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Preface

The 21st International Symposium on Fundamentals of Computation Theory
(FCT 2017) took place during September 11–13, 2017 in Bordeaux, France.

The Symposium on Fundamentals of Computation Theory (FCT) was established in
1977 for researchers interested in all aspects of theoretical computer science, and in
particular algorithms, complexity, and formal and logical methods. FCT is a biennial
conference. Previous symposia have been held in Gdansk, Liverpool, Oslo, Wrocław,
Budapest, and Lübeck.

The Program Committee (PC) of FCT 2017 received 99 submissions. Each sub-
mission was reviewed by at least three PC members and some trusted external referees,
and evaluated on its quality, originality, and relevance to the symposium. The PC
selected 29 papers, leading to an acceptance rate of 29%.

Four invited talks were given at FCT 2017, by Thomas Colcombet (CNRS,
University of Paris-Diderot), Martin Dietzfelbinger (Technische Universität Ilmenau),
Juraj Hromkovič (ETH Zürich), and Anca Muscholl (University of Bordeaux). There
was also one invited talk in memoriam of Zoltán Ésik given by Jean-Éric Pin (CNRS,
University of Paris-Diderot). This volume contains the papers of the five invited talks.

We thank the Steering Committee and its chair, Marek Karpinski, for giving us the
opportunity to serve as the program chairs of FCT 2017, and for the responsibilities of
selecting the Program Committee, the conference program, and publications.

The Program Committee selected two contributions for the best paper and the best
student paper awards, sponsored by Springer and IDEX Bordeaux.

– The best paper award went to Albert Atserias, Phokion Kolaitis, and Simone
Severini for their paper “Generalized Satisfiability Problems via Operator
Assignments”.

– The best student paper award was given to Matthias Bentert, Till Fluschnik, André
Nichterlein, and Rolf Niedermeier for their paper “Parameterized Aspects of Tri-
angle Enumeration”.

We gratefully acknowledge additional financial support from the following insti-
tutions: University of Bordeaux, LaBRI, CNRS, Bordeaux INP, GIS Albatros, EATCS,
Région Nouvelle-Aquitaine, and the French National Research Agency (ANR).

We would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the Program Committee, the external referees, and—
last but not least—the members of the Organizing Committee.

We would like to thank Springer for publishing the proceedings of FCT 2017 in
their ARCoSS/LNCS series and for their support.

Finally, we acknowledge the help of the EasyChair system for handling the sub-
mission of papers, managing the review process, and generating these proceedings.

September 2017 Ralf Klasing
Marc Zeitoun
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Automata and Program Analysis

Thomas Colcombet1, Laure Daviaud2, and Florian Zuleger3

1 IRIF, Case 7014, Université Paris Diderot, 75205 Paris Cedex 13, France
thomas.colcombet@irif.fr

2 MIMUW, Banacha 2, 02-097 Warszawa, Poland
ldaviaud@mimuw.edu.pl

3 Institut für Informationssysteme 184/4, Technische Universität Wien,
Favoritenstraße 9–11, 1040 Wien, Austria

zuleger@forsyte.at

Abstract. We show how recent results concerning quantitative forms of auto-
mata help providing refined understanding of the properties of a system (for
instance, a program). In particular, combining the size-change abstraction
together with results concerning the asymptotic behavior of tropical automata
yields extremely fine complexity analysis of some pieces of code.

This abstract gives an informal, yet precise, explanation of why termination
and complexity analysis are related to automata theory.



Optimal Dual-Pivot Quicksort:
Exact Comparison Count

Martin Dietzfelbinger

Technische Universität Ilmenau, Fakultät für Informatik und Automatisierung,
Fachgebiet Komplexitätstheorie und Effiziente Algorithmen, P.O. Box 100565,

98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

Abstract. Quicksort, proposed by Hoare in 1961, is a venerable sorting algo-
rithm - it has been thoroughly analyzed, it is taught in basic algorithms classes,
and it is routinely used in practice. Can there be anything new about Quicksort
today? Dual-pivot quicksort refers to variants of classical quicksort where in the
partitioning step two pivots are used to split the input into three segments.
Algorithms of this type had been studied by Sedgewick (1975) and by Hen-
nequin (1991), with no further consequences. They received new attention
starting from 2009, when a dual-pivot algorithm due to Yaroslavskiy, Bentley,
and Bloch replaced the well-engineered quicksort algorithm in Oracle’s Java 7
runtime library. An analysis of a variant of this algorithm by Nebel and Wild
from 2012, where the two pivots are chosen randomly, showed there are about
1:9n ln n comparisons on average for n input numbers. (Other works ensued.
Standard quicksort has 2n ln n expected comparisons. It should be noted that on
modern computers parameters other than the comparison count will determine
the running time.) In the center of the analysis is the partitioning procedure.
Given two pivots, it splits the input keys in “small” (smaller than small pivot),
“medium” (between the two pivots), “large” (larger than large pivot). We
identify a partitioning strategy with the minimum average number of key
comparisons in the case where the pivots are chosen from a random sample. The
strategy keeps count of how many large and small elements were seen before
and prefers the corresponding pivot. The comparison count is closely related to a
“random walk” on the integers which keeps track of the difference of large and
small elements seen so far. An alternative way of understanding what is going
on is a Pólya urn with three colors. For the fine analysis it is essential to
understand the expected number of times this random walk hits zero. The
expected number of comparisons can be determined exactly and as a formula up
to lower terms: It is 1:8n ln nþ 2:38::nþ 1:675 ln nþOð1Þ. Extensions to larger
numbers of pivots will be discussed.

Based on joint work with Martin Aumüller, Daniel Krenn, Clemens Heuberger, and Helmut Prodinger.



What One Has to Know When Attacking
P vs. NP (Extended Abstract)

Juraj Hromkovič1, and Peter Rossmanith2

1 Department of Computer Science, ETH Zürich,
Universitätstrasse 6, 8092 Zürich, Switzerland

juraj.hromkovic@inf.ethz.ch
2 Department of Computer Science, RWTH Aachen University. 52056 Aachen,

Germany
rossmani@cs.rwth-aachen.de

Abstract.Mathematics was developed as a strong research instrument with fully
verifiable argumentations. We call any consistent and sufficiently powerful
formal theory that enables to algorithmically verify for any given text whether it
is a proof or not algorithmically verifiable mathematics (AV-mathematics for
short). We say that a decision problem L�R� is almost everywhere solvable if
for all but finitely many inputs x 2 R� one can prove either “x 2 L” or “x 62 L” in
AV-mathematics.

First, we formalize Rice’s theorem on unprovability, claiming that each
nontrivial semantic problem about programs is not almost everywhere solvable
in AV-mathematics. Using this, we show that there are infinitely many algo-
rithms (programs that are provably algorithms) for which there do not exist
proofs that they work in polynomial time or that they do not work in polynomial
time. We can prove the same also for linear time or any time-constructible
function.

Note that, if P 6¼ NP is provable in AV-mathematics, then for each algorithm
A it is provable that “A does not solve SATISFIABILITY or A does not work in
polynomial time”. Interestingly, there exist algorithms for which it is neither
provable that they do not work in polynomial time, nor that they do not solve
SATISFIABILITY. Moreover, there is an algorithm solving SATISFIABILITY
for which one cannot prove in AV-mathematics that it does not work in poly-
nomial time.

Furthermore, we show that P = NP implies the existence of algorithms X for
which the true claim “X solves SATISFIABILITY in polynomial time” is not
provable in AV-mathematics. Analogously, if the multiplication of two decimal
numbers is solvable in linear time, one cannot decide in AV-mathematics for
infinitely many algorithms X whether “X solves multiplication in linear time”.

Finally, we prove that if P vs. NP is not solvable in AV-mathematics, then P
is a proper subset of NP in the world of complexity classes based on algorithms
whose behavior and complexity can be analyzed in AV-mathematics. On the
other hand, if P = NP is provable, we can construct an algorithm that provably
solves SATISFIABILITY almost everywhere in polynomial time.



A Tour of Recent Results on Word Transducers

Anca Muscholl

LaBRI, University of Bordeaux, Bordeaux, France
anca.muscholl@gmail.com

Abstract. Regular word transductions extend the robust notion of regular lan-
guages from acceptors to transformers. They were already considered in early
papers of formal language theory, but turned out to be much more challenging.
The last decade brought considerable research around various transducer
models, aiming to achieve similar robustness as for automata and languages.

In this talk we survey some recent results on regular word transducers. We
discuss how classical connections between automata, logic and algebra extend to
transducers, as well as some genuine definability questions. For a recent, more
detailed overview of the theory of regular word transductions the reader is
referred to the excellent survey of E. Filiot and P.-A. Reynier (Siglog News 3,
July 2016).

Based on joint work with Félix Baschenis, Olivier Gauwin and Gabriele Puppis. Work partially
supported by the Institute of Advance Studies of the Technische Universität München and the project
DeLTA (ANR-16-CE40-0007).



Some Results of Zoltán Ésik on Regular
Languages

Jean-Éric Pin

IRIF, CNRS, Paris, France
Jean-Eric.Pin@irif.fr

Abstract. Zoltán Ésik published 2 books as an author, 32 books as editor and
over 250 scientific papers in journals, chapters and conferences. It was of course
impossible to survey such an impressive list of results and in this lecture, I will
only focus on a very small portion of Zoltán’s scientific work. The first topic
will be a result from 1998, obtained by Zoltán jointly with Imre Simon, in which
he solved a twenty year old conjecture on the shuffle operation. The second topic
will be his algebraic study of various fragments of logic on words. Finally I will
briefly describe some results on commutative languages obtained by Zoltán,
Jorge Almeida and myself.
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Abstract. We show how recent results concerning quantitative forms of
automata help providing refined understanding of the properties of a sys-
tem (for instance, a program). In particular, combining the size-change
abstraction together with results concerning the asymptotic behavior
of tropical automata yields extremely fine complexity analysis of some
pieces of code.

This abstract gives an informal, yet precise, explanation of why ter-
mination and complexity analysis are related to automata theory.

1 Program Analysis and Termination

Program analysis is concerned with the automatic inference of properties of a
chunk of code (or of a full program). Such analysis may serve many purposes,
such as guaranteeing that some division by zero cannot occur in the execution of
a program, or that types are properly used (when the language is not statically
typed), or that there is no memory leakage, etc. Here, to start with, we are con-
cerned with termination analysis, i.e., proving that all executions of a program
(or pieces of a program) eventually halt.

Consider the following code C:

void f() {

uint x,y;

x = read_input();

y = read_input();

while (x > 0) {

if (y > 0) { // branch a

y--;

}

else { // branch b

x--;

y = read_input();

}

}

}

c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 3–10, 2017.
DOI: 10.1007/978-3-662-55751-8 1
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It is clear for a human being that this piece of code eventually terminates
whatever are the input values read during its execution. The question is how
this can be automatically inferred? Of course, such a problem is in general unde-
cidable unless restrictions are assumed (using variations around the theorem of
Rice). The path we follow here consists in approximating the behavior of this
code using size-change abstraction. We shall see that this abstraction transforms
the code into a formalism, the size-change abstraction, for which termination is
decidable.

2 Size-Change Abstraction

The size-change abstraction amounts to abstract a piece of code in the following
manner:

– We identify some size-change variables that are considered of interest, that
range over non-negative integers (in our example x and y). In general, size-
change variables can represent any norm on the program state (a function
which maps the state to the non-negative integers), such as the length of a
list, the height of a tree, the sum of two non-negative variables, etc.

– We construct the control-flow graph (possibly simplified) of the code: vertices
are positions in the code, and edges are steps of computations. We also identify
some entry and exit vertices of the graph as one can expect.

– We abstract tests, i.e., we replace all tests by non-determinism. This means
that we consider possible executions independently of whether the tests in if
statements or in while loops are true or not.

– Finally, each edge of the control-flow graph is labeled by guards expressing
how the values of the size-change variables may evolve while taking the edge.
The language for these relations is very restricted: it consists of a conjunction
of properties of the form x � y′ or x > y′ where x, y, . . . represent the value
of the variables before the edge is taken, while x′, y′, . . . represent the value of
the variables after the edge is taken. We add guards conservatively in order
to ensure the correctness of the abstraction, i.e., we only add a x � y′ to
some edge guard if we can guarantee that the value of y is not greater than
the value of x before edge is taken, and similarly for x > y′.

For the code C, we obtain the following size-change abstraction S:

We comment on the size-change abstraction S of code C. Here, we only con-
sider one position in the code, which is the beginning of the while loop. This
needs not be the case in general. The two edges a and b correspond respectively
to executing the if branch and the else branch of code C. In the first case
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(edge a), the value of y strictly decreases while the value of x does not change.
In the second case (edge b), the value of x strictly decreases while we have no
information about the value that y might take after the transition (because of
the ‘y = read input()’ in the code). We see that the two transitions a and b of
S are an abstraction of the branches a and b of C: If the code C executes branch
a resp. b and the variable values (x, y) change to some (x′, y′), then transition a
resp. b of S also allows the variable values (x, y) to change to (x′, y′). This has
the following important consequence for termination analysis: Every execution
of C is also an execution of S. Thus, if we can show that S terminates, then we
can deduce the termination of C.

In the following we explain how to reason about the termination of the size-
change abstraction S.

In order to be precise, we have to define the semantics of the model. We call
execution path of the size-change abstraction a sequence of edges that (1) starts
in an entry vertex, and (2) is formed of compatible edges, meaning that for any
two consecutive edges in the sequence, the target of the first one should coincide
with the source of the second one. Such an execution path is halting if it is
finite and ends in an exit vertex. Such a definition of an execution path does not
yet capture the semantics of variables. For this, we shall consider the traces that
realize an execution. Formally, a trace of the size-change abstraction is a sequence
of configurations consisting of a vertex and a valuation of the variables by non-
negative integers, that respect the transitions of the size-change abstraction.
This is best seen in an example. Consider the execution path aabaabaa. One
possible trace that realizes this execution is the following one (where the second
component represents the value of the variable x and the third one the value of
the variable y):

We say that the size-change abstraction terminates if every execution path
that is realized by a trace is finite. As argued above, this implies that the program
also terminates since all the executions of the program are captured by the
abstraction. Of course, the converse does not hold, in particular because we
threw away a good part of the original semantics, and thus many reasons for the
program to terminate are not recovered.

3 Max-Plus Automata

The above definition of size-change abstraction does not make the termination
property obviously decidable, yet. What we show now is how this question can
be reduced to a problem of universality in automata theory. The key concept
behind this last reduction is that the pattern that prevents an execution path to
be realizable would be an infinite sequence of variables that are related by the
guards via (non-necessarily stricts) inequalities, and infinitely many times by
strict inequalities (finite sequences of arbitrarily large number of strict inequali-
ties would also be a witness in some cases). Indeed, such a sequence would mean
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the existence in a trace of an infinite decreasing sequence of non-negative inte-
gers; a contradiction. For instance, the following infinite execution path of the
size-change abstraction:

n0 times
︷ ︸︸ ︷

a . . . a b
n1 times

︷ ︸︸ ︷

a . . . a b
n2 times

︷ ︸︸ ︷

a . . . a b . . .

is impossible since the a edge contains the guard x � x′, and the b relation
x < x′. Hence, the following infinite sequence of relations is impossible:

x0

n0 inequalities
︷ ︸︸ ︷

� x1 � · · · �xn0−1 < xn0

n1 inequalities
︷ ︸︸ ︷

� xn0+1 � · · · � xn0+n1 < xn0+n1+1 � · · · ,

in which xi accounts for the value assumed by variable x at time i. No valuation of
the xi’s by non-negative integers can fulfill these constraints. For similar reasons,
an infinite execution path that would eventually consist only of the edge b would
be impossible, this time because of the variable y.

We shall now define an automaton model that can measure these “bad
sequences” of dependencies: max-plus automata1.

We will define a max-plus automaton that is able to “count” the maximal
length of such sequences of strict inequalities. The recipe is the following:

– The input alphabet is the set of edges of the size-change abstraction.
– The states of the automaton are the size-change variables, plus two extra

states, called � and ⊥.
– The transitions of the automaton are labeled by the edges of the size-change

abstraction, and there is a transition from state x to state y labeled by δ if the
guard of edge δ contains either ‘x � y′ ’ or ‘ x > y′ ’; Furthermore the state
� is the origin of all possible transitions to every state (including itself), and
⊥ is the target all possible transitions originating from any states (including
itself).

– Some transitions are marked special (or costly): the ones that arise from the
case ‘ x > y′ ’.2

– All states are marked both initial and final (the feature of initial and final
states, which is important in the theory of tropical automata, happens to be
irrelevant for this application).

In our case, this yields the automaton below, in which the ∗ symbol means ‘all
possible labels’, double arrows identify costly transitions, and we omitted to
represent initial and final states:

1 Though we take the principle, we do not use the standard notation of max-plus
automata, which are traditionally defined as automata weighted over the max-plus
semiring.

2 In the standard terminology, non-costly transitions would be given weight 0, while
costly ones would be attributed weight 1.
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In this automaton, a sequence of inequalities over size-change variables can
be witnessed by a path (formally, a run). Costly transitions correspond to strict
inequalities in the guards.

The semantics of this max-plus automaton is to count the number of costly
transitions and to maximize this cost among all runs. Formally, an input of the
automaton is a sequence of edges of the size-change abstraction, such as the word
aaabaabaa (it is not necessarily an execution path so far). A priori, we consider
both finite and infinite sequences of edges. A run of the automaton over input u
is a sequence of transitions which forms a path in the graph of the automaton,
and it is accepting if either it is infinite and starts in an initial state or it is finite,
starts in an initial state and ends in a final one. The max-plus automaton A can
be used to compute a quantity given some input word u:

[[A]](u) = sup{cost(ρ) | ρ accepting run over the input u} ∈ N ∪ {∞} ,

where cost(ρ) = number of costly transitions in ρ.

For instance, over the input u = aaabaabaa, [[A]](u) = 3. It corresponds to a run
(there are in fact several of them) that assumes state y during the first three
letters of the word. This is the maximal one, since in our example the automaton
computes the maximum of the number of b-edges with the maximum of the
longest block of consecutive a-edges.

The following lemma formalizes the correction of this reduction to automata:

Lemma 1. The following properties are equivalent:

1. The size-change abstraction terminates.
2. All infinite execution paths u satisfy [[A]](u) = ∞.

It happens that Item 2 of Lemma 1 is decidable, from which we get:

Corollary 1 [9,10]. The termination of size-change abstractions is decidable.

Let us establish the decidability of Item 2. This requires some knowledge about
Büchi automata theory. The reader may as well proceed to the next section.
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In this proof, we rephrase the second item of Lemma 1 as an inclusion of
Büchi automata. The first Büchi automaton E accepts a sequence of edges if it
forms a valid infinite execution path of the size-change abstraction. The second
Büchi automaton, B, is syntactically the max-plus automaton seen as a Büchi
automaton, in which special transitions have to be visited infinitely often (the
Büchi condition): it accepts an infinite execution path u if there exists a run
containing infinitely many costly transitions. In particular, if u is accepted by B,
then [[A]](u) = ∞ (property �). In general the converse is not true, but one can
check that if u is ultimately periodic (i.e., of the form uvvv . . . ), then [[A]](u) = ∞
implies u ∈ L(B) (property ��).

Let us now show that Item 2 of Lemma 1 is equivalent to:

L(E) ⊆ L(B).

Indeed, L(E) ⊆ L(B) means that all infinite execution paths u are accepted by B,
and thus [[A]](u) = ∞ by �. For the converse direction, assume that L(E) ⊆ L(B)
does not hold, i.e., there is an input that is accepted by E but not by B. It
is known from Büchi that in this case there exists such an input u which is
ultimately periodic. By ��, this means that [[A]](u) is finite, contradicting Item 2
of Lemma 1.

4 Complexity Analysis

Counting the number of costly transitions also gives an idea of the worst-case
complexity of the program. Indeed, a possible execution of the program corre-
sponds to an execution path of the size-change abstraction that is realized by a
trace, and the time complexity of the execution is nothing but the length of the
execution path.

To put this idea in action, let us consider the following slightly modified code:

void f(uint n) {
uint x,y;
x = read_input(n);
y = read_input(n);
while (x > 0) {

if (y > 0) { // branch a
y--;

}
else { // branch b

x--;
y = read_input(n);

}
}

}

This new code takes a non-negative integer as input, and the read input(n)
calls now guarantee that the value produced is in the interval {0, . . . , n}. A
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careful look at this code reveals that it terminates in O(n2) steps. We would like
the analysis to reach this level of precision.

In fact, everything is similar to the termination case we have explained up to
now. The only change is that the values of the variables are implicitly ranging
over the interval {0, . . . , n}. Under this assumption, the size-change abstraction
also terminates within a quadratic bound.

The reduction to a max-plus automaton also remains valid, as shown by this
variation around the ideas of Lemma1:

Lemma 2. The following properties are equivalent for all n and k:

– The size-change abstraction terminates within time bound k, assuming the
variable values range in {0, . . . , n}.

– All execution paths u such that [[A]](u) � n have length at most k.

However, we need now a much more delicate result of automata theory than
the inclusion of Büchi automata. Here follows what we can do:

Theorem 1 [7]. One can effectively compute, given as input a max-plus
automaton A, the value

lim inf
|u|→∞

log([[A]](u) + 1)
log |u|

which happens to be a rational in [0, 1] or ∞.

Now, as a corollary, we get:

Theorem 2 [7]. The length of the longest execution path realized by a trace
in a size-change abstraction is of order Θ(nα) if the variables are restricted to
take values in [0, n], where α � 1 is a rational number. Moreover, there is an
algorithm that given a terminating size-change abstraction computes such an α.

It can also be proved that all the rationals α ≥ 1 can be achieved by a given
size-change abstraction.

5 Related Work

The goal of this paper was to illustrate the size-change abstraction (SCA), which
is a popular technique for automated termination analysis. The last decade has
seen considerable interest in automated techniques for proving the termination
of programs. In this short paper we limit ourselves to describing the related
work on SCA. SCA has been introduced by Lee et al. [10]. SCA is employed
for the termination analysis of functional [10,11], logical [12] and imperative [1,
6] programs, term rewriting systems [5], and is implemented in the industrial-
strength systems ACL2 [11] and Isabelle [8]. Recently, SCA has also been used
for resource bound and complexity analysis of imperative programs [14], which
motivated the results on complexity analysis presented in this paper. SCA is an
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attractive domain for an automated analysis because of several strong theoretical
results on termination analysis [10], complexity analysis [7,13] and the extraction
of ranking functions [3,13]. Further research has investigated the generalization
of size-change constraints to richer classes of constraints, including difference
constraints [2], gap-order constraints [4] and monotonicity constraints [3].
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Abstract. Mathematics was developed as a strong research instrument
with fully verifiable argumentations. We call any consistent and suffi-
ciently powerful formal theory that enables to algorithmically verify for
any given text whether it is a proof or not algorithmically verifiable math-
ematics (AV-mathematics for short). We say that a decision problem
L ⊆ Σ∗ is almost everywhere solvable if for all but finitely many inputs
x ∈ Σ∗ one can prove either “x ∈ L” or “x �∈ L” in AV-mathematics.

First, we formalize Rice’s theorem on unprovability, claiming that
each nontrivial semantic problem about programs is not almost every-
where solvable in AV-mathematics. Using this, we show that there are
infinitely many algorithms (programs that are provably algorithms) for
which there do not exist proofs that they work in polynomial time or
that they do not work in polynomial time. We can prove the same also
for linear time or any time-constructible function.

Note that, if P �= NP is provable in AV-mathematics, then for each
algorithm A it is provable that “A does not solve SATISFIABILITY or A
does not work in polynomial time”. Interestingly, there exist algorithms
for which it is neither provable that they do not work in polynomial
time, nor that they do not solve SATISFIABILITY. Moreover, there is
an algorithm solving SATISFIABILITY for which one cannot prove in
AV-mathematics that it does not work in polynomial time.

Furthermore, we show that P = NP implies the existence of algorithms
X for which the true claim “X solves SATISFIABILITY in polynomial
time” is not provable in AV-mathematics. Analogously, if the multiplica-
tion of two decimal numbers is solvable in linear time, one cannot decide
in AV-mathematics for infinitely many algorithms X whether “X solves
multiplication in linear time”.

Finally, we prove that if P vs. NP is not solvable in AV-mathematics,
then P is a proper subset of NP in the world of complexity classes based
on algorithms whose behavior and complexity can be analyzed in AV-
mathematics. On the other hand, if P = NP is provable, we can construct
an algorithm that provably solves SATISFIABILITY almost everywhere
in polynomial time.

c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 11–28, 2017.
DOI: 10.1007/978-3-662-55751-8 2
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1 Introduction

Mathematics was developed as a special language in which each word and thus
each sentence has a clear, unambiguous meaning, at least for anybody who mas-
tered this language. The goal was not only to communicate with unambiguous
interpretations, but to create a powerful research instrument that enables every-
body to verify any claim formulated in this language.

This way, experiments and mathematics became the main tools for discover-
ing the world and for creating our technical world. The dream of Leibniz was to
develop such a formal language, in which almost every problem can be formu-
lated and successfully analyzed by a powerful calculus (thus his famous words
“Let us calculate, without further ado, to see who is right.”). After introducing
logic as a calculus for verifying the validity of claims and proofs, there was hope
to create mathematics as a perfect research instrument (see, for instance, Hilbert
[5]). In 1930, Gödel [4] showed that mathematics will never be perfect, that is,
that the process of increasing the power of mathematics as a research instrument
is infinite. An important fact is that, in each nontrivial mathematics based on
finitely many axioms, one can formulate claims in the language of mathematics
whose validity cannot be verified inside the same mathematics.

Since the introduction of the concept of computational complexity, computer
scientists have not been able to prove nontrivial lower bounds on the complexity
of concrete problems. For instance, we are unable to prove that the multiplica-
tion of two decimal numbers cannot be computed in linear time, that matrix
multiplication cannot be computed in O(n2) time, or that reachability cannot
be solved in logarithmic space. In this paper, we strive to give an explanation
for this trouble by showing that the concept of computational complexity may
be too complex for being successfully mastered by mathematics. In particular,
this means that open problems like P vs. NP or DLOG vs. NLOG could be too
hard to be investigated inside of current mathematics. In fact, we strive to prove
results about the unprovability of some mathematical claims like Gödel [4] did.
However, the difference is that we do not focus on meta-statements about math-
ematics itself, but on concrete fundamental problems of complexity theory that
are open for more than 40 years. Interestingly, fundamental contributions in this
direction were made by Baker et al. [2], who showed that proof techniques that
are sensible to relativization cannot help to solve the P vs. NP problem, and by
Razborov and Rudich [8], who showed that natural proofs covering all proof tech-
niques used in complexity theory cannot help to prove P �= NP. Aaronson gives
an excellent survey on this topic [1]. Here, we first prove that there are infinitely
many algorithms whose asymptotic time complexity or space complexity cannot
be analyzed in mathematics. Our results pose the right questions. How hard
could it be to prove a superlinear lower bound on multiplication of two decimal
numbers (that is, the nonexistence of linear time algorithms for multiplication)
if there exist algorithms for which mathematics cannot find out whether they
work in linear time or not, or even recognize what they really do? Similarly, we
can discuss SATISFIABILITY and polynomial time, or REACHABILITY and
logarithmic space.
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In what follows, we focus on the unprovability of theorems in AV-
mathematics. First, we reformulate Rice’s theorem [9] about the undecidability of
nontrivial semantic problems about programs (Turing machines) to unprovabil-
ity. More precisely, we say that a decision problem L ⊆ Σ∗ is almost everywhere
solvable in AV-mathematics if for all but finitely many inputs x ∈ Σ∗, one can
prove either “x ∈ L” or “x �∈ L” in AV-mathematics. Here, we prove that each
nontrivial semantic problem about programs is not almost everywhere solvable.
This means, for instance, that there exist infinitely many programs for which
one cannot prove whether they compute a constant function or not. Note that
this has a deep consequence for our judgement about undecidability. Originally
one was allowed to view the existence of an algorithm as a reduction of the infin-
ity of the problem (given by its infinite set of problem instances) to finiteness
(given by the finite description of the algorithm). In this sense, one can view the
undecidability of a problem as the impossibility to reduce the infinite variety
of a problem to a finite size. Here, we see another true reason. If, for particu-
lar problem instances, one cannot discover in AV-mathematics what the correct
output is, then, for sure, there does not exist any provably correct algorithm for
the problem.

We use Rice’s theorem on unprovability as the first step for establishing the
hardness of the analysis of computational complexity in AV-mathematics. We
will succeed to switch from programs to algorithms as inputs,1 and ask which
questions about algorithms are not solvable almost everywhere. We prove results
such as

(i) for each time-constructible function f(n) ≥ n, the problem whether a given
algorithm works in time O(f(n)) is not almost everywhere solvable in AV-
mathematics, and

(ii) the problem whether a given algorithm solves SATISFIABILITY
(REACHABILITY, multiplication of decimal numbers, etc.) is not almost
everywhere solvable in AV-mathematics.

Particularly, this also means that there are infinitely many algorithms for
which one cannot distinguish in AV-mathematics whether they work in polyno-
mial time or not. Note that this is essential because, if P �= NP is provable in
AV-mathematics, then, for each algorithm A, the statement

“A does not work in polynomial time
or A does not solve SATISFIABILITY”

(∗)

would be provable in AV-mathematics.
In this paper, we show that there exist algorithms, for which it is neither

provable that they do not work in polynomial time nor that they do not recognize
SATISFIABILITY. Moreover, we show that if P = NP, then there would exist
algorithms for which (*) is not provable.

1 This means that one has a guarantee that a given program is an algorithm, or even
a proof that the given program is an algorithm may be part of the input.
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Finally, we show that if P = NP is not provable in AV-mathematics, then
Pver �= NPver where Pver and NPver are counterparts of P and NP in the world
of algorithms that can be analyzed in AV-mathematics. On the other hand, if
P = NP is provable, then there exists a constructive proof of this fact: There is a
concrete algorithm that provably solves an NP-complete problem in polynomial
time.

We do not present the shortest way of proving our results. We present here
the genesis of our ideas to reach this goal. This is not only better for a deeper
understanding of the results and proofs, but also for deriving several interesting
byproducts of interest. Note that combining some ideas from the following chap-
ters with some fundamental theorems from ZFC, one can get shorter proofs for
some of our results in ZFC if ZFC is consistent.

2 Rice’s Theorem on Unprovability

The starting point for our unprovability results is the famous theorem of Chaitin
[3], stating that one can discover the Kolmogorov complexity2 for at most finitely
many binary strings. Let, for each binary string w ∈ {0, 1}∗, K(w) denote the
Kolmogorov complexity of w. As the technique is repeatedly used in this paper,
we prefer to present our version of this theorem as well as a specific proof. In
what follows, let Σmath be an alphabet in which any mathematical proof can be
written. Furthermore, let λ denote the empty word.

Theorem 1 (Chaitin [3]). There exists d ∈ N such that, for all n ≥ d and
all x ∈ {0, 1}∗, there does not exist any proof in AV-mathematics of the fact
“K(x) ≥ n”.

Proof. Let us prove Theorem 1 by contradiction. Suppose there exists an infinite
sequence of natural numbers {ni}∞

i=1 with ni < ni+1 for i = 1, 2, . . . such that
for each ni, there exists a proof in AV-mathematics of the claim

“K(wi) ≥ ni”

for some wi ∈ {0, 1}∗. If, for some i, there exist several such proofs for
different wi’s, let wi be the word with the property that the proof of
“K(wi) ≥ ni” is the first one with respect to the canonical order of the
proofs. Then we design an infinite sequence {Ai}∞

i=1 of algorithms as follows:

2 Recall that the Kolmogorov complexity of a binary string w is the length of the
binary code of the shortest program (in some fixed programming language with a
compiler) generating w [6,7].
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Ai: Input: ni

Output: wi

begin
x := λ;
repeat

verify algorithmically whether x is a proof of “K(w) ≥ ni”
for some w ∈ {0, 1}∗;

if x is a proof of “K(w) ≥ ni” then
output(w); exit;

else
x := successor of x in Σ∗

math in the canonical order;
end

end
end

Obviously, Ai generates wi. All the algorithms Ai are identical except for the
number ni. Hence, there exists a constant c such that each Ai can be described
by

c + �log2(ni + 1)�
bits. This way we get, for all i ∈ N, that

ni ≤ K(wi) ≤ c + �log2(ni + 1)�. (1)

However, (1) can clearly hold for at most finitely many different i ∈ N, and
so we got a contradiction. 
�

In what follows, we use the terms “program” and “Turing machine” (TM)
as synonyms. Likewise, we use the terms “algorithm” and “Turing machine that
always halts” as synonyms. The language of a TM M is denoted by L(M). Let
c(M) denote the string representation of a TM M for a fixed coding of TMs.
Obviously,

code-TM = {c(M) | M is a TM}
is a recursive set, and this remains true if we exchange TMs by programs in any
programming language possessing a compiler.

Now consider

HALTλ = { c(M) | M is a TM (a program) and M halts on λ}.

If a program (a TM) M halts on λ, there is always a proof of this fact. To
generate a proof one can simply let run M on λ, and the finite computation of
M on λ is a proof that M halts on λ.

Theorem 2. There exists a program P that does not halt on λ, and there is no
proof in AV-mathematics of this fact.
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Proof. Assume the opposite, that is, for each program there exists a proof that
the program halts or does not halt on λ. Then one can compute K(w) for each
w ∈ {0, 1}∗ as follows.

A: Input: w
Output: K(w)
begin

generate in the canonical order all programs P1, P2, . . .;
for each Pi do

search for a proof of “Pi halts on λ” or of
“Pi does not halt on λ” in the canonical order of proofs

if Pi halts on λ then
simulate Pi on λ;
if Pi generates w then output |Pi|; exit;
else continue with Pi+1; end

else
continue with Pi+1;

end
end

end

Following Theorem 1, one can estimate K(w) for at most finitely many w’s,
and so we have a contradiction. 
�
Theorem 3. There exist infinitely many TMs (programs) A that do not halt on
λ, and such that there is no proof in AV-mathematics for any of them that A
does not halt on λ.

Proof. Following Theorem 2, there exists a program P such that “P does not
halt on λ” and there is no proof of this fact in AV-mathematics. There are several
ways how to construct infinitely many programs P ′ such that there is a proof
that “P does not halt on λ” iff there is a proof that “P ′ does not halt on λ”.

We present the following two ways:

(i) Take an arbitrary program P0 that halts on λ. Modify P to P ′ by taking the
simulation of P at the beginning and if the simulation finishes, P ′ continues
with the proper computation of P0.

(ii) For each line of P containing end, insert some finite sequence of dummy
operations before end. 
�

Following Rice [9], a set A ⊆ code-TM is a semantically nontrivial decision
problem on TMs if
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(i) A �= ∅,
(ii) A �= code-TM, and
(iii) if c(M) ∈ A for some TM M , then c(M ′) ∈ A for each TM M ′ with

L(M ′) = L(M).

Let A = code-TM − A for any A ⊆ code-TM.

Observation 1. The following is true for any A ⊆ code-TM. If, for each TM
M , there exists a proof in AV-mathematics of either “c(M) ∈ A” or “c(M) �∈
A”, then, for each TM M ′, there exists a proof in AV-mathematics of either
“c(M ′) �∈ A” or “c(M ′) ∈ A”.

Proof. A proof of “c(M) ∈ A” is simultaneously a proof of “c(M) �∈ A”. A proof
of “c(M) �∈ A” is simultaneously a proof of “c(M) ∈ A”. 
�
Theorem 4 (Rice’s Theorem on Unprovability). For each semantically
nontrivial decision problem A, there exist infinitely many TMs M ′ such that
there is no proof of “c(M ′) ∈ A” and no proof of “c(M ′) �∈ A”, that is, one
cannot investigate in AV-mathematics whether c(M ′) is in A or not.

Proof. Let A be a semantically nontrivial decision problem. The scheme of the
proof is depicted in Fig. 2 in the appendix. According to property (iii), either for
all D with L(D) = ∅ we have c(D) ∈ A, or for all such D we have c(D) /∈ A.
Following Observation 1, we assume without loss of generality that c(D) ∈ A
for all D with L(D) = ∅. Let M∅ be a fixed, simple TM with the property
L(M∅) = ∅, and thus c(M∅) ∈ A. Let M be a TM such that c(M) �∈ A. In
particular, L(M) �= ∅.

We prove Theorem 4 by contradiction. For all but finitely many TMs M ′ let
there exist a proof of either “c(M ′) ∈ A” or “c(M ′) �∈ A”. Then we prove that,
for all but finitely many TMs M there exists a proof of either “M halts on λ”
or “M does not halt on λ”, which contradicts Theorem 3.

Let M be an arbitrary TM. We describe an algorithm that produces either
the proof of “M does not halt on λ” if M does not halt on λ or the proof of “M
halts on λ” if M halts on λ.

First we apply the procedure A (Fig. 2) that transforms M into a TM M ′
A

with the following properties:

(1.1) L(M ′
A) = ∅ (and thus c(M ′

A) ∈ A) ⇐⇒ M does not halt on λ,
(1.2) L(M ′

A) = L(M) (and thus c(M ′
A) �∈ A) ⇐⇒ M halts on λ.

This is achieved by constructing M ′
A in such a way that M ′

A starts to simulate
the work of M on λ without reading its proper input. If the simulation finishes,
M ′

A continues to simulate the work of M on its proper input. This way, if M does
not halt on λ, M ′

A simulates the work of M on λ infinitely long and does not
accept any input. If M halts on λ, then L(M ′

A) = L(M), because M ′
A simulates

the work of M on each of its inputs.
After that, one algorithmically searches for a proof of “c(M ′

A) ∈ A” or a proof
of “c(M ′

A) �∈ A” by constructing all words over Σmath in the canonical order and
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algorithmically checking for each word whether it is a proof of “c(M ′
A) ∈ A” or

a proof of “c(M ′
A) �∈ A”. If such a proof exists, one will find it in finite time.

Due to (1.1) and (1.2), this proof can be viewed as (or modified to) a proof of
“M does not halt on λ” or a proof of “M halts on λ”.

The construction of M ′
A from M done by A is an injective mapping. As a

consequence, if there exists a proof of “c(B) ∈ A” or a proof of “c(B) �∈ A” for all
but finitely many TMs B, then there exist proofs of “M halts on λ” or “M does
not halt on λ” for all but finitely many TMs M . This contradicts Theorem 3. 
�

Using concrete choices for A, one can obtain a number of corollaries, such as
the following ones.

Corollary 1. For infinitely many TMs M , one cannot prove in AV-
mathematics whether L(M) is in P or not.

Proof. Choose
A = { c(M) | M is a TM and L(M) ∈ P }

in Theorem 4. 
�
Corollary 2. For infinitely many TMs, one cannot prove in AV-mathematics
whether they accept SATISFIABILITY or not.

Proof. Choose

A = { c(M) | M is a TM and L(M) = SATISFIABILITY }

in Theorem 4. 
�
Corollary 3. For infinitely many TMs M , one cannot prove in AV-
mathematics whether M is an algorithm working in polynomial time or not.

Proof. Choose

A = { c(M) | M is an algorithm working in polynomial time}

in Theorem 4. 
�
Still, we are not satisfied with the results formulated above. One can argue

that the specification of languages (decision problems) by TMs can be so crazy
that, as a consequence, one cannot recognize what they really do. Therefore
we strive to prove the unprovability of claims about algorithms, preferably for
algorithms for we which we even have a proof that they indeed are algorithms.
This is much closer to the common specifications of NP-hard problems that can
be usually expressed by algorithms solving them.
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3 Hardness of Complexity Analysis of Concrete
Algorithms

Among others, we prove here that, for each time-constructible function f , there
exist infinitely many algorithms working in time f(n)+O(1) for which there is no
proof in AV-mathematics that they do. To this end, we construct an algorithm
XA,B,f (M) for given

(i) algorithm A working in TimeA(n) and SpaceA(n),
(ii) algorithm B working in TimeB(n) and SpaceB(n),
(iii) time-constructible function f with f(n) ≥ n (or some other “nice”

unbounded, nondecreasing function f), and
(iv) TM M .

Here, A, B, and f are considered to be fixed by an appropriate choice, and
XA,B,f (M) is examined for all possible TMs M . The algorithm XA,B,f (M)
works as follows.

XA,B,f (M): Input: w
begin

simulate at most f(|w|) steps of M on λ;
if M halts on λ during this simulation then

simulate A on w;
else

simulate B on w;
end

end

We say that two languages L1 and L2 are almost everywhere equal, L1 =∞ L2

for short, if the symmetric difference of L1 and L2 is finite. We say that M almost
everywhere accepts L if L(M) =∞ L.

Claim. If M halts on λ, then L(XA,B,f (M)) =∞ L(A) and XA,B,f (M) works in
time TimeA(n) + O(1) and space SpaceA(n) + O(1).

Claim. If M does not halt on λ, then L(XA,B,f (M)) = L(B) and XA,B,f (M)
works in time TimeB(n) + f(n) and space SpaceB(n) + f(n).

If L(A) and L(B) are not almost everywhere equal, then one can replace the
implications in the above two claims by equivalences. Moreover, XA,B,f (M) is
an algorithm for each TM M , and if it is provable that A and B are algorithms,
it is also provable that XA,B,f (M) is an algorithm.

Let us now present a few applications of the construction of XA,B,f (M).
Choose A and B in such a way that L(A) = L(B) and that TimeB(n)
grows asymptotically slower or faster than TimeA(n). Let f(n) = n. Then
L(XA,B,f (M)) = L(A) and
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– M halts on λ ⇐⇒ XA,B,f (M) works in TimeA(n) + O(1),
– M does not halt on λ ⇐⇒ XA,B,f (M) works in TimeB(n) + n.

Corollary 4. Suppose TimeA(n) ∈ o(TimeB(n)) and TimeB(n) ∈ Ω(n). Then
there are infinitely many algorithms for which one cannot distinguish in AV-
mathematics whether they run in Θ(TimeA(n)) or in Θ(TimeB(n)).

Proof. If one can prove “XA,B,f (M) works in Θ(TimeA(n))”, then one can also
prove that “M halts on λ”.

If one can prove “XA,B,f (M) works in Θ(TimeB(n))”, then there exists a
proof that “M does not halt on λ”. 
�

Choosing TimeA(n) as a polynomial function and TimeB(n) as an exponen-
tial function, and vice versa, implies the following statement.

Theorem 5. There exist infinitely many algorithms which do not work in poly-
nomial time, but for which this fact is not provable in AV-mathematics. Simi-
larly, there exist infinitely many algorithms which work in polynomial time, but
for which this fact is not provable in AV-mathematics.

Proof. Let f(n) = n. Note that, for a TM M that halts on λ, the claim “M halts
on λ” is always provable, but for a TM M that does not halt on λ, the claim
“M does not halt on λ” is not provable for infinitely many TMs M (as shown in
Theorem 3). Let M1 be a TM that does not halt on λ, but for which this fact is
not provable in AV-mathematics. Taking A as a polynomial time algorithm and
B as an algorithm running in superpolynomial time, the algorithm XA,B,f (M1)
does not run in polynomial time, but the claim “XA,B,f (M1) does not run in
polynomial time” is not provable in AV-mathematics.

Now, if one takes A as a superpolynomial time algorithm and B as a poly-
nomial time algorithm, then “M1 does not halt on λ” iff “XA,B,f (M1) runs
in polynomial time”, but this fact is not provable in AV-mathematics, because
otherwise “M1 does not halt on λ” would be provable as well. 
�

Theorem 5 shows how complex it may be to prove that some problem is not
solvable in polynomial time since there are algorithms for which it is not provable
whether they work in polynomial time or not. But if one takes TimeA(n) ∈ O(n)
and TimeB(n) ∈ Ω(n2), then we even realize that there are algorithms for which
it is not provable whether they work in linear time or not. This could indicate
why proving superlinear lower bounds on any problem in NP is hard. We are
not able to analyze the complexity of some concrete algorithms for any problem,
and the complexity of a problem should be something like the complexity of the
“best” algorithm for that problem.

Similarly, one can look at the semantics of algorithms. Assume B solves
SATISFIABILITY, A solves something else, and both A and B work in time
smaller than f(n) = 1000 · nn (or any sufficiently large time-constructible
function f). In that case, XA,B,f (M) works in time O(nn), and it solves
SATISFIABILITY iff M does not halt on λ. One can also exchange the role
of A and B in order to get that XA,B,f (M) solves SATISFIABILITY almost
everywhere iff M halts on λ.
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Theorem 6. There are infinitely many algorithms for which it is not provable
in AV-mathematics that they do not solve SATISFIABILITY.

What is clear from Theorems 5 and 6 is that one cannot start proving P �= NP
with the set of all polynomial time algorithms and try to show that none of
them solves SATISIFIABILITY, because one cannot decide in AV-mathematics
for all algorithms whether they are in the set of polynomial time algorithms
or not. Analogously, one cannot start with the set of all algorithms solving
SATISFIABILITY and then to try to show that their complexity is superpoly-
nomial, because the set of all algorithms solving SATISFIABILITY is also not
exactly determinable in AV-mathematics.

In our considerations, one can exchange SATISFIABILITY for any other NP-
hard problem or for FACTORIZATION in order to see that proving that these
problems are not in P may be very hard.

Let us look at the problem from another point of view. If P �= NP is provable
in AV-mathematics, then, as already stated, for each algorithm A, the following
statement is provable in AV-mathematics:

“A does not work in polynomial time
or A does not solve SATISFIABILITY”.

(∗)

On the other hand, if P = NP, then one can take f(n) = n, and B as a poly-
nomial time algorithm solving SATISFIABILITY and A as a superpolynomial
time algorithm computing something else, and consequently get the following
theorem.

Theorem 7. If P = NP, then there exist infinitely many algorithms X for
which one cannot prove or disprove in AV-mathematics the statement3 “X solves
SATISFIABILITY in polynomial time”.

One can play the same game for investigating the computational complexity
of the multiplication of two decimal numbers.

Theorem 8. If multiplication of two decimal numbers is feasible in linear time,
then there exist infinitely many algorithms X, for which one cannot decide in
AV-mathematics whether “X solves multiplication in linear time”, or “X does
not solve multiplication or does not work in linear time”.

Proof. Take A as an algorithm for multiplication with TimeA(n) = Θ(n2), and
B as a linear time algorithm for multiplication. Let f(n) = n. Then XA,B,f (M)
solves multiplication in linear time iff “M does not halt on λ”. Hence, if
“XA,B,f (M) solves multiplication in linear time” is provable in AV-mathematics,
then “M does not halt on λ” is provable as well. 
�

Similarly, one can consider space complexity, look at DLOG vs. NLOG with
respect to REACHABILITY, and prove similar versions of Theorems 5 to 8.

3 That is, statement (*).
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One only needs to modify our scheme by taking a reasonable, unbounded, non-
decreasing function g that bounds the space complexity of the simulation of M
on λ.

The previous results look promising, but we are still far from proving the
unprovability of “P �= NP” in AV-mathematics. This is because we only proved
for some algorithms that it is not provable that they “do not work in polynomial
time”, and maybe for some other ones that it is not provable that “they do not
solve SATISFIABILITY”. We now prove that the intersection of these two sets
of algorithms is not empty, i. e., that there exists an algorithm X for which it
is neither provable that “X does not solve SATISFIABILITY”, nor provable
that “X does not work in polynomial time”. To do that, we use the following
construction.

Construction of the Algorithm X 1

Let M1 be a TM that does not halt on λ, and for which this fact is not provable in
AV-mathematics (such TMs exist due to Theorem 3). Let C be an algorithm that
provably solves SATISFIABILITY in exponential time, and works in exponential
time on every input. We define, for each TM M , an algorithm XC(M) as follows.

XC(M): Input: w
begin

simulate at most |w| steps of M on λ;
if M halts on λ within |w| steps then

reject w;
else

simulate the work of C on w;
end

end

The following statements are true:

– M halts on λ ⇐⇒ XC(M) accepts almost everywhere the empty set ⇐⇒
XC(M) works in polynomial time (even in linear time).

– M does not halt on λ ⇐⇒ XC(M) solves SATISFIABILITY ⇐⇒ XC(M)
works in exponential time (and does not work in polynomial time).

If, for any TM M , there exists a proof of either “XC(M) works in polynomial
time”, or “XC(M) does not work in polynomial time”, then correspondingly “M
halts on λ” or “M does not halt on λ” would be provable in AV-mathematics.
Analogously, if, for any TM M , there exists a proof of “XC(M) recognizes
SATISFIABILITY” or “XC(M) does not recognize SATISFIABILITY”, it is
also provable whether M halts on λ or not.

Since M1 does not halt on λ, and this fact is not provable in AV-mathematics,
we have

X1 := XC(M1) solves SATISFIABILITY,
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but it is neither provable that

“X1 does not work in polynomial time”

nor that

“X1 solves SATISFIABILITY”

Hence, we have the following theorem.

Theorem 9. There exists an algorithm X1, for which it is neither provable
whether X1 recognizes SATISFIABILITY nor provable whether X1 works in
polynomial time.

Unfortunately, this is not a proof of the fact that (*) is not provable for X1,
i. e., that

“X1 does not work in polynomial time orX1 does not solve
SATISFIABILITY”

is not provable in AV-mathematics (i.e., we did not prove this way that “P �= NP”
is not provable in AV-mathematics). Even the opposite is true. From the con-
struction of XC(M), we see that, for each TM M , the statement (*) is provable
for XC(M). Hence, we have something like an uncertainty principle about prop-
erties of algorithms. There is a proof of the statement “α(X1) ∨ β(X1)” for the
algorithm X1, but there does neither exist a proof of “α(X1)” nor a proof of
“β(X1)”.

Again, note that we can do the same as in Theorem 9, due to the construction
of XC(M), for

1. any NP-hard problem or for FACTORIZATION by exchanging
SATISFIABILITY by one of these in the construction of X1,

2. the multiplication of two decimal numbers by taking C as an algorithm that
computes multiplication in superlinear time.

4 P vs. NP in AV-Mathematics and the Existence
of Constructive Proofs

In this chapter, we outline and discuss some important consequences of our
work. As we showed, the computational complexity of some algorithms cannot
be analyzed in AV-mathematics. Let us consider classes based only on algorithms
that can be analyzed in AV-mathematics. Let Φ be a logic (formal system) that
is powerful enough to specify any language in NP. Let L(α) denote a language
determined by a specification α from Φ. We define the following classes

Pver = {L(M) | α is a specification from Φ and M is an algorithm (a
TM that always halts) and there exists a proof in AV-
mathematics that M works in polynomial time and recog-
nizes L(α)},

NPver = {L(M) | α is a specification from Φ and M is a nondeterministic
TM that provably in AV-mathematics works in polyno-
mial time and accepts L(α)},
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Analogously, one can define the class Aver for each complexity class A.
Now we show that the unprovability of P = NP in AV-mathematics immedi-

ately implies Pver �= NPver.

Theorem 10. If the claim “P = NP” (“NLOG = DLOG”) is not provable in
AV-mathematics, then

Pver �= NPver

(DLOGver �= NLOGver)

Proof. There is no doubt about the fact that each known NP-complete problem L
is in NPver, because for each such L, we have a polynomial time nondeterministic
TM M with a proof of L = L(M).

If Pver = NPver would hold, then SATISFIABILITY ∈ Pver. Since Pver ⊆ P,
one obtains “SATISFIABILITY ∈ P” is provable and consequently “P = NP” is
provable. 
�

We can get similar results for the comparisons of other classes for which the
upper classes contain complete problems, with respect to the lower ones, e.g.,
DLOG vs. NLOG, P vs. PSPACE, etc.

5 Making Nonconstructive Proofs Constructive

It has been noted on several occasions that there is the theoretical possibility
that we could be able to prove P = NP in a nonconstructive way and still had
no concrete algorithm for any NP-complete problem. Scott Aaronson writes in
a recent survey [10]:

Objection: Even if P = NP, the proof could be nonconstructive—in which
case it wouldn’t have any of the amazing implications discussed in Sect. 1.1,
because we wouldn’t know the algorithm.
Response: A nonconstructive proof that an algorithm exists is indeed a
theoretical possibility, though one that’s reared its head only a few times
in the history of computer science. [. . . ] Even then, however, once we knew
that an algorithm existed, we’d have a massive inducement to try to find
it. [. . . ]

In a poll about what theoretists think about the future of the P vs. NP-
question, including whether they believe them to be equal and when the question
will be settled, two persons (out of a total of 100) commented they fear that
P = NP will be proved in a non-constructive way and call it a “worst case
scenario” [11].

On the other hand, it is well known that a completely nonconstructive proof
cannot exist – an exercise in the textbook Computational Complexity asks the
student to show that (under the assumption that P = NP) there is a fixed algo-
rithm that “solves” SATISFIABILITY in the following way: it provides satisfy-
ing assignments for all yes-instances in polynomial time, but is allowed arbitrary
behavior on no-instances [12, p. 350].
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While we cannot completely answer the question whether a nonconstructive
proof can be converted into a constructive one, we can improve upon the answer
to this exercise: if P = NP, we can present a concrete algorithm that solves
SATISFIABILITY on all but finitely many instances in polynomial time (and
not only on yes-instances).

While the possibility of having only a nonconstructive proof might appear to
be “disturbing” [12], having a concrete algorithm that solves SATISFIABILITY
in polynomial time iff P = NP is also strange: in principle, we could just use
such an algorithm to solve NP-complete problems in polynomial time even if we
cannot prove that P = NP. It is sufficient that P = NP holds. While we can arrive
at this strange situation almost only for the P = NP-question, there are other
similar questions, where such concrete algorithms indeed exist: we will show that
there is a randomized algorithm that solves QSAT in expected polynomial time
iff PSPACE = BPP and a deterministic one that solves graph reachability with
logarithmic space iff LOGSPACE = NLOGSPACE. We could implement these
algorithm today and let them run. Owing to large constants, we probably could
not observe the asymptotic behavior, but it is still a strange situation.

In the following, we will use an arbitrary, but fixed enumeration M1,M2, . . . ,
of all Turing machines with the input alphabet {0, 1} such that a description
of Mi can be computed in time polynomial in i and that Mi can be simulated
with only polynomial overhead. In the following, SlowSAT denotes an exact
algorithm that solves SATISFIABILITY in O∗(2n) steps, where n is the number
of variables. It returns a satisfying assignment on yes-instances and “no” on
no-instances. Simulate(Mi, w, t) denotes the result of running TM Mi on input
w ∈ {0, 1}∗ for up to t steps. Figure 1 contains an algorithm that attempts to
solve SATISFIABILITY in polynomial time. It succeeds to do so for all but
finitely many inputs iff P = NP.

Theorem 11. If P = NP, then Algorithm S solves SATISFIABILITY, runs
in polynomial time, returns “no” on all no-instances, and returns a satisfying
assignment on all but finitely many yes-instances.

Proof. Assume that P = NP. Then there is a number d and infinitely many
TMs Mi that solve SATISFIABILITY in time nd. Among those, we choose one
with i ≥ d and conclude that there exists a Turing machine Mk that solves
SATISFIABILITY in time nk for all input instances of size n.

If i < k, then there is at least one instance wi ∈ {0, 1}≤m such that Mi

does not solve wi correctly or runs for more than |wi|i steps on wi. Let N =
min{22

|w1|
, . . . , 22

|wk−1|}. If Algorithm S is run on an input instance I with |I| >
N , then m ≥ wi for all i = 1, . . . , k−1. Hence, Mi is simulated on wi for at least
|wi|i steps. This shows that Mi fails to solve wi as a SATISFIABILITY instance
or exceeds its running time bound. Hence, i is added to F . On the other hand,
k is not added to F , because Mk solves every instance w correctly within |w|k
steps. In the end, Algorithm S returns the result of this simulation.

The running time is polynomial: for inputs of length n, there is only a poly-
nomial number of TMs that are simulated for at most (log logn)O(log log n) steps
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Fig. 1. Algorithm S

(which is polynomial in n). In the end, one more simulation is carried out for at
most nm steps if n ≥ N . For inputs of length smaller than N , we cannot be sure
what the running time is, but it is bounded by a (large) constant. 
�

Using similar ideas and concepts from [11–14], we can establish the following
results.

Theorem 12. There is a concrete deterministic logspace-bounded algorithm that
solves graph reachability iff LOGSPACE = NLOGSPACE.

Theorem 13. If graph isomorphism is in P, then for every ε > 0, there exists
an algorithm that solves graph isomorphism and has the following properties:

1. It is a randomized algorithm.
2. It runs in expected polynomial time.
3. For all but finitely many yes-instances, it always answers correctly.
4. For the remaining yes-instances, the answer is correct with probability at least

1 − 2n2
.

5. For all no-instances, it always answers correctly.

Theorem 14. There exists a concrete randomized algorithm that solves QBF in
expected polynomial time with error probability at most 1/3 iff BPP = PSPACE.

Acknowledgment. We would like to thank Hans-Joachim Böckenhauer, Dennis
Komm, Rastislav Královič, Richard Královič, and Georg Schnitger for interesting dis-
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A Concept of the Proof of Theorem 4

Fig. 2. The schema of the reduction for the existence of proofs in Theorem 4.
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Abstract. Regular word transductions extend the robust notion of reg-
ular languages from acceptors to transformers. They were already con-
sidered in early papers of formal language theory, but turned out to be
much more challenging. The last decade brought considerable research
around various transducer models, aiming to achieve similar robustness
as for automata and languages.

In this talk we survey some recent results on regular word transduc-
ers. We discuss how classical connections between automata, logic and
algebra extend to transducers, as well as some genuine definability ques-
tions. For a recent, more detailed overview of the theory of regular word
transductions the reader is referred to the excellent survey [22].

Since the early times of computer science, the notion of transduction has
played a fundamental role, since computers typically process data and transform
it between different formats. Numerous fields of computer science are ultimately
concerned with transformations, ranging from databases to image processing,
and an important issue is to perform transformations with low cost, whenever
possible.

The most basic form of transformers are devices that process inputs and
thereby produce outputs using finite memory. Such devices are called finite-
state transducers. Word-to-word finite-state transducers were considered in very
early work in formal language theory [1,8,11,16,24,32], and it was soon clear
that achieving a good understanding of transducers will be much more challeng-
ing than for the classical finite-state automata. One essential difference between
transducers and automata over words is that the capability to process the input
in both directions strictly increases the expressive power in the case of transduc-
ers, whereas this is not the case for automata [29,34]. In other words, two-way
word transducers are strictly more expressive than one-way word transducers.

We consider in this overview functional word transducers, so non-
deterministic finite-state transducers that compute functions1. It turns out that
two-way functional transducers capture very nicely the notion of regularity for
word-to-word transductions. Engelfriet and Hoogeboom showed in [17] that
two-way finite-state transducers have the same expressive power as Courcelle’s

Based on joint work with Félix Baschenis, Olivier Gauwin and Gabriele Puppis.
Work partially supported by the Institute of Advance Studies of the Technische
Universität München and the project DeLTA (ANR-16-CE40-0007).

1 Also called “single-valued” in the literature, as a special instance of “k-valued”.

c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 29–33, 2017.
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monadic second-order logic definable graph transductions, restricted to words.
This equivalence supports thus the notion of “regular” word functions, in the
spirit of classical results on regular languages from automata theory and logic
(Büchi, Elgot, Trakhtenbrot, Rabin, . . . ). Recently, Alur and Cerný [2] fostered
new research around this topic by introducing streaming transducers and show-
ing that they are equi-expressive to the two previous models. A streaming trans-
ducer processes the input word from left to right, and stores (partial) output
words in finitely many, write-only registers.

Regular word functions inherit pleasant algorithmic properties of the robust
class of regular word languages. It was long known that the equivalence prob-
lem for various types of transducers is decidable [13,14,26,27]. For functional
streaming transducers [3] and functional two-way transducers the problem is
actually Pspace-complete, so not harder than for NFAs. In contrast, the equiv-
alence problem for unrestricted (i.e., fully relational) transducers, even one-way,
is undecidable [25]. Interestingly, the decidability frontier lies beyond functional
transducers: using Ehrenfeucht’s conjecture [13] showed that k-valued, one-way
transducers have a decidable equivalence problem, and stated the result also for
the two-way case. It is interesting to note that for k-valued streaming trans-
ducers the status of the equivalence problem is open. It is conjectured that
for k-valued transductions, streaming transducers and two-way transducers are
equivalent, and this would settle the decidability of the equivalence problem. A
more algorithmic proof would go through a decomposition theorem of k-valued
transducers into k functional transducers [31,35]. The paper [23] provides such
a decomposition in the case of streaming transducers with only one register.

Two-way and streaming transducers raise new and challenging questions
about resource requirements. A crucial resource for streaming transducers is
the number of registers. For two-way transducers it is the number of times the
transducer needs to re-process the input word. In particular, the case where the
input can be processed (deterministically) in a single pass, from left to right, is
very attractive as it corresponds to the setting of streaming, where the – poten-
tially very large – inputs do not need to be stored in order to be processed. It was
shown in [20] that it is decidable whether the transduction defined by a func-
tional two-way transducer is one-way-definable, i.e., if it can be implemented by
a non-deterministic, one-way transducer. However, the decision procedure of [20]
has non-elementary complexity, and it was natural to ask whether one can do
better. In [7] we provided a decision procedure for one-way definability of double
exponential space complexity, that allows to construct equivalent one-way trans-
ducers of triple exponential size (if possible). The result on one-way definability,
together with [11], answers to the streaming question. However, it would be inter-
esting to have a direct construction from two-way (or streaming) transducers to
deterministic, one-way transducers, and to settle the precise complexities. For
the one-way definability problem there is a double exponential lower bound on
the size of the transducer, and this lower bound is tight in the case of sweeping
transducers [5]. It can be also noted that the technique developed in [7] allows
to characterize sweeping transducers within the class of two-way transducers.
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The minimization problem of the number of registers for streaming trans-
ducers is still an open problem, in spite of some progress. In [4] this problem
was shown to be solvable in polynomial space for deterministic, concatenation-
free streaming transducers over unary output alphabet. Extending this result,
[15] showed how to compute the minimal number of registers over any com-
mutative group, provided that group operations are computable. In addition,
the results of [15] allow to minimize the number of registers for determinis-
tic streaming transducers with only right updates. On the other hand, in the
non-deterministic case, the minimal number of passes of sweeping transducers is
computable in exponential space [6]. By exploiting a tight connection between
the number of passes of sweeping transducers and the number of registers of
concatenation-free streaming transducers, the last result also allows to minimize
the number of registers of concatenation-free streaming transducers.

Another line of research that appears to be a significant challenge, con-
cerns algebraic characterizations for functional word transducers. This problem is
tightly related to the existence of canonical objects, like minimal automata in the
case of languages. For word languages, the existence of minimal automata is cru-
cial for determining whether a language belongs to some subclass. A renowned
example are first-order definable languages, that coincide with aperiodic and
star-free languages [28,33]. It is well-known that minimal transducers exist in
the deterministic, one-way case [11,12]. For functional one-way transducers, [30]
studied bimachines, that roughly correspond to one-way transducers with reg-
ular look-ahead, and showed how to obtain canonical bimachines. This result
led to a Pspace decision procedure to determine if the transduction realized by
a functional one-way transducer is definable by an order-preserving, first-order
transduction [18,19]. It is interesting to note that adding origin information to
transductions greatly simplifies the setting: there is an algebraic characterization
that provides a decision procedure for knowing whether a transduction with ori-
gin information is equivalent to a first-order transduction [9]. However, for the
general case of regular word functions all we know is that first-order definable
transductions are equivalent to transductions defined by aperiodic streaming
transducers [21] and to aperiodic two-way transducers [10]. Coming up with a
decision procedure for knowing whether a regular word function is first-order
definable is a challenging endeavour.

Acknowledgments. I thank Félix Baschenis, Emmanuel Filiot, Olivier Gauwin,
Nathan Lhote, Gabriele Puppis and Sylvain Salvati for numerous discussions and feed-
back, as well as Mikolaj Bojanczyk for the origins of this work.
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Abstract. Zoltán Ésik published 2 books as an author, 32 books as edi-
tor and over 250 scientific papers in journals, chapters and conferences. It
was of course impossible to survey such an impressive list of results and
in this lecture, I will only focus on a very small portion of Zoltán’s scien-
tific work. The first topic will be a result from 1998, obtained by Zoltán
jointly with Imre Simon, in which he solved a twenty year old conjecture
on the shuffle operation. The second topic will be his algebraic study of
various fragments of logic on words. Finally I will briefly describe some
results on commutative languages obtained by Zoltán, Jorge Almeida
and myself.

1 Regular Languages and Varieties

Let A be a finite alphabet. Let L be a language of A∗ and let x and y be words
of A∗. The quotient x−1Ly−1 of L by x and y is defined by the formula

x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}.

A lattice of languages of A∗ is a set L of languages of A∗ containing ∅ and A∗

and closed under finite union and finite intersection. It is closed under quotients
if every quotient of a member of L is also in L. A Boolean algebra of languages
is a lattice of languages closed under complement.

A class of languages is a correspondence C which associates with each alpha-
bet A a set C(A∗) of regular languages of A∗. A variety of languages is a class
of languages V closed under Boolean operations, quotients and inverses of mor-
phisms. This means that, for each alphabet A, V(A∗) is a Boolean algebra of
regular languages closed under quotients and that if ϕ : A∗ → B∗ is a monoid
morphism, then L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A variety of finite monoids is a class of finite monoids which is closed under
taking submonoids, homomorphic images and finite direct products. Eilenberg’s
variety theorem [6] gives a bijective correspondence between varieties of monoids
and varieties of languages. Let V be a variety of finite monoids and, for each
alphabet A, let V(A∗) be the set of all languages of A∗ whose syntactic monoid is
in V. Then V is a variety of languages. Furthermore, the correspondence V → V
is a bijection between varieties of monoids and varieties of languages.
c© Springer-Verlag GmbH Germany 2017
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A language L is commutative if any word obtained by permuting the letters
of a word of L also belongs to L. A variety of languages is commutative if
all of its languages are commutative, or equivalently, if all the monoids of the
corresponding variety of finite monoids are commutative.

A renaming or length-preserving morphism is a morphism ϕ from A∗ into
B∗, such that, for each word u, the words u and ϕ(u) have the same length.
It is equivalent to require that, for each letter a, ϕ(a) is also a letter, that is,
ϕ(A) ⊆ B. Similarly, a morphism is length-decreasing if the image of each letter
is either a letter or the empty word. Finally, a morphism is length-multiplying
if all letters have images of the same length, that is, if ϕ(A) ⊆ Bk for some
integer k.

2 The Shuffle Operation

Recall that the shuffle product (or simply shuffle) of two languages L1 and L2

over A is the language

L1 ��� L2 = {w ∈ A∗ | w = u1v1 · · · unvn for some words u1, . . . , un,

v1, . . . , vn of A∗ such that u1 · · · un ∈ L1 and v1 · · · vn ∈ L2}.

The shuffle product defines a commutative and associative operation over the
set of languages over A.

Zoltán Ésik has long been interested in the shuffle operation. In a series of
papers with Bertol or with Bloom [3–5,8,9], he studied the free shuffle algebra
and proved that the equational theory of shuffle has no finite axiomatization.
This was probably the reason why he got interested in the conjecture proposed
by Perrot [12] in 1978.

Perrot wanted to characterize the varieties of languages closed under shuffle.
He was able to characterize all commutative varieties closed under shuffle, but
failed to characterize the noncommutative ones. However, he conjectured that
the only noncommutative variety of languages closed under shuffle is the variety
of all regular languages.

This conjecture remained open for twenty years, until Zoltán Ésik, in collab-
oration with another famous Hungarian-born computer scientist, Imre Simon,
managed to solve the conjecture positively [11]. Their proof is very ingenious
and was the starting point of further development.

3 Logic on Words

In December 2001, Ésik and Ito published a BRICS report entitled Temporal
logic with cyclic counting and the degree of aperiodicity of finite automata. In
this paper, which was published in 2003 [10], the authors studied an enrich-
ment of temporal logic involving cyclic counting and they provided an algebraic
characterization of the corresponding class of regular languages. An instance of
Eilenberg’s variety theorem? Not quite, because this class is closed under inverses
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of length-preserving morphisms, but is not closed under inverses of arbitrary
morphisms.

The next year (2002), Ésik published another BRICS report, entitled
Extended temporal logic on finite words and wreath product of monoids with
distinguished generators, which became a DLT paper in 2003 [7]: in this paper,
he further developed his idea of enriching temporal logic, in the spirit of Wolper
[15]. He managed to give an algebraic characterization of several fragments by
using monoids with distinguished generators. This led to a series of new results
as well as a unified and elegant proof of known results.

It turns out that a similar idea was developed independently and at the same
time by Straubing [14]. This gave rise to the theory of C-varieties, which is an
extension of Eilenberg’s variety theory. The letter C refers to a class of morphisms
(called C-morphisms) between free monoids (for instance length-preserving mor-
phisms, length-decreasing or length-multiplying morphisms). Now a C-variety of
languages is defined as a variety of languages except that it is only closed under
inverses of C-morphisms.

The corresponding algebraic objects are no longer monoids, but stamps, that
are surjective monoid morphisms ϕ : A∗ → M from a finitely generated free
monoid A∗ onto a finite monoid M .

4 Back to the Shuffle Operation

In 1995, I proposed another extension of Eilenberg’s variety theorem [13]. A
positive variety of languages is defined exactly like a variety of languages, except
that it is not closed under complement. In other words, for each alphabet A,
V(A∗) is not required to be a Boolean algebra of languages, but only a lattice of
languages. For the algebraic counterpart, one needs to consider ordered monoids
instead of monoids.

The question now arises to describe all positive varieties closed under shuffle.
Some progress in this direction can be found in [1], but the first step, namely
the commutative case, was clarified only recently, in a paper of Jorge Almeida,
Zoltán Ésik and myself [2].

I am sure that Zoltán would have liked to further investigate this type of
questions among the numerous topics he was interested in. I deeply miss him,
as a scientist and as a personal friend.
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Abstract. Analyzing pseudo-telepathy graph games, we propose a way
to build contextuality scenarios exhibiting the quantum supremacy using
graph states. We consider the combinatorial structures generating equiv-
alent scenarios. We introduce a new tool called multipartiteness width to
investigate which scenarios are harder to decompose and show that there
exist graphs generating scenarios with a linear multipartiteness width.

1 Introduction

Contextuality is an active area of research that describes models of correlations
and interpretations, and links to some fundamental questions about the natural
world. It also provides a framework where one can utilize the understanding
of quantum mechanics (and quantum information) in order to better analyze,
understand, and interpret macroscopic phenomena [7,16,19,29,42].

The theoretical and experimental study of quantum world has proven that a
scenario involving many parties (each having access to a local information) can
contain correlations that do not possess any classical interpretation that relies
on decomposition of these correlations using local functions. Contextuality can
be viewed as a tool to describe the combinatorial structures present in these
correlations.

Recent works on the mathematical structures of contextuality [3,4,13] are
based on a model introduced by Abramsky and Brandenburger [1] which
uses sheaf theory to naturally translate the consistency of interpretation by the
pre-sheaf structure obtained by a distribution functor on the sheaf of events.
The authors introduce three levels of contextuality: (i) Probabilistic contextu-
ality, which corresponds to the possibility of simulating locally and classically a
probability distribution. It extends the celebrated Bell’s theorem [9] which shows
that quantum probabilities are inconsistent with the predictions of any local
realistic theory; (ii) Logical contextuality or possibilistic contextuality, which
extends Hardy’s construction [27] and considers only the support of a probabil-
ity distribution; (iii) Strong contextuality, which extends the properties of the

c© Springer-Verlag GmbH Germany 2017
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GHZ state [24] and relies on the existence of a global assignment consistent with
the support.

More recently Aćın et al. [5] have presented contextuality scenarios defined
as hypergraphs, in which vertices are called outcomes and hyperedges are called
measurements. A general interpretation model is an assignment of non negative
reals to the vertices that can be interpreted as a probability distribution for any
hyperedge (weights of the vertices of each hyperedge sum to 1). Each hypergraph
H admits a set C(H) (resp. Q(H), G(H)) of classical (resp. quantum, general
probabilistic) models with C(H) ⊆ Q(H) ⊆ G(H).

They have shown that the Foulis Randall product of hypergraphs [20] allows
one to describe the set of no-signaling models in product scenarios G(H1 ⊗ H2).
They have also investigated the multipartite case, showing that the different
products for composition produce models that are observationally equivalent.

A particular case of contextuality scenarios is the pseudo-telepathy games
[10], which are games that can be won by non-communicating players that share
quantum resources, but cannot be won classically without communication. A
family of pseudo-telepathy games based on graph states have been introduced
in [6]. The pseudo-telepathy game associated with a graph G of order n (on n
vertices), is a collaborative n-player game where each player receives a binary
input (question) and is asked to provide, without communication, a binary out-
put (answer). Some global pairs of (answers—questions) are forbidden and corre-
spond to losing positions. Given such a scenario, to quantify its multipartiteness,
we define the multipartiteness width: a model on n parties has a multipar-
titeness width less than k if it has an interpretation (assignment of real positive
numbers to the vertices) that can be obtained using as ressources interpretations
of contextual scenarios on less than k parties.

It has been shown in [13] that even though GHZ type scenarios are maximally
non local (strongly contextual), they can be won with 2 partite nonlocal boxes. So
the multipartiteness width is different from the usual measures of contextuality
[2,23]. However, it has potential application for producing device independent
witnesses for entanglement depth [32].

In Sect. 2, we define the graph pseudo-telepathy games, investigate in detail
the quantum strategy and link them to contextuality scenarios. The quantum
strategy consists in sharing a particular quantum state called graph state [28].
Graph states have multiple applications in quantum information processing, e.g.
secret sharing [22,34,35], interactive proofs [12,33,39], and measurement-based
quantum computing [14,17,18,37,38,40]. We show in Sect. 3 that provided that
the players share multipartite randomness, it is enough to surely win the associ-
ated pseudo-telepathy game, in order to simulate the associated quantum proba-
bility distribution. In Sect. 4, we prove that graphs obtained by a combinatorial
graph transformation called pivoting correspond to equivalent games. Finally,
we prove that there exist graphs for which the multipartiteness width is linear
in the number of players, improving upon the previous logarithmic bound given
in [6].
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Note that even though the rules of these graph games appear non-trivial,
they naturally correspond to the correlations present in outcomes of a quantum
process that performs X and Z measurements on a graph state. Thus, they
might be easy to produce empirically. Furthermore even if the space of events
is quite large, the scenarios have the advantage of possessing concise descrip-
tions, quite similar to the separating scenarios using Johnson graphs in [21].
Requiring such large structures to achieve possibilistic contextuality for quantum
scenarios seems to be unavoidable. Indeed, it has been shown that multiparty
XOR type inequalities involving two-body correlation functions cannot achieve
pseudo-telepathy [25].

2 Pseudo-Telepathy Graph Games, Multipartiteness
and Contextuality Scenarios

Graph Notations. We consider finite simple undirected graphs. Let G = (V,E)
be a graph. For any vertex u ∈ V , NG(u) = {v ∈ V | (u, v) ∈ E} is the
neighborhood of u. For any D ⊆ V , the odd neighborhood of D is the set
of all vertices which are oddly connected to D in G: Odd(D) = {v ∈ V :
|D ∩ N(v)| = 1 mod 2}. Even(D) = V \ Odd(D) is the even neighborhood of D,
and loc(D) = D ∪ Odd(D) is the local set of D which consists of the vertices in
D and those oddly connected to D. For any D ⊆ V , G[D] = (D,E ∩ D×D) is
the subgraph induced by D, and |G[D]| its size, i.e. the number of edges of G[D].
Note that Odd can be realized as linear map (where we consider subsets as binary
vectors), which implies that for any two subset of vertices A,B, Odd(A ⊕ B) =
Odd(A) ⊕ Odd(B) where ⊕ denotes the symmetric difference.

We introduce the notion of involvement :

Definition 1 (Involvement). Given a graph G = (V,E), a set D ⊆ V of
vertices is involved in a binary labelling x ∈ {0, 1}V of the vertices if D ⊆
supp(x) ⊆ Even(D), where supp(x) = {u ∈ V, xu = 1}.
In other words, D is involved in the binary labelling x, if all the vertices in D
are labelled with 1 and all the vertices in Odd(D) are labelled with 0. Notice
that when G[D] is not a union of Eulerian graphs1, there is no binary labelling
in which D is involved. On the other hand, if G[D] is a union of Eulerian graphs,
there are 2|Even(D)|−|D| binary labellings in which D is involved.

Collaborative Games. A multipartite collaborative game G for a set V of
players is a scenario characterised by a set L ⊆ {0, 1}V × {0, 1}V of losing
pairs: each player u is asked a binary question xu and has to produce a binary
answer au. The collaborative game is won by the players if for a given question
x ∈ {0, 1}V they produce an answer a ∈ {0, 1}V such that the pair formed by a
and x, denoted (a|x), is not a losing pair, i.e. (a|x) /∈ L.
1 The following three properties are equivalent: (i) D ⊆ Even(D); (ii) every vertex

of G[D] has an even degree; (iii) G[D] is a union of Eulerian graphs. Notice that
D ⊆ Even(D) does not imply that G[D] is Eulerian as it may not be connected.
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A game is pseudo-telepathic if classical players using classical resources can-
not perfectly win the game (unless they cheat by exchanging messages after
receiving the questions) whereas using entangled states as quantum resources
the players can perfectly win the game, giving the impression to a quantum non
believer that they are telepathic (as the only classical explanation to a perfect
winning strategy is that they are communicating).

Example 1: The losing set associated with the Mermin parity game [36] is
LMermin = {(a|x) :

∑
xi = 0 mod 2 and

∑
ai + (

∑
xi)/2 = 1 mod 2}. Notice

that the losing set admits the following simpler description: LMermin = {(a|x) :
2|a| = |x| + 2 mod 4}, where |x| = |supp(x)| is the Hamming weight of x.

Collaborative Graph Games MCG(G): A multipartite collaborative game
MCG(G) associated with a graph G = (V,E), where V is a set of players, is the
collaborative game where the set of losing pairs is LG := {(a|x) : ∃D involved
in x s.t.

∑
u∈loc(D) au = |G[D]| + 1 mod 2}. In other words, the collaborative

game is won by the players if for a given question x ∈ {0, 1}V they produce an
answer a ∈ {0, 1}V such that for any non-empty D involved in x,

∑
u∈loc(D) au =

|G[D]| mod 2.

Example 2: Consider MCG(Kn) the collaborative game associated with the
complete graph Kn of order n. When a question x contains an even number of 1s
the players trivially win since there is no non-empty subset of vertices involved
in such a question. When x has an odd number of 1s, the set of players (vertices)
involved in this question is D = supp(x). In this case, all the players are either
in D or Odd(D) thus the sum of all the answers has to be equal to |G[D]| =
|D|(|D|−1)

2 = |D|−1
2 mod 2. Thus for the complete graph Kn, LKn

= {(a|x) : |x| =
1 mod 2 and |a| = |x|−1

2 + 1 mod 2} = {(a|x) : 2|a| = |x| + 1 mod 4}. Note that
for this particular graph, the constraints are global in the sense that the sum of
the answers of all the players is used for all the questions. Notice also that the
set of losing pairs LKn

= {(a|x) : 2|a| = |x| + 1 mod 4} is similar to the one of
the Mermin parity game, LMermin = {(a|x) : 2|a| = |x| + 2 mod 4}. In Sect. 4,
we actually show the two games simulate each other.

Quantum Strategy (Qstrat): In the following we show that for any graph
G, the corresponding multipartite collaborative game can be won by the players
if they share a particular quantum state. More precisely the state they share
is the so-called graph state |G〉 = 1√

2|V |
∑

y∈{0,1}V (−1)|G[supp(y)]| |y〉, and they
apply the following strategy: every player u measures his qubit according to X if
xu = 1 or according to Z if xu = 0. Every player answers the outcome au ∈ {0, 1}
of this measurement.

This quantum strategy QStrat, not only produces correct answers, but pro-
vides all the good answers uniformly:

Lemma 1. Given a graph G = (V,E) and question x ∈ {0, 1}V , the probability
p(a|x) to observe the outcome a ∈ {0, 1}V when each qubit u of a graph state
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|G〉 is measured according to Z if xu = 0 or according to X if xu = 1 satisfies:

p(a|x) =

{
0 if (a|x) ∈ L
|{D involved in x}|

2|V | otherwise.

Proof. According to the Born rule, the probability to get the answer a ∈ {0, 1}V
to a given question x ∈ {0, 1}V is:

p(a|x) = 〈G|
⎛

⎝
⊗

v∈V \supp(x)

I + (−1)avZv

2

⎞

⎠ ⊗
⎛

⎝
⊗

u∈supp(x)

I + (−1)auXu

2

⎞

⎠ |G〉

=
1
2n

∑

D⊆V

(−1)
∑

u∈D au 〈G| ZD\supp(x)XD∩supp(x) |G〉

The basic property which makes this strategy work is that for any u ∈ V ,
Xu |G〉 = ZN(u) |G〉. As a consequence, since X and Z anti-commute and X2 =
Z2 = I, for any D ⊆ V , XD |G〉 = (−1)|G[D]|ZOdd(D) |G〉. Thus,

p(a|x) =
1

2n

∑

D⊆V

(−1)|G[D∩supp(x)]|+∑u∈D au 〈G| Z(Odd(D∩supp(x)))⊕(D∩\supp(x)) |G〉

where ⊕ denotes the symmetric difference. Since 〈G| ZC |G〉 =

{
1 if C = ∅
0 otherwise

,

p(a|x) =
1
2n

∑

D⊆V,D\supp(x)=Odd(D∩supp(x))

(−1)|G[D∩supp(x)]|+∑u∈D au

=
1
2n

∑

D1⊆supp(x)

∑

D0⊆V \supp(x),D0=Odd(D1)

(−1)|G[D1]|+
∑

u∈D0∪D1
au

=
1
2n

∑

D1⊆supp(x),Odd(D1)∩supp(x)=∅
(−1)|G[D1]|+

∑
u∈loc(D1) au

=
1
2n

∑

D1involved in x

(−1)|G[D1]|+
∑

u∈loc(D1) au =
|R(x,a)

0 | − |R(x,a)
1 |

2n

where R
(x,a)
d = {D involved in x : |G[D]| +

∑
u∈loc(D) au = d mod 2}. If (a|x) /∈

L, then R
(x,a)
1 = ∅, so p(a|x) = |{D involved in x}|

2n > 0 since ∅ is involved in
x. Otherwise, there exists D′ ∈ R

(x,a)
1 . Notice that R

(x,a)
0 is a vector space

(∀D1,D2 ∈ R
(x,a)
0 ,D1 ⊕ D2 ∈ R

(x,a)
0 ) and R

(x,a)
1 an affine space R

(x,a)
1 = {D′ ⊕

D | D ∈ R
(x,a)
0 }. Thus |R(x,a)

0 | = |R(x,a)
1 | which implies p(a|x) = 0. �

The probability distribution produced by QStrat depends on the number
of sets D involved in a given question x. Notice that a set D ⊆ supp(x) is
involved in x if and only if D ∈ Ker(Lx), where Lx linearly2 maps A ⊆ supp(x)
2 Lx is linear for the symmetric difference: Lx(D1 ⊕ D2) = Lx(D1) ⊕ Lx(D2).
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to Odd(A) ∩ supp(x). Thus |{D involved in x}| = 2|x|−rkG(x), where rkG(x) =
log2(|{Lx(A) : A ⊆ supp(x))}|) is the rank of Lx = A �→ Odd(A) ∩ supp(x).

Contextuality Scenario. Following the hypergraph model of [5], we associate
with every graph G a contextuality scenario, where each vertex is a pair (a|x)
and each hyperedge corresponds, roughly speaking, to a constraint. There are
two kinds of hyperedges, those (HNsigV ) which guarantee no-signaling and those
(HG), depending on the graph G, which avoid the losing pairs:

– HNsigV is the hypergraph representing the no-signaling polytope. It corre-
sponds [5] to the Bell scenario BV,2,2 where |V | parties have access to 2 local
measurements each, each of which has 2 possible outcomes (see Fig. 1), which
is obtained as a product3 of the elementary scenario B1,2,2.

– The hypergraph HG defined on the same vertex set, corresponds to the game
constraints: for each question4 x ∈ {0, 1}V we associate an hyperedge ex
containing all the answers which make the players win on x i.e., ex = {(a|x) ∈
{0, 1}V × {0, 1}V , (a|x) /∈ L}.

Fig. 1. HNsig2 : hyperedges of the Bell
scenario B2,2,2 from [21]

Fig. 2. Paley Graph of order 13

Given a graph G = (V,E), MCG(G) is a pseudo-telepathy game if it admits a
quantum model (Q(HG∪HNsigV ) �= ∅) but no classical model (C(HG∪HNsigV ) =
3 The Foulis Randall product of scenarios [5] is the scenario HA ⊗ HB with vertices

V (HA ⊗ HB) = V (HA) × V (HB) and edges E(HA ⊗ HB) = EA→B ∪ EA←B where
EA→B := {∪a∈eA{a} × f(a) : ea ∈ EA, f : eA → EB} and EA←B := {∪b∈eAf(b) ×
{b} : eb ∈ Eb, f : EB → EA}. In the multipartite case there are several ways to
define products, however they all correspond to the same non-locality constraints [5].
Therefore one can just consider the minimal product min⊗n

i=1Hi which has vertices in
the cartesian product V = ΠVi and edges ∪k∈[1,n]Ek where Ek = {(v1 . . . , vn), vi ∈
ei ∀i �= k, vk ∈ f(−→v )} for some edge ei ∈ E(Hi) for every party i �= k and a function−→v �→ f(−→v ) which assigns to every joint outcome −→v = (v1 . . . vk−1, vk+1, . . . vn) an
edge f(−→v ) ∈ E(Hk) (the kth vertex is replaced by a function of the others).

4 Note that for the questions x for which there exists no D involved in x, all the
answers are allowed thus the constraints represented by the associated edge is a
hyperedge of no-signaling scenario HNsig.
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∅). It has been proven in [6] that MCG(G) is pseudo-telepathic if and only if G
is not bipartite.

Example 3: In a complete graph Kn of order n, there exists a non-empty set D
involved in a question x ∈ {0, 1}V if and only if |x| = 1 mod 2. With each such
question x, the associated hyperedge is ex = {(a|x) ∈ {0, 1}V ×{0, 1}V s.t. 2|a| �=
|x| + 1 mod 4}.

Example 4: In the graph Paley 13 (see Fig. 2), Odd({0, 1, 4}) =
{2, 7, 8, 9, 11, 12} thus if {0, 1, 4} is involved in x i.e. xi = 1 for i ∈ {0, 1, 4}
and xi = 0 for i ∈ {2, 7, 8, 9, 11, 12} then the associated pseudo-telepathy game
requires that the sum of the outputs of these nine players

∑
i	∈{3,5,6,10} ai has

to be odd. This corresponds to 8 hyperedges ejkl for j, k, l ∈ {0, 1} in the con-
textuality scenario where ejkl = {(a|x),

∑
i	∈{5,6,10} ai = 1 mod 2, xi = 1 for

i ∈ {0, 1, 4}, xi = 0 for i ∈ {2, 7, 8, 9, 11, 12}, x5 = j, x6 = k, x10 = l}.
The probabilistic contextuality is what was considered in [6] as it corresponds

to investigating the possibility of simulating a probability distribution of a quan-
tum strategy playing with graph states. The two other levels of contextuality
gain some new perspectives when iewed as games: indeed the possibilistic contex-
tuality coincides with the fact that the players cannot give all the good answers
with non zero probability using classical local strategies, and strong contextu-
ality just means that classical players cannot win the game (even by giving a
strict subset of the good answers).

Definition 2. An interpretation p : {0, 1}V × {0, 1}V → [0, 1] is k-multipartite
if it can be obtained by a strategy without communication using nonlocal boxes
that are at most k-partite: for any set I ⊂ V with |I| ≤ k, each player has access
to one bit of a variable λI(aI |xI) that has a no-signaling probability distribution.

In other words, a k-multipartite interpretation can be obtained with no-
signaling correlations involving at most k players. For example the strategy to
win the Mermin game proposed in [13] where each pair among n players share
a (2-partite) non localbox and each player outputs the sum of his boxes’ ouputs
is a 2-multipartite interpretation. Similarly, the result in [8] where they prove
that a probability distribution that can be obtained by 5 players measuring a
quantum state cannot be simulated without communication using any number
of bi-partite non local boxes shows that it is not a 2-multipartite interpretation.5

Definition 3 (multipartiteness width). A scenario has a multipartiteness
width k if it admits a k-multipartite interpretation but no (k − 1)-multipartite
interpretation.

In a contextual scenario, the more hyperedges one adds the less possible
interpretations exist. A scenario has a multipartiteness width k if its hyperedges
already forbids all the interpretations of a product of Bell scenarios on less

5 The probability distribution described in [8] corresponds to the quantum winning
strategy on the graph state obtained from a cycle with 5 vertices.
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than k parties. For a scenario, having a classical interpretation means being
decomposable: one can think of the probability distribution as local actors acting
each on his bit and that’s a classical interpretation. The multipartiteness width
measure how non-decomposable a scenario is: it can not be decomposed with
interpretations where each subspace has a small width.

It implies that the players cannot perfectly win the game if they have only
quantum systems on less than k qubits, this corresponds to using k separable
states as ressources as defined in [26].

Note that from the observations in [6] the multipartiteness width of the
scenario generated by the Paley graph on 13 (see Fig. 2) is strictly larger than 4.

In the next section, we will show how for the scenarios we describe, being able
to give only good answers allows for simulation of the quantum distribution with
random variables. Thus, the contextuality lies in the combinatorial structure of
the graph and the three levels collapse for these games.

3 Simulating a Probability Distribution is the Same
as Winning the Pseudo-Telepathy Graph Game

In [6] it was proven that for some graphs, the probability distributions of the
quantum strategy using the graph states cannot be simulated using non local
boxes on less than k parties, we show here that any strategy that allows to win
the game can be extended using random variables shared between neighbors
(in the graph) to simulate the uniform probability distribution arising from the
quantum strategy.

We start by describing a classical strategy CStrat based on shared random
variables rather than quantum states. We show that CStrat is a winning strat-
egy if and only if the graph is bi-partite. We also show that CStrat can be
used to make any winning strategy a uniform winning strategy, i.e. each valid
answer to a given question are equiprobable. We show that CStrat can be locally
adapted to collaborative games on graphs that can be obtained by a sequence
of local complementations.

Classical Strategy (Cstrat): Given a graph G = (V,E), pick uniformly at
random λ ∈ {0, 1}V . Each player u ∈ V receives a pair of bits (λu, μu), where
μu =

∑
v∈NG(u) λu mod 2. Given a question x ∈ {0, 1}V , each player u ∈ V

locally computes and answers au = (1 − xu).λu + xu.μu mod 2.

Lemma 2. Given a graph G = (V,E) and a question x ∈ {0, 1}V , CStrat
produces an answer uniformly at random in {a ∈ {0, 1}V | ∃D ⊆ S, (A⊕Odd(A⊕
D))∩S = ∅ whereA = supp(a) andS = supp(x)}.
Proof. Given a graph G = (V,E), a question x ∈ {0, 1}V and a ∈ {0, 1}V , the
probability that CStrat outputs a is

p(a|x) = p (∀u∈V \S, au=λu) p(∀u∈S, au=
∑

v∈N(u)

λv mod 2 | ∀u∈V \S, au=λu)

= p (A \ S = Λ \ S) p(A ∩ S = Odd(Λ) ∩ S|A \ S = Λ \ S)
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where S = supp(x), A = supp(a) and Λ = supp(λ). Since p (A \ S = Λ \ S) =
1

2n−|x| , p(a|x) = 1
2n−|x| p (A ∩ S = Odd(Λ ∩ S ⊕ Λ \ S) ∩ S|A \ S = Λ \ S) =

1
2n−|x| p (A ∩ S = Odd(D ⊕ (A \ S)) ∩ S|A \ S = Λ \ S), where D = Λ ∩ S. If
A ∩ S �= Odd(D ⊕ (A \ S)) ∩ S for all D ⊆ S, then p(a|x) = 0. Other-
wise, the set of subsets D of S which satisfy the condition is the affine space
{D0 ⊕ D|D ⊆ S ∧ Odd(D) ∩ S = ∅}, where D0 is a fixed set which satisfies
A ∩ S = Odd(D0 ⊕ A \ S) ∩ S. Thus the p(a|x) = 1

2n−|x| .
|{D⊆S|Odd(D)∩S=∅}|

2|x| =
2|x|−rkG(x)−n, which is independent of a, proving the uniformity of the answer.
Finally notice ∃D0 ⊆ S,A ∩ S = Odd(D0 ⊕ (A \ S)) ∩ S if and only if
∃D1 ⊆ S, (A ⊕ Odd(A ⊕ D1))∩S = ∅, by taking D1 = D0 ⊕ (A ∩ S). �

We consider some standard graph transformations: Given a graph G = (V,E)
the local complementation [11] on a vertex u ∈ V produces the graph G ∗ u =
(V,E ⊕KN(v)) where the sum is taken modulo 2 (it is the symmetric difference)
and KU is the complete graph on U ⊂ V . G∗u is obtained from G by exchanging
the edges by non edges and vice versa in the neighborhood of the vertex u.
Pivoting using an edge (u, v), is a sequence of three local complementations
G ∧ uv = G ∗ u ∗ v ∗ u. We denote by δloc(G) [15,30,31] (resp. δpiv(G)) the
minimum degree taken over all graphs that can be obtained from G through
some sequence of local complementations (edge pivots).

Given the shared randomness (λv, μv)v∈V associated with G, if player u
replaces its first bit by the XOR of its two bits, and each of his neighbors replaces
his second bit by the XOR of his two bits, one gets the shared randomness asso-
ciated with G ∗ u. (proof given in Appendix)

Lemma 3. Given the probability distribution (λv, μv)v∈V associated with G, if
player u replaces its first bit by the XOR of its two bits, and each of its neighbors
replaces their second bit by the XOR of their two bits, one gets the probability
distribution associated with G ∗ u.

Thus the probability distribution corresponding to the classical strategy for
G can be locally transformed into the probability distribution associated with the
G ∗ u, thus one can use local complementation to optimise the cost of preparing
the shared randomness. For instance the classical strategy CStrat for a graph
G requires shared random bits on at most Δloc(G)+1 players, where Δloc(G) =
min(Δ(G′), s.t. ∃u1, . . . , uk, G

′ = G ∗ u1 ∗ . . . ∗ uk) and Δ(G) is its maximum
degree. If there is no pre-shared random bits, the probability distribution can be
prepared using at most 2|G|loc communications in-between the players, where
|G|loc = min(|G′|, s.t. ∃u1, . . . , uk, G

′ = G∗u1 ∗ . . .∗uk) is the minimum number
of edges by local complementation.

Now we show how, using the classical strategy CStrat, one can simulate the
quantum strategy QStrat given an oracle that provides only good answers.

Lemma 4. For any collaborative game on a graph G, for any strategy Q that
never loses, there exists a strategy Q′ using the outputs of Q and shared random
variables that simulate QStrat.
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Proof. Given a collaborative graph game on a graph G, let Q be a strategy
that always outputs permissible outputs for any set of inputs x, so we have
pairs (a|x) �∈ L. We consider the strategy which combines Q and CStrat for
this graph: For a given question x, Q′ outputs the XOR of the Q answer and
CStrat answer for x. First we prove that such an answer is a valid answer and
then the uniform probability among the possible answer to a given question.
Given a question x ∈ {0, 1}V , suppose Q′ outputs a′ ∈ {0, 1}V : ∀u ∈ V , a′

u =
au + (1 − xu)λu + xuμu where au is the answer produced by Q and λ and μ are
as defined in the classical strategy. By contradiction, assume (a′|x) ∈ L, so there
exists D involved in x such that

∑
u∈loc(D) a′

u = |G[D]| + 1 mod 2.
∑

u∈loc(D) a′
u =

∑
u∈loc(D) (au + (1 − xu)λu + xuμu) mod 2 =

∑
u∈loc(D)

au +
∑

u∈loc(D)\supp(x) λu +
∑

u∈loc(D)∩supp(x) μu mod 2 =
∑

u∈loc(D) au +
∑

u∈Odd(D) λu +
∑

u∈D

∑
v∈N(u) λv mod 2 =

∑
u∈loc(D) au +

∑
u∈Odd(D) λu +

∑
v∈Odd(D) λv mod 2 =

∑
u∈loc(D) au mod 2. Thus (a|x) ∈ L which is a con-

tradiction thus p(a′|x) = 0 if (a′|x) ∈ L. Now we prove that p(a′|x) =
2|x|−n−rkG(x). First assume Q is determinist, thus p(a′|x) is the probabil-
ity that the classical strategy outputs a + a′ := (au + a′

u mod 2)u∈V . Since
this probability is non zero it must be 2|x|−n−rkG(x). If Q is probabilis-
tic, p(a′|x) =

∑
a∈{0,1}V p(Q outputs a on x)p(classical strategy outputs a +

a′ on x) ≤ 2|x|−n−rkG(x)
∑

a∈{0,1}V p(Q outputs a on x) ≤ 2|x|−n−rkG(x). Thus
each answer a produced by the strategy on a given question x is s.t. (a|x) /∈ L
and occurs with probability at most 2|x|−n−rkG(x). Since |{a ∈ {0, 1}V | (a|x) /∈
L}| = 2|x|−n−rkG(x), each of the possible answers is produced by the strategy
and occurs with probability 2|x|−n−rkG(x). �

4 Locally Equivalent Games

A pseudo telepathy game G locally simulates another pseudo telepathy game G′

if any winning strategy for G can be locally turned into a winning strategy for
G′:

Definition 4 (Local Simulation). Given two pseudo telepathy games G and
G′ on a set V of players which sets of losing pairs are respectively LG and LG′ ,
G locally simulates G′ if for all u ∈ V , there exist f1, . . . , fn : {0, 1} → {0, 1}
and g1, . . . , gn : {0, 1} × {0, 1} → {0, 1} s.t. ∀x, a ∈ {0, 1}V (g(a, x), x) ∈ LG′ ⇒
(a|f(x)) ∈ LG where f(x) = (fu(xu))u∈V and g(a, x) = (gu(au, xu))u∈V .

Assuming G locally simulates G′ and that the players have a strategy to win
G, the strategy for G′ is as follows: given an input x of G′, each player u applies
the preprocessing fu turning her input xu into fu(xu), then they collectively play
the game G with this input f(x) getting an output a s.t. (a|f(x)) /∈ LG . Finally
each player u applies a postprocessing gu which depends on her output au and
her initial input xu to produce the output gu(au, xu) to the game G′. This output
is valid since, by contradiction, (g(a, x), x) ∈ LG′ would imply (a|f(x)) ∈ LG .
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Definition 5 (Local Equivalence). G and G′ are locally equivalent games if
G locally simulates G′ and G′ locally simulates G.

In the following we give two examples of locally equivalent games (the proofs
of equivalence are given in Appendix): first we show that the games associated
with the complete graphs are locally equivalent to Mermin parity games, and
then that pivoting, a graph theoretical transformation, produces a graph game
locally equivalent to the original one:

Lemma 5. For any n, the game associated with the complete graph Kn is locally
equivalent to the Mermin parity game on n players.

Lemma 6. Given a graph G = (V,E) and (u, v) ∈ E, the games associated with
G and G ∧ uv are locally equivalent.

Therefore, the important quantity for the pre-shared randomness for
the strategies defined with a graph is Δpiv(G) = min{Δ(G′), G′ pivot
equivalent to G}.

5 Scenarios with Linear Multipartiteness Width

We prove that there exist contextuality scenarios with linear multipartiteness
width. We use a graph property called k-odd domination which is related [6]
to the classical simulation of the quantum probability distribution obtained by
playing the associated graph game. Since bipartite graphs correspond to graph
games that can be won classically [6], we focus on the non-bipartite case by
showing that there exist non-bipartite 0.11n-odd dominated graphs of order n.

Definition 6 (k-odd domination [6]). A graph G = (V,E) is k-odd dominated
(k-o.d.) iff for any S ∈ (

V
k

)
, there exists a labelling of the vertices in S =

{v1, . . . , vk} and C1, . . . Ck, s.t. ∀i, Ci ⊆ V \ S and Odd(Ci) ∩ {vi, . . . vk} = {vi}
and Ci ⊆ Even(Ci).

Lemma 7. For any k ≥ 0, r ≥ 0 and any graph G = (V,E) a graph of order
n having two distinct independent sets V0 and V1 of order |V0| = |V1| = �n−r

2 �,
G is k-odd dominated if for any i ∈ {0, 1}, and any non-empty D ⊆ V \ Vi,
|OddG(D) ∩ Vi| > k − |D|
Proof. Given S0 ⊆ V0, S1 ⊆ V1, and S2 ⊆ V2 = V \ (V0 ∪ V1) s.t. |S0| +
|S1| + |S2| = k, we show that for any u ∈ S = S0 ∪ S1 ∪ S2, there exists
Cu ⊆ V \ S s.t. Odd(Cu) ∩ S = {u} and Cu ⊆ Even(Cu). For any u ∈ S,
there exists i ∈ {0, 1} s.t. u ∈ Si ∪ S2. Let Li : 2Si∪S2 → 2V1−i\S1−i be the
function which maps D ⊆ Si ∪ S2 to Li(D) = OddG(D) ∩ (V1−i \ S1−i). Li is
linear according to the symmetric difference. Li is injective: for any D ⊆ Si ∪S2,
Odd(D)∩(V1−i\S1−i) = ∅ implies Odd(D)∩V1−i ⊆ S1−i, thus |Odd(D)∩V1−i| ≤
|S1−i|. notice that |D| ≤ |Si| + |S2|, so |Odd(D) ∩ V1−i| ≤ |S1−i| ≤ |S0| + |S1| +
|S2| − |D| = k − |D|, so D = ∅. The matrix representing Li is nothing but the



52 A. Anshu et al.

submatrix Γ[Si∪S2,V1−i\S1−i] of the adjacency matrix Γ of G. So its transpose
Γ[V1−i\S1−i,Si∪S2] is surjective which means that the corresponding linear map
LT
i : 2V1−i\S1−i → 2Si∪S2 = C �→ OddG(C) ∩ (V1−i \ S1−i) is surjective, so

∃Cu ⊆ V1−i \ S1−i s.t. OddG(Cu) ∩ (Si ∪ S2) = {u}, which implies, since V1−i is
an independent set, that OddG(Cu) ∩ S = {u} and Cu ⊆ Even(Cu). �
Theorem 1. For any even n > n0, there exists a non-bipartite �0.110n�-odd
dominated graph of order n.

Proof. Given n, r ≤ n s.t. r = n mod 2, and k ≥ 0. Let p = (n − r)/2,
and let G = (V0 ∪ V1 ∪ V2, E) s.t. |V0| = |V1| = p, |V2| = r be a random
graph on n vertices s.t. for any u ∈ Vi, v ∈ Vj there is an edge between u
and v with probability 0 if i = j and with probability 1/2 otherwise. For any
i ∈ {0, 1}, and any non empty D ⊆ V \ Vi s.t. |D| ≤ k, let A

(i)
D be the bad event

|OddG(D)∩Vi| ≤ k−|D|. Since each vertex of Vi is in OddG(D) with probability
1/2, Pr(A(i)

D ) =
∑k−|D|

j=0

(
p
j

)
2−p ≤ 2p[H(

k−|D|
p )−1]. Another bad event is that G is

bipartite which occurs with probability less than (78 )pr. Indeed, the probability
that given u ∈ V0, v ∈ V1, w ∈ V2, (u, v, w) do not form a triangle is 7

8 , so given
a bijection f : V0 → V1, the probability that ∀u ∈ V0,∀w ∈ V2, (u, f(u), w)
do not form a triangle is (78 )pr. Let X be the number of bad events. E[X] =

2
∑k

d=1

(
p+r
d

) ∑k−d
j=0

(
p
j

)
2−p + (78 )pr ≤ 2

∑k
d=1 2(p+r)H( d

p+r )+pH( k−d
p )−p + (78 )pr ≤

2
∑k

d=1 2pH( d
p+r )+pH( k−d

p )−p+r +(78 )pr. The function d �→ pH( d
p+r )+pH(k−d

p )−
p + r is maximal for d = k(p+r)

2p+r . Thus, E[X] ≤ 2k22pH( k
2p+r )−p+r + (78 )pr. By

taking r = 1, and k = 0.11n = 0.11(2p + 1), E[X] < 1 when p large enough,
thus G has no bad event with a non zero probability. �
Corollary 1. There exist contextuality scenarios with linear multipartiteness
width: for any even n > n0, there exist graph games on n players producing
contextuality scenarios of multipartiteness width at least �0.11n�.
Proof. Using the result from [6], for any non bipartite graph of order n being
0.11n-o.d ensures that the probability distribution obtained by using the quan-
tum strategy cannot be simulated using non local boxes involving at most 0.11n
parties. Thus lemma 4 allows to conclude that the associated pseudo-telepathy
game cannot be won classically. Therefore there is no interpretation that is k-
multipartite with k < 0.11n which means that the contextuality scenario has
linear width. �

6 Conclusion

We have shown that there exist graphs with linear multipartiteness width, how-
ever the proof is non constructive and the best known bound for explicit families
is logarithmic. A natural future direction of research would be to find explicit
families with linear multipartiteness width or to improve the bounds proven for
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the Paley graph states. An other important question is to consider lower bounds
for the scenarios associated with the graph games. A promising area of investi-
gation for multipartite scenarios is: what happens if we limit the width of shared
randomness? Indeed, for the proof of how winning the game allows to simulate
the quantum probability distributions, one needs only shared random variables
that are correlated in local neighborhoods in the graph. One can also consider
the link with building entanglement witnesses for graph states, generalizing the
construction of [28]. It would be also very interesting to link the multipartiteness
width with the structures of the groups of the associated binary linear system
defining the two-player bipartite non-local games [41]. Finally, one can expect
that the multipartiteness width of the Paley graph states might have crypto-
graphic applications to ensure security against cheating for some protocols for
example.
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4. Abramsky, S., Barbosa, R.S., Carù, G., Perdrix, S.: A complete characterisation of
all-versus-nothing arguments for stabiliser states. arXiv preprint arXiv:1705.08459
(2017)
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Abstract. Schaefer introduced a framework for generalized satisfiabil-
ity problems on the Boolean domain and characterized the computa-
tional complexity of such problems. We investigate an algebraization of
Schaefer’s framework in which the Fourier transform is used to represent
constraints by multilinear polynomials. The polynomial representation of
constraints gives rise to a relaxation of the notion of satisfiability in which
the values to variables are linear operators on some Hilbert space. For
constraints given by a system of linear equations over the two-element
field, this relaxation has received considerable attention in the founda-
tions of quantum mechanics, where such constructions as the Mermin-
Peres magic square show that there are systems that have no solutions
in the Boolean domain, but have solutions via operator assignments on
some finite-dimensional Hilbert space. We completely characterize the
classes of Boolean relations for which there is a gap between satisfiabil-
ity in the Boolean domain and the relaxation of satisfiability via oper-
ator assignments. To establish our main result, we adapt the notion of
primitive-positive definability (pp-definability) to our setting, a notion
that has been used extensively in the study of constraint satisfaction.
Here, we show that pp-definability gives rise to gadget reductions that
preserve satisfiability gaps, and also give several additional applications.

1 Introduction and Summary of Results

In 1978, Schaefer [17] classified the computational complexity of generalized
satisfiability problems. Each class A of Boolean relations gives rise to the gen-
eralized satisfiability problem SAT(A). An instance of SAT(A) is a conjunction
of relations from A such that each conjunct has a tuple of variables as argu-
ments; the question is whether or not there is an assignment of Boolean values
to the variables, so that, for each conjunct, the resulting tuple of Boolean values
belongs to the underlying relation. Schaefer’s main result is a dichotomy theorem
for the computational complexity of SAT(A), namely, depending on A, either
SAT(A) is NP-complete or SAT(A) is solvable in polynomial time. Schaefer’s
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dichotomy theorem provided a unifying explanation for the NP-completeness of
many well-known variants of Boolean satisfiability, such as POSITIVE 1-IN-3
SAT and MONOTONE 3SAT, and became the catalyst for numerous subsequent
investigations in computational complexity and constraint satisfaction.

Every Boolean relation can be identified with its characteristic function,
which, via the Fourier transform, can be represented as a multilinear polynomial
(i.e., a polynomial in which each variable has degree at most one) in a unique
way. In carrying out this transformation, the truth values false and true are
represented by +1 and −1, instead of 0 and 1. Thus, the multilinear polynomial
representing the conjunction x ∧ y is 1

2 (1+x+ y −xy). The multilinear polyno-
mial representation of Boolean relations makes it possible to consider relaxations
of satisfiability in which the variables take values in some suitable space, instead
of the two-element Boolean algebra. Such relaxations have been considered in
the foundations of physics several decades ago, where they have played a role
in singling out the differences between classical theory and quantum theory. In
particular, it has been shown that there is a system of linear equations over the
two-element field that has no solutions over {+1,−1}, but the system of the asso-
ciated multilinear polynomials has a solution in which the variables are assigned
linear operators on a Hilbert space of dimension four. The Mermin-Peres magic
square [12,13,15] is the most well known example of such a system. These con-
structions give small proofs of the celebrated Kochen-Specker Theorem [8] on
the impossibility to explain quantum mechanics via hidden-variables [2]. More
recently, systems of linear equations with this relaxed notion of solvability have
been studied under the name of binary constraint systems, and tight connections
have been established between solvability and the existence of perfect strategies
in non-local games that make use of entanglement [4,5].

A Boolean relation is affine if it is the set of solutions of a system of linear
equations over the two-element field. The collection LIN of all affine relations is
prominent in Schaefer’s dichotomy theorem, as it is one of the main classes A
of Boolean relations for which SAT(A) is solvable in polynomial time. The dis-
cussion in the preceding paragraph shows that SAT(LIN) has instances that are
unsatisfiable in the Boolean domain, but are satisfiable when linear operators on
a Hilbert space are assigned to variables (for simplicity, from now on we will use
the term “operator assignments” for such assignments). Which other classes of
Boolean relations exhibit such a gap between satisfiability in the Boolean domain
and the relaxation of satisfiability via operator assignments? As a matter of fact,
this question bifurcates into two separate questions, depending on whether the
relaxation allows linear operators on Hilbert spaces of arbitrary (finite or infi-
nite) dimension or only on Hilbert spaces of finite dimension. In a recent break-
through paper, Slofstra [18] showed that these two questions are different for LIN
by establishing the existence of systems of linear equations that are satisfiable
by operator assignments on some infinite-dimensional Hilbert space, but are not
satisfiable by operator assignments on any finite-dimensional Hilbert space. In
a related vein, Ji [11] showed that a 2CNF-formula is satisfiable in the Boolean
domain if and only if it is satisfiable by an operator assignment in some finite-
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dimensional Hilbert space. Moreover, Ji showed that the same holds true for Horn
formulas. Note that 2SAT, HORN SAT, and DUAL HORN SAT also feature
prominently in Schaefer’s dichotomy theorem as, together with SAT(LIN) which
from now on we will denote by LIN SAT, they constitute the main tractable
cases of generalized satisfiability problems (the other tractable cases are the
trivial cases of SAT(A), where A is a class of 0-valid relations or a class of 1-
valid relations, i.e., Boolean relations that contain the tuple consisting entirely
of 0’s or, respectively, the tuple consisting entirely of 1’s).

In this paper, we completely characterize the classes A of Boolean relations
for which SAT(A) exhibits a gap between satisfiability in the Boolean domain
and satisfiability via operator assignments. Clearly, if every relation in A is 0-
valid or every relation in A is 1-valid, then there is no gap, as every constraint
is satisfied by assigning to every variable the identity operator or its negation.
Beyond this, we first generalize and extend Ji’s results [11] by showing that if
A is a bijunctive class of Boolean relations (i.e., every relation in A is the set of
satisfying assignments of a 2-CNF formula), or A is Horn (i.e., every relation in
A is the set of satisfying assignments of a Horn formula), or A is dual Horn (i.e.,
every relation in A is the set of satisfying assignments of a dual Horn formula),
then there is no gap whatsoever between satisfiability in the Boolean domain
and satisfiability via operators of Hilbert spaces of any dimension. In contrast,
we show that for all other classes A of Boolean relations, SAT(A) exhibits a two-
level gap: there are instances of SAT(A) that are not satisfiable in the Boolean
domain, but are satisfiable by an operator assignment on some finite-dimensional
Hilbert space, and there are instances of SAT(A) that are not satisfiable by an
operator assignment on any finite-dimensional Hilbert space, but are satisfiable
by an operator assignment on some (infinite-dimensional) Hilbert space.

The proof of this result uses several different ingredients. First, we use the
substitution method [5] to show that there is no satisfiability gap for classes of
relations that are bijunctive, Horn, and dual Horn. This gives a different proof of
Ji’s results [11], which were for finite-dimensional Hilbert spaces, but also shows
that, for such classes of relations, there is no difference between satisfiability by
linear operators on finite-dimensional Hilbert spaces and satisfiability by linear
operators on arbitrary Hilbert spaces. The main tool for proving the existence
of a two-level gap for the remaining classes of Boolean relations is the notion
of pp-definability, that is, definability via primitive-positive formulas, which are
existential first-order formulas having a conjunction of (positive) atoms as their
quantifier-free part. In the past, primitive-positive formulas have been used to
design polynomial-time reductions between decision problems; in fact, this is one
of the main techniques in the proof of Schaefer’s dichotomy theorem. Here, we
show that primitive-positive formulas can also be used to design gap-preserving
reductions, that is, reductions that preserve the gap between satisfiability on
the Boolean domain and satisfiability by operator assignments. To prove the
existence of a two-level gap for classes of Boolean relations we combine gap-
preserving reductions with the two-level gap for LIN discussed earlier (i.e., the
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results of Mermin [12,13], Peres [15], and Slofstra [18]) and with results about
Post’s lattice of clones on the Boolean domain [16].

We also give two additional applications of pp-definability. First, we consider
an extension of pp-definability in which the existential quantifiers may range over
linear operators on some finite-dimensional Hilbert space. By analyzing closure
operations on sets of linear operators, we show that, perhaps surprisingly, this
extension of pp-definability is not more powerful than standard pp-definability,
i.e., if a Boolean relation is pp-definable in the extended sense from other Boolean
relations, then it is also pp-definable from the same relations. Second, we apply
pp-definability to the problem of quantum realizability of contextuality scenarios.
Recently, Fritz [8] used Slofstra’s results [18] to resolve two problems raised by
Aćın et al. in [1]. Using pp-definability and Slofstra’s results, we obtain new
proofs of Fritz’s results that have the additional feature that the parameters
involved are optimal. Complete proofs of all results are found in the full version
of the paper at https://arxiv.org/abs/1704.01736.

2 Definitions and Technical Background

For an integer n, we write [n] for the set {1, . . . , n}. We use mainly the 1,−1
representation of the Boolean domain (1 for “false” and −1 for “true”). We write
{±1} for the set {+1,−1}. Every f : {±1}n → C has a unique representation as
a multilinear polynomial Pf in C[X1, . . . , Xn] given by the Fourier or Hadamard-
Welsh transform [14]. The polynomial represents f in the sense that Pf (a) =
f(a), for every a ∈ {±1}n. All Hilbert spaces of finite dimension d are isomorphic
to C

d with the standard complex inner product, so we identify its linear operators
with the matrices in C

d×d. A matrix A is Hermitian if it is equal to its conjugate
transpose A∗. A matrix A in unitary if A∗A = AA∗ = I. Two matrices A and B
commute if AB = BA; a collection of matrices A1, . . . , Ar pairwise commute if
AiAj = AjAi, for all i, j ∈ [r]. See [10], for the basics of Hilbert spaces, including
the concepts of bounded linear operator and of adjoint A∗ of a densely defined
linear operator A. See [7], for the definitions of L2-spaces and L∞-spaces.

A Boolean constraint language A is a collection of relations over the Boolean
domain {±1}. Let V = {X1, . . . , Xn} be a set of variables. An instance I on the
variables V over the constraint language A is a finite collection of pairs

I = ((Z1, R1), . . . , (Zm, Rm)) (1)

where each Ri is a relation from A and Zi = (Zi,1, . . . , Zi,ri
) is a tuple of vari-

ables from V or constants from {±1}, where ri is the arity of Ri. Each pair
(Zi, Ri) is a constraint, and each Zi is its constraint-scope. A Boolean assign-
ment is an assignment f : X1, . . . , Xn �→ a1, . . . , an of a Boolean value in
{±1} to each variable. The assignment satisfies the i-th constraint if the tuple
f(Zi) = (f(Zi,1), . . . , f(Zi,ri

)) belongs to Ri. The value of f on I is the fraction
of constraints that are satisfied by f . The value of I, denoted by ν(I), is the
maximum value over all Boolean assignments; I is satisfiable if ν(I) = 1.

https://arxiv.org/abs/1704.01736
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Let H be a Hilbert space. An operator assignment for X1, . . . , Xn over H
is an assignment f : X1, . . . , Xn �→ A1, . . . , An of a bounded linear operator
Aj on H to each variable Xj , so that each Aj is self-adjoint and squares to
the identity, i.e., A∗

j = Aj and A2
j = I, for all j ∈ [n]. If S is a subset of

{X1, . . . , Xn}, the operator assignment A1, . . . , An pairwise commutes on S if,
in addition, AjAk = AkAj holds for all Xj and Xk in the set S. If it pairwise
commutes on the whole set {X1, . . . , Xn}, then the assignment fully commutes.

Let A be a Boolean constraint language, let I be an instance over A, with n
variables X1, . . . , Xn as in (1), and let H be a Hilbert space. An operator assign-
ment for I over H is an operator assignment f : X1, . . . , Xn �→ A1, . . . , An that
pairwise commutes on the set of variables of each constraint scope Zi in I; explic-
itly, AjAk = AkAj holds, for all Xj and Xk in Zi and all i ∈ [m]. We also require
that f maps −1 and +1 to −I and I, respectively. We say that the assignment
f satisfies the i-th constraint if PRi

(f(Zi)) = PRi
(f(Zi,1), . . . , f(Zi,ri

)) = −I,
where PRi

denotes the unique multilinear polynomial representation of the char-
acteristic function of the relation Ri that takes value −1 on tuples in Ri and 1
on tuples not in R. Since f(Zi,1), . . . , f(Zi,ri

) are required to commute by def-
inition, this notation is unambiguous, despite the fact that PRi

is defined as a
polynomial in commuting variables. We abbreviate the terms “operator assign-
ment” over a finite-dimensional Hilbert space by fd-operator assignment, and
“operator assignment over a finite-dimensional or infinite-dimensional Hilbert”
space by operator assignment. We write ν∗(I) to denote the maximum fraction
of constraints of I that can be satisfied by an fd-operator assignment. We write
ν∗∗(I) to denote the maximum fraction of constraints of I that can be satisfied
by an operator assignment.

3 The Strong Spectral Theorem

The Spectral Theorem plays an important role in linear algebra and functional
analysis. It has also been used in the foundations of quantum mechanics (for
some recent uses, see [5,11]). We will make a similar use of it, but we will also
need the version of this theorem for infinite-dimensional Hilbert spaces.

The basic form of the Spectral Theorem for complex matrices states that if A
is a d × d Hermitian matrix, then there exist a unitary matrix U and a diagonal
matrix E such that A = U−1EU . The Strong Spectral Theorem (SST) applies
to sets of pairwise commuting Hermitian matrices and is stated as follows.

Theorem 1 (Strong Spectral Theorem (SST): finite-dimensional case).
Let A1, . . . , Ar be d × d Hermitian matrices, where d is a positive integer. If
A1, . . . , Ar pairwise commute, then there exist a unitary matrix U and diagonal
matrices E1, . . . , Er such that Ai = U−1EiU , for every i ∈ [r].

This form of the SST will be enough to discuss satisfiability via fd-operators.
For operator assignments over arbitrary Hilbert spaces, we need to appeal to the
most general form of the SST in which the role of diagonal matrices is played
by the multiplication operators on an L2(Ω,μ)-space. For each a in L∞(Ω,μ),
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the multiplication operator Ta acts on L2(Ω,μ) and is defined by (Ta(f))(x) =
a(x)f(x), for all x ∈ Ω. The result we need [6, Theorem 1.47] is as follows: If
A1, . . . , Ar are pairwise commuting normal bounded linear operators on a Hilbert
space H, then there is a measure space (Ω,M, μ), a unitary map U : H →
L2(Ω,μ), and a1, . . . , ar in L∞(Ω,μ) such that Ai = U−1Tai

U , for all i ∈ [r].
The following lemma encapsulates a frequently used application of the SST.

Lemma 1. Let X1, . . . , Xr be variables, let Q1, . . . , Qm, Q be polynomials in
C[X1, . . . , Xr], and let H be a Hilbert space. If every Boolean assignment that
satisfies the equations Q1 = · · · = Qm = 0 also satisfies the equation Q = 0, then
every fully commuting operator assignment over H that satisfies the equations
Q1 = · · · = Qm = 0 also satisfies the equation Q = 0.

4 Reductions via Primitive Positive Formulas

A primitive-positive (pp-)formula is one of the form

φ(x1, . . . , xr) = ∃y1 · · · ∃yt (S1(w1) ∧ · · · ∧ Sm(wm)) , (2)

where each Si is a relation symbol of arity ri and each wi is an ri-tuple of vari-
ables or constants from {x1, . . . , xr} ∪ {y1, . . . , ys} ∪ {±1}. Let A be a Boolean
constraint language. A relation R ⊆ {±1}r is pp-definable from A if there exists
a pp-formula as in (2) with symbols for the relations of A such that R is the
set of all tuples (a1, . . . , ar) ∈ {±1}r such that φ(x1/a1, . . . , xr/ar) is true in A.
A Boolean constraint language A is pp-definable from a Boolean constraint lan-
guage B if every relation in A is pp-definable from B.

Let A and B be two Boolean constraint languages such that A is pp-definable
from B. For R in A, let φR be a formula as in (2) that defines R from B, where
now S1, . . . , Sm are relations from B. For every instance I of A, we construct an
instance J of B as follows.

Consider a constraint (Z,R) in I, where Z = (Z1, . . . , Zr) is a tuple of
variables of I or constants in {±1}. In addition to the variables in Z, we augment
J with fresh variables Y1, . . . , Yt for the quantified variables y1, . . . , yt in φR.
We also add one constraint (Wj , Sj) for each j ∈ [m], where Wj is the tuple of
variables and constants obtained from wj by replacing the variables in x1, . . . , xr

by the corresponding components Z1, . . . , Zr of Z, replacing every variable yi

occurring in wj by the corresponding Yi, and leaving all constants untouched.
We do this for each constraint in I, one by one. The collection of variables
Z1, . . . , Zr, Y1, . . . , Yt is referred to as the block of (Z,R) in J .

This construction is referred to as a gadget reduction in the literature. Its
main property for satisfiability in the Boolean domain is that I is satisfiable in
the Boolean domain if and only if J is. We omit the very easy proof of this
fact. Our goal in the rest of this section is to show that one direction of this
basic property of gadget reductions is also true for satisfiability via operators,
for both finite-dimensional and infinite-dimensional Hilbert spaces, and that the
other direction is almost true in a sense that we will make precise in due time.
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Lemma 2. Let I and J be as above and let H be a Hilbert space. For every
satisfying operator assignment f for I over H, there exists a satisfying operator
assignment g for J over H that extends f . Moreover, g is pairwise commuting
on each block of J .

So far we discussed that satisfying operator assignments for I lift to satisfying
operator assignments for J . We do not know if the converse is true. To achieve a
version of the converse, we modify slightly the instance J into a new instance Ĵ .
This new construction will be useful later on.

In the sequel, let T denote the full binary Boolean relation, i.e., T = {±1}2.
Observe that the indicator polynomial PT(X1,X2) of the relation T is just the
constant function −1; the letter T stands for true.

Let A and B be two constraint languages such that A is pp-definable from
B. Let I and J be the instances over A and B as defined above. The modified
version of J will be an instance over the expanded constraint language B ∪{T}.
This instance is denoted by Ĵ and it is defined as follows: the variables and
the constraints of Ĵ are defined as in J , but we also add all binary constraints
of the form ((Xi,Xj),T), ((Xi, Yk),T) or ((Yk, Y�),T), for every four different
variables Xi, Xj , Yk and Y� that come from the same block in J .

We show that, in this new construction, satisfying assignments not only lift
from I to Ĵ , but also project from Ĵ to I.

Lemma 3. Let I and Ĵ be as above and let H be a Hilbert space. Then the
following statements are true.

1. For every satisfying operator assignment f for I over H, there exists a sat-
isfying operator assignment g for Ĵ over H that extends f .

2. For every satisfying operator assignment g for Ĵ over H, the restriction f of
g to the variables of I is a satisfying operator assignment for I over H.

5 Satisfiability Gaps via Operator Assignments

Let A be a Boolean constraint language and let I be an instance over A. It is
easy to see that the following inequalities hold:

ν(I) ≤ ν∗(I) ≤ ν∗∗(I). (3)

Indeed, the first inequality holds because if we interpret the field of complex num-
bers C as a 1-dimensional Hilbert space, then the only solutions to the equation
X2 = 1 are X = −1 and X = +1. The second inequality is a direct consequence
of the definitions. For the same reason, if I is satisfiable in the Boolean domain,
then it is satisfiable via fd-operators, and if it is satisfiable via fd-operators,
then it is satisfiable via operators. The converses are, in general, not true; how-
ever, finding counterexamples is a non-trivial task. For the Boolean constraint
language LIN of affine relations, counterexamples are given by Mermin’s magic
square [12,13] for the first case, and by Slofstra’s recent construction [18] for the
second case. These will be discussed at some length in due time. In the rest of
this section, we characterize the constraint languages that exhibit such gaps.

We distinguish three types of gaps. We say that an instance I is
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1. a satisfiability gap of the first kind if ν(I) < 1 and ν∗(I) = 1;
2. a satisfiability gap of the second kind if ν(I) < 1 and ν∗∗(I) = 1;
3. a satisfiability gap of the third kind if ν∗(I) < 1 and ν∗∗(I) = 1.

As a mnemonic rule, count the number of stars ∗ that appear in the defining
inequalities in 1, 2 or 3 to recall what kind the gap is.

We say that a Boolean constraint language A has a satisfiability gap of the
i-th kind, i = 1, 2, 3, if there is at least one instance I over A that witnesses
such a gap. Clearly, a gap of the first kind or a gap of the third kind implies
a gap of the second kind. In other words, if A has no gap of the second kind,
then A has no gap of the first kind and no gap of the third kind. A priori no
other relationships seem to hold. We show that, in a precise sense, either A has
no gaps of any kind or A has a gap of every kind. Recall from Sect. 4 that T
denotes the full binary Boolean relation; i.e. T = {±1}2. We are now ready to
state and prove the main result of this section.

Theorem 2. Let A be a Boolean constraint language. Then the following state-
ments are equivalent.

1. A does not have a satisfiability gap of the first kind.
2. A does not have a satisfiability gap of the second kind.
3. A ∪ {T} does not have a satisfiability gap of the third kind,
4. A is 0-valid, or 1-valid, or bijunctive, or Horn, or dual Horn.

The proof of Theorem2 has two main parts. In the first part, we show that
if A satisfies at least one of the conditions in the fourth statement, then A has
no satisfiability gaps of the first kind or the second kind, and A ∪ {T} has no
satisfiability gaps of the third kind. In the second part, we show that, in all
other cases, A has satisfiability gaps of the first kind and the second kind, and
A ∪ {T} has satisfiability gaps of the third kind. The ingredients in the proof
of the second part are the existence of gaps of all three kinds for LIN, results
about Post’s lattice [16], and gap-preserving reductions that use the results about
pp-definability established in Sect. 4.

5.1 No Gaps of Any Kind

Assume that A satisfies at least one of the conditions in the fourth statement in
Theorem 2. First, we observe that the full relation T is 0-valid, 1-valid, bijunctive,
Horn, and dual Horn. Indeed, T is obviously 0-valid and 1-valid. Moreover, it
is bijunctive, Horn, and dual Horn because it is equal to the set of satisfying
assignments of the Boolean formula (x ∨ ¬x) ∧ (y ∨ ¬y), which is bijunctive,
Horn, and dual Horn. Therefore, to prove that the fourth statement in Theorem 2
implies the other three statement, it suffices to prove that if A satisfies at least
one of the conditions in the fourth statement, then A has no gaps of any kind.

The cases in which A is 0-valid or A is 1-valid are trivial. Next, we have to
show that if A is bijunctive or Horn or dual Horn, then A has no gaps of any
kind. It suffices to show that A does not have a gap of the second kind.

Ji [11] proved that if I is a 2SAT instance or a HORN SAT instance that
is satisfiable via fd-operators, then I is also satisfiable in the Boolean domain.
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We give an alternative proof that does not rely on the existence of eigenvalues
and thus applies to Hilbert spaces of arbitrary dimension. Our proof is based on
the manipulation of non-commutative polynomial identities, a method that has
been called the substitution method (see, e.g., [5]).

Lemma 4. Let I be an instance of 2SAT, HORN SAT, or DUAL HORN SAT.
Then I is satisfiable in the Boolean domain if and only if it is satisfiable via
fd-operators, if and only if it is satisfiable via operators.

Note that Lemma 4 does not immediately yield that 4 =⇒ 1 in Theorem 2:
for bijunctive constraint-languages, for example, the relations are defined by
conjunctions of 2-clauses, but need not be defined by individual 2-clauses. To
show that 4 =⇒ 1, we apply Lemma 1.

5.2 Gaps of Every Kind

Assume that A satisfies none of the conditions in the fourth statement in
Theorem 2, i.e., A is not 0-valid, A is not 1-valid, A is not bijunctive, A is
not Horn, and A is not dual Horn. We will show that A has a satisfiability gap
of the first kind (hence, A also has a satisfiability gap of the second kind) and
A ∪ {T} has a satisfiability gap of the third kind. As a stepping stone, we will
use the known fact that LIN has gaps of every kind. We now discuss the proof
of this fact and give the appropriate references to the literature.

Recall that LIN is the class of all affine relations, i.e., Boolean relations that
are the set of solutions of a system of linear equations over the two-element field.
In the ±1-representation, every such equation is a parity equation of the form∏r

i=1 xi = y, where y ∈ {±1}. Mermin [12,13] considered the following system:

X11X12X13 = 1 X11X21X31 = 1
X21X22X23 = 1 X12X22X32 = 1
X31X32X33 = 1 X13X23X33 = −1.

(4)

We denote this system of parity questions by M. It is easy to see that M has
no solutions in the Boolean domain. Mermin [12,13] showed it has a solution
consisting of linear operators on a Hilbert space of dimension four. Thus, in our
terminology, Mermin established the following result.

Theorem 3 [12,13]. M is a satisfiability gap of the first kind for LIN.

Cleve and Mittal [5, Theorem 1] have shown that a system of parity equations
has a solution consisting of linear operators on a finite-dimensional Hilbert space
if and only if there is a perfect strategy in a certain non-local game in the tensor-
product model. Cleve et al. [4, Theorem 4] have shown that a system of parity
equations has a solution consisting of linear operators on a (finite-dimensional or
infinite-dimensional) Hilbert space if and only if there is a perfect strategy in a
certain non-local game in the commuting-operator model. Slofstra [18] obtained
a breakthrough result that has numerous consequences about these models. In
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particular, Corollary 3.2 in Slofstra’s paper [18] asserts that there is a system
S of parity equations whose associated non-local game has a perfect strategy
in the commuting-operator model, but not in the tensor-product model. Thus,
by combining Theorem 1 in [5], Theorem 4 in [4], and Corollary 3.2 in [18], we
obtain the following result.

Theorem 4 [4,5,18]. S is a satisfiability gap of the third kind for LIN.

LIN has a rather special place among all classes of Boolean relations that are
not 0-valid, not 1-valid, not bijunctive, not Horn, and not dual Horn. This role
is captured by the next lemma, which follows from Post’s analysis of the lattice
of clones of Boolean functions (Post’s lattice) [16] and the Galois connection
between clones of Boolean functions and co-clones of Boolean relations discovered
by Geiger [9] and, independently, by Bodnarchuk et al. [3].

Lemma 5. If A is a Boolean constraint language that is not 0-valid, not 1-valid,
not bijunctive, not Horn, and not dual Horn, then LIN is pp-definable from A.

The final lemma in this section asserts that reductions based on pp-definitions
preserve satisfiability gaps upwards. Its proof makes use of Lemmas 2 and 3.

Lemma 6. Let B and C be Boolean constraint languages such that B is pp-
definable from C. If B has a satisfiability gap of the first kind, then so does C,
and if B has a satisfiability gap of the third kind, then so does C ∪ {T}.

We now have all the machinery needed to put everything together.
Let A be a Boolean constraint language that is not 0-valid, not 1-valid, not

bijunctive, not Horn, and not dual Horn. By Lemma 5, we have that LIN is
pp-definable from A. Since, by Theorem 3, LIN has a satisfiability gap of the
first kind, the first part of Lemma 6 implies that A has a satisfiability gap of the
first kind. Since, by Theorem 4, LIN has a satisfiability gap of the third kind,
the second part of Lemma 6 implies that A ∪ {T} has a satisfiability gap of the
third kind. The proof of Theorem 2 is now complete.

If A is a Boolean constraint language, then SAT(A) is the following decision
problem: Given an instance I over A, is I satisfiable in the Boolean domain?
Theorem 2 and Schaefer’s dichotomy theorem [17] imply that if A is a Boolean
constraint language such that SAT(A) is NP-complete, then A has satisfiability
gaps of the first kind and the second kind, and A ∪ {T} has a satisfiability gap
of the third kind. In particular, this holds for the languages expressing the most
widely used variants of Boolean satisfiability in Schaefer’s framework, including
3SAT, MONOTONE 3SAT, NOT-ALL-EQUAL 3SAT, and 1-IN-3 SAT.

6 Further Applications

In this section, we discuss two applications of the results obtained thus far. For
a Boolean constraint language A, let SAT∗(A) and SAT∗∗(A) be the versions
of SAT(A) in which the question is whether a given instance I is satisfiable
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via fd-operators, or, respectively, via operators. Slofstra’s Corollary 3.3 in [18],
combined with Theorem 4 in [4], implies the undecidability of LIN SAT∗∗, where
we write LIN SAT∗∗ to denote SAT∗∗(LIN).

Theorem 5 [4,18]. LIN SAT∗∗ is undecidable.

Theorem 5 and Lemmas 3, 4, and 5 yield the following dichotomy theorem.

Theorem 6. Let A be a Boolean constraint language and let A′ = A ∪ {T}.
Then, exactly one of the following two cases holds.

1. SAT∗∗(A′) is decidable in polynomial time.
2. SAT∗∗(A′) is undecidable.

Moreover, the first case holds if and only if A is 0-valid, or A is 1-valid, or A is
bijunctive, or A is Horn, or A is dual Horn.

Note that the second case of Theorem 6 states that SAT∗∗(A′) is undecidable,
but it says nothing about SAT∗∗(A). Luckily, in most cases, it is possible to
infer the undecidability of SAT∗∗(A) from the undecidability of SAT∗∗(A′). This
holds, for example, for 3LIN SAT∗∗ and 3SAT∗∗, (i.e., for SAT∗∗(A), where
A = {{(a1, a2, a3) ∈ {±1}3 : a1a2a3 = b} : b ∈ {±1}} and A = {{±1}3 \
{(a1, a2, a3)} : a1, a2, a3 ∈ {±1}}, respectively).

Theorem 7. 3LIN SAT∗∗ and 3SAT∗∗ are undecidable. Moreover, there is an
instance of 3SAT that witnesses a satisfiability gap of the third kind.

Now we turn to the second application. We follow the terminology in [1].
A contextuality scenario is a hypergraph H with a set V (H) of vertices and a set
E(H) ⊆ 2V (H) of edges such that

⋃
e∈E(H) e = V (H). A contextuality scenario

H is quantum realizable if there exists a Hilbert space H and an assignment of
bounded linear operators Pv on H to each vertex v in V (H) in such a way that
Pv is self-adjoint, P 2

v = Pv, and
∑

v∈e Pv = I, for each e ∈ E(H). In [1], the
question was raised whether there exist contextuality scenarios that are quantum
realizable but only over infinite-dimensional Hilbert spaces (see Problem 8.3.2 in
[1]). A related computational question was also raised: Is it decidable whether a
contextuality scenario given as input is quantum realizable? (see Conjecture 8.3.3
in [1]). This problem is called ALLOWS-QUANTUM. See [1] for a discussion on
why these problems are important, and their relationship to Connes Embedding
Conjecture in functional analysis. Fritz [8] answered these questions and, in
particular, showed that ALLOWS-QUANTUM is undecidable. Here, we give an
alternative proof that, as we shall see, yields optimal parameters.

Let k-ALLOWS-QUANTUM be the restriction of ALLOWS-QUANTUM
where the input hypergraph has edges of cardinality at most k. Using Theorem 7
and, crucially, a device invented by Ji [11, Lemma 5], we show that 3-ALLOWS-
QUANTUM is undecidable. We show that Ji’s device extends to the realm of
infinite-dimensional Hilbert spaces and use it for the following result.
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Corollary 1. 3-ALLOWS-QUANTUM is undecidable. Moreover, there exists a
hypergraph with edges of size at most three that is quantum realizable on some
Hilbert space, but not on a finite-dimensional Hilbert space.

The parameters are optimal since 2-ALLOWS-QUANTUM reduces to 2SAT∗∗.

7 Closure Operations

We say that R is pp∗-definable from A if there is a pp-formula φ(x) = ∃y(ψ(x, y))
over A such that, for every a ∈ {±1}|x|, the tuple a is in R if and only if the
instance ψ(x/a, y/Y ) is satisfiable via fd-operator assignments. One of the goals
of this section is to prove the following conservation result.

Theorem 8. Let A be a Boolean constraint language and let R be a Boolean
relation. If R is pp∗-definable from A, then R is also pp-definable from A.

To prove this theorem, we need to adapt the concept of closure operation.
For a Boolean r-ary relation R, let R∗ denote the set of fully commuting r-
variable fd-operator assignments that satisfy the equation PR(X1, . . . , Xr) = −I.
If A is a set of Boolean relations, let A∗ = {R∗ : R ∈ A}. Let H1, . . . ,Hm

and H be Hilbert spaces, and let f be a function that takes as inputs m lin-
ear operators, one on each Hi, and produces as output a linear operator on
H. We say that f is an operation if it maps the 1-variable operator assign-
ments A1, . . . , Am to a 1-variable operator assignment f(A1, . . . , Am), and it
maps the commuting 2-variable operator assignments (A1, B1), . . . , (Am, Bm)
to a commuting operator assignment (f(A1, . . . , Am), f(B1, . . . , Bm)). Let
R be a set of fully commuting operator assignments of arity r and let
F be a collection of operations. We say that R is invariant under F
if each f ∈ F maps tuples (A1,1, . . . , A1,r), . . . , (Am,1, . . . , Am,r) in R to
(f(A1,1, . . . , Am,1), . . . , f(A1,r, . . . , Am,r)) in R. If A is a collection of sets of
operator assignments, we say that A is invariant under F if every relation in A
is invariant under F . We also say that F is a closure operation of A.

We show that every Boolean closure operation (i.e., a 1-dimensional opera-
tion) gives a closure operation over finite-dimensional Hilbert spaces. If S is a
set, we put S(i) = 1 if i ∈ S, and S(i) = 0 if i �∈ S.

Theorem 9. Let A be a Boolean constraint language and let f : {±1}m → {±1}
be a Boolean closure operation of A. Let F be the function on linear operators
of Hilbert spaces defined by F (X1, . . . , Xm) =

∑
S⊆[m] f̂(S)

⊗
i∈[m] X

S(i)
i , where

f̂ is the Fourier transform of f . Then F is a closure operation of A∗. Moreover,
F (a1I, . . . , amI) = f(a1, . . . , am)I holds for every (a1, . . . , am) ∈ {±1}m.

Theorem 8 follows from combining Theorem 9 with Geiger’s Theorem [3,9].
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Abstract. In this paper we present some new complexity results on the
routing time of a graph under the routing via matching model. This is a
parallel routing model which was introduced by Alon et al. [1]. The model
can be viewed as a communication scheme on a distributed network. The
nodes in the network can communicate via matchings (a step), where a
node exchanges data (pebbles) with its matched partner. Let G be a
connected graph with vertices labeled from {1, ..., n} and the destination
vertices of the pebbles are given by a permutation π. The problem is to
find a minimum step routing scheme for the input permutation π. This
is denoted as the routing time rt(G, π) of G given π. In this paper we
characterize the complexity of some known problems under the routing
via matching model and discuss their relationship to graph connectivity
and clique number. We also introduce some new problems in this domain,
which may be of independent interest.

1 Introduction

Originally introduced by Alon et al. [1] the routing via matching model explores a
parallel routing problem on connected undirected graphs. Consider a undirected
labeled graph G. Each vertex of G contains a pebble with the same label as the
vertex. Pebbles move along edges through a sequence of swaps. A set of swaps
(necessarily disjoint) that occurs concurrently is called a step. This is determined
by a matching. A permutation π gives the destination of each pebble. That is,
the pebble pv on vertex v is destined for the vertex π(v). The task is to route
each pebble to their destination via a sequence of matchings. The routing time
rt(G, π) is defined as the minimum number of steps necessary to route all the
pebbles for a given permutation. The routing number of G, rt(G), is defined as
the maximum routing time over all permutation. Let G = (V,E), m = |E| and
|G| = n = |V |.

Determining the routing time is a special case of the minimum generator
sequence problem for groups. In this problem instead of a graph we are given
a permutation group G and a set of generators S. Given a permutation π ∈ G
the task is to determine if there exists a generator sequence of length ≤ k that
generates π from the identity permutation. It was first shown to be NP-hard by
Evan and Goldreich [11]. Later Jerrum [15] showed that it is in fact PSPACE-
complete, even when the generating set is restricted to only two generators.
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 69–81, 2017.
DOI: 10.1007/978-3-662-55751-8 7
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The serial version, where swaps takes place one at a time, is also of interest.
This has recently garnered interest after its introduction by Yamanaka et al.
[8]. They have termed it the token swapping problem. This problem is also NP-
complete as shown by Miltzow et al. [9] in a recent paper, where the authors
prove token swapping problem is hard to approximate within (1+δ) factor. They
also provide a simple 4-approximation scheme for the problem. A generalization
of the token swapping problem (and also the permutation routing problem) is
the colored token swapping problem [4,8]. In this model the vertices and the
tokens are partitioned into equivalence classes (using colors) and the goal is to
route all pebbles in such a way that each pebble ends up in some vertex with the
same class as the pebble. If each pebble (and vertex) belong to a unique class
then this problem reduces to the original token swapping problem. This problem
is also proven to be NP-complete by Yamanaka et al. [8] when the number of
colors is at least 3. The problem is polynomial time solvable for the bi-color case.

1.1 Prior Results

Almost all previous literature on this problem focused on determining the routing
number of typical graphs. In the introductory paper, Alon et al. [1] show that for
any connected graph G, rt(G) ≤ 3n. This was shown by considering a spanning
tree of G and using only the edges of the tree to route permutations in G. Note
that, one can always route a permutation on a tree, by iteratively moving a
pebble that belongs to some leaf node and ignoring the node afterward. The
routing scheme is recursive and uses an well known property of trees: a tree
has a centroid (vertex) whose removal results in a forest of trees with size at
most n/2. Later Zhang et al. [5] improve this upper bound to 3n/2 + O(log n).
This was done using a new decomposition called the caterpillar decomposition.
This bound is essentially tight as it takes �3(n − 1)/2� steps to route some
permutations on a star K1,n−1. There are also some known results for routing
numbers of graphs besides trees. We know that for the complete graph and
the complete bipartite graph the routing number is 2 and 4 respectively [1],
where the latter result is attributed to W. Goddard. Li et al. [6] extend these
results to show rt(Ks,t) = �3s/2t� + O(1) (s ≥ t). For the n-cube Qn we know
that n + 1 ≤ rt(Qn) ≤ 2n − 2. The lower bound is quite straightforward. The
upper bound was discovered by determining the routing number of the Cartesian
product of two graphs [1]. If G = G1�G2 be the Cartesian product of G1 and
G2 then:

rt(G) ≤ 2min(rt(G1), rt(G2)) + max(rt(G1), rt(G2))

Since Qn = K2�Qn−1 the result follow.1.

1.2 Our Results

In this paper we present several complexity results for the routing time problem
and some variants of it. We summarize these results below.
1 The base case, which computes rt(Q3) was determined to be 4 via a computer
search [6].
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Complexity results on routing time:

1. If G is bi-connected then determining whether rt(G, π) = k for any arbitrary
permutation and k > 2 is NP-complete.2

2. For any graph, determining rt(G, π) ≤ 2 can be done in polynomial time, for
which we give a O(n2.5) time algorithm.

3. As a consequence of our NP-completeness proof of the routing time we show
that the problem of determining a minimum sized partitioning scheme of
a colored graph such that each partition induces a connected subgraph is
NP-complete.

4. We introduce a notion of approximate routing called maximum routability for
a graph and give an approximation algorithm for it.

Structural results on routing number:

5. If G is h-connected then G has a routing number of O(nrG). Here rG =
min rt(Gh)/|Gh|, over all induced connected subgraphs Gh, with |Gh| ≤ h.

6. A connected graph with a clique number of κ has a routing number of O(n−κ).

Routing on general graphs is a natural question and the swapping model is
a natural model in synchronous networks. Our results are some of the first to
address these models when the graph has certain topological properties. Con-
nectivity properties are basic, especially for network algorithms. While the hope
is to have matching upper and lower bounds for, say, h-connected graphs, we
give new algorithms and techniques towards that end.

2 Computational Results

2.1 An O(n2.5) Time Algorithm for Determining if rt(G, π) ≤ 2

In this section we present a polynomial time deterministic algorithm to com-
pute a two step routing scheme if one exists. It is trivial to determine whether
rt(G, π) = 1. Hence, we only consider the case if rt(G, π) > 1. The basic idea
centers around whether we can route the individual cycles of the permutation
within 2 steps. Let π = π1π2 . . . πk consists of k cycles and πi = (πi,1 . . . πi,ai

),
where ai is the number of elements in πi. A cycle πi is identified with the vertex
set Vi ⊂ V whose pebbles need to be routed around that cycle. We say a cycle
πi is self-routable if it can be routed on the induced subgraph G[Vi] in 2 steps.

If all cycles were self-routable we would be done, so suppose that there is a
cycle πi that needs to match across an edge between it and another cycle πj .
Let G[Vi, Vj ] be the induced bipartite subgraph corresponding to the two sets Vi

and Vj .

Lemma 1. If πi is not self-routable and it is routed with an edge from Vi to Vj

then πi and πj are both routable in 2 steps when only the edges used are from
G[Vi, Vj ] and when |Vi| = |Vj |.
2 After publication of our results to arXiv [16] a similar result was independently
discovered in the context of parallel token swapping by Kawahara et al. [4].
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Fig. 1. The two cycles are shown as concentric circles. The direction of rotation for
the outer circle is clockwise and the inner circle is counter-clockwise. Once, we choose
(πi,s, πj,t) as the first matched pair, the rest of the matching is forced. Solid arrows
indicate matched vertices during the first round. Note that the cycles are unequal and
the crossed vertices in the figure will not be routed.

Proof. We prove this assuming G is a complete graph. Since for any other
case the induced subgraph G[Vi, Vj ] would have fewer edges, hence this is a
stronger claim. Let the cycle πi = (πi,1, . . . , πi,s, . . . , πi,ai

). If there is an edge
used between the cycles then there must be such an edge in the first step, since
pebbles need to cross from one cycle to another and back. Assume πi,s is matched
with πj,t in the first step. From Fig. 1 we see that the crossing pattern is forced,
and unless |Vi| = |Vj |, the pattern will fail. �	
A pair of cycles πi, πj is mutually-routable in the case described by Lemma 1.
Naively verifying whether a cycle πi is self-routable, or a pair (πi, πj) is mutually-
routable takes O(|Vi|2) and O((|Vi| + |Vj |)2) time respectively. However, with
additional bookkeeping we can compute this in linear time on the size of the
induced graphs. This can be done by considering the fact that no edge can
belong to more than one routing scheme on G[Vi] or on G[Vi, Vj ]. Hence the set
of edges are partitioned by the collection of 2 step routing schemes. Self-routable
schemes, if they exist, are forced by the choice of any edge to be in the first step;
no edge is forced by more than four initial choices, leading to a test that runs in
time proportional in |G[Vi]|. Mutually-routable schemes, if they exist, are one of
|Vi| (= |Vj |) possible schemes; each edge votes for a scheme and it is routable if
a scheme gets enough votes, leading to a test that runs in time proportional in
|G[Vi, Vj ]|. All the tests can be done in O(m) time.

We define a graph Gcycle = (Vcycle, Ecycle) whose vertices are the cycles
(Vcycle = {πi}) and two cycle are adjacent iff they are mutually-routable in 2
steps. Additionally, Gcycle has loops corresponding to vertices which are self-
routable cycles. We can modify any existing maximum matching algorithm to
check whether Gcycle has a perfect matching (assuming self loops) with only a
linear overhead. We omit the details. Then the next lemma follows immediately:

Lemma 2. rt(G, π) = 2 iff there is a perfect matching in Gcycle.
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The graph Gcycle can be constructed in O(m) time by determining self and
mutual routability of cycles and pair of cycles respectively. Since we have at most
k cycles, Gcycle has k vertices and thus O(k2) edges. Hence we can determine a
maximum matching in Gcycle in O(k2.5) time [7]. This gives a total runtime of
O(n+m+k2.5) for our algorithm to find a 2-step routing scheme of a connected
graph if one exists.

Corollary 1. rt(G) = 2 iff G is a clique.

Proof. (⇒) A two step routing scheme for Kn was given in [1].
(⇐) If G is not a clique then there is at least a pair of non-adjacent vertices. Let
(i, j) be a non-edge. Then by Lemma 1 the permutation (ij)(1)(2) . . . (n) cannot
be routed in two steps. �	

2.2 Determining rt(G, π) ≤ k is Hard for any k ≥ 3

Theorem 1. For k ≥ 3 computing rt(G, π) is NP-complete.

Proof. Proving it is in NP is trivial, we can use a set of matchings as a wit-
ness. We give a reduction from 3-SAT. We first define three atomic gadgets
(see Fig. 2) which will be use to construct the variable and clause gadgets. Ver-
tices whose pebbles are fixed (1-cycles) are represented as red circles. Otherwise
they are represented as black dots. So in the first three sub-figures ((a)–(c))
the input permutation is (a, b)3. In all our constructions we shall use permu-
tations consisting of only 1 or 2 cycles. Each cycle labeled i will be repre-
sented as the pair (ai, bi). If the correspondence between a pair is clear from
the figure then we shall omit the subscript. It is an easy observation that
rt(P3, ((a, b))) = rt(P4, ((a, b))) = rt(H, ((a, b))) = 3. In the case of the hexagon
H we see that in order to route the pebbles within 3 steps we have to use the
left or the right path, but we cannot use both paths simultaneously (i.e., a goes
along the left path but b goes along the right and vice-versa). Figure 2(e) shows a
chain of diamonds connecting u to v. Where each diamond has a 2-cycle, top and
bottom. If vertex u is used to route any pebble other than the two pebbles to its
right then the chain construction forces v to be used in routing the two pebbles
to its left. This chain is called a diamond-chain. In our construction we only use
chains of constant length to simplify the presentation of our construction.

Clause Gadget: Say we have a clause C = x ∨ y ∨ ¬z. In Fig. 2(d) we show
how to create a clause gadget. This is referred to as the clause graph GC for
the clause C. The graph in Fig. 2(d) can route πC = (aC , bC) in three steps by
using one of the three paths between aC and bC . Say, aC is routed to bC via x.
Then it must be the case that vertex x is not used to route any other pebbles.
We say the vertex x is owned by the clause. Otherwise, it would be not possible
to route aC to bC in three steps via x. We can interpret this as follows, a clause
has a satisfying assignment iff its clause graph has a owned vertex.
3 We do not write the 1 cycles explicitly as is common.
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Fig. 2. Atomic gadgets, pairs (a, b) need to swap their pebbles. The unmarked red
circles have pebbles that are fixed. (Color figure online)

Variable Gadget: Construction of the variable gadgets is done in a similar
manner. The variable gadget GX corresponding to X is shown in Fig. 3(b).
Figure 3(a) is essentially a smaller version of 4(b) and is easier to understand. If
we choose to route a1 and b1 via the top-left path passing through x1 and u1 then
(a2, b2) must be routed via x2 and u2. This follows from the fact that since u1 is
occupied the pebbles in the diamond chain C (the dashed line connecting u1 with
u3) must use u3 to route the right most pair. By symmetry, if we choose to route
(a1, b1) using the bottom right path (via ¬x1, u2) then we also have to choose
the bottom right path for (a2, b2). These two (and only two) possible (optimal)
routing scheme can be interpreted as variable assignment. Let GX be the graph
corresponding to the variable X (Fig. 3(b)). The top-left routing scheme leaves
the vertices ¬x1,¬x2, . . . free to be used for other purposes since they will not be
able take part in routing pebbles in GX . This can be interpreted as setting the
variable X to false. This “free” vertex can be used by a clause (if the clause has
that literal) to route its own pebble pair. That is they can become owned vertices
of some clause. Similarly, the bottom right routing scheme can be interpreted
as setting X to true. For each variable we shall have a separate graph and a
corresponding permutation on its vertices. The permutation we will route on
GX is πX = (a1b1)(a2b2) . . . (amX

, bmX
)πfX

. The permutation πfX
corresponds

to the diamond chain connecting u1 with umX+1. The size of the graph GX is
determined by mX , the number of clauses the variable X appears in.

Reduction: For each clause C, if the literal x ∈ C then we connect xi ∈ GX

(for some i) to the vertex labeled x ∈ GC via a diamond chain. If ¬x ∈ C
then we connect it with ¬xi via a diamond chain. This is our final graph Gφ

corresponding to an instance of a 3-SAT formula. The input permutation is π =
πX . . . πC . . . πf . . ., which is the concatenation of all the individual permutations
on the variable graphs, clause graphs and the diamond chains. This completes
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Fig. 3. Variable graph of X. (a) is a special case for mX = 2, (b) is the general case.

our construction. We need to show, rt(Gφ, π) = 3 iff φ is satisfiable. Suppose φ is
satisfiable. Then for each variable X, if the literal x is true then we use bottom-
right routing on GX , otherwise we use top-left routing. This ensures in each
clause graph there will be at least one owned vertex. Now suppose (Gφ, π) = 3.
Then each clause graph has at least one owned vertex. If x is a free vertex in
some clause graph then ¬x is not a free vertex in any of the other clause graphs,
otherwise variable graph GX will not be able route its own permutation in 3
steps. Hence the set of free vertices will be a satisfying assignment for φ. It is an
easy observation that the number of vertices in Gφ is polynomially bounded in
n,m; the number of variables and clauses in φ respectively and that Gφ can be
explicitly constructed in polynomial time. �	
Corollary 2. Computing rt(G, π) remains hard even when G is restricted to
being 2-connected.

2.3 Connected Colored Partition Problem (CCPP)

Our proof technique for Theorem1 can be used to prove that the following
problem is also NP-hard. Let G be a graph whose vertices are colored with k
colors. We say a partition S = {S1, . . . , Sr} of the vertex set V respects the
coloring C (where C : V → {1, . . . , k}) if each partition either contains all
vertices of some color or none of the vertices of that color (necessarily r ≤ k).
Further, we require the induced subgraph G[Si] be connected, for every i. Given
a graph G, a coloring C (with k colors) and a integer t ≤ n the decision version
of the problem asks, whether there exists a valid partitioning whose largest
block has a size of at most t. We denote this problem by CCPP(G, k, t). If we
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replace the requirement of connectedness of the induced subgraphs with other
efficiently verifiable properties then it is a strict generalization of the better
known monochromatic partitioning problems on colored graphs (see for example
[2]). Note that the connectivity requirement on the induced subgraphs is what
makes this problem graphical. In fact without it the problem becomes trivial, as
one can simply partition the vertices into monochromatic sets, which is the best
possible outcome. CCPP(G, k, t) is in P if k is constant. Since one can simply
enumerate all partitions in polynomial time.

Theorem 2. CCPP(G, k, t) is NP-complete for arbitrary k and t.

Proof. (sketch) The proof essentially uses a similar set of gadgets as used in the
proof of Theorem1. The idea is to interpret a route as a connected partition.
Details of which can be found in [18]. �	

2.4 Routing as Best You Can

It is often desirable to determine how many packets we can send to their destina-
tion within a certain number of steps. Such as propagating information in social
media. In the context of permutation routing this leads to a notion of maximum
routability. Given two permutation π and σ let |π − σ| be the number of fixed
points in τ such that τπ = σ. Let us define maximum routability mr(G, π, k) as
follows:

mr(G, π, k) = max
σ∈Sn, rt(G,σ)≤k

|π − σ|

We denote by MaxRoute the problem of computing maximum routability. Essen-
tially, σ is a permutation out of all permutations that can be routed in ≤ k
steps and that has the maximum number of elements in their correct position as
given by π. The permutation σ may not be unique. It can be easily shown (as
a corollary to Theorem 1) that the decision version of this problem is NP-hard,
since we can determine rt(G, π) by asking whether mr(G, π, k) = n. (Of course
rt(G, π) = O(n) for any graph, hence O(log n) number of different choices of k
is sufficient to compute rt(G, π) exactly.)

In this section we give an approximation algorithm for computing the max-
imum routability when the input graph G satisfies the following restriction. If
the maximum degree of G is Δ such that (Δ+1)k = O(log2 n) then mr(G, π, k)
can be approximated within a factor of O(n log log n/ log n) from the optimal.
Unfortunately a good approximation for rt(G, π) does not lead to a good approx-
imation ratio when computing mr(G, π, k) for any k > 2. The reason being that
in an optimal algorithm for routing π on G it is conceivable that all pebbles are
displaced at the penultimate stage and the last matching fixes all the displaced
pebbles.

Our approximation algorithm is based on a reduction to the MaxClique prob-
lem. The MaxClique problem has been extensively studied. In fact it is one of
the defining problems for PCP-type systems of probabilistic verifiers [3]. It has
been shown that MaxClique can not be approximated within a n1−o(n) factor
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of the optimal [14]. The best known upper bound for the approximation ratio
is by Feige [12] of O(n(log log n/ log3 n)) which improves upon Boppana and
Halldorsson’s [13] result of O(n/ log2 n). Note that if there is a f(n)-
approximation for MaxClique then whenever the clique number of the graph
is ω(f(n)), the approximation algorithm returns a non-trivial clique (not a sin-
gleton vertex).

Theorem 3. Given a graph G whose maximum degree is Δ, in polynomial time
we can construct another graph Gclique, with |Gclique| = O(n(Δ+1)k), such that
if the clique number of Gclique is κ then mr(G, π, k) = κ.

In the above theorem the graph Gclique will be an n-partite graph. Hence
κ ≤ n = O(|Gclique|/(Δ + 1)k). As long as we have (Δ + 1)k = O(log2 n) we can
use the approximation algorithm for MaxClique to get a non-trivial approxima-
tion ratio of O(n log log n/ log n).

Proof. Here we give the reduction from MaxRoute to MaxClique. First we aug-
ment G by adding self-loops. Let this new graph be G′. Hence we can make
every matching in G′ perfect by assuming each unmatched vertex is matched
to itself. Observe that any routing scheme on G′ induces a collection of walks
for each pebble. This collection of walks are constrained as follows. Let Wi and
Wj corresponds to walks of pebbles starting at vertices i and j respectively.
Let Wi[t] be the position of the pebble at time step t. They must satisfy the
following two conditions: (1) Wi[t] �= Wj [t] for all t ≥ 0. (2) Wi[t + 1] = Wj [t]
iff Wi[t] = Wj [t + 1]. Now consider two arbitrary walks in G′. We call them
compatible iff they satisfy the above two conditions. We can check if two walks
are compatible in linear time.

Let Wi be the collection of all possible length k walks starting from i and
ending at π(i). Note that |Wi| = O((Δ+1)k). For each w ∈ Wi we create a vertex
in Gclique. Two vertices u, v in Gclique are adjacent if they do not come from the
same collection (u ∈ Wi then v �∈ Wi) and u and v are compatible walks in G′.
Clearly, Gclique is n-partite, where each collection of vertices from Wi forming a
block. Furthermore, if Gclique has a clique of size κ then it must be the case that
there are κ mutually compatible walks in G′. These walk determines a routing
scheme (since they are compatible) that routes κ pebbles to their destination.
Now if Gclique has a clique number < κ then the largest collection of mutually
compatible length k walks must be < κ. Hence number of pebbles that can be
routed to their destination in at most k steps will be < κ.

In order to get a non-trivial approximation ratio we require that (Δ + 1)k =
O(log2 n) which implies that the above reduction is polynomial in n. This com-
pletes the proof. �	

3 Structural Results on the Routing Number

3.1 An Upper Bound for h-Connected Graphs

It was shown in [1] that for some h-connected graph G, its routing number has a
lower bound of Ω(n/h). This is easy to see since there exists h-connected graphs
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which have a balanced bipartition with respect to some cut-set of size h. For
such a graph the permutation that routes every pebble from one partition to
the other and vice-versa takes at least Ω(n/h) matchings. In this section we
give an upper bound. Let Gh be a induced connected subgraph of G having h
vertices, we will show rt(G) = O(n rt(Gh)/h). Hence if G has a h-clique then
rt(G) = O(n/h). In fact the result is more general. If Gh is an induced subgraph
with ≤ h vertices such that r = rt(Gh)/|Gh| is minimized then rt(G) = O(nr).

We use the classical Lovasz-Gyori partition theorem for h-connected graphs
for this purpose:

Theorem 4 (Lovasz-Gyori). If G is a h-connected graph then for any choice
of positive numbers n1, . . . , nh with n1 + . . . + nh = n and any set of vertices
v1, . . . , vh there is a partition of the vertices V1, . . . , Vh with vi ∈ Vi and |Vi| = ni

such that the induced subgraph G[Vi] is connected for all 1 ≤ i ≤ h.

We prove a combinatorial result. We have a lists Li, 1 ≤ i ≤ a, each of length
b. Each element of a list is a number c, 1 ≤ c ≤ a. Further, across all lists, each
number c occurs exactly b times.

Lemma 3. Given lists as described, there exists an a×b array A such that the ith
row is a permutation of Li and each column is a permutation of {1, 2, 3, . . . , a}.
Proof. By Hall’s Theorem for systems of distinct representatives [10], we know
that we can choose a representative from each Li to form the first column of A.
The criterion of Hall’s Theorem is that, for any k, any set of k lists have at least
k distinct numbers; but there are only b of each number so k − 1 numbers can
not fill up k lists. Now remove the representative from each list, and iterate on
the collection of lists of length b − 1. �	

To prove our upper bound we need an additional lemma.

Lemma 4. Given a set S of k pebbles and tree T with k pebbles on its k vertices.
Suppose we are allowed an operation that replaces the pebble at the root of T by
a pebble from S. We can replace all the pebbles in T with the pebbles from S in
Θ(k) steps, each a replace or a matching step.

Proof. Briefly, as each pebble comes from S it is assigned a destination vertex in
T , in reverse level order (the root is at level 0). After a replace-root operation,
there are two matching steps; these three will repeat. The first matching step
uses disjoint edges to move elements of S down to an odd level and the second
matching step moves elements of S down to an even level. Each matching moves
every pebble from S, that has not reached its destination, towards its destination.
The new pebbles move without delay down their paths in this pipelined scheme.
(The invariant is that each pebble from S is either at its destination, or at an
even level before the next replace-root operation.) �	
Theorem 5. If G is h-connected and Gh is an induced connected subgraph of
order h then rt(G) = O(n rt(Gh)/h).
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Proof. Let Vh = {u1, . . . , uh} be the vertices in Gh. We take these vertices as
the set of k vertices in Theorem 4. We call them ports as they will be used to
route pebbles between different components. Without loss of generality we can
assume p = n/h is an integer. Let n1 = n2 = . . . = nh = p and Vi be the block
of the partition such that ui ∈ Vi. Let Hi = G[Vi]. Then for any permutation π
on G:

1. Route the pebbles in Hi according to some permutation πi. Since Hi has n/h
vertices and is connected it takes O(n/h) matchings.

2. Next use Gh, n/h times, to route pebbles between different partitions. We
show that this can be done in O(n rt(Gh)/h) matchings. (The “replace-root”
step of Lemma 4, is actually the root replacements done by routing on Gh.)

3. Finally, route the pebbles in each Hi in parallel. Like step 1, this also can be
accomplished in O(n/h) matchings.

Clearly the two most important thing to attend to in the above procedure are
the permutations in step 1 and the routing scheme of step 2. We can assume
that each Hi is a tree rooted at ui (since each Hi has a spanning tree). Thus the
decomposition looks like the one shown in Fig. 4.

Fig. 4. G is decomposed into 4 connected blocks, which are connected to each other
via Gh.

The permutation π on G indicates for each element of Hi, which Hj it wants
to be routed to, where j could be i. So each Hi can build a list Li of indices of
the ports of Gh that it wants to route its elements to (again, possibly to its own
port). The lists satisfy the conditions of Lemma3, with a = h and b = n/h, We
will use the columns of the array A to specify the permutations routed using Gh

in step 2. Note that step 1 will need to preprocess each Hi so that the algorithm
of Lemma 4 will automatically deliver the elements of Hi up to ui in the order
specified by the ith row of A.
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Once the pebbles are rearranged in step 1, we use the graph Gh to route
them to their destination components. Each such routing takes rt(Gh) steps.
Between these routings on Gh the incoming pebble at any of the port vertices is
replaced by the next pebble to be ported; this requires 2 matching steps as seen
in Lemma 4. Hence, after rt(Gh) + 2 steps a set of h pebbles are routed to their
destination components. This immediately gives the bound of the theorem. �	

3.2 Relation Between Clique Number and Routing Number

Theorem 6. For a connected graph G with clique number κ its routing number
is bounded by O(n − κ).

Proof. Let H be a clique in G of size κ. Let G\H be the minor of G after the
contraction of the subgraph H. Let the vertex that H has been contracted to
be v. Further, let T be a spanning tree of G\H . When routing on G\H we can
treat v as any other vertex of G\H . Taking into account the fact that v can store
more than one pebble internally. When v participates in a matching with some
other vertex u in G\H we assume that exchanging pebbles takes 3 steps. This
accounts for the fact that the pebble thats need to be swapped with the pebbles
at u was not on a vertex adjacent to u in the un-contracted graph G. The basic
idea is to break the routing into two steps. In the first step we simply move all
pebbles in v whose final detination is not in v (i.e. not in un-contracted H) out.
For a tree, it is known that [17] we can route a subset of p pebbles where each
pebble needs to be moved at most l distance in ≤ p + 2l steps. Since T has a
diameter at most n−κ and at most min(κ, n−κ) pebbles need to be moved out
of v the first step can be accomplished ≤ 3(n − κ) + O(1) steps. At this point
we can employ any optimal tree routing algorithm on T where we charge 3 time
units whenever v is part of the matching to route all the pebbles in G\H . If we
use the algorithm presented in [5] then we see that the routing takes at most
15/2(n − κ) + o(n) steps for any permutation. �	
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Abstract. We consider the problem of collaboratively delivering a pack-
age from a specified source node s to a designated target node t in an
undirected graph G = (V, E), using k mobile agents. Each agent i starts
at time 0 at a node pi and can move along edges subject to two parame-
ters: Its weight wi, which denotes the rate of energy consumption while
travelling, and its velocity vi, which defines the speed with which agent i
can travel.

We are interested in operating the agents such that we minimize the
total energy consumption E and the delivery time T (time when the pack-
age arrives at t). Specifically, we are after a schedule of the agents that
lexicographically minimizes the tuple (E , T ). We show that this problem
can be solved in polynomial time O(k|V |2 + APSP), where O(APSP)
denotes the running time of an all-pair shortest-paths algorithm. This
completes previous research which shows that minimizing only E or only
T is polynomial-time solvable [6,7], while minimizing a convex combi-
nation of E and T , or lexicographically minimizing the tuple (T , E) are
both NP-hard [7].

1 Introduction

Recently, the production of simple autonomous mobile robots such as battery-
powered vehicles and drones is getting increasingly cheaper, which allows for
the deployment of such agents for tasks such as the delivery of packages [18].
This leads to new research questions focusing on the distance that the agents
need to travel – quite often this is the main source of energy consumption and
thus also a large fraction of the operational costs. Thus, for delivery over longer
distances, there are many reasons to consider the use of several collaborative
agents, for example because they differ in terms of energy-efficiency or maximum
speed. Therefore an energy-efficient and fast operation becomes an integral part
of algorithm design to operate a swarm of these agents. Here we consider the
delivery problem of moving a single package with a team of k agents from a
given source s to a specified destination t. Our goal is to coordinate the agents
to deliver the package in an energy-efficient way and as fast as possible.

Our Model. We are given an undirected graph G = (V,E) with specified edge
lengths. There are k mobile agents, initially placed on arbitrary nodes p1, . . . , pk

of G, which are heterogeneous in the following sense: They differ in their rate
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of energy consumption (energy used by an agent per unit distance travelled),
denoted by weights 0 < w1, . . . , wk < ∞, and in their velocities 0 < v1, . . . , vk <
∞. Together with the length le of an edge e = {u, v} ∈ E, the weight and the
speed of an agent i describe the energy cost and time loss incurred: Every time
agent i traverses e (in either direction), it consumes an energy amount of wi · le
and needs time v−1

i · le to do so. We also allow agents to stop or pause; this
can happen on a vertex or at a point p inside an edge e – in that case we think
of p subdividing e into two edges {u, p}, {p, v} with lengths proportional to the
position of p in e. Thus we can define the distance d(p, q) between two points
p, q (nodes or points inside edges) of the graph as the length of a shortest path
from p to q in G.

Furthermore we are given a single package, originally placed on a source
node s, which has to be delivered to a target node t. Each agent can move to the
current location of the package, pick it up, carry it to another location (a node
or a point inside an edge), and drop it there. In that sense it is also possible
to hand over the package between two agents. While pick-up and drop-off are
assumed to occur instantaneously, the time between the package being dropped
by an agent until being picked up by another agent is taken into account.

A schedule S describes the pick-up and drop-off actions of all agents such
that the package is delivered from its origin s to its destination t. Without
loss of generality, we only consider schedules in which each agent picks up the
package at most once and travels from its starting position pi to its pick-up
position q+i and from there to its drop-off location q−

i along two shortest paths
of respective length d(pi, q

+
i ) and d(q+i , q−

i ). In case an agent is not needed, we set
q+i := pi =: q−

i . Thus we can write the total energy consumption of the schedule
as E =

∑k
i=1 wi · (d(pi, q

+
i ) + d(q+i , q−

i )) and the time needed to deliver the
package as T =

∑k
i=1 v−1

i · d(q+i , q−
i )+ (overall time the package is not carried).

EfficientFastDelivery is the optimization problem of finding the fastest
schedule among all energy-optimal ones, i.e. we ask for a schedule that lexico-
graphically minimizes the tuple (E , T ) (see e.g. Fig. 1).

Fig. 1. Using agents 1, 3 and 4 on the upper path results in an optimal schedule with
energy cost and delivery time (E , T ) = (12 ·3+7 ·4+5 ·4, 3/1+4/12+4/8) = (84, 3 5

6
).

A schedule using agents 1 and 2 on the (shorter) lower path has the same energy cost
but higher delivery time (E , T ) = (12 · 1+6 · 12, max{1/1, 3/3}+(3+6)/3) = (84, 4).

Our Results. In Sect. 2 we give a characterization of optimal schedules, motivated
by which we first show that EfficientFastDelivery can be solved in time
O(k2 + APSP) if we have uniform weights (∀i, j : wi = wj). Here, O(APSP)
denotes the running time of an all-pair shortest-paths algorithm.
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In Sect. 3 we present a dynamic program for EfficientFastDelivery that
runs in time O(k|V |2 + APSP), based on the assumption that no two weights
are exactly a factor 2 apart (∀i, j : wi �= 2wj) – in this case, we show that an
optimal solution does not have any drop-off points inside edges.

Finally, in Sect. 4, we extend the techniques of the previous two sections to
allow for arbitrary weights and thus in-edge-handovers as well, without increasing
the running time.

Related Work. Energy-efficient Delivery has recently been introduced [6],
showing that minimizing the overall energy consumption E by mobile agents of
heterogeneous weights is solvable in time O(k + |V |3). Similarly, fast Delivery
(minimizing T for agents of heterogeneous speeds) was shown to have a dynamic
programming algorithm running in time O(k2|V |2 +APSP) [7]. The same paper
also considers two natural combinations of energy- and time-efficiency which dif-
fer from the setting studied in this paper: lexicographically minimizing (T , E)
and minimizing ε · T + (1 − ε)E , for some input value ε ∈ (0, 1). Both problems
turn out to be NP-hard [7], in contrast to our result, which shows that minimiz-
ing (E , T ) is polynomial-time solvable. Furthermore, energy-efficient Delivery
was also studied for multiple packages [6,8].

An earlier model [2] considered agents of uniform weights but individually
limited energy budget, which restricts how far each agent can move. In that
model, neither the delivery time nor the overall energy consumption are taken
into account. Instead, one considers the decision problem of whether a single
package can be delivered, given the restrictions on the agents. This is strongly
NP-hard on planar graphs [4,5] and weakly NP-hard on paths [11]. Delivery
with energy budgets was also studied in terms of resource augmentation [4,10]
and approximation algorithms [10,17].

Mobile agents with distinct maximal speeds have been getting attention in
areas such as searching [3], walking [12] and patrolling [13]. Furthermore, mini-
mizing the average or maximum distance travelled per agent has been considered
for tasks such as pattern formation [9,15] or graph exploration [1,14,16].

2 Uniform Weights

In this section, we will analyze instances in which all agents have a uniform
weight wi = w. This is motivated by the following characterization of agents in
an optimum schedule:

Theorem 1 (Characterization of optimum schedules). For every instance
of EfficientFastDelivery there is an optimum schedule in which: (i) the
tuples (wi, v

−1
i ) of the involved agents are strictly lexicographically decreasing,

and (ii) for each pair of consecutive agents i, j with wi = wj ∧ v−1
i > v−1

j , we
have d(pj , q

+
j ) = 0.
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Proof. We show both properties by an exchange argument. Starting from an
arbitrary optimum schedule, we can transform it into an optimum satisfying
properties (i) and (ii) in the following way:

(i) Relabel all involved agents i (agents with d(q+i , q−
i ) > 0) by 1, 2, . . . , �

according to the order in which they carry the package: s = q+1 , q−
1 = q+2 , . . . , q−

� =
t. Assume for the sake of contradiction that there are agents i, i+1 such that wi <
wi+1. In this case we can replace agent i+1 completely by handing its work to agent
i. By our assumptions and by the triangle inequality we have wi · d(q+i , q−

i+1) ≤
wi(d(q+i , q−

i ) + d(q+i+1, q
−
i+1)) < wi · d(q+i , q−

i ) + wi+1 · d(q+i+1, q
−
i+1), thus the

replacement would results in a decrease of the energy consumption, contradicting
the optimality of the original schedule.

Now consider the first pair of agents i, i+1 such that wi = wi+1 and v−1
i ≥ v−1

i+1.
As before, we can replace the agent i + 1 by agent i without increasing the energy
consumption. Furthermore, since vi ≥ vi+1, also the delivery time either decreases
or stays the same (if the package has to wait somewhere later on). Repeating this
procedure results in an optimum schedule that adheres to property (i).

(ii) Assume that after the transformation above we remain with a schedule such
that there are agents i, i + 1 with wi = wi+1 and d(pi+1, q

+
i+1) > 0. This leads to

a contradiction to the optimality of the original schedule as well: Replacing agent
i + 1 with agent i strictly decreases E by at least wi+1 · d(pi+1, q

+
i+1) > 0. 	


Furthermore, using the same replacements arguments, one can see that when-
ever multiple agents have the same starting position v, then only the agent with
minimal (wi, v

−1
i ) among all agents on v is needed in an optimal solution:

Corollary 1. After a preprocessing step of time O(k+|V |) – in which we remove
in each vertex all but the agent with lexicographically smallest (wi, v

−1
i ) – we may

assume that k ≤ |V |.

Weight Classes. Property (ii) of the characterization in Theorem1 contains an
important observation: among all agents of the same weight which contribute
to an optimal schedule, only the first agent might actually walk towards the
package – the other agents merely transport the package after it is dropped off
at their respective starting position. Motivated by this, we partition the set [k]
of all agents into h weight classes, disjoint sets W1, . . . , Wh of agents of the same
decreasing weight and denote their sizes by xc = |Wc|.1 The idea then is to first
solve EfficientFastDelivery for each weight class Wc on its own (albeit not
only for s-t). This leads to the following result:

Theorem 2 (EFFICIENTFASTDELIVERY for uniform weights). An opti-
mum schedule for EfficientFastDelivery from s to t can be found in time
O(k2 + APSP), assuming all agents have the same weight w.

Proof (Analysis). Denote by 1, . . . , � the agents involved in an optimum sched-
ule that satisfies the characterization properties of Theorem1. Since all agents
1 Formally, we have

⋃
c Wc = [k] and

∑
c xc = k such that ∀c, ∀i, j ∈ Wc : wi = wj

and ∀c1 < c2, ∀i ∈ Wc1 , ∀j ∈ Wc2 : wi > wj .
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have the same weight w, we know by (ii) that the total energy consumption
can be written as E = w · (d(p1, s) +

∑�
i=1 d(q+i , q−

i )), where the sum
∑�

i=1

d(q+i , q−
i )) ≥ d(s, t) achieves its minimum if the package is delivered along a

shortest path (which is always possible). Thus we have E = w ·(d(p1, s)+d(s, t)).
By minimality of the schedule, agent 1 must be closest to s among all k agents,
1 ∈ arg min1≤i≤k{d(pi, s)}.

Furthermore, we get T = v−1
1 ·(d(p1, s)+d(s, q−

1 ))+
∑�

i=2 v−1
i ·d(q+i , q−

i ). Thus
we may assume without loss of generality, that among all agents of minimum
distance to s, agent 1 has the highest velocity.

Proof (Preprocessing). Given a uniform-weight instance of EfficientFastDe-
livery, we can find an optimum schedule as follows: We first run an all-pair
shortest-path algorithm in time O(APSP). Then we find the first agent i1 to pick
up the package at s by searching for an agent of minimum (d(pi, s), v−1

i ) in time
O(k). To reach the package’s origin s, this agent needs energy Es := w · d(pi1 , s)
and time Ts := v−1

i1
·d(pi1 , s). Taking this into account, we transform our instance

into an equivalent instance in which we have pi1 = s and where all other starting
positions remain the same. Note that we have pi = q+i for all agents, hence lexico-
graphically minimizing (E , T ) amounts to finding a number of agents i1, i2 . . . , i�
that minimize (E , T ) =

(

w
∑�

j=1
d(q+ij

, q−
ij

),
∑�

j=1
v−1

ij
d(q+ij

, q−
ij

)
)

=
(

w
∑�−1

j=1
d(pij

, pij+1) + w · d(pi�
, t),

∑�−1

j=1
v−1

ij
d(pij

, pij+1) + v−1
i�

d(pi�
, t)

)

.

By property (i) of Theorem 1, we can restrict ourselves to look at sequences of
agents which have strictly increasing velocities. Since by property (ii) all pick-ups
q+i and drop-offs q−

i of our transformed instance occur at the starting positions pi

(except for q−
i�

= t), we model the delivery of the package up to the last involved
agent as an auxiliary directed acyclic graph DAG with node set {p1, . . . , pk} and
directed edges {(pi, pj) | vi < vj} of length l(pi,pj) = d(pi, pj), see Fig. 2.

Fig. 2. (Left) original instance with 4 agents (��) of uniform weight 3 and speeds
1, 2, 4, 5. The (unique) optimal schedule needs (E , T ) = (3(3 + 19), (3 + 5)/1 + 4/2 +
10/5) = (66, 12). (Right) transformed instance, represented by a DAG, with edges
from pi to pj iff vi < vj .
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Proof (Dynamic program). The DAG representing the transformed instance sug-
gests an inductive approach from slow to fast agents. Therefore we relabel the
agents i according to the topological ordering of their starting positions pi, which
can be done in time linear in the size (O(k2)) of the auxiliary DAG. Now we
define the following subproblems:

(E , T )[pi] = the energy consumption and delivery time of an optimum schedule
delivering the package from s to pi, using only agents 1, . . . , i − 1.

The subproblems can be computed in increasing order of the agents: If an agent
i is involved in an optimum schedule, the package must have been previously
transported by agents with parameters (w, v−1

j ) lexicographically strictly smaller
than the tuple (w, v−1

i ). All of these agents precede agent i in the topological
ordering. Hence we initialize (E , T )[p0] with the energy consumption and time
needed in the original instance for the first agent to reach the package source
s, (E , T )[p1] := (Es, Ts). Now we compute in topological order (as indicated by
colors in Fig. 2 (right)):

(E , T )[pi] := min
j<i

{
(E , T )[pj ] +

(
w · l(pj ,pi), v−1

j · l(pj ,pi)

)}
,

where the operator + denotes the element-wise addition of the tuple entries. Note
that we already know that the respective energy consumption must amount to
w · (d(pi1 , s) + l(p1,pi)), it is really the optimal delivery time that we are after.
Each of the k tuples (E , T )[pi] can be computed in time O(i) ⊆ O(k), needing
time O(k2) overall. Finally, we get the optimal (E , T ) for delivery from s to t by
taking the minimum over all candidates for the last agent i� in time O(k):

(E , T ) := min
1≤j≤k

{
(E , T )[pj ] +

(
w · d(pj ,t), v−1

j · d(pj ,t)

)}
,

We remark that a complete optimum schedule describing all pick-ups/drop-offs
can be computed by backtracking, using the obtained values for (E , T )[pi]. 	


Application to Weight Classes. In the next section, we are going to apply the
techniques described in Theorem 2 to each weight class Wc. However, if a subset
of agents of the same weight class is involved in an optimum schedule, they will
not necessarily deliver the package on their own, but work hand in hand with
agents of preceding and following weight classes. In other words, the agents of Wc

do not transport the package from s to t, but rather between two other points of
the graph. For now, we assume these points to be any combination of two vertices
(u, v) ∈ V 2. How can we – given the position of all agents of uniform weights –
solve EfficientFastDelivery for all possible source/target tuples (u, v) ∈ V 2?
Trivially, this can be done by running the dynamic program of Theorem2 for all(|V |

2

)
potential source-target pairs in overall time O(k2|V |2 + APSP).

However, we can do better than this. Note that we computed the dynamic
program for the auxiliary DAG on s = p1, p2, . . . , pk independent of (E , T ),
i.e. before we looked at (E , T ) at the destination t. Using this independence, we
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can decrease the running time of the näıve solution by a linear factor: First we
compute for each candidate u ∈ V a dynamic program on a DAG with starting
node u, in overall time O(k2|V |+APSP) ⊆ O(k|V |2 +APSP), assuming k ≤ |V |
by Corollary 1. Then, for each of the O(|V |2) many tuples (u, v) we compute
(E , T ) for an optimum delivery to v by looking at the O(k) many agents in the
DAG with origin u, again in overall time O(k|V |2 + APSP). In total, we get:

Corollary 2. An optimum schedule for EfficientFastDelivery from u to
v for all possible tuples (u, v) ∈ V 2 can be found in time O(k|V |2 + APSP),
assuming all agents have the same weight w.

3 Vertex Handovers

Recall that in the last section we found that there is always an optimum schedule
in which the involved agents have lexicographically strictly decreasing parameter
tuples (wi, v

−1
i ) by Theorem 1 (i). These agents belong to weight classes Wc of

decreasing weights, and we may assume that the involved agents of the same
weight class have strictly increasing velocities. By property (ii), all handovers
between agents of the same weight occur at nodes of the graph. What about
agents of different weights? We show that in an optimum schedule, these han-
dovers can only take place inside an edge if the weights of consecutive agents
differ by a multiplicative factor of exactly 2:

Lemma 1 (In-edge-handovers I). In any optimum schedule satisfying the
two properties of Theorem1, for any pair of consecutively involved agents i, j
with handover point q−

i = q+j and weights wi �= 2 · wj, we have q+j ∈ V .

Proof. Assume for the sake of contradiction that q−
i = q+j lies strictly inside the

edge e = {u, v}. Without loss of generality, the schedule delivers the package in
direction from u to v. Denote by ε > 0 the minimum distance of q−

i to u,v, or
any other handover point in the interior of e. We distinguish three cases (Fig. 3):

1. Both agent i and agent j contain node u in their respective trajectory. Mov-
ing the handover point q−

i = q+j by ε in direction of u, we maintain a feasi-
ble schedule by minimality of ε. Furthermore, we strictly decrease agent i’s
travel distance while the total travel distance d(pj , q

+
j ) + d(q+j , q−

j ) of agent
j remains the same. Hence the overall energy consumption strictly decreases,
contradicting the optimality of the original schedule.

Fig. 3. (Left) there is no handover inside {u, v} in which both agents come from u.
(Middle) if wi > 2wj , reducing i’s travel distance by ε > 0 and increasing j’s travel
distance by 2ε strictly decreases the overall energy consumption E . (Right) vice versa.
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2. Agent i approaches q−
i in direction from u, agent j approaches q+j coming from

v, and wi > 2wj . As before, we move the handover point by ε in direction
of u, thus changing the energy consumption E by −wi · ε + wj · 2ε < 0,
contradicting the optimality of the original schedule.

3. Agent i approaches q−
i in direction from u, agent j approaches q+j coming

from v, and wi < 2wj . We move the handover point by ε in direction of v,
contradicting the optimality of E since + wi · ε − wj · 2ε < 0. 	


For the remainder of this section we will restrict ourselves to instances in which
there are no two agents i, j with weights wi = 2wj . Thus, by Lemma 1 we
may assume that there is an optimum schedule in which there are no in-edge-
handovers.

Combining Weight Classes. Recall that we split the agents into h weight classes
W1,W2, . . . , Wh of strictly decreasing weights, where each class Wc contains
xc = |Wc| agents of the same weight. In an optimum schedule, the involved
agents form subsets of a subset of the weight classes – our goal is hence to
decide “in which part of the graph” agents of which weight class “can help the
most”. In order to do this, we will invoke Corollary 2 for each weight class (in
decreasing order of their weights). For each class Wc, this allows us to find for
each source/destination-pair (u, v) ∈ V 2 the contribution of its xc many agents
towards the total energy consumption E and delivery time T in time O(xc|V |2).

Dynamic Program. Again, we are interested in the distance between any two
nodes in the graph, which we find by an all-pair shortest-path. Given the weight
classes in decreasing order of the agents’ weights, we define for each prefix
W1, . . . , Wj of the h weight classes and for each node v the following subproblem:

(E , T )[j, v] = the energy consumption E [j, v] and delivery time T [j, v] of an
optimum schedule delivering the package from s up to v,

using only agents from the first j weight classes W1, . . . , Wj .

We are going to show how to compute (E , T )[j, v] from all smaller subproblems
(E , T )[j − 1, u] using the dynamic program for uniform weights as a subroutine.
The total energy consumption and delivery time of an optimum schedule can
then be found in (E , T )[h, t]. The optimum schedule itself can be found either
by backtracking or by additionally storing in each node where the package came
from and which agent brought it there. Our dynamic program is based on the
assumption that there are no handover points inside any edges; we show in the
next section how to adapt it to cover in-edge-handovers as well.

Theorem 3 (EFFICIENTFASTDELIVERY, vertex handovers only). An
optimum schedule for EfficientFastDelivery from s to t can be found in time
O(k|V |2 + APSP), assuming that for all agents i, j we have weights wi �= 2wj.

Proof (Initialization). Set (E , T )[1, s] := (0, 0). To find all other val-
ues (E , T )[1, v], we use the dynamic program described in Theorem 2
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as a subroutine. Specifically, we find the agent i1 closest to s, i1 ∈
arg mini∈W1

{
(wi · d(pi, s), v−1

i · d(pi, s))
}

and store the energy and time it
needs to reach s as Es := (wi1 · d(pi1 , s) and Ts := v−1

i1
· d(pi1 , s)).

To underline that the DAG on which our subroutine runs is rooted at s,
we denote the subroutine subproblems by (E , T )s[pi]. First we move agent i1’s
starting position pi1 to s and set (E , T )s[pi1 ] := (Es, Ts); then we compute all
other values {(E , T )s[pi]}i∈W1

.
Hence for all v ∈ V , we complete our initialization phase by setting

(E , T )[1, v] := min
i∈W1

{
(E , T )s[pi] +

(
wi · d(pi,v), v−1

i · d(pi,v)

)}
.

Proof (Induction). After the first j − 1 weight classes have been considered,
we compute a possible contribution by weight class Wj . Clearly, we have
(E , T )[j, v] ≤ (E , T )[j − 1, v], since not using any agent of Wj is always an
option. Therefore we start by setting (E , T )[j, v] := (E , T )[j − 1, v] for all nodes
v ∈ V .

Now, any node u is a potential starting position for the agents of weight
class Wj to first pick up the package. Hence for each node u ∈ V , we will build
a DAG and run a dynamic program, as described in Corollary 2. We denote
the values of the corresponding subproblems by (E , T )u[pi]. Finding all closest
agents among all agents i ∈ Wj to u and taking the fastest agent i1 among them,
we set Eu := wi1 · d(pi1 , u) and Tu := v−1

i1
· d(pi1 , u) before moving i1’s starting

position to u. Note that for the package to be present at u, an energy amount of
E [j − 1, u] was spent by the agents of the preceding weight classes. Furthermore
these agents needed time T [j−1, u] to bring the package to u; the package might
be at u before or after agent i1. We take this into account by defining

(E , T )u[pi1 ] := (E [j − 1, u] + Eu, max{T [j − 1, u], Tu}).

For all |V | many subroutines (dynamic programs on directed acyclic graphs
rooted at one node u ∈ V each), we compute all values {(E , T )u[pi]}i∈Wj

.
Similarly, any node v is a potential destination position for the agents of Wj

to deliver the package to. If indeed the agents of the current weight class can
improve the delivery to v (i.e. if (E , T )[j, v] < (E , T )[j − 1, v]), then the package
is transported to v by some agent in a DAG rooted at some u. Hence for each v
we get (E , T )[j, v] :=

min
{

(E , T )[j, v], min
u∈V

{

min
i∈Wj

{
(E , T )u[pi] +

(
wi · d(pi,v), v−1

i · d(pi,v)

)}
}}

. (1)

Proof (Running time). After the initial all-pair shortest-paths computation in
time O(APSP), each of the h phases of the dynamic program (including the
initialization) can be computed in time O(xj |V |2) by Corollary 2. Overall we get
a running time of O(APSP +

∑h
j=1 xj |V |2) = O(APSP + k|V |2). 	
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4 Full Solution

In this section, we consider EfficientFastDelivery in its full generality, that
is we no longer restrict the possible weights of the agents. Instead we also allow
weights to differ by a multiplicative factor of 2, in which case handovers inside
an edge are possible and sometimes necessary in an optimum schedule (consider
for example the delivery in Fig. 1 withstanding the presence of agents 3 and 4).

We first show that in an optimum schedule there can be at most one handover
point inside any given edge. To account for this, we have to adapt the dynamic
program of Sect. 3 as well as the subroutines given by the dynamic programs of
Sect. 2. It turns out that this is possible without increasing the overall asymptotic
running time, compared to Theorem3.

Lemma 2 (In-edge-handovers II). In any optimum schedule satisfying the
two properties of Theorem1, there is at most one handover point q−

i1
= q+i2 in the

interior of any given edge e = {u, v}, where i1 ∈ Wc1 , i2 ∈ Wc2 . Furthermore, if
the package is transported from u towards v, we may assume that: (i) wi1 = 2wi2 ,
(ii) vi1 < vi2 and (iii) i2 is the fastest among all agents i of the same weight wi2

that have minimum distance to v.

Proof. By Lemma 1 we know that for every edge-interior handover point q−
i1

= q+i2
we must have wi1 = 2wi2 , satisfying property (i). Now assume that we have two
handover points in the interior of e: q−

i1
= q+i2 and q−

i2
= q+i3 . By the preceding

remark we must have wi1 = 2wi2 = 4wi3 . Analogously to the first case in the
proof of Lemma 1, we can assume that both i2 and i3 come from v towards their
respective pick-up locations q+i2 , q

+
i3

, thereupon turning and moving towards v
again, see Fig. 4 (left). But then we can replace agent i2 by delegating its work-
load to agent i3: This saves at least an energy amount of 2d(q+i2 , q

−
i2

) · (wi2 − wi3),
contradicting the optimality of the schedule.

Henceforth assume that there is exactly one handover point q−
i1

= q+i2 in e
and that wi1 = 2wi2 . This means that agent i1 must carry the package from u
into e (otherwise we could reuse the exchange argument from before) and that
i2 enters the edge e from v. The distances travelled by the two agents inside e
are thus d(u, q−

i1
) and 2d(v, q+i2) – from an energy consumption point of view,

the exact position of the handover point inside e is irrelevant. If vi1 ≥ vi2 , we
could move the handover to v without increasing the delivery time. Thus we may
assume (ii).

Finally, assumption (iii) follows from the same arguments as given in the
beginning of Theorem 2. 	


Definitions. How can we capture in-edge-handovers in our dynamic program
from Sect. 3? Recall that by (E , T )[j, v] we denoted the energy consumption and
delivery time of an optimum schedule delivering the package from s up to v,
using only agents from the first j weight classes W1, . . . , Wj . We write E [j, v]
and T [j, v] for the entries of the tuple (E , T )[j, v]. Additionally, we now define
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Fig. 4. (Left) if an optimum schedule had more than 1 handover point in the same
edge, replacing the second agent by the third would reduce the total energy consump-
tion. (Right) an agent of minimum weight in a minimum-energy subproblem schedule
is a candidate to carry the package into e = {u, v} if it is on the Pareto Frontier of all
such agents (with respect to arrival time at u and their respective velocities).

w[j − 1, u] = the smallest weight wi, i ∈ W1 ∪ . . . ∪ Wj−1, such that there is
a schedule delivering the package from s to u using:
- overall energy E [j − 1, u],
- only agents from W1, . . . , Wj−1, and

- using agent i with q−
i = u in this schedule.

Intuitively, this means that there is an energy-optimal schedule from s to u for
which there is some agent i1 which we might consider in the next induction step
j to move the package into the edge e = {u, v}. Note that we only require such
a schedule to be optimal in the energy consumption, not with respect to the
delivery time! Why is this the case? First of all, for an agent i1 stationed at u to
be considered to carry the package into the edge e, there are several necessary
conditions on the fastest agent i2 among all closest agents in Wj (Lemma 2 (iii)):

– For the weight wi2 of the new agent i2 we must have 2wi2 = wi1 .
– For the velocity vi2 we must have vi2 ≥ vi1 .
– The package arrival time at v must be later than the arrival time of i2:

T [j − 1, v] > v−1
i2

· d(pi2 , v). Otherwise, agent i2 has no incentive to enter e.
– The package arrival time at u must be earlier than the arrival time of i2:

T [j − 1, u] < v−1
i2

· d(pi2 , u). Otherwise, agent i2 does not need the help of i1.

Pareto Frontier. Assume that all these criteria are met and that agent i2 moved
to node v. Which agent(s) at u are in line for the tributary agent i1? Only
one (e.g. the fastest) or every agent of weight w[j − 1, u]? Here we resume the
reasoning why we consider arbitrary energy-optimal schedules up to u, instead
of (E , T )-optimal schedules as for example in the previous section: Compare a
fast agent if that (due to preceding slow agents) brings the package to u quite
late, with a slow but (because of fast enough preceding agents) early agent ie: A
priori it is not clear which of the two will win the race inside e, handing over the
package to i2: While ie has a time advantage in the beginning, if might catch
up due to its higher velocity.

Hence among all agents i of weight w[j − 1, u] for which there is a schedule
with optimum energy consumption E [j − 1, u] and in which q+i = u, we consider
those agents which are on the Pareto frontier with respect to their arrival time
in the schedule at u and their respective velocity (Fig. 4 (right)). It remains to:
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1. Incorporate the Pareto frontier into the subroutine (see Theorem2).
2. Incorporate in-edge-handovers into the main dynamic program (Theorem3).

Adapting the Subroutine. In the first part of the subroutine, we compute the
dynamic programs (E , T )u[pi] on each DAG rooted at some node u ∈ V . In this
dynamic program, we accelerate the package whenever possible. This is also the
case in schedules which are Pareto-optimal rather than Delivery-time-optimal.
The Pareto frontier comes into play when the DAG contains two different short-
est u-v-paths or when v can be reached with the same optimum energy consump-
tion from two different starting vertices u1, u2. Hence when computing the result
of the subroutine as in Eq. (1), we do not only compute (E , T )[j, v] but we also
update w[j, v] and the agents in the Pareto front (if necessary). The asymptotic
running time of the subroutine remains the same.

Adapting the Main Dynamic Program. Recall that our main dynamic program
called as subroutines for each node the dynamic program for agents of uniform
weights, based on the DAG rooted at a node. This was fine in Sect. 3, where we
only had vertex handovers. Now we first have to check whether we already need
the first agent i2 of the new weight class Wj to pick up the package inside an edge
e = {u, v} and bring it to v. Observe that for a fixed v and a given candidate
agent in the Pareto frontier at u, we can compute the energy consumption and
arrival time for the delivery to v via a handover inside e in constant time. We
iterate over all vertices v and check whether in any of the adjacent edges there
is a possible handover that decreases the energy consumption and delivery time
needed to transport the package to v. However, we need to consider the agents in
the current Pareto frontier at u only if w[j − 1, u] = 2wi2 . Therefore each agent
appears during at most a single phase in a relevant Pareto frontier, since an agent
i is only relevant when we consider the weight class Wj that contains agents of
weight wi/2. Thus all necessary precomputations before invoking the subroutines
can be done in time O

(
(
∑

v∈V deg(v)) · (
∑h

j=1 xj)
)

⊆ O(|E| · k) ⊆ O(k|V |2).
We conclude:

Theorem 4. An optimum schedule for EfficientFastDelivery from s to t
can be found in time O(k|V |2 + APSP).

5 Conclusion

Two recent papers introduced Delivery by heterogenous energy-efficient
agents [6] (where the rate of energy consumption is denoted by the agents’
weights) and by agents of different velocities [7]. In these two models, mini-
mizing the overall energy consumption E , respectively the delivery time T , are
polynomial-time solvable. There are at least three natural ways to combine the
models, with the goal of finding a schedule that simultaneously minimizes E and
T in the sense of:
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1. Lexicographically minimizing the tuple (T , E), or
2. Minimizing εT + (1 − ε)E for some input value ε ∈ (0, 1), or
3. Lexicographically minimizing the tuple (E , T ): EfficientFastDelivery.

The first two variants were shown to be NP-hard [7]. In contrast, this paper
shows that EfficientFastDelivery is polynomial-time solvable. We presented
a dynamic program recursing over agents of weight classes of decreasing weight,
in which for each weight class we call as a subroutine another dynamic program
recursing over agents of increasing velocities. Overall, a schedule for Efficient-
FastDelivery can be found in time O(k|V |2 + APSP), where k denotes the
number of agents, |V | the number of nodes in the graph and O(APSP) the
running time of an all-pair shortest-paths algorithm.
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7. Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient
agents (2017, unpublished manuscript)
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Abstract. Listing all triangles in an undirected graph is a fundamen-
tal graph primitive with numerous applications. It is trivially solvable in
time cubic in the number of vertices. It has seen a significant body of work
contributing to both theoretical aspects (e.g., lower and upper bounds
on running time, adaption to new computational models) as well as prac-
tical aspects (e.g. algorithms tuned for large graphs). Motivated by the
fact that the worst-case running time is cubic, we perform a systematic
parameterized complexity study of triangle enumeration, providing both
positive results (new enumerative kernelizations, “subcubic” parameter-
ized solving algorithms) as well as negative results (uselessness in terms
of possibility of “faster” parameterized algorithms of certain parameters
such as diameter).

1 Introduction

Detecting, counting, and enumerating triangles in undirected graphs is a basic
graph primitive. In an n-vertex graph, there can be up to

(
n
3

)
different triangles

and an algorithm checking for each three-vertex subset if it forms a triangle
can list all triangles in O(

(
n
3

)
) time. As to counting the number of triangles in

a graph, the best known algorithm takes O(nω) ⊂ O(n2.373) time [23] and is
based on fast matrix multiplication.1 Finally, detecting a triangle in a graph is
doable in O(nω) time [23] and it is conjectured that every algorithm for detect-
ing a triangle in a graph takes at least Θ(nω−o(1)) time [1]. We mention that for
sparse m-edge graphs there is also an O(m1.5)-time algorithm [18]. This paper
is motivated by trying to break such (relative or conjectured) lower bounds and
improve on best known upper bounds—the twist is to introduce a secondary
measurement beyond mere input size. This is also known as problem parameter-
ization. While parameterizing problems with the goal to achieve fixed-parameter
tractability results is a well-established line of research for NP-hard problems,

A full version is available at https://arxiv.org/abs/1702.06548.
T. Fluschnik—Supported by the DFG, project DAMM (NI 369/13-2).
A. Nichterlein—Supported by a postdoc fellowship of the DAAD while at Durham
University, UK.

1 ω is a placeholder for the best known n × n-matrix multiplication exponent.

c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 96–110, 2017.
DOI: 10.1007/978-3-662-55751-8 9

https://arxiv.org/abs/1702.06548


Parameterized Aspects of Triangle Enumeration 97

systematically applying and extending tools and concepts from parameterized
algorithmics to polynomial-time solvable problems is still in its infancy [2,12–
14,26]. Performing a closer study of mostly triangle enumeration, we contribute
to this line of research, also referred to as “FPT-in-P” for short [14]. Our central
leitmotif herein is the quest for parameterized subcubic triangle enumeration
algorithms.

Related Work. Triangle enumeration, together with its relatives counting and
detection, has many applications, ranging from spam detection [4] over complex
network analysis [15,27] and database applications [19] to applications in bioin-
formatics [32]. Hence there has been substantial theoretical and practical work.
The theoretically fastest algorithms are based on matrix multiplication and run
in O(nω +n3(ω−1)/(5−ω) ·(#T )2(3−ω)/(5−ω)) time, where #T denotes the number
of listed triangles [5]. Furthermore, there is (heuristic and experimental) work on
listing triangles in large graphs [22,30], on triangle enumeration in the context
of map reduce [28], and even on quantum algorithms for triangle detection [24].

As to parameterized results, early work by Chiba and Nishizeki [7] showed
that all triangles in a graph can be counted in O(m · d) time, where d is the
degeneracy of the graph.2 This running time can be improved by saving poly-
logarithmic factors [20], but the 3SUM-conjecture3 rules out more substantial
improvements [21]. Green and Bader [16] described an algorithm for triangle
counting running in O(TK + |K| · Δ2

K) time, where K is a vertex cover of the
input graph, ΔK is the maximum degree of vertices in K, and TK is the time
needed to compute K. They also described several experimental results.

Our Contributions. We systematically explore the parameter space for triangle
enumeration and classify the usefulness of the parameters for FPT-in-P algo-
rithms. In doing so, we present an extended concept of enumerative kerneliza-
tion and a novel hardness concept, as well as algorithmic results. Our concrete
results are surveyed in Table 1. We defer to the respective sections for a formal
definition of the various parameters. In particular, we provide enumerative prob-
lem kernels with respect to the parameters “feedback edge number” and “vertex
deletion distance to d-degeneracy”. Partially based on data reduction algorithms,
we provide fast algorithms for several parameters such as feedback edge number,
vertex deletion distance to cographs and to d-degeneracy (also with additional
parameter maximum vertex degree), distance to cographs, and clique-width. On
the negative side, using a concept we call “General-Problem-hardness”, we show
that using the parameters domination number, chromatic number, and diameter
do not help to get FPT-in-P algorithms for detecting triangles, that is, even for
constant parameter values the problem remains as “hard” as the general version
2 Degeneracy measures graph sparseness. A graph G has degeneracy d if every sub-

graph contains a vertex of degree at most d; thus G contains at most n · d edges.
3 The 3SUM problem asks whether a given set S of n integers contains three integers

a, b, c ∈ S summing up to 0. The 3SUM-conjecture states that for any constant ε > 0
there is no O(n2−ε)-time algorithm solving 3SUM. The connection between 3SUM
and listing/detecting triangles is well studied [24,29].
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Table 1. Overview of our results. (n: number of vertices; m: number of edges; # T :
number of triangles; k: respective parameter; Δ: maximum degree)

Parameter k Result Reference

Enum-kernel Feedback edge
number

Size at most 9k in O(n + m)
time

Proposition 9

Distance
to d-degenerate

at most k + 2k + 3 vertices

in O(n · d · (k + 2k)) time
Theorem 11

Solving Feedback edge
number

In O(k2 + n + m) time Theorem 10

Distance
to d-degenerate

In O(n · d · (k + d) + 23k + #T )
time

Corollary 12

Distance to
cographs

In O(# T +n + m · k) time Proposition 14

Distance
to d-degenerate +
maximum degree Δ

In O(k · Δ2 + n · d2) time Proposition 7

Clique-width In O(n2 + n · k2 + #T ) time Theorem 15

Hard Domination number,
chromatic number,
and diameter

For k ≥ 3 as hard as the
general case

Proposition 4

with unbounded parameter. Due to space constraints, some proofs and details
are omitted (marked with (�)).

2 Preliminaries

Notation. For an integer � ≥ 1, let [�] = {1, . . . , �}. Let G = (V,E) be an
undirected simple graph. We set n ..= |V |, m ..= |E|, and |G| = n+m. We denote
by N(v) the (open) neighborhood of a vertex v ∈ V and by deg(v) ..= |N(v)|
the degree of v. By G[U ] we denote the subgraph of G induced by the vertex
subset U ⊆ V and G − U ..= G[V \ U ]. If {x, y, z} ⊆ V induces a triangle in
a graph, we refer to T = {x, y, z} as the triangle. We denote the number of
triangles in the graph by #T. Our central problem is as follows.

Triangle Enumeration (�-Enum)
Input: An undirected graph G.
Task: List all triangles contained in G.

Parameterized Complexity. A language L ⊆ Σ∗ × N is a parameterized problem
over some finite alphabet Σ, where (x, k) ∈ Σ∗ × N denotes an instance of L
and k is the parameter. Then L is called fixed-parameter tractable (equivalently,
L is in the class FPT) if there is an algorithm that on input (x, k) decides
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whether (x, k) ∈ L in f(k) · |x|O(1) time, where f is some computable function
only depending on k and |x| denotes the size of x. We call an algorithm with a
running time of the form f(k)·|x| a linear-time FPT algorithm. Creignou et al. [9,
Definition 3.2] introduced the concept of FPT-delay algorithms for enumeration
problems. An algorithm A is an FPT-delay algorithm if there exist a computable
function f and a polynomial p such that A outputs for every input x all solutions
of x with at most f(k) · p(|x|) time between two successive solutions. If the
delay can be upper-bounded in p(|x|), then the algorithm is called a p-delay
algorithm. A kernelization for L is an algorithm that on input (x, k) computes
in time polynomial in |x|+k an output (x′, k′) (the kernel) such that (i) (x, k) ∈
L ⇐⇒ (x′, k′) ∈ L, and (ii) |x′| + k′ ≤ g(k) for some computable function g
only depending on k. The value g(k) denotes the size of the kernel.

This work focuses on enumeration, while the great majority of parameterized
complexity works study decision (or search and optimization) problems.

Definition 1 [9, Definition 1]. A parameterized enumeration problem is a
pair (P, Sol) such that

– P ⊆ Σ∗ × N is a parameterized problem over a finite alphabet Σ and
– Sol : Σ∗ × N → P(Σ∗) is a function such that for all (x, k) ∈ Σ∗ × N,

Sol(x, k) is a finite set and Sol(x, k) �= ∅ ⇐⇒ (x, k) ∈ P .

Intuitively, the function Sol contains for each instance (x, k) of P the set of all
solutions. Given an instance (x, k), the task is then to compute Sol(x, k).

3 New Notions of Hardness and Kernelization

In this section we introduce two notions and give simple proofs of concept for
both of them. The first notion is a many-one reduction that relates parameter-
ized problems to its unparameterized counterpart. We call it “General-Problem-
hardness” as it proves the parameterized version to be as hard as the unpara-
meterized (general) problem. We show hardness for the Triangle Detection
(�-Detect) problem: given an undirected graph G, decide whether G contains
a triangle. Since �-Detect is a special case of �-Enum, it follows that any
lower bound for �-Detect implies the same lower bound for �-Enum. Thus, if
a certain parameter does not admit a solving algorithm for �-Detect in some
(parameterized) time X, then �-Enum does not either.

3.1 Computational Hardness

Before giving a formal definition, consider as introductory example the parameter
minimum degree. Adding an isolated vertex to any graph in constant time leaves
the set of triangles unchanged and the resulting graph has minimum degree
zero. Hence, one can not use the parameter minimum degree to design faster
algorithms for �-Enum. Upon this trivial example, we study which parameters
for �-Enum cannot be used to design linear-time FPT algorithms under the
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conjecture that �-Enum is not linear-time solvable [1]. To this end we reduce in
linear time an arbitrary instance of �-Detect to a new equivalent (and not too
large) instance of the problem with the parameter upper-bounded by a constant.
The corresponding notion of a many-one reduction is as follows.

Definition 2. Let P ⊆ Σ∗ × N be a parameterized problem, let Q ⊆ Σ∗ be
the unparameterized decision problem associated to P , and let f : N → N be a
function. We call P �-General-Problem-hard(f) (�-GP-hard(f)) if there exists an
algorithm A transforming any input instance I of Q into a new instance (I ′, k′)
of P such that

(G1) A runs in O(f(|I|)) time,
(G2) I ∈ Q ⇐⇒ (I ′, k′) ∈ P ,

(G3) k′ ≤ �, and
(G4) |I ′| ∈ O(|I|).

We call P General-Problem-hard(f) (GP-hard(f)) if there exists an integer k
such that P is k-GP-hard(f). We omit the running time and call P k-General-
Problem-hard (k-GP-hard) if f is a linear function.

If one can exclude an algorithm solving Q in O(f(|I|)) time and can fur-
ther prove that P is GP-hard, then one can (under the same assumptions that
excluded an O(f(|I|))-time algorithm for Q) exclude an algorithm solving P
in O(g(k) · f(|I|)) time for any computable function g. This yields the following.

Lemma 3 (�). Let f : N → N be a function, let P ⊆ Σ∗×N be a parameterized
problem that is �-GP-hard(f), and let Q ⊆ Σ∗ be the unparameterized decision
problem associated to P . If there is an algorithm solving each instance (I, k) of P
in O(g(k) · f(|I|)) time, then there is an algorithm solving each instance I ′ of Q
in O(f(|I ′|)) time.

It is folklore that �-Detect in tripartite graphs belongs to its hard-
est cases. Based on this, we show that �-Detect with respect to the com-
bined parameters domination number, chromatic number, and diameter is 9-
GP-hard. Indeed, �-Detect is 3-GP-hard for each of the (single) parameters.
The domination number of a graph is the size of a minimum cardinality set S
with

⋃
v∈S N(v) ∪ S = V . The chromatic number of a graph is the minimum

number of colors needed to color the vertices such that no edge contains vertices
of the same color. The diameter of a graph is the length of the longest shortest
path between two vertices.

Proposition 4 (�). �-Detect is 9-GP-hard with respect to the sum of domi-
nation number, chromatic number, and diameter.

3.2 Enum-Advice Kernelization

The second new notion we introduce in this paper is an adaption of an enumer-
ative kernelization concept due to Creignou et al. [9].

The aim of kernelization is to efficiently reduce a large instance of a com-
putationally hard, say NP-hard, problem to an “equivalent” smaller instance
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input (x, �)
kernel
I(x, �)

W = Sol(I(x, �))
⋃

w∈W

f(x, w) = Sol(x, �)

R

Tf

≤ h(�)

input (x, �)
kernel
I(x, �)advice

A(x, �)

W = Sol(I(x, �))
⋃

w∈W

f(w, A(x, �)) = Sol(x, �)

R

Tf

≤ h(�)

Fig. 1. A schematic picture of enum- (left) and enum-advice (right) kernelization. The
kernelization R produces the kernel and, for enum-advice kernelization also the advice.
Then, there is a polynomial-delay algorithm Tf that lists all solutions Sol(x) of the
input x from the solutions of the kernel and either the input instance (in the enum-
kernelization) or the advice (enum-advice kernel).

(called “kernel”). Then, solving the kernel by a trivial brute-force algorithm
often significantly reduces the overall running time. This technique is by no
means restricted to computationally hard problems even though it was invented
to tackle problems for which no polynomial-time algorithms are known.

Note that kernelization is usually defined for decision problems only. Creignou
et al. [9] developed a concept to address enumeration problems. Roughly speak-
ing, their concept requires that all solutions of the input instance can be recov-
ered from the input instance and the solutions of the kernel (see left side of
Fig. 1). We modify the concept by adding a generic object which we call the
advice of the kernelization. The intention of this change is that in order to com-
pute all solutions of the input instance, one only needs the kernel and the advice
(which might be much smaller than the input instance), see Fig. 1 for an illustra-
tion. In the examples we provide in this paper, we store in the advice information
about all triangles that are destroyed by data reduction rules.

We will now give a formal definition of our new enumerative kernelization con-
cept and then discuss the advantages compared to the concept by Creignou et al.

Definition 5. Let (P, Sol) be a parameterized enumeration problem. Let R be
an algorithm which for every input (x, k) computes in time polynomial in |x|+k
a pair (I(x, k), A(x, k)). We call R an enum-advice kernelization of (P, Sol) if

(K1) there is a function h such that for all (x, k) it holds that |I(x, k)| ≤ h(k),
(K2) for all (x, k) it holds (x, k) ∈ P ⇐⇒ I(x, k) ∈ P , and
(K3) there exists a function f such that for all (x, k) ∈ P

(a) ∀p, q ∈ Sol(I(x, k)) : p �= q =⇒ f(p,A(x, k)) ∩ f(q,A(x, k)) = ∅,
(b)

⋃
w∈Sol(I(x,k)) f(w,A(x, k)) = Sol(x, k), and
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(c) there exists an algorithm Tf such that for every (x, k) ∈ P , Tf com-
putes f(w,A(x, k)) for w ∈ Sol(I(x, k)) in FPT-delay time [9].

If R is an enum-advice kernelization of (P, Sol), then I(x, k) is called the kernel
of (x, k) and A(x, k) is called the advice of I(x, k). If Tf has p-delay time for
some polynomial p (only in |x|), then we say that the problem admits a p-delay
enum-advice kernel.

Clearly, since every polynomial-time solvable enumeration problem has a trivial
enum-advice kernelization, we are only interested in those kernelizations where R
and Tf are both significantly faster than the best (known) algorithms to solve
the enumeration problem.

We will now discuss the advantages of our new definition compared to enum-
kernelization. First, note that one can set A(x, �) = (x, �), and thus enum-advice
kernelization is a generalization of enum-kernelization. Second, the advice can
be used to design faster algorithms since the advice might be much smaller
than the input instance. In general, enumeration algorithms can be derived from
enum-advice kernels as stated in the next lemma.

Lemma 6 (�). Let R be an enum-advice kernelization of a parameterized enu-
meration problem (P, Sol) such that for every instance (x, k) of P :

– R runs in O((|x| + k)c) time for some constant c;
– the unparameterized version of P can be solved in g(|x|) time on x;
– the kernelization computes the pair (I,A) where |I| ≤ h(k), and Tf takes at

most O(|I|d) time between generating two solutions for some constant d;
– #s denotes the number of solutions in I and #S denotes the number of

solutions in x.

Then, (P, Sol) can be solved in O((|x|+k)c + g(h(k))+(# s +#S) ·h(k)d) time.

Note that in general we cannot give any meaningful upper bound on the
delay of the constructed algorithm as the kernel instance might be packed with
solutions p such that f(w,A) = ∅. If no such solutions exist, then the delay
of the described algorithm is O((|x| + k)c + f(h(k)) + h(k)d)). The delay of all
algorithms presented in this paper are only upper-bounded by the respective
running times of the algorithms.

4 Algorithms

In this section, we show FPT algorithms solving �-Enum exploiting several
parameters. We systematically explore the parameter landscape along a hier-
archy of graph parameters (see [31]) in the following way (Fig. 2 surveys our
outline). We start from the fact that �-Enum allows for an O(m · d)-time algo-
rithm when parameterized by degeneracy d [7], and go into the following two
directions: First, we study in Sect. 4.1 whether parameters k lying above degen-
eracy in the parameter hierarchy admit algorithms running in f(k) + O(n + m)
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Distance to d-degenerate + maximum degree (Prop. 7)

Feedback edge number
(Prop. 9, Thm. 10)

Distance to d-degenerate (Thm. 11, Cor. 12)

Vertex cover number (0-degenerate)

Feedback vertex number (1-degenerate)

...

Distance to
cograph

(Prop. 14) Degeneracy [7]

Clique-width
(Thm. 15)

Average
degree [18]

Domination
Number (Prop. 4)

Diameter (Prop. 4)

Chromatic
Number (Prop. 4)

Minimum degree
(Sec. 3.1)

f(k) · (n + m)

f(k) · n2

GP-hard

enum-advice
kernel

Fig. 2. Layering of considered parameters with respect to our and known results.
Herein, the parameters are hierarchically arranged in the sense that if two parame-
ters are connected by a line, then the lower one can be upper-bounded by the higher
one. Thus, hardness results transfer downwards and tractability results upwards. For
the parameter average degree σ an O((σn)1.5)-time algorithm follows from an exist-
ing O(m1.5)-time algorithm [18] and the simple observation that any graph has O(σn)
edges.

time. Kernelization is one way to achieve such additive (f(k)+O(n+m)) instead
of multiplicative (f(k) · O(n + m)) running times. Indeed, for the two parame-
ters feedback edge number and distance to d-degenerate graphs (see definitions
below) we show enum advice-kernels. Second, we study in Sect. 4.2 parameters
that are incomparable with degeneracy and so far unclassified.

4.1 Parameters Lower-Bounded by Degeneracy

In this section we show results on parameters that are hierarchically above the
degeneracy. We first describe the parameters and then turn to the results.

We first discuss distance to d-degenerate graphs. The distance to d-degenerate
graphs of a graph G is the size of a minimum cardinality vertex set D such
that G−D is d-degenerate. This parameter generalizes several well-known para-
meters like vertex cover (distance to 0-degenerate graphs) and feedback vertex set
(distance to 1-degenerate graphs). For any fixed d the distance to d-degenerate
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graphs is NP-hard to compute [25]. However, we can use existing linear-time
constant-factor approximation algorithms for d = 0 (vertex cover) and d = 1
(feedback vertex set) [3]. Since the size of a minimum feedback vertex set of a
graph is always (and possibly much) smaller than its smallest vertex cover, it is
natural to use this parameter rather than the vertex cover if comparably good
results can be shown for both parameters. For larger values of d, one can use
heuristics. Note that the quality of the heuristic only affects the running time
but not the solution quality of the subsequent parameterized algorithm.

The distance to d-degenerate graphs is usually small in many applications
such as social networks as they contain only few vertices with high degree [11].
Depending on the degree distribution at hand one can then choose the value
of d that gives the best overall running-time. (The running time of the corre-
sponding algorithms usually have some trade-off between d and the distance
to d-degenerate graphs.)

A feedback edge set in a graph is a subset of the edges such that removing
the edges from the graph results in a forest. The feedback edge number of a
graph is the size of a minimum feedback edge set. Note that the feedback edge
number can be of order O(m) (for instance in a complete graph). Moreover,
the parameter is neither related to the distance to 0-degenerate graphs (vertex
cover number) nor to the maximum degree, but it upper-bounds the distance to
1-degenerate graphs (feedback vertex number). Computing a feedback edge set
of minimum cardinality can be done in linear time by e. g. breadth-first-search.
We hence assume that a feedback edge set is given.

Distance to d-Degenerate Graphs plus Maximum Degree. Green and
Bader [16] stated that Triangle Counting parameterized by the size of a
vertex cover V ′ and the maximum degree dmax = max({deg(v) | v ∈ V ′}) in
this vertex cover can be solved in O(|V ′| · d2max + n) time. We will construct
an algorithm which solves �-Enum parameterized by the size of D and the
maximum degree ΔD in D, where D is a set of vertices such that G − D is d-
degenerate, provided that D is given. The algorithm takes O(|D| · Δ2

D + n · d2)
time. Bear in mind that for each vertex cover V ′ it holds that G − V ′ is 0-
degenerate and hence O(|D| · Δ2

D + n · d2) = O(|D| · Δ2
D). Consequently, our

result generalizes the result by Green and Bader.

Proposition 7 (�). �-Enum parameterized by distance to d-degenerate graphs
and the maximum degree ΔD in a set D such that G − D is d-degenerate is
solvable in O(|D| · Δ2

D + n · d2) time provided that the set D is given.

Feedback Edge Number. We provide a key lemma and then state a linear-size
enum-advice kernel for �-Enum parameterized by feedback edge number.

Lemma 8 (�). Let G = (V,E) be an undirected graph and let F be a feedback
edge set in G. All triangles {u, v, w} where at least one of the edges between the
three vertices is not in F can be enumerated in O(n + m) time. There are at
most 2|F | such triangles.
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Proposition 9 (�). �-Enum parameterized by feedback edge number k admits
a constant-delay enum-advice kernel with at most 2k+3 vertices and k+3 edges
which can be computed in O(n + m) time.

A straight-forward application of Lemma6 given Proposition 9 yields the follow-
ing.

Theorem 10 (�). �-Enum parameterized by feedback edge number k can be
solved in O(k1.5 + n + m) time.

Distance to d-Degenerate Graphs. We next present an enum-advice kernel
for �-Enum parameterized by distance to d-degenerate graphs.

Theorem 11. �-Enum parameterized by distance to d-degenerate graphs
admits a constant-delay enum-advice kernel provided that the distance deletion
set D to d-degenerate graphs is given. The kernel contains at most |D|+2|D| +3
vertices and can be computed in O(n · (d + 1) · (|D| + d)) time.

Proof. Let G be an instance of �-Enum and let k = |D| be the parameter.
Construct the enum-advice kernel (I(G, k), A(G, k)) as follows. To this end, we
abbreviate (GI , k

′) ..= I(G, k) and A ..= A(G, k).
First, compute the d-degenerate graph G′ = G − D. The graph G′ contains

exactly the triangles in G that do not contain any vertices in D. Compute the set
of triangles in G′ in O(m · d) time [7]. Next, compute all triangles with exactly
one vertex in D. To this end, compute the degeneracy order in linear time, iterate
over all v ∈ D, u ∈ N(v) \ D, and the at most d neighbors of u that are ordered
after u in the degeneracy order, and list all triangles found. By this, all triangles
in G containing exactly one vertex in D are found in O(k ·n ·d) time. Altogether,
we can compute the set T1 of all triangles in G with at most one vertex in D
in O(n · d · (k + d)) time.

Delete all edges which have no endpoint in D as they cannot be part of
any further triangles. Next, compute all twin-classes in the current graph, that
is, a partition P of the vertices according to their neighbors, using partition
refinement in O(n + m) time [17].

For each non-empty part P ∈ P pick one vertex vP ∈ P and store a func-
tion M such that M(vP ) = P \ D. Put all vertices in D, all of the chosen
vertices, and all edges induced by these vertices into GI . Add three new ver-
tices a, b, c to GI and if T1 �= ∅, then add three new edges {a, b}, {a, c}, {b, c}.
Note that all edges have an endpoint in D′ = D ∪ {a, b} and thus D′ is a
deletion set to d-degenerate graphs for every d. Complete the construction
by setting k′ = |D′| and A = (T1,M, {a, b, c}). Note that GI contains at
most k + 2k + 3 vertices (K1). Observe that since m ∈ O(n · (k + d)), the
kernel can be constructed in O(n · d · (k + d)) time. For x1, x2, x3 ∈ V (GI),
define the function f as f({x1, x2, x3}, A) = T1 if {x1, x2, x3} = {a, b, c}
and f({x1, x2, x3}, A) = {{v1, v2, v3} | v1 ∈ M(x1) ∧ v2 ∈ M(x2) ∧ v3 ∈ M(x3)}
otherwise. Next, we prove that the algorithm fulfills all conditions of Definition 5.

Observe that GI is isomorphic to a subgraph of G and, hence, if there is a
triangle GI , then there is a triangle in G. Assume that there is a triangle X with
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vertices {x1, x2, x3} in G. If X contains at most one vertex in D, then T1 �= ∅
and thus there is the triangle formed by {a, b, c} in GI . Otherwise, X contains at
least two vertices in D. Assume without loss of generality that x2, x3 ∈ D. If x1

is in D, then X is also contained in GI . Otherwise, there is a vertex v in GI such
that x1 ∈ M(v). Since {x1, x2, x3} forms a triangle in G, it follows that {v, x2, x3}
forms a triangle in G and GI . Hence, condition (K2) (of Definition 5) is fulfilled.

Next we discuss the condition (K3). We will prove that for every trian-
gle X = {x1, x2, x3} in G there is a unique solution w ∈ Sol(GI , k

′) such
that X ∈ f(w,A) (K3b). If X contains at most one vertex in D, then by construc-
tion X ∈ f({a, b, c}, A). Since GI contains only edges with an endpoint in D, no
triangle {v1, v2, v3} where v1 ∈ M(x1), v2 ∈ M(x2), and v3 ∈ M(x3) is contained
in GI . Thus {a, b, c} is the only triangle in GI such that X ∈ f({a, b, c}, A). If X
contains at least two vertices x2, x3 ∈ D, then there exists a vertex v in GI

such that x1 ∈ M(v) and the triangle {v, x2, x3} is contained in G. By construc-
tion, the triangle {v, x2, x3} is also contained in GI and X ∈ f({v, x2, x3}, A).
Since X /∈ T1, it follows X /∈ f({a, b, c}, A).

Next we show that for any two triangles p = {u1, u2, u3} and q = {v1, v2, v3}
in GI , it holds that f(p,A) ∩ f(q,A) = ∅ (K3a). If either p or q is {a, b, c} (let
us assume without loss of generality p), then by definition f(p,A) only contains
triangles with at most one vertex in D and f(q,A) only contains triangles with
at least two vertices in D and thus f(p,A) ∩ f(q,A) = ∅.

If neither p nor q is {a, b, c}, then both of them only contain vertices from
the original graph G. As p �= q, assume without loss of generality that u1 /∈ q
and v1 /∈ p. By construction all triangles in f(p,A) contain one vertex in M(u1)
and all triangles in f(q,A) contain one vertex in M(v1). As shown above, M(u1)
(M(v1), respectively) only contains u1 (v1) and vertices that have the same
neighbors as u1 (v1) in D. Hence, no triangle in f(p,A) (f(q,A) respectively)
contains a vertex in M(v1) (M(u1)) and thus f(p,A) ∩ f(q,A) = ∅.

Each triangle in {{v1, v2, v3} | v1 ∈ M(x1) ∧ v2 ∈ M(x2) ∧ v3 ∈ M(x3)} and
in T1 can be returned with constant delay between generating two successive
solutions (K3c). ��

The time needed to compute the kernel (I(G, |D|), A(G, |D|)) in Theorem 11
is upper-bounded by O(n · d · (|D| + d) + |D| + m) = O(n · (d + 1) · (|D| + d)).
The equality holds since m ∈ O(n · (|D| + d)).

To the best of our knowledge, there is no algorithm that solves �-Enum
parameterized by distance to d-degenerate graphs within this time. All solutions
can be reconstructed in constant-delay time and there is no known algorithm that
solves �-Enum parameterized by distance to d-degenerate graphs in constant-
delay time (and it seems unlikely that such an algorithm exists).

Using Lemma 6 we get the following result.

Corollary 12 (�). �-Enum parameterized by distance to d-degenerate graphs
is solvable in O(n · (d+1) · (|D|+ d)+23|D| +#T) time provided that the vertex
deletion set D to d-degenerate is given.
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4.2 Parameters Incomparable with Degeneracy

In this section we present results on parameters that are unrelated to the degen-
eracy. Again, we first describe the parameters and then turn to our results.

A graph is called a cograph if it contains no induced path with four ver-
tices (P4). We study the (vertex deletion) distance to cographs since the vertex
cover number allows for tractability results (see Sect. 4.1) but diameter does
not (see Sect. 3.1), and distance to cographs is sandwiched between those two
parameters. Furthermore, distance to cographs lower-bounds the cluster vertex
number—a parameter advocated by Doucha and Kratochv́ıl [10]. Moreover, given
a graph G we can determine in linear time whether it is a cograph and return
an induced P4 if this is not the case [6,8]. This implies that in O(k · (m + n))
time we can compute a set K ⊆ V , k = |K|, of size at most 4k such that G − K
is a cograph.

Since treewidth is lower-bounded by the degeneracy, we know that there is
an O(ω ·m)-time algorithm for �-Enum. A parameter below treewidth ω in the
parameter hierarchy is the clique-width k (it holds that k ≤ 2ω and k can be
arbitrarily small compared to ω). Moreover, clique-width is also below distance
to cograph. Thus, we study clique-width as it lies on the “border to tractability”
of �-Enum.

Distance to Cograph. We give a linear-time FPT algorithm for �-Enum
with respect to the distance to cographs. Before we do this, we provide a general
lemma which can be used to enumerate all triangles in a graph parameterized
by (vertex) deletion set to some graph class Π if all triangles in Π can be
enumerated efficiently.

Lemma 13 (�). �-Enum parametrized by deletion set K to Π is solvable in
O(m · |K| + n + x) time if �-Enum on a graph in Π is solvable in O(x) time.

We can enumerate all triangles in a cograph in O(#T +n+m) time. Solving
�-Enum parameterized by distance to cograph using Lemma13 then yields:

Proposition 14 (�). �-Enum parametrized by deletion set K to cographs is
solvable in O(#T +n + m · |K|) time.

Clique-Width. We next turn to the parameter clique-width as it is incompara-
ble to the degeneracy and upper-bounded by two parameters allowing for linear-
time FPT algorithms: the distance to cographs (Proposition 14), and treewidth
(as treewidth upper-bounds the degeneracy). We show a quadratic-time FPT
algorithm for �-Enum with respect to the clique-width of the input graph. We
leave open whether it admits a linear FPT algorithm. Due to our results, the
parameters clique-width and average degree form the border case between para-
meters admitting linear FPT algorithms and those that are GP-hard.

Theorem 15 (�). Given a k-expression of the graph G, �-Enum is solvable
in O(n2 + n · k2 + #T) time.
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5 Conclusion

Employing the framework of FPT-in-P analysis, we provided novel notions and
insights concerning potentially faster solution algorithms for enumerating (and
detecting) triangles in undirected graphs. It remains to be seen whether General-
Problem-hardness is the appropriate notion for intractability within the field
of FPT-in-P. Although data reduction is a theoretically and practically very
promising concept, there is still little work in the context of enumeration prob-
lems. We hope that the notion of enum-advice kernels can be used to further
develop this area of research.

In ongoing work we want to perform empirical studies with our algorithms
(kernelization as well as solving algorithms). Moreover, it remains open to
study whether our exponential-size kernel for parameter distance to d-degenerate
graphs (see Table 1) can be improved in terms of size and running time. On a
more general scale, note that triangles are both the smallest non-trivial cliques
and cycles. Can we generalize our findings to these two different settings? Finally,
we mention that following the FPT-in-P route might be an attractive way to
“circumvent” lower bound results for other polynomial-time solvable problems.
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Abstract. In this paper we study the polynomial equivalence problem:
test if two given polynomials f and g are equivalent under a non-singular
linear transformation of variables.

We begin by showing that the more general problem of testing whether
f can be obtained from g by an arbitrary (not necessarily invertible) lin-
ear transformation of the variables is equivalent to the existential theory
over the reals. This strengthens an NP-hardness result by Kayal [9].

Two n-variate polynomials f and g are said to be equivalent up to scal-
ing if there are scalars a1, . . . , an ∈ F\{0} such that f(a1x1, . . . , anxn) =
g(x1, . . . , xn). Testing whether two polynomials are equivalent by scaling
matrices is a special case of the polynomial equivalence problem and is
harder than the polynomial identity testing problem.

As our main result, we obtain a randomized polynomial time algo-
rithm for testing if two polynomials are equivalent up to a scaling of
variables with black-box access to polynomials f and g over the real
numbers.

An essential ingredient to our algorithm is a randomized polynomial
time algorithm that given a polynomial as a black box obtains coeffi-
cients and degree vectors of a maximal set of monomials whose degree
vectors are linearly independent. This algorithm might be of indepen-
dent interest. It also works over finite fields, provided their size is large
enough to perform polynomial interpolation.

1 Introduction

The polynomial equivalence problem (PolyEq), i.e., testing if two given polyno-
mials are equivalent under a non-singular change of coordinates is one of the fun-
damental computational tasks related to polynomials. More precisely, two poly-
nomials p(x1, x2, · · · , xn) and q(x1, x2, · · · , xn) are said to be linearly equivalent
if there is an invertible linear transformation, A such that for yi =

∑
j Aijxj ,

p(y1, y2, . . . yn) = q(x1, . . . xn). When A is not restricted to be invertible, the
problem is referred to as polynomial projection problem (PolyProj).

Indeed, observing that only a polynomial with all coefficients equal to zero
can be equivalent to the zero polynomial, PolyEq is a generalization of the
well studied polynomial identity testing problem which has close connections to
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 111–122, 2017.
DOI: 10.1007/978-3-662-55751-8 10
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arithmetic circuit lower bounds [7]. Further, since a non-singular change of coor-
dinates is one of the fundamental geometric primitives, PolyEq is of primary
importance to computational algebraic geometry.

Saxena [14] showed that the graph isomorphism problem is polynomial time
many one reducible to the case of PolyEq where the polynomials are of degree
three. Thus, the problem simultaneously generalizes the graph isomorphism
problem and the polynomial identity testing problem. Further, if the change
of coordinates (the matrix A) is not restricted to be invertible, that is, A need
not be invertible, then the problem PolyProj is NP-hard under polynomial
time many-one reductions [9]. We first strengthen this hardness result over R (in
fact, also over any integral domain) as follows:

Theorem 1. Given two sparse polynomials f, g ∈ R[x1, . . . , xn], deciding
whether there is a matrix A such that f(x) = g(Ax) is as hard as the existential
theory over the reals.

Both PolyProj and PolyEq can be solved in polynomial space over R and
C in the Blum-Shub-Smale model of algebraic computation [4] using existential
theories over these fields. Since the best upper bound for existential theory over
reals is PSPACE, the above hardness result indicates that the PolyProj is
possibly harder than just being NP-hard. However, the hardness result does
not apply to when A is restricted to be non-singular, and the complexity of
the PolyEq problem remains elusive. Over finite fields the problem is in NP ∩
co-AM [17]. However, over the field of rational numbers, it is not known if the
problem is decidable [14].

Given the lack of progress in the general problem PolyEq, it is natural
to solve special instances of the problem. A natural restriction is to study the
problem when the input polynomials are restricted. When both polynomials
are restricted to quadratic forms (homogeneous degree 2 polynomials), we know
about the structure of equivalent polynomials and this also leads to a polynomial
time algorithm for testing equivalence of such polynomials (see Witt’s equiva-
lence theorem [12]). As indicated above the problem already becomes harder
when the degree is allowed to be even three. Agrawal and Saxena [1] showed
that ring isomorphism testing problem, reduces to the PolyEq problem when
the degree of the polynomials is at most three. 1 Patarin [13] even designed
a cryptosystem which assumes the hardness of the degree bounded (by three)
version of the problem to prove security guarantees.

Instead of simultaneously restricting both of the polynomials in the problem,
it is even interesting to study the problem when one of the polynomials is fixed to
be a well-structured family and the other polynomial is allowed to be arbitrary.
In this direction, Kayal [8] obtained randomized polynomial time algorithms to
test if a given polynomial (as a black-box) is equivalent to either an elementary
symmetric polynomial or to the power symmetric polynomial of a given degree.

1 For a (partial) converse, they [1] also showed that deciding equivalence of degree k
polynomials having n variables over Fq (such that k and q − 1 are co-prime), can be
reduced to the ring isomorphism problem.
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Further, Kayal [9] obtained similar algorithms when one of the polynomials is
fixed to be either the permanent polynomial or the determinant polynomial.
More recently, Kayal et al. [10] obtained randomized polynomial time algorithm
for PolyEq when one of the polynomials is the iterated matrix multiplication
polynomial.

Another possibility of obtaining restrictions of PolyEq is by restricting the
structure of change of coordinates. Grigoriev [6] considered the problem of testing
equivalence of polynomials under Taylor shifts2: given two polynomials f and
g, are there a1, . . . , an ∈ K such that f(x1 + a1, . . . , xn + an) = g? Grigoriev
obtained a polynomial time algorithm to the problem when the polynomial is
given in the sparse representation. The algorithm is deterministic polynomial
time if K is algebraically closed, randomized polynomial time if K = Q and
quantum polynomial time if K is finite. More recently, Dvir et al. [5] showed that
the shift equivalence problem is polynomial time equivalent to the polynomial
identity testing problem in the black-box as well as non-black-box setting.

In this paper, we restrict the structure of the matrices under which the equiv-
alence is tested, to diagonal matrices. We obtain a randomized polynomial time
algorithm for testing if two polynomials are equivalent up to a scaling of vari-
ables with black-box access to polynomials f and g. More precisely, we prove
the following theorem:

Theorem 2 (Main). Given f, g ∈ R[x1, . . . , xn] as a blackbox, there exists
a randomized algorithm that tests if there is an invertible diagonal matrix A
such that f(X) = g(AX). The algorithm runs in time poly (n,Δ,L), where the
degree of f and g is bounded by Δ and all of the coefficients of f and g can be
represented by at most L bits.

As mentioned above, Kayal [9] designed randomized polynomial time algo-
rithms for testing equivalence if one of the polynomials comes from a well-
structured family of polynomials like the permanent family or determinant fam-
ily. These algorithms follow the following general scheme: First, the general prob-
lem is reduced to permutation and scaling equivalence testing by studying the
Lie algebra of the input polynomial. Then permutation and scaling equivalence
testing is reduced to scaling equivalence testing. Our result shows that this last
step can always be done in randomized polynomial time, even when one of the
polynomials does not come from a nice family but is arbitrary. Thus, the hard-
ness of PolyEq most likely lies in the first step, since we need a large enough
Lie algebra to make the approach work. The Lie algebra of a random polynomial
is trivial [9].

As an ingredient to our proof of Theorem 2, we obtain a randomized polyno-
mial time algorithm that given a polynomial as a black box obtains coefficients
of a maximal set of monomials whose degree vectors are linearly independent,
this might be of independent interest.

2 which is strictly speaking not a (homogeneous) linear change of coordinates.
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Theorem 3. There is a randomized algorithm, that given a polynomial f ∈
R[x1, . . . , xn] by black box access outputs a maximal collection of

{(m,α) | α �= 0, and α is the coefficient of the monomial m in f}

such that the set of degree vectors is linearly independent over R. The running
time is polynomial in the degree Δ of f , the number of variables n, and the bit
size L of the representation of the coefficients.

We remark that the latter algorithm also works over finite fields provided
they are large enough. Here large enough means p(Δ,n) for some polynomial p
for small degree.

2 Preliminaries

In this section, we fix the notations that we use throughout the paper.
For a monomial m = xd1

1 · · · · · xdn
n let Deg(m) = (d1, . . . , dn) denote the

degree vector of m. For a polynomial f ∈ K[x1, . . . , xn], let Mon(f) denote the
set of monomials that have non-zero coefficients in f . A degree-basis for f is a
maximal collection S = {(m,α) | α �= 0 is the coefficient of monomial m in f}
such that the set {Deg(m) | (m,α) ∈ S, for some α �= 0} is linearly independent
over Q or equivalently R.

Isolating Monomials: Klivans and Spielman [11] obtained a randomized poly-
nomial time algorithm that tests if a polynomial given as a black-box is identi-
cally zero or not. Their algorithm involves a randomized polynomial time algo-
rithm that isolates a monomial in the given polynomial if it is not identically
zero. We state the result below:

Theorem 4 (Klivans and Spielman [11]). There is a probabilistic algorithm
that given a non-zero polynomial f ∈ K[x1, . . . , xn] (by blackbox access) outputs
a monomial m of f , its degree vector Deg(m) and its coefficient α in f with
probability ≥ 1 − ε in time polynomial in n, Δ, and 1/ε.

Theorem 4 is going to be a building block for our proof of Theorem 3. We
need a bit more insight into the proof of Theorem 4 listed as follows:

– The algorithm in [11] first replaces the variables xi by yai where the ai are
numbers with O(log(nΔ/ε)) bits. We get a new univariate polynomial f̂ .
Monomials of f get mapped to monomials in f̂ and are grouped together.
The substitution has the property that with probability ≥ 1− ε, there is only
one monomial of f getting mapped to the (non-zero) monomial of f̂ having
minimum degree. Since we have only black-box access to f , this substitution
is only conceptual and is simulated when later on plugging values into the
blackbox.
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– Then we interpolate f̂ by evaluating it at poly(n,Δ, 1/ε) many values. That
is, we plug in values vai for each xi for polynomially many values v. The
lowest nonzero coefficient of f̂ is also a coefficient of f , however, we do not
know the degree pattern of this monomial (yet).

– Then we modify the substituion in the first step by replacing x1 by 2ya1 . In
this way, the lowest nonzero coefficient of f̂ will get multiplied by 2d1 where
d1 is the x1-degree of the unique monomial in f that is mapped to the lowest
degree monomial of f̂ . Doing this for all xi, we can also extract the degree
vector of the monomial.

Tensors and Tensor Rank: We also fix notations and state the preliminary
results about tensors that we need in the paper. We call t = (ti,j,�) ∈ R

n×n×n

a tensor. A rank one tensor is a tensor that can we written as u ⊗ v ⊗ w with
u, v, w ∈ R

n. The minimum number of such rank-one-tensors such that t can be
written as the sum of them is called the rank of t. For an introduction to this
problem, the reader is referred to [2,3].

With a tensor t, we can associate the trilinear form

F (x, y, z) =
n∑

i,j,�=1

ti,j,�xiyjz�.

The so called unit tensor er ∈ R
r×r×r is given by the trilinear form

Er =
r∑

i=1

xiyizi

The following fact is well known :

Proposition 1 (see [3]). Let t = (ti,j,�) ∈ R
n×n×n be a tensor. The tensor

rank of t is bounded by r if and only if there are matrices S, T, U ∈ R
r×n such

that
F (x, y, z) = Er(Sx, Ty, Uz).

3 Hardness of the PolyProj Problem

Testing whether there is an arbitrary matrix A such that f(x) = g(Ax) is a hard
problem. In this section, we prove Theorem 1. As mentioned in the introduction,
this improves the hardness result shown in [9].

Theorem 1. Given two polynomials f, g ∈ R[x1, . . . , xn], as a list of monomials
and their coefficients, deciding whether there is a matrix A (not necessarily non-
singular) such that f(x) = g(Ax) is as hard as the existential theory over the
reals.
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Proof. We proceed by reducing the tensor rank problem to PolyProj problem.
Given a tensor t = (ti,j,�) ∈ R

n×n×n, we observe that Proposition 1 suggests two
polynomials of the form f(x) = g(Ax). However, there are two issues. Firstly,
we have three sets of variables and secondly, the matrices S, T , and U are not
square matrices. The second problem is easy to circumvent. We consider F as
a polynomial in the variables x1, . . . , xr, y1, . . . , yr, and z1, . . . , zr instead and
extend the matrices S, T , and U by zero rows.

To address the first problem, we modify the problem we reduce from. A
tensor is called symmetric, if ti,j,� = ti,�,j = . . . for all six permutations of the
indices. In the same way as for general tensors, we can associate a trilinear form
with symmetric tensors, too:

F ′(x) =
n∑

i,j,�=1

ti,j,�xixjx�.

Definition 1 (Symmetric Rank). The symmetric or Waring rank of a sym-
metric tensor t is the smallest r such that there is an r × n matrix A with
F ′(x) = E′

r(Ax) where

E′
r =

r∑

i=1

x3
i .

Shitov [16] recently proved that the problem of deciding whether a symmet-
ric tensor t has symmetric rank r is as hard as the existential theory over the
underlying ground field. The same is true for the ordinary tensor rank. (Inde-
pendently, Schaefer and Stefankovic proved a similar result [15], but only for the
tensor rank.) ��

We remark that, since Shitov’s result [16] holds over any integral domain,
the above theorem is also true for any integral domain.

4 Extracting a degree-basis of a Polynomial

In this section we obtain a randomized polynomial time algorithm that given a
polynomial f as a black-box computes a degree-basis for f . We re-state Theorem 3
for readability:
Theorem 3. There is a randomized algorithm, that given a polynomial f ∈
R[x1, . . . , xn] by black box access outputs a maximal collection of

{(m,α) | α �= 0, and α is the coefficient of the monomial m in f}
such that the set of degree vectors is linearly independent over R. The running
time is polynomial in the degree Δ of f , the number of variables n, and the bit
size L of the representation of the coefficients.

Proof. Algorithm 1 is our proposed algorithm. It starts with extracting a first
monomial using the algorithm by Klivans and Spielman (Theorem 4). Then it
proceeds iteratively and extends the set one by one.
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Now assume we have already extracted monomials m1, . . . ,mt of f such that
the corresponding degree vectors v1, . . . , vt are linearly independent. Let t < n.
We describe a procedure that finds a new monomial mt+1 such that its degree
vector vt+1 is not contained in the span of v1, . . . , vt or reports that there does
not exists such a vt+1.

Let v1, . . . , vt̂ be a basis of the R-vector space spanned by all degree vectors
of f , that is, we extend v1, . . . , vt to a basis. Let p be a prime such that v1, . . . , vt̂

stay linearly independent over Fp. By the Hadamard bound for the determinant,
the matrix formed by v1, . . . , vt has a non vanishing minor whose absolute value
is bounded by (Δn)n. And by the prime number theorem, a prime number of
size O(npolylog(Δn)) will have the property stated above with high probability.
Note that we only know the vectors v1, . . . , vt so far, but since we simply choose
p uniformly at random, we do not need to know the vectors v1, . . . , vt̂ at all.

Let u1, . . . , un−t be linearly independent vectors such that viuj = 0 over Fp

for all 1 ≤ i ≤ t, 1 ≤ j ≤ n − t, where viuj denotes the standard scalar product.
If w is a vector not contained in the span of v1, . . . , vt, then there is a j such
that wuj �= 0 over Fp. Consider the substitution xi → yuj,ixi, 1 ≤ i ≤ n, where
uj,i are the entries of uj . This substitution maps every monomial m of f to some
monomial of the form ydm. Let fj be the resulting polynomial.

By construction, we have:

Lemma 1. 1. The degree of fj is bounded by O(Δnpolylog (Δn)) for all j.
2. If a monomial m is contained in the span of v1, . . . , vt, then for every j, p|d

where ydm is the image of m in fj.
3. If a monomial m is not contained in the span of v1, . . . , vt, then there is a j

such that p � |d where ydm is the image of m in fj. ��
We continue with the proof of the theorem. The strategy is now clear: We

treat each fj as a univariate polynomial in y with coefficients from K[x1, . . . , xn].
Then we use the algorithm from Theorem 4 to extract a monomial from the
coefficient polynomial of a power yd with p � |d. If we find a monomial then we
set vt+1 to be its degree vector. If we do not find such a monomial, then v1, . . . , vt

is a maximal linearly independent set.
Let fj =

∑Δj

d=0 gd · yd. To be able to apply Theorem 4, we have to provide
blackbox access to the gd’s but we have only blackbox access to f . We simulate
this as follows:

– Given blackbox access to f , it is easy to simulate blackbox access to fj .
– Now assume we want to evaluate gd at a point ξ ∈ Kn.
– We evaluate fj at the points (ξ, αi) ∈ Kn+1, 0 ≤ i ≤ Δj , where the αi

are pairwise distinct, that is, we compute values fj(ξ, αi) =
∑Δj

d=0 gd(ξ)αd
i .

From these values, we interpolate the coefficients of fj , viewed as a univariate
polynomial in y. The coefficient of yd is gd(ξ).

It is clear from construction that Algorithm 1 returns the correct result if no
errors occur in the randomized computations. Thus, if we make every error
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Algorithm 1. Gen-Mon(f)
Input: Black box access to polynomial f ∈ K[x1, . . . , xn]
Output: A degree-basis for f

S ← ∅.
t ← 1
if f is not identically 0 then

Extract a monomial m1 of f (using Theorem 4) with coefficient α1.
Let v1 be the degree vector.
S ← S ∪ {(m1, α1)}.
while TRUE do

Randomly choose a prime p of size O(npolylog(Δn)).
Compute linearly independent vectors u1, . . . , un−t such that viuj = 0 over Fp

for all 1 ≤ i ≤ t, 1 ≤ j ≤ n − t.
Let fj(x1, . . . , xn) = f(x1y

uj,1 , . . . , xnyuj,n), 1 ≤ j ≤ n − t.

Write fj(x, y) =
∑Δj

d=0 hj,dyd.
Try to extract a monomial of every hj,d using Theorem 4, 1 ≤ j ≤ n − t, p � |d.
Let mt+1 be the first such monomial found, αt+1 be its coefficient and let vt+1

be its degree vector. Set S = S ∪ {(mt+1, αt+1)}.
If no such monomial mt+1 is found, then output S and HALT.

end while
end if

probability of every randomized subroutine polynomially small in Algorithm 1,
then by the union bound, it will compute the correct result with high probability.
For the running time observe that the while loop is executed at most n−1 times.
The degrees Δj are bounded by poly(n,Δ) by the bound on p. All numbers
occurring as coefficients have length bounded by poly(n,Δ,L), since the degrees
of all polynomials are bounded by poly(n,Δ). ��

5 Testing for Equivalence by Scaling

Let f(X) and g(X) be polynomials in R[x1, . . . , xn] given by black box access.
We assume that the degree of f and g is bounded by Δ and that all coefficients
of f and g can be represented by at most L bits.

Assume there is a non-singular diagonal matrix A such that f(X) = g(AX).
Let (a1, . . . , an) denote the entries of A on the diagonal. Clearly, if f(X) =
g(AX) with A diagonal, f and g should have the same set of monomials. We
first treat the case that the degree basis has maximum cardinality n.

Lemma 2. Let S = {(mi, αi) | 1 ≤ i ≤ n} be a degree-basis of f . If f(X) =
g(AX) for a non-singular diagonal matrix A, then such an A can be computed
deterministically in time polynomial in n, Δ and L, where the ai are represented
by polynomial size expressions with roots.

Proof. Let αi �= 0 and βi �= 0 be the coefficient of mi in f and g, respectively.
Suppose f(X) = g(AX) for some non-singular diagonal matrix A with diagonal
(a1, . . . , an). We have n polynomial equations
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αi = βi

n∏

j=1

a
di,j

j

where vi = Deg(mi) =: (di,1, . . . , di,n). Taking logarithms on both sides, we have

log αi = log βi +
n∑

j=1

di,j log aj .

(Formally, you have to choose an appropriate branch of the complex algorithm,
since the αi or βi can be negative. Since we exponentiate again in the end, the
actual choice does not matter.)

Since the vectors v1, . . . , vn are linearly independent over R, there are unique
values for log a1, . . . , log an satisfying the above equations. Now a1, . . . , an can
be obtained by inverse logarithms. This proves the uniqueness of a1, . . . , an.

Let D = (di,j). Then the ai are given by
⎛

⎜
⎝

log a1

...
log an

⎞

⎟
⎠ = D−1

⎛

⎜
⎝

log(α1/β1)
...

log(αn/βn)

⎞

⎟
⎠ .

So each ai =
∏n

j=1(αj/βj)d̄i,j where D−1 = (d̄i,j). ��
When the set of degree vectors of f has cardinality less than n, we can

still use Algorithm 1 to compute a linearly independent set of degree vectors
v1, . . . , vt of maximal size. Let vi = (di,1, . . . , di,n), 1 ≤ i ≤ t. Let m1, . . . ,mt

be the corresponding monomials with coefficients α1, . . . , αt. Let β1, . . . , βt be
the corresponding coefficients of the monomials of g. From these values, we can
set up a system of equations as in Lemma 2, however, this time there might be
more than one solution. The next lemma states that it actually does not matter
which of these solutions we choose:

Lemma 3. Let a1, . . . , an be any solution to

log αi = log βi +
n∑

j=1

di,j log aj , 1 ≤ i ≤ t,

and let A be the corresponding diagonal matrix. Let r(x) be a monomial with
coefficient δ and degree vector u = (e1, . . . , en) contained in the linear span of
v1, . . . , vt, i.e., u = λ1v1 + · · · + λtvt. Then the coefficient of r(Ax) is

δ ·
(

α1

β1

)λ1

· · ·
(

αt

βt

)λt

,

in particular, it is independent of the chosen solution for a1, . . . , an.
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Algorithm 2. Scaling equivalence test
Input: Black box access to polynomials f, g ∈ K[x1, . . . , xn]

the degree vectors of f have full rank
Output: Nonsingular diagonal matrix A with f(x) = g(Ax) if such an A exists

Apply Gen-Mon with polynomial f as the black-box to get a set S.
Apply Gen-Mon to g using the same random bits as above to get a set S′.
If the monomials in the set S is not the same as S′ then Reject.
Solve for the entries of A using Lemma 2 (choosing any solution if there is more than
one).
Accept if and only if f(x) − g(Ax) is identically zero.

Proof. Let u =
∑t

i=1 λivi. Now

r(Ax) = δ · (a1x1)e1 · · · (anxn)en

= δ · ae1
1 · · · aen

n · xe1
1 · · · xen

n

= δ · a
∑t

i=1 λidi,1
1 · · · a

∑t
i=1 λidi,n

n · xe1
1 · · · xen

n

= δ · (ad1,1
1 · · · ad1,n

n )λ1 · · · (adt,1
1 · · · adt,n

n )λt · xe1
1 · · · xen

n

= δ ·
(

α1

β1

)λ1

· · ·
(

αt

βt

)λt

· xe1
1 · · · xen

n . ��

Thus for testing if there is a diagonal matrix A with f(X) = g(AX), it is
enough to compute the non-zero coefficients of at most n monomials m1, . . . ,mn

in f and g the degree vectors of which are linearly independent.
We complete the correctness of Algorithm 2 in the following Theorem, which

in turn completes the proof of Theorem 2.

Theorem 5. Algorithm 2 returns correct the correct answer with high probabil-
ity. It runs in time polynomial in Δ, n and L.

Proof. The algorithm calls two times the routine Get-Mon and makes one call
to a polynomial identity test. By making the error probabilities of these calls
small enough, we can controll the error probability of Algorithm 2 by the union
bound.

Now we need to argue that if the polynomials f and g have the same set
of monomials, then the calls for Gen-Mon(f) and Gen-Mon(g) with same set of
random bits (i.e., by re-using the random bits) will result in sets S and S′ with
the same set of monomials.

Consider parallel runs of Get-Mon with f and g as inputs respectively such
that they use a common random string say R. If f and g have the same set of
monomials, then clearly hf

j,d and hg
j,d both have the same set of monomials at

every iteration of the two parallel instances of the algorithm.
Since the randomness is only used in the exponents, if f and g have the

same set of monomials, then the algorithm applied to f and to g with the same
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random bits will result in the same set of degree vectors. Therefore, we get the
appropriate coefficients of g.

Once we have the coefficients, we can find the the entries of a scaling matrix
using the set of equations in Lemma 2. By Lemma 3, it does not matter which
solution we choose. The algorithm is correct by construction. Each single step
of the algorithm can be performed in polynomial time. ��
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Abstract. A pure Horn CNF is minimal if no shorter pure Horn CNF
representing the same function exists, where the CNF length may mean
several different things, e.g. the number of clauses, or the total number of
literals (sum of clause lengths), or the number of distinct bodies (source
sets). The corresponding minimization problems (a different problem for
each measure of the CNF size) appear not only in the Boolean context,
but also as problems on directed hypergraphs or problems on closure
systems. While minimizing the number of clauses or the total number of
literals is computationally very hard, minimizing the number of distinct
bodies is polynomial time solvable. There are several algorithms in the
literature solving this task.

In this paper we provide a structural result for this body minimization
problem. We develop a lower bound for the number of bodies in any CNF
representing the same Boolean function as the input CNF, and then prove
a strong duality result showing that such a lower bound is always tight.
This in turn gives a simple sufficient condition for body minimality of a
pure Horn CNF, yielding a conceptually simpler minimization algorithm
compared to the existing ones, which matches the time complexity of the
fastest currently known algorithm.

1 Introduction

A Boolean function of n variables is a mapping from {0, 1}n to {0, 1}. Boolean
functions naturally appear in many areas of mathematics and computer science
and constitute a key concept in complexity theory. In this paper we shall study
an important problem connected to Boolean functions, a so called Boolean min-
imization problem, which aims at finding a shortest possible representation of
a given Boolean function. The formal statement of the Boolean minimization
problem (BM) of course depends on (i) how the input function is represented,
(ii) how it is represented on the output, and (iii) the way how the output size is
measured.
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One of the most common representations of Boolean functions are conjunctive
normal forms (CNFs). There are two usual ways how to measure the size of a
CNF: the number of clauses and the total number of literals (sum of clause
lengths). It is easy to see that BM is NP-hard if both input and output is a
CNF (for both above mentioned measures of the output size). This is an easy
consequence of the fact that BM contains the CNF satisfiability problem (SAT)
as its special case (an unsatisfiable formula can be trivially recognized from its
shortest CNF representation). In fact, BM was shown to be in this case probably
harder than SAT: while SAT is NP-complete (i.e. Σp

1 -complete [9]), BM is Σp
2 -

complete [16] (see also the review paper [17] for related results). It was also
shown that BM is Σp

2 -complete when considering Boolean functions represented
by general formulas of constant depth as both the input and output for BM [8].

Due to the above intractability result, it is reasonable to study BM for
subclasses of Boolean functions for which SAT (or more generally consistency
testing, if the function is not represented by a CNF) is solvable in polynomial
time. An extensively studied example of such a class is the class of Horn func-
tions. A CNF is Horn if every clause in it contains at most one positive lit-
eral, and it is pure Horn (or definite Horn in some literature) if every clause
in it contains exactly one positive literal. A Boolean function is (pure) Horn, if
it admits a (pure) Horn CNF representation. Pure Horn functions represent a
very interesting concept which was studied in many areas of computer science
and mathematics under several different names. The same concept appears as
directed hypergraphs in graph theory and combinatorics, as implicational sys-
tems in artificial intelligence and database theory, and as lattices and closure
systems in algebra and CLA (concept lattice analysis). Consider a pure Horn
CNF Φ = (a ∨ b) ∧ (b ∨ a) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e) on variables a, b, c, d, e, or
its equivalent directed hypergraph H = (V, E) with vertex set V = {a, b, c, d, e}
and directed hyperarcs E = {({a}, b), ({b}, a), ({a, c}, d), ({a, c}, e)}. This lat-
ter can be expressed more concisely using adjacency lists (a generalization of
adjacency lists for ordinary digraphs) in which all hyperarcs with the same
source set are grouped together {a} : b, {b} : a, {a, c} : d, e, or can be repre-
sented as an implicational (closure) system on variables a, b, c, d, e defined by
rules a −→ b, b −→ a, ac −→ de.

It is not difficult to see that all of these constitute identical relations among
the five entities a, b, c, d, e, only using different terminology. Using these notions,
the same concept has been traditionally studied within logic, combinatorics,
database theory, artificial intelligence, and algebra using different techniques,
different terminology, and often exploring similar questions with somewhat dif-
ferent emphasis corresponding to the particular area. Interestingly, in each of
these areas the problem similar to BM, i.e. a problem of finding the shortest
equivalent representation of the input data (CNF, directed hypergraph, set of
rules) was studied. However, already the examples above suggest that a “nat-
ural” way how to measure the size of the representation depends on the area.
Five different measures and corresponding concepts of minimality were intro-
duced in [3] in the context of directed hypergraphs:
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– (SM) source minimum hypergraph (no equivalent hypergraph with fewer
source sets)

– (HM) hyperarc minimum hypergraph (no equivalent hypergraph with fewer
hyperarcs)

– (SHM) source-hyperarc minimum hypergraph (no equivalent hypergraph with
fewer hyperarcs plus source sets)

– (SAM) source-area minimum hypergraph (no equivalent hypergraph with
smaller source area = sum of sizes of source sets)

– (O) optimum hypergraph (no equivalent hypergraph with smaller size =
source area + number of hyperarcs).

(SM) minimizes the number of adjacency lists for a hypergraph or equivalently
the number of rules for an implicational system, and hence it is a very natural
measure for the size of the representation in these two contexts. On the other
hand, it is not very natural in the CNF context and thus it is rarely used there.
(HM) minimizes the number of hyperarcs or equivalently the number of clauses
in the CNF, so it is one of the two common measures for CNFs. (SHM) and
(SAM) are slightly strange mixed size measures and do not appear in many
other papers. (O) is simply the total size of the adjacency list representation of
a directed hyperarc and similarly a total size of an implicational system. It should
be noted that the second common measure for CNFs, namely the total number
of literals (sum of clause lengths) - let us denote it by (L) - is missing in the
above list (in the hypergraph context (L) is the total size of the representation
if all hyperarcs are listed individually). In our example the representations are
already minimal and the sizes are as follows: (SM) three, (HM) four, (SHM)
seven, (SAM) four, (O) eight, and (L) ten.

It can be shown that for five of these six measures it is NP-hard to find the
shortest representation, the sole exception being (SM). There is an extensive
literature on the intractability results for the described minimization problems,
especially for (HM). Although these results originally appeared in various con-
texts, let us rephrase them here using the CNF terminology. (HM) was first
proved to be NP-hard in [3] (hypergraph context) and later independently in [12]
(CNF context). Both proofs construct high degree clauses (with the degree pro-
portional to the number of all variables, where the degree of a clause is the
number of literals in it), which left open the question, what is the complexity of
(HM) when the clause degrees are bounded. It can be shown that (HM) stays NP-
hard even when the inputs are limited to cubic (degree at most three) pure Horn
CNFs [7]. It should be also noted that there exists a hierarchy of tractable sub-
classes of pure Horn CNFs for which (HM) is polynomial time solvable, namely
acyclic and quasi-acyclic pure Horn CNFs [13], and CQ Horn CNFs [5]. There
are also few heuristic minimization algorithms for pure Horn CNFs [4]. (SHM),
(SAM), and (O) were proved to be NP-hard in [3] (hypergraph context), (O)
independently also in [12] (CNF context). (L) was proved to be NP-hard in [15]
(implicational system context) and this result was later strengtened by several
results which limit the clause degrees.
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The only one of the above six minimization problems for which a polynomial
time procedure exists to derive a minimum representation is (SM). The first such
algorithm appeared in database theory literature [15]. Different algorithms for
the same task were then independently discovered in hypergraph theory [3], and
in the theory of closure systems [11] (see also [1,2] for more recent literature on
the subject). It may be somewhat puzzling what makes (SM) so different (in
terms of tractability of minimization) from the other five cases. In this paper,
we will try to provide an explanation.

All the polynomial time algorithms developed for (SM) so far [3,11,15] use
a similar method for proving its optimality. The algorithm takes an input rep-
resentation (e.g., hypergraph, implicational system) and by a sequence of steps,
called (1) right-saturation, (2) left-saturation, and (3) redundancy elimination
in the implicational systems terminology, transforms it into an equivalent repre-
sentation which is unique, i.e., the algorithm arrives to the same output for all
equivalent inputs. This unique output is called the GD-basis of the implicational
systems in the related literature. Each step of the algorithm either preserves or
decreases the number of bodies (source sets) in the representation. Therefore,
the unique output has the minimum possible number of bodies, since the algo-
rithm can be applied also to a representation which is already body minimum
without ever increasing the number of bodies. The algorithms and especially the
proofs of their correctness are typically quite involved. In this paper we take
a mathematical programming approach to (SM), which simplifies the proof of
optimality.

For problem (HM), there exists a natural lower bound for the number
of clauses in any CNF representation of a pure Horn function f denoted by
ess(f) [6]. The quantity ess(f) is defined as the maximum number of pairwise
disjoint essential sets, where an essential set is a set of implicates of f which
evaluate to zero on a given false point of f . For some family of pure Horn func-
tions f , this lower bound is tight, i.e., the lower bound ess(f) is equal to the
minimum number of clauses needed for a CNF representation of f , denoted by
cnf (f). However, in general, there is a gap, i.e., ess(f) < cnf (f) [10] (more on
the size of this gap can be found in [14]). In other words, there is only a weak
duality between the maximization problem of computing ess(f) and minimiza-
tion problem of computing cnf (f).

In this paper1, we modify this idea for (SM) to compute the minimum num-
ber of bodies (source sets), denoted by body(f), in any CNF representation of
a given pure Horn function f . We introduce as a lower bound for body(f), the
maximum number of body-disjoint essential sets of implicates of f , denoted
by bess(f), and prove a strong duality between the maximization problem of
computing bess(f) and the minimization problem of computing body(f). This
min-max theorem is the main contribution of the paper. Moreover, our approach
gives a simple sufficient condition for body minimality, namely right-saturation
and body-irredundancy, which respectively correspond to Steps (1) and (3) of
the existing algorithms. Note that left-saturation in Step (2) eliminated by our

1 Due to space limitations we had to leave out most of our proofs.
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algorithm is the conceptually most difficult step in the existing algorithms; see
discussion in Sect. 4. Therefore, our approach yields a conceptually simpler min-
imization algorithm compared with the existing ones. This algorithm matches
the time complexity of the fastest currently known algorithm for (SM).

2 Definitions

In this section we recall some of the necessary definitions, introduce notation,
and state some basic properties.

2.1 Boolean Functions

We denote by V the set of variables, set n = |V |, and consider Boolean functions
h : B

n → B, where B = {0, 1}. We shall write h ≤ g if for all X ∈ B
n we have

h(X) ≤ g(X). We denote by T(h) = {X ∈ B
n | f(X) = 1} the set of true points

of h, and by F(h) = B
n \ T(h) its set of false points. To a subset S ⊆ V we

associate its characteristic vector χS = (x1, . . . , xn) ∈ B
n defined by xi = 1 if

and only if i ∈ S.
The components xi, i = 1, . . . , n of a binary vector X can be viewed as

Boolean variables (where truth values are represented by 0 and 1). The logical
negation of these variables will be denoted by xi = 1−xi, i = 1, . . . , n, and called
complemented variables. Since variables and their complements frequently play a
very symmetric role, we call them together as literals. An elementary disjunction
of literals C =

∨
i∈I xi ∨

∨
j∈J xj is called a clause, if every propositional variable

appears in it at most once, i.e. if I ∩ J = ∅. It is a well-known fact that every
Boolean function h can be represented by a conjunction of clauses. Such an
expression is called a conjunctive normal form (or CNF) of the Boolean function
h.

We say that a clause C1 subsumes another clause C2 if C1 ≤ C2 (e.g. the
clause x ∨ z subsumes the clause x ∨ y ∨ z). A clause C is called an implicate
of a function h if h ≤ C. An implicate C is called prime if there is no distinct
implicate C

′
subsuming C, or in other words, an implicate of a function is prime

if dropping any literal from it produces a clause which is not an implicate of that
function.

2.2 Pure Horn Functions

A clause is pure Horn if exactly one of its literals is an un-complemented variable.
A Boolean function is pure Horn if it can be represented by a pure Horn CNF,
that is, a conjunction of pure Horn clauses. It is well known that each prime
implicate of a pure Horn function is pure Horn. Thus, in particular, any prime
CNF representing a pure Horn function is pure Horn.

In the sequel we assume that we have a pure Horn function h given, and
will relate all subsequent definitions to it. Whenever we speak about a CNF
representation of h, we assume that this CNF is pure Horn, we never consider
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CNFs containing clauses which are not pure Horn. For a pure Horn function h
we denote by I(h) the set of pure Horn implicates of h and by P(h) (⊆ I(h))
we denote the set of prime implicates of h.

For a subset S and variable u 
∈ S we write S → u to denote the pure Horn
clause C = u ∨ ∨

v∈S v, where S is called the body (or source set) of C and u
the head of C, which we denote by S = body(C) and u = head(C). For two
subsets A,B of the variables we write A → B to denote the conjunction (or set)
of the clauses

∧
u∈B (A → u) . For a subset Φ ⊆ P(h) we shall view Φ both as a

set and as a conjunction of clauses. We also interpret any subset Φ ⊆ P(h) as
a function (represented by that CNF.) Furthermore, by writing Φ = h, Φ = Ψ
and Φ 
= Σ we mean that Φ represents the same function as h and Ψ , and that
it does not represent the same function as Σ. This will never cause confusion,
since we do not need to compare in the sequel by equality/non-equality subsets
of implicates, as set families. We shall write Ψ ⊆ Φ if Ψ , as a set of clauses, is
a subset of Φ. We shall write Ψ ≤ Φ if the Boolean functions defined by these
conjunctions have this relation, that is, if Ψ(X) ≤ Φ(X) for all X ∈ B

n.

2.3 Forward Chaining

In verifying that a given clause is an implicate of a given pure Horn function, a
very useful and simple procedure is the following. Let Φ be a pure Horn CNF
of a pure Horn function h. We shall define a forward chaining procedure which
associates to any subset S of the propositional variables of h a set FΦ(S) in
the following way. The procedure takes as input the subset S of propositional
variables, initializes the set FΦ(S) = S, and at each step it looks for a pure
Horn clause Y → y in Φ such that Y ⊆ FΦ(S), and y 
∈ FΦ(S). If such a clause
is found, the propositional variable y is included into FΦ(S), and the search is
repeated as many times as possible.

It is easy to see that the forward chaining operator satisfies the following
properties, where Ψ ⊆ Φ and A ⊆ B ⊆ V :

FΦ(A) = FΦ(FΦ(A)), FΦ(A) ⊆ FΦ(B), and FΨ (A) ⊆ FΦ(A) (1)

Forward Chaining Procedure(Φ, S)

Input: A pure Horn CNF Φ of h and S ⊆ V .

Initialization: Set Q = S.

Main Step: While ∃ C ∈ Φ : body(C) ⊆ Q and head(C) 
∈ Q
do Q = Q ∪ {head(C)}.

Output: FΦ(S) = Q.

The following lemma, proved in [12], shows how the above procedure can
help in determining whether a given clause is an implicate of a given CNF, or
not.
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Lemma 1. Given a CNF Φ representing h, a subset S of its propositional vari-
ables, and its variable y /∈ S, we have y ∈ FΦ(S) if and only if S → y is an
implicate of h.

Let Φ and Ψ be two distinct pure Horn CNF representations of a given pure
Horn function h. Then by Lemma 1 we have FΦ(S) = FΨ (S) for an arbitrary
subset S of the variables, since Φ and Ψ represent the same function f . Therefore,
the set of variables reachable from S by forward chaining depends only on the
underlying function rather than on a particular CNF representation. For this
reason, we shall also use the expression Fh(S) instead of FΦ(S) whenever we do
not want to refer to a specific CNF.

Corollary 1. If h is a pure Horn function and Φ ⊆ P(h), then Φ represents h
if and only if Fh(S) = FΦ(S) for all subsets S ⊆ V.

Finally, it follows from the first equation in (1) that the forward chaining
operator is in fact a closure operator. It is quite easy to see what are the closed
sets.

Lemma 2. Let h be a pure Horn function and let S be a subset of its proposi-
tional variables. Then Fh(S) = S if and only if χS ∈ T(h), that is, the charac-
teristic vector of S is a true point of h.

Let us add that the forward chaining procedure can be executed in linear
time in the size of Φ. This and Lemma 1 imply that the equivalence of two pure
Horn CNF-s can also be tested in polynomial time.

2.4 Essential Sets of Implicates

To a subset S ⊆ V of the variables we associate the following subset of implicates

ES = {C ∈ I(h) | body(C) ⊆ S, head(C) 
∈ S}. (2)

We shall call ES to be an essential set for h defined by the set S, or equivalently
by the binary vector χS .

Lemma 3. Let h be a pure Horn function and let S be a subset of its proposi-
tional variables. Then ES 
= ∅ if and only if χS ∈ F(h), that is, the characteristic
vector of S is a false point of h. In fact ES is exactly the set of implicates of h
that are falsified by χS.

A key property of essential sets was shown in [6,10].

Lemma 4. Let h be a pure Horn function. Then a pure Horn CNF Φ represents
h if and only if Φ ∩ ES 
= ∅ for all nonempty essential sets ES.
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For a pure Horn CNF Φ we denote by B(Φ) = {body(C) | C ∈ Φ} the set
of bodies in Φ. Let us now introduce two measures for the minimum size of a
representation of h, namely the number of clauses and the number of bodies
needed to represent h:

cnf (h) = min
Φ⊆I(h)

Φ=h

|Φ| and body(h) = min
Φ⊆I(h)

Φ=h

|B(Φ)|.

By definition for any pure Horn function h, we have body(h) ≤ cnf (h).
Let us define ess(h) as the maximum number of pairwise disjoint essential

sets. Let us further call two essential sets E and E ′ body-disjoint if there are no
implicates (S → u), (S → v) ∈ I(h) such that (S → u) ∈ E and (S → v) ∈ E ′.
Clearly, body-disjoint essential sets are also disjoint, since u = v is possible in
the above definition. We define bess(h) as the maximum number of pairwise
body-disjoint essential sets. For any pure Horn function h, we have bess(h) ≤
ess(h) ≤ cnf (h).

Let us note that disjointness or body-disjointness of essential sets can be
tested efficiently.

Lemma 5. Let h be a pure Horn function. For subsets P,Q ⊆ V , we have the
following equivalences.

(i) EP and EQ are disjoint if and only if Fh(P ∩ Q) ⊆ P ∪ Q.
(ii) EP and EQ are body-disjoint if and only if Fh(P ∩Q) ⊆ P or Fh(P ∩Q) ⊆ Q.

Both properties can be tested in polynomial time in terms of the size of a pure
Horn CNF representing h.

As a consequence, lower bounds on the quantities ess(h) and bess(h) have
polynomial certificates. For instance, to prove that K ≤ bess(h) for a pure Horn
function h represented by a pure Horn CNF Φ, it is enough to exhibit subsets
Qi, i = 1, . . . ,K such that the essential sets EQi

, i = 1, . . . ,K are pairwise body-
disjoint. By Lemma 5 the latter can be verified in polynomial time in terms of
K and the size of Φ.

Let us finish this section by defining two more notions. Let h be a pure Horn
function. For a subset S ⊆ V , we denote by CS = S → (Fh(S) \ S) the set of
pure Horn implicates of h with body S. A pure Horn CNF Φ representing h is
called right-saturated if we have CS ⊆ Φ for every clause (S → u) ∈ Φ. A CNF
Φ is called body-irredundant if for every clause C ∈ Φ, the CNF Φ \ Cbody(C)

represents a function different from Φ.

3 Strong Duality

Our main result in this section is the min-max theorem claiming that the maxi-
mum number of pairwise body-disjoint essential sets is the same as the minimum
number of bodies one needs in a representation of the function.

Let us show first a weak dual relation between these quantities.
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Lemma 6 (Weak Duality). Let h be a pure Horn function. Let S be an arbi-
trary family of pairwise body-disjoint nonempty essential sets for h, and let Φ be
an arbitrary pure Horn CNF representation of h. Then we have

|S| ≤ |B(Φ)|.

In particular, bess(h) ≤ body(h) holds.

For a pure Horn CNF Φ representing a function h, let B(Φ) = {S1, . . . , Sm}.
We denote by Φ−i = Φ\CSi

the truncated CNF obtained by removing all clauses
from Φ with body Si, and define

Pi = FΦ−i
(Si)

as the forward chaining closure of Si with respect to the truncated CNF Φ−i,
i = 1, . . . ,m.

Lemma 7. For a pure Horn function h, let Φ be a pure Horn CNF represen-
tation of h that is right-saturated and body-irredundant. Let Pi be defined as
above. Then, the essential sets EPi

, i = 1, . . . , m are pairwise body-disjoint and
nonempty.

Corollary 2. If Φ is a body-irredundant right-saturated CNF of a pure Horn
function h, then

bess(h) ≥ |B(Φ)|.
Theorem 1 (Strong Duality). Let h be an arbitrary pure Horn function.
Then, we have

bess(h) = body(h).

Furthermore, any body-irredundant right-saturated CNF of h is body minimum.

Corollary 3. For a pure Horn function h in n variables we have

bess(h) ≤ cnf (h) ≤ n · bess(h).

The above corollary shows that we may efficiently compute both a lower
bound and an upper bound for cnf (h) which is itself NP-hard to compute. The
upper bound seems to be quite weak at a first glance, but the example

h(x1, . . . , xn) =
n∧

i=1

xi

shows that the above inequalities are best possible, since we have bess(h) = 1
(the only body is the empty set) and cnf (h) = n.
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4 Algorithmic Consequences

The main claim of the paper is the min-max theorem (Theorem 1) which states
that the maximum number of pairwise body disjoint essential sets is always equal
to the minimum number of bodies in a pure Horn CNF representation of the
input function. Moreover, it shows that right-saturation and body-irredundancy
are sufficient for body minimality. This provides a conceptually very simple algo-
rithm for computing a body minimum CNF.

R-Saturated&B-irredundant CNF

Input: A pure Horn CNF Φ of h.

Step 1: /* Compute a right-saturated CNF Ψ from Φ */
For each body S in Φ, compute FΦ(S)
Construct Ψ =

∧
body S of Φ(S → FΦ(S) \ S).

Step 2: /* Compute a body-irredundant CNF from Ψ */
For each body S of Ψ , if FΨ\CS

(S) = FΦ(S), then replace Ψ by Ψ \ CS .

Step 3: Output a CNF Ψ .

It is obvious that right-saturation in Step 1 does not change the represented
function, i.e., that Ψ also represents h. On the other hand, the correctness of
Step 2 requires the following lemma.

Lemma 8. Let Ψ be a pure Horn CNF representing h, and let S be a body in
Ψ . Then Ψ \ CS also represents h if and only if FΨ\CS

(S) = Fh(S).

Now let us turn our attention to the time complexity of R-Saturated&B-
irredundant CNF. Let p be the number of distinct bodies in Φ. Steps 1 and
2 each require O(p) invocations of the forward chaining procedure. Since the
forward chaining procedure can be implemented to run in linear time with
respect to the size of the input CNF, Steps 1 and 2 can be done in O(p|Φ|)
and O(p max{|Φ|, |Ψ \CS |}) time, respectively. Note that the size of Ψ \CS might
be Θ(n|Φ|) for certain input CNFs. For example, let Φ =

∧n−1
i=1 (xi → xi+1).

Then its right-saturated CNF is Ψ =
∧n−1

i=1 (xi → {xj | j > i}), implying that
|Φ| = Θ(n) and |Ψ \CS | = Θ(n2) for every body S in Φ. Therefore, a straightfor-
ward implementation of the algorithm requires O(np|Φ|) time. In order to reduce
this time complexity to O(p|Φ|), we make use of the following two technical lem-
mas, which show that for testing the equality FΨ\CS

(S) = FΦ(S) in Step 2 it
suffices to run forward chaining on Φ instead of Ψ .

Let us start with a simple observation. Let Φ be a pure Horn CNF, let Ψ
be its right-saturated CNF, and let S, T ⊆ V be arbitrary two sets of variables.
Then by (1) we have

FΦ\CS
(T ) ⊆ FΨ\CS

(T ) ⊆ FΨ (T ) = FΦ(T ). (3)
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Lemma 9. Let Φ and Ψ be defined as above. If S ⊆ V satisfies FΦ\ΦS
(S) �

FΨ\CS
(S), then there exists a body T 
= S in Φ such that T ⊆ FΦ\CS

(S) and
FΦ(T ) ⊇ S.

Lemma 10. Let Φ and Ψ be defined as above, and let S ⊆ V . Then FΨ\CS
(S) =

FΦ(S) if and only if at least one of the following conditions holds:

(i) FΦ\CS
(S) = FΦ(S)

(ii) there exists a body T 
= S in Φ such that T ⊆ FΦ\CS
(S) and FΦ(T ) ⊇ S.

By making use of (i) and (ii) in Lemma 10, we may implement Step 2 in
R-Saturated&B-irredundant CNF in O(p|Φ|) time. For each ordered pair
of bodies T and S in Φ, we define D[T, S] = 1 if FΦ(T ) ⊇ S, and D[T, S] = 0
otherwise. The p × p matrix D can be computed in O(p|Φ|) time by applying
forward chaining procedure on each body T , which can be obviously done at no
extra cost in Step 1 where all forward chaining closures of bodies are computed
anyway. After this preprocessing, we compute for each body S in Φ the set
FΦ\CS

(S), and then we check (i) whether FΦ\CS
(S) = FΦ(S) (the right hand

side was computed in Step 1), and if not then we check (ii) the existence of
T ⊆ FΦ\CS

(S) such that D[T, S] = 1. This can be done in O(|Φ|) time for each S.
Therefore, Step 2 in R-Saturated&B-irredundant CNF can be implemented
to run in O(p|Φ|) time, which concludes the proof of the following statement.

Theorem 2. Algorithm R-Saturated&B-irredundant CNF can be imple-
mented to run in O(p|Φ|) time.

As stated earlier in this paper, several body minimization algorithms for
pure Horn CNFs are long known [3,11,15]. They differ in many aspects, but all
of them define an equivalence relation on the set of bodies and perform left-
saturation (not necessarily called this way). Let Φ be a pure Horn CNF. For
two bodies S, T ⊆ V in Φ we say that S and T are equivalent with respect to
Φ if FΦ(S) = FΦ(T ). Define Φ[S] be a CNF consisting of all clauses in Φ whose
bodies are equivalent to S with respect to Φ. The left-saturation of CNF Φ is
then performed by replacing every body S in Φ by FΦ\Φ[S]

(S). For example, a
more recent formulation of the minimization algorithm from the implicational
systems literature described in [2] is as follows:

GD-Basis (RL-Saturated&B-irredundant CNF)

Input: A pure Horn CNF Φ of h.

Step 1: Compute a right-saturated CNF Ψ from Φ.

Step 2: Compute a left-saturated CNF Ψ∗ from Ψ .

Step 3: Compute a body-irredundant CNF from Ψ∗.

Step 4: Output the resulting CNF.
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Clearly, it works the same as algorithm R-Saturated&B-irredundant
CNF except of an extra Step 2 performing left-saturation, which is conceptually
the most difficult step to understand. It is clear from Theorem1 that in fact
left-saturation is not necessary for body minimality (right-saturation and irre-
dundancy suffice), it is only needed for the uniqueness of the output. However,
uniqueness of the output is an essential part of all proofs of body minimality of
the output that do not use a lower bound obtained from the strong duality rela-
tion presented in this paper. Such proofs typically proceed as follows: (i) prove
the uniqueness of the output (called the GD-basis of the input function), (ii)
note that neither right-saturation, nor left-saturation, nor redundancy elimina-
tion increases the number of bodies in the current CNF, and (iii) argue that the
unique output has the minimum possible number of bodies, since the algorithm
can also be applied to a representation which is already body minimum without
ever increasing the number of bodies.

Although algorithm R-Saturated&B-irredundant CNF is conceptually
simpler than the older body minimization algorithms, it does not achieve a better
asymptotic complexity. Left-saturation, if implemented carefully using clever
data structures, also runs in O(p|Φ|) time (see e.g. [15]), same as right-saturation
and redundancy elimination. Finally, let us note that once left-saturation is
omitted, the uniqueness of the output is lost. Consider a pure Horn CNF in four
variables.

x1 → x2, x2 → x1, x1x3 → x2x4, x2x3 → x1x4

It is easy to see that body(h) = bess(h) = 3, and in fact both of the following
CNFs are body-irredundant and right-saturated (that is body minimum repre-
sentations of the input CNF)

x1 → x2 x1 → x2

x2 → x1 x2 → x1 (4)
x1x3 → x2x4 x2x3 → x1x4

Thus, body minimum representations of a pure Horn function are not unique, and
any of the above presented two minimum CNFs may be the output of algorithm
R-Saturated&B-irredundant CNF, where the output depends on the order
in which bodies are tested in the Step 2 (which eliminates redundancy). If left-
saturation is performed (prior to the redundancy check) the last implication is
in both cases replaced by x1x2x3 → x4 and the output becomes unique.

Acknowledgements. The second author gratefully acknowledges a support by
the Czech Science Foundation (grant P202/15-15511S). The third author grate-
fully acknowledges partial support by Grant-in-Aid for Scientific Research 24106002,
25280004, 26280001 and JST CREST Grant Number JPMJCR1402, Japan.



Strong Duality in Horn Minimization 135

References
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Abstract. Given two k-independent sets I and J of a graph G, one can
ask if it is possible to transform the one into the other in such a way
that, at any step, we replace one vertex of the current independent set by
another while keeping the property of being independent. Deciding this
problem, known as the Token Jumping (TJ) reconfiguration problem, is
PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that
the problem is FPT parameterized by k if the input graph is K3,�-free.

We prove that the result of Ito et al. can be extended to any K�,�-free
graphs. In other words, if G is a K�,�-free graph, then it is possible to
decide in FPT-time if I can be transformed into J . As a by product,
the TJ-reconfiguration problem is FPT in many well-known classes of
graphs such as any minor-free class.

1 Introduction

Reconfiguration problems arise when, given an instance of a problem and a solu-
tion to it, we make elementary changes to transform the current solution into
another. The objective can be to sample a solution at random, to generate all
possible solutions, or to reach a certain desired solution. Many types of reconfig-
uration problems have been introduced and studied in various fields. For instance
reconfiguration of graph colorings [1,10], Kempe chains [4,11], shortest paths [5],
satisfiability problems [13] or dominating sets [20] have been studied. For a sur-
vey on reconfiguration problems, the reader is referred to [25]. Our reference
problem is the independent set problem.

In the whole paper, G = (V,E) is a graph where n denotes the size of V , and
k is an integer. For standard definitions and notations on graphs, we refer the
reader to [9]. A k-independent set of G is a subset of vertices of size k such that
no two elements of S are adjacent. The k-independent set reconfiguration graph
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is a graph where vertices are k-independent sets and two independent sets are
adjacent if they are “close” to each other.

Three possible definitions of adjacency between independent sets have been
introduced. In the Token Addition Removal (TAR) model [2,23], two indepen-
dent sets I, J are adjacent if they differ on exactly one vertex (i.e. if there exists
a vertex u such that I = J ∪ {u} or the other way round). In the Token Sliding
(TS) model [3,8,14], vertices are moved along edges of the graph. In the Token
Jumping (TJ) model [6,15,17,18], two k-independent sets I, J are adjacent if
the one can be obtained from the other by replacing a vertex with another one.
In other words there exist u ∈ I and v ∈ J such that I = (J \ {v})∪{u}. In this
paper, we concentrate on the Token Jumping model.

The k-TJ-reconfiguration graph of G, denoted TJk(G), is the graph whose
vertices are all k-independent sets of G (of size exactly k), with the adjacency
defined above. The TJ-reconfiguration problem is defined as follows:

Token Jumping (TJ)-reconfiguration
Input: A graph G, an integer k, two k-independent sets I and J .
Output: YES if and only if I and J are in the same connected component
of TJk(G).

The TJ-reconfiguration problem is PSPACE-complete even for planar
graphs with maximum degree 3 [14], for perfect graphs [18], and for graphs of
bounded bandwidth [26]. On the positive side, Bonsma et al. [6] proved that it
can be decided in polynomial time in claw-free graphs. Kamiński et al. [18] gave
a linear-time algorithm on even-hole-free graphs.

Parameterized Algorithm. A problem Π is FPT parameterized by a parameter
k if there exists a function f and a polynomial P such that for any instance I
of Π of size n and of parameter k, the problem can be decided in f(k) · P (n).
A problem Π admits a kernel parameterized by k (for a function f) if for any
instance I of size n and parameter k, one can find in polynomial time, an instance
I ′ of size f(k) such that I ′ is positive if and only if I is positive. A folklore result
ensures that the existence of a kernel is equivalent to the existence of an FPT
algorithm, but the function f might be exponential. A kernel is polynomial if f
is a polynomial function.

Ito et al. [17] proved that the TJ-reconfiguration problem is W[1]-hard1 para-
meterized by k. On the positive side they show that the problem becomes FPT
parameterized by both k and the maximum degree of G. Mouawad et al. [22]
proved that the problem is W[1]-hard parameterized by the treewidth of the
graph but is FPT parameterized by the length of the sequence plus the treewidth
of the graph. In [16], the authors showed that the TJ-reconfiguration prob-
lem is FPT on planar graphs parameterized by k. They actually remarked that
their proof can be extended to K3,�-free graphs, i.e. graphs that do not contain
any copy of K3,� as a subgraph. In this paper (Sects. 2 and 3), we prove that the

1 Under standard algorithmic assumptions, W[1]-hard problems do not admit FPT
algorithms.
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result of [16] can be extended to any K�,�-free graphs. More formally we show
the following:

Theorem 1. TJ-reconfiguration is FPT parameterized by k + � in K�,�-
free graphs. Moreover there exists a function h such that TJ-reconfiguration

admits a kernel of size O(h(�) · k�3�

) which is polynomial if � is a fixed constant.

As a consequence, Theorem 1 ensures that TJ-reconfiguration admits
a polynomial kernel on many classical graph classes such as bounded degree
graphs, bounded treewidth graphs, graphs of bounded genus or H-(topological)
minor free graphs where H is a finite collection of graphs.

The proof of [16] consists in partitioning the graph into classes according to
its neighborhood in I ∪ J (two vertices lie in the same class if they have the
same neighborhood in I ∪ J). The authors showed that (i) some classes have
bounded size (namely those with at least 3 neighbors in I ∪ J); (ii) if some
classes are large enough, one can immediately conclude (namely those with at
most one neighbor in I ∪ J); (iii) we can “reduce” classes with two neighbors
in I ∪ J if they are too large. As they observed, this proof cannot be directly
extended to K�,�-free graphs for � ≥ 4. In this paper, we develop new tools to
“reduce” classes. Namely, we iteratively apply a lemma of Kövári et al. [19] to
find a subset X of vertices such that X has size at most f(k, �), contains I ∪ J
and is such that for every Y ⊂ X, if the set of vertices with neighborhood Y in
X is too large, then it can be replaced by an independent set of size k.

Note finally that the TJ-reconfiguration problem is W[1]-hard parame-
terized only by � since graphs of treewidth at most � are K�+1,�+1-free graphs.
And the TJ-reconfiguration problem is W[1]-hard parameterized by the
treewidth [22]. We left the existence of a polynomial kernel parameterized by
k + � as an open question.

Hardness for Graphs of Bounded VC-Dimension. A natural way of extending
our result would consist in proving it for graphs of bounded VC-dimension. The
VC-dimension is a classical way of defining the complexity of a hypergraph that
received considerable attention in various fields, from learning to discrete geom-
etry. Informally, the VC-dimension is the maximum size of a set on which the
hyperedges of the hypergraph intersect on all possible ways. A formal definition
will be provided in Sect. 4. In this paper, we define the VC-dimension of a graph
as the VC-dimension of its closed neighborhood hypergraph, which is the most
classical definition used in the literature (see [7] for instance).

Bounded VC-dimension graphs generalize K�,�-free graphs since K�,�-free
graphs have VC-dimension at most �+log �. One can naturally ask if our results
can be extended to graphs of bounded VC-dimension. Unfortunately the answer
is negative since we can obtain as simple corollaries of existing results that the
TJ-reconfiguration problem is NP-complete on graphs of VC-dimension 2
and W [1]-hard parameterized by k on graphs of VC-dimension 3. We complete
these results in Sect. 4 by showing that the problem is polynomial on graphs of
VC-dimension 1. The parameterized complexity status remains open on graphs
of VC-dimension 2.
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2 Density of K�,�-Free Graphs

Kövári et al. [19] proved that any K�,�-free graph has a sub-quadratic number
of edges. The initial bound of [19] was later improved, see e.g. [12].

Theorem 2 (Kövári et al. [19]). Let G be a K�,�-free graph on n vertices.
Then G has at most ex(n,K�,�) edges, with

ex(n,K�,�) ≤
(� − 1

2

)1/�

· n2−1/� +
1
2
(� − 1)n.

As a corollary, for every �, there exists a polynomial function P� such that
every K�,�-free graph with at least n ≥ P�(k) vertices contains a stable set of size
at least k. Note that in the following statements, we did not make any attempt
in order to optimize the functions. Due to space restriction, the proofs of both
corollaries are not included in this extended abstract.

Corollary 1. Every K�,�-free graph with k�(4k)� vertices contains an indepen-
dent set of size k.

We will also need a “bipartite version” of both Theorem2 and Corollary 1.

Theorem 3 (Kövári et al. [19]). Let G = ((A,B), E) be a K�,�-free bipartite
graph where |A| = n and |B| = m. The number of edges of G is at most

ex(n,m,K�,�) ≤ (� − 1)1/� · (n − � + 1) · m1−1/� + (� − 1)m.

Corollary 2. Let � ≥ 3. Let G be a K�,�-free graph and C be a subset of vertices
of size at least (3�)4�. There are at most (3�)2� vertices of G incident to a fraction
of at least 1

8� of the vertices of C.

3 Polynomial Kernel on K�,�-Free Graphs

In this section we prove the following that implies Theorem1.

Theorem 4. The TJ-reconfiguration problem admits a kernel of size h(�) ·
k�·3�

.

Let G be a K�,�-free graph and k be an integer. Let I and J be two distinct
independent sets of size k. Two vertices a and b are similar for a subset X of
vertices if both a and b have the same neighborhood in X. A similarity class
(for X) is a maximum subset of vertices of V \ X with the same neighborhood
in X.

In Sect. 3.1, we present basic facts and describe the kernel algorithm. In
Sect. 3.2, we bound the size of the graph returned by the algorithm. It will be
almost straightforward to see that the size of this graph is a function of k and
�. However, we will need additional lemmas to prove that its size is at most
h(�) · k�·3�

and that the algorithm is polynomial when � is a fixed constant.
Section 3.3 is devoted to prove that the algorithm is correct.
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3.1 The Algorithm

Let us first briefly informally describe the behavior of Algorithm1. During the
algorithm, we will update a set X of important vertices. At the beginning of
the algorithm we set X = I ∪ J . At each step of the algorithm, at most f(k, �)
vertices will be added to X. So each similarity class of the previous step will be
divided into at most 2f(k,�) parts. The main ingredient of the proof (essentially)
consists in showing that, at the end of the algorithm, either the size of a class is
bounded or the whole class can be replaced by an independent set of size k. As
a by-product, the size of the graph can be bounded by a function of k and �.

Let X be a set of vertices containing I ∪ J . The rank of a similarity class
C for X is the number of neighbors of C in X. Our proof consists in applying
different arguments depending on the rank of the similarity classes. We actually
consider the 3 distinct types of classes: classes of rank at least �, classes of rank
at most 1 and classes of rank at least 2 and at most � − 1. The size of the class
C in the first two cases can be bounded as shown in [16] for � = 3.

Lemma 1. The size of a class C of rank at least � is at most � − 1.

Lemma 2. Let X be a set of vertices containing I ∪ J . If the size of a class C
of rank at most 1 for X is at least k�(4k)�, then it is possible to transform I
into J .

Our approach to deal with the remaining classes consists in adding vertices
in X to increase their ranks. Since it is simple to deal with a class of rank at
least �, it provides a way to simplify classes. However, some vertices might not
be incident to the new vertices of X, and then their ranks do not increase. The
central arguments of the proof consists in proving that we can deal with these
vertices if we repeat a “good” operation at least 2k + 1 steps (see Lemma 5).

The set X is called the set of important vertices. Initially, X = I ∪ J . We
denote by Xt the set X at the beginning of step t and X0 = I ∪J . A class D for
Xt′ is inherited from a class C of Xt if t′ > t and D ⊆ C. We say that C is an
ancestor of D. Note that the rank of C is at most the rank of D since when we
add vertices in X the rank can only increase and the set X is increasing during
the algorithm.

A similarity class is big for Xt if its size is at least g(k, �) := 4 · k�(4k)�. We
say that we reduce a class C when we replace all the vertices of the class C by
an independent set of size k with the same neighborhood in V \ C: N(c) ∩ X
where c is any vertex of the class C.

The classes that are in Ct are said to be treated at round t. For these classes,
we add in Xt all the vertices that are incident to a 1/8�-fraction of the vertices
of the class. When we say that we refine the classes at step t, it means that we
partition the vertices of the classes according to their respective neighborhood
in the new set Xt+1.
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Algorithm 1. Kernel algorithm
Let X0 = I ∪ J Initially important vertices are I ∪ J

if a class of rank 1 is big then
Return a YES instance Valid operation, see Lemma 2

end if
for every j = 2 to � − 1 do

for s = 0 to 2k do
Ct := big similarity classes of rank j for Xt. Treat big classes of current rank

Z = ∅

for every C ∈ Ct do
Y := {y ∈ V \ Xt such that |N(y) ∩ C| ≥ |C|

8�
}. |Y | is bounded, Corollary 2

if |(N(Y ) ∪ Y ) ∩ C| ≤ |C|/2 then
Reduce the class C. Valid operation by Lemma 4

else
Z = Z ∪ Y

end if
end for
Xt+1 := Xt ∪ Z. Update the important vertices (and the classes)

end for
Reduce all the big classes of rank j. Valid operation by Lemma 5

end for
Return the reduced graph.

3.2 Size of the Reduced Graph

This part is devoted to prove that the size of the graph output by the algorithm
is h(�) · k�·3�

. When we have finished to treat classes of rank j, j < �, (i.e. when
the index of the first loop is at least j + 1) then either all the classes of rank j
have size less than g(k, �) or they are replaced by an independent set of size k.
Since classes of rank j cannot be created further in the algorithm, any class of
rank at most j has size at least g(k, �) at the end of the algorithm. Moreover,
any class of rank � has size at most � − 1 by Lemma 1.

A step of the algorithm is an iteration of the second loop (variable s) in the
algorithm. The value of j at a given step of the algorithm is called the index of
the step and the value of s is called the depth of the step.

Note that at the step of index i and of depth 2k, all the classes of rank i
are reduced. So at the end of this step, no class of rank i is big anymore. Since
the set Xt+1 contains Xt for every t, the future classes are subsets of classes of
rank t. So there is no big class of rank i at any step further in the algorithm. In
particular we have the following:

Remark 1. At any step of index j, no class of rank i < j is big. Moreover, at the
end of the algorithm, no class is big.

The structure of the algorithm ensures that the algorithm ends. Actually, we
have the following:

Remark 2. The number of steps is equal to (2k + 1) · (� − 2).
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Using Corollary 2, it is simple to prove that the final size of X is bounded by
a function of k and �. Since the number of classes only depends on k and � and
each class has bounded size by Remark 1, the final size of the graph is bounded
in terms of k and �. The rest of this subsection is devoted to prove a better
bound on the size of the final graph. We show that it is actually polynomial if �
is a fixed constant. The proof will be a consequence of the following lemma.

Lemma 3. The size of X at the end of the algorithm is at most h′(�) · k3�

.

Proof. Let us denote by Nj an upper bound on the maximum number of big
classes of rank j at any step of the algorithm. Let us first give an upper bound
on the number of vertices that are added in X during the steps of index j. Let
t be a step of index j. The number of classes in Ct is at most Nj . Moreover, for
each class in Ct, Corollary 2 ensures that at most (3�)2� vertices are added in X.
So the size of Xt+1 \ Xt is at most Nj · (3�)2�. Since there are 2k + 1 steps of
index j, the number of vertices that are added in X during all the steps of index
j is at most Nj · (2k + 1) · (3�)2�. Thus the set of important vertices X at the
end of the algorithm satisfies the following:

|X| ≤ 2k +
�−1∑
j=2

(
Nj · (3�)2�

)
· (2k + 1).

The remainder of the proof is devoted to find a bound on Nj that immediately
provides an upper bound on |X|. Let us prove by induction on j that Nj =

fj(�) · k3j

, with f2(�) = 4 and fj(�) =
(
fj−1(�) · (3�)2�

)j

is a valid upper bound.
Since classes are refinement of previous classes and by Remark 1, the number

of big classes of rank r is non increasing when we are considering steps of index
r. As an immediate consequence, there are at most (2k)2 big classes of rank 2,
which is the maximum number of classes of rank 2 when X = I ∪ J . So the
results holds for j = 2.

Let j > 2 and assume that fi(�) · k3i

is an upper bound on Ni for any
2 ≤ i < j. We say that a class of rank j is created at step t if it is inherited from
a class (at step t) of rank smaller than j. The maximum number of big classes
of rank j is at most the initial number of big classes of rank j plus the number
of big classes of rank j created at any step of the algorithm. Let us count how
many big classes of rank j can be created at step t. By Remark 1, if the index
of the step is at least j, no new big class of rank j can be created. So if a class
of rank j is created at step t, then the index of t is j − i with i > 0.

Consider a big class C of rank j − i at step t. Let us count how many big
classes of rank j can be inherited from this class. Since C is big, the index r of
the step t is at most j − i. As we already noticed, the set Z = Xt+1 \ Xt has
size at most Nr · (3�)2� ≤ Nj−i · (3�)2� since (Nr)r is an increasing sequence.
Each class of rank j inherited from C must have i neighbors in Z. Since there
are at most (Nj−i · (3�)2�)i ways of selecting i vertices in Z, the class C can lead
to the creation of at most (Nj−i · (3�)2�)i big classes of rank j. By induction
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hypothesis, the number of big classes of rank j − i is at most Nj−i. So at step t,
the number of classes of rank j that are created from classes of rank j − i is at
most Nj−i · (Nj−i · (3�)2�)i ≤ (Nj−i · (3�)2�)i+1.

The total number of rounds of the algorithm is at most (2k + 1) · (� − 2) by
Remark 2. So the number of big classes of rank j that are created all along the
algorithm from (big) classes of rank j−i is at most (Nj−i ·(3�)2�)i ·(2k+1)·(�−2).
And then the number of big classes of rank j is at most:

(2k)j +
j−2∑
i=1

(
Nj−i · (3�)2�

)i+1

· (2k + 1) · (� − 2) ≤ fj(�) · k3j

.

This inequality is a consequence of the induction hypothesis. Hence, Nj =
fj(�) · k3j

is an upper bound on the number of big classes of rank j. Finally, the
final size of X satisfies

|X| ≤ 2k +
�−1∑
j=2

(
Nj · (3�)2�

)
· (2k + 1) = h′(�) · k3�

.

	

We have all the ingredients to determine the size of the graph at the end of

the algorithm. Let us denote by X the set of important vertices at the end of
the algorithm. For every subset of X of size �, there exist at most � − 1 vertices
incident to them by Lemma 1. So the number of vertices with at least � neighbors
on X is at most (� − 1) · |X|�. Moreover every class of rank 0 or 1 contains less
than g(k, �) := k ·�·(4k)� vertices by Lemma 2. And every class of rank between 2
and � − 1 has size at most g(k, �) by Remark 1. Since there are |X|�−1 classes of
rank at most � − 1, Lemma 3 ensures that the size s of the graph returned by
the algorithm is at most

s ≤(� − 1) ·
(
h′(�) · k3�

)�

+
(
h′(�) · k3�

)�−1

· k · � · (4k)� ≤ h(�) · k�·3�

.

So the size of the reduced graph has the size of the claimed kernel.

Complexity of the Algorithm. Let us now briefly discuss the complexity of the
algorithm. By Lemma 3, the size of X is bounded by a function of k and � and
is polynomial in k if � is a fixed constant. The only possible non polynomial step
of the algorithm would consist in maintaining an exponential number of classes.
But Lemma 1 ensures that the number of classes of rank at least � is at most
� · (

�
|X|

)
which is polynomial if � is a constant. So the total number of classes is

at most (�+1) · |X|� which ensures that this algorithm runs in polynomial time.
Note moreover that the power of the algorithm does not depend on �.

3.3 Equivalence of Transformations

This section is devoted to prove that Algorithm 1 is correct. To do it, we just
have to prove that reducing classes does not modify the existence of a transfor-
mation. In other words we have to show that I can be transformed into J in the
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original graph if and only if I can be transformed into J in the reduced graph.
In Algorithm 1, there are two cases where we reduce a class. Lemmas 4 and 5
ensure that in both cases these reductions are correct.

Lemma 4. Let C be a big class of Ct. Assume moreover that the set Y of vertices
of V \ X incident to a fraction 1

8� of the vertices of C satisfies |N(Y ) ∩ C| ≤
|C|/2. Then there is a transformation of I into J in G if and only if there is a
transformation in the graph where C is reduced.

Proof. Let G be the original graph and G′ be the graph where the class C has
been replaced by an independent set of size k. We denote by C ′ the independent
set of size k that replaces C in G′.

Assume that there exists a transformation from I to J in G. Let us prove
that such a sequence also exists in G′. Either no independent set in the sequence
contains a vertex of C, and then the sequence still exists in the graph G′. So
we may assume that at least one independent set contains vertices of C. Let us
denote by I ′ the last independent set of the sequence between I and J such that
the sequence between I and I ′ does not contain any vertex of C. In other words,
it is possible to move a vertex of I ′ to a vertex of C. Similarly let J ′ be the first
independent set such that the sequence between J ′ and J does not contain any
vertex of C. Note that in the graph G′, the transformations of I into I ′ and of
J ′ into J still exist since all the independent sets are in G[V \ C] that is not
modified.

Let us denote by c the vertex of C in the independent set after I ′ in the
sequence and i0 the vertex deleted from I ′. No vertex of (I ′ \ i0) ∩ X has a
neighbor in C. Otherwise it would not be possible to move i0 on c since sets have
to remain independent. Thus in G′ we can move the vertex i0 to any vertex of C ′

and then move the remaining vertices of I ′ to C ′. These operations are possible
since for every vertex c′ of C ′, we have N(c′) ⊆ N(c) ∩ X and (I ∪ {c}) \ {i0} is
an independent set. Free to reverse the sequence, a similar argument holds for
J ′. So there is a transformation from I to J in the graph G′.

Assume now that there exists a transformation from I to J in G′. As in
the previous case, we can assume that an independent set of the transformation
sequence contain a vertex of C ′. Let us denote by I ′ the last independent set
such that the sequence between I and I ′ does not contain any vertex of C ′.
Similarly J ′ is the first independent set such that the sequence between J ′ and
J does not contain any vertex of C ′. Let us denote by i0 and j0 the vertices
respectively deleted between I ′ and the next independent set and added between
the independent before J ′ and J ′.

Note that no vertex of (I ′ \ i0) ∩ X has a neighbor in C. Otherwise the
independent set after I ′ in the sequence would not be independent. Similarly no
vertex of (J ′ \j0)∩X has a neighbor in C. Let us partition F = (I ′ ∪J ′)\{i0, j0}
into two sets A and B. The set A is the subset of vertices of F incident to a
fraction of at least 1

8� of the vertices of C in G. By hypothesis on C, N(A) ∩ C
covers at most half of the vertices of C. Let B be the complement of A in F .
Every vertex of B is incident to a fraction of at most 1

8� of the vertices of C in
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G. So N(B) covers at most a quarter of the vertices of C. Let us denote by D
the set C \N(I ′ ∪J ′). The size of D is at least one quarter of the size of C. Since
C is big, the size of D is at least k · � · (4k)�. Theorem 1 ensures that exists an
independent set of size I ′′ at least k in D. By construction of D, one can move
i0 to any vertex of I ′′. And then the remaining vertices of I ′ to I ′′. Similarly,
one can transform I ′′ into J ′. So there exists a transformation from I to J in
the graph G that concludes this proof. 	

Lemma 5. Let C be a class of rank j when the index of the step equals j and
the depth of the step equals 2k. Assume moreover that the size of C is at least
4k� · (4k)�. Then there is a transformation of I into J in G if and only if there
is a transformation in the graph where C is reduced.

Proof. Let G be the original graph and G′ be the graph where C is reduced. We
will denote by C ′ the independent set of size k that replaces C in G′.

Assume that there exists a transformation from I to J in G. A sequence also
exists in G′. The proof works exactly as the proof of the first part of Lemma4.

Assume now that there exists a transformation from I to J in G′. Let us prove
that a transformation from I to J also exists on G. If none of the independent
sets of the sequence contains a vertex of C ′, the sequence still exists in G. So
we can assume that an independent set of the sequence contains a vertex of C ′.
Let us denote by I ′ the last independent set such that the sequence between I
and I ′ does not contain any vertex of C ′ and J ′ the first independent set such
that the sequence between J ′ and J does not contain any vertex of C ′. Let us
denote by i0 and j0 the vertices respectively deleted between I ′ and the next
independent set and added between the independent before J ′ and J ′. We denote
by I0 and J0 the sets I ′ \ i0 and J ′ \ j0. Note that no vertex of (I ′ \ i0) ∩ X has
a neighbor in C. Otherwise the independent set after I ′ in the sequence would
not be independent. Similarly no vertex of (J ′ \ j0) ∩ X has a neighbor in C.

Let us denote by t0 the step of index j and depth 0. And let t be the step
of index j and depth 2k. In other words t = t0 + 2k. Let C0, C1, . . . , C2k = C
be the ancestors of C at round t0, . . . , t0 + 2k. All these classes have rank j and
C2k ⊆ C2k−1 ⊆ · · · C0. Since |C2k| ≥ g(k, �), the same holds for any class Ci. In
particular, the class Ci is big at step t0 + i. Since the class Ci is not reduced at
step t0 + i, the subset of vertices incident to a 1

8� -fraction of the vertices of Ci

covers at least half of the vertices of Ci. In particular, for every i < 2k, we have

|Ci+1| ≤ |Ci|/2. (1)

Let i ≤ 2k. Let us denote by Yi the set of vertices of V \ Xt0+i that are
incident to at least 1

8� of the vertices of Ci. Any vertex y of Yi has no neighbor
in Ch for h > i. Indeed the set Yi is added in Xt0+i+1 at the end of step t0 + i.
And by definition of Ch, the rank of Ch is still j. Note moreover that, if i �= h
then Yi and Yh are disjoint. Since a vertex in Yh is not incident to a 1

8� -fraction
of the vertices of Ci, Eq. (1) ensures for every i < 2k and every vertex x /∈ Yi

|N(x) ∩ (Ci \ Ci+1)| ≤ |Ci \ Ci+1|
4�
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Moreover, by definition of Y2k, every vertex x which is not in Y2k satisfies

|N(x) ∩ C2k| ≤ |C2k|
8�

Since the sets Y0, . . . , Y2k are disjoint, there exists an index i such that I ′ ∪J ′

does not contain any vertex of Yi. Let C ′
i = Ci \ Ci+1 (or C ′

i = Ci if i = 2k).
Every vertex of I ′ ∪ J ′ is incident to at most |C′

i|
4� of the vertices of C ′

i. So the
complement of N(I0 ∪ J0) in C ′

i, denoted by C ′′
i has size at least

|C ′′
i | ≥ |C ′

i|
2

≥ |Ci|
4

≥ |C2k|
4

≥ g(k, �) ≥ k� · (4k)�.

By Corollary 1, C ′′
i contains an independent set S of size k. Since I ′ and S are

anticomplete (up to one vertex, namely i0), one can transform the independent
set from I ′ into S. Similarly, one can transform S into J ′ which completes the
proof. 	


4 Bounded VC-Dimension

Let H = (V,E) be a hypergraph. A set X of vertices of H is shattered if for every
subset Y of X there exists a hyperedge e such that e ∩ X = Y . An intersection
between X and a hyperedge e of E is called a trace (on X). Equivalently, a set
X is shattered if all its 2|X| traces exist. The VC-dimension of a hypergraph is
the maximum size of a shattered set.

Let G = (V,E) be a graph. The closed neighborhood hypergraph of G is
the hypergraph with vertex set V where X ⊆ V is a hyperedge if and only if
X = N [v] for some vertex v ∈ V (where N [v] denotes the closed neighborhood of
v). The VC-dimension of a graph is the VC-dimension of its closed neighborhood
hypergraph. The VC-dimension of a class of graphs C is the maximum VC-
dimension of a graph of C.

There is a correlation between VC-dimension and complete bipartite sub-
graphs. Namely, a K�,�-free graph has VC-dimension at most O(�). Since the
TJ-reconfiguration problem is W[1]-hard for general graphs and FPT on
K�,�-free graphs, one can naturally ask if this result can be extended to graphs
of bounded VC-dimension. Let us remark that the problem is W[1]-hard even
on graphs of VC-dimension 3. This is a corollary of two simple facts. First, to
prove that the TJ-reconfiguration problem is W[1]-hard on general graphs,
Ito et al. [17] showed that if the Independent Set problem is W[1]-hard on a
class of graph G, then the TJ-reconfiguration problem is W[1]-hard on the
class G′ where graphs of G′ consist in the disjoint union of a graph of G and a
complete bipartite graph. Note that the VC-dimension of a complete bipartite
graph equals 1. Moreover, if G is a class closed by disjoint union, then the VC-
dimension of the class G′ is equal to the VC-dimension of G. Hence we have the
following:
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Remark 3. If C is a class of graphs of VC-dimension at most d closed by disjoint
union, then the TJ-reconfiguration problem on graphs of VC-dimension at
most d is at least as hard as the Independent Set problem on C.

So any hardness result for Independent Set provides a hardness result for
TJ-reconfiguration. The Independent Set problem is W[1]-hard on graphs
of VC-dimension at most 3. Indeed, Marx proved in [21] that the Independent
Set problem is W [1]-hard on unit disk graphs, and unit disk graphs have VC-
dimension at most 3 (see for instance [7]). To complete the picture, we have to
determine the complexity of the problem for k = 1 and k = 2. For graphs of VC-
dimension 2, the problem is NP-hard. Indeed the Independent Set problem is
NP-complete on graphs of girth at least 5 [24] and this class has VC-dimension
at most 2 (see for instance [7]).

The remaining of this section is devoted to prove that TJ-reconfiguration
can be decided in polynomial time on graphs of VC-dimension at most 1.

Theorem 5. The TJ-reconfiguration problem can be solved in polynomial
time on graphs of VC-dimension at most 1.

Let us give the three lemmas that permits to prove Theorem 5 whose proofs
are not included in this extended abstract.

Lemma 6. Let G be a graph of VC-dimension at most 1 and let u and v be two
vertices of G. Then one of the following holds:

1. The closed neighborhoods of u and v are disjoint.
2. One of the closed neighborhoods is included in the other.
3. u and v form a dominating pair.

The following lemma ensures that if the graph contains a vertex satisfying
the second point of Lemma 6, then it can be deleted.

Lemma 7. Let G be a graph of VC-dimension at most 1 and let u and v be
two vertices such that N [u] ⊆ N [v]. Let I, J be two independent set that do not
contain v. Then there exists a TJ-transformation from I to J in G if and only
if there exists a TJ-transformation from I to J in G′ := G \ {v}.

Note moreover that if I (or J) contains v then we can transform I into
I ∪ {u} \ {v} in one step. Lemma 7 combined with this remark ensures that
we can reduce the graph in such a way no vertex satisfies the second point of
Lemma 6.

Lemma 8. Let G be a graph of VC-dimension at most 1 such that no pair of
vertices satisfies the second point of Lemma 6. Let I and J be two independent
sets of size at least 3, then I ∪ J is an independent set.

This completes the proof of Theorem 5 since either I and J have size at most
2 and the problem is obviously polynomial. Or I ∪ J is an independent set and
one can simply move every vertex from I to J one by one.

Question 1. Is the TJ-reconfiguration problem FPT on graphs of VC-
dimension at most 2?
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19. Kővári, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3,
50–57 (1954)

20. Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M.S., Saurabh, S.:
Reconfiguration on sparse graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.)
WADS 2015. LNCS, vol. 9214, pp. 506–517. Springer, Cham (2015). doi:10.1007/
978-3-319-21840-3 42

21. Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer,
Heidelberg (2005). doi:10.1007/11561071 41

22. Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over
tree decompositions. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol.
8894, pp. 246–257. Springer, Cham (2014). doi:10.1007/978-3-319-13524-3 21

23. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the para-
meterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Cham (2013). doi:10.1007/
978-3-319-03898-8 24

24. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete
Appl. Math. 35(2), 167–170 (1992)

25. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, pp. 127–160. Cambridge Uni-
versity Press (2013)

26. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth. CoRR,
abs/1405.0847 (2014)

http://dx.doi.org/10.1007/978-3-319-21840-3_42
http://dx.doi.org/10.1007/978-3-319-21840-3_42
http://dx.doi.org/10.1007/11561071_41
http://dx.doi.org/10.1007/978-3-319-13524-3_21
http://dx.doi.org/10.1007/978-3-319-03898-8_24
http://dx.doi.org/10.1007/978-3-319-03898-8_24


Expressive Power of Evolving Neural Networks
Working on Infinite Input Streams

Jérémie Cabessa1(B) and Olivier Finkel2(B)
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2 Institut de Mathématiques de Jussieu - Paris Rive Gauche, CNRS et Université
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Abstract. Evolving recurrent neural networks represent a natural
model of computation beyond the Turing limits. Here, we consider evolv-
ing recurrent neural networks working on infinite input streams. The
expressive power of these networks is related to their attractor dynamics
and is measured by the topological complexity of their underlying neural
ω-languages. In this context, the deterministic and non-deterministic
evolving neural networks recognize the (boldface) topological classes of
BC(Π0

2) and Σ1
1 ω-languages, respectively. These results can actually

be significantly refined: the deterministic and nondeterministic evolving
networks which employ α ∈ 2ω as sole binary evolving weight recognize
the (lightface) relativized topological classes of BC(Π0

2)(α) and Σ1
1(α) ω-

languages, respectively. As a consequence, a proper hierarchy of classes of
evolving neural nets, based on the complexity of their underlying evolv-
ing weights, can be obtained. The hierarchy contains chains of length ω1

as well as uncountable antichains.

Keywords: Neural networks · Attractors · Formal languages ·
ω-languages · Borel sets · Analytic sets · Effective Borel and
analytic sets

1 Introduction

The theoretical approach to neural computation has mainly been focused on
comparing the computational capabilities of diverse neural models with those
of abstract computing machines. Nowadays, the computational capabilities of
various models of neural networks have been shown to range from the finite
automaton degree [14–16,18], up to the Turing [20,23] or even to the super-
Turing level [4,6,19,21].

In particular, the real-weighted (or analog) neural networks are strictly more
powerful than Turing machines. They decide the complexity class P/poly in
polynomial time of computation [19]. The precise computational capabilities
of these networks can actually be characterized in terms of the Kolmogorov
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 150–163, 2017.
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complexity of their underlying synaptic real weights. As a consequence, a proper
hierarchy of classes of analog neural nets employing real weights of increasing
Kolmogorov complexity has been obtained [2]. On the other hand, the evolving
neural networks (i.e., those employing time-dependent synaptic weights) turn
out to be computationally equivalent to the analog ones, irrespectively of the
nature (rational or real) of their underlying synaptic weights [4,6].

More recently, based on biological as well as theoretical considerations, these
studies have been extended to the paradigm of infinite computation [3,5–10].
In this context, the expressive power of the networks is intrinsically related
to their attractor dynamics, and is measured by the topological complexity of
their underlying neural ω-languages. In this case, the Boolean recurrent neural
networks provided with certain type specification of their attractors are com-
putationally equivalent to Büchi or Muller automata [8]. The rational-weighted
neural nets are equivalent to Muller Turing machines. The deterministic and
nondeterministic analog and evolving neural networks recognize the (boldface)
topological classes of BC(Π0

2) and Σ1
1 ω-languages, respectively, and in this

respect, are super-Turing [3,9].
Here, we refine the above mentioned results for the case of evolving neural

networks. More precisely, we focus without loss of generality on evolving neural
nets employing only one time-dependent binary weight throughout their compu-
tational process. We show that the deterministic and nondeterministic evolving
networks using the sole changing weight α ∈ 2ω recognize the (lightface) rela-
tivized topological classes of BC(Π0

2)(α) and Σ1
1(α) ω-languages, respectively. As

a consequence, a proper hierarchy of classes of evolving neural nets, based on the
complexity of their underlying evolving weights, can be obtained. The hierarchy
contains chains of length ω1 as well as uncountable antichains. These achieve-
ments generalize the proper hierarchy of classes of analog networks obtained in
the context of classical computation [2].

2 Preliminaries

Given a finite set X, usually referred to as an alphabet, we let X∗ and Xω denote
the sets of finite sequences (or finite words) and infinite sequences (or infinite
words) of elements of X. A set L ⊆ X∗ or L ⊆ Xω is called a language or an
ω-language, respectively. In the sequel, any space of the form Xω will be assumed
to be equipped with the product topology of the discrete topology on X. Accord-
ingly, the basic open sets of Xω are of the form p · Xω, for some p ∈ X∗. The
general open sets are countable unions of basic open sets. In particular, the space
of infinite words of bits (Cantor space) and that of infinite words of N -dimensional
Boolean vectors will be denoted by 2ω = {0, 1}ω and (BN )ω, respectively. They
are assumed to be equipped with the above mentioned topology.

Let (X , T ) be one of the above topological spaces, or a product of such
spaces. The class of Borel subsets of X , denoted by Δ1

1 (boldface), is the σ-
algebra generated by T , i.e., the smallest collection of subsets of X containing
all open sets and closed under countable union and complementation. For every
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non-null countable ordinal α < ω1, where ω1 is the first uncountable ordinal, the
Borel classes Σ0

α, Π0
α and Δ0

α of X are defined as follows:

• Σ0
1 is the class of open subsets of X (namely T ).

• Π0
1 is the class of closed subsets of X , i.e., that of complements of open sets.

• Σ0
α is the class of countable unions of subsets of X in

⋃
γ<α Π0

γ .
• Π0

α is the class of countable intersections of subsets of X in
⋃

γ<α Σ0
γ .

• Δ0
α = Σ0

α ∩ Π0
α.

The Borel classes Σ0
α, Π0

α and Δ0
α provide a stratification of the class of Borel

sets known as the Borel hierarchy. One has Δ1
1 =

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α [12].

The rank of a Borel set A ⊆ X is the smallest ordinal α such that A ∈ Σ0
α ∪Π0

α.
It is commonly considered as a relevant measure of the topological complexity
of Borel sets. The class of sets obtained as finite Boolean combinations (unions,
intersections and complementations) of Π0

2-sets is denoted by BC(Π0
2).

Analytic sets are more complicated than Borel sets. They are obtained as
projections of either Π0

2-sets or general Borel sets [12]. More precisely, a set
A ⊆ X is analytic if there exists some Π0

2-set B ⊆ X × 2ω such that A = {x ∈
X : (x, β) ∈ B, for some β ∈ 2ω} = π1(B) [12]. The class of analytic sets is
denoted by Σ1

1. It strictly contains that of Borel sets, i.e., Δ1
1 � Σ1

1 [12].
The effective (lightface) counterpart of the Borel and analytic classes, denoted

by Σ0
n,Π

0
n,Δ

0
n as well as Δ1

1 and Σ1
1, are obtained by a similar effective construc-

tion, yet starting from the class Σ0
1 of effective open sets [17]. The class of finite

Boolean combinations of Π0
2-sets, denoted by BC(Π0

2) (lightface), and that of
effective analytic sets, denoted by Σ1

1 (lightface), correspond to the collections of
ω-languages recognizable by deterministic and nondeterministic Muller Turing
machines, respectively [22]. One has BC(Π0

2) � BC(Π0
2) and Σ1

1 � Σ1
1.

Any topological class Γ of the underlying topological space X will also be
written as Γ � X , whenever we want X to be specified. In addition, for any point
x ∈ X , we will use the notation x ∈ Γ to mean that {x} ∈ Γ. Besides, any
product space X × Y is assumed to be equipped with the product topology. If
A ⊆ X ×Y and y ∈ Y, the y-section of A is defined by Ay = {x ∈ X : (x, y) ∈ A}.
For any class Γ equal to Σ0

1, BC(Π0
2), Σ1

1, or Π1
1 with underlying product space

X × Y, and for any y ∈ Y, we consider the relativization of Γ to y, denoted by
Γ(y), which is the class of all y-sections of sets in Γ. In other words: A ∈ Γ(y) � X
if and only if there exists B ∈ Γ � X ×Y such that A = By. Moreover, we denote
as usual Δ1

1(y) = Σ1
1(y) ∩ Π1

1(y) [17, p. 118].
For any α ∈ 2ω, one can show that the relativized classes BC(Π0

2)(α) and
Σ1

1(α) correspond to the collections of ω-languages recognizable by determinis-
tic and nondeterministic Muller Turing machine with oracle α, respectively. In
addition, it can be shown that x ∈ Σ0

1(α) if and only if the successive letters
of x can be produced step by step by some TM with oracle α. Besides, one has
x ∈ Σ1

1(α) iff x ∈ Δ1
1(α), for any α ∈ 2ω [17].

Finally, the spaces (BM )ω × 2ω and (BM+1)ω are isomorphic via the natural
identification. Accordingly, subsets of these spaces will be identified without it
being explicitly mentioned.
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3 Recurrent Neural Networks on Infinite Input Streams

We consider first-order recurrent neural networks composed of Boolean input
cells, Boolean output cells and sigmoidal internal cells. The sigmoidal internal
neurons introduce the biological source of nonlinearity which is crucial to neural
computation. They provide the possibility to surpass the capabilities of finite
state automata, or even of Turing machines. The Boolean input and output
cells carry out the exchange of discrete information between the network and
the environment. When some infinite input stream is supplied, the output cells
eventually enter into some attractor dynamics. The expressive power of the net-
works is related to the attractor dynamics of their Boolean output cells.

3.1 Deterministic Case

A deterministic (first-order) recurrent neural network, denoted by D-RNN, con-
sists of a synchronous network of neurons related together in a general archi-
tecture. It is composed of M Boolean input cells (ui)M

i=1, N sigmoidal internal
neurons (xi)N

i=1, and P Boolean output cells (yi)P
i=1. The dynamics of the net-

work is computed as follows: given the activation values of the input and internal
neurons (uj)M

j=1 and (xj)N
j=1 at time t, the activation values of each internal and

output neuron xi and yi at time t + 1 are updated by the following equations,
respectively:

xi(t+1) = σ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , N (1)

yi(t + 1) = θ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , P (2)

where aij(t), bij(t), and ci(t) are the time dependent synaptic weights and bias
of the network at time t, and σ and θ are the linear-sigmoid1 and Heaviside step
activation functions defined by

σ(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0
x, if 0 ≤ x ≤ 1
1, if x > 1

and θ(x) =

{
0, if x < 1
1, if x ≥ 1

A synaptic weight or a bias w will be called static if it remains constant over
time, i.e., if w(t) = c for all t ≥ 0. It will be called bi-valued evolving if it varies
among two possible values over time, i.e., if w(t) ∈ {0, 1} for all t ≥ 0. A D-RNN
is illustrated in Fig. 1.

1 The results of the paper remain valid for any other kind of sigmoidal activation
function satisfying the properties mentioned in [13, Sect. 4].
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The dynamics of a D-RNN N is therefore given by the function fN : B
M ×

B
N → B

N × B
P defined by

fN (u(t),x(t)) = (x(t + 1),y(t + 1))

where the components of x(t + 1) and y(t + 1) are given by Eqs. (1) and (2),
respectively.

Consider some D-RNN N provided with M Boolean input cells, N sigmoidal
internal cells, and P Boolean output cells. For each time step t ≥ 0, the state of
N at time t consists of a pair of the form

〈x(t),y(t)〉 ∈ [0, 1]N × B
P .

The second element of this pair, namely y(t), is the output state of N at time t.
Assuming the initial state of the network to be 〈x(0),y(0)〉 = 〈0,0〉, any

infinite input stream

s = (u(t))t∈N
= u(0)u(1)u(2) · · · ∈ (BM )ω

induces via Eqs. (1) and (2) an infinite sequence of consecutive states

cs = (〈x(t),y(t)〉)t∈N
= 〈x(0),y(0)〉〈x(1),y(1)〉 · · · ∈ ([0, 1]N × B

P )ω

which is the computation of N induced by s. The corresponding infinite sequence
of output states

bcs = (y(t))t∈N
= y(0)y(1)y(2) · · · ∈ (BP )ω

is the Boolean computation of N induced by s. The computation of such a
D-RNN is illustrated in Fig. 1.

Note that any D-RNN N with P Boolean output cells can only have 2P –
i.e., finitely many – possible distinct output states. Consequently, any Boolean
computation bcs necessarily consists of a finite prefix of output states followed
by an infinite suffix of output states that repeat infinitely often – yet not nec-
essarily in a periodic manner – denoted by inf(bcs). A set of states of the form
inf(bcs) ⊆ B

P will be called an attractor2 of N [8], as illustrated in Fig. 1. A
precise definition can be given as follows:

Definition 1. Let N be some D-RNN. A set A = {y0, . . . ,yk} ⊆ B
P is an

attractor for N if there exists some infinite input stream s such that the corre-
sponding Boolean computation bcs satisfies inf(bcs) = A.

We suppose that the attractors are of two distinct types, either accepting or
rejecting. The type specification of these attractors is not the subject of this work
(cf. [8]), and from this point onwards, we assume that any D-RNN is equipped

2 In words, an attractor of N is a set of output states into which the Boolean com-
putation of the network could become forever trapped – yet not necessarily in a
periodic manner.
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Attractor (periodic)

Infinite Boolean
output stream bcs

Infinite Boolean
input stream s

Boolean
input
cells

Boolean
output
cells

Sigmoid
internal

cells

Fig. 1. Illustration of the computational process performed by some D-RNN. The
infinite Boolean input stream s = u(0)u(1)u(2) · · · ∈ (BM )ω, represented by the first
pattern, induces a corresponding Boolean output stream – or Boolean computation –
bcs = y(0)y(1)y(2) · · · ∈ (BP )ω, represented by the second pattern. The filled and
empty circles represent active and quiet Boolean cells, respectively. From some time
step onwards, a certain set of output states begins to repeat infinitely often, which
corresponds to the attractor dynamics associated with input stream s.

with a corresponding classification of all of its attractors into accepting and
rejecting types.

This classification of attractors yields the following Muller acceptance con-
dition: given some D-RNN N , an infinite input stream s ∈ (BM )ω is accepted
N if inf(bcs) is an accepting attractor; it is rejected by N if inf(bcs) is a reject-
ing attractor. The set of all accepted input streams of N is called the neural
ω-language recognized by N , denoted by L(N ). A set L ⊆ (BM )ω is said to be
recognizable by some D-RNN if there exists a network N such that L(N ) = L.

Two different models of D-RNNs can be considered according to the nature
of their synaptic weights:

1. The class of deterministic static rational neural nets, denoted by D-St-
RNN[Q], which refers to the D-RNNs whose every weights are static and
modelled by rational values.

2. The class of deterministic bi-valued evolving rational neural nets, denoted by
D-Ev2-RNN[Q], which refers to the D-RNNs whose every evolving weights
are bi-valued and every static weights are rational. In this case, the subclass
of networks containing α1, . . . , αk ∈ 2ω as sole bi-valued evolving weights, all
other ones being static rational, is denoted by D-Ev2-RNN[Q, α1, . . . , αk].

3.2 Nondeterministic Case

We also consider nondeterministic recurrent neural networks, as introduced in
[19,20]. The nondeterminism is expressed by means of an external binary guess
stream processed via some additional Boolean guess cell.
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Formally, a nondeterministic (first-order) recurrent neural network, denoted
by N-RNN, consists of a recurrent neural network N as described in previous
Sect. 3.1, except that it contains M + 1 Boolean input cells (ui)M+1

i=1 , rather
than M . The cell uM+1, called the guess cell, carries the Boolean source of
nondeterminism to be considered [3,7,9,19,20].

Given some N-RNN N , any sequence g = g(0)g(1)g(2) · · · ∈ 2ω submitted
to guess cell uM+1 is a guess stream for N . Assuming the initial state of the
network to be 〈x(0),y(0)〉 = 〈0,0〉, any infinite input and guess streams

s = (u(t))t∈N
∈ (BM )ω and g = (g(t))t∈N

∈ 2ω

induce via Eqs. (1) and (2) two infinite sequences of states and output states

c(s,g) = (〈x(t),y(t)〉)t∈N
∈ ([0, 1]N × B

P )ω

bc(s,g) = (y(t))t∈N
∈ (BP )ω

called the computation and Boolean computation of N induced by (s, g), respec-
tively. Furthermore, Definition 1 of an attractor remains unchanged in this case.

We also assume that any N-RNN N is equipped with a corresponding classifi-
cation of all of its attractors into accepting and rejecting types. An infinite input
stream s ∈ (BM )ω is accepted by N if there exists some guess stream g ∈ 2ω such
that inf(bc(s,g)) is an accepting attractor. It is rejected by N otherwise, i.e., if
for all guess streams g ∈ 2ω, the set inf(bc(s,g)) is a rejecting attractor. The set
of all accepted input streams is the neural ω-language recognized by N , denoted
by L(N ). A set L ⊆ (BM )ω is said to be recognizable by some nondeterministic
recurrent neural network if there exists a N-RNN N such that L(N ) = L.

As for the deterministic case, the following classes and subclasses of N-RNNs
will be considered according to the nature of their synaptic weights:

1. The class of nondeterministic static rational neural nets, denoted by N-St-
RNN[Q].

2. The class of nondeterministic bi-valued evolving rational neural nets, denoted
by N-Ev2-RNN[Q], which is stratified into the subclasses of N-Ev2-
RNN[Q, α1, . . . , αk], where α1, . . . , αk ∈ 2ω.

4 Expressive Power of Neural Networks

We provide a precise characterization of the expressive power of the evolving
neural networks, according to the specific evolving weights that they employ. As
a consequence, a proper hierarchy of classes of evolving networks, related to the
complexity of their underlying evolving weights, will be obtained in Sect. 5.

4.1 Deterministic Case

The expressive powers of the classes D-St-RNN[Q] and D-Ev2-RNN[Q] have been
established in [9, Theorems 1, 2]. We recall these results:
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Theorem 1 [9, Theorems 1 and 2]. Let L ⊆ (BM )ω be some ω-language.

(a) L is recognizable by some D-St-RNN[Q] iff L is recognizable by some deter-
ministic Muller Turing machine iff L ∈ BC(Π2

0).
(b) L is recognizable by some D-Ev2-RNN[Q] iff L ∈ BC(Π2

0).

Theorem 1 states that D-St-RNN[Q]s are Turing equivalent and D-Ev2-
RNN[Q]s are strictly more powerful than deterministic Muller Turing machines,
since BC(Π2

0) � BC(Π2
0). In this sense, the deterministic evolving neural net-

works are super-Turing.

Remark 1. The proof of Theorem 1(b) [9, Theorem 2] shows that any ω-language
L ∈ BC(Π2

0) can be recognized by some D-Ev2-RNN[Q] employing only one bi-
valued evolving weight given in the form of a bias. In other words, any D-Ev2-
RNN[Q] is expressively equivalent to some D-Ev2-RNN[Q, α], for some α ∈ 2ω.
Hence, from this point onwards, we will without loss of generality focus on the
latter subclass of networks.

A precise characterization of the expressive power of the subclass of D-Ev2-
RNN[Q, α] can be obtained, for any α ∈ 2ω. The result is achieved by forthcom-
ing Propositions 1 and 2.

Proposition 1. Let L ⊆ (BM )ω be some ω-language and α ∈ 2ω. If L ∈
BC(Π2

0)(α), then L is recognizable by some D-Ev2-RNN[Q, α].

Proof. If L ∈ BC(Π2
0)(α) � (BM )ω, then by definition, there exists L′ ∈

BC(Π2
0) � (BM+1)ω such that L = L′

α = {s ∈ (BM )ω : (s, α) ∈ L′}. Theorem 1
ensures that there exists a D-St-RNN[Q] N ′ with M +1 input cells u1, . . . , uM+1

such that L(N ′) = L′.
Now, we consider the D-Ev2-RNN[Q, α] N which consists in a slight modi-

fication of the D-St-RNN[Q] N ′. More precisely, N contains the same cells and
synaptic connections as N ′, it admits only u1, . . . , uM as its input cells, but uM+1

is transformed into an internal cell receiving the bi-valued evolving weight α ∈ 2ω

in the form of a bias. Moreover, the attractors of N are the same as those of N ′.
By construction, on every input s ∈ (BM )ω, N receives the bi-valued evolving
weight α as bias and it works precisely like N ′ on input (s, α) ∈ (BM+1)ω. Conse-
quently, s ∈ L(N ) if and only if (s, α) ∈ L(N ′) = L′. Therefore, L(N ) = L′

α = L,
meaning that L is recognized by the D-Ev2-RNN[Q, α] N . ��

Proposition 2. Let L ⊆ (BM )ω be some ω-language and α ∈ 2ω. If L is recog-
nizable by some D-Ev2-RNN[Q, α], then L ∈ BC(Π2

0)(α).

Proof. Let N be a D-Ev2-RNN[Q, α] such that L(N ) = L. By Remark 1, we may
assume without loss generality that the bi-valued evolving weight α of N is a bias
related to some cell x. Let N ′ be the D-St-RNN[Q] obtained by replacing in N
the evolving bias α ∈ 2ω by a new input cell uM+1 related to x with a weight of 1.
Hence, N ′ is a D-St-RNN[Q] with M +1 input cells, and Theorem 1 ensures that
L(N ′) ∈ BC(Π2

0). By construction, if N ′ receives input (s, α) ∈ (BM+1)ω, then
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it works precisely like N on input s ∈ (BM )ω, which means that (s, α) ∈ L(N ′) if
and only if s ∈ L(N ). Thus L(N ) = L(N ′)α. Since L(N ′) ∈ BC(Π2

0), it follows
that L(N ) ∈ BC(Π2

0)(α). ��

By combining Propositions 1 and 2, one obtains the following theorem:

Theorem 2. Let L ⊆ (BM )ω be some ω-language and α ∈ 2ω. The following
conditions are equivalent:

(a) L ∈ BC(Π2
0)(α);

(b) L is recognizable by some D-Ev2-RNN[Q, α].

From Theorem 2 and Remark 1, the following set-theoretical result can be
retrieved: BC(Π2

0) =
⋃

α∈2ω BC(Π2
0)(α). Indeed, L ∈ BC(Π2

0) if and only if,
by Remark 1, L is recognizable by some D-Ev2-RNN[Q, α], for some α ∈ 2ω,
if and only if, by Theorem2, L ∈ BC(Π2

0)(α), for some α ∈ 2ω. In words, the
relativized classes BC(Π2

0)(α) span the class BC(Π2
0), when α varies over 2ω.

4.2 Nondeterministic Case

The expressive power of the classes N-St-RNN[Q] and N-Ev2-RNN[Q] has also
been established in [3, Theorems 1 and 2]. We have the following results:

Theorem 3 [3, Theorems 1 and 2]. Let L ⊆ (BM )ω be some ω-language.

(a) L is recognizable by some N-St-RNN[Q] iff L ∈ Σ1
1;

(b) L is recognizable by some N-Ev2-RNN[Q] iff L ∈ Σ1
1.

Theorem 3 states that N-St-RNN[Q]s are Turing equivalent and that N-
Ev2-RNN[Q] are strictly more powerful than nondeterministic Muller Turing
machines, since Σ1

1 � Σ1
1. In this sense, the nondeterministic evolving neural

networks are also super-Turing.

Remark 2. The nondeterministic counterpart of Remark 1 holds. More precisely,
the proof of Theorem 3(b) [3, Theorem 2] shows that any ω-language L ∈ Σ1

1

can be recognized by some N-Ev2-RNN[Q] employing only one bi-valued evolving
weight given in the form of a bias. Consequently, from this point onwards, we
will without loss of generality focus on the subclass of N-Ev2-RNN[Q, α], for
α ∈ 2ω.

We now provide a precise characterization of the expressive power of the
subclass of N-Ev2-RNN[Q, α], for some given α ∈ 2ω. The result is achieved via
forthcoming Propositions 3 and 4, which are simple generalizations of Proposi-
tions 1 and 2, respectively.

Proposition 3. Let L ⊆ (BM )ω be some ω-language. If L ∈ Σ1
1(α), with α ∈ 2ω,

then L is recognizable by some N-Ev2-RNN[Q, α].



Expressive Power of Evolving ω-Neural Networks 159

Proof. If L ∈ Σ1
1(α) � (BM )ω, then by definition, there exists L′ ∈ Σ1

1 � (BM+1)ω

such that L = L′
α = {s ∈ (BM )ω : (s, α) ∈ L′}. Theorem 3 ensures that there

exists a N-St-RNN[Q] N ′ with M +1 input cells such that L(N ′) = L′. As in the
proof of Proposition 1, one can modify network N ′ to obtain a N-Ev2-RNN[Q, α]
N1 such that L(N1) = L′

α = L. ��

Proposition 4. Let L ⊆ (BM )ω be some ω-language. If, for some α ∈ 2ω, L is
recognizable by some N-Ev2-RNN[Q, α], then L ∈ Σ1

1(α).

Proof. Let N be a N-Ev2-RNN[Q, α] such that L(N ) = L. By Remark 2, we may
assume without loss generality that the bi-valued evolving weight α of N is a
bias. As in the proof of Proposition 2, there exists a N-St-RNN[Q] N ′ with P +1
input cells such that (s, α) ∈ L(N ′) if and only if s ∈ L(N ). This means that
L(N ) = L(N ′)α. In addition, Theorem 3 ensures that L(N ′) ∈ Σ1

1. Therefore,
L(N ) ∈ Σ1

1(α). ��

By combining Propositions 3 and 4, the following theorem is obtained:

Theorem 4. Let L ⊆ (BM )ω be some ω-language and α ∈ 2ω. The following
conditions are equivalent:

(a) L ∈ Σ1
1(α);

(b) L is recognizable by some N-Ev2-RNN[Q, α].

From Theorem 4 and Remark 2, the following set-theoretical result can be
retrieved: Σ1

1 =
⋃

α∈2ω Σ1
1(α). In other words, the relativized classes Σ1

1(α) span
the class Σ1

1, when α varies over 2ω.

5 The Hierarchy Theorem

Theorems 2 and 4 provide a precise characterization of the expressive power of
the classes of D-Ev2-RNN[Q, α] and N-Ev2-RNN[Q, α], for α ∈ 2ω. We first
present some conditions that the evolving weights satisfy whenever their corre-
sponding relativized classes are included one into the other.

Proposition 5. Let α, β ∈ 2ω. The following relations hold:

BC(Π0
2)(α) ⊆ BC(Π0

2)(β) −→ α ∈ Δ1
1(β) (3)

Σ1
1(α) ⊆ Σ1

1(β) ←→ α ∈ Δ1
1(β) (4)

Proof. We prove both left-to-right implications. Recall that α ∈ Σ0
1(α). In the

first case, one has α ∈ Σ0
1(α) ⊆ BC(Π0

2)(α) ⊆ BC(Π0
2)(β) ⊆ Δ1

1(β). In the
second case, α ∈ Σ0

1(α) ⊆ Σ1
1(α) ⊆ Σ1

1(β). Hence, α ∈ Δ1
1(β), by [17].

For the converse implication of Relation (4), suppose that α ∈ Δ1
1(β). Then

α ∈ Σ1
1(β), which means that the ω-language {α} is recognized by some non-

deterministic Muller TM M1 with oracle β. Now, let L ∈ Σ1
1(α). Then L is

recognized by a nondeterministic Muller TM M2 with oracle α. Consider the
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nondeterministic Muller TM M with oracle β which works as follows: if x is writ-
ten on its input tape, then M nondeterministically writes some y ∈ 2ω bit by bit
on one of its work tape, and concomitantly, simulates in parallel the behaviors
of M1 on y as well as that of M2 with oracle y on x. The TM M is suitably
programmed in order to always have enough bits of y being written on its work
tape so that the next simulations steps of M1 with oracle y can be performed
without fail. In addition, the machine M accepts input x iff both simulation
processes of M1 and M2 are accepting, i.e., iff y = α and the simulation of M2

with oracle y = α accepts x, which is to say that x ∈ L(M2) = L. Hence, M
recognizes L also, and thus L ∈ Σ1

1(β). This shows that Σ1
1(α) ⊆ Σ1

1(β). ��

We now show the existence of an infinite sequence of weights whose corre-
sponding succession of relativized classes properly stratify the “super-Turing”
classes of BC(Π0

2) and Σ1
1 neural ω-languages. The hierarchy induced by the

inclusion relation between the relativized classes possesses chains of length ω1

as well as uncountable antichains.

Proposition 6. There exists a sequence (αi)i<ω1 , where αi ∈ 2ω for all i < ω1,
such that

(a) BC(Π0
2)(α0) = BC(Π0

2) and BC(Π0
2)(αi) � BC(Π0

2)(αj), for all i < j < ω1;
(b) Σ1

1(α0) = Σ1
1 and Σ1

1(αi) � Σ1
1(αj), for all i < j < ω1.

Moreover, there exists some uncountable set A ⊆ 2ω such that BC(Π0
2)(αi) �⊆

BC(Π0
2)(αj) and Σ1

1(αi) �⊆ Σ1
1(αj), for every distinct αi, αj ∈ A.

Proof. Take α0 ∈ Σ0
1. Suppose that for γ < ω1, the sequence (αi)i<γ has been

constructed and satisfies the required property. We build the next element αγ

of that sequence, i.e., the element such that Σ1
1(αi) � Σ1

1(αγ), for all i < γ.
Note that, for each i < γ, the set Δ1

1(αi) is countable. Since γ < ω1, the union⋃
i<γ Δ1

1(αi) is countable too. Hence, there exists α ∈ 2ω \
⋃

i<γ Δ1
1(αi). Now,

let {βi : i < ω} be an enumeration of the countable set {α} ∪ {αi : i < γ},
and let αγ ∈ 2ω be the encoding of {βi : i < ω} given by αγ(〈i, n〉) = βi(n),
where 〈., .〉 : ω2 → ω is a classical recursive pairing function. Each function
fi : αγ �→ (αγ)i = βi is recursive, and therefore, βi ∈ Σ0

1(αγ), for each i < ω.
We show that BC(Π0

2)(αj) ⊆ BC(Π0
2)(αγ), for all j < γ. Let L ∈

BC(Π0
2)(αj) = BC(Π0

2)(βi), for some i < ω. This means that L is recogniz-
able by some deterministic Muller TM M with oracle βi. Since βi ∈ Σ0

1(αγ),
L is also recognized by the deterministic Muller TM M′ with oracle αγ which,
in a suitable alternating manner, produces βi bit by bit from αγ , and works
precisely like M with oracle βi. Therefore, L ∈ BC(Π0

2)(αγ). By replacing in
this argument every occurrences of “BC(Π0

2)” by “Σ1
1” and of “deterministic”

by “nondeterministic”, one obtains that Σ1
1(αj) ⊆ Σ1

1(αγ), for all j < γ.
We now show that BC(Π0

2)(αj) � BC(Π0
2)(αγ) and Σ1

1(αj) � Σ1
1(αγ), for

all j < γ. Towards a contradiction, suppose that BC(Π0
2)(αγ) ⊆ BC(Π0

2)(αj)
or Σ1

1(αγ) ⊆ Σ1
1(αj), for some j < γ. Then Relations (3) and (4) ensure that

αγ ∈ Δ1
1(αj). But α = βk for some k < ω, and by the above stated fact,
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α = βk ∈ Σ0
1(αγ). The two relations α ∈ Σ0

1(αγ) and αγ ∈ Δ1
1(αj) imply that

α ∈ Δ1
1(αj). This contradicts the fact that α ∈ 2ω \

⋃
i<γ Δ1

1(αi).
We finally prove the existence of an uncountable antichain. There exists an

uncountable set A ⊆ 2ω such that αi �∈ Δ1
1(αj), for all distinct αi, αj ∈ A [1].

By Relations (3) and (4), BC(Π0
2)(αi) �⊆ BC(Π0

2)(αj) and Σ1
1(αi) �⊆ Σ1

1(αj), for
all distinct αi, αj ∈ A. ��

Let L(D-Ev2-RNN[Q, α]) and L(N-Ev2-RNN[Q, α]) denote the classes of
neural ω-languages recognized by D-Ev2-RNN[Q, α] and N-Ev2-RNN[Q, α],
respectively. Theorems 2 and 4 together with Proposition 6 imply the existence of
two proper hierarchies of classes of deterministic and nondeterministic evolving
neural networks of increasing expressive power.

Theorem 5. There exists a sequence of binary evolving weights (αi)i<ω1 such
that

(a) L(D-Ev2-RNN[Q, αi]) � L(D-Ev2-RNN[Q, αj ]), for all i < j < ω1;
(b) L(N-Ev2-RNN[Q, αi]) � L(N-Ev2-RNN[Q, αj ]), for all i < j < ω1.

Finally, let R be the equivalence relation defined by R(α, β) iff L(N-Ev2-
RNN[Q, α]) = L(N-Ev2-RNN[Q, β]). This relation represents the decision prob-
lem of whether two classes of nondeterministic evolving networks (determined
by the evolving weights α and β) have the same expressive power. We show that
this relation is undecidable and of complexity of Π1

1 \ Σ1
1.

Proposition 7. The equivalence relation R is in the class Π1
1 \ Σ1

1.

Proof. According to Theorem 4 and Relation (4), the relation R ⊆ 2ω × 2ω sat-
isfies R(α1, α2) iff α1 ∈ Δ1

1(α2) and α2 ∈ Δ1
1(α1). It is known that the relation

“α ∈ Δ1
1(β)” is a Π1

1 relation which can be expressed by a Π1
1-formula φ(α, β),

see [17, 4D.14 p. 171] and [11]. Thus R is a Π1
1-relation. Towards a contradiction,

assume now that R is Σ1
1, and take β ∈ Σ0

1. Then R(., β) = {α : R(α, β)} = {α :
α ∈ Δ1

1(β) & β ∈ Δ1
1(α)} = {α : α ∈ Δ1

1(β)} = {α : α ∈ Δ1
1} should also be in

Σ1
1. But it is known that the set {α : α ∈ Δ1

1} is not Σ1
1, see [17, 4D.16 p. 171].

This concludes the proof. ��

6 Conclusion

The expressive power of evolving neural networks working on infinite input
streams has been finely characterized in terms of relativized topological classes.
As a consequence, a proper hierarchy of classes of evolving neural nets, based
on the complexity of their underlying evolving weights, has been obtained. The
hierarchy contains chains of length ω1 as well as uncountable antichains.

These results (together with [3,9]) show that evolving and analog neural
networks represent a natural model for oracle-based ω-computation. For future
work, a similar refined characterization of the expressive power of analog neural
networks is expected to be studied. In fact, we prove in an extended version of
this paper that if rα ∈ R is some recursive encoding of α ∈ 2ω, then the analog
networks employing rα ∈ R as sole real weight are computationally equivalent
to the evolving networks employing α as sole evolving weight.
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Abstract. An absent (or forbidden) word of a word y is a word that
does not occur in y. It is then called minimal if all its proper factors occur
in y. There exist linear-time and linear-space algorithms for computing
all minimal absent words of y (Crochemore et al. in Inf Process Lett
67:111–117, 1998; Belazzougui et al. in ESA 8125:133–144, 2013; Barton
et al. in BMC Bioinform 15:388, 2014). Minimal absent words are used
for data compression (Crochemore et al. in Proc IEEE 88:1756–1768,
2000, Ota and Morita in Theoret Comput Sci 526:108–119, 2014) and
for alignment-free sequence comparison by utilizing a metric based on
minimal absent words (Chairungsee and Crochemore in Theoret Comput
Sci 450:109–116, 2012). They are also used in molecular biology; for
instance, three minimal absent words of the human genome were found
to play a functional role in a coding region in Ebola virus genomes (Silva
et al. in Bioinformatics 31:2421–2425, 2015). In this article we introduce
a new application of minimal absent words for on-line pattern matching.
Specifically, we present an algorithm that, given a pattern x and a text y,
computes the distance between x and every window of size |x| on y. The
running time is O(σ|y|), where σ is the size of the alphabet. Along the
way, we show an O(σ|y|)-time and O(σ|x|)-space algorithm to compute
the minimal absent words of every window of size |x| on y, together with
some new combinatorial insight on minimal absent words.

1 Introduction

Pattern matching is the problem of finding a pattern in a usually much longer
text. Both pattern and text are words (or strings) drawn over some alphabet.
This problem has been studied for a long time and efficient solutions have been
proposed (see for example [1,13,20,22] or also [9,16]). A related problem is the
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 164–176, 2017.
DOI: 10.1007/978-3-662-55751-8 14



Minimal Absent Words in a Sliding Window and Applications 165

approximate pattern matching problem: it is the same problem but allowing some
errors in the matching process (see [9,16,27]). This problem depends mainly on
how errors are interpreted and thus which metric is used for the comparison.
Pattern matching algorithms are classified into on-line and off-line. With off-
line algorithms the text can be processed before searching; a survey of such
algorithms was written by Navarro et al. [26]. A more recent algorithm based
on a bidirectional index has been proposed by Kucherov et al. [21]. With on-
line algorithms the text cannot be processed before searching. A famous such
algorithm is bitap, one of the underlying algorithms of Unix utility agrep; it was
first invented by Dömölki [12] and it underwent several improvements among
them the last one was done by Myers [24]. A survey on on-line algorithms for
approximate pattern matching was written by Navarro [25] (see also [27]).

In this article we propose a new on-line pattern matching scheme using a met-
ric that is based on minimal absent words. This notion of negative information
has first been coined as minimal forbidden words by Béal et al. [5]. A minimal
absent word of word y is a word absent from y whose all proper factors occur in
y. A tight upper bound on the number of minimal absent words of a word y of
length n over an alphabet of size σ is known to be O(σn) [10,23]. Moreover it
was shown that the set of all minimal absent words of y is sufficient to uniquely
reconstruct y [10,14]. The notion has been used in data compression [11,29]
and in molecular biology [2,8,17–19,32,34], where authors often focus on the
computation of the shortest absent words (sometimes called unwords).

Chairungsee and Crochemore introduced the Length Weighted Index (LWI),
a metric based on the symmetric difference of minimal absent words sets [7].
The LWI was then applied by Crochemore et al. [8] to devise an O(m + n)-time
and O(m+n)-space algorithm for alignment-free comparison of two sequences of
length m and n on a constant-sized alphabet. More recently, different such indices
have been studied for sequence comparison and phylogeny reconstruction [30].
We base our new pattern matching algorithm on this LWI. To maintain the LWI
across the word y for a pattern x, we need to compute the set of minimal absent
words in a sliding window of size m = |x| of y. Several linear-time and linear-
space algorithms have been proposed to compute the set of minimal absent words
[3,4,6,10,15]. Ota et al. presented an on-line algorithm that requires linear time
and linear space [28]. However, to the best of our knowledge, the problem of
computing minimal absent words in a sliding window has not been addressed.

Our Contributions. Here we present the first algorithm to compute minimal
absent words in a sliding window. For a window of size m and a word of length
n on an alphabet of size σ, our algorithm performs O(σn) insert and delete
operations on the set of minimal absent words. With a careful implementation
of the data structures, it requires O(σn) time overall using O(σm) space. We
apply this algorithm for on-line approximate pattern matching using the LWI
for a pattern of length m over every window of size m of the text. This yields the
first algorithm for the classical on-line exact pattern matching problem that uses
some form of negative information (minimal absent words) for the comparison.
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Definitions and Notation
Let y = y[0]y[1] · · · y[n − 1] be a word of length n = |y| on a finite ordered
alphabet of size σ = |Σ|. We denote by y[i . . j] = y[i] · · · y[j] the factor of y
whose occurrence starts at position i and ends at position j on y, and by ε the
empty word, the word of length 0. The set of all possible words on Σ (including
the empty word) is denoted by Σ∗. A prefix of y is a factor that starts at position
0 (y[0 . . j]) and a suffix is a factor that ends at position n − 1 (y[i . . n − 1]). A
factor x of y is proper if x �= y.

Let u be a non-empty word. An integer p such that 0 < p ≤ |u| is called a
period of u if u[i] = u[i + p], for i = 0, 1, . . . , |u| − p − 1. For every word u and
every natural number k, we define the kth power of the word u, denoted by uk,
by u0 = ε and uk = uk−1u, for k = 1, 2, . . . , n.

Let x be a word of length m ≤ n. We say that there exists an occurrence of
x in y when x is a factor of y. Opposingly, we say that the word x is an absent
word of y if it does not occur in y. We consider absent words of length at least
2 only. An absent word x of length m, m ≥ 2, of y is minimal if and only if all
its proper factors occur in y. This is equivalent to saying that a minimal absent
word (MAW) of y is of the form aub, a, b ∈ Σ, u ∈ Σ∗, such that au and ub are
factors of y but aub is not. We can easily see that, if x is a MAW of y, then
2 ≤ |x| ≤ |y| + 1. Note that |x| = |y| + 1 if and only if y = a|y| for some a ∈ Σ.

Example 1. Let y = ABAACA. Its factors of lengths 1 and 2 are A, B, C, AA,
AB, AC, BA, and CA. The set of MAWs of y is obtained by combining the afore-
mentioned factors: {BB,BC,CB,CC,AAA,AAB,BAB,BAC,CAA,CAB,CAC}.

Let U and V be two sets. We denote by U�V their symmetric difference, that
is, U�V = (U \ V ) ∪ (V \ U). We consider the LWI, a distance on Σ∗, for two
words x and y on Σ∗ [7]. It is based on the set M(x) � M(y), where M(x) is
the set of minimal absent words of x, and it is defined by:

LWI(x, y) =
∑

w∈M(x)�M(y)

1
|w|2 .

2 Combinatorial Results

In this section we consider a word z of fixed length m on an alphabet Σ of size
σ and denote by M(z) its set of MAWs. The word z essentially represents the
content of the window on word y used in the algorithm of Sect. 3. We first discuss
changes to be done on the set of MAWs when appending and removing letters
on the word of interest. Then we show bounds on the number of changes on the
set of MAWs when moving forward the current window by one position.

2.1 Changes When Appending One Letter to the Window

We denote by M(z)|α, α ∈ Σ, the operation on the set of MAWs when concate-
nating the letter α to the, possibly empty, word z. The operation creates M(zα)
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from M(z). We introduce some bounds on the number of insertions/deletions
for the on-line computation of the set of MAWs. These results have already been
shown in [28] and we briefly present them for completeness.

We denote by s the starting position of the longest suffix of z that repeats
in z; when this suffix is empty we set s = |z|. We also denote by sα the starting
position of the longest suffix that occurs in z followed by α; when this suffix
is empty we set sα = |z|. Note that we have s ≤ sα because the latter suffix
obviously repeats in z. This is illustrated in Fig. 1.

The next two lemmas state bounds of the number of insert and delete oper-
ations performed by M(z)|α.

Lemma 1. M(z)|α deletes exactly one MAW from M(z), namely, z[sα − 1 . .
|z| − 1]α

Proof. Let w = aub, a, b ∈ Σ and u ∈ Σ∗, be a MAW to be removed. This means
that aub is absent in z but present in zα. Thus b = α and au is a suffix of z that
does not occur followed by α in z. The word ub = uα is also present in z, so u
is a suffix of z that occurs in z followed by α. Then the starting position of the
suffix occurrence of u in z is sα and w = z[sα − 1 . . |z| − 1]α. �	

To establish an upper bound on the number of MAWs added by the operation
M(z)|α, we first divide the new MAWs of the form aub, a, b ∈ Σ and u ∈ Σ∗,
into three types (see also Fig. 1):

1. au and ub are absent in z.
2. au is absent in z and ub is present in z.
3. au is present in z and ub is absent in z.

αz

sαs

type 1: a = b = α and

u = α|z|−sα+1 u b
ua

type 2

u′ α u′ α
u b ua

type 3: b = α u b
ua

Fig. 1. Illustration of the three different types of MAWs that are added when letter α
is appended to z.

Lemma 2. There are at most one MAW of type 1, σ MAWs of type 2, and
(sα − s)(σ − 1) MAWs of type 3 added by the operation M(z)|α.
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Proof. We consider a new MAW w = aub, a, b ∈ Σ and u ∈ Σ∗, created by the
operation. Let w be of type 1, that is, au and ub do not occur in z. Then they are
both suffixes of zα, and because they have same length, are equal. This implies
that u is both a prefix and a suffix of ub = uα. Thus the latter has period 1, w is
of the form α|w|, and u = α|w|−2. But then uα is absent in z. Therefore, α|w|−3

is the longest repeated suffix of z that occurs followed by α in z. Consequently
|w| = |z| − sα + 3.

Let w be of type 2, that is, ub occurs in z and au occurs in zα but not in z.
Then au is a suffix of zα and u can be written u′α. As ub occurs in z, u′ is a
suffix of z that occurs in z followed by α. Moreover, since au = au′α does not
occur in z, u′ is the longest suffix of z that occurs in z followed by α, therefore its
starting position as a suffix is sα. The letter b can be any letter of the alphabet
of z that occurs after an occurrence of u in z. Consequently there are at most σ
such MAWs.

Let w be of type 3, that is, au occurs in z and ub occurs in zα but not in z.
This implies that b = α, u is a suffix of z not preceded by a, and au occurs
elsewhere in z. Since no occurrence of u in z is followed by α, we have that the
starting position k of u as a suffix satisfies s ≤ k < sα. Therefore, there are
at most sα − s possible words u and for each of them, there are at most σ − 1
possibilities for the letter a to obtain a MAW. Consequently, there are at most
(sα − s)(σ − 1) such MAWs. �	
The previous lemma shows that during one step of the computation of MAWs for
a sliding window of size m we may have to handle O(σm) new MAWs. However,
the total number of insertions when computing the set of MAWs for a word y of
length n get amortized to O(σn) in an on-line computation.

Proposition 1 [28]. Starting with the empty word, and applying n times the
operation | leads to a total number of insertions/deletions of MAWs in O(σn).

Proof. The number of MAWs of the whole word of length n is in O(σn) [10]. As
stated by Lemma 1 at most one MAW can be deleted by each application of the
operation |. Thus the total number of insertions/deletions is still in O(σn). �	

2.2 Changes When Removing the First Letter of the Window

We denote by M(αz) → M(z), α ∈ Σ, the operation on the set of MAWs
when deleting the letter α from the word αz. Removing the leftmost letter of
the window is a dual question to what is done previously. We now focus on the
longest repeated prefix instead of the longest repeated suffix.

Let us denote by p the ending position of the longest repeated prefix of z and
by pα the ending position of the longest prefix of z that occurs in z preceded by
α. We set them to 0 when the prefixes are empty. Note that pα ≤ p. Similar to
Lemma 1, removing a letter from the left creates exactly one MAW.

Lemma 3. The operation M(αz) → M(z) creates exactly one MAW , which is
αz[0 . . pα + 1].
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Similar to Sect. 2.1, we distinguish among three types of MAWs to be deleted
by the operation:

1. au and ub are absent in z.
2. au is absent in z and ub present in z.
3. ub is absent in z and au present in z.

α z

pα p

type 1: a = b = α and
u = αpα+2u b

ua

type 2: a = αu b
ua

type 3
ũα ũα

u b ua

Fig. 2. Illustration of the three different types of MAWs that are deleted when remov-
ing α, the letter before z.

We note that types 1, 2, and 3 behave respectively similarly to type 1, 3, and
2 in Sect. 2.1; see Fig. 2 for an illustration. The following result is similar to that
stated in Lemma 2.

Lemma 4. There are at most one MAW of type 1, (σ − 1)(p − pα) MAWs of
type 2, and σ MAWs of type 3 to be deleted by the operation M(αz) → M(z).

2.3 Changes When Sliding a Window over a Text

We now focus on our main problem: MAWs in a sliding window. For m < n and
for all i, 0 ≤ i ≤ n − m, we consider the window y[i . . i + m − 1] and define:

– si the starting position of its longest repeated suffix,
– s̃i the starting position of its longest suffix that occurs followed by y[i + m],
– ssi the starting position of its longest suffix that is a power,
– pi the ending position of its longest repeated prefix,
– p̃i the ending position of its longest prefix that occurs preceded by y[i − 1],
– ppi the ending position of its longest prefix that is a power.

In what follows, we make use of this notation considering the case of a sliding
window. The following lemma shows that we cannot output in linear time the
set of MAWs in the sliding window at each step of the process.

Lemma 5. The upper bound of
n−m∑
i=0

|M(y[i . . i + m − 1])| is O(σnm) and this

bound is tight.
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Proof. For every factor z of length m of y, |M(z)| is O(σm). Thus the upper bound
of their sum is O(σnm). Now consider y = (Am−1Cm−1)

n
2m−2 of length n and its

factors of length 2m. In each factor w of length 2m, this kind of pattern occurs:
XY m−1X, with {X,Y } = {A,C}. Thus {XY iX|1 ≤ i ≤ m − 1} ⊆ M(w),
so |M(w)| ≥ m − 1. Consequently the bound is tight. One can generalize this
construction of y to obtain a tight bound for larger alphabets (Lemma 1 in [2]). �	

However, as shown below, we can bound the number of changes necessary to
maintain the set of MAWs for a sliding window. We obtain the following result.

Theorem 1. The upper bound of
n−m−1∑

i=0

|M(y[i . . i+m−1])�M(y[i+1 . . i+m])|
is in O(σn).

Proof. Let us consider the set M(y[i . . i+m−1])�M(y[i . . i+m]) with 0 ≤ i <
n − m. From Lemmas 1 and 2 we get

|M(y[i . . i + m − 1])�M(y[i . . i + m])| ≤ (s̃i − si)(σ − 1) + σ + 2.

Then,

n−m−1∑

i=0

|M(y[i . . i+m− 1])�M(y[i . . i+m])| ≤
n−m−1∑

i=0

(s̃i − si)(σ − 1)+nσ +2n.

We note that s̃i ≤ si+1 ≤ s̃i + 1 and we have si ≤ s̃i thus

0 ≤
n−m−1∑

i=0

(s̃i − si) =
n−m−1∑

i=0

s̃i −
n−m−1∑

i=0

si

0 ≤
n−m−1∑

i=0

(s̃i − si) = s̃n−m−1 − s0 +
n−m−2∑

i=0

(s̃i − si+1) ≤ n

Then
n−m−1∑

i=0

|M(y[i . . i+m−1])�M(y[i . . i+m])| ≤ 2nσ+n. Now, we consider

the set M(y[i . . i + m])�M(y[i + 1 . . i + m]). From Lemmas 3 and 4 we obtain

a similar inequality:
n−m−1∑

i=0

|M(y[i . . i + m])�M(y[i + 1 . . i + m])| ≤ 2nσ + n.

Thus we obtain the desired bound by the triangle inequality. �	

3 Minimal Absent Words in a Sliding Window

For a general introduction to suffix trees, see [9]. The suffix tree T of a non-
empty word w of length n is a compact trie representing all suffixes of w. The
nodes of the trie which become nodes of the suffix tree (i.e., branching nodes
and leaves) are called explicit nodes, while the other nodes are called implicit.
We use L(v) to denote the path-label of a node v, i.e., the concatenation of the
edge labels along the path from the root to v. Node v is a terminal node if and
only if L(v) = w[i . . n − 1], 0 ≤ i < n; here v is also labelled with index i.
The suffix link of a node v with path-label L(v) = αs is a pointer to the node
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path-labelled s, where α ∈ Σ is a single letter and s is a word. The suffix link
of v exists if v is a non-root internal node of T . Our algorithm relies on Senft’s
on-line construction algorithm of the suffix tree for a sliding window [31] that is
itself based on Ukkonen’s on-line construction algorithm of the suffix tree [33].

3.1 An Overview of Senft’s Algorithm

The algorithm of Ukkonen constructs the suffix tree on-line in O(n) time for
a word of length n on a constant-sized alphabet by processing the word from
left to right. To adapt it for a sliding window with amortized constant time per
one window shift, two additional problems need to be resolved: (i) deleting the
leftmost letter of a window; and (ii) maintaining edge labels under window shifts.

Deleting the Leftmost Letter. Consider the longest repeated prefix of the
current window. When the leftmost letter is deleted, all prefixes that are longer
than this prefix need to be removed from the tree but the longest repeated prefix
and all shorter prefixes will remain in the tree. To remove these prefixes we delete
the leaf corresponding to the whole window and its incoming edge as follows:

– If the longest repeated prefix corresponds to an explicit node, this node is the
parent of the leaf to be deleted. If this node has only one child remaining, we
delete the node and merge the two edges. Otherwise, we do nothing.

– If the longest repeated prefix corresponds to an implicit node, it is equal to
the longest repeated suffix. We create a new leaf in the place of the one we
have deleted. We label it with the starting position of what was the longest
repeated suffix and its incoming edge is labelled accordingly.

Maintaining Edge Labels. Assume by induction that all edge labels are cor-
rectly positioned relative to the current window. For the next m shifts of the
window, we still maintain the same relative positioning of edge labels. After the
m shifts, edge labels are recomputed by a bottom-up traversal of the tree. Since
m shifts create at most 2m nodes, the amortized time spent on one shift is O(1).

3.2 Our Algorithm

Consider a word y of length n on an alphabet Σ of size σ. Our goal is to maintain
the set of MAWs for a sliding window of size m. That is, for all successive
i ∈ [0, . . . , n − m], we want to compute Mm(i) = M(y[i . . i + m − 1]).

For a word z, by Σ(z) we denote the alphabet of z and by V (z) the set of
explicit nodes in the suffix tree of z. Consider a mapping f : M(z) → Σ(z)×V (z)
defined by f(aub) = (a, vub), where a ∈ Σ and vub is either the explicit node
corresponding to the factor ub or the immediate explicit descendant node if this
node is implicit.

Lemma 6. Mapping f is an injection.
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Proof. Let w,w′ ∈ M(z), w �= w′, w = aub and w′ = a′u′b′, with a, b, a′, b′ ∈
Σ(z) and u, u′ ∈ Σ(z)∗.

Suppose that f(w) = f(w′), then a = a′ and vub = vu′b′ . Thus ub and u′b′

are distinct prefixes of the factor corresponding to vub, consequently one is prefix
of the other, without loss of generality ub is prefix of u′b′. Then aub is a prefix of
au′b′, this is impossible as they are both MAWs of z. Thus two distinct elements
of M(z) cannot share the same image by f , so f is an injection. �	

Lemma 6 allows us to represent all MAWs by storing a set of letters in each
explicit node of the tree. We will call this set the maw -set. Moreover, a letter a
in the maw -set will be tagged if and only if u corresponds to an implicit node
in the tree. Observe that a can become tagged only when u is a repeated suffix
of y. This is because factors au and ub define distinct occurrences of u, and the
occurrence of au must be a suffix, otherwise u would be followed by two distinct
letters and would then be an explicit node. Besides maw -sets, we will also need
to store at each explicit node another set of letters: the set of all letters preceding
the occurrences of the factor corresponding to the node.

By induction, assume we are at position i, the suffix tree Tm(i) for y[i . . i +
m−1] is built and the set of MAWs Mm(i) has been computed. We now explain
how to update Tm(i) and Mm(i) to obtain Tm(i + 1) and Mm(i + 1). The tree
is updated based on Senft’s algorithm, by first adding a letter to the right of
the current window and then deleting the leftmost letter. The set of MAWs is
updated using Lemmas 1, 2 and 3, 4 respectively. The algorithm will maintain
positions si, pi, s̃i, p̃i, ssi, ppi as defined in Sect. 2.3. We store the leaf nodes in a
list so that the last created leaf and the “oldest” leaf currently in the tree can
be accessed in constant time.

Adding a Letter to the Right. We follow Ukkonen’s algorithm for updat-
ing the suffix tree. Recall that Ukkonen’s algorithm proceeds by updating the
active node in the tree. At the beginning of each iteration, the active node cor-
responds to the longest repeated suffix, i.e. to factor y[si . . i + m − 1]. The node
corresponding to the longest repeated prefix is called the head node.

The algorithm starts from the active node and updates it following the suffix
links until reaching a node with an outgoing edge starting with y[i + m] – this
node corresponds to the suffix starting at s̃i. At the same time, we compute
MAWs of type 3 that are created. For each si ≤ j < s̃i, we perform the following.

– If the active node is implicit we make it explicit. We set its set of preceding
letters equal to its child’s set. We move the untagged letters of the maw -set
of its child to the maw -set of the active node. We untag the tagged letters of
the maw -set of its child. If the last node created at this window shift does not
have a suffix link, we add a suffix link from this node to the active node. We
add the letter corresponding to this suffix link to the set of preceding letters
of the active node.

– We create a leaf labelled j, with y[j − 1] in its set of preceding letters. We
create an edge from the active node to this leaf with the label y[i + m].
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– For each letter a �= y[j − 1] in the set of preceding letters of the active node,
ay[si + j . . i + m] ∈ Mm+1(i)\Mm(i) (type 3 in Lemma 2), therefore we add
a in the maw -set of the leaf.

The current active node corresponds to the factor y[s̃i . . i + m − 1]. According
to Lemma 1, there is exactly one MAW to be deleted which is y[s̃i − 1 . . i + m].
This MAW is stored in the child of the active node by following the edge starting
with y[i + m]; we remove y[s̃i − 1] (tagged or not) from its maw -set.

Then we update the active node by following the edge starting with y[i+m];
now it corresponds to the factor y[s̃i . . i + m]. If the head node was also corre-
sponding to the factor y[s̃i . . i + m − 1], we move it down with the active node;
we have p̃i+1 = pi +1, otherwise we have p̃i+1 = pi. If the active node is explicit,
we update its set of preceding letters by adding y[s̃i − 1].

Then, for each letter b occurring after an occurrence of y[s̃i . . i+m] in y[i . . i+
m− 1], y[s̃i − 1 . . i+m]b ∈ Mm+1(i)\Mm(i) (type 2 in Lemma 2). These MAWs
are stored in their corresponding child of the active node. If the active node is
implicit, there is only one of them and we tag the letter.

By Lemma 2, if ssi = s̃i − 1, then y[i + m]y[s̃i − 1 . . i + m] is the new MAW
of type 1. We store it in the maw -set of the child of the active node by following
the edge starting with y[i + m].

Deleting the Leftmost Letter. We note that the longest repeated prefix of
y[i . . i + m] is y[i . . p̃i+1], and its longest repeated suffix is y[s̃i . . i + m]. At the
beginning of this step they correspond respectively to the head node and the
active node. Consider the parent of the oldest leaf of the tree, similarly as in
Senft’s algorithm two cases are distinguished.

– If the head node is an explicit node, then it is the parent of the oldest leaf.
We remove the leaf and its incoming edge. If the head node has only one
remaining child, we delete the node and merge the two edges; the maw -set
associated to the node is added to the leaf.

– Otherwise, the head node is on the edge leading to the oldest leaf. We replace
the leaf with a new one labelled by s̃i, with y[s̃i − 1] as the only preceding
letter, and the edge is relabelled by y[s̃i − 1]. We add y[s̃i − 1] to the set of
preceding letters of the parent of the leaf.

The MAWs associated to the leaf we have deleted were those of type 3
(Lemma 4). We now update the tree and compute the other MAWs to remove
and add.

We visit the oldest leaf in the tree and empty its set of preceding letters.
Then we move up in the tree following back the edges until we have covered
p̃i+1 − i letters. We move the head node to this node: it corresponds to the
factor y[i + 1 . . p̃i+1]. If the active node was equal to the head node, we move
the active node to this node; we have si+1 = s̃i −1, otherwise we have si+1 = s̃i.
Each of the explicit nodes visited on the path from the oldest leaf to the head
node corresponds to a factor y[i+1 . . j], with pi+1 ≥ j > p̃i+1. For each of them,
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we remove y[i] from their set of preceding letters. For each of their children, we
remove letter y[i] (tagged or not) from their maw -set (type 2 Lemma 4).

There is at most one MAW of type 1 that has to be deleted (Lemma 4).
It exists if and only if y[i] = y[i + 1] and ppi+1 = p̃i+1 + 1, in which case we
remove it from the maw -set of the child of the head node by following the edge
starting with y[i]. According to Lemma 3, removing the leftmost letter creates
one MAW, which is y[i]y[i + 1 . . p̃i+1 + 1], thus we add y[i] to the maw -set of
the child of the head node by following the edge starting with y[p̃i+1 + 1]. If the
head node is implicit and thus equal to the active node we tag the letter y[i].

Finally if the head node is above the parent of the oldest leaf of the tree, we
move it down to this node. If the active node is implicit and on the edge leading
to the oldest leaf of tree we set the head node equal to the active node.

Complexity. The algorithm extends Senft’s algorithm for the construction of
the suffix tree in a sliding window. For both addition and deletion of a letter,
the number of operations is O(σ(s̃i − si)) and O(σ(pi+1 − p̃i+1)). Similar to the
proof of Theorem1, we obtain that the total number of operations is O(σn). We
use O(σm) space to store the suffix tree for the factor inside the window. The
σ factor is to store an array of size σ at each explicit node for constant-time
child queries. We also use up to 4m arrays of size σ each to store the two sets of
letters – the suffix tree has no more than 2m explicit nodes. We also store the
word itself over two windows. Thus the total space complexity is bounded by
O(σm). We thus obtain the following result.

Theorem 2. Given a word of length n on an alphabet of size σ, our algorithm
computes the set of minimal absent words in a sliding window of size m in O(σn)
time and O(σm) space.

4 Applications to On-Line Pattern Matching

As a consequence of Theorem 2 we obtain the following result.

Theorem 3. Given a word x of length m on an alphabet Σ of size σ, one can
find on-line all occurrences of x in a word y of length n ≥ m on alphabet Σ
in O(σn) time and O(σm) space. Within the same complexities, one can also
compute on-line LWI(x, y[i . . i + m − 1]), for all 0 ≤ i ≤ n − m.

Proof. As a pre-processing step, we build the suffix tree of x and compute the
MAWs of x. At the same time, by Lemma 6, we represent all MAWs of x by
storing a set of letters in each explicit node of the tree. This can be done in
O(σm) time and space [10]. We then apply Theorem2 to build the suffix tree for
a sliding window of size m over y on top of the suffix tree of x. This way when
a MAW is created or deleted we can update LWI in O(1) time as we can check
if it is a MAW of x or not. For the first part, note that two words x and z are
equal if and only if LWI(x, z) = 0 [10,14]. We thus obtain the result. �	
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Abstract. We consider threshold group testing – a generalization of a
well known and thoroughly examined problem of combinatorial group
testing. In the classical setting, the goal is to identify a set of positive
individuals in a population, by performing tests on pools of elements.
The output of each test is an answer to the question: is there at least
one positive element inside a query set Q? The threshold group testing
is a natural generalization of this classical setting which arises when the
answer to a test is positive if at least t > 0 elements under test are pos-
itive.

We show that there exists a testing strategy for the threshold group
testing consisting of O(d3/2 log(N/d)) tests, for d positive items in a
population of size N . For any value of the threshold t, we also provide

a lower bound of order Ω
(
min
{(

d
t

)2
, N

t

})
. Our subquadratic bound

shows a complexity separation with the classical group testing (which
corresponds to t = 1) where Ω(d2 logd N) tests are needed [25].

Next, we introduce a further generalization, the multi-threshold group
testing problem. In this setting, we have a set of s > 0 thresholds,
t1, t2, . . . , ts. The output of each test is an integer between 0 and s
which corresponds to which thresholds get passed by the number of pos-
itives in the queried pool. Here, one may be interested in minimizing
not only the number of tests, but also the number of thresholds which
is related to the accuracy of the tests. We show the existence of two
strategies for this problem. The first one of size O(d3/2 log(N/d)) is an
extension of the above-mentioned result. The second strategy is more
general and works for a range of parameters. As a consequence, we show

that O( d2

t
log(N/d)) tests are sufficient for t ≤ d/2. Both strategies use

respectively O(
√

d) and O(
√

t) thresholds.
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1 Introduction

In this paper we discuss a generalization to group testing – a problem introduced
by Dorfman [24]. Its classical version consists of discovering a set of up to d
positive elements in a population of N individuals in a series of group tests. The
output of each test is an answer to the question: is there at least one positive
element inside a query set Q? Typically, it is assumed that d is much smaller
than N . A naive solution is to query each individual in the population separately,
which gives a solution with N tests. However, knowing that the set of positives
is sparse it is possible to arrange a strategy of testing in which the number of
tests depends, to a large extent, on the sparsity d rather than the size of the
population N .

The problem has been defined under many variants. At the two extremes,
adaptive and non-adaptive strategies can be defined. While in the former, one
can adjust the query sets basing on the results of previous tests, in the non-
adaptive case, the query pattern has to be defined in advance. In the present
paper we consider only the latter.

Since its introduction [24], group testing and its variations have been exten-
sively studied. Surprisingly, many applications have been found in apparently
unrelated areas. In particular, there are applications in molecular biology and
DNA library screening (cf. the survey [31] and the references therein), pat-
tern matching [10,28], compressed sensing [11], multiple access communications
[4–6,18–22,30,34], radio networks [8,9,16,17] and streaming algorithms [12].
Other natural variants include the case where only a partial discovery of the
positives [1,8,9,15,23] is required. Another variant of the problem arises in the
area of molecular biology [26,27].

The generalization of the problem we consider in this paper was first
addressed by Damaschke [13]. In the threshold group testing the output of each
test responds to the question: are there at least t positive elements in the query
set? The classical version of the problem corresponds to the choice t = 1. More-
over, we extend the setting to the multi-threshold group testing, where the output
tells if the number of positives under test falls into one of the predefined “buck-
ets”.

1.1 Problem Definition

The population is identified with the set [N ] = {1, 2, . . . , N}, i.e., an individual
is a natural number from the set. We consider a set P ⊆ [N ] of distinguished
individuals, called positives. In our considerations we assume that P contains,
depending on the variant of the problem, at most d or exactly d elements.

A single testing pool is a subset of individuals Q ⊆ [N ] to be tested. Tests are
modeled by the feedback functions. We consider two types of feedback functions.
The first type relates to the usual threshold group testing with threshold t > 0.
Let Q be the pool to be tested, then the output of the threshold function ft,P

satisfies

ft,P (Q) =
{

0 if |Q ∩ P | < t
1 if |Q ∩ P | ≥ t

.
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The second type of feedbacks is a natural generalization of this idea. Let t1 ≤
... ≤ ts be thresholds in a multi-threshold setting. Then the multi-threshold
feedback function fT ,P with s thresholds satisfies the following,

fT ,P (Q) =

⎧⎨
⎩

0 if |Q ∩ P | < t1
i if |Q ∩ P | ∈ [ti, ti+1) for i < s
s if |Q ∩ P | ≥ ts

where Q is a test pool and T = {t1, ..., ts}.
A sequence Q = (Q1, ..., Qm), where Qi ⊆ [N ], is called a pooling strategy of

size m. For a given feedback function f and pooling strategy Q = (Q1, ..., Qm)
we define a measurement to be a vector y = f(Q) = (y1, ..., ym) such that
yi = f(Qi).

Our goal in the threshold group testing with threshold t > 0 is to provide a
pooling strategy Q of minimal size that allows to decode the set of positives P
based on the measurement vector for Q. Formally, there exists a mapping ϕ such
that: for any set of positives P ⊆ [N ] satisfying |P | ≤ d, we have ϕ(Q, y) = P
provided that y = ft,P (Q). We call the pooling strategies satisfying the above
condition to be correct.

Multi-threshold group testing is a generalization of threshold group testing in
which measurement vectors are no longer binary. Our goal is to propose a set of
thresholds T and a pooling strategy Q such that there exists a mapping ψ such
that for any P ⊆ [N ] of size at most d we have ψ(Q, T , y) = P provided that
y = fT ,P (Q).

1.2 Previous Results

As explained previously, the threshold group testing is a natural generalization,
of the classical group testing, introduced by Damaschke [13]. Namely, the model
introduced by Damaschke can be defined as follows. Let l and u be integer
parameters with 0 ≤ l < u. Each test with a query set Q outputs Yes if Q
contains at least u positives, and No if there are at most l positives. If, on the
other hand, the number of positives in Q is between l and u, the result of the
test is arbitrary. It is supposed that l and u are constant and previously known.
As in the classical group testing, the question is to determine the set of positives
P by using as few tests as possible. The classical group testing corresponds to
the special case with u = 1 (and l = 0).

Damaschke [13] showed that the set of positives P can be identified only
when the number of positives is at least u. Moreover, he proved that in general
the set of positives can be identified only approximately, i.e. up to g wrongly
identified items, where g = u − l − 1 is the gap between the two thresholds.
In other words, regardless the number of tests, the identified set may contain
up to g false positives/negatives. A special case is when the gap g = 0, which
corresponds to the problem considered in the present paper (t = u = l + 1). In
this case, as a consequence of the above mentioned Damaschke’s result, a precise
identification of the set of positives is possible.
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As far as adaptive strategies are allowed, in [13] efficient upper bounds are
also given. Namely, for g = 0 a nearly optimal scheme requiring only O(d log N)
tests is presented.

The non-adaptive case, which is the topic of the present work, has been
studied by Chen and Fu [2]. They give a generalization of the standard notion
of disjunct matrix which is suitable for the threshold model.

Using their strongly disjunct matrices, they show that O(du+1 log(N/d)) tests
are sufficient to identify non-adaptively the set of positives. This result is almost
tight with respect to the number of rows of their definition of strongly disjunct
matrix. So the main question left open from their work was to understand if a
different approach could beat their complexity, which, because of the du+1 term,
becomes quite disadvantageous for non-constant values of the threshold.

Cheraghchi [3] showed that a weaker version of disjunct matrix can be used to
solve the threshold group testing. With an efficient probabilistic construction of
such a weaker disjunct matrix, Cheraghchi showed that, assuming that the gap
g and the upper threshold u are constants, it is possible to non-adaptively find
the positives in O(dg+2 log d log(N/d)) tests. This implies that, in our case when
g = 0, i.e., when one is interested to identify exactly the set of positives, assuming
that the threshold is constant, the number of tests becomes O(d2 log d log(N/d)).
This is a remarkable improvement over the previous bound, as the complexity
now does not depend on the value of the threshold. In [3] it is assumed that
the upper threshold u (which in our case of g = 0 corresponds to threshold t in
our setting) is a constant. This assumption allows to get rid of the occurrences
of parameter u within the asymptotic bound. One of the main questions left
open by Cheraghchi’s work is whether the number of tests can be reasonably
controlled even for large values of the threshold.

We answer to this question in the positive with even an improvement over the
above mentioned quadratic bound. Namely, we show an interesting dependence
between the number of tests and the value of the threshold. While for small values
of the threshold the number of tests is still quadratic in the number of positives,
it becomes subquadratic as the value of the threshold grows. In particular, we
get a subquadratic O(d3/2 log(N/d)) bound for a threshold group testing with
threshold t = d/2 for gap g = 0 and d positives. Our result is existential and
relies on the assumption that the number of positives is exactly d.

1.3 Our Results

Our first result concerns the standard threshold group testing model. We show
that there exists a pooling design of size O( d2

q(d,t) log N
d ) for a single-threshold

group testing, where q(d, t) = Ω
(√

dt
d−t

)
. As a consequence, we have a sub-

quadratic number of tests for a range of values of t. In particular, there is a
pooling strategy revealing d positives, of size O(d3/2 log(N/d)) for t = d/2.
Then we present a lower bound of order Ω

(
min

{(
d
t

)2
, N

t

})
. Our subquadratic

bound shows a complexity separation with the classical group testing where
Ω(d2 logd n) tests are needed [25].
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Then, we introduce the multi-threshold variant of group testing and present a
solution with O(d3/2 log(N/d)) tests and O(

√
d) thresholds for up to d positives.

We conclude the paper with a result using O(s) thresholds arranged around
t > 0, i.e., T = {t − s, ..., t + s}, to resolve the multi-threshold group testing,
with exactly d positives, within O(d2

q log(N/d)) tests for q = Ω(t(1 − es2/t)2).

A special case of this result gives a pooling strategy of size O(d2

t log(N/d)) for
O(

√
t) thresholds for any t ≤ d/2.

2 Preliminaries

Throughout the paper we use the following notation:

– B(n, p) – binomial distribution with parameters n and p,
– N (μ, σ2) – normal distribution with mean μ and variance σ2.

For the rest of this section we denote μ and σ2 to be expectation and variance
of B(n, p), i.e., μ = np and σ2 = np(1 − p).

Consider a random process that picks a subset Q ⊆ [N ] such that each
x ∈ [N ] is chosen to be in Q with probability p. We introduce a series of random
variables χS , for all S ⊆ [N ], to denote the size of the intersection of sets S and
Q, i.e., χS = |Q ∩ S|. Whenever we use this notation, the support is always [N ]
and probability p follows directly from the context. Note that χS ∼ B(|S|, p).
Finally, we will be using the following mathematical fact which results from the
observation that f(x) = (1 − x)1/x is a decreasing function.

Fact 1. For any 0 < x ≤ 1/2 we have (1 − x)1/x ≥ 1/4.

2.1 Technical Results

We devote this section to discuss the properties of binomial distribution. We
use a normal approximation to the binomial distribution to provide two-sided
bounds on the probability of X ∼ B(n, p) being at least k, for values of k that
are close to the expectation of X — meaning that |k − μ| = O(1). Because
of the Central Limit Theorem, one expects that this value should be close to
some constant around 1

2 , for sufficiently large n. We use Berry-Esseen theorem,
in a variant stated in [14], which provides quantitative guarantees of normal
approximation to binomial distributions. We use them to show in Lemma1 that
the above-mentioned probability P (X ≥ k) is indeed constant for a range of
parameters.

We refer the reader to the full version of the paper for the proofs of the
following technical results.

Proposition 1. Let X ∼ B(n, p) with p ≤ 1/2, β > 0, and k be a positive
integer satisfying

(i) |k − μ| ≤ β and (ii) 2β ≤ k ≤ n − 2β.
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Then we have the following

γ̂

√
n

k(n − k)
≥ P (X = k) ≥ γβ

√
n

k(n − k)
,

where γβ = Θ

(
1
4β

)
and γ̂ > 0 is a constant.

Proposition 2. Let X ∼ B(n, p) with p ≤ 1/2, n ≥ 2, and k satisfying |k −
μ| ≤ 1. Then

– e−1/2 ≥ P (X = k) ≥ np/16 for k = 1,
– P (X = k) ≥ 1/16 for k = n − 1.

The following lemma concludes the section.

Lemma 1. Let X ∼ B(n, p) where p ≤ 1/2 and k ∈ N is such that k−1 ≤ μ ≤ k
then the following conditions hold:

1. 3/4 ≥ P (X ≥ k) ≥ np/16 for k = 1,
2. 1 − c ≥ P (X ≥ k) ≥ c for k > 1,

where c = Θ(1).

3 Single Threshold

We devote this section to prove the existence of a pooling design for threshold
group testing with d positives with number of tests which is o(d2) (for a suitable
choice of threshold t). We also sketch a lower bound on the number of tests in a
threshold design by generalizing a result from [25]. Throughout this section we
assume that t ≤ d/2.

3.1 Upper Bound

We consider random tests Q constructed by picking each element of [N ] with
probability p = t

d . The assumption that t ≤ d/2 implies p ≤ 1/2.
Let A,B be d-element subsets of [N ] and let s = |A ∩ B|. Recalling the

definition of χS , for any set S ⊆ [N ], we can observe that χA∩B ∼ B(s, t
d ). Let

γβ be defined like in Proposition 1, i.e., γβ = Θ

(
1
4β

)
, for any β > 0, and let

μs = 	st/d
.

Proposition 3. The following inequalities hold:

– P (χA∩B = μs) ≥ γ1
√

d
t(d−t) for μs ∈ {2, . . . , s − 2},

– P (χA∩B = μs) ≥ 1/16 for μs ∈ {0, 1, s − 1}.
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Proof. Let us prove the first inequality. Let λ̃(s) = γ1
√

s
μs(s−μs)

. Proposition 1,

for k = μs and β = 1, implies P (χA∩B = μs) ≥ λ̃(s) for μs ∈ {2, . . . , s − 2}.
The size of the intersection of A and B, namely s, can take values from 0 to

d − 1. Function λ̃ is non-increasing, thus we can write

P (χA∩B = μs) ≥ λ̃(d − 1) = Ω

(
γ1

√
d

t(d − t)

)
.

This proves the first inequality.
Let us prove the second part of the proposition, i.e. for μs ∈ {0, 1, s−1}. First,

let us observe that E[χA∩B] = st
d and, therefore, E[χA∩B ] − 1 < μs ≤ E[χA∩B ].

We have P (χA∩B = μs) =
(

s
μs

)
· pμs(1 − p)s−μs .

For μs = 0, we have P (χA∩B = μs) = (1−p)s ≥ (1−p)1/p. The last inequality
follows from st/d < 1 (since μs = 0) which in turn implies s < 1/p.

For μs = 1, we have s · p = st/d ≥ 1 and therefore P (χA∩B = μs) =
s · p(1 − p)s−1 ≥ (1 − p)s−1 ≥ (1 − p)s ≥ (1 − p)2/p, where the last inequal-
ity follows from st/d < 2, which is a consequence of μs = 1.

Finally, for μs = s − 1, we can assume that s ≥ 2, otherwise for s = 1 we
obtain μs = 0, which we have already considered. But we have also that s ≤ 2,
indeed sp = μs = s − 1, which, recalling that p ≤ 1/2, implies s ≤ 2. Hence,
we must have s = 2 in this case. We can also observe that, in order to have
sp = μs = s − 1 = 1, we need also that p = 1/2. So, the binomial formula
becomes P (χA∩B = μs) = s · ps−1(1 − p) = 2p(1 − p) = 1/2.

In the first two cases we can apply Fact 1 and get that P (χA∩B = μs) is
greater than or equal to 1/4 in the first case and to 1/16 in the second case. In
the last case it is 1/2. This concludes the proof of the second inequality. �

Recalling that A and B are d-element sets and that s = |A ∩ B|, we can
observe that χA\B, χB\A ∼ B(d − s, t

d ).

Proposition 4. The following inequalities hold:

– P
(
χA\B ≥ t − μs

)
P

(
χB\A < t − μs

)
≥ p

4 for μs = t − 1,

– P
(
χA\B ≥ t − μs

)
P

(
χB\A < t − μs

)
≥ c2 for μs < t − 1.

Proof. For μs = t − 1, we have st/d ≥ t − 1 from which we derive s ≥ d(t − 1)/t
and then

d − s ≤ d − d · t − 1
t

=
d

t
=

1
p
.

Hence, the left-hand side of the first inequality becomes

P
(
χA\B ≥ 1

)
P

(
χB\A < 1

)
= P

(
χA\B ≥ 1

)
P

(
χB\A = 0

)
≥ (d − s)p · (1 − p)d−s

≥ p · (1 − p)1/p

≥ p/4,
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where the last inequality follows from Fact 1. This proves the first inequality.
Let us show the second inequality. For μs < t − 1, we have t − μs > 1. We

can now apply Lemma1 (second condition) for k = t − μs. It follows that

P
(
χA\B ≥ t − μs

)
P
(
χB\A < t − μs

)
= P
(
χA\B ≥ t − μs

)
(1 − P

(
χB\A ≥ t − μs

)
)

≥ c · (1 − (1 − c)) = c2.

�

Definition 1. We say that a test Q ⊆ [N ] separates A and B if ft,A(Q) �=
ft,B(Q).

Lemma 2. We have

P (Q separates A and B) = Ω

(√
t

d(d − t)

)
.

Proof. Observe that variables χA\B, χB\A, χA∩B are independent. Thus, we
have

P (Q separates A and B) ≥ P (χA ≥ t ∧ χB < t)

=

min{t−1,s}∑
i=0

P
(
χA∩B = i ∧ χA\B + i ≥ t ∧ χB\A + i < t

)

≥ P (χA∩B = μs) P
(
χA\B ≥ t − μs

)
P
(
χB\A < t − μs

)
.

From Proposition 3 we get that P (χA∩B = μs) = Ω(
√

d
t(d−t) ). Proposition

4 yields P
(
χA\B ≥ t − μs

)
P

(
χB\A < t − μs

)
= Ω(p) = Ω(t/d). Thus, we get

P (Q separates A and B) = Ω
(√

t
d(d−t)

)
. This concludes the proof. �

Theorem 2. There exists a pooling design of size O( d2

q(d,t) log N
d ) for a single-

threshold group testing, where q(d, t) = Ω
(√

dt
d−t

)
.

Proof. Let Q = Q1, ..., Qm be a sequence of random queries. For each Qi we
choose each element in [N ] to be contained in Qi with probability p = t/d.

Now, we show that Q is a correct pooling strategy with positive probability.
Let F be the family of unordered pairs of sets of size d. We say that Q separates
A and B if there is a test Q ∈ Q that separates them. Let p(d, t) be the lower
bound on the probability of separating two sets resulting from Lemma2.

P (Q is not correct pooling strategy) = P (Q does not separate two sets in F)

≤
∑

{A,B}∈F
P (Q does not separate {A,B})

≤ |F| (1 − p(d, t))m

≤ exp
(

O(d log(
N

d
) − m · p(d, t))

)
,
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where the last inequality is due to |F| ≤
(
N
d

)2
and 1−x ≤ e−x. The upper bound

formula obtained above shows that it is sufficient for m to be Ω( d
p(d,t) log(N

k )) =

Ω( d2

q(d,t) log(N
k )) in order to make P (Q is not correct pooling strategy)

less than 1. �

Corollary 1. For any t = Ω(d) such that t ≤ d
2 there exists a pooling design of

size O(d3/2 log N
d ) that discovers any set of positives of size d.

3.2 Lower Bound

We now get a lower bound on the length of any pooling testing strategy revealing
up to d positives.

Theorem 3. For a threshold t > 0 the size of the pooling strategy discovering
up to d positives is of order Ω

(
min

{(
d
t

)2
, N

t

})
.

Proof. In the proof we will consider a generalization of a pooling strategy with
a threshold. Let Q = Q1, ..., Qm be a family of m tests. We admit a situation
in which each test Qi uses a possibly different threshold ti. If ti = 0, then ith
test is always positive and in fact can be omitted. Let φ(S,N, d) for a given t,m
denote, that the following assertion is true:

There exist integer thresholds t1, t2, . . . , tk ∈ [0, t] such that t1 + t2 + · · · +
tk ≤ S for which there is a generalized pooling strategy Q which has m
tests and discovers up to d positives amongst N individuals.

The theorem will follow from the following claim

Claim. If φ(S,N, d), then m ≥ N/t or φ(S − d/t,N − 1, d − 1).

We consider two cases. In the first case, each individual n ∈ [N ] participates
in less than d/t tests. We will prove that, in this case, for any arbitrary individual
n ∈ [N ], there is a test in which only n and at most t − 1 other individuals
participate. This implies that the total number of tests m ≥ N/t.

Assume by contradiction that in each test Qi in which there is n there are
also at least t other individuals. Let, for such a test, the set Ai ⊆ Qi consist of
t individuals other than n. The set A being the union of all such sets Ai has
less than d elements since there are less than d/t such sets. Note that A and
A ∪ {n} have the same test results in the generalized pooling strategy Q which
contradicts its validity.

The second case occurs when there is an individual n participating in at
least d/t tests. Note that the generalized pooling strategy consisting of tests
Qi \ {n} is valid for detecting at most d − 1 positives in [N ] \ {n} if thresholds
ti are decreased by 1 for i such that n ∈ Qi. Thus in this case φ(S,N, d) implies
φ(S − d/t,N − 1, d − 1).
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Now having the Claim we can prove the Theorem. Note that if there is a
pooling strategy with threshold t in each round, then φ(kt,N, d). Unless m ≥
(N − d)/t the following chain of implications holds

φ(mt,N, d) =⇒ φ(mt − d/t,N − 1, d − 1) =⇒ · · ·
· · · =⇒ φ(mt − (d − 1)d/t,N − (d − 1), d − (d − 1)).

Since in the last formula mt − (d − 1)d/t ≥ 0, then m ≥ (d − 1)d/t2. So

m ≥ min
{(

d(d − 1)
t2

)
,
N − d

t

}
= Ω

(
min

{(
d

t

)2

,
N

t

})
.

�

4 Multiple Thresholds

In this section we consider feedback functions f = fT ,P with multiple thresholds.
We prove a result for thresholds arranged consecutively, i.e., T = {a, a+1, ..., b}
for a < b. Thus, the result of the test f(Q) tells the number of positives in Q if
it is in a range (a, b). Otherwise its results are “at most a positives” or “at least
b positives”.

We prove a result for the following class of thresholds. Let T = [t − 2α, t +
2α] for t, α ∈ {1, ..., d}. The line of the proof is similar to the case of single
threshold designs. Namely, we bound the probability of separating a fixed pair
of individuals and then we apply the probabilistic method.

Theorem 4. There exists a multi-threshold pooling strategy with 4α thresh-
olds centered around t of size O

(
d2

q(d,t,α) log N
d

)
, where q(d, t, α) =

Ω
(
t(1 − e−α2/t)2

)
.

In the remainder of this section we prove Theorem 4 and formulate a corollary
with a slightly simplified formula.

Let Q = Q1, ..., Qm be a sequence of random pools. For each Qi we choose
each element in [N ] to be contained in Qi with probability p = t/d.

Now, we state the definition of separation analogous to Definition 1.

Definition 2. Let A and B be subsets of [N ]. We say that a test Q ⊆ [N ]
separates A and B if fT ,A(Q) �= fT ,B(Q).

Lemma 3. Let A,B be d-element subsets of [N ] and Q be a random query
constructed by picking each element of [N ] with probability p = t

d . Recalling the
notation χS from Sect. 2, we have

P (Q separates A and B) = Ω

(
t

d

(
1 − e−α2/t

)2
)

.
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Proof. Let us denote A′ = A\B and B′ = B\A. We exploit the observation that
for A and B to be separated by test Q it is sufficient that χA ∈ T and χB �= χA

and proceed by using independence of random variables χA∩B, χA′ , χB′ .

P (Q separates A and B) ≥ P (χA ∈ T ∧ χB �= χA)
≥ P (|χA∩B − E[χA∩B ]| ≤ α) · P (|χA′ − E[χA′ ]| ≤ α ∧ χB′ �= χA′) .

Let pi = P(χA′ = i) , r = |A′| and R = [E[χA′ ] − α,E[χA′ ] + α]. We have,

P (|χA′ − E[χA′ ]| ≤ α ∧ χB �= χA) =
∑
i∈R

pi(1 − pi) ≥ (1 − p∗)P (χA′ ∈ R) ,

where p∗ = maxi∈R pi. We are interested in bounding p∗ from above. For i > 0
we have pi ≤ 1/2 (see Propositions 1 and 2), but p0 may be arbitrarily close to 1
as p approaches 0. Observe, however, that Proposition 2 guarantees that, in such
a case, we have p1 ≥ p/16 and thus p0 ≤ 1 − p/16. We bound the other factor
using the Chernoff bound. This gives us

P (|χA∩B − E[χA∩B ]| > α) ≤ 2 exp
(

− α2

(d − s)p

)
≤ 2 exp

(
−α2

dp

)
.

The same observation applies to the value P (χA′ ∈ R). Thus, we have

P (Q separates A and B) ≥ (1 − p∗)P (|χA∩B − E[χA∩B ]| ≤ α)

· P (|χA′ − E[χA′ ]| ≤ α) ≥ p(1 − e−α2/(dp))2/16.

�
Now we use the probabilistic method to show that there exists a pooling strategy
od certain size. We show that Q has probability greater than zero of being
a correct multi-threshold pooling strategy for suitable choice of m. The idea
behind this is similar to that used in proof of existence of single-threshold testing
strategy.

Let p(d, t, α) = t
d (1 − e−α2/t)2/16. By Lemma 3 we have

P (Q separates A and B) ≥ p(d, t, α).

P (Q is not correct pooling strategy) = P (Q does not separate two sets ∈ F)

≤
∑

{A,B}∈F
P (Q does not separate {A,B})

≤ |F| (1 − p(d, t, α))m

≤ exp
(

O(d log(
N

d
) − m · p(d, t, α))

)
,

Thanks to the above inequalities we know that it is sufficient to choose m =
d log(N

d )/p(d, t, α)= O
(

d2

q(d,t,α) log N
d

)
. This concludes the proof of Theorem4.

Corollary 2. There exists a multi-threshold pooling strategy of size O(d2

t log N
d )

provided that α = Ω(
√

t).
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5 Concluding Remarks

In this work we have studied the threshold group testing model and introduced
the multi-threshold group testing. We have presented various upper bounds indi-
cating that, in the model with non-constant threshold(s), the group testing can
be done much faster than in the case of one constant threshold. We believe that
techniques developed for efficient construction and decoding in the standard
model of group testing (e.g., [3,7,29,30,32,33]) could help in developing explicit
constructions for threshold group testing considered in this paper.

Acknowledgments. The authors would like to thank Darek Kowalski for his com-
ments to the paper.
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4 Institute of Informatics, University of Gdańsk, 80-309 Gdańsk, Poland
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Abstract. We study several problems of clearing subgraphs by mobile
agents in digraphs. The agents can move only along directed walks of
a digraph and, depending on the variant, their initial positions may be
pre-specified. In general, for a given subset S of vertices of a digraph
D and a positive integer k, the objective is to determine whether there
is a subgraph H = (VH ,AH) of D such that (a) S ⊆ VH , (b) H is
the union of k directed walks in D, and (c) the underlying graph of H
includes a Steiner tree for S. We provide several results on parameterized
complexity and hardness of the problems.

Keywords: Graph searching · FPT-algorithm · NP-hardness ·
Monomial

1 Introduction

Consider a city, after a snowstorm, where all streets have been buried in snow
completely, leaving a number of facilities disconnected. For snow teams, distrib-
uted within the city, the main battle is usually first to re-establish connectedness
between these facilities. This motivates us to introduce a number of (theoretical)
snow team problems in graphs. Herein, in the introduction section, for simplicity
of presentation, we shall formalize only one of them, leaving the other variants
to be stated and discussed subsequently.

Let D = (V,A, F,B) be a vertex-weighted digraph of order n and size m,
with two vertex-weight functions F : V → {0, 1} and B : V → N, such that its
underlying graph is connected. (Recall that the underlying graph of D is a simple
graph with the same vertex set and its two vertices u and v being adjacent if
and only if there is an arc between u and v in D.) The model is that vertices of
D correspond to street crossings while its arcs correspond to (one-way) streets,
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the set F = F−1(1) corresponds to locations of facilities, called also terminals,
and the set B = B−1(N+) corresponds to vertices, called from now on snow team
bases, where a (positive) number of snow ploughs is placed (so we shall refer to
the function B as a plough-quantity function). Let kB =

∑
v∈V B(v) be the total

number of snow ploughs placed in the digraph.

The Snow Team problem (ST)
Do there exist kB directed walks in D, with exactly B(v) starting points
at each vertex v ∈ V, whose edges induce a subgraph H of D such that
all vertices in F−1(1) belong to one connected component of the underlying
graph of H?

The ST problem may be understood as a question, whether for kB snow
ploughs, initially located at snow team bases in B = B−1(N+), where the number
of snow ploughs located at v ∈ B is equal to B(v), it is possible to follow kB

walks in D clearing their arcs so that the underlying graph of the union of cleared
walks includes a Steiner tree for all facilities in F−1(1).

Related Work. The Snow Team problem is related to the problems of clearing
connections by mobile agents placed at some vertices in a digraph, introduced by
Levcopoulos et al. in [32]. In particular, the ST problem is a generalized variant
of the Agent Clearing Tree (ACT) problem where one wants to determine a
placement of the minimum number of mobile agents in a digraph D such that
agents, allowed to move only along directed walks, can simultaneously clear some
subgraph of D whose underlying graph includes a spanning tree of the underlying
graph of D. In [32], the authors provided a simple 2-approximation algorithm
for solving the Agent Clearing Tree problem, leaving its complexity status open.

All the aforementioned clearing problems are themselves variants of the path
cover problem in digraphs, where the objective is to find a minimum number of
directed walks that cover all vertices (or edges) of a given digraph. Without any
additional constraints, the problem was shown to be polynomially tractable by
Ntafos and Hakimi in [36]. Several other variants involve additional constraints
on walks as the part of the input, see [5,22,27,30,35–37] to mention just a
few, some of them combined with relaxing the condition that all vertices of the
digraph have to be covered by walks.

A wider perspective locates our snow team problems as variants of graph
searching problems. The first formulations by Parsons [39] and Petrov [40] of the
first studied variant of these problems, namely the edge search, were inspired by a
work of Breisch [11]. In [11], the problem was presented as a search (conducted by
a team of agents/rescuers) of a person lost in a system of caves. The differences
between the problem we study in this work and the edge search lie in the fact
that in edge search the entity that needs to be found (usually called a fugitive)
changes its location quickly while in our case each entity is static and its position
is known. Also in edge search, an agent can be removed from the graph and
placed on any node (which is often referred as jumping) while in our problem it
needs to follow a directed path. A variant of the edge search that shares certain
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characteristics with the problem we study is the connected search. In the latter,
the connectivity restriction is expressed by requiring that at any time point,
the subgraph that is ensured not to contain the fugitive is connected; for some
recent algorithmic and structural results see e.g. [4,7,16,17]. We also remark a
different cleaning problem introduced in [33] and related to the variants we study:
cleaning a graph with brushes—for some recent works, see e.g. [10,12,24,34].
(Two restrictions from the original problem of cleaning a graph with brushes,
namely, enforcing that each edge is traversed once and each cleaning entity
must follow a walk in the graph appear in a variant of edge search called fast
search [18].) All aforementioned searching games are defined for simple graphs;
for some works on digraphs, see e.g. [2,3,6,15,25].

Finally, the ST problem is related to the directed Steiner tree problem, where
for a given edge-weighted directed graph D = (V,A), a root r ∈ V and a set of
terminals X ⊆ V, the objective is to find a minimum cost arborescence rooted
at r and spanning all terminals in X (equivalently, there exists a directed path
from r to each terminal in X) [13,46]. For some recent works and results related
to this problem, see e.g. [1,21,26]. We also point out to a generalization of the
Steiner tree problem in which pairs of terminals are given as an input and the
goal is to find a minimum cost subgraph which provides a connection for each
pair [13,19]. For some other generalizations, see e.g. [14,31,41–43].

Our Results. We show that the Snow Team problem as well as some of its vari-
ants are fixed-parameter tractable. In particular, we prove that the ST problem
admits a fixed-parameter algorithm with respect to the total number l of facil-
ities and snow team bases, running in 2O(l) · poly(n) time, where poly(n) is a
polynomial in the order n of the input graph (Sect. 2). The proof relies on the
algebraic framework introduced by Koutis in [28]. On the other hand, we show
that the ST problem (as well as some of its variants) is NP-complete, by a reduc-
tion from the Set Cover problem [23] (Sect. 3). Our result on NP-completeness
of the ST problem implies NP-completeness of the Agent Clearing Tree prob-
lem studied in [32], where the complexity status of the latter has been posed as
an open problem. Because of space consideration for the complete proof of the
NP-completeness result the reader is referred to a full version of the paper.

Remark. Note that a weaker version of the ST problem with the connectivity
requirement removed, that is, we require each facility only to be connected to
some snow team base, admits a polynomial-time solution by a straightforward
reduction to the minimum path cover problem in directed graphs [36].

Notation. The set of all source vertices in a directed graph D is denoted by
s(D). For a directed walk π in D, the set of vertices (arcs) of π is denoted by
V (π) (resp. A(π)). For two directed walks π1 and π2 in D, where π2 starts at
the ending point of π1, the concatenation of π1 and π2 is denoted by π1 ◦ π2.

Observe that in a border case, all non-zero length walks of snow ploughs
start at the same vertex of the input digraph D = (V,A, F,B). Therefore, we
may assume that the number of snow ploughs at any vertex is at most n − 1,
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that is, B(v) ≤ n − 1 for any v ∈ V, and so the description of any input requires
O(n log n + m) space (recall m ≥ n − 1).

2 The ST Problem is Fixed-Parameter Tractable

In this section, we prove that the Snow Team problem is fixed-parameter
tractable with respect to the number of facilities and snow team bases. The proof
relies on the key fact (see Lemmas 1 and 2 below) that to solve the ST problem
with the input D, by considering a restricted variant of the problem, we may
shift with it to the transitive closure TC(D) of D and try to detect a particular
directed subtree of ‘small’ order. We solve the latter tree detection problem by a
reduction to the problem of testing whether some properly defined multivariate
polynomial has a monomial with specific properties, essentially modifying the
construction in [29] designed for undirected trees/graphs.

Let us consider the variant of the ST problem, which we shall refer to as the
All-ST problem, where we restrict the input only to digraphs D = (V,A, F,B)
that satisfy B = B−1(N+) ⊆ F = F−1(1). (In other words, snow team bases can
be located only at some facilities.) We have the following lemma.

Lemma 1. Suppose that the All-ST problem can be solved in 2O(k)·poly(n) time,
where k is the number of facilities in the input (restricted) digraph of order n.
Then, the ST problem can be solved in 2O(l) · poly(n) time, where l is the total
number of facilities and snow team bases in the input digraph of order n.

Proof. It follows from the fact that a digraph D = (V,A, F,B) admits a positive
answer to the ST problem if and only if there exists a subset B′ of B \ (F ∩ B)
such that the digraph D′ = (V,A, F ′, B′), where F ′(v) = 1 for v ∈ F ∪ B′ and
F ′(v) = 0 otherwise, and B′(v) = B(v) for v ∈ B′ ∪ (F ∩ B) and B′(v) = 0
otherwise, admits a positive answer to the All-ST problem. 
�

Taking into account the above lemma, we now focus on constructing an
efficient fixed-parameter algorithm for the All-ST problem, with the restricted
input digraph D = (V,A, F,B) satisfying B = B−1(N+) ⊆ F = F−1(1). Let
W be a set of walks (if any) that constitute a positive answer to the All-ST
problem in D. We say that W is tree-like if all walks in W are arc-distinct and
the underlying graph of their union includes a Steiner tree for F . Notice that if
W is tree-like, then all walks in W are just (simple) paths.

Lemma 2. A (restricted) instance D = (V,A, F,B) admits a positive answer
to the All-ST problem if and only if the transitive closure TC(D) = (V,A′, F,B)
of D, with the same vertex-weight functions F and B, admits a positive answer
to the All-ST problem with a tree-like set of walks whose underlying graph is of
order at most 2|F| − 1.

Since the transitive closure TC(D) = (V,A′, F,B) inherits the functions F
and B from the restricted instance D, we emphasize that TC(D) is a proper
(restricted) instance to the All-ST problem.
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Proof (of Lemma 2). (⇐) It follows from the fact that a directed walk in the
transitive closure TC(D) corresponds to a directed walk in D.

(⇒) Assume that the snow ploughs initially located at vertices in B, according
to the plough-quantity function B, can simultaneously follow kB directed walks
π1, . . . , πkB

whose edges induce a subgraph H of D such that the underlying
graph of H includes a Steiner tree of F . Consider now the same walks in the
transitive closure TC(D). To prove the existence of a tree-like solution of ‘small’
order, the idea is to transform these kB walks (if ever needed) into another arc-
disjoint kB walks. The latter walks have the same starting points as the original
ones (so in B and preserving the plough-quantity function B) and the underlying
graph of their union is a Steiner tree of F (in the underlying graph of TC(D))
having at most |F| − 1 non-terminal vertices.

Our transforming process is based upon the following 2-step modification.
First, assume without loss of generality that the walk π1 = (v1, . . . , v|π1|) has an
arc (vt, vt+1) that is shared with another walk or corresponds to an edge in the
underlying graph H of

⋃kB

i=1 πi that belongs to a cycle (in H). If t = |π1| − 1,
then we shorten π1 by deleting its last arc (vt, vt+1). Otherwise, if t < |π1| − 1,
then we replace arcs (vt, vt+1) and (vt+1, vt+2) in π1 with the arc (vt, vt+2).
One can observe that the underlying graph of the new set of walks is connected,
includes a Steiner tree of F , and the vertex v1 remains the starting vertex of (the
new) π1. But, making walk arc-disjoint or cycle-free may introduce another arc
that is shared with at least two walks or another cycle in the underlying graph.
However, the length of the modified walk always decreases by one. Consequently,
since the initial walks are of the finite lengths, we conclude that applying the
above procedure eventually results in a tree-like set Π = {π1, . . . , πkB

} of walks,
being (simple) paths.

Assume now that in this set Π of arc disjoint paths, there is a non-terminal
vertex v of degree at most two in the underlying graph H of

⋃kB

i=1 πi. Without
loss of generality assume that v belongs to the path π1. Similarly as above, if
degH(v) = 1, then we shorten π1 by deleting its last arc. Otherwise, if degH(v) =
2 and v is not the endpoint of π1, then modify π1 be replacing v together with the
two arcs of π1 incident to it by the arc connecting the predecessor and successor
of v in π1, respectively. Observe that since v was a non-terminal vertex in the
underlying graph, the underlying graph of (the new)

⋃kB

i=1 πi is another Steiner
tree of F . Moreover, the above modification keeps paths arc-disjoint and does not
change the starting vertex of π1. Therefore, by subsequently replacing all such
degree at most two non-terminal vertices, we obtain a tree-like set of kB paths in
the transitive closure TC(D) such that the underlying graph of their union is a
Steiner tree of F with no degree two vertices except those either belonging to F
or being end-vertices of exactly two paths (in TC(D)). Therefore, we conclude
that the number of non-terminal vertices in this underlying graph is at most
|F| − 1, which completes our proof of the lemma. 
�

Now, taking into account the above lemma, a given (restricted) instance
D = (V,A, F,B) of the All-ST problem can be transformed (in polynomial
time) into the answer-equivalent (restricted) instance TC(D) = (V,A′, F,B)
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of the tree-like-restricted variant of the All-ST problem in which only tree-like
plough paths that together visit at most 2|F| − 1 vertices are allowed. Observe
that TC(D) = (V,A′, F,B) admits a positive answer to the tree-like-restricted
All-ST problem if and only if TC(D) has a subtree T = (VT ,AT ) of order at
most 2|F| − 1 and such that F ⊆ VT and all edges of T can be traversed by
at most kB snow ploughs following arc-distinct paths starting at vertices in B
(obeying the plough-quantity function B). This motivates us to consider the
following problem.

Let D = (V,A, F,B) be a directed graph of order n and size m, with two
vertex-weight functions F : V → {0, 1} and B : V → N such that B−1(N+) ⊆
F−1(1), and let T = (V,A,L) be a directed vertex-weighted tree of order t, with
a vertex-weight function L : V → N.

The Tree Pattern Embedding problem (TPE)
Does D have a subgraph H = (VH ,AH) isomorphic to T such that F−1(1) ⊆
VH and L(v) ≤ B(h(v)) for any vertex v of T , where h is an isomorphism of
T and H?

In Subsect. 2.2, we prove Theorem 1 given below which states that there is a
randomized algorithm that solves the TPE problem in O∗(2t) time, where the
notation O∗ suppresses polynomial terms in the order n of the input graph D. We
point out that if the order t of T is less than |F−1(1)| or at least n + 1, then the
problem becomes trivial, and so, in the following, we assume |F−1(1)| ≤ t ≤ n.

Theorem 1. There is a randomized algorithm that solves the TPE problem in
O∗(2t) time. 
�

Suppose that for each vertex v ∈ V , the value L(v) corresponds to the
number of snow ploughs located at v that are required to simultaneously tra-
verse (clear) all arcs of T , in an arc-distinct manner, and T admits a positive
answer to the TPE problem in the transitive closure TC(D) = (V,A′, F,B).
Then TC(D) admits a positive answer to the tree-like-restricted All-ST prob-
lem, which immediately implies that D admits a positive answer to the All-ST
problem (by Lemma 2). Therefore, taking into account Theorem1, we are now
ready to present the main theorem of this section. For simplicity of presentation,
we now assume that a (restricted) directed graph D = (V,A, F,B) itself (not its
transitive closure) is an instance of the tree-like-restricted All-ST problem.

Theorem 2. There is a randomized algorithm that solves the tree-like-restricted
All-ST problem for D = (V,A, F,B) in O∗(144|F|) time, where F = F−1(1).

Proof. Keeping in mind Lemma 2, we enumerate all undirected trees of order t,
where |F| ≤ t ≤ 2|F|−1 (and t ≤ n); there are O(9|F|) such candidates [38]. For
each such a t-vertex candidate tree, we enumerate all orientations of its edges,
in order to obtain a directed tree; there are 2t−1 such orientations. Therefore,
we have O(36|F|) candidates for a directed oriented tree T of order t, where
|F| ≤ t ≤ 2|F| − 1.
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For each candidate T = (V,A), we determine in O(t) time how many (at
least) snow ploughs, together with their explicit locations at vertices in V , are
needed to traverse all arcs of T , in an arc-disjoint manner. This problem can be
solved in linear time just by noting that the number of snow ploughs needed at
a vertex v is equal to max{0,degout(v)−degin(v)} (since arcs must be traversed
in an arc-disjoint manner). The locations of snow ploughs define a vertex-weight
function L : V → N. We then solve the TPE problem with the instance D and
T = (V,A,L) in O∗(2t) time by Theorem 1.

As already observed, if T admits a positive answer to the TPE problem for
D, then D admits a positive answer to the tree-like-restricted All-ST problem.
Therefore, by deciding the TPE problem for each of O(36|F|) candidates, tak-
ing into account the independence of any two tests, we obtain a randomized
algorithm for the restricted ST problem with a running time O∗(144|F|).

Taking into account Lemma1, we immediately obtain the following corollary.

Corollary 1. The ST problem admits a fixed-parameter algorithm with respect
to the total number l of facilities and snow team bases, running in 2O(l) ·poly(n)
time, where n is the order of the input graph. 
�

2.1 Variations on the Snow Team Problem

The first natural variation on the Snow Team problem is its minimization variant,
which we shall refer to as the min-ST problem, where for a given input n-vertex
digraph D = (V,A, F,B), we wish to determine the minimum number of snow
ploughs among those available at snow team bases in B = B−1(N+) that admits
a positive answer to the (original) Snow Team problem in D. We claim that
this problem also admits a fixed-parameter algorithm with respect to the total
number l of facilities and snow bases, running in time 2O(l)poly(n), and the
solution is concealed in our algorithm for the ST problem. Namely, observe that
by enumerating all directed trees of order at most |F|, see the proof of Theorem 2,
together with the relevant function L, and checking their embeddability in D,
we accidentally solve this minimization problem: the embeddable tree with the
minimum sum

∑
v∈V L(v) constitutes the answer to min-ST problem.

Corollary 2. The min-ST problem admits a fixed-parameter algorithm with
respect to the total number l of facilities and snow team bases, running in
2O(l) · poly(n) time, where n is the order of the input graph. 
�

In the case when for the input digraph D = (V,A, F,B), not all facilities can
be re-connected into one component, that is, D admits a negative answer to the
Snow Team problem, one can ask about the maximum number of facilities in
F−1(1) that can be re-connected by snow ploughs located with respect to the
plough-quantity function B [45]; we shall refer to this problem as the max-ST
problem. Since we can enumerate all subsets of F = F−1(1) in O∗(2|F|) time,
taking into account Theorem2, we obtain the following corollary.
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Corollary 3. The max-ST problem admits a fixed-parameter algorithm with
respect to the total number l of facilities and snow team bases, running in
2O(l) · poly(n) time, where n is the order of the input graph. 
�

Finally, we consider the following variant of the Snow Team problem, called
the Snow Team problem with Unspecified snow team bases (STU). Given a weight
function F : V → {0, 1} and an integer k ≥ 1, do there exist k directed walks
in a digraph D = (V,A) whose edges induce a subgraph H of D such that the
set F−1(1) is a subset of the vertex set of H and the underlying graph of H is
connected? We claim that for the STU problem, there is also a randomized algo-
rithm with the running time 2O(k+l) ·poly(n), where l = |F−1(1)| is the number
of facilities, and n is the order of the input graph. The solution is analogous
to that for the ST problem. Namely, one can prove a counterpart of Lemma2
which allows us to restrict ourselves to the restricted variant where only order
O(k + l) tree-like solutions are allowed. Then, the restricted variant is solved
also using the algorithm for the TPE problem as a subroutine: the function B
is the constant function B(v) = n, and among all directed tree candidates, we
check only those with

∑
v∈V L(v) ≤ k. We omit details.

Corollary 4. The STU problem admits a fixed-parameter algorithm with respect
to the number l of facilities and the number k of snow ploughs, running in
2O(k+l) · poly(n) time, where n is the order of the input graph. 
�

Observe that if the number k of available snow ploughs is not the part of the
input, that is, we ask about the minimum number of walks whose underlying
graph includes a Steiner tree for the set of facilities, then this problem seems to be
non-fixed-parameter tractable with respect only to the number of facilities. This
follows from the fact that the minimum number of snow ploughs is unrelated to
the number of facilities in the sense that even for two facilities to be connected,
a lot of snow ploughs may be required, see Fig. 1 for an illustration.

· · ·f1 f2

Fig. 1. Two facilities f1 and f2 require n− 1 snow ploughs, where n is the order of the
digraph.

2.2 The Tree Pattern Embedding Problem

In this section, we solve the TPE problem by providing a randomized polynomial-
time algorithm when the parameter t is fixed. Our algorithm is based upon the
recent algebraic technique using the concepts of monotone arithmetic circuits
and monomials, introduced by Koutis in [28], developed by Williams and Koutis
in [29,44], and adapted to some other graph problems, e.g., [8,9,20].
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A (monotone) arithmetic circuit is a directed acyclic graph where each leaf
(i.e., vertex of in-degree 0) is labeled either with a variable or a real non-negative
constant (input gates), each non-leaf vertex is labeled either with + (an addition
gate with an unbounded fan-in) or with × (a multiplication gate with fan-in two),
and where a single vertex is distinguished (the output gate). Each vertex (gate)
of the circuit represents (computes) a polynomial—these are naturally defined
by induction on the structure of the circuit starting from its input gates—and we
say that a polynomial is represented (computed) by an arithmetic circuit if it is
represented (computed) by the output gate of the circuit. Finally, a polynomial
that is just a product of variables is called a monomial, and a monomial in which
each variable occurs at most once is termed a multilinear monomial [28,44].

We shall use a slight generalization of the main results of Koutis and Williams
in [28,44], provided by them in Lemma 1 in [29], which, in terms of our notation,
can be expressed as follows.

Fact 1 [29]. Let P (x1, . . . , xn, z) be a polynomial represented by a monotone
arithmetic circuit of size s(n). There is a randomized algorithm that for the
input P runs in O∗(2kt2s(n)) time and outputs “YES” with high probability
if there is a monomial of the form ztQ(x1, . . . , xn), where Q(x1, . . . , xn) is a
multilinear monomial of degree at most k, in the sum-product expansion of P ,
and always outputs “NO” if there is no such monomial ztQ(x1, . . . , xn) in the
expansion. 
�

Taking into account the above fact, for the input digraph D = (V,A, F,B)
and directed tree T = (V,A,L), the idea is to construct an appropriate poly-
nomial Q(X, z) such that Q(X, z) contains a monomial of the form z|S|b(X),
where b(X) is a multilinear polynomial with exactly |V | variables in X and
S = F−1(1) ∪ B−1(N+), if and only if the TPE problem has a solution for the
input D and T (see Lemma 3 below).

Polynomial Construction. Let D = (V,A, F,B) be a directed graph, with
two vertex-weight functions F : V → {0, 1} and B : V → N, and let T = (V,A,L)
be a directed vertex-weighted tree of order t, with a vertex-weight function
L : V → N. We consider T to be rooted at a vertex r ∈ V , and for a non-
root vertex v of T , we denote the parent of v in T by p(v). Now, for v ∈ V ,
define two sets N+

T (v) and N−
T (v):

N+
T (v) = {u ∈ V | (u, v) ∈ A and u �= p(v)} ,

N−
T (v) = {u ∈ V | (v, u) ∈ A and u �= p(v)} .

The idea is to treat T as a ‘pattern’ that we try to embed into the digraph D,
with respect to functions F,B and L. Denote S = F−1(1)∪B−1(N+) for brevity.
We say that T has an S-embedding into D if the following holds (these are the
formal conditions that need to be satisfied for the embedding to be correct):

(E1) There exists an injective function (homomorphism) f : V → V such that if
(u, v) ∈ A, then (f(u), f(v)) ∈ A.
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(E2) S ⊆ f(V ), where f(V ) = {f(v) | v ∈ V }.
(E3) L(v) ≤ B(f(v)) for any v ∈ V .

First, for S ⊆ V, w ∈ V and u ∈ V , we introduce a particular indicator
function, used for fulfilling Conditions (E2) and (E3):

zS(u,w) =

⎧
⎪⎨

⎪⎩

z, if w ∈ S and L(u) ≤ B(w),
1, if w /∈ S and L(u) ≤ B(w),
0, otherwise, i.e., if L(u) > B(w).

Next, following [29], we define a polynomial Q(X,T ) that we then use to test
existence of a desired S-embedding of T in D. Namely, we root T at any vertex
r ∈ V . Now, a polynomial Qu,w(X), for a subtree Tu of T rooted at u ∈ V
and for a vertex w ∈ V, is defined inductively (in a bottom up fashion on T ) as
follows. For each u ∈ V and for each w ∈ V: if v is a leaf in T , then

Qu,w(X) = zS(u,w) · xw, (1)

and if u is not a leaf in T , then

Qu,w(X) =

⎧
⎪⎨

⎪⎩

zS(u,w) · xw · Q+
u,w(X) · Q−

u,w(X), if N−
T (u) �= ∅ ∧ N+

T (u) �= ∅,

zS(u,w) · xw · Q+
u,w(X), if N−

T (u) = ∅,

zS(u,w) · xw · Q−
u,w(X), if N+

T (u) = ∅,

(2)
where

Q+
u,w(X) =

∏

v∈N+
T (u)

⎛

⎝
∑

(w′,w)∈A
Qv,w′(X)

⎞

⎠ , (3)

Q−
u,w(X) =

∏

v∈N−
T (u)

⎛

⎝
∑

(w,w′)∈A
Qv,w′(X)

⎞

⎠ . (4)

Finally, the polynomial Q(X, z) is as follows:

Q(X, z) =
∑

w∈V
Qr,w(X). (5)

Lemma 3. The polynomial Q(X, z) contains a monomial of the form z|S|b(X),
where b(X) is a multilinear polynomial with exactly t variables in X, if and only
if the t-vertex tree T has an S-embedding into D.

Proof. Consider a vertex u of T and assume that the subtree Tu is of order j.
Observe that, by a straightforward induction on the size of a subtree, a monomial
zqxw1 · · · xwj

, where wi ∈ V for each i ∈ {1, . . . , j}, is present in Qu,w1(X) if and
only if the three following conditions hold.

(i) There exists a homomorphism fu from the vertices of Tu to w1, . . . , wj such
that fu(u) = w1.
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(ii) |S ∩ {w1, . . . , wj}| ≤ q and the equality holds if w1, . . . , wj are pairwise
distinct.

(iii) L(v) ≤ B(fu(v)) for any vertex v of Tu.

The fact that fu is a homomorphism follows from the observation that, during
construction of Qu,w1(X) in (3) and (4), a neighbor v of u is mapped to a node
w′ of D in such a way that if (v, u) ∈ A then (w′, w) ∈ A (see (3)), and if
(u, v) ∈ A then (w,w′) ∈ A (see (4)). Conditions (ii) and (iii) are ensured by
appropriate usage of the indicator function in (1), namely, if u is mapped to w
in a homomorphism corresponding to Qu,w(X), then we add the multiplicative
factor of z to Qu,w(X) provided that L(v) ≤ B(w).

Thus, we obtain that Q(X, z) has a multilinear polynomial z|S|xw1 · · · xwt
if

and only if T has an S-embedding into D. 
�
Observe that the polynomial Q(X, z) and the auxiliary polynomials Q+

u,w(X),
Q−

u,w(X) can be represented by a monotone arithmetic circuit of size polynomial
in the order n of the input digraph D. To start with, we need n + 1 input gates
for the variables corresponding to vertices of D, and the auxiliary variable z.
With each of the aforementioned polynomials, we associate a gate representing
it, in total O(tn) gates. In order to implement the recurrences defining the poly-
nomials, assuming unbounded fan-in of addition gates, we need O(n) auxiliary
gates for each recurrence involving large products. Thus, the resulting circuit
is of size O(n3). Hence, by Fact 1 combined with Lemma 3, we conclude that
the existence of an S-embedding of the t-vertex tree T into D can be decided in
O∗(2|S|) time. Consequently, since |S| ≤ t, we obtain Theorem 1 by the definition
of an S-embedding.

2.3 Embedding Directed Forests

We observe that the above approach can be adapted to the case when we want to
embed a directed forest T = (V,A, F,B) of order t into a directed graph. All we
need is to build a relevant polynomial for each rooted directed tree-component of
T , and then to consider the product S(X,T ) of these polynomials, asking about
the existence of a monomial of the form z|S|b(X), where b(X) is a multilinear
polynomial with exactly t variables in X. Also, by similar approach, we may
consider and can solve (simpler) variants of our embedding problem without the
weight function F or without the weight functions B and L; details are omitted.

3 The ST Problem is Hard

Based upon a polynomial-time reduction from the Set Cover problem [23], we can
prove the following theorem. (Because of space consideration for the complete
proof of the NP-completeness result the reader is referred to a full version of the
paper.)

Theorem 3. The ST problem is strongly NP-complete even for directed acyclic
graphs D = (V,A, F,B) with F−1(1) = V and B(v) = 1 if v is a source vertex
in D and B(v) = 0 otherwise. 
�
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No Pre-specified Positions of Snow Ploughs. We claim that the Snow Team
problem with Unspecified snow team bases is also NP-complete. The reduction
is exactly the same as for the ST problem. All we need is to observe that if
facilities are located at all vertices of the input digraph, then the number of
snow ploughs sufficient to solve the STU problem is bounded from below by the
number of source vertices in the digraph, since there must be at least one snow
plough at each of its source vertices. Furthermore, without loss of generality we
may assume that in any feasible solution of k walks, all snow ploughs are initially
located at source vertices.

Corollary 5. The STU problem is strongly NP-complete even for directed
acyclic graphs D = (V,A, F ) with F−1(1) = V and k equals the number of
source vertices in D. 
�

Since by setting F (v) = 1 for each vertex v of the input digraph, the STU
problem becomes just the Agent Clearing Tree problem (ACT) studied in [32].
Hence, we immediately obtain the following corollary resolving the open problem
of the complexity status of ACT posed in [32].

Corollary 6. The ACT problem is NP-complete. 
�

4 Open Problem

In all our variants of the Snow Team problem, we assumed that a snow plough
can traverse arbitrary number of arcs. However, from a practical point of view,
it is more natural to assume that each snow plough, called an s-plough, can
traverse and clear only the fixed number s of arcs [35]. Observe that in this
case, the key Lemma 2 does not hold, which immediately makes our algebraic
approach unfeasible for the Snow Team problem with s-ploughs, so this variant
requires further studies.
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Abstract. For first-order logic model checking on monotone graph
classes the borderline between tractable and intractable is well charted:
it is tractable on all nowhere dense classes of graphs, and this is essen-
tially the limit. In contrast to this, there are few results concerning the
tractability of model checking on general, i.e. not necessarily monotone,
graph classes.

We show that model checking for first-order logic on map graphs is
fixed-parameter tractable, when parameterised by the size of the input
formula. Map graphs are a geometrically defined class of graphs similar
to planar graphs, but here each vertex of a graph is drawn homeomorphic
to a closed disk in the plane in such a way that two vertices are adjacent
if, and only if, the corresponding disks intersect. Map graphs may con-
tain arbitrarily large cliques, and are not closed under edge removal.

Our algorithm works by efficiently transforming a given map graph
into a nowhere dense graph in which the original graph is first-order
interpretable. As a by-product of this technique we also obtain a model
checking algorithm for FO on squares of trees.

1 Introduction

Starting with Courcelle’s groundbreaking result [2] that model checking for
monadic second-order logic (MSO) is fixed-parameter tractable on graphs of
bounded tree width, efficient algorithms for model checking on restricted classes
of structures have been thoroughly investigated. Since many well-known algo-
rithmic problems on graphs (such as finding cliques, dominating sets, or vertex
covers of a given size) can be rephrased as model checking problems, efficient
algorithms for model checking immediately yield efficient algorithms for these
problems as well. Therefore results showing the existence of such model checking
algorithms are commonly referred to as algorithmic meta theorems.

For first-order logic (FO), model checking has been shown to be fixed-
parameter tractable on a wide range of graph classes, cf. [4,6,9,14]. These results
hinge on the fact that FO has very strong locality properties, and clever graph-
theoretic tools for small-diameter graphs. In particular, the methods used in
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 204–216, 2017.
DOI: 10.1007/978-3-662-55751-8 17



FO Model Checking on Map Graphs 205

proving these results are well-behaved under edge-removal. A graph class which
is closed under taking (not necessarily induced) subgraphs is called monotone,
and for monotone graph classes, FO model checking is fixed-parameter tractable
if, and only if, the graph class is nowhere dense [14] (modulo some minor tech-
nicalities).

Thus to overcome the barrier of sparse graphs, entirely different algorith-
mic techniques are necessary. Previous results for model checking on non-sparse
graph classes are few. In particular, Courcelle’s result has been generalised to
graphs of bounded clique width [3], and there are results for FO model checking
on partially ordered sets of bounded width [10] and on certain interval graphs, if
these graphs are given as an interval representation [12]. Recently, Gajarský et
al. obtained an efficient model checking algorithmic for FO on graphs that are
FO-interpretable in graphs of bounded degree [11].

In this work we obtain a new algorithmic meta theorem for first-order logic:

Theorem 1. The model checking problem for first-order logic on vertex coloured
map graphs is fixed-parameter tractable, parameterised by the size of the input
formula.

Map graphs have been introduced by Chen et al. [1] as a generalisation of
planar graphs. They are defined as graphs which can be drawn in the plane
in a way such that to every vertex of the graph a region homeomorphic to a
closed disk is drawn, and the regions corresponding to vertices u and v touch
if, and only if, uv is an edge of the graph. Here, two regions are considered to
touch already if they intersect (as point sets) in a single point. If instead one
insists that regions intersect in a set containing a homeomorphic image of a line
segment, one obtains the familiar notion of planar graphs.

Note that unlike planar graphs, map graphs may contain arbitrarily large
cliques, and the class of map graphs is not closed under taking arbitrary sub-
graphs. The recognition problem for map graphs, i.e. deciding for a given an
abstract graph G = (V,E) whether it can be realised as a map graph, has been
shown to be feasible in polynomial time by Thorup in the extended abstract [22].
However, Thorup’s algorithm has a running time of roughly O(|V |120), and no
complete description of it has been published. Moreover, it does not produce a
witness graph (which is a combinatorical description of a map drawing) if the
input graph is found to be a map graph. Recently, Mnich et al. [19] have given a
linear algorithm that decides whether a map graph has an outerplanar witness
graph, and computes one if the answer is yes.

The graph input to our algorithm is given as an abstract graph (and not
as, say, a geometric representation as a map), and we do not rely on Thorup’s
algorithm nor any results from [22]. Instead, we use Chen et al.’s classification of
cliques in a map graph and show how to efficiently compute, given a map graph
G, a graph R in which G is first-order interpretable and such that the class of all
graphs arising in this way is nowhere dense. In fact, G is an induced subgraph
of the square of R, i.e. the graph with the same vertex set as R in which two
vertices are adjacent if, and only if, they have distance at most 2 in R. In Sect. 7
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we show how know results on squares and square roots of graphs can be used to
obtain further algorithmic meta theorems.

2 Preliminaries

2.1 Logic

We use standard definitions for first-order logic (FO), cf. [7,8,16]. In particular,
⊥ and � denote false and true, respectively. We will only be dealing with finite,
vertex coloured graphs as logical structures, i.e. finite structures with vocab-
ularies of the form {E,P1, . . . , Pk}, with a binary edge relation E and unary
predicates P1, . . . , Pk.

2.2 Graphs

We will be dealing with finite simple (i.e. loop-free and without multiple edges)
undirected graphs, cf. [5,24] for an in-depth introduction. Thus a graph G =
(V,E) consists of some finite set V of vertices and a set E ⊆ (

V
2

)
of edges. A

clique C ⊆ V is a set of pairwise adjacent vertices, i.e. such that uv ∈ E for all
u, v ∈ C, u �= v. The neighbourhood of a vertex v ∈ V is defined as

N(v) := {w ∈ V | vw ∈ E}.

For a set W ⊆ V of vertices we denote by E[W ] ⊆ E the set of edges that have
both endpoints in W .

A topological embedding of a graph H = (W,F ) into a graph G = (V,E), is
an injective mapping ι : W → V together with a set {pxy | xy ∈ F} of paths in
G such that

– each path pxy connects ι(x) to ι(y) and
– the paths pxy share no internal vertices, and no ι(z) is an internal vertex of

any of these paths.

If a topological embedding of H into G exists we say that H is a topological
minor of G, written H � G.

If all paths pxy of a topological embedding have length at most r then the
embedding is said to be r-shallow. The notion of an r-shallow topological minor,
written �r, is defined accordingly. A class C of graphs is called nowhere dense if
for every r there is an m with Km ��r G for any G ∈ C.

We relax these notions by allowing vertices of G to be used more than once
but at most c times, for a constant c. Thus H is a topological minor of complexity
≤ c of G (written H �c G) if there is a mapping ι : W → V and paths pxy

connecting ι(x) to ι(y) for every xy ∈ F such that no v ∈ V is used more than
c times as an internal vertex of some pxy or as ι(x). Similarly for H �c

r G.
It is well known that K5 �� G for any planar graph G. While for every graph

H and every c ≥ 2 there is a planar graph G with H �c G, for every c, r ∈ N
there is some m = m(c, r) ∈ N such that Km ��c

r G for any planar graph G
(cf. [21, Sect. 4.8]).
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2.3 Map Graphs

A graph G = (V,E) is a map graph if there are sets Dv ⊆ R2, one for each
v ∈ V , such that

– each Dv is homeomorphic to a closed disc (i.e. homeomorphic to {(x, y) ∈
R2 | x2 + y2 ≤ 1},

– Dv and Dw intersect only on their boundaries, for v �= w, and
– Dv ∩ Dw �= ∅ if, and only if, vw ∈ E.

Chen et al. showed that G is a map graph if, and only if, there is a planar bipartite
graph H = (V ∪ P, F ) having the vertices of G as one side of its bipartition and
such that uv ∈ E iff up, vp ∈ F for some p ∈ P ; moreover we may assume that
|P | ≤ 4|V | [1, Theorem 2.2, Lemma 2.3]. Such a graph H is called a witness for
G. We call the elements of P the points of the witness, and refer the term vertex
to elements of V .1

By [1, Theorem 3.1], every clique C in a map graph is of one (or more) of
the following types (cf. Fig. 1):

pizza there is a p ∈ P such that pv ∈ F for all v ∈ C, or
pizza-with-crust there is a v ∈ C and a p ∈ P such that pv �∈ F but pw ∈ F

for all w ∈ C \ {v}, or
hamantasch there are p, q, r ∈ P such that every v ∈ C is adjacent to at least

two of these points, or
rice ball |C| ≤ 4 and any p ∈ P is adjacent to at most two vertices in C.

Furthermore, the number of maximal cliques in a map graph with n vertices is
bounded by 27n [1, Theorem 3.2].

pizza pizza
with crust

hamantasch rice ball

Fig. 1. The possible types of cliques in map graphs.

3 The Maximal Clique Graph

Let G = (V,E) be a map graph and H = (V ∪ P, F ) a planar witness graph for
it. Let C1, . . . , Cm ⊆ V be the maximal cliques in G. Then m ≤ 27 · |V |. We

1 Elements of V are referred to as nations by Chen et al.
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define the maximal clique graph M = (V ∪ W,FM ) as the bipartite graph with
W = {wC |C = C1, . . . , Cm} and v ∈ V and wC ∈ W adjacent if, and only if,
v ∈ C.

Note that

– any witness graph H is, by definition, planar, but we do not know how to
efficiently compute one from G,

– we can recover G from coloured versions of both H and M by first-order
interpretations,

– we can compute M from G in polynomial time, because we can enumerate
the maximal cliques of G in output-polynomial time [23] and there are only
linearly many.

In Sect. 5 we define a graph similar to M which will indeed be nowhere dense.
Before doing so we give a sequence of a map graphs Gn for which Kn �2 Mn,
i.e. the class of maximal clique graphs of map graphs is not nowhere dense.

Let Gn = (Vn, En) with

Vn := {v1, . . . , vn}
︸ ︷︷ ︸

=:V

∪{a1, . . . , am}
︸ ︷︷ ︸

=:A

∪{b1, . . . , bm}
︸ ︷︷ ︸

=:B

,

En :=
(

V

2

)
∪

(
A

2

)
∪

(
B

2

)
∪ {aibi | 1 ≤ i ≤ m}∪

{viaj , vibj | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

where m :=
(
n
2

)
. This is a map graph, as witnessed by Fig. 2. The maximal

cliques are the sets V ∪ A, V ∪ B, and

Ci := {v1, . . . , vn, ai, bi}
for i = 1, . . . ,m, which can be seen as hamantasch or pizza-with-crust cliques.
But then the maximal clique graph Mn contains a 2-subdivision of Kn as a
subgraph, so {Mn | n ≥ 1} is not nowhere dense.

v1 · · · vn

a1

am

bm

b1
v2

Fig. 2. The map graphs Gn whose maximal clique graphs contain large cliques as (even
topological) 2-shallow minors.
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We will deal with this by making sure that

– hamantasch cliques are of bounded size, and
– pizza-with-crust cliques with identical centre points are treated only once.

This will be the content of Sects. 4 and 5.

4 Neighbourhood Equivalence

We call two vertices v, w ∈ V in a graph G = (V,E) neighbourhood equivalent,
written v ∼ w, if

N(v) \ {v, w} = N(w) \ {v, w}.

This defines an equivalence relation on V ; for transitivity note that u ∼ v and
v ∼ w imply that {u, v, w} is either a clique or an independent set. This equiv-
alence relation has been studied before, e.g. in [11,15], where it is called twin
relation. For the purpose of model checking we may prune a graph by removing
neighbourhood equivalent vertices, as long as we keep track of their number,
up to a given threshold.

Define the graph G/∼ to be the graph with vertex set

V/∼ = {[v] | v ∈ V }
and vertices [v] �= [w] adjacent if, and only if, vw ∈ E. Note that this is indepen-
dent of the particular choice of representatives, since v ∼ v′ and w ∼ w′ imply
that (vw ∈ E) ⇔ (v′w′ ∈ E).

In G/∼ no two vertices have identical neighbourhoods:

N([v]) = N([w]) ⇒ [v] = [w]

To see this, assume [v] �= [w]. Wlog there is some u ∈ V such that uv ∈ E but
uw �∈ E. But then [u][v] ∈ E/∼ but [u][w] �∈ E/∼, so N([v]) �= N([w]).

We add information on the size of [v] to the graph G/∼ using unary predicates
as follow: for i ∈ N we set

Pi(G) := {[v] | |[v]| ≥ i} ⊆ V/∼,

and we let G∼,m be the graph G/∼ together with the unary predicates
P1, . . . , Pm. Note that G∼,m can be computed on input G and m in polyno-
mial time, e.g. using colour refinement techniques. Our definition of G∼,m is
motivated by the following lemma, whose (straight-forward) proof we omit here:

Lemma 1. For every ϕ ∈ FO of quantifier rank m there is a ψ ∈ FO of the
same quantifier rank such that

G |= ϕ ⇔ G∼,m |= ψ

for every graph G.
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5 3-Connected Map Graphs

In the following we show how to perform FO model checking on 3-connected
map graphs. Using Lemma 1 we may, and will, assume that no two vertices of
the input graph have identical neighbourhoods. We start by showing that this
together with 3-connectedness implies that hamantasch cliques have size at most
9.

Lemma 2. Let G = (V,E) be a 3-connected map graph, H = (V ∪ P, F ) a
witness graph for G and p, q ∈ P . Consider the vertices of G adjacent to both p
and q:

Np,q := N(p) ∩ N(q) = {v ∈ V | pv, qv ∈ F}.

Then all but (possibly) two of the vertices in Np,q have identical neighbourhoods
in G: There are vertices u,w ∈ V such that

N(v) = N(v′)

for all v, v′ ∈ Np,q \ {u,w}.
Proof. We fix an arbitrary drawing of H. If |Np,q| ≤ 2 we are done. Otherwise
we may order the vertices of Np,q as {v1, v2, . . . , v�} in such a way that for any
1 ≤ i < j < k ≤ �, the vertex vj is inside the region bounded by the cycle
pviqvkp in the drawing of H.

Now let v ∈ V be a neighbour of vj in G, for 1 < j < �. Then there is a point
r ∈ P such that both vj and v are adjacent to r in H. Then r must be inside
the (closed) region bounded by pvj−1qvj+1p. If either r = p or r = q, then v is
adjacent to all vertices in Np,q and we are done.

Otherwise the point r must either be inside pvj−1qvjp or inside pvjqvj+1p, but
then either {vj−1, vj} or {vj , vj+1} disconnect v from vj+1 or vj−1, contradicting
the 3-connectedness of G. The lemma follows by choosing u = v1 and w = v�.

Since we assume all vertices of our graph to have unique neighbourhoods, it
follows that

|Np,q| ≤ 3

for all p, q ∈ P . Thus if C ⊆ V is a hamantasch-clique, then |C| ≤ 9, because

C = Np,q ∪ Nq,r ∪ Np,r

for a suitable choice of points p, q, r ∈ P in a witness H = (V ∪ P, F ).

The Reduced Maximal Clique Graphs

Starting from a given 3-connected map graph G we now compute a graph which
we call reduced maximal clique graph M(G). Let C1, . . . , Cm ⊆ V be the maximal
cliques of G, ordered in decreasing size:

|C1| ≥ |C2| ≥ · · · ≥ |Cm| ,
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and cliques of the same size may appear in arbitrary order. By a result of Chen
et al. [1, Theorem 3.2] we know that m ≤ 27 · |V |, and using an algorithm of
Tsukiyama et al. [23] we may compute all of these in polynomial time.

We construct a bipartite graph R = (V ∪ U,A) such that for every v, w ∈ V
there is a u ∈ U adjacent to both v and w if, and only if, vw ∈ E. In this case
we say that the edge vw is covered by u. We process the cliques in descending
size, keeping a set Si ⊆ E of edges which are already covered, a set Ti ⊆ E of
edges which will be covered by individual vertices, and sets Ui, Ai of vertices
and edges in the graph that is created. Initially we have

S0 := ∅, T0 := ∅, U0 := ∅, and A0 := ∅

and do the following for i = 1, . . . , m:

(R1) E[Ci] ⊆ Si−1 then all edges of Ci are already covered and we ignore Ci

(setting Si = Si−1, Ti = Ti−1 and so on),
(R2) otherwise, if there is a vertex v ∈ Ci such that E[Ci \ {v}] ⊆ Si−1 we set

Si := Si−1, Ti := Ti−1 ∪ {vw | w ∈ Ci, w �= v},

Ui := Ui−1, and Ai := Ai−1,

(R3) otherwise, if |Ci| ≤ 9, we treat all edges in Ci as special edges:

Si := Si−1

Ti := Ti−1 ∪ E[Ci]
Ui := Ui−1, and
Ai := Ai−1

(R4) In all other cases we introduce a new vertex ui connected to all vertices in
Ci:

Si := Si−1 ∪ E[Ci] Ti := Ti−1

Ui := Ui−1 ∪ {ui}, and Ai := Ai−1 ∪ {uiv | v ∈ Ci}

At the end of this process we have a bipartite graph (V ∪ Um, Am), plus a set
Tm of edges. For any edge vw ∈ Tm \ Sm we add a new vertex u to Um and
connect it only to v and w. We call the resulting graph R = R(G) := (V ∪ U,A)
the reduced maximal clique graph for G. Note that R is not uniquely determined
by G but is also influenced by choices the algorithm makes at various stages.

By construction, the graph G is a half-square of R, i.e. for any v, w ∈ V the
edge vw is in E if, and only if, there is a u ∈ U such that uv, uw ∈ A. Since R
is not necessarily planar, it need not be a witness graph of G, but we will now
show that the class of graphs arising in this way from map graphs is nowhere
dense. Since we can easily recover G in a coloured version of R by a first-order
interpretation, and since R can be constructed from G in polynomial time, we
may use Grohe et al.’s model checking algorithm for first-order logic on nowhere
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dense classes of graphs [14] to obtain a model checking algorithm for first-order
logic on 3-connected map graphs.

To show that the class

{R(G) | G is a 3-connected map graph}
is indeed nowhere dense we choose an r ∈ N and assume that K2m �r R. We
will now show that in this case Km �c

r H ′ for some planar graph H ′, for an
absolute constant c whose value will become apparent during the proof. Since
this is not possible for large enough values of m, we conclude that for every r
there is an m with K2m ��r R, and thus the class of reduced maximal clique
graphs is nowhere dense.

We fix a witness graph H = (V ∪ P, F ) of G with an arbitrary drawing.
Suppose K2m �r R. This means that there are vertices x1, . . . , x2m ∈ V ∪U and
pairwise internally vertex-disjoint paths pij connecting xi and xj , for 1 ≤ i <
j ≤ 2m. If we could map these vertices and paths injectively into H, we would
obtain a topological K2m-minor in H, contradicting the fact that H is planar if
2m ≥ 5. We can map the vertices in V to their respective counterparts in H.
However,

(i) some maximal cliques (pizza-with-crust and hamantasch) do not correspond
to single points in P , and

(ii) we may need to pass through points in P more than once.

We first deal with (i). This concerns vertices u ∈ U that have been introduced
to cover the edges of pizza-with-crust and hamantasch maximal cliques. Each
xi ∈ V ∪ U has degree 2m − 1, which is > 9 if we choose m large enough. If
xi = u ∈ U then u has been added by rule (R4) to R to cover the edges of a
maximal clique C in G of size > 9. This clique must be either a pizza or pizza-
with-crust, because all hamantasch cliques have size ≤ 9. Therefore there is a
point p ∈ P that is adjacent to all but at most one of the vertices in C. If there
is a vertex v ∈ V adjacent to xi in R but not adjacent to p in H, we remove the
xj which is connected to xi via the path containing v.

We do this for all the 2m vertices of the topological K2m minor in R and,
after relabelling the vertices, are left with a topological Km-minor in R and a
mapping of its vertices x1, . . . , xm ∈ V ∪ U to y1, . . . , ym ∈ V ∪ P such that:

– If xi ∈ V , then yi = xi, and
– if xi ∈ U , then yi ∈ P , and all neighbours of xi on paths of the Km minor

are also neighbours of yi in H.

Furthermore, no p ∈ P appears as yi for more than one i: Obviously, any p ∈ P
can only be the centre vertex of at most one maximal clique of pizza type. It
may be the centre vertex of more than one (in fact, an unbounded number of)
maximal cliques of pizza-with-crust-type, but in this case it is also the centre
vertex of a larger clique of pizza-type. It is precisely the purpose of rule (R2)
in the construction of R to guarantee that only one of these maximal cliques
results in a vertex in U .
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It remains to map vertices on the paths connecting the xi to vertices in H.
Again we map vertices in V to their identical counterparts. For the remaining
vertices, we do not need to preserve all adjacencies, but only their two neighbours
on the path belonging to the topological minor. In the following, let xuy be a
part of one of the paths connecting the xi, with x, y ∈ V and u ∈ U .

We make a case distinction, depending on how the vertex u was introduced
to the graph R: If u was introduced using rule (R4) then there is a maximal
clique C in G of size >9 containing both x and y. We make a case distinction
on the type of C:

– If C is a maximal pizza-clique, then there is a p ∈ P connected to exactly the
elements of C, and we may map u to p.

– If C is a maximal pizza-with-crust-clique, there are two possibilities: If both
x and y are connected to the centre point p ∈ P of the pizza-with-crust, then
we may map u to p. Using the same reasoning as above, we can ensure that
no p ∈ P is used more than once, because if it is the centre vertex of two
or more pizzas-with-crust, then is also the centre vertex of an even larger
pizza-clique, and by rule (R2) u could not have been introduced in this case.
Finally, C may be a pizza-with-crust-clique, and x and y connected by a
vertex p ∈ P that is not the centre vertex of C. We can not bound the
number of pairs x, y for which this happens, i.e. there may be arbitrarily
many x1, . . . , xk, y1, . . . , yk ∈ V such that

• all xi, yi are adjacent to p,
• each pair xi, yi belongs to some maximal clique Ci in G,
• no Ci ∪ Cj is a clique for 1 ≤ i < j ≤ k.

However, in this case the paths xipyi do not cross but only touch at p, i.e.
in the drawing of H, the pairs xiyi are consecutive in the cyclic order of the
neighbours {x1, . . . , xk, y1, . . . , yk} of p. Therefore we may split p into vertices
p1, . . . , pk, with each pi adjacent to xi and yi, and still obtain a planar graph
H ′.

Otherwise, x and y are the endpoints of some edge xy ∈ Tm, and u was
introduced to cover this edge. Then there is some p ∈ P adjacent to both x and
y in H. This p has degree at most 9, for otherwise the neighbours of p (plus
possibly one other vertex) would form a maximal clique of size larger than 9,
and there would be a vertex u′ ∈ U for this clique. Since p has degree ≤9 we
may safely map u to p, because there can be at most

(
9
2

)
= 36 pairs of vertices

that get routed through p in this way.
Thus after possibly splitting some vertices of H, we end up with a planar

graph H ′ and an r-shallow topological embedding of Km into H ′ of complexity
at most 38, which gives the desired contradiction if m is large enough.

6 General Map Graphs

We briefly sketch how our algorithm can be adapted to map graphs that are not
necessarily 3-connected. Recall that we needed 3-connectedness to bound the
size of hamantasch cliques, which followed from Lemma 2.
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Using Feferman and Vaught’s composition theorem [18] we may treat con-
nected components individually. Similarly, we may build a tree of 2-connected
components (blocks) and process the blocks one by one. We are left with the
case of 2-connected but not necessarily 3-connected graphs.

These can be tree-decomposed into parts which are cycles, parallel edges,
or 3-connected map graphs, and such that these parts are glued together along
edges (cf. [24], it is easy to see that the 3-connected parts in this decomposition
are again map graphs). We could colour the edges of these component graphs
with the FO[q]-types of the graphs attached to them, but this would result in
3-connected parts that are not necessarily map graphs. In fact, any graph can
be encoded in a clique (which is a map graph) of the same size by colouring its
edges with two colours.

Instead we introduce coloured vertices of degree 2 rather than colouring the
edges. Essentially as in the proof of Lemma 2 we can then show that in any
hamantasch clique, there can be only 9 different neighbourhood types if we
neglect vertices of degree 2. Again using Feferman-Vaught, we can prune vertices
from hamantasch cliques.

7 Squares of Trees

Algorithmic meta theorems for a logic L on a class C of structures immediately
carry over to a structure D if

– every structure A ∈ C can be interpreted in a structure A′ ∈ D using a
L-interpretation that depends only on the classes C and D, and

– the structure A′ can be efficiently computed from A.

Courcelle’s result for MSO model checking on graphs of bounded tree-width can
be seen as an example of this, since for every graph G of tree-width k there is a
tree T such that G is MSO-interpretable in T , using an interpretation that only
depends on k, and T can be efficiently computed from G.

Our proof of Theorem 1 also uses this approach, with a very specific kind of
FO-interpretation: The input graph G was interpretated as an induced subgraph
of the square of the bipartite graph R computed in Sect. 5. Squares and square-
roots of graphs have been studied in graph theory, cf. e.g. [13,20]. In particular,
Lin and Skiena [17] showed that checking whether a given graph is a square of
a tree, and computing such a tree, can be done in polynomial time. The key
observation towards this algorithm is that if G = (V,E) is a square of some tree
T = (V, F ), then v ∈ V is simplicial (i.e. N(v) is a clique) if, and only if, v is a
leaf of T .

Using Lin et al.’s result we immediately get:

Theorem 2. Model checking for first-order logic on the class of (coloured)
squares of trees is fixed-parameter tractable.
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Abstract. Strong lexicalization is the process of turning a grammar
generating trees into an equivalent one, in which all rules contain a ter-
minal leaf. It is known that tree adjoining grammars cannot be strongly
lexicalized, whereas the more powerful simple context-free tree grammars
can. It is demonstrated that multiple simple context-free tree grammars
are as expressive as multi-component tree adjoining grammars and that
both allow strong lexicalization.

1 Introduction

In computational linguistics several grammar formalisms [7] have been proposed
that generate semilinear superclasses of the context-free languages, are able
to model cross-serial dependencies, but remain parsable in polynomial time.
Among the most well known are the (set-local) multi-component tree adjoining
grammar (MCTAG) [5,18], which is an extension of the tree adjoining gram-
mar (TAG), and the multiple context-free (string) grammar (MCFG) [16], which
was independently discovered as (string-based) linear context-free rewriting sys-
tem (LCFRS) [17]. In both cases the ability to synchronously rewrite multiple
components was added to a classical model (TAG and CFG). In the same spirit,
the multiple context-free tree grammar (MCFTG) was introduced in [8, Sect. 5]
as the context-free graph grammar in tree generating normal form of [1], but
was implicitly envisioned as tree-based LCFRS already in [17].

We define the MCFTG as a straightforward generalization of both the MCFG
and the classical simple (i.e., linear and nondeleting) context-free tree grammar
(CFTG). Intuitively, an MCFTG G is a CFTG, in which several nonterminals
are rewritten in one derivation step. Thus every rule of G is a sequence of rules
of a CFTG, and the left-hand side nonterminals of these rules are rewritten syn-
chronously. However, a sequence of nonterminals can only be rewritten if (earlier
in the derivation) they were introduced explicitly as such by the application of a
rule of G, which is called “locality” in [14,18]. Therefore, each rule of G must also
specify the sequences of (occurrences of) nonterminals in its right-hand side that
may later be rewritten. Although such derivations can easily be formalized, we
prefer to define the semantics of G as a least fixed point (just as for an MCFG).

c© Springer-Verlag GmbH Germany 2017
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Two tree-generating grammars are strongly (resp. weakly) equivalent if they
generate the same tree (resp. string) language, where the string language con-
sists of the yields of the generated trees. It is not difficult to see that for every
MCTAG there is a strongly equivalent MCFTG, just as for every TAG there is
a strongly equivalent CFTG [5,13]. Our main contribution is that, vice versa,
for every MCFTG there is a strongly equivalent MCTAG, generalizing the result
of [9] that relates monadic CFTGs and non-strict TAGs. It also settles a problem
stated in [18, Sect. 4.5]: “It would be interesting to investigate whether there exist
LCFRS’s with object level tree sets that cannot be produced by any MCTAG.”
We prove that such LCFRSs do not exist. It is proved in the cited section that
MCTAGs are weakly equivalent to string-based LCFRSs, so MCFTGs are weakly
equivalent to MCFGs.

Secondly, we consider lexicalized grammars [6] in which each rule contains
a lexical item (i.e., a terminal symbol that appears in the yield of the gener-
ated tree). Lexicalized grammars are of importance because they are often more
understandable and allow easier parsing (cf. the Introduction of [12]); moreover, a
lexicalized grammar defines a so-called dependency structure on the lexical items
of each generated string, allowing to investigate certain aspects of the grammat-
ical structure of that string, see [10]. We investigate lexicalization, which is the
process that transforms a grammar into an equivalent lexicalized one. Corre-
sponding to the two notions of equivalence we obtain strong and weak lexical-
ization. Although TAGs can be weakly lexicalized [3], they cannot be strongly
lexicalized, as unexpectedly shown in [11]. However, the more powerful CFTGs
can be strongly lexicalized [12], and the used lexicalization procedure can easily
be generalized to MCFTGs. Since our transformation of an MCFTG into an
MCTAG preserves the property of being lexicalized, we obtain that MCTAGs
can be strongly lexicalized in contrast to classical TAGs.

The multiplicity (or fan-out) of an MCFTG G is the maximal number of
nonterminals that can be rewritten simultaneously in one derivation step. Our
strong lexicalization of G preserves the multiplicity of G, but our transformation
of G into a strongly equivalent MCTAG increases it polynomially, and so the
same is true for the strong lexicalization of MCTAGs.

2 Preliminaries

The set {1, 2, 3, . . . } of positive integers is denoted by N, and N0 = N ∪ {0}.
For all k ∈ N0 we write [k] for {i ∈ N | i ≤ k}. The cardinality of a set A
is |A|, and we let A∗ =

⋃
n∈N0

An and A+ =
⋃

n∈N
An, where An is the

n-fold Cartesian product of A. Note that A0 = {ε}, where ε is the empty
sequence. If A is finite, then the elements of A and A∗ are also called sym-
bols and strings, respectively. The length |w| of w ∈ A∗ is such that w ∈ A|w|.
For a sequence w = (a1, . . . , an) ∈ An, the set occ(w) = {a1, . . . , an} con-
tains the elements of A that occur in w, and w is repetition-free if no ele-
ment occurs more than once (i.e., |occ(w)| = n). The concatenation w · v
(or just wv) of w with a sequence v = (b1, . . . , bm) is (a1, . . . , an, b1, . . . , bm).
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As usual, we let w0 = ε and wn+1 = wwn for every n ∈ N0. For a
subset B ⊆ A, the yield of w with respect to B is the sequence ydB(w) in B∗ that
is obtained from w by removing all symbols outside B. Formally, ydB(ε) = ε and
for all v ∈ A∗ we have ydB(bv) = b · ydB(v) for all b ∈ B and ydB(av) = ydB(v)
for all a ∈ A \ B.

A ranked alphabet is a finite set Σ with a ranking rk: Σ → N0. For every
k ∈ N0 we let Σ(k) = {σ ∈ Σ | rk(σ) = k} be the set of k-ary symbols, and
let mrkΣ be the minimal k ∈ N0 such that

⋃k
n=0 Σ(n) = Σ. In examples we

introduce a symbol σ of rank k as σ(k). With every string σ̄ = (σ1, . . . , σn) ∈ Σ∗

we associate a multiple rank rk∗(σ̄
)

=
(
rk(σ1), . . . , rk(σn)

) ∈ N
∗
0. We fix the

countably infinite set X = {x1, x2, . . . } of variables and let Xk = {xi | i ∈ [k]}
for every k ∈ N0. For every set Z ⊆ X of variables, the set TΣ(Z) of trees over
Σ and Z is the smallest set T ⊆ (Σ ∪ Z)∗ such that Z ⊆ T and σt1 · · · tk ∈ T
for all k ∈ N0, σ ∈ Σ(k), and t1, . . . , tk ∈ T . As usual we also write the
term σ(t1, . . . , tk) to denote σt1 · · · tk. We denote TΣ(X0) = TΣ(∅) by TΣ . The
nodes of a tree are formalized as “positions”. The root is at position ε, and
the position pi with p ∈ N

∗ and i ∈ N refers to the i-th child of the node at
position p. Thus, the set pos(t) ⊆ N

∗ of positions of a tree t ∈ TΣ(X) is defined
by pos(x) = {ε} for x ∈ X and pos(t) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}
for t = σ(t1, . . . , tk). The label and subtree of t at p ∈ pos(t) are t(p) and t|p,
respectively, so x(ε) = x = x|ε, t(ε) = σ, t|ε = t, t(ip) = ti(p), and t|ip = ti|p.

A forest t = (t1, . . . , tm) is a sequence of trees t1, . . . , tm ∈ TΣ(X). A single
tree is a forest of length 1. The nodes of the forest t are addressed by positions
from (N∪ {#})∗, where # is a special symbol. Intuitively, these positions are of
the form #j−1p, in which #j−1 selects the tree tj and p ∈ pos(tj) is a position
in tj . Formally, pos(t) = {#j−1p | j ∈ [m], p ∈ pos(tj)}. The label and subtree
of t at position #j−1p are t(#j−1p) = tj(p) and t|#j−1p = tj |p, respectively. For
every set Ω ⊆ Σ ∪ X, the set posΩ(t) = {p ∈ pos(t) | t(p) ∈ Ω} contains the
Ω-labeled positions of t. We let occΩ(t) = {t(p) | p ∈ posΩ(t)} be the symbols
of Ω that occur in t. The forest t is uniquely Ω-labeled if all symbols of Ω occur
at most once in t; i.e., |pos{σ}(t)| ≤ 1 for every σ ∈ Ω. The set PΣ(Xk) of k-ary
patterns is PΣ(Xk) = {t ∈ TΣ(Xk) | ∀x ∈ Xk : |pos{x}(t)| = 1}. The rank rk(t)
of a k-ary pattern t is k. Clearly, PΣ(X0) = TΣ . We let PΣ(X) =

⋃
k∈N0

PΣ(Xk),
and we associate the multiple rank rk∗(t

)
=

(
rk(t1), . . . , rk(tm)

) ∈ N
∗
0 with

every forest t = (t1, . . . , tm) of PΣ(X)∗. For all θ : X → TΣ(X), the first-
order substitution tθ is inductively defined by xθ = θ(x), tθ = σ(t1θ, . . . , tkθ),
and uθ = (u1θ, . . . , umθ) for every x ∈ X, t = σ(t1, . . . , tk) ∈ TΣ(X), and
u = (u1, . . . , um) ∈ TΣ(X)∗. Thus, each occurrence of a variable x ∈ X is
replaced by the tree θ(x). If there exists n ∈ N0 with θ(xi) = xi for all i > n,
then we also write t[θ(x1), . . . , θ(xn)] instead of tθ. In second-order substitution
we replace nodes that are labeled by symbols of Σ. Let θ : Σ → PΣ(X) be
such that rk(θ(σ)) = rk(σ) for all σ ∈ Σ. The second-order substitution tθ is
inductively defined by xθ = x, tθ = θ(σ)[t1θ, . . . , tkθ], and uθ = (u1θ, . . . , umθ)
with x, t, and u as above. Intuitively, the second-order substitution tθ replaces
each σ-labeled subtree of t by the tree θ(σ), into which the (recursively processed)
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direct subtrees are first-order substituted. If there exist distinct σ1, . . . , σn ∈ Σ
such that θ(σ) = σ(x1, . . . , xk) for all σ ∈ Σ(k) \ {σ1, . . . , σn}, we also write
t[(σ1, . . . , σn) ← (θ(σ1), . . . , θ(σn))] instead of tθ. Finally, let L = {σ̄1, . . . , σ̄k}
be a subset of Σ∗ such that σ̄1 · · · σ̄k is repetition-free. A (second-order) substitu-
tion function for L is a mapping f : L → PΣ(X)∗ such that rk∗(f(σ̄)) = rk∗(σ̄)
for every σ̄ ∈ L. For a forest t ∈ PΣ(X)∗, the simultaneous second-order sub-
stitution t[f ] is defined by t[f ] = t[σ̄1 · · · σ̄k ← f(σ̄1) · · · f(σ̄k)]. For a complete
exposition of tree language theory, we refer the reader to [4].

3 Multiple Context-Free Tree Grammars

We define the (simple) multiple context-free tree grammar as a straightforward
generalization of both the (simple) context-free tree grammar [2,15] and the
multiple context-free (string) grammar [16,17]. We obtain essentially a tree-
based linear context-free rewriting system.

Definition 1. A (simple) multiple context-free tree grammar (MCFTG) is a
system G = (N,N , Σ, I,R) such that

– N is a ranked alphabet of nonterminals,
– N ⊆ N+ is a finite set of big nonterminals, which are nonempty repetition-free

nonterminal sequences with occ(A) 
= occ(A′) for all distinct A,A′ ∈ N ,
– Σ is a ranked alphabet of terminals such that Σ ∩ N = ∅ and mrkΣ ≥ 1,
– I ⊆ N ∩ N (0) is the set of initial (big) nonterminals, and
– R is a finite set of rules of the form A → (u,L), where A ∈ N is a big

nonterminal, u ∈ PN∪Σ(X)+ is a uniquely N -labeled forest (of patterns) such
that rk∗(u) = rk∗(A), and L ⊆ N is a set of big nonterminals, called links,
such that {occ(B) | B ∈ L} is a partition of occN (u); i.e., occ(B)∩occ(B′) = ∅
for all distinct B,B′ ∈ L and occN (u) =

⋃
B∈L occ(B).

The multiplicity (or fan-out) of G, denoted by μ(G), is the maximal length of
its big nonterminals. The width of G, denoted by ω(G), is the maximal rank of
its nonterminals. A (simple) context-free tree grammar (CFTG) is an MCFTG
of multiplicity 1. �

For a given rule ρ = A → (u,L), its left-hand side is A, its right-hand side
is u, and its set of links is L. Since rk∗(A) = rk∗(u), the rule ρ is of the form

(A1, . . . , An) → (
(u1, . . . , un), {B1, . . . , Bk})

,

where n ∈ N, Ai ∈ N , ui ∈ PN∪Σ(Xrk(Ai)), k ∈ N0, and Bj ∈ N for all
i ∈ [n] and j ∈ [k]. Intuitively, the application of the rule ρ consists of the
simultaneous application of the n rules Ai(x1, . . . , xrk(Ai)) → ui of an ordi-
nary CFTG to occurrences of the nonterminals A1, . . . , An, and the introduc-
tion of all the nonterminals that occur in the big nonterminals B1, . . . , Bk.
Every Bj = (C1, . . . , Cm) ∈ N+ can be viewed as a link between the (unique)
positions of u with labels C1, . . . , Cm as well as a link between the corresponding
positions after the application of ρ. The rule ρ can only be applied to positions
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S →

σ

B

C

e

B′

C ′

e

B

x1

C

x1

→

B

σ

β

x1

b

C

σ

γ

x1

c

B

x1

C

x1

→
β

x1

γ

x1

Fig. 1. The first three rules of Example 3.

with labels A1, . . . , An that are joined by such a link. Thus, rule applications are
“local” in the sense that a rule can rewrite only nonterminals that were previ-
ously introduced together in a single step of the derivation, just as for the local
unordered scattered context grammar of [14], which is equivalent to the multi-
ple context-free (string) grammar. Instead of defining derivation steps between
trees in TN∪Σ , it is technically more convenient to define the generation of trees
recursively. In an ordinary CFTG, a nonterminal A of rank k can be viewed as a
generator of trees in PΣ(Xk) using derivations that start with A(x1, . . . , xk). In
the same fashion, a big nonterminal A of an MCFTG generates forests in PΣ(X)+

of the same multiple rank as A.

Definition 2. Let G = (N,N , Σ, I,R) be an MCFTG. For every big nontermi-
nal A ∈ N we recursively define the set L(G,A) ⊆ PΣ(X)+ of forests generated
by A as follows. For every rule ρ = A → (u,L) ∈ R and every substitution
function f : L → PΣ(X)+ for L such that f(B) ∈ L(G,B) for every B ∈ L,
the forest u[f ] is in L(G,A). The tree language L(G) generated by G is defined
by L(G) =

⋃
S∈I L(G,S) ⊆ TΣ . �

Note that u[f ] is a simultaneous second-order substitution (see Sect. 2).
Since rk∗(f(B)) = rk∗(B) for all B ∈ L, we have rk∗(t) = rk∗(A) for every forest
t ∈ L(G,A). Two MCFTGs G and G′ are (strongly) equivalent if L(G) = L(G′).

Example 3. We consider the MCFTG G = (N,N , Σ, {S}, R) with nonterminals
N = {S(0), B(1), C(1), B′(1), C ′(1)}, big nonterminals N = {S, (B,C), (B′, C ′)},
terminals Σ = {σ(2), β(1), γ(1), b(0), c(0), e(0)}, and the rules R (see Fig. 1):

S → σ
(
B(C(e)), B′(C ′(e))

)

(B,C) → (
B(σ(β(x1), b)), C(σ(γ(x1), c))

)
(B,C) → (

β(x1), γ(x1)
)

(B′, C ′) → (
B(σ(β(x1), b)), C(σ(γ(x1), c))

)
(B′, C ′) → (

β(x1), γ(x1)
)

,

where we write a rule A → (u,L) as A → u. In this example, and the next,
the sets L of links are unique. Here they are {(B,C), (B′, C ′)} for the first rule,
{(B,C)} for the second and fourth rule, and ∅ for the third and fifth rule. Since
the rules for (B,C) and (B′, C ′) have the same right-hand sides and links, they
are aliases. They represent essentially the same big nonterminal, but must be
different because they occur together in the right-hand side of the first rule. It
is easy to see that L(G, (B,C)) = L(G, (B′, C ′)) consists of all forests (tm, um)
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with m ∈ N0, where tm = β(σβ)mx1b
m and um = γ(σγ)mx1c

m. Note that
we here use string notation, thus, e.g., u2 = γ(σγ)2x1c

2 is the tree γσγσγx1cc
which can be written as the term γ(σ(γ(σ(γ(x1), c)), c)). Hence L(G) consists
of all trees σ(tm[um[e]], tn[un[e]]) = σβ(σβ)mγ(σγ)mecmbmβ(σβ)nγ(σγ)necnbn

with m,n ∈ N0. �

4 Lexicalization

For a given terminal alphabet Σ we fix a subset Δ ⊆ Σ(0) of lexical symbols.
We say that an MCFTG G is lexicalized if each rule contains at least one lex-
ical symbol; i.e., if posΔ(u) 
= ∅ for every rule A → (u,L) of G. Clearly, if
G is lexicalized, then L(G) has finite ambiguity, in the following sense. Let the
yield yd(t) of a tree t ∈ TΣ be the string of lexical symbols that label its leaves,
from left to right. So, yd(t) = ydΔ(t) ∈ Δ∗ (as defined in Sect. 2). We say that
a tree language L ⊆ TΣ has finite ambiguity if {t ∈ L | yd(t) = w} is finite
for every w ∈ Δ+ and {t ∈ L | yd(t) = ε} = ∅. We can lexicalize MCFTGs,
which means that for each MCFTG G of which L(G) has finite ambiguity, we
can construct an equivalent lexicalized MCFTG. This is called strong lexicaliza-
tion [6,11] because we require strong equivalence.

Theorem 4. For each MCFTG G such that L(G) has finite ambiguity there is
an equivalent lexicalized MCFTG G′ with μ(G′) = μ(G) and ω(G′) = ω(G) + 1.

The construction is essentially the same as the one in [12] for CFTGs. First,
all nonlexicalized rules of rank 0 and rank 1 are removed, where the rank of
a rule A → (u,L) is |L|. This is similar to the removal of rules A → ε and
A → B from a context-free grammar. Since L(G) has finite ambiguity, such
rules can only generate finitely many trees. Second, all rules of rank 0 with
exactly one lexical symbol are removed. That can be done by applying all such
rules to the other rules, in all possible ways. Finally, we guess a lexical symbol
for every application of a nonlexicalized rule and put the guessed symbol in a
new argument of a nonterminal (thus turning the rule into a lexicalized one). It
is passed from nonterminal to nonterminal until a rule of rank 0 is applied, where
we exchange the same lexical symbol for the new argument. The resulting rule
is still lexicalized because we made sure that rules of rank 0 contain at least two
lexical symbols. Lexical symbols that are guessed for distinct rule applications
are transported to distinct applications of rules of rank 0.

5 MCFTG and MCTAG

Next we prove that MCTAGs have the same tree generating power as MCFTGs.
It is shown in [9, Sect. 4] that “non-strict” TAGs have the same tree generat-
ing power as “footed” CFTGs. Since the translation from one formalism to the
other is straightforward, we avoid the introduction of the formal machinery that
is needed to define MCTAGs in the usual way. Rather we first define non-strict
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MCTAGs to be footed MCFTGs, which generalize footed CFTGs in an obvi-
ous way. After that we define (strict) MCTAGs as a special type of non-strict
MCTAGs. The main result of [9] is that non-strict TAGs have the same tree
generating power as monadic CFTGs, where a CFTG G is monadic if ω(G) ≤ 1.
Our result shows that the monadic restriction is not needed in the multi case.

According to [9], a CFTG is footed if for every rule A(x1, . . . , xk) → u
with k ∈ N there is a unique position of u with exactly k children that are
labeled x1, . . . , xk from left to right.

Definition 5. Let Ω be a ranked alphabet. A pattern t ∈ PΩ(Xk) is footed
if either k = 0, or k ∈ N and there exists p ∈ posΩ(t), called the foot node
of t, such that t|p = σ(x1, . . . , xk) for some σ ∈ Ω(k). Let G = (N,N , Σ, I,R)
be an MCFTG. A rule A → ((u1, . . . , un),L) ∈ R is footed if ui is footed for
every i ∈ [n]. The MCFTG G is footed if every rule in R is footed. �

Note that, by definition, every tree t ∈ TΩ = PΩ(X0) is footed. For a footed
MCFTG G, it is straightforward to show that the trees t1, . . . , tn are footed for
every forest (t1, . . . , tn) ∈ L(G,A). This implies that ω(G) ≤ mrkΣ .

Based on the close relationship between non-strict TAGs and footed CFTGs
as shown in [9, Sect. 4], we here define a non-strict TAG to be a footed CFTG
and, similarly, a non-strict MCTAG to be a footed MCFTG. To convince the
reader familiar with TAGs of this definition, we add some more terminology. Let
A → (u,L) be a rule with A = (A1, . . . , An) and u = (u1, . . . , un). If the rule is
initial (i.e., A ∈ I), then the right-hand side u together with the set L of links
is called an initial forest, and otherwise it is called an auxiliary forest. Applica-
tion of the rule consists of adjunctions and substitutions. The replacement of the
nonterminal Ai by ui is called an adjunction if rk(Ai) ≥ 1 and a substitution oth-
erwise. An occurrence of a nonterminal C ∈ N in u with rk(C) ≥ 1 has an oblig-
atory adjunction (OA) constraint, whereas an occurrence of a terminal σ ∈ Σ
in u with rk(σ) ≥ 1 has a null adjunction (NA) constraint. In the same manner
we handle obligatory and null substitution (OS and NS) constraints. Each big
nonterminal B ∈ L can be viewed as a selective adjunction/substitution (SA/SS)
constraint, which restricts the auxiliary forests that can be adjoined/substituted
for B to the right-hand sides of the rules with left-hand side B.

Given a footed pattern t ∈ PN∪Σ(Xk) with k ≥ 1, we define rlab(t) = t(ε)
and flab(t) = t(p), where p is the foot node of t. Thus, rlab(t) and flab(t)
are the labels of the root and the foot node of t, respectively. For k = 0, we
let rlab(t) = t(ε) and flab(t) = t(ε) for technical convenience.

Definition 6. Let Ω,Σ be ranked alphabets and ϕ : Ω → Σ be a fixed mapping.
A pattern t ∈ PΩ(Xk) is adjoining if it is footed and ϕ(rlab(t)) = ϕ(flab(t)). �
Definition 7. A (strict and set-local) multi-component tree adjoining grammar
(MCTAG) is an MCFTG G = (N,N , Σ, I,R), for which there exists a rank-
preserving mapping ϕ : (N ∪ Σ) → Σ such that ϕ(σ) = σ for every σ ∈ Σ, and
moreover, for every rule (A1, . . . , An) → ((u1, . . . , un),L) ∈ R and every i ∈ [n],
ui is an adjoining pattern and ϕ(rlab(ui)) = ϕ(Ai).

A tree adjoining grammar (TAG) is an MCTAG of multiplicity 1. �
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The MCFTG G of Example 3 is an MCTAG with respect to the mapping ϕ
such that ϕ(S) = σ, ϕ(B) = ϕ(B′) = β, and ϕ(C) = ϕ(C ′) = γ.

Each nonterminal C with ϕ(C) = σ can be viewed as the terminal sym-
bol σ together with some information that is relevant to SA and SS constraints.
The requirements in Definition 7 mean that the root and foot node of ui rep-
resent the same terminal symbol as Ai. Thus, intuitively, adjunction always
replaces a (constrained) terminal symbol by a tree with that same symbol
as root label and foot node label. Thus, if (t1, . . . , tn) ∈ L(G, (A1, . . . , An))
then rlab(ti) = flab(ti) = ϕ(Ai) for every i ∈ [n]. Our MCTAGs and TAGs are
slightly more general than the usual ones, because the roots of the generated
trees need not have the same label; in other words, the underlying syntax may
have more than one “sentence symbol” ϕ(S) with S ∈ I. We view this as an
irrelevant technicality.

Let MCFTL and MCTAL denote the classes of tree languages generated by
MCFTGs and MCTAGs, respectively. We now prove that MCTAL = MCFTL.
By definition, we have MCTAL ⊆ MCFTL. The next theorem shows that for
every MCFTG G there is an equivalent MCTAG, which is also lexicalized if
G is lexicalized. Roughly speaking, the transformation of an MCFTG into an
MCTAG is realized by decomposing each tree ui in the right-hand side of a
rule A → (u,L) with A = (A1, . . . , An) and u = (u1, . . . , un) into a bounded
number of parts, to replace ui in u by the sequence of these parts, and to
replace Ai in A by a corresponding sequence of new nonterminals that simulta-
neously generate these parts.

Theorem 8. For every MCFTG G with terminal alphabet Σ there is an equiv-
alent MCTAG G′ such that μ(G′) ≤ μ(G) ·mrkΣ · |Σ| · (2 ·ω(G)−1) if ω(G) 
= 0,
and μ(G′) = μ(G) otherwise. Moreover, if G is lexicalized, then so is G′.

Proof. The basic fact used in this proof is that, for any ranked alphabet Ω and
mapping ϕ : Ω → Σ, every tree u ∈ TΩ(X) with u /∈ X and posX(u) 
= ∅ can be
decomposed into at most mrkΩ · |Σ| · (2k − 1) adjoining patterns, where k is the
number |posX(u)| of occurrences of variables in u. This decomposition can be
obtained inductively as follows. Let p ∈ posΩ(u) be the longest position such that
ϕ(u(p)) = ϕ(u(ε)) and |posX(u|p)| = |posX(u)|. Then there are an adjoining pat-
tern uε ∈ PΩ(Xm) and trees u1, . . . , um ∈ TΩ(X) such that m = rk(u(p)) ≥ 1,
u = uε[u1, . . . , um], and p is the foot node of uε. In other words, u is decom-
posed as uε[u1, . . . , um] where uε is an adjoining pattern. For every i ∈ [m]
with ui /∈ X, either ui ∈ TΩ and so ui is an adjoining pattern of rank 0,
or posX(ui) 
= ∅, in which case the tree ui can be decomposed further. It should
be clear that, in this inductive process, there are at most |Σ| · (2k−1) such posi-
tions p. The factor mrkΩ is due to the adjoining patterns of rank 0. As an exam-
ple, let Ω = {σ(2), τ (2), β(1), a(0), b(0)} and let ϕ be the identity on Ω. Then the
tree u = σ(a, σ(v, σ(x3, b))) with v = σ(a, τ(a, σ(a, τ(x1, β(β(x2)))))) is decom-
posed as u = uε[u1[u11, u12[x1, u122[x2]]], u2[x3, u22]] into the adjoining pat-
terns uε = σ(a, σ(x1, x2)), u1 = σ(a, τ(a, σ(x1, x2))), u11 = a, u12 = τ(x1, x2),
u122 = β(β(x1)), u2 = σ(x1, x2), and u22 = b. Using new symbols Cα

p such
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that α ∈ Ω, p ∈ N
∗, and rk(Cα

p ) = rk(α), we can also express this decomposition
as u = K[γ], where K is the tree Cσ

ε (Cσ
1 (Ca

11, C
τ
12(x1, C

β
122(x2))), Cσ

2 (x3, C
b
22)),

which can be viewed as the skeleton of the decomposition, and γ is the substitu-
tion function such that γ(Cα

p ) = up. Note that the superscript α of Cα
p is equal

to ϕ(rlab(up)). This decomposition is formalized below and applied to (variants
of) the trees in the right-hand sides of the rules of G.

Let G = (N,N , Σ, I,R) be an MCFTG. Provided that ω(G) 
= 0, then we
have mrkΣ · (2 ·ω(G)−1) ≥ 1 because mrkΣ ≥ 1 by Definition 1. By straightfor-
ward constructions we may assume that G is “permutation-free” and “noneras-
ing”. This means that if (A1, . . . , An) → ((u1, . . . , un),L) is a rule in R, then the
pattern ui is in PFN∪Σ(Xrk(Ai)) \ X for every i ∈ [n], where PFΩ(Xk) denotes
the set of permutation-free k-ary patterns over Ω; i.e., patterns t ∈ PΩ(Xk)
such that ydX(t) = x1 · · · xk. The nonerasing requirement that ui /∈ X is only
relevant when rk(Ai) = 1, meaning that ui 
= x1.

We define G′ = (N ′,N ′, Σ, I ′, R′). The set N ′ of nonterminals consists of all
quadruples 〈C, σ,m, p〉 with C ∈ N , σ ∈ Σ, m ∈ {0, rk(σ)}, and p ∈ N

∗ such
that |p| ≤ |Σ|·ω(G). The rank of 〈C, σ,m, p〉 is m. The set of initial nonterminals
is I ′ = {〈S, σ, 0, ε〉 | S ∈ I, σ ∈ Σ}. We will define N ′ and R′ in such a way
that G′ is an MCTAG with respect to the mapping ϕ : (N ′ ∪ Σ) → Σ such
that ϕ(〈C, σ,m, p〉) = ϕ(σ) = σ. For every nonterminal C ∈ N , a skeleton of C
is a pattern K ∈ PFN ′(Xrk(C)) \ X such that

(1) for every p ∈ posN ′(K) there exist a symbol σ ∈ Σ and m ∈ {0, rk(σ)} such
that K(p) = 〈C, σ,m, p〉;

(2) for all p, q ∈ posN ′(K), if position q is a proper descendant of position p,
then ϕ(K(q)) 
= ϕ(K(p)) or |posX(K|q)| < |posX(K|p)|;

(3) for every p ∈ posN ′(K), if K|p ∈ TN ′ then rk(K(p)) = 0.

For such a skeleton K, we let seq(K) = ydN ′(K), which is in (N ′)+. There are
only finitely many skeletons K of C because |posN ′(K)| ≤ mrkΣ · |Σ| · (2k − 1),
if k = rk(C) ≥ 1. If rk(C) = 0, then each skeleton of C is of the form 〈C, σ, 0, ε〉
with σ ∈ Σ. Note that K can be reconstructed from seq(K) because K is
permutation-free. In the example above, the tree K is a skeleton of C, provided
Cα

p denotes 〈C,α, rk(α), p〉, and seq(K) = (Cσ
ε , Cσ

1 , Ca
11, C

τ
12, C

β
122, C

σ
2 , Cb

22).
We apply the above basic fact to patterns over N ′ ∪ Σ. Let K be a skele-

ton of C ∈ N . A substitution function γ for occN ′(K) is adjoining if, for
every C ′ ∈ occN ′(K), the pattern γ(C ′) ∈ PN ′∪Σ(X) is adjoining and we
have ϕ(rlab(γ(C ′))) = ϕ(C ′). We say that the pair 〈K, γ〉 is an adjoining
C-decomposition of the tree K[γ]. By a straightforward induction, following
the above basic fact, we can prove that every pattern u over N ′ ∪ Σ has
an adjoining C-decomposition decC(u). More precisely, for every C ∈ N and
every u ∈ PFN ′∪Σ(Xrk(C))\X there is a pair decC(u) = 〈K, γ〉 such that K is a
skeleton of C, γ is an adjoining substitution function for occN ′(K), and K[γ] = u.

A skeleton function for A ∈ N is a substitution function κ for occ(A) that
assigns a skeleton κ(C) of C to every nonterminal C ∈ occ(A). The string
homomorphism hκ from occ(A)∗ to (N ′)∗ is defined by hκ(C) = seq(κ(C)) for
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every C ∈ occ(A). We define the set N ′ of big nonterminals to be the set of
all hκ(A), where A ∈ N and κ is a skeleton function for A.

We finally define the set R′ of rules of G′. Let ρ = A → (u,L) be a rule in R
such that A = (A1, . . . , An), u = (u1, . . . , un), and L = {B1, . . . , Bk}. Moreover,
let κ = (κ1, . . . , κk), where κj is a skeleton function for Bj for every j ∈ [k].
Intuitively, κ guesses for every nonterminal C that occurs in B1, . . . , Bk the
skeleton of an adjoining C-decomposition of the tree generated by C. Let f be
the substitution function for occN (u) such that f =

⋃
j∈[k] κj ; i.e., f(C) = κj(C)

if C ∈ occ(Bj). Obviously, ui[f ] ∈ PFN ′∪Σ(Xrk(Ai)) \ X for every i ∈ [n]. For
every i ∈ [n], let u′

i = ui[f ] and let decAi
(u′

i) = 〈Ki, γi〉 (the adjoining Ai-
decomposition of u′

i); moreover, if seq(Ki) = (C ′
1, . . . , C

′
�) with C ′

1, . . . , C
′
� ∈ N ′,

then let v′
i = (γj(C ′

1), . . . , γj(C ′
�)). Then we construct the rule

〈ρ, κ〉 = seq(K1) · · · seq(Kn) → (v′
1 · · · v′

n,L′)

with L′ = {hκ1(B1), . . . , hκk
(Bk)} in R′. We also define the skeleton func-

tion κρ,κ for A by κρ,κ(Ai) = Ki for every i ∈ [n]. Intuitively, Ki is the skeleton
of an adjoining Ai-decomposition of the tree generated by Ai, resulting from the
skeletons guessed by κ.

It should be clear that G′ is an MCTAG with respect to ϕ. Moreover, since
the right-hand sides of the rules ρ and 〈ρ, κ〉 contain the same terminal symbols,
G′ is lexicalized if G is lexicalized. The intuition underlying the correctness of G′

is that for every Ai, the skeleton Ki generates the same terminal tree in G′ as
Ai generates in G, provided that the skeleton κj(C) generates the same terminal
tree in G′ as C generates in G for every j ∈ [k] and C ∈ occ(Bj). �

Example 9. We consider the footed CFTG G1 = (N1,N1, Σ, {S}, R1) such that
N1 = N1 = {S(0), A(1), A′(1)}, Σ = {τ (3), �(1), r(1), a(0), b(0), e(0)}, and R1 con-
tains the rules S → �AA′re, A → �AA′rx1, and A → ��τ(a, b, rrx1), plus the two
rules for the alias A′ of A. Note that, for the sake of readability, we omit here
and in what follows the parentheses around the arguments of unary symbols;
e.g., the right-hand side of the third rule is �(�(τ(a, b, r(r(x1))))) = ��τabrrx1.
Let Δ = {a, b} be the set of lexical symbols. Clearly, L(G1) has finite ambigu-
ity. However, there is no equivalent lexicalized footed CFTG. In fact, G1 is a
variant of the TAG of [11], for which there is no (strongly) equivalent lexicalized
TAG. Thus, since we defined non-strict TAGs to be footed CFTGs, G1 is a non-
strict TAG that cannot be lexicalized (as non-strict TAG). We will construct an
equivalent lexicalized MCTAG for G1.

From Theorem 4, or rather from [12], we obtain an equivalent lexicalized
CFTG G2 with ω(G2) = 2. It has the new nonterminals B(2) and B′(2), where
B′ is an alias of B. Its rules are

ρ1 : S → �AB(b, re) ρ2 : A → �AB(b, rx1) ρ4 : B → �B(x1, B
′(b, rx2))

ρ3 : A → ��τ(a, b, rrx1) ρ5 : B → ��τ(a, x1, rrx2)

plus the rules ρ′
4 and ρ′

5 for B′. Clearly, the tree B(b, x1) generates the same
terminal trees as A(x1).
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Rule of G2

B

x1 x2
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a x1 r
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Resulting rule of G′
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x1 x2 x3
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↓
�

�

x1

τ

x1 x2 x3
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x1
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�
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x1

A�

Aτ
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�
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Aa Ab Ar

B�

Bτ

Ba b Br

r

x1

Fig. 2. Left part: the adjoining decomposition 〈K5, γ5〉 of the right-hand side of rule ρ5,
with the resulting rule ρ̃5. Right part: substitution of the skeletons K3 of A and K5

of B into the right-hand side of rule ρ2, with the adjoining decomposition 〈K3, γ2〉.

We now turn G2 into an equivalent lexicalized MCTAG G′
2 using the con-

struction in the proof of Theorem 8. For the rule ρ5 = B → u5 and κ = ε,
we obtain the adjoining B-decomposition decB(u5) = 〈K5, γ5〉, in which we
have K5 = B�(Bτ (Ba, x1, B

r(x2))), γ5(B�) = ��x1, γ5(Bτ ) = τ(x1, x2, x3),
γ5(Ba) = a, and γ5(Br) = rrx1, where B� = 〈B, �, 1, ε〉, Bτ = 〈B, τ, 3, 1〉,
Ba = 〈B, a, 0, 11〉, and Br = 〈B, r, 1, 13〉. The resulting rule ρ̃5 = 〈ρ5, ε〉 is

ρ̃5 : B̄ → (��x1, τ(x1, x2, x3), a, rrx1) ,

where B̄ = seq(K5) = (B�, Bτ , Ba, Br), and the corresponding skeleton function
for B is κ5 = κρ5,ε such that κ5(B) = K5. The construction of this rule is
illustrated in the left part of Fig. 2. Of course we obtain similar primed results
for B′. For the rule ρ4 = B → u4 and κ = (κ5, κ

′
5), we substitute K5 for B and K ′

5

for B′ in u4 and obtain the tree u′
4 = �B�Bτ (Ba, x1, B

rB′�B′τ (B′a, b, B′rrx2))
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with the adjoining B-decomposition decB(u′
4) = 〈K4, γ4〉, where K4 equals K5,

and γ4 is defined by γ4(B�) = �B�x1, γ4(Bτ ) = Bτ (x1, x2, x3), γ4(Ba) = Ba,
and γ4(Br) = BrB′�B′τ (B′a, b, B′rrx1). The resulting rule ρ̃4 = 〈ρ4, (κ5, κ

′
5)〉 is

ρ̃4 : B̄ → (�B�x1, Bτ (x1, x2, x3), Ba, BrB′�B′τ (B′a, b, B′rrx1)) .

Since the skeleton function κρ4,(κ5,κ′
5)

for B is again κ5, these are all the necessary
rules of G′

2 with left-hand side B̄, and similarly for B̄′ = (B′�, B′τ , B′a, B′r). We
now turn to rules ρ3 and ρ2. The only skeleton needed for A is the tree

K3 = κρ3,ε(A) = A�Aτ (Aa, Ab, Arx1) ,

where A� = 〈A, �, 1, ε〉, Aτ = 〈A, τ, 3, 1〉, Aa = 〈A, a, 0, 11〉, Ab = 〈A, b, 0, 12〉,
and Ar = 〈A, r, 1, 13〉. The rule ρ̃3 = 〈ρ3, ε〉 is

ρ̃3 : Ā → (��x1, τ(x1, x2, x3), a, b, rrx1) ,

where Ā = seq(K3) = (A�, Aτ , Aa, Ab, Ar). Substituting K3 for A and K5 for B
in the right-hand side u2 = �AB(b, rx1) of ρ2, we obtain

u′
2 = �A�Aτ (Aa, Ab, ArB�Bτ (Ba, b, Brrx1)) ,

which has the decomposition decA(u′
2) = 〈K3, γ2〉 shown in the right part

of Fig. 2, where γ2(A�) = �A�Aτ (Aa, Ab, ArB�x1), γ2(Aτ ) = Bτ (x1, x2, x3),
γ2(Aa) = Ba, γ2(Ab) = b, and γ2(Ar) = Brrx1. The rule ρ̃2 = 〈ρ2, (κρ3,ε, κ5)〉 is

ρ̃2 : Ā → (�A�Aτ (Aa, Ab, ArB�x1), Bτ (x1, x2, x3), Ba, b, Brrx1) .

Finally, we consider rule ρ1. The only skeleton needed for S is S� = 〈S, �, 0, ε〉,
which is the unique initial nonterminal of G′. Substituting K3 for A and K5 for B
in the right-hand side of ρ1, we obtain u′

2[e] and the rule ρ̃1 = 〈ρ1, (κρ3,ε, κ5)〉:
ρ̃1 : S� → �A�Aτ (Aa, Ab, ArB�Bτ (Ba, b, Brre)) .

Thus, G′
2 has the rules {ρ̃1, ρ̃2, ρ̃3, ρ̃4, ρ̃5, ρ̃

′
4, ρ̃

′
5}. Clearly, the tree K3 generates

the same terminal trees as A(x1) and the tree K5 generates the same terminal
trees as B(x1, x2), and hence the tree B�Bτ (Ba, b, Br(x1)) also generates the
same terminal trees as A(x1). It is easy to check that G′

2 is a lexicalized MCTAG
with respect to the mapping ϕ such that ϕ(Cx) = x for every C ∈ {S,A,B,B′}
and every x ∈ {τ, �, r, a, b}. The multiplicity of G′

2 is μ(G′
2) = 5. �

It follows from Theorems 4 and 8 that MCTAGs can be strongly lexicalized
as opposed to TAGs.

Corollary 10. For every finitely ambiguous MCTAG G with terminal alpha-
bet Σ there is an equivalent lexicalized MCTAG G′ such that

μ(G′) ≤ μ(G) · mrkΣ · |Σ| · (2 · ω(G) + 1) . �

We do not know whether the multiplicity bounds in Theorem 8 and Corol-
lary 10 are optimal.
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Abstract. We study polynomials computed by depth five Σ ∧ Σ ∧ Σ
arithmetic circuits where ‘Σ’ and ‘∧’ represent gates that compute sum
and power of their inputs respectively. Such circuits compute polynomials

of the form
∑t

i=1 Qαi
i , where Qi =

∑ri
j=1 �

dij

ij where �ij are linear forms
and ri, αi, t > 0. These circuits are a natural generalization of the well
known class of Σ ∧ Σ circuits and received significant attention recently.
We prove an exponential lower bound for the monomial x1 · · · xn against

depth five Σ ∧ Σ[≤n] ∧[≥21] Σ and Σ ∧ Σ[≤2
√

n/1000] ∧[≥√
n] Σ arithmetic

circuits where the bottom Σ gate is homogeneous.
Our results show that the fan-in of the middle Σ gates, the degree of

the bottom powering gates and the homogeneity at the bottom Σ gates
play a crucial role in the computational power of Σ ∧ Σ ∧ Σ circuits.

1 Introduction

Arithmetic circuits were introduced by Valiant [18] as a natural model for alge-
braic computation and conjectured that the permanent polynomial, permn, does
not have polynomial size arithmetic circuits. Following Valiant’s work, there have
been intensive research efforts towards the resolution of Valiant’s hypothesis.
Further, obtaining super polynomial size lower bounds for arithmetic circuits
computing explicit polynomials is a pivotal problem in Algebraic Complexity
Theory. However, for general classes of arithmetic circuits, the best known lower
bound is barely superlinear [2].

Lack of progress on lower bounds against general arithmetic circuits lead
researchers to explore restricted classes of circuits. Grigoriev and Karpinski [5]
proved an exponential size lower bound for depth three circuits computing the
permanent over finite fields of fixed size. However, extending these results to
infinite fields or depth four arithmetic circuits remains elusive. Agrawal and
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Vinay [1] (see also [10,17]) explained this lack of progress by establishing
that proving exponential lower bounds against depth four arithmetic circuits is
enough to resolve Valiant’s conjecture. This was strengthened further to depth
three circuits over infinite fields by Gupta et al. [6].

Gupta et al. [7] obtained a 2Ω(
√

n) size lower bound for depth four homoge-
neous circuits computing permn where the fan-in of the bottom product gate is
bounded by O(

√
n). Following this, Fournier et al. [4] obtained a super polyno-

mial lower bound against depth four homogeneous circuits computing a polyno-
mial in VP. Further, the techniques in [7,8] have been generalized and applied to
prove lower bounds against various classes of constant depth arithmetic circuits
for polynomials in VP as well as in VNP (see e.g., [15] and references therein).

Most of the lower bound proofs against arithmetic circuits follow a common
framework: (1) define a measure for polynomials that is sub-additive and/or sub-
multiplicative, (2) show that the circuit class of interest has small measure and
(3) show that the target polynomial has high measure. See [15] for a detailed
survey of these measures.

Apart from the complexity measure based framework mentioned above, there
have been two other prominent approaches towards a resolution of Valiant’s
hypothesis: A geometric approach by Mulmuley and Sohoni [14] and an approach
based on the real τ conjecture proposed by Shub and Smale [16].

The geometric approach to complexity theory [14] involves the study of class
of varieties associated with each of the complexity classes and studying their
representations.

The real τ conjecture of Koiran [9] states that the number of real roots of a
univariate polynomial computed by an arithmetic circuit of size s is bounded by a
polynomial in s. Koiran [9] showed that any resolution of the real τ -conjecture or
an integer variant of it, would imply a positive resolution of Valiant’s hypothesis.
There has been several approaches towards the resolution of the real τ -conjecture
and its variants by Koiran et al. [11,12].

Circuit Model. We consider the class of depth five powering circuits, i.e., Σ∧Σ∧
Σ circuits. It was shown in [6] that any homogeneous polynomial f of degree d
over a sufficiently large field computed by a circuit of size s can also be computed
by a homogeneous Σ ∧[a] Σ ∧[d/a] Σ circuit of size s

√
d log n log(sd) for suitably

chosen a. Here the superscript [a] for a gate denotes the fan-in (degree in the
case of ∧ gates) at that level. This was an intermediary step in [6] which went
on to obtain a depth three ΣΠΣ circuit of size 2O(

√
d log n log(sd)) for f .

Thus, combined with the results in [17], to prove Valiant’s hypotheses over
infinite fields, it is enough to prove a 2ω(

√
n log n) size lower bound against

any one of the following classes of circuits: (1) homogeneous depth four
ΣΠ [

√
n]ΣΠ [O(

√
n)] circuits, (2) homogeneous depth five Σ ∧[

√
n] Σ ∧[O(

√
n)] Σ

circuits or (3) depth three ΣΠΣ circuits.
Models (1) and (3) have received extensive attention in the literature com-

pared to model (2). It follows that obtaining a 2ω(
√

n log n) lower bound for any
one of the models above would give a similar lower bound to the other. However,
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known lower bounds for model (1) so far do not even imply a super polynomial
lower bound for model (2) which leaves obtaining super polynomial lower bounds
against this model wide open.

In this article, we prove lower bounds against two restrictions of model (2)
mentioned above: Σ∧Σ[≤n]∧[≥21]Σ circuits and Σ∧Σ[≤2

√
n/1000]∧[≥√

n]Σ circuits
with bottom gates computing homogeneous linear forms. Since the transforma-
tion from depth four ΣΠ [

√
n]ΣΠ [O(

√
n)] to depth five Σ ∧[a] Σ ∧[d/a] Σ in [6], in

contrast to their result from general circuits, works against any chosen parame-
ter a < d, the restrictions on the degree of the bottom ∧ gates in the models we
consider are general enough.

Throughout, it helps to interpret the polynomials computed by Σ ∧ Σ ∧ Σ
as sums of powers of projections of power symmetric polynomials where the n
variate power symmetric polynomial of degree d is given by pd(x1, . . . , xn) =
xd
1 + · · · + xd

n.

Our Results. We prove lower bounds against the restrictions of depth five Σ ∧
Σ ∧ Σ. We show:

Theorem 1. Let g =
∑s

i=1 fαi
i where fi = pdi

(�i1 , . . . , �in
)+βi for some scalars

βi and for every i, either di = 1 or di ≥ 21 and �i1 , . . . , �in
are homogeneous

linear forms. If g = x1 · x2 · · · xn then s = 2Ω(n).

The proof of Theorem 1 involves the dimension of the space of projected mul-
tilinear derivatives as a complexity measure for a polynomial f . It is computed by
first projecting the partial derivative space of f to its multilinear subspace and
then setting a subset of variables to 0. The dimension of the resulting space of
polynomials is our measure of complexity for polynomials. Further, the method
of projected multilinear derivatives also gives our second important result of the
paper: An exponential lower bound against depth five powering circuits where
the middle Σ layers have fan-in at most 2

√
n/1000 with the degree of the bottom

∧ gates at least
√

n:

Theorem 2. Let g =
∑s

i=1 fαi
i where fi = pdi

(�i1 , . . . , �iNi
) + βi, for some

scalars βi and
√

n ≤ di ≤ n, Ni ≤ 2
√

n/1000, and �i1 , . . . , �iNi
are homogeneous

linear forms. If g = x1 · x2 · · · xn then s = 2Ω(n).

It is not difficult to see that the polynomial x1 · · · xn has a homogeneous
Σ∧[

√
n]Σ[O(2

√
n)]∧[

√
n]Σ circuit of size 2O(

√
n) (see Lemma 16). Theorem 2 shows

that reducing the middle Σ gate fan-in by a constant factor in the exponent leads
to an exponential lower bound.

The homogeneity condition on the lower Σ and ∧ gates seems to be necessary
to our proofs of Theorems 1 and 2. In fact, Saptharishi [15], in a result attributed
to Forbes, showed that x1 · · · xn can be computed by Σ ∧ Σ∧ circuits of size
2O(

√
n) where the lower Σ gates are not necessarily homogeneous.

Thus, it is important to study depth five powering circuits where the bottom
Σ gates are not necessarily homogeneous. Towards this, in Sect. 4, we consider
the widely used measure of the dimension of the shifted partial derivatives of a
polynomial. We show:



On Σ ∧ Σ ∧ Σ Circuits: The Role of Middle Σ Fan-In 233

Theorem 3. Let g =
∑s

i=1 fαi
i where fi = pdi

(xi1 , . . . , ximi
, �i1 , . . . , �iri

), mi ≤
1
40n, ri ≤ nε, d ≤ 2o(n), αi ≤ 2o(n) for all i where 0 < ε < 1. If g = x1x2 . . . xn

then s = 2Ω(n).

It should be noted that Theorem3 is much weaker than Theorems 1 and 2,
however, it allows non-homogeneous Σ gates at the bottom. It seems that the
restrictions on ri in the above theorem are necessary if the lower bound argument
uses the method of shifted partial derivatives. In particular, we show:

Lemma 4. Let k ≤ min{l, d} and α > 0 be large enough. Then

dim
(
F-Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
= Ω

((
n
k

)(
n+l

l

)

ll/(d−1)

)

.

In the cases where l/(d − 1) = O(1) and l = nO(1) the above bound is tight
up to a polynomial factor since dim

(
F-Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

}) ≤
(
n
k

)(
n+l

l

)
and hence indicating that the restrictions on the ris in Theorem 3 would

be necessary if the dimension of shifted partial derivatives is used as the measure
of complexity.

2 Preliminaries

An arithmetic circuit is a labelled directed acyclic graph. Vertices of zero in-
degree are called input gates and are labelled by elements in F∪{x1, . . . , xn}. Ver-
tices of in-degree two or more are called internal gates and have their labels from
{×,+}. An arithmetic circuit has at least one vertex of zero out-degree called an
output gate. We assume that an arithmetic circuit has exactly one output gate.
A polynomial pg in F[x1, . . . , xn] can be associated with every gate g of an arith-
metic circuit defined in an inductive fashion. Input gates compute their label.
Let g be an internal gate with children f1, . . . , fm then pg = pf1 op · · · op pfm

where op ∈ {+,×} is the label of g. The polynomial computed by the circuit is
the polynomial at one of the output gates and denoted by pC . The size of an
arithmetic circuit is the number of gates in it and is denoted by size(C). We will
denote a fan-in/degree bound on a layer as a superscript to the corresponding
gate e.g., Σ∧Σ[≤n]∧[≥21]Σ denotes the class of families of polynomials computed
by depth five circuits with powering and sum gates, where the middle layer of
sum gates have fan-in bounded from above by n and the bottom most powering
gates have degree at least 21.

The following bound on the binomial coefficient is useful throughout the
paper:

Proposition 5 ([13]). Let r ≤ n. Then log2
(
n
r

) ≈ nH(r/n), where H is the
binary entropy function, H(p) = −p log2(p)−(1−p) log2(1−p), and ≈ is equality
up to an additive o(n) error.
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We denote by [n] the set {1, . . . , n}. For a set of polynomials S, let M≤d(S)
(M=d(S)) denote the set of all products of at most (exactly) d not necessarily
distinct elements from S. Note that when S is a set of variables, |M≤d(S)| =
(|S|+d

d

)
. When the set S is clear from the context, we use M≤d (M=d) instead

of M≤d(S) (M=d(S)).
For a subset S of variables, let X b

a(S) denote the set of all multilinear mono-
mials of degree a ≤ d ≤ b in variables from the set S, i.e.,

X b
a(S) = {

∏

xi∈S

xδi
i | a ≤

n∑

i=1

δi ≤ b, δi ∈ {0, 1}}.

For two sets A and B, define A	B
�
= {a · b | a ∈ A, b ∈ B}. Additionally, we

define A · f for some polynomial f to be the set {a · f | a ∈ A}.
The notion of shifted partial derivatives is given as follows: For k ≥ 0 and

f ∈ F[x1, . . . , xn] let ∂=kf denote the set of all partial derivatives of f of
order k. For l ≥ 0, the (k, l) shifted partial derivative space of f , denoted by
F-Span

{
x≤l∂=kf

}
, is defined as:

F-Span
{
x≤l∂=kf

}
� F-Span

{
m · ∂=kf | m ∈ M≤�(x1, . . . , xn)

}

where F-Span {S} � {α1f1 + · · · + αmfm | fi ∈ S and αi ∈ F for all i ∈ [m]}.
We restate the well known lower bound for the dimension of the space of shifted
partial derivatives x1 · · · xn:

Proposition 6 ([8]).

dim
(
F-Span

{
x≤l∂=k

MLx1 · · · xn

})
= dim

(
F-Span

{
x≤l∂=kx1 · · · xn

})

≥
(

n

k

)

·
(

n − k + l

l

)

.

In the above, ∂=k
MLf denotes the set of kth order multilinear derivative space

of f , i.e., ∂=k
MLf � { ∂kf

∂xi1 ···∂xik
| i1 < . . . < ik ∈ {1, . . . , n}}.

3 Projected Multilinear Derivatives and Proof
of Theorems 1 and 2

This section is devoted to the proof of Theorems 1 and 2. Our proof follows the
standard two step approach for proving arithmetic circuit lower bounds: First,
define a sub-additive measure that is low for every polynomial computed in
the model. Second, show that the measure is exponentially larger for a specific
polynomial p. Hence allowing us to conclude that any circuit in the model that
computes p requires exponential size.

We consider a variant of the space of partial derivatives, viz., the projected
multilinear derivatives as the complexity measure for polynomials.
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The Complexity Measure. Let f ∈ F[x1, . . . , xn]. For S ⊆ {1, . . . , n}, let
πS : F[x1, . . . , xn] → F[x1, . . . , xn] be the projection map that sets all variables
in S to zero, i.e., for every f ∈ F[x1, . . . , xn], πS(f) = f(xi = 0 | i ∈ S).
Let πm(f) denote the projection of f onto its multilinear monomials, i.e., if
f =

∑
α∈Nn cα

∏n
i=1 xαi

i then πm(f) =
∑

α∈{0,1}n cα

∏n
i=1 xαi

i .
For S ⊆ {1, . . . , n} and 0 < k ≤ n, the dimension of Projected Multilinear

Derivatives (PMD) of a polynomial f is defined as:

PMDk
S(f) � dim(F-Span

{
πS(πm(∂=k

MLf))
}
).

We omit the subscript S when either S is clear from the context or when it refers
to an unspecified set S. It is not hard to see that PMDk

S is sub-additive.

Lemma 7. For any S ⊆ {1 . . . , n}, k ≥ 1, and polynomials f and g:

PMDk
S(f + g) ≤ PMDk

S(f) + PMDk
S(g).

Lower Bound for the Measure

We establish a lower bound on the dimension of projected multilinear derivatives
of the polynomial x1 · · · xn. This follows from a simple argument and is shown
below:

Lemma 8. For any S ⊆ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4 we have:

PMDk
S(x1 · · · xn) ≥

(
n/2 − 1

n/4

)

≥ 2n/2/n2.

Proof. Let T ⊆ {1, . . . , n} with |T | = k. Then ∂k

∂T (x1 · · · xn) =
∏

i/∈T xi. Note
that if S ∩ T = ∅ then we have πS(πm( ∂k

∂T (x1 · · · xn))) =
∏

i/∈T xi since setting
variables in S to zero does not affect the variables in T . Otherwise, if S ∩ T �= ∅
then πS(πm( ∂k

∂T (x1 · · · xn))) = 0. Thus, we have:

F-Span
{
πS(πm(∂=k

ML(x1 · · · xn)))
} ⊇ F-Span

⎧
⎨

⎩

∏

i∈T

xi | T ⊆ S, |T | ≤ n/4

⎫
⎬

⎭
.

Hence, PMDk
S(x1 · · · xn) ≥ (

n/2−1
n/4

) ≥ 2n/2/n2 using Stirling’s approximation of
binomial coefficients. ��

Σ ∧ Σ∧ Circuits: The Curse of Homogeneity

Firstly, we observe that homogeneous Σ ∧Σ∧ circuits of polynomial size cannot
compute the monomial x1 · · · · · xn by eliminating bottom ∧ gates of degree at
least 2:

Observation 9. Let f = fα1
1 + · · ·+fαs

s where fi =
∑n

j=1 βijx
di
j +βi0, βij ∈ F.

If f = x1 · · · xn then s = 2Ω(n).
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The homogeneity condition for the bottom power gates is necessary due to
the following result in [15]. Let Symn,d =

∑
S⊆[n],|S|=d

∏
i∈S xi, the elementary

symmetric polynomial of degree d.

Proposition 10. [15, Corollary 17.16] For any d > 0, Symn,d can be computed
by a Σ ∧ Σ∧ circuit of size 2O(

√
d)poly(n).1

Is it all about homogeneity at the bottom Σ gates? The answer is no. In fact,
Observation 9 can also be generalized to the case of powers of polynomials in the
span of the set {x

αij

ij
| 1 ≤ ij ≤ n, αij

≥ 2}:

Lemma 11. For any β0, β1, . . . , βr ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n}
with |S| + k > n, we have PMDk

S((
∑r

j=1 βjx
dj

ij
+ β0)α) ≤ 1 where 1 ≤ ij ≤ n

and either ∀j dj ≥ 2 or ∀j dj = 1.

We get the following generalization of Observation 9:

Corollary 12. Let f = fα1
1 + · · · + fαs

s where for every i, either fi is a linear

form or fi =
∑n

j=1 βi,lj x
dij

lj
+ βi0 for dij

≥ 2 and βi,lj ∈ F. If f = x1 · · · xn then
s = 2Ω(n). Moreover, |{i | fi is linear}| = 2Ω(n).

Proof. Let S ⊂ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4. From Lemmas 11
and 7 we have PMDk

S(f) ≤ ∑s
i=1 PMDk

S(fαi
i ) ≤ s. Hence by Lemma 8 we have

s ≥ 2n/2/n2 as required. Further, PMDk
S(fαi

i ) is non-zero only if fi is a linear
form, and hence |{i | fi is linear}| = 2Ω(n). ��

Σ ∧ Σ ∧ Σ Circuits: Middle Σ Fan-In Versus the Bottom Degree

The argument above fails even when the degree of the power symmetric polyno-
mial is two (i.e., d = 2). Let f = �21 + · · · + �2n + β where �1, . . . , �n are homoge-
neous linear functions such that each of the �i have all n variables with non-zero
coefficients and β �= 0. It is not hard to see that the space ∂k

MLf
α of the kth

order derivatives of fα is contained in the span of {fα−k
∏n

i=1 �γi

i | ∑
i γi ≤ k}.

Even after applying the projections πm and πS for any S ⊆ {1, . . . , n}, with
|S| = (n/2) + 1, obtaining a bound on PMDk

S better than the lower bound in
Lemma 8 seems to be difficult. The reason is that every multilinear monomial of
degree |n/2−1−k| appears in at least one of the projected multilinear derivatives
of fα.

A natural approach to overcome the above difficulty could be to obtain a
basis for the projected multilinear derivatives of fα consisting of a small set of
monomials and a small set of products of powers of the linear forms multiplied
by suitable powers of f . Surprisingly, as shown below in Lemma13, the approach
works when the degree d ≥ 21, although it requires an involved combinatorial
argument.
1 In [15], Corollary 17.16, it is mentioned that the resulting Σ ∧ Σ∧ circuit is homo-
geneous. However, a closer look at the construction shows that the application of
Fischer’s identity produces sum gates that are not homogeneous.
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Lemma 13. Suppose that f = (�d
1 + . . . + �d

n + β) for some scalar β, and �j

homogeneous linear forms, 1 ≤ j ≤ n. Let Y = {�d−j
i | 1 ≤ i ≤ n, 1 ≤ j ≤ d} and

λ = 1/4 + ε for some 0 < ε < 1/4. Then, for k = 3n/4 and any S ⊆ {1, . . . , n}
with |S| = n/2 + 1, we have:

πS(πm(∂=k
MLfα) ⊆ F-Span

{
πS(πm(F	

(
X n/2−1

λn (S) ∪ M≤(1+ε)n/d(Y )
)
))

}

where F = ∪k
i=1f

α−i and S = {1, . . . , n} \ S.

Proof. Let T ⊆ {x1, . . . , xn} with |T | = k, let f
(k)
T denote kth order partial

derivative of f with respect to T . Note that f
(k)
T ∈ F-Span

{
�d−k
j | 1 ≤ j ≤ n

}
.

Let Li denote {�d−i
j | 1 ≤ j ≤ n} so that f

(k)
T ∈ F-Span {Lk}. Then

∂kfα

∂T
∈ F-Span

{
fα−i	DT

i (f) | 1 ≤ i ≤ k
}

(1)

where DT
i (f) =

{∏i
r=1 f

(tr)
Tr

| T1 � . . . � Ti = T, where tr = |Tr| > 0, 1 ≤ r ≤ i
}

.

Intuitively, the set DT
i contains one polynomial for each possible partition of T into

imanyparts.Thepolynomial corresponding to aparticular partition is the product
of the derivatives of f with respect to each of the parts. Now, the following claim
bounds the span of DT

i :

Claim. For any 1 ≤ i ≤ k, DT
i ⊆ F-Span

{⊙k
r=1L

	jr
r | ∑k

r=1 r · jr = k
}

.

Proof. Let T1 �· · ·�Ti = T be a partition and let jr denote the number of parts
with cardinality r, i.e., jr = |{j | |Tj | = r}|. Then

∏

|Tj |=r

f
(r)
Tj

∈ F-Span

⎧
⎨

⎩

⊙

|Tj |=r

Lr

⎫
⎬

⎭
= F-Span

{
L	jr

r

}
.

Thus,
∏i

r=1 f
(tr)
Tr

∈ F-Span
{⊙k

r=1L
	jr
r

}
. Since,

∑k
r=1 r·jr = k for any partition

T1 � · · · � Ti of T , the claim follows. ��
Continuing from (1), we have:

∂kfα

∂T
∈ F-Span

{
fα−i	DT

i (f) | 1 ≤ i ≤ k
}

⊆ F-Span
{F	{DT

i (f) | 1 ≤ i ≤ d}}

⊆ F-Span

{

F	
{

d⊙

r=1

L	jr
r | 1 · j1 + · · · + d · jd = k

}}

. (2)

It remains to show that the right side of (2) is spanned by a set of polynomials
that satisfy the properties stated in the lemma. The next claim completes the
proof of Lemma 13.
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Claim.

πS(πm

({
d⊙

r=1

L�jr
r |

d∑
i=1

i · ji = k

})
⊆ F-Span

{
X

n
2 −1

λn (S̄) ∪ M≤ (1+ε)n
d

(Y )

}
.

Proof. Note that the polynomials in Lj are homogeneous non-constant polyno-
mials of degree d − j, and hence the set

⊙d
r=1L

	jr
r consists of homogeneous

polynomials of degree
∑d

r=1 jr(d − r).
Let deg(

⊙d
r=1L

	jr
r ) denote the degree of polynomials in the set

⊙d
r=1L

	jr
r .

The remaining argument is split into three cases depending on the value of
deg(

⊙d
r=1L

	jr
r ).

Case 1: deg(
⊙d

r=1L
	jr
r ) ≥ n/2 then πS(πm(

⊙d
r=1L

	jr
r )) = {0}. Note that

here we have crucially used the fact that the �j are homogeneous.
Case 2: λn ≤ deg(

⊙d
r=1L

	jr
r )) < n/2. In this case πS(πm(

⊙d
r=1L

	jr
r ))

is spanned by the set of all multilinear monomials in the set of variables
{xj | j /∈ S} of degree at least λn and at most n/2 − 1. Therefore we have,

πS(πm(
⊙d

r=1L
	jr
r )) ⊆ F-Span

{
X n/2−1

λn (S̄)
}

.

Case 3: deg(
⊙d

r=1L
	jr
r )) < λn. Recall that deg(

⊙d
r=1L

	jr
r )) =

∑d
r=1 jr(d−

r) ≤ λn. Then,

d∑

r=1

jr · d ≤
d∑

r=1

jr · r + λn = k + λn (since
d∑

r=1

r · jr = k.)

= (λ + 3/4)n = (1 + ε)n.

Hence, πS(πm(
⊙d

r=1L
	jr
r )) is spanned by the set of all products of at most

(1 + ε)n/d polynomials of the form �d−j
i , i.e.,

πS(πm(
d⊙

r=1

L	jr
r )) ⊆ F-Span

{M≤(1+ε)n/d(Y )
}

.

��
This completes the proof. ��

Using Lemma 13 above and choosing suitable parameters k and S we obtain
the following upper bound on the dimension of projected multilinear derivatives:

Theorem 14. Let f = (�d
1 + . . . + �d

n + β) where �j are homogeneous linear
forms. For d ≥ 21 and any S ⊆ {1, . . . , n} where |S| = n/2 + 1. Then

PMDk
S(fα) ≤ 2(0.498+o(1))n.

Proof. By Lemma 13,

πS(πm(∂
=k
ML fα)) ⊆ F-Span

{
πS(πm({fα−i}k

i=1�
{

X n/2−1
λn (S̄) ∪ M≤(1+ε)n/d(Y )

}
))
}

.
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Recall that λ = 1
4 + ε. We choose ε = 1/50 and hence λ = 0.27. We have:

PMDk
S(fα) ≤ k · (|X n/2−1

λn (S̄)| + |M≤(1+ε)n/d(Y )|).

Now, since 1/4 < λ < 1/2, we have

|X n/2−1
λn (S̄)| ≤ (n/2 − 1 − λn) ·

(
n/2 − 1

λn

)

≤ c(n/2) ·
(

n/2
λn

)

≤ (cn/2) · 2
n
2 ·H(2λ) ≤ (cn/2) · 20.498n.

where c is an absolute constant. We bound |M≤(1+ε)n/d(Y )| as follows:

|M≤(1+ε)n/d(Y )| =
(|Y | + (1 + ε)n/d

(1 + ε)n/d

)

=
(

dn + (1 + ε)n/d

(1 + ε)n/d

)

≤ 2(dn+(1+ε)n/d)H( (1+ε)n/d
dn+(1+ε)n/d )

= 2n(d+(1+ε)/d)H((1+ε)/(d2+(1+ε))) ≤ 20.4955n for d ≥ 21.

For the last inequality, note that for fixed n and ε, (d + (1 + ε)/d)H((1 +
ε)/(d2 + (1 + ε)) is a monotonically decreasing function of d, with limd→∞(d +
(1 + ε)/d)H((1 + ε)/(d2 + (1 + ε)) = 0. Therefore, the bound holds for d ≥ 21.
This completes the proof. ��
Corollary 15. Let f = (�d

1 + . . . + �d
N + β) where �j are homogeneous linear

forms. If d is such that N ≤ 2(d/1000), d ≤ n, and n/d = o(n) then for any
α > 0,

PMDk
S(fα) ≤ 2(0.498+o(1))n.

Proof of Theorem 1: Let S ={1, . . . , n/2+1} and k=3n/4. Then by Theorem14
we have PMDk

S(fi) ≤ 20.498n+o(n). By the sub-additivity of PMDk
S (Lemma 7),

we have PMDk
S(

∑s
i=1 fαi

i ) ≤ s · 20.498n+o(n). Since PMDk
S(x1 · · · xn) ≥ 2n/2/n2,

we conclude s ≥ 20.001n, as required. ��
Proof of Theorem 2: Let S = {1, . . . , n/2 + 1} and k = 3n/4. Since di ≥√

n, it holds that Ni ≤ 2d/1000. Then, by Corollary 15, we have
PMDk

S(fαi
i ) ≤ 20.498n+o(n). By the sub-additivity of PMDk

S (Lemma 7), we have
PMDk

S(
∑s

i=1 fαi
i ) ≤ s · 20.498n+o(n). Since PMDk

S(x1 · · · xn) ≥ 2n/2/n2, we con-
clude s ≥ 20.001n for large enough n, as required. ��

A separation within Σ ∧Σ ∧ΣCircuits: An alert reader might have wondered
if the restriction on the fan-in of the middle layer of Σ gates in Theorem 2 is
a limitation of the method of projected multilinear derivatives. By a simple
application of Fischer’s identity [3], we get:

Lemma 16. Over fields of characteristic zero or characteristic greater than
n, the polynomial x1 · · · xn can be computed by a homogeneous Σ ∧[

√
n]

Σ[O(2
√

n)] ∧[
√

n] Σ circuit of size 2O(
√

n).
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This immediately leads to the following separation of homogeneous Σ ∧[
√

n]

Σ ∧[
√

n] Σ circuits:

Corollary 17. The class of polynomials computed by Σ∧[
√

n]Σ[2
√

n/1000]∧[
√

n]Σ

of size 2O(
√

n) is strictly contained in the class computed by Σ∧[
√

n]Σ[2
√

n]∧[
√

n]Σ
of size 2O(

√
n).

4 Dimension of Shifted Partial Derivatives

This section is devoted to the study of shifted partial derivatives of polynomials
that are computed by restricted Σ ∧Σ ∧Σ circuits and proofs of Theorem 3 and
Lemma 4.

We begin with a simple upper bound on the dimension of the derivatives of
powers of projections of pd onto low-dimensional sub-spaces:

Lemma 18. Let f = pd(�1, . . . , �t) where �1, . . . , �t are linear forms. Then for
any k > 0, we have dim

(
F-Span

{
∂≤k
MLfα

})
≤ (k + 1)(dk)r where r is the

dimension of the span of {�1, . . . , �t}.
Proof. Without loss of generality, assume that �1, . . . , �r is a basis for the space
spanned by �1, . . . , �t r ≤ t. Observe that:

∂≤k
MLfα ⊆ F-Span

⎧
⎨

⎩
fα−i · �β1

1 · · · �βr
r |

r∑

j=1

βj ≤ dk

⎫
⎬

⎭
i∈{1,...,k}

and therefore, dim
(
F-Span

{
∂≤k
MLfα

})
≤ (k + 1)(dk)r as required. ��

Now, we bound the dimension of shifted partial derivatives of powers of the
power symmetric polynomial:

Lemma 19. Let f = pd(xj1 , . . . , xjm
) for some j1, . . . , jm ∈ {1, . . . , n}. Then

for any α, l, k ≥ 1

dim
(
F-Span

{
x≤l∂=k

MLfα
}) ≤ (k + 1)

(
n + m + k + l

k + l

)

.

Note that the straightforward bound of
(
m
k

)(
n+l

l

)
is better than this bound if

m is large. However, when m is small (say m ≤ n/40), the bound shown above
is better for suitable values of k and l. Combining Lemmas 18 and 19 with the
sum and product rules for partial derivatives, we get:

Lemma 20. Let �1, . . . �t ∈ F[x1, . . . , xn] be linear forms and let r denote their
rank. Let f = pd(xj1 , . . . , xjm

, �1, . . . , �t). Then for any d > k > 0, we have

dim
(
F-Span

{
x≤l∂=k

MLfα
}) ≤ (α + 1)(k + 1)3(dk)r

(
m + n + k + l

k + l

)

.
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Finally, using sub-additivity of shifted partial derivatives and Lemma20 we
obtain the following upper bound:

Theorem 21. Let d > k > 0 and g =
∑s

i=1 fαi
i where each of the polyno-

mials fi = pdi
(xi1 , . . . , ximi

, �i1 , . . . , �iri
) and �i1 , . . . , �imi

are linear forms in
x1, . . . , xn. Then for any l > 0 with k + l > n + m:

dim
(
F-Span

{
x≤l∂=k

MLg
}) ≤ s(α + 1)(k + 1)3(dk)r

(
n + m + k + l

k + l

)

where m = maxi mi and r = maxi{dim(F-Span
{
�i1 , . . . , �iri

}
)}.

Combining the previous theorem with the lower bound from Proposition 6
gives us the required size lower bound.

Theorem 3. Let g =
∑s

i=1 fαi
i where fi = pdi

(xi1 , . . . , ximi
, �i1 , . . . , �iri

), mi ≤
1
40n, ri ≤ nε, d ≤ 2n1−γ

and αi ≤ 2nδ

for all i, for some 0 < δ, ε, γ < 1, ε < γ.
If g = x1x2 . . . xn then s = 2Ω(n).

Proof. Let d ≥ 2 and m = maxi mi. Using Proposition 6 and Theorem 21

s ≥
(
n
k

)(
n−k+l

l

)

(α + 1)(k + 1)3(dk)r
(
n+m+k+l

k+l

)

where α = maxi αi. Taking the logarithm and using that 3 log(k + 1) ≤ 3 log dk
since d ≥ 2 gives us

log s ≥ log
(n

k

)
+ log

(n − k + l

l

)
−
(
log(α + 1) + log

(n + m + k + l

k + l

)
+ (r + 3) log dk

)
.

Note that (r + 3) log dk ∈ o(n) if d ≤ 2n1−γ

. Now, using the approximation of
binomial coefficients in Proposition 5 and setting k = n/10 and l = 10n we get
log s ≥ 0.0165n. This proves the required bound. ��
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Abstract. In this paper, we investigate the expressive power and the
algorithmic properties of weighted expressions, which define functions
from finite words to integers. First, we consider a slight extension of
an expression formalism, introduced by Chatterjee et al. in the context
of infinite words, by which to combine values given by unambiguous
(max,+)-automata, using Presburger arithmetic. We show that impor-
tant decision problems such as emptiness, universality and comparison
are PSpace-c for these expressions. We then investigate the extension of
these expressions with Kleene star. This allows to iterate an expression
over smaller fragments of the input word, and to combine the results by
taking their iterated sum. The decision problems turn out to be unde-
cidable, but we introduce the decidable and still expressive class of syn-
chronised expressions.

1 Introduction

Quantitative Languages. Quantitative languages (QL), or series, generalise
Boolean languages to function from finite words into some semiring. They have
recently received a particular attention from the verification community, for their
application in modeling system quality [3], lifting classical Boolean verification
problems to a quantitative setting. In this paper, we consider the case of inte-
ger weights and in this context, the comparison problem asks whether two QL
f, g : Σ∗ → Z satisfy f(u) ≤ g(u) for all u ∈ Σ∗. Similarly, the universality
(f ≥ ν where ν is a constant) and equivalence problem (f = g) can be defined,
as well as emptiness (does there exists a word whose value is above some given
threshold). We say that a formalism for QL is decidable if all these problems
are decidable. A popular formalism to define QL is that of weighted automata
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(WA) [6]. However, WA over the semiring (Z,max,+), called (max,+)-automata,
are undecidable [12], even if they are linearly ambiguous (max,+)-automata [5].

Decidable Formalisms for Quantitative Languages and Objectives. The largest
known class of (max,+)-automata enjoying decidability is that of finitely ambigu-
ous (max,+)-automata, which is also expressively equivalent to the class of finite-
valued (max,+)-automata (all the accepting executions over the same input run
yields a constant number of different values) [8]. Moreover, (max,+)-automata
are not closed under simple operations such as min and the difference − [11].
Basic functions such as u �→ min(#a(u),#b(u)) and1 (as a consequence) u �→
|f(u)−g(u)| are not definable by (max,+)-automata, even if f, g are [11]. To cope
with the expressivity and undecidability issues, a class of weighted expressions was
introduced in [2] in the context of ω-words. Casted to finite words, the idea is to use
deterministic (max,+)-automata as atoms, and to combine them using the oper-
ations max, min, +, and −. The decision problems defined before were shown to
be PSPace-c [13] over ω-words. One limitation of this formalism, casted to finite
words, if that it is not expressive enough to capture finitely ambiguous (max,+)-
automata, yielding two incomparable classes of QL. In this paper, our objective is
to push the expressiveness of weighted expressions as far as possible while retain-
ing decidability, and to capture both finitely ambiguous (max,+)-automata and
the expressions of [2], for finite words.

Monolithic Expressions with Presburger Combinators. We define in Sect. 3 a
class of expressions, inspired from [2], that we call monolithic in contrast to
another class of expressions defined in a second contribution. The idea is to use
unambiguous (max,+)-automata as atoms, and to combine them using n-ary
functions definable in Presburger arithmetics (we call them Presburger com-
binators). Any finitely ambiguous (max,+)-automaton being equivalent to a
finite union of unambiguous ones [8], this formalism captures finitely ambigu-
ous (max,+)-automata (using the Presburger combinator max). We show that
all the decision problems are PSpace-c, matching the complexity of [13]. It is
important to mention that this complexity result cannot be directly obtained
from [13] which is on ω-words with mean-payoff automata as atoms (hence the
value of an infinite word is prefix-independent). Moreover, unlike in [13], we can
rely on existing results by encoding expressions into reversal-bounded counter
machines [10].

Expressions with Iterated Sum. The previous expressions are monolithic in the
sense that first, some values are computed by weighted automata applied on
the whole input word, and then these values are combined using Presburger
combinators. It is not possible to iterate expressions on factors of the input
word, and to aggregate all the values computed on these factors, for instance by
a sum operation. The basic operator for iteration is that of Kleene star (extended
to quantitative languages), which we call more explicitly iterated sum. It has

1 #σ(u) is the number of occurrences of σ in u.
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already been defined in [6], and its unambiguous version considered in [1] to
obtain an expression formalism equivalent to unambiguous (max,+)-automata.
Inspired by [1], we investigate in Sect. 4 the extension of monolithic expressions
with unambiguous iterated sum, which we just call iterated sum in the paper.
The idea is as follows: given an expression E which applies on a domain D,
the expression E� is defined only on words u that can be uniquely decomposed
(hence the name unambiguous) into factors u1u2 . . . un = u such that ui ∈ D,
and the value of u is then

∑n
i=1 E(u). Unfortunately, we show that such an

extension yields undecidability (if 2 or more iterated sum operations occur in
the expression). The undecidability is caused by the fact that subexpressions
E� may decompose the input word in different ways. We therefore define the
class of so called synchronised expressions with iterated sum, which forbids this
behaviour. We show that while being expressive (for instance, they can define QL
beyond finitely ambiguous (max,+)-automata), decidability is recovered. The
proof goes via a new weighted automata model (Sect. 5), called weighted chop
automata, that slice the input word into smaller factors, recursively apply smaller
chop automata on the factors to compute their values, which are then aggregated
by taking their sum. In their synchronised version, we show decidability for chop
automata. We finally discuss some extensions in Sect. 62.

2 Quantitative Languages

Words, Languages and Quantitative Languages. Let Σ be a finite alphabet and
denote by Σ∗ the set of finite words over Σ, with ε the empty word. Given two
words u, v ∈ Σ∗, |u| and |v| denote their length, and the distance between u and
v is defined as d(u, v) = |u| + |v| − 2| � (u, v)|, where �(u, v) denotes the longest
common prefix of u and v. A quantitative language (QL)3 is a partial function
f : Σ∗ → Z, whose domain is denoted by dom(f). E.g., consider the function
mapping any word w ∈ Σ∗ to the number of occurrences #σ(w) of some symbol
σ ∈ Σ in w. A QL f is Lipschitz-continuous if there exists K ∈ N such that for
all words u, v ∈ Σ∗, |f(u) − f(v)| ≤ K · d(u, v).

Combinators for Quantitative Languages. Any binary operation � : Z
2 → Z

is extended to quantitative languages by f1 � f2(w) = f1(w) � f2(w) if w ∈
dom(f1)∩dom(f2), otherwise it is undefined. We will consider operations defined
in existential Presburger logic. An existential Presburger formula (simply called
Presburger formula in the sequel) is built over terms t on the signature {0, 1,+}∪
X, where X is a set of variables, as follows: φ ::= t = t | t > t | φ∨φ | φ∧φ | ∃x. φ.
If a formula φ has n + 1 free variables x1, . . . , xn+1, for all v1, . . . , vn+1 ∈ Z, we
write φ(v1, . . . , vn+1) if φ holds for the valuation mapping xi to vi. When n ≥ 1,
we say that φ is functional if for all v1, . . . , vn ∈ Z, there exists a unique vn+1 ∈ Z

such that φ(v1, . . . , vn+1) holds. Hence, φ defines a (total) function from Z
n to

Z that we denote [[φ]]. We call n the arity of φ and may write φ(x1, . . . , xn) to
2 Full proofs are given in the full paper version at http://arxiv.org/abs/1706.08855.
3 Also called formal series in [6].

http://arxiv.org/abs/1706.08855
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denote the unique xn+1 such that φ(x1, . . . , xn+1) holds. We say that a function
f : Z

n → Z is Presburger-definable if there exists a functional Presburger-
formula φ such that f = [[φ]]. E.g., the max of values x1, . . . , xn is definable by
φmax(x1, . . . , xn, x) ≡ (

∧n
i=1 xi ≤ x) ∧ (

∨n
i=1 xi = x).

Semi-linear Sets. Let k ≥ 1. A set S ⊆ Z
k is linear if there exist x1, . . . , xn ∈ Z

k,
called the period vectors, and x0 ∈ Z

k, called the base, such that S = {x0 +∑n
i=1 aixi | a1, . . . , an ∈ N}. S is semi-linear if it is a finite a union of linear

sets. Note that the set of base and periodic vectors of each linear set of the union
provides a finite representation of S. It is a folklore result that a set S ⊆ Z

k is
semi-linear iff it is definable by some existential Presburger formula.

Decision Problems. In this paper, we are interested by fundamental decision
problems on (finite representations of) quantitative languages, namely universal-
ity, emptiness and comparison. Given finitely represented quantitative languages
f, f1, f2 and v ∈ Z,

– the v-emptiness (resp. v-universality) problem asks whether there exists u ∈
dom(f) such that f(u) � v (resp. whether all u ∈ dom(f) satisfies f(u) � v),
for � ∈ {>,≥}.

– the �-inclusion problem with � ∈ {>,≥} asks whether dom(f1) ⊇ dom(f2)
and for all w ∈ dom(f2), f1(w) � f2(w). We write f1 � f2.

– the equivalence problem asks whether f1≥f2 ∧ f2≥f1 denoted by f1 ≡ f2.

Remark 1. For classes of QL (effectively) closed under regular domain restriction
and difference, and with decidable domain inclusion, the v-universality, inclusion
and equivalence problems, are reducible to the 0-emptiness problem as follows:

1. to establish ∀w ∈ dom(f) : f(w) ≥ v (universality), it suffices to check that
it is not the case that ∃w ∈ dom(f) : −(f(w) − v) > 0 (0-emptiness).

2. to establish dom(f2) ⊆ dom(f1) and for all w ∈ dom(f2), f1(w) ≥ f2(w),
when the first check succeeds, we reduce the second one as follows: construct
a new QL g on dom(f2) such that ∀w ∈ dom(f2) : g(w) = f2(w) − f1(w) and
check that ∀w ∈ dom(f2) : g(w) ≥ 0 (0-emptiness).

The other variants with strict inequalities are treated similarly. Note also with
similar arguments, we can show that the 0-emptiness problem can be reduced
to the universality and the inclusion problems. The quantitative expression for-
malisms that we define in this paper have those closure properties (in PTime)
and so, we concentrate, in most of our results, on the 0-emptiness problem.

Weighted Automata. Weighted automata (WA) have been defined as a rep-
resentation of QL (more generally with values in a semiring). Here, we con-
sider weighted automata over the semiring (Z ∪ {−∞},max,+) and just call
them weighted automata. They are defined as tuples M = (A, λ) where A =
(Q, I, F,Δ) is a finite automaton over Σ whose language is denoted by L(A)
and λ : Δ → Z is a weight function on transitions. Given a word w ∈ L(A)
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and an accepting run r = q1a1 . . . qnanqn+1 of A on w, the value V (r) of r
is defined by

∑n
i=1 λ(qi, ai, qi+1) if n > 1, and by 0 if4 n = 1. Finally, M

defines a quantitative language [[M ]] : L(A) → Z such that for all w ∈ L(A),
[[M ]](w) = max{V (r) | r is an accepting run of A on w}. M is called determin-
istic if A is deterministic. We say that M is k-ambiguous if A is k-ambiguous,
i.e. there are at most k accepting runs on words of L(A). A 1-ambiguous
WA is also called unambiguous. M is k-valued if for all w ∈ L(A), the set
{V (r) | r is an accepting run of A on w} has cardinality at most k. In particu-
lar, any k-ambiguous WA is k-valued. The converse also holds, and it is decidable
whether a WA is k-valued, for a given k [8]. While emptiness is decidable for
WA [9], inclusion and universality are undecidable [12]. However, all these prob-
lems are decidable for k-valued WA, for a fixed k [8].

3 Monolithic Expressions

We start our study of weighted expressions by a definition directly inspired by [2]
where weighted automata5 are used as building blocs of quantitative expressions
that can be inductively composed with functions such as min, max, addition and
difference. The equivalence checking problem for those expressions is decidable in
PSpace. We start here with deterministic (max,+)-automata as building blocs.

Definition 1. A simple expression (s-expression) is a term E generated by

E ::= D | min(E1, E2) | max(E1, E2) | E1 + E2 | E1 − E2

where D is a deterministic WA (we remind that by WA we mean (max,+)-
automata).

Semantics. Any s-expression E defines a quantitative language [[E]] : Σ∗ → Z

on a domain dom(E) inductively as follows: if E ≡ A, then dom(E) = L(A)
and for all u ∈ L(A), [[E]](u) = [[A]](u) (the semantics of WA is defined in
Sect. 2); if E ≡ min(E1, E2), then dom(E) = dom(E1) ∩ dom(E2) and for all
u ∈ dom(E), [[E]](u) = min([[E1]](u), [[E2]](u)), symmetrical works for max, +
and −. We say that two s-expressions E1, E2 are equivalent if [[E1]] = [[E2]]
(in particular dom(E1) = dom(E2)). To characterise the expressiveness of
s-expressions, we note that:

Lemma 1. Any s-expression defines a Lipschitz continuous quantitative lan-
guage.

The unambiguous WA can define non Lipschitz continuous functions,
hence not definable by s-expressions. On the contrary, the function u �→
min(#a(u),#b(u)) is definable by an s-expression while it is not definable by
a WA [11].
4 Sometimes, initial and final weight functions are considered in the literature [6], so

that non-zero values can be assigned to ε.
5 Chatterjee et al. studied quantitative expressions on infinite words and the automata

that they consider are deterministic mean-payoff automata.
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Proposition 1. There are quantitative languages that are definable by unam-
biguous weighted automata and not by s-expressions. There are quantitative lan-
guages that are definable by s-expressions but not by a WA.

To unleash their expressive power, we generalise s-expressions. First, instead
deterministic WA, we consider unambiguous WA as atoms. This extends their
expressiveness beyond finite valued WA. Second, instead of considering a fixed
(and arbitrary) set of composition functions, we consider any function that is
(existential) Presburger definable. Third, we consider the addition of Kleene
star operator. While the first two extensions maintain decidability in PSpace,
the third extension leads to undecidability and sub-cases need to be studied to
recover decidability. We study the two first extensions here and the Kleene star
operator in the next section.

Definition 2. Monolithic expressions (m-expression) are terms E generated by
the grammar E ::= A | φ(E1, . . . , En), where A is an unambiguous WA, and φ
is a functional Presburger formula of arity n.

The semantics [[E]] : Σ∗ → Z of an m-expression E is defined inductively,
and similarly as s-expression. In particular, for E = φ(E1, . . . , En), dom(E) =⋂n

i=1 dom(Ei) and for all u ∈ dom(E), [[E]](u) = [[φ]]([[E1]](u), . . . , [[En]](u)) (the
semantics of functional Presburger formulas is defined in Sect. 2).

Example 1. As seen in Sect. 2, max is Presburger-definable by a formula φmax,
it is also the case for min(E1, . . . , En), E1 + E2, E1 − E2 and the unary
operation −E. For m-expressions E1, E2, the distance |E1 − E2| : w ∈
dom(E1) ∩ dom(E2) �→ |E1(w) − E2(w)| is defined by the m-expression
max(E1 − E2, E2 − E1). This function is not definable by a WA even if E1, E2

are 2-ambiguous WA, as a consequence of the non-expressibility by WA of
min(#a(.),#b(.)) = |0 − max(−#a(.),−#b(.))| [11].

Lemma 2. M-expressions are more expressive than finite valued WA. There are
functions definable by m-expressions and not by a WA.

Theorem 1. For m-expressions, the emptiness, universality and comparison
problems are PSpace-Complete.

Proof (Sketch). By Remark 1, all the problems reduce in PTime to the
0-emptiness problem for which we establish PSpace membership. Clearly,
by combining Presburger formulas, any m-expression is equivalent to an m-
expression φ(A1, . . . , An) where Ai are unambiguous WA. Now, the main
idea is to construct a product A1 × · · · × An (valued over Z

n), which maps
any word u ∈ ⋂

i dom(Ai) to (A1(u), . . . , An(u)). (Effective) semi-linearity of
range(A1 × · · · × An) is a consequence of Parikh’s theorem, which implies semi-
linearity of range(φ(A1, . . . , An)). Then it suffices to check for the existence of
a positive value in this set. To obtain PSpace complexity, the difficulty is that
A1 × · · · × An has exponential size. To overcome this, we encode φ(A1, . . . , An)
into a counter machine. First, A1 ×· · ·×An is encoded into a machine M whose
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counter valuation, after reading u, encodes the tuple (A1(u), . . . , An(u)). Then,
M is composed with another counter machine Mφ that compute, on reading the
word ε, the value φ((A1(u), . . . , An(u)) (stored in an extra counter). Finally, the
compositional machine M · Mφ accepts iff this latter value is positive, hence it
suffices to check for its emptiness. We define M · Mφ in such a way that it is
reversal-bounded (its counters change from increasing to decreasing mode a con-
stant number of times [10]). Reversal-bounded counter machines have decidable
emptiness problem. While Mφ can be constructed in PTime, M has an expo-
nential size in general. However, we can use a small witness property given in
[10] to devise a Pspace algorithm that does not construct M explicitly.

PSpace-hardness for emptiness is obtained from the emptiness problem of
the intersection of n DFAs. ��

4 Expressions with Iterated Sum

Given f : Σ∗ → Z a quantitative language, the iterated sum of f (or unam-
biguous Kleene star), denoted by f�, is defined by f�(ε) = 0, and for all
u ∈ Σ+, if there exists at most one tuple (u1, . . . , un) ∈ (dom(f)\{ε})n such that
u1 . . . un = u, then f�(u) =

∑n
i=1 f(ui). Note that ε ∈ dom(f�) for any f . By

extending m-expressions with iterated sum, we obtain iterated-sum expressions
(i-expressions).

Definition 3. An iterated-sum expression E (i-expression for short) is a term
generated by the grammar E ::= A | φ(E,E) | E�, where A is some unambiguous
WA over Σ and φ is a functional Presburger formula.

As for m-expressions, the semantics of any i-expression E is a quantitative
language [[E]] : Σ∗ → Z inductively defined on the structure of the expression.

Example 2. Assume that Σ = {a, b, $} and consider the QL f defined for all
u ∈ Σ∗ by u1$u2$ . . . un$ �→ ∑n

i=1 max(#a(ui),#b(ui)) where each ui belongs
to {a, b}∗, and #σ counts the number of occurrences of σ in a word. Counting
the number of σ in v$ where v ∈ {a, b}∗ is realisable by a 2 states deterministic
WA Aσ. Then, f is defined by the i-expression max(Aa, Ab)�.

Proposition 2. The domain of any i-expression is (effectively) regular.

Theorem 2. Emptiness, universality and comparisons for i-expressions are
undecidable problems, even if only s-expressions are iterated.

Proof (Sketch). The proof of this theorem, inspired by the proof of [5] for the
undecidability of WA universality, consists of a reduction from the 2-counter
machine halting problem to the 0-emptiness problem of i-expressions. This estab-
lishes undecidability for the other decision problems by Remark 1. In this reduc-
tion, a transition between two successive configurations ...(q1, (x �→ c1, y �→
d1))δ(q2, (x �→ c2, y �→ d2))... is coded by a factor of word of the form:
... � q1a

c1bd1 � δ � q2a
c2bd2 �� q2a

c2bd2 � ....
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We show that such a word encodes an halting computation if it respects a
list of simple requirements that are all are regular but two: one that expresses
that increments and decrements of variables are correctly executed, and one that
imposes that, from one transition encoding to the next, the current configura-
tion is copied correctly. In our example above, under the hypothesis that x is
incremented in δ, this amounts to check that the number of a occurrences before
δ is equal to the number of occurrences of a after δ minus one. This property
can be verified by s-expression on the factor between the � and � that returns
0 if it is the case and a negative value otherwise. The second property amounts
to check that the number of occurrences of a between the first � and � and the
number of a between the second � and second � are equal. Again, it is easy to
see that this can be done with an s-expression that returns 0 if it is the case
and a negative value otherwise. Then, with i-expressions we decompose the word
into factors that are between the markers � and �, and other factors that are
between the markers � and �, and we iterate the application of the s-expressions
mentioned above. The sum of all the values computed on the factors is equal to
0 if the requirements are met and negative otherwise. ��

A close inspection of the proof above, reveals that the undecidability stems
from the asynchronicity between parallel star operators, and in the way they
decompose the input word (decomposition based on � · · · � or � · · · �). The
two overlapping decompositions are needed. By disallowing this, decidability
is recovered: subexpressions F� and G� at the same nested star depth must
decompose words in exactly the same way.

Let us formalise the notion of star depth. Given an i-expression E, its syntax
tree T (E) is a tree labeled by functional Presburger formulas φ, star operators �,
or unambiguous WA A. Any node p of T (E) defines a subexpression E|p of E.
The star depth of node p is the number of star operators occurring above it, i.e.
the number of nodes q on the path from the root of T (E) to p (excluded) labeled
by a star operator. E.g. in the expression φ(A�

1 , φ(A�
2 ))�, the subexpression A�

1

has star depth 1, A1 has star depth 2, and the whole expression has star depth 0.

Definition 4. An i-expression E is synchronised if for all nodes p, q of T (E)
at the same star depth, if E|p = F� and E|q = G�, then dom(F ) = dom(G).

By Proposition 2, this property is decidable. Asking that F and G have the
same domain enforces that any word u is decomposed in the same way by F� and
G�. Given a set S = {E1, . . . , En} of i-expressions, we write Sync(S) the pred-
icate which holds iff φ(E1, . . . , En) is synchronised, where φ is some functional
Presburger formula.

Example 3. An i-expression E is star-chain if for any distincts subexpressions
F� and G� of E, F� is a subexpression of G, or G� is a subexpression of
F . E.g. max(A�, B)� is star-chain, while max(A�, B�) is not. The expres-
sion of Example 2 is also a star-chain, hence it is synchronised, as well as
min(max(Aa, Ab)�, Ac). Note that Ac applies on the whole input word, while
Aa and Ab apply on factors of it.
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Finitely ambiguous WA is the largest class of WA for which emptiness, uni-
versality and comparisons are decidable [8]. Already for linearly ambiguous WA,
universality and comparison problems are undecidable [5]. Example 2 is realis-
able by a synchronised i-expression or a WA which non-deterministically guess,
for each factor ui, whether it should count the number of a or b. However, as
shown in [11] (Sect. 3.5), it is not realisable by any finitely ambiguous WA. As a
consequence:

Proposition 3. There is a quantitative language f such that f is definable by
a synchronised i-expression or a WA, but not by a finitely ambiguous WA.

As a direct consequence of the definition of i-expressions and synchronisa-
tion, synchronised i-expressions are closed under Presburger combinators and
unambiguous iterated-sum in the following sense:

Proposition 4. Let E1, . . . , En, E be i-expressions and φ a functional Pres-
burger formula of arity n. If Sync(E1, . . . , En), then φ(E1, . . . , En) is synchro-
nised, and if E is synchronised, so is E�.

Despite the fact that synchronised i-expressions can express QL that are
beyond finitely ambiguous WA, we have decidability (proved in the next section):

Theorem 3. The emptiness and universality problems are decidable for syn-
chronised i-expressions. The comparisons problems for i-expressions E1, E2 such
that Sync{E1, E2} are decidable.

5 Decidability of Synchronised Iterated Sum Expressions

In this section, we introduce a new weighted automata model, called weighted
chop automata (WCA), into which we transform i-expressions. It is simple to
see that the proof of undecidability of i-expressions (Theorem2) can be done the
same way using WCA. We introduce the class of synchronised WCA, to which
synchronised i-expressions can be compiled, and by which we recover decidability,
thus proving Theorem3. The intuitive behaviour of a WCA is as follows. An
unambiguous generalised automaton (whose transitions are not reading single
letters but words in some regular language) “chop” the input word into factors,
on which expressions of the form φ(C1, . . . , Cn), where Ci are smaller WCA,
are applied to obtain intermediate values, which are then summed to obtain the
value of the whole input word.

Formally, a generalised finite automaton is a tuple A = (Q, I, F,Δ) where Q
is a set of states, I its initial states and F its final states, and Δ maps any pair
(p, q) ∈ Q2 to a regular language Δ(p, q) ⊆ Σ∗ (finitely represented by some
NFA). A run of A over a word u = u1 . . . un is a sequence r = q0u1 . . . qn−1unqn

such that ui ∈ Δ(qi−1, qi) for all 1 ≤ i ≤ n. It is accepting if q0 ∈ I and qn ∈ F .
We say that A is unambiguous if for all u ∈ Σ∗, there is at most one accepting
run of A on u (and hence its decomposition u1 . . . un is unique). This property
can be decided in PTime.
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Definition 5. A 0-weighted chop automaton is an unambiguous WA. Let n > 0.
An n-weighted chop automaton (n-WCA) is a tuple C = (A, λ) where A is an
unambiguous generalised finite automaton and λ is a function mapping any pair
(p, q) ∈ Q2 to some expression E = φ(C1, . . . , Cm) where for all i, Ci is an
n′-WCA, for some n′ < n, and φ is a functional Presburger formula of arity m.
Moreover, it is required that at least one Ci is an (n − 1)-WCA. A WCA is an
n-WCA for some n.

Semantics. A WCA C defines a quantitative language [[C]] of domain dom(C)
inductively defined as follows. If C is a 0-WCA, then its semantics is that of
unambiguous WA. Otherwise C = (A, λ), and the set dom(C) is the set of words
u = u1 . . . un on which there exists one accepting run r = q0u1 . . . qn−1unqn of
A such that for all 1 ≤ i ≤ n, if λ(qi−1, qi) is of the form φ(C1, . . . , Cm), then
ui ∈ ⋂m

j=1 dom(Cj), and in this case we let vi = [[φ]]([[C1]](u), . . . , [[Cm]](u)). The
value of r (which also defines the value of u) is then

∑n
i=1 vi. We denote by

decC(u) the (unique) sequence (u1, λ(q0, q1)) . . . (un, λ(qn−1, qn)).

Example 4. Let Σ = {a, b, c, d} and •, $ /∈ Σ, the WCA depicted below realises
the function mapping any word of the form u1$ . . . un$ • v1$ . . . vm$, where
ui, vi ∈ {a, b, c, d}∗, to

∑n
i=1 max(#a(ui),#b(ui)) +

∑m
i=1 max(#c(vi),#d(vi)).

The automata Aσ are unambiguous WA counting the number of occurences of
σ, and Ci are shortcuts for φid(Ci) where φid defines the identify function.

C:
(Σ∗$)∗• C1 (Σ∗$)∗ C2

C1:

Σ∗$ max{Aa, Ab}

C2:

Σ∗$ max{Ac, Ad}

Synchronised WCA. The notion of synchronisation of WCA is inductively
defined. Two expressions φ1(C1, . . . , Cn) and φ2(C ′

1, . . . , C
′
m) are synchronised

if Ci is synchronised with C ′
j for all i, j. We say that two WCA C1, C2 are syn-

chronised, denoted by C1||C2, if they are either both 0-WCA, or C1 = (A1, λ1)
and C2 = (A2, λ2), and the following holds: for all u ∈ L(A1) ∩ L(A2), if
decC1(u) = (u1, E1), . . . , (un, En) and decC2(u) = (v1, F1), . . . , (vm, Fm), then
n = m and for all 1 ≤ i ≤ n, we have ui = vi and Ei is synchronised with Fi.
We write Sync({C1, . . . , Cn}) if Ci||Cj for all i, j ∈ {1, . . . , n}. Now, a WCA C
is synchronised if it is an unambiguous WA, or it is of the form (A, λ), and any
expression φ(C1, . . . , Cn) in the range of λ satisfies Sync({C1, . . . , Cn}). E.g., the
WCA of Example 4 is synchronised, and it can be seen that if C1||C2, then both
C1 and C2 are n-WCA for the same n.

Proposition 5. Synchronisation is decidable in PT ime for WCA.

We now investigate the closure properties of WCA. Given two quantitative
languages f1, f2, let us define their split sum f1�f2 as the function mapping any
word u which can be uniquely decomposed into u1, u2 such that ui ∈ dom(fi) for
all i, to f1(u1)+f2(u2) [1]. We also define the conditional choice f1�f2 as the map-
ping of any word u ∈ dom(f1) to f1(u), and of any word u ∈ dom(f2) \ dom(f1)
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to f2(u) [1]. These operators may be thought of as (unambiguous) concatena-
tion and disjunction in rational expressions. Synchronised WCA are closed under
these operations, as well as Presburger combinators and (unambiguous) iterated
sum, in the following sense:

Proposition 6. Let C1, . . . , Cn be WCA such that Sync{C1, . . . , Cn} and C,D
two synchronised WCA. Let φ be a functional Presburger formula of arity n, and
L ⊆ Σ∗ a regular language. There exists synchronised WCA respectively denoted
by C�, C � D, C � D, C|L and φ(C1, . . . , Cn) such that

– [[C�]] = [[C]]�, [[C � D]] = [[C]] � [[D]], [[C � D]] = [[C]] � [[D]] and [[C|L]] = [[C]]|L
– for all u ∈ ⋂n

i=1 dom(Ci), [[φ(C1, . . . , Cn)]](u) = [[φ]]([[C1]](u), . . . , [[Cn]](u))
and dom(φ(C1, . . . , Cn)) =

⋂n
i=1 dom(Ci)

The key lemma towards decidability of synchronised WCA is the following:

Lemma 3. Let C be a synchronised weighted chop automaton. Then {[[C]](u) |
u ∈ dom(C)} is semi-linear and effectively computable.

Proof (Sketch). The proof goes by induction on C. If C is an unambiguous WA,
then semi-linearity is known (for instance by using Parikh theorem or reversal-
bounded counter machine as in the proof of Theorem1). If C = (A, λ) and A
has set of states Q, we first assume that for all states p, q ∈ Q, λ(p, q) (which is
an expression of the form φ(C1, . . . , Cn)), has semi-linear range Sp,q. Consider
the morphism μ from the free monoid (Q × Q)∗ to the monoid of semi-linear
sets of Z (with neutral element {0} and addition), defined by μ((p, q)) = Sp,q.
Clearly, for any regular language L ⊆ (Q × Q)∗, μ(L) is semi-linear, because
semi-linear sets are closed under addition, finite union, and Kleene star (see [7]
for instance). Then, we can show that range(C) = μ(L) for L the set of words
over Q × Q of the form (q0, q1)(q1, q2) . . . (qk, qk+1) such that q0 is initial, qk+1

final, and for all i, Δ(qi, qi+1) �= ∅. L is clearly regular, as the Δ(qi, qi+1) are.
To show that the expressions φ(C1, . . . , Cn) have semi-linear ranges, the key

idea is that thanks to synchronisation, we can safely construct a kind of product
between the WCA C1, . . . , Cn. This product is not a proper WCA but a “gen-
eralised” WCA with values in Z

n. By induction, we can show that this product
has semi-linear range (in fact, our induction is on generalised WCA rather than
proper WCA), whose values can be combined into a semilinear set thanks to the
Presburger combinator φ. ��

As a direct consequence of Lemma 3, Remark 1 and Proposition 6:

Theorem 4. The following problems are decidable: emptiness and universality
of synchronised WCA, comparisons of WCA C1, C2 such that Sync{C1, C2}.

We conclude this section by showing that any synchronised i-expression can
be converted into a synchronised WCA. This conversion is effective, this entails
by Theorem 4 the decidability of synchronised i-expressions (Theorem3).
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Theorem 5. Any synchronised i-expression E is (effectively) equivalent to some
synchronised weighted chop automaton CE, i.e. [[E]] = [[CE ]].

Proof (Sketch). Let us illustrate the main idea of this proof on an example.
Suppose that E = φ(A,B�) for some unambiguous WA A,B, and Presburger
formula φ. The difficulty with this kind of expression comes from the fact that
A is applied on the whole input word, while B is applied iteratively on factors
of it. Clearly, A is also a 0-WCA, and B could be inductively converted into
some WCA C, in turn used to construct a WCA C� (as done in Proposition 6).
However, A and C� are not synchronised in general: by definition of synchronisa-
tion for WCA, n-WCA are synchronised with n-WCA only. This latter property
is crucial to make a product construction of synchronised WCA and to prove
semi-linearity of their ranges (Lemma 3).

Hence, the main idea to prove this result is to “chop” A into smaller WA
that are synchronised with dom(B), and to express A as a combination of these
smaller automata. More precisely, for all states p, q of A we can define Ap,q

to be the WA A with initial state p, final state q, whose domain is restricted
to dom(B). Then, all the smaller automata Ap,q are combined into a single
WCA which simulates successive applications of the automata Ap,q, by taking
care of the fact that the words it accepts must be uniquely decomposable into
factors of dom(B). This resulting WCA, say C ′, is necessarily synchronised with
C�, and we can return the single synchronised WCA φ(C ′, C�), as defined in
Proposition 6, which is equivalent to the i-expression φ(A,B�). The general case
is just a technical generalisation of this main idea. ��

6 Discussion

First, iterating max instead of sum also yields undecidability for i-expressions.
Second, the decidability of synchronised i-expressions goes by the model weighted
chop automata, which slice the input word into factors on which subautomata
are applied. Any synchronised i-expression can be converted into a synchronised
chop automaton (Theorem 5). We conjecture that the converse of Theorem 5 is
not true, i.e. synchronised WCA are strictly more expressive than synchronised
i-expressions. In particular, we conjecture that synchronised i-expressions are not
closed under split sum, unlike synchronised WCA (Proposition 6). The quanti-
tative language of Example 4 does not seem to be definable by any synchronised
i-expression.

It turns out that extending i-expressions with split sum � and conditional
choice �, with a suitable notion of synchronisation, gives a formalism equivalent
to synchronised WCA. Due to lack of space, and since the notion of synchro-
nisation for such extended expressions is quite technical (and a bit ad-hoc), we
decided not to include it.

An expression formalism with unambiguous iterated sum, conditional choice
and split sum, whose atoms are constant quantitative languages (any word from
a regular language is mapped to a same constant value), was already introduced
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by Alur et al. [1]. It is shown that this formalism is equivalent to unambiguous
WA. Our goal was to go much beyond this expressivity, by having a formalism
closed under Presburger combinators. Adding such combinators to the expres-
sions of [1] would immediately yield an undecidable formalism (as a consequence
of Theorem 2). This extension would actually correspond exactly to the extension
we discussed in the previous paragraph, and one could come up with a notion of
synchronisation to recover decidability. We did not do it in this paper, for the
reason explained before, but it would be interesting to have an elegant notion of
synchronisation for the extension of [1] with Presburger combinators. More gen-
erally, our notion of synchronisation is semantical (but decidable). This raises
the question of whether another weighted expression formalism with a purely
syntactic notion of synchronisation could be defined.

Finally, Chatterjee et al. have introduced a recursive model of WA [4]. They
are incomparable to weighted chop automata: they can define QL whose ranges
are not semilinear, but the recursion depth is only 1 (a master WA calls slave
WA).

Acknowledgements. We are very grateful to Ismaël Jecker and Nathan Lhote for
fruitful discussions on this work, and for their help in establishing the undecidability
result.
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Abstract. We study the computational complexity of routing multiple
objects through a network in such a way that only few collisions occur:
Given a graph G with two distinct terminal vertices and two positive
integers p and k, the question is whether one can connect the terminals
by at least p routes (e.g. paths) such that at most k edges are time-wise
shared among them. We study three types of routes: traverse each ver-
tex at most once (paths), each edge at most once (trails), or no such
restrictions (walks). We prove that for paths and trails the problem is
NP-complete on undirected and directed graphs even if k is constant or
the maximum vertex degree in the input graph is constant. For walks,
however, it is solvable in polynomial time on undirected graphs for arbi-
trary k and on directed graphs if k is constant. We additionally study for
all route types a variant of the problem where the maximum length of a
route is restricted by some given upper bound. We prove that this length-
restricted variant has the same complexity classification with respect to
paths and trails, but for walks it becomes NP-complete on undirected
graphs.

1 Introduction

We study the computational complexity of determining bottlenecks in networks.
Consider a network in which each link has a capacity. We want to send a set of
objects from point s to point t in this network, each object moving at a constant
rate of one link per time step. We want to determine whether it is possible to send
our (predefined number of) objects without congestion and, if not, which links
in the network we have to replace by larger-capacity links to make it possible.

Apart from determining bottlenecks, the above-described task arises when
securely routing very important persons [15], or packages in a network [2], routing
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container transporting vehicles [17], and generally may give useful insights into
the structure and robustness of a network. A further motivation is congestion
avoidance in routing fleets of vehicles, a problem treated by recent commercial
software products (e.g. http://nunav.net/) and poised to become more important
as passenger cars and freight cars become more and more connected. Assume
that we have many requests on computing a route for a set of vehicles from a
source location to a target location, as it happens in daily commuting traffic.
Then the idea is to centrally compute these routes, taking into account the
positions in space and time of all other vehicles. To avoid congestion, we try to
avoid that on two of the routes the same street appears at the same time.

Formally, we are given an undirected or directed graph with marked source
and sink vertex. We ask whether we can construct routes between the source and
the sink in such a way that these routes share as few edges as possible. By routes
herein we mean either paths, trails, or walks, modeling different restrictions on
the routes: A walk is a sequence of vertices such that for each consecutive pair
of vertices in the sequence there is an edge in the graph. A trail is a walk where
each edge of the graph appears at most once. A path is a trail that contains each
vertex at most once. We say that an edge is shared by two routes, if the edge
appears at the same position in the sequence of the two routes. The sequence
of a route can be interpreted as the description of where the object taking this
route is at which time. So we arrive at the following core problem:

Routing with Collision Avoidance (RCA)
Input: A graph G = (V,E), two vertices s, t ∈ V , and p, k ∈ N.
Question: Are there p s-t routes that share at most k edges?

This definition is inspired by the Minimum Shared Edges (MSE) prob-
lem [7,15,19], in which an edge is already shared if it occurs in two routes,
regardless of the time of traversal. Finally, note that finding routes from s to t
also models the general case of finding routes between a set of sources and a set
of sinks.

Considering our introductory motivating scenarios, it is reasonable to restrict
the maximal length of the routes. For instance, when routing vehicles in daily
commuting traffic while avoiding congestion, the routes should be reasonably
short. Motivated by this, we study the following variant of RCA.

Fast Routing with Collision Avoidance (FRCA)
Input: A graph G = (V,E), two vertices s, t ∈ V , and p, k, α ∈ N.
Question: Are there p s-t routes each of length at most α that share at

most k edges?

In the problem variants Path-RCA, Trail-RCA, and Walk-RCA, the
routes are restricted to be paths, trails, or walks, respectively (analogously for
FRCA).

Our Contributions. We give a full computational complexity classification (see
Table 1) of RCA and FRCA (except Walk-FRCA) with respect to the three

http://nunav.net/
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Table 1. Overview of our results: DAGs abbreviates directed acyclic graphs; NP-
c., W[2]-h., P abbreviate NP-complete, W[2]-hard, and containment in the class P ,
respectively; Δ denotes the maximum degree; Δi/o denotes the maximum over the in-
and outdegrees. a (Theorem 1) b (Theorem 3) c (Corollary 2) d (even on planar graphs)

mentioned route types; with respect to undirected, directed, and directed acyclic
input graphs; and distinguishing between constant and arbitrary budget.

To our surprise, there is no difference between paths and trails in our classifi-
cation. Both Path-RCA (Sect. 4) and Trail-RCA (Sect. 5) are NP-complete in
all of our cases except on directed acyclic graphs when k ≥ 0 is constant (Sect. 3).
Some of the reductions showcase a strong relationship to the Hamilton Cycle
problem. We show that Path-RCA and Trail-RCA remain NP-complete on
undirected and directed graphs even if k ≥ 0 is constant or the maximum degree
is constant. We note that, in contrast, MSE is solvable in polynomial time when
the number of shared edges is constant, highlighting the difference to its time-
variant Path-RCA.

The computational complexity of the length-restricted variant FRCA for
paths and trails equals the one of the variant without length restrictions. The
variant concerning walks (Sect. 6) however differs from the other two variants as
it is tractable in more cases, in particular on undirected graphs. (We note that
almost all of our tractability results rely on flow computations in time-expanded
networks (see, e.g., Skutella [18]).) Remarkably, the tractability does not transfer
to the length-restricted variant Walk-FRCA, as it becomes NP-complete on
undirected graphs. This is the only case where RCA and FRCA differ with
respect to their computational complexity.

Related Work. As mentioned, Minimum Shared Edges inspired the defini-
tion of RCA. MSE is NP-hard on directed [15] and undirected [6,7] graphs.
In contrast to RCA, if the number of shared edges equals zero, then MSE
is solvable in polynomial time. Moreover, MSE is W[2]-hard with respect to
the number of shared edges and fixed-parameter tractable with respect to the
number of paths [7]. MSE is polynomial-time solvable on graphs of bounded
treewidth [1,19].
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There are various tractability and hardness results for problems related to
RCA with k = 0 in temporal graphs, in which edges are only available at pre-
defined time steps [3,11,13,14]. The goal herein is to find a number of edge
or vertex-disjoint time-respecting paths connecting two fixed terminal vertices.
Time-respecting means that the time steps of the edges in the paths are nonde-
creasing. Apart from the fact that all graphs that we study are static, the crucial
difference is in the type of routes: vehicles moving along time-respecting paths
may wait an arbitrary number of time steps at each vertex, while we require
them to move at least one edge per time step (unless they already arrived at the
target vertex).

Our work is related to flows over time, a concept already introduced by Ford
and Fulkerson [8] to measure the maximal throughput in a network over a fixed
time period. This and similar problems were studied continually, see Skutella [18]
and Köhler et al. [12] for surveys. In contrast, our throughput is fixed, our flow
may not stand still or go in circles arbitrarily, and we want to augment the
network to allow for our throughput.

2 Preliminaries

We use basic notation from parameterized complexity [4].
We define [n] := {1, . . . , n} for every n ∈ N. Let G = (V,E) be an undirected

(directed) graph. Let the sequence P = (v1, . . . , v�) of vertices in G be a walk,
trail, or path. We call v1 and v� the start and end of P . For i ∈ [�], we denote
by P [i] the vertex vi at position i in P . Moreover, for i, j ∈ [�], i < j, we
denote by P [i, j] the subsequence (vi, . . . , vj) of P . By definition, P has an
alternative representation as sequence of edges (arcs) P = (e1, . . . , e�−1) with
ei := {vi, vi+1} (ei := (vi, vi+1)) for i ∈ [� − 1]. Using this representation, we
say that P contains/uses edge (arc) e at time step i if edge (arc) e appears
at the ith position in P represented as sequence of edges (arcs) (analogue for
vertices). We call an edge/arc shared if two routes uses the edge/arc at the
same time step. Note that in the undirected case, if an edge is traversed in
different directions at the same time, we count it as shared. We say that a
walk/trail/path Q is an s-t walk/trail/path, if s is the start and t is the end
of Q. The length of a walk/trail/path is the number of edges (arcs) contained,
where we also count multiple occurrences of an edge (arc) (we refer to a path
of length m as an m-chain). (We define the maximum over in- and outdegrees
in G by Δi/o(G) := maxv∈V (G){outdeg(v), indeg(v)}.)

We state some preliminary observations on RCA and FRCA. If the termi-
nals s and t have distance at most k, then routing any number of paths along the
shortest path between them introduces at most k shared edges. Moreover, one
can show that RCA and FRCA are contained in NP. Due to space constraints,
details of these and other results (marked by �) are deferred to a full version.
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3 Everything is Equal on DAGs

Note that on directed acyclic graphs, every walk contains each edge and each
vertex at most once. Hence, every walk is a path in DAGs, implying that all
three types of routes are equivalent in DAGs.

We prove that RCA is solvable in polynomial time if the number k of shared
arcs is constant, but NP-complete if k is part of the input. Moreover, we prove
that the same holds for the length-restricted variant FRCA. We start the section
with the case of constant k ≥ 0.

3.1 Constant Number of Shared Arcs

Theorem 1. RCA and FRCA on n-vertex m-arc DAGs are solvable in
O(mk+1 · n3) time and O(mk+1 · α2 · n) time, respectively.

We prove Theorem 1 as follows: We first show that RCA and FRCA on
DAGs are solvable in polynomial time if k = 0 (Theorem 2 below). We then
show that an instance of RCA and FRCA on directed graphs is equivalent to
deciding, for all k-sized subsets K of arcs, the instance with k = 0 and a modified
input graph in which each arc in K has been copied p times:

Theorem 2 (�). If k = 0, RCA on n-vertex m-arc DAGs is solvable in O(n3 ·
m) time.

We need the notion of time-expanded graphs. Given a directed graph G, we
denote a directed graph H the (directed) τ -time-expanded graph of G if V (H) =
{vi | v ∈ V (G), i = 0, . . . , τ} and A(H) = {(vi−1, wi) | i ∈ [τ ], (v, w) ∈ A(G)}.
Note that for every directed n-vertex m-arc graph the τ -time-expanded graph
can be constructed in O(τ ·(n+m)) time. We prove that we can decide RCA and
FRCA by flow computation in the time-expanded graph of the input graph:

Lemma 1 (�). Let G = (V,A) be a directed graph with two distinct vertices
s, t ∈ V . Let p ∈ N and τ := |V |. Let H be the τ -time-expanded graph of G
with p additional arcs (ti−1, ti) between the copies of t for each i ∈ [τ ]. Then, G
allows for at least p s-t walks of length at most τ not sharing any arc if and only
if H allows for an s0-tτ flow of value at least p.

Lemma 1 is directly applicable to FRCA, by constructing an α-expanded
graph.

Corollary 1 If k = 0, then FRCA on n-vertex m-arc DAGs is solvable in
O(α2 · n · m) time.

Let G = (V,A) be a directed graph and let K ⊆ A and x ∈ N. We denote
by G(K,x) the graph obtained from G by replacing each arc (v, w) ∈ K in G by
x copies (v, w)1, . . . , (v, w)x.
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Lemma 2 (�). Let (G = (V,A), s, t, p, k) be an instance of Walk-RCA with G
being a directed graph. Then, (G, s, t, p, k) is a yes-instance of Walk-RCA if
and only if there exists a set K ⊆ A with |K| ≤ k such that (G(K, p), s, t, p, 0) is a
yes-instance of Walk-RCA. The same statement holds true for Walk-FRCA.

Proof (Theorem 1). Let (G = (V,A), s, t, p, k) be an instance of Walk-RCA
with G being a directed acyclic graph. For each k-sized subset K ⊆ A of arcs
in G, we decide the instance (G(K, p), s, t, p, 0). The statement for RCA then
follows from Lemma 2 and Theorem 2. We remark that the value of a maximum
flow between two terminals in an n-vertex m-arc graph can be computed in O(n ·
m) time [16]. The running time of the algorithm is in O(|A|k · (|V |3 · |A|)). The
statement for FRCA follows analogously with Lemma 2 and Corollary 1. ��

3.2 Arbitrary Number of Shared Arcs

If the number k of shared arcs is arbitrary, then both RCA and FRCA are hard.

Theorem 3 (�). RCA on DAGs is NP-complete and W[2]-hard with respect
to k.

The construction in the reduction for Theorem 3 is similar to the one used
by Omran et al. [15, Theorem 2]. Herein, we give a (parameterized) many-one
reduction from the NP-complete [10] Set Cover problem: given a set U =
{u1, . . . , un}, a set of subsets F = {F1, . . . , Fm} with Fi ⊆ U for all i ∈ [m], and
an integer � ≤ m, is there a subset F ′ ⊆ F with |F ′| ≤ � such that

⋃
F∈F ′ F = U .

Note that Set Cover is W[2]-complete with respect to the solution size � in
question [5]. In the following Construction 1, given a Set Cover instance, we
construct the DAG in an equivalent RCA or FRCA instance.

Construction 1. Let a set U = {u1, . . . , un}, a set of subsets F = {F1, . . . , Fm}
with Fi ⊆ U for all i ∈ [m], and an integer � ≤ m be given. Construct a directed
acyclic graph G = (V,A) as follows. Initially, let G be the empty graph. Add
the vertex sets VU = {v1, . . . , vn} and VF = {w1, . . . , wm}, corresponding to U
and F , respectively. Add the arc (vi, wj) to G if and only if ui ∈ Fj . Next, add
the vertex s to G. For each w ∈ VF , add an (� + 2)-chain to G connecting s
with w, and direct all edges in the chain from s towards w. For each v ∈ VU ,
add an (� + 1)-chain to G connecting s with v, and direct all edges in the chain
from s towards v. Finally, add the vertex t to G and add the arcs (w, t) for all
w ∈ VF . ��
Lemma 3 (�). Let U , F , �, and G as in Construction 1. Then there are at
most � sets in F such that their union is U if and only if G admits n + m
s-t walks sharing at most � arcs in G.

Theorem 3 follows then from Construction 1 and Lemma 3. Observe that each
s-t walk in the graph obtained from Construction 1 is of length at most � + 3.
Therewith, we obtain the following.

Corollary 2. FRCA on DAGs is NP-complete and W[2]-hard with respect to
k + α.
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Fig. 1. Graph G′ obtained in Construction 2. The gray part represents the graph H.
Dashed lines represent chains.

4 Path-RCA

In this section, we prove the following theorem.

Theorem 4 (�). Path-RCA both on undirected planar and directed planar
graphs is NP-complete, even if k ≥ 0 is constant or Δ ≥ 4 is constant.

In the proof of Theorem 4, we reduce from the following NP-complete [9]
problem (a cubic graph is a graph where every vertex has degree exactly three):

Planar Cubic Hamiltonian Cycle (PCHC)
Input: An undirected, planar, cubic graph G.
Question: Is there a cycle in G that visits each vertex exactly once?

Roughly, the instance of Path-RCA obtained in the reduction consists of a
graph G′ containing the original graph G connected to the terminals s, t such
that t is of degree one (see Fig. 1). We ask for constructing n−1 paths connecting
the terminals, where n is the number of vertices in the input graph of PCHC.
The idea is the following: All but one of these paths must occupy the only edge
to t for in total n − 2 time steps such that the one remaining path has to visit
all the vertices in the original graph G to not introduce a shared edge.

The reduction to prove Theorem 4 uses the following Construction 2.

Construction 2. Let G = (V,E) be an undirected, planar, cubic graph with
n = |V |. Construct in time polynomial in the size of G an undirected pla-
nar graph G′ as follows (refer to Fig. 1). Let initially G′ be the empty graph.
Add a copy of G to G′. Denote the copy of G in G′ by H. Next, add the
new vertices s, t, v, w to G. Connect s with v, and w with t by an edge. For
each m ∈ {4, 5, . . . , n + 1}, add an m-chain connecting s with w. Next, consider
a fixed plane embedding φ(G) of G. Let x1 denote a vertex incident to the outer
face in φ(G). Then, there are two neighbors x2 and x3 of x1 also incident to
the outer face in φ(G). Add the edges {v, x1}, {x2, w} and {x3, w} to G′ com-
pleting the construction of G′. We remark that G′ is planar as it allows a plane
embedding (see Fig. 1) using φ as an embedding of H. ��
Lemma 4. Let G and G′ be as in Construction 2. Then G admits a Hamiltonian
cycle if and only if G′ allows for at least n − 1 s-t paths with no shared edge.
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Proof. (⇐) Let P denote a set of n − 1 s-t paths in G′ with no shared edge.
Note that the degree of s is equal to n− 1. As no two paths in P share any edge
in G′, each path in P uses a different edge incident to s. This implies that n − 2
paths in P uniquely contain each of the chains connecting s with w, and one
path P ∈ P contains the edge {s, v}. Note that each of the n − 2 paths contain
the vertex w at most once, and since they contain the chains connecting s with w,
the edge {w, t} appears at the time steps {5, 6, . . . , n+2} in these n−2 paths P.
Hence, the path P has to contain the edge {w, t} at a time step smaller than five
or larger than n+2. Observe that, by construction, the shortest path between s
and w is of length 4 and, thus, P cannot contain the edge {w, t} on any time step
smaller than five. Hence, P has to contain the edge at time step at least n + 3.
Since the distance between s and x1 is two, and the distance from x2, x3 to w
is one, P has to visit each vertex in H exactly once, starting at x1, and ending
at one of the two neighbors x2 or x3 of x1. Hence, P restricted to H describes
a Hamiltonian path in H, which can be extended to an Hamiltonian cycle by
adding the edge {x1, x2} in the first or {x1, x3} in the second case.

(⇒) Let G admit a Hamiltonian cycle C. Since C contains every vertex in G
exactly once, it contains x1 and its neighbors x2 and x3. Since C forms a cycle
in G and G is cubic, at least one of the edges {x1, x2} or {x1, x3} appears in C.
Let C ′ denote an ordering of the vertices in C such that x1 appears first and
the neighbor x ∈ {x2, x3} of x1 with {x1, x} contained in C appears last. We
construct n − 1 s-t paths without sharing an edge. First, we construct n − 2 s-t
paths, each containing a different chain connecting s with w and the edge {w, t}.
Observe that since the lengths of each chain is unique, no edge (in particular,
not {w, t}) is shared. Finally, we construct the one remaining s-t path P as
follows. We lead P from s to x1 via v, then following C ′ in H to x, and then
from x to t via w. Observe that P has length n+3 and contains the edge {w, t} at
time step n+3. Hence, no edge is shared as the path containing the (n+1)-chain
contains the edge {w, t} at time step (n + 2). We constructed n − 1 s-t paths
in G′ with no shared edge. ��
The remaining proof of Theorem 4 is deferred to a full version. We remark that
the statement in Theorem 4 for constant k follows from Lemma 4.

As the length of every s-t path is upper bounded by the number of vertices
in the graph, we immediately obtain the following.

Corollary 3. Path-FRCA both on undirected planar and directed planar
graphs is NP-complete, even if k ≥ 0 is constant or Δ ≥ 4 is constant.

5 Trail-RCA

We now show that Trail-RCA has the same computational complexity finger-
print as Path-RCA. That is, Trail-RCA (Trail-FRCA) is NP-complete on
undirected and directed planar graphs, even if the number k ≥ 0 of shared edges
(arcs) or the maximum degree Δ ≥ 5 (Δi/o ≥ 3) is constant. The reductions are
slightly more involved, because it is harder to force trails to take a certain way.
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Fig. 2. Graph G′ obtained in Construction 3. The gray part represents the graph H ′.

5.1 On Undirected Graphs

Theorem 5 (�). Trail-RCA on undirected planar graphs is NP-complete,
even if k ≥ 0 is constant or Δ ≥ 5 is constant.

We provide two constructions supporting the two subresults for constants k,Δ.
The reductions are again from Planar Cubic Hamiltonian Cycle (PCHC).

Construction 3. Let G = (V,E) be an undirected planar cubic graph with
n = |V |. Construct an undirected planar graph G′ as follows (refer to Fig. 2).
Initially, let G′ be the empty graph. Add a copy of G to G′ and denote the copy
by H. Subdivide each edge in H and denote the resulting graph H ′. Note that H ′

is still planar. Consider a plane embedding φ(H ′) of H ′ and and let x ∈ V (H ′)
be a vertex incident to the outer face in the embedding. Next, add the vertex
set {s, v, w, t} to G′. Add the edges {s, x}, {s, v}, {v, w}, and {w, t} to G′. Finally,
add n − 1 vertices B = {b1, . . . , bn−1} to G′ and connect each of them with s by
two edges (in the following, we distinguish these edges as {s, bi}1 and {s, bi}2,
for each i ∈ [n − 1]). Note that the graph is planar (see Fig. 2 for an embedding,
where H ′ is embedded as φ(H ′)) but not simple. ��

Lemma 5 (�). Let G and G′ as in Construction 3. Then G admits a Hamil-
tonian cycle if and only if G′ admits 2n s-t trails with no shared edge.

To deal with the parallel edges in graph G′ in Construction 3, we now sub-
divide edges, maintaining an equivalent statement as in Lemma 5.

Lemma 6 (�). Let G be an undirected graph (not necessarily simple) and s, t ∈
V (G). Obtain graph G′ from G by replacing each edge {u, v} ∈ E in G by a path
of length three, identifying its endpoints with u and v. Then G admits p ∈ N

s-t trails with no shared edge if and only if G′ admits p s-t trails with no shared
edge.

We now show how to modify Construction 3 for maximum degree five, giving
up, however, a constant upper bound on the number of shared edges.

Construction 4. Let G = (V,E) be an undirected planar cubic graph with
n = |V |. Construct an undirected planar graph G′ as follows (see Fig. 3). Let
initially G′ be the graph obtained from Construction 3. Subdivide each edge
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Fig. 3. Graph G′ obtained in Construction 4. The gray part represents the graph H ′.

in H ′ and denote the resulting graph by H ′′. Observe that the distance in H ′′

between any two vertices in V (H ′′) ∩ V (H) is divisible by four. Next, delete all
edges incident with vertex s. Connect s with v via a 2n-chain, and connect s
with x via a 2n-chain. Connect s with b1 via two P2’s (2-chains). Denote the
two vertices on the P2’s by �1 and u1. Finally, for each i ∈ [n − 2], connect bi

with bi+1 via two P2’s. For each i ∈ [n − 2], denote the two vertices on the P2’s
between bi and bi+1 by �i+1 and ui+1. For an easier notation, we denote vertex s
also by b0. ��

Lemma 7 (�). Let G and G′ as in Construction 4. Then G admits a Hamil-
tonian cycle if and only if G′ has 2n s-t trails with at most 2n − 4 shared edges.

The proof of Theorem 5 then follows from Lemmas 5 and 7. As the length of each
s-t trail is upper bounded by the number of edges in the graph, we immediately
obtain the following.

Corollary 4. Trail-FRCA on undirected planar graphs is NP-complete, even
if k ≥ 0 is constant or Δ ≥ 5 is constant.

5.2 On Directed Graphs

We know that Trail-RCA and Trail-FRCA are NP-complete on undirected
graphs, even if the number of shared edges or the maximum degree is constant.
In what follows, we show that this is also the case for Trail-RCA and Trail-
FRCA on directed graphs.

Theorem 6 (�). Trail-RCA on directed planar graphs is NP-complete, even
if k ≥ 0 is constant or Δi/o ≥ 3 is constant.

As the length of each s-t trail is upper bounded by the number of edges in the
graph, we immediately obtain the following.

Corollary 5. Trail-FRCA on directed planar graphs is NP-complete, even
if k ≥ 0 is constant or Δi/o ≥ 3 is constant.
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6 Walk-RCA

Regarding their computational complexity fingerprint, Path-RCA and Trail-
RCA are equal. In this section, we show that Walk-RCA differs in this aspect.
We prove that the problem is solvable in polynomial time on undirected graphs
and on directed graphs if k ≥ 0 is constant.

6.1 On Undirected Graphs

On a high level, the tractability on undirected graphs is due to the fact that a
walk can alternate arbitrarily often between two vertices. Hence, we can model
a queue on the source vertex s, where at distinct time steps the walks leave s
via a shortest path towards t.

Theorem 7 (�). Walk-RCA on undirected graphs is solvable in linear time.

The situation changes for the length-restricted variant Walk-FRCA.

Theorem 8 (�). Walk-FRCA on undirected graphs is NP-complete and
W[2]-hard with respect to k + α.

We note that the proof is similar to the proof of Theorem 3. It remains open
whether Walk-FRCA is NP-complete when k is constant.

6.2 On Directed Graphs

Due to Theorems 2 and 3, we know that Walk-RCA is NP-complete on directed
graphs and is solvable in polynomial time on directed acyclic graphs when k = 0,
respectively. In this section, we prove that if k ≥ 0 is constant, then Walk-RCA
remains tractable on directed graphs (this also holds true for Walk-FRCA).
Note that for Path-RCA and Trail-RCA the situation is different, as both
become NP-complete on directed graphs, even if k ≥ 0 is constant.

Theorem 9. Walk-RCA and Walk-FRCA on directed n-vertex m-arc
graphs is solvable in O(mk+1 · n · (p · n)2) time and O(mk+1 · n · α2) time,
respectively.

Our proof of Theorem 9 follows the same strategy as our proof of Theorem 1.
That is, we try to guess the shared arcs, make them infinite capacity in some way,
and then solve the problem with zero shared arcs via a network flow formulation
in the time-expanded graph. The crucial difference is that here we do not have
at first an upper bound on the length of the walks in the solution.

Theorem 10 (�). If k = 0, then Walk-RCA on directed n-vertex m-arc
graphs is solvable in O(n · m · (p · n)2) time.

Lemma 8. Every yes-instance (G, s, t, p, k) of Walk-RCA on directed graphs
admits a solution in which the longest walk is of length at most p ·dt, where dt =
maxv∈V : distG(v,t)<∞ distG(v, t).
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Observe that dt is well-defined on every yes-instance of Walk-RCA. More-
over, dt ≤ |V (G)|. Below we use the following notation. For two walks P1 =
(v1, . . . , v�) and P2 = (w1, . . . , w�′) with v� = w1, denote by P1 ◦ P2 the walk
(v1, . . . , v�, w2, . . . , w�′) obtained by the concatenation of the two walks.

Proof (Lemma 8). Let P be a solution to (G, s, t, p, k) with |P| = p where the sum
of the lengths of the walks in P is minimum among all solutions to (G, s, t, p, k).
Suppose towards a contradiction that the longest walk P ∗ ∈ P is of length
|P ∗| > p · dt. Then, there is an i ∈ [p] such that there is no walk in P of length �
with (i − 1) · dt < � ≤ i · dt.

Let v = P ∗[(i−1)·dt+1], that is, v is the ((i−1)·dt+1)th vertex on P ∗, and let
S be a shortest v-t path. Observe that the length of S is at most dt. Consider the
walk P ′ := P ∗[1, (i−1) ·dt +1]◦S, that is, we concatenate the length-((i−1) ·dt)
initial subpath of P ∗ with S to obtain P ′. Observe that (i−1)·dt < |P ′| ≤ i·dt. If
P\P ∗∪P ′ forms a solution to (G, s, t, p, k), then, since |P ′| < |P ∗|, P\P ∗∪P ′ is a
solution of smaller sum of the lengths of the walks, contradicting the choice of P.
Otherwise, P ′ introduces additional shared arcs and let A′ ⊆ A(G) denote the
corresponding set. Observe that A′ is a subset of the arcs of S. Let a = (x, y) ∈ A′

be the shared arc such that distS(y, t) is minimum among all shared arcs in A′,
and let P ′[j] = y. Let P ∈ P be a walk sharing the arc a with P ′. Note that
|P | > i · dt. Thus, P ′′ := P [1, j] ◦ P ′[j, |P ′|] is a walk of shorter length than P .
Moreover, P \ P ∪ P ′′ is a solution to (G, s, t, p, k). As |P ′′| < |P |, P \ P ∪ P ′′

is a solution of smaller sum of the lengths of the walks, contradicting the choice
of P. As either case yields a contradiction, it follows that |P ∗| ≤ p · dt. ��

The proof of Theorem 10 relies on time-expanded graphs. Due to Lemma 8,
the time-horizon is bounded polynomially in the input size. The proof is deferred
to a full version. Restricting to α-time-expanded graphs yields the following.

Corollary 6. If k = 0, Walk-FRCA on directed n-vertex m-arc graphs is
solvable in O(n · m · α2) time.

Proof (Theorem 9). Let (G = (V,E), s, t, p, k) be an instance of Walk-RCA
with G being a directed graph. For each k-sized subset K ⊆ A of arcs in G,
we decide the instance (G(K, p), s, t, p, 0). The statement for Walk-RCA then
follows from Lemma 2 and Theorem 10. The running time of the algorithm is
in O(|A|k · p2 · (|V |3 · |A|)). The statement for Walk-FRCA then follows from
Lemma 2 and Corollary 6. ��

7 Conclusion and Outlook

Some of our results can be seen as a parameterized complexity study of
RCA focusing on the number k of shared edges. It is interesting to study the
problem with respect to other parameters. Herein, the first natural parameteri-
zation is the number of routes. Recall that the Minimum Shared Edges (MSE)
problem is fixed-parameter tractable with respect to the number of paths [7].
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However, most tractability results for MSE rely on the notion of separators—it
seems that such a notion has not been sufficiently developed yet for traversals
over time. A second parameterization we consider as interesting is the combined
parameter maximum degree plus k. In our NP-completeness results for Path-
RCA and Trail-RCA it seemed difficult to achieve constant k and constant
maximum degree at the same time.

Another research direction is to investigate on which graph classes Path-
RCA and Trail-RCA become tractable. We proved that both problems remain
NP-complete even on planar graphs. Do Path-RCA and Trail-RCA, like
MSE [1,19], become polynomial-time solvable on graphs of bounded treewidth?

Finally, we proved that on undirected graphs, Walk-RCA is solvable in
polynomial time while Walk-FRCA is NP-complete. However, we left open
whether Walk-FRCA on undirected graphs is NP-complete or polynomial-time
solvable when k is constant.
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Abstract. We compare pushdown automata (PDAs for short) against
other representations. First, we show that there is a family of PDAs
over a unary alphabet with n states and p ≥ 2n + 4 stack symbols
that accepts one single long word for which every equivalent context-
free grammar needs Ω(n2(p − 2n − 4)) variables. This family shows that
the classical algorithm for converting a PDA into an equivalent context-
free grammar is optimal even when the alphabet is unary. Moreover, we
observe that language equivalence and Parikh equivalence, which ignores
the ordering between symbols, coincide for this family. We conclude that,
when assuming this weaker equivalence, the conversion algorithm is also
optimal. Second, Parikh’s theorem motivates the comparison of PDAs
against finite state automata. In particular, the same family of unary
PDAs gives a lower bound on the number of states of every Parikh-
equivalent finite state automaton. Finally, we look into the case of unary
deterministic PDAs. We show a new construction converting a unary
deterministic PDA into an equivalent context-free grammar that achieves
best known bounds.

1 Introduction

Given a context-free language which representation, pushdown automata or
context-free grammars, is more concise? This was the main question studied
by Goldstine et al. [8] in a paper where they introduced an infinite family of
context-free languages whose representation by a pushdown automaton is more
concise than by context-free grammars. In particular, they showed that each lan-
guage of the family is accepted by a pushdown automaton with n states and p
stack symbols, but every context-free grammar needs at least n2p+1 variables if
n > 1 (p if n = 1). Incidentally, the family shows that the translation of a push-
down automaton into an equivalent context-free grammar used in textbooks [9],
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which uses the same large number of n2p + 1 variables if n > 1 (p if n = 1), is
optimal in the sense that there is no other algorithm that always produces fewer
grammar variables.

In this paper, we revisit these questions but this time we turn our attention
to the unary case. We define an infinite family of context-free languages as Gold-
stine et al. did but our family differs drastically from theirs. Given n ≥ 1 and
k ≥ 1, each member of our family is given by a PDA with n states, p = k+2n+4
stack symbols and a single input symbol.1 We show that, for each PDA of the
family, every equivalent context-free grammar has Ω(n2(p − 2n − 4)) variables.
Therefore, this family shows that the textbook translation of a PDA into a
language-equivalent context-free grammar is optimal2 even when the alphabet
is unary. Note that if the alphabet is a singleton, equality over words (two words
are equal if the same symbols appear at the same positions) coincides with Parikh
equivalence (two words are Parikh-equivalent if each symbol occurs equally often
in both words3). Thus, we conclude that the conversion algorithm is also opti-
mal for Parikh equivalence. We also investigate the special case of deterministic
PDAs over a singleton alphabet for which equivalent context-free grammar rep-
resentations of small size had been defined [3,10]. We give a new definition for
an equivalent context-free grammar given a unary deterministic PDA. Our defi-
nition is constructive (as far as we could tell the result of Pighizzini [10] is not)
and achieves the best known bounds [3] by combining two known constructions.

Parikh’s theorem [11] states that every context-free language has the same
Parikh image as some regular language. This allows us to compare PDAs against
finite state automata (FSAs for short) for Parikh-equivalent languages. First, we
use the same family of PDAs to derive a lower bound on the number of states
of every Parikh-equivalent FSA. The comparison becomes simple as its alphabet
is unary and it accepts one single word. Second, using this lower bound we
show that the 2-step procedure chaining existing constructions: (i) translate the
PDA into a language-equivalent context-free grammar [9]; and (ii) translate the
context-free grammar into a Parikh-equivalent FSA [4] yields optimal4 results
in the number of states of the resulting FSA.

As a side contribution, we introduce a semantics of PDA runs as trees that we
call actrees. The richer tree structure (compared to a sequence) makes simpler
to compare each PDA of the family with its smallest grammar representation.

Due to the lack of space, some proofs and examples are deferred to a long
version [7].

Structure of the Paper. After preliminaries in Sect. 2 we introduce the tree-
based semantics in 3. In Sect. 4 we compare PDAs and context-free grammars
when they represent Parikh-equivalent languages. We will define the infinite
family of PDAs and establish their main properties. We dedicate Sect. 4.2 to the

1 Their family has an alphabet of non-constant size.
2 In a sense that we will precise in Sect. 4 (Remark 10).
3 But not necessarily at the same positions, e.g. ab and ba are Parikh-equivalent.
4 In a sense that we will precise in Sect. 5 (Remark 16).
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special case of deterministic PDAs over a unary alphabet. Finally, Sect. 5 focuses
on the comparison of PDAs against finite state automata for Parikh-equivalent
languages.

2 Preliminaries

A pushdown automaton (or PDA) is a 6-tuple (Q,Σ, Γ, δ, q0, Z0) where Q is
a finite nonempty set of states including q0, the initial state; Σ is the input
alphabet ; Γ is the stack alphabet including Z0, the initial stack symbol; and δ
is a finite subset of Q × Γ × (Σ ∪ {ε}) × Q × Γ ∗ called the actions. We write
(q,X) ↪→b (q′, β) to denote an action (q,X, b, q′, β) ∈ δ. We sometimes omit the
subscript to the arrow.

An instantaneous description (or ID) of a PDA is a pair (q, β) where q ∈ Q
and β ∈ Γ ∗. We call the first component of an ID the state and the second
the stack content. The initial ID consists of the initial state and the initial stack
symbol for the stack content. When reasoning formally, we use the functions state
and stack which, given an ID, returns its state and stack content, respectively.

An action (q,X) ↪→b (q′, β) is enabled at ID I if state(I) = q and
( stack(I) )1 = X.5 Given an ID (q,Xγ) enabling (q,X) ↪→b (q′, β), define the
successor ID to be (q′, βγ). We denote this fact as (q,Xγ) �b (q′, βγ), and call
it a move that consumes b from the input.6 We sometimes omit the subscript
of � when the input consumed (if any) is not important. Given n ≥ 0, a move
sequence, denoted I0 �b1 · · · �bn In, is a finite sequence of IDs I0I1 . . . In such
that Ii �bi Ii+1 for all i. The move sequence consumes w (from the input) when
b1 · · · bn = w. We concisely denote this fact as I0 � w. . . � In. A move sequence
I � · · · � I ′ is a quasi-run when |stack(I)| = 1 and |stack(I ′)| = 0; and a
run when, furthermore, I is the initial ID. Define the language of a PDA P as
L(P ) = {w ∈ Σ∗ | P has a run consuming w}.

The Parikh image of a word w over an alphabet {b1, . . . , bn}, denoted by
�w�, is the vector (x1, . . . , xn) ∈ N

n such that xi is the number of occurrences of
bi in w. The Parikh image of a language L, denoted by �L�, is the set of Parikh
images of its words. When �L1� = �L2�, we say L1 and L2 are Parikh-equivalent.

We assume the reader is familiar with the basics of finite state automata (or
FSAs for short) and context-free grammars (or CFGs). Nevertheless we fix their
notation as follows. We denote a FSA as a tuple (Q,Σ, δ, q0, F ) where Q is a
finite set of states including the initial state q0 and the final states F ; Σ is the
input alphabet and δ ⊆ Q × (Σ ∪ {ε}) × Q is the set of transitions. We denote a
CFG as a tuple (V,Σ, S,R) where V is a finite set of variables including S the
start variable, Σ is the alphabet or set of terminals and R ⊆ V × (V ∪ Σ)∗ is a
finite set of rules. Rules are conveniently denoted X → α. Given a FSA A and
a CFG G we denote their languages as L(A) and L(G), respectively.

Finally, let us recall the translation of a PDA into an equivalent CFG.
Given a PDA P = (Q,Σ, Γ, δ, q0, Z0), define the CFG G = (V,Σ,R, S) where

5 (w)i is the i-th symbol of w if 1 ≤ i ≤ |w|; else (w)i = ε. |w| is the length of w.
6 When b = ε the move does not consume input.
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– The set V of variables — often called the triples — is given by

{[qXq′] | q, q′ ∈ Q,X ∈ Γ} ∪ {S}. (1)

– The set R of production rules is given by

{S → [q0Z0q] | q ∈ Q}
∪ {[qXrd] → b[q′(β)1r1] . . . [rd−1(β)drd]

| (q,X) ↪→b (q′, β), d = |β|, r1, . . . , rd ∈ Q}
(2)

For a proof of correctness, see the textbook of Ullman et al. [9]. The previous
definition easily translates into a conversion algorithm. Observe that the runtime
of such algorithm depends polynomially on |Q| and |Γ |, but exponentially on |β|.

3 A Tree-Based Semantics for Pushdown Automata

In this section we introduce a tree-based semantics for PDA. Using trees instead
of sequences sheds the light on key properties needed to present our main results.

Given an action a denoted by (q,X) ↪→b (q′, β), q is the source state of a, q′

the target state of a, X the symbol a pops and β the (possibly empty) sequence
of symbols a pushes.

A labeled tree c(t1, . . . , tk) (k ≥ 0) is a finite tree whose nodes are labeled,
where c is the label of the root and t1, . . . , tk are labeled trees, the children of
the root. When k = 0 we prefer to write c instead of c(). Each labeled tree t
defines a sequence, denoted t, obtained by removing the symbols ‘(’, ‘)’ or ‘,’
when interpreting t as a string, e.g. c(c1, c2(c21)) = c c1 c2 c21. The size of a
labeled tree t, denoted |t|, is given by |t|. It coincides with the number of nodes
in t.

Definition 1. Given a PDA P , an action-tree (or actree for short) is a labeled
tree a(a1(. . .), . . . , ad(. . .)) where a is an action of P pushing β with |β| = d and
each children ai(. . .) is an actree such that ai pops (β)i for all i. Furthermore,
an actree t must satisfy that the source state of (t)i+1 and the target state of (t)i

coincide for every i.
An actree t consumes an input resulting from replacing each action in the

sequence t by the symbol it consumes (or ε, if the action does not consume any).
An actree a(. . .) is accepting if the initial ID enables a.

Example 2. Consider a PDA P with actions a1 to a5 respectively given by
(q0,X1) ↪→ε (q0,X0 X0), (q0,X0) ↪→ε (q1,X1 �), (q1,X1) ↪→ε (q1,X0 X0),
(q1,X0) ↪→b (q1, ε) and (q1, �) ↪→ε (q0, ε). The reader can check that the actree
t = a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5)), depicted in Fig. 1, satisfies the con-
ditions of Definition 1 where t = a1 a2 a3 a4 a4 a5 a2 a3 a4 a4 a5, |t| = 11 and the
input consumed is b4.

We recall the notion of dimension of a labeled tree [5] and we relate dimension
and size of labeled trees in Lemma 5 (proof omitted).
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a1

a2

a3

a4 a4

a5

a2

a3

a4 a4

a5

Fig. 1. Depiction of the tree a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5))

Definition 3. The dimension of a labeled tree t, denoted as d(t), is inductively
defined as follows. d(t) = 0 if t = c, otherwise we have t = c(t1, . . . , tk) for some
k > 0 and

d(t) =

{
maxi∈{1,...,k}d(ti) if there is a unique maximum,

maxi∈{1,...,k}d(ti) + 1 otherwise.

Example 4. The annotation
d(t)

t (. . .) shows that the actree of Example 2 has
dimension 2

2
a1 (

1
a2 (

1
a3 (

0
a4,

0
a4),

0
a5),

1
a2 (

1
a3 (

0
a4,

0
a4),

0
a5)).

Lemma 5. |t| ≥ 2d(t) for every labeled tree t.

The actrees and the quasi-runs of a PDA are in one-to-one correspondence
as reflected in Theorem 6 (proof omitted).

Theorem 6. Given a PDA, its actrees and quasi-runs are in a one-to-one
correspondence.

4 Parikh-Equivalent Context-Free Grammars

In this section we compare PDAs against CFGs when they describe Parikh-
equivalent languages. We first study the general class of (nondeterministic) PDAs
and, in Sect. 4.2, we look into the special case of unary deterministic PDAs.

We prove that, for every n ≥ 1 and p ≥ 2n + 4, there exists a PDA
with n states and p stack symbols for which every Parikh-equivalent CFG has
Ω(n2(p − 2n − 4)) variables. To this aim, we present a family of PDAs P (n, k)
where n ≥ 1 and k ≥ 1. Each member of the family has n states and k + 2n + 4
stack symbols, and accepts one single word over a unary input alphabet.

4.1 The Family P (n, k) of PDAs

Definition 7. Given natural values n ≥ 1 and k ≥ 1, define the PDA P (n, k)
with states Q = {qi | 0 ≤ i ≤ n − 1}, input alphabet Σ = {b}, stack alphabet
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Γ = {S, �, $} ∪ {Xi | 0 ≤ i ≤ k} ∪ {si | 0 ≤ i ≤ n − 1} ∪ {ri | 0 ≤ i ≤ n − 1},
initial state q0, initial stack symbol S and actions δ

(q0, S) ↪→b (q0,Xk r0)
(qi,Xj) ↪→b (qi,Xj−1 rm si Xj−1 rm) ∀ i,m ∈ {0, . . . , n − 1},∀ j ∈ {1, . . . , k},
(qj , si) ↪→b (qi, ε) ∀i, j ∈ {0, . . . , n − 1},
(qi, ri) ↪→b (qi, ε) ∀i ∈ {0, . . . , n − 1},

(qi,X0) ↪→b (qi,Xk �) ∀i ∈ {0, . . . , n − 1},
(qi,X0) ↪→b (qi+1,Xk $) ∀i ∈ {0, . . . , n − 2},

(qi, �) ↪→b (qi−1, ε) ∀i ∈ {1, . . . , n − 1},
(q0, $) ↪→b (qn−1, ε)

(qn−1,X0) ↪→b (qn−1, ε)

Lemma 8. Given n ≥ 1 and k ≥ 1, P (n, k) has a single accepting actree con-
suming input bN where N ≥ 2n2 k.

Proof. Fix values n and k and refer to the member of the family P (n, k) as P . We
show that P has exactly one accepting actree. To this aim, we define a witness
labeled tree t inductively on the structure of the tree. Later we will prove that
the induction is finite. First, we show how to construct the root and its children
subtrees. This corresponds to case 1 below. Then, each non-leaf subtree is defined
inductively in cases 2 to 5. Note that each non-leaf subtree of t falls into one
(and only one) of the cases. In fact, all cases are disjoint, in particular 2, 4 and
5. The reverse is also true: all cases describe a non-leaf subtree that does occur
in t. Finally, we show that each case describes uniquely how to build the next
layer of children subtrees of a given non-leaf subtree.

1. t = a(a1(. . .), a2) where a = (q0, S) ↪→b (q0,Xk r0) and a1(. . .) and a2 are of
the form:

a2 = (q0, r0) ↪→b (q0, ε) only action popping r0

a1 = (q0,Xk) ↪→b (q0,Xk−1 r0 s0 Xk−1 r0) only way to enable a2.

Note that the initial ID (q0, S) enables a which is the only action of P with

this property. Note also that
d
a (

d
a1 (. . .),

0
a2) holds, where d > 0.

2. Each subtree whose root is labeled a = (qi,Xj) ↪→b (qi,Xj−1 rm si Xj−1 rm)
with i,m ∈ {0, . . . , n − 1} and j ∈ {2, . . . , k} has the form
a(a1(. . .), a2, a3, a1(. . .), a2) where

a2 = (qm, rm) ↪→b (qm, ε) only action popping rm

a3 = (qm, si) ↪→b (qi, ε) only action popping sifrom qm

a1 = (qi,Xj−1) ↪→b (qi,Xj−2 rm si Xj−2 rm) only way to enable a2.

Assume for now that t is unique. Therefore, as the 1st and 4th child of a share
the same label a1, they also root the same subtree. Thus, it holds (d > 0)

d+1
a (

d
a1 (. . .),

0
a2,

0
a3,

d
a1 (. . .),

0
a2).
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3. Each subtree whose root is labeled a = (qi,X0) ↪→b (qi+1,Xk $) with i ∈
{0, . . . , n − 2} has the form a(a1(. . .), a2) where

a2 = (q0, $) ↪→b (qn−1, ε) only action popping $
a1 = (qi+1,Xk) ↪→b (qi+1,Xk−1 r0 si+1 Xk−1 r0) only way to enable a2.

Note that
d
a (

d
a1 (. . .),

0
a2) holds, where d > 0.

4. Each subtree whose root is labeled a = (qi,X1) ↪→b (qi,X0 rm si X0 rm) with
i ∈ {0, . . . , n − 1} and m ∈ {0, . . . , n − 2} has the form

a(a1(a11(. . .), a12), a2, a3, a1(a11(. . .), a12), a2).

where

a2 = (qm, rm) ↪→b (qm, ε) only action popping rm

a3 = (qm, si) ↪→b (qi, ε) only action popping si from qm

a1 = (qi, X0) ↪→b (qi, Xk �) assume it for now

a12 = (qm+1, �) ↪→b (qm, ε) only way to enable a2

a11 = (qi, Xk) ↪→b (qi, Xk−1 rm+1 si Xk−1 rm+1) only way to enable a12.

Assume a1 is given by the action (qi,X0) ↪→b (qi+1,Xk $) instead. Then fol-
lowing the action popping $, we would end up in the state qn−1, not enabling
a2 since m < n − 1.
Again, assume for now that t is unique. Hence, as the 1st and 4th child of a
are both labeled by a1, they root the same subtree. Thus, it holds (d > 0)

d+1
a (

d
a1 (

d
a11 (. . .),

0
a12),

0
a2,

0
a3,

d
a1 (

d
a11 (. . .),

0
a12),

0
a2).

5. Each subtree whose root is labeled a = (qi,X1) ↪→b (qi,X0 rn−1 si X0 rn−1)
with i ∈ {0, . . . , n − 1} has the form a(a1(. . .), a2, a3, a1(. . .), a2) where

a2 = (qn−1, rn−1) ↪→b (qn−1, ε) only action popping rn−1

a3 = (qn−1, si) ↪→b (qi, ε) only action popping si from qn−1

a1 =

{
(qi, X0) ↪→b (qi+1, Xk $) if i < n − 1

(qn−1, X0) ↪→b (qn−1, ε) otherwise
Assume it for now.

For both cases (i < n − 1 and i = n − 1), assume a1 is given by (qi,X0) ↪→b

(qi,Xk �) instead. Then, the action popping � must end up in the state qn−1 in
order to enable a2, i.e., it must be of the form (qn, �) ↪→b (qn−1, ε). Hence the
action popping Xk must be of the form (qi,Xk) ↪→b (qi,Xk−1 rm si Xk−1 rm)
where necessarily m = n, a contradiction (the stack symbol rn is not defined
in P ).
Assume for now that t is unique. Then, as the 1st and 4th child of a are
labeled by a1, they root the same subtree (possibly a leaf). Thus, it holds
(d ≥ 0)

d+1
a (

d
a1 (. . .),

0
a2,

0
a3,

d
a1 (. . .),

0
a2).



278 P. Ganty and E. Gutiérrez

We now prove that t is finite by contradiction. Suppose t is an infinite tree.
König’s Lemma shows that t has thus at least one infinite path, say p, from the
root. As the set of labels of t is finite then some label must repeat infinitely
often along p. Let us define a strict partial order between the labels of the non-
leaf subtrees of t. We restrict to the non-leaf subtrees because no infinite path
contains a leaf subtree. Let a1(. . .) and a2(. . .) be two non-leaf subtrees of t. Let
qi1 be the source state of a1 and qf1 be the target state of the last action in the
sequence a1(. . .). Define qi2 , qf2 similarly for a2(. . .). Let Xj1 be the symbol that
a1 pops and Xj2 be the symbol that a2 pops. Define a1 ≺ a2 iff (a) either i1 < i2,
(b) or i1 = i2 and f1 < f2, (c) or i1 = i2, f1 = f2 and j1 > j2. First, note that
the label a of the root of t (case 1) only occurs in the root as there is no action
of P pushing S. Second, relying on cases 2 to 5, we observe that every pair of
non-leaf subtrees a1(. . .) and a2(. . .) (excluding the root) such that a1(. . .) is the
parent node of a2(. . .) verifies a1(. . .) ≺ a2(. . .). Using the transitive property
of the strict partial order ≺, we conclude that everypair of subtrees a1(. . .) and
a2(. . .) in p such that a1(. . . a2(. . .) . . .) verifies a1(. . .) ≺ a2(. . .). Therefore, no
repeated variable can occur in p (contradiction). We conclude that t is finite.

The reader can observe that t = a(. . .) verifies all conditions of the definition
of actree (Definition 1) and the initial ID enables a, thus it is an accepting actree
of P . Since we also showed that no other tree can be defined using the actions
of P , t is unique.

Finally, we give a lower bound on the length of the word consumed by t. To
this aim, we prove that d(t) = n2 k. Then since all actions consume input symbol
b, Lemma 5 shows that the word bN consumed is such that N ≥ 2n2 k.

Note that, if a subtree of t verifies case 1 or 3, its dimension remains the
same w.r.t. its children subtrees. Otherwise, the dimension always grows. Recall
that all cases from 1 to 5 describe a set of labels that does occur in t. Also, as
t is unique, no path from the root to a leaf repeats a label. Thus, to compute
the dimension of t is enough to count the number of distinct labels of t that are
included in cases 2, 4 and 5, which is equivalent to compute the size of the set

D = {(qi,Xj) ↪→ (qi,Xj−1 rm si Xj−1 rm) | 1 ≤ j ≤ k, 0 ≤ i,m ≤ n − 1}.

Clearly |D| = n2 k from which we conclude that d(t) = n2 k. Hence, |t| ≥ 2n2 k

and therefore t consumes a word bN where N ≥ 2n2 k since each action of t
consumes a b. ��
Theorem 9. For each n ≥ 1 and p > 2n + 4, there is a PDA with n states and
p stack symbols for which every Parikh-equivalent CFG has Ω(n2(p − 2n − 4))
variables.

Proof. Consider the family of PDAs P (n, k) with n ≥ 1 and k ≥ 1 described in
Definition 7. Fix n and k and refer to the corresponding member of the family
as P .

First, Lemma 8 shows that L(P ) consists of a single word bN with N ≥ 2n2 k.
It follows that a language L is Parikh-equivalent to L(P ) iff L is language-
equivalent to L(P ).
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Let G be a CFG such that L(G) = L(P ). The smallest CFG that generates
exactly one word of length � has size Ω(log(�)) [2, Lemma 1], where the size of
a grammar is the sum of the length of all the rules. It follows that G is of size
Ω(log(2n2k)) = Ω(n2k). As k = p − 2n − 4, then G has size Ω(n2(p − 2n − 4)).
We conclude that G has Ω(n2 (p − 2n − 4)) variables. ��
Remark 10. According to the classical conversion algorithm, every CFG that is
equivalent to P (n, k) needs at most n2(k+2n+4)+1 ∈ O(n2k+n3) variables. On
the other hand, Theorem9 shows that a lower bound for the number of variables
is Ω(n2k). We observe that, as long as n ≤ Ck for some positive constant C, the
family P (n, k) shows that the conversion algorithm is optimal7 in the number of
variables when assuming both language and Parikh equivalence. Otherwise, the
algorithm is not optimal as there exists a gap between the lower bound and the
upper bound. For instance, if n = k2 then the upper bound is O(k5+k6) = O(k6)
while the lower bound is Ω(k5).

4.2 The Case of Unary Deterministic Pushdown Automata

We have seen that the classical translation from PDA to CFG is optimal in the
number of grammar variables for the family of unary nondeterministic PDAs
P (n, k) when n is in linear relation with respect to k (see Remark 10). However,
for unary deterministic PDAs (UDPDAs for short) the situation is different.
Pighizzini [10] shows that for every UDPDA with n states and p stack symbols,
there exists an equivalent CFG with at most 2np variables. Although he gives
a definition of such a grammar, we were not able to extract an algorithm from
it. On the other hand, Chistikov and Majumdar [3] give a polynomial time
algorithm that transforms a UDPDA into an equivalent CFG going through the
construction of a pair of straight-line programs. The size of the resulting CFG
is linear in that of the UDPDA.

We propose a new polynomial time algorithm that converts a UDPDA with
n states and p stack symbols into an equivalent CFG with O(np) variables.
Our algorithm is based on the observation that the conversion algorithm from
PDAs to CFGs need not consider all the triples in (1) (see Sect. 2). We discard
unnecessary triples using the saturation procedure [1,6] that computes the set of
reachable IDs.

For a given PDA P with q ∈ Q and X ∈ Γ , define the set of reachable IDs
RP (q,X) as follows:

RP (q,X) = {(q′, β) | ∃(q,X) � · · · � (q′, β)}.

Lemma 11. If P is a UDPDA then the set {I ∈ RP (q,X) | stack(I) = ε} has
at most one element for every state q and stack symbol X.

7 Note that if n ≤ Ck for some C > 0 then the n3 addend in O(n2k + n3) becomes
negligible compared to n2k, and the lower and upper bound coincide.
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Proof. Let P be a UDPDA with Σ = {a}. Since P is deterministic we have that
(i) for every q ∈ Q,X ∈ Γ and b ∈ Σ ∪ {ε}, |δ(q, b,X)| ≤ 1 and, (ii) for every
q ∈ Q and X ∈ Γ , if δ(q, ε,X) �= ∅ then δ(q, b,X) = ∅ for every b ∈ Σ.

The proof goes by contradiction. Assume that for some state q and stack sym-
bol X, there are two IDs I1 and I2 in RP (q,X) such that stack(I1) = stack(I2) =
ε and state(I1) �= state(I2).

Necessarily, there exist three IDs J , J1 and J2 with J1 �= J2 such that the
following holds:

(q,X) � · · · �J �a J1 � · · · � I1

(q,X) � · · · �J �b J2 � · · · � I2.

It is routine to check that if a = b then P is not deterministic, a contradiction.
Next, we consider the case a �= b. When a and b are symbols, because P is a
unary DPDA, then they are the same, a contradiction. Else if either a or b is
ε then P is not deterministic, a contradiction. We conclude from the previous
that when stack(I1) = stack(I2) = ε, then necessarily state(I1) = state(I2) and
therefore that the set {I ∈ RP (q,X) | stack(I) = ε} has at most one element. ��

Intuitively, Lemma 11 shows that, when fixing q and X, there is at most one
q′ such that the triple [qXq′] generates a string of terminals. We use this fact to
prove the following theorem.

Theorem 12. For every UDPDA with n states and p stack symbols, there is
a polynomial time algorithm that computes an equivalent CFG with at most np
variables.

Proof. The conversion algorithm translating a PDA P to a CFG G computes
the set of grammar variables {[qXq′] | q, q′ ∈ Q,X ∈ Γ}. By Lemma 11, for each
q and X there is at most one variable [qXq′] in the previous set generating a
string of terminals. The consequence of the lemma is twofold: (i) For the triples
it suffices to compute the subset T of the aforementioned generating variables.
Clearly, |T | ≤ np. (ii) Each action of P now yields a single rule in G. This is
because in (2) (see Sect. 2) there is at most one choice for r1 to rd, hence we avoid
the exponential blowup of the runtime in the conversion algorithm. To compute
T given P , we use the polynomial time saturation procedure [1,6] which given
(q,X) computes a FSA for the set RP (q,X). Then we compute from this set the
unique state q′ (if any) such that (q′, ε) ∈ RP (q,X), hence T . From the above
we find that, given P , we compute G in polynomial time. ��

Up to this point, we have assumed the empty stack as the acceptance con-
dition. For general PDAs, assuming final states or empty stack as acceptance
condition induces no loss of generality. The situation is different for determin-
istic PDAs where accepting by final states is more general than empty stack.
For this reason, we contemplate the case where the UDPDA accepts by final
states. Theorem 13 shows how our previous construction can be modified to
accommodate the acceptance condition by final states.
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Theorem 13. For every UDPDA with n states and p stack symbols that accepts
by final states, there is a polynomial time algorithm that computes an equivalent
CFG with O(np) variables.

Proof. Let P be a UDPDA with n states and p stack symbols that accepts
by final states. We first translate P = (Q,Σ, Γ, δ, q0, Z0, F )8 into a (possibly
nondeterministic) unary pushdown automaton P ′ = (Q′, Σ, Γ ′, δ′, q′

0, Z
′
0) with

an empty stack acceptance condition. In particular, Q′ = Q ∪ {q′
0, sink}; Γ ′ =

Γ ∪ Z ′
0; and δ′ is given by

δ ∪ {(q′
0, Z

′
0) ↪→ε (q0, Z0 Z ′

0)}
∪ {(q,X) ↪→ε (sink ,X) | X ∈ Γ ′, q ∈ F}
∪ {(sink ,X) ↪→ε (sink , ε) | X ∈ Γ ′}.

The new stack symbol Z ′
0 is to prevent P ′ from incorrectly accepting when P

is in a nonfinal state with an empty stack. The state sink is to empty the stack
upon P entering a final state. Observe that P ′ need not be deterministic. Also, it
is routine to check that L(P ′) = L(P ) and P ′ is computable in time linear in the
size of P . Now let us turn to RP ′(q,X). For P ′ a weaker version of Lemma 11
holds: the set H = {I ∈ RP ′(q,X) | stack(I) = ε} has at most two elements for
every state q ∈ Q′ and stack symbols X ∈ Γ ′. This is because if H contains two
IDs then necessarily one of them has sink for state.

Based on this result, we construct T as in Theorem 12, but this time we have
that |T | is O(np).

Now we turn to the set of production rules as defined in (2) (see Sect. 2). We
show that each action (q,X) ↪→b (q′, β) of P ′ yields at most d production rules
in G where d = |β|. For each state ri in (2) we have two choices, one of which
is sink . We also know that once a move sequence enters sink it cannot leave it.
Therefore, we have that if ri = sink then ri+1 = · · · = rd = sink . Given an
action, it thus yields d production rules one where r1 = · · · = rd = sink , another
where r2 = · · · = rd = sink , . . . , etc. Hence, we avoid the exponential blowup of
the runtime in the conversion algorithm.

The remainder of the proof follows that of Theorem 12. ��

5 Parikh-Equivalent Finite State Automata

Parikh’s theorem [11] shows that every context-free language is Parikh-equivalent
to a regular language. Using this result, we can compare PDAs against FSAs
under Parikh equivalence. We start by deriving some lower bound using the
family P (n, k). Because its alphabet is unary and it accepts a single long word,
the comparison becomes straightforward.

Theorem 14. For each n ≥ 1 and p > 2n+4, there is a PDA with n states and p
stack symbols for which every Parikh-equivalent FSA has at least 2n2(p−2n−4)+1
states.
8 The set of final states is given by F ⊆ Q.
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Proof. Consider the family of PDAs P (n, k) with n ≥ 1 and k ≥ 1 described in
Definition 7. Fix n and k and refer to the corresponding member of the family
as P . By Lemma 8, L(P ) = {bN} with N ≥ 2n2k. Then, the smallest FSA that
is Parikh-equivalent to L(P ) needs N +1 states. As k = p− 2n− 4, we conclude
that the smallest Parikh-equivalent FSA has at least 2n2(p−2n−4) + 1 states. ��

Let us now turn to upper bounds. We give a 2-step procedure computing,
given a PDA, a Parikh-equivalent FSA. The steps are: (i) translate the PDA into
a language-equivalent context-free grammar [9]; and (ii) translate the context-
free grammar into a Parikh-equivalent finite state automaton [4]. Let us intro-
duce the following definition. A grammar is in 2-1 normal form (2-1-NF for
short) if each rule (X,α) ∈ R is such that α consists of at most one terminal and
at most two variables. It is worth pointing that, when the grammar is in 2-1-NF,
the resulting Parikh-equivalent FSA from step (ii) has O(4n) states where n is
the number of grammar variables [4]. For the sake of simplicity, we will assume
that grammars are in 2-1-NF which holds when PDAs are in reduced form: every
move is of the form (q,X) ↪→b (q′, β) with |β| ≤ 2 and b ∈ Σ ∪ {ε}.

Theorem 15. Given a PDA in reduced form with n ≥ 1 states and p ≥ 1 stack
symbols, there is a Parikh-equivalent FSA with O(4n2p) states.

Proof. The algorithm to convert a PDA with n ≥ 1 states and p ≥ 1 stack
symbols into a CFG that generates the same language [9] uses at most n2p + 1
variables if n > 1 (or p if n = 1). Given a CFG of n variables in 2-1-NF, one can
construct a Parikh-equivalent FSA with O(4n) states [4].

Given a PDA P with n ≥ 1 states and p ≥ 1 stack symbols the conversion
algorithm returns a language-equivalent CFG G. Note that if P is in reduced
form, then the conversion algorithm returns a CFG in 2-1-NF. Then, apply to G
the known construction that builds a Parikh-equivalent FSA [4]. The resulting
FSA has O(4n2p) states. ��
Remark 16. Theorem 14 shows that a every FSA that is Parikh-equivalent to
P (n, k) needs Ω(2n2k) states. On the other hand, Theorem 15 shows that the
number of states of every Parikh-equivalent FSA is O(4n2(k+2n+4)). Thus, our
construction is close to optimal9 when n is in linear relation with respect to k.

We conclude by discussing the reduced form assumption. Its role is to simplify
the exposition and, indeed, it is not needed to prove correctness of the 2-step
procedure. The assumption can be relaxed and bounds can be inferred. They will
contain an additional parameter related to the length of the longest sequence of
symbols pushed on the stack.

Acknowledgement. We thank Pedro Valero for pointing out the reference on small-
est grammar problems [2]. We also thank the anonymous referees for their insightful
comments and suggestions.

9 As the blow up of our construction is O(4n
2(k+2n+4)) for a lower bound of 2n

2k, we
say that it is close to optimal in the sense that 2n2(k + 2n + 4) ∈ Θ(n2k), which
holds when n is in linear relation with respect to k (see Remark 10).
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Abstract. Tropical algebra emerges in many fields of mathematics such
as algebraic geometry, mathematical physics and combinatorial optimiza-
tion. In part, its importance is related to the fact that it makes various
parameters of mathematical objects computationally accessible. Tropi-
cal polynomials play an important role in this, especially for the case of
algebraic geometry. On the other hand, many algebraic questions behind
tropical polynomials remain open. In this paper we address three basic
questions on tropical polynomials closely related to their computational
properties:

1. Given a polynomial with a certain support (set of monomials) and a
(finite) set of inputs, when is it possible for the polynomial to vanish
on all these inputs?

2. A more precise question, given a polynomial with a certain support
and a (finite) set of inputs, how many roots can polynomial have on
this set of inputs?

3. Given an integer k, for which s there is a set of s inputs such that
any non-zero polynomial with at most k monomials has a non-root
among these inputs?

In the classical algebra well-known results in the direction of these ques-
tions are Combinatorial Nullstellensatz, Schwartz-Zippel Lemma and
Universal Testing Set for sparse polynomials respectively. In this paper
we extensively study these three questions for tropical polynomials and
provide results analogous to the classical results mentioned above.

1 Introduction

A max-plus or a tropical semiring is defined by a set K, which can be R or Q

endowed with two operations, tropical addition ⊕ and tropical multiplication �,
defined in the following way:

x ⊕ y = max (x, y) , x � y = x + y.
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Tropical polynomials are a natural analog of classical polynomials. In classical
terms a tropical polynomial is an expression of the form f(�x) = maxi Mi(�x),
where each Mi(�x) is a linear polynomial (a tropical monomial) in variables �x =
(x1, . . . , xn), and all the coefficients of all Mi’s are nonnegative integers except
for a free coefficient which can be any element of K (free coefficient corresponds
to a coefficient of the tropical monomial and other coefficients correspond to the
powers of variables in the tropical monomial).

The degree of a tropical monomial M is the sum of its coefficients (except the
free coefficient) and the degree of a tropical polynomial f denoted by deg(f) is
the maximal degree of its monomials. A point �a ∈ K

n is a root of the polynomial
f if the maximum maxi{Mi(�a)} is attained on at least two different monomials
Mi. We defer more detailed definitions on the basics of max-plus algebra to
Preliminaries.

Tropical polynomials have appeared in various areas of mathematics and
found many applications (see, for example, [15,16,20,21,23,28,33]). An early
source of the tropical approach was the Newton’s method for solving algebraic
equations in Newton-Puiseux series [28]. An important advantage of tropical
algebra is that it makes some properties of classical mathematical objects com-
putationally accessible [16,20,28,29]: on one hand tropical analogs reflect certain
properties of classical objects and on the other hand tropical objects have much
more simple and discrete structure and thus are more accessible to algorithms.
One of the main goals of max-plus mathematics is to build a theory of tropical
polynomials which would help to work with them and would possibly lead to
new results in related areas. Computational reasons, on the other hand, make it
important to keep the theory maximally computationally efficient.

The case studied best so far is the one of tropical linear polynomials and
systems of tropical linear polynomials. For them an analog of a large part of the
classical theory of linear polynomials was established. This includes studies of
tropical analogs of the rank of a matrix and the independence of vectors [1,9,17],
an analog of the determinant of a matrix and its properties [1,9,10], an analog of
Gauss triangular form [10]. Also the solvability problem for tropical linear sys-
tems was studied from the complexity point of view. Interestingly, this problem
turns out to be polynomially equivalent to the mean payoff games problem [2,12]
which received considerable attention in computational complexity theory.

For tropical polynomials of arbitrary degree less is known. In [26] the radical
of a tropical ideal was explicitly described. In [23,27] a tropical version of the
Bezout theorem was proved for tropical polynomial systems for the case when the
number of polynomials in the system is equal to the number of variables. In [8] the
Bezout bound was extended to systems with an arbitrary number of polynomials.
In [13] the tropical analog of Hilbert’s Nullstellensatz was established. In [5] a
bound on the number of nondegenerate roots of a system of sparse tropical
polynomials was given. In [29] it was shown that the solvability problem for
tropical polynomial systems is NP-complete.

Our Results. In this paper we address several basic questions for tropical poly-
nomials.
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The first question we address is given a set S of points in R
n and a set of

monomials of n variables, is there a tropical polynomial with these monomials
that has roots in all points of the set. In the classical case a famous result in this
direction with numerous applications in Theoretical Computer Science is Com-
binatorial Nullstellensatz [3]. Very roughly, it states that the set of monomials
of the polynomial might be substantially larger than the set of the points and
the polynomial will still be non-zero on at least one of the points. In the tropical
case we show that this is not the case: if the number of monomials is larger
than the number of points, there is always a polynomial with roots in all points.
We establish the general criteria for existence of a polynomial on a given set of
monomials with roots in all points of a given set. From this criteria we deduce
that if the number of points is equal to the number of monomials and the points
and monomials are structured in the same way, then there is no polynomial with
roots in all points. We note that the last statement for the classical case is an
open question [24].

The second question is given a finite set S ⊆ R how many roots can a tropical
polynomial of n variables and degree d have in the set Sn? In the classical case
the well-known Schwartz-Zippel lemma [25,34] states that the maximal number
of roots is d|S|n−1. We show that in the tropical case the maximal possible
number of roots is |S|n − (|S| − d)n. We note that this result can be viewed as a
generalization and improvement of isolation lemma [7,19,22]. In particular, we
prove a more precise version of a technical result in [19, Lemma 4].

The third question is related to a universal testing set for tropical polynomials
of n variables with at most k monomials. A universal testing set is a set of points
S ⊆ K

n such that any nontrivial polynomial with at most k monomials has a
non-root in one of the points of S. The problem is to find a minimal size of a
universal testing set for given n and k. In the classical case this problem is tightly
related to the problem of interpolating a polynomial with a certain number of
monomials (with a priori unknown support) given its values on some universal set
of inputs. The classical problem was studied in [4,11,14,18] and the minimal size
of the universal testing set for the classical case turns out to be equal to k (while
for the interpolation problem the size is 2k). In the tropical case it turns out that
the answer depends on which tropical semiring K is considered: for K = R we
show that as in the classical case the minimal size of the universal testing set is
equal to k. For K = Q it turns out that the minimal size of the universal testing
set is substantially larger. We show that its size is Θ(kn) (the constants in Θ
do not depend on k and n). For n = 2 we find the precise size of the minimal
universal testing set s = 2k − 1. For greater n the precise minimal size of the
universal testing set still remains unclear. Finally, we establish an interesting
connection of this problem to the following problem in Discrete Geometry: what
is the minimal number of disjoint convex polytopes in n-dimensional space that
is enough to cover any set of s points in such a way that all s points are on the
boundary of the polytopes.

The rest of the paper is organized as follows. In Sect. 2 we introduce nec-
essary definitions and notations. In Sect. 3 we give the results on the tropical
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analog of Combinatorial Nullstellensatz. In Sect. 4 we prove the tropical analog
of Schwartz-Zippel Lemma. In Sect. 5 we give the results on tropical universal
sets. Due to the space constraints many of the proofs are omitted.

2 Preliminaries

A max-plus or a tropical semiring is defined by a set K, which is either R or Q

endowed with two operations, tropical addition ⊕ and tropical multiplication �,
defined in the following way:

x ⊕ y = max{x, y}, x � y = x + y.

A tropical (or max-plus) monomial in variables �x = (x1, . . . , xn) is defined
as

m(�x) = c � x�i1
1 � . . . � x�in

n , (1)

where c is an element of the semiring K and i1, . . . , in are nonnegative integers.
In the usual notation the monomial is the linear function

m(�x) = c + i1x1 + . . . + inxn.

For �x = (x1, . . . , xn) and I = (i1, . . . , in) we introduce the notation

�xI = x�i1
1 � . . . � x�in

n = i1x1 + . . . + inxn.

The degree of the monomial m is defined as the sum i1 + . . . + in. We denote
this sum by |I|.

A tropical polynomial is the tropical sum of tropical monomials

p(�x) =
⊕

i

mi(�x)

or in the usual notation p(�x) = maxi mi(�x). The degree of the tropical polynomial
p denoted by deg(p) is the maximal degree of its monomials. A point �a ∈ K

n

is a root of the polynomial p if the maximum maxi{mi(�a)} is attained on at
least two distinct monomials among mi (see e.g. [23] for the motivation of this
definition). A polynomial p vanishes on the set S ⊆ K

n if all points of S are
roots of p.

Geometrically, a tropical polynomial p(�x) is a convex piece-wise linear func-
tion and the roots of p are non-smoothness points of this function.

By the product of two tropical polynomials p(�x) =
⊕

i mi(�x) and q(�x) =⊕
j m′

j(�x) we naturally call a tropical polynomial p � q that has as monomials
tropical products mi(�x) � m′

j(�x) for all i, j. We will make use of the following
simple observation.

Lemma 1. A point �a ∈ K
n is a root of p � q iff it is a root of either p(�x) or

q(�x).

For two vectors �a,�b ∈ R
n throughout the paper we will denote by 〈�a,�b〉 their

inner product.
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3 Tropical Combinatorial Nullstellensatz

For a polynomial p denote by Supp(p) the set of all J = (j1, . . . , jn) such that p
has a monomial �xJ with some coefficient.

Consider two finite sets S,R ⊆ R
n such that |S| = |R|. We call S and R

non-singular if there is a bijection f : S → R such that
∑

x∈S〈�x, f(�x)〉 is greater
than the corresponding sum for all other bijections from S to R. Otherwise we
say that R and S are singular. Note that the notion of singularity is symmetrical.

First we formulate a general criteria for vanishing polynomials with given
support.

Theorem 1. Consider support S ⊆ N
n and the set of points R ⊆ K

n. There
are three cases.

(i) If |R| < |S|, then there is a polynomial p with support in S vanishing on R.
(ii) If |R| = |S|, then there is a polynomial p with support in S vanishing on R

iff S and R are singular.
(iii) If |R| > |S| then there is a polynomial p with support in S vanishing on R

iff for any subset R′ ⊂ R such that |R′| = |S| we have that R′ and S are
singular.

The proof of this theorem is by the reduction to tropical linear systems and
applying known results on their solvability.

Now we will derive corollaries of this general criteria.
Suppose we have a set S ⊆ N

n. Suppose we have a set of reals {αi
j} for

i = 1, . . . , n, j ∈ N and for each i we have

αi
0 < αi

1 < αi
2 < . . . .

For J = (j1, . . . , jn) we introduce the notation �αJ = (α1
j1

, . . . , αn
jn

). Consider
the set RS = {�αJ | J ∈ S}.

We consider the following question. Suppose we have a polynomial p with
support Supp(p) ⊆ S. For which sets S′ is it possible that p vanishes on RS′?

A natural question is the case of S = S′. We show the following theorem.

Theorem 2. For any S and for any non-zero tropical polynomial f such that
Supp(f) ⊆ S there is �r ∈ RS such that r is a non-root of f .

An interesting case of this theorem is S = {0, 1, . . . , k}n. Then the result
states that any non-zero polynomial of individual degree at most k w.r.t. each
variable xi, i = 1, . . . , n, does not vanish on a lattice of size k + 1.

Theorems 1(i) and 2 answer some customary cases of our first question. We
note that the situation here is quite different from the classical case. The classical
analog of Theorem 2 for the case of S =

∏n
i=1{0, 1, . . . , ki} is a simple observa-

tion. In the tropical setting it already requires some work. On the other hand, in
the classical case it is known that for such S the domain of the polynomial can
be substantially larger then S and still the polynomial remains non-vanishing
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on RS (see Combinatorial Nullstellensatz [3]). In tropical case, however, if we
extend the domain of the polynomial even by one extra monomial, then due to
Theorem 1(i) there is a vanishin non-zero polynomial.

In the proof of Theorem2 we will use the following simple technical lemma.

Lemma 2. Consider two sequences of reals v1 � v2 � . . . � vl and u1 � u2 �
. . . � ul. Consider any permutation σ ∈ Syml on l element set. Then

∑

i

viui ≥
∑

i

viuσ(i).

Moreover, the inequality is strict iff there are i, j such that vi < vj, uσ(j) < uσ(i).

Proof (Proof Sketch of Theorem 2). By Theorem 1 it is enough for us to show
that S and RS are non-singular.

Consider the bijection f : S → RS given by f(J) = �αJ . We claim that the
maximum over all possible bijections g of the sum

∑
J∈S〈J, g(J)〉 is attained on

the bijection f and only on it.
Consider an arbitrary bijection g : S → RS . Since RS ⊆ R

n it is convenient
to denote g(J) = (g1(J), . . . , gn(J)) and f(J) = (f1(J), . . . , fn(J)). Consider
the sum

∑

J∈S

〈J, g(J)〉 =
∑

J∈S

n∑

i=1

jigi(J) =
n∑

i=1

∑

J∈S

jigi(J).

Applying Lemma 2 it can be shown that for each i

∑

J∈S

jigi(J) �
∑

J∈S

jifi(J) (2)

and for at least one i ∑

J∈S

jigi(J) <
∑

J∈S

jifi(J). (3)

It is not hard to deduce the theorem from these inequalities.

4 Tropical Analog of Schwartz-Zippel Lemma

Using the results of the previous section we can prove an analog of Schwartz-
Zippel Lemma for tropical polynomials.

Theorem 3. Let S1, S2, . . . , Sn ⊆ K, denote |Si| = ki. Then for any d � mini ki

the maximal number of roots a non-vanishing tropical polynomial p of degree d
can have in S1 × . . . × Sn is equal to

n∏

i=1

ki −
n∏

i=1

(ki − d) .

Exactly the same statement is true for the polynomials with individual degree of
each variable at most d.
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In particular, we have the following corollary.

Corollary 1. Let S ⊆ K be a set of size k. Then for any d � k the maximal
number of roots a non-vanishing tropical polynomial p of degree d can have in
Sn is equal to

kn − (k − d)n.

Exactly the same statement is true for the polynomials with individual degree of
each variable at most d.

Proof (Proof of Theorem 3).
The upper bound is achieved on the product of d degree-1 polynomials. Indeed,
denote Si = {si,1, si,2, . . . , si,ki

}, where si,1 > si,2 > . . . > si,ki
. For j = 1, . . . , d

denote by pj the following degree-1 polynomial:

pj(�x) = (−s1,j � x1) ⊕ . . . ⊕ (−si,j � xi) ⊕ . . . ⊕ (−sn,j � xn) ⊕ 0.

Observe that �a ∈ S1 × . . . × Sn is a root of pj if for some i ai = si,j and for the
rest of i we have ai � si,j .

Consider a degree d polynomial p(�x) =
⊙d

j=1 pj(�x). Then from Lemma 1 we
have that �a ∈ S1 × . . . × Sn is a non-root of p iff for all i ai < si,d. Thus the
number of non-roots of p is

∏n
i=1 (|Si| − d) . This proves the upper bound.

For the lower bound, suppose there is a polynomial p with individual degrees
d that has more than

∏n
i=1 ki − ∏n

i=1 (ki − d) roots. Then the number of its
non-roots is at most

∏n
i=1 (ki − d) − 1. Denote the set of all non-roots by R.

Consider a family of all the polynomials of individual degree at most ki−d−1
in variable xi for all i. Then their support is of size

∏n
i=1 (ki − d). Since the size

of the support is greater than R, by Theorem 1 there is a polynomial q with this
support that vanishes on R.

Then, by Lemma 1 the non-zero polynomial p � q vanishes on S1 × . . . × Sn

and on the other hand has support {0, . . . , k1 − 1} × . . . × {0, . . . , kn − 1}. This
contradicts Theorem 2. Thus there is no such polynomial p and the theorem
follows.

5 Tropical Universal Testing Set

In this section we study the minimal size of the universal testing set for sparse
tropical polynomials. It turns out that in the tropical case there is a big difference
between testing sets over R and Q. We thus consider these two cases separately
below.

Throughout this section we denote by n the number of variables in the poly-
nomials, by k the number of monomials in them and by s the number of points
in the universal testing set.
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5.1 Testing Sets over R

In this section we will show that the minimal size s of the universal testing set
over R is equal to k.
Theorem 4. For polynomials over R the minimal size s of the universal testing
set for tropical polynomials with at most k monomials is equal to k.

Proof (Proof sketch). First of all, it follows from Theorem 1(i) that for any set
of s points there is a polynomial with k = s + 1 monomials that has roots in all
s points. Thus the universal testing set has to contain at least as many points
as there are monomials and we have the inequality s ≥ k.

Next we show that s � k. Consider the set of s points S = {�a1, . . . ,�as} ∈ R
n

that has linearly independent over Q coordinates. Suppose we have a polynomial
p with k monomials that has roots in all points �a1, . . . ,�as. We will show that
k ≥ s + 1. Thus we will establish that S is a universal set for k = s monomials.

Suppose the monomials of p are m1, . . . ,mk, where mi(�x) = ci � �xJi . Intro-
duce the notation p(�aj) = maxi(mi(�aj)) = pj . Since aj is a root, the value pj is
achieved on at least two monomials.

Note the monomial mi has the value pj in the point �aj iff 〈�aj , Ji〉 + ci = pj .
Now, consider a bipartite undirected graph G. The vertices in the left part

correspond to monomials of p (k vertices). The vertices in the right part corre-
spond to the points in S (s vertices). We connect vertex mi on the left side to
the vertex �aj on the right side iff mi(�aj) = pj .

Observe, that the degree of vertices on the right hand side is at least 2 (this
means exactly that they are roots of p).

Now, we will show that there are no cycles in G. Indeed, suppose there is a
cycle. For the sake of convenience of notation assume the sequence of the vertices
of the cycle is m1,�a1,m2,�a2, . . . ,ml,�al. Note that since the graph is bipartite,
the cycle is of even length. In particular, for all i = 1, . . . , l we have mi(�ai) = pi,
that is

〈�ai, Ji〉 + ci = pi. (4)
Also for all i = 1, . . . , l we have mi+1(�ai) = pi (for convenience of notation
assume here ml+1 = m1), that is

〈�ai, Ji+1〉 + ci+1 = pi. (5)

Let us sum up all equations in (4) for all i = 1, . . . , l and subtract from the result
all the equations in (5). It is easy to see that all ci’s and pi’s will cancel out and
thus we will have

〈�a1, J1〉 − 〈�a1, J2〉 + 〈�a2, J2〉 − 〈�a2, J3〉 + . . . + 〈�al, Jl〉 − 〈�al, J1〉 = 0.

Since J1 �= J2, we have a nontrivial linear combination with integer coefficients
of the coordinates of vectors �a1, . . . ,�al. Since the coordinates of these vectors are
linearly independent over Q, this is a contradiction. Thus we have shown that
there are no cycles in G.

From this it is not hard to deduce that the number of vertices in the left part
of G is greater than the number of vertices in the right part, and from this the
theorem follows.
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5.2 Testing Sets Over Q

The main difference of the problem over the semiring Q compared to the semiring
R is that now the points of the universal set have to be rational.

Before we proceed with this section we observe that we can assume that
tropical polynomials can contain rational (possibly negative) powers of variables:
for each such polynomial there is another polynomial with natural exponents
with the same set of roots and the same number of monomials. Indeed, suppose
p is a polynomial with rational exponents. Recall that

p(�x) = max(m1(�x), . . . ,mk(�x)), (6)

where m1, . . . ,mk are monomials. Recall that each monomial is a linear function
over �x. Note that if we multiply the whole expression (6) by some positive
constant and add the same linear form m(�x) to all monomials, the resulting
polynomial will have the same set of roots. Thus, we can get rid of rational
degrees in p by multiplying p by large enough integer, and then we can get rid of
negative degrees by adding to p a linear form m with large enough coefficients.

Thus, throughout this section we will assume that all polynomials have ratio-
nal exponents.

It will be convenient to state the results of this section using the following
notation. Let k(s, n) be the minimal number such that for any set S of s points in
Q

n there is a tropical polynomial on n variables with at most k(s, n) monomials
having roots in all points of S. Note that there is a universal testing set of size
s for polynomials with k monomials iff k < k(s, n). Thus, we can easily obtain
bounds on the size of the minimal universal testing set from the bounds on
k(s, n).

We start with the following upper bound on k(s, n).

Theorem 5. We have k(s, n) �
⌈

2s
(n+1)

⌉
+ 1.

For the size of the minimal universal testing set the following inequality holds:
s ≥ (k − 1)(n + 1)/2 + 1.

We note that this theorem already shows the difference between universal
testing sets over R and Q semirings.

Proof. We will show that for any set S = {�a1, . . . ,�as} ⊆ Q
n of size s there is a

nontrivial polynomial with at most k = � 2s
(n+1)+1 monomials that has roots in

all of the points in S. From this the inequalities in the theorem follow.
Throughout this proof we will use the following standard facts about (clas-

sical) affine functions on Q
n.

Claim. Suppose π is an (n−1) dimensional hyperplane in Q
n. Let P1 be a finite

set of points in one of the (open) halfspaces w.r.t. π and P2 be a finite set of
points in the other (open) halfspace. Let C1 and C2 be some constants. Then
the following is true.
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1. If �a1, . . . ,�an ∈ π are points in the general position in π and p1, . . . , pn are
some constants in Q, then there is an affine function f on Q

n such that
f(�ai) = pi for all i, f(�x) > C1 for all �x ∈ P1 and f(�x) < C2 for all �x ∈ P2.

2. If g is an affine function on Q
n then there is another affine function f on Q

n

such that f(�x) = g(�x) for all �x ∈ π, f(�x) > C1 for all �x ∈ P1 and f(�x) < C2

for all �x ∈ P2.

The proof of the theorem is by induction on s. The base is s = 0. In this
case one monomial is enough (and is needed since we require polynomial to be
nontrivial).

Consider the convex hull of points of S. Consider a face P of this convex
hull. For simplicity of notation assume that the points from S belonging to P
are �a1, . . . ,�al. Consider a ((n − 1)-dimensional) hyperplane π passing through
�a1, . . . ,�al. Since P is a face of the convex hull of S we can pick π in such a way
that all points in S′ = {�al+1, . . . ,�as} lie in one halfspace w.r.t. π (the choice of
π might be not unique since P might be of the dimension less than n − 1).

Applying the induction hypothesis we obtain a polynomial p′(�x) =
maxi m′

i(�x) that has roots in all points of S′. For j = 1, . . . , l introduce the
notation pj = p′(�aj) = maxi mi(�aj).

We consider three cases: P contains all points of S; P contains not all points
of S and l � n; P contains not all points of S and l > n.

If P contains all points of S, then the polynomial p′ is obtained from the base
of induction and consists of one monomial m′

1. Recall, that a monomial is just an
affine function on Q

n. Consider a new monomial m(�x) such that m(�x) = m′
1(�x)

on the hyperplane π, but m(�b) �= m′
1(�b) for some �b /∈ π. Then the polynomial

p = p′ ⊕ m has roots in all points of the hyperplane π and thus in all points of
S. This polynomial has 2 �

⌈
2s

(n+1)

⌉
+ 1 monomials.

If P contains not all points of S, then the dimension of P is n − 1 (indeed,
otherwise P is not a face).

If additionally l � n, it follows that l = n. Thus �a1, . . . ,�an are points in the
general position in π. Thus due to the claim above we can pick a new monomial
m such that m(�aj) = pj for all j = 1, . . . , l and m(�aj) < p′(�aj) for all j > l.
Then the polynomial p = p′ ⊕ m has roots in all points of S. This polynomial
has 1 +

⌈
2(s−n)
(n+1)

⌉
+ 1 �

⌈
2s

(n+1)

⌉
+ 1 monomials.

Now, if l ≥ n + 1 let p0 = maxj�l pj Applying the claim above take a pair of
new distinct monomials m1 and m2 such that m1(�x) = m2(�x) = p0 for all �x ∈ π
and m1(�aj),m2(�aj) < p′(�aj) for all j > l. Then the polynomial p = p′ ⊕m1⊕m2

has roots in all points of S. This polynomial has 2+
⌈
2(s−n−1)

(n+1)

⌉
+1 =

⌈
2s

(n+1)

⌉
+1

monomials.
In all three cases we constructed a polynomial with the desired number of

monomials.

The construction above leaves the room for improvement. For example, for
the case of n = 2 we can show the following.
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Theorem 6. For n = 2 we have k(s, 2) �
⌈

s
2

⌉
+ 1. For the size of the minimal

universal set for polynomials in 2 variables the following inequality holds: s ≥
2(k − 1) + 1.

We now proceed to lower bounds on k(s, n). We start with the following
non-constructive lower bound.

Theorem 7. We have k(s, n) ≥
⌈

s
n+1

⌉
.

Then for the minimal size of the universal testing set over Q we have s �
k(n + 1) + 1.

This theorem is proven by a careful counting of dimensions of semialgebraic
sets of universal sets and sets of roots of tropical polynomials.

The lower bound on k(s, n) in Theorem 7 is not constructive. In the next
section we present some constructive lower bounds. For this we establish a con-
nection of our problem to certain questions in discrete geometry.

5.3 Constructive Lower Bounds

Suppose for some set of points S = {�a1, . . . ,�as} ⊆ Q
n there is a polynomial p

with monomials m1, . . . ,mk that has roots in all points of S.
Recall that the graph of p in (n + 1)-dimensional space is a piece-wise linear

convex function. Each linear piece corresponds to a monomial and roots of the
polynomial are the points of non-smoothness of this function.

Consider the set of all roots of p in Q
n. They partition the space Q

n into at
most k convex (possibly infinite) polytopes. Each polytope corresponds to one
of the monomials.

Consider the polytope corresponding to the monomial mi. Consider all points
in S that lie on its boundary and consider their convex hull. We obtain a smaller
(finite) convex polytope that we will denote by Pi.

Thus starting from p we arrive at the set of non-intersecting polytopes
P1, . . . , Pk with vertices in S not containing any points of S in the interior.
The fact that p has roots in all points of S means that each point in S belong
to at least two of the polytopes P1, . . . , Pk. We call this structure by a double
covering of points of S by convex polytopes. The size of the covering is the
number k of the polytopes in it.

Thus, if we will construct a set S of points that does not have a double
covering of size k it will follow that S is a universal set for k monomials. The
similar question of single covering has been studied in the literature [6] (in the
single cover polytopes cannot intersect even by vertices.).

Denote by k1(s, n) the minimal number of polytopes that is enough to single
cover any s points in n dimensional space. Denote by k2(s, n) the minimal num-
ber of polytopes that is enough to double cover any s points in n dimensional
space. The above analysis results in the following theorem.
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Theorem 8. k(s, n) ≥ k2(s, n).

For single coverings the following results are known. Let f(n) be the maximal
number such that any large enough n-dimensional set of points S contains a
convex set of f(n) points that are the vertices of a convex polytope and on the
other hand do not contain any other points in S. The function f(n) was studied
but is not well understood yet. It is known [32] that the function is at most
exponential in n. We can however observe the following.

Lemma 3. For large enough s we have that k1(s, n) ≥ s/f(n).

It is known [32] that f(3) ≥ 22. Thus we get that k1(s, 3) ≥ s/22 for large
enough s.

It is also known [31] that �s/2(log2 s + 1) � k1(s, 3) � �2s/9. For n = 2
there are linear upper and lower bounds known [30]. For an arbitrary n in [31] an
upper bound k1(s, n) � 2s/(2n+3) is shown and k1(s, n) = s/2n is conjectured.

We establish the following connection between k1(s, n) and k2(s, n).

Lemma 4. k2(s, n) ≥ k1(s, n). Thus for large enough s we have that k(s, n) ≥
s/f(n).

Lemma 5. k1((n + 2)s, n) ≥ k2(s, n).

Overall, we have a sequence of inequalities k(s, n) ≥ k2(s, n) ≥ k1(s, n) ≥
k2( s

n+2 , n). We do not know how large k(s, n) can be compared to k1(s, n) and
k2(s, n).

However this connection helps us to show that the lower bound on the size
of universal testing set we have established before for the case of n = 2 is tight.

Theorem 9. We have k(s, 2) ≥ k2(s, 2) ≥ ⌈
s
2

⌉
+ 1.

For n = 2 the size of the minimal universal testing set is equal to s = 2k − 1.

We omit the proof and only observe here that the second part of the theorem
follows from the first part and Theorem6 immediately. As a universal set with
s points in Q

2 one can pick the set of vertices of a convex polygon M .
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Abstract. Defining a feasible notion of space over the Blum-Shub-Smale
(BSS) model of algebraic computation is a long standing open prob-
lem. In an attempt to define a right notion of space complexity for the
BSS model, Naurois [CiE 2007] introduced the notion of weak-space. We
investigate the weak-space bounded computations and their plausible
relationship with the classical space bounded computations. For weak-
space bounded, division-free computations over BSS machines over com-

plex numbers with
?
= 0 tests, we show the following:

1. The Boolean part of the weak log-space class is contained in deter-
ministic log-space, i.e., BP(LOGSPACEW) ⊆ DLOG;

2. There is a set L ∈ NC1
C that cannot be decided by any deterministic

BSS machine whose weak-space is bounded above by a polynomial
in the input length, i.e., NC1

C � PSPACEW.
The second result above resolves the first part of Conjecture 1 stated
in [6] over complex numbers and exhibits a limitation of weak-space.
The proof is based on the structural properties of the semi-algebraic sets
contained in PSPACEW and the result that any polynomial divisible by
a degree-ω(1) elementary symmetric polynomial cannot be sparse. The
lower bound on the sparsity is proved via an argument involving Newton
polytopes of polynomials and bounds on number of vertices of these
polytopes, which might be of an independent interest.

1 Introduction

The theory of algebraic computation aims at classifying algebraic computational
problems in terms of their intrinsic algebraic complexity. Valiant [28] developed a
non-uniform notion of complexity for polynomial evaluations based on arithmetic
circuits as a model of computation. Valiant’s work led to intensive research efforts
towards classifying polynomials based on their complexity. (See [26] for a survey).
Valiant’s model is non-uniform and it does not allow comparison operation on
the values computed. This led to the seminal work by Blum et al. [3] where a
real and complex number counterpart of Turing machines, now known as BSS
machines has been proposed.
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Blum et al. [2] defined the complexity classes such as PR and NPR in analogy
to the classical complexity classes P and NP and proposed the conjecture: PR �=
NPR. Several natural problems such as Hilbert’s Nullstellensatz, Feasibility of
quadratic equations are complete for the class NPR [2]. Further, there has been
a significant amount of work on the structural aspects of real computation with
various restrictions placed on the computational model. See [20] for a survey of
these results.

One of the fundamental objectives of algebraic complexity theory is to obtain
transfer theorems, i.e., to translate separations of algebraic complexity classes
to either the Boolean world or other models of algebraic computation. Though
establishing a relation between the BSS model of computation and the classical
Turing machine is a hard task, Fournier and Koiran [9] showed that proving super
polynomial time lower bounds against the BSS model would imply separation
of classical complexity classes. Also, there has been a study of algebraic circuits
leading to the definition of parallel complexity classes NCR. In contrast to the
Boolean counterparts, Cucker [4] showed that there are sets in PR that cannot
have efficient parallel algorithms, i.e., PR �= NCR.

One of the pre-requisites for transfer theorems would be a comparison with
the complexity classes in the Boolean world. One approach towards this is
restricting the BSS machines over Boolean inputs. A restriction of a real com-
plexity class to Boolean inputs is called Boolean part and is denoted using the
prefix BP, e.g., BP(PR) denotes the class of all languages over {0, 1}∗ that can
be decided by polynomial time bounded BSS machines [2,13]. Koiran [13] did
an extensive study of Boolean parts of real complexity classes. Cucker and Grig-
oriev [5] showed that BP(PR) ⊆ PSPACE/poly. Further, Allender et al. [1] studied
computational tasks arising from numerical computation and showed that the
task of testing positivity of an integer represented as an arithmetic circuit is
complete for the class BP(PR).

Though the notion of time complexity has been well understood in the real
model of computation, it turned out that, setting up a notion of space is difficult.
Michaux [21] showed that any computation over the real numbers in the BSS
model can be done with only a constant number of cells. This rules out the
possibility of using the number of cells used in the computation as a measure of
space. Despite the fact that there has been study of parallel complexity classes,
a natural measure of space that leads to interesting space complexity classes in
analogy with the classical world is still missing.

Naurois [6] proposed the notion of weak-space for computation over real
numbers in the BSS model. This is motivated by the weak BSS model of com-
putation proposed by Koiran [15]. The notion of weak-space takes into account
the number of bits needed to represent the polynomials representing each cell of
a configuration. (See Sect. 2 or [6] for a formal definition.) Based on this notion
of space Naurois [6] introduced weak-space classes LOGSPACEW and PSPACEW

as analogues of the classical space complexity classes DLOG and PSPACE and
showed that LOGSPACEW is contained in PW ∩ NC2

R
, where PW is the class of

sets decidable in weak polynomial time [15]. The notion of weak-space enables
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space bounded computations to have a finite number of configurations, and hence
opening the scope for possible analogy with the classical counterparts. However,
[6] left several intriguing questions open. Among them; a real analogue of NC1

versus DLOG, and an upper bound for the Boolean parts of weak space classes.
In this paper, we continue the study of weak-space classes initiated by

Naurois [6] and investigate weak-space bounded division free computations where
equality is the only test operation allowed. In particular, we address some of the
questions left open in [6].

Our Results: We begin with the study of Boolean parts of weak space com-
plexity classes. We show that the Boolean part of LOGSPACEW is contained in
DLOG. (See Theorem 2.) Our proof involves a careful adaptation of the constant
elimination technique used by Koiran [14] to weak space bounded computation.

We show that there is a set L ∈ NC1
F

that cannot be accepted by any polyno-
mial weak-space bounded BSS machine, i.e., NC1

F
�⊂ PSPACEW (Theorem 3 and

Corollary 1) where F ∈ {C, R}. This resolves the first part of the Conjecture 1
in [6] where the computation is division free and only equality tests are allowed.
Also, this result is in stark contrast to the Boolean case, where NC1 ⊆ DLOG.

Our Techniques: For the proof of Theorem3, we consider the restriction Ln =
L ∩ Fn for a set L ∈ LOGSPACEW and obtain a characterization for the defining
polynomials of Ln as a semi-algebraic set in Fn. Then using properties of the
Zarisky topology, we observe that if Ln is an irreducible algebraic set, then the
defining polynomial for Ln has small weak size. With this, it suffices to obtain
a set L ∈ NC1

F
such that each slice Ln is a hyper-surface such that any non-

trivial hyper-surface containing it cannot have sparse polynomial as its defining
equations. We achieve this by considering the elementary symmetric polynomial
of degree n/2 as the defining equation for Ln. For every polynomial multiple of
the elementary symmetric polynomial, we prove a lower bound on its sparsity
by appealing to the structure of Newton polytopes of these polynomials. (See
Theorem 4 for a precise statement.)

Related Results: Koiran and Perifel [16,17] have studied the notion of poly-
nomial space in Valiant’s algebraic model and obtained transfer theorems over
the real and complex numbers. Mahajan and Rao [19] obtained small space com-
plexity classes in Valiant’s algebraic model. To the best of our knowledge, apart
from these, and the results by Michaux [21] and Naurois [6], there have been
no significant study of space complexity classes in the broad area of algebraic
complexity theory.

Organization of the Paper: In Sect. 2, we briefly review the BSS model of
computation, and provide all necessary but non-standard definitions used in the
paper. In Sect. 3 we look at the Boolean part of LOGSPACEW. In Sect. 4 we prove
the main theorem (Theorem 3) of the paper. Section 5 proves Corollary 2 which
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is an important component in the proof of Theorem3. Due to lack of space some
of the proofs are skipped, all the proofs are included in the full version of the
paper [12].

2 Preliminaries

Throughout the paper, F denotes a field that is either C or R. Let F∗ = ∪k≥0Fk.
We give a brief description of a Blum-Shub-Smale (BSS) machine over F. For
details, the reader is referred to [3].

Definition 1. A Blum-Shub-Smale (BSS) machine M over F with parameters
α1, . . . , αk ∈ F with k ≥ 0 and an admissible input Y ⊆ F∗ is a Random Access
Machine with a countable number of registers (or cells) each capable of a storing
a value from F. The machine is permitted to perform three kinds of operations:

Computation: Perform cl = ci op cj, where ci, cj and cl are either cells of M or
among the parameters and op ∈ {+,×,−} and move to the next state.

Branch (test): Perform the test c
?= 0 for some cell c and move to the next state

depending on the result, i.e., branch as per the outcome of the test.
Copy: ci = cj, copy the value of the cell cj into ci. Here cj can also be one of the

parameters α1. . . . , αk of M .

It should be noted that in the definition of a real BSS machine the test
instruction is usually ≥?0 rather than equality. Throughout the paper, we restrict
ourselves to BSS machines where the test operation is =?0. Also, in general, BSS
machines allow the division operation, however, we restrict to BSS machines
where division is not allowed.

Notion of acceptance and rejection of an input, configurations and time com-
plexity of computation can be defined similar to the case of classical Turing
Machines, see [2] for details.

For a BSS machine that halts on all admissible inputs, the set accepted by
M is denoted by L(M). For an input x ∈ Fn, the size of the input x is n.

Definition 2 (Complexity Class PF) [2]. Let F be a field of real or complex
numbers then the complexity class PF is defined as the set of all languages L ⊆ F∗

such that, there is a polynomial time BSS machine accepting L.

The class EXPF is defined analogously. For a definition of NPF reader is referred
to [2].

An algebraic circuit is an arithmetic circuit where in addition to the × and +
gates a test gate =?0 is allowed. A test gate has a single input and outputs either
0 or 1 depending on the outcome of the test. Size and depth of algebraic circuits
are defined analogously. For the purpose of comparison with BSS complexity
classes, we assume that algebraic circuits have a single output gate which is
a =?0 gate. The following complexity classes are defined based on algebraic
circuits.
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Definition 3 [2]. Let F be a field of real or complex numbers then the complexity
class NCi

F
is defined as, the set of all languages L ⊆ F∗, for which there is an

algebraic circuit family (Cn)n≥0, size of Cn is polynomial in n and depth of Cn

is O((log n)i) such that for all n ≥ 0 and x ∈ Fn, x is in L iff Cn(x) = 1.

Weak Space. Following the notion of weak time defined by Koiran [15], Nau-
rois [6], introduced the notion of weak space for BSS machines. To begin with,
we need a measure of weak size of polynomials with integer coefficients. Let
g ∈ Z[x1, . . . , xn] be a polynomial of degree d. The binary encoding φ(m) cor-
responding to a monomial m = xa1

i1
xa2

i2
. . . xak

ik
is simply concatenation of 	log n


bit binary encoding of index ij and 	log d
 bit binary encoding of exponent aj

for j ∈ [k], i.e., φ(m) = 〈i1〉〈a1〉 · 〈i2〉〈a2〉 · · · 〈ik〉〈ak〉, where 〈ij〉, 〈aj〉 denotes
binary encoding of integers ij and aj respectively. Let g =

∑
m∈M gmm where

gm �= 0 is the coefficient of monomial m in g and M = {m1,m2, . . . ,ms}
be the set of monomials of g with non-zero coefficients. Then the binary
encoding of g is φ(g) = b1〈gm1〉φ(m1) · b2〈gm2〉φ(m2) · · · bs〈gms

〉φ(ms) where
bi = 1 if gmi

≥ 0 else bi = 0 and 〈gmi
〉 denotes 	log C
-bit binary encod-

ing of gmi
for i ∈ [s] where C = maxi|gmi

|. We denote length of encoding
φ(g) by Sweak(g) and call it weak size of polynomial g. It is easy to see that
Sweak(g) ≤ s(n(	log n
 + 	log d
) + 1 + 	log C
).
Definition 4 (Weak-space complexity). Let M be a BSS machine with para-
meters β1, β2, . . . , βm ∈ F, and an input x = (x1, x2, . . . , xn). Let CM (x) denote
the set of all configurations of M on x reachable from the initial configuration.
For a configuration c ∈ CM (x), let f

(c)
1 , f

(c)
2 , . . . , f

(c)
r be the formal polynomials

representing the non-empty cells in the configuration such that

f
(c)
i (x1, x2, . . . , xn) = g

(c)
i (x1, x2, . . . , xn, β1, β2, . . . , βm)

where g
(c)
i ∈ Z[x1, x2, . . . , xn, y1, y2, . . . , ym] for i ∈ [m]. Define the weak size of

a configuration c as Sweak(c) =
∑r

j=1 Sweak(g
(c)
j ) Then the weak-space complexity

of M is defined as WSpaceM (n) = maxx∈Fn maxc∈CM (x) Sweak(c).

Remark 1. Note that in the above polynomials g
(c)
1 , . . . , g

(c)
r depend only on the

number of machine parameters and the input size and not on the actual values
β1, . . . , βm for the parameters, and are uniquely defined for a given configuration
c. We can think of polynomials g

(c)
1 , . . . , g

(c)
r are obtained by unfolding the com-

putation of the machine on input x1, . . . , xn treating constants β1, β2, . . . , βm as
indeterminates.

A BSS machine M is said do be s weak-space bounded if WSpaceM (n) ≤
s(n). The following concrete weak space classes have been defined in [6].

Definition 5 (Complexity class SPACEW(s)). For a non-decreasing space
constructible function s, SPACEW(s) is the set of all languages L ⊆ F∗, for which
there is a BSS machine M over F such that L(M) = L and WSpaceM (n) =
O(s(n)).
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Note that we have omitted the subscript F in the above definition, this is
not an issue since the field will always be clear from the context. The following
inclusions are known from [6].

Proposition 1 [6]. LOGSPACEW ⊆ Pw ∩ NC2
R
; and PSPACEW ⊂ PARR.

For definition of an algebraic variety and the Zariski topology, the reader is
referred to [25]. The elementary symmetric polynomial of degree d is defined as:
symn,d(x1, . . . , xn) =

∑
S⊆[n],|S|=d

∏
i∈S xi, where [n] = {1, . . . , n}.

Convex Polytopes. For the proof of our lowebound result in Sect. 5 we need
to review some basic concepts about convex polytopes. For a detailed exposition
on convex polytopes, see e.g. [11,29].

A point set K ⊆ Rd is convex if for any two points x, y ∈ K, the point
λx + (1 − λ)y is in K for any λ, 0 ≤ λ ≤ 1. The intersection of convex sets
is convex. For any K ⊆ Rd, the intersection of all convex sets containing K is
called as convex-hull of K, conv(K) =

⋂{T ⊆ Rd|K ⊆ T, T is convex}.
From the above definition and a simple inductive argument it follows that

Lemma 1. If K ⊆ Rd and x1, x2, . . . , xn ∈ K then
∑n

i=1 λixi ∈ conv(K)
where λi ≥ 0 and

∑n
i=1 λi = 1 and if K = {x1, . . . , xn} is a finite set of points

then conv(K) = {∑n
i=1 λixi|λi ≥ 0 and

∑n
i=1 λi = 1}.

Definition 6 (Convex Polytope). A convex-hull of a finite set of points in Rd

is called as convex polytope.

Let P = conv({x1, . . . , xn}) ⊂ Rd be a convex polytope. Then the dimension
of P (denoted as dim(P )) is the dimension of the affine space {∑

i λixi|λi ∈
R,

∑
i λi = 1}. Clearly if P ⊂ Rd then dim(P ) ≤ d.

We can equivalently think of convex polytopes as bounded sets which are
intersections of finitely many closed half spaces in some Rd. More precisely,

Theorem 1 (Chap. 1, [29]). P is the convex-hull of a finite set of points in Rd

iff there exists A ∈ Rm×d and z ∈ Rm such that the set {x ∈ Rd|Ax ≤ z} is
bounded and P = {x ∈ Rd|Ax ≤ z}.
Definition 7 (Face of Polytope). Let P is a convex polytope in Rd. For a =
(a1, a2, . . . , ad) ∈ Rd and b ∈ R we say the linear inequality 〈a, x〉 ≤ b (where
〈a, x〉 =

∑d
i=1 aixi) is valid for P if every point x = (x1, . . . , xd) ∈ P satisfies

it. A face of P is any set of points in Rd of the form P ∩ {x ∈ Rd|〈a, x〉 = b}
for some a ∈ Rd and b ∈ R such that 〈a, x〉 ≤ b is a valid linear inequality for
P .

From the above definition and Theorem 1 it is clear that every face of a
convex polytope is also a convex polytope. So we can use notion of dimension of
convex polytope to talk about dimension of a face of a convex polytope. The faces
of dimension 0 are called as the vertices of the polytope. Following proposition
gives useful criteria for a point v ∈ P to be a vertex of P . For the proof of
following standard propositions refer to Chap. 1 and 2 of [29].
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Proposition 2. For a convex polytope P , a point v ∈ P is vertex of P iff for
any n ≥ 1, and any x1, . . . , xn ∈ P , v �= ∑n

i=1 λixi for 0 ≤ λi < 1,
∑

i λi = 1.

Proposition 3. Every convex polytope P is convex-hull of set of its vertices,
P = conv(ver(P )) and if P = conv(S) for finite S then ver(P ) ⊆ S, where
ver(P ) denotes the set of vertices of a polytope P .

3 Boolean Parts of Weak Space Classes

Though the BSS model is intended to capture the intrinsic complexity of com-
putations over real and complex numbers, it is natural to study the power
of such computations restricted to the Boolean input. The Boolean parts of
real/complex complexity classes have been well studied in the literature [1]. We
consider Boolean parts of the weak- space classes introduced by Naurois [6]

Definition 8. Let C be a complexity class in the BSS model of computation,
then the Boolean part of C denoted by BP(C) is the set BP(C) = {L ∩ {0, 1}∗

| L ∈ C}
We observe that the Boolean part of LOGSPACEW is contained in DLOG, i.e.

the class of languages accepted deterministic logarithmic space bounded Turing
Machines.

Theorem 2. For F ∈ {C, R}, BP(LOGSPACEW) ⊆ DLOG.

Proof. Let L ∈ LOGSPACEW and M be a BSS machine over F with WSpaceM (n)
= s(n) = c log n for some c > 0 and such that for all x ∈ F∗, x ∈ L ⇐⇒ M
accepts x. Our proof is a careful analysis of the constant elimination procedure
developed by Koiran [14]. The argument is divided into three cases:

Case 1: Suppose that M does not use any constants from F. Let x1, . . . , xn ∈
{0, 1} be an input. Construct a Turing Machine M ′ that on input x1, . . . , xn ∈
{0, 1} simulates M as follows. M ′ stores content of each cell of M explicitly as
a polynomial. For each step of M :

1. If the step is an arithmetic operation, then M ′ explicitly computes the result-
ing polynomial and stores it in the target cell and proceeds.

2. If the step is a comparison operation, then M ′ evaluates the corresponding
polynomial and proceeds to the next step of M .

Since the total number of bits required to store all of the polynomials in any
given configuration is bounded by c log n and the arithmetic operations on log-
bit representable polynomials can be done in deterministic log-space, it is not
difficult to see that the resulting Turing Machine M is log-space bounded.

Case 2: M uses algebraic constants. Suppose β1, . . . , βk ∈ F are the algebraic
constants used in M . We begin with the special case when k = 1. Let p1(x)
be the minimal polynomial of β1 with coefficients in Z. Let d be the degree of
p1. We show that Koiran’s [14] technique for elimination of algebraic constants
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can indeed be implemented in weak log-space. We view the content of each cell
of M on a given input x1, . . . , xn ∈ {0, 1} as a polynomial in x1, . . . , xn and a
new variable y1. For any polynomial q(x1, . . . , xn, y1) with integer coefficients,
q(x1, . . . , xn, β1) = 0 if and only if q(x1, . . . , xn, y1) = 0 mod p1. Consider the
Turing machine M ′ that simulates M as follows. M ′ stores contents of each cell
of M as polynomial p(x1, . . . , xn, y1) mod p1. Note that every such polynomial
has degree d in the variable y1. For each step of the machine M , the new Turing
machine M ′ does the following:

1. If the step is an arithmetic (add or multiply) operation, then perform the
same arithmetic operation on the corresponding polynomials modulo p1 and
store the resulting polynomial in the polynomial corresponding to the cell
where result was designated to be stored in M .

2. If the step is an ?= 0 test, then evaluate the polynomial corresponding to the
cell whose value is to be tested at the given input x1, . . . , xn ∈ {0, 1} modulo
p1. If the result is zero treat the test as affirmative, else in the negative.

We analyse the space of M ′ on a given input x1, . . . , xn ∈ {0, 1}. Consider a cell c
of M . Let gc = gc(x1, . . . , xn, y1) be the polynomial representing the value stored
at cell c at a fixed point of time in the computation. Note that degree of y1 in gc

at most deg(p1)− 1 = d− 1. Suppose gc = f0 + f1y1 + f2y
2
1 + · · ·+ fd−1y

d−1
1 . We

have Sweak(fi) ≤ Sweak(gc) for 0 ≤ i ≤ d− 1. The overall work space requirement
of M ′ is bounded by d · WSpaceM (n) = ds(n) = O(log n).

For the case when k > 1, Let G = Q(β1, . . . , βk) be the extension field
of Q obtained by adding β1, . . . , βk. Clearly G is a finite extension of Q. By
the primitive element theorem [22], there is a β ∈ F such that Q(β) = G.
Let p be the minimal polynomial for β of degree σ with coefficients from Q.
Let p1(y), . . . , pk(y) be univariate polynomials of minimum degree such that
pi(β) = βi, and let Δ be the maximum of degrees of pis.

Consider an input x1, . . . , xn ∈ {0, 1} and a cell c of M . Suppose gc =
gc(x1, . . . , xn, y1, y2, . . . , yk) is the polynomial representing the value stored at
the cell c at any fixed point of time in the computation. Let D be the degree of gc

and gc =
∑

δ∈Nk fδ

∏k
j=1 y

δj

j , where fδ is a polynomial of degree at most D−∑
i δi

in x1, . . . , xn. Let g′
c = gc(x1, . . . , xn, p1(y), . . . , pk(y)) =

∑
δ∈Nk fδ

∏k
j=1 pj(y)δj ,

and the coefficient of yi in g′
c be g′

i(x1, . . . , xn). Note that,

Sweak(gc) =
∑

δ∈Nk

Sweak(fδ)(
∑

i

log δi) (1)

We first bound Sweak(g′
c mod p). For δ ∈ Nk with

∑
i δi ≤ D, let

qδ =
∏k

j=1 pi(y)δi . qδ is a polynomial of degree at most DΔ. Then g′
i =∑

δ:coeffqδ
(yi) �=0 fδ, thus the number of bits required to store g′

i is bounded by
∑

δ:coeffqδ
(yi) �=0 Sweak(fδ). Since qδ is of degree at most dΔ and hence Sweak(g′

i)
can be dependent on d. However, qδ mod p is a polynomial of degree at most
σ − 1 and hence any given fδ will be a summand for at most σ many g′

is. There-
fore, Sweak(g′

c mod p) is at most σ · Sweak(gc).
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To conclude the argument for Case 2, we describe the simulation of the
machine M ′: M ′ simulates M as in the case when k = 1 by storing the polyno-
mials g′

c mod p explicitly, i.e., it stores the polynomials g′
i mod p. The number

of bits required to store g′
c is bounded by Sweak(g′

c) which in turn is bounded by
(σ + 1)Sweak(gc). Now the simulation is done as in the case k = 1.

Case 3: M uses transcendental constants. Let γ be a transcendental number.
Then for any polynomial p with integer coefficients, we have p(γ) �= 0. Thus,
for any cell c of M and for any x1, . . . , xn ∈ {0, 1}, gc(x1, . . . , xn, γ) = 0 if
and only if gc(x1, . . . , xn, y) ≡ 0. The simulation of M by M ′ can be done the
same fashion as in Case 2, except that the polynomials gc are stored as they
are. Suppose gc(x1, . . . , xn, y) =

∑d
i=0 fiy

i, then Sweak(gc) =
∑

i Sweak(fi) log i,
therefore the space required to store gc by storing fi’s explicitly is bounded by
Sweak(gc), M ′ requires space at most O(s(n)) = O(log n). Now, consider the case
when M uses more than one transcendental constants, and let γ1, . . . , γk be the
constants used by M that are transcendental. Suppose t ≤ k is such that γi is
transcendental in Q(γ1) · · · (γi−1) (where Q(γ1) is the field extension of Q that
contains γ1) for i ≤ t and γj is algebraic over G = ((Q(γ1)) · · · )(γt) for j ≥ t+1.
By the primitive element theorem, let γ be such that G(γ) = G(γt+1, . . . , γk).
Let pi(y) be a polynomial over G of minimal degree such that γi = pi(γ) for
t+1 ≤ i ≤ k. Now the simulation of M by M ′ can be done as in Case 2, however,
the only difference is polynomials pi can have rational functions over γ1, . . . , γt

as coefficients. However, any coefficient of pi can be written as an evaluation of
fraction of polynomials of constant degree over t variables, hence contributing a
constant factor in the overall space requirement. Thus, for any cell c of M at any
point of computation on a given input x1, . . . , xn ∈ {0, 1} can be represented
as a polynomial gc(x1, . . . , xn, y) mod p over G. By the observations in Case
2, and the fact that any fixed element in G can be represented in constant
space, the overall space required by M ′ to simulate M is bounded by O(Γ ·
s(n)) = O(log(n)) where Γ is a constant that depends on k, the maximum degree
of the polynomials pt+1, . . . , pk and the number bits required to represent the
coefficients of these polynomials as rational functions over Q in γ1, . . . , γt. ��
However, we are unable to show the converse of the above theorem, i.e., the
question DLOG ⊆ LOGSPACEW? remains open. The main difficulty is, we can
easily construct deterministic log-space bounded machines that evaluate non-
sparse polynomials such as the elementary symmetric polynomials over a Boolean
input.

4 Weak Space Lower Bounds

In this section we exhibit languages in F∗ that are not in LOGSPACEW. We begin
with a simple structural observations on the languages in SPACEW(s) for any
non-decreasing function s.
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Lemma 2. Let L ∈ SPACEW(s), then for every n > 0, there exist t ≥ 1 and
polynomials fi,j, 1 ≤ i ≤ t, 1 ≤ j ≤ mi, gi,j and 1 ≤ i ≤ t, 1 ≤ j ≤ mi in
Z[x1, . . . , xn] such that:

1. Sweak(fi,j) ≤ s(n), for every 1 ≤ i ≤ t1, 1 ≤ j ≤ mi; and
2. Sweak(gi,j) ≤ s(n), for every 1 ≤ i ≤ t2, 1 ≤ j ≤ mi; and
3. L ∩ Fn =

⋃t
i=1

⋂mi

j=1[fi,j = 0] ∩ ⋂mi

j=1[gi,j �= 0].

Definition 9. For n ≥ 0, d ≤ n, let

Sn,d
def= {(a1, . . . , an) ∈ Fn | symn,d(a1, . . . , an) = 0}

i.e., the hyper surface defined by the n-variate elementary symmetric polynomial
of degree d. For d = d(n) ≤ n define the language: L(d) def=

⋃
n≥0 Sn,d(n).

Theorem 3. For any constant c > 0 L(n/2) /∈ SPACEW(nc).

Proof. We argue for the case F = C. An exactly similar argument is applicable
to the case when F = R. For any c > 0 consider an arbitrary language L′ ∈
SPACEW(nc). Then, for every n ≥ 1, there are n-variate polynomials fi,j , 1 ≤
i ≤ t, 1 ≤ j ≤ mi, gi,j , 1 ≤ i ≤ t, 1 ≤ j ≤ mi in Z[x1, . . . , xn] as promised by
Lemma 2. Let

Vi
def=

mi⋂

j=1

[fi,j = 0]; Wi
def=

mi⋂

j=1

[gi,j �= 0]; and Ti
def= Vi ∩ Wi.

Then we have L′ ∩ Cn =
⋃t

i=1 Ti. We argue that for large enough n,
⋃t

i=1 Ti �=
Sn,n/2 and hence conclude L′ �= L(n/2). Let T̂i denote the Zariski closure of
the set Ti in Cn, i.e., the smallest algebraic variety containing Ti. Proof is by
contradiction. Suppose that

⋃t
i=1 Ti = Sn,n/2. As Sn,n/2 is a closed set in the

Zariski topology over Cn, we have Ti ⊆ T̂i ⊆ Sn,n/2 and hence
⋃t

i=1 T̂i = Sn,n/2.
Then, there should be an i such that T̂i = Sn,n/2, for, Sn,n/2 is an irreducible
algebraic variety. Now there are two cases:

Case 1: Vi = Cn. In this case, Ti = Wi i.e., an open set in the Zariski topology.
Since Cn is dense in the Zariski topology, closure of any open set is in fact Cn

itself. Therefore, T̂i = Cn �= Sn,n/2, hence a contradiction.

Case 2: Vi �= Cn. Then we have Ti = Vi ∩ Wi ⊆ Vi, therefore Sn,n/2 = T̂i ⊆
Vi =

⋂mi

j=1[fij = 0]. It is enough to argue that Sn,n/2 is not contained in any of
the varieties [fi,j = 0]. Suppose Sn,n/2 ⊆ [fi,j = 0] for some 1 ≤ j ≤ mi. Since
symn,n/2 is an irreducible polynomial, we have symn,n/2|fi,j . By Corollary 2, the
number of monomials in fi,j is nω(1). However, by Lemma 2, the number of
monomials in fij is at most O(nc), obtaining a contradiction for large enough n.
Thus Sn,n/2 �⊆ [fi,j = 0] for any 1 ≤ j ≤ mi which in turn implies Sn,n/2 �⊆ Vi

and hence Sn,n/2 �⊆ T̂i. Thus in both of the cases above we obtain a contradiction,
as a result we have Sn,n/2 �= ⋃t

i=1 Ti. Thus L′ �= L(n/2) as required.
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As an immediate corollary we have:

Corollary 1. NC1
F

�⊆ PSPACEW.

Proof. It is known that symn,d is computable by polynomial size arithmetic
circuits of logarithmic depth [27] and hence L(d) ∈ NC1

F
. The result follows.

Now, to complete the proof of Theorem 3, we need to prove Corollary 2. This is
done in the next section using the properties of Newton’s polytope of elementary
symmetric polynomials.

5 Polynomials Divisible by Elementary Symmetric
Polynomials

Let g be a polynomial in F[x1, . . . , xn]. In this section we prove that, for any
polynomial f which is a polynomial multiple of g, the number of monomials of
f is lower bounded by the number of vertices of Newton polytope of g. As an
implication, we get an exponential lower bound on number of monomials of any
polynomial multiple of symn,d. The key step in the proof is a simple Lemma
which lower bounds number of vertices of convex polytope R in terms of number
of vertices of convex polytopes P and Q when R is Minkowski sum of P and Q.
We begin with definition of Minkowski sum.

Definition 10 (Minkowski sum). For A,B ⊆ Fd, Minkowski sum of A and
B (denoted by A ⊕ B) is defined as A ⊕ B = {a + b|a ∈ A, b ∈ B}.

Minkowski sums of convex sets have been extensively studied in mathematics
literature, and has interesting applications in complexity theory, see for example
[10,18,24]. The next proposition shows that the Minkowski sum of two convex
polytopes is a convex polytope and every vertex of resulting polytope can be
uniquely expressed as sum of vertices of the two polytopes. In fact, a more
general statement about unique decomposition of a face (of any dimension) of
Minkowski sum of convex polytopes into faces of individual polytopes holds true,
see for example [11,24].

Proposition 4. If P,Q ⊆ Fd are convex polytopes then the Minkowski sum of
P and Q is a convex polytope P ⊕ Q = conv({p + q|p ∈ ver(P ), q ∈ ver(Q)})
and for every vertex r ∈ ver(P ⊕ Q) there exist unique p ∈ P, q ∈ Q such that
r = p + q, moreover p ∈ ver(P ), q ∈ ver(Q).

Lemma 3. For convex polytopes P,Q ⊆ Fd,

|ver(P ⊕ Q)| ≥ max(|ver(P )|, |ver(Q)|)

Proof. Let ver(P ) = {p1, p2, . . . , pm}, ver(Q) = {q1, q2, . . . , qn} and m ≥ n. To
the contrary assume that |ver(P ⊕ Q)| < m and let R = P ⊕ Q and ver(R) =
{r1, r2, . . . , rt}, where t < m. From Proposition 4, for � ∈ [t] every vertex r� ∈
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ver(R) can be uniquely expressed as r� = pi�
+ qj�

where pi�
∈ ver(P ) and

qj�
∈ ver(Q). But as t = |ver(R)| < m = |ver(P )|, there must be a vertex

p′ ∈ ver(P ) which plays no role in determining any vertex of P ⊕ Q, that is,
every r� ∈ ver(P⊕Q) can be expressed as r� = pi�

+qj�
where pi�

∈ ver(P )\{p′}
and qj�

∈ ver(Q). Without loss of generality assume that p′ = p1. Since p1 is
a vertex of P , there exist a valid linear inequality 〈v, p1〉 ≤ k, k ∈ R, v ∈ Rd

such that 〈v, p1〉 = k and for any x ∈ P \ {p1}, 〈v, x〉 < k. Let q ∈ Q such that
〈v, y〉 ≤ 〈v, q〉 = k′, k′ ∈ R for any y ∈ Q. Let z = p1 + q ∈ P ⊕ Q.

From Proposition 3 we know that R = P ⊕ Q = conv(ver(P ⊕ Q)). So
the point z ∈ P ⊕ Q can be expressed as z =

∑t
�=1 λ�(pi�

+ qj�
) where λ� ≥

0,
∑

� λ� = 1 where pi�
∈ ver(P )\{p1} and qj�

∈ ver(Q). Let zP =
∑t

�=1 λ�pi�
∈

P and zQ =
∑t

�=1 λ�qj�
∈ Q. So we get z = zP + zQ = p1 + q. First we argue

that p1 �= zP . Assume p1 = zP =
∑t

�=1 λ�pi�
, where pi�

∈ ver(P ) \ {p1}. Clearly
if λ� = 1 for some � ∈ [t] then λi = 0 for i ∈ [t]\{�} and we get p1 = pi�

but that
is not possible as pi�

∈ ver(P ) \ {p1}. So we can express a vertex p1 of P as a
nontrivial convex combination of pi1 , pi2 , . . . pit

∈ ver(P )\{p1}. A contradiction
to Proposition 2. So p1 �= zP .

We know that 〈v, p1〉 = k and for any x ∈ P \ {p1},〈v, p1〉 < k. In particular,
〈v, zP 〉 < k. Also, by choice of q we have 〈v, y〉 ≤ 〈v, q〉 for y ∈ Q. As a result we
get 〈v, zP 〉+〈v, zQ〉 < 〈v, p1〉+〈v, q〉. A contradiction, since z = zP +zQ = p1+q.

Now we recall the notion of Newton’s polytope of polynomial in F[x1, . . . , xn].
Let f be a polynomial in F[x1, . . . , xn]. Let f(α1,α2,...,αn) denotes coefficient of
the monomial xα1

1 xα2
2 . . . xαn

n in f , f =
∑

f(α1,α2,...,αn)x
α1
1 xα2

2 . . . xαn
n . A vec-

tor (α1, α2, . . . , αn) ∈ Rn is called as an exponent vector of the monomial
xα1
1 xα2

2 . . . xαn
n of f . The Newton polytope of f is defined as the convex-hull

of set of exponent vectors (α1, α2, . . . , αn) in Rn for which f(α1,α2,...,αn) �= 0.
The Newton polytope of f is denoted by Pf .

For a polynomial f , let mon(f) denote the set of monomials with non-zero
coefficient in f . Following Lemma is from [10]. As per [10] a more general version
of Lemma 4 appears in [23].

Lemma 4 [23]. Let f, g, h ∈ F[x1, . . . , xn] with f = gh then Pf = Pg ⊕ Ph.

Theorem 4. Let f, g, h be nonzero polynomials in F[x1, . . . , xn] with f = gh
then |mon(f)| ≥ max(|ver(Pg)|, |ver(Ph)|).
Corollary 2. For any nonzero polynomial g ∈ F[x1, . . . , xn] let f = g · symn, n

2

then |mon(f)| ∈ 2Ω(n).

Remark 2. The Corollary 2 as stated above can be proved more easily by exploit-
ing the fact that elementary symmetric polynomials are multilinear (Sect. 6.4 in
[7,8]). Our proof method is more general and applicable for non multilinear poly-
nomials as well, and might be of an independent interest. Forbes [7] attributes
the idea of using Newton polytopes for lower bounding sparsity of polynomials
to Rafael Oliviera’s unpublished personal communication. To the best of our
knowledge the proof technique we used doesn’t appear in any prior published
work.
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6 Conclusions and Future Directions

Our study reveals that obtaining a good notion of space for the BSS model
of algebraic computation still remains a challenging task. We showed that the
Boolean part of LOGSPACEw is contained in DLOG, however the converse con-
tainment is unlikely and it remains open to show that DLOG �⊂ LOGSPACEw.

Acknowledgements. We thank the anonymous reviewers for this and an earlier ver-
sion of the paper for suggestions that helped to improve the presentation of proofs.
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Abstract. Local Broadcast is one of the most fundamental communi-
cation problems in wireless networks. The task is to allow each node to
deliver a message to all its neighbors. In this paper we consider an obliv-
ious and semi-oblivious variants of the problem. The oblivious algorithm
is a fixed deterministic schedule of transmissions that tells each station in
which rounds it has to transmit. In semi-oblivious variant of the problem
we allow a station to quit the execution of the schedule at some point.
We present algorithms with complexity of O(Δ2+2/(α−2) log N) for the
oblivious variant and O(Δ log N) for the semi-oblivious case, where α > 2
is a path loss parameter, [1, N ] is the range of IDs of stations and Δ is
the maximal degree in a network. In the latter case we make use of the
acknowledgements, which inform a station, after it sent a message, if all
its neighbors had received it.

1 Introduction

1.1 The Network Model

We consider a wireless network consisting of nodes located on the 2-dimensional
Euclidean plane. We model transmissions in the network with the SINR (Signal-
to-Interference-and-Noise Ratio) constraints. The model is determined by fixed
parameters: path loss α > 2, threshold β > 1, ambient noise N > 0 and uni-
form transmission power P. The communication graph G = (V,E) of a given
network consists of all nodes and edges {v, u} between nodes that are within
distance of at most 1 − ε, where ε ∈ (0, 1) is a fixed constant (the connectivity
parameter). The communication graph, defined as above, is a standard notion in
the analysis of ad hoc communication in the SINR model, cf., [4,18]. The value
of SINR(v, u, T ), for given stations u, v and a set of concurrently transmitting
stations T is defined as follows.

SINR(v, u, T ) =
P/d(v, u)α

N +
∑

w∈T \{v} P/d(w, u)α
(1)

A node u receives a message from w iff w ∈ T and SINR(w, u, T ) ≥ β, where
T is the set of stations transmitting at the same time. Transmission range is
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the maximal distance at which a station can be heard provided there are no
other transmitters in the network. Without loss of generality we assume that
the transmission range are all equal to 1.

We assume that algorithms work synchronously in rounds. In a single round, a
station transmits a message according to the predefined schedule (the algorithm).
In the semi-oblivious variant of the problem, a station can quit the execution
of the algorithm at some point. This means that nodes do not perform any
calculations, nor react to the content of the messages they receive; the only
thing a node can do is to transmit its message in rounds defined by the schedule,
or – in the semi-oblivious variant – quit the execution of the algorithm after
receiving specific feedback.

The degree of the network Δ is the maximal number of stations in any ball of
radius 1. Observe, that the maximum node degree of the communication graph
is Θ(Δ).

Each station has a unique identifier from the set [N ], where N = nO(1) is
the upper bound on the size n of the network. Moreover, the stations know:
N , the SINR parameters – P, α, β, ε,N , and the degree of the network Δ. In
the section presenting semi-oblivious algorithm we allow the stations to use the
feedback mechanism, which tells the station if its message had been received
by all neighbors in given round. It has been widely used in the randomized
algorithms for local broadcast problem [3,13].

1.2 Problem Definition and Related Work

The problem of local broadcast is one of the most fundamental communication
tasks. We say that an algorithm solves local broadcast problem if, during its
execution, each node sends a message that is received by all its neighbors.

In the last years the SINR model was extensively studied. It regards struc-
tural properties of so-called SINR-diagrams and reception areas [2,14,20,21] as
well as algorithm design for local and global broadcast [3,4,10,11,16,17,19,24,
26], link scheduling [12], and other problems [15,22]. The first work on local
broadcast in SINR model by Goussevskaia et al. [10] presented an O(Δ log n)
randomized algorithm. After that, the problem was studied in various settings.
Halldorsson and Mitra presented an O(Δ + log2 n) algorithm in a model with
feedback [13]. Recently, for the same setting Barenboim and Peleg presented solu-
tion working in time O(Δ+log n log log n) [3]. For the scenario when degree Δ is
not known Yu et al. in [26] improved on the O(Δ log3 n) solution of Goussevskaia
et al. to O(Δ log n+log2 n). However, no deterministic (oblivious) algorithm for
local broadcast was known in the scenario considered here, i.e., when stations
do not know their coordinates.

The local broadcast problem is a generalization of the extensively studied
contention resolution problem in multiple-access channels, in which nodes have
to send their messages to a shared channel (that corresponds to a neighborhood
in our context) [1,5–9,23].
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1.3 Our Contribution and Open Problems

To the best knowledge of the authors this paper is the first to investigate non-
adaptive (i.e., oblivious or semi-oblivious) deterministic algorithms in the SINR
model.

In Sect. 3.1 we present the application of strongly selective families as local
broadcast schedules. The complexity of this result is worse than the one of sched-
ules constructed from balanced strongly selective families in Sect. 3.3, but the
advantage of this result is that the strongly selective families are constructive
(i.e., can be locally computed in polynomial time, c.f., [25]). Also, this result
serves as a part of the semi-oblivious schedule in Sect. 4.2.

In Sect. 3.2 we show existence of balanced strongly selective families (bssf)
with certain parameters through the probabilistic method. Then, in Sect. 3.3,
we prove that bssf can serve as a local broadcast schedule. The length of the
schedule is O(Δ2+2/(α−2) log N).

In the last section we show existence of fractional balanced selectors through
the probabilistic method. The analysis is not standard for such constructions
and might be interesting on its own. Then, we apply the result to show existence
of the semi-oblivious schedule of length O(Δ log N).

Our results indicate that although non-adaptive deterministic local broad-
cast is a time consuming task, little adaptivity polynomially improves the perfor-
mance. The issue of efficient construction of balanced strongly selective families
and (fractional) balanced selectors remains open.

2 Preliminaries

In this section we present basic definitions and facts to be used in further sections.
We use [n] to denote the set of natural numbers {1, ..., n}. The central object in
this paper are families of sets over [N ]. Any family of subsets over [N ] can be
regarded as a transmission schedule, assuming that the sets are ordered within
a family. We formalize this notion as follows.

A transmission schedule of length t is defined by a sequence S = (S1, ..., St)
of subsets of [N ], where the ith set determines nodes transmitting in the ith
round of the schedule. That is, a node with ID v ∈ [N ] transmits in round i of
an execution of S if and only if v ∈ Si.

Most of the results in our paper are of probabilistic nature, hence we
introduce a suitable notion of random sequences of subsets. We denote by
Qm,p = (Q1, . . . , Qm) a random sequence subsets of [N ] where each x ∈ [N ]
is independently put into each Qi with probability p for each 1 ≤ i ≤ m.

A set S ⊆ [N ] selects x ∈ A from A ⊆ [N ] when S ∩ A = {x}.
A sequence S = (S1, . . . , St) of sets over [N ] is called (N, k)-strongly selective

family (or (N, k)-ssf) if for any subset A ⊆ [N ] such that |A| ≤ k, and each x ∈ A
there is i ∈ [t] such that Si selects x from A.

A sequence S = (S1, . . . , St) of sets over [N ] is called (N, k, γ, b)-balanced
strongly selective family (or (N, k, γ, b)-bssf), where b = (b1, ..., bl), if for each
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subset A ⊆ [N ] such that |A| ≤ k, and any B1, ..., Bl ⊆ [N ] such that |Bi| = bi,
for any x ∈ A there is S ∈ S such that: (i) S ∩ A = {x}, (ii) |S ∩ Bi| ≤ γ · bi for
all i. The sets Bi are called bounding sets.

The definition of fractional balanced selector (fbs) is analogous to the defini-
tion of bssf, where we require that at least half of the elements of A are selected
instead of all of them. We give full definition of fbs in Subsect. 4.1. Note, that
we give the probabilistic argument for existence of fbs with specific parame-
ters suited for local broadcast problem in SINR model, however more general
statement is possible.

We say that a schedule S is a local broadcast schedule if for any network
of degree Δ, for any node v ∈ G there is a round, when v transmits and is
heard by all its neighbors, where G is the communication graph of that network.
Formally, for any v ∈ G there exists S ∈ S such that: (i) v ∈ S, (ii) w �∈ S for
any w ∈ N(v), (iii) SINR(v, w, S) ≥ β for all w ∈ N(v).

Let Id be the maximal value of interference at node v that guarantees that
v can receive a message from any station at distance d.

Below we present some basic mathematical facts.

Fact 1. For all x ∈ R we have

ex ≥ 1 + x.

Fact 2. For any natural k ≤ n we have
(

n

k

)

≤ ek ln(n/k)+k.

Fact 3. (Chernoff Bound) Let X ∼ Bin(n, p), where p ≤ 1/2. Then for any
δ > 0 we have

P(X ≥ (1 + δ)E[X]) ≤ exp(−δ2E[X]/(2 + δ)).

Fact 4. For p ∈ (0, 1/2) we have

1/4 ≤ (1 − p)1/p ≤ 1/e.

Fact 5. One can cover a disc of radius r > 1 using 8r2 discs of radius 1.

Fact 6. Let a > 1, b > 0, then for all x ≥ 2 loga(2b/ ln a) we have

ax

x
≥ b.

3 Non-adaptive Algorithms

3.1 Application of Strongly Selective Families

In this subsection we present a preliminary result on application of combinatorial
structures to solve local broadcast in SINR networks. We explore the parameters
of strongly selective families so that the schedules resulting from them are local
broadcast schedules.
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Proposition 1. Let T be a set of transmitting stations and let v be a point on
the plane. Assume that any ball of radius r contains at most Δ elements of T
and B(v, xr) does not contain elements of T for a natural positive number x.
Then, the overall strength I(v) =

∑
u∈T P/d(u, v)α of signals from the set T at

v is O
(
r−αx−α+2Δ

)
.

Thanks to the above proposition, in the following corollary we estimate the
distance at which there should be no transmitters in order to limit the total
power of the signal to a given value.

Corollary 1. There exists a constant τ > 0 dependent on α, P such that if there
are no stations transmitting in B(v, τ (Δ/y)1/(α−2)) then I(v) ≤ y, provided that
there are at most Δ stations per disc of radius 1.

The following is a direct consequence of Corollary 1.

Corollary 2. Let v be the only one transmitting station in B(v, x), assuming
that at most Δ stations are transmitting per each unit ball outside of B(v, x).
Let xΔ = τ(Δ/I1−ε)1/(α−2) + 1. If x ≥ xΔ then every station within distance at
most 1 − ε from v can hear the transmission of v.

The following construction is a natural consequence of the above observa-
tions: If a station is a unique transmitter in the set of all stations within distance
xΔ then it is heard by all its neighbors. A ssf-schedule, guaranteeing that each
station has a round in which it transmits in such way, would be a local broadcast
schedule. In the following Theorem we present such schedules.

Theorem 1. Let xΔ be the value defined in Corollary 2, and S be a (N, 8Δx2
Δ)-

ssf schedule. Then S is a local broadcast schedule for any network of density Δ,
and the length of the schedule is O(Δ2+4/(α−2) log(N/(Δ1+2/(α−2))).

Proof. Let v be any station. By Fact 5, there are at most 8Δx2
Δ stations in

B(v, xΔ), and by the definition of the schedule S, there is a round in S when v
is the unique transmitter in B(v, xΔ). Then, by Corollary 2, the interference in
any point of B(v, 1 − ε) allows to receive the message from v, which concludes
the proof.

3.2 Balanced Strongly Selective Families

We say that a sequence Q of subsets of [N ] is a (N, k, γ, b)−balanced ssf, if for
any central set A ⊆ [N ] of size k, any bounding sets B1, ..., Bl ⊆ [N ] such that
|Bi| = bi, and limit coefficient γ, all elements x ∈ A are selected – an element
x ∈ A is said to be selected if there exists a round Q ∈ Q such that

(a) Q ∩ A = {x},
(b) |Q ∩ Bi| ≤ γ · bi.
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Note, that the value of l is not defined here. It is not influencing any calcu-
lations, however it is important to state that the construction works for a fixed
value of l.

Our goal is to show the existence of balanced strongly selective families of
minimal size.

Given the bounding sets B1, ..., Bl we say that the round Q is quiet if it
satisfies the condition b). In the next proposition we show that, with appropriate
choice of p, for fixed bounding sets B1, ..., Bl the probability that a single round
is good is at least 1/2.

Proposition 2. Let B1, ..., Bl be fixed sets such that |B1| < |B2| < ... < |Bl|,
and γ ≤ 1. Then for Q ∈ Qm,p we have

P

⎛

⎝
⋂

i≤l

|Q ∩ Bi| ≤ γ · bi

⎞

⎠ ≥ 1/2,

provided that the value of p satisfies p ≤ γ/2, and p · bi ≥ 6 + i.

A configuration is a tuple of form (A,B1, ..., Bl), representing a possible
arrangement of elements into central set and bounding sets. Let us define a
set of all possible configurations by F , formally

F = {(A,B1, ..., Bl) :A,B1, ..., Bl ⊆ [N ], |A| = k, ∀i�=j |Bi| = bi,

A ∩ Bi = ∅, Bj ∩ Bi = ∅}.

We have the following bound on the size of F .

Proposition 3. Let F be the set of all possible configurations. Then

|F| ≤ Nk+s,

where s = b1 + ... + bl.

Observe, that Q is not a (N, k, γ, b)-bssf if for some configuration
(A,B1, ..., Bl) there is an element of A that is not selected. In the next proposi-
tions we bound the probability that for a fixed choice of A,B1, ..., Bl a random
sequence Qm,p does not select some element of A.

Proposition 4. Let A,B1, ..., Bl be a fixed configuration, and v ∈ A. The prob-
ability that v is selected in a single round Q ∈ Qm,p is at least p/4pk+1, provided
that the value of p satisfies p ≤ γ/2, and p · bi ≥ i + 6.

Now we bound the probability that Qm,p selects all elements of A in quiet
rounds for a fixed configuration A,B1, ..., Bl. We say that a family S over [N ] is
good for a configuration (A,B1, ..., Bl) ∈ F if it selects all elements of A.

Proposition 5. Let A,B1, ..., Bl be a fixed configuration. Let p ≤ γ/2, and
p · bi ≥ i + 6. Then we have

P(Qm,p is not good for A,B1, ..., Bl) ≤ k · exp(−m · p/4pk).
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Lemma 1. Let p ≤ γ/2, and p · bi ≥ i + 6. Then we have

P(Qm,p is (N, k, γ, b)-bssf) > 0,

provided that m > 4pk+1 · 2k+s
p ln N, where s = b1 + ... + bl.

Proof. The sequence Qm,p is a (N, k, γ, b)-balanced selector if it is good for all
(Ã, B̃1, ..., B̃l) ∈ F . Thus,

P(Qm,p is not (N, k, γ, b-bssf)) ≤
∑

c∈F
P(Qm,p is not good for c)

≤ |F| · k exp(−m · p/4pk+1)

≤ Nk+s · k exp(−m · p/4pk)

≤ exp((2k + s) ln N − m · p/4pk)

Thus, in order to guarantee P(Qm,p is not (N, k, γ, b-bssf)) < 1 it is sufficient
that m satisfies the following inequality

(2k + s) ln N − m · p/4pk < 0,

which is true given the assumptions regarding the value of m.

3.3 Oblivious Local Broadcast with BSSFs

In this section we provide an application of the balanced selective families to
Local Broadcast in the SINR model. We proceed analogously to the result in
Theorem 1 – we show that for any network of density Δ each node transmits
in some round when it is possible for all its neighbors to receive the message.
The main difference with the previous result is that we do not demand that a
station will be a unique transmitter among its very broad neighborhood, instead
we analyze the interference carefully and exploit its nature by applying balanced
selective families.

First, we show for a certain choice of k, bi, γ there exists a bssf of size guar-
anteed by the Lemma 1 for such parameters. Then, we prove that a schedule
constructed from such bssf is feasible local broadcast schedule.

Let c1 be a constant, whose value will be defined later. We allow for c1 to
depend on the model constants, that is α, β,P.

Let k = c1Δ, bi = c1Δ · 22i, and γ = 1/Δ. Since the length of the bssf from
Lemma 1 depends highly on s = b1 + ... + bl we have an incentive to choose the
value of l to be as small as possible. On the other hand it is important to capture
the behavior of the interference in the network through the bounding sets, which
implies that the cardinality of all bounding sets needs to be high. We set the
value of l to λ = 
log(2+ τ(2Δ/I1−ε)1/(α−2))+5�. We give more details for this
value later.
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Definition 1. A geometric configuration for a point x on a plane is a partition
of the network into l + 1 sets A(x), B

(x)
1 , ..., B

(x)
l in the following way. The k

stations that are closest to x constitute the set A. The next bi stations that are
closest to x go to B

(x)
1 , and so on. We call the point x the perspective.

Note that the above definition is ambiguous, because it is not clear which
elements to choose if there is more than one possibility. However, this will not be
a problem in the following analysis, since the definition is used only to connect
a configuration A,B1, ..., Bl of sets with its location on a plane through the
perspective point.

We identify rounds of communication with the subset of transmitting stations
Q ⊆ [N ]. For a fixed geometric configuration we say that the round Q is quiet if
for all i we have |Q∩B

(x)
i | ≤ γ|B(x)

i |, which corresponds to the condition present
in the definition of balanced strongly selective families.

Proposition 6. For any geometric configuration A(x), B
(x)
1 , ..., B

(x)
l and w ∈

B
(x)
i , we have d(x,w) ≥ √

c1 · 2i−5.

Consider some point x on a plane. Our idea of handling the interference in
the network is to divide it into three groups. The first group consists of first k

stations closest to x, namely A(x). The second group consists of B
(x)
1 ∪ ... ∪ B

(x)
λ

(recall that λ = 
log(2+τ(2Δ/I1−ε)1/(α−2))+5�), and the last group consists of
all other stations. We denote the groups by H

(x)
1 ,H

(x)
2 , and H

(x)
3 . The partition of

the network into three groups here is crucial to the complexity of the algorithm.
The interference from stations within small distance is far more influential than
the interference from distant stations, thus we capture the H

(x)
2 in the bounding

sets, and analyze interference coming from there carefully. On the other hand,
we bound the interference from H

(x)
3 less precisely, using Corollary 1. Note, that

it would be possible to fit all the stations into bounding sets (that is H2), but
then the total cardinality of bounding sets, that is s = b1 + ... + bl, would be
Ω(N) and the length of the bssf would be Ω(N log N) (see Lemma 1).

Let us recall that Id denotes the maximal value of interference in a fixed point
v that guarantees that v can receive a message from any station at distance d,
and I(X,x) =

∑
v∈X P/d(v, x)α. In the following two propositions we bound

the interference from H
(x)
2 and H

(x)
3 for any configuration (A(x), B

(x)
1 , ..., B

(x)
λ ).

Proposition 7. Let c = (A(x), B
(x)
1 , ..., B

(x)
λ ) ∈ F be a fixed geometric config-

uration. Then in each quiet round Q ⊆ [N ], the maximal interference coming
from H

(x)
2 in B(x, 2) is bounded as follows,

I(Q ∩ H
(x)
2 , v) ≤ I1−ε/2 for each v ∈ B(x, 2),

provided that c1 ≥ max{214, ( 26α+1P
I1−ε(2α−2−1) )

2/(α−2)}.

Proof. The good round for x means that at most γbi nodes are transmitting
from B

(x)
i for each i. Let di denote the minimal distance from the nodes in B

(x)
i
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to B(x, 2). Thanks to Proposition 6 we have di ≥ √
c1 · 2i−5 − 2 ≥ √

c1 · 2i−6

(provided that c1 ≥ 214). Denote by I the maximal interference in B(x, 2) coming
from the stations in

⋃
i≤λ B

(x)
i in a good round for c. We have

I ≤
∑

1≤i≤λ

γ|Bi| · P
dα

i

≤
∑

1≤i≤λ

c
1−α/2
1 · 2i(2−α) · 26α · P

≤ 26αP
c
α/2−1
1

∑

i≥1

(
1

2α−2

)i

=
26αP

c
α/2−1
1 (2α−2 − 1)

.

Thus, for c1 ≥ ( 26α+1P
I1−ε(2α−2−1) )

2/(α−2) we have I ≤ I1−ε/2.

Proposition 8. In every round the maximal interference coming from H
(x)
3 to

any station v ∈ B(x, 2) is at most I1−ε/2.

Proof. Let us recall λ = 
log(2 + τ(2Δ/I1−ε)1/(α−2)) + 5�. Thanks to Proposi-
tion 6 we know that for each station v ∈ H

(x)
3 we have

d(v, x) ≥ √
c1 · 2λ−5 ≥ 2 + τ(2Δ/I1−ε)1/(α−2),

since all stations in H
(x)
3 lay farther than stations from B

(x)
λ . Thus, for each

u ∈ B(x, 2), and v ∈ H
(x)
3 we have d(u, v) ≥ τ(2Δ/I1−ε)1/(α−2) which by

Corollary 1 assures that I(H(x)
3 , u) ≤ I1−ε/2 for each u ∈ B(x, 2).

We have shown a way to capture interference in a network by partitioning
it into groups and analyzing the interference in them separately. We crafted the
analysis so it fits the construction of balanced strongly selective family. Now, we
put all the pieces together in the following theorem.

Theorem 2. There exists a local broadcast schedule S feasible for networks of
density Δ of length O(Δ2+2/(α−2) log N).

Proof. We show that a schedule constructed from (N, k, γ, b)-bssf with b =
(b1, ..., bλ), where bi = c1Δ · 22i, λ = 
log(2+ τ(2Δ/I1−ε)1/(α−2))+5�, k = c1Δ,
c1 = max{214, ( 26α+1P

I1−ε(2α−2−1) )
2/(α−2)} is feasible local broadcast schedule for any

network of density Δ.
Let S be the smallest (N, k, γ, b)-bssf. We need to show that during the

execution of S each station is heard by all its neighbors. Let us fix a station v
and a point x on a plane such that v ∈ B(x, 1). The definition of S guarantees
that there exists a round Q ∈ S such that Q ∩ A(x) = {v}, and Q is quiet for
B

(x)
1 , ..., B

(x)
λ . Let us denote Q̃ = Q�{v}. The total interference on any neighbor

w of v is equal to

I(Q̃ ∩ V,w) = I(Q̃ ∩ H
(x)
1 , w) + I(Q̃ ∩ H

(x)
2 , w) + I(Q̃ ∩ H

(x)
3 , w) ≤ I1−ε,
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thanks to Propositions 7 and 8, and the fact that I(Q̃∩H
(x)
1 , w) = 0 (recall that

H
(x)
1 = A(x), and Q̃ ∩ A(x) = ∅). This shows that in this round v transmits and

interference in all its neighbors is at most I1−ε which allows them to receive the
message.

It remains to show that the length of S is O(Δ2+2/(α−2) log N). Now, we
use Lemma 1 to show the existence of small bssf with parameters defined at the
beginning of this proof.

Let p = γ/2 and m = 
2c1+1Δ(2Δc1 + s) ln N�. In order to use Lemma 1
we need to meet its assumptions, that is to guarantee that p · bi ≥ i + 6. It is
easy to check, that this true for all c1 ≥ 3. By Lemma 1 we know that Qm,p

is a (N, k, γ, b)-bssf with non-zero probability, thus there exists bssf of given
parameters of size at most m. In order to estimate the value of m let us bound
the sum of sizes of all bounding sets,

s = b1 + ... + bλ =
∑

1≤i≤λ

c1Δ · 22i = c1Δ
4λ+1 − 1

3

≤ 28c1Δ
(

2 + τ(
2Δ

I1−ε
)1/(α−2)

)2

= O(Δα/(α−2)).

Thus the size of S is at most m = O(Δ(Δ + Δα/(α−2)) log N) =
O(Δ2+2/(α−2) log N), which concludes the proof.

4 Local Broadcast with Feedback

In this section we provide another structure enabling to accomplish partial local
broadcast – meaning that only a fraction of nodes will be heard by all its neigh-
bors. This allows us to substantially reduce the size of the schedule to O(Δ log N)
in networks of diameter Δ. Such approach also gives us an efficient solution to
local broadcast in a scenario of semi-oblivious networks, with acknowledgments.
In such networks, the only action of a node, apart from executing a given sched-
ule, is to quit the protocol at the point when the node was heard by all its
neighbors.

We construct a combinatorial structure similar to the one used in previ-
ous section. However, there are some major changes both in application of the
structure to the SINR networks, and in the analysis of the structure itself. The
analysis from the previous section does not allow to reduce the size of the family
to O(Δ log N). To enable this, we introduce changes in the definition of bound-
ing sets, allowing for more stations to be selected in quiet rounds. However, this
enforces a more careful analysis of the interference in the network later.

4.1 Fractional Balanced Selectors

In this section we give the definition of fractional balanced selectors (FBS),
which is suited for the use in the local broadcast algorithm. That definition may
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be generalized, allowing for another parameters, and perhaps be used in other
algorithms. However, in this section whenever we speak of fractional balanced
selector, we mean an FBS with specific parameters, that are defined in the next
paragraph. We treat the selectors as if they are transmission schedules already.
Particularly, if some element v ∈ [N ] is present in Q ⊆ [N ] we say that v
transmits in round Q.

Our goal here is to show a fractional balanced selector, that is Q such that,
for any C,A, such that C ⊆ A ⊆ [N ], where |C| = Δ and |A| = k there are
rounds Q ∈ Q for at least half of all elements v ∈ C such that: (i) Q ∩ A = {v},
(ii) |Q ∩ Bi| ≤ |Bi|δi+k/k for all i, where |Bi| = bi, bi = k22i, k = c1Δ, c1 =
(δc)(2+α)/(2α), and α is the SINR Model constant, and values of δ, and c are to
be determined later.

Wherever we say that C,A,B1, ..., Bl are fixed configuration, we mean that
they are disjunct, fixed subsets of [N ], such that |C| = Δ, |A| = k, and |Bi| =
k22i.

The general idea in this section is to prove that the family Qm,p for certain
values of m and p is FBS with non-zero probability. We do it in two steps. First,
we show that with probability greater than 1/2 it satisfies the following property:
for all configurations (C,A,B1, ..., Bl) there are at least σ rounds Q such that
|Q∩Bi| ≤ |Bi|δi+k/k for all i (see the second condition in the above definition).
Then, we show that with probability greater than 1/2 any subset of σ rounds
satisfies the first condition, that is it selects at least half of elements in C. Hence,
with non-zero probability there is a subset of σ rounds in which the number of
transmitters from Bi’s is bounded and elements of C are being selected.

A sequence of sets Q is i-bounding if
∑

Q∈Q |Q ∩B| ≤ mbi/k for all B ⊆ [N ]
of size bi. We say that Q is bounding if it is i-bounding for all i ≤ l. In the
following two propositions we show that with probability greater than 1/2 the
family Qm,p is bounding.

Proposition 9. Let C,A,B1, ..., Bl be a fixed configuration, and p = 1/(2k).
For Qm,p we define Xi =

∑
Q∈Qm,p

|Q ∩ Bi|, that is the total number of “trans-
missions” from the set Bi. We have

P(Xi ≥ m|Bi|/k) ≤ exp(−m|Bi|/6k).

Proposition 10. Let p = 1/(2k), then we have

P(Qm,p is bounding) >
1
2
,

provided that m > 6k (ln(2l) + ln N + 1).

The following lemma is purely deterministic. We show there that if a family
of sets Q is bounding, then it cannot have too many spoiled rounds.

Lemma 2. If a family Q of size m is bounding then for any configuration
A,B1, ..., Bl the number of spoiled rounds in Q is at most m/κ, where κ =
(δc(δ − 1)).



Deterministic Oblivious Local Broadcast in the SINR Model 323

This concludes the first step of the analysis. Now, we know that with proba-
bility at least 1/2 there at most m/κ rounds are spoiled by too many transmitters
from bounding sets. It remains to show that for any subset of m − m/κ quiet
rounds there are at least Δ/2 distinct selections from the set C.

We say that a family of sets Q is (N, a, b)-inner-selective if for any sets Â ⊆ B̂
such that |Â| = a, |B̂| = b for at least half elements x ∈ Â of Â there exists an
Q ∈ Q such that Q ∩ B = {x}. We say that a family Q of subsets of [N ] is
(N,Δ, k, σ)-good if any subset Q′ ⊆ Q of size σ is (N,Δ, k)-inner-selective.

Now, we are ready to make the second step in the proof. We show, that for
certain parameters Qm,p is (N,Δ, k, σ)-good with probability at least 1/2.

Lemma 3. Let p = 1/(2k), κ = δc(δ − 1), and σ = m(1 − 1
κ ).

P (Qm,p is (N,Δ, k, σ) − good) ≥ 1
2
,

Provided that m ≥ 16k
Δ(1−1/κ) (k ln(N/k) + 3k + ln 2), and c ≥ 2 loga(2b/ ln a),

where a = δ(α−2)/(2α), b = max{ 32(ln δ+ln(δ−1)+1)
δ−1 , 1}.

Theorem 3. Let p = 1/(2k), κ = δc(δ − 1), σ = m(1 − 1/κ)

P(Qm,p is a fractional balanced selector) > 0,

provided that m ≥ max{6k (ln(2l) + ln N + 1) + 1, 16k
Δ(1−1/κ) (k ln(N/k) +

3k + ln 2)}, and c ≥ 2 loga(2b/ ln a), where a = δ(α−2)/(2α), b =
max{ 32(ln δ+ln(δ−1)+1)

δ−1 , 1}.

Because of the complicated formulas in the theorem above, we state its main
consequence more clearly in the following corollary.

Corollary 3. There exists a fractional balanced selector of size O(Δ log(N)).

4.2 Semi-oblivious Algorithm with Acknowledgements

Observe, that if we allow for a node to get an acknowledgement when all its
neighbors receive its message, then it can quit from further execution of the pro-
tocol. Then, after first execution of FBS for networks of density Δ, the density of
the network drops to Δ/2, since all the nodes that transmitted successfully dur-
ing the first FBS quit the protocol. Then, we run an FBS for networks of density
Δ/2, and so on. When the density of the network drops below Δ1/(2+4/(α−2)) we
use the result of Theorem 1 to make sure that all nodes transmitted successfully.

Theorem 4. There exists a semi-oblivious algorithm for local broadcast in net-
works of density Δ that runs in O(Δ log N) rounds, assuming that nodes are
capable of using acknowledgements of successful transmissions.

Acknowledgments. The authors would like to thank Darek Kowalski for his com-
ments to the paper.
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References

1. Anta, A.F., Mosteiro, M.A., Munoz, J.R.: Unbounded contention resolution in
multiple-access channels. Algorithmica 67, 295–314 (2013)

2. Aronov, B., Katz, M.J.: Batched point location in SINR diagrams via algebraic
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13. Halldórsson, M.M., Mitra, P.: Towards tight bounds for local broadcasting. In:
Kuhn, F., Newport, C.C. (eds.) FOMC, p. 2. ACM (2012)
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Abstract. The Lambek calculus is a well-known logical formalism for
modelling natural language syntax. The original calculus covered a sub-
stantial number of intricate natural language phenomena, but only those
restricted to the context-free setting. In order to address more subtle lin-
guistic issues, the Lambek calculus has been extended in various ways.
In particular, Morrill and Valent́ın (2015) introduce an extension with
so-called exponential and bracket modalities. Their extension is based on
a non-standard contraction rule for the exponential that interacts with
the bracket structure in an intricate way. The standard contraction rule
is not admissible in this calculus. In this paper we prove undecidability of
the derivability problem in their calculus. We also investigate restricted
decidable fragments considered by Morrill and Valent́ın and we show
that these fragments belong to the NP class.

1 Linguistic Introduction

The Lambek calculus [23] is a substructural, non-commutative logical system
(a variant of linear logic [15] in its intuitionistic non-commutative version [1])
that serves as the logical base for categorial grammars, a formalism that aims to
describe natural language by means of logical derivability (see Buszkowski [9],
Carpenter [11], Morrill [30], Moot and Retoré [28], etc.). The idea of categorial
grammar goes back to works of Ajdukiewicz [2] and Bar-Hillel [3], and afterwards
it developed into several closely related frameworks, including combinatory cate-
gorial grammars (CCG, Steedman [39]), categorial dependency grammars (CDG,
Dikovsky and Dekhtyar [12]), and Lambek categorial grammars. A categorial
grammar assigns syntactic categories (types) to words of the language. In the
Lambek setting, types are constructed using two division operations, \ and /,
and the product, ·. Intuitively, A \ B denotes the type of a syntactic object that
lacks something of type A on the left side to become an object of type B; B / A is
symmetric; the product stands for concatenation. The Lambek calculus provides
a system of rules for reasoning about syntactic types.
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For a quick example, consider the sentence “John loves Mary.” Let “John”
and “Mary” be of type N (noun), and “loves” receive the type (N \ S) / N of
the transitive verb: it takes a noun from the left and a noun from the right,
yielding a sentence, S. This sentence is judged as a grammatical one, because
N, (N \ S) / N, N → S is a theorem in the Lambek calculus.

The Lambek calculus is capable of handling more complicated situations,
including dependent clauses: “the girl whom John loves”, parsed as N using the
following types: N / CN,CN, (CN \ CN) /(S / N), N, (N \ S) / N → N (here
CN stands for “common noun,” a noun without an article), and coordination:
“John loves Mary and Pete loves Kate,” where “and” is (S \ S) / S.

There are, however, even more sophisticated cases for which the pure Lambek
calculus is known to be insufficient (see, for example, [28,30]). On the one hand,
for a noun phrase like “the girl whom John met yesterday” it is problematic to
find a correct type for “whom,” since the dependent clause “John met yesterday”
expects the lacking noun (“John met ... yesterday”; the “...” place is called gap) in
the middle, and it is neither of type S / N nor of type N \ S. This phenomenon
is called medial extraction. On the other hand, the grammar sketched above
generates, for example, *“the girl whom John loves Mary and Pete loves.” The
asterisk indicates ungrammaticality—but, nevertheless, “John loves Mary and
Pete loves” is of type S / N . To avoid this, one needs to block extraction from
certain syntactic structures (e.g., compound sentences), called islands [30,38].

These issues can be addressed by extending the Lambek calculus with extra
connectives (that allow us to derive more theorems) and also with a more sophis-
ticated syntactic structure (that allows blocking unwanted derivations). In the
next section, we follow Morrill and Valent́ın [30,33] and define an extension of
the Lambek calculus with a subexponential modality (allowing medial and also
so-called parasitic extraction) and brackets (for creating islands).

2 Logical Introduction

In order to block ungrammatical extractions, such as discussed above,
Morrill [29] and Moortgat [27] introduce an extension of the Lambek calcu-
lus with brackets that create islands. For the second issue, medial extraction,
Morrill and Valent́ın [4,33] suggest using a modality which they call “exponen-
tial,” in the spirit of Girard’s exponential in linear logic [15]. We use the term
“subexponential,” which is due to Nigam and Miller [34], since this modality
allows only some of the structural rules (permutation and contraction, but not
weakening). The difference from [34], however, is in the non-commutativity of
the whole system and the non-standard nature of the contraction rule.

We consider !bL1, the Lambek calculus with the unit constant [24], brack-
ets, and a subexponential controlled by rules from [33]. The calculus !bL1 is a
conservative fragment of the Db!b system by Morrill and Valent́ın [33].

Due to brackets, the syntax of !bL1 is more involved than the syntax of a
standard sequent calculus. Derivable objects are sequents of the form Π → A.
The antecedent Π is a structure called meta-formula (or configuration). Meta-
formulae are built from formulae (types) using two metasyntactic operators:



328 M. Kanovich et al.

comma and brackets. The succedent A is a formula. Formulae are built from
variables p1, p2, . . . and the unit constant 1 using Lambek’s binary connectives:
\, /, and ·, and three unary connectives, 〈〉, []−1, and !. The first two of them
operate brackets; the last one is the subexponential for medial extraction.

Meta-formulae are denoted by capital Greek letters; Δ(Γ ) stands for Δ with
a designated occurrence of a meta-formula (in particular, formula) Γ . Meta-
formulae are allowed to be empty; the empty meta-formula is denoted by Λ.

The axioms of !bL1 are A → A and Λ → 1, and the rules are as follows:

Γ → B Δ(C) → D

Δ(C / B, Γ ) → D
(/ →)

Γ,B → C

Γ → C / B
(→ /)

Δ(A,B) → D

Δ(A · B) → D
(· →)

Γ → A Δ(C) → D

Δ(Γ,A \ C) → D
(\ →)

A,Γ → C

Γ → A \ C
(→ \) Γ1 → A Γ2 → B

Γ1, Γ2 → A · B
(→ ·)

Δ(Λ) → A

Δ(1) → A
(1 →)

Δ([A]) → C

Δ(〈〉A) → C
(〈〉 →) Π → A

[Π] → 〈〉A (→ 〈〉)

Γ (A) → B

Γ (!A) → B
(! →)

Δ(A) → C

Δ([[]−1A]) → C
([]−1→)

[Π] → A

Π → []−1A
(→ []−1)

!A1, . . . , !An → A

!A1, . . . , !An → !A
(→ !)

Δ(!A1, . . . , !An, [!A1, . . . , !An, Γ ]) → B

Δ(!A1, . . . , !An, Γ ) → B
(contrb)

Δ(!A,Γ ) → B

Δ(Γ, !A) → B
(perm1)

Δ(Γ, !A) → B

Δ(!A,Γ ) → B
(perm2)

Π → A Δ(A) → C

Δ(Π) → C
(cut)

The analysis of syntactic phenomena using !bL1 below follows Morrill [32].
Permutation rules (perm1,2) for ! allow medial extraction. The relative pro-

noun “whom” now receives the type (CN \ CN) /(S / !N), and the noun phrase
“the girl whom John met yesterday” now becomes derivable (the type for “yes-
terday” is (N \ S) \(N \ S), modifier of verb phrase):

N → N

N \ S → N \ S

N → N S → S

N,N \ S → S

N,N \ S, (N \ S) \(N \ S) → S

N, (N \ S) /N,N, (N \ S) \(N \ S) → S

N, (N \ S) /N, !N, (N \ S) \(N \ S) → S

N, (N \ S) /N, (N \ S) \(N \ S), !N → S

N, (N \ S) /N, (N \ S) \(N \ S) → S/ !N

CN → CN CN → CN

CN,CN \ CN → CN N → N

N /CN,CN,CN \ CN → N

N/CN,CN, (CN \ CN) /(S/ !N), N, (N \ S) /N, (N \ S) \(N \ S) → N

The permutation rule puts !N to the correct place (“John met ... yesterday”).
For brackets, consider the following ungrammatical example: *“the book

which John laughed without reading.” In the original Lambek calculus, it would
be generated by the following derivable sequent:

N / CN, CN, (CN \ CN) /(S / N), N, N \ S, ((N \ S) \(N \ S)) /(N \ S), (N \ S) / N → N.
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In the grammar with brackets, however, “without” receives the syntactic type
[]−1((N \ S) \(N \ S)) /(N \ S), making the without-clause an island that cannot
be penetrated by extraction. Thus, the following sequent is not derivable

N / CN, CN, (CN \ CN) /(S / N), N, N \ S, [[]−1((N \ S) \(N \ S)) /(N \ S), (N \ S) / N ] → N,

and the ungrammatical example gets ruled out.
Finally, the non-standard contraction rule, (contrb), that governs both ! and

brackets, was designed for handling a more rare phenomenon called parasitic
extraction. It appears in examples like “the paper that John signed without
reading.” Compare with the ungrammatical example considered before: now in
the dependent clause there are two gaps, and one of them is inside an island
(“John signed ... [without reading ...]”); both gaps are filled with the same !N :

N → N

N → N

N \ S → N \ S

N \ S → N \ S N,N \ S → S

N,N \ S, (N \ S) \(N \ S) → S

N,N \ S, [[]−1((N \ S) \(N \ S))] → S

N,N \ S, [[]−1((N \ S) \(N \ S)) /(N \ S), N \ S] → S

N,N \ S, [[]−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N,N] → S

N, (N \ S) /N,N, [[]−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N,N] → S

N, (N \ S) /N, !N, [[]−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N,N] → S

N, (N \ S) /N, !N, [[]−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N, !N] → S

N, (N \ S) /N, !N, [!N, []−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N] → S

N, (N \ S) /N, !N, []−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N → S

N, (N \ S) /N, []−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N, !N → S

N, (N \ S) /N, []−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N → S/ !N N /CN,CN,CN \ CN → N

N/CN,CN, (CN \ CN) /(S/ !N), N, (N \ S) /N, []−1((N \ S) \(N \ S)) /(N \ S), (N \ S) /N → N

This construction allows potentially infinite recursion, nesting islands with
parasitic extraction. On the other hand, ungrammatical examples, like *“the
book that John gave to” with two gaps outside islands (“John gave ... to ...”)
are not derived with (contrb), but can be derived using the contraction rule in
the standard, not bracket-aware form: Δ(!A,!A)→C

Δ(!A)→C (contr).
The system with (contr) instead of (contrb) is a conservative extension of

its fragment without brackets. In an earlier paper [19] we show that the latter
is undecidable. For (contrb), however, in the bracket-free fragment there are
only permutation rules for !, and this fragment is decidable (in fact, it belongs
to NP). Therefore, in contrast to [19], the undecidability proof in this paper
(Sect. 5) crucially depends on brackets. On the other hand, in [19] we’ve also
proved decidability of a fragment of a calculus with !, but without brackets.
In the calculus considered in this paper, !bL1, brackets control the number of
(contrb) applications, whence we are now able to show membership in NP for a
different, broad fragment of !bL1 (Sect. 6), which includes brackets.

It can be easily seen that the calculus with bracket modalities but without
! also belongs to the NP class. Moreover, as shown in [21], there exists even a
polynomial algorithm for deriving formulae of bounded order (connective alter-
nation and bracket nesting depth) in the calculus with brackets but without !.
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This algorithm uses proof nets, following the ideas of Pentus [36]. As opposed
to [21], as we show here, in the presence of ! the derivability problem is undecid-
able.

In short, [19] is about the calculus with !, but without brackets; [21] is about
the calculus with brackets, but without !. This paper is about the calculus with
both ! and brackets, interacting with each other, governed by (contrb).

The rest of this paper is organised as follows. In Sect. 3 we state cut elimina-
tion for !bL1 and sketch the proof strategy. In Sect. 4 we define two intermediate
calculi used in our undecidability proof. In Sect. 5 we prove the main result—the
fact that !bL1 is undecidable. This solves an open question posed by Morrill
and Valent́ın [33] (the other open question from [33], undecidability for the case
without brackets, is solved in our previous paper [19]). In Sect. 6 we consider
a practically interesting fragment of !bL1 for which Morrill and Valent́ın [33]
give an exponential time algorithm, and strengthen their result by proving an
NP upper bound for the derivability problem in this fragment. Section 7 is for
conclusion and future research.

3 Cut Elimination in !bL
1

Cut elimination is a natural property that one expects a decent logical system
to have. For example, cut elimination entails the subformula property: each for-
mula that appears somewhere in the cut-free derivation is a subformula of the
goal sequent. (Note that for meta-formulae this doesn’t hold, since brackets get
removed by applications of some rules, namely, (〈〉 →), (→ []−1), and (contrb).)

Theorem 1 is claimed in [33], but without a detailed proof. In this section
we give a sketch of the proof strategy; the complete proof can be found in the
extended version of this paper on arXiv [20].

For the original Lambek calculus cut elimination was shown by Lambek [23]
and goes straightforwardly by induction; Moortgat [27] extended Lambek’s proof
to the Lambek calculus with brackets (but without !). It is well-known, however,
that in the presence of a contraction rule direct induction doesn’t work. There-
fore, one needs to use more sophisticated cut elimination strategies.

The standard strategy, going back to Gentzen’s Hauptsatz [14], replaces the
cut (Schnitt) rule with a more general rule called mix (Mischung). Mix is a com-
bination of cut and contraction, and this more general rule can be eliminated by
straightforward induction. For linear logic with the exponential obeying stan-
dard rules, cut elimination is due to Girard [15]; a detailed exposition of the cut
elimination procedure using mix is presented in [25, Appendix A].

For !bL1, however, due to the subtle nature of the contraction rule, (contrb),
formulating the mix rule is problematic. That’s why we follow another strategy,
“deep cut elimination” by Braüner and de Paiva [5,6]; similar ideas are also used
in [7,13]. As usual, we eliminate one cut, and then proceed by induction.

Lemma 1. Let Δ(Π) → C be derived from Π → A and Δ(A) → C using the
cut rule, and Π → A and Δ(A) → C have cut-free derivations Dleft and Dright.
Then Δ(Π) → C also has a cut-free derivation.
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We proceed by nested induction on two parameters: (1) the complexity κ of
the formula A being cut; (2) the total number σ of rule applications in Dleft and
Dright. Induction goes in the same way as for systems without contraction (see
Lambek’s original paper [23]) for all cases, except (→ !) vs. (contrb):

!Π → A
!Π → !A

(→ !)
Δ(!Φ1, !A, !Φ2, [!Φ1, !A, !Φ2, Γ ]) → C

Δ(!Φ1, !A, !Φ2, Γ ) → C
(contrb)

Δ(!Φ1, !Π, !Φ2, Γ ) → C
(cut)

(Here !Φ stands for !F1, . . . , !Fm, if Φ = F1, . . . , Fm.) The näıve attempt,

!Π → !A

!Π → !A Δ(!Φ1, !A, !Φ2, [!Φ1, !A, !Φ2, Γ ]) → C

Δ(!Φ1, !A, !Φ2, [!Φ1, !A, !Φ2, Γ ]) → C
(cut)

Δ(!Φ1, !Π, !Φ2, [!Φ1, !Π, !Φ2, Γ ]) → C
(cut)

Δ(!Φ1, !Π, !Φ2, Γ ) → C
(contrb)

fails, since for the lower (cut) the κ parameter is the same, and σ is unbound.
Instead of that, we go inside Dright and trace the active !A occurrences up to the
applications of (! →) which introduced them. We replace these applications with
applications of (cut), and replace !A with !Π down the traces, as shown below:

Dright

Δ1(A) → C1

Δ1(!A) → C1
(! →)

Δ2(A) → C2

Δ2(!A) → C2
(! →)

Δ3(A) → C3

Δ3(!A) → C3
(! →)

!Π → A
!Π → !A (→ !) Δ(!A) → C

Δ(!Π) → C
(cut)

(contrb)

(contrb)

(contrb)

...

Dleft �

!Π → A Δ1(A) → C1

Δ1(!Π) → C1
(cut)

!Π → A Δ′
2(A) → C2

Δ′
2(!Π) → C2

(cut)

!Π → A Δ3(A) → C3

Δ3(!Π) → C3
(cut)

Δ(!Π) → C

(contrb)

(contrb)

(contrb)

...

Dleft

Dleft

Dleft

The new (cut) instances have a smaller κ parameter (A is simpler than !A)
and can be eliminated by induction.

Lemma 1 immediately yields cut elimination for !bL1:

Theorem 1. Every sequent derivable in !bL1 has a derivation without (cut).

4 Calculi Without Brackets: !L1, !wL
1, L1

In this section we consider more traditional versions of the Lambek calculus
with ! that don’t include bracket modalities. This is needed as a technical step
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in our undecidability proof (Sect. 5). Types (formulae) of these calculi are built
from variables using Lambek’s connectives, \, /, and ·, and the subexponential,
!. Unlike in !bL1, meta-formulae now are merely linearly ordered sequences of
formulae (possibly empty), and we can write Δ1,Π,Δ2 instead of Δ(Π).

First we define the calculus !L1. It includes the standard axioms and rules
for Lambek connectives and the unit constant—see the rules of !bL1 in Sect. 2.
For the subexponential modality, !, introduction rules, (! →) and (→ !), and
permutation rules are also the same as in !bL1, with the natural modification
due to a simpler antecedent syntax. The contraction rule, however, is significantly
different, since now it is not controlled by brackets:

Δ1, !A, !A,Δ2 → B

Δ1, !A,Δ2 → B
(contr)

(A complete list of axioms and rules of !L1 can be found in the extended
version of this paper on arXiv [20].)

This calculus !L1 is a conservative fragment of Db!, also by Morrill and
Valent́ın [33]. This system could also be used for modelling medial and parasitic
extraction, but is not as fine-grained as the bracketed system, being able to derive
ungrammatical examples like *“the paper that John sent to” (see Sect. 2).

In order to construct a mapping of !bL1 into !L1, we define the bracket-
forgetting projection (BFP) of formulae and meta-formulae that removes all
brackets and bracket modalities ([]−1 and 〈〉). The BFP of a formula is again a
formula, but in the language without []−1 and 〈〉; the BFP of a meta-formula is a
sequence of formulae. The following lemma is proved by induction on derivation.

Lemma 2. If !bL1 � Δ → C, then !L1 � bfp(Δ) → bfp(C).

Note that the opposite implication doesn’t hold, i.e., this mapping is not con-
servative. Also, !L1 is not a conservative fragment of !bL1: in the fragment of
!bL1 without brackets contraction is not admissible.

The second calculus is !wL1, obtained from !L1 by adding weakening for !:

Δ1,Δ2 → C

Δ1, !A,Δ2 → C
(weak)

In !wL1, the ! connective is equipped with a full set of structural rules (permu-
tation, contraction, and weakening), i.e., it is the exponential of linear logic [15].

The cut rule in !L1 and !wL1 can be eliminated by the same “deep” strategy
as for !bL1. On the other hand, since the contraction rule in these calculi is
standard, one can also use the traditional way with mix, like in [25, Appendix A].

Finally, if we remove ! with all its rules, we get the Lambek calculus with the
unit constant [24]. We denote it by L1.

5 Undecidability of !bL
1

Theorem 2. The derivability problem for !bL1 is undecidable.



Undecidability of the Lambek Calculus 333

As a by-product of our proof we also obtain undecidability of !L1, which was
proved in [19] by a different method. We also obtain undecidability of !wL1,
which also follows from the results of [25], as shown in [16,17].

We prove Theorem 2 by encoding derivations in generative grammars, or
semi-Thue [40] systems. A generative grammar is a quadruple G = 〈N,Σ,P, s〉,
where N and Σ are disjoint alphabets, s ∈ N is the starting symbol, and P is
a finite set of productions of the form α ⇒ β, where α and β are words over
N ∪ Σ. The production can be applied as follows: η α θ ⇒G η β θ for arbitrary
(possibly empty) words η and θ over N ∪Σ. The language generated by G is the
set {ω ∈ Σ∗ | s ⇒∗

G ω}, where ⇒∗
G is the reflexive-transitive closure of ⇒G.

We use the following classical result by Markov [26] and Post [37].

Theorem 3. There exists a generative grammar G that generates an algorith-
mically undecidable language [26,37].

In our presentation for every production (α ⇒ β) ∈ P we require α and β to
be non-empty. This class still includes an undecidable language (cf. [10]).

Further we use two trivial lemmas about derivations in a generative grammar:

Lemma 3. If α1 ⇒∗
G β1 and α2 ⇒∗

G β2, then α1α2 ⇒∗
G β1β2.

Lemma 4. If α ⇒∗
G β and γ ⇒∗

G ηαθ, then γ ⇒∗
G ηβθ.

The second ingredient of our undecidability proof is the concept of theories
over L1. Let T be a finite set of sequents in the language of L1. Then L1 + T is
the calculus obtained from L1 by adding sequents from T as extra axioms.

In general, the cut rule in L1+T is not eliminable. However, the standard cut
elimination procedure (see [23]) yields the following cut normalization lemma:

Lemma 5. If a sequent is derivable in L1+T , then this sequent has a derivation
in which every application of (cut) has a sequent from T as one of its premises.

This lemma yields a weak version of the subformula (subconnective) property:

Lemma 6. If L1+T � Π → A, and both Π → A and T include no occurrences
of \, /, and 1, then there is a derivation of Π → A in L1 + T that includes no
occurrences of \, /, and 1.

The third core element of the construction is the (inst) rule which allows to
position a specific formula A into an arbitrary place in the sequent.

Lemma 7. The rule
Δ1, ! []−1A,Δ2, A,Δ3 → C

Δ1, ! []−1A,Δ2,Δ3 → C
(inst) is admissible in !bL1.

Proof. By consequent application of ([]−1 →), (! →), (perm), (contrb), (perm).

Now we are ready to prove Theorem2. Let G = 〈N,Σ,P, s〉 be the grammar
provided by Theorem3, and the set of variables include N ∪ Σ. We convert
productions of G into Lambek formulae in the following natural way:
BG = {(u1 · . . . · uk) /(v1 · . . . · vm) | (u1 . . . uk ⇒ v1 . . . vm) ∈ P}.
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For BG = {B1, . . . , Bn}, we define the following sequences of formulae:

ΓG = !B1, . . . , !Bn, ΦG = !(1 /(!B1)), . . . , !(1 /(!Bn)),
˜ΓG = ! []−1B1, . . . , ! []−1Bn, ˜ΦG = !(1 /(! []−1B1)), . . . , !(1 /(! []−1Bn)).

(Since in all calculi we have permutation rules for formulae under !, the ordering
of BG doesn’t matter.) We also define a theory TG associated with G, as follows:
TG = {v1, . . . , vm → u1 · . . . · uk | (u1 . . . uk ⇒ v1 . . . vm) ∈ P}.

Lemma 8. The following are equivalent:

1. s ⇒∗
G a1 . . . an (i.e., a1 . . . an belongs to the language defined by G);

2. !bL1 � ˜ΦG, ˜ΓG, a1, . . . , an → s;
3. !L1 � ΦG, ΓG, a1, . . . , an → s;
4. !wL1 � ΓG, a1, . . . , an → s;
5. L1 + TG � a1, . . . , an → s.

Proof. 1 ⇒ 2 Proceed by induction on ⇒∗
G. The base case is handled as follows:

! []−1B1 → ! []−1B1 . . . ! []−1Bn → ! []−1Bn

s → s
1, . . . ,1, s → s

(1 →)∗

1 / ! []−1B1, ! []
−1B1, . . . ,1 / ! []−1Bn, ! []−1Bn, s → s

(/ →)∗

!(1 / ! []−1B1), ! []
−1B1, . . . , !(1 / ! []−1Bn), ! []

−1Bn, s → s
(! →)∗

˜ΦG, ˜ΓG, s → s
(perm)∗

For induction, let the last step be s ⇒∗
G η u1 . . . uk θ ⇒G η v1 . . . vm θ. Then,

since ! []−1((u1 · . . . · uk) /(v1 · . . . · vm)) is in ˜ΓG, we have

v1 → v1 . . . vm → vm

v1, . . . , vm → v1 · . . . · vm
(→ ·)∗

˜ΦG, ˜ΓG, η, u1, . . . , uk, θ → s

˜ΦG, ˜ΓG, η, u1 · . . . · uk, θ → s
(· →)∗

˜ΦG, ˜ΓG, η, (u1 · . . . · uk) /(v1 · . . . · vm), v1, . . . , vm, θ → s
(/ →)

˜ΦG, ˜ΓG, η, v1, . . . , vm, θ → s
(inst)

Here ˜ΦG, ˜ΓG, η, u1, . . . , uk, θ → s is derivable in !bL1 by induction hypothesis,
and the (inst) rule is admissible due to Lemma7.

2 ⇒ 3 Immediate by Lemma 2, since ΦG = bfp(˜ΦG) and ΓG = bfp( ˜ΓG).
3 ⇒ 4 For each formula !(1 / !Bi) from ΦG the sequent Λ → !(1 / !Bi) is

derivable in !wL1 by consequent application of (weak), (→ /), and (→ !) to the
Λ → 1 axiom. The sequent ΦG, ΓG, a1, . . . , an → s is derivable in !L1 and there-
fore in !wL1, and applying (cut) for each formula of ΦG yields ΓG, a1, . . . , an → s.

4 ⇒ 5 In this part of our proof we follow [17,25]. Consider the derivation of
ΓG, a1, . . . , an → s in !wL1 (recall that by default all derivations are cut-free) and
remove all the formulae of the form !B from all sequents in this derivation. After
this transformation the rules not operating with ! remain valid. Applications of
(permi), (weak), and (contr) do not alter the sequent. The (→ !) rule is never
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applied in the original derivation, since our sequents never have formulae of the
form !B in their succedents. Finally, an application of (! →), hiding (u1 · . . . ·
uk) /(v1 · . . . · vm) under !, is simulated in L1 + TG as follows:

v1, . . . , vm → u1 · . . . · uk

v1 · . . . · vm → u1 · . . . · uk

(· →)∗

Λ → (u1 · . . . · uk) /(v1 · . . . · vm)
(→ /)

Δ1, (u1 · . . . · uk) /(v1 · . . . · vm), Δ2 → C

Δ1, Δ2 → C
(cut)

5 ⇒ 1 In this part we follow [25]. Let L1+TG � a1, . . . , an → s. By Lemma 6,
this sequent has a derivation without occurrences of \, /, and 1. In other words,
all formulae in this derivation are built from variables using only the product.
Since it is associative, we can omit parenthesis in the formulae; we shall also
omit the “·”s. The rules used in this derivation can now be written as follows:

β1 → α1 β2 → α2

β1β2 → α1α2
(→ ·) β → α ηαθ → γ

ηβθ → γ
(cut)

The (· →) rule is trivial. The axioms are productions of G with the arrows
inversed, and α → α. By induction, using Lemmas 3 and 4, we show that if β → α
is derivable using these rules and axioms, then α ⇒∗

G β. Now the derivability of
a1, . . . , an → s implies s ⇒∗

G a1 . . . an.

Lemma 8 and Theorem 3 conclude the proof of Theorem 2.

6 A Decidable Fragment

The undecidability results from the previous section are somewhat unfortunate,
since the new operations added to L1 have good linguistic motivations [30,33]. As
a compensation, in this section we show NP-decidability for a substantial frag-
ment of !bL1, introduced by Morrill and Valent́ın [33] (see Definition 1 below).
This complexity upper bound is tight, since the original Lambek calculus is
already known to be NP-complete [35]. Notice that Morrill and Valent́ın present
an exponential time algorithm for deciding derivability in this fragment; this
algorithm was implemented as part of a parser called CatLog [31].

First we recall the standard notion of polarity of occurrences of subformulae
in a formula. Every formula occurs positively in itself; subformula polarities
get inverted (positive becomes negative and vice versa) when descending into
denominators of \ and / and also for the left-hand side of the sequent; brackets
and unary operations do not change polarity. All inference rules of !bL1 respect
polarity: a positive (resp., negative) occurrence of a subformula in the premise(s)
of the rule translates into a positive (resp., negative) occurrence in the goal.

Definition 1. An !bL1-sequent Γ → B obeys the bracket non-negative condi-
tion, if any negative occurrence of a subformula of the form !A in Γ → B includes
neither a positive occurrence of a subformula of the form []−1C, nor a negative
occurrence of a subformula of the form 〈〉C.
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Note that sequents used in our undecidability proof are exactly the minimal
violations of this bracket non-negative condition.

Theorem 4. The derivability problem in !bL1 for sequents that obey the bracket
non-negative condition belongs to the NP class.

In !bL1, redundant applications of permutation rules could make the proof
arbitrarily large without increasing its “real” complexity. In order to get rid of
that, we introduce a generalised form of permutation rule:

Δ0, !A1,Δ1, !A2,Δ2, . . . ,Δk−1, !Ak,Δk → C

Δ′
0, !Ai1 ,Δ

′
1, !Ai2 ,Δ

′
2, . . . ,Δ

′
ik−1

, !Aik ,Δ′
ik

→ C
(perm)∗

where the sequence Δ′
0, . . . ,Δ

′
k coincides with Δ0, . . . ,Δk, and {i1, . . . , ik} =

{1, . . . , k}. Obviously, (perm)∗ is admissible in !bL1, and it subsumes (perm1,2),
so further we consider a formulation of !bL1 with (perm)∗ instead of (perm1,2).
Several consecutive applications of (perm)∗ can be merged into one. We call a
derivation normal, if it doesn’t contain consecutive applications of (perm)∗. If a
sequent is derivable in !bL1, then it has a normal cut-free derivation.

Lemma 9. Every normal cut-free derivation of a sequent that obeys the bracket
non-negative restriction is of quadratic size (number of rule applications) w.r.t.
the size of the goal sequent.

Proof. Let us call (contrb) and (perm)∗ structural rules, and all others logical.
First, we track all pairs of brackets that occur in this derivation. Pairs of

brackets are in one-to-one correspondence with applications of ([]−1 →) or (→ 〈〉)
rules that introduce them. Then a pair of brackets either traces down to the goal
sequent, or gets destroyed by an application of (〈〉 →), (→ []−1), or (contrb).
Therefore, the number of (contrb) applications is less or equal to the number of
([]−1 →) and (→ 〈〉) applications. Each ([]−1 →) application introduces a nega-
tive occurrence of a []−1C formula; each (→ 〈〉) occurrence introduces a positive
occurrence of a 〈〉C formula. Due to the bracket non-negative condition these
formulae could not occur in a !A to which (contrb) is applied, and therefore they
trace down to distinct subformula occurrences in the goal sequent. Hence, the
total number of (contrb) applications is bounded by the number of subformulae
of a special kind in the goal sequent, and thus by the size of the sequent.

Second, we bound the number of logical rules applications. Each logical rule
introduces exactly one connective occurrence. Such an occurrence traces down
either to a connective occurrence in the goal sequent, or to an application of
(contrb) that merges this occurrence with the corresponding occurrence in the
other !A. If n is the size of the goal sequent, then the first kind of occurrences
is bounded by n; for the second kind, each application of (contrb) merges not
more than n occurrences (since the size of the formula being contracted, !A, is
bounded by n due to the subformula property), and the total number of (contrb)
applications is also bounded by n. Thus, we get a quadratic bound for the number
of logical rule applications.
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Third, the derivation is a tree with binary branching, so the number of leafs
(axioms instances) in this tree is equal to the number of branching points plus
one. Each branching point is an application of a logical rule (namely, (\ →),
(/ →), or (→ ·)). Hence, the number of axiom instances is bounded quadratically.

Finally, the number of (perm)∗ applications is also quadratically bounded,
since each application of (perm)∗ in a normal proof is preceded by an application
of another rule or by an axiom instance.

Proof (of Theorem4). The normal derivation of a sequent obeying the bracket
non-negative condition is an NP-witness for derivability: it is of polynomial size,
and correctness is checked in linear time (w.r.t. the size of the derivation).

For the case without brackets, !L1, considered in our earlier paper [19], the
NP-decidable fragment is substantially smaller. Namely, it includes only sequents
in which ! can be applied only to variables. Indeed, as soon as we allow formulae
of implication nesting depth at least 2 under !, the derivablity problem for !L1

becomes undecidable [19]. In contrast to !L1, in !bL1, due to the non-standard
contraction rule, brackets control the number of (contrb) applications in the
proof, and this allows to construct an effective decision algorithm for derivability
of a broad class of sequents, where, for example, any formulae without bracket
modalities can be used under !. Essentially, the only problematic situation, that
gives rise to undecidability (Theorem2), is the construction where one forcedly
removes the brackets that appear in the (contrb) rule, i.e., uses constructions
like ![]−1B (as in our undecidability proof). The idea of the bracket non-negative
condition is to rule out such situations while keeping all other constructions
allowed, as they don’t violate decidability [33].

7 Conclusions and Future Work

In this paper we study an extension of the Lambek calculus with subexponential
and bracket modalities. Bracket modalities were introduced by Morrill [29] and
Moortgat [27] in order to represent the linguistic phenomenon of islands [38].
The interaction of subexponential and bracket modalities was recently studied
by Morrill and Valent́ın [33] in order to represent correctly the phenomenon of
medial and parasitic extraction [4,38]. We prove that the calculus of Morrill
and Valent́ın is undecidable, thus solving a problem left open in [33]. Morrill
and Valent́ın also considered the so-called bracket non-negative fragment of this
calculus, for which they presented an exponential time derivability decision pro-
cedure. We improve their result by showing that this problem is in NP.

For undecidability, we encode semi-Thue systems by means of sequents that
lie just outside the bracket non-negative fragment. More precisely, the formulae
used in our encoding are of the form ! []−1A, where A is a pure Lambek formula of
order 2. It remains for further studies whether these formulae could be simplified.

Our undecidability proof could be potentially made stronger by restricting
the language. Now we use three Lambek’s connectives: /, ·, and 1, plus []−1 and
!. One could get rid of 1 using the substitution from [22]. Further, one might also
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encode a more clever construction by Buszkowski [8] in order to restrict ourselves
to the product-free one-division fragment. Finally, one could adopt substitutions
from [18] and obtain undecidability for the language with only one variable.

There are also several other linguistically motivated extensions of the Lambek
calculus (see, for instance, [28,30,32]) and their algorithmic and logical proper-
ties should be investigated.
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Abstract. We consider decision problems for relations over finite and
infinite words defined by finite automata. We prove that the equivalence
problem for binary deterministic rational relations over infinite words is
undecidable in contrast to the case of finite words, where the problem
is decidable. Furthermore, we show that it is decidable in doubly expo-
nential time for an automatic relation over infinite words whether it is
a recognizable relation. We also revisit this problem in the context of
finite words and improve the complexity of the decision procedure to
single exponential time. The procedure is based on a polynomial time
regularity test for deterministic visibly pushdown automata, which is a
result of independent interest.

Keywords: Rational relations · Automatic relations · ω-automata ·
Finite transducers · Visibly pushdown automata

1 Introduction

We consider in this paper algorithmic problems for relations over words that
are defined by finite automata. Relations over words extend the classical notion
of formal languages. However, there are different ways of extending the concept
of regular language and finite automaton to the setting of relations. Instead of
processing a single input word, an automaton for relations has to read a tuple
of input words. The existing finite automaton models differ in the way how the
components can interact while being read. In the following, we briefly sketch
the four main classes of automaton definable relations, and then describe our
contributions.

A (nondeterministic) finite transducer (see, e.g., [4,25]) has a standard finite
state control and at each time of a computation, a transition can consume the
next input symbol from any of the components without restriction (equivalently,
one can label the transitions of a transducer with tuples of finite words). The
class of relations that are definable by finite transducers, referred to as the
class of rational relations, is not closed under intersection and complement, and
many algorithmic problems, like universality, equivalence, intersection emptiness,
c© Springer-Verlag GmbH Germany 2017
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are undecidable [24]. A deterministic version of finite transducers defines the
class of deterministic rational relations (see [25]) with slightly better properties
compared to the nondeterministic version, in particular the equivalence problem
is decidable [5,18].

Another important subclass of rational relations are the synchronized ratio-
nal relations [17] which are defined by automata that synchronously read all
components in parallel (using a padding symbol for words of different length).
These relations are often referred to as automatic relations, a terminology that
we also adopt, and basically have all the good properties of regular languages
because synchronous transducers can be viewed as standard finite automata
over a product alphabet. These properties lead to applications of automatic
relations in algorithmic model theory as a finite way of representing infi-
nite structures with decidable logical theories (so called automatic structures)
[6,19], and in regular model checking, a verification technique for infinite state
systems (cf. [1]).

Finally, there is the model of recognizable relations, which can be defined
by a tuple of automata, one for each component of the relation, that indepen-
dently read their components and only synchronize on their terminal states, i.e.,
the tuple of states at the end determines whether the input tuple is accepted.
Equivalently, one can define recognizable relations as finite unions of products
of regular languages. Recognizable relations play a role, for example, in [11]
where relations over words are used for identifying equivalent plays in incom-
plete information games. The task is to compute a winning strategy that does
not distinguish between equivalent plays. While this problem is undecidable for
automatic relations, it is possible to synthesize strategies for recognizable equiv-
alence relations. In view of such results, it is an interesting question whether one
can decide for a given relation whether it is recognizable.

All these four concepts of automaton definable relations can directly be
adapted to infinite words using the notion of ω-automata (see [29] for back-
ground on ω-automata), leading to the classes of (deterministic) ω-rational,
ω-automatic, and ω-recognizable relations. Applications like automatic struc-
tures and regular model checking have been adapted to relations over infinite
words [6,9], for example for modeling systems with continuous parameters rep-
resented by real numbers (which can be encoded as infinite words [8]).

Our contributions are the following, where some background on the individual
results is given below. We note that (4) is not a result on relations over words.
It is used in the proof of (3) but we state it explicitly because we believe that it
is an interesting result on its own.

(1) We show that the equivalence problem for binary deterministic ω-rational
relations is undecidable, already for the Büchi acceptance condition (which
is weaker than parity or Muller acceptance conditions in the case of deter-
ministic automata).

(2) We show that it is decidable in doubly exponential time for an ω-automatic
relation whether it is ω-recognizable.
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(3) We reconsider the complexity of deciding for a binary automatic relation
whether it is recognizable, and prove that it can be done in exponential
time.

(4) We prove that the regularity problem for deterministic visibly pushdown
automata [2] is decidable in polynomial time.

The algorithmic theory of deterministic ω-rational relations has not yet
been studied in detail. We think, however, that this class is worth studying in
order to understand whether it can be used in applications that are studied for
ω-automatic relations. One such scenario could be the synthesis of finite state
machines from (binary) ω-automatic relations. In this setting, an ω-automatic
relation is viewed as a specification that relates input streams to possible out-
put streams. The task is to automatically synthesize a synchronous sequential
transducer (producing one output letter for each input letter) that outputs a
string for each possible input such that the resulting pair is in the relation (see,
e.g., [31] for an overview of this kind of automata theoretic synthesis). It has
recently been shown that this synchronous synthesis problem can be lifted to
the case of asynchronous automata if the relation is deterministic rational [16].
This shows that the class of deterministic rational relations has some interest-
ing properties, and motivates our study of the corresponding class over infinite
words. Our contribution (1) contrasts the decidability of equivalence for deter-
ministic rational relations over finite words [5,18] and thus exhibits a difference
between deterministic rational relations over finite and over infinite words. We
prove the undecidability by a reduction from the intersection emptiness problem
for deterministic rational relations over finite words. The reduction is inspired
by a recent construction for proving the undecidability of equivalence for deter-
ministic Büchi one-counter automata [7].

Contributions (2) and (3) are about the effectiveness of the hierarchies formed
by the four classes of (ω-)rational, deterministic (ω-)rational, (ω-)automatic, and
(ω-)recognizable relations. A systematic overview and study on the effectiveness
of this hierarchy for finite words is provided in [14]: For a given rational relation
it is undecidable whether it belongs to one of the other classes, for deterministic
rational and automatic relations it is decidable whether they are recognizable,
and the problem of deciding for a deterministic rational relation whether it is
automatic is open.

The question of the effectiveness of the hierarchy for relations over infinite
words has already been posed in [30] (where the ω-automatic relations are called
Büchi recognizable ω-relations). The undecidability results easily carry over from
finite to infinite words. Our result (2) lifts one of the two known decidability
results for finite words to infinite words. The algorithm is based on a reduction
to a problem over finite words: Using a representation of ω-languages by finite
encodings of ultimately periodic words as in [13], we are able to reformulate
the recognizability of an ω-automatic relation in terms of slenderness of a finite
number of languages of finite words. A language of finite words is called slender
[22] if there is a bound k such that the language contains for each length at
most k words of this length. While slenderness for regular languages is easily
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seen to be decidable, the complexity of the problem has to the best of our
knowledge not been analyzed. We prove that slenderness of a language defined
by a nondeterministic finite automaton can be decided in NL.

As mentioned above, the decidability of recognizability of an automatic rela-
tion is known from [14]. However, the exponential time complexity claimed in
that paper does not follow from the proof presented there. So we revisit the prob-
lem and prove the exponential time upper bound for binary relations based on
the connection between binary rational relations and pushdown automata: For
a relation R over finite words, consider the language LR consisting of the words
rev(u)#v for all (u, v) ∈ R, where rev(u) denotes the reverse of u. It turns out
that LR is linear context-free iff R is rational, LR is deterministic context-free
iff R is deterministic rational, and LR is regular iff R is recognizable [14]. Since
LR is regular iff R is recognizable, the recognizability test for binary determin-
istic rational relations reduces to the regularity test for deterministic pushdown
automata, which is known to be decidable [27], in doubly exponential time [32].1

We adapt this technique to automatic relations R and show that LR can in
this case be defined by a visibly pushdown automaton (VPA) [2], in which the
stack operation (pop, push, skip) is determined by the input symbol, and no
ε-transitions are allowed. The deterministic VPA for LR is exponential in the
size of the automaton for R, and we prove that the regularity test can be done
in polynomial time, our contribution (4). We note that the polynomial time reg-
ularity test for visibly pushdown processes as presented in [26] does not imply
our result. The model in [26] cannot use transitions that cause a pop operation
when the stack is empty. For our translation from automatic relations to VPAs
we need these kind of pop operations, which makes the model different and the
decision procedure more involved (and a reduction to the model of [26] by using
new internal symbols to simulate pop operations on the empty stack will not
preserve regularity of the language, in general).

The paper is structured as follows. In Sect. 2 we give the definitions of
transducers, relations, and visibly pushdown automata. In Sect. 3 we prove the
undecidability of the equivalence problem for deterministic ω-rational relations.
Section 4 contains the decision procedure for recognizability of ω-automatic rela-
tions, and Sect. 5 presents the polynomial time regularity test for deterministic
VPAs and its use for the recognizability test of automatic relations. Finally, we
conclude in Sect. 6.

2 Preliminaries

We start by briefly introducing transducers and visibly pushdown automata as
we need them for our results. For more details we refer to [17,25,29] and [2,3],
respectively.

A transducer A is a tuple (Q,Σ1, . . . , Σk, q0,Δ, F ) where Q is the state set,
Σi, 1 ≤ i ≤ k are (finite) alphabets, q0 ∈ Q is the initial state, F ⊆ Q denotes the
1 Recognizability is decidable for deterministic rational relations of arbitrary arity [14]

but we are not aware of a proof preserving the doubly exponential runtime.
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accepting states, and Δ ⊆ Q× (Σ1 ∪{ε})× . . .× (Σk ∪{ε})×Q is the transition
relation. A is deterministic if there is a state partition Q = Q1 ∪ . . . ∪ Qk such
that Δ can be interpreted as partial function δ :

⋃k
j=1(Qj × (Σj ∪ {ε})) → Q

with the restriction that if δ(q, ε) is defined then no δ(q, a), a �= ε is defined.
Note that the state determines which component the transducer processes. A is
complete if δ is total (up to the restriction for ε-transitions).

A run of A on a tuple u ∈ Σ∗
1 × . . .×Σ∗

k is a sequence ρ = p0 . . . pn ∈ Q∗ such
that there is a decomposition u = (a1,1, . . . , a1,k) . . . (an,1, . . . , an,k) where the
ai,j are in Σj∪{ε} and for all i ∈ {1, . . . , n} it holds that (pi−1, ai,1, . . . , ai,k, pi) ∈
Δ. The run of A on a tuple over infinite words in Σω

1 × . . . × Σω
k is an infinite

sequence p0p1 . . . ∈ Qω defined analogously to the case of finite words. A run
on u is called accepting if it ends in an accepting state and A accepts u if there
is an accepting run starting in the initial state q0. Then A defines the relation
R∗(A) ⊆ Σ∗

1 × . . . × Σ∗
k containing precisely those tuples accepted by A. To

enhance the expressive power of deterministic transducers, the relation R∗(A)
is defined as the relation of all u such that A accepts u(#, . . . ,#) for some
fresh fixed symbol # /∈ ⋃k

j=1 Σj . The relations definable by a (deterministic)
transducer are called (deterministic) rational relations. For tuples over infinite
words u ∈ Σω

1 × . . . × Σω
k we utilize the Büchi condition [12]. That is, a run

ρ ∈ Qω is accepting if a state f ∈ F occurs infinitely often in ρ. Then A accepts
u if there is an accepting run of A on u starting in q0 and Rω(A) ⊆ Σω

1 ×. . .×Σω
k

is the relation of all tuples of infinite words accepted by A. We refer to A as
Büchi transducer if we are interested in the relation of infinite words defined by
it. The class of ω-rational relations consists of all relations definable by Büchi
transducers.

It is well-known that deterministic Büchi automata are not sufficient to
capture the ω-regular languages (see [29]) which are the ω-rational relations
of arity one. Therefore, we use another kind of transducer to define deter-
ministic ω-rational relations: a deterministic parity transducer is a tuple A =
(Q,Σ1, . . . , Σk, q0, δ, Ω) where the first k+3 items are the same as for determin-
istic transducers and Ω : Q → N is the priority function. A run is accepting if
the maximal priority occurring infinitely often on the run is even (cf. [23]).

A transducer is synchronous if for each pair (p, a1, . . . , ak, q), (q, b1, . . . , bk, r)
of successive transitions it holds that aj = ε implies bj = ε for all j ∈ {1, . . . , k}.
Intuitively, a synchronous transducer is a finite automaton over the vector alpha-
bet Σ1 × . . . × Σk and, if it operates on tuples (u1, . . . , uk) of finite words, the
components uj may be of different length (i.e. if a uj has been processed com-
pletely, the transducer may use transitions reading ε in the j-th component
to process the remaining input in the other components). In fact, synchronous
transducers inherit the rich properties of finite automata – e.g., they are closed
under all boolean operations and can be determinized. In particular, synchro-
nous (nondeterministic) Büchi transducer and deterministic synchronous parity
transducer can be effectively transformed into each other [17,23,25]. Synchro-
nous (Büchi) transducers define the class of (ω-)automatic relations.
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Finally, the last class of relations we consider are (ω-)recognizable relations.
A relation R ⊆ Σ∗

1 × . . . × Σ∗
k (or R ⊆ Σω

1 × . . . × Σω
k ) is (ω-)recognizable

if it is the finite union of direct products of (ω-)regular languages—i.e. R =
⋃�

i=1 Li,1 × . . . × Li,k where the Li,j are (ω-)regular languages.
It is well-known that (ω-)recognizable, (ω-)automatic, deterministic (ω-)ra-

tional relations, and (ω-)rational relations form a strict hierarchy [25].
In Sect. 5 we use visibly pushdown automata (VPAs) [2], which operate on

typed alphabets, called pushdown alphabets below, where the type of an input
symbol determines the stack operation. Formally, a pushdown alphabet is an
alphabet Σ consisting of three disjoint parts—namely, a set Σc of call symbols
enforcing a push operation, a set Σr of return symbols enforcing a pop operation
and internal symbols Σint which do not permit any stack operation. A VPA
is a tuple P = (P,Σ, Γ, p0,⊥,Δ, F ) where P is a finite set of states, Σ =
Σc ∪̇ Σr ∪̇ Σint is a finite pushdown alphabet, Γ is the stack alphabet and
⊥ ∈ Γ is the stack bottom symbol, p0 ∈ P is the initial state, Δ ⊆ (P × Σc ×
P × (Γ \ {⊥})) ∪ (P × Σr × Γ × P ) ∪ (P × Σint × P ) is the transition relation,
and F is the set of accepting states.

A configuration of P is a pair in (p, α) ∈ P × (Γ \ {⊥})∗{⊥} where p is the
current state of P and α is the current stack content (α[0] is the top of the stack).
Note that the stack bottom symbol ⊥ occurs precisely at the bottom of the stack.
The stack whose only content is ⊥ is called the empty stack. P can proceed from a
configuration (p, α) to another configuration (q, β) via a ∈ Σ if a ∈ Σc and there
is a (p, a, q, γ) ∈ Δ∩(P ×Σc×P ×(Γ \{⊥})) such that β = γα (push operation),
a ∈ Σr and there is a (p, a, γ, q) ∈ Δ ∩ (P × Σr × Γ × P ) such that α = γβ or
γ = α = β = ⊥—that is, the empty stack may be popped arbitrarily often (pop
operation), or a ∈ Σint and there is a (p, a, q) ∈ Δ∩(P×Σint×P ) such that α = β
(noop). A run of P on a word u = a1, . . . , an ∈ Σ∗ is a sequence of configurations
(p1, α1) . . . (pn+1, αn+1) connected by transitions using the corresponding input
letter. A run is accepting if pn+1 ∈ F . Furthermore, we say that P accepts u
if (p1, α1) is the initial configuration (p0,⊥) and write L(p, α) for the set of all
words accepted from a configuration (p, α). In the case (p, α) = (p0,⊥) we just
say that P accepts u and write L(P) := L(p0,⊥) for the language defined by P.
Two configurations (p, α), (q, β) are P-equivalent if L(p, α) = L(q, β). Lastly, a
configuration (p, α) is reachable if there is a run from (p0,⊥) to (p, α).

A deterministic VPA (DVPA) P is a VPA that can proceed to at most one
configuration for each given configuration and a ∈ Σ.

Viewing the call symbols as opening and the return symbols as closing paren-
thesis, one obtains a natural notion of a return matching a call, and unmatched
call or return symbols.

3 The Equivalence Problem for Deterministic Büchi
Transducers

In this section we show that the equivalence for deterministic Büchi transduc-
ers is undecidable – in difference to its analogue for relations over finite words
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[5,18]. Our proof is derived from a recent construction for proving that the equiv-
alence problem for one-counter Büchi automata is undecidable [7]. We reduce the
intersection emptiness problem for relations over finite words to the equivalence
problem for deterministic Büchi transducers.

Proposition 1 [4,24]. The intersection emptiness problem, asking for two
binary relations given by deterministic transducers A,B whether R∗(A) ∩
R∗(B) = ∅ holds, is undecidable.

Theorem 1. The equivalence problem for ω-rational relations of arity at least
two is undecidable for deterministic Büchi transducers.

Proof. Let AR, AS be deterministic transducers defining binary relations R and
S over finite words, respectively. We construct deterministic Büchi transducers
BR and BS such that each tuple in R∩S induces a witness for Rω(BR) �= Rω(BS)
and vice versa. Recall that AR, AS accept a tuple (u, v) if there is an accepting
run on (u, v)(#,#) (where # is an endmarker symbol not contained in any
alphabet involved). Then it is easy to see that we can assume that AR enters
either a unique accepting state qR

a or unique rejecting state qR
r after it has

read the endmarker symbol in both components. Moreover, qR
a and qR

r have
no outgoing transitions. Furthermore, let qR

0 be the initial state of AR and let
qS
a , qS

r , qS
0 be the respective states of AS .

The construction of BR and BS is illustrated in Fig. 1. Both Büchi transducers
are almost the same except for the initial state: both consist of the union of the
transition structures of AR and AS complemented by transitions labeled ε/ε
from qX

a to qX
0 and qX

r to qY
0 for X,Y ∈ {R,S}, X �= Y . That is, upon reaching

a rejecting state of AR or AS the new transducers will switch to the initial state
of the other subtransducer and upon reaching an accepting state they will return
to the initial state of the current subtransducer. The new accepting states are
qR
a , qR

r , qS
r (note that qS

a is not accepting introducing an asymmetry). Finally,
the initial state of BX is qX

0 .
Pick a tuple (u, v) in R ∩ S. Then the unique run of AX on (u#, v#) leads

to qX
a and, thus, qX

0 . Hence, the induced unique run of BR on (u#, v#)ω is
accepting while the unique run of BS is rejecting. On the contrary, assume that
there is a pair of infinite words that is rejected by one of the transducers, and
accepted by the other. Each such tuple has to contain infinitely often # in both
components, since one of the Büchi transducers accepts. The only way to reject
in presence of infinitely many #, is to finally remain in the copy of AS visiting
qS
a infinitely often. The accepting run then has to remain in the copy of AR

because otherwise the runs would meet in the same initial state and thus both
accept or both reject. This implies that there is an input (u#, v#) that takes
AR from qR

0 to qR
a , and AS from qS

0 to qS
a . In other words, (u, v) ∈ R ∩ S.

We note that our reduction is rather generic an could be applied to other
classes of automata for which the intersection emptiness problem on finite words
is undecidable.
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AR

qR0BR

qRa

qRr

. . .

. . .

. . .

AS

qS0BS

qSa

qSr

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

Fig. 1. Illustration of the transducers BR, BS . The labels #/# are just used for com-
prehensibility. In the formal construction the # symbols are read in succession and the
transducers may even read other symbols between them (but only in the component
where no # has been read yet).

4 Deciding Recognizability of ω-Automatic Relations

Our aim in this section is to decide ω-recognizability of ω-automatic relations in
doubly exponential time. That is, given a deterministic synchronous transducer
decide whether it defines an ω-recognizable relation. The proof approach is based
on an algorithm for relations over finite words given in [14] which we briefly recall.

Let R be an (ω-)automatic relation of arity k. For each j ≤ k we define the
equivalence relation

Ej := {((u1, . . . , uj), (v1, . . . , vj)) | ∀wj+1, . . . , wk :
(u1, . . . , uj , wj+1, . . . , wk) ∈ R ⇔ (v1, . . . , vj , wj+1, . . . , wk) ∈ R}.

Then the key to decide (ω-)recognizability is the following result which has been
proven in [14] for relations over finite words and is easily extensible to infinite
words:

Lemma 1 [14]. Let R be an (ω-)automatic relation of arity k. Then for all
1 ≤ j ≤ k the equivalence relation Ej has finite index if and only if R is
(ω-)recognizable.

Based on that lemma, the recognizability test presented in [14] proceeds as
follows. It is shown that each Ej is an automatic equivalence relation by con-
structing a synchronous transducer for Ej . It remains to decide for an automatic
equivalence relation whether it is of finite index. This can be achieved by con-
structing a synchronous transducer that accepts a set of representatives of the
equivalence classes of Ej (based on a length-lexicographic ordering). Then Ej

has finite index if and only if this set of representatives is finite, which can be
decided in polynomial time.

It is unclear whether this approach can be used to obtain an exponential time
upper bound for the recognizability test.2 One can construct a family (Rn)n∈N of
2 The authors of [14] mainly focused on decidability, and they agree that the proof as

presented in that paper does not yield an exponential time upper bound.
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automatic binary relations Rn defined by a deterministic synchronous transducer
of size O(n2) such that every synchronous transducer defining E1 has size (at
least) exponential in n. It is unclear whether it is possible to decide in polynomial
time for such a transducer whether the equivalence relation it defines is of finite
index. For this reason, we revisit the problem for finite words in Sect. 5 and
provide an exponential time upper bound for binary relations using a different
approach.

We now turn to the case of infinite words. The relation Ej can be shown to
be ω-automatic, similarly to the case of finite words. However, it is not possible,
in general, for a given ω-automatic relation to define a set of representatives
by means of a synchronous transducer, as shown in [20]: There exists a binary
ω-automatic equivalence relation such that there is no ω-regular set of represen-
tatives of the equivalence classes.

Here is how we proceed instead. The first step is similar to [14]: We construct
synchronous transducers for the complements Ej of the equivalence relations Ej

in polynomial time (starting from a deterministic transducer for R). We then
provide a decision procedure to decide for a given transducer for Ej whether the
index of Ej is finite in doubly exponential time. This procedure is based on an
encoding of ultimately periodic words by finite words.

First observe that a tuple in Σω
1 × . . . × Σω

j can be seen as an infinite word
over Σ = Σ1 × . . . × Σj (this is not the case for tuples over finite words, since
the words may be of different length). Hence, we can view each Ej as a binary
equivalence relation E ⊆ Σω × Σω. For this reason, we only work with binary
relations in the following.

We start by showing that for deciding whether E has finite index it suffices
to consider sets of ultimately periodic representatives uiv

ω
i such that the periods

|vi| and prefix lengths |ui| are the same, respectively, for all the representatives
(Lemma 2). In the second step E is transformed into an automatic equivalence
relation E# over finite words using encodings of ultimately periodic words as
finite words, where a word uvω is encoded by u#v as in [13] (Definition 2 and
Lemma 3). Since E# is an automatic relation over finite words, it is possible to
obtain a finite automaton for a set of representatives of E#. Finally, we reduce
the decision problem whether E has finite index to deciding slenderness (see
Definition 1 below) for polynomially many languages derived from the set of
representatives of E# (Lemmas 4 and 5). Therefore, by proving that deciding
slenderness for (nondeterministic) finite automata is NL-complete (Lemma 6)
we obtain our result.

Definition 1 [22]. A language L ⊂ Σ∗ is slender if there exists a k < ω such
that for all  < ω it holds that |L ∩ Σ�| < k.

We now formalize the ideas sketched above.

Lemma 2. Let E ⊆ Σω × Σω be an ω-automatic equivalence relation. Then E
has not finite index if and only if for each k > 0 there are

u1, . . . , uk, v1, . . . vk ∈ Σ∗ with |ui| = |uj | and |vi| = |vj | for all 1 ≤ i ≤ j ≤ k

such that (uiv
ω
i , ujv

ω
j ) /∈ E for all 1 ≤ i < j ≤ k.
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We proceed by transforming E into an automatic equivalence relation E#

and showing that it is possible to compute in exponential time a synchronous
transducer for it, given a synchronous Büchi transducer for E.

Definition 2. Let E ⊆ Σω × Σω be an ω-automatic equivalence relation. Fur-
thermore, let Γ := Σ ∪ {#} for a fresh symbol # /∈ Σ. Then the relation
E# ⊆ Γ ∗ × Γ ∗ is defined by

E# := {(u#v, x#y) | u, v, x, y ∈ Σ∗, |u| = |x|, |v| = |y|, (uvω, xyω) ∈ E}.

Lemma 3. Let E ⊆ Σω × Σω be an ω-automatic equivalence relation and A a
synchronous Büchi transducer defining the complement E of E. Then there is a
synchronous transducer A# exponential in the size of A which defines E#. In
particular, E# is an automatic relation.

With a synchronous transducer for E# at hand, we can compute a synchro-
nous transducer defining a set of unique representatives of E# similarly to [14].
For convenience, we will denote the set of representatives obtained by this con-
struction by L#(E) (although it is not unique in general). We can now readjust
Lemma 2 to E# (or, more precisely, L#(E)).

Lemma 4. Let E ⊆ Σω × Σω be an ω-automatic equivalence relation. Then
E has finite index if and only if there is a k < ω such that for all m,n > 0 :
|L#(E) ∩ Σn{#}Σm| ≤ k.

Note that the condition in Lemma4 is similar to slenderness but not equiv-
alent to the statement that L#(E) is slender. For instance, consider the lan-
guage L given by the regular expression a∗#b∗. For any m,n > 0 we have that
|L ∩ Σn{#}Σm| = |{an#bm}| ≤ 1. But L is not slender: Let  > 0. Then
a�−1−i#bi ∈ L ∩ Σ� for all 0 ≤ i < . Hence, |L ∩ Σ�| ≥  and, thus, L cannot
be slender. However, the next result shows that there is a strong connection
between the condition in Lemma 4 and slenderness.

Lemma 5. Let L be a language of the form L =
⋃

(i,j)∈I Li{#}Lj where I ⊂ N
2

is a finite index set and Li, Lj ⊆ (Σ \ {#})∗ are non-empty regular languages
for each pair (i, j) ∈ I. Then there is a k < ω such that for all m,n ≥ 0 :
|L ∩ Σn{#}Σm| ≤ k if and only if for all (i, j) ∈ I it holds that Li and Lj are
slender.

The last ingredient we need is the decidability of slenderness in polynomial
time. Lemma 6 can be shown analogously to the proof in [28] where it is shown
that the finiteness problem for Büchi automata is NL-complete.

Lemma 6. Deciding slenderness for (nondeterministic) finite automata is NL-
complete.

Finally, we can combine our results to obtain the main result of this section.
Firstly, we state our approach to check whether an automatic equivalence has
finite index and, afterwards, join it with the approach of [14].
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Theorem 2. Let E ⊆ Σω ×Σω be an ω-automatic equivalence relation and A#

be a (nondeterministic) synchronous transducer defining E#. Then it is decidable
in single exponential time whether E has finite index.

Proof (sketch). Given E# it suffices to check the condition of Lemma 4. This
can be achieved by checking slenderness for the factors Li, Lj of a decomposi-
tion L#(E) =

⋃
(i,j)∈I Li{#}Lj due to Lemma 5. Given A# we can compute a

synchronous transducer B with initial state q0 and accepting states F defining a
set L#(E) of representatives of E# (cf. [14]). Then B induces a decomposition of
L#(E) of the required shape: each transition (p,#, q) induces two factors Lq0{p}
and LqF where LyX is defined by the modification of B having initial state y,
accepting states X, and no # transition. Hence, there are only polynomially
many factors in the size of B that have to be checked for slenderness. The expo-
nential time claim follows from Lemma 6 and because B has size exponential
in A#.

Theorem 3. Given a complete deterministic synchronous parity transducer A
it is decidable in double exponential time whether Rω(A) is ω-recognizable.

5 Deciding Recognizability of Automatic Relations

At the beginning of Sect. 4 we have sketched the approach presented in [14]
for deciding recognizability of an automatic relation. In this section we revisit
the problem to obtain an exponential time upper bound for the case of binary
relations. The procedure is based on a reduction to the regularity problem for
VPAs (Lemma 8). The other main contribution in this section, which is interest-
ing on its own, is a polynomial time algorithm to solve the regularity problem for
DVPAs. We start by describing the regularity test. The key to decide regularity
in polynomial time is the following result.

Lemma 7. Let P be a DVPA with n states. Then L(P) is regular if and only
if all pairs (p, αβ), (p, αβ′) of reachable configurations of P with |α| ≥ n3 +2 are
P-equivalent.

Theorem 4. It is decidable in polynomial time whether a given DVPA defines
a regular language.

Proof (sketch). We construct a synchronous transducer A accepting pairs of
configurations violating the right hand side of the equivalence of Lemma7. Then
it suffices to decide the emptiness problem for transducers which boils down to
a graph search doable in polynomial time. The transducer has to check whether
the length constraint is satisfied, both configurations start in the same state,
are reachable and are not P-equivalent (recall that synchronous transducers
are closed under intersection). The first two conditions are easy. For the third
condition, a finite automaton for the set of reachable configurations of P can
be constructed in polynomial time [10]. The crucial part is to check for non-
equivalence. The idea is to guess a separating word and simulate P in parallel
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starting in the two configurations given as input to A. One can show that only the
return symbols of a separating word that are responsible for popping a symbol
from the stacks have to be guessed (instead of the whole separating word).

With Theorem 4 established we turn towards our second objective which is
to decide recognizability of binary automatic relations. Recall that for a word u
we denote its reversal by rev(u).

Lemma 8. Let R ⊆ Σ∗
1 × Σ∗

2 with Σ1 ∩ Σ2 = ∅ be an automatic relation and
# /∈ Σ1 ∪ Σ2 be a fresh symbol. Furthermore, let A be a (nondeterministic)
synchronous transducer defining R. Then LR := {rev(u)#v | (u, v) ∈ R} is
definable by a DVPA whose size is single exponential in |A|.

Since LR is regular if and only if R is a recognizable relation [14], we obtain
the second result of this section as corollary of Theorem 4 and Lemma 8.

Corollary 1. Let A be a (possibly nondeterministic) synchronous transducer
defining a binary relation. Then it is decidable in single exponential time whether
R∗(A) is recognizable.

6 Conclusion

The undecidability of the equivalence problem for deterministic ω-rational rela-
tions presented in Sect. 3 exhibits an interesting difference between deterministic
transducers on finite and on infinite words. We believe that it is worth to fur-
ther study the algorithmic theory of this class of relations. For example, the
decidability of recognizability for a given deterministic ω-rational relation is an
open question. The technique based on the connection between binary ratio-
nal relations and context-free languages as presented in Sect. 5 that is used in
[14] for deciding recognizability of deterministic rational relations cannot be
(directly) adapted. First of all, the idea of pushing the first component on the
stack and then simulating the transducer while reading the second component
fails because this would require an infinite stack. Furthermore, the regularity
problem for deterministic ω-pushdown automata is not known to be decidable
(only for the subclass of deterministic weak Büchi automata [21]).

It would also be interesting to understand whether the decidability of the
synthesis problem (see the introduction) for deterministic rational relations over
finite words [16] can be transferred to infinite words.

For the recognizability problem of (ω-)automatic relations we have shown
decidability with a doubly exponential time algorithm for infinite words. We also
provided a singly exponential time algorithm for the binary case over finite words
(improving the complexity of the approach from [14] as explained in Sect. 4). It
is open whether there are matching lower complexity bounds.

The connection between automatic relations and VPAs raises the question
whether extensions of VPAs studied in the literature (as for example in [15]) can
be used to identify interesting subclasses of relations between the (ω-)automatic
and deterministic (ω-)rational relations. The problem of identifying such classes
for the case of infinite words has already been posed in [30].
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22. Pǎun, G., Salomaa, A.: Thin and slender languages. Discret. Appl. Math. 61(3),
257–270 (1995)

23. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
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bisimulation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 89–103. Springer,
Heidelberg (2006). doi:10.1007/11874683 6

27. Stearns, R.E.: A regularity test for pushdown machines. Inf. Control 11(3), 323–
340 (1967)

28. Tao, Y.: Infinity problems and countability problems for ω-automata. Inf. Process.
Lett. 100(4), 151–153 (2006)

29. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–191 (1990)

30. Thomas, W.: Infinite trees and automation-definable relations over ω-words. Theor.
Comput. Sci. 103(1), 143–159 (1992). doi:10.1016/0304-3975(92)90090-3

31. Thomas, W.: Facets of synthesis: revisiting Church’s problem. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 1–14. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 1

32. Valiant, L.G.: Regularity and related problems for deterministic pushdown
automata. J. ACM (JACM) 22(1), 1–10 (1975)

http://dx.doi.org/10.1016/0304-3975(91)90356-7
http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1007/11690634_22
http://dx.doi.org/10.1007/978-3-642-32589-2_66
http://dx.doi.org/10.1007/11874683_6
http://dx.doi.org/10.1016/0304-3975(92)90090-3
http://dx.doi.org/10.1007/978-3-642-00596-1_1
http://dx.doi.org/10.1007/978-3-642-00596-1_1


Listing All Fixed-Length Simple Cycles
in Sparse Graphs in Optimal Time
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Abstract. The degeneracy of an n-vertex graph G is the smallest num-
ber k such that every subgraph of G contains a vertex of degree at most k.
We present an algorithm for enumerating all simple cycles of length p in
an n-order k-degenerate graph running in time O(n�p/2�k�p/2�). We then
show that this algorithm is worst-case output size optimal by proving a
Θ(n�p/2�k�p/2�) bound on the maximal number of simple p-length cycles
in these graphs. Our results also apply to induced (chordless) cycles.

Keywords: Sparse graphs · k-degenerate · Fixed-size cycles listing

1 Introduction

Degeneracy, introduced by Lick and White [15], is a common measure of the
sparseness of a graph and is closely related to other sparsity measures such
as arboricity and thickness. Degenerate graphs appear often in practice. For
instance, the World Wide Web graph, citation networks, and collaboration
graphs have low arboricity, and therefore have low degeneracy [12]. Further-
more, planar graphs have degeneracy at most five [15] and the Barabàsi-Albert
model of preferential attachment [2], frequently used as a model for social net-
works, produces graphs with bounded degeneracy. From this point of view it
seems pertinent to design fixed-parameter tractable algorithms parametrized by
degeneracy. That is, given a n-order k-degenerate graph, to design algorithms of
the form f(k)nO(1) where f may grow exponentially with k but is independent
of n.

The question of finding fixed length simple induced and non induced cycles
in planar and k-degenerate graphs has been extensively studied. Among other
contributions, Papadimitriou and Yannakakis [18] presented an algorithm finding
C3’s in planar graphs. Chiba and Nishizeki [7] and Chrobak and Eppstein [8]
proposed simpler linear time algorithms to find C3’s and the first of these papers
also presents an algorithm finding C4’s. Both papers also apply their techniques
to k-degenerate graphs. Richards [19] gave an O(n log n) algorithm finding C5’s
and C6’s. For any fixed length, Alon et al. [1], gave algorithms for both general
and k-degenerate graphs. Cai et al. [6] proposed algorithms finding induced cycles
of any fixed size. For the problem of finding all occurrences of any p-length
simple cycle in planar graphs, assuming some constant bound on p, Eppstein
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 355–366, 2017.
DOI: 10.1007/978-3-662-55751-8 28
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[10] proposes an algorithm running in time O(n + occ) where occ is the number
of simple p-length cycles in the graph. His algorithm works for any subgraph of
fixed size p and solves in fact the more general problem of subgraph isomorphism
in planar graphs. His result has been later improved by Dorn [9], who reduces the
time dependence in p. For short cycles of size six or less, Kowalik [14], proposes an
algorithm listing all occurrences of these cycles in time O(n+occ). His algorithm
is faster in practice than the one of Eppstein for planar graphs and also works
for k-degenerate graphs, with complexity O(k2m + occ), for cycles of size up to
five. He also proves that the maximal number of simple p-length cycles in a
planar graph is Θ(n�p/2�). More recently, Meeks [16] proposed a randomized
algorithm, given a general graph G, enumerating any p-sized subgraph H in
time O(occ ∗ f) where f is the time needed to find one occurrence of H in
G. This result, together with the one of Alon et al. [1] for instance, yields an
O(occ ∗ nO(1)kO(1)) time algorithm finding all occurrences of a p-length simple
cycle in k-degenerate graphs, assuming p constant.

Other contributions have also been made for general graphs. For the problem
of finding all cycles (any length), Tarjan [20] gives an O(nm ∗ occ) time algo-
rithm, where occ is the total number of cycles of the graph. This complexity
has been improved to O((n + m) ∗ occ) by Johnson [13]. More recently, Birmelé
et al. [4] proposed an O(c) time algorithm where c is the number of edges of all
the cycles of the graph. Uno and Satoh [21] proposed an O((n + m) ∗ occ) algo-
rithm finding all chordless cycles. We are not sure whether these algorithms can
be easily adapted to output exactly all p-length simple cycles in k-degenerate or
general graphs with similar complexities but where occ would be the number of
p-length simple cycles (instead of the number of all cycles). For the problem of
counting all cycles of size less than some constant p, Giscard et al. [11] propose
an algorithm running in time O(Δ|Sp|) where Δ is the maximum degree and
|Sp| the number of induced subgraphs with p or less vertices in the graph. Alon
et al. [1] proposed an algorithm counting cycles of size less than 7 in time O(nω)
where ω is the exponent of matrix multiplication. Williams and Williams [22]
and Björklund et al. [5] also give algorithms which can be used to count fixed-size
cycles.

Our main contribution is a simple algorithm listing all p-length simple cycles
in an n-order k-degenerate graph in time O(n�p/2�k�p/2� log k), assuming that
the graph is stored in an adjacency list data structure. If we have its adja-
cency matrix the time complexity can be improved to O(n�p/2�k�p/2�). We then
show that this complexity is worst-case output size optimal by proving that the
maximal number of p-length simple cycles in an n-order k degenerate graph is
Θ(n�p/2�k�p/2�). These results also hold for induced cycles. To the best of our
knowledge, this is the first such algorithm. It differs from the one of Meeks
described before since it is deterministic, self-contained and can have better or
worst time complexity depending on the number of simple p-length cycles of the
input graph. Further improvements are discussed in the conclusion.

Our complexities are given assuming a constant bound on p. The exact depen-
dence in p is described later but is exponential. Our approach for the main
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algorithm of the paper is the following. We first show that in a k-degenerate
graph, any p-length cycle can be decomposed into small special paths, namely
t-paths, introduced in Definition 2. We then prove that these t-paths can be com-
puted and combined efficiently to generate candidate cycles. With some more
work, we can then output exactly all p-length simple cycles of the graph.

The organization of the document is as follows. In Sect. 2 we introduce nota-
tions and definitions. In Sect. 3 we prove preliminary results for paths, t-paths
and cycles. Using these results, we describe and prove algorithms in Sect. 4 which
is the main section of the paper. The main algorithm is proved in Theorem 4
and the bound for the number of cycles in Theorem 5.

2 Notations and Definitions

In this section, we introduce notations and definitions that we use throughout
the paper. By k we will denote the degeneracy of the graph and by p the length
of the cycles we seek to list. When not specified, G = (V,E) is a simple graph
with n = |V | and m = |E|. Given a k-degenerate graph G, we can compute
in time O(m) its degeneracy ordering [3]. A degeneracy ordering is an ordering
of the vertices such that each vertex has less than k neighbours with higher
ranking in the ordering. This ordering also yields an acyclic orientation of the
edges such that every vertex has out-degree at most k. From now on we will
consider k-degenerate graph as oriented acyclic graphs with out-degree bounded
by k. If (x, y) is an edge of some oriented graph G we will write x → y and say
that x is oriented towards y if edge (x, y) is oriented towards y.

Definition 1. An oriented path P : p1, p2, ..., px is increasing (resp. decreasing)
with respect to p1 if p1 → p2 → ... → px (resp. p1 ← p2 ← ... ← px).

Definition 2. Let G be an oriented graph and i, j ∈ N. A t-path P of size (i, j) is
a path of i+1+j vertices, v1, v2, ..vi, r, u1, u2, ...uj such that Pl : r, vi, vi−1, ..., v1
and Pr : r, u1, u2, ..., uj are increasing paths with respect to r. Vertices v1 and uj

are called the end vertices of P, vertex r its center. If i, j ∈ N
+, we say that P

is a strict t-path.

Definition 3. Let G be an oriented graph and P1, P2 two t-paths of G. They
are adjacent if they do not have any vertex in common but one or two of their
end vertices.

Definition 4. Let G be an oriented graph and x = (i, j) ∈ N
2. We say that we

can associate a t-path to x in G if there exists a t-path of i+1+ j vertices in G.

Definition 5. Let x, y, z be three consecutive nodes in C, an oriented simple
cycle. Node y is a root of C if x ← y → z.

Observation 1. An acyclic oriented simple cycle has a root.
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Definition 6. Let G = (V,E) be an acyclic oriented k-degenerate graph.
Assume that G is given by the adjacency lists for each vertex. The sorted degen-
erate adjacency list of a vertex x ∈ V is its adjacency list in which every vertex
that is pointing towards x has been deleted and which has been sorted afterwards.

Lemma 1. The sorted degenerate adjacency lists of a n-order k-degenerate
graph G can be computed in time O(nk log k) and adjacency queries can be done
in time O(log k) using these modified lists.

Proof. Assume that we have the adjacency lists of G. Let x ∈ V and let dx

be its degree and d+x its out-degree. In time O(dx) remove all vertices from its
adjacency lists that are pointing towards it. Then sort the remaining vertices in
time O(d+x log d+x ) = O(k log k) since, as specified in the beginning of the section,
we consider k-degenerate graphs as acyclic oriented graphs with out-degree at
most k. Repeat the procedure for all the vertices of the graph. This is done
in total time O(nk log k + m) = O(nk log k). ��

3 Basic Results

In this section we prove simple results concerning paths, t-paths and cycles.
These lemmas are used to prove the correctness and time complexity of Algo-
rithm1, presented in Sect. 4.

Lemma 2. Let C be a simple cycle C of size p. For any possible acyclic
orientation of C, we can compute a list L of strictly positive integer pairs
(l1, l2), ..., (lr−1, lr) in time O(p) with the following properties:

(i) To each pair (li, li+1) we can associate a strict t-path such that C can be
decomposed into |L| strict adjacent t-paths: one for each pair of L.

(ii) If |L| > 2, two strict t-paths associated to pairs of L are adjacent if and
only if their associated pairs are consecutive in L (modulo |L|).

(iii) If |L| > 2, two t-paths t1 and t2 associated to two consecutive pairs (li, li+1)
and (li+2, li+3) (modulo |L|) have one common vertex: it is the end vertex
of the increasing path Pli+1 of t1 and the end vertex of the increasing path
Pli+2 of t2.

Proof. We proceed as follows. The first step is to find in time O(p) a root r of
C. Let x and y be its two neighbours in C. Find the two longest increasing paths
P1 and P2 with respect to r in C going though x and y. Notice that paths P1

and P2 are well defined. This can be done in time O(|P1| + |P2|). After that put
the corresponding pair in L. If the end vertices of P1 and P2 are the same, we
are done: the cycle itself is a t-path and L = (|P1|, |P2|). Observe that in that
case property (i) is verified.

Otherwise, if the end vertices of P1 and P2 are not the same, we proceed
with step two. Start from the end vertex v2 of P2 and find the longest decreasing
path P3 in C with respect to v2. Observe that P3 exists necessarily, by definition
of P2. Finding the vertices of P3 is done in O(|P3|). The end vertex v3 of P3
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is a root, by definition of P3. Observe also that v3 and v1 (the end vertex of
P1) are distinct. If that was not the case then P1 would not have been the
longest increasing path starting from r, which is a contradiction by construction
of P1. Now find the longest increasing path with respect to v3 going in the other
direction than P3, call it P4. It exists since v3 and v1 are distinct. If its end vertex
v4 is equal to v1, then C can be decomposed into two strict adjacent t-paths and
L = ((|P1|, |P2|), (|P3|, |P4|)). Observe that the three properties for L are verified
in that case.

Otherwise, if v4 and v1 are distinct, we proceed exactly as in step 2, but
starting this time with the end vertex v4 of P4. We proceed in this fashion until
we reach vertex v1. ��
Lemma 3. Let C be a simple cycle of size p with an acyclic orientation. Let
L : (l1, l2), ..., (lr−1, lr) be the list of integer pairs associated to C, as defined in
Lemma 2. List L is at most of size �p/2	.
Proof. Assume first that p is even. Assume by contradiction that list L is of size
s > p/2. By construction of L, each pair (lj , lj+1) of L can be associated to a
strict t-path of G. By Definition 2 we have that lj , lj+1 ∈ N

∗. Thus each t-path
associated to a pair in L has at least three vertices. This implies that the s many
t-paths have 3s vertices altogether. But two consecutive t-paths in L have also a
common vertex. Thus, in total, the s many t-paths have at least 3s− s = 2s > p
vertices which gives the contradiction in that case.

Assume now that p is odd. We first show that there exists at least one strict t-
path associated to some pair in L which has four or more vertices. By definition a
strict t-path can not have only one or two vertices. Thus assume by contradiction
that all s pairs in L are associated to strict t-paths of size three. As in the
previous case, the total number of vertices of these t-paths is 3s − s = 2s. By
definition, this number is equal to p the size of C which is odd in that case, thus
we have a contradiction. This implies that there exists at least one strict t-path
associated to some pair in L which has four or more vertices. Assume now by
contradiction that s > �p/2	 = p − 1

2 . Since at least one t-path of L has size four,
then the s many t-paths (to which we remove the common vertices) have in total
at least 3(s − 1) + 4 − s = 2s + 1 vertices. To conclude the proof observe that
2s + 1 > 2p − 1

2 + 1 = p, which yields the contradiction. ��
Lemma 4. Let C be a simple cycle of size p with an acyclic orientation. Let
L : (l1, l2), ..., (lr−1, lr) be the list of integer pairs associated to C, as defined in

Lemma 2. We have that
r∑

j=1

lj = p.

Proof. As defined in Lemma 2, C can be decomposed into |L| t-paths, one for each
pair of L such that two consecutive pairs (modulo |L|) correspond to adjacent
t-paths with one end vertex in common. By Definition 4, a t-path associated to a
pair (li, li+1) is of size li + 1 + li+1. This implies that the t-paths of L have total

size (
r∑

j=1

lj) + r. Since cycle C can be decomposed into the t-paths associated to
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list L, that two consecutive t-paths have one end vertex in common and that

there are r such t-paths, we get that (
r∑

j=1

lj) + r = p + r, which completes the

proof. ��
Lemma 5. Let G = (V,E) be a k-degenerate graph. Assume that we have the
sorted degenerate adjacency lists of G. Given a vertex x ∈ V and i ∈ N, we can
compute all increasing paths of size i, starting with x in graph G in time O(ki).
There are at most O(ki) such paths.

Proof. Start with the sorted degenerate adjacency list of vertex x. By definition
it is of size at most k. For every vertex y in this list, construct a candidate path
of size one containing x and y. Notice that there are at most k such candidate
paths. For each such path, generate all k candidates paths of size two where
the third vertex is a vertex of the degenerate adjacency list of the second vertex
of the path. There are k2 such candidates paths of size two in total. Go on in
this fashion until all paths of size i have been generated. This procedure takes
time O(ki): at step h < i we must consider at most k vertices from each of the
previously computed kh−1 degenerate adjacency lists. ��
Corollary 1. Let G = (V,E) be a k-degenerate graph. Assume that we have the
sorted degenerate adjacency lists of G. Given a vertex x ∈ V and i, j ∈ N, we
can compute all t-paths of size (i, j) with center x, in G, in time O(ki+j). There
are at most O(ki+j) such t-paths.

Corollary 2. Let G = (V,E) be a k-degenerate graph. Assume that we have
the sorted degenerate adjacency lists of G. Given i, j ∈ N, we can compute all
t-paths of size (i, j) in G, in time O(nki+j). There are at most O(nki+j) such
t-paths.

4 Algorithm

In this section we prove Theorem 4 which is the main result of the paper. For
the sake of clarity, we first start by describing a simpler algorithm, namely
Algorithm 1 and prove in Theorems 2 and 3 that it solves the problem of finding
all p-length simple cycles in time O(n�p/2�kp). Then we show how to modify
it to get the claimed O(n�p/2�k�p/2� log k) and O(n�p/2�k�p/2�) complexities, in
Theorem 4.

Theorem 2. At the end of Algorithm1, all p-length simple cycles of the graph
G have been outputted exactly once.

Proof. Assume first by contradiction that there exists a p-length simple cycle
C1 : c1, c2, ..., cp of G which has not been outputted by Algorithm1. Without
loss of generality assume that c2 has lowest ranking in the degeneracy ordering.
As defined and proved in Lemma2, depending on the orientation of C1, we can
compute a list of integer pairs L1 : l1, l2, ..., lr−1, lr that corresponds to the sizes
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Algorithm 1.
Data: A graph G and p ∈ N.
Result: All simple p-length cycles of G.

1 Compute k the degeneracy of G and a degeneracy ordering σG. Construct an
acyclic orientation of G with bounded out-degree k.

2 Compute the sorted degenerate adjacency lists of G.
3 Initialize Cy : 1, 2, ..., p a simple cycle.
4 Compute all acyclic orientations of Cy.
5 for each such orientation do
6 Compute the ordered list L = l1, l2, ..., lr−1, lr of pairs associated to the

strict t-paths of Cy.
7 for j = 1 to r do
8 Compute all possible strict t-paths associated to pair lj in G, put them

in a set Sj .
9 end

10 Compute all possible lists C = c1, ..., cr with ci ∈ Si

11 for each such list C do
12 Check if it is a simple cycle:

– check if vertices are unique except for the end vertices of the t-paths
– check if two consecutive t-paths have a common end vertex

if yes then
Let s be the string obtained by sorting the vertices of C by increasing
identifier. Search string s in T . if it does not exist in T then

Output it.
Insert it in T .

end

end

13 end

14 end

of adjacent strict t-paths such that C1 can be decomposed into these t-paths. Up
to renaming of the vertices, the orientation of C1 has been generated at Line 4 of
Algorithm 1. This implies that there exists a list L computed in Line 6 which is
equal to L1. Since in Line 8 all t-paths associated to the pairs of L are computed,
this implies that there exists some list C generated in Line 10 which contains
all the t-paths of C1, in the same order as they appear in C. This implies in
fact that cycle C1 is outputted at some point by Algorithm1, which yields the
contradiction.

The test done after 12 ensure that Algorithm 1 outputs simple cycles and
that they are unique. ��
Theorem 3. Algorithm1 runs in time O(n�p/2�kp).

Proof. Computing the degeneracy and the degeneracy ordering of G can be
done in O(m) [3]. Computing the degenerate adjacency lists of G in Line 2 can
be done in time O(nk log k), by Lemma 1. Computing all acyclic permutations
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of Cy can be done in total time O(2p). Using Lemma 2, Line 6 can be done
in O(p) for each orientation. Since there are O(2p) of them this takes total
time O(p2p). By Corollary 2, given a pair lj = (aj , bj), we can compute all t-
paths of size (aj + bj) in G in time O(nkaj+bj ). Thus for each list L : (l1 =
a1, b1), l2 = (a2, b2), ..., lr−1 = (ar−1, br−1), lr = (ar, br), Line 8 can be done in
time O(n

∑
(aj ,bj)∈L kaj+bj ) = O(nkp) since

∑
(aj ,bj)∈L aj + bj = p as proved in

Lemma 4. By Corollary 2, each set Sj associated to a pair lj = (aj , bj) is of size
O(nkaj+bj ). If there are r such sets, computing all possible lists C in Line 10
can be done in time O(nrkp) since

∑
(aj ,bj)∈L aj + bj = p as proved in Lemma 4.

Now by Lemma 3, r ≤ �p/2	, thus Line 10 takes at most O(n�p/2�kp) time, per
orientation. To conclude, in Line 12, checking if a list C is a simple cycle can
be done in time O(p). Since C is of size at most O(p + �p/2	) = O(p) we can
check the uniqueness of the vertices and the condition on the end vertices in
time O(p). Finally searching, sorting a string s of size O(p) or inserting it in a
radix tree can be done in time O(p log p), see [17]. In total, Algorithm 1 runs in
time O(E + nk log k + p2p + p2pn�p/2�kp log p) = O(n�p/2�kp). ��
Theorem 4. Algorithm1 can be modified to run in time O(n�p/2�k�p/2� log k)
if the graph is stored in adjacency lists or O(n�p/2�k�p/2�) time if it is stored in
an adjacency matrix.

Proof. We modify Algorithm1 in the following two ways. Assume list L : l1 =
(a1, b1), l2 = (a2, b2), ..., lr = (ar, br) has been computed in Line 6.

– For each j ∈ [1, r], transform lj = (aj , bj) into (aj , bj − 1). This can be done
in O(p).

– When checking if a list C is a simple cycle after line 12 we check the uniqueness
of all the vertices and check if two consecutive t-paths have adjacent end
vertices (before we had to check if they had common vertices). This can be
done in time O(p log k) using the degenerate adjacency lists computed in
line 2 or O(1) if we have the adjacency matrix of the graph.

We show that Algorithm 1 modified in this way has the claimed complexity.
When we decrease the values of the pairs in L as described in the first modifi-
cation and assuming |L| = r, Line 8 can be computed in total time O(nkp−r)
since

∑
(aj ,bj)∈L aj + bj = p − r. All possible lists in Line 10 can be computed in

time O(nrkp−r) and there are O(nrkp−r) of them. Since r ≤ �p/2	 as proved in
Lemma 3 and since k ≤ n then O(nrkp−r) = O(n�p/2�k�p/2�). Thus the total time
complexity is O(n�p/2�k�p/2�p2p log p log k) = O(n�p/2�k�p/2� log k) with these
modifications if adjacency queries can be done in O(log k) or O(n�p/2�k�p/2�) if
they can be done in O(1), which completes the complexity analysis.

We prove now the correctness of Algorithm 1 when modified in this way. As
shown in Lemma 2, a simple cycle C1, given an orientation of its vertices, can be
decomposed into strict adjacent t-paths. Consider now all pairs of such adjacent
t-paths. If we remove the common vertex from one t-path from each pair, cycle
C1 can still be decomposed into these new t-paths. The previous adjacent t-
paths which had a common end vertex now become new smaller t-paths that
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have adjacent end vertices. The two modifications described above reflect this
property: by decreasing the value of the pairs in the list L we generate t-paths
with one less vertex but we have now to check that, if they appear consecutively
in list C at Line 10, they have adjacent end vertices. ��
Corollary 3. With same complexities, we can output exactly all p-length
induced cycles.

Proof. Consider Algorithm 1 modified as in Theorem 4. Before outputting a
cycle we can check if it is induced in time O(p2 log k) with the sorted degenerate
adjacency lists: for every pair of vertices of the cycle check if they are adjacent.
If we have the adjacency matrix this can be done in time O(p2). ��

Theorem 5. The maximal number of p-length simple cycles in a k-degenerate
graph is Θ(n�p/2�k�p/2�).

Proof. Algorithm 1 modified as described in the proof of Theorem4 generates at
most O(n�p/2�k�p/2�) candidate cycles, assuming a constant bound on p. Since
this algorithms outputs all cycles of the graph, this yields the upper bound.

We now prove the lower bound. We construct for any k, p and n ≥ kp an
n-order k-degenerate graph with Ω(n�p/2�k�p/2�) simple p-length cycles.

Assume first that p and k are even. Consider p/2 independent sets
K1,K2, ...,Kp/2 of size k/2 and p/2 independent sets L1, L2, ...Lp/2 of size l ≥ k.
Connect all the vertices of set Ki to all the vertices of set Li for every i. Connect
all the vertices of set Li to all the vertices of set Ki+1 mod p. (See Fig. 1). This

Fig. 1. A k-degenerate graph with the maximal number of p-length simple cycles.
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graph is k-degenerate. To show that observe that every vertex has degree at least
k, thus the graph cannot be (k − 1)-degenerate. Every edge has one endpoint in
a set Ki and the other in a set Lj . Thus orienting every edge towards its vertex
which is in some K set yields an acyclic orientation with out-degree bounded
by k. This graph has n = p

2
k
2 + p

2 l vertices which implies l = 2n
p − k

2 . The total

number of simple p-length cycles is lp/2 k
2

p/2
= (2n

p − k
2 )p/2 k

2

p/2
. Observe that

n ≥ kp implies that (2n
p − k

2 )p/2 k
2

p/2
= Ω(np/2kp/2)

Assume now that p is even and k odd. The construction is similar except
that set Ki has �k

2 	 vertices if i odd and �k
2  otherwise. If p/2 is even the proof

is exactly the same as for the case in which p and k are even. If p/2 is odd we
only prove that the graph is k-degenerate, the proof for the number of simple
p-length cycles being the same. The graph is not (k − 1)-degenerate since the
subgraph induced by the vertices of sets K1, L1 and K2 has no vertex of degree
less than k. Orienting the edges as in the case in which p and k are even yields
an acyclic orientation with out-degree bounded by k.

Assume now that p is odd. The construction is similar. We consider �p/2
independent sets K1,K2, ...,K�p/2� and �p/2	 independent sets L1, L2, ..., L�p/2�.
Connect all the vertices of Ki to all the vertices of Li for every i < �p/2. Connect
all the vertices of Li to all the vertices of Ki+1. Finally connect all vertices of
K�p/2� to all the vertices of K1. The proof that this graph is k-degenerate is the
same as before. If k is even, take the sets Ki of size k/2, otherwise take set Ki of
size �k/2	 if i odd or of size �k/2 if i even. Now every vertex has degree at least
k so the graph cannot be (k − 1)-degenerate. Orient every edge between the sets
K�p/2� and K1 arbitrarily. Every other edge has one vertex in some K set and
the other in some L set. Thus orienting every edge from its vertex which is in
some L set towards its vertex which is in some K set yields an acyclic orientation
with out-degree bounded by k. The proof for the number of cycles is exactly the
same as for the previous cases. ��
Corollary 4. The maximal number of p-length induced cycles in a k-degenerate
graph is Θ(n�p/2�k�p/2�).

Proof. The upper bound is a consequence of Theorem 4 and Corollary 3. Observe
that the cycles constructed in Theorem 5 are induced, which completes the
proof. ��

5 Conclusion

Given an n-order k-degenerate graph, we presented an algorithm running in
time O(n�p/2�k�p/2�) enumerating all its p-length simple cycles. We then proved
that this algorithm is worst-case output size optimal by constructing for any k, p
and n ≥ kp an n-order k-degenerate graph with Θ(n�p/2�k�p/2�) simple p-length
cycles. The complexity of the algorithm is given assuming it is stored in an
adjacency matrix data structure. If instead it is stored in an adjacency list data
structure the complexity becomes O(n�p/2�k�p/2� log k). Thus the first question
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we ask is whether or not we can achieve the optimal complexity when the graph
is given through its adjacency lists. A second improvement would be to prove
an output sensitive algorithm, similar to the one Kowalik presented for cycles
of size less than five, see [14]. That is, we ask whether it is possible to achieve
an O(nO(1)kO(1) + occ) complexity for this problem where occ is the number
of p-length simple cycles in the graph, assuming p constant. Kowalik essentially
shows that small cycles can be broken into few small special paths with at most
3 or 4 vertices and proves bounds on the number of these paths that can have
common vertices. Can we extend his approach using t-paths decompositions?
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Abstract. A fundamental primitive in distributed computing is Reliable
Message Transmission (RMT), which refers to the task of correctly send-
ing a message from a party to another, despite the presence of Byzantine
corruptions. We explicitly consider the initial knowledge possessed by the
parties-players by employing the recently introduced Partial Knowledge
Model [13], where a player has knowledge over an arbitrary subgraph of
the network, and the general adversary model of Hirt and Maurer [5].
Our main contribution is a tight condition for the feasibility of RMT
in the setting resulting from the combination of these two quite general
models; this settles the central open question of [13].

Obtaining such a condition presents the need for knowledge exchange
between players. To this end, we introduce the joint view operation
which serves as a fundamental tool for deducing maximal useful infor-
mation conforming with the exchanged local knowledge. Maximality of
the obtained knowledge is proved in terms of the semilattice structure
imposed by the operation on the space of partial knowledge. This in
turn, allows for the definition of a novel network separator notion that
yields a necessary condition for achieving RMT in this model. In order
to show the sufficiency of the condition, we propose the RMT Partial
Knowledge Algorithm (RMT-PKA), an algorithm which employs the
joint view operation to solve RMT in every instance where the necessary
condition is met. To the best of our knowledge, this is the first protocol
for RMT against general adversaries in the partial knowledge model. Due
to the generality of the model, our results provide, for any level of topol-
ogy knowledge and any adversary structure, an exact characterization of
instances where RMT is possible and an algorithm to achieve RMT on
such instances.
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1 Introduction

Achieving reliable communication in unreliable networks is fundamental in dis-
tributed computing. Of course, if there is an authenticated channel between two
parties then reliable communication between them is guaranteed. However, it is
often the case that certain parties are only indirectly connected, and need to use
intermediate parties as relays to propagate their message to the actual receiver.
The Reliable Message Transmission problem (RMT) is the problem of achieving
correct delivery of a message m from a sender S to a receiver R even if some of
the intermediate nodes are corrupted and do not relay the message as agreed.
Essentially, an RMT protocol simulates the functionality of a reliable commu-
nication channel between the sender and the receiver. In this work we consider
the worst case corruption scenario, in which the adversary is unbounded and
may control several nodes. The adversary is able to make the corrupted nodes
deviate from the protocol arbitrarily by blocking, rerouting, or even altering a
message that they should normally relay intact to specific nodes. An adversary
with this behavior is referred to as Byzantine adversary.

The RMT problem has been initially considered by Dolev [2] in the context
of the closely related Reliable Broadcast (Byzantine Generals) and Consensus
(Byzantine Agreement) problems, introduced by Lamport et al. [9]. The two
latter problems have been extensively studied in complete networks with reliable
channels and studies on RMT naturally imply results for these problems since
an RMT protocol simulates reliable channels between players in an incomplete
network.

The problem of message transmission under Byzantine adversaries has been
studied extensively in various settings: secure or reliable transmission, general
or threshold adversary, perfect or unconditional security, full or local topology
knowledge. Here we focus on perfectly reliable transmission under a general
adversary and the partial knowledge model. In the general adversary model,
introduced by Hirt and Maurer [5], the adversary may corrupt any player-set
among a given family of all possible corruption sets (adversary structure); it
subsumes both the global [9] and the local threshold adversary model [7]. For
instance, the global threshold model, which assumes that the adversary can
corrupt at most t players, corresponds to the family of sets with cardinality
at most t. Regarding the topology knowledge, the recently introduced Partial
Knowledge Model [13] assumes that each player only has knowledge over some
arbitrary subgraph including itself and the intersection of this subgraph with
the adversary structure; it encompasses both the full knowledge and the ad hoc
(unknown topology) models.

The motivation for partial knowledge considerations comes from large scale
networks (e.g. the Internet) where topologically local estimation of the power of
the adversary may be possible, while global estimation may be hard to obtain
due to geographical or jurisdiction constraints. Additionally, proximity in social
networks is often correlated with an increased amount of available information,
further justifying the relevance of the model.
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The strength of this work lies in the combination of these two quite general
models (general adversary and partial knowledge), forming the most general
setting we have encountered so far within the synchronous deterministic model.

1.1 Related Work

The RMT problem under a threshold Byzantine adversary, where a fixed upper
bound t is set for the number of corrupted players was addressed in [1,3], where
additional secrecy restrictions were posed and in [16] where a probability of
failure was allowed. Results for RMT in the general adversary model [5], where
given in [8,17,18]. In general, very few studies have addressed RMT or related
problems in the partial knowledge setting despite the fact that this direction was
already proposed in 2002 by Kumar et al. [8].

The approach that we follow here stems from a line of work which addresses
the Reliable Broadcast problem with an honest sender (dealer) in incomplete
networks, initiated by Koo [7]. Koo studied the problem in ad hoc networks of
specific topology under the t-locally bounded adversary model, in which at most
a certain number t of corruptions are allowed in the neighborhood of every node.
A simple, yet powerful Reliable Broadcast protocol called Certified Propagation
Algorithm (CPA) was proposed in this work; CPA is based on the idea that if a
set of t+1 neighbors of v provides the same information to v then the information
is valid because at least one of them is honest. This work was extended in the
context of generic networks by Pelc, Peleg in [14] who also pointed out how
full knowledge of the topology yields better solvability results. After a series of
works ([6,10,19]) tight conditions for the correctness of CPA were obtained in
the ad hoc case. Observe that all of these aforementioned works only considered
the t-locally bounded adversary model and did not provide tight conditions for
the solvability of the problem. Finally, in [13] the Partial Knowledge Model was
introduced, in which the players only have partial knowledge of the topology
and the adversary structure. In [13] both the t-locally bounded adversary model
and the general adversary model were considered and tight conditions for the
solvability of the problem along with matching algorithms for the extreme cases
of full topology knowledge and ad hoc setting were proposed. Trivially all the
aforementioned results for Reliable Broadcast with an honest sender can be
adapted for the RMT problem. However, it was left as an open problem in [13]
to determine a necessary and sufficient condition (tight) for the most general case
of the partial knowledge model. The latter issue appeared to be most challenging
due to the need of sound knowledge exchange between possibly corrupted players.
The deduction of maximal secure information through the combination of partial
knowledge possessed by the involved players, is achieved in this work through
careful analysis of the algebraic properties of partial knowledge, which in turn
leads to the tight feasibility condition.
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1.2 Our Results

We study the RMT problem under partial knowledge and general adversaries.
Our contribution concerns the feasibility of RMT in the Partial Knowledge
model. We prove a necessary and sufficient condition for achieving RMT in this
setting, and present RMT-PKA, an algorithm that achieves RMT whenever this
condition is met. In terminology of [14] (formally defined in [13]) this is a unique
algorithm for the problem, in the sense that whenever any algorithm achieves
RMT in a certain instance so does RMT-PKA. This settles an open question
of [13] and is, to the best of our knowledge, the first algorithm with this prop-
erty. It is worth mentioning that RMT-PKA can achieve RMT with the minimal
amount of player’s knowledge that renders the problem solvable. This new algo-
rithm encompasses earlier algorithms such as CPA [7], PPA and Z-CPA [13] as
special cases. A remarkable property of our algorithm is its safety : even when
RMT is not possible the receiver will never make an incorrect decision despite
the increased adversary’s attack capabilities, which include reporting fictitious
topology and false local knowledge among others.

A key algorithmic tool that we define and use is the joint view operation
which computes the joint adversary structure of (a set of) players, i.e., the worst
case adversary structure that conforms to each player’s initial knowledge. This
operation is crucial in obtaining the tight condition mentioned above since it pro-
vides a way to safely utilize the maximal valid information from all the messages
exchanged. We show that this operation actually implies a semilattice structure
on the partial knowledge that players may have. In this context, we prove that
the worst possible adversary structure, conforming with the initial knowledge
of a set of parties, can be expressed as the supremum of the parties’ knowledge
under the semilattice partial order.

To obtain our result we propose a non trivial generalization of earlier sepa-
rator techniques, introduced by Pelc and Peleg [14] and extended in [13] in the
context of Broadcast. Analogous techniques were used in [13] to obtain charac-
terizations of classes of graphs for which Broadcast is possible for various levels
of topology knowledge and types of corruption distribution; however, an exact
characterization for the partial knowledge setting was left as an open question.
Here we address this question by proposing a new type of pair-cut (separator)
appropriate for the partial knowledge model, coupled with a proof that RMT-
PKA works exactly whenever no such pair-cut exists. This, as already mentioned,
implies a tight solvability condition for RMT in the quite general model of par-
tial knowledge with general adversaries. A useful by-product of practical interest
is that the new cut notion can be used, in a network design phase, in order to
determine the exact subgraph in which RMT is possible.

1.3 Model and Definitions

In this work we address the problem of Perfectly Reliable Message Transmission,
hereafter simply referred as Reliable Message Transmission (RMT) under the
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influence of a general Byzantine adversary. In our model the players have partial
knowledge of the network topology and of the adversary structure.

We assume a synchronous network represented by a graph G = (V,E) consist-
ing of the player (node) set V (G) and edge set E(G) which represents undirected
authenticated1 channels between players. The set of neighbors of a player v is
denoted with N (v). In our study we will often make use of node-cuts (separa-
tors) which separate the receiver R from the sender, hence, node-cuts that do
not include the sender. From here on we will simply use the term cut to denote
such a separator. The problem definition follows.

Reliable Message Transmission. We assume the existence of a designated player
S ∈ V , called the sender, who wants to propagate a certain value xS ∈ X, where
X is the initial message space, to a designated player R, called the receiver. We
say that a distributed protocol achieves (or solves) RMT if by the end of the
protocol the receiver R has decided on xS , i.e. if it has been able to output the
value xS originally sent by the sender.

The Adversary Model. The general adversary model was introduced by Hirt and
Maurer in [5]. In this work they study the security of multiparty computation
protocols with respect to an adversary structure, that is, a family of subsets of
the players; the adversary is able to corrupt one of these subsets. More formally,
an adversary structure Z for the set of players V is a monotone family of subsets
of V , i.e. Z ⊆ 2V , where all subsets of a set Z are in Z if Z ∈ Z. In this work we
obtain our results w.r.t. a general byzantine adversary, i.e., a general adversary
which can make all the corrupted players deviate arbitrarily from the given
protocol.

The Partial Knowledge Model [13]. In this setting each player v only has knowl-
edge of the topology of a certain subgraph Gv of G which includes v. Namely if we
consider the family G of subgraphs of G we use the view function γ : V (G) → G,
where γ(v) represents the subgraph of G over which player v has knowledge of
the topology. We extend the domain of γ by allowing as input a set S ⊆ V (G).
The output will correspond to the joint view of nodes in S. More specifically, if
γ(v) = Gv = (Vv, Ev) then γ(S) = GS = (

⋃
v∈S Vv,

⋃
v∈S Ev). The extensively

studied ad hoc model can be seen as a special case of the Partial Knowledge
Model, where we assume that the topology knowledge of each player is limited
to its own neighborhood, i.e., ∀v ∈ V (G), γ(v) = N (v).

In order to capture partial knowledge in this setting we need to define the
restriction of some structure to an a set of nodes.

Definition 1. For an adversary structure E and a node set A let EA = {Z ∩A |
Z ∈ E} denote the restriction of E to the set A.
1 As usual in the byzantine faults literature, the existence of authenticated channel

(u, v), guarantees that once a message is sent from node u to node v, the message will
be delivered intact to the receiver v and the receiver will be aware of the identity of
the sender u, i.e. no tampering of the message or identity spoofing can be performed
by the adversary.
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Hence, we assume that given the actual adversary structure Z each player v only
knows the possible corruption sets under his view Zv, which is equal to ZV (γ(v))

(the local adversary structure).
We denote an instance of the problem by the tuple I = (G,Z, γ, S,R). We

next define some useful protocol properties.
We say that an RMT protocol is resilient for an instance I if it achieves RMT

on instance I for any possible corruption set and any admissible behavior of the
corrupted players. We say that an RMT protocol is safe if it never causes the
receiver R to decide on an incorrect value in any instance. The importance of the
safety property is pointed out in [14], where it is regarded as a basic requirement
of a Broadcast algorithm; similarly, in the case of RMT it guarantees that if the
receiver does not have sufficient information to decide on the sender’s value, she
won’t eventually decide on an incorrect value or accept false data.

Definition 2 (Uniqueness of algorithm). Let A be a family of algorithms.
An algorithm A is unique (for RMT) among algorithms in A if the existence of
an algorithm of family A which achieves RMT in an instance I implies that A
also achieves RMT in I.

A unique algorithm A among A, naturally defines the class of instances in
which the problem is solvable by A-algorithms, namely the ones that A achieves
RMT in.

2 The Algebraic Structure of Partial Knowledge

In this section we delve into the algebraic structure of the knowledge of play-
ers regarding the adversary. We do this by first defining an operation used to
calculate their joint knowledge. As is proved in the following, this operation
allows the combination of local knowledge in an optimal way. The operation
takes into account potentially different adversarial structures, so that it is well
defined even if a corrupted player provides a different structure than the real
one to some honest player.

Definition 3. Let V be a finite node set; let also T = {(E , A) | E ⊆ 2A, A ⊆
V, E ismonotone} denote the space of all pairs consisting of a monotone family
of subsets of a node set along with that node set. The operation ⊕ : T × T → T,
is defined as follows:

(E , A) ⊕ (F , B) = ({Z1 ∪ Z2|(Z1 ∈ E) ∧ (Z2 ∈ F) ∧ (Z1 ∩ B = Z2 ∩ A)}, A ∪ B)

Informally, (E , A)⊕ (F , B) unites possible corruption sets from E and F that
‘agree’ on A∩B (see Fig. 1). The following theorem offers further insight on the
algebraic properties of this operation, by revealing a semilattice structure on the
space of partial knowledge obtained by the players. The semilattice structure is
shown by proving the commutativity, associativity and idempotence properties
of operation ⊕ (see [15]). The proof is deferred to the full version.
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A B

Z1 Z2

Z3 Z4

Z5 Z6

Fig. 1. Example of the ⊕ operation in the pairs (E , A), (F , B), with E = {Z1, Z3, Z5},
F = {Z2, Z4, Z6}: For (E , A) ⊕ (F , B) = (H, A ∪ B), we observe that Z1 ∪ Z2 and
Z3 ∪ Z4 belong to H while Z5 ∪ Z6 and Z1 ∪ Z4 do not.

Theorem 1. 〈T,⊕〉 is a semilattice.

From semilattice theory, it is well known that the algebraic definition of the
join-semilattice 2 〈T,⊕〉 implies a binary relation ≥ that partially orders T in
the following way: for all elements x, y ∈ T, x ≥ y if and only if x = x ⊕ y. This
binary relation provides the equivalent order theoretic definition of the same
semilattice 〈T,≥〉. The following theorem reveals the binary relation implied by
the ⊕ operation. Its proof is deferred to the full version.

Theorem 2. The partial ordering “≥” induced by the ⊕ operation on T satisfies
the following: for (E , A), (F , B) ∈ T, (E , A) ≥ (F , B) if and only if (B ⊆ A) ∧
(EB ⊆ F).

The semilattice structure guarantees that every non-empty finite subset of
〈T,≥〉 has a supremum with respect to the “≥” relation (also called a join).
Moreover it holds that for (E , A), (F , B) ∈ T, sup{(E , A), (F , B)} = (E , A) ⊕
(F , B). The latter implies a property of the ⊕ operation which is important in
our study. Namely,

Corollary 1. Let 〈T,≥〉 be a semilattice as defined above. For any z ∈ T it
holds that if x, y ≤ z, then x ⊕ y ≤ z.

Proof. The join of x, y is their least upper bound. Thus, since z is an upper
bound of x, y, it must also be greater or equal to their join, i.e. x ⊕ y. The
Corollary follows. ��

Returning to our problem after this short detour, notice that for any adver-
sary structure Z it holds that (ZA, A), (ZB , B) ≤ (ZA∪B, A ∪ B). We immedi-
ately get by Corollary 1 the following corollary.

Corollary 2. For any adversary structure Z and node sets A,B:

if (H, A ∪ B) = (ZA, A) ⊕ (ZB , B) thenZ(A∪B) ⊆ H
2 The notion of meet-semilattice can be used as well by inversing the ordering.
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What Corollary 2 tells us is that the ⊕ operation gives the maximal (w.r.t
inclusion) possible adversary structure that is indistinguishable by two agents
that know ZA and ZB respectively, i.e., it coincides with their knowledge of the
adversary structures on sets A and B respectively.

Now recall that Zu = ZV (γ(u)). This allows us to define the combined knowl-
edge of a set of nodes B about the adversary structure Z as follows. For a given
adversary structure Z, a view function γ and a node set B let

(ZB , V (γ(B))) =
⊕

v∈B

(Zv, V (γ(v))) =
⊕

v∈B

(ZV (γ(v)), V (γ(v)))

Note that ZB exactly captures the maximal adversary structure possible,
restricted in γ(B), relative to the initial knowledge of players in B. Also notice
that using Corollary 2 we get ZV (γ(B)) ⊆ ZB . The interpretation of this inequal-
ity in our setting, is that what nodes in B conceive as the worst case adversary
structure indistinguishable to them, always contains the actual adversary struc-
ture in their scenario.

3 A Tight Condition for RMT

In RMT we want the sender S to send a message to some player R (the receiver)
in the network. We assume that the sender knows the id of player R. We denote
an instance of the problem by the tuple (G,Z, γ, S,R). To analyze feasibility of
RMT we introduce the notion of RMT-cut.

Definition 4 (RMT-cut). Let (G,Z, γ, S,R) be an RMT instance and C =
C1 ∪ C2 be a cut in G, partitioning V \ C in two sets A,B′ �= ∅ where S ∈ A
and R ∈ B′. Let B ⊆ B′ be the node set of the connected component that R lies
in. Then C is a RMT-cut iff C1 ∈ Z and C2 ∩ V (γ(B)) ∈ ZB.

The necessary condition proof adapts techniques and ideas from [13,14] to
the partial knowledge with general adversary setting.

Theorem 3 (Necessity). Let (G,Z, γ, S,R) be an RMT instance. If there
exists a RMT-cut in G then no safe and resilient RMT algorithm exists for
(G,Z, γ, S,R).

Proof. Let C = C1 ∪C2 be the RMT-cut which partitions V \C in sets A,B �= ∅
s.t. S ∈ A and R ∈ B. Without loss of generality assume that B is connected.
If it is not, then by adding to A all nodes that do not belong to the connected
component of R, an RMT-cut with the desired property is obtained. Consider a
second instance where Z ′ = ZB and all other parameters are the same as in the
original instance. Recall that ZB is defined using the ⊕ operator and exactly
captures (by Corollary 2) the worst case adversary structure possible, restricted
to V (γ(B)), relative to the initial knowledge of players in B. Hence, all nodes in
B have the same initial knowledge in both instances, since ZB = Z ′

B .
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The proof is by contradiction. Suppose that there exists a safe algorithm A
which is resilient for (G,Z, γ, S,R). We consider the following executions σ and
σ′ of A :

– Execution σ is on instance (G,Z, γ, S,R), with sender’s value xS = 0, and
corruption set C1; in each round, each corrupted player in C1 performs the
actions that its corresponding player performs in the respective round of
execution σ′ (where C1 consists of honest players only).

– Execution σ′ is on instance (G,Z ′, γ, S,R), with sender’s value xS = 1, and
corruption set C2; in each round, each corrupted player in C2 performs the
actions that its corresponding player performs in the respective round of
execution σ (where C2 consists of honest players only).

Note that C1, C2 are admissible corruption sets in scenarios σ, σ′ respectively
since they belong to Z and Z ′ (resp.) It is easy to see that C1 ∪ C2 is a cut
which separates S from B in both instances and that actions of every node of
this cut are identical in both executions σ, σ′. Consequently, the actions of any
honest node w ∈ B must be identical in both executions. Since, by assumption,
algorithm A is resilient on (G,Z, γ, S,R), R must decide on the sender’s message
0 in execution σ, and must do the same in execution σ′. However, in execution σ′

the sender’s message is 1. Therefore A makes R decide on an incorrect message
in (G,Z ′, γ, S,R). This contradicts the assumption that A is safe. ��

3.1 The RMT Partial Knowledge Algorithm (RMT-PKA)

We next present the RMT Partial Knowledge Algorithm (RMT-PKA), an RMT
protocol which succeeds whenever the condition of Theorem 3 (in fact, its nega-
tion) is met, rendering it a tight condition on when RMT is possible. To prove
this we provide some supplementary notions.

In RMT-PKA there are two types of messages exchanged. Type 1 messages
are used to propagate the sender’s value and are of the form (x, p) where x ∈ X
and p is a path 3. Type 2 messages of the form ((v, γ(v),Zv), p) are used for every
node v to propagate its initial information γ(v),Zv throughout the graph. Let M
denote a subset of the messages of type 1 and 2 that the receiver node R receives
at some round of the protocol on (G,Z, γ, S,R). We will say that value(M) = x
if and only if all the type 1 messages of M report the same sender value x, i.e.,
for every such message (y, p), it holds that y = x, for some x ∈ X. Observe that
M may consist of messages which contain contradictory information. We next
define the form of a message set M which contains no contradictory information
in our setting (a valid set M).

Definition 5 (Valid set M). A set M of both type 1 and type 2 messages
corresponds to a valid scenario, or more simply is valid, if

3 By p||v (appearing in the algorithm) we will denote the concatenation of path p with
node v.
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– ∃x ∈ X s.t. value(M) = x. That is, all type 1 messages relay the same x as
sender’s value.

– ∀m1,m2 ∈ M of type 2, their first component (the part of the pair which
comprises of the local information of a node) is the same when they refer to the
same node. That is, if m1 = ((v, γ(v),Zv), p) and m2 = (((v′, γ′(v),Z ′

v), p′),
then v = v′ implies that γ(v) = γ′(v) and Zv = Z ′

v.

For every valid M we can define the pair (GM , xM ) where xM = value(M);
we assume that xM = ⊥ if no type 1 messages are included in M . To define
GM let VM be the set of nodes u for which the information γ(u),Zu is included
in M , namely VM = {v | ((v, γ(v),Zv), p) ∈ M for some pathp}. Then, GM is
the node induced subgraph of graph γ(VM ) on node set VM . Therefore, a valid
message set M uniquely determines the pair (GM , xM ). We next propose two
notions that we use to check if a valid set M contains correct information.

Definition 6 (full message set). A full message set M received by R, is a
valid set M , with value(M) �= ⊥, that contains all the S � R paths which
appear in GM as part of type 1 messages.

Next we define the notion of adversary cover of a full message set M . If such
a cut exists, then there is a scenario where all propagated values might be false.

Definition 7 (Adversary cover of full message set M). A set C ⊆ VM is
an adversary cover of full message set M if C has the following property: C is a
cut between S and R on GM and if B is the node set of the connected component
that R lies in, it holds that (C ∩ V (γ(B))) ∈ ZB.

With the predicate nocover(M) we will denote the non existence of an adver-
sary cover of M . The next theorem states the somewhat counterintuitive safety
property of RMT-PKA, i.e., that the receiver will never decide on an incor-
rect value despite the increased adversary’s attack capabilities, which includes
reporting fictitious nodes and false local knowledge. The proof is deferred to the
full version.

Theorem 4 (RMT-PKA Safety). RMT-PKA is safe.

The sufficiency proof combines techniques from [13] (correctness of the Path
Propagation Agorithm) with the novel notions of full message set M , adversary
cover of M and corresponding graph GM .

Theorem 5 (Sufficiency). Let (G,Z, γ, S,R) be an RMT instance. If no
RMT-cut exists, then RMT-PKA achieves reliable message transmission.

Proof. Observe that if R ∈ N (S) then R trivially decides on xS due to the
sender propagation rule, since the sender is honest. Assuming that no RMT-cut
exists, we will show that if R /∈ N (S) then R will decide on xS due to the full
message set propagation rule.

Let T ∈ Z be any admissible corruption set and consider the run eT of
RMT-PKA where T is the actual corruption set. Let P be the set of all paths
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RMT Partial Knowledge Algorithm (RMT-PKA)

Input for each node v: sender’s label S, γ(v), Zv.
Additional input for S : value xS ∈ X (message space).
Type 1 message format : pair (x, p)
Type 2 message format : pair ((u, γ(u), Zu), p),
where x ∈ X, u the id of some node, γ(u) is the view of node u, Zu is the local
adversary structure of node u, and p is a path of G (message’s propagation trail).

Code for S: send messages (xS , {S}) and ((S, γ(S), ZS), {S}) to all neighbors and
terminate.

Code for v �∈ {S, R}: send message ((v, γ(v), Zv), {v}) to all neighbors.

upon reception of type 1 or type 2 message (a, p) from node u do:

if (v ∈ p) ∨ (tail(p) �= u)(We use tail(p) to denote the last node of path p.
Checking whether tail(p) �= u we ensure that at least one corrupted node will be
included in a faulty propagation path.) then discard (a, p) else send (a, p||v) to all
neighbours.

Code for R: Initialize MR ← ∅
upon reception of type 1 or type 2 message (x, p) from node u do:

if (v ∈ p) ∨ (tail(p) �= u) then discard (x, p) else MR ← MR ∪ (a, p)
if (x, p) is a type 1 message then

lastmsg ← (x, p)
if decision(MR, lastmsg) = x then output x and terminate.

function decision(MR, lastmsg)

if R ∈ N (S) then

if lastmsg = (xS , {S}) then return xS

else return ⊥.

for all valid M ⊆ MR with value(M) = value(lastmsg) do

compute graph GM

M1 ← type 1 messages of M
P1 ← set of all paths p with (x, p) ∈ M1

PS,R ← set of all S � R paths of GM

if (PS,R ⊆ P1) ∧ nocover(M) then � full message set with no
return value(lastmsg) else return ⊥. � adversary cover

function nocover(M)

check ← true

for all C ⊆ VM do

if C is a (S, R) cut on GM then

B ← connected component of R in GM \ C
(ZB , V (γ(B))) ← ⊕

v∈B

(Zv, V (γ(v))) � joint adversary structure

if (C ∩ V (γ(B))) ∈ ZB then check ←false

return check
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connecting S with R and are composed entirely by nodes in V (G) \ T (honest
nodes). Observe that P �= ∅, otherwise T is a cut separating S from R which is
trivially a RMT-cut, a contradiction.

Since paths in P are entirely composed by honest nodes, it should be clear
by the protocol that by round |V (G)|, R will have obtained xS through all paths
in P by receiving the corresponding type 1 messages M1. Furthermore, by round
|V (G)|, R will have received type 2 messages set M2 which includes information
for all the nodes connected with R via paths that do not pass through nodes in
T . This includes all nodes of paths in P . Consequently, R will have received the
full message set M = M1 ∪ M2 with value(M) = xS .

We next show that there is no adversary cover for M and thus R will decide
on xS through the full message set propagation rule on M . Assume that there
exists an adversary cover C for M . This, by definition means that C is a cut
between S,R on GM and if B is the node set of the the connected component
that R lies in, it holds that and (C∩V (γ(B))) ∈ ZB (observe that R can compute
ZB using the information contained in M2 as defined in the previous paragraph).
Then obviously T ∪ C is a cut in G separating S from R, since every path of G
that connects S with R contains at least a node in T ∪ C. Let the cut T ∪ C
partition V (G) \ {T ∪ C} in the sets A,B s.t. S ∈ A. Then clearly T ∪ C is an
RMT cut by definition, a contradiction. Thus there is no adversary cover for M
and R will decide on xS . Moreover, since RMT-PKA is safe, the receiver will
not decide on any other value different from xS . ��
Corollary 3 (Uniqueness). RMT-PKA is unique among safe algorithms, i.e.,
given an RMT instance (G,Z, γ, S,R), if there exists any safe RMT algorithm
which is resilient for this instance, then RMT-PKA also achieves reliable mes-
sage transmission on this instance.

4 Conclusions and Open Questions

Regarding the partial knowledge model, the RMT-PKA protocol employs topol-
ogy information exchange between players. Although topology discovery was not
our motive, techniques used here (e.g. the ⊕ operation) may be applicable to
that problem under a Byzantine adversary [4,11]. A comparison with the tech-
niques used in this field might give further insight on how to efficiently extract
information from maliciously crafted topological data.

We have shown that RMT-PKA protocol is unique for the partial knowledge
model; this only addresses the feasibility issue. A natural question is whether
and when we can devise a unique and also efficient algorithm for this setting.
The techniques used so far to reduce the communication complexity (e.g. [8])
do not seem to be directly applicable to this model. So, exploring this direction
further is particularly meaningful.
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Abstract. Given a vertex-weighted graph G = (V,E) and a set S ⊆
V , a subset feedback vertex set X is a set of the vertices of G such
that the graph induced by V \ X has no cycle containing a vertex of
S. The Subset Feedback Vertex Set problem takes as input G and
S and asks for the subset feedback vertex set of minimum total weight.
In contrast to the classical Feedback Vertex Set problem which is
obtained from the Subset Feedback Vertex Set problem for S = V ,
restricted to graph classes the Subset Feedback Vertex Set problem
is known to be NP-complete on split graphs and, consequently, on chordal
graphs. Here we give the first polynomial-time algorithms for the problem
on two subclasses of AT-free graphs: interval graphs and permutation
graphs. Moreover towards the unknown complexity of the problem for
AT-free graphs, we give a polynomial-time algorithm for co-bipartite
graphs. Thus we contribute to the first positive results of the Subset
Feedback Vertex Set problem when restricted to graph classes for
which Feedback Vertex Set is solved in polynomial time.

1 Introduction

For a given set S of vertices of a graph G, a subset feedback vertex set X is
a set of vertices such that every cycle of G[V \ X] does not contain a vertex
from S. The Subset Feedback Vertex Set problem takes as input a graph
G = (V,E) and a set S ⊆ V and asks for the subset feedback vertex set of
minimum cardinality. In the weighted version every vertex of G has a weight and
the objective is to compute a subset feedback vertex set with the minimum total
weight. The Subset Feedback Vertex Set problem is a generalization of the
classical Feedback Vertex Set problem in which the goal is to remove a set of
vertices X such that G[V \X] has no cycles. Thus by setting S = V the problem
coincides with the NP-complete Feedback Vertex Set problem [19]. Both
problems find important applications in several aspects that arise in optimization
theory, constraint satisfaction, and bayesian inference [1,2,14,15]. Interestingly
the Subset Feedback Vertex Set problem for |S| = 1 also coincides with the
NP-complete Multiway Cut problem [17] in which the task is to disconnect a
predescribed set of vertices [9,20].

c© Springer-Verlag GmbH Germany 2017
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Subset Feedback Vertex Set was first introduced by Even et al. who
obtained a constant factor approximation algorithm for its weighted version [14].
The unweighted version in which all vertex weights are equal has been proved to
be fixed parameter tractable [13]. Moreover the fastest algorithm for the weighted
version in general graphs runs in O∗(1.87n) time1 by enumerating its minimal
solutions [17], whereas for the unweighted version the fastest algorithm runs in
O∗(1.76n) time [16]. As the unweighted version of the problem is shown to be
NP-complete even when restricted to split graphs [17], there is a considerable
effort to reduce the running time on chordal graphs, a proper superclass of split
graphs, and more general on other classes of graphs. Golovach et al. considered
the weighted version and gave an algorithm that runs in O∗(1.68n) time for
chordal graphs [21]. Reducing the existing running time even on chordal graphs
has been proved to be quite challenging and only for the unweighted version of
the problem a faster algorithm was given that runs in O∗(1.62n) time [10]. In fact
the O∗(1.62n)-algorithm given in [10] runs for every graph class which is closed
under vertex deletions and edge contractions, and on which the weighted Feed-
back Vertex Set problem can be solved in polynomial time. Thus there is an
algorithm that runs in O∗(1.62n) time for the unweighted version of the Sub-
set Feedback Vertex Set problem when restricted to AT-free graphs [10],
a graph class that properly contains permutation graphs and interval graphs.
Here we show that for the classes of permutation graphs and interval graphs we
design a much faster algorithm even for the weighted version of the problem.

As Subset Feedback Vertex Set is a generalization of the classical Feed-
back Vertex Set problem, let us briefly give an overview of the complexity of
Feedback Vertex Set on related graph classes. Concerning the complexity
of Feedback Vertex Set it is known to be NP-complete on bipartite graphs
[33] and planar graphs [19], whereas it becomes polynomial-time solvable on the
classes of bounded clique-width graphs [8], chordal graphs [11,32], interval graphs
[28], permutation graphs [4–6,26], cocomparability graphs [27], and, more gen-
erally, AT-free graphs [25]. Despite the many positive and negative results of the
Feedback Vertex Set problem, very few similar results are known concerning
the complexity of Subset Feedback Vertex Set. Clearly for graph classes
for which the Feedback Vertex Set problem is NP-complete, so does the
Subset Feedback Vertex Set problem. However as the Subset Feedback
Vertex Set problem is more general that Feedback Vertex Set problem, it
is natural to study its complexity for graph classes for which Feedback Vertex
Set is polynomial-time solvable. In fact restricted to graph classes there is only
a negative result for the Subset Feedback Vertex Set problem regarding
its NP-completeness on split graphs [17]. Such a result, however, implies that
there is an interesting algorithmic difference between the two problems, as the
Feedback Vertex Set problem is known to be polynomial-time computable
for split graphs [11,32].

Both interval graphs and permutation graphs have unbounded clique-width
[23] and, therefore, any algorithmic metatheorem related to MSOL formulation

1 The O∗ notation is used to suppress polynomial factors.
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is not applicable [12]. Let us also briefly explain that extending the approach
of [25] for the Feedback Vertex Set problem when restricted to AT-free
graphs is not straightforward. A graph is AT-free if for every triple of pair-
wise non-adjacent vertices, the neighborhood of one of them separates the two
others. The class of AT-free graphs is well-studied and it properly contains inter-
val, permutation, and cocomparability graphs [7,22]. One of the basic tools in
[25] relies on growing a small representation of an independent set into a suit-
able forest. Although such a representation is rather small on AT-free graphs
(and, thus, on interval graphs or permutation graphs), when considering Sub-
set Feedback Vertex Set it is not necessary that the fixed set induces an
independent set which makes it difficult to control how the partial solution may
be extended. Therefore the methodology described in [25] cannot be trivially
extended towards the Subset Feedback Vertex Set problem.

Our Results. Here we initiate the study of Subset Feedback Vertex
Set restricted on graph classes from the positive perspective. We consider its
weighted version and give the first positive results on permutation graphs and
interval graphs, both being proper subclasses of AT-free graphs. As already
explained, we are interested towards subclasses of AT-free graphs since for
chordal graphs the problem is already NP-complete [17]. Permutation graphs
and interval graphs are unrelated to split graphs and are both characterized by
a linear structure with respect to a given vertex ordering [7,22,32]. For both
classes of graphs we design polynomial-time algorithms based on dynamic pro-
gramming of subproblems defined by passing the vertices of the graph according
to their natural linear ordering. One of our key ingredients is that during the
pass of the dynamic programming we augment the considered vertex set and
we allow the solutions to be chosen only from a specific subset of the vertices
rather than the whole vertex set. Although for interval graphs such a strategy
leads to a simple algorithm, the case of permutation graphs requires further
descriptions of the considered subsolutions by augmenting the considered part
of the graph with a small number of additional vertices. Moreover we consider
the class of co-bipartite graphs (complements of bipartite graphs) and settle
its complexity status. We show that the number of minimal solutions of a co-
bipartite graph is polynomial which implies a polynomial-time algorithm of the
Subset Feedback Vertex Set problem for the class of co-bipartite graphs.
Figure 1 summarizes our overall results.

AT-free ? chordal
NP-complete
unweighted

co-bipartite
P
weighted

permutation
P
weighted

interval
P
weighted

split
NP-complete
unweighted

⊃⊃⊂ ⊂ ⊃

Fig. 1. The computational complexity of the Subset Feedback Vertex Set problem
restricted to the considered graph classes. All polynomial-time results (P) are obtained
in this work, whereas the NP-completeness result of split graphs is due to [17].
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2 Preliminaries

We refer to [7,22] for our standard graph terminology. A path is a sequence
of distinct vertices 〈v1v2 · · · vk〉 where each pair of consecutive vertices vivi+1

forms an edge of G. If in addition v1vk is an edge then we obtain a cycle. In this
paper, we distinguish between paths (or cycles) and induced paths (or induced
cycles). By an induced path (or cycle) of G we mean a chordless path (or cycle).
A chordless cycle on four vertices is referred to as square. A weighted graph
G = (V,E) is a graph, where each vertex v ∈ V is assigned a weight that is a
positive integer number. We denote by w(v) the weight of each vertex v ∈ V .
For a vertex set A ⊂ V , the weight of A is

∑
v∈A w(v).

The Subset Feedback Vertex Set (SFVS) problem is defined as follows: given
a weighted graph G and a vertex set S ⊆ V , find a vertex set X ⊂ V , such that
all cycles containing vertices of S, also contains a vertex of X and

∑
v∈X w(v) is

minimized. In the unweighted version of the problem all weights are equal and
positive. A vertex set X is defined as minimal subset feedback vertex set if no
proper subset of X is a subset feedback vertex set for G and S. The classical
Feedback Vertex Set (FVS) problem is a special case of the subset feedback
vertex set problem with S = V . Note that a minimum weight subset feedback
vertex set is dependent on the weights of the vertices, whereas a minimal subset
feedback vertex set is only dependent on the vertices and not their weights.
Clearly, both in the weighted and the unweighted versions, a minimum subset
feedback vertex set must be minimal.

An induced cycle of G is called S-cycle if a vertex of S is contained in the
cycle. We define an S-forest of G to be a vertex set Y ⊆ V such that no cycle in
G[Y ] is an S-cycle. An S-forest Y is maximal if no proper superset of Y is an
S-forest. Observe that X is a minimal subset feedback vertex set if and only if
Y = V \ X is a maximal S-forest. Thus, the problem of computing a minimum
weighted subset feedback vertex set is equivalent to the problem of computing
a maximum weighted S-forest. Let us denote by FS the class of S-forests. In
such terms, given the graph G and the subset S of V , we are interested in
finding a maxw {Y ⊆ V | G[Y ] ∈ FS}, where maxw selects a vertex set having
the maximum weight. It is not difficult to see that for any clique C of G, an
S-forest of G that contains a vertex of S ∩C contains at most two vertices of C.

3 Computing SFVS on Interval Graphs

Here we present a polynomial-time algorithm for the SFVS problem on interval
graphs. A graph is an interval graph if there is a bijection between its vertices
and a family of closed intervals of the real line such that two vertices are adjacent
if and only if the two corresponding intervals intersect. Such a bijection is called
an interval representation of the graph, denoted by I. Notice that every induced
subgraph of an interval graph is an interval graph. Moreover it can be decided
in linear time whether a given graph is an interval graph, and if so, an interval
representation can be generated in linear time [18]. Moreover it is known that
any induced cycle of an interval graph is an induced triangle [28,32].
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Ve = {a, b, c, d, e}
V<e = {a, b, c, d}
V�e = ∅
Vf = {a, b, c, d, e, f}

V<f = {a, b, c, d, e}
V�f = {a, b, c}

Fig. 2. An interval graph given by its interval representation and the corresponding
sets of Ve and Vf . Observe that <f = e whereas �f = c. Also notice that the intervals
that are properly contained within the gray area form the set Ve.

As already mentioned, instead of finding a subset feedback vertex set X of
minimum weight of (G,S) we concentrate on the equivalent problem of finding a
maximum weighted S-forest Y of (G,S). We first define the necessary vertex sets.
Let G be a weighted interval graph and let I be its interval representation. The
left and right endpoints of an interval i, 1 ≤ i ≤ n, are denoted by �(i) and r(i),
respectively. The intervals are numbered from 1 to n according to their ascending
r(i). For technical reasons, we add an interval with label 0 that does not belong
to S, has weight zero, and augment I to I+ by setting �(0) = mini∈I{�(i)} − 2
and r(0) = mini∈I{�(i)}−1. Notice that interval 0 is non-adjacent to any vertex
of G. Clearly if Y is a maximum weighted S-forest for G[I+] then Y \ {0} is a
maximum weighted S-forest for G[I].

We consider the two relations on V that are defined by the endpoints of the
intervals as follows: i ≤� j ⇔ �(i) ≤ �(j) and i ≤r j ⇔ r(i) ≤ r(j). Since all
endpoints of the collection’s intervals are distinct, ≤� and ≤r are total orders on
V . For a set of vertices U ⊆ V we write �- min U to denote the minimum vertex
of U with respect to ≤� and we write r- max U to denote the maximum vertex
of U with respect to ≤r. For a vertex i ∈ V we let Vi =def {h ∈ V : h ≤r i}. We
define two types of predecessors of the interval i �= 0 with respect to ≤r, which
correspond to the subproblems that our algorithm wants to solve:
<i =def r- max(Vi \ {i}) and �i =def r- max(Vi \ ({i} ∪ {h ∈ V : {h, i} ∈ E})).

Observe that for two vertices i, x ∈ V with r(i) < r(x), x ∈ V \ Vi. An
example of an interval representation that depicts the corresponding notation of
Vi is shown in Fig. 2. By definition we get the following partitions of V -sets.

Observation 1. Let i ∈ V \ {0} and let j ∈ V \ Vi such that {i, j} ∈ E. Then,
(1) Vi = V<i ∪ {i} and (2) V<i = V�j ∪ {h ∈ V<i : {h, j} ∈ E}.

Next we define the sets that our dynamic programming algorithm uses in
order to compute the S-forest of G that has maximum weight.

A-sets: Let i ∈ V . Then, Ai =def maxw{X ⊆ Vi : G[X] ∈ FS}.
B-sets: Let i ∈ V , x ∈ V \ Vi. Then, Bx

i =def maxw{X ⊆
Vi : G[X ∪ {x}] ∈ FS}.
C-sets: Let i ∈ V and let x, y ∈ V \ (Vi ∪ S) such that x <� y and {x, y} ∈ E.
Then, Cx,y

i =def maxw{X ⊆ Vi : G[X ∪ {x, y}] ∈ FS}.
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Since V0 = {0} and w(0) = 0, A0 = ∅ and, since Vn = V , An = maxw{X ⊆
V : G[X] ∈ FS}. The following lemmas state how to recursively compute all
A-sets, B-sets and C-sets besides A0.

Lemma 1. Let i ∈ V \ {0}. Then Ai = maxw

{
A<i, B

i
<i ∪ {i}}.

Proof. By Observation 1 (1), Vi = V<i ∪ {i}. If i /∈ Ai, then we have Ai = A<i,
otherwise we have Ai = Bi

<i ∪ {i}, since Bi
<i is the maxw subset of V<i such

that the graph induced by its union with {i} contains no S-cycle by definition.
��

Lemma 2. Let i ∈ V and let x ∈ V \ Vi. Moreover, let x′ = �-min{i, x} and let
y′ be the remaining vertex of {i, x}.
(1) If {i, x} /∈ E, then Bx

i = Ai.

(2) If {i, x} ∈ E, then Bx
i =

⎧
⎨

⎩

maxw

{
Bx

<i, B
x′
�y′ ∪ {i}

}
, if i ∈ S or x ∈ S

maxw

{
Bx

<i, C
x′,y′
<i ∪ {i}

}
, if i, x /∈ S.

Proof. Assume first that {i, x} /∈ E. Then r(i) < �(x), so that x has no neighbor
in G[Vi ∪ {x}]. Thus no subset of Vi ∪ {x} containing x induces an S-cycle of G,
implying that Bx

i = Ai.
Next assume that {i, x} ∈ E. If i /∈ Bx

i then according to Observation 1 (1)
it follows that Bx

i = Bx
<i. So let us assume in what follows that i ∈ Bx

i . Observe
that Bx

i \ {i} ⊆ V<i, by Observation 1 (1). We distinguish two cases according
to whether i or x are elements of S.

– Let i ∈ S or x ∈ S. Assume there is a vertex h ∈ Bx
i \{i} such that {h, y′} ∈ E.

Then we know that �(y′) < r(h) and by definition we have �(x′) < �(y′) and
r(h) < r(x′). This particularly means that h is adjacent to x′. This however
leads to a contradiction since 〈h, x′, y′〉 is an induced S-triangle of G. Thus
for any vertex h ∈ Bx

i \ {i} we know that {h, y′} /∈ E. By Observation 1 (2)
notice that Bx

i \ {i} ⊆ V�y′ . Also observe that the neighborhood of y′ in
G[V�y′ ∪ {x′, y′}] is {x′}. Thus no subset of V�y′ ∪ {x′, y′} that contains y′

induces an S-cycle of G. Therefore Bx
i = Bx′

�y′ ∪ {i}.

– Let i, x /∈ S. Since Vi = V<i ∪ {i} and x′ <� y′, we get Bx
i = Cx′,y′

<i ∪ {i}.

Therefore in all cases we reach the desired equations. ��
Lemma 3. Let i ∈ V and let x, y ∈ V \(Vi∪S) such that x <� y and {x, y} ∈ E.
Moreover, let x′ = �-min{i, x, y} and let y′ = �-min({i, x, y} \ {x′}).

1. If {i, y} /∈ E, then Cx,y
i = Bx

i .

2. If {i, y} ∈ E, then Cx,y
i =

{
Cx,y

<i , if i ∈ S

maxw

{
Cx,y

<i , Cx′,y′
<i ∪ {i}

}
, if i /∈ S.
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Proof. Assume first that {i, y} /∈ E. Then r(i), �(x) < �(y) < r(x), so that the
neighborhood of y in G[Vi∪{x, y}] is {x}. Thus no subset of Vi∪{x, y} that contains
y induces an S-cycle of G. By definitions it follows that Cx,y

i = Bx
i .

Assume next that {i, y} ∈ E. Then �(x) < �(y) < r(i) < r(x), r(y), so that
〈i, x, y〉 is an induced triangle of G. If i /∈ Cx,y

i then by Observation 1 (1) we have
Cx,y

i = Cx,y
<i . Suppose that i ∈ Cx,y

i . If i ∈ S then 〈i, x, y〉 is an induced S-triangle
of G, contradicting the fact that i ∈ Cx,y

i . By definition, x /∈ S and y /∈ S. Hence
i ∈ Cx,y

i implies that S ∩{i, x, y} = ∅. We will now show that Cx,y
i = Cx′,y′

<i ∪{i}.
Notice that Cx,y

i \ {i} ⊆ V<i, so Cx,y
i ⊆ Cx′,y′

<i ∪{i} by definition. To complete
the proof we show Cx′,y′

<i ∪ {i} ⊆ Cx,y
i as well. Let z′ be the vertex of {i, x, y} \

{x′, y′}. Observe that by the leftmost ordering we have �(x′) < �(y′) < �(z′).
By definition no subset of Cx,y

i ∪ {x, y} induces an S-triangle in G. Assume for
contradiction that a subset ofCx′,y′

<i ∪{x′, y′, z′} containing z′ induces anS-triangle
〈v1, v2, z′〉 in G. Since S ∩ {x′, y′, z′} = ∅, without loss of generality, assume that
v1 ∈ S. This particularly means that v1 ∈ Cx′,y′

<i ⊆ V<i. Regarding the vertex
ordering notice that the S-triangle implies that �(z′) < r(v1). By the fact that v1 ∈
V<i we have r(v1) < r(x′), r(y′), r(z′). Since �(x′) < �(y′) < �(z′), the previous
inequalities imply that {v1, x

′}, {v1, y
′} ∈ E. Thus 〈v1, x′, y′〉 is an induced S-

triangle in G, leading to a contradiction. Therefore Cx′,y′
<i ∪ {i} ⊆ Cx,y

i as desired.
��

Now we are equipped with our necessary tools to obtain the main result of
this section, namely a polynomial-time algorithm for SFVS on interval graphs.

Theorem 1. Subset Feedback Vertex Set can be solved in O(n3) time on
interval graphs.

4 Computing SFVS on Permutation Graphs

Let π = π(1), . . . , π(n) be a permutation over {1, . . . , n}. The position of an
integer i in π is denoted by π−1(i). Given a permutation π, the inversion graph
of π, denoted by G(π), has vertex set {1, . . . , n} and two vertices i, j are adjacent
if (i − j)(π(i) − π(j)) < 0. A graph is a permutation graph if it is isomorphic to
the inversion graph of a permutation [7,22]. For our purposes, we assume that a
permutation graph is given as a permutation π and equal to the defined inversion
graph. Permutation graphs are the intersection graphs of segments between two
horizontal parallel lines, that is, there is a one-to-one mapping from the segments
onto the vertices of a graph such that there is an edge between two vertices of
the graph if and only if their corresponding segments intersect. We refer to
the two horizontal lines as top and bottom lines. This representation is called a
permutation diagram and a graph is a permutation graph if and only if it has
a permutation diagram. Given a permutation graph, its permutation diagram
can be constructed in linear time [30]. It is important to note that any induced
cycle of a permutation graph is either an induced triangle or an induced square
[4–6,26,32].
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We assume that we are given a permutation graph G = (V,E) such that
G = G(π) along with S ⊆ V and a weight function w : V → R

+ as input. We
add an isolated vertex in G and augment π to π′ so that π′(0) = 0. Further we
assign zero value for 0’s weight and assume that 0 /∈ S.

We consider the two relations on V defined as follows: i ≤t j if and only if
i ≤ j and i ≤b j if and only if π−1(i) ≤ π−1(j) for all i, j ∈ V ∪ {0}. It is not
difficult to see that both ≤t and ≤b are total orders on V ; they are exactly the
orders in which the integers appear on the top and bottom line, respectively,
in the permutation diagram. Moreover we write i <t j or i <b j if and only if
i �= j and i ≤t j or i ≤b j, respectively. We extend ≤t and ≤b to support sets
of vertices as follows. For two sets of vertices L and R we write L ≤t R (resp.,
L ≤b R) if for any two vertices u ∈ L and v ∈ R, u ≤t v (resp., u ≤b v).

Two vertices i, j ∈ V are called crossing pair, denoted by ij, if i ≤t j and
j ≤b i. We denote by X the set of all crossing pairs in G. Let I = {ii ∈ X :
i ∈ V }, so that the crossing pairs of X \ I correspond exactly to the edges of G.
Given two crossing pairs gh, ij ∈ X we define two partial orders ≤� and ≤r:

gh ≤� ij ⇔ g ≤t i and h ≤b j and gh ≤r ij ⇔ g ≤b i and h ≤t j.

Given a vertex set X ⊆ V we denote by X [X] the set of all crossing pairs
of G formed exclusively from vertices of X. It is not difficult to see that the
minimum crossing pair of X [X] with respect to ≤� and the maximum crossing
pair contained in X [X] with respect to ≤r are both well defined; we write �- min
and r- max to denote them respectively.

We next define the predecessors of a crossing pair with respect to ≤r, which
correspond to the subproblems that our dynamic programming algorithm wants
to solve. Let ij ∈ X be a crossing pair. We define the set of vertices that induce
the part of the subproblem that we consider at each crossing pair as follows:
Vij =def {h ∈ V : hh ≤r ij}. Let x be a vertex such that i <b x or j <t x. Notice
that Vij does not contain x by definition. The predecessors of the crossing pair
ij �= 00 are defined as follows:

�ij =def r- max X [Vij \ {j}], �ij =def r- max X [Vij \ {i}],
<ij =def r- max X [Vij \ {i, j}],
�ij =def r- max X [Vij \ ({i, j} ∪ {h ∈ V : {h, i} ∈ E or {h, j} ∈ E})], and
<ij�xx =def r- max X [Vij \ {h ∈ V : {h, x} ∈ E}].

Although it seems somehow awkward to use one the symbols {�,�, <,�, <�}
for the defined predecessors, we stress that such predecessors are required only
to describe the necessary subset Vgh of Vij . Moreover it is not difficult to see that
each of the symbol gravitates towards a particular meaning with respect to the
top and bottom orderings as well as the non-adjacency relationship. An example
of a permutation graph that illustrates the defined predecessors is given in Fig. 3.
With the above defined predecessors of ij, we show how Vij can be partitioned
into smaller sets of vertices with respect to a suitable predecessor.

Observation 2. Let ij ∈ X \ {00} and let x ∈ V \ Vij . Then,
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e

f

f

g

g

h

h

�dg = df
�dg = gg
<dg = af
�dg = ac

<dg�hh = bb

Vdg = {a, b, c, d, f, g}
V�dg = {a, b, c, d, f}
V�dg = {a, b, c, f, g}
V<dg = {a, b, c, f}
V�dg = {a, b, c}

Fig. 3. A permutation graph given by its permutation diagram and the set Vdg of the
crossing pair dg together with the corresponding predecessors of dg. Observe that the
line segments that are properly contained within the gray area form the set Vdg.

(1) Vij = V�ij ∪ {j} = V�ij ∪ {i} = V<ij ∪ {i, j},
(2) V<ij = V�jj ∪ {h ∈ V<ij : {h, j} ∈ E} = V�ii ∪ {h ∈ V<ij : {h, i} ∈ E},
(3) V�ii = V�ij ∪ {h ∈ V�ii : {h, j} ∈ E},
(4) V�jj = V�ij ∪ {h ∈ V�jj : {h, i} ∈ E}, and
(5) V<ij = V<ij�xx ∪ {h ∈ V<ij : {h, x} ∈ E}.

It is clear that for any edge {i, j} ∈ E either i <t j and j <b i hold, or j <t i
and i <b j hold. If further ij ∈ X \ I then we know that i <t j and j <b i.

Our dynamic programming algorithm relies on similar sets that we used for
the case of interval graphs. That is, we need to describe appropriate sets that
define the solutions to be chosen only from a specific part of the considered
subproblem. Although for interval graphs we showed that adding two vertices
into such sets is enough, for permutation graphs we need to consider at most
two newly crossing pairs which corresponds to consider four newly vertices.

A-sets: Let ij ∈ X . Then, Aij = maxw{X ⊆ Vij : G[X] ∈ FS}.
B-sets: Let ij ∈ X and let x ∈ V \ Vij . Then, Bxx

ij =def maxw{X ⊆ Vij :
G[X ∪ {x}] ∈ FS}. Moreover, let xy ∈ X \ I such that j <t y, i <b x, and
x, y /∈ S. Then, Bxy

ij =def maxw{X ⊆ Vij : G[X ∪ {x, y}] ∈ FS}.
C-sets: Let ij ∈ X , xy ∈ X \ I, and z ∈ V \ (Vij ∪ {x, y}) such that xy <� zz,
at least one of x, y is adjacent to z, j <t y, i <b x, and x, y, z /∈ S. Then,
Cxy,zz

ij =def maxw{X ⊆ Vij : G[X ∪ {x, y, z}] ∈ FS}. Moreover, let zw ∈ X \ I
such that xy <� zw, {x,w}, {y, z} ∈ E, j <t {y, w}, i <b {x, z}, and x, y, z, w /∈
S. Then, Cxy,zw

ij =def maxw{X ⊆ Vij : G[X ∪ {x, y, z, w}] ∈ FS}.

Observe that, since V00 = {0} and w(0) = 0, A00 = ∅ and, since Vπ(n)n =
V , Aπ(n)n = maxw{X ⊆ V : G[X] ∈ FS}. The following lemmas state how
to recursively compute all A-sets, B-sets, and C-sets other than A00. We first
consider the crossing pairs ii for the sets Aii, Bxx

ii , Bxy
ii , Cxy,zz

ii , and Cxy,zw
ii .

Lemma 4. Let i ∈ V \ {0}. Then Aii = A<ii ∪ {i}.
Proof. By Observation 2 (1), A<ii ∪ {i} ⊆ Aii. Notice that i is non-adjacent to
all vertices of V<ii. Thus no subset of Vii that contains i induces an S-cycle. ��
Lemma 5. Let i ∈ V and let x ∈ V \ Vii.

1. If {i, x} /∈ E then Bxx
ii = Aii.

2. If {i, x} ∈ E then Bxx
ii = Bxx

<ii ∪ {i}.
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Proof. Assume first that {i, x} /∈ E. Since x ∈ V \ Vii we know that i <t x
or i <b x. Moreover as {i, x} /∈ E we have i <t x and i <b x. Then x has no
neighbor in G[Vii ∪ {x}]. Thus no subset of Vii ∪ {x} that contains x induces an
S-cycle in G. Hence Bxx

ii = Aii follows. Next assume that {i, x} ∈ E. Then the
neighborhood of i in G[Vii ∪ {x}] is {x}. This means that no subset of Vii ∪ {x}
that contains i induces an S-cycle in G, so that i ∈ Bxx

ii . By Observation 2 (1)
it follows that Bxx

ii = Bxx
<ii ∪ {i}. ��

Lemma 6. Let i ∈ V and let xy ∈ X \ I such that i <t y, i <b x, and x, y /∈ S.

1. If {i, y} /∈ E then Bxy
ii = Bxx

ii .
2. If {i, x} /∈ E then Bxy

ii = Byy
ii .

3. If {i, x}, {i, y} ∈ E then Bxy
ii =

{
Bxy

<ii , if i ∈ S
Bxy

<ii ∪ {i}, if i /∈ S.

Lemma 7. Let i ∈ V , xy ∈ X \ I, and let z ∈ V \ (Vii ∪ {x, y}) such that
xy <� zz, at least one of x, y is adjacent to z, i <t y, i <b x, and x, y, z /∈ S.

1. If {i, z} /∈ E then Cxy,zz
ii = Bxy

ii .

2. If {i, z} ∈ E then Cxy,zz
ii =

{
Cxy,zz

<ii , if i ∈ S
Cxy,zz

<ii ∪ {i}, if i /∈ S.

Lemma 8. Let i ∈ V and let xy, zw ∈ X \I such that xy <� zw, {x,w}, {y, z} ∈
E, i <t {y, w}, i <b {x, z}, and x, y, z, w /∈ S.

1. If {i, w} /∈ E then Cxy,zw
ii = Cxy,zz

ii .
2. If {i, z} /∈ E then Cxy,zw

ii = Cxy,ww
ii .

3. If {i, z}, {i, w} ∈ E then Cxy,zw
ii =

{
Cxy,zw

<ii , if i ∈ S
Cxy,zw

<ii ∪ {i}, if i /∈ S.

Lemmas 4–8 describe the subsolutions for all crossing pairs ii ∈ I \ {00}.
Next we give the recursive formulations for Aij , Bxx

ij , Bxy
ij , Cxy,zz

ij , and Cxy,zw
ij

whenever ij ∈ X \ I which particularly means that i and j are distinct vertices
in G.

Lemma 9. Let ij ∈ X \ I. Then,

Aij =

⎧
⎨

⎩

maxw

{
A�ij , A�ij , B

ii
�jj ∪ {i, j}, Bjj

�ii ∪ {i, j}
}

, if i ∈ S or j ∈ S

maxw

{
A�ij , A�ij , B

ij
<ij ∪ {i, j}

}
, if i, j /∈ S.

With the next two lemmas we describe recursively the sets Bxx
ij and Bxy

ij .

Lemma 10. Let ij ∈ X \ I and let x ∈ V \ Vij. Moreover let x′y′ =
�-min X [{i, j, x}] and let z′ be the remaining vertex of {i, j, x}.
1. If {i, x}, {j, x} /∈ E then Bxx

ij = Aij.
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2. If {i, x} ∈ E and {j, x} /∈ E then

Bxx
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maxw

{
Bxx

�ij , B
xx
�ij , B

ii
�jj ∪ {i, j}, Bjj

�ix ∪ {i, j}
}

, if i ∈ S or j ∈ S

maxw

{
Bxx

�ij , B
xx
�ij , B

ij
<ij�xx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
Bxx

�ij , B
xx
�ij , C

x′y′,z′z′
<ij ∪ {i, j}

}
, if i, j, x /∈ S.

3. If {i, x} /∈ E and {j, x} ∈ E then

Bxx
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maxw

{
Bxx

�ij , B
xx
�ij , B

ii
�xj ∪ {i, j}, Bjj

�ii ∪ {i, j}
}

, if i ∈ S or j ∈ S

maxw

{
Bxx

�ij , B
xx
�ij , B

ij
<ij�xx ∪ {i, j}

}
, if i, j /∈ S, x ∈ S

maxw

{
Bxx

�ij , B
xx
�ij , C

x′y′,z′z′
<ij ∪ {i, j}

}
, if i, j, x /∈ S.

4. If {i, x}, {j, x} ∈ E then

Bxx
ij =

{
maxw

{
Bxx

�ij , B
xx
�ij

}
, if i ∈ S or j ∈ S or x ∈ S

maxw

{
Bxx

�ij , B
xx
�ij , C

x′y′,z′z′
<ij ∪ {i, j}

}
, if i, j, x /∈ S.

Let ij, xy ∈ X \ I such that {i, y}, {j, x} ∈ E. It is not difficult to see that if
we remove the vertices of a crossing pair uv ∈ X [{i, j, x, y}] from {i, j, x, y} then
the remaining two vertices are adjacent.

Lemma 11. Let ij, xy ∈ X \ I such that j <t y, i <b x and x, y /∈ S.
Moreover, if {i, y}, {j, x} ∈ E then let x′y′ = �-min X [{i, j, x, y}] and let
z′w′ = �-min X [{i, j, x, y} \ {x′, y′}].

1. If {i, y} /∈ E then Bxy
ij = Bxx

ij .
2. If {j, x} /∈ E then Bxy

ij = Byy
ij .

3. If {i, y}, {j, x} ∈ E then

Bxy
ij =

⎧
⎨

⎩

maxw

{
Bxy

�ij , B
xy
�ij

}
, if i ∈ S or j ∈ S

maxw

{
Bxy

�ij , B
xy
�ij , C

x′y′,z′w′
<ij ∪ {i, j}

}
, if i, j /∈ S.

Lemma 12. Let ij, xy ∈ X \ I and let z ∈ V \ Vij such that xy <� zz, at
least one of x, y is adjacent to z, j <t y, i <b x, and x, y, z /∈ S. Moreover, if
{i, z} ∈ E or {j, z} ∈ E then let x′y′ = �-min X [{i, j, x, y, z}] and let z′w′ =
�-min X [{i, j, x, y, z} \ {x′, y′}].

1. If {i, z}, {j, z} /∈ E then Cxy,zz
ij = Bxy

ij .
2. If {i, z} ∈ E or {j, z} ∈ E then

Cxy,zz
ij =

⎧
⎨

⎩

maxw

{
Cxy,zz

�ij , Cxy,zz
�ij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zz

�ij , Cxy,zz
�ij , Cx′y′,z′w′

<ij ∪ {i, j}
}

, if i, j /∈ S.
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The next lemma shows how to recursively compute Cxy,zw
ij . Note that in each

case we describe Cxy,zw
ij as a predefined smaller set of a subsolution that is either

in the same form or has already been described in one of the previous lemmas.

Lemma 13. Let ij, xy, zw ∈ X \ I such that xy <� zw, {x,w}, {y, z} ∈ E,
j <t {y, w}, i <b {x, z}, and x, y, z, w /∈ S. Moreover, if {i, w}, {j, z} ∈ E, let
x′y′ = �-min X [{i, j, x, y, z, w}] and let z′w′ = �-min X [{i, j, x, y, z, w}\{x′, y′}].

1. If {i, w} /∈ E then Cxy,zw
ij = Cxy,zz

ij .
2. If {j, z} /∈ E then Cxy,zw

ij = Cxy,ww
ij .

3. If {i, w}, {j, z} ∈ E then

Cxy,zw
ij =

⎧
⎨

⎩

maxw

{
Cxy,zw

�ij , Cxy,zw
�ij

}
, if i ∈ S or j ∈ S

maxw

{
Cxy,zw

�ij , Cxy,zw
�ij , Cx′y′,z′w′

<ij ∪ {i, j}
}

, if i, j /∈ S.

It is important to notice that all described formulations are given recursively
based on Lemmas 4–13. Now we are in position to state our claimed polynomial-
time algorithm for the SFVS problem on permutation graphs.

Theorem 2. Subset Feedback Vertex Set can be solved in O(n+m3) time
on permutation graphs.

5 Concluding Remarks

From the complexity point of view, since FVS is polynomial-time solvable on
the class of AT-free graphs [25], a natural problem is to settle the complexity of
SFVS on AT-free graphs. Interestingly most problems that are hard on AT-free
graphs are already hard on co-bipartite graphs (see for e.g., [29]). Also notice
that SFVS remains NP-complete on bipartite graphs, as FVS is NP-complete
on bipartite graphs [33]. Co-bipartite graphs are the complements of bipartite
graphs and are unrelated to permutation graphs or interval graphs. Here we show
that SFVS admits a simple solution on co-bipartite graphs, therefore excluding
such an approach through a hardness result on co-bipartite graphs.

Theorem 3. The number of maximal S-forests of a co-bipartite graph is at most
22n4 and these can be enumerated in time O(n4).

Moreover it is interesting to settle the complexity of SFVS on other related
graph classes such as strongly chordal graphs or subclasses of AT-free graphs
like trapezoid graphs or complements of triangle-free graphs. Regarding graphs
of bounded structural parameter and due to the nature of the dynamic pro-
gramming used for SFVS on interval and permutation graphs, it is interesting
to consider graphs of bounded maximum induced matching width [3].

Another interesting open question is concerned with problems related to
terminal-sets such as the Multiway Cut problem in which we want to dis-
connect a given set of terminals by removing vertices of minimum total weight.
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As already mentioned in the Introduction, the Multiway Cut problem reduces
to the SFVS problem by adding a vertex s with S = {s} that is adjacent to all
terminals and whose weight is larger than the sum of the weights of all vertices
in the original graph [17]. Notice that such a reduction does not directly work
on interval or permutation graphs, since the augmented graph might not belong
to the same graph class. Despite the polynomial-time algorithms for the Mul-
tiway Cut problem on permutation graphs [31] and interval graphs [24], it is
still interesting whether we can apply our algorithms for the SFVS problem with
respect to the Multiway Cut problem.
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Abstract. Measurement-based quantum computing (MBQC) is a uni-
versal model for quantum computation. The combinatorial character-
isation of determinism in this model, powered by measurements, and
hence, fundamentally probabilistic, is the cornerstone of most of the
breakthrough results in this field. The most general known sufficient
condition for a deterministic MBQC to be driven is that the underly-
ing graph of the computation has a particular kind of flow called Pauli
flow. The necessity of the Pauli flow was an open question. We show that
Pauli flow is not necessary, providing several counter examples. We prove
however that Pauli flow is necessary for determinism in the real MBQC
model, an interesting and useful fragment of MBQC.

We explore the consequences of this result for real MBQC and its
applications. Real MBQC and more generally real quantum computing
is known to be universal for quantum computing. Real MBQC has been
used for interactive proofs by McKague. The two-prover case corresponds
to real-MBQC on bipartite graphs. While (complex) MBQC on bipar-
tite graphs are universal, the universality of real MBQC on bipartite
graphs was an open question. We show that real bipartite MBQC is not
universal proving that all measurements of real bipartite MBQC can be
parallelised leading to constant depth computations. As a consequence,
McKague’s techniques cannot lead to two-prover interactive proofs.

1 Introduction

Measurement-based quantum computing [19,20] (MBQC for short) is a universal
model for quantum computation. This model is not only very promising in terms
of the physical realisations of the quantum computer [17,22], MBQC has also
several theoretical advantages, e.g. parallelisation of quantum operations [3,5]
(logarithmic separation with the traditional model of quantum circuits), blind
quantum computing [2] (a protocol for delegated quantum computing), fault
tolerant quantum computing [21], simulation [9], contextuality [18], interactive
proofs [2,12].

In MBQC, a computation consists of performing local quantum measure-
ments over a large entangled resource state. The resource state is described by a

c© Springer-Verlag GmbH Germany 2017
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graph – using the so-called graph state formalism [11]. The tour de force of this
model is to tame the fundamental non-determinism of the quantum measure-
ments: the number of possible outputs of a measurement-based computation on
a given input is exponential in the number of measurements, and each of these
branches of the computation is produced with an exponentially small probability.
The only known technique to make such a fundamentally probabilistic compu-
tation exploitable is to implement a correction strategy which makes the overall
computation deterministic: it does not affect the probability for each branch of
the computation to occur, but it guarantees that all the branches produce the
same output.

The existence of a correction strategy relies on the structures of the entan-
glement of the quantum state on which the measurements are performed. Decid-
ing whether a given resource state allows determinism is a central question in
MBQC. Several sufficient conditions for determinism have been introduced. First
in [6] the notion of causal flow has been introduced: if the graph describing the
entangled resource state has a causal flow then a deterministic MBQC can be
driven on this resource. Causal flow has been generalized to a weaker condition
called Generalized flow (Gflow) which is also sufficient for determinism. Gflow
has been proved to be necessary for a robust variant of determinism and when
roughly speaking there is no Pauli measurement, a special class of quantum mea-
surements (see Sect. 2 for details) [4]. In the same paper, the authors have intro-
duced a weaker notion of flow called Pauli Flow, allowing some measurements
to be Pauli measurements. Pauli flow is the weakest known sufficient condition
for determinism and its necessity was a crucial open question as the character-
isation of determinism in MBQC is the cornerstone of most of the applications
of MBQC.

In Sect. 2, we present the MBQC model, and the tools that come with it.
Our first contribution is to provide a simpler characterisation of the Pauli flow
(Proposition 1), with three instead of nine conditions to satisfy for the existence
of a Pauli flow. Our main contribution is to prove in Sect. 3 that the Pauli flow
is not necessary in general – by pointing out several counter examples – but
is actually necessary for real MBQC (Theorem 3). Real MBQC is a restriction
of MBQC where only real observables are used, i.e. observables which eigen-
states are quantum states that can be described using real numbers. Quantum
mechanics, and hence models of quantum computation, are traditionally based
on complex numbers. Real quantum computing is universal for quantum com-
putation [1] and has been crucially used recently in the study of contextuality
and simulation by means of quantum computing by state injection [9]. Real
MBQC [14] may lead to several other applications. One of them is an interactive
proof protocol built by McKague [12]. McKague introduced a protocol where a
verifier using a polynomial number of quantum provers can perform a compu-
tation, with the guaranty that, if a prover has cheated, it will be able to detect
it. An open question left in [12] by McKague is to know whether this model
can bring to an interactive proof protocol with only two quantum provers. We
answer negatively to this question in Sect. 4.2. Our third contribution is to point
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out the existence of a kind of supernormal-form for Pauli flow in real MBQC on
bipartite graphs (Lemma 1). This result enables us to prove in Theorem 4 that
real MBQC on bipartite graphs is not very powerful: all measurements of a real
bipartite MBQC can be parallelised. As a consequence, only problems that can
be solved in constant depth can be solved using real bipartite MBQC.

2 Measurement-Based Quantum Computation,
Generalized Flow and Pauli Flow

Notations. We assume the reader familiar with quantum computing notations,
otherwise one can refer to the Appendix A of the pre-print version of the present
article [16] or to [15]. We will use the following set/graph notations: First of
all, the symmetric difference of two sets A and B will be denoted AΔB :=
(A ∪ B) \ (A ∩ B). We will use intensively the open and closed neighbourhood.
Given a simple undirected graph G = (V,E), for any u ∈ V , N(u) := {v ∈
V | (u, v) ∈ E} is the (open) neighbourhood of u, and N [u] := N(u) ∪ {u} is
the closed neighbourhood of u. For any subset A of V , Odd(A) := Δv∈AN(v)
(resp. Odd[A] := Δv∈AN [u]) is the odd (resp. odd closed) neighbourhood of
A. Also, we will use the notion of extensive maps. A map f : A → 2B , with
A ⊆ B is extensive if the transitive closure of {(u, v) : v ∈ f(u)} is a strict
partial order. We say that f is extensive with respect to a strict partial order ≺
if (v ∈ f(u) ⇒ u ≺ v).

2.1 MBQC, Concretely, Abstractly

In this section, a brief description of the measurement-based quantum computa-
tion is given, a more detailed introduction can be found in [7,8]. Starting from a
low-level description of measurement-based quantum computation using the so-
called patterns of the Measurement-Calculus – an assembly language composed
of 4 kinds of commands: creation of ancillary qubits, entangling operation, mea-
surement and correction – we end up with a graph theoretical description of
the computation and in particular of the underlying entangled resource of the
computation.

2.2 Measurement-Calculus Patterns: An Assembly Language

An assembly language for MBQC is the Measurement-Calculus [7,8]: a pattern
is a sequence of commands, each command is either:

– Nu: initialisation of a fresh qubit u in the state |+〉 = |0〉+|1〉√
2

;
– Eu,v entangling two qubits u and v by applying Control-Z operation ΛZ :

|x, y〉 
→ (−1)xy |x, y〉 to the qubits u and v;
– Mλu,αu

u measurement of qubit u according to the observable Oλu,αu
described

below;
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– Xsv
u (resp. Zsv

u ), a correction which consists of applying Pauli X : |x〉 
→
|1 − x〉 (resp. Z : |x〉 
→ (−1)x |x〉) to qubit u iff sv (the classical outcome of
the measurement of qubit v) is 1.

A pattern is subject to some basic well-formedness conditions like: no oper-
ation can be applied on a qubit u after u being measured; a correction cannot
depend on a signal su if qubit u is not yet measured.

The qubits which are not initialised using the N command are the input
qubits, and those which are not measured are the output qubits. The measure-
ment of a qubit u is characterized by λu ⊂ {X,Y,Z} a subset of one or two
Pauli operators, and an angle αu ∈ [0, 2π):

– when λu = {M} is a singleton, u is measured according to Oλu,αu
:= M if

αu = 0 or Oλu,αu
:= −M if αu = π.

– when |λu| = 2, u is measured in the λu-plane of the Bloch sphere with an
angle αu, i.e. according to the observable:

Oλu,αu
:=

⎧
⎪⎨

⎪⎩

cos(αu)Xu + sin(αu)Yu if λu = {X,Y }
cos(αu)Yu + sin(αu)Zu if λu = {Y,Z}
cos(αu)Zu + sin(αu)Xu if λu = {Z,X}

Measurement of qubit u produces a classical outcome (−1)su where su ∈ {0, 1}
is called signal, or simply classical outcome with a slight abuse of notation.

2.3 A Graph-Based Representation

In the Measurement-Calculus, the patterns are equipped with an equational
theory which captures some basic invariant properties, e.g. two operations acting
on distinct qubits commute, or Eu,v is equivalent to Ev,u. It is easy to show using
the equations of the Measurement-Calculus that any pattern can be transformed
into an equivalent pattern of the form:

( ≺∏

u∈Oc

Zsu

z(u)X
su

x(u)M
λu,αu
u

) ⎛

⎝
∏

(u,v)∈G

Eu,v

⎞

⎠

(
∏

u∈Ic

Nu

)

where G = (V,E) is a simple undirected graph, I,O ⊆ V are respectively the
input and output qubits, and x, z : Oc → 2V are two extensive maps, i.e. the
relation ≺ defined as the transitive closure of {(u, v) : v ∈ x(u)∪z(u)} is a strict
partial order. Notice that Oc := V \ O and Xsu

x(u) :=
∏

v∈x(u) Xsu
v . Moreover the

product
∏

(u,v)∈G means that the indices are the edges of the G, in particular
each edge is taken once.

The septuple (G, I,O, λ, α, x, z) is a graph-based representation which cap-
tures entirely the semantics of the corresponding pattern. We simply call an
MBQC such a septuple.
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2.4 Semantics and Determinism

An MBQC (G, I,O, λ, α, x, z) has a fundamentally probabilistic evolution with
potentially 2|Oc| possible branches as the computation consists of |Oc| measure-
ments. For any s ∈ {0, 1}|Oc|, let As : C{0,1}I → C

{0,1}O

be

As(|φ〉) =

( ≺∏

u∈Oc

Zsu

z(u)X
su

x(u)

〈
φλu,αu

su

∣
∣
u

) ⎛

⎝
∏

(u,v)∈G

ΛZu,v

⎞

⎠

(

|φ〉 ⊗
∑

x∈{0,1}Ic |x〉√
2|Ic|

)

where
∣
∣φλu,αu

su

〉
is the eigenvalue of Oλu,αu associated with the eigenvalue (−1)su .

Given an initial state |φ〉 ∈ C
{0,1}I

and s ∈ {0, 1}Oc

, the outcome of the
computation is the state As |Ψ〉 (up to a normalisation factor), with prob-
ability 〈φ|A†

sAs |φ〉. In other words the MBQC implements the cptp-map1

ρ 
→ ∑
s∈{0,1}Oc AsρA†

s.
Among all the possible measurement-based quantum computations, those

which are deterministic are of peculiar importance. In particular, determinis-
tic MBQC are those which are used to simulate quantum circuits (cornerstone
of the proof that MBQC is a universal model of quantum computation), or to
implement a quantum algorithm. An MBQC (G, I,O, λ, α, x, z) is determinis-
tic if the output of the computation does not depend on the classical outcomes
obtained during the computation: for any input state |φ〉 ∈ C

{0,1}I

and branches
s, s′ ∈ {0, 1}Oc

, As |φ〉 and As′ |φ〉 are proportional.
Notice that the semantics of a deterministic MBQC (G, I,O, λ, α, x, z) is

entirely defined by a single branch, e.g. the branch A0|Oc| . Moreover, this partic-
ular branch A0|Oc| is correction-free by construction (indeed all corrections are
controlled by a signal, which is 0 in this particular branch). As a consequence,
intuitively, when the evolution is deterministic, the corrections are only used to
make the overall evolution deterministic but have no effect on the actual seman-
tics of the evolution. Thus the correction can be abstracted away leading to the
notion of abstract MBQC (G, I,O, λ, α). There is however a caveat when the
branch A0|Oc| is 0: for instance MX,π

1 N1N2 and Zs1
2 MX,π

1 N1N2 are both deter-
ministic2 and share the same abstract open graph, however they do not have
the same semantics: the outcome of the former pattern is |0〉+|1〉√

2
, whereas the

outcome of the latter is |0〉−|1〉√
2

.
To avoid these pathological cases and guarantee that the corrections can be

abstracted away, a stronger notion of determinism has been introduced in [4]:
an MBQC is strongly deterministic when all the branches are not only pro-
portional but equal up to a global phase. The strongness assumption guarantees
that for any input state |φ〉, A0|Oc| |φ〉 is non zero, and thus guarantees that the

1 A completely positive trace-preserving map describes the evolution of a quantum
system which state is represented by a density matrix. See for instance [15] for
details.

2 In both cases the unique measurement consists of measuring a qubit in state |+〉
according to the observable −X which produces the signal s1 = 1 with probability 1.



400 S. Perdrix and L. Sanselme

overall evolution is entirely described by the correction-free branch, or in other
words by the knowledge of the abstract MBQC (G, I,O, λ, α).

Whereas deterministic MBQC are not necessarily invertible (e.g. M
(X,0)
1 N2

which maps any state |φ〉 to the state |+〉), strongly deterministic MBQC cor-
respond to the invertible deterministic quantum evolutions: they implement
isometries (∃U : C

{0,1}I → C
{0,1}O

s.t. U†U = I and ∀s ∈ {0, 1}|Oc|, ∃θ s.t.
As = 2−|Oc|eiθU).

We consider a variant of strong determinism which is robust to variation
of the angles of measurements (which is a continuous parameter, so a priori
subject to small variations in an experimental setting for instance), and to partial
computation i.e., roughly speaking if one aborts the computation, the partial
outcome does not depend on the branch of the computation.

Definition 1 (Robust Determinism). (G, I,O, λ, α, x, z) is robustly deter-
ministic if for any lowerset S ⊆ Oc and for any β : S → [0, 2π), (G, I,O ∪
Sc, λ|S , β, x|S , z|S) is strongly deterministic, where S is a lowerset for the par-
tial order induced by x and z: ∀v ∈ S,∀u ∈ Oc, v ∈ x(u) ∪ z(u) ⇒ u ∈ S.

The notion of robust determinism we introduce is actually a short cut for
uniformly strong and stepwise determinism which has been already extensively
studied in the context of measurement-based quantum computing [4,8,13].

A central question in measurement-based quantum computation is to
decide whether an abstract MBQC can be implemented deterministically: given
(G, I,O, λ, α), does there exist correction strategies x, z such that (G, I,O, λ, α,
x, z) is (robustly) deterministic? This question is related to the power of postselec-
tion in quantum computing: allowing postselection one can select the correction-
free branch and thus implement any abstract MBQC (G, I,O, λ, α). Post-selection
is a priori a non physical evolution, but in the presence of a correction strategy,
postselection can be simulated using measurements and corrections.

The robustness assumption allows one to abstract away the angles and focus
on the so-called open graph (G, I,O, λ) i.e. essentially the initial entanglement.
For which initial entanglement – or in other words for which resource state – a
deterministic evolution can be performed? This is a fundamental question about
the structures and the computational power of entanglement.

Several graphical conditions for determinism have been introduced: causal
flow, Generalized flow (Gflow) and Pauli Flow [4,6,8]. These are graphical con-
ditions on open graphs which are sufficient to guarantee the existence of a robust
deterministic evolution. Gflow has been proved to be a necessary condition for
Pauli-free MBQC (i.e. for any open graph (G, I,O, λ) s.t. ∀u ∈ Oc, |λu| = 2).
The necessity of Pauli flow was an open question3. In this paper we show that
3 In [4], an example of deterministic MBQC with no Pauli flow is given. This is however

not a counter example to the necessity of the Pauli flow as the example is not robustly
deterministic. More precisely not all the branches of computation occur with the
same probability: with the notation of Fig. 8 in [4] if measurements of qubits 4, 6, 8
produce the outcome 0, then the measurement of qubit 10 produces the outcome 0
with probability 1.
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Pauli flow fails to be necessary in general, but is however necessary for real
MBQC, i.e. when ∀u ∈ Oc, λu ⊆ {X,Z}. In the next section, we review the
graphical sufficient conditions for determinism.

2.5 Graphical Conditions for Determinism

Several flow conditions for determinism have been introduced to guarantee
robust determinism. Causal flow has been the first sufficient condition for deter-
minism [6]. This condition has been extended to Generalized flow (Gflow) and
Pauli flow [4]. Our first contribution is to provide a simpler description of the
Pauli flow, equivalent to the original one.

Property 1. (G, I,O, λ) has a Pauli flow iff there exist a strict partial order <
over Oc and p : Oc → 2Ic

s.t. ∀u ∈ Oc,

(cX) X ∈ λu ⇒ u ∈ Odd(p(u)) \

⎛

⎜
⎜
⎝

⋃

v≥u
v/∈O∪{u}

Odd(p(v))

⎞

⎟
⎟
⎠

(cY ) Y ∈ λu ⇒ u ∈ Odd[p(u)] \

⎛

⎜
⎜
⎝

⋃

v≥u
v/∈O∪{u}

Odd[p(v)]

⎞

⎟
⎟
⎠

(cZ) Z ∈ λu ⇒ u ∈ p(u) \

⎛

⎜
⎜
⎝

⋃

v≥u
v/∈O∪{u}

p(v)

⎞

⎟
⎟
⎠

where v ≥ u iff ¬(v < u)

Remark 1. Notice that the existence of a Pauli flow forces the input qubits to
be measured in the {X,Y }-plane: If (G, I,O, λ) has a Pauli flow then for any
u ∈ I ∩ Oc, u /∈ p(u) since p(u) ⊆ Ic. It implies, according to condition (cZ),
that Z /∈ λu.

Gflow and Causal flows are special instances of Pauli flow: A Pauli flow is
a Gflow when all measurements are performed in a plane (i.e. ∀u, |λu| = 2); a
Causal flow [6] is nothing but a Gflow (p,<) such that ∀u, |p(u)| = 1. GFlow has
been proved to be a necessary and sufficient condition for robust determinism:

Theorem 1 [4]. Given an abstract MBQC (G, I,O, λ, α) such that ∀u ∈
Oc, |λu| = 2, (G, I,O, λ) has a GFlow (p,<) if and only if there exists x, z
extensive with respect to < s.t. (G, I,O, λ, α, x, z) is robustly deterministic.
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Pauli flow is the most general known sufficient condition for determinism for
robust determinism:

Theorem 2 [4]. If (G, I,O, λ) has a Pauli flow (p,<), then for any α : Oc →
[0, 2π), (G, I,O, λ, α, x, z) is robustly deterministic where ∀u ∈ Oc,

x(u) = {v ∈ p(u) | u < v}
z(u) = {v ∈ Odd(p(u)) | u < v}

Is there a converse? This is the purpose of next section.

3 Characterising Robust Determinism

In this section, we show the main result of the paper: Pauli flow is necessary for
robust determinism in the real case, i.e. when all the measurements are in the
{X,Z}-plane (∀u, λu ⊆ {X,Z}).

We investigate in the subsequent sections the consequences of this result for
real MBQC which is a universal model of quantum computation with several
crucial applications.

A real open graph (G, I,O, λ) is an open graph such that ∀u ∈ Oc, λu ⊆
{X,Z}. We define similarly real abstract MBQC and real MBQC. Pauli
flow conditions on real open graphs can be simplified as follows:

Property 2. A real open graph (G, I,O, λ) has a Pauli flow iff there exist a strict
partial order < over Oc and p : Oc → 2Ic

s.t. ∀u ∈ Oc,

(i) X ∈ λu ⇒ u ∈ Odd(p(u)) \

⎛

⎜
⎜
⎝

⋃

v≥u
v/∈O∪{u}

Odd(p(v))

⎞

⎟
⎟
⎠

(ii) Z ∈ λu ⇒ u ∈ p(u) \

⎛

⎜
⎜
⎝

⋃

v≥u
v/∈O∪{u}

p(v)

⎞

⎟
⎟
⎠

Theorem 3. Given a real abstract MBQC (G, I,O, λ, α), (G, I,O, λ) has a
Pauli flow (p,≺) if and only if there exist x, z extensive with respect to ≺ s.t.
(G, I,O, λ, α, x, z) is robustly deterministic.

The proof4 is fundamentally different from the proof that Gflow is necessary
for Pauli-free robust determinism (Theorem 1 in [4]). Roughly speaking, the proof
that Pauli flow is necessary goes as follows: first we fix the inputs to be either |0〉
or |+〉 and all the measurements to be Pauli measurements (i.e. if λu = {X,Z}
4 The proof of Theorem 3 is available in the pre-print version of the present article

[16].
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we fix the measurement of u to be either X or Z). For each of these choices
the computation can be described in the so-called stabilizer formalism which
allows one to point out the constraints the corrections should satisfy for each of
these particular choices of inputs and measurements. Then, as the corrections
of a robust deterministic MBQC should not depend on the choice of the inputs
and the angles of measurements, one can combine the constraints the corrections
should satisfy and show that they coincide with the Pauli flow conditions.

Remark 2. We consider in this paper a notion of real MBQC which corresponds
to a constraint on the measurements (∀u ∈ Oc, λu ∈ {X,Z}), it can also be
understood as an additional constraint on the inputs: the input of the compu-
tation is in R

I instead of CI . This distinction might be important, for instance
the pattern MY

1 N2 is strongly deterministic on real inputs but not on arbitrary
complex inputs. It turns out that the proof of Theorem3 only consider real
inputs, and as a consequence is valid in both cases (i.e. when both inputs and
measurements are real; or when inputs are complex and measurements are in
the {X,Z}-plane).

Pauli flow is necessary for real robust determinism. This property is specific
to real measurements: Pauli flow is not necessary in general even when the
measurements are restricted to one of the other two planes of measurements. In
the following {X,Y }-MBQC (resp. {Y,Z}-MBQC) refers to MBQC where all
measurements are performed in the {X,Y }-plane (resp. {Y,Z}-plane).

Property 3. There exists robustly deterministic {X,Y }-MBQC (resp. {Y,Z}-
MBQC) (G, I,O, λ, α, x, z) such that (G, I,O, λ) has no Pauli flow (p,≺) where
x and z are extensive with respect to ≺.

Proof. We consider the pattern P = Zs2
3 MX,0

2 Xs1
2 M

{X,Y },α
1 E1,2E1,3N1N2N3

which is an implementation of the {X,Y }-MBQC given in Fig. 1 (the other
example is similar). Notice that the correction Xs1

2 is useless as qubit 2 is going
to be measured according to MX . Thus P has the same semantics as P ′ =
Zs2
3 MX,0

2 M
{X,Y },α
1 E1,2E1,3N1N2N3. Notice in P ′ that the two measurements

commute since there is no dependency between them, leading to the pattern
P ′′ = M

{X,Y },α
1 Zs2

3 MX,0
2 E1,2E1,3N1N2N3. It is easy to check that P ′′ has a Pauli

flow so is robustly deterministic. All but the stepwise property are transported by
the transformations from P ′′ to P. Notice that P ′ is not stepwise deterministic as
M

{X,Y },α
1 E1,2E1,3N1N2N3 is not deterministic. However, P enjoys the stepwise

property since Xs1
2 M

{X,Y },α
1 E1,2E1,3N1N2N3 has a Pauli flow so is robustly

deterministic. Finally, it is easy to show that the open graph has no Pauli flow
(p,≺) such that 1 ≺ 2, which is necessary to guarantee that x is extensive with
respect to ≺.

Remark 3. This is the last step of the proof of Theorem3 which fails with the
examples of Fig. 1. For instance in the {X,Y }-MBQC example, in both cases
of Pauli measurements of qubit 1 (according to X or according to Y ), a Pauli
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(X, Y ), α

1

3

X

2

(Y, Z), α

1

3

Z

2

x(1) = {2}, z(1) = ∅, x(2) = ∅, z(2) = {3} x(1) = ∅, z(1) = {2}, x(2) = ∅, z(2) = {3}
Zs2

3 MX,0
2 Xs1

2 M
{X,Y },α
1 E1,2E1,3N1N2N3 Zs2

3 MZ,0
2 Zs1

2 M
{Y,Z},α
1 E1,2E2,3N1N2N3

Fig. 1. Robustly deterministic {X, Y }-MBQC and {Y, Z}-MBQC with no compatible
Pauli flow. The two MBQC are described by means of there abstract MBQC (G, I, O, α)
and the corrective maps x and z. In both cases there is no input and the output is
located on qubit 3. A description using the measurement-pattern formalism is also
provided (commands should be read from right to left). Notice that the only order that
makes x and z extensive has to verify 1 ≺ 2, and there is no Pauli flow for this order.

flow exists, sharing the same partial order 1 ≺ 2. However the two Pauli flows
are distinct and none of them is a Pauli flow when qubit 1 is measured in the
{X,Y }-plane.

Remark 4. The examples given in Fig. 1 do have a Pauli flow but with a partial
order not compatible with the order of measurements. It is important that the
orders of the flow and the measurements coincide for guaranteeing that the depth
of the flow (longest increasing sequence) corresponds to the depth of the MBQC.
Because of the logarithmic separation between the quantum circuit model and
MBQC in terms of depth (e.g. PARITY can be computed with a constant quan-
tum depth MBQC but requires a logarithmic depth quantum circuit) [5], it is
also important that Pauli flow characterises not only the ability to perform a
robust deterministic evolution, but characterizes also the depth of such evolution.
There exists an efficient polynomial time which, given an open graph, compute a
Gflow of optimal depth (when it exists) [13], the existence of such an algorithm
in the Pauli case is an open question.

4 Applications: Computational Power of Real Bipartite
MBQC

In this section we focus on the real MBQC which underlying graph are bipartite
(real bipartite MBQC for short). Bipartite graphs (or equivalently 2-colorable
graphs) play an important role in MBQC, the square grid is universal for quan-
tum computing: any quantum circuit can be simulated by an MBQC whose
underlying graph is a square grid. The brickwork graph [2] is bipartite and uni-
versal for {X,Y }-MBQC. Regarding real MBQC, the (non bipartite) triangular
grid is universal for real MBQC [14] but there is no known universal family of
bipartite graphs. We show in this section that there is no universal family of
bipartite graphs for real MBQC, by showing that any real bipartite MBQC can
be done in constant depth.
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4.1 Real Bipartite MBQC in Constant Depth

In this section we show that real bipartite MBQC can always be parallelized:

Theorem 4. All measurements of a robustly deterministic real bipartite MBQC
can be performed in parallel.

The rest of the section is dedicated to the proof of Theorem 4. According
to Theorem 3, a real MBQC is robustly deterministic if and only if the under-
lying open graph has a Pauli flow. To prove that all the measurements can be
performed in parallel in the bipartite case we point out the existence of a partic-
ular correction strategy which ensures that each measurement is corrected using
output qubits only.

Lemma 1. Given a bipartite graph G, I,O ⊆ V (G) and λ : Oc → {{X},
{Z}, {X,Z}}, if (G, I,O, λ) has a Pauli flow then there exists p : Oc → 2Ic

s.t.:

Odd(p(u)) \ (O ∪ λ−1({Z})) = {u} \ λ−1({Z})
p(u) \ (O ∪ λ−1({X})) = {u} \ λ−1({X})

This particular correction strategy corresponds to a king of super-normal
form. Indeed it is known that Gflow can be put into the so called Z- or X-
normal form but not both at the same time (see [10] for details). Lemma 1
shows, roughly speaking, that the Pauli flow in the real bipartite case can be
put in both normal forms at the same time.

Proof (Proof of Theorem 4). Given a robustly deterministic real bipartite MBQC
(G, I,O, λ, α, x, z), according to Theorem 3, (G, I,O, λ) has a Pauli flow, so
according to Lemma 1 there exists p s.t. Odd(p(u)) \ (O ∪ λ−1({Z})) = {u} \
λ−1({Z}) and p(u) \ (O ∪ λ−1({X})) = {u} \ λ−1({X}). Notice that (p, ∅) is a
Pauli flow for (G, I,O, λ), thus according to Theorem2, (G, I,O, λ, α, x′, z′) is
robustly deterministic where x′ = u 
→ p(u) \ (λ−1({X}) ∪ {u}) and z′ = u 
→
Odd(p(u)) \ (λ−1({Z}) ∪ {u}). Both (G, I,O, λ, α, x, z) and (G, I,O, λ, α, x′, z′)
implement the same computation, and ∀u ∈ Oc x′(u) ⊆ O and z′(u) ⊆ O which
implies that all measurements of the latter MBQC can be performed in parallel.

4.2 Interactive Proofs

The starting point of our work has been a sentence of McKague in [12]. In the
future work section, McKague wonders how his work could be used to build
an interactive prover with only two provers. The problem that McKaque wants
to solve is the following. We imagine a classical verifier, which is a computer
with classical resources, who wants to perform a computation using some non-
communicating quantum provers. The quantum provers are computers with
quantum resources. In fact, the classical verifier wants to achieve his compu-
tation using the quantum power of quantum provers. In this model, the hard
point to breakthrough is that we want the verifier to detect cheating behavior
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of some provers. The model should guarantee the verifier that the result of the
computation made by the provers is correct: if a prover has cheated and not
computed what he was asked, the verifier should be able to detect it. We specify
that the provers, in this model, cannot communicate one with the others: each
prover can try to cheat on his own but he does not have the power to do it
by exchanging information with the others. McKague, in [12], proves that it is
possible to imagine a protocol in which the computation can be performed by
the classical verifier using a polynomial number of quantum provers. To achieve
this goal, McKague uses two main tools, one of them being Measurement Based
Quantum Computation in the (X,Z) plane. Mhalla and Perdrix, in [14], prove
that there exists a grid that enables to perform a universal computing in the
(X,Z) plane. Usually, the (X,Y ) plane, first known to allow universal compu-
tation is preferred. In his work, McKague needs the (X,Z) plane: to be able to
detect cheating behavior, McKague needs to compute in the reals. The conju-
gation operation that can be performed in other planes is a problem to detect
some cheatings.

In his future work section, McKague argues that most his work could be used
to improve his result to the use of only two provers. The main difficulty he points
out is to build a bipartite graph to compute with. His self-testing skill, which is
the second important tool of his work, can be applied only if the graph does not
have any odd cycle. Therefore, the question we wanted to answer was whether
one could build a universal bipartite grid for the (X,Z)-plane. Our Theorem 4
shows that in the real case a bipartite graph is not very powerful to compute: it
is far from being universal. Therefore, at best, new skills will be needed to adapt
McKague’s method to interactive proofs with two provers.

5 Conclusion and Future Work

In this paper, we made substantial steps in understanding MBQC world. The
first important one is this equivalence between being robustly deterministic and
having a Pauli flow for a real-MBQC. Since it does not hold for {X,Y }- and
{Y,Z}-planes, a natural question is how one can modify the Pauli flow definition
to obtain a characterisation of determinism in these cases? A bi-product of the
characterisation of robust determinism for real MBQC is the low computational
power of real bipartite MBQC. It would be interesting to compare the com-
putational power of real bipartite MBQC and of commuting quantum circuits.
There are some good reasons to think that the power of real bipartite MBQC is
exactly the same as those commuting quantum circuits. Taking a global view of
the MBQC domain, some advances we make in this paper, and a good direction
for further research should be to better understand the specificity of each plane
in the power of the MBQC model and how the ability to perform a determin-
istic computation is linked to this power. Finally, another open question is the
existence of an efficient algorithm for deciding whether a given open graph has
a Pauli flow, and which produces a Pauli flow of optimal depth when it exists.
Such an algorithm exists for Gflow [13].
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Abstract. We investigate the Busy Beaver Game introduced by Rado
[13] generalized to non-binary alphabets. Harland [5] conjectured that
activity (number of steps) and productivity (number of non-blank sym-
bols) of candidate machines grow as the alphabet size increases. We prove
this conjecture for any alphabet size under the condition that the num-
ber of states is sufficiently large. For the measure activity we show that
increasing the alphabet size from two to three allows an increase. By a
classical construction it is even possible to obtain a two-state machine
increasing activity and productivity of any machine if we allow an alpha-
bet size depending on the number of states of the original machine. We
also show that an increase of the alphabet by a factor of three admits an
increase of activity.

1 Introduction

The Busy Beaver Game, as originally defined by Rado [13], is to determine for
a given number n of states of deterministic Turing machines over the alphabet
{0, 1} (0 is the blank symbol) the maximum number of ones produced on an
initially blank two-way infinite tape. In each step such a machine reads a tape
symbol and—depending on the current state–writes a symbol, shifts its head one
square to the left or to the right, and enters a new state. There is a single halt
state (which is traditionally not counted), and on the transition to this state the
machine also writes a symbol. What we have just described is sometimes called
the quintuple variant of Turing machines in view of the five pieces of information
that define a transition. In contrast, the quadruple variant can either move the
tape head or write a symbol but not both.

Rado introduced the function Σ(n) as the maximum number of ones pro-
duced by machines with n states. The function S(n) denotes the maximum
number of steps performed (shift-number) by such machines. He proved that
these functions are non-computable and even grow faster than any computable
function. Rado also pointed out that these are very simple examples of non-
computable functions and that no (explicit) enumeration of computable func-
tions is used in their definition.

The functions are of metamathematical interest as well, since open problems
like Goldbach’s conjecture, which can be refuted in a constructive way by a coun-
terexample, would be settled if S(n) would be computable for an n large enough
to determine a counterexample by running a Turing machine [3,4]. Recently
c© Springer-Verlag GmbH Germany 2017
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explicit bounds on such an n have been determined for Goldbach’s conjecture
and the Riemann hypothesis along with a Turing machine that cannot be proved
to run forever in ZFC [15].

Here we consider the generalization of the Busy Beaver Game to alphabets
with more than two symbols. As in [12] we denote by Σ(n,m) the maximum
number of non-blanks produced by any halting deterministic Turing machine
with n states and m symbols (called productivity) working on an initially blank
two-way infinite tape. Similarly, we denote by S(n,m) the maximum number of
steps performed (called activity). Thus the functions defined by Rado are now
special cases with m = 2. For a specific Turing machine M we denote the two
measures by productivity(M) and activity(M).

A Turing machine M participating in the generalized Busy Beaver competi-
tion can be represented by a table of the form

input symbol

0 1 · · · m − 1

current state 1 w0
1δ

0
1s

0
1 w1

1δ
1
1s

1
1 · · · wm−1

1 δm−1
1 sm−1

1

2 w0
2δ

0
2s

0
2 w1

2δ
1
2s

1
2 · · · wm−1

2 δm−1
2 sm−1

2

...
...

... · · · ...

n w0
nδ0ns0n w1

nδ1ns1n · · · wm−1
n δm−1

n sm−1
n

where wi
k ∈ {0, 1, . . . ,m − 1} indicates the symbol written by M after reading

i in state k, δi
k ∈ {L,R} is the direction of the head movement, and si

k ∈
{1, . . . , n+1} is the new state M enters. State 1 is the initial state and state n+1
is the halting state.

As early as 1966, the lower bounds Σ(3, 3) ≥ 12 and S(3, 3) ≥ 57 were
reported in [7] for a non-binary alphabet1. Over the following decades, investi-
gations concentrated on computing Σ(4, 2) and on improving lower bounds for
larger numbers of states in the classical setting of a binary tape alphabet. The
progress in the chase of Busy Beavers is reflected in the table below.

With the exception of lower bounds due to Brady (S(2, 3) ≥ 38, S(2, 4) ≥
7, 195 [3]), the search for high scoring machines with more than two symbols
did not continue before 2004. As outlined in the survey [12], Michel and Brady
improved the lower bounds on Σ(3, 3) and S(3, 3) during that year. Between 2005
and 2008 many new machines for non-binary alphabets were found mainly by two
teams: Grégory Lafitte and Christophe Papazian, and Terry and Shawn Ligocki
(father and son). Lafitte and Papazian could also establish that Σ(2, 3) = 9 and
S(2, 3) = 38, confirming Michel’s conjecture from [11] that Brady’s lower bound
dating back almost two decades was tight.
1 The origin of these bounds communicated to Korfhage by C. Y. Lee of Bell Telephone

Lab. is not clear. In [7] Lee, Tibor Rado, Shen Lin, Patrick Fischer, Milton Green,
and David Jefferson are mentioned in connection with these lower bounds and other
early results.
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n Σ(n, 2) S(n, 2) References

1 1 1 Rado [13]

2 4 6 Rado [13]

3 6 21 Lin, Rado [8]

4 13 107 Brady [2]

5 ≥4098 ≥47,176,870 Marxen, Buntrock [9]

6 ≥3.514 · 1018,267 ≥7.412 · 1036,534 Kropitz, see [10]

Given the known values and lower bounds for non-binary alphabets, it is
natural to expect that Σ(n,m) and S(n,m) are increasing in both parameters
(it is easily shown that they are increasing in their first parameter, see Lemma 1
below). An even stronger conjecture was stated by Harland [5].

Before presenting our results we cite Harland’s conjecture:

Conjecture 28 (in [5]). Let M be a k-halting Turing machine with n states
and m symbols for some k ≥ 1 with finite activity. Then there is a k-halting
n-state (m + 1)-symbol Turing machine M ′ with finite activity such that

activity(M ′) > activity(M) and productivity(M ′) > productivity(M).

Here k-halting means that there are k transitions to the halting state.
For n = 1, an n-state Turing machine has to halt after the first step on a

blank in order to have finite activity. As this holds independently of the size of
the alphabet, no increase of activity and productivity is possible. We therefore
exclude the trivial case n = 1.

Notice that the conjecture is stronger than just stating that Σ and S are
increasing as m grows and n is kept fixed (which it implies by taking highest
scoring machines as M). The conjecture considers for any specific machine both
activity and productivity at the same time. A machine maximizing one of the
measures may in fact not maximize the other, as is the case for n = 3 where
machines with activity 21 produce at most 5 < Σ(3) ones.

In addition, Harland’s conjecture imposes a restriction on the structure of a
machine increasing these measures, namely that the number of halting transi-
tions is kept constant for machine M ′.

Highest scores for small machines still provide evidence in support of the
conjecture. We have

Σ(2, 2) = 4 < Σ(2, 3) = 9 < 2, 050 ≤ Σ(2, 4),

S(2, 2) = 6 < S(2, 3) = 38 < 3, 932, 964 ≤ S(2, 4),

Σ(3, 2) = 6 < 374, 676, 383 ≤ Σ(3, 3),

and
S(3, 2) = 21 < 119, 112, 334, 170, 342, 540 ≤ S(3, 3)

(results of Rado, Lin, Lafitte, Papazian, T. Ligocki and S. Ligocki, see [12] for
references).
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2 Results

It is well-known that activity and productivity grow with the number of states,
see the figure on p. 77 of [6] or Proposition 27 of [5].

Lemma 1. Let M be a Turing machine with n states and m symbols with finite
activity. Then there is an (n + 1)-state m-symbol Turing machine M ′ with
finite activity such that activity(M ′) > activity(M) and productivity(M ′) >
productivity(M).

The lemma can be proved for any alphabet by redirecting the (unique) halting
transition to the new state and having it skip symbols different from the blank
while moving the head in one direction. The first blank encountered is replaced
with a non-blank and then the machine halts.

An encoding scheme originally developed by Ben-Amram and Petersen [1]
and called introspective computing by Luke Schaeffer [15] will be essential in
proving Harland’s conjecture for sufficiently large numbers of states.

Theorem 1. For every m ≥ 2 and k ≥ 1 there is an Nm,k such that for every
k-halting Turing machine M with n ≥ Nm,k states and m symbols with finite
activity there is an n-state, (m + 1)-symbol k-halting Turing machine M ′ with
finite activity such that activity(M ′) > activity(M) and productivity(M ′) >
productivity(M).

Proof. We first outline the idea of the construction. While for the proof of
Lemma 1 a microscopic approach suffices, we will apply introspective comput-
ing here on a more general level. A fraction of the available n states is used
for encoding the m-symbol machine, where the larger alphabet compensates the
missing states. Thus we can efficiently convert from alphabet symbols to states.
This encoding is embedded into a simulator M ′ having the properties required
by the theorem.

Let M be a Turing machine as described in the theorem with n > m states.
We first notice that w.l.o.g. all n states appear in the unique halting computation
of M on the blank tape. For otherwise we omit an unused state s (reducing
the number of halting transitions by at most m) and redirect all transitions
with target s to some remaining state. The resulting Turing machine M̂ with
n − 1 states is equivalent to M on a blank tape, since none of the modified
transitions is ever reached in the course of the computation. We apply Lemma 1
to M̂ resulting in a machine M ′ with a new state s′ having activity(M ′) >
activity(M) and productivity(M ′) > productivity(M). Since the construction
for Lemma 1 preserves the number of halting transitions, it suffices to add at most
one halting transition on the new symbol m for each of the n− 1 states different
from s′ in order to transform M ′ into a k-halting machine. The remaining non-
halting transitions on m can be arbitrary. These additional transitions will not
influence the computation, because symbol m is never written onto the tape. In
the following we let Nm,k ≥ m.

The next normalization of M is the observation from [1] that in its compu-
tation on a blank tape “new” states (states not previously visited) appear in
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increasing order, i.e., the first state visited and not in the set {1, . . . , s} is s + 1.
This can be achieved by renaming the states appearing in the unique computa-
tion of M on a blank tape. A transition followed when a state s is first arrived at
is called special, all other transitions are ordinary. Targets of special transitions
can be omitted from a description of M , as long as there is a flag indicating
whether a transition is special. We further note that the number of special tran-
sitions is exactly n, since by the normalization above all states (including the
halt state) are reached.

Finally halting transitions (except the one appearing in the halting compu-
tation) are modified, such that they target another state. Obviously this does
not influence the computation.

After these transformations, M can be described by the following informa-
tion:

1. The number n−1 in a self-delimiting binary notation, using at most 2�log2 n�
bits.

2. An array containing m(�log2 m�+2) bits for every state i ∈ {1, . . . , n}. These
bits correspond to the components (symbol written, head movement, and next
state) of a row of the transition table encoding all transitions from a state.
The next state is replaced by a flag that is 1 if and only if the transition is
special.

3. A list of n(m − 1) destinations of ordinary transitions. The list is sorted
according to their first appearance in the computation on a blank tape. A
destination can be encoded in �log2 n� bits, since the halting transition is
always special and by the transformation above the halting state does not
appear in another transition.

In summary, the description of M requires nm�log2 n� − n�log2 n� + cn bits for
some constant c if m is fixed.

Next we consider the information content of n′ states acting as a ROM in
the finite control of a Turing machine with m + 1 symbols. By the technique
of introspective computing [1] generalized to m + 1 tape symbols, n′m�log2 n′�
bits can be extracted from these states by a fixed extractor machine E with
nE states. We will briefly outline how this can be done. To each pair of state q
among the n′ states of the ROM and symbol α (except for the blank) a binary
string Rq,α of length �log2 n′� is assigned and the numerical value of this string
is denoted by rq,α. A base state b for the ROM is chosen and we assume that
b ≤ q < b + n′. Next we include into the finite control of the simulator M ′ the
following transitions for the n′ states acting as a ROM:

– On the blank state q goes to q +1, writes a blank, and moves the head to the
right.

– On a non-blank symbol α state q goes to b + n′ − rq,α, writes α, and moves
the head to the right.

In order to extract Rq,α, simulator M ′ sets up a tape segment 0q−1α0n′
and starts

a computation in state b on the first symbol. Notice that the transitions defined
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above move the head to the right until the α in this segment is encountered,
which happens in state q. Then state b + n′ − rq,α is entered and another rq,α

steps are carried out before state b + n′ is entered, which is not part of the
portion of M ′ acting as a ROM. In state b + n′ the distance between the head
and symbol α to the left determines rq,α and thus the string Rq,α. All these
strings are in turn extracted and recorded by M ′ on its tape.

The extracted bits can be processed by a universal Turing machine U having
nU states and simulating machines with m symbols step by step. As opposed to
usual simulators, we let U write an extra non-blank symbol after it has reached
the halting transition of the machine being simulated (notice that this will make
sure that activity as well as productivity increase in comparison to M). A further
specific requirement is that U keeps track of the first appearance of a state and
finalizes the transition table according to the flags while simulating a machine.
Finally an ordinary universal Turing machine would have exactly one halting
transition. In order to meet the requirements of Harland’s conjecture we add
a sufficient number of (unreachable) states to accommodate k − 1 additional
halting transitions.

We let d = nE + nU , n′ = n − d and observe that n′m�log2 n′� = (n −
d)m�log2(n−d)� ≥ (n−d)m(�log2 n�−1) ≥ nm�log2 n�−dm�log2 n�−nm+dm ≥
nm�log2 n�−dm�log2 n�−2nm+dm ≥ nm�log2 n�−n�log2 n�+cn for n ≥ Nm,k

with a sufficiently large Nm,k. Therefore n′ states suffice to encode M .
Finally we compose the Turing machine over m + 1 symbols with n′ states

encoding machine M , the extractor E, and the universal Turing machine U to
obtain machine M ′ with n states simulating M and satisfying the theorem. 	


Next we consider weaker versions of Harland’s conjecture. But first we show
some technical lemmas.

Lemma 2. For all n,m ≥ 2 we have S(n,m) > n

Proof. We have S(2, 2) = 6 > 2. Suppose S(n, 2) > n for some n ≥ 2. By
Lemma 1 we get S(n + 1, 2) > n + 1 and S(n,m) ≥ S(n, 2) > n for m ≥ 3 by
adding transitions on m − 2 symbols for a two-symbol champion. 	

Lemma 3. If all transitions of Turing machine M with n states on the blank
move the head in the same direction and M has finite activity, then we have
activity(M) ≤ n.

Proof. If M makes more than n steps in one direction, then a state repeats and
M does not stop. 	


The next result is inspired by the construction in Fig. 14 of [5]. In contrast
to Theorem 1 it does not preserve the number of halting transitions.

Theorem 2. For every Turing machine M with n ≥ 2 states and two symbols
having finite activity there is an n-state, three-symbol Turing machine M ′ with
finite activity such that activity(M ′) > activity(M).
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Proof. Without loss of generality M has maximum activity among all n state,
two-symbol Turing machines and the first transition of M moves the head to the
right.

We let M ′ have the basic structure of M and add transitions on the new
(third) symbol to every state. For a state s to be determined below this transi-
tion is halting, while the other transitions are non-halting and can otherwise be
arbitrary, since they will never be used.

Consider the tape cell i at the final position of the head in the computation
of M on a blank tape. We modify the halting transition taken by M to write the
new symbol and move the head depending on the symbols in neighboring cells
i − 1 (left) and i + 1 (right) of i.

If cell i − 1 contains a blank, we modify the halting transition to move left
and go to the initial state. By the normalization of the first transition, M ′ will
move right on the blank (it cannot halt due to Lemma 2) to a state which is
chosen as s. Then M halts on the new symbol increasing activity by two.

If cell i − 1 contains 1 and there is a state with a transition moving right
on 1, we modify the last transition to move left and go to such a state. This will
increase activity by one if the transition moving right on 1 is halting, in which
case we choose the current state as s. Otherwise activity increases by two as in
the previous case if M ′ returns to cell i in a state chosen as s.

If all transitions move left on 1, we consider tape cell i + 1. If it contains
1, we modify the halting transition to move right and go to an arbitrary state.
Machine M ′ will either halt immediately or return to cell i in a state chosen as
s and halt.

Finally consider a blank in cell i + 1. Since for all n ≥ 2 there is a machine
with activity exceeding n by Lemma 2, we conclude from Lemma 3 that at least
one transition moves the head left on a blank. Go to a state with such a transition
and move the head to the right. The resulting Turing machine will halt either
when reading cell i + 1 or when it returns to cell i in a state chosen as s.

In each case we have activity(M ′) ∈ {activity(M) + 1, activity(M) + 2} and
activity(M ′) > activity(M). 	


Next we turn to constructions that increase the alphabet by more than one
symbol.

Theorem 3. For every Turing machine M with n ≥ 2 states and m ≥ 2
symbols having finite activity there is a 2-state, (4nm + 5m)-symbol Turing
machine M ′ with finite activity such that activity(M ′) > activity(M) and
productivity(M ′) > productivity(M).

Proof. Let M be a Turing machine with n states and m symbols. By Lemma 1
there is a machine M ′ with n + 1 states and m symbols increasing activity and
productivity. The classical construction from [14] transforms it into an equivalent
2-state machine with 4m(n + 1) + m = 4nm + 5m symbols. 	

Theorem 4. For every Turing machine M with n ≥ 2 states and m ≥ 3 symbols
having finite activity there is an n-state, 3m-symbol Turing machine M ′ with
finite activity such that activity(M ′) > activity(M).
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Proof. If among the Turing machines with n states and m symbols M does not
have maximum activity, we choose as M ′ such a machine and no increase of the
tape alphabet is necessary.

Otherwise for every symbol a of M we add new symbols aL and aR to the
transition table of M ′. A transition of M on an old symbol writing a is modified
to write aR if it moves the head to the left (indicating that aR is to the right
of the tape head) and similarly aL if it moves the head to the right. On new
symbols aR and aL machine M ′ replaces the new symbol with a and “bounces”
back to the right if the symbol was aL and to the left on aR. Observe that all
symbols with subscript L are to the left of the tape head or under it and all
symbols with subscript R are to the right of the tape head or under it in the
course of the computation of M ′.

Consider the homomorphism h defined by h(a) = h(aL) = h(aR) = a for
every symbol a of M . We claim that for every instantaneous description of M at
step k with a tape inscription w of cells visited by M and its head on cell i there
is an instantaneous description of M ′ at step k′ ≥ k with a tape inscription w′

satisfying h(w′) = w with its head on cell i. This clearly holds for step 0 when
there are no modified cells. If M ′ reads an old symbol a it writes some bR or bL

while M writes b and both move their heads in the same direction. This clearly
maintains the property h(w′) = w and that the head positions correspond. If M ′

reads aL it has just moved its head left and the neighboring cell contains some
symbol bR. Now M ′ writes a, moves right, replaces bR with b, and returns to a. In
comparison to M , two additional steps have been performed while h(aLbR) = ab.
In a similar way M ′ behaves on aR. We conclude that M ′ halts if and only M
does and activity(M ′) ≥ activity(M).

To see that activity(M ′) > activity(M) we make use of the assumption that
M has maximum activity among the Turing machines with n states and m
symbols. By Lemmas 2 and 3 machine M ′ has to make at least one turn, which
adds at least two steps to the computation of M ′ in comparison to M . 	


3 Discussion

We have partially proved Harland’s conjecture. It holds for n sufficiently large
and (restricted to the measure activity and without maintaining the number of
halting transitions) for m = 2. An increase of the alphabet size exceeding one
admits similar results for all n. In the former construction we have used the
technique of interpretation instead of instrumentation (in terms of [1]).

If Harland’s conjecture is true in general, it provides further evidence for the
symmetry of symbols and states discussed by Shannon in the concluding remarks
of [14], since an increase in one of the parameters adds power to the machines.

Acknowledgements. Thanks are due to the reviewers for suggesting several improve-
ments of the presentation.
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Abstract. It is well known that normality (all factors of a given length
appear in an infinite sequence with the same frequency) can be described
as incompressibility via finite automata. Still the statement and the proof
of this result as given by Becher and Heiber (2013) in terms of “loss-
less finite-state compressors” do not follow the standard scheme of Kol-
mogorov complexity definition (an automaton is used for compression,
not decompression). We modify this approach to make it more similar to
the traditional Kolmogorov complexity theory (and simpler) by explicitly
defining the notion of automatic Kolmogorov complexity and using its
simple properties. Other known notions (Shallit and Wang [15], Calude
et al. [8]) of description complexity related to finite automata are dis-
cussed (see the last section).

As a byproduct, this approach provides simple proofs of classical
results about normality (equivalence of definitions with aligned occur-
rences and all occurrences, Wall’s theorem saying that a normal number
remains normal when multiplied by a rational number, and Agafonov’s
result saying that normality is preserved by automatic selection rules).

1 Introduction

What is an individual random object? When could we believe, looking at an
infinite sequence α of zeros and ones, that α was obtained by tossing a fair coin?
The minimal requirement is that zeros and ones appear “equally often” in α:
both have limit frequency 1/2. Moreover, it is natural to require that all 2k bit
blocks of length k appear equally often. Sequences that have this property are
called normal (see the exact definition in Sect. 3; a historic account can be found
in [4,6]).

Intuitively, a reasonable definition of an individual random sequence should
require much more than just normality; the corresponding notions are studied
in the algorithmic randomness theory (see [9,13] for the detailed exposition,
[17] for a textbook and [16] for a short survey). The most popular definition
is called Martin-Löf randomness; the classical Schnorr–Levin theorem says that
this notion is equivalent to incompressibility : a sequence α is Martin-Löf random
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if an only if prefixes of α are incompressible (do not have short descriptions).
See again [9,13,16,17] for exact definitions and proofs.

It is natural to expect that normality, being a weak randomness property,
corresponds to some weak incompressibility property. The connection between
normality and finite-state computations was noticed long ago, as the title of [1]
shows. This connection led to a characterization of normality as “finite-state
incompressibility” (see [4]). However, the notion of incompressibility that was
used in [4] does not fit well the general framework of Kolmogorov complexity
(finite automata are considered as compressors, while in the usual definition of
Kolmogorov complexity we restrict the class of allowed decompressors).

In this paper we give a definition of automatic Kolmogorov complexity that
restricts the class of allowed decompressors and is suitable for the characteriza-
tion of normal sequences as incompressible ones. This definition and its proper-
ties are considered in Sect. 2. In Sect. 3 we recall the notion of normal sequence.
Then in Sect. 4 we provide a characterization of normal sequences in terms of
automatic Kolmogorov complexity. In Sect. 5 we show how this characterization
can be used to give simple proofs for classical results about normality, including
Wall’s theorem (normal numbers remain normal when multiplied by a rational
factor). In a similar way one can prove Agafonov’s result [1], but we omit the
proof due to space restrictions (see the arxiv version of this paper). Finally,
in Sect. 7 we compare our definition of automatic complexity with other similar
notions.

2 Automatic Kolmogorov Complexity

Let us recall the definition of algorithmic (Kolmogorov) complexity. It is usually
defined in the following way: C(x), the complexity of an object x, is the minimal
length of its “description”. (We assume that both objects and descriptions are
binary strings; the set of binary strings is denoted by B

∗, where B = {0, 1}.) Of
course, this definition makes sense only after we explain which type of “descrip-
tions” we consider, but most versions of Kolmogorov complexity can be described
according to this scheme [19]:

Definition 1. Let D ⊂ B
∗ × B

∗ be a binary relation; we read (p, x) ∈ D as “p
is a D-description of x”. Then complexity function CD is defined as

CD(x) = min{|p| : (p, x) ∈ D},

i.e., as the minimal length of a D-description of x.

Here |p| stands for the length of a binary string p and min(∅) = +∞, as usual.
We say that D is a description mode and CD(x) is the complexity of x with
respect to the description mode D.

We get the original version of Kolmogorov complexity (“plain complexity”)
if we consider all computable functions as description modes, i.e., if we con-
sider relations Df = {(p, f(p))} for arbitrary computable partial functions f
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as description modes. Equivalently, we may say that we consider (computably)
enumerable relations D that are graphs of functions (for every p there exists at
most one x such that (p, x) ∈ D; each description describes at most one object).
Then the Kolmogorov–Solomonoff optimality theorem says that there exists an
optimal D in this class that makes CD minimal (up to an O(1) additive term).
(We assume that the reader is familiar with basic properties of Kolmogorov
complexity, see, e.g., [11,17]; for a short introduction see also [16].)

Note that we could get a trivial CD if we take, e.g., the set of all pairs as
a description mode D (in this case all strings have complexity zero, since the
empty string describes all of them). So we should be careful and do not consider
description modes where the same string describes too many objects.

To define our class of descriptions, let us first recall some basic notions related
to finite automata. Let A and B be two finite alphabets. Consider a directed
graph G whose edges are labeled by pairs (a, b) of letters (from A and B respec-
tively). We also allow pairs of the form (a, ε), (ε, b), and (ε, ε) where ε is a special
symbol (not in A or B) that informally means “no letter”. For such a graph,
consider all directed paths in it (no restriction on starting or final points), and
for each path concatenate all the first and all the second components of the pairs;
ε is replaced by an empty word. For each path we get some pair (u, v) where
u ∈ A∗ and v ∈ B∗ (i.e., u and v are words over alphabets A and B). Consider
all pairs that can be read in this way along all paths in G. For each labeled graph
G we obtain a relation (set of pairs) RG that is a subset of A∗ × B∗. For the
purposes of this paper, we call the relations obtained in this way “automatic”.
This notion is similar to rational relations defined by transducers [5, Sect. 3.6].
The difference is that we do not fix initial/finite states (so every subpath of a
valid path is also valid) and that we do not allow arbitrary words as labels, only
letters and ε. (This will be important, e.g., for the statement (j) of Theorem 1.)

Definition 2. A relation R ⊂ A∗ × B∗ is automatic if there exists a labeled
graph (automaton) G such that R = RG.

Now we define automatic description modes as automatic relations where
each string describes at most O(1) objects:

Definition 3. A relation D ⊂ B
∗ × B

∗ is an automatic description mode if

– D is automatic in the sense of Definition 2;
– D is a graph of an O(1)-valued function: there exists some constant c such

that for each p there are at most c values of x such that (p, x) ∈ D.

For every automatic description mode D we consider the corresponding com-
plexity function CD. There is no optimal mode D that makes CD minimal
(see Theorem 1 below). So, stating some properties of complexity, we need to
mention D explicitly and say something like “for every automatic description
mode D there exists another automatic description mode D′ such that. . . ”, and
then make a statement that involves both CD and CD′ . (A similar approach is
needed when we try to adapt inequalities for Kolmogorov complexity to the case
of resource-bounded complexities.)

Let us first mention some basic properties of automatic description modes.
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Proposition 1.

(a) The union of two automatic description modes is an automatic description
mode.

(b) The composition of two automatic description modes is an automatic
description mode.

(c) If D is a description mode, then {(p, x0) : (p, x) ∈ D} is a description mode
(here x0 is the binary string x with 0 appended); the same is true for x1
instead of x0.

Proof. There are two requirements for an automatic description mode: (1) the
relation is automatic and (2) the number of images is bounded. The second one
is obvious in all three cases. The first one can be proven by a standard argument
(see, e.g., [5, Theorem 4.4]) that we reproduce for completeness.

(a) The union of two relations RG and R′
G for two automata G and G′ corre-

sponds to an automaton that is a disjoint union of G and G′.
(b) Let S and T be automatic relations that correspond to automata K and L.

Consider a new graph that has set of vertices K × L. (Here we denote an
automaton and the set of vertices of its underlying graph by the same letter.)

– If an edge k → k′ with a label (a, ε) exists in K, then the new graph has
edges (k, l) → (k′, l) for all l ∈ L; all these edges have the same label (a, ε).

– In the same way an edge l → l′ with a label (ε, c) in L causes edges (k, l) →
(k, l′) in the new graph for all k; all these edges have the same label (ε, c).

– Finally, if K has an edge k → k′ labeled (a, b) and at the same time L has
an edge l → l′ labeled (b, c), where b is the same letter, then we add an edge
(k, l) → (k′, l′) labeled (a, c) in the new graph.

Any path in the new graph is projected into two paths in K and L. Let (p, q)
and (u, v) be the pairs of words that can be read along these projected paths
in K and L respectively, so (p, q) ∈ S and (u, v) ∈ T . The construction of the
graph K × L guarantees that q = u and that we read (p, v) in the new graph
along the path. So every pair (p, v) of strings that can be read in the new graph
belongs to the composition of S and T .

On the other hand, assume that (p, v) belong to the composition, i.e., there
exists q such that (p, q) can be read along some path in K and (q, v) can be read
along some path in L. Then the same word q appears in the second components
in the first path and in the first components in the second path. If we align the
two paths in such a way that the letters of q appear at the same time, we get
a valid transition of the third type for each letter of q. Then we complete the
path by adding transitions inbetween the synchronized ones (interleaving them
in arbitrary way); all these transitions exist in the new graph by construction.

(c) We add an additional outgoing edge labeled (ε, 0) for each vertex of the
graph; all these edges go to a special vertex that has no outgoing edges.
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Remark 1. Given a graph, one can check in polynomial time whether the corre-
sponding relation is O(1)-valued [21, Theorem 5.3, p. 777].

Now we are ready to prove the following simple result about the properties
of automatic Kolmogorov complexity functions, i.e., of functions CR where R is
some automatic description mode.

Theorem 1 (Basic properties of automatic Kolmogorov complexity).

(a) There exists an automatic description mode R such that CR(x) ≤ |x| for all
strings x.

(b) For every automatic description mode R there exists some automatic
description mode R′ such that CR′(x0) ≤ CR(x) and CR′(x1) ≤ CR(x)
for all x.

(c) For every automatic description mode R there exists some automatic
description mode R′ such that CR′(x̄) ≤ CR(x), where x̄ stands for the
reversed x.

(d) For every automatic description mode R there exists some constant c such
that C(x) ≤ CR(x)+c. (Here C stands for the plain Kolmogorov complexity.)

(e) For every c > 0 there exists an automatic description mode R such that
CR(1n) ≤ n/c for all n.

(f) For every automatic description mode R there exists some c > 0 such that
CR(1n) ≥ n/c − 1 for all n.

(g) For every two automatic description modes R1 and R2 there exists an auto-
matic description mode R such that CR(x) ≤ CR1(x) and CR(x) ≤ CR2(x)
for all x.

(h) There is no optimal automatic description mode. (A mode R is called opti-
mal in some class if for every mode R′ in this class there exists some c such
that CR(x) ≤ CR′(x) + c for all strings x.)

(i) For every automatic description mode R, if x′ is a substring of x, then
CR(x′) ≤ CR(x).

(j) Moreover, CR(xy) ≥ CR(x) + CR(y) for every two strings x and y.
(k) For every automatic description mode R and for every constant ε > 0 there

exists an automatic description mode R′ such that CR′(xy) ≤ (1+ε)CR(x)+
CR(y) for all strings x and y.

(l) Let S be an automatic description mode. Then for every automatic descrip-
tion mode R there exists an automatic description mode R′ such that
CR′(y) ≤ CR(x) for every (x, y) ∈ S.

(m) If we allow a bigger alphabet B instead of B as an alphabet for descriptions,
we divide the complexity by log |B|, up to a constant factor that can be chosen
arbitrarily close to 1.

Proof.

(a) Consider an identity relation as a description mode; it corresponds to an
automaton with one state.

(b) This is a direct corollary of Proposition 1(c).
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(c) The definition of an automaton is symmetric (all edges can be reversed),
and the O(1)-condition still holds.

(d) Let R be an automatic description mode. An automaton defines a decidable
(computable) relation, so R is decidable. Since R defines a O(1)-valued func-
tion, a Kolmogorov description of some y that consists of its R-description
x and the ordinal number of y among all strings that are in R-relation to
x, is only O(1) bits longer than x.

(e) Consider an automaton that consists of a cycle where it reads one input
symbol 1 and then produces c output symbols 1. (Since we consider the
relation as an O(1)-multivalued function, we sometimes consider the first
components of pairs as “input symbols” and the second components as
“output symbols”.) Recall that there is no restrictions on initial and finite
states, so this automaton produces all pairs (1k, 1l) where (k − 1)c ≤ l ≤
(k + 1)c.

(f) Consider an arbitrary description mode, i.e., an automaton that defines
some O(1)-valued relation. Then every cycle in the automaton that pro-
duces some output letter should also produce some input letter, otherwise
an empty input string corresponds to infinitely many output strings. For
any sufficiently long path in the graph we can cut away a minimal cycle,
removing at least one input letter and at most c output letters, where c is
the number of states, until we get a path of length less than c.

(g) This follows from Proposition 1(a).
(h) This statement is a direct consequence of (e) and (f). Note that for finitely

many automatic description modes there is a mode that is better than all
of them, as (g) shows, but we cannot do the same for all description modes
(as was the case for Kolmogorov complexity).

(i) If R is a description mode, (p, x) belongs to R and x′ is a substring of x,
then there exists some substring p′ of p such that (p′, x′) ∈ R. Indeed, we
may consider the input symbols used while producing x′.

(j) Note that in the previous argument we can choose disjoint p′ for disjoint x′.
(k) Informally, we modify the description mode as follows: a fixed fraction of

input symbols is used to indicate when a description of x ends and a descrip-
tion of y begins. More formally, let R be an automatic description mode; we
use the same notation R for the corresponding automaton. Consider N + 1
copies of R (called 0-, 1-,. . . , Nth layers). The outgoing edges from the
vertices of ith layer that contain an input symbol are redirected to (i+1)th
layer (the new state remains the same, only the layer changes, so the layer
number counts the input length). The edges with no input symbol are left
unchanged (and go to ith layer as before). The edges from the Nth layer are
of two types: for each vertex x there is an edge with label (0, ε) that goes to
the same vertex in 0th layer, and edges with labels (1, ε) that connect each
vertex of Nth layer to all vertices of an additional copy of R (so we have
N + 2 copies in total). If both x and y can be read (as outputs) along the
edges of R, then xy can be read, too (additional zeros should be added to
the input string after groups of N input symbols). We switch from x to y
using the edge that goes from Nth layer to the additional copy of R (using
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additional symbol 1 in the input string). The overhead in the description
is one symbol per every N input symbols used to describe x. We get the
required bound, since N can be arbitrarily large.

The only thing to check is that the new automaton is O(1)-valued.
Indeed, the possible switch position (when we move to the states of the
additional copy of R) is determined by the positions of the auxiliary bits
modulo N + 1: when this position modulo N + 1 is fixed, we look for the
first 1 among the auxiliary bits. This gives only a bounded factor (N + 1)
for the number of possible outputs that correspond to a given input.

(l) The composition S ◦ R is an automatic description mode due to Proposi-
tion 1.

(m) Take the composition of a given description mode R with a mode that
provides block encoding of inputs. Note that block encoding can be imple-
mented by an automaton. There is some overhead when |B| is not a power
of 2, but the corresponding factor becomes arbitrarily close to 1 if we use
block code with large block size.

Remark 2. Not all these results are used in the sequel; we provide them for
comparison with the properties of the standard Kolmogorov complexity function.

3 Normal Sequences and Numbers

Consider an infinite bit sequence α = a0a1a2 . . . and some integer k ≥ 1. Split the
sequence α into k-bit blocks: α = A0A1 . . .. For every k-bit string r consider the
limit frequence of r among the Ai, i.e. the limit of #{i : i < N and Ai = r}/N
as N → ∞. This limit may exist or not; if it exists for some k and for all r, we
get a probability distribution on k-bit strings.

Definition 4. A sequence α is normal if for every number k and every string
r of length k this limit exists and is equal to 2−k.

Sometimes sequences with these properties are called strongly normal while
the name “normal” is reserved for sequences that have this property for k = 1.

There is a version of this definition that considers all occurences of some
string r in α, not only aligned ones (whose starting point is a multiple of k). In
this version we require that the limit of #{i < N : αiαi+1 . . . αi+k−1 = r}/N
equals 2−k for all k and for all strings r of length k. A classical result (see,
e.g., [12, Chap. 1, Sect. 8]) says that this is an equivalent notion, and we give
below a simple proof of this equivalence using automatic complexity. Before this
proof is given, we will distinguish the two definitions by using the name “non-
aligned-normal” for the second version.

A real number is called normal if its binary expansion is normal (we ignore
the integer part). If a number has two binary expansions, like 0.0111 . . . =
0.1000 . . ., both expansions are not normal, so this is not a problem.

A classical example of a normal number is the Champernowne number [7]

0.0 1 10 11 100 101 110 111 1000 1001 . . .
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(the concatenation of all positive integers in binary). Let us sketch the proof of
its normality (not used in the sequel) using the non-aligned version of normality
definition. All N -bit numbers in the Champernowne sequence form a block that
starts with 10N−1 and ends with 1N . Note that every string of length k 	 N
appears in this block with probability close to 2−k, since each of 2N−1 strings
(after the leading 1 for the N -bit numbers in the Champernowne sequence)
appears exactly once. The deviation is caused by the leading 1’s and also by the
boundaries between the consecutive N -bit numbers where the k-bit substrings
are out of control. Still the deviation is small since k 	 N .

This is not enough to conclude that C is (non-aligned) normal, since the
definition speaks about frequencies in all prefixes; the prefixes that end on a
boundary between two blocks are not enough. The problem appears because the
size of a block is comparable to the length of the prefix before it. To deal with
arbitrary prefixes, let us note that if we ignore two leading digits in each number
(first 10 and then 11) instead of one, the rest is periodic in the block (the block
consists of two periods). If we ignore three leading digits, the block consists of
four periods, etc. An arbitrary prefix is then close to the boundary between these
sub-blocks, and the distance can be made small compared to the total length of
the prefix. (End of the proof sketch.)

The definition of normality can be given for an arbitrary alphabet (instead
of the binary one), and we get the notion of b-normality of a real number for
every base b ≥ 2. It is known that for different bases we get non-equivalent
notions (a rather difficult result). The numbers in [0, 1] that are normal for
every base are called absolutely normal. Their existence can be proved by a
probabilistic argument. For every base b, almost all reals are b-normal (the non-
normal numbers have Lebesgue measure 0); this is guaranteed by the Strong
Law of Large Numbers. Therefore the numbers that are not absolutely normal
form a null set (a countable union of the null sets for each b). The constructive
version of this argument shows that there exist computable absolutely normal
numbers. This result goes back to an unpublished note of Turing (1938, see [2]).

In the next section we prove the connection between normality and automatic
complexity: a sequence α is normal if for every automatic description mode D
the corresponding complexity CD of its prefix never becomes much smaller than
the length of this prefix.

4 Normality and Incompressibility

Theorem 2. A sequence α = a0a1a2 . . . is normal if and only if

lim inf
n→∞

CR(a0a1 . . . an−1)
n

≥ 1

for every automatic description mode R.

Proof. First, let us show that a sequence that is not normal is compressible.
Assume that for some bit sequence α and for some k the requirement for aligned
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k-bit blocks is not satisfied. Using a compactness argument, we can find a
sequence of lengths Ni such that for the prefixes of these lengths the frequencies
of k-bit blocks do converge to some probability distribution A on B

k, but this
distribution is not uniform. Then its Shannon entropy H(A) is less than k.

The Shannon theorem can then be used to construct a block code of average
length close to H(A), namely, of length at most H(A) + 1 (this “+1” overhead
is due to rounding if the frequencies are not powers of 2). Since this code can
be easily converted into an automatic description mode, it will give the desired
result if H(A) < k − 1. It remains to show that it is the case for long enough
blocks.

Selecting a subsequence, we may assume without loss of generality that the
limit frequencies exist also for (aligned) 2k-bit blocks, so we get a random vari-
able A1A2 whose values are 2k-bit blocks (and A1 and A2 are their first and
second halves of length k). The variables A1 and A2 may be dependent, and
their distributions may differ from the initial distribution A for k-bit blocks.
Still we know that A is the average of A1 and A2 (since A is computed for all
blocks, and A1 [resp. A2] corresponds to odd [resp. even] blocks). A convex-
ity argument (the function p 
→ −p log p used in the definition of entropy has
negative second derivative) shows that H(A) ≥ [H(A1) + H(A2)]/2. Then

H(A1A2) ≤ H(A1) + H(A2) ≤ 2H(A),

so A1A2 has twice bigger difference between entropy and length (at least).
Repeating this argument, we can find k such that the difference between length
and entropy is greater than 1. This finishes the proof in one direction.

Now we need to prove that every normal sequence α is incompressible. Let
R be an arbitrary automatic description mode. Consider some k and split the
sequence into k-bit blocks: α = A0A1A2 . . .. (Now Ai are just the blocks in α,
not random variables.) We will show that

lim inf
n→∞ CR(A0A1 . . . An−1)/nk

cannot be much smaller than 1. More precisely, we will show that

lim inf
n→∞

CR(A0A1 . . . An−1)
nk

≥ 1 − O(1)
k

,

where the constant in O(1) does not depend on k. This will be enough: note that
(i) we may consider only prefixes whose length is a multiple of k, because adding
the last incomplete block can only increase the complexity and the change in
length is negligible, and (ii) the value of k may be arbitrarily large.

Now let us prove this bound for some fixed k. Recall that

CR(A0A1 . . . An−1) ≥ CR(A0) + CR(A1) + . . . + CR(An−1)

and that C(x) ≤ CR(x) + O(1) for all x and some O(1)-constant that depends
only on R (Theorem 1). By assumption, all k-bit strings appear with the same
limit frequency among A0, A1,. . . , An−1. It remains to note that the average
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Kolmogorov complexity C(x) of all k-bit strings is k −O(1); indeed, the fraction
of k-bit strings that can be compressed by more than d bits (C(x) < k − d) is
at most 2−d, and the series

∑
d2−d (the upper bound for the average number

of bits saved by compression) has finite sum.

A small modification of this proof adapts it to the non-aligned definition of
normality. Let α be a sequence that is not normal in the non-aligned version. This
means that for some k the k-bit blocks do not have a correct limit distribution
(non-aligned). These blocks can be split into k groups according to their starting
positions modulo k. In one of the groups blocks do not have a correct limit
distribution (otherwise the average distribution would be correct, too). So we
can delete some prefix (less than k symbols) of our sequence and get a sequence
that is not normal in the aligned sense. Its prefixes are compressible (as we have
seen). The same is true for the original sequence since adding a fixed finite prefix
(or suffix) changes complexity at most by O(1).

In the other direction: let us assume that the sequence is normal in the
non-aligned sense. The aligned frequency of some compressible-by-d-bits block
(as well as any other block) can be only k times bigger than its non-aligned
frequency, which is exponentially small in d (the number of saved bits), so we
can choose the parameters to get the required bound.

Indeed, let us consider blocks of length k whose CR-complexity is smaller
than k − d. Their Kolmogorov complexity is then smaller than k − d + O(1),
and the fraction of these blocks (among all k-bit strings) is at most 2−d+O(1).
So their frequency among aligned blocks is at most 2−d+O(1) · k. For all other
blocks R-compression saves at most d bits, and for compressible blocks it saves
at most k bits, so the average number of saved bits (per k-bit block) is bounded
by

d + k2−d+O(1) · k = d + O(k22−d).

We need this bound to be o(k), i.e., we need that

d

k
+ O(k2−d) = o(1)

as k → ∞. This can be achieved, for example, if d = 2 log k.
In this way we get the following corollary:

Corollary 1. The aligned and non-aligned definitions of normality are equiva-
lent.

Note also that adding/deleting a finite prefix does not change the compress-
ibility, and, therefore, normality. (For the non-aligned version of the normality
definition it is obvious anyway, but for the aligned version it is not so easy to
see directly.)

Another corollary is a result proven by Piatetski-Shapiro in [18]: if for some
c and for all k every k-bits block appears in a sequence with lim sup-frequency
at most c2−k, then the sequence is normal. Indeed, in the argument above we
had a constant factor in O(k2−d) anyway. (We can even allow the constant c to
depend on k if its growth as a function of k is not too fast.)
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5 Wall’s Theorem

Now we obtain a known result about normal numbers (Wall’s theorem) as an
easy corollary. Recall that a real number is normal if its binary expansion is
normal. We agreed to ignore the integer part (since it has only finitely many
digits, adding it as a prefix would not matter anyway).

Theorem 3 (Wall [20]). If p and q are rational numbers and α is normal, then
αp + q is normal.

Proof. It is enough to show that multiplication and division by an integer c
preserve normality (note that adding an integer preserves it by definition, since
the integer part is ignored). This fact follows from the incompressibility char-
acterization (Theorem 2), the non-increase of complexity under automatic O(1)
mappings (Theorem 1(l)) and the following lemma:

Lemma 1. Let c be an integer. Consider the relation Rc that consists of pairs
of strings x and y such that x and y have the same length and can be prefixes of
the binary expansions of the fractional parts of γ and cγ for some real γ. This
relation, as well as its inverse, is contained in an automatic description mode.

Assuming Lemma 1, we conclude that the prefixes of γ and cγ have the same
automatic complexity. More precisely, for every automatic description mode R
there exists another automatic description mode R′ such that CR′(y) ≤ CR(x)
if x and y are prefixes of γ and cγ respectively. So if γ is compressible, then cγ
is also compressible. The same is true if we consider the inverse relation; if cγ is
compressible, then γ is also compressible.

It remains to prove Lemma 1. Indeed, the school division algorithm can be rep-
resented by an automaton; integer parts can be different, but this creates O(1) dif-
ferent possible remainders. We have to take care of two representations of the same
number (note that while dividing 0.29999 . . . by 3, we obtain only 0.09999 . . ., not
0.10000 . . .), but at most two representations are possible and the relation between
them is automatic, so we still get an automatic description mode.

6 Pairs as Descriptions and Agafonov’s Theorem

The incompressibility criterion for normality can also be used for an easy proof
of Agafonov’s theorem from [1]. This result says that an automatic selection rule
(a term an of a sequence is selected or not depending on whether a0 . . . an−1

is accepted by a finite automaton), being applied to a normal sequence, selects
either finite or normal sequence.

The idea of the proof: a sequence can be split into two: the selected subse-
quence and the rest. The selection process guarantees that the original sequence
can be reconstructed from these two subsequences. If one of them (the selected
one) is compressible, then this compression can be used to compress the prefixes
of the original sequence (the unselected part remains unchanged, but the selected
part is compressed). There are two technical points needed to implement this
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plan: first, one should prove that the selected subsequence has positive density
(using the normality of the original sequence); second, one should generalize
the notion of automatic complexity by using pairs as descriptions. Due to space
restrictions, the details of this argument are omitted (see the arxiv version).

7 Discussion

The connection between normality and finite-state computations was noticed
long ago, as the title of [1] shows; see also [14] where normality was related
to martingales arising from finite automata. This connection led to a charac-
terization of normality as incompressibility (see [4] for a direct proof). On the
other hand, it was also clear that the notion of Kolmogorov complexity is not
directly practical since it considers arbitrary algorithms as decompressors, and
this makes it non-computable. So restricted classes of decompressors are of inter-
est, and finite-state computations are a natural candidate for such a class.

Shallit and Wang [15] suggested to consider, for a given string x, the minimal
number of states in an automaton that accepts x but not other strings of the
same length. Later Hyde and Kjos-Hanssen [10] considered a similar notion using
nondeterministic automata. The intrinsic problem of this approach is that it is
not naturally “calibrated” in the following sense: measuring the information in
bits, we would like to have about 2n objects of complexity at most n.

Another (and “calibrated”) approach was suggested by Calude et al. [8]: in
their definition a deterministic transducer maps a description string to a string
to be described, and the complexity of y is measured as the combination of the
sizes of a transducer and an input string needed to produce y (the minimum
over all transducers and all input strings producing y is taken). The size of the
transducer is measured via some encoding, so the complexity function depends
on the choice of this encoding. The open question posed in [8, Sect. 6] asks
whether this notion of complexity can be used to characterize normality.

The incompressibility notion used in [4] provides such a characterization for
a different definition. It uses deterministic transducers and requires additionally
that for every output string y and every final state s there exists at most one
input string that produces y and brings the automaton into the state s. Our
approach is a refinement of this one: we consider non-deterministic automata
without initial/final states and require only that decompressor is an O(1)-valued
function. The proofs then become simpler, mainly for two reasons: (1) we use the
comparison of the automatic complexity and the plain Kolmogorov complexity
and apply standard results about Kolmogorov complexity; (2) we explicitly state
and prove the property CR(xy) ≥ CR(x) + CR(y) that is crucial for the proofs.
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