
Chapter 14
Equilibrium Reactions

In this chapter we study chemical equilibrium reactions. In thermal equilibrium of
forward and backward reactions, the overall reaction rate vanishes and the ratio of
the rate constants gives the equilibrium constant which usually shows an exponential
dependence on the inverse temperature.1 We derive the van’t Hoff relation for the
equilibrium constant and discuss its statistical interpretation.

14.1 Arrhenius Law

Reaction rate theorygoes back toArrheniuswho in1889 investigated the temperature-
dependent rates of inversion of sugar in the presence of acids. Empirically, a tem-
perature dependence is often observed of the form

k(T ) = Ae−Ea/kBT (14.1)

with the activation energy Ea . Considering a chemical equilibrium (Fig. 14.1)

A
k
�
k ′

B. (14.2)

This gives for the equilibrium constant

K = k

k ′ (14.3)

1An overview over the development of rate theory during the past century is given by [49].
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Fig. 14.1 Arrhenius law
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and

ln K = ln k − ln k ′ = ln A − ln A′ − Ea − E ′
a

kBT
. (14.4)

In equilibrium the thermodynamic forces vanish

T = const (14.5)

A =
∑

k

μkνk = 0. (14.6)

For dilute solutions with

μk = μ0
k + kBT ln ck (14.7)

we have

∑

k

μ0
kνk + kBT

∑

k

νk ln ck = 0 (14.8)

which gives the van’t Hoff relation for the equilibrium constant

ln(Kc) =
∑

k

νk ln ck = −
∑

k μ0
kνk

kBT
− ΔG0

kBT
. (14.9)

The standard reaction free energy can be divided into an entropic and an energetic
part

−ΔG0

kBT
= −ΔH 0

kBT
+ ΔS0

k
. (14.10)

Since volume changes are not important at atmospheric pressure, the free reaction
enthalpy gives the activation energy difference
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Ea − E ′
a = ΔH 0. (14.11)

A catalyst can only change the activation energies but never the difference ΔH 0.

14.2 Statistical Interpretation of the Equilibrium Constant

The chemical potential can be obtained as

μk =
(

∂F

∂Nk

)

T,V,N ′
k

= −kBT

(
∂ ln Z

∂Nk

)

T,V,N ′
k

. (14.12)

Using the approximation of the ideal gas we have

Z =
∏ zNk

k

Nk ! (14.13)

and

ln Z ≈
∑

k

Nk ln zk − Nk ln Nk + Nk (14.14)

which gives the chemical potential

μk = −kBT ln
zk
Nk

. (14.15)

Let us consider a simple isomerization reaction

A � B.

The partition functions for the two species are (Fig. 14.2)

zA =
∑

n=0,1...

e−εn(A)/kBT zB =
∑

n=0,1,...

e−εn(B)/kBT . (14.16)

In equilibrium

μB − μA = 0 (14.17)

− kBT ln
zB
NB

= −kBT ln
zA
NA

(14.18)

zB
zA

= NB

NA
= (NB/V )(NA/V )−1 = Kc (14.19)
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Fig. 14.2 Statistical
interpretation of the
equilibrium constant
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Kc =
∑

n=0,1,... e
−εn(B)/kBT

∑
n=0,1... e

−εn(A)/kBT
=

∑
n=0,1,... e

−(εn(B)−ε0(B))/kBT

∑
n=0,1... e

−(εn(A)−ε0(A))/kBT
e−Δε/kBT . (14.20)

This is the thermal distribution over all energy states of the system.
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