic (local) level, y = x/η,
with η being a magnification factor that scales
the dimensions of the unit cell to the dimensions

of the macroscopic domain. Field quantities, such
as displacement, stress, and strain, are assumed to
vary smoothly at the global level and are periodic
at the microscale (Hassani and Hinton 1998).
AH assumes that each physical field, such as the
displacement field, uηi , in a porous elastic body,
can be expanded into a power series with respect
to η:

u
η
i (xi, yi) = u0i (xi, yi)+ ηu1i (xi, yi)

+ η2u2i (xi, yi)+ . . . ; yi = xi
η

(1)

where uηi is the exact value of the field variable
and u0i is the macroscopic (average) value of the
field variable. u1i, u2i are perturbations in the field
variables caused by the periodic arrangement of
the units, xi are the global level coordinates,
and yi are the micro level coordinates. With this
approach, the effective stress tensor σ ij of the
unit cell can be written as a function of the
average strain tensor εkl through the effective
elastic tensor EHijkl as:

σ ij = EHijklεkl (2)

Considering only first order terms in Eq. (1),
the effective stiffness tensor of the building block
EHijkl can be obtained by solving a local problem
formulated on the RVE with expression given by:

EHijkl =
1

|Y |
�
Ys
EijpmMpmkldY (3)

where |Y| is the total volume of the unit cell
(including voids), Ys is the solid part of the unit
cell, and Eijpm is the local elasticity tensor, which
equals the elasticity tensor of the material in the
solid domain of the cell and equals to zero for the
void domain. In addition, the local structure ten-
sor Mijkl relating the macroscopic average strain
εkl to the microscopic strain εij is introduced as:

εij = Mijklεkl,Mijkl
= 1

2

(
δikδjl + δilδjk

)− ε∗klij
(4)
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where δij is the Kronecker delta, and ε∗klij is
the microscopic strain corresponding to the com-
ponent kl of the macroscopic strain tensor εkl .
Under the assumption of small deformation and
linear elasticity, the microstructural strain ε∗klij is
obtained by solving a local problem defined on
the RVE (Guedes and Kikuchi 1990; Hollister
and Kikuchi 1992):

�
Ys
Eijpmε

1
ij (v)ε

∗kl
pm(u) dY

=
�
Ys
Eijklε

1
ij (v)εkl dY

(5)

where ε1
ij (v) is the virtual strain. In two

dimensions, three arbitrary unit strains are
required to construct the local structure tensor
Mijkl. Knowing that the periodicity of the strain
field quantities at the microscale is ensured by
applying periodic boundary conditions on the
edges of the RVE, the nodal displacements on the
opposite edges are equal (Hassani 1996; Hollister
and Kikuchi 1992). Once the local structure
tensor, Mijkl, is obtained, the homogenized stiff-
ness tensor, EHijkl , of the unite cell is calculated
by substituting the structure tensor into (3)
(Arabnejad and Pasini 2012; Hollister and
Kikuchi 1992). Since the planes of symmetry
existing in a unit cell control the type of
anisotropy of a lattice, this work examines two
representative types of symmetry that yield
isotropic (hexagon) and orthogonal-isotropic
(square) properties. The detailed expressions of
these terms can be found in the literature (Wang
et al. 2017). The microscopic stress distribution
can be defined by:

σij = EijklMklmnεmn (6)

Using the microscopic stress tensor (6), and
substituting εkl with the effective stress tensor
σ ij and the homogenized elastic tensor, EHijkl , in
(2) yields a simplified relationship between the
microscopic stress distribution and the macro-
scopic stress tensor:

σij = EijklMklmn
(
EHrsmn

)−1
σ rs (7)

wherein the σ rs is the macroscopic stress distri-
bution through the lattice unit cell. By consider-
ing the yield strength of the cell walls σ ys and (7),
the yield surface of the unit cell can be written as:

σ
y
ij =

σys

max
{
σvM

(
σ ij
)}σ ij (8)

where the σvM
(
σ ij
)

is the von-Mises stress dis-
tribution within the unit cell domain correspond-
ing to the macroscopic stress σ ij .

The procedure described above is applied to
obtain the effective 2D elastic properties and
yield strengths, with the assumption of beam/rod
elements for the cell walls (Arabnejad and Pasini
2013), of the unit cell topologies examined in
this work (Fig. 1a, b). Figure 2a, b shows their
effective elastic moduli normalized with the bulk
properties of the constituent solid (Young’s mod-
ulus Es, and Poisson’s ratio υs) and expressed
as a function of relative density ρ. Obtained via
AH, Eii, Gij, and νij are the 2D effective elastic
moduli, shear moduli, and Poisson’s ratios of a
given lattice. As shown later in the “Numerical
examples and discussion” section, the specific
symmetry and set of elastic properties of a given
unit cell has an impact on the optimized distri-
bution of relative density. Figure 2c, d illustrates
their predicted yield strengths, all normalized
with the yield strength, σ ys, of the solid material,
and expressed as a function of relative density ρ.
The yield strength for each unit cell is then used
to constrain the stress in the optimization problem
(“Stress Constraints” section).

Topology Optimization of Lattice
Materials with Stress Constraints

A density-based topology optimization is here
adopted to find the optimized material distri-
bution within a given design domain subjected
to prescribed boundary conditions and external
forces, such as those shown in Fig. 3 (Bend-
søe and Sigmund 2003). The design domain is
cellular with unit cells having effective proper-
ties that can vary with relative density (Fig. 2).
This section reports the problem formulation and
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Fig. 3 The design domain, boundary conditions, and external loads for the optimization of (i) MBB-beam and (ii)
fixed-beam

describes the filtering technique used. In addition,
the stress constraints as well as the clustering
technique are presented for each unit cell. The
sensitivity analysis of both the objective function
and the design constraints then follows.

Problem Formulation
The goal is to find the optimized material den-
sity distribution of a rectangular domain through
the minimization of its compliance, under given
support and loading conditions (Fig. 3). A set
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of constraints is introduced in the optimization
problem on both the total amount of material and
the maximum stress level. The design domain
is discretized into finite elements, where each
element is assigned one design variable. The
design variables ρi are then collected in a design
vector. A final design is considered with a density
distribution varying between a very small value of
0.01, to avoid stiffness matrix singularity, and 1.
The mathematical formulation of the problem is
expressed as:

Min
ρ

: C (ρ) = FT U = UTKU =
N∑
e=1

uTe Keue

Subject to :

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σPNi (ρ) ≤ σ i, i = 1, . . . , nc

V (ρ) =
N∑
e=1

veρe ≤ V ∗

0.01 ≤ ρ ≤ 1
(9)

wherein, ρe is the relative density of each
element, V∗ is the prescribed volume fraction
of the solid material, and ve is the volume of each
element e; N is the total number of elements.
The stress measure in topology optimization can
be formulated in a number of ways (Duysinx
and Bendsøe 1998; Duysinx and Sigmund
1998; Holmberg et al. 2013; Le et al. 2010;
París et al. 2009). This work adopts a stress
clustering technique explained later in this
section (Holmberg et al. 2013; Le et al. 2010;
París et al. 2010), where the stress measure is a
modified p-norm based on the von Mises stress,
which for cluster number i is denoted as σPNi (ρ)

(Holmberg et al. 2013). The number of clusters,
i.e., the number of stress constraints, is denoted
nc, and σ i is the stress limit for the cluster
number i.

For comparative purposes, we also report the
traditional formulation in terms of minimum
compliance, with a constraint only on the total
amount of material expressed as volume fraction
(Andreassen et al. 2011; Bendsøe and Sigmund
2003; Sigmund 2001). In a nested format, the
problem is written by:

Min
ρ

: C (ρ) = FT U = UTKU =
N∑
e=1

uTe Keue

Subject to :

⎧
⎪⎪⎨
⎪⎪⎩
V (ρ) =

N∑
e=1

veρe ≤ V ∗

0.01 ≤ ρ ≤ 1

(10)

Filtering of Design Variables
To avoid numerical instabilities, such as
checkerboard patterns (Díaz and Sigmund 1995;
Sigmund and Petersson 1998) and mesh
dependency (Sigmund and Petersson 1998), the
choice is to resort to a filtering method of either
the sensitivities or the densities, an approach
that can also serve to ensure manufacturability.
Among several techniques available (Sigmund
2007), the density filter is implemented (Bruns
and Tortorelli 2001), where each element density
is redefined as a weighted average of the densities
in a mesh-independent neighborhood of the
element. The filter modifies the element density
ρi to the filtered density ρ̃e as follows:

ρ̃e =

∑
i∈Ne

w (xi) viρi

∑
i∈Ne

w (xi) vi
(11)

where vi is the volume of element i, Ne is the
neighborhood of element e, and w(xi) is a weight-
ing function that is given by the linearly decaying
(cone-shape) function:

w (xi) = R − ‖xi − xe‖ (12)

where, R is the specified filter radius and, xi and
xe contain the central coordinates of elements i
and e respectively.

Stress Constraints
For each finite element that represents a unit
cell in the structural domain, the stress vector
at a stress evaluation point l, here located in
the centroid of the element, can be written as a
function of the filtered density ρ̃:

σl (ρ̃) = EH (ρ̃) BlU (ρ̃) (13)
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where EH is the homogenized elastic tensor of the
lattice unite cell, and Bl is the strain-displacement
matrix corresponding to stress evaluation point
l. Since this work specifies the von Mises stress

as a measure of stress at the stress evaluation
point l, its expression as a function of the filtered
density can be written in terms of the stress vector
components as:

σvMl (ρ̃) =
√
σ 2
lx + σ 2

ly + σ 2
lz − σ 2

lxσ
2
ly − σ 2

lyσ
2
lz − σ 2

lzσ
2
lx + 3τ 2

lxy + 3τ 2
lyz + 3τ 2

lzx (14)

where, σ lx, σ ly, and σ lz are the normal stresses
in x, y, and z directions, respectively; τ lxy, τ lyz,
and τ lzx are the shear stresses in xy, yz, and
zx planes, respectively. Different approaches
can be used to identify the stress constraints
within the design domain, such as local and
global approaches (Duysinx and Bendsøe 1998;
Duysinx and Sigmund 1998) as well as clustered
approaches (Holmberg et al. 2013; Le et al. 2010;
París et al. 2010). Because the local approach
is computationally expensive, and the global
approach loses accuracy, we implement the stress
clustering technique (Holmberg et al. 2013; Le
et al. 2010; París et al. 2010), where the stress
evaluation points are sorted into clusters, and
only one stress constraint is applied to each
cluster. This scheme allows to balance the control
of the local stress and the computational cost
(Holmberg et al. 2013). To create the clustered
stress measures used in the problem formulation
(9), stresses are clustered from several stress
evaluation points and use them to calculate a
single stress measure, σPNi (ρ̃). This is done for
each cluster through a modified p-norm. For each
cluster of unit cells, the stress limit σ i is set to
the average distribution of the effective yield
strength of the unit cells (Fig. 2), as a function of
the filtered density. The stress measures are then
normalized with the stress limits for each cluster.
In addition to the volume fraction constraint, the
stress measures are sorted in a column vector
that feeds the MMA optimizer. The p-norm stress
measure for the cluster i as a function of the
filtered density, σPNi (ρ̃), is expressed as:

σPNi (ρ̃) =
⎛
⎝ 1

Ni

∑
l∈Ωi

σ vMl (ρ̃)p

⎞
⎠

1
p

(15)

where p is the p-norm factor, the upper script
PN stands for the p-norm, +i is the set of stress
evaluation points in cluster i, and Ni is the number
of stress evaluation points in set +i. The p-norm
measure, σPNi (ρ̃), underestimates the maximum
local stress within each cluster (Duysinx and
Sigmund 1998; Holmberg et al. 2013). The stress
constraint in (9) can thus be re-written as a
function of the filtered density:

⎛
⎝∑
l∈Ωi

σ vMl (ρ̃)p

⎞
⎠

1
p

≤ N
1
p

i σ i (16)

Equation (16) sets the maximum local stress in

the structure below N
1
p

i σ i . Increasing the value
of the exponent p makes the p-norm value closer
to the maximum stress in each cluster. However,
numerical problems might emerge for too high
values of p. On the other hand, p = 1 gives the
mean stress for each cluster. Based on our testing
and previous work in the literature (Duysinx
and Sigmund 1998; Holmberg et al. 2013; Le
et al. 2010), p is set to 8, a value that works
well for the numerical problem examined in this
work.

The local stress control is significantly
affected by the number of clusters, nc. Using
nc = 1 leads to the global approach with a rough
estimate of the stress constraint; on the other
hand, nc equaling the total number of elements,
Ne, yields to the local approach. In cluster i, the
design domain might have evaluation points in
the set +i with either local high stresses that
raise the p-norm value (9), or even relatively
low stresses. Thus, the way in which the stress
evaluation points are clustered together has an
impact on the optimization problem (Holmberg
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et al. 2013). Among the clustering techniques
(Holmberg et al. 2013; Le et al. 2010; París
et al. 2010), the stress level approach is here
adopted as it provides the best design possible
from the stress point of view (Holmberg et al.
2013). With this approach, stress evaluation
points that have similar stress levels are clustered
together. This method gives a large variation of
the different σPNi (ρ̃) values, but the stresses
in the evaluation points within each cluster are
as close to each other as possible. The p-norm
measure then results in a good approximation
of the local stresses of the unit cells within
the cluster, which have a similar stress level,
because this approaches one stress constraint
value that represents each cluster (Holmberg
et al. 2013).

The clustering scheme here used involves
using the stress level to sort the stress evaluation
points in a descending order such that

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σne
nc︸ ︷︷ ︸

cluster 1

≥ · · · ≥ σ 2ne
nc︸ ︷︷ ︸

cluster 2

≥ · · · ≥ σ (nc−1)ne
nc

≥ · · · ≥ σne︸ ︷︷ ︸
cluster nc

(17)

where the first ne/nc points create cluster 1, the
next ne/nc points create cluster 2, and so on. All
clusters in (17) have identical number of points
except for the last cluster, which might contain
fewer points.

Sensitivity Analysis
The Method of Moving Asymptotes (MMA),
used to solve the optimization problem, requires
first order sensitivity information from both the
objective function and constraints (Svanberg
1987). At the macroscopic level, the mean
compliance depends on the material properties
of each element, which are a function of their
relative density, ρe. The derivatives of the mean
compliance with respect to the variation of ρe in
the element e can be given by the chain rule as:

∂C(ρ̃)

∂ρe
=

Ne∑
i=1

∂C(ρ̃)

∂ρ̃i

∂ρ̃i

∂ρe
(18)

where the sensitivity of the filtered density
(∂ρ̃i/∂ρe), with respect to the change in design
variable ρe, is given by:

∂ρ̃i

∂ρe
= w (xe) νe∑
j∈Ni

w
(
xj
)
νj

(19)

The sensitivity of the mean compliance with
respect to the change in the filtered density ρ̃i ,
∂C (ρ̃) /∂ρ̃i , can be obtained from the expression
of the objective function, which can be written
in terms of the applied loads and the state vari-
ables as:

C (ρ̃) = FT U (ρ̃) (20)

where F is the global force vector, and U is
the global vector of nodal displacements, which
represents the state variables. The global force
vector can be expressed by:

F = K (ρ̃)U (ρ̃) (21)

where K is the global stiffness matrix of the
structure, which is the assembly of the elemental
stiffness matrices of the design domain, as
described in the Appendix. The sensitivity
of the mean compliance with respect to the
change in the filtered density ρ̃i is then defined
as:

∂C (ρ̃)

∂ρ̃i
= FT ∂U (ρ̃)

∂ρ̃i
= UT (ρ̃)K (ρ̃) ∂U (ρ̃)

∂ρ̃i
(22)

Taking the derivatives of the state Eq. (21)
with respect to the element filtered densities ρ̃i ,
and given F has a constant value, yields:

∂K (ρ̃)

∂ρ̃i
U (ρ̃)+K (ρ̃) ∂U (ρ̃)

∂ρ̃i
= 0 (23)

where, ∂U (ρ̃) /∂ρ̃i can be expressed as:

∂U (ρ̃)

∂ρ̃i
= −K−1 (ρ̃)

∂K (ρ̃)

∂ρ̃i
U (ρ̃) (24)
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Substituting (24) into (22) yields:

∂C (ρ̃)

∂ρ̃i
= −UT (ρ̃) ∂K (ρ̃)

∂ρ̃i
U (ρ̃) (25)

The derivatives of the stiffness matrix of the
domain microstructure ∂K (ρ̃) /∂ρ̃i , described
by the porous unit cell, with respect to the
filtered density are given in the Appendix. Once
the stiffness matrix derivatives are calculated
for each element/unit cell, the global stiffness
derivatives can be assembled and used to
calculate the sensitivity of the objective function
with respect to the filtered density through Eq.
(25). Substituting (25) into (18) yields to the final
form of the sensitivity of the objective function
with respect to the relative density ρe.

The sensitivity of the material volume V
with respect to the element density ρe is thus
expressed as:

∂V (ρ̃)

∂ρe
=
∑
i∈Ne

∂V (ρ̃)

∂ρ̃i

∂ρ̃i

∂ρe
(26)

where,

∂V (ρ̃)

∂ρ̃i
= vs (27)

where vs is the volume of the solid element,
which in this study equals 1 as per the assumption
that the element has a unit volume.

The stress constraints are the p-norm stresses
in Eq. (15), and the gradients can be calculated
by the chain rule:

∂σPNi (ρ̃)

∂ρe
= ∑
l∈Ωi

∂σPNi (ρ̃)

∂σ vMl

∂σvMl (ρ̃)

∂ρe

= ∑
l∈Ωi

∂σPNi (ρ̃)

∂σ vMl

(
∂σvMl (ρ̃)

∂σl

)T
∂σl(ρ̃)
∂ρe

(28)

The term ∂σPNi (ρ̃) /∂σ vMl in (28) is obtained
by taking the derivative of (15) with respect to
the von Mises stress calculated at the evaluation
point l as follows:

∂σPNi (ρ̃)

∂σ vMl
= 1

p

⎛
⎝ 1

Ni

∑
l∈Ωi

(
σvMl (ρ̃)

)p
⎞
⎠

(
1
p
−1
)

× 1

Ni
p
(
σvMl (ρ̃)

)p−1

=
⎛
⎝ 1

Ni

∑
l∈Ωi

(
σvMl (ρ̃)

)p
⎞
⎠

(
1
p
−1
)

× 1

Ni

(
σvMl (ρ̃)

)p−1

(29)

Moreover, the term ∂σvMl (ρ̃) /∂σl in (28) rep-
resents the derivatives of the von Mises stress
(14) with respect to the normal and shear stress
components as:

∂σvMl (ρ̃)

∂σlx
= 1

2σvMl (ρ̃)

(
2σlx (ρ̃)−σly (ρ̃)−σlz (ρ̃)

)

∂σvMl (ρ̃)

∂σly
= 1

2σvMl (ρ̃)

(
2σly (ρ̃)−σlx (ρ̃)−σlz (ρ̃)

)

∂σvMl (ρ̃)

∂σlz
= 1

2σvMl (ρ̃)

(
2σlz (ρ̃)−σlx (ρ̃)−σly (ρ̃)

)

∂σvMl (ρ̃)

∂τlxy
= 3
σvMl (ρ̃)

τlxy (ρ̃)

∂σvMl (ρ̃)

∂τlyz
= 3
σvMl (ρ̃)

τlyz (ρ̃)

∂σvMl (ρ̃)

∂τlzx
= 3
σvMl (ρ̃)

τlzx (ρ̃)

(30)

Finally, the term ∂σl (ρ̃) /∂ρe in (28) is the
derivative of the stress vector in (13) with respect
to design variable ρe and can be given by the
chain rule:

∂σl (ρ̃)

∂ρe
=

nl∑
k=1

∂σl (ρ̃)

∂ρ̃k

∂ρ̃k

∂ρe
(31)

where nl is the number of stress evaluation points.
∂ρ̃k/∂ρe is calculated using Eq. (19). Using (13),
∂σl (ρ̃) /∂ρ̃k can be expanded and written as:

∂σl (ρ̃)

∂ρ̃k
= ∂E

H
k (ρ̃)

∂ρ̃k
BU (ρ̃)+ EHk (ρ̃) B

∂U (ρ̃)

∂ρ̃k
(32)

Using (24), Eq. (32) yields:
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∂σl (ρ̃)

∂ρ̃k
= ∂E

H
k (ρ̃)

∂ρ̃k
BU (ρ̃)

− EHk (ρ̃) BK−1 (ρ̃)
∂K (ρ̃)

∂ρ̃k
U (ρ̃)

(33)

Substituting (33) into (31) yields to the final
form ∂σl (ρ̃) /∂ρe. Then, the final form of the
gradients of the stress constraints is obtained by
substituting (29), (30), and (33) into (28). After
performing the sensitivity analysis that guides the
search direction to the optimized solution, the
MMA (Svanberg 1987) solves the optimization
problem until convergence is achieved.

Numerical Examples and Discussion

This section studies the role of cell topology
in the optimized distribution of relative density
for the lattices shown in Fig. 1. The effect of
including the stress constraint (formulation (9))
on the stress level distribution is also investi-
gated, and we do so by comparing the optimized
relative density and the von Mises (vM) stress
distributions along the structural domains, with
those obtained with the traditional compliance
formulation in (10).

Two benchmark problems (Messerschmidt–
Bölkow–Blohm (MBB) and fixed beams) are
here examined for the minimum compliance of
lattice materials. Figure 3 shows the rectangu-
lar design domains (length, L = 100 mm, and
height = L / 2, with an out-of-plane thickness
of 1 mm), boundary conditions, and external
loads (vertical point load Fy = 1500 N). Due
to symmetry, the right half of the MBB-beam is
modeled under the prescribed loading and con-
ditions of symmetry imposed along the left edge
and the lower right corner (Fig. 3(i)). The beams
are assumed to be under plane stress. In both
problems, the design domains are discretized into
5000 equal sized square elements with four nodes
and 5151 nodes, where each element represents
a unit cell of the cellular structure. Titanium
alloy (Lin et al. 2004) (Ti6Al4V) is the base
material of the lattices with Young’s modulus

Es = 120 GPa, Poison’s ratio υs = 0.3, and yield
limit σ ys = 900 MPa.

For the stress evaluation, one point is used per
element, which corresponds to the centroid of the
four-node square element used here. The yield
limit σ ys is used to calculate the stress limit for
each unit cell as a function of relative density
(Fig. 2), which acts as a single stress constraint
for each cluster. We consider ten clusters of unit
cells that have similar von Mises stress levels, i.e.,
ten stress constraints. For each cluster, the stress
measure should not exceed the stress limit, which
is the average distribution of the effective yield
strength for the cluster unit cells (Fig. 2). The
design variable filter is applied with a filter radius,
R = 1.5 times the element size. The optimization
problem is solved until convergence is reached
for a prescribed volume fraction V∗ of 50% for
the solid material.

Generally, for each stress constrained
problem, no further change has been noticed in
the objective after 100 iterations. Re-clustering
frequency is applied at each iteration for the
stress constrained formulation (9), while no
re-clustering is performed for the traditional
formulation (10). Figures 4 and 5 show the
solutions for the MBB-beams (Fig. 3i) along with
their convergence plots for both the formulations
with and without stress constraints.

By comparing the results in Figs. 4 and 5, a
range of insights can be gained into the inclusion
of stress constraints (problem formulation (9)
versus problem formulation (10)), as well as
cell topology (square versus hexagon), the
distribution of relative density, and the von
Mises stress. The results are shown for square
(orthogonal-isotropic), and hexagon (isotropic)
unit cells used as building block of the cellular
domain. The relative density varies between a
low nonzero value to avoid singularity of the
stiffness matrix, to 1, i.e., solid material. The von
Mises stress varies between a very small value,
which corresponds to a very low relative density,
to 900 MPa for solid material.

Cell topology influences the optimized
material distribution, and the inclusion of
stress constraints plays a role too. First the
unit cells have their own planes of symmetry,
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Fig. 4 Optimized relative density and von Mises stress distribution for the MBB-beam benchmark problem (square
unit cell)

which control the type of anisotropy (the
square unit is orthogonal-isotropic, and the
hexagon is isotropic), hence affecting the
material distribution within the design domain. In
addition, the stress constraints have an impact on
the stress distribution of the MBB-beam. From an
inspection of the re-clustering frequency at every
iteration, the stress-constrained formulation (9)
enables average stress levels lower than those
predicted with the traditional scheme (10). In
addition, if any stress concentration is neglected
at the load and support locations (shown in red),

the stress distribution of the former is much more
uniform and generally lower than the yield limit
of the solid material. These observations point out
the role of cell topology and stress constraints on
the optimized density and stress distributions of a
cellular domain. Moreover, small oscillations
in the convergence plots of the compliance
appear between iterations for the case of updated
clusters, whereas the trends are relatively smooth
when there is no re-clustering at all.

Similar to Figs. 4 and 5, Figs. 6 and 7 show the
results for the fixed-beam example (Fig. 3 (ii)).
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Fig. 5 Optimized relative density and von Mises stress distribution for the MBB-beam benchmark problem (hexagon
unit cell)

The optimized relative density and von Mises
stress distributions are illustrated for the tradi-
tional and constrained stress formulation with
both square and hexagonal units. The results
parallel those in Figs. 4 and 5 for the MBB beam.
Cell topology plays a role as dictated by the
planes of symmetry that each unit cell possesses.
In addition for the stress-constraint problem, the
average stress is lower with lower stress con-
centrations through the entire structure, and the

stress distribution is much more even. Conver-
gence plots for the updated clusters show small
oscillations of the objective function, as opposed
to those obtained without re-clustering. To further
investigate the role of using the stress constrained
approach on results, Fig. 8 shows the average
von Mises stress distribution normalized with the
yield strength, σ ys, of the solid material over the
domains of the MBB and fixed beams. Overall
for the traditional and constrained stress formula-
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Fig. 6 Optimized relative density and von Mises stress distribution for the fixed-beam benchmark problem (square unit
cell)

tions with both hexagonal and square unit cells,
lower stress distribution is noticed for the latter
than the former. In addition, as shown in Fig. 9 the
average p-norm stress measure acknowledges the
effective stress limit set for each cluster, except
for the first cluster that has elements with local
stress peaks in the case of MBB beam. Differ-
ences of about 7.4% and 22.8% are noticed for
the hexagonal and square unit cells, respectively.
As explained in the “Stress Constraints” section
and in the literature (Holmberg et al. 2013; Zhou

and Sigmund 2017), the p-norm factor might
need to be adjusted to a value higher than 8
for the MBB beam benchmark problem, which
lowers the elemental stresses to match the stress
limit.

Conclusions

This chapter has presented a numerical inves-
tigation aiming at assessing the role of stress
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Fig. 7 Optimized relative density and von Mises stress distribution for the fixed-beam benchmark problem (hexagon
unit cell)

constraints and cell topology in the topology opti-
mization of 2D lattice materials. Cell topology
and stress constraints are found to impact the
optimized distribution of relative density and the
stress levels throughout the cellular domain. Dif-
ferences in the final designs obtained with both
a traditional and a stress constraint formulation
appear with the latter showing a lower average
stress and a more uniform stress distribution.

Appendix: Sensitivity Calculation
of the Stiffness Tensor of the Lattice

To compute the sensitivity of the structure com-
pliance, the derivatives of the stiffness tensor are
to be computed for the entire domain microstruc-
ture. This appendix presents the derivation of the
stiffness tensor sensitivity of the domain with
respect to the filtered density ρ̃. A four-node iso-
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Fig. 8 Normalized average von Mises stress distribution within the design domains of the MBB and fixed beams using
hexagon and square unit cells
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parametric quadrilateral element (Hughes 1989)
is used to discretize the finite domain.

The direct stiffness approach is used to find
the global stiffness tensor K, where the structure
domain is discretized into small elements with
elemental stiffness matrix Ke, calculated before
assembly, expressed as:

Ke (ρ̃) =
�
Ae

BT EH (ρ̃) BdA

=
∫∫

xy

BT EH (ρ̃) B dxdy

(34)

where x and y are the global coordinates, B is the
strain-displacement matrix, EH is the homoge-
nized elastic tensor of each element e described in
the “Mechanical Properties of Lattice Materials”
section, and Ae is the area of the element in the
global coordinates. Since the strain-displacement
matrix is independent of the design variables, the
derivatives of the elemental stiffness matrix with
respect to filtered density, ρ̃, can be expressed as
follows:

∂Ke (ρ̃)

∂ρ̃e
=

�
Ae

BT
∂EH (ρ̃)

∂ρ̃e
BdA

=
∫∫

xy

BT
∂EH (ρ̃)

∂ρ̃e
B dxdy

(35)

Here, the problem is assumed under plane
stress conditions with a unit element thickness.
Each mesh element corresponds to a rectangular
unit cell. The elastic stiffness tensor EH of a gen-
eral orthotropic material can thus be expressed
for each unit cell as a function of its filtered
density, ρ̃, as:

EH (ρ̃)

=

⎡
⎢⎢⎣

Exx(ρ̃)
1−υxy(ρ̃)υyx(ρ̃)

υyx(ρ̃)Exx(ρ̃)

1−υxy(ρ̃)υyx(ρ̃) 0
υxy(ρ̃)Eyy(ρ̃)

1−υxy(ρ̃)υyx(ρ̃)
Eyy(ρ̃)

1−υxy(ρ̃)υyx(ρ̃) 0

0 0 Gxy (ρ̃)

⎤
⎥⎥⎦

(36)

Since asymptotic homogenization is used to
calculate the elastic constants of the unit cell

across a range of filtered density (Fig. 2), the
elastic tensor of each element can be written as
a function of the element filtered density and
then used to evaluate the derivative of the elastic
tensor with respect to the filtered density. For a
four-node quadrilateral element with four Gauss
points, the elemental stiffness tensor Eq. (34) and
its derivatives (35) can be rewritten by using the
Gauss quadrature rule for area integration as:

Ke (ρ̃) =
�
Ae

BT EH (ρ̃) BdA

=
∫∫

xy

BT EH (ρ̃) B dxdy

=
∫∫

st

BTst (s, t) E
H (ρ̃) Bst (s, t)

|J | dsdt =
2∑
i=1

2∑
j=1

wiwjB
T
st

(
si, tj

)
EH

(ρ̃) Bst
(
si, tj

) |J |
(37)

∂Ke (ρ̃)

∂ρ̃
=

�
Ae

BT
∂EH (ρ̃)

∂ρ̃e
BdA

=
∫∫

xy

BT
∂EH (ρ̃)

∂ρ̃e
B dxdy

=
∫∫

st

BTst (s, t)
∂EH (ρ̃)

∂ρ̃e

× Bst (s, t) |J | dsdt

=
2∑
i=1

2∑
j=1

wiwjB
T
st

(
si, tj

) ∂EH (ρ̃)
∂ρ̃e

× Bst
(
si, tj

) |J | (38)

where s and t are the natural coordinates. Once
the stiffness matrix derivatives are calculated
for each element using (38), the global stiffness
derivatives ∂K (ρ̃) /∂ρ̃e can be assembled to
calculate the compliance sensitivity vector
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∂C (ρ̃) /∂ρ̃e for the whole cellular domain (Eq.
25). The sensitivity analysis is then implemented,
under the optimization scheme described in the
“Methodology” section, to seek the optimum
relative density distribution that achieves the
objective and satisfies the constraints.
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Definition

Atoms at a free surface experience a different
local environment than do atoms in the bulk of
a material. As a result, the energy associated with
these atoms will, in general, be different from
that of the atoms in the bulk. The excess energy
associated with surface atoms is called surface
free energy. In traditional continuum mechanics,
such surface free energy is typically neglected
because it is associated with only a few layers
of atoms near the surface and the ratio of the
volume occupied by the surface atoms and the
total volume of material of interest is extremely
small. However, for nano-sized particles, wires,
and films, the surface-to-volume ratio becomes
significant and so does the effect of surface free
energy. Consequently, the effective modulus of
nano-sized structural elements should be consid-
ered, which by definition becomes size depen-
dent.

Introduction

The elastic behavior of a material is characterized
by its elastic modulus which defines the
proportionality between the stress and strain
when the material is subjected to external
loads. Strictly speaking, modulus is an intensive
property defined at each material point when
the material is assumed to be a continuum.
Therefore, it should be independent of the size of
the material sample being considered. However,
for inhomogeneous materials such as composites,
it is often convenient for engineering design
to define the overall (or effective) modulus
of the material. Such effective modulus of a
composite may depend on the properties of its
constituents and the relative volume fraction of
each constituent.

Atoms at or near a free surface experience a
different local environment than do atoms in the
bulk of a material. As a result, the equilibrium
position and energy of these atoms will, in
general, be different from their bulk positions
and bulk energies. Thus, the surface region

may have different moduli. In this sense, all
structural elements (large or small) are not strictly
homogeneous. However, the surface region is
typically very thin, only a few atomic layers.
It is thus perfectly acceptable to neglect the
surface region and to use the bulk modulus of
a structural element as its overall modulus, when
the size of the element is in micrometers or larger.
For nano-sized structural elements, however, the
surface-to-volume ratio is much higher, and the
surface region can no longer be neglected when
considering the overall elastic behavior of nano-
sized structural elements such as nanoparticles,
nano-rods, nano-wires, nanotubes, nanobelts,
nano-films, etc. Consequently, the effective
modulus of nano-sized structural elements should
be considered, which by definition becomes size
dependent.

To include the surface region in modeling
nano-sized structural elements inevitably
involves discrete (or atomistic) analysis because
the boundary region is only a few atomic
layer thick. So, one of the fundamental issues
that needs to be addressed in modeling the
macroscopic mechanical behavior of nano-sized
structural elements is the large difference in
length scales. To establish a link between the
atomistic structure of surfaces and macroscopic
bulk elastic behavior, a two-step approach can
be used. First, the surface atomistic structure
and interactions should be captured and cast into
surface free energy, a thermodynamic quantity of
continuum. Then, this surface free energy will be
included in the phenomenological description
of strain energy density in modeling the
macroscopic behavior of nano-sized structural
elements.

Surface Free Energy and Surface
Stress

Atoms at a free surface experience a different
local environment than do atoms in the bulk of
a material. As a result, the equilibrium position
and energy of these atoms will, in general, be dif-
ferent from those of the atoms deep in the interior
of the material. Properties of the material which
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are sensitive to the atomic positions or energies
will necessarily be affected at or near a surface.
For conventional materials where the number of
atoms near the free surface is much smaller com-
pared to the total number of atoms in the sample
of interest, such surface effects are insignificant
and can be rightfully ignored. For nano-sized
structural elements (such as nanoparticles, nano-
wires and nano-films), however, a substantial
portion of atoms is located near the surface.
Therefore, surface properties become significant
in nano-sized elements. Consequently, the overall
behavior of nano-sized elements is strongly influ-
enced by the properties of the surface.

There are different ways in which the proper-
ties of the surface can be defined and introduced.
For example, if one considers an “interface”
separating two otherwise homogeneous phases,
the interfacial property may be defined either
in terms of an interphase or by introducing
the concept of a dividing surface. In the first
approach, the system is considered to be one in
which there are three phases present – the two
bulk phases and an interphase; the boundaries
of the interphase are somewhat arbitrary and are
usually chosen to be at locations at which the
properties are no longer varying significantly
with position. The interphase then has a finite
volume and may be assigned thermodynamic
properties in the normal way, e.g., Capolungo
et al. (2006). In the second approach where a
single dividing surface is used to separate the two
homogeneous phases, the interface contribution

to the thermodynamic properties is defined as
the excess over the values that would obtain if
the bulk phases retained their properties constant
up to an imaginary surface (of zero thickness)
separating the two phases. In this article, the
second approach will be used.

The concept of a dividing surface was first
introduced by Gibbs through the use of Gibbs
surface free energy (also called surface tension
in some literature). The Gibbs density of surface
free energy, γ , is defined as the reversible work
involved in creating a unit area of new surface at
constant temperature, volume, and total number
of moles. To further illustrate the concept of
surface free energy density for a discrete system,
consider a representative volume near the surface
of a bulk crystal as shown in Fig. 1a. For simplic-
ity, assume the surface is flat and homogeneous.
Results derived under these assumptions remain
valid for non-planar surfaces provided that the
radius of curvature is significantly greater than
the width of the transition region, which is typ-
ically a few atomic layer thick (Dingreville et al.
2005).

The surface free (excess) energy, wn, of a near-
surface atom is defined by the difference between
its total energy and that of an atom deep in the
interior of a large crystal. Clearly, wn is a function
of x3 for the crystal shown in Fig. 1a, i.e., it
reaches its maximum value on the surface and
tends to zero deep into the crystal; see Fig. 1b. In
addition, wn is a function of the intrinsic crystal
surface properties, as well as the relative surface

Fig. 1 (a) Free surface of
a bulk crystal, (b) surface
free energy as a function of
the distance away from the
surface

x2

x3 x3

x1

Bulk Crystal

A

wn(x3)

Free Surfaceba
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deformation. If there are N atoms underneath of
an area A, see Fig. 1a, then the total surface free

energy associated with area A is given by
N∑
n=1
wn.

Thus, the Gibbs surface free energy density is
defined by

γ = 1

A

N∑
n=1

wn. (1)

Note that the above definition is in the
deformed configuration. It can be viewed as the
Eulerian description of the surface free energy
density. For solid crystal surfaces, the Lagrange
description of the surface free energy density can
be defined by

� = 1

A0

N∑
n=1

wn, (2)

where A0 is the area originally occupied in the
undeformed configuration by the same atoms that
occupy the area A in the deformed configuration.
It can be easily shown that the two areas are
related through

A = A0

(
1 + εsηη

)
, (3)

where εsαβ is the surface strain relative to the
undeformed crystal lattice. Continuity of the
strain field requires, for example, in the particular
coordinate system shown in Fig. 1a,

εsαβ = εαβ
∣∣
x3=0, α, β = 1, 2,

where εij is the bulk strain of the crystal under
a given external loading. In the above and the
rest of this article, Roman indices range from
1 to 3 and Greek indices range from 1 to 2,
unless indicated otherwise. For future references,
Lagrangian strain measure will be used in this
article.

It is clear from these two definitions that

γA = �A0. (4)

Therefore, one has

� = γ
(

1 + εsηη
)
. (5)

Unfortunately, it is not always clear in the
literature which of the two definitions of the
surface free energy density is being used. This
may be the cause of the wide range of values
reported.

Having defined the surface free energy den-
sity, one can now introduce the concept of surface
stress. Surface free energy corresponds to the
work of creating a unit area of surface, whereas
surface stress is involved in computing the work
in deforming a surface. Specifically, the change
in surface free energy should be equal to the
work done by the surface stress as it deforms the
surface area, i.e.,

d(�A0) = A0�
s
αβdε

s
αβ, (6)

where �sαβ is the Lagrangian surface stress ten-
sor. Note that

d(�A0) = �dA0 + A0d� = A0d�. (7)

Therefore, one has

�sαβ =
d�

dεsαβ
. (8)

This defines the surface stress tensor in terms
of the Lagrange description of the surface free
energy density. Substituting Eq. 5 into Eq. 8
yields the surface stress tensor in terms of the
Eulerian surface free energy density:

Σsαβ=γ δαβ+
(

1+εsηη
) dγ
dεsαβ

≈γ δαβ+
dγ

dεsαβ
,

(9)

where δαβ is the two-dimensional Kronecker
delta, and the second equation is valid only for
small strain deformation. The above is often
referred to as the Shuttleworth relationship (Shut-
tleworth 1950; Sanfeld and Steinchen 2000).

As discussed by Nix and Gao (1998), the
need to differentiate the Lagrange and Eulerian
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descriptions of the surface stress even for
infinitesimal deformation is necessitated by the
fact that γ and dγ /dεsαβ can often be on the same
order of magnitude.

In a liquid, where the atomic mobility is suffi-
ciently high, atoms from the bulk will come to the
surface when the surface is stretched. Such mass
diffusion from the bulk to the surface ensures that
the microscopic configuration of the surface is
preserved following the deformation, i.e., the sur-
face free energy density remains invariant to the
surface strain (Shuttleworth 1950). Consequently,
the second term in Eq. 9 vanishes, and the surface
free energy is numerically equal to the surface
stress. This is perhaps why historically surface
free energy is also called surface tension. Adding
to the confusion is perhaps the fact that both
surface free energy density and surface stress
have the same physical dimension of force per
unit length.

For a solid, due to its long range correlation
in atomic positions and low atomic mobility, it
might not be possible, in any reasonable exper-
imental time, to keep constant the local config-
uration around any particular atom in the sur-
face region where the deformation of the surface
area is performed. In other words, when a solid
crystal deforms, its surface area may change.
Such change of surface area is not accomplished
by adding (or subtracting) mass to the surface.
Instead, the change of surface area is accompa-
nied by the change of surface free energy density.
Consequently, the surface free energy density
becomes a function of the surface strain in the
solid. In this case, the second term in Eq. 9 is non-
zero and surface stress is different from surface
free energy density.

Just as in the case of surface free energy
density, there is an alternative way of introducing
the surface stress,

d(γA) = Aσsαβdεsαβ, (10)

where σ sαβ may be called the Eulerian surface
stress tensor. Note from Eq. 3 that dA =
A0δαβdε

s
αβ . Thus,

Aσsαβdε
s
αβ = d(γA) = γA0δαβdε

s
αβ + Adγ,

(11)

or

σ sαβ =
γ

1 + εsηη
δαβ + dγ

dεsαβ
≈ γ δαβ +

dγ

dεsαβ
,

(12)

where the second equation is valid only for small
strain deformation. This form of the Eulerian
surface stress tensor appears to be new to the
literature. Clearly,

�sαβ =
(

1 + εsηη
)
σ sαβ, (13)

and for small deformation, the Eulerian and
Lagrangian stress tensor become the same.

Now consider the total surface free energy of
a given surface. Let S be the surface area after
the deformation and S0 be the corresponding area
in the undeformed crystal lattice. It then follows
from Eq. 6 that the total strain energy stored in
the deformed surface is given by

Usurf ace =
∫

S0

⎡
⎢⎣
εsαβ∫

0

�sαβ (eκλ) deαβ

⎤
⎥⎦ dS0, (14)

where εsαβ is the surface strain in the final
deformed configuration and eαβ is the integration
variable representing the surface strain, and the
fact that the surface stress is a function of the
surface strain is explicitly indicated.

On the other hand, if the Eulerian definition of
the surface stress Eq. 10 is used, one has

Usurf ace =
∫

S

⎡
⎢⎣
εsαβ∫

0

σ sαβ (eκλ) deαβ

⎤
⎥⎦ dS

=
∫

S0

⎡
⎢⎣
εsαβ∫

0

(
1+eηη

)
σ sαβ (eκλ) deαβ

⎤
⎥⎦dS0,

(15)
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where the second equation follows from the fact
that dS = (1 + eηη)dS0. It then follows from
Eq. 13 that the resultant total surface free energies
from these two methods of calculation are the
same. In this article, the Lagrange surface free
energy density and surface stress tensor as
defined by Eqs. 2 and 8, respectively, will be
used.

Assuming the surface free energy density is a
smooth function of the surface strain, one may
expand the surface free energy density into power
series of surface strain, εsαβ ,

�
(
εsαβ

)
= �0 + ∂�

∂εsαβ
εsαβ +

1

2

∂2�

∂εsαβ∂ε
s
κλ

εsαβε
s
κλ

+ 1

6

∂3�

∂εsαβ∂ε
s
κλ∂ε

s
γ η

εsαβε
s
κλε

s
γ η · · ·

= �0 + �(1)αβ εsαβ +
1

2
�
(2)
αβκλε

s
αβε

s
κλ

+ 1

6
�
(3)
αβκλγ ηε

s
αβε

s
κλε

s
γ η · · · , (16)

where �0 and �(1)αβ · · · are material and surface
dependent. For a given material surface, they can
be either measured experimentally or computed
using atomistic simulations. Their values can be
computed using molecular dynamic simulations
(Dingreville et al. 2008; Dingreville and Qu 2007,
2009). Because of symmetry, one has �(1)αβ =
�
(1)
βα , �(2)αβκλ = �

(2)
κλαβ = �

(2)
βακλ, and �(3)αβκλγ η =

�
(3)
βακλγ η = �

(3)
κλαβγ η = �

(3)
κλγ ηαβ . These condi-

tions imply that there are at most 3 independent
parameters in �(1)αβ , 6 in �(2)αβκλ, and 18 in �(3)αβκλγ η.

Substitution of Eq. 16 into Eq. 8 yields

�sαβ = �(1)αβ + �(2)αβκλεsκλ +
1

2
�
(3)
αβκλγ ηε

s
κλε

s
γ η.

(17)

Clearly,�(1)αβ = �
(1)
βα gives the internal stress

of the surface. It represents the part of surface
stress that exists even when the surface strain
is absent (i.e., when the surface atoms remain
in their positions as if they were deep inside a
large crystal). The two-dimensional fourth-order
tensor �(2)αβκλ = �

(2)
κλαβ = �

(2)
βακλ = �

(2)
αβλκ

represents the surface elasticity tensor, while the
two-dimensional sixth-order tensor �(2)αβκλγ η can
be viewed as the tensor of the third-order elastic
constants of the surface.

Another important comment that must be
made here is that both surface free energy
density and surface stress are macroscopic
thermodynamic quantities. The basic idea of
Gibbs surface energy is based on the concept
of a dividing surface that separates the two
adjacent phases. Under this assumption, the
surface contributions to the thermodynamic
quantities (e.g., surface free energy and surface
stress) are defined as the excesses over the
values that would obtain if the bulk phases
retained their properties constant up to the
dividing surface. In other words, the interface
(not interphase) is a mathematical surface of
zero thickness over which the thermodynamic
properties change discontinuously from one
bulk phase to the other. The excess amount
is associated only with the dividing surface.
Obviously, this is only an idealization of the
realistic situation. In the case of a free surface,
for example, the surface contributions to the
surface free energy come from several layers
of atoms near the surface. Molecular dynamic
simulations show that free surface-induced
lattice distortion extends about three layers
of atoms into the bulk. So, strictly speaking,
the surface free energy is defined not just
on the surface but on a layer of mass near
the surface. The idealization of the dividing
surface is thus valid if and only if the bulk
crystal is much larger than several atomic
sizes. If the bulk crystal contains only a small
number of atoms, the validity of macroscopic
thermodynamic quantities such as surface free
energy is questionable.

From the viewpoint of continuum mechanics,
the dividing surface idealization means that there
is an “excess” amount of deformation on the
dividing surface due to surface stress. In other
words, the matter in the dividing surface deforms
differently from its neighboring matter in the
bulk. This idealization justifies the requirement
that the surface free energy Usurface must be
positive definite.
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Effective Modulus of a Particle

Conventionally, elastic modulus of a material is
an intensive property. It is defined as a point-
wise quantity that relates the stresses and strains
at each point in the material. When a material is
not homogeneous, such as a composite material,
its elastic modulus may vary from point to point.
In this case, the concept of effective modulus can
be introduced. For example, effective modulus
is used to characterize the overall stiffness of a
fiber-reinforced composite, where the fiber and
matrix have different elastic moduli.

Now consider a particle made of a single phase
material. On or near the particle surface, the
atomistic structure is somewhat different from
that of the bulk. Therefore, a particle of a sin-
gle phase material, strictly speaking, is not a
homogeneous body. The overall stiffness of the
particle needs to be characterized by its effec-
tive modulus. However, when the particle size
is large enough, the surface region is negligible
in comparison to the particle volume. In this
case, the surface region can be neglected and the
particle can be considered as a homogenous body.
Therefore, its elastic modulus is uniform and is
the same as that of the material from which the
particle is made. This is no longer the case when
the particle size shrinks to the nanometer range,
where the surface region becomes significant in
comparison to the particle size. Consequently, the
particle must be viewed as an inhomogeneous
body, and the effective modulus of the particle
needs to be used to characterize the stiffness
of the particle. In this section, a formulation is
developed to compute the effective modulus of a
particle that incorporates the effect of its surface.

To this end, consider a perfect crystal of infi-
nite extent. Within the infinite crystal, let +
be an ellipsoidal region consisting of a certain
number of atoms. Let the initial volume of +
be V0 and its surface area be S0. Now imag-
ine that + is removed from the infinite crystal
to become a stand-alone particle, as shown in
Fig. 2. The newly created surface of the particle
gives rise to surface stresses. Consequently, the
particle may deform. The self-equilibrium state
of the particle will be discussed later in this sec-

tion. For now, simply let V̂ and Ŝ be the volume
and surface area, respectively, of the particle in its
self-equilibrium state.

To describe the deformation of the particle, let
us introduce a uniform strain εij in the bulk of the
particle; εij is measured from the perfect lattice of
an undeformed crystal of infinite extent. For an
ellipsoidal particle, see Fig. 3, the surface strain
is related to the absolute bulk strain within the
particle through a coordinate transformation

εsαβ = tαi tβj εij
∣∣
S
, (18)

where the transformation tensor tαi for the ellip-
soidal surface is derived in Appendix A.

The total strain energy of the particle corre-
sponding to εij can then be written as

U = Ubulk + Usurf ace, (19)

where Ubulk is the total strain energy in the bulk
of the particle

Ubulk =
∫

V0

∫ εij

0

∂�

∂eij
deij dV 0

=
∫

V0

[
�
(
εij
)−�(0)] dV 0,

(20)

where � is the bulk elastic potential, which can
be expanded into a series of the bulk strain tensor

� = 1

2
Cijklεij εkl + 1

6
C
(3)
ijklmnεij εklεmn + · · · ,

(21)

where Cijkl and C(3)ijklmn are, respectively, the ten-
sors of second- and third-order elastic constants
of the perfect crystal lattice. Substituting Eq. 21
into Eq. 20 and neglecting higher order of strains
lead to

Ubulk=V0

[
1

2
Cijklεij εkl+1

6
C
(3)
ijklmnεij εklεmn

]
.

(22)

The total surface free energy on the entire
particle surface follows from Eq. 14:
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Fig. 2 A particle is created
by removing it from a bulk
crystal
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Fig. 3 An ellipsoidal particle

Usurf ace =
∫

S0

⎡
⎢⎣
εsαβ∫

0

�sαβ (eκλ) deαβ

⎤
⎥⎦ dS0. (23)

Substituting Eq. 8 into Eq. 23 yields

Usurf ace =
∫

S0

⎡
⎢⎣
εsαβ∫

0

d�

deαβ
deαβ

⎤
⎥⎦ dS0

=
∫

S0

[
�
(
εsαβ

)
− �(0)

]
dS0.

(24)

Making use of the expansion (17) in Eq. 24,
one has

Usurf ace =
∫

S0

[
�
(1)
αβ ε

s
αβ +

1

2
�
(2)
αβκλε

s
αβε

s
κλ

+1

6
�
(3)
αβκλγ ηε

s
αβε

s
κλε

s
γ η

]
dS0,

(25)

where the surface strain is related to the bulk
strain within the particle through the coordinate
transformation (Eq. 18). Substitution of Eq. 18
into Eq. 25 yields the strain energy stored in the
surface of the ellipsoidal particle + when it is
subjected to the bulk strain εij:

Usurf ace = V0

a
τij εij + V0

2a
Qijklεij εkl

+ V0

6a
Pijklmnεij εklεmn,

(26)

where a is the smallest of the three semiaxes of
the ellipsoid and

τij = a

V0

∫

S0

�
(1)
αβ tαi tβj dS0,

Qijkl = a

V0

∫

S0

�
(2)
αβκλtαi tβj tκktλldS0,

(27)

Pijklmn = a

V0

∫

S0

�
(3)
αβκλγ ηtαi tβj tκktλl tγmtηndS0.

(28)

The fourth-order tensor Qijkl can be viewed
as the surface rigidity tensor. It represents the
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combined effect of the surface stiffness, �(2)αβκλ,
and the surface geometry. Note that the surface
rigidity tensor has the dimension of force per
unit length. It possesses the usual symmetry of
stiffness tensors, Qijkl = Qklij = Qjikl = Qijlk.
The integrals in Eqs. 27 and 28 can be further
written as

τij = 3

4π

∫ 2π

0

[∫ π
0
�
(1)
αβ tαi tβj ρdφ

]
dθ, (29)

Qijkl= 3

4π

∫ 2π

0

[∫ π

0
�
(2)
αβκλtαi tβj tκktλlρdφ

]
dθ,

(30)

Pijklmn

= 3

4π

∫ 2π

0

[∫ π
0
�
(3)
αβκλγ ηtαi tβj tκk tλl tγmtηnρdφ

]
dθ,

(31)

where

ρ = sinφ

√
sin2 φcos2θ + a

2

b2
sin2φsin2θ + a

2

c2
cos2φ.

(32)

It is important to observe that these tensors
depend on the shape of the ellipsoid but not the
size.

It then follows from substituting Eqs. 20 and
26 into Eq. 19 that

U = V0

a
τij εij + V0

2

(
Cijkl + 1

a
Qijkl

)
εij εkl

+ V0

6

(
C
(3)
ijklmn +

1

a
Pijklmn

)
εij εklεmn.

(33)

This gives the total strain energy of the par-
ticle when it deforms relative to the undeformed
perfect crystal lattice of an infinite extent.

For the subsequent derivations, it is necessary
at this point to make the following assumptions:

Cijkl % 1

a
Qijkl, C

(3)
ijklmn %

1

a
Pijklmn. (34)

As mentioned earlier, Qijkl and Pijklmn are
independent of the particle size a. Therefore,

the above assumptions, for a given material,
effectively place a lower limit on the particle
size. Extensive numerical experiments have
shown that Eq. 34 is valid for a as small as a
few nanometers (Dingreville et al. 2005).

Because of surface stresses, the self-
equilibrium state of the particle is different
from the perfect crystal lattice of an infinite
extent. The strain tensor, ε̂ij , that describes the
deformation from the perfect crystal lattice to the
self-equilibrium state of the particle can be found
by minimizing the total strain energy. To this end,
consider

∂U

V0∂εij

∣∣∣∣∣
εij=ε̂ij

=
(
Cijkl + 1

a
Qijkl

)
ε̂ij

+ 1

2

(
C
(3)
ijklmn +

1

a
Pijklmn

)
ε̂kl ε̂mn

+ 1

a
τij = 0.

(35)

This is a set of six quadratic equations for the
six components of self-equilibrium strain tensor
ε̂ij . It is difficult to solve such a system of non-
linear algebraic equations analytically. However,
when the self-equilibrium strain is small, i.e.,
ε̂ij � 1, the quadratic term in Eq. 35 can
be neglected. This, in conjunction with Eq. 34,
yields the self-equilibrium strain

ε̂ij ≈ −1

a

(
Cijkl + 1

a
Qijkl

)−1

τkl

≈ −1

a
C−1
ijklτkl = −1

a
Mijklτkl,

(36)

where Mijkl = C−1
ijkl is the compliance tensor of

the bulk crystal.
Now, the effective modulus tensor of the parti-

cle at the state of self-equilibrium can be defined
as

Cijkl = ∂2

∂εij ∂εkl

(
U

V0

)∣∣∣∣
ε=ε̂

. (37)

Substitution of Eq. 36 into Eq. 37 gives
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Cijkl = Cijkl + 1

a
Qijkl

+
(
C
(3)
ijklmn +

1

a
Pijklmn

)
ε̂mn.

(38)

Further substitution of Eq. 36 into Eq. 38 leads
to

Cijkl = Cijkl + 1

a
Qijkl

− 1

a

(
C
(3)
ijklmn +

1

a
Pijklmn

)

(
Cmnkl + 1

a
Qmnkl

)−1

τkl .

(39)

Finally, making use of Eq. 34 in Eq. 39 yields
the effective modulus of the particle

Cijkl =Cijkl+1

a

(
Qijkl−C(3)ijklmnMmnpqτpq

)
.

(40)

It is seen that contribution of the surface
energy to the effective modulus of the particle
is inversely proportional to the particle size. It
will be shown later numerically that the surface
energy contribution is negligible unless the
particle size approaches the nanometer range.

To close this section, it is worth mentioning
that if the surface stiffness tensor is indepen-
dent of the location, i.e., the surface is homo-
geneous, then the tensor Qijkl can be obtained
analytically for spherical particles (a = b = c),
wires, and fibers. Their expressions are given in
Appendix C.

Thin Films
Consider a thin film made of a single crystal
with cubic symmetry. Further, it is assumed that
the top and bottom surfaces of the film are the
planes of the cubic crystal (Baker et al. 1993).
In the crystallographic coordinate system shown
in Fig. 4, the second- and third-order elasticity
tensors of the crystal are denoted by Cijkl and

C
(3)
ijklmn, respectively. Using the Voigt notations,

the non-zero, independent components of these
tensors are C11, C12, and C44 for Cijkl and C111,

x1

x2

x3 2a

Fig. 4 A single crystal film

C112, C123, C144, C155, and C456 for C(3)ijklmn.
The relationship between indices of the Voigt and
tonsorial notations is given in Appendix B. For
example, 11 → 1 and 23 → 4, thus, C1123 = C14

and C(3)112323 = C144.
In this particular case, the integrals in

Eq. 27 can be easily evaluated to yield the non-
zero components of τ ij and Qijkl

τ22 = τ33 = �11, (41)

Q2222 = Q3333 = Ks + μs,
Q2233 = Ks − μs,Q2323 = μs

(42)

where �11, Ks, and μs are related to �(1)αβ and

�
(2)
αβκλ as indicated in Appendix B. Substituting

the above into Eq. 40 yields the effective modu-
lus tensor. Non-zero components of the effective
modulus tensor for the thin film in terms of the
Voigt notation are given in Appendix C.

It is seen from these expressions that the
effective modulus tensor no longer has cubic
symmetry. It becomes orthotropic. One quantity
of interest is the in-plane unidirectional Young’s
modulus in the <100> direction

E<100> = E22 = E33

= (C22−C23
)
[

1+C11C23−C2
12

C11C22−C2
12

]
.

(43)

Substituting Eqs. C4, C5, C6, C7, C8, and C9
into Eq. 43 and keeping terms only up to 1/a yield
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E<100> = E<100> + 1

a

(
Ksκ + �11χ

)
, (44)

where

E<100> = C11 − 2C2
12

C11 + C12
(45)

is the unidirectional Young’s modulus of the bulk
crystal in the <100> directions and

κ = μs

Ks

(
C11 + 2C12

C11 + C12

)2

+
(

C11

C11 + C12

)2

,

(46)

χ = η

(C11+C12)
2

[(
2C3

12−C3
11−2C12C

2
11−2C2

12C11

C11C12

)
C111

+
(

6C11 − C
2
11

C12
+ 4C2

12

C11

)
C112

+2

(
C11 − 2C12 − 2C2

12

C11

)
C123

]
.

(47)

Clearly, κ and χ are due to surface stress and
third-order elastic constants.

The in-plane biaxial Young’s modulus is
defined as

Eb = C22 + C23 − 2C
2
12

C11
. (48)

Substituting Eqs. C4, C5, C6, C7, C8, and C9
into Eq. 48 and keeping terms only up to 1/a yield

Eb = Eb + 1

a

(
2Ks + �11χ

)
, (49)

where

Eb = C11 + C12 − 2C
2
12

C11
(50)

is the biaxial Young’s modulus of the bulk crystal
in the {100} planes and

χ = η
[(

4C2
12

C3
11

− 1

C12

)
C111

+ 3

(
2

C11
− 1

C12
− 4C12

C2
11

)
C112

+ 6

C11
C123

]
.

(51)

Clearly, χ is due to surface stress and third-
order elastic constants.

Under the biaxial loading, σ 22 = σ 33 and
σ 11 = 0, one can define an effective biaxial Pois-
son’s ratio, vb = −ε11/ε, where ε = ε22 = ε33

because of the cubic symmetry in the x2x3-plane
of the film. Making use of the above equations in
conjunction with Eqs. C4, C5, C6, C7, C8, and
C9, one arrives at

vb = 2C12

C11
+ 2�11η

aC11C12

[(
4C12

C11
− 1

)
C112

−2C2
12

C2
11

C111 − C123

]
, (52)

where the first term is the biaxial Poisson’s ratio
for a bulk crystal.

It is noted here that when vb is assumed to be
independent of the film thickness, i.e., neglecting
the second term in Eq. 52, the effective biaxial
Young’s modulus Eq. 49 reduces to the effec-
tive biaxial modulus derived by Streitz et al.
(1994a, b).

The self-equilibrium strain of the film follows
directly from Eq. 36:

ε̂ = �11η

a

⎡
⎣

2/C11 0 0
0 −1/C12 0
0 0 −1/C12

⎤
⎦ . (53)

Clearly the sign of �11 determines whether
there is a negative (contraction) or positive
(dilatation) relaxation of the film in the plane
directions. For C12 > 0, positive �11 would yield
negative in-plane strain and positive transverse
stain. The same result for the in-plane self-
equilibrium ε̂22 = ε̂33 has been obtained by
Streitz et al. (1994a).
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x1

x2

x3

2a

Fig. 5 A thin wire of square cross section

Thin Wire of Square Cross Section
Now, consider a thin wire of square cross section
made of a single crystal with cubic symmetry as
shown in Fig. 5. Again, assume that the surfaces
of the wire are the {100} planes of the cubic crys-
tal. The corresponding effective modulus tensor
of the wire can be directly computed from the
general formulas given by Eqs. 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, and 40. The non-
zero components of the effective modulus tensor
are given in Appendix C; see Eqs. C20, C21, C22,
C23, C24, and C25.

It is seen from Eqs. C20, C21, C22, C23, C24,
and C25 that, just like in the case of the film, the
effective modulus tensor becomes orthotropic.
The unidirectional Young’s modulus in the axial
direction is given by

E<100> = E<100> + 1

a

(
Ksκ + �11χ

)
, (54)

where

E<100> = C11 − 2C2
12

C11 + C12
(55)

is the unidirectional Young’s modulus of the bulk
crystal in the <100> directions and

κ = μs

Ks

(
C11 + 2C12

C11 + C12

)2

+ C2
11 + 4C2

12

(C11 + C12)
2 ,

(56)

χ = η

(C11+C12)
2

[
3

(
2C11−4C12−C

2
11

C12

)
C112

+
(

4C2
12

C11
− C

2
11

C12

)
C111 + 6C11C123

]
.

(57)

The Poisson’s ratio is given by

v13 = v23 = v13 + 1

a

(
Ksκ + �11χ

)
, (58)

where

v13 = v23 = C12

C11 + C12
(59)

is the Poisson’s ratio of the bulk crystal and

κ = C11

(C11 + C12)
2
− μs

Ks

C11 + 2C12

(C11 + C12)
2

(60)

χ = η

(C11 + C12)
2

[(
1 − 2

C12

C11

)
C111

+
(

4 − 3C11

C12
− 4C12

C11

)
C112

+
(

3 − C11

C12
+ 2C12

C11

)
C123

]
(61)

The self-equilibrium strain is given by

ε̂ = −�11η

a

⎡
⎢⎣
C11−2C12
C11C12

0 0

0 C11−2C12
C11C12

0

0 0 2
C12

⎤
⎥⎦ (62)

Spherical Particles
Consider a spherical particle made of an isotropic
elastic solid. Furthermore, assume that the
particle’s surface is homogeneous and isotropic.
Clearly, this is an idealized case, for in reality
a curved crystal surface inevitably involves
different crystallographic surfaces and thus
becomes nonhomogeneous and anisotropic. It is
nevertheless interesting to study such an idealized
case because of the simplicity of the solution.

Under such assumptions, the tensors Qijkl and

Rijkl = C(3)ijklmnMmnpqτpq can be easily obtained
analytically by setting a = b = c in the equations
derived earlier. Their expressions are given in
Appendix C; see Eqs. C26, C27, and C28.

Making use of Eqs. C26, C27, and C28, one
can easily find that the effective stiffness tensor
is still isotropic for an isotropic spherical particle
with isotropic surface. For such a particle of
radius a, the effective bulk and shear moduli are
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Table 1 Bulk and surface elastic constants for single crystal copper

C111 (GPa) C112 (GPa) C123 (GPa) �11 (J/m2) Ks(J/m2) μs(J/m2)

832.02 −621.92 15.29 1.3961 2.6755 −3.5524

K =K + 4

3a

[
Ks − �1

K

(
3

2
L+ 3M + 4

3
N

)]
,

(63)

μ=μ+ 1

a

[
1

5

(
Ks + 6μs

)−2�1

3K
(3M + 4N)

]
,

(64)

where K and μ are, respectively, the bulk and
shear moduli of the bulk material and L, M, and
N are the third-order elastic constants related to
Cijk; see Appendix B.

Making use of Eq. 36, one can compute the
self-equilibrium strain of the spherical particle

ε̂ij = −1

a
Mijklτkl = −2�11

3aK
δij . (65)

Clearly, a positive �11 would mean a contrac-
tion of the sphere due to surface stress.

Numerical Examples and Discussions

In this section, several numerical examples for the
effective modulus and effective Poisson’s ratio of
copper spherical particles, wires of square cross
section, and films are presented. For the films
and wires, it is assumed that they are made of
copper single crystals and that their crystallo-
graphic directions coincide with the surfaces of
the films and wires as shown in Figs. 4 and 5.
The cubic (second-order) elastic constants of the
copper single crystals are C11 = 167.38 GPa
and C12 = 124.11 GPa. The third-order elastic
constants and the surface properties are given in
Table 1. For the spherical particles, the isotropic
elastic properties given in Table 2 are used.

The effective unidirectional and biaxial mod-
uli for single crystal Cu films and wires of var-
ious thicknesses are plotted in Fig. 6. For the
wires, the axial Young’s modulus increases as
the wire becomes thinner. For a Cu wire with
diameter of 4 nm, the axial modulus is almost

Table 2 Bulk and surface elastic constants for polycrystal
copper (isotropic)

K(GPa) μ(GPa) �11
(J/m2)

Ks(J/m2) μs(J/m2)

138.53 43.28 1.3961 2.6755 −3.5524
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Fig. 6 Normalized effective Young’s modulus of Cu films
and wires of various sizes

20% more than its bulk value. A similar trend
is seen for the biaxial modulus of Cu films.
However, the uniaxial Young’s modulus for the
film shows the opposite trend, i.e., it decreases
with film thickness. For a 2-nm-thick film, the
uniaxial modulus is almost 20% less than its
bulk value. Intuitively, one would think that the
uniaxial Young’s modulus for the film should
behave more like the axial Young’s modulus of
the wire, because a film under uniaxial tension
can be viewed as a row of many wires placed side
by side under identical axial tension. This would
be the case if the surface effect were not a factor.
When the surface effect is significant, a row of
wires placed side by side is no longer equivalent
to a film because the surface area for the row of
wires would be much larger.

The Poisson’s ratio for the wire and the
biaxial Poisson’s ratio for the film are plotted
in Fig. 7 for wires and films of various
thicknesses. The dashed lines indicate the bulk
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Fig. 7 Poisson’s ratio for the films and the wires of
various sizes

values without the effect of free surfaces. It
is seen that the biaxial Poisson’s ratio of the
film decreases with decreasing film thickness,
while the axial Poisson’s ratio of the wire
increases with decreasing wire thickness. In
both cases, a sharp change occurs around
thickness of 2 nm. It is interesting to note
that molecular dynamic simulations by Diao
et al. (2003) have shown that single crystal
gold wires undergo a phase transformation from
face-centered cubic symmetry to body-centered
tetragonal symmetry when the wire diameter
reduces to around 2 nm due to surface stress,
giving rise to a significant increase in Poisson’s
ratio (Diao et al. 2004).

Plotted in Fig. 8 is the self-equilibrium strain
for the films and wires. The in-plane strain for
the film and the axial strain for the wire are both
negative, indicating a reduction in size (area of
the film or length of the wire). This is due to
the tensile surface stress for Cu in the <100>
direction. Accompanying the size reduction is
the thickness increase indicated by the positive
transverse strain for both film and wire. It is
noted that the self-equilibrium strain is rather
significant. For example, a film of 4 nm thickness
could have an in-plane shrinkage of over 0.6%
and transverse expansion of almost 1%.

Now, consider a spherical particle made of
isotropic elastic material with elastic properties
given in Table 2. The effective shear and bulk
moduli of the particle are shown in Fig. 9. It is
seen that the shear modulus is much less influ-
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Fig. 8 Self-equilibrium strain for films and wires of
various sizes
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Fig. 9 Normalized effective modulus for spherical parti-
cles of various sizes

enced by the surface energy. The self-equilibrium
strain of the particle is shown in Fig. 10. Clearly,
for a Cu particle, the surface tension tends to
shrink the particle. For a particle of 2 nm in
diameter, the radial strain is about 1%.

Finally, as a partial validation of the model
presented here, the effective Young’s modulus
of thin films of various thicknesses was also
computed using molecular static (MS) simula-
tions (Dingreville et al. 2008). The agreement is
excellent for a film as thin as 1 nm.

Summary

In this article, a framework is described to
incorporate the surface free energy into the
continuum theory of mechanics. Analytical
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expressions were derived for the effective elastic
modulus tensor of nano-sized structural elements
that account for the effects of surface free
energy. Explicit expressions of the effective
elasticity tensors were obtained for thin films,
wires, and spherical particles. The solutions so
derived show that the overall elastic properties
of structural elements (such as particles, wires,
and films) are size dependent. Although such
size dependency is negligible for conventional
structural elements, it becomes significant when
at least one of the dimensions of the structural
element shrinks to nanometers. Numerical
examples for copper were also presented in the
article to quantitatively illustrate the effects of
surface free energy on the elastic properties of
nano-sized particles, wires, and films. It shows
that the effect of surface energy on the elastic
behavior becomes significant when one of the
characteristic dimensions is below about 10 nm.
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Appendix A: Coordinate
Transformation

Consider the ellipsoid + shown in Fig. 3. When
the ellipsoid is subjected to a uniform strain field,
εij, the surface of the ellipsoid deforms accord-
ingly. Let the two-dimensional surface strain ten-
sor, εsαβ , be defined in a local coordinate system
(i1, i2, i3), where i1 and i2 are tangent to the sur-
face and i3 is normal to the surface. Clearly, the
choice of i1 and i2 is not unique. The following
approach is taken to uniquely define the local
coordinate system on the ellipsoidal surface.

In the spherical coordinate system,

x1 = r cos θ sinφ, x2 = r sin θ sinφ,

x3 = r cosφ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,
(A1)

a point on the surface of the ellipsoid can be
represented by the vector

R (θ, φ) = a cos θ sinφI1 + b sin θ sinφI2

+ c cosφI3

(A2)

A local coordinate system at this point may be
introduced by the following three unit vectors:

i3 = 1

d1

(
cos θ sinφI1 + a

b
sin θ sinφI2

+a
c

cosφI3

)
,

(A3)

i2 = ∂R
∂θ
/

∥∥∥∥
∂R
∂θ

∥∥∥∥ =
1

d2

(
−a
b

sin θI1 + cos θI2

)
,

(A4)

i1 = i2 × i3 = a

cd1d2
cos θ cosφI1

+ a2

bcd1d2
sin θ cosφI2 − d2

d1
sinφI3,

(A5)

where

https://doi.org/10.1007/978-3-662-55771-6_212
https://doi.org/10.1007/978-3-662-55771-6_169
https://doi.org/10.1007/978-3-662-55771-6_161
https://doi.org/10.1007/978-3-662-55771-6_170
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d1=
√

cos2 θsin2φ+ a
2

b2 sin2θsin2φ+ a
2

c2 cos2φ,

(A6)

d2 =
√
a2

b2 sin2θ + cos2θ, (A7)

The transformation matrix between the global
(I1, I2, I3) and the local (i1, i2, i3) coordinate sys-
tems is thus given by

[
tij
]

=
⎡
⎢⎣

a
cd1d2

cos θ cosφ a2

bcd1d2
sin θ cosφ − d2

d1
sinφ

− a
bd2

sin θ 1
d2

cos θ 0
1
d1

cos θ sinφ a
bd1

sin θ sinφ a
cd1

cosφ

⎤
⎥⎦ .

(A8)

Therefore, according to the tensor transforma-
tion rule, the surface strain in the local coordinate
system can be written as

εsαβ = tαi tβj εij . (A9)

For a spherical particle (a = b = c), the
transformation matrix reduces to

[
tij
] =

⎡
⎢⎣

cos θ cosφ sin θ cosφ − sinφ

− sin θ cos θ 0

sinφ cos θ sinφ sin θ cosφ

⎤
⎥⎦ .

(A10)

Bulk and Surface Elasticity Tensors

When subjected to a strain field εij, the strain
energy of an elastic body can be written as

�=1

2
Cijklεij εkl+1

6
C
(3)
ijklmnεij εklεmn+ · · · · · ·

(B1)

where Cijkl is a fourth-order tensor consists of

(second-order) elastic constants and C(3)ijkl is a
sixth-order tensor consisting of the third-order
elastic constants of the solid. It can be easily
shown that the following symmetry conditions
must be met by these tensors:

Cijkl = Cjikl = Cklij , (B2)

C
(3)
ijklmn = C(3)j iklmn = C(3)klmnij = C(3)mnijkl

= C(3)ijmnkl = C(3)mnklij = C(3)klijmn.
(B3)

Instead of the tensorial notation, it is conve-
nient in certain cases to use the Voigt (contracted)
notation for these tensors. For example, C11 is
used for C1111, C12 is used for C1122, C123 is used
for C112233, etc. The general rules to contract the
indices are (11) → (1), (22) → (2), (33) → (3),
(12) → (6), (13) → (5), and (23) → (4). Of
course, the symmetry properties of the elastic-
ity tensor remain in their contracted form, e.g.,
C12 = C21 and C123 = C312.

For solids with cubic symmetry, there are
three independent non-zero second-order elastic
constants for Cijkl:

C11 = C22 = C33, C12 = C13 = C23,

C44 = C55 = C66

(B4)

and six independent non-zero third-order elastic
constants for C(3)ijklmn:

C111 = C222 = C333, C144 = C255 = C366,

(B5)

C112 = C113 = C122 = C133 = C223 = C233,

(B6)

C155 = C166 = C244 = C266 = C344 = C355,

(B7)

C123, C456

For isotropic solids, the number of indepen-
dent elastic constants is further reduced. For Cijkl,
there are only two independent ones. They are

C11 = C22 = C33 = K + 4μ

3
,

C12 = C13 = C23 = K − 2μ

3
,

(B8)

C44 = C55 = C66 = μ, (B9)
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where K is called the bulk modulus and μ the
shear modulus.

For isotropic solids,C(3)ijklmn has three indepen-
dent non-zero constants L, M, and N. They are
related to Cijk by

C111 = C222 = C333 = L+ 6M + 8N, (B10)

C144 = C255 = C366 = M, (B11)

C112 = C113 = C122 = C133 = C223

= C233 = L+ 2M,
(B12)

C155 = C166 = C244 = C266 = C344

= C355 = M + 2N,
(B13)

C123 = L,C456 = N. (B14)

In terms of the Kronecker delta δij, these
elasticity tensors can be written conveniently as

Cijkl = Kδij δkl

+ μ
(
δikδjl + δilδjk − 2

3
δij δkl

)
,

(B15)

C
(3)
ijklmn = Lδij δklδmn

+M (δij δkmδln + δij δknδlm
+ δimδjnδkl + δinδjmδkl
+δikδjlδmn + δilδjkδmn

)

+N (δikδjmδln + δimδjkδln
+ δilδjmδkn + δimδjlδkn
+ δikδjnδlm + δinδjkδlm
+δilδjnδkm + δinδjlδkm

)
.

(B16)

Next, consider the surface elasticity tensors
�
(1)
αβ and �(2)αβκλ. Again, it follows from the defi-

nition (16) that certain symmetry conditions must
be met:

�
(1)
αβ = �(1)βα , �(2)αβκλ = �(2)κλαβ = �(2)βακλ. (B17)

In general, �(1)αβ and �(2)αβκλ can be anisotropic
in the surface (where they are defined). For
isotropic surfaces, both �(1)αβ and �(2)αβκλ should
be isotropic. It can be shown (Aris 1962) that
�
(1)
αβ is isotropic if and only �(1)12 = �

(1)
21 = 0

and �(1)11 = �
(1)
22 and �(2)αβκλ is isotropic if and

only �(2)1112 = �
(2)
1222 = 0 and �(2)1111 = �

(2)
2222 =

�
(2)
1122 + 2�(2)1212. This is the case if the surface has

a rotation axis of threefold or higher symmetry
(Buerger 1963). Therefore, for a {111} surface,
which has threefold symmetry, and for a {100}
surface, which has fourfold symmetry, the surface
stiffness tensors can be written as

�
(1)
αβ = �11δαβ, �

(2)
αβκλ = Ksδαβδκλ

+ μs (δακδβλ + δαλδβκ − δαβδκλ
)
.

(B18)

Special Cases

Films
For the film shown in Fig. 4, the integrals in
Eq. 27 can be written as integrals on the top
and bottom surfaces of the film. On these sur-
faces, the integrands in both integrals are con-
stants. Thus, they can be easily carried out to
yields Eqs. 41 and 42. Consequently, the non-zero
components of the fourth-order tensor Rijkl =
C
(3)
ijklmnMmnpqτpq are obtained as

R1111 = 2�11η

(
C112

C12
− C111

C11

)
,

R1122 = R1133=�11η

(
C123+C112

C12
−2C112

C11

)
,

(C1)

R2222 = R3333=�11η

(
C111+C112

C12
−2C112

C11

)
,

R2233 = 2�11η

(
C112

C12
− C123

C11

)
,

(C2)
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R2323 = 2�11η

(
C155

C12
− C144

C11

)
,

R1313 = R1212=�11η

(
C144+C155

C12
−2C155

C11

)
,

(C3)

where Cijk are related to their third-order elastic
constants as indicated in Appendix B and η is
defined by Eq. C10. The non-zero components of
the effective elasticity tensor for the thin film in
terms of the Voigt notation can then be obtained
from Eq. 40:

C11 = C11 + 2�11η

a

(
C111

C11
− C112

C12

)
, (C4)

C12 = C13=C12

+ �11η

a

(
2C112

C11
−C123+C112

C12

)
,

(C5)

C22 = C33 = C11 + 1

a

[ (
Ks + μs)

+�11η

(
2C112

C11
− C111 + C112

C12

)]
,

(C6)

C23 = C12 + 1

a

[ (
Ks − μs)

+2�11η

(
C123

C11
− C112

C12

)]
,

(C7)

C44 =C44 + 1

a

[
μs + 2�11η

(
C144

C11
− C155

C12

)]
,

(C8)

C55 = C66 = C44 + �11η

a

(
2C155

C11

−C144 + C155

C12

)
,

(C9)

where η is a nondimensional constant given by

η = C11C12

(C11 + 2C12) (C11 − C12)
. (C10)

Note that the positive definiteness of the strain
energy density requires C11 > |C12|. Thus, η ≥ 0
if C12 ≥ 0.

Wires
For the wire shown in Fig. 5, the integrals in
Eq. 27 can be written as integrals on the lateral
surfaces of the wire. On these surfaces, the inte-
grands in both integrals are constants. Thus, they
can be easily carried out to yield

τ11 = τ22 = �11, τ33 = 2�11, (C11)

Q1111=Q2222=Ks+μs,Q3333=2
(
Ks+μs) ,

(C12)

Q1133=Q2233=Ks−μs,Q2323=Q1313=μs.
(C13)

Consequently, the non-zero components of the
forth-order tensor Rijkl = C(3)ijklmnMmnpqτpq are
obtained as

R1111 = R2222 = �11η

(
C111 + 3C112

C12

−2 (C111 + C112)

C11

)
,

(C14)

R3333 = 2�11η

(
C111 + C112

C12
− 2C112

C11

)
,

(C15)

R1122 = 2�11η

(
C112 + C123

C12
− 2C112

C11

)
,

(C16)

R1133 = R2233 = �11η

(
C123 + 3C112

C12

−2 (C112 + C123)

C11

)
,

(C17)
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R2323 = R1313 = �11η

(
C144 + 3C155

C12

−2 (C144 + C155)

C11

)
,

(C18)

R1212 = 2�11η

(
C144 + C155

C12
− 2C155

C11

)
.

(C19)

The non-zero components of the correspond-
ing effective elasticity tensor are thus given by

C11 = C22 = C11 + 1

a

[ (
Ks + μs)

+ �11η

(
2 (C111 + C112)

C11

−C111 + 3C112

C12

)]
,

(C20)

C33 = C11 + 1

a

[
2
(
Ks + μs)

+2�11η

(
2C112

C11
− C111 + C112

C12

)]
,

(C21)

C12=C12 + 2�11η

a

(
2C112

C11
−C123 + C112

C12

)
,

(C22)

C13 = C23 = C12 + 1

a

[ (
Ks − μs)

+ �11η

(
2 (C112 + C123)

C11

−3C112 + C123

C12

)]
,

(C23)

C44 = C55 = C44 + 1

a

[
μs

+ �11η

(
2 (C144 + C155)

C11

−C144 + 3C155

C12

)]
,

(C24)

C66 =C44+2�11η

a

(
2C155

C11
−C144 + C155

C12

)
.

(C25)

Spherical Particles

Qijkl = 4

3
Ksδij δkl + 1

5

(
Ks + 6μs

)

×
(
δikδjl + δilδjk − 2

3
δij δkl

)
,

(C26)

τij = 2�11δij , (C27)

Rijkl = 2�11

3K

(
3L+ 6M + 8

3
N

)
δij δkl

+ 2�11

3K
(3M + 4N)

×
(
δikδjl + δilδjk − 2

3
δij δkl

)
.

(C28)
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Synonyms

Differential geometry; Geometry of curves and
surfaces

Definition

By geometry of a surface one usually means
characterization of its metric and curvature
properties in surface curvilinear coordinates.
Due to a large variety of surface shapes, it is
convenient to use the common tensor notation.
In shell theory, the most useful concepts are the
surface covariant differentiation, description of
surface curves and surface divergence theorems
of vector and tensor fields.

Introduction

Geometry of a surface embedded into the three-
dimensional Euclidean point space was presented
in many classical monographs, for example, by
Eisenhart (1947) and do Carmo (1976). Within
the needs of theoretical description required in
shell structures, appropriate introductions were
worked out as parts of the books by Green and
Zerna (1954), Naghdi (1963), Chernykh (1964),
Flügge (1972), Pietraszkiewicz (1977), Başar and
Krätzig (2001), Ciarlet (2005), and Lebedev et al.
(2010).

Here an elementary introduction to the sur-
face differential geometry is given. The relations
may be used as a common notation base for
the geometric description of various shell models
discussed in this section.

Geometry of a Surface

A surface M in the three-dimensional Euclidean
point space E can locally be defined by the posi-
tion vector r = r(θα) as the function of two
curvilinear coordinates θα , α = 1, 2. Usually r is
related to a reference frame (O, ii), i= 1, 2, 3, in E
with O a reference point and ii some orthonormal
vectors.

Two surface (covariant) vectors aα and the unit
normal vector n defined by

a1 = ∂r
∂θ1 ≡ r,1, a2 = ∂r

∂θ2 ≡ r,2,

n = a1 × a2

| a1 × a2 | ,
(1)

form the fundamental triad of base vectors on
M. Two dual (contravariant) surface vectors are
related to aα by

aβ · aα = δβα =
{

1 if α = β,
0 if α �= β, (2)

a1 = a2 × n

(a1 × a2) · n , a2 = n× a1

(a1 × a2) · n .
(3)

https://doi.org/10.1007/978-3-662-55771-6_300172
https://doi.org/10.1007/978-3-662-55771-6_300289
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The coefficients defined by

aαβ = aα · aβ, aαβ = aα · aβ (4)

are known as the covariant and contravariant
components of the surface metric tensor. They
allow one to calculate lengths of curves on M,
angles between them, and areas on M.

The following relations are satisfied:

aα = aαβaβ, aα = aαβaβ, (5)

where the summation convention over the
repeated Greek indices has been used. Similarly,
the components aαβ and aαβ are used to raise
or lower indices of components of the surface
vectors and tensors.

In various geometric formulae, it is convenient
to make use of components of the surface alterna-
tion tensor

εαβ =
(
aα × aβ

) · n, εαβ = (aα × aβ
) · n,

[(a1 × a2) · n]2 = det
(
aαβ
) = a > 0,

(6)

which satisfy the relations

ε12 = −ε21 = √
a, ε11 = ε22 = 0,

ε12 = −ε21 = 1√
a
, ε11 = ε22 = 0,

(7)

εαβε
λμ = δλαδμβ − δλβδμα , εαβε

λβ = δλα,
εαβε

αβ = 2, εαλεβμaαβ = aλμ,
aαλaβμεαβ = ελμ,

(8)

aα × aβ = εαβn, aα × aβ = εαβn,
n× aα = εαβaβ, n× aα = εαβaβ.

(9)

Differentiation of the unit normal n with
respect to the surface coordinates gives two
vectors n,α tangent to M. The coefficients

bαβ = −n,α · aβ = −n,β · aα = n · aα,β (10)

are known as the covariant components of the
surface curvature tensor. Associated with bαβ two
invariants

H = 1

2
aαβbαβ, K = 1

2
εαλεβμbαβbλμ (11)

are called the mean and the Gaussian curvatures
of M, respectively. The components of bαβ allow
one to calculate curvatures and torsions of the
surface curves.

Covariant Differentiation

Partial differentiation of the base vectors aα with
respect to the surface coordinates leads to

aα,β = r,αβ = �λ.αβaλ + bαβn, (12)

where

�λ.αβ = aλ · aα,β=1

2

(
aλα,β+aλβ,α − aαβ,λ

)
,

�
μ
αβ = aλμ�λ.αβ = aμ · aα,β = −aμ,α · aβ

(13)

are called the surface Christoffel symbols of the
first and second kind, respectively.

Differentiation of the surface tangent field
v = vαaα = vαaα gives

v,β =
(
vαaα

)
,β = vα

∣∣
β
aα + bαβvαn

= vα|βaα + bαβvαn,
(14)

where the operation (.)�α defined by

vα
∣∣
β
=vα,β + �αλβvλ, vα|β=vα,β − �λαβvλ

(15)

is known as the covariant differentiation of the
surface vector components.

Similarly, the covariant differentiation of the
tangent surface tensor components is defined by

T αβ
∣∣
λ
= T αβ,λ+�ακλT κβ + �βκλT ακ,

Tαβ|λ = Tαβ,λ−�καλTκβ − �κβλTακ .
(16)

In particular, one can prove that

aαβ|λ= aαβ
∣∣
λ
= εαβ|λ= εαβ

∣∣
λ
= 0. (17)
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In case of the spatial vector field w defined in
the surface bases by

w = wαaα + wn = wαaα + wn, (18)

its differentiation on M leads to

w,β =
(
wα
∣∣
β
− bαβw

)
aα +

(
w,β + bαβwα

)
n

= (wα|β − bαβw
)
aα +

(
w,β + bαβwα

)
n.

(19)

Since aβ�λ = bβλn, n,μ = n|μ = −bκμaκ , the
repeated covariant differentiation of aβ gives the
vector identity

aβ|λμ − aβ|μλ = Rαβλμaα, (20)

or three scalar identities

bβλ|μ = bβμ|λ, bαλbβμ − bαμbβλ = Rαβλμ,
(21)

where Rαβλμ are components of the surface
Riemann-Christoffel tensor which are defined
entirely through the metric components by

Rαβλμ = 1

2

(
aαμ,βλ+ aβλ,αμ − aαλ,βμ− aβμ,αλ

)

+ �καμ�κ.βλ − �καλ�κ.βμ.
(22)

The components Rαβλμ have the following
symmetry conditions:

Rαβλμ = −Rβαλμ = −Rαβμλ = Rλμαβ, (23)

so that, in fact, they are expressible in terms of
only one independent component R1212.

The relations (21) are known as the Codazzi-
Gauss equations for the surface. Since M in the
space E has been described by three spatial com-
ponents of r, the relations (21) express just three
compatibility conditions which must be satisfied
by six components of aαβ and bαβ .

Surface Curves

Let θα = θα(s) define a curve C on the surface
M, where s is the length coordinate along C.
A special case of C is the surface curve ∂M
describing an edge of M. With each point of C
one can associate the orthonormal triad of vectors
τ , n, ν, where τ is the unit vector tangent to C and
ν is the outward unit normal vector tangent to M
defined by

τ = r,s = ταaα, ν = τ × n = ναaα,
aα=ναν + τατ , νβ=εβατα, τβ = εαβνα.

(24)

Differentiation of the triad ν, τ , n along C
gives

d

ds

⎡
⎣

ν

τ

n

⎤
⎦ = ωτ ×

⎡
⎣

ν

τ

n

⎤
⎦ ,

ωτ = στ ν + τττ + ρτn, (25)

where the normal curvature σ τ , the geodesic
torsion τ τ , and the geodesic curvature ρτ of the
surface curve C are defined by

στ = bαβτατβ, ττ = −bαβνατβ,
ρτ = τανα

∣∣
β
τβ.

(26)

The value of σ τ at each point M ∈M depends
on the direction τ of C. The principal directions
are those for which bαβτατβ assume the extreme
values under the condition aαβτατβ = 1. The
problem is equivalent to finding extremal values
of the function

F
(
τα
) = bαβτατβ − στ

(
aαβτ

ατβ − 1
)
. (27)

Differentiation of (27) leads to the set of two
homogeneous algebraic equations

1

2

∂F

∂τα
= (bαβ − στ aαβ

)
τβ = 0, (28)

which nontrivial solutions exist provided that
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det
(
bαβ−στ aαβ

) = 0, σ 2
τ − 2στH+K = 0.

(29)

The roots of (29)2 are

σ1,2 = H ±
√
H 2 −K (30)

and are called the surface principal normal curva-
tures at the point M ∈M.

The values σ 1 and σ 2 in (30) are always real,
because

4
(
H 2 −K

)
=
(
b1

1 + b2
2

)2 + 4
(
b1

2

)2 ≥ 0.

(31)

The equality in (31) takes place only if b1
1=b2

2
and b2

1 = b1
2, under which the point of M

is called spherical. If a point M ∈ M is not
spherical, then σ 1 and σ 2 assume different values
such that

σ1σ2 = K, σ1 + σ2 = 2H. (32)

The point M ∈ M is called elliptic when
K > 0, parabolic when K = 0, and hyperbolic
when K < 0. The surface consisting entirely of
one type of points mentioned above is called the
surface of positive, zeroth, or negative Gaussian
curvature, respectively.

The curve on a surface having tangent at each
point along the principal direction is called the
line of principal curvature. If τα(1) and τα(2) are two
principal directions corresponding to σ 1 and σ 2,
respectively, then multiplying (28) in succession
by τα(1) and τα(2), and subtracting the results one
obtains

(σ2 − σ1) aαβτ
α
(1)τ

β

(2)= (σ2 − σ1) τ (1) · τ (2)=0.

(33)

This means that, unless the point is spher-
ical, the two principal directions are orthogo-
nal. Moreover, multiplying the conditions (28)
by να one finds that in the principal directions
bαβτβνα = 0, so that the geodesic torsion τ τ
vanishes identically along the principal line.

Various surfaces may conveniently be param-
eterized by different surface coordinate systems,
which may neither be orthogonal nor coinciding
with lines of principal curvatures, in general. But
majority of surfaces are described and analyzed
in orthogonal coordinates coinciding with lines of
principal curvatures. In this case, it is convenient
to introduce the unit surface base vectors e1 and
e2 such that

a1 = A1e1, a2 = A2e2, A1 = √
a11,

A2 = √
a22, a11 = 1

(A1)
2
, a22 = 1

(A2)
2
,

a12 = a12 = 0, a = (A1A2)
2.

(34)

For orthogonal surface coordinates of princi-
pal curvatures, the nonzero Christoffel symbols
of the second kind one finds from (13) to be

�1
11 =

1

A1

∂A1

∂θ1 , �1
22 = − A2

(A1)
2

∂A2

∂θ1 ,

�1
12 =

1

A1

∂A1

∂θ2 , �2
22 =

1

A2

∂A2

∂θ2 ,

�2
11 = − A1

(A2)
2

∂A1

∂θ2 , �2
12 =

1

A2

∂A2

∂θ1 .
(35)

The symbols (35) allow one to express covari-
ant differentiation of vector and tensor compo-
nents in terms of their partial differentiation.

With the help of (34) any vector w can be
represented by its components as

w = w<1>e1 + w<2>e2 + wn,

w<α> = Aαwα = 1

Aα
wα (no sum over α) .

(36)

The components w<α> are called the physical
components of the vector w.

Similarly, one can introduce the physical com-
ponents of the surface tensor by

T<αβ> = 1

AαAβ
Tαβ = AαAβT αβ

= Aβ
Aα
T .βα (no sum over α, β) .

(37)



2384 Surface Tension

In particular, the physical components of the
surface curvature tensor bαβ are defined by

b<11> = b11

(A1)
2
= − 1

R1
,

b<22> = b22

(A2)
2 = − 1

R2
,

(38)

where R1 and R2 are the principal radii of cur-
vatures of corresponding lines of principal curva-
tures.

Surface Divergence Theorem

Let the regular surface M be bounded by a
closed smooth boundary ∂M. The divergence
of a tangential vector field w = wαaα
defined over M is the scalar field defined
by divs w = w,α · aα = wα|α . For a mixed
second-order tensor field on M, S = Sα ⊗ aα ,
Sα = Siαci, where ci, i = 1, 2, 3, is any 3D
vector base on M and ⊗ is the tensor product,
the surface divergence is the vector field defined
by divsS = Sα|α .

The surface divergence theorem (also called
the Green or Gauss theorem) relates integrals of
the fields w and S along the boundary ∂M to their
divergences over the surface M according to

∫

∂M
wαναds =

∫∫

M
wα
∣∣∣∣
α

da,

∫

∂M
Sαναds =

∫∫

M
Sα
∣∣∣∣
α

da.

(39)

In shell theory these theorems are used to
derive the Euler equations of some variational
statements.
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Definition

Transient surface wave is a line of strong or
weak discontinuity (or a circumference for bodies
of revolution) on which stressed-strained state
characteristics of the medium possess jumps (dis-
continuities).

Preliminary Remarks

The majority of available studies on the surface
wave propagation along surfaces of various
3D bodies deals with harmonic surface waves.
Thus, for example, harmonic waves propagating
along an isotropic cylinder free surface in the
direction perpendicular to a generator have been
described in detail by Viktorov (1966) and
Brekhovskikh (1967). There are also similar
waves with vertical and horizontal polarization
on a surface of an anisotropic cylinder, which has
the plane of transverse isotropy perpendicular to
a cylinder axis (Viktorov 1974; Vaskova et al.
1975). The Rayleigh waves of the “diverging
circles” type on an isotropic sphere surface under
harmonic excitations were studied by Petrashen
(1946).

The number of articles, wherein transient
surface waves are investigated, is rather limited
(Rossikhin 1986, 1992; Rossikhin and Shitikova
2000, 2004, 2014). One of the first studies in
the field is the paper by Rossikhin (1986), who
suggested the ray expansion method for analyz-
ing the Rayleigh waves of the “diverging circles”
type on an isotropic spherical surface. Moreover,
it has been found that transient surface waves
are very useful when studying dynamic surface
instability of 3D bodies subjected to nonsta-
tionary excitation and pre-stressing (Bestuzheva
et al. 1981; Rossikhin and Shitikova 2000,
2004).

In the present entry, horizontally and verti-
cally polarized transient surface waves propagat-
ing along conic surfaces are considered by the ray
expansion method.

Problem Formulation

A transient surface wave could be generated after
the impulse exposure to a vertex of a cone with
opening 2α, which is made of hexagonal crystal
(Rossikhin 1992). The x3-axis coincides with the
axis of isotropy (Fig. 1), and it is a line of
strong discontinuity (in the given case, it is a
circumference), on which stressed-strained state
characteristics of the medium have a break. The
circle propagates with a constant normal velocity
along the cone surface in the direction of its gen-
erators and is obtained as a result of the one real
wave discontinuity surface (of the volume shear
wave) intersection with the conic surface (the
horizontally polarized surface wave is circle 1 on
Fig. 1) or by the exit of the two intersecting (along
this line complex wave discontinuity) surfaces (of
quasi-transverse and quasi-longitudinal volume
waves) onto the conic surface. The wave of the
Rayleigh type is shown on Fig. 1 as circle 2.

Let us seek a solution to the problem

σij,j = ρν̇i , (1)

σij = λijkluk,l, (2)

satisfying the boundary conditions

λijkluk,lNj = 0, (3)

x1

x3

x2

2

1
k

K

N

n
ϑ β

γ

r

α
s s

Fig. 1 Scheme of a surface wave front location on a conic
surface
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where σ ij and λijkl are components of the stress
and elastic moduli tensors, respectively; ui and vi

are components of the displacement and velocity
vectors, respectively; ρ is the crystal density; Nj

(N1 = cos α cos θ , N2 = cos α sin θ ,
N3 = sin α) are components of the unit
vector normal to the conic surface; θ is the
angular cylindrical coordinate; a dot denotes
differentiation with respect to time t; and
differentiation with respect to xk is denoted by k.

Horizontally Polarized Surface Wave

To investigate the horizontally polarized surface
wave using Cartesian coordinates (x1, x2, x3), it is
a need to introduce a conic wave surface with the
help of the equation

xi =
(
u1 +Gst

)
GG−1

s νi − u1Ki, (4)

where νi (ν1 = sin β cos θ , ν2 = sin β ×
sin θ , ν3 = − cos β) and Ki (K1 = sin α ×
cos θ , K2 = sin α sin θ , K3 = − cos α) are
components of the unit vectors directed along the
normal trajectory to the wave surface and along
the generator of the crystal cone, respectively;
180

◦ − 2β is the opening of the wave cone where
the angle β is undefined for the present; G and
Gs
(
GG−1

s = cos (α − β)) are the wave surface
velocities along its normal cone and along the
generator of the crystal cone, respectively; and u1

and u2 = θ are orthogonal curvilinear coordinates
on the wave surface retaining their values along
the normal trajectories to this surface (the normal
trajectory is the curve at every point of which the
unit vector normal to the wave surface is directed
tangentially to this curve). At u1 = − Gst, the
wave surface (4) cuts the surface of the crystal
cone.

Using (4) and taking into account du1/dt =
du2/dt = 0, where d/dt is the derivative with
respect to time along the normal trajectory to
the wave surface, the known formulae from the
theory of moving surfaces and lines could be
obtained, namely, with u1 = const, dxi/d(Gt) =
νi, but with u1 = − Gst, dxi/d(Gst) = Ki.

Also the geometrical characteristics of the wave
surface could be found (Rossikhin 1992) which
will be used below:

xi,1 = dxi/du1 = GG−1
s νi −Ki,

xi,2 = dxi/du2 = rsi,
r =

(
u1 +Gst

)
GG−1

s sinβ − u1 sinα,

s1 = − sin θ, s2 = cos θ, s3 = 0

g11 = xi,1x1,i = 1 −G2G−2
s = n2,

g22 = xi,2x2,i = r2, g12 = 0, (5)

where r is the polar radius, si are components of
the unit vector directed tangentially to the surface
wave, gαβ are covariant components of the wave
surface metric tensor, and Greek suffixes take on
the values 1, 2.

As with the transition through the wave
surface (4) the components of the stress and
strain tensors and the displacement velocity
vector experience discontinuity, then writing
Eq. (2) on the other sides of the wave surface,
taking the difference of them, and applying the
kinematic, geometric and dynamic conditions of
compatibility (Thomas 1961; Rossikhin 1992)

[u̇i] = [vi] = −Gλi,
[
ui,j
] = λiνj ,

[
σij
]
νj = −ρG [νi] ,

(6)

yield
(
λijklνj νt − ρG2δik

)
λk = 0, (7)

where δik is Kronecker’s symbol and the sign
[ . . . ] denotes a difference of magnitudes of a
certain value on the other sides of discontinuity
surface (e.g., finite jump of this value).

Considering that λi = λτ si where λτ is the
intensity of the volume shear wave and knowing
the form of the elastic moduli matrix for the
hexagonal crystal with the x3-axis of isotropy, as
a result it follows that

ρG2 = μsin2β + λ1313cos2β, (8)

where μ = λ1212.
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In view of the conditions of compatibility
(6), boundary conditions (3) are reduced to
λτ (μ sin β cos α − λ1313 cos β sin α) = 0,
and hence

tanβ = λ1313μ
−1 tanα, (9)

that is, the angles α and β do not equal each other
and the volume shear wave is not perpendicular to
the free surface of the crystal cone (Fig. 1).

Now let us consider the question about the
character of the change in the intensity of the
surface wave during its propagation. For that
purpose, write Eq. (1) and the differentiated Eqs.
(2) and (3) with respect to t on the other sides
of the wave surface (4), take the difference of
them, and apply the second-order condition of
compatibility (Thomas 1961):

G
[
Z,j
] = − [Ż] νj + d [Z]

dt
νj +Ggαβ [Z],αxj,β,

(10)

where Z is a certain function and Greek letters
after a point denote covariant differentiation with
respect to the curvilinear surface coordinates uα .
As a result with due account for the geometrical
characteristics of the wave surface (5) and rela-
tionships (6, 7, 8, and 9), it could be obtained

2ρG2 dλτ

dt
+Gμ sinβ

1

r
λτ

+ 2G(μκ sinβ − λ1313κ3 cosβ)
1

n2 λτ,1 = 0,

(11)

(μκ cosα + λ1313κ3 sinα)
1

n2 λτ,1

− μ1

r
λτ cosα = 0,

(12)

where κ = cos (α − β) sin β − sin α,
κ3 = − cos (α − β) cos β + cos α, and
λτ , 1 = ∂λ/∂u1.

Eliminating the value λτ , 1 from (11) and (12)
and considering that d/ds = G−1

S d/dt − ∂/∂u1

and r = s sin α, where s is a distance measured
from the vertex of the cone along its generator,
in general case (α �= β �= 0 �= 1/2π ) provide the

equation

dλτ /ds + γ s−1λτ = 0, (13)

with

γ = μ

ρGGS

(
1

2

sinβ

sinα
+ χ cot α

)
,

χ = μκ sin β − λ1313κ3 cos β + ρGGSn2

μκ cos α + λ1313κ3 sin α
,

(14)

the integration of which yields

λτ = cs−γ , (15)

where c is a real arbitrary constant.
In the case of the isotropic cone λ1313 = μ,

and, as it follows from (3.5) and (3.6), ρG2 = μ,
G=GS, and α = β, i.e., the volume shear wave is
perpendicular to the free surface of the isotropic
cone (Fig. 1).

Using (14), it may be shown that when
|α − β| = -� 1

χ ∼= (μ− λ1313) sin 2β

2
(
μ cos2 β + λ1313sin2 β

) + 0 (Δ) ,

(16)

that is, in the isotropic case χ = 0. Then from
(13) it follows

λτ = cs−1/2. (17)

At α = 1/2π (in this case β is also equal to
1/2π ), as it follows from (8) and (9), the value λτ
changes due to the power law (17), i.e., during
propagation of the surface shear wave of the
“diverging circle” type along the plane x3 = 0.
This bounds the elastic anisotropic half-space
x3 < 0 with hexagonal symmetry; its intensity
changes like an amplitude of the volume cylindri-
cal wave propagating into the unbounded elastic
isotropic space.

If the angle α→ 0 (with that the angle β also
tends to zero) and the value r remains constant
and equal to R, then, as it follows from (11) and
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(12), λτ = const. In this case the horizontally
polarized surface wave of the “diverging circle”
type goes into the circle of discontinuity with the
constant radius R moving along the x3-axis of the
crystal cylinder of the same radius.

Vertically Polarized Surface Wave

Now let us proceed to investigate the surface
wave of the “diverging circle” type with verti-
cal polarization (transient wave of the Rayleigh
type). For this purpose, let us take into consid-
eration complex conic wave surfaces of strong
discontinuity (in the given problem, there are
two: quasi-transverse and quasi-longitudinal):

x1 = r cos θ, x2 = r sin θ,

r =
[
−n2

(
u1 + gt

)
+ gt

]
sinα

+Ggn
(
u1 + gt

)
cosα,

x3 = −
[
−n2

(
u1 + gt

)
+ gt

]
cosα

+Gg−1n
(
u1 + gt

)
sinα,

(18)

which at u−1 = − gt intersect each other and
emerge on the free surface of the crystal cone
forming the circle with radius gt sin α, where g
is the Rayleigh wave velocity along the generator
of the crystal cone, so that

r = s sinα, x3 = −s cosα,

s = gt, dxi/d(gt) = Ki
(19)

Such a representation of the transient Rayleigh
wave generalizes immediately the “classic”
Rayleigh wave, which is considered as the
superposition of the longitudinal and transverse
complex waves matched in such a way that there
are no stresses on the surface of the half-space
(Frank and Mises 1935). Similar generalizations
of Rayleigh waves are met in Babich (1961) and
Bestuzheva et al. (1981).

In terms of (18), the characteristics of the
volume waves could be written as

ν1 = ν cos θ, ν2 = ν sin θ,

ν = Gg−1 sinα + n cos α,

ν3 = −Gg−1 cosα + n sin α,

k1 = k cos θ, k2 = k sin θ,

k = n sin α −Gg−1 cosα,

k3 = −n cosα − Gg−1 sin α,

xi,1 = −nki, xi,2 = rsi,
g11 = n2, g22 = r2, g12 = 0,

vi,1 = 0, νi,2 = −k3si, n =
√

1 −G2g−2,

(20)

where νi are components of the unit normal
vector to the wave surface and ki are components
of the unit vector directed along the generator of
the conic wave surface, which have been already
determined in (5).

Applying (20), it is easy to verify that the
velocities G and g as the normal velocities of
the emerging on the free surface volume wave
and of the line of their intersection, respectively,
are connected by the relations: Kiνi = Gg−1,
Kiki = n, and Niνi = n.

Assuming that the complex waves are verti-
cally polarized, i.e.:

λi = λrni + λ3δ3i , (21)

where λr and λ3 are projections of the volume
wave intensity vector on the r- and x3-axes,
respectively, and ni(cosθ , sinθ , 0) are components
of the unit vector directed along the r-axis, from
(7) it could be found

M (λr, λ3) =
[
(λ+ 2μ) ν2 + λ1313k

2 − ρG2
]
λr

+ 2mνkλ3 = 0,

N (λr , λ3) = mνkλr +
(
λ1313ν

2 + λ3333k
2

−ρG2
)
λ3 = 0,

(22)

where m = λ1133 + λ1313.
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Equating the determinant of the system of
homogeneous Eq. (22) to zero, the equation
for determination of the complex volume wave
velocities G(α) (hereafter the indices 1 and 2
at the values refer to the quasi-transverse and
quasi-longitudinal waves, respectively) could be
obtained:

[
(λ+ 2μ) ν2 + λ1313k

2 − ρG2
]

×
[
λ1313ν

2 + λ3333k
2 − ρG2

]
−m2ν2k2 = 0.

(23)

At α = 0 and α = 1/2π , Eq. (23) trans-
forms to the biquadratic equation in G with real
coefficients and determines the real velocities
G(α) of the complex waves. In general, when
0 < α < 1/2π , this equation possesses complex
roots that conform to the complex velocities of
the complex volume waves (the generalized vol-
ume waves).

Note that for the isotropic cone, in contrast to
the anisotropic cone, the velocities G(α) are real
at every value of the angle α.

For analysis by the iterative method, it is
convenient to rewrite Eq. (23) in view of (20) in
the following form:

[
(λ+ 2μ) (sinα + n cosα)2

+λ1313(n sinα − cosα)2 − ρg2
]

×
[
λ1313(sinα + n cosα)2

+λ3333(n sinα − cosα)2 − ρg2
]

−m2(sinα + n cosα)2(n sinα − cosα)2 = 0,
(24)

and consider it as the 4th-degree equation in the
value n = √

g2G−2 − 1 with the parameter g
(Farnell 1970).

As by virtue of the condition (23), Eq. (22) are
linear-dependent; then by omitting one of them,
for example, the second, from the first one, the
connection between λr and λ3 is found as

λ3 = −χλr,
χ = (mνk)−1

[
(λ+ 2μ) ν2 + λ1313k

2 − ρG2
]
.

(25)

To investigate the character of the Rayleigh
wave intensity change during its propagation, one
must use the procedure described above for the
derivation of Eqs. (11) and (12). In doing so, it
is necessary to remember that, as the Rayleigh
wave is the line of intersection of the two volume
complex waves, its intensity represents by itself
the sum of intensities of these waves. Then from
(1) and the differentiated Eq. (2) with respect to
t, it follows that

M (Lr, L3) = −2ρG3dλr/dt

+ 2G2n−1λr,1 (λ+ 2μ− λ1313) νk

+G2n−1λ3,1

(
k2 − ν2

)
m

−G2r−1νλr (λ+ 2μ) ,
(26)

N (Lr, L3) = −2ρG3dλ3/dt

+G2n−1λr,1

(
k2 − ν2

)
m

− 2G2n−1λ3,1 (λ3333 − λ1313) νk

−G2r−1νλ1313λ3−G2r−1kλ1313λr ,

(27)

where Lr and L3 are projections of finite discon-
tinuity of the acceleration vector on the r- and x-
axes, respectively, i.e.:

[υ̇i] = Lrni + L3δ3i , λ3,i = ∂λ3/∂u
1,

λr,1 = ∂λr/∂u1, λ = λ1122.

The left sides of Eqs. (26) and (27) are linear-
dependent by virtue of the condition (23), and, as
a consequence, the right sides of these equations
are linear-dependent also. Linear combination of
the right sides with due account of (25) leads to
the relation

dλr/dt = G2n−1ψλr,1 − r−1ϕG2λr, (28)
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with

ϕ = [bv (λ+ 2μ)−mvkλ1313 (k − vχ)]

× (b +mvkχ)−1
(

2ρG3
)−1
,

ψ = [2bvk (λ+ 2μ− λ1313)

−m
(
k2 − v2

)
(mvk + χb)

−2mv2k2χ (λ3333 − λ1313)
]

× (b +mvkχ)−1
(

2ρG3
)−1
,

b = λ3333k
2 + λ1313v

2 − ρG2.

Moreover, from (26) the connection between
the values L3 and Lr could be obtained as

L3 = −χLr − 2ρG3(mvk)−1dλr/dt

+G2(nmvk)−1 [2 (λ+ 2μ− λ1313) vk

−
(
k2 − v2

)
χm
]
λr,1

−G2(rmk)−1 (λ+ 2μ) λr .
(29)

From the boundary conditions (3) in view of
(25), it yields

D(1)λ(1)r +D(2)λ(2)r = 0,

d(1)λ(1)r + d(2)λ(2)r = 0,
(30)

where

D = (λ+ 2μ) v cosα + λ1313k sinα

− χ (λ1133k cosα + λ1313v sinα) ,

d = λ1313k cosα + λ1133v sinα

− χ (λ1313ν cosα + λ3333k sinα) .

The condition of the existence of nontrivial
solutions for the homogeneous system (30) gives
the equation for determination of the Rayleigh
wave velocity g:

D(1)d(2) −D(2)d(1) = 0. (31)

Moreover, from (31) the connection between
λ
(1)
r and λ(2)r is obtained:

λ(2)r = −ξλ(1)r , ξ = D(1)D(2)−1. (32)

From the differentiated with respect to t
boundary condition (2) with allowance for (29),
it follows

D(1)Lr
(1) −D(2)Lr (2)

=
2∑
α=1

[(
−G(α)D(α) + 2ρG3

(α)D
(2)
)
dλ(α)r /dt

+G(2)(α)n(α)−1Q(α)λ
(α)
r,1 + r−1G2

(α)P
(α)λ(α)r

]
,

(33)

d(1)Lr
(1) + d(2)Lr (2)

=
2∑
α=1

[(
−G(α)d(α) + 2ρG3

(α)d
(2)
)
dλ(α)r /dt

+G(2)(α)n(α)−1q(α)λ
(α)
r,1 + r−1G2

(α)p
(α)λ(α)r

]
,

where

Q = (λ+ 2μ) k cosα − λ1313v sinα

− χ (λ1313k sinα − λ1133v cosα)

− (λ1133k cosα + λ1313v sinα)

× [2 (λ+ 2μ− λ1313) vk

−
(
k2 − ν2

)
χm
]
(mvk)−1,

P = −λ cosα + (λ1133k cosα

+λ1313v sinα) (λ+ 2μ) (mk)−1,

D = (mvk)−1 (λ1133k cosα + λ1313v sinα) ,

q = λ1133k sinα − λ1313ν cosα − χλ1313k cosα

− (λ1133ν cosα + λ3333k sinα)

× [2 (λ+ 2μ− λ1313) vk

−
(
k2 − ν2

)
χm
]
(mvk)−1,
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p = −λ1133 sinα + (λ1313ν cosα

+λ3333k sinα) (λ+ 2μ) (mk)−1,

d = (mvk)−1 (λ1313ν cosα + λ3333k sinα) .

The left sides of Eq. (33) are linear-dependent
by virtue of the condition (31), and, therefore,
the right sides of these equations are linear-
dependent also. Linear combination of the right
sides allows one to obtain the equation for deter-
mination of the Rayleigh wave intensity:

dλ(1)r /ds + s−1γ λ(1)r = 0, (34)

where

γ =
[
−a(1)

(
β1d

(2) − β2D
(2)
)

×
(
δ1d

(2) − δ2D(2)
)−1

+g−1ϕ(1)G2
(1)

]
sin−1α,

β1 = β1

(
D(α),D

(α)
,Q(α), P (α)

)

= −ϕ(1)G2
(1)υ

(1) +G2
(1)P

(1) −G2
(2)P

(2)ξ

+G2
(2)n

(2)−1g−1a(2)−1ξ

×
(
G2
(2)ϕ

(2) −G2
(1)ϕ

(1)
)

×
(
Q(2) + ψ(2)υ(2)

)
+G2

(2)ϕ
(2)υ(2)ξ,

δ1 = δ1
(
D(α),D

(α)
,Q(α),P(α)

)

= G2
(1)n

(1)−1υ(1) −G2
(2)n

(2)−1a(1)a(2)−1ξ

×
(
Q(2) + ψ(2)υ(2)

)
+G2

(1)n
(1)−1Q(1),

υ(α) = −G(α)D(α) + 2ρG3
(α)D

(α)
,

β2 = β1

(
d(α), d

(α)
, q(α), p(α)

)
,

δ2 = δ1
(
d(α), d

(α)
, q(α), p(α)

)
,

a(α) = 1 −G2
(α)n

(α)−1ψ(α)g−1,

d/ds = g−1d/dt − ∂/∂u1.

Integrating (34) yields

λ(1)r = csRe γ [cos (Im γ ln s)

−i sin (Im γ ln s)] ,
(35)

where c = c′ + ic′′ is a complex arbitrary con-
stant.

Using the value λ(1)r and relationships (25) and
(32), one can calculate on the Rayleigh wave the
discontinuities of displacement velocities along
the normal to the crystal cone and along its
generator:

[υN ] = Re
2∑
α=1

[υi]
(α)Ni

= Re
{
λ(1)r

[
−G(1)

(
cosα − χ(1) sinα

)

+G(2)ξ
(

cosα − χ(2) sinα
)]}

,

[υK ] = Re
2∑
α=1

[υi]
(α)Ki

= Re
{
λ(1)r

[
−G(1)

(
sinα + χ(1) cosα

)

+G(2)ξ
(

sinα + χ(2) cosα
)]}

.

(36)

If the cone is isotropic, then the Rayleigh wave
is formed as the line of the transverse and lon-
gitudinal complex wave intersection, on which it
is convenient to specify the values W1 = [υi]xi, 1

and ω = [υi]vi instead of the values λr and λ3.
On the first wave (transverse), W(1)

1 �= 0 and
ω(1) = 0, but on the second wave (longitudinal),
W
(2)
1 = 0 and ω(2) �= 0; therefore the equation

for determination of the Rayleigh wave intensity
could be obtained similar to (34):

dω(2)/ds + r−1ω(2) (1/2 sinα − iγ cosα) = 0,
(37)

or

dω(2)/ds + s−1ω(2) (1/2 − iγ cotα) = 0 (38)

where



2392 Surface Wave Propagation in 3D Medium

γ =
n(2)2

[(
1 − 2G2

(1)g
−2
) (
G(1)n

(1) +G(2)n(2)
)+ 2G(2)n(2)

(
1 − 2n(1)2G2

(1)G
−2
(2)

)]

2g
[
g−2

(
G2
(2) −G2

(1)

) (
1 − 2G2

(1)g
−2
)
− 2n(2)2

] − G(2)n
(2)

2g
.

Solving Eq. (38) yields

ω(2) = cs−1/2 [cos (γ cot α ln s)

+ i sin (γ cot α ln s)] ,
(39)

where c = c
′ + ic′′ is a complex arbitrary con-

stant.
Using the valueω(2) and formula W1(1) = ξω(2),

wherein ξ = − (λ+ 2μn(2)2
)
gG−1

(2)

(
2μn(1)2

)−1
,

the displacement velocity discontinuities on the
surface wave could be calculated:

[υN ] = bs−1/2 [c′′ cos (γ cot α ln s)

+c′ sin (γ cot α ln s)
]
,

[υK ] = as−1/2 [c′ cos (γ cot α ln s)

−c′′ sin (γ cot α ln s)
]
,

(40)

where

b =
√
G2
(2)

g2 − 1

(
2
G2
(1)

g2 − 1

)
, a = G(2)g

2G2
(1)

.

At α = 1/2π , the conic surface becomes a
plane, and relation (39) is reduced to the known
relation:

ω(2) = cs−1/2. (41)

At α = 0, the cone changes to a cylinder with
radius R, and the surface wave of the “diverging
circle” type goes into a circle with a constant
radius moving along the x3-axis with the velocity
of the Rayleigh wave in the elastic isotropic
medium. Then, instead of (37), the following
equation is valid:

dω(2)/dx3 − iR−1γω(2) = 0. (42)

Integrating (42) yields

ω(2) = c
[
cos
(
γR−1x3

)
+ i sin

(
γR−1x3

)]
.

(43)

When R→∞, as it follows from (43), the dis-
placement velocity discontinuities become con-
stant, which conforms to the case of the straight
line discontinuity propagation along the plane.

Numerical Example

As an example, consider the surface waves of
the “diverging circle” type travelling along the
surface of a cone made from a zinc oxide single
crystal. The values of the elastic moduli for ZnO
are taken from the handbook edited by Shaskol-
skaya (1982).

As the elastic moduli λ1313 = 4.2449·1011

dyn/cm2 and λ1212 = 4.4289·1011 dyn/cm2 for
this monocrystal deviate slightly from each other,
then α − β � 1, and from (16) it could be found
that χ is small. Thus, the value γ has the order
of O(1/2), and the horizontally polarized surface
wave intensity attenuates as s−1/2.

To calculate the velocity of the Rayleigh wave
of the “diverging circle” type travelling along the
free surface of the crystal cone made from a ZnO
monocrystal, the procedure described in detail by
Farnell (1970) may be used.

To eliminate the logarithmic singularity in the
expression for the Rayleigh wave intensity, a
truncated cone could be considered. Then in the
expression for λr, the value ln s may be replaced
by ln s∗ , where s∗ = sr∗ − 1 sinα and r∗ is the
radius of the cone section.

Calculations show (Fig. 2) that as the angle
α changes from 0 to 1/2π (the curves 1 − 3
correspond to the following values of the opening
of the cone: 0, 1/4π , and 1/2π ), the value of the
Rayleigh wave intensity λ∗ = Re λr attenuates
with oscillation when s∗ increases from 1 to ∞,
in such a way that attenuation is minimal (zero)
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Fig. 2 Rayleigh wave intensity dependence on transmit-
ted distance at various openings of a cone

at α = 0 and maximal at α = 1/2π . In the
calculations it was assumed that c′ = c′′ = 1.

Closing Remarks

The procedure described in the present entry
for horizontally and vertically polarized transient
surface waves propagating along conic surfaces
and treated by the ray expansion method could
be utilized for 3D bodies of other geometries
as well. It has been generalized for thermoelas-
tic bodies of revolution (cone, sphere, cylinder,
torus) in Rossikhin and Shitikova (2014), and its
application for pre-stressed 3D bodies could be
found in Bestuzheva et al. (1981) and Rossikhin
and Shitikova (2000, 2004).
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Definition

A surface wave is an inhomogeneous and self-
sustaining wave at material surfaces or interfaces
which propagates with a velocity being different
from the velocities of elastic waves as a conse-
quence of the fulfillment of boundary conditions.
It can be considered as a solution of eigenvalue
problems, which are met in literally all fields of
physics and mathematics. Surface waves occur
not only in continuum mechanics but also in
fluid mechanics, electromagnetism and optics,
solid-state physics, and quantum mechanics. In
many cases, surface waves are a dispersive phe-
nomenon, i.e., the phase velocity depends on
frequency. Many phenomena of general wave
theory like reflection, refraction, and scattering
are also present in surface-wave theory and play
an important role in the applications.

General Remarks

Special manifestations of elastic waves are such
ones which propagate near the body surface
without penetrating deeply into the body like
body waves. These are surface waves, which are
inhomogeneous waves, because their amplitude
is varying on surfaces of constant phase. A
schematic appearance of such waves propagating
in direction x1 and decaying in direction x3 is
presented in Fig. 1.

The following interfaces are possible candi-
dates for these body surfaces:

(a) solid – vacuum (free surface)
(b) solid – solid
(c) solid – fluid.

All of them support the propagation of surface
waves (SAW), but surface waves in the narrower
sense occur on free surfaces. Note that, instead of
surface waves, it is rather appropriate to speak of
a broader category of guided waves, which prop-
agate along the surface of a medium (case (a)),
along internal discontinuities or other waveguides
(cases (b) and (c)). In this manner, elastic waves
can be roughly classified by the scheme in Fig. 2.

Waves of this type are different from the so-
called evanescent waves at an interface, which are
produced in the faster material by critical refrac-
tion and cling to the interface. They cannot exist
without being continuously sustained by a wave
from the interior. In contrast the surface waves
that cling to a surface are self-sustaining, which is
an essential feature of them. Generally speaking
the surface-wave theory is a subsection of elastic-
wave theory, but because of the special properties
in propagating and in applying surface waves, the
latter ones are usually treated separately.

At first it is assumed that the motion does
not depend on one of the three space coordinates
(let be x2). A typical model for the demonstra-
tion of surface waves is in the simplest case a

Fig. 1 Schematic
appearance of a surface
wave
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9
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elastic waves

body waves

guided waves

P (longitudinal) waves

SV polarization

SH polarization

Love waves (SH)

Rayleigh waves (P-SV)

Scholte waves

Stoneley waves

S (transversal) waves

surface waves

interfacial waves

Fig. 2 Classification of elastic waves

homogeneous half-space possibly augmented by
one or more layers on top of it. A Cartesian
coordinate system is introduced so that x3 = 0 is
the free surface, the positive x3-axis points into
the half-space, and the waves are propagating into
direction x1. In this context, the x1, x3−plane is
called the sagittal plane and the x1, x2−plane the
transverse plane.

Separation of the Equation of Motion
for Surface Waves

A natural starting point is as much as for body
waves under the usual simplifying assumptions
(see entry Elastic Waves) in absence of
body forces the Navier equation in Cartesian
coordinates

(λ+ μ) uj, j, i + μ ui, j, j = ρ üi (1)

or in vector notation

(λ+ μ) grad div u + μ-u = ρ ü. (2)

The following notations are used within these
equations, ui , Cartesian coordinates (i= 1, 2, 3)
of the displacement vector u ; piecewise constant
Lamé parameters λ and μ, and density ρ. The
comma notation is used for partial derivatives
(see, e.g., Eringen and Suhubi 1975), i.e.,

ui,j ≡ ∂ui

∂xj
, (3)

and Einstein’s summation convention is under-
stood. The time derivation is denoted by a dot.

Cauchy’s stress tensor components are given
by (see Eringen and Suhubi 1975)

σkl = λ δkl ur,r + μ (uk,l + ul,k), (4)

and the velocities of longitudinal P-waves
α=√

(2μ+ λ)/ρ and transversal S-waves
β =√

μ/ρ are needed later on.
Taking into account the model symme-

try described above, the expressions for
ui,j,j and uj,j, i , respectively, are

ui,j,j = ∂
2ui

∂x2
1

+ ∂2ui

∂x2
3

,

uj,j, i = δi1
(
∂2u1

∂x2
1

+ ∂2u3

∂x1 ∂x3

)
(5)

+ δi3
(
∂2u3

∂x2
3

+ ∂2u1

∂x1 ∂x3

)
,

where the Kronecker tensor δij is used. A con-
sequence of this structure is that (1) splits into
a coupled system of partial differential equations
for u1 and u3

(2μ + λ) u1,1,1 + μu1,3, 3 + (λ+ μ) u3,1,3

= ρ ü1,

(2μ + λ) u3,3,3 + μu3,1, 1 + (λ+ μ) u1,1,3

= ρ ü3, (6)
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and a single equation

μ (u2,1,1 + u2,3,3) = ρ ü2 (7)

for u2, i.e., the P-SV motion u1, u3 in the
so-called sagittal plane is independent of the
SH-motion u2 in the transverse plane. This is
still true when the assumption of piecewise
constant material parameters is dropped. Then
Eq. (7) adopts the form with the depth-dependent
material parameters (see Malischewsky 1987)
μ(x3) and ρ(x3)

∂

∂x1

[
μ(x3)

∂u2

∂x1

]
+ ∂

∂x3

[
μ(x3)

∂u2

∂x3

]

= ρ(x3) ü2. (8)

Surface Waves with SH-Polarization
(Love Waves)

Homogeneous Half-Space
By using the separation ansatz for plane harmonic
surface waves with SH-polarization in a half-
space

u2 (x1, x3, t) = V (x3) e
i (k x1 −ω t) (9)

with the amplitude-depth dependence V (x3), the
wave number k=ω/c, the circle frequency ω,
and the phase velocity of surface waves c, the par-
tial differential equation (7) becomes an ordinary
differential equation for V (x3):

V ′′ − q2 V = 0 with q2 = k2 − k2
β and

kβ = ω/β. (10)

When the surface x3 = 0 is assumed stress-
free, the boundary condition is σ23 = 0, and the
character of surface waves requires at infinity
V (∞)= 0. These both conditions cannot be ful-
filled simultaneously with the consequence that
Love waves do not exist for a homogeneous
half-space. However, by modifying the boundary
condition σ23(0)= 0 like a type of an impedance
condition (Leontovich type) in the manner

μV ′(0)+ ε V (0)= 0, (11)

the simplest elastic surface wave at all can
propagate, and that is the reason for mentioning
it. The impedance parameter ε has the dimension
stress/length, and Eq. (10) together with the
boundary conditions (11) for x3 = 0 and
V (∞)= 0 for x3 =∞ defines an eigenvalue
problem whose solution yields the eigenvalue k
and the eigenfunction V :

k =
√
k2
β + ε2/μ2 , V (x3) = e−

ε
μ
x3 . (12)

By defining a dimensionless phase velocity
C= c/β and a dimensionless “frequency” by
F̄ =ωμ/(ε β), it follows from (12)

C(F̄ ) = F̄ /
√

1 + F̄ 2, (13)

so that the phase velocity is frequency dependent,
i.e., dispersion occurs, and V (x3) is the ampli-
tude depth-dependence of this simple Love-kind
surface wave.

Love Waves in a Model “Layer Over
Half-Space” (LOH)
The top of the layer with thickness H is assumed
stress-free, and continuity of the displacement
and the corresponding stress is supposed on the
interface x3 =H :

σ
(1)
23 (0) = 0, V (1)(H) = V (2)(H),

σ
(1)
23 (H) = σ (2)

23 (H), (14)

where layer parameters are labeled with 1 and
half-space parameters with 2. There are two
integration constants of (10) for the layer and
one constant for the half-space. The nontrivial
solution of the homogeneous system (14)
requires a three-row determinant to vanish which
yields after some algebra (see Kaufman and
Levshin 2005) with the shear-velocity ratio
rs =β1/β2, the density ratio rd = ρ1/ρ2, and the
abbreviations γ1 =

√
C2 − 1 , γ2 =

√
1 − r2

s C
2,

C= c/β1, F =H/λβ1 , and λβ1 is shear wave-
length of the layer,
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2π F
γ1

C
− arctan

[
γ2

γ1 rd rs

]
− nπ = 0. (15)

The ambiguity was incorporated by the
natural number n, which yields for n= 0 the
fundamental Love mode and for n= 1, 2, 3, ...
the corresponding higher modes. All Love modes
are dispersive, i.e., their phase velocities are
frequency-dependent: Cn=Cn(F ) and vary
between 1 and r−1

s : 1 ≤ Cn ≤ r−1
s . They

have a lower limit frequency

Fn = n

2
√

1 − r2
s

, (16)

but the fundamental mode exists for all frequen-
cies because F0 = 0. The associated group veloc-
ity follows from the well-known formula for the
dimensionless group velocity,

U(F) = C2

C − F dC/dF , (17)

which is representable for the simple model LOH
also analytically. The phase and group velocities
for the fundamental and first higher mode are

given in Fig. 3. A characteristic of these curves is
that phase and group velocities fall together at the
low- and high-frequency ends. There is an infinite
set of modes. However, for a fixed frequency, the
number is limited.

The eigenfunctions V (z), z= x3/H, follow
from (14) and (15) for the layer and the half-
space, respectively:

V (1)(z) = cos (2πFzγ1/C),

V (2)(z) = e−2πF(z−1)γ2/C cos (2πFγ1/C)

(18)

and are presented with parameters of Fig. 3 in
Fig. 4.

Rayleigh Waves in a Homogeneous
Half-Space
By using the separation ansatz for plane harmonic
surface waves in the sagittal plane (Rayleigh
waves)

ui(x1, x3, t) = Ui(x3) e
i (k x1−ω t), i = 1, 3,

(19)
the system (6) becomes

0.0
0

1

2

3

4

0.5

0 1

1.0

F

U
,C

1.5 2.0

Fig. 3 Phase (black) and group (blue) velocities for the fundamental (0) and first higher (1) Love mode with
rs = 0.25 and rd = 1
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Fig. 4 Amplitude-depth dependences of the fundamental (black) and first higher (cyan) Love mode

β2 U ′′
1 + i k (α2 − β2) U ′

3 + (ω2 − k2 α2) U1 = 0,

α2 U ′′
3 + i k (α2 − β2) U ′

1 + (ω2 − k2 β2) U3 = 0. (20)

This system of ordinary differential equations can
be solved by applying the well-known technique,

and introducing the abbreviation p2 = k2−k2
α , the

solution is

U1(x3) = c1 e
−p x3 + c2 e

p x3 + c3 e
−q x3 + c4 e

q x3,

U3(x3) = i
[
p
k

(
c1 e

−p x3 − c2 e
p x3
)+ k

q

(
c3 e

−q x3 − c4 e
q x3
)]
.

(21)

By denoting the x3−dependent stress tensor com-
ponents with Si3(x3), the boundary conditions on
the stress-free surface and in infinity, respectively,
require:

Si3 = 0, i = 1, 3 for x3 = 0 and

U1(∞) = U3(∞) = 0 or c2 = c4 = 0. (22)

It should be noted that (20) together with (22)
define a nonstandard eigenvalue problem because
the eigenvalue k enters linearly and quadrati-
cally. Setting the determinant of the homoge-

neous system (22) for c1 and c3 to zero results in
Rayleigh’s equation

4p q − k2 (2 − C2) = 0 , (23)

which can be transformed via γ to a cubic equa-
tion depending on Poisson’s ratio ν:

x3 − 8 x2 + 8 x (3 − 2γ )− 16 (1 − γ ) = 0 ,

x = C2 , γ =
β2

α2
= 1 - 2ν

2(1 - ν)
, and

c3 = − 2pq

2k2 − k2
β

c1. (24)
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By using the auxiliary functions

h(γ ) = 17 − 45 γ

+ 3
√

33 − 186γ + 321γ 2 − 192γ 3 and

h̄(γ ) = 3
√
h(γ ), (25)

where the main value of the cubic root is under-
stood, the solution of (24) can be written ana-
lytically with Malischewsky’s formula (Malis-
chewsky 2004)

x(γ ) = 2

3

[
4 − h̄(γ )+ 2 (1 − 6 γ )/h̄(γ )

]

(26)
or is approximated excellently in the whole range
of possible ν − values −1 ≤ ν ≤ 0.5 by
Malischewsky’s approximation (Malischewsky
2005)

C = 0.874 + 0.196 ν − 0.043 ν2 − 0.055 ν3

or by the well-known Bergmann’s approximation
(Bergmann 1948) for positive Poisson’s ratios
(non-auxetic range):

C= 0.87 + 1.12 ν

1 + ν . (27)

The phase velocity of Rayleigh waves in a homo-
geneous half-space is a slowly varying func-
tion of Poisson’s ratio in the range 0.6889 ≤
C ≤ 0.9553, but it does not depend on fre-
quency, i.e., the Rayleigh waves are not dis-
persive. For ν= 1/4 is γ = 1/3 and C becomes

C=
√

2 − 2/
√

3 ≈ 0.9194, i.e., the velocity is
a little bit less than the shear wave velocity. Once
the phase velocity is determined, the particle
motion for all depths is obtained by combining
the amplitude-depth dependences (21) with the
time dependence via (19). The occurrence of the
imaginary unit i in (21) produces a phase shift
of π/2, and the motion is rotational and elliptic,
and the sense of motion depends on depth. The
ellipticity χ(ν) on the free surface is an important
parameter and depends only on Poisson’s ratio ν
via C:

χ(ν) =
∣∣∣∣
U1(0)

U3(0)

∣∣∣∣ = 2

√
1 − C2

2 − C2 ,

e. g.χ (0.25)=
√

2
√

3 − 3 ≈ 0.6813 . (28)

The behavior of the amplitude-depth functions
U1 and U3 for Rayleigh waves together with
the ellipticity is illustrated at Fig. 5. The par-
ticle motion is retrograde near the surface but

Fig. 5 Left: dependence of
the horizontal (blue) and
vertical (red)
displacements of Rayleigh
waves for ν= 0.25 and
ω= 1 Hz; Right: elliptical
particle motion in
dependence on depth with
indication of the sense of
motion
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reverses to prograde motion below the zero cross-
ing of the horizontal displacement component.
While the particle motion for a homogeneous
half-space is always retrograde on the surface,
the existence of a layer can change the sense of
motion.

The existence of layers on top of the half-
space (one layer is enough) makes the Rayleigh
waves dispersive and produces an infinite set of
modes, but for a fixed frequency, their number
is limited with the consequence that the surface-
wave modes do not form a complete set of eigen-
functions in the sense of functional analysis. The
behavior of the phase and group velocities is
usually more complex than for Love waves in the
simple LOH model. One reason is the occurrence
of so-called osculations, which means dispersion
curves of different modes can come very near to
each other (Foti et al. 2015).

Stoneley and Scholte Waves at a
Solid-Solid and Solid-Fluid Interface, Resp.
Let the plane x3 = 0 be the interface between two
solids, and let the Stoneley waves propagate into
direction x1 and decay in direction of the positive
and negative x3-axis, respectively. These waves
have U1 and U3 displacement components and
are polarized in the sagittal plane as Rayleigh
waves. Figure 6 reflects purely schematically this
behavior. The analysis of these interfacial waves

Fig. 6 Schematic illustration of Stoneley or Scholte
waves; the interface x3 = 0 is indicated by a semiper-
meable plane; (1) is solid and (2) is solid and fluid,
respectively

turns out to be not much different compared
to that of the Rayleigh waves. The particle
motion is elliptical as for Rayleigh waves,
and these waves are also not dispersive. In
the case of Stoneley waves for a solid-solid
interface, there are two integration constants
in the ansatzes in both media (1) and (2) for
U
(α)
j (j = 1, 3 ; α= 1, 2), i.e., together four

constants. The interfacial conditions at x3 = 0 for
perfectly bonded half-spaces with the continuity
of U(α)j and S

(α)
j3 yield an homogeneous system

of four equations, the nontrivial solution of
which requires a four-row determinant to vanish.
This is a rather complicated equation, which
determines the Stoneley-wave velocity c

S
. It falls

between the velocity of Rayleigh waves and
that of shear waves in the slower medium. This
secular equation can be found, e.g., at Kaufman
and Levshin (2005). The existence of a real
root, i.e., of Stoneley waves, appears to be a
rather special phenomenon. They exist, when the
corresponding velocities α and β of both media
are rather near to each other. For the special case
that α1 =α2 and β1=β2 and only ρ1 �= ρ2, a
Stoneley wave always exists, and an analytical
expression for c

S
can be found. The secular

equation is transformed into the one of Rayleigh
waves (23) for ρ2 = 0 and of Scholte waves when
the second medium is fluid, i.e., β2 = 0. Contrary
to Stoneley waves, Scholte waves exist for all
parameter combinations, and their velocity is
smaller than the sound velocity in the liquid and
smaller than the Rayleigh-wave velocity of the
half-space.

Surface Waves, Eigenvalue Problems,
and Some Extensions

By using the ansatz (9), an eigenvalue equation
for Love waves may be obtained from (8) in the
form

LV = λ̄ V with the operator

L = 1

μ

[
d

dx3

(
μ
d

dx3

)
+ ρ ω2

]

and the eigenvalue λ̄ = k2. (29)
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It is an eigenvalue problem of the type
Sturm-Liouville, i.e., it is well established in
mathematics (see, e.g., Teschl 2012), and the
eigenfunctions V (x3) of different Love modes
satisfy a simple orthogonality relation. However,
because of the infinite domain of definition (in the
half-space), the operator L has a mixed spectrum
consisting of discrete eigenvalues corresponding
to the Love modes and a continuous part
corresponding to the SH-waves. Such situations
are usual in many fields of application, e.g., in
the theory of optical waveguides or in quantum
theory. It requires a careful consideration of
the completeness of the used eigenfunction
system. A similar situation occurs with Rayleigh
waves, but it is a vector-eigenvalue problem and
not a standard one as mentioned above. The
corresponding orthogonality relation between the
Rayleigh eigenfunctions is more complex than
that of Love modes.

Sometimes, the assumption, that the wave
motion does not depend on coordinate x2, has
to be dropped by using instead of (19) the more
general ansatz

ui(x1, x2, x3, t)

= Ui(x3) e
i (k1 x1+k2 x2−ω t) ,

i = 1, 2, 3, (30)

which extends the corresponding eigenvalue
problem and suggests the creation of a “super-
mode” system consisting of M Rayleigh modes
and N Love modes. If a surface wave encounters
a discontinuity under these assumptions, all
Rayleigh and Love modes, which exist for a given
frequency, are excited, i.e., such a supermode
system has to be used instead of Rayleigh and
Love waves alone.

Another extension is the consideration of
curved wave fronts for surface waves. An usual
phenomenon is the existence of cylindrical
Rayleigh waves (Fig. 7).

It is interesting to note that the dispersion
relation c= c(ω) for the latter waves is the
same one as for plane surface waves (Kausel
2006).

Fig. 7 Cylindrical Rayleigh waves (view from above)

Historical Remarks and Applications

Lord Rayleigh firstly introduced the waves,
which bear his name, as a solution of the
free vibration problem for an elastic half-
space 1885. He anticipated the importance that
such kind of wave could have in earthquake
tremor transmission by considering the lower
attenuation of these waves in comparison with
body waves because of geometrical reasons.
As a consequence the surface waves usually
dominate seismograms of natural earthquakes in
a certain distance from the source. Subsequently,
the other surface waves beside Rayleigh waves
were discovered, described, and applied (see
Kaufman and Levshin 2005). The applications
range from Spectral Analysis of Surface Waves
(SAWS) in seismology and NDT up to the
modern “lab-on-a-chip” conception, where the
waves interact with media in physical contact
with surface to mix, translate, and atomize
fluids or to manipulate micro/nanoscale objects.
Surface waves exist in an extremely wide
frequency range over more than 10 orders of
magnitude: ultra-long seismic surface waves have
a frequency of 0.002 Hz, and the applications
in a lab-on-a-chip extend up to 1 GHz and
the world of surface phonons even up to
10 THz.

Cross-References

�Waves and Generalized Continua
�Waves in Continuous Media: Classical Theory
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Definition

Atoms at surfaces and interfaces experience a dif-
ferent local environment from atoms inside bulk
materials, and the physical states and equilibrium
positions of such atoms will, generally, differ
from those of the interior atoms. This difference
is the physical origin of the interfacial (or sur-
face) energy and the interface (or surface) stress
in solids and liquids, a topic which has been
fully studied by many researchers (Cahn 2013;
Cammarata 1994; Gibbs et al. 1906; Herring

1953; Orowan 1970; Povstenko 1993; Shuttle-
worth 1950; Streitz et al. 1994a, b). In the Gibbs
treatment of the interfacial energy, the interface
is regarded as a dividing surface between two
different materials (or phases). The interfacial
energy represents the excess free energy due to
the existence of interface, and it is defined as the
reversible work per unit area needed to create a
new interface. When the interface of a solid is
deformed, the interfacial energy will generally
vary. The interface stress is associated with the
reversible work per unit area needed to elastically
stretch a pre-existing interface. Therefore, the
interfacial energy and interface stress are essen-
tially different concepts. For liquids, owing to
the atomic mobility, the surface atoms increase
during stretching since the interior atoms in the
liquid can flow freely to the surface and con-
sequently, the magnitudes of the surface energy
and the surface stress (called surface tension
sometimes) are the same. The atomic mobility
in solids, by contrast, is very low, and the total
amount of the surface atoms remains almost con-
stant under elastic stretching. Hence, the sur-
face stress of solids usually varies with surface
deformation. The relationship between the sur-
face stress and the surface strain is given by the
famous Shuttleworth-Herring equation (Herring
1999; Shuttleworth 1950). As surfaces and inter-
faces have similar roles in continuum mechanics,
we shall, for expediency, use the word “interface”
to refer to both when describing general princi-
ples and when there is no need to differentiate
them.

Deformation and Kinematics
of Two-Dimensional Curved Surface

In this section, we will provide some preliminary
definitions and notations that are necessary for
describing the deformation of an interface. For
more details, the author may refer to Huang and
Wang (2013).

Consider a multiphase hyperelastic solid con-
taining sharp interfaces between the phases. This
configuration is referred to as the initial reference
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configuration, denoted by κ0, when no external
load is applied. The interfaces are denoted col-
lectively by A0. A curvilinear coordinate system
θα(α = 1, 2) will be used to describe the mate-
rial point Y on the surface. The corresponding
covariant base vectors at point Y in the reference
configuration can be determined by Aα = Y,α

with A3 being the unit normal vector. Here and
in the following, the Greek indices take values
in {1, 2}, and the Latin indices take values in
{1, 2, 3}.

After deformation, the material point Y on
the interface A0 in the reference configuration
will move to a point y on the interface A in the
current configuration, denoted by κ . As shown in
Fig. 1, the corresponding covariant base vectors
at point y on the interface A can be written as
aα = y,α = Y,α + u,α with a3 being the unit
normal vector, where u is the displacement. If
the displacement u is decomposed into a sum
of u0s = uα0 Aα in the tangential direction and
u0n = un0A3 in the normal direction of the
interface A0, the base vector aα can be expressed
in the reference configuration, which gives

aα = Aα +
(
u
β
0 Aβ

)
,α
+ (un0A3

)
,α

= Aα +
(
uλ0

∣∣
α
− un0Bλα

)
Aλ

+ (uλ0Bλα + un0,α
)
A3

(1)

A

aa

Aa

A3

A0

GY

Gy
Fs a3

y

u

O

Y

Fig. 1 Deformation of an elastic interface

where “|” denotes covariant derivative and
B = BλαAλ ⊗ Aα is the curvature tensor of the
surface A0. Therefore, the interface deformation
gradient can be written as

F s = aα ⊗Aα = F (in)s + F (ou)s (2)

where the in-plane term F
(in)
s and the out-of-

plane term F
(ou)
s are

F
(in)
s = i0 + u∇0s ,

F
(ou)
s = A3 ⊗D

(3)

In the above, i0 is the unit tensor on surface A0,
u∇0s = u0s∇0s − un0B is the surface displace-
ment gradient, and D = u0s · B + un0∇0s in the
reference configuration.

Similarly, the displacement u can also
be decomposed as the sum of its tangential
component us = uαaα and normal component
un = una3 on the interface A, and then the
base vectors Aα can be expressed in the current
configuration, which gives

Aα = aα −
(
uβaβ

)
,α
− (una3

)
,α

= aα−
(
uλ
∣∣
α
− unbλα

)
aλ

− (uλbλα + un,α
)
a3

(4)

where b = bλαaλ ⊗ aα is the curvature tensor
of the interface A after deformation. Thus, the
inverse of the interface deformation gradient is
expressed as

F−1
s = Aα ⊗ aα = i − u∇s − a3 ⊗ d (5)

where i is the unit tensor on interface A,
u∇s = us∇s − unb is the surface displacement
gradient, and d = us · b + un∇s in the current
configuration.

By using the polar decompositions of Fs, the
right and left Cauchy-Green tensors of the inter-
face can be defined as Cs = U2

s = F T
s · F s and

Bs = V 2
s = F s ·F T

s , where Us and Vs are called
the right and left stretch tensors of the interface,
respectively.
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Strain Measures of the Interface

Like the Seth strain measure (Seth 1961)
for three-dimensional deformation, the two-
dimensional strain tensor of interface can
be formulated to characterize the stretching
deformation. In the reference configuration, the
Lagrangian strain tensor of the interface can be
defined as

E(m)s = 1

2m

(
U2m
s − i0

)
, m �= 0

E
(0)
s = ln U s , m = 0

(6)

where m is a real number. When m= 1, we obtain
the Green strain tensor of the interface

E(1)s = 1

2

(
U2
s − i0

)
= 1

2
(Cs − i0) (7)

which furnishes the change of the metric tensor
of the interface and will be used in the following
section.

Following Steigmann and Ogden (1999),
the relative curvature κ of the interface can be
defined by

κ = −F T
s · b · F s (8)

which is the pullback of the curvature tensor b
from the current configuration to the reference
configuration. Considering b= − a3, α ⊗ aα , Eq.
(8) can be rewritten as

κ = F T
s ·
(
a3,α ⊗Aα

) = F T
s ·
(
a3∇̃0s

)
(9)

where (·) ∇̃0s = (·),α ⊗ Aα that has the same
meaning as the differential operator “∇” used by
Gurtin et al. (1998). Similarly, the flexural defor-
mation of an interface is usually characterized
by the change of its curvature tensor (Langhaar
1974). Thus, the Lagrangian curvature strain of
the interface can be defined as

� = (bαβ − Bαβ
)
Aα ⊗Aβ = −κ − B (10)

Notably, the stretching and the flexural defor-
mations of the interface are coupled with each
other, and the shape of the interface is usually
unknown after deformation, making the deforma-
tion of an interface quite complicated. Thus, the
Lagrangian strain measures based on the initial
reference configuration are preferable and more
convenient for describing the deformation and
kinematics of the interface.

Constitutive Relations of Elastic
Interface

Let the excess free energy of interface per unit
area of A in the current configuration be denoted
by γ . This free energy depends not only on
the particle coordinates (θ1, θ2) but also on the
absolute temperature θ and the deformation of
the interface, which can be described by the
interface strain E

(m)
s , and the curvature change of

the interface. In order to simplify the discussion,
the flexural resistance of the interface will not be
considered, and the interface deformation process
is assumed to be isothermal. Thus, the tempera-
ture and the curvature tensor of the interface will
not be included in the expression of interfacial
energy. Moreover, for the sake of notational sim-
plicity, the dependence of γ on (θ1, θ2) will be
suppressed in the following. The interface free
energy per unit area of A0 in the reference config-
uration can be written as J2γ , where J2 = det Us

is the ratio between the area elements dA and
dA0, i.e., dA = J2dA0. In the course of an isother-
mal deformation, the variation in the excess free
energy of the interface on the area element dA can
be written as δ(γ dA) = δ(J2γ )dA0, which is the
reversible work needed to elastically stretch this
pre-existing interface element:

δ (J2γ ) dA0 =
(
T (m)s : δE(m)s

)
dA0 (11)

where T
(m)
s is the interface stress conjugate to

E
(m)
s .
Then, in the sense of Green elastic material,

the constitutive relation of the interface at finite
deformation is
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T (m)s = ∂ (J2γ )

∂E
(m)
s

(12)

where the Lagrangian description has been used
and J2γ is a potential function of the temperature
and the Lagrangian strain of the interface. In
particular, the first and second Piola-Kirchhoff
interface stresses can be written as

Ss = 2F s · ∂ (J2γ )

∂Cs
,

T (1)s = 2
∂ (J2γ )

∂Cs

(13)

In the Eulerian description, the Cauchy stress
of the interface is given by

σ s = 1

J2
F s · T (1)s · F s

T (14)

The above expressions are valid for anisotropic
interfaces which depend on the crystallographic
parameters of the interface. If the interface is
isotropic relative to the reference configuration
κ0, the interfacial energy γ can be expressed as
a function of the scalar invariants of right stretch
tensor Us (or left stretch tensor Vs):

γ = γ (J1, J2) (15)

where J1 = trUs = trVs and J2 = det Us = det Vs

are the first and second scalar invariants of Us

(or Vs), respectively. Noting that

∂J1

∂Cs
= 1

2
U−1
s ,

∂J2

∂Cs
= 1

2
J2C

−1
s

(16)

we may obtain

T (1)s = J2

[
∂γ

∂J1
U s

−1 +
(
J2
∂γ

∂J2
+ γ

)
Cs

−1
]

(17)

The engineering and the logarithmic stresses
of the interface can be expressed by

T
(1/2)
s = J2

[
∂γ

∂J1
i0 +

(
J2
∂γ

∂J2
+ γ

)
U s

−1
]

(18)

T (0)s = J2

[
∂γ

∂J1
U s +

(
J2
∂γ

∂J2
+ γ

)
i0

]
(19)

The Cauchy stress of the interface is

σ s = ∂γ

∂J1
V s +

(
J2
∂γ

∂J2
+ γ

)
i (20)

In the case that the current configuration κ
and the reference configuration κ0 coincide, the
Cauchy stress of the interface in the reference
configuration can be written as σ ∗s = γ ∗0 i0, where
γ ∗0 = γ0 + γ1 + γ2 is the residual interface
tension. γ1 = (∂γ /∂J1)|J1=2,J2=1 and γ2 =
(∂γ /∂J2)|J1=2,J2=1 reflect the nature of solids,
and γ0 = γ |J1=2,J2=1 reflects the nature of
liquids. γ 0, γ 1, and γ 2 all together represent the
intrinsic physical properties of the interface, and
they are determined by the adjoining materials
and their adhering condition at the interface.

Residual Stress Field Caused
by the Interfacial Energy

As shown in the previous section, the resid-
ual interface stress is not zero in the reference
configuration. Consequently, there exists a self-
equilibrium stress field in the body of the materi-
als due to residual interface stress, and the elastic
strain energy of the body does not vanish even
in the initial state (reference configuration). We
will call this elastic field induced by the residual
interface stress the “residual” elastic field. The
elastic properties of a residually stressed body
are fundamentally different from those of an
initially stress-free body. The elastic tensors in
the constitutive equations can depend explicitly
on the residual stress, which are different from
their counterparts in the classical theory.

To facilitate the description of the deformation
induced by the interfacial energy in heteroge-
neous solids, one can hypothetically split the
solid into homogenous pieces along its interfaces
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and let them go back to their stress-free states.
The above splitting operation is only a thought
process. It cannot be realized in practice because
it requires that the microscopic states of surface
atoms to be the same as the bulk atoms inside.
However, we can introduce a “fictious stress-
free configuration” (denoted by κ∗) based on the
above thought process and use it to describe and
calculate the residual elastic field induced by
residual interfacial stress.

Let F ∗ denote the deformation gradient from
κ∗ to κ0 and F the deformation gradient from
κ0 to κ . From the above discussions, it is seen
that the elastic stress field in the heterogeneous
solid under external loads should depend on the
deformation gradient F · F ∗. Hence the hypere-
lastic potential of the solid can be expressed as

ψ0 = ψ0

(
C̃
)

, where C̃ = (F · F ∗)T · (F · F ∗)
is the right Cauchy-Green tensor relative to κ∗ .
Therefore, the first Piola-Kirchhoff stress based
on the reference configuration κ0 is

S0 = 2ρ0F · F ∗ · ∂ψ0

∂C̃
· F ∗T (21)

and the Cauchy stress corresponding to the cur-
rent configuration κ is

σ = 2ρF · F ∗ · ∂ψ0

∂C̃
· F ∗T · F T (22)

In the above expressions, ρ0 and ρ denote the
mass densities of the solid in the configurations
κ0 and κ , respectively, and conservation of mass
yields ρ0/ρ = det F.

The residual elastic stress field is the solution
corresponding to the unloaded state when the
current configuration coincides with the reference
configuration. By setting F = I in Eq. (22), the
residual stress σ ∗ can be expressed as

σ ∗ = 2ρ0F
∗ ·
(
∂ψ0

∂C̃

∣∣∣∣
F=I

)
· F ∗T (23)

where I is the second-order identity tensor in the
three-dimensional Euclidean space.

Equilibrium Equation of the Interface

Besides the constitutive relation of the interface,
the second fundamental equation of the interface
is the equilibrium equation, which describes the
equilibrium relationship between the interface
stress and the body stress at the interface. It is also
called the generalize Young-Laplace equations of
solid interface. The mathematical structure of this
equation is very similar to that of the equilibrium
equation of an elastic thin shell, but they have
different physical meanings and application
backgrounds. The generalized Young-Laplace
equation reflects the effect of interface stress
on the heterogeneous materials and is mainly
applied to nanostructures. In the classical
interface stress theory, this equation is usually
used to explain the size effects of nanostructured
materials.

In this section, the generalized Young-Laplace
equation will be derived by the principle of min-
imum potential energy, which requires a new
energy functional that accounts for the effect of
interfacial energy in heterogeneous hyperelastic
solids. This energy functional consists of three
parts: first, the interfacial energy; second, the
strain energy of the elastic body, which considers
the residual elastic field induced by residual inter-
face stress; and third, the potential of the external
loads. It is written as

∏
(u) =

∫

A0

J2γ (Cs) dA0+
∫

v0

ρ0ψ0

(
C̃
)

dv0

−
∫

v0

ρ0f · udv0 −
∫

∂v0T

t0 · udS0

(24)

where u is the displacement from the reference
configuration to the current configuration, f is the
body force per unit mass, and t0 is the traction
on the boundary. As discussed before, this energy
functional does not vanish even in the reference
state κ0 when there is no displacement or external
load.

Based on the energy principles in theory of
elasticity, we have the following proposition: For
any admissible displacement field u that satis-
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fies the prescribed u0 on the boundary ∂v0u,
the energy functional Eq. (24) takes a stationary
value when u is a solution of the equilibrium
state of the system, which is subjected to a body
force f in v0 and a traction t0 on the boundary
∂v0T . Thus, the δ0(u) = 0 gives the governing
equations of the system, including the equilib-
rium equation of the interface.

First, let us derive the variation of the first
term (interfacial energy) in Eq. (24) and write the
variation of the displacement as δu:

δ (J2γ ) = ∂ (J2γ )

∂Cs
: δCs

= 1

2
T (1)s :

(
δF s

T · F s + F s
T · δF s

)

=
(
F s · T (1)s

)
: δF s

= Ss : δF s (25)

Since the interface deformation gradient Fs

is expressed as the sum of an “in-plane term”
F
(in)
s and an “out-of-plane term” F

(ou)
s , the first

Piola-Kirchhoff interface stress Ss is also a “two-
point” tensor in the two-dimensional space and
can also be decomposed into the sum of an
“in-plane term” S

(in)
s = F

(in)
s · T (1)s and an “out-

of-plane term” S
(ou)
s = F

(ou)
s · T (1)s . Then, with

Eqs. (2) and (3), we may further get

Ss : δF s
= S(in)s : δF (in)s + S(ou)s : δF (ou)s

=
(
δu0s · S(in)s

)
· ∇0s

+
(
δun0A3 · S(ou)s

)
· ∇0s

− δu0s ·
(
S(in)s · ∇0s −A3 · S(ou)s · B

)

− δun0
(
S(in)s :B+

(
A3 · S(ou)s

)
· ∇0s

)
.

(26)

Now consider a region+0 enclosed by an arbi-
trary closed smooth curve ∂+0 on the interface
A0 in the reference configuration. By using the
Green-Stokes theorem, we have

∫

A0

(Ss : δF s) dA0

=
∫

A0

δu0s ·
[
−Ss

(in) · ∇0s

+B ·
(
A3 · Ss (ou)

)]
dA0

+
∫

A0

δun0

[
−Ss

(in) : B

−
(
A3 · Ss (ou)

)
· ∇0s

]
dA0

−
∫

∂Ω0

δu0s ·
�
Ss
(in)

�
· n0dl0

−
∫

∂Ω0

δun0

�
A3 · Ss (ou)

�
· n0dl0

(27)

where dl0 is the differential element of the arc
length on ∂+0, n0 = l0 × A3 is the unit normal
vector of the curve ∂+0 with l0 being the unit
tangent vector of ∂+0, and �·� represents the
discontinuities across the curve ∂+0.

Under Eulerian description in the current con-
figuration,

δF s = δaα ⊗Aα = (δaα ⊗ aα
) · F s (28)

and the variation of interfacial energy can be
expressed in the current configuration as

∫

A0

(Ss : δF s) dA0

=
∫

A0

Ss :
[(
δaα ⊗ aα

) · F s
]

dA0

=
∫

A

1

J2

(
Ss · F Ts

)
: (δaα ⊗ aα

)
dA

=
∫

A

σ s : (δu∇s) dA

(29)

Now consider a region + enclosed by a closed
smooth curve ∂+ on the interface A, and again,
from the Green-Stokes theorem, we have
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∫

A

σ s : (δu∇s) dA = −
∫

A

[δus · (σ s · ∇s)

+δun (σ s : b)
]

dA

−
∫

∂Ω

δus · �σ s� · ndl

(30)

where dl is the element of the arc length on ∂+,
n = l × a3, with l being the unit tangent vector of
∂+.

Next, let us discuss the variation of the strain
energy of the elastic body. Considering that

δ (ρ0ψ0) = S0 : (δu∇0)

= (det F ) σ : (δu∇) (31)

and by the conservation of mass, we have

∫

v0

δ (ρ0ψ0) dv0 =
∫

∂v0T

δu ·
(
S0 ·N0

)
dS0

−
∫

A0

δu ·
�
S0

�
·A3dA0

−
∫

v0

δu ·
(
S0 · ∇0

)
dv0

(32)

where ∇0 is the gradient operator in three-
dimensional Euclidean space and N0 is the unit
normal vector to the boundary in the reference
configuration. �S0� represents the discontinuity
of the first Piola-Kirchhoff stress across the
interface A0. In Eulerian description, Eq. (32)
becomes
∫

v0

δ (ρ0ψ0) dv0 =
∫

v

σ : (δu∇) dv

=
∫

∂vT

δu · (σ ·N) dS

−
∫

A

δu · �σ � · a3dA

−
∫

v

δu · (σ · ∇) dv

(33)

Finally, let us discuss the variation of the third
and fourth terms (potential of external loads). In
reference configuration, it is

−
∫

v0

ρ0f · δudv0 −
∫

∂v0T

t0 · δudS0 (34)

and in current configuration, it is

−
∫

v

ρf · δudv −
∫

∂vT

t · δudS (35)

When the energy functional Eq. (24) takes sta-
tionary values, its variation should be zero. Con-
sidering the arbitrariness of displacement varia-
tion δu, we obtain the governing equations of
the hyperelastic solids with sharp interfaces. In
Lagrangian description, they are as follows:

(i) The equilibrium equation of the body and the
mechanical boundary condition

S0 · ∇0 + ρ0f = 0 (in v0)

S0 ·N0 = t0 (on ∂v0T )
(36)

(ii) The equilibrium equations of the interface

A3 ·
�
S0

�
·A3 = −S(in)s : B

−
(
A3 · S(ou)s

)
· ∇0s (on A0)

P 0 ·
�
S0

�
·A3 = −S(in)s · ∇0s

+ B ·
(
A3 · S(ou)s

)
(on A0)

(37)

(iii) Continuity condition of interface stress

�Ss� ·A3 = 0 (across ∂Ω0 on A0) (38)

where P0 = I − A3 ⊗ A3 is the projection
operator.

Similarly, the Eulerian description of the gov-
erning equation in the current configuration is

σ · ∇ + ρf = 0 (in v)

σ ·N = t (on ∂vT )
(39)

a3 · �σ � · a3 = −σ s : b (on A)

P · �σ � · a3 = −σ s · ∇s (on A)
(40)
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�σ s� · a3 = 0 (across ∂Ω on A) (41)

Equations (37) and (40) are the equilibrium
equations of the interface. Notably, the
Lagrangian description is preferable when
dealing with large elastic deformation of
heterogeneous materials because, for such
materials, the shapes of the deformed body and
interfaces are generally unknown. Moreover,
nanostructured materials are residually stressed at
their initial state. Thus, it is advantageous to use
the Lagrangian description of the fundamental
equations of interface to study the influence of
residual interface stress on the overall properties
of nanostructures (Huang and Sun 2007; Sun
et al. 2004).

The Effect of Curvature-Dependence
of Interfacial Energy

In the previous sections, we developed the
fundamental equations of the interface through
interfacial energy using a standard continuum
mechanics method. However, for simplicity in
derivations, we don’t consider the curvature-
dependence of interfacial energy and assume
that the interfacial energy is only a function of
the strain tensor. The curvature-dependence of
interfacial energy captures the intrinsic flexural
resistance of solid interfaces and is responsible
for the size dependence of surface stress of
nanoparticles. In this section, we will give a
brief introduction to the interface stress theory
based on a curvature-dependence of interfacial
energy.

Consider the curvature-dependence of interfa-

cial energy, i.e., γ = γ
(
E
(m)
s , κ

)
; we have

δ (J2γ ) dA0 =
(
T (m)s : δE(m)s +Ms : δκ

)
dA0,

(42)

where T
(m)
s is the same as before while Ms is

the interface bending moment conjugating to the
relative curvature κ . The interface stress driving
force for the in-plane stretching deformation of

the interface and the interface bending moment is
pertinent to the out-of-plane flexural deformation
of the interface. Then, the constitutive relations of
the interface are

T (m)s = ∂ (J2γ )

∂E
(m)
s

, Ms = ∂ (J2γ )

∂κ
(43)

The first and second Piola-Kirchhoff stresses
and Cauchy stress of the interface are the same as
before. Here, we mainly focus on the difference.
The Eulerian bending moment of the interface is
defined as

ms = 1

J2
F s ·Ms · F T

s = F s · ∂γ
∂κ

· F T
s (44)

It is noted that the above expressions are valid
for anisotropic interfaces as well.

A detailed analysis of the material symmetry
of the interface (Steigmann 2001) indicates that
the interfacial energy J2γ is generally not an
isotropic scalar-valued tensor function relative to
the reference configuration. Since the interfacial
energy J2γ is a rather complicated function of
Cs and κ , its explicit expression should be deter-
mined by the physical properties of the real mate-
rial interfaces. In order to simplify this problem
while still capturing the main physical features
of the constitutive relation, it can be assumed
that the material interface is hemitropic relative to
the reference configuration. Hence, the interfacial
energy J2γ can be expressed as a function of the
six invariants of the right Cauchy-Green tensor Cs

and relative curvature κ (Zheng 1993):

J2γ (Cs , κ) = J2γ (I1, I2, I3, I4, I5, I6) (45)

The six scalar invariants are defined as

I1 = trCs , I2 = det Cs , I3 = trκ, I4 = det κ,

I5 = tr (Cs · κ) , I6 = tr (Cs · κ · ε) .
(46)

where ε denotes the permutation tensor on the
surface A0. Noting that
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∂I1

∂Cs
= i0,

∂I2

∂Cs
= I2Cs−1,

∂I3

∂κ
= i0,

∂I4

∂κ
= I4κ−1,

∂J2

∂Cs
= 1

2
J2C

−1
s ,

∂I5

∂Cs
= κ,

∂I5

∂κ
= Cs ,

∂I6

∂Cs
= εT · κ = −ε · κ,

∂I6

∂κ
= Cs · εT = −Cs · ε

(47)

we obtain

T (1)s = 2J2

[
∂γ

∂I1
i0 +

(
I2
∂γ

∂I2
+ γ

2

)
C−1
s

+ ∂γ
∂I2

κ + 1

2

∂γ

I6
(κ · ε − ε · κ)

]

(48)

Ms = J2

[
∂γ

∂I3
i0 + I4 ∂γ

∂I4
κ−1 + ∂γ

∂I5
Cs

+1

2

∂γ

∂I6
(ε · Cs − Cs · ε)

] (49)

where it should be pointed out that only the sym-
metric parts of the stress and bending moment
are retained because their skew-symmetric parts
do not contribute to the incremental interfacial
energy presented in Eq. (42).

The Cauchy stress and Eulerian bending
moment of the interface are

σ s = 2

[
∂γ

∂I1
Bs +

(
I2
∂γ

∂I2
+ γ

2

)
i

− ∂γ
∂I5

Bs · b · Bs

+1

2

∂γ

∂I6
J2 (μ · b · Bs − Bs · b · μ)

]

(50)

ms = ∂γ

∂I3
Bs − I4 ∂γ

∂I4
b−1 + ∂γ

∂I5
B2
s

+ 1

2

∂γ

∂I6
J2 (μ · Bs − Bs · μ)

(51)

where μ denotes the permutation tensor on the
surface A. By using the Cayley-Hamilton theo-
rem, Eq. (49) can be rewritten as

Ms = J2

[(
∂γ

∂I3
+ I3 ∂γ

∂I4

)
i0 − ∂γ

∂I4
κ

+ ∂γ
∂I5

Cs + 1

2

∂γ

∂I6
(ε · Cs − Cs · ε)

]

(52)

The constitutive equation above clearly shows
that there exists a stretching-bending coupling
due to the curvature-dependent nature of the
interfacial energy. Even when there is no in-
plane stretching deformation, the residual inter-
face stress may still depend on the flexural defor-
mation. Furthermore, there exists an interface
bending moment that characterizes the resistance
to bending (flexural resistance) of the interface.

Unlike in the classical theory of elastic sur-
faces and shells, the constitutive equations above
include the residual stress and the residual bend-
ing moment in the interface. In the reference con-
figuration without any external load, the current
and the reference configurations coincide, thus
giving us Cs = i0 = i = Bs, B = − κ = b, and
ε = μ. The scalar invariants reduce to

J2 = 1, I1 = 2, I2 = 1, I3 = −2H0,

I4 = K0, I5 = −2H0, I6 = 0
(53)

where H0 and K0 are the mean and the Gaus-
sian curvatures of the interface A0, respectively.
Hence, the residual interface stress and the resid-
ual interface bending moment can be written as

σ ∗s = (γ0 + 2γ1 + 2γ2) i0 − 2γ5B

+ γ6 (ε · B − B · ε)
(54)

m∗
s = (γ3 + γ5) i0 −K0γ4B

−1

= (γ3 + γ5 − 2γ4H0) i0 + γ4B
(55)

where γ 0 is the initial interfacial excess free
energy and γ i = ∂γ /∂Ii (i = 1∼6) reflect the
natures of the solid interfaces. Notably, these
two residual terms σ s∗ and ms∗ indicate that
the interface has the inclination to stretch and
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bend even though it cannot exist independently
without the joining bulk materials. Here, the
residual interface stress is not homogeneous at
the interface because it is dependent on curvature.

To derive the equilibrium equations in this
section, one need to replace the interfacial
energy in energy functional Eq. (24) with the
curvature-dependent interfacial energy γ (Cs, κ).
The method is the same as before, but the
derivation process is very tedious because of
the complexity of the variation of the curvature
tensor. For details, the reader may refer to Gao
et al. (2014). Here, we only give the main results.
When the curvature dependence of interfacial
energy is considered, it changes the equilibrium
equation of the interface, where the effects of
interface bending moment should be considered.
The Lagrangian description of the interface
equilibrium equation is

A3 ·
�
S0

�
·A3 = −

(
S(in)s + S(in)m

)
: B

−
[
A3 ·

(
S(ou)s + S(ou)m

)]
· ∇0s (on A0)

P 0 ·
�
S0

�
·A3 = −

(
S(in)s + S(in)m

)
· ∇0s

+ B ·
[
A3 ·

(
S(ou)s + S(ou)m

)]
(on A0)

(56)

where S
(in)
m and S

(ou)
m are the “in-plane” and “out-

of-plane” components of the first Piola-Kirchhoff
bending moment of the interface. The definition
of the first Piola-Kirchhoff stress of the interface,
S
(in)
s and S

(ou)
s , remains the same. The expres-

sions of S
(in)
m and S

(ou)
m are

S(in)m = (a3∇0s) ·Ms

+ 1

J2

[
tr (T 1 ⊗D) i0 − (T 1 ⊗D)T

]

+ (−Z · T 1 +XT 2)

J 3
2

F s
(in) · (I1i0 − Cs)

− T2

J2

[
tr
(
F (in)s

)
i0 −

(
F (in)s

)T
]
,

(57)

S(ou)m =
(
a3∇̃0s−a3∇0s

)
·Ms+ 1

J2
(A3 ⊗ T 1) ·

[
tr
(
F s
(in)
)

i0 −
(
F s
(in)
)T
]

+ (−Z · T 1 +XT 2)

J 3
2

F s
(ou) · (I1i0−Cs)

(58)

where

a3 = 1

J2
(XA3 − Z) ,

X = det F (in)s ,

Z = εT · F s (in) · ε ·D

(59)

and

T 1 = M
(in)
s · ∇0s −A3 ·M(ou)

s · B,
T2 = M

(in)
s : B +

(
A3 ·M(ou)

s

)
· ∇0s ,

(60)

The Eulerian description of the equilibrium
equations of the interface is much simpler, and
it is

a3 · �σ � · a3 = − (σ s − b ·ms) : b
− (ms · ∇s) · ∇s (on A)

P · �σ � · a3 = − (σ s − b ·ms) · ∇s
+ b · (ms · ∇s) (on A)

(61)

It is interesting to note that Eq. (61) can also
be written in a compact form:

�σ � · a3 = −�s · ∇̃s (62)

where Σ s = σ s − b · ms + a3 ⊗ (ms · ∇s) is a
combination of the interface stress and interface
bending moment.

Stress and Energy of Isotropic
Interface Under Small Deformation
Condition

Under small deformation, the equilibrium equa-
tion of the interface does not change, but the con-
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stitutive relations of the interface can be greatly
simplified, and they can be used to study the
linear elastic properties of interface. The Green
strain of the interface can be written as

Es = εs +Gs (63)

where εs is the commonly used small-
deformation strain

εs = 1

2
(u∇0s +∇0su)

= 1

2
(u0s∇0s + ∇0su0s)− un0B

(64)

and Gs is the nonlinear (quadratic) part

Gs = 1
2 [(∇0su) · (u∇0s)+D ⊗D] ,

D = u0s · B + un0∇0s
(65)

To start with, let us assume that the interface
energy per unit area in the current configuration
can be written as the following power series:

γ = γ0 + γ1 (J1 − 2)+ γ2 (J2 − 1)

+ 1

2
γ11(J1 − 2)2 + γ12 (J1 − 2) (J2 − 1)

+ 1

2
γ22(J2 − 1)2 + . . . (66)

where γi = (∂γ /∂Ji)J1=2,J2=1 and γij =(
∂2γ /∂Ji∂Jj

)
J1=2,J2=1. Under small defor-

mation condition, the scalar invariants can be
expressed as follows in terms of interface strain:

J1 = 2 + trEs + det Es − 1

2
(trEs)

2,

J2 = 1 + trEs + 2 det Es − 1

2
(trEs)

2,

(67)

Substitute Eqs. (66) and (67) into Eqs. (17)
and (20), and leave out the high-order terms; one
may get the linearized stress-strain relation for
the second Piola-Kirchhoff stress and the Cauchy
stress:

T (1)s = γ ∗0 i0 +
(
γ ∗0 + γ ∗1

)
(trεs) i0

+ (γ1 − 2γ ∗0
)
εs

(68)

σ s = γ ∗0 i + γ ∗1 (trεs) i + γ1εs (69)

And the first Piola-Kirchhoff stress of the
interface is

Ss = γ ∗0 i0 +
(
γ ∗0 + γ ∗1

)
(trεs) i0 − γ ∗0 (∇0su)

+ γ1εs + γ ∗0 F (ou)s
(70)

In the above expressions, γ ∗0 = γ0 + γ1 + γ2,
and γ ∗1 = γ1+2γ2+γ11+2γ12+γ22. It is impor-
tant to note that the above three kinds of interface
stresses are different even under the small defor-
mation condition. These three interface stresses
become the same only when the residual interface
stress γ ∗0 vanishes. However, the influence of
the residual interface stress γ ∗0 may be quite
important in the study of the effective proper-
ties of heterogeneous media with interface stress
effects.

Through the integral of interface stress with
their corresponding deformation measure, the
interfacial energy formula in the reference
configuration at small deformation can be
obtained (Gao and Fang 2015):

J2γ =
∫
Ss : d

(
∇̃su

)
= γ0 + σ0 (J2 − 1)

+ 1

2
(λs + 2μs) (trεs)

2 − 2μs det εs

(71)

where (σ 0, λs,μs) are the commonly used
symbols of interface constants in the literature.
They have the following relations with the
previously defined interface constants: residual
interface stress σ0 = γ ∗0 and interface Lame
constants, λs = γ ∗1 and μs = 1

2γ1.
For curvature-dependent interfacial energy,

one can still develop the related linear
constitutive relation. For solid membrane, the
following formula can be used to capture the
intrinsic flexural stiffness of the interface:

γ cur = γ (κ) = 1

2
kc(2H) = 1

2
kc

(−I1I3 + I5
I2

)2

(72)
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where H is the mean curvature of the interface
and it can be expressed in terms of the scalar
invariants in Eq. (46). With Eqs. (71) and (72),
a linearized version of the interface stress the-
ory based on the curvature-dependent interfacial
energy can be developed. For details, the readers
may refer to Gao et al. (2017).

Summary

The interfacial energy theory of solids is the study
of the deformation and equilibrium of interface
of elastic solids. In this entry, the fundamental
equations of interface, including the constitutive
relations and the equilibrium equations, are
introduced, as well as the related methodologies
to build them. When the characteristic length of
materials and structures reduces to nanoscale, the
surface-to-volume ratio is high, and the effect of
interfacial energy (or surface energy) becomes
significantly. The interface stress theory can be
used to study the effect of interface stress on the
effective properties of nanostructures (Altenbach
and Eremeyev 2019; Altenbach et al. 2013a;
Altenbach et al. 2013b) and nanocomposites
(Duan et al. 2005a, b; Mogilevskaya et al.
2008; Sharma and Ganti 2004; Sharma et al.
2003; Sharma and Wheeler 2006). For some
specific problems that are related to wrinkling,
bending deformation, or large curvature change
of the interfaces, one may need to consider
the curvature dependence of the interfacial
energy because it captures the intrinsic flexural
rigidity of the interface (Chhapadia et al. 2011;
Mohammadi and Sharma 2012; Zemlyanova and
Walton 2012; Zemlyanova and Mogilevskaya
2018a, b).
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An ideal gas – simple as it may seem – has a
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by the moment equations of the kinetic theory
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of gases. The internal structure makes itself felt
in processes with steep gradients and rapid rates
of change such as wave propagation and light
scattering.

Extended thermodynamics writes all field
equations as quasilinear first-order differential
equations, and the entropy principle reduces
those to symmetric hyperbolic equations which
imply favorable physical and mathematical
properties.

Introduction

Extended thermodynamics is an improved ver-
sion of thermodynamics of irreversible processes
which is based on equations of balance for all
thermodynamic fields and on the entropy prin-
ciple. The latter guarantees that the field equa-
tions of extended thermodynamics are symmet-
ric hyperbolic if written in the proper variables,
namely, the Lagrange multipliers needed for the
exploitation of the entropy principle.

The moments of the kinetic theory of gases
provide an instructive paradigm of extended ther-
modynamics. And the synthesis of the two theo-
ries permits a deep insight into the properties of
gases such as • wave speeds, • shock structures,
• light scattering, and • inertial effects.

Detailed reports on extended thermodynamics
may be found in the book (Müller and Ruggeri
1998) by Müller and Ruggeri, in the review
article (Müller and Weiss 2012) by Müller and
Weiss, and in the dissertation (Reitebuch 2005)
by Reitebuch.

Formal Structure of Extended
Thermodynamics

Field Equations, Equilibrium, and Entropy
Principle
The objective of extended thermodynamics is
the determination of v fields Fα(xi, t)(α =
0, 1, 2, . . . v-1) which are densities of v additive
quantities. Thus they obey equations of balance
of the form

∂Fα

∂t
+ ∂Fiα
∂xi

= iα +0α (α = 0, 1, 2, . . . v-1).

(1)
Fiα are the components of their fluxes and0α are
their production densities. Both are constitutive
quantities , i.e., they depend on the material
of the body under consideration. iα represents
inertial effects; its form will be made specific
later for gases. Effects of gravitation and electro-
magnetism are ignored here.

In extended thermodynamics, the constitutive
relations are local and instantaneous so that Fiα
and 0α at one point and time depend on the
densities Fα at that point and time only

Fiα = F̂iα(Fβ) and 0α = 0̂α(Fβ). (2)

In particular, no gradients or rates of change
occur among the independent variables.

Invariably the first five of the equations
of balance are the conservation laws of
mass, momentum, and energy for which the
productions 0α vanish. Equilibrium is defined
as a process for which all other productions
0α(α = 5, 6, . . . v-1) vanish as well.

If the constitutive functions F̂iα and 0̂α are
known explicitly, one may eliminate Fiα and 0α
between (1) and (2) and arrive at an explicit set of
field equations. Every solution of those is called
a thermodynamic process.

In reality, however, the constitutive functions
are unknown, and we must attempt to determine
them, or at least to restrict their generality, and,
perhaps, to reduce them to a few coefficients
which may then be measured. This is the task of
the constitutive theory whose most important tool
is the entropy principle stated here in two parts:

(i) the entropy inequality

∂h

∂t
+ ∂hi
∂xi

= σ ≥ 0 (3)

must hold for all thermodynamic processes.
h is the entropy density, hi is the entropy
flux, and σ is the density of the entropy
production; all three are constitutive quan-
tities, so that in extended thermodynamics,
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they depend on the fields in a local and
instantaneous manner, i.e.,

h = ĥ(Fβ), hi = ĥi (Fβ), σ = σ̂ (Fβ) .

(4)
(ii) the entropy density is required to be a con-

cave function of Fα , i.e.,

∂2h

∂Fα∂Fβ
– negative definite. (5)

This property allows the entropy to reach a
maximum in equilibrium.

Exploitation of the Entropy Principle:
Symmetric Hyperbolic Systems
The key to the exploitation of the entropy
inequality (1) is the observation that the
inequality must hold for all thermodynamic
processes, i.e., solutions of the field equations.
Thus in a manner of speaking, the field equations
provide constraints on the fields for which the
inequality must hold. Lagrange multipliers may
serve to get rid of such constraints. Indeed, by
Liu (1972a, b), the new inequality

∂h

∂t
+ ∂hi
∂xi

−1α
(
∂Fα

∂t
+ ∂Fiα
∂xi

−0α
)
≥ 0 (6)

must hold for all fields Fα(xi, t). (Inertial terms
are ignored in the exploitation of the entropy
inequality.) The quantities 1α – the Lagrange
multipliers – are themselves constitutive quanti-
ties so that, in extended thermodynamics, they
may be functions of all densities Fβ .

Insertion of the constitutive relations for h, hi ,
and Fiα provides

(
∂h

∂Fα
−1α

)
∂Fα

∂t
+
(
∂hi

∂Fβ
−1α ∂Fiα

∂Fβ

)
∂Fβ

∂xi

+1α0α ≥ 0. (7)

The left-hand side of this inequality is thus linear
in the derivatives of the densities, and, since the
inequality must hold for all fields, it must hold
in particular for arbitrary values of the derivatives
∂Fα
∂t

and ∂Fα
∂xi

at one point and time. Hence follows

dh = 1αdFα, dhi = 1αdFiα,
and σ = 1α0α ≥ 0 (8)

lest the inequality be violated.
These are the results of the entropy inequality,

and all of them contain the Lagrange multipliers
which are auxiliary quantities. Even the entropic
quantities h and hi are auxiliary quantities in a
manner of speaking because, after all, the consti-
tutive theory has set out to find restrictions on the
constitutive functions in (2), and h and hi are sup-
posed to help in that effort. Really useful results
for our purpose should not contain the auxiliary
quantities. But still, let us continue, because there
will be some definite results without a specific
characterization of the densities and without the
knowledge of the Lagrange multipliers.

By (8)1 differentiation of ∂h
∂Fα

= 1α with

respect to Fβ shows that ∂1α
∂Fβ

is negative definite
because of the required concavity of the entropy
density. Therefore the Lagrange multipliers 1α
form a set of fields which is equivalent to the
densities Fα . If we introduce the scalar potential
h′ = 1αFα − h as the Legendre transform of h
associated with the map Fα ⇔ 1α , and the vector
potential h′i = 1αFiα − hi , we obtain from (8)

dh′ = Fαd1α, dh′i = Fiαd1α,
and σ = 1α0α ≥ 0 as before. (9)

Thus the densities and fluxes are seen to be
derivatives of the potentials with respect to 1α .
Note that h′ is concave in the Lagrange multipli-
ers since h is concave in the densities, because
a Legendre transformation does not affect the
concavity.

By (9), we may rewrite the system of field
equations for Fα as a system of field equations
for 1α , viz.,

∂2h′

∂1α∂1β

∂1β

∂t
+ ∂2h′i
∂1α∂1β

∂1β

∂xi
= 0α. (10)

The advantage of this form lies in the observa-
tion that the system – with symmetric coefficient
matrices and a negative definite coefficient matrix



System of Symmetric Hyperbolic Equations, Extended Thermodynamics of Gases 2417

S

of ∂1β
∂t

– is a symmetric hyperbolic system. We
conclude that the entropy principle guarantees
the symmetric hyperbolic character of extended
thermodynamics for the Lagrange multipliers as
fields.

Therefore Boillat (1974) has called the 1α’s
privileged fields. It is true that Boillat in 1974 did
not know about the Lagrange multipliers. How-
ever, he found the privileged fields and later Rug-
geri and Strumia (1981) identified those fields
with the Lagrange multipliers of extended ther-
modynamics. Thus the mathematical theory of
symmetric hyperbolic systems was joined to ther-
modynamics and vice versa.

The fields 1α are called privileged, because
symmetric hyperbolic systems have convenient
and desirable properties, namely, the well-
posedness of initial value problems, i.e.,
existence and uniqueness of solutions, and
continuous dependence of solutions on the data,
e.g., see Godunov (1961) and Fisher and Marsden
(1972). Also symmetric hyperbolic systems
imply finite speeds.

The ingredients of the formal structure of
extended thermodynamics are not only mathe-
matically desirable, they also please the physicist.
The attractive features include • field equations
of balance type, • local and instantaneous con-
stitutive equations, • existence of a nonequi-
librium entropy density, • general constitutive
entropy flux, • thermodynamic stability, • well-
posedness of initial value problems, and • finite
speeds.

If we wish that thermodynamics eventually
should represent an integral part of mathemati-
cal physics, the foregoing analysis represents a
large step forward: the entropy principle has led
to symmetric hyperbolic field equations. We are
tempted to postulate that all valid thermodynamic
field theories ought to be of that type.

It remains to exploit the residual inequal-
ity (9)3 for the entropy production σ , which
is assumed nonnegative and is obviously
minimal, namely, zero, in equilibrium, where
all productions 0α vanish. We may write
(Normally the summation over the repeated
index α is understood. But here we write the

sum explicitly so as to indicate that it extends
over α = 5, 6. . .v-1 rather than over all α from 0
to v-1.)

σ =
v−1∑
α=5

1α0α, (11)

since 0α(α = 0, 1, . . . 4) are always zero, equi-
librium or not. Thus of necessity we have

∂σ

∂0α

∣∣∣∣
E

= 1α|E = 0 (α = 5, 6, . . . v-1).

(12)
We conclude that the Lagrange multipliers

1α(α = 5, 6, . . .v-1) vanish in equilibrium. And
if the productions 0α are approximated as linear
functions of 1α(α = 5, 6, . . .v-1), we may write

0α =
v−1∑
β=5

Lαβ1β(α = 5, 6, . . .v − 1). (13)

Obviously, the matrixLαβ (α, β = 5, 6, . . .v-1)
must be positive definite, because of the
inequality (8), but it is not necessarily symmetric.
It is symmetric in extended thermodynamics
of moments, described in the next section; see
Müller and Weiss (2012).

Wave Speeds: Growth and Decay of
Acceleration Waves
A wave is defined as a propagating surface, and
mathematically it is represented by the equation
φ(xi, t) = 0. Its normal ni and normal speed V
are given by

ni =
∂φ
∂xi

|gradφ| and V = −
∂φ
∂t

|gradφ| .

Here we are interested in weak waves, also
called acceleration waves, surfaces across which
the fields Fα or 1α are continuous although their
gradients are not. Obviously the jump of the
gradient of 1α must then point in the normal
direction which we take to be the 1-direction.
Therefore we have

[
∂1α

∂x1

]
= Aα and

[
∂1α

∂t

]
= −VAα;

(14)
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square brackets indicate differences between
the two sides of the wave. Thus from the
field Eq. (10), we obtain a linear homogeneous
algebraic system for the Aα’s, viz.,

(
∂2h′1

∂1α∂1β
− ∂2h′

∂1α∂1β
V

)
Aα = 0. (15)

It follows that the jumps of the gradients are
proportional to the right eigenvalue dα of the
matrix in (15). We may thus write Aα = Adα
and call A the amplitude of the wave. Therefore
the possible speeds – called characteristic speeds
– are the roots of a v’th order homogeneous
algebraic system, i.e., they result from setting the
determinant of the system equal to zero:

det

(
∂2h′1

∂1α∂1β
− ∂2h′

∂1α∂1β
V

)
= 0. (16)

There are v such speeds; in other words, we have
v sounds. But of course, we cannot calculate any
of them before knowing h and h′1 as functions
of 1α . We only know that the V ’s following
from (16) are real and finite; we know that from
the symmetric hyperbolic character of the field
equations.

The amplitude may decay, or it may grow
depending on its initial value and on the size of
the productions 0α , which represent dissipation,
and on the nonlinearity, i.e., the dependence of V
on the fields. In the case of propagation into an
undisturbed state of equilibrium, the governing
equation for the rate of change of the amplitude
A is a Bernoulli equation

δA

δt
− ∂V
∂Fβ

dβ

︸ ︷︷ ︸
α

non linearity

A2 −lα ∂0α
∂Fγ

dγ

︸ ︷︷ ︸
β

dissipation

A = 0 (17)

with the solution

A(t) = A(0) exp[−βt]
1 − A(0) α

β
(exp[−βt] − 1)

.

dα and lα are the right and left eigenvectors of the
matrix in (15).

The first person to calculate the rate of change
of the amplitude of an acceleration wave was
Green (1964). The elegant form of the Bernoulli
equation in (17) is due to Boillat (1965), the
discoverer of the main field.

The nonlinearity in (17) occurs, if the wave
velocity depends on the values of the fields Fα ,
as it does for a breaking water wave. Inspection
of (17) shows that without the nonlinearity, i.e.,
for α = 0, the amplitudes decay exponentially.
On the other hand, if we have α �= 0 and if β
is sufficiently small and the amplitude A(0) is
sufficiently large, there may be a blowup. Indeed
at time

tcr = 1

β
ln

1

1 + β
α

1
A(0)

(18)

the amplitude of the acceleration wave becomes
infinite and that means that the velocity has a
jump; we may say that the acceleration wave has
developed into a shock wave. We see from (18)
that this can only happen for |A(0)| > β

α
,

meaning that the initial amplitude is too big to
be damped out in the course of time.

Extended Thermodynamics of
Moments

Reminder of the Kinetic Theory of Gases
The kinetic theory of monatomic gases fits per-
fectly into the formal structure of extended ther-
modynamics described in section “Formal Struc-
ture of Extended Thermodynamics”. And the
results obtained in that section allow us to deter-
mine the form of the distribution function of
atoms in a gas. In order to appreciate the analo-
gies between the two theories, the reader should
be familiar with the kinetic theory. If he is not,
the following brief survey may serve.

The basic field to be determined by the kinetic
theory is the distribution function f (xi, ci , t),
defined such that f (xi, ci , t)dc̄ is the number
density of atoms of massμ at position xi and time
t with velocities between ci and ci+dci. The dis-
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tribution function is governed by the Boltzmann
equation

∂f

∂t
+ ci ∂f

∂xi
+ ici

∂f

∂ci
=
∫ (

f ′f ′1 − ff 1
)′
rV

= sin%d%dεdc̄1, (19)

where ici is the inertial acceleration of an atom
with velocity ci. Thus

ici = 2Wik(ck − ḃk)︸ ︷︷ ︸
Coriolis

−W 2
ik(xk − bk)︸ ︷︷ ︸
centrifugal

+ Ẇik(xk − bk)︸ ︷︷ ︸
Euler

+ b̈i︸︷︷︸
translation

. (20)

Wik is the matrix of angular velocity of the
frame with respect to an inertial frame, and
bi is the distance vector between the origins
of the two frames. The right-hand side of the
Boltzmann equation represents the effect of
collisions between atoms, and f, f ′, f 1, f ′1 are
the values of the distribution function for the
velocities ci, c′i , c1

i , c
′1
i of two atoms before and

after colliding. V is the relative speed of the
colliding atoms, and r is the cross section for
a collision with the parameters ε and %. (The
form of the collision term on the right-hand side

of the Boltzmann equation is universally known
as the Stoßzahlansatz. The German word has
defied translation and is therefore routinely used
in English-language texts as well. For its deriva-
tion and interpretation, the reader may consult
any book on the kinetic theory, e.g., Waldmann
(1958) or Chapman and Cowling (1936/1961).)

Moments of the distribution function are
defined as

Fi1i2...ip =
∫
μci1ci2 . . . cipf dc̄; (21)

they are symmetric tensors of rank p. In particu-
lar we have

F0 = ρ − mass density and

Fi = ρvi − momentum density. (22)

By use of the velocity vi of the gas, we may
form the relative – or peculiar – velocity Ci =
ci − vi of an atom and thus define the internal
moments

ρi1i2...ip =
∫
μCi1Ci2 . . . Cipf dc̄. (23)

The first few moments F and ρ have a canonical
notation and are named suggestively

Fij − momentum flux − ρij = tij − stress tensor

1

2
Fii = ρe − energy density

1

2
ρii = ρε − internal energy density

1

2
Fiij = Jj − energy flux

1

2
ρiij = qj − heat flux. (24)

The specific internal energy may be replaced
by the temperature because we have ε = 3

2
k
μ
T in

a monatomic gas. k is the Boltzmann constant.
The internal energy ε and the pressure p are
related by ε = 3

2
p
ρ

. In general, i.e., for any tenso-
rial rank, there is a one-to-one relation between
the moments and the internal moments of the
form

Fi1i2...ip =
N∑
s

(
N

s

)
ρ(i1...iN−s viN−(s−1) . . .viN ).

(25)
The Boltzmann equation implies equations of
balance for the moments, viz., (Round brackets
enclosing indices denote symmetrization.
Angular brackets will denote symmetrization
and tracelessness.)
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∂Fi1i2...ip

∂t
+ ∂Fni1i2...ip

∂xn
= pF(i1i2 ...ip−1

ivip) + pFn(i1i2...ip−1 2Wip)n︸ ︷︷ ︸
inertial contribution

+0i1i2...ip , (26)

where ivi is given by (20) if ck in that equation is
replaced by the velocity vk of the gas. 0i1i2...ip is

the moment of the collision operator on the right-
hand side of the Boltzmann equation

0i1i2...ip =
1

4

∫
(ci1 . . . cip+c1

i1
. . . c1

ip
−c′i1 . . . c′ip−c′1i1 . . . c′1ip )(f ′f ′1−ff 1)rV sin%d%dεdc1dc.

(27)

The Boltzmann equation also implies an
inequality of the form

∂h

∂t
+ ∂hi
∂xi

= k
4

∫
ln
f ′f ′1

ff 1 (f
′f ′1 − ff 1)rV sin%d%dεdc̄1dc̄

︸ ︷︷ ︸
entropy production density due to collisions

≥ 0, (28)

where

h = −k
∫ (

ln
f

y
− 1

)
f dc̄ and

hi = −k
∫
ci

(
ln
f

y
− 1

)
f dc̄; (29)

these are the kinetic theory definitions of the
entropy density and the entropy flux. y is the
smallest element dx̄dc̄ that can accommodate an

atom, and it is related to the Planck constant, but
we need not go into that here.

Analogies Between Extended
Thermodynamics and Kinetic Theory
The analogy between the equations of balance (1)
of extended thermodynamics and the moment
equation (26) of the kinetic theory is now evident.
It becomes even more evident when we introduce
the multi-index α = i1i2. . .ip in (21) so that the
moments read

Fα = μ
∫
cαf dc̄, where cα = 1 for α = 0 and cα =

⎛
⎜⎜⎜⎜⎝

ci1
ci1ci2
•
•

ci1ci2 . . .ciN

⎞
⎟⎟⎟⎟⎠

for α = 1, 2, . . .v-1. (30)

If we consider moments up to tensorial rank
N,α runs from 0 to 1

6 (N+1)(N+2)(N+3).
Actually (26) represents a subclass of (1),
because here the density Fα in one equation
is equal to the flux in the previous equation. Thus
only the “last fluxes” Fii1i2...iN and all production

densities 0i1i2...ip , except 00,0i,0ii , need
to be considered as constitutive quantities.
The five productions 00,0i,0ii vanish
because of conservation of mass, momen-
tum, and energy in an atomic collision;
see (27).
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Also evident is the analogy of the postulated
entropy inequality (3) and the inequality (28)
with (29) derived from the Boltzmann equation.

Obviously in the kinetic theory the densities,
fluxes, and productions are all related to a sin-
gle function, the distribution function f (xi, ci, t)
which is absent in extended thermodynamics.
Given the observed analogies, we shall now pro-
ceed to show that the results of extended ther-
modynamics may serve to calculate f (xi, ci, t)
and thus determine the constitutive properties of
a gas.

The Distribution Function and the
Constitutive Relations for a Gas
We refer to (9)1,2 and (30) and write

dh′ = Fαd1α = μ

∫
f d(1αcα)dc̄

= μ
∫
dG(1αcα)dc̄

= d
(
μ

∫
G(1αcα)dc̄

)

dh′i = Fiαd1α = μ
∫
cif d(1αcα)dc̄

= μ
∫
cidG(1αcα)dc̄

= d
(
μ

∫
ciG(1αcα)dc̄

)
. (31)

Therefore f (xi, ci , t) depends on the single vari-
able χ = 1αcα and so does G, the generator
function of f ; by (31)3 we have f = dG

dχ
and

the potentials h′ and h′i thus read

h′ = μ
∫
G(χ)dc̄ and h′i = μ

∫
ciG(χ)dc̄.

(32)
Therefore the symmetric hyperbolic sys-

tem (10) for a gas comes out as

(
μ

∫
cαcβ

df

dχ
dc̄

)
∂1α

∂t

+
(
μ

∫
cicαcβ

df

dχ
dc̄

)
∂1α

∂xi
= 0α. (33)

From (32) we obtain for the entropy and its flux

h = 1αFα − h′ = μ
∫ (

χ
dG

dχ
−G

)
dc̄ and hi = 1αFiα − h′i = μ

∫
ci

(
χ
dG

dχ
−G

)
dc̄,

(34)

so that, by comparison of (34) with (29), we have

χ dG
dχ

− G = −μ
k

(
ln f
y
− 1
)
f and hence, by

differentiation with respect to χ

f = y exp

[
−1αcα

k/μ

]
and f ′ = − 1

k/μ
f. (35)

The distribution function f (xi, ci, t) has thus
been identified in terms of the Lagrange multipli-
ers 1α(xi, ci, t).

The constitutive relations follow as

Fiα = μy
∫
cicα exp

[
−1αcα

k/μ

]
dc̄ for

1

6
(N + 1)(N + 2)(N + 3) < α ≤ 1

6
(N + 2)(N + 3)(N + 4)

0α = 1

4
μy2

∫
(cα + c1

α − c′α − c′1α )

×
(

exp

[
−1β(c

′
β + c′1β )
k/μ

]
− exp

[
−1β(cβ + c

1
β)

k/μ

])
rV sin%d%dεdc̄1dc̄ (36)
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So far, so good. However, there is a catch,
because the independent variables here are the
Lagrange multipliers 1α and not the densities
Fα . It is true that, in principle, we may calculate
the 1α’s from the Fα’s by (21), i.e.,

Fα = μy
∫
cα exp

[
−1αcα

k/μ

]
dc̄ for

α ≤ 1

6
(N + 1)(N + 2)(N + 3) (37)

by inversion. Unfortunately the inversion cannot
be done analytically, or only in an approximate
manner, except in equilibrium.

In equilibrium where all 1α’s except
10,1i,1ii vanish, we can solve (37) and obtain

10|E = − g|E
T

+ v2

2T
,

1j
∣∣
E
= −vj

T
, and

1ii |E = 3

2T
, (38)

where g|E = ε+ p
ρ
− T h|E

ρ
is the specific Gibbs

free energy, often called chemical potential of the

gas. Thus the equilibrium distribution function is
given by

f |E = y exp

[
g|E − 1

2 (ci − vi)2
k/μT

]

= ρ

μ

1
√

2π k
μ
T

3
exp

[
−

1
2 (ci − vi)2

k/μT

]
.

(39)

In nonequilibrium we may expand f =
y exp[−1αcαk/μ

] in (35) and break off after first

order terms in the 1’s. Thus for N = 3 and
v = 20, – the 20-moment theory – we obtain

f20 ≈ f |E (1 + (10 − 10|E)

+ (1i − 1i |E)ci + 1

3
(1ii − 1ii |E)c2

+1<ij>cicj +1ijkcicj ck), (40)

and this allows us to determine the 1’s in terms
of the F ’s. All that is needed in this case is the

solution of integrals of the form
∞∫

−∞
xn exp x2dx.

We obtain after some calculation

f20 = f |E

⎛
⎜⎝1 − 1

2

1

ρ
(
k
μT
)2
ρ<ij>CiCj − 1

2

1

ρ
(
k
μT
)2
ρijjCi

(
1 − 1

5

C2

k
μT

)
− 1

6

1

ρ
(
k
μT
)3
ρ<ijk>CiCjCk

⎞
⎟⎠

(41)

Extended Thermodynamics of 20
Moments: Subsystems
The equations of balance for the first 20 moments
F0 = ρ, Fi = ρvi, Fij , Fijk may be written as
∂ρ

∂t
+ ∂ρvi
∂xi

= 0

∂ρvi

∂t
+ ∂Fin
∂xn

− ρivi − 2ρvkWik = 0

∂Fij

∂t
+ ∂Fijn
∂xn

− 2ρv(i i
v
j) − 4Fn(iWj)n = 0ij

∂Fijk

∂t
+ ∂Fijkn

∂xn
− 3F(ij i

v
k)

− 6Fn(ijWk)n = 0ijk. (42)

The system is closed by insertion of

0ij = −1

τ
ρ<ij>

0ijk = −1

τ

(
3

2
ρijk−1

6
(ρlliδjk+ ρlljδik + ρllkδij)

+ viρ<jk> + vjρ<ik>
+vkρ<ij>

)
, (43)

which result from (27) for a particularly simple
atomic interaction. ( Atoms with a hypothetical
repulsive power potential that falls off with an
inverse fourth power. It is thought that such an
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interaction, while not perfect, is not bad for rar-
efied monatomic gases.) Also for closure we set,
according to (41)

ρijkl = 6
k

μ
Tρ(ij δkl)−3ρ

(
k

μ
T

)2

δ(ij δkl), (44)

which, by (25), determines Fijkl in (42)4 in terms
of ρ and ρij .

Note that all equations, bar (42)1 the mass
balance, have inertial terms, not only the balance
equations of momentum and energy. It is such
terms by which the kinetic theory of gases contra-
dicts the principle of material frame indifference;
they lead to a frame dependence of the laws of
Fourier and Navier-Stokes (see Müller 1972).

In order to appreciate the nature of the field
equations for N = 3 better, we shall write them
in linearized form, linearized about a homoge-
neous and constant state of rest – and without
the inertial contributions. Figure 1 exhibits them
in a panel, where they are repeated four times:
upper left, upper right, lower left, and lower
right. Also we have introduced the conventional
notation: ρ for mass density, vi for velocity, T
for temperature, t<ij> for deviatoric stress, and
qi for heat flux. The traceless third-rank moment
ρ<ijk> has no conventional name. We emphasize
that the 20 equations are fully explicit, except for
the single unknown parameter τ which we shall
identify shortly.

The purpose of the panel with four parts lies in
the black frames which differ between the parts.
Those frames illustrate the nature of the extension
in extended thermodynamics, and they exhibit the
nature of conventional approximations like the
theories of Fourier and Navier-Stokes.

Upper left: The frame embraces the Euler
equations. These represent the conservation laws
of mass, momentum, and energy in a gas free of
dissipation; there is no irreversibility and ρ, vi ,
and T are the only fields.

Upper right: The equations within the frame
represent the Navier-Stokes-Fourier equations.
The deviatoric stress is proportional to the
deviatoric part of the velocity gradient, and the
factor of proportionality, containing τ , is the
viscosity; since the viscosity can be measured,

τ is known. The heat flux is proportional to the
gradient of temperature.

Lower right: The frame encloses Grad’s 13-
moment equations, a subcase of N = 3; see Grad
(1949). They represent the prototypical equations
of extended thermodynamics. Comparison of
Grad’s equations with the Navier-Stokes-Fourier
equations shows that the latter ones ignore the
rates of change and the gradients of t<ij> and qi.
Since rates of change are measured in terms
of mean times of free flight and gradients in
terms of mean free paths, we conclude that the
Navier-Stokes-Fourier equations represent the
behavior of dense gases in slow processes, while
extended thermodynamics describes the gases in
rapid processes and in rarefied gases.

Lower left: The frames enclose the equations
of the Cattaneo theory, the earliest – and incom-
plete – version of extended thermodynamics; see
Cattaneo (1948). It was invented in an ad hoc
manner so as to resolve the paradox of heat con-
duction, by which disturbances in temperature
propagate at an infinite speed. There is no such
paradox according to Grad’s equations, nor in any
theory of extended thermodynamics, since it is
based on symmetric hyperbolic equations.

The 20 equations of Fig. 1 are only here for
illustration. It is possible to calculate the explicit
full set of balance equations for moments for
any N , and this has been done, although the
result is too long to print out. So, in a manner of
speaking, the full set for N = 40 (say) – where
there are 12,341 equations – is only known to
the computer. However, the computer can work
with them; thus it can work out the speeds of
propagation of acceleration waves implied by the
system for any finite N .

Results

Characteristic Speeds
It follows from Eq. (16) that the characteristic
wave speeds may be calculated as eigenvalues of
a matrix. And, by (33) and (35), that equation
reads
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Fig. 1 The 20 equations of balance for N = 3. Upper left: Euler equations. Upper right: Navier-Stokes-Fourier
equations. Lower left: Cattaneo equations. Lower right: Grad 13-moment equations

det

(∫
cicαcβf dc̄ − V

∫
cαcβf dc̄

)
= 0 (45)

for a monatomic gas. If the wave propagates
into a region of undisturbed equilibrium, the
distribution function may be replaced by its
equilibrium value (39) so that the integrals
in (45) may be calculated explicitly. The matrix
is a v × v-matrix so that there are v speeds of
propagation.

Naturally we are interested in the fastest one,
which we shall call the pulse speed; see Fig. 2.
The necessary calculations – though mathemati-
cally trivial – are cumbersome, and therefore they
are best performed on the computer. We conclude

from Fig. 2 that the pulse speeds are finite for all
finite values of N – or v – and that they grow in
value for growing N . Boillat and Ruggeri found

a lower bound by which Vmax√
5
3
k
μ
T
≥
√

6
5 (N − 1

2 ).

The obvious question is, of course, whether all
these many sound speeds are ever seen or heard.
The answer is obviously negative, and the reason
for this lies in the fact that the waves are strongly
damped before they reach our ears.

Shock Waves
Concerning the remark, made in above, about
the formation of shocks from acceleration waves,
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Fig. 2 Pulse speeds referred to the normal sound speed. Crosses and table: Weiss (1990). Circles: Lower bound by
Boillat and Ruggeri (1997)

there is a basic observation to be made. Indeed,
shocks do not exist in nature as experiments have
clearly shown: The microstructural nature of a
gas prevents shocks. What does exist – and what
may appear as a shock – is a shock structure,
a smooth but steep transition between two rela-
tively flat states of a gas; to be sure, the thickness
of the shock structure is of the order of magnitude
of a few mean free paths, but still it is smooth.
Therefore, if a theory predicts a shock, or allows
for a shock, it is not a valid theory, and it has to
be improved. Extended thermodynamics shows
how this has to be done because improvement of
the classical theories is its raison d’être. Let us
consider this:

First of all, the Navier-Stokes-Fourier theory
does not allow for shocks. This would seem to
recommend it as a good theory in view of the
forgoing remarks. However, the shock structure
which the theory permits us to calculate is wrong;
see Fig. 3. (M0 is the ratio of the speed of the fluid
into the shock structure and the ordinary speed
of sound.) Grad knew this when he first derived
the 13-moment theory. He tried that theory out
on shock structures, hoping, perhaps, to do better
than Navier-Stokes-Fourier.

Unfortunately, however, his calculation came
out worse – much worse! See Grad (1952). It
is true that for M0 = 1.5 Grad did calculate

a smooth shock structure – see Fig. 4 – but for
that low Mach number, there was only a minimal
discrepancy anyhow between observation and the
Navier-Stokes-Fourier theory according to Fig. 3.
So that effort was not decisive. Therefore Grad
proceeded withM0 = 2 and he had a surprise: A
subshock appeared (see Fig. 4right), and certainly
that was worse than the discrepancy of Fig. 3.
Going up in Mach numbers, one can show that the
subshock is first seen slightly above M0 = 1.65
and then it grows in size. Grad did not appreciate
the significance of this Mach number, or, at least,
he does not comment on it. The significance is
that M0 = 1.65 is the pulse speed according
to the 13-moment theory, and, if the gas rushes
forward with more than that speed, its down-
stream region cannot move aside in time, and a
shock must form or – in this case – a subshock.
In a manner of speaking, it is for M0>1.65 that
we must speak of a truly supersonic flow in a
13-moment theory.

The recipe for avoiding this subshock is sim-
ple: We must abandon the 13-moment theory and
adopt an extended theory with more equations
and, therefore, a larger pulse speed: see the table
of Fig 2. So, if we adopt a 286-moment theory,
the appearance of the subshock is pushed upward
to M0 = 4.018, and if we adopt a 12,341-
moment theory, the appearance of the subshock is
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pushed to M0 = 8.996. Eventually, if we prefer
to have no subshock to appear, we need to go to
a ∞-moment theory, because its pulse speed is
infinite.

Light Scattering
The knowledge of the atomic microstructure of
a gas makes all the above phenomena plausible,
and there is no doubt that they exist: � the frame
dependence of stress and heat flux, � the multiple
speeds, � the pulse speed, and � the shift of
subshocks to high Mach numbers. Yet, our exper-

imental tools – thermal and caloric measurements
– are too rough to detect such phenomena and
to quantify them. More sensitive probes into the
microstructure are needed. The measurement of
light scattering spectra is such a probe.

Indeed, light scattering is a paradigm for the
usefulness and practicality of extended thermo-
dynamics. Let us consider this: Incoming laser
light, i.e. light of a single frequency ωi– most
often green light with the wave length λi ≈ 0.4×
10−6 m – is scattered on the density fluctuations
of a gas in equilibrium; see Fig. 5 top. While
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Fig. 5 Light scattering and
scattering spectrum. Top:
schematic experimental
setup, Bottom:
experimental curves for
different pressures (see
text)
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most of the scattered light has the same frequency
as the incoming light, the scattering spectrum
also contains neighboring frequencies. For dense
gases – typically a gas under the pressure of 4 bar
or higher – the spectrum has three well-defined
peaks, like the uppermost curve in Fig. 5 bottom.
When the gas pressure is lowered, the peaks
become less pronounced; they degenerate into
shoulders, until eventually – for pressures less
than 1 bar – there is a single bump in the center.

As long as there are peaks, i.e., for dense
gases, the distance of the central and lateral peaks
determines the sound speed of the gas or its
temperature. From the half-width of the peaks
and their relative heights, we may read off the
viscosity and the thermal conductivity of the gas.
That should come as a surprise to the reader!

Indeed, he may well ask a question: How, if
the scattering spectrum represents properties of
density fluctuations in equilibrium, can it carry
information about macroscopic transport coeffi-
cients like the viscosity?

The answer lies in the Onsager hypothesis
according to which the mean regression of fluctu-
ations follows the same laws as the macroscopic
fields which – in our case – are the moments
Fi1i2...ip. We shall not go here into a discussion
of that controversial hypothesis. Let it suffice to
say that, without it, the interpretation of light
scattering spectra in terms of the moments would
be impossible. We accept the hypothesis, since it
furnishes good results as we shall see.

If we compare the observed scattering spec-
tra for a dense gas with the predictions of the
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Fig. 6 Scattering spectra for xenon in extended thermodynamics for a low pressure. Dots represent measurements by
Clark (1975). Left: spectra for 20, 35, 56, and 84 moments. Right: spectra for 120, 165, 220, and 286 moments

Navier-Stokes equations, we obtain an excellent
agreement. Moreover the transport coefficients so
determined agree well with their values obtained
by more conventional means than light scattering,
or those calculated from the kinetic theory of
gases.

However, for a rarefied gas, the agreement
is not good, if we still use the Navier-Stokes-
Fourier equations. It is true that the expected
gross features do appear: For a stronger degree
of rarefaction, the three peaks of the spectrum
degenerate into shoulders and, eventually, into
a bump, even for Navier-Stokes. But the finer
details are all wrong. We may well consider
this as an opportunity to check out the validity
of the equations of extended thermodynamics –
and of the Onsager relations – both at the same
time.

A prototypical case for the linearized equa-
tions is the 20-moment system shown in Fig. 1
and used there illustratively for the identification
of various special cases. Equations like that for
any specific number of moments are available,
e.g., v = 20, 35, 56, 84, and their scattering
spectra are shown in Fig. 6. Not two of them agree
among themselves, and none of them agrees with
the measured dots.

Ordinarily a situation like this calls for an
adjustment of parameters, but that is impossi-
ble in the present case, because there are no
free parameters, e.g., see Fig. 1. Indeed, extended
thermodynamics of moments is a theory of the-
ories with only one parameter: the number of

equations. So, if we push up that number to
v = 120, 165, 220, 286 and calculate the scat-
tering spectra, we obtain convergence of results
at v = 120 in the sense that more moments do
not change the scattering spectrum and – what is
more – they all agree with the measured values;
see Fig. 6.

In other words, for a given pressure our theory
of theories provides the possibility to determine
its own range of validity, something that is
usually said a theory cannot possibly do. Here,
however, if we have two successive theories
which provide the same results, the lower one
is good enough: and we can say that without
conducting a single experiment.

All of this is most satisfactory, but there is also
disappointment. Indeed, we might have hoped
that 13, or 14, or 20 moments might bring about
a great improvement over the Navier-Stokes-
Fourier solution and a good representation of
experimental results. Instead we need hundreds
of moments for even moderately rarefied gases.
The microstructure of the gas is deeply hidden
indeed.

Stationary Heat Conduction Between
Coaxial Cylinders
All problems of extended thermodynamics
discussed heretofore – wave speeds, shock
structures, and light scattering – did not require
boundary conditions or had trivial ones. On
the other hand, even simple problems like heat



System of Symmetric Hyperbolic Equations, Extended Thermodynamics of Gases 2429

S

conduction between coaxial cylinders need that
input.

Stationary heat conduction between coaxial
cylinders has turned out to be a paradigmatic case
for extended thermodynamics.

Boundary conditions present a problem in
extended thermodynamics, because no moment
beyond the heat flux can be prescribed and
controlled on the boundary. Therefore it would
seem that the 13-moment theory represents
the ultimate useful extension for boundary
value problems, and that might not be enough,
according to the remarks on light scattering. Even
that theory, however, provides an interesting
modification of Fourier’s law as was shown
by Müller and Ruggeri (2004). The modified
law reads for the radial heat flux q1 in the
gas between coaxial cylinders. ( Of course,
cylindrical coordinates are appropriate for this
case, so that q1 and t<11> are contravariant
components of the heat flux and the stress.
t<11> does not vanish in the 13-moment theory,
although it does in the Navier-Stokes theory.)

q1 = −5

2

k

μ
pτ

(
1 − 7

5

t<ij>

p

)
dT

dr
. (46)

The analysis shows that the modification
becomes effective near the inner cylinder, where
the temperature field is very steep. This is to be
expected; see the comments concerning Fig. 1.

Beyond 13 moments the boundary values
cannot be controlled; we must assume that the
boundary values adjust themselves, in a manner
of speaking. Barbera et al. (2004) have suggested
that the boundary values in such cases fluctuate
with the thermal motion and that the gas between
the cylinders feels the most probable value
determined by a maximum of entropy. There is
not enough space to enter into that argument here.

The effects of inertial terms on the thermody-
namic fields, put in evidence in (42), remain to be
investigated systematically. Two results, however,
have been established. First of all, the Fourier
law is affected because the heat flux between
coaxial rotating cylinders is no longer antiparallel
to the temperature gradient; it acquires a frame-
dependent component perpendicular to that gra-

dient on account of the Coriolis force on the
atomic motion; see Müller (1972). Secondly, it
turns out that rigid rotation of the gas between
the rotating coaxial cylinders is impossible, when
heat conduction occurs between them; see Bar-
bera and Müller (2006).

It is true that dissipation disguises the iner-
tial effects. If dissipation could be reduced, or
avoided altogether, it is suggested that the motion
of the gas between rotating cylinders breaks up
into vortices as happens in liquid helium. This
remains to be proven.
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