
Chapter 9
Dispersive Kinetics

In this chapter we consider the decay of an optically excited state of a donor molecule
in a fluctuating medium. The fluctuations are modelled by time-dependent decay
rates k (electron transfer), k−1 (backreaction), kda (deactivation by fluorescence or
radiationless transitions) and kcr (charge recombination to the groundstate) (Fig. 9.1).

The time evolution is described by the system of rate equations

d

dt
W (D∗) = −k(t)W (D∗) + k−1(t)W (D+A−) − kdaW (D∗)

d

dt
W (D+A−) = k(t)W (D∗) − k−1(t)W (D+A−) − kcrW (D+A−) (9.1)

which has to be combined with suitable equations describing the dynamics of the
environment. First we discuss a simple dichotomous model [32] where the fluctua-
tions of the rates are modeled by a random process switching between two values
representing two different configurations of the environment. We solve the master
equation and discuss the limits of fast and slow solvent fluctuations. In the sec-
ond part, we apply continuous time random walk processes to model the diffusive
motion. For an uncorrelated Markovian process, the coupled equations are solved
with the help of the Laplace transformation. The results are generalized to describe
the powertime law as observed for CO rebinding in myoglobin at low temperatures.
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Fig. 9.1 Electron transfer in
a fluctuating medium. The
rates are time dependent
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9.1 Dichotomous Model

The fluctuations of the rates are modeled by random jumps between two different
configurations (±) of the environment which modulates the values of the rates. The
probabilities of the two states are determined by the master equation

d

dt

(
W (+)

W (−)

)
=

(−α β

α −β

) (
W (+)

W (−)

)
(9.2)

which has the general solution

W (+) = C1 + C2e−(α+β)t

W (−) = C1
α

β
− C2e−(α+β)t . (9.3)

Obviously the equilibrium values are

Weq(+) = β

α + β
Weq(−) = α

α + β
(9.4)

and the correlation function is (with Q± = ±1)

< Q(t)Q(0) > = Weq(+)(P(+, t |+, 0) − P(−, t |+, 0))

+ Weq(−)(P(−, t |−, 0) − P(+, t |−, 0))

= (Weq(+) − Weq(−))2 + 4Weq(+)Weq(−)e−(α+β)t

= < Q >2 + (< Q2 > − < Q >2)e−(α+β)t . (9.5)

Combination of the two systems of equations (9.1, 9.2) gives the equation of motion

d

dt
W = AW (9.6)
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for the four-component state vector

W =

⎛
⎜⎜⎝

W (D∗,+)

W (D∗,−)

W (D+A−,+)

W (D+A−,−)

⎞
⎟⎟⎠ (9.7)

with the rate matrix

A =

⎛
⎜⎜⎝

−α − k+ − kda β k+
−1 0

α −β − k− − kda 0 k−
−1

k+ 0 −α − k+
−1 − kcr β

0 k− α −β − k−
−1 − kcr

⎞
⎟⎟⎠ .

(9.8)

Generally, the solution of this equation can be expressed by using the left- and right
eigenvectors and the eigenvalues λ of the rate matrix which obey

ARν = λνRν (9.9)

Lν A = λνLν . (9.10)

For the initial values W(0) the solution is given by1

W(t) =
4∑

ν=1

(Lν • W(0))

(Lν • Rν)
Rνeλν t . (9.11)

In the following we consider a simplified case of gated transfer with kda = kcr =
k±
−1 = k− = 0 (Fig. 9.2). Then the rate matrix becomes

⎛
⎜⎜⎝

−α − k+ β 0 0
α −β 0 0
k+ 0 −α β

0 0 α −β

⎞
⎟⎟⎠ . (9.12)

1In the case of degenerate eigenvalues, linear combinations of the corresponding vectors can be
found such that Lν • Lν′ = 0 for ν �= ν′.
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Fig. 9.2 Gated electron
transfer D A (−)+ −

D A (+)+ −
*D (−)*D (+)
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As initial values we chose

W0 =

⎛
⎜⎜⎝
Weq(+)

Weq(−)

0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β

α+β

α
α+β

0
0

⎞
⎟⎟⎟⎠ . (9.13)

There is one eigenvalue λ1 = 0 corresponding to the eigenvectors

R1 =

⎛
⎜⎜⎝

0
0
β

α

⎞
⎟⎟⎠ L1 = (

1 1 1 1
)
. (9.14)

This reflects simply conservation of
∑4

ν=1 Wν in this special case. The contribution
of the zero eigenvector is

L1 • W(0)

L1 • R1
R1 = 1

α + β

⎛
⎜⎜⎝

0
0
β

α

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

Weq(+)

Weq(−)

⎞
⎟⎟⎠ . (9.15)

A second eigenvalue λ2 = −(α + β) corresponds to the equilibrium in the final state
D+A− where no further reactions take place

R2 =

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠ L2 = (

α −β α −β
)
. (9.16)
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The contribution of this eigenvalue is

L2 • P0

L2 • R2
R2 = 0 (9.17)

since we assumed equilibrium in the initial state. The remaining two eigenvalues are

λ3,4 = −α + β + k

2
± 1

2

√
(α + β + k)2 − 4βk (9.18)

and the resulting decay will be in general biexponential. We consider two limits:

9.1.1 Fast Solvent Fluctuations

In the limit of small k we expand the square root to find

λ3,4 = −α + β

2
± α + β

2
− k

2
± α − β

α + β

k

2
+ · · · (9.19)

One of the eigenvalues is

λ3 = −(α + β) − α

α + β
k + · · · (9.20)

In the limit of k → 0 the corresponding eigenvectors are

R3 =

⎛
⎜⎜⎝

1
−1
−1
1

⎞
⎟⎟⎠ L3 = (

α −β 0 0
)

(9.21)

and will not contribute significantly. The second eigenvalue

λ4 = − β

α + β
k + · · · = −Weq(+)k (9.22)

is given by the average rate. The eigenvectors are

R4 =

⎛
⎜⎜⎝

β

α

−β

−α

⎞
⎟⎟⎠ L4 = (

1 1 0 0
)

(9.23)
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and the contribution to the dynamics is

(L4·W0)

(L4 · R4)
R4eλ4t = 1

α + β

⎛
⎜⎜⎝

β

α

−β

−α

⎞
⎟⎟⎠ eλ4t . (9.24)

The total time dependence is approximately given by

W =

⎛
⎜⎜⎝

Weq(+)eλ4t

Weq(−)eλ4t

Weq(+)(1 − eλ4t )

Weq(−)(1 − eλ4t )

⎞
⎟⎟⎠ . (9.25)

9.1.2 Slow Solvent Fluctuations

In the opposite limit we expand the square root for small k−1 to find

λ3,4 = −α + β

2
− k

2
± 1

2

(
k + (α − β) + 2αβk−1 + · · · ) (9.26)

λ3 = −β + αβ

k
+ · · · (9.27)

R3 =

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ L3 = (

α k 0 0
)

(9.28)

λ4 = −k − α + · · · (9.29)

R4 =

⎛
⎜⎜⎝

k
−α

−k
α

⎞
⎟⎟⎠ L4 = (

1 0 0 0
)

(9.30)
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and the time evolution is approximately

W (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β

α + β
e−kt

α

α + β
(e−βt − β

k e−kt )

β

α + β
(1 − e−kt )

α

α + β
(1 − e−βt + β

k e−kt )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.31)

This corresponds to an inhomogeneous situation. One part of the ensemble is in a
favorable environment and decays with the fast rate k. The rest has to wait for a
suitable fluctuation which appears with a rate of β.

9.1.3 Numerical Example

Figure 9.3 shows the transition from fast to slow solvent fluctuations.
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Fig. 9.3 Nonexponential decay. Numerical solutions of (9.12) are shown for α = 0.1, β = 0.9,
(a) k = 0.2, (b) k = 2, (c) k = 5, (d) k = 10. Dotted curves show the two components of the initial
state, solid curves show the total occupation of the initial state
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9.2 Continuous Time RandomWalk Processes

Diffusive motion can be modeled by random walk processes along a one dimensional
coordinate.

9.2.1 Formulation of the Model

The fluctuations of the coordinate X(t) are described as random jumps [33, 34].
The time intervals between the jumps (waiting time) and the coordinate changes are
random variables with independent distribution functions

ψ(tn+1 − tn) and f (Xn+1, Xn). (9.32)

The probability that no jump happened in the interval 0 · · · t is given by the survival
function

Ψ0(t) = 1 −
∫ t

0
ψ(t ′)dt ′ =

∫ ∞

t
ψ(t ′)dt ′ (9.33)

and the probability of finding the walker at position X at time t is given by (Fig. 9.4)

P(X, t) = P(X, 0)

∫ ∞

t
ψ(t ′)dt ′ +

∫ t

0
dt ′

∫ ∞

−∞
dX ′ψ(t − t ′) f (X, X ′)P(X ′, t ′).

(9.34)

Two limiting cases are well known from the theory of collisions. The correlated
process with

f (X, X ′) = f (X − X ′) (9.35)

corresponds to weak collisions. It includes normal diffusion processes as a special
case. For instance if we chose

Fig. 9.4 Continuous time
random walk
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ψ(tn+1 − tn) = δ(tn+1 − tn − Δt) (9.36)

and

f (X − X ′) = pδ(X − X ′ − ΔX) + (1 − p)δ(X − X ′ + ΔX) (9.37)

we have

P(X, t + Δt) = pP(X − ΔX, t) + qP(X + ΔX, t), p + q = 1 (9.38)

and in the limit Δt → 0, ΔX → 0 Taylor expansion gives

P(X, t) + ∂P

∂t
Δt + · · · = P(X, t) + ∂P

∂X
(q − p)ΔX + ∂2P

∂X2
ΔX2 + · · ·

(9.39)

The leading terms constitute a diffusion equation

∂P

∂t
P = (q − p)

ΔX

Δt

∂P

∂X
+ ΔX2

Δt

∂2P

∂X2
(9.40)

with drift velocity (q − p)ΔX
Δt and diffusion constant ΔX2

Δt .
The uncorrelated process, on the other hand with

f (X, X ′) = f (X) (9.41)

corresponds to strong collisions. This kind of process can be analyzed analytically
and will be applied in the following.

The (normalized) stationary distribution Φeq of the uncorrelated process obeys

Φeq(X) = Φeq(X)

∫ ∞

t
ψ(t ′)dt ′ + f (X)

∫ t

0
dt ′ψ(t − t ′)

∫ ∞

−∞
dX ′φeq(X

′)

= Φeq(X)

∫ ∞

t
ψ(t ′)dt ′ + f (X)

∫ t

0
dt ′ψ(t ′) (9.42)

which shows that

f (X) = Φeq(X). (9.43)

9.2.2 Exponential Waiting Time Distribution

Consider an exponential distribution of waiting times

ψ(t) = τ−1e−t/τ Ψ0(t) =
∫ ∞

t
τ−1e−t ′/τdt ′ = e−t/τ . (9.44)
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It can be obtained from a Poisson process which corresponds to the master equation

dPn
dt

= −τ−1Pn + τ−1Pn−1 n = 0, 1, 2 . . . (9.45)

with the solution

Pn(0) = δn,0, Pn(t) = (t/τ)n

n! e−t/τ (9.46)

if we identify the survival function with the probability to be in the initial state P0

Ψ (t) = P0(t) = e−t/τ . (9.47)

The general uncorrelated process (9.34) becomes for an exponential distribution

P(X, t) = P(X, 0)e−t/τ +
∫ t

0
dt ′τ−1e−(t−t ′)/τ

∫
dX ′ f (X, X ′)P(X ′, t ′).

(9.48)

Laplace transformation gives

P̃(X, s) = P(X, 0)
1

s + τ−1
+ τ−1

s + τ−1

∫
dX ′ f (X, X ′)P̃(X ′, s) (9.49)

which can be simplified

(
s + τ−1

)
P̃(X, s) = P(X, 0) + τ−1

∫
dX ′ f (X, X ′)P̃(X ′, s). (9.50)

Back transformation gives

(
d

dt
+ τ−1

)
P(X, t) = τ−1

∫
dX ′ f (X, X ′)P(X ′, t) (9.51)

and finally

∂

∂t
P(X, t) = − 1

τ
P(X, t) + 1

τ

∫
dX ′ f (X, X ′)P(X ′, t) (9.52)

which is obviously a Markovian process, since it involves only the time t . For the
special case of an uncorrelated process with exponential waiting time distribution,
the motion can be described by
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∂

∂t
P(X, t) = LP(X, t) (9.53)

LP(X, t) = − 1

τ

(
P(X, t) − φeq(X) < P(t) >

)
. (9.54)

9.2.3 Coupled Equations

Coupling of motion along the coordinate X with the reactions gives the following
system of equations [35, 36]

∂

∂t
P(X, t) = (−k(X) + L1 − τ−1

1

)
P(X, t) + k−1(X)C(X, t)

∂

∂t
C(X, t) = (−k−1(X) + L2 − τ−1

2

)
C(X, t) + k(X)P(X, t) (9.55)

where P(X, t)ΔX and C(X, t)ΔX are the probabilities of finding the system in the
electronic state D∗ or D+A−, respectively, L1,2 are operators describing the motion
in the two states and the rates τ−1

1,2 account for depopulation via additional channels.
For the uncorrelated Markovian process (9.54) the rate equations take the form

∂

∂t

(
P(X, t)
C(X, t)

)
= −

(
k(X) + τ−1

1 + τ−1 −k−1(X)

−k(X) k−1(X) + τ−1
2 + τ−1

) (
P(X, t)
C(X, t)

)

+τ−1

(
φ1(X)

φ2(X)

) (
< P(t) >

< C(t) >

)
(9.56)

which can be written in matrix notation as

∂

∂t
R(X, t) = −A(X)R(X, t) + τ−1B(X) < R(t) > . (9.57)

Substitution

R(X, t) = exp {−A(X)U(X, t)} (9.58)

gives

−A(X)R(X, t) + exp

{
−A(X)

∂

∂t
U(X, t)

}

= −A(X)R(X, t) + τ−1B(X) < R(t) > (9.59)
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∂

∂t
U(X, t) = τ−1 exp {A(X)t} B(X) < R(t) > . (9.60)

Integration gives

U(X, t) = U(X, 0) + τ−1
∫ t

0
exp

{
A(X)t ′

}
B(X) < R(t ′) > dt ′ (9.61)

R(X, t)= exp(−A(X)t)R(X, 0) + τ−1
∫ t

0
exp(A(X)(t ′ − t))B(X) < R(t ′) > dt ′

(9.62)

and the total populations obey the integral equation

< R(t) >=< exp(−At)R(0) > +τ−1
∫ t

0
< exp(A(t ′ − t))B >< R(t ′) > dt ′

(9.63)

which can be solved with the help of a Laplace transformation

R̃(s) =
∫ ∞

0
e−st < R(t) > dt (9.64)

∫ ∞

0
e−st exp(−At)dt = (s + A)−1 (9.65)

∫ ∞

0
e−stdt

∫ t

0
< exp(A(t ′ − t))B >< R(t ′) > dt ′ =< (s + A)−1B > R̃(s).

(9.66)

The Laplace transformed integral equation

R̃(s) =< (s + A)−1R(0) > +τ−1 < (s + A)−1B > R̃(s) (9.67)

is solved by

R̃(s) = [
1 − τ−1 < (s + A)−1B >

]−1
< (s + A)−1R(0) > . (9.68)

We assume that initially the system is in the initial state D* and the motion is
equilibrated

R(X, 0) =
(

φ1(X)

0

)
. (9.69)
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For simplicity, we treat here only the case of τ12 → ∞. Then we have

A =
(
k + τ−1 −k−1

−k k−1 + τ−1

)
(9.70)

(s + A)−1 = 1

(s + τ−1)(s + τ−1 + k + k−1)

(
s + τ−1 + k−1 k−1

k s + τ−1 + k

)

(9.71)

and with the abbreviations

α =
(

1 + 1

s + τ−1
(k + k−1)

)−1

(9.72)

and

< f (X) >1,2 =
∫

φ1,2(X) f (X)dX (9.73)

we find

< (s + A)−1R(0) >

=
〈

φ1α

(s + τ−1)2

(
α−1(s + τ−1) − k

k

)〉
=

⎛
⎜⎜⎝

1

s + τ−1 − 1

(s + τ−1)2 < αk >1

1

(s + τ−1)2 < αk >1

⎞
⎟⎟⎠

(9.74)

as well as

< (s + A)−1B >

=

⎛
⎜⎜⎝

1

s + τ−1
− 1

(s + τ−1)2
< αk >1

1

(s + τ−1)2
< αk−1 >2

1

(s + τ−1)2
< αk >1

1

s + τ−1
− 1

(s + τ−1)2
< αk−1 >2

⎞
⎟⎟⎠
(9.75)

and the final result becomes

R̃(s) = 1

s(s2 + τ−1(s+ < αk >1 + < αk−1 >2))

×
(
s(s + τ−1) − s < αk >1 +τ−1 < αk−1 >2

(s + τ−1) < αk >1

)
. (9.76)
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Let us discuss the special case of thermally activated electron transfer. Here

< αk >1,< αk−1 >2� 1 (9.77)

and the decay of the initial state is approximately given by

P(s) = (s + τ−1) + τ−1s−1 < αk−1 >2

(s2 + τ−1s−1(1+ < αk >1 + < αk−1 >2)
= s + K2

s2 + s(K1 + K2)
(9.78)

with

K2 = τ−1

⎛
⎜⎝1 + s−1

∫
dXφ2(X)

k−1(X)

1 + 1

s + τ−1
(k(X) + k−1(X))

⎞
⎟⎠ (9.79)

≈
∫

dXφ2(X)
k−1(X)

1 + τ(k(X) + k−1(X)
(9.80)

K1 =
∫

dXφ1(X)
k(X)

1 + τ(k(X) + k−1(X))
. (9.81)

This can be visualized as the result of a simplified kinetic scheme
d

dt
< P > = −K1 < P > +K2 < C > (9.82)

d

dt
< C > = K1 < P > −K2 < C > (9.83)

with the Laplace transform

s P̃ − P(0) = −K1 P̃ + K2C̃ (9.84)

sC̃ − C(0) = K1 P̃ + K2C̃ (9.85)

which has the solution

P = sP0 + K2(P0 + C0)

s(s + K1 + K2)
C = sC0 + K1(C0 + P0)

s(s + K1 + K2)
. (9.86)

In the time domain we find

P(t) = K2 + K1e−(K1+K2)t

K1 + K2
C(t) = K1

K1 + K2

(
1 − e−(K1+K2)t

)
. (9.87)

Let us now consider the special case that the back reaction is negligible and
k(X) = k�(X) (Fig. 9.5). Here, we have

P̃(s) = s(s + τ−1) − s < αk >1

s(s2 + τ−1(s+ < αk >1))
(9.88)
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Fig. 9.5 Slow solvent limit

φ
τ

k(X)

(X)

X
k

−1

< αk >1=
∫

dXφ1(X)
k(X)

1 + k(X)

s+τ−1

=
∫ ∞

0
φ1(X)

k

1 + k
s+τ−1

dX

= bk
s + τ−1

k + s + τ−1
b =

∫ ∞

0
φ1(X)dX a = 1 − b =

∫ 0

−∞
φ1(X)dX (9.89)

P̃(s) =

(
s + τ−1 − bk

s + τ−1

k + s + τ−1

)
(
s2 + τ−1(s + bk

s + τ−1

k + s + τ−1
)

) = s + τ−1 + k(1 − b)

s2 + s(τ−1 + k) + bkτ−1
. (9.90)

Inverse Laplace transformation gives a biexponential behaviour

P(t) = (μ+ + k(1 − 2b))e−t (k+μ−)/2 − (μ− + k(1 − 2b))e−t (k+μ+)/2

μ+ − μ−
(9.91)

with

μ± = τ−1 ±
√
k2 + τ−2 + 2kτ−1(1 − 2b). (9.92)

If the fluctuations are slow τ−1 � k then

√
k2 + τ−2 + 2kτ−1(1 − 2b) = k + (1 − 2b)τ−1 + · · · (9.93)

μ+ = k + 2(1 − b)τ−1 + · · · μ− = −k + 2bτ−1 + · · · (9.94)

and the two time constants are approximately

k + μ+
2

= k + · · · k + μ−
2

= bτ−1 + · · · (9.95)
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9.3 Powertime Law Kinetics

The last example can be generalized to describe the powertime law as observed for
CO rebinding in myoglobin at low temperatures. The protein motion is now modeled
by a more general uncorrelated process.2

We assume that the rate k is negligible for X < 0 and very large for X > 0.
Consequently only jumps X < 0 → X > 0 are considered. Then the probability
obeys the equation

P(X, t)|X<0 = P(X, 0)

∫ ∞

t
ψ(t ′)dt ′ +

∫ 0

−∞
dX ′

∫ t

0
dt ′ψ(t − t ′) f (X)P(X ′, t ′)

= φeq(X)Ψ0(t) + φeq(X)

∫ t

0
dt ′ψ(t − t ′)

∫ 0

−∞
dX ′P(X ′, t ′)

(9.96)

Ψ0(t) =
∫ ∞

t
ψ(t ′)dt ′ Ψ̃0(s) = 1 − ψ̃(s)

s
(9.97)

and the total occupation of inactive configurations is

P<(t) =
∫ 0

−∞
dXφeq(X)

(
Ψ0(t) +

∫ t

0
dt ′ψ(t − t ′)P<(t ′)

)

= a

(
Ψ0(t) +

∫ t

0
dt ′ψ(t − t ′)P<(t ′)

)
. (9.98)

Laplace transformation gives

P̃<(s) = a
(
Ψ̃0(s) + ψ̃(s)P̃<(s)

)
(9.99)

with

a =
∫ 0

−∞0
dXφeq(X) (9.100)

and the decay of the initial state is given by

P̃<(s) = aΨ̃0(s)

1 − aψ̃(s)
= 1

s + 1−a
a ˜Ψ0(s)

. (9.101)

2A much more detailed discussion is given in: [36].
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For a simple Poisson process (9.44) with

Ψ̃0 = 1

s + τ−1
(9.102)

this gives

P̃<(s) = a

s + (1 − a)τ−1
(9.103)

which reproduces the exponential decay found earlier in the slow solvent limit (9.95)

P<(t) = ae−t (1−a)/τ . (9.104)

The long time behaviour is given by the asymptotic behavior for s → 0. As
P<(t) → 0 for t → ∞ this is also the case for P̃<(s) in the limit s → 0. Hence
the asymptotic behaviour must be

P̃<(s) ≈ a ˜Ψ0(s)

1 − a
→ 0 s → 0 (9.105)

P<(t) → a

1 − a
Ψ0(t) t → ∞. (9.106)

In order to describe a powertime law at long times

P<(t) → t−β t → ∞ (9.107)

P̃<(s) → sβ−1 s → 0 (9.108)

the waiting time distribution has to be chosen as

Ψ0(t) ∼ 1

(zt)β
t → ∞. (9.109)

which implies

Ψ̃0(s) ∼ z−βsβ−1 (9.110)

where z−1 is the characteristic time for reaching the asymptotics. Finally, we find

P̃<(s) ∼ 1

s + 1−a
a zβs1−β

= 1

s(1 + (z̃/s)β)
. (9.111)
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In the time domain this corresponds to the Mittag–Leffler function3

P<(t) =
∞∑
l=0

(−1)l(z̃t)βl

Γ (βl + 1)
= Eβ(−(z̃t)β) (9.112)

which can be approximated by the simpler function

1

1 + (t/τ)β
. (9.113)

Problems

9.1 Dichotomous Model for Dispersive Kinetics

−

α

β

α

β

P(D*,−)

k

k(X)

k+

P(D*,+)

P(D*,X)

X

P(D+A−,−) P(D+A−,+)

Consider the following system of rate equations

d

dt

⎛
⎜⎝

P(D∗,+)

P(D∗,−)

P(D + A−,+)

P(D + A−,−)

⎞
⎟⎠ =

⎛
⎜⎝

−k+ − α β 0 0
α −k− − β 0 0
k+ 0 −α β

0 k− α −β

⎞
⎟⎠

⎛
⎜⎝

P(D∗,+)

P(D∗,−)

P(D + A−,+)

P(D + A−,−)

⎞
⎟⎠

Determine the eigenvalues of the rate matrix M. Calculate the left- and right eigen-
vectors approximately for the two limiting cases:

(a) fast fluctuations k± � α, β. Show that the initial state decays with an average
rate.
(b) slow fluctuations k± 
 α, β. Show that the decay is nonexponential.

3Which has also been discussed for nonexponential relaxation in inelastic solids and dipole relax-
ation processes corresponding to Cole-Cole spectra.
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