
Automata and Program Analysis

Thomas Colcombet1(B), Laure Daviaud2, and Florian Zuleger3

1 IRIF, Case 7014 Université Paris Diderot, 75205 Paris Cedex 13, France
thomas.colcombet@irif.fr

2 MIMUW, Banacha 2, 02-097 Warszawa, Poland
ldaviaud@mimuw.edu.pl

3 Institut für Informationssysteme 184/4, Technische Universität Wien,
Favoritenstraße 9–11, 1040 Wien, Austria

zuleger@forsyte.at

Abstract. We show how recent results concerning quantitative forms of
automata help providing refined understanding of the properties of a sys-
tem (for instance, a program). In particular, combining the size-change
abstraction together with results concerning the asymptotic behavior
of tropical automata yields extremely fine complexity analysis of some
pieces of code.

This abstract gives an informal, yet precise, explanation of why ter-
mination and complexity analysis are related to automata theory.

1 Program Analysis and Termination

Program analysis is concerned with the automatic inference of properties of a
chunk of code (or of a full program). Such analysis may serve many purposes,
such as guaranteeing that some division by zero cannot occur in the execution of
a program, or that types are properly used (when the language is not statically
typed), or that there is no memory leakage, etc. Here, to start with, we are con-
cerned with termination analysis, i.e., proving that all executions of a program
(or pieces of a program) eventually halt.

Consider the following code C:

void f() {

uint x,y;

x = read_input();

y = read_input();

while (x > 0) {

if (y > 0) { // branch a

y--;

}

else { // branch b

x--;

y = read_input();

}

}

}

c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 3–10, 2017.
DOI: 10.1007/978-3-662-55751-8 1

4 T. Colcombet et al.

It is clear for a human being that this piece of code eventually terminates
whatever are the input values read during its execution. The question is how
this can be automatically inferred? Of course, such a problem is in general unde-
cidable unless restrictions are assumed (using variations around the theorem of
Rice). The path we follow here consists in approximating the behavior of this
code using size-change abstraction. We shall see that this abstraction transforms
the code into a formalism, the size-change abstraction, for which termination is
decidable.

2 Size-Change Abstraction

The size-change abstraction amounts to abstract a piece of code in the following
manner:

– We identify some size-change variables that are considered of interest, that
range over non-negative integers (in our example x and y). In general, size-
change variables can represent any norm on the program state (a function
which maps the state to the non-negative integers), such as the length of a
list, the height of a tree, the sum of two non-negative variables, etc.

– We construct the control-flow graph (possibly simplified) of the code: vertices
are positions in the code, and edges are steps of computations. We also identify
some entry and exit vertices of the graph as one can expect.

– We abstract tests, i.e., we replace all tests by non-determinism. This means
that we consider possible executions independently of whether the tests in if
statements or in while loops are true or not.

– Finally, each edge of the control-flow graph is labeled by guards expressing
how the values of the size-change variables may evolve while taking the edge.
The language for these relations is very restricted: it consists of a conjunction
of properties of the form x � y′ or x > y′ where x, y, . . . represent the value
of the variables before the edge is taken, while x′, y′, . . . represent the value of
the variables after the edge is taken. We add guards conservatively in order
to ensure the correctness of the abstraction, i.e., we only add a x � y′ to
some edge guard if we can guarantee that the value of y is not greater than
the value of x before edge is taken, and similarly for x > y′.

For the code C, we obtain the following size-change abstraction S:

We comment on the size-change abstraction S of code C. Here, we only con-
sider one position in the code, which is the beginning of the while loop. This
needs not be the case in general. The two edges a and b correspond respectively
to executing the if branch and the else branch of code C. In the first case

Automata and Program Analysis 5

(edge a), the value of y strictly decreases while the value of x does not change.
In the second case (edge b), the value of x strictly decreases while we have no
information about the value that y might take after the transition (because of
the ‘y = read input()’ in the code). We see that the two transitions a and b of
S are an abstraction of the branches a and b of C: If the code C executes branch
a resp. b and the variable values (x, y) change to some (x′, y′), then transition a
resp. b of S also allows the variable values (x, y) to change to (x′, y′). This has
the following important consequence for termination analysis: Every execution
of C is also an execution of S. Thus, if we can show that S terminates, then we
can deduce the termination of C.

In the following we explain how to reason about the termination of the size-
change abstraction S.

In order to be precise, we have to define the semantics of the model. We call
execution path of the size-change abstraction a sequence of edges that (1) starts
in an entry vertex, and (2) is formed of compatible edges, meaning that for any
two consecutive edges in the sequence, the target of the first one should coincide
with the source of the second one. Such an execution path is halting if it is
finite and ends in an exit vertex. Such a definition of an execution path does not
yet capture the semantics of variables. For this, we shall consider the traces that
realize an execution. Formally, a trace of the size-change abstraction is a sequence
of configurations consisting of a vertex and a valuation of the variables by non-
negative integers, that respect the transitions of the size-change abstraction.
This is best seen in an example. Consider the execution path aabaabaa. One
possible trace that realizes this execution is the following one (where the second
component represents the value of the variable x and the third one the value of
the variable y):

We say that the size-change abstraction terminates if every execution path
that is realized by a trace is finite. As argued above, this implies that the program
also terminates since all the executions of the program are captured by the
abstraction. Of course, the converse does not hold, in particular because we
threw away a good part of the original semantics, and thus many reasons for the
program to terminate are not recovered.

3 Max-Plus Automata

The above definition of size-change abstraction does not make the termination
property obviously decidable, yet. What we show now is how this question can
be reduced to a problem of universality in automata theory. The key concept
behind this last reduction is that the pattern that prevents an execution path to
be realizable would be an infinite sequence of variables that are related by the
guards via (non-necessarily stricts) inequalities, and infinitely many times by
strict inequalities (finite sequences of arbitrarily large number of strict inequali-
ties would also be a witness in some cases). Indeed, such a sequence would mean

6 T. Colcombet et al.

the existence in a trace of an infinite decreasing sequence of non-negative inte-
gers; a contradiction. For instance, the following infinite execution path of the
size-change abstraction:

n0 times
︷ ︸︸ ︷

a . . . a b
n1 times

︷ ︸︸ ︷

a . . . a b
n2 times

︷ ︸︸ ︷

a . . . a b . . .

is impossible since the a edge contains the guard x � x′, and the b relation
x < x′. Hence, the following infinite sequence of relations is impossible:

x0

n0 inequalities
︷ ︸︸ ︷

� x1 � · · · �xn0−1 < xn0

n1 inequalities
︷ ︸︸ ︷

� xn0+1 � · · · � xn0+n1 < xn0+n1+1 � · · · ,

in which xi accounts for the value assumed by variable x at time i. No valuation of
the xi’s by non-negative integers can fulfill these constraints. For similar reasons,
an infinite execution path that would eventually consist only of the edge b would
be impossible, this time because of the variable y.

We shall now define an automaton model that can measure these “bad
sequences” of dependencies: max-plus automata1.

We will define a max-plus automaton that is able to “count” the maximal
length of such sequences of strict inequalities. The recipe is the following:

– The input alphabet is the set of edges of the size-change abstraction.
– The states of the automaton are the size-change variables, plus two extra

states, called � and ⊥.
– The transitions of the automaton are labeled by the edges of the size-change

abstraction, and there is a transition from state x to state y labeled by δ if the
guard of edge δ contains either ‘x � y′ ’ or ‘ x > y′ ’; Furthermore the state
� is the origin of all possible transitions to every state (including itself), and
⊥ is the target all possible transitions originating from any states (including
itself).

– Some transitions are marked special (or costly): the ones that arise from the
case ‘ x > y′ ’.2

– All states are marked both initial and final (the feature of initial and final
states, which is important in the theory of tropical automata, happens to be
irrelevant for this application).

In our case, this yields the automaton below, in which the ∗ symbol means ‘all
possible labels’, double arrows identify costly transitions, and we omitted to
represent initial and final states:

1 Though we take the principle, we do not use the standard notation of max-plus
automata, which are traditionally defined as automata weighted over the max-plus
semiring.

2 In the standard terminology, non-costly transitions would be given weight 0, while
costly ones would be attributed weight 1.

Automata and Program Analysis 7

In this automaton, a sequence of inequalities over size-change variables can
be witnessed by a path (formally, a run). Costly transitions correspond to strict
inequalities in the guards.

The semantics of this max-plus automaton is to count the number of costly
transitions and to maximize this cost among all runs. Formally, an input of the
automaton is a sequence of edges of the size-change abstraction, such as the word
aaabaabaa (it is not necessarily an execution path so far). A priori, we consider
both finite and infinite sequences of edges. A run of the automaton over input u
is a sequence of transitions which forms a path in the graph of the automaton,
and it is accepting if either it is infinite and starts in an initial state or it is finite,
starts in an initial state and ends in a final one. The max-plus automaton A can
be used to compute a quantity given some input word u:

[[A]](u) = sup{cost(ρ) | ρ accepting run over the input u} ∈ N ∪ {∞} ,

where cost(ρ) = number of costly transitions in ρ.

For instance, over the input u = aaabaabaa, [[A]](u) = 3. It corresponds to a run
(there are in fact several of them) that assumes state y during the first three
letters of the word. This is the maximal one, since in our example the automaton
computes the maximum of the number of b-edges with the maximum of the
longest block of consecutive a-edges.

The following lemma formalizes the correction of this reduction to automata:

Lemma 1. The following properties are equivalent:

1. The size-change abstraction terminates.
2. All infinite execution paths u satisfy [[A]](u) = ∞.

It happens that Item 2 of Lemma 1 is decidable, from which we get:

Corollary 1 [9,10]. The termination of size-change abstractions is decidable.

Let us establish the decidability of Item 2. This requires some knowledge about
Büchi automata theory. The reader may as well proceed to the next section.

8 T. Colcombet et al.

In this proof, we rephrase the second item of Lemma 1 as an inclusion of
Büchi automata. The first Büchi automaton E accepts a sequence of edges if it
forms a valid infinite execution path of the size-change abstraction. The second
Büchi automaton, B, is syntactically the max-plus automaton seen as a Büchi
automaton, in which special transitions have to be visited infinitely often (the
Büchi condition): it accepts an infinite execution path u if there exists a run
containing infinitely many costly transitions. In particular, if u is accepted by B,
then [[A]](u) = ∞ (property �). In general the converse is not true, but one can
check that if u is ultimately periodic (i.e., of the form uvvv . . .), then [[A]](u) = ∞
implies u ∈ L(B) (property ��).

Let us now show that Item 2 of Lemma 1 is equivalent to:

L(E) ⊆ L(B).

Indeed, L(E) ⊆ L(B) means that all infinite execution paths u are accepted by B,
and thus [[A]](u) = ∞ by �. For the converse direction, assume that L(E) ⊆ L(B)
does not hold, i.e., there is an input that is accepted by E but not by B. It
is known from Büchi that in this case there exists such an input u which is
ultimately periodic. By ��, this means that [[A]](u) is finite, contradicting Item 2
of Lemma 1.

4 Complexity Analysis

Counting the number of costly transitions also gives an idea of the worst-case
complexity of the program. Indeed, a possible execution of the program corre-
sponds to an execution path of the size-change abstraction that is realized by a
trace, and the time complexity of the execution is nothing but the length of the
execution path.

To put this idea in action, let us consider the following slightly modified code:

void f(uint n) {
uint x,y;
x = read_input(n);
y = read_input(n);
while (x > 0) {

if (y > 0) { // branch a
y--;

}
else { // branch b

x--;
y = read_input(n);

}
}

}

This new code takes a non-negative integer as input, and the read input(n)
calls now guarantee that the value produced is in the interval {0, . . . , n}. A

Automata and Program Analysis 9

careful look at this code reveals that it terminates in O(n2) steps. We would like
the analysis to reach this level of precision.

In fact, everything is similar to the termination case we have explained up to
now. The only change is that the values of the variables are implicitly ranging
over the interval {0, . . . , n}. Under this assumption, the size-change abstraction
also terminates within a quadratic bound.

The reduction to a max-plus automaton also remains valid, as shown by this
variation around the ideas of Lemma1:

Lemma 2. The following properties are equivalent for all n and k:

– The size-change abstraction terminates within time bound k, assuming the
variable values range in {0, . . . , n}.

– All execution paths u such that [[A]](u) � n have length at most k.

However, we need now a much more delicate result of automata theory than
the inclusion of Büchi automata. Here follows what we can do:

Theorem 1 [7]. One can effectively compute, given as input a max-plus
automaton A, the value

lim inf
|u|→∞

log([[A]](u) + 1)
log |u|

which happens to be a rational in [0, 1] or ∞.

Now, as a corollary, we get:

Theorem 2 [7]. The length of the longest execution path realized by a trace
in a size-change abstraction is of order Θ(nα) if the variables are restricted to
take values in [0, n], where α � 1 is a rational number. Moreover, there is an
algorithm that given a terminating size-change abstraction computes such an α.

It can also be proved that all the rationals α ≥ 1 can be achieved by a given
size-change abstraction.

5 Related Work

The goal of this paper was to illustrate the size-change abstraction (SCA), which
is a popular technique for automated termination analysis. The last decade has
seen considerable interest in automated techniques for proving the termination
of programs. In this short paper we limit ourselves to describing the related
work on SCA. SCA has been introduced by Lee et al. [10]. SCA is employed
for the termination analysis of functional [10,11], logical [12] and imperative [1,
6] programs, term rewriting systems [5], and is implemented in the industrial-
strength systems ACL2 [11] and Isabelle [8]. Recently, SCA has also been used
for resource bound and complexity analysis of imperative programs [14], which
motivated the results on complexity analysis presented in this paper. SCA is an

10 T. Colcombet et al.

attractive domain for an automated analysis because of several strong theoretical
results on termination analysis [10], complexity analysis [7,13] and the extraction
of ranking functions [3,13]. Further research has investigated the generalization
of size-change constraints to richer classes of constraints, including difference
constraints [2], gap-order constraints [4] and monotonicity constraints [3].

References

1. Anderson, H., Khoo, S.-C.: Affine-based size-change termination. In: Ohori, A.
(ed.) APLAS 2003. LNCS, vol. 2895, pp. 122–140. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40018-9 9

2. Ben-Amram, A.M.: Size-change termination with difference constraints. ACM
Trans. Program. Lang. Syst. 30(3), 16 (2008)

3. Ben-Amram, A.M.: Monotonicity constraints for termination in the integer domain.
Logical Methods Comput. Sci. 7(3), 1–43 (2011)

4. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of
counter systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 88–103. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27940-9 7

5. Codish, M., Fuhs, C., Giesl, J., Schneider-Kamp, P.: Lazy abstraction for
size-change termination. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010.
LNCS, vol. 6397, pp. 217–232. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16242-8 16

6. Codish, M., Gonopolskiy, I., Ben-Amram, A.M., Fuhs, C., Giesl, J.: Sat-based
termination analysis using monotonicity constraints over the integers. TPLP 11(4–
5), 503–520 (2011)

7. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-
plus automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44522-8 18

8. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73595-3 34

9. Lee, C.S.: Ranking functions for size-change termination. ACM Trans. Program.
Lang. Syst. 31(3), 10:1–10:42 (2009)

10. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

11. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006). doi:10.1007/11817963 36

12. Vidal, G.: Quasi-terminating logic programs for ensuring the termination of partial
evaluation. In: PEPM, pp. 51–60 (2007)

13. Zuleger, F.: Asymptotically precise ranking functions for deterministic size-change
systems. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139,
pp. 426–442. Springer, Cham (2015). doi:10.1007/978-3-319-20297-6 27

14. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol.
6887, pp. 280–297. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23702-7 22

http://dx.doi.org/10.1007/978-3-540-40018-9_9
http://dx.doi.org/10.1007/978-3-642-27940-9_7
http://dx.doi.org/10.1007/978-3-642-16242-8_16
http://dx.doi.org/10.1007/978-3-642-16242-8_16
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1007/978-3-662-44522-8_18
http://dx.doi.org/10.1007/978-3-540-73595-3_34
http://dx.doi.org/10.1007/978-3-540-73595-3_34
http://dx.doi.org/10.1007/11817963_36
http://dx.doi.org/10.1007/978-3-319-20297-6_27
http://dx.doi.org/10.1007/978-3-642-23702-7_22

	Automata and Program Analysis
	1 Program Analysis and Termination
	2 Size-Change Abstraction
	3 Max-Plus Automata
	4 Complexity Analysis
	5 Related Work
	References

