
Chapter 19
The Displaced Harmonic Oscillator

In this chapter, we discuss a more specific model for the transition between the
vibrational manifolds using parallel displaced harmonic normal modes, for which
the time-correlation function can be evaluated explicitly. We consider the limit of
high frequency modes (or low temperature) where vibrational progressions appear
and the limit of low frequencies (or high temperature) where the lineshape becomes
Gaussian where position and width only depend on the total reorganization energy.

19.1 The Time-Correlation Function in the Displaced
Harmonic Oscillator Approximation

We apply the harmonic approximation (17.11) for the nuclear motion to the zero-
order Hamiltonian (18.31)

H0 = |ψe >

(
E0
e +

∑
r

�ωe
r b

e†
r ber

)
< ψe| + |ψg >

(
E0
g +

∑
r

�ωg
r b

g†
r bgr

)
< ψg|.

(19.1)

In a simplified but popular model, we neglect mixing of the normal modes (parallel
mode approximation, the eigenvectors (urj in 17.13) are the same) and frequency
changes ( ω

g
r = ωe

r = ωr ) in the excited state but allow for a shift of the equilibrium

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
DOI 10.1007/978-3-662-55671-9_19

251

http://dx.doi.org/10.1007/978-3-662-55671-9_17
http://dx.doi.org/10.1007/978-3-662-55671-9_18
http://dx.doi.org/10.1007/978-3-662-55671-9_17


252 19 The Displaced Harmonic Oscillator

Qg
0 Qe

0

qg

qe

Q

RE

d

Ee

E 0
e −E 0

g

Eg

hω00

min

min

Fig. 19.1 Displaced oscillator model. The displaced oscillator model assumes that the normal
mode eigenvectors are the same in both electronic states involved. Then the different modes are still
independent. The figure shows the potential energy along one such normal mode Q. The minima
at Q0

g and Q0
e are shifted relative to each other by a distance d = Q0

e − Q0
g . The elongation of the

normal mode is denoted as qg(e) = Q − Q0
g(e). The curvature of the two parabolas is the same.

Thus neglecting frequency changes in the excited state, the vibrationless transition energy �ω00
equals the pure electronic transition energy Emin

e − Emin
g . The reorganization energy ER = 1

2 ω2d2

is the amount of energy which can be released in the excited state after a vertical transition from
the vibronic groundstate

position (qe
r = qg

r + dr ).1 The potential energy for the two states then is approximated
by (Fig. 19.1)

Eg = Emin
g + 1

2

∑
r

ω2
r q

2
r (19.2)

Ee = Emin
e + 1

2

∑
r

ω2
r (q

e
r )

2 = Emin
e + 1

2

∑
r

ω2
r (qr + dr )

2. (19.3)

The vertical excitation energy is2

Ee(qr = 0) − Eg(qr = 0) = Emin
e + 1

2

∑
r

ω2
r dr

2 − Emin
g = �ω00 + ER (19.4)

1We retain only the lowest order of the potential difference.
2Without frequency changes the zero point energies are the same and Emin

e − Emin
g = E0

e − E0
g =

�ω00.
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with the reorganization energy

ER = 1

2

∑
r

ω2
r d

2
r . (19.5)

We introduce the ladder operators by substituting

qr =
√

�

2ωr

(
bgr + bg†

r

)
(19.6)

qe
r =

√
�

2ωr

(
ber + be†

r

)
=

√
�

2ωr

(
bgr + bg†

r

)
+ dr . (19.7)

Since dr is real valued we find

ber = bgr + 1

2

√
2ωr

�
dr = bgr +

√
ωr

2�
dr = bgr + gr

with the vibronic coupling parameter

gr =
√

ωr

2�
dr .

From

�ωr

(
be†
r ber + 1

2

)
= �ωr

(
(bg†

r + gr )(b
g
r + gr ) + 1

2

)

= �ωr

(
bg†
r bgr + 1

2

)
+ �ωrgr

(
bgr + bg†

r

)
+ �ωrg

2
r

we obtain the “displaced harmonic oscillator” model (DHO)

Hg =
∑
r

�ωr b
+
r br (19.8)

He =
∑
r

�ωr b
e†
r ber

= Hg +
∑
r

gr�ωr (b
†
r + br ) +

∑
r

g2
r �ωr (19.9)

where the superscript g is omitted from now and the last term is the reorganization
energy
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ER =
∑
r

g2
r �ωr . (19.10)

The correlation function (18.50)

F(t) =
〈
e− it

�
Hge

it
�
He

〉
g

= Q−1tr
(

e−Hg/kBT e− it
�
Hge

it
�
He

)
(19.11)

with

Q = tr(e−Hg/kBT ) (19.12)

factorizes in the parallel mode approximation

F(t) =
∏
r

Fr (t) (19.13)

Fr (t) = Q−1
r tr

(
e−�ωr b†

r br /kBT e−itωr b†
r br eitωr (b†

r +gr )(br+gr )
)

=
〈
e−itωr b†

r br eitωr (b†
r +gr )(br+gr )

〉
. (19.14)

As shown in the appendix this can be evaluated as

Fr (t) = exp

(
g2
r

[
(eiωr t − 1)(nr + 1) + (e−iωr t − 1)nr

] )
(19.15)

= exp

(
g2
r (2nr + 1)(cos ωr t − 1) + ig2

r sin ωr t

)

with the average phonon numbers

nr = 1

e�ωr /kBT − 1
. (19.16)

Expression (19.14) contains phonon absorption (positive frequencies) and emission
processes (negative frequencies). We discuss two important limiting cases.

19.2 High Frequency Modes

In the limit �ωr � kBT the average phonon number

nr = 1

e�ω/kBT − 1
(19.17)

is small and the correlation function becomes
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Fig. 19.2 Progression of a low frequency mode. The Fourier transform of (19.15) is shown for
typical values of �ω = 50 cm−1, 1, Er = 50 cm−1 and (a) kT = 10 cm−1 (b) kT = 200 cm −1. A
small damping was introduced to obtain finite linewidths

Fr (t) → exp
(
g2
r (e

iωt − 1)
)
. (19.18)

Expansion of Fr (t) as a power series of g2
r gives

Fr (t) =
∑
j

g
2 j
r

j ! e−g2
r ei( jωr )t (19.19)

which corresponds to a progression of transitions 0 → j ωr with Franck–Condon
factors (Fig. 19.2)

FC(0, j) = g
2 j
r

j ! e−g2
r . (19.20)

19.3 Low Frequency Modes

In the high temperature limit (�ωr � kBT ) the time-correlation function of one
oscillator (19.15) has peaks at t = 0,± 2π

ωr
, . . . which become very sharp for large

nr ≈ kBT/�ωr
3 (Fig. 19.3). The product correlation function of many oscillators is

non vanishing only around t = 0, i.e. the correlation function decays rapidly and
can be approximated by the Taylor series (in this context also known as short time
approximation)

F(t) ≈ exp

{
−t2

∑
r

(nr + 1

2
)g2

r ω
2
r + i t

∑
r

g2
r ωr

}
≈ exp

{
−t2 ERkBT

�2 + i t

�
ER

}
. (19.21)

3Also for very strong vibronic coupling gr .
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Fig. 19.3 Time-correlation function. |Fr (t)| = exp
{
g2
r (2nr + 1)(cos(t) − 1)

}
is shown for

g2
r (2nr + 1) = 1(broken curve) and g2

r (2nr + 1) = 10(full curve)

Fig. 19.4 Gaussian envelope
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The lineshape is approximately given by a Gaussian (Fig. 19.4)

FCD(�ω) = 1

2π�

∫ ∞

−∞
dt e−iω0t exp

{
−t2 ERkBT

�2
+ i t

�
ER

}
(19.22)

= 1

2π�

√
π�2

ERkBT
exp

{
− (�ω − ER)2

4ERkBT

}

=
√

1

4πERkBT
exp

{
− (�ω − ER)2

4ERkBT

}

with the reorganization energy

Er =
∑
r

g2
r �ωr (19.23)

and the variance

Δ2 = 2ERkBT . (19.24)
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